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Preface

This work has been supported and promoted by the Italian Aerospace Research Center
(CIRA), where I work since 2011.

The main objective of the research activity has been to develop advanced numeri-
cal methods and efficient computational tools for high-fidelity simulations of turbulent
flows, particularly with Large-Eddy Simulation (LES) and Direct Numerical Simula-
tion (DNS) techniques. The exponential rise in computing power over the last decades
has enabled unsteady calculations of turbulent flows in complex configurations. The
continued developments in numerical and physical modeling have allowed LES and
DNS to establish as predictive tools for both engineering analyses and scientific in-
vestigations. However, additional research efforts are required for the construction of
efficient and accurate numerical methods, that are regarded as the key to the success
of high-fidelity computation of turbulent flows.

The research activity was articulated into two main subjects.

The first one has been concerned with the development of a computational LES
code aimed at the simulation of compressible reacting flows with high-accuracy and
high-performance requirements. The work has been carried out in the framework of
the HYPROB program, funded by the Italian Ministry of Research. The developed
software, named SPARK-LES, is a finite-volume code that solves the compressible,
multi-species, reacting Navier-Stokes equations on structured multi-block grids. The
bulk of the work has focused on the construction of the computational core: cen-
tered high-order explicit and compact schemes for space integration have been im-
plemented, verified and validated on basic test-cases. SPARK-LES features an MPI
parallel implementation and makes full use of Fortran 90 capabilities for CPU ef-
ficiency. The code has demonstrated excellent performances and high accuracy on
classical turbulence benchmarks, such as the Taylor-Green vortex, the channel flow
and the temporal mixing layer. Future work includes reacting test-cases as well as
implementation of advanced physical and numerical modeling.

The second research subject has focused on the construction of efficient numerical
schemes with discrete energy-conservation properties for the incompressible Navier-
Stokes equations. Energy-conserving discretizations are widely regarded as a funda-
mental requirement for high-fidelity simulations of turbulent flows. A well-known ap-
proach to obtain semi-discrete conservation of energy in the inviscid limit is to employ
the skew-symmetric splitting of the non-linear term. However, this approach has the
drawback of being roughly twice as expensive as the computation of the divergence



or advective forms alone. A novel time-advancement strategy that retains the con-
servation properties of skew-symmetric-based schemes at a reduced computational
cost has been developed. This method is based on properly constructed Runge-Kutta
schemes in which a different form (advective or divergence) for the convective term is
adopted at each stage. A general theoretical framework has been developed to derive
new schemes with prescribed accuracy on both solution and energy conservation. The
technique has been first developed and fine-tuned on the Burgers’ equation, and then
applied to the incompressible Navier-Stokes equations. Simulations of homogeneous
isotropic turbulence performed at the Center for Turbulence Research (CTR) in Stan-
ford have demonstrated that the novel procedure provides the same robustness of the
skew-symmetric form while halving the computational cost for the non-linear term.

The following publications have arisen from the research activities:

[i] F. CAPUANO, G. COPPOLA, AND L. DE
LUCA. Quasi-symplectic Runge-Kutta
methods for incompressible Navier-Stokes
equations. J. Comput. Phys., in preparation.

[ii] F. CAPUANO, G. COPPOLA, G. BALARAC
AND L. DE LUCA. Energy-preserving turbu-
lent simulations at a reduced computational
cost. J. Comput. Phys., 19 pp., under review.

[iii] F. CAPUANO, G. COPPOLA AND L. DE
LUCA. An efficient time advancing strategy
for energy-preserving simulations. J. Com-
put. Phys., 30 pp., in press.

[iv] F. CAPUANO AND A. MASTELLONE. Paral-
lelization of finite-volume compact schemes
for turbulent compressible flow. Parallel
CFD 2015, Montreal, May 17-20, 2015.

[v] A. SCHETTINO, L. CUTRONE, S. DI
BENEDETTO, F. CAPUANO, A. MASTEL-
LONE, G. SACCONE AND G. DI LORENZO.
Development and validation of numerical
solvers for the analysis of high-pressure
combustion in liquid rocket engines. 8th Eu-
ropean Symposium on Aerothermodynamics
for Space Vehicles", Lisbon, March 2-6, 2015,
8 pp.

[vi] F. CAPUANO, G. COPPOLA, L. DE LUCA
AND G. BALARAC. A low-cost RK time ad-
vancing strategy for energy-preserving tur-
bulent simulations. Bullettin of the American
Physical Society, 11/2014, 59(20), p.193.

[vii] F. CAPUANO, G. COPPOLA, G. BALARAC
AND L. DE LUCA. A low-cost time-
advancing strategy for energy-preserving
turbulent simulations. Proceedings of the
2014 Summer Program, Center for Turbulence
Research, Stanford, pp. 377–386.

[viii] F. CAPUANO, A. MASTELLONE, S. DI
BENEDETTO, L. CUTRONE AND A. SCHET-
TINO. Preliminary developments towards
a high-order and efficient LES code for
propulsion applications. Proceedings of the
jointly organized WCCM XI - ECCM V -
ECFD VI, Barcelona, July 20-25, 2014.

[ix] F. CAPUANO, G. COPPOLA AND L. DE
LUCA. Low-cost energy-preserving RK
schemes for turbulent simulations. Progress
in Turbulence VI, Proceedings iTi Conference
on Turbulence, Bertinoro, September 21-24,
2014, 4pp.

[x] A. MASTELLONE, F. CAPUANO, S. DI
BENEDETTO AND L. CUTRONE. Direct nu-
merical simulation of the Taylor-Green Vor-
tex at Re = 1600. 3rd International Work-
shop on High-Order CFD Methods, Kissim-
mee, January 3-4, 2015.

[xi] F. CAPUANO, G. COPPOLA AND L. DE
LUCA. Effects of numerical errors in
Large-Eddy Simulation of transitional wall-
bounded flows. European Turbulence Confer-
ence 14, Lyon, September 1-4, 2013.

In the following list, the major original accomplishments are summarized, along with
bibliographic information to which the interested reader is referred.

• Design, development and validation of the computational code SPARK-LES
([v], [viii], [x]);



• Development of new approaches for parallelization of finite-volume compact
schemes ([iv]);

• Development of a theoretical framework for efficient energy-preserving Runge-
Kutta time-advancement schemes (Chapter 3);

• Derivation of energy-preserving Runge-Kutta Butcher arrays for Burgers’ and
Navier-Stokes equations (Chapter 4);

• Derivation of quasi-symplectic Runge-Kutta schemes for incompressible Navier-
Stokes equations ([i]);

• Development of a cost metric for the Runge-Kutta integration of the convective
term (Appendix A);

• Development of an efficient approximate projection method for the incompress-
ible Navier-Stokes equations (Appendix C).

The content of this thesis is focused on the second of the above-mentioned sub-
jects, and is mainly based on publications [ii] and [iii]. Excerpts from these papers
are used with permission from the publisher.

Many people contributed to this work.
I would like to sincerely and gratefully acknowledge my academic supervisors,
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their generous support and polished manners, and for their commitment to excellence
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Nomenclature

Roman Symbols
1 Column vector of ones

U Diagonal matrix of the discrete velocity vector

u Discrete velocity vector

â Number of non-zero ai j Runge-Kutta coefficients

b̂ Number of non-zero bi Runge-Kutta coefficients

N Continuous convective term

ai j Runge-Kutta coefficients

bi Runge-Kutta coefficients

ci Runge-Kutta coefficients

e Global energy

L Length of the stencil for a finite-difference scheme

M Discrete global momentum

m Global momentum

N Number of mesh points

O Number of operations

p Pressure or order of accuracy

R Linear stability function

s Number of stages of the Runge-Kutta scheme

T Computational time

t Time

u Continuous velocity field

x,ymz Spatial coordinates

E Discrete global energy

Re Reynolds number

Greek Symbols
∆E Discrete energy variation

∆t Time step

∆x Mesh size

µ Four-stage Runge-Kutta parameter

ν Kinematic viscosity

∂t Temporal partial derivative



∂x Spatial partial derivative

θ Parameter

Θ1 First-order term of the total energy error

Θ2 Second-order term of the total energy error

Θs Spatial energy error

Θt Temporal energy error

ε Error measure of energy conservation

Superscripts
n Time level

sp Spatial

T Transpose

tot Total

Subscripts
0 Initial

a,adv Advective form

d,div Divergence form

i, j Runge-Kutta stages

skw Skew-symmetric form

x,y,z Spatial directions

Discrete operators
C Discrete convective operator

AAA Discrete convective operator in advective form

DDD Discrete convective operator in divergence form

SSS Discrete convective operator in skew-symmetric form

CCC Discrete 1D convective operator

LLL Discrete 1D Laplacian operator

D Discrete derivative operator

G Discrete gradient operator

L Discrete 3D Laplacian operator

M Discrete divergence operator

P Projection operator

·̃ Projected operator

Acronyms
1D One-dimensional

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

LES Large-Eddy Simulation

NS Navier-Stokes

RANS Reynolds-Averaged Navier-Stokes

RK Runge-Kutta
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1. Introduction

Turbulence is one of the most interesting and challenging phenomena in modern
physics. Turbulent motions are outstandingly common in almost every aspect of ev-
eryday life [1; 2], and a broad class of engineering devices is based on fluids that
work in the turbulent regime [3; 4]. The advent of supercomputers has pushed the
computational fluid dynamics (CFD) towards a reliable numerical resolution of the
Navier-Stokes equations, that represent a remarkably accurate mathematical model
for both transitional and turbulent flow regimes [5].

1.1 Numerical simulation of turbulent flows

Turbulent flows possess a broad range of time and length scales, whose energy is spec-
trally distributed according to the well-known energy cascade paradigm [6]. A fully
time- and space-resolved simulation of the entire mathematical model, equipped with
proper initial and boundary conditions, requires that all relevant scales, from integral
ones down to the dissipative Kolmogorov scales, are properly represented on the dis-
crete level. This approach, called direct numerical simulation (DNS), is in general
extremely expensive and is nowadays affordable only for low to moderate Reynolds
numbers Re and in relatively simple geometries [7]. The required CPU time for a
DNS can be roughly estimated as proportional to Re3. It is estimated that with today’s
most powerful supercomputers, flows with Re = O(104) can be directly simulated.
Higher Reynolds numbers require an unaffordable computational effort, that will not
be mitigated even by the passage from petascale to exascale supercomputing [8].

For high-Reynolds number flows, one must necessarily resort to some sort of mod-
eling. The historical approach has been to apply an averaging process to the governing
equations, and solve for the mean value of flow variables. The resulting Reynolds-
averaged Navier-Stokes (RANS) technique consists in modeling the unclosed terms
that arise from application of the averaging operator [9]. Although the RANS ap-
proach remains the standard practice in CFD for industrial applications, it suffers
from fundamental uncertainties due to the fact that the unclosed terms are modeled
phenomenologically. Therefore, RANS is not predictive when applied outside the do-
main of model calibration, and has reached a plateau that does not benefit from the
increased computer power.

An alternative approach emerged in the early 70’s, when Deardorff — inspired by
Kolmogorov laws — proposed to compute only the largest, energy-carrying spatial
scales of turbulence, while modeling the effects of the smaller, universal scales [10].

19
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Figure 1.1: Direct numerical simulation of zero-pressure-gradient flat-plate boundary
layer. Visualization of the iso-surfaces of the second invariant of the velocity gradient
tensor. From [18].

The self-similarity of the smaller scales is supposed to allow an easier and generally
applicable modeling. From a mathematical point of view, LES can be obtained by
applying a low-pass filtering to the governing equations [11]; the resulting unclosed
terms represent the effect of the filtered scales on the resolved ones and are substi-
tuted by so-called subgrid-scale models. Practically, the filtering operators is usually
represented by the discrete derivative operators and the computational grid itself [12].
Unlike RANS models, subgrid-scale models are derived on the basis of consolidated
and universal principles, and are therefore much less susceptible to uncertainties. Pop-
ular subgrid-scale models are of the eddy-viscosity type and are based on the resolved
scales, via either a constant coefficient [13] or a dynamically adjusted parameter [14].

Nowadays, DNS and LES are regarded as the primary scientific tools for turbu-
lence simulation. While DNS is able to provide physical insight but the application to
complex configurations is rather limited, LES can be also applied to flows of practical
interest and is rapidly expanding in all fields of engineering and science.

1.1.1 Applications and challenges of DNS and LES

DNS has been applied historically to prototype flows; landmark direct numerical sim-
ulations include homogeneous isotropic turbulence [15], plane channel flow [16], the
backward facing step [17] and the turbulent boundary layer [18], see Fig. 1.1. These
simulations shed light on fundamental physical processes and laid the foundations
towards more complex situations. More recently, a number of direct numerical sim-
ulations of low-Reynolds number flows in slightly more realistic configurations has
also been successfully attempted [19].
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Large-eddy simulation is applied to a broad class of problems of scientific and
practical interest, ranging from aerodynamics to combustion, from aeroacoustics to
meterology, as well as many others [20–22]. A particularly interesting application
of LES is to turbulent reacting flows [23; 24]. Combustion systems, especially for
non-premixed devices, are mainly based on a mixing process between fuel and oxi-
dizer. Combustion takes place when the reactants are mixed at a molecular level, a
process that occurs at the smallest turbulent scales. However, the largest scales play
a fundamental role as they stir the reactants and increase the scalar gradients. LES
is particularly successful in combustion simulations as it directly resolves the largest
scales, thus catching the scalar mixing process with remarkable accuracy [25]. As an
indirect consequence, the chemical conversion process is also represented much more
accurately than in simplified approaches, although reactions occur at the subgrid level
and have to be modeled entirely [3].

Many research groups develop LES/DNS codes for multiple applications. A non
exhaustive list is reported as follows. The Center for Turbulence Research (CTR) at
Stanford performs large-eddy simulations of complex systems with the unstructured
code Charles [26]; the Centre Européen de Recherche et de Formation Avancée en
Calcul Scientifique (CERFACS, France) is active in the field of numerical simulation
of combustion with the code AVBP [27]; the COmplex de Recherche Interprofes-
sionnel en Aérothermochimie (CORIA, France) performs DNS and LES of turbulent
combustion by means of the SiTCom-B flow solver [28]. The Italian Aerospace Re-
search Center (CIRA) is also developing qualified technologies to support the design
of propulsion systems in the framework of the HYPROB Program [29]. To this aim,
a LES code, named SPARK-LES, is being developed with the final aim of simulating
turbulent reacting flows within liquid rocket thrust chambers [30].

Despite the extraordinary achievements already accomplished by DNS and LES,
several issues have still to be addressed. Being free of any models, the current chal-
lenges for DNS are mainly concerned with the efficiency of solution algorithms on
highly parallel systems and with the accuracy of numerical methods. On the other
hand, large-eddy simulation has reached satisfactory predictive capabilities, but addi-
tional research efforts are still required in terms of physical and numerical modeling.
Since in LES the energy cascade process is truncated within the inertial range, a sig-
nificant amount of energy is present at the high-end of the wavenumber spectrum
supported by the grid. As a consequence, numerical discretization methods have to
ensure the subtle balances among non-linear interactions, molecular dissipation and
subgrid-scale models without altering the underlying physics. This is a very chal-
lenging task for numerical methods and is discussed in more detail in Section 1.1.2.
On the physical side, construction of parameter-free subgrid-scale models is also an
active field of research, as well as the development of accurate wall-layer models for
simulation of high-Reynolds number external flows [31; 32]. Finally, LES also shares
with DNS the need for efficient algorithms, a need that will not be mitigated by the
presumed passage to exascale computing. As a consequence, development of model-
ing and numerical methods will be the key to the success of high-fidelity computation
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of turbulent flows. There is a widespread feeling that the solution will eventually
come (once again) from fundamental research.

1.1.2 Numerical methods

Turbulence is a multi-scale phenomenon that involves delicate energy transfer mech-
anisms and subtle balances between non-linear inertial forces and dissipative fluxes.
As a result, numerical methods used to discretize the Navier-Stokes equations need
to be particularly accurate to reproduce the underlying physics without spuriously
interacting with the phenomena at play. In particular, the discretization has to pro-
vide a good resolution of the scales involved in the simulation and must not introduce
spurious dissipation (or production) of energy to ensure that the turbulent cascade is
properly reproduced. This is particularly crucial for large-eddy simulation, in which
a significant amount of energy is present at the high-end of the wavenumber spec-
trum supported by the grid. Moreover, in LES the subgrid-scale model must not be
overwhelmed by the truncation error of the discretization method.

A straightforward way to meet these requirements is to use high-order approxi-
mations of spatial derivatives. In DNS, the solution is often represented by spectral
schemes [33], that are allowed by the usually simple geometry and periodic boundary
conditions. However, spectral methods have to be abandoned when modeling more
complex systems, and one must resort to finite-difference or finite-volume methods
[34]. These schemes introduce a lower-order truncation error and support a finite
range of wavenumbers [35]. As a remedy, it is widely agreed that LES has to be per-
formed with schemes that are at least second-order accurate in space, so that the trun-
cation error does not overshadow the subgrid-scale model [36]. In order to improve
resolution, compact schemes are often preferred, as they provide superior resolution
properties on equal order of accuracy if compared to their explicit counterpart [37].

Connected to this is the matter of numerical dissipation. A (linear) modified
wavenumber analysis shows that symmetric (or centered) schemes are non-dissipative
for all wavenumbers on uniform meshes [38]. On the contrary, upwind schemes add
numerical dissipation to the approximate solution at high wavenumbers. Even very
high-order upwind methods can quickly dissipate a large fraction of the resolvable tur-
bulent eddies, which is not desirable for simulations of turbulence. Therefore, upwind
schemes are generally considered not suitable for large-eddy and direct numerical
simulations [39]. Their use is typically limited to the so-called MILES (Monotone-
Integrated Large-Eddy Simulation) approach, in which the inherent artificial dissipa-
tion provided by the numerical scheme is carefully tuned to reproduce the physical
energy cascade from large to small scales (i.e., it works as a built-in subgrid-scale
model) [21]. However, this technique is not consolidated and its use is not recom-
mended for high-fidelity simulations.

A problem in using centered high-order schemes is non-linear stability. The am-
plification of aliasing errors that occur in computing convective terms can in fact accu-
mulate and result in a pile-up of the energy at high wavenumbers, eventually causing
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the solution to blow up [40]. A successful scheme for large-eddy simulation should
be able to suppress these sources of instability while keeping high accuracy and rea-
sonable computational cost. A number of possible approaches include

• addition of proper artificial dissipation;

• low-pass filtering of computed solution at each time step, to prevent the devel-
opment of high-frequency instabilities [41];

• enforcement of secondary conservation properties (e.g., kinetic energy).

Both the first two methods introduce a certain amount of numerical dissipation, that
has to be avoided in numerical simulation of turbulent flows. On the other hand, the
enforcement of secondary conservation properties, e.g., the construction of discretely
energy-conserving numerical methods, is a cutting-edge research theme that will be
discussed in detail in the following section.

In contrast to space discretization algorithms, time-advancement schemes are usu-
ally regarded to be more important for the overall efficiency of the LES model than
for the accuracy, provided that at least second-order methods are chosen [31]. The
choice of the time step is also usually limited by the turbulent time scale [42], and
therefore explicit time-stepping algorithms are often adopted.

1.1.3 Discrete conservation principles

In Section 1.1.2, it has been outlined how numerical methods for DNS and LES have
to be nondissipative, accurate and stable at the same time. A possible solution to
these counteracting requirements lies in the employment of nondissipative discretiza-
tions able to mimic, on a discrete level, the conservation of important invariants of the
continuous equations [43]. These so-called physics-compatible discretizations have
gained increasing popularity over the years, and have found an ideal context of appli-
cation in numerical simulation of turbulent flows. In particular, discrete conservation
of kinetic energy in the inviscid limit is highly desirable in order to obtain physi-
cally relevant solutions [44]. Energy-conserving methods are capable of enforcing a
non-linear stability bound to the discrete solution, allowing for stable long-time in-
tegration. Moreover, being free of numerical diffusion, they ensure that the energy
cascade is not artificially contaminated, in fully-resolved computations, and that the
contribution of subgrid-scale motions is entirely modeled, in under-resolved cases
[39]. While in incompressible flows the global kinetic energy is an invariant of the
Navier-Stokes equations, for compressible flows there can be an isentropic exchange
between kinetic and internal energy. However, in both cases the discretization of the
convective term must not spuriously contribute to the discrete kinetic energy balance.
An illustrative example of the importance of energy conservation is given in Fig. 1.2.

In the context of incompressible flow, the first energy-conserving finite-difference
method dates back to 1965, when Harlow & Welch developed a second-order scheme
in a staggered arrangement that discretely conserves mass, momentum and kinetic
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Figure 1.2: Contour plots of the instantaneous velocity components u (left) and v (right)
over an airfoil at angle of attack of 16.6. The top figures are relative to a non-dissipative
scheme without discrete kinetic energy conservation; the bottom figures to a scheme
which conserves discrete energy. From [45].
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energy on uniform meshes [46]. The scheme has been later extended to fourth-order
by Morinishi [47] and to unstructured grids by Mahesh et al. [48]. An attempt to
extend the fully-conservative, high-order scheme of Morinishi was made by Vasilyev,
although simultaneous conservation of momentum and kinetic energy could not be
achieved [49]. From a mathematical point of view, conservation of kinetic energy in
the inviscid limit can be shown to be strongly related to the preservation of some of
the fundamental symmetries of the continuous differential operators on the discrete
level. This fact was exploited by Verstappen & Veldman to obtain a fourth-order
finite-volume scheme that is fully conservative even on non-uniform meshes [50].

The formulation used for the non-linear convective term is also crucial in terms of
energy-conservation properties. The so-called skew-symmetric (or splitting) form, de-
fined as a proper average of divergence and advective forms, has been shown to guar-
antee a priori semi-discrete conservation of energy for several high-order centered
schemes, over both regular and staggered grid systems [47]. The skew-symmetric
form has also been shown to cause a reduction of aliasing errors with respect to the
other formulations [51; 52]. In this regard, spectral simulations of turbulent flows with
divergence or advective forms proved to be unstable without dealiasing, while the ro-
tational form gave inaccurate results [53]. For these reasons, the splitting form of the
nonlinear convective term has been successfully adopted to yield stable simulations of
turbulent flows in the incompressible framework [54; 55]. In the context of compress-
ible flow, a variable-density version of the skew-symmetric form was first introduced
in [56], and has recently been discussed and extended in [57]. The underlying phi-
losophy has been used to obtain robust methods in both finite-difference [58; 59] and
finite-volume formulations [60; 61]. The splitting form is nowadays regularly applied
in several highly accurate finite-difference and spectral numerical codes for DNS and
LES of turbulent flows [62–64].

However, the major drawback of skew-symmetric-based methods is the increased
computational cost with respect to classical divergence or advective forms [65], since
evaluation of two derivatives (for incompressible flow) is required for each nonlin-
ear component of the convective term [52]. Any attempt to reduce the number of
derivative evaluations in computing the convective term requires the employment of
divergence or advective forms, which are not guaranteed to preserve energy, at least
on non-staggered or non-uniform grids. In this context, the demand for efficient meth-
ods naturally suggests the exploration of cheaper alternatives to the skew-symmetric
splitting, which are able to retain its favourable conservation and aliasing properties.

In addition to the above-mentioned issues related to spatial discretization, time
integration also plays a role. Typically, time advancement is performed in a semi-
discretized approach, and the conservation properties of the temporal scheme are not
usually investigated in detail. Full energy conservation (i.e., in space and time) can
only be obtained by means of implicit methods [66], but the strong demand for effi-
cient procedures usually dictates the use of explicit time-stepping.

In summary, the overall discrete energy conservation error typically results in the
sum of a spatial and a temporal contribution: the former can be nullified by the use of
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the spatially conservative methods (e.g., skew-symmetric or staggered methods), the
latter by implicit time integration.

1.2 Objectives and outline of the work

The objective of the present work is to develop a time-advancement strategy that
retains the conservation properties of skew-symmetric-based schemes at a reduced
computational cost. This is achieved by properly constructed Runge-Kutta schemes
in which a different form (advective or divergence) for the convective term is adopted
at each stage. The final goal is to reproduce the effects of the skew-symmetric form
on energy conservation up to a specific order of accuracy. The main advantage is that,
since the method is based only on advective and divergence forms, it halves the cost
of the computation of the non-linear term at the end of a time step.

The thesis is organized as follows. In Chapter 2, the conservation properties of
a class of numerical methods used for the discretization of the non-linear convective
term is reviewed and discussed, for both the Burgers’ equation and the incompress-
ible Navier-Stokes equations. Temporal energy errors for the class of Runge-Kutta
schemes are also analyzed. The theoretical development of the novel alternating strat-
egy is presented in Chapter 3, while the coefficients of the new Runge-Kutta schemes
are derived in Chapter 4. In Chapter 5, several numerical tests are reported to demon-
strate that the novel schemes are able to reproduce the energy-conservation properties
of skew-symmetric methods. Concluding remarks are given in Chapter 6.



2. Energy-conservation properties of
numerical methods

In this chapter, the energy-conservation properties of a class of numerical schemes
used for the discretization of the non-linear term are analyzed and discussed. Semi-
discretized algorithms are considered, i.e., methods in which the continuous equation
is first discretized in space and then advanced in time.

Two physical models are considered here: the one-dimensional Burgers’ equation
and the incompressible Navier-Stokes equations. The former is a well-known pro-
totype equation of considerable physical and mathematical interest [67]. It can be
regarded as the simplest partial differential equation reproducing some of the pecu-
liar features of non-linear convective transport terms present in more realistic models
(e.g., the Navier-Stokes equations). When subject to stochastic forcing or random ini-
tial conditions, it also exhibits a chaotic behaviour that has been labeled as Burgulence
(Burgers’ turbulence) and is widely studied as a simplified model of real turbulence
[68; 69]. Hence, the Burgers’ equation represents an ideal framework to lay the foun-
dations towards the application to more complex systems.

2.1 Spatial discretization

2.1.1 Burgers’ equation

The simplest model to analyze energy-conservation properties of spatial discretiza-
tions of non-linear convective terms is the inviscid Burgers’ equation, which can be
formally written as

∂tu+N(u) = 0, (2.1)

where the non-linear convective term N(u) can be expressed in one of the continu-
ously equivalent forms

(Div.) ≡ ∂xu2/2, (2.2)

(Adv.) ≡ u∂xu, (2.3)

(Skew.) ≡ (∂xu2 +u∂xu)/3, (2.4)

that are referred to as divergence, advective and skew-symmetric, respectively. The
skew-symmetric form is a properly weighted average of the divergence and advective

27



28 2. ENERGY-CONSERVATION PROPERTIES

forms. When posed on an interval [a,b] with periodic boundary conditions, Eq. (2.1)
has solutions for which all the moments are conserved:

d
dt

∫ b

a

un

n
dx =

∫ b

a
un−1 ∂u

∂ t
dx =−

∫ b

a
un ∂u

∂x
dx =−

∫ u(b)

u(a)
un du = 0. (2.5)

Specifically, the total momentum and the total energy of the solution (which are ob-
tained in the cases n = 1 and n = 2, respectively) remain fixed to their initial values
during time evolution.

Although in the continuous case the different forms of the convective term are
mathematically equivalent, their spatially discretized counterparts can behave very
differently, especially in terms of energy-preserving features and aliasing errors. This
is due to the fact that discrete operators generally are not guaranteed to correctly re-
produce the numerical equivalents of integration by parts and differentiation chain rule
(cfr. [53]). The beneficial conservation and aliasing properties of the skew-symmetric
form have long been recognized by many authors ([47; 52; 53]), while there is much
more debate about the other two formulations. The present analysis examines the
energy-conserving behavior of the spatially discretized version of Eq. (2.1) when the
different forms are employed.

To pursue the scope, the semi-discretized version of the Burgers’ equation is con-
sidered, which can be expressed as

du
dt

+C(u)u = 0. (2.6)

In Eq. (2.6), u is the vector of the nodal values of u, i.e. ui(t) = u(xi, t). The linear
convective operator C(u) has also been introduced. Depending on which among the
three forms divergence, advective or skew-symmetric has been discretized, C(u) can
be equal to one of the following operators

C(u) =


DDD ≡ DU/2 divergence, (2.7a)

AAA ≡ UD advective, (2.7b)

SSS ≡ 1
3
(2DDD+AAA) skew-symmetric, (2.7c)

where U = diag(u) and D is the derivative matrix associated with the spatial dis-
cretization. Hereinafter, the analysis will be conducted by considering uniform meshes
and periodic boundary conditions. For spectral methods and centered finite differ-
ence schemes, both explicit and compact, the derivative matrix turns out to be skew-
symmetric:

DT =−D. (2.8)

The conservation properties of the discretized Eq. (2.6) can be inferred by considering
the induced equations for the evolution of the discrete counterpart of integral, i.e. the
scalar product. By premultiplying Eq. (2.6) by 1T , where 1 is the column vector of all
ones (discrete integrator on uniform mesh), it can be shown that, for skew-symmetric
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derivative matrices, the total discrete momentum M is conserved, for both AAA and
DDD. From this result one easily concludes that every discretization employing a linear
convex combination of the advective and divergence forms (e.g. the skew-symmetric
form) conserves total momentum.

As regards global energy conservation, the relevant scalar product is uT u = ‖u‖2,
for which the evolution equation reads:

d
dt
‖u‖2 =−2uT C(u)u. (2.9)

Since the time derivative of the energy of any solution of the semi-discretized Eq. (2.6)
can be expressed as a quadratic form associated to the matrix C, a sufficient condi-
tion for the semi-discretized equation to be energy-conserving is that the matrix C is
skew-symmetric for every u. Similar considerations have been recently employed for
the construction of difference operators which are optimized by forcing the reproduc-
tion of crucial symmetry properties of the underlying differential operator, in spite of
minimizing local truncation error [50; 70].

From this analysis one immediately concludes that the semi-discretized Eq. (2.6)
obtained by employing divergence or advective forms does not conserve global en-
ergy, since the associated matrices DDD and AAA are in general not skew-symmetric. The
averaged skew-symmetric form, on the other hand, is naturally energy-conserving in
cases in which the derivative matrix D is skew-symmetric. This property is also read-
ily seen to be equivalent to the numerical analogue of integration by parts.

The analysis presented above can be completed by characterizing the different
errors on energy conservation introduced by the divergence and advective forms. By
evaluating Eq. (2.9) in the two cases one obtains:

dEadv

dt
= −uT UDu (2.10)

dEdiv

dt
= −1

2
uT DUu =

1
2

uT UDu (2.11)

where E = ‖u2‖/2. From Eqs. (2.10) and (2.11) it follows that:

dEdiv

dt
=−1

2
dEadv

dt
. (2.12)

Equation (2.12) shows that the energy derivatives for the divergence and convective
forms have opposite signs and that their relation is such that an average of the two
forms with weights 2 and 1 (which defines the skew-symmetric form) furnishes exact
conservation of energy:

dEskw

dt
=

2
dEadv

dt
+

dEdiv

dt
3

= 0. (2.13)
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Equations (2.12) (2.13) can be also rewritten in terms of the following relation be-
tween the divergence and advective discrete operators:

AAAT =−2DDD, (2.14)

that holds regardless of u.

2.1.2 Navier-Stokes equations

The analysis of the previous section is here extended to the incompressible Navier-
Stokes equations,

∂ui

∂ t
+Ni(u) =−

∂ p
∂xi

+
1

Re
∂ 2ui

∂x j∂x j
, (2.15)

∂ui

∂xi
= 0, (2.16)

where Ni(u) is the non-linear convective term and Re is the Reynolds number. The
convective term can be cast in several analytically equivalent forms, for instance

(Div.)i ≡
∂u jui

∂x j
, (2.17)

(Adv.)i ≡ u j
∂ui

∂x j
, (2.18)

(Skew.)i ≡
1
2

∂u jui

∂x j
+

1
2

u j
∂ui

∂x j
. (2.19)

These are referred to as divergence, advective and skew-symmetric forms, respec-
tively, and are analogous to Eqs. (2.2–2.4). Other forms can also be constructed
(e.g., rotational), but will not be considered in this study. When posed on a domain
Ω with periodic boundary conditions, Eqs. (2.15–2.16) possess a number of invari-
ants, most notably the momentum m =

∫
Ω

uidV and, for Re→ ∞, the kinetic energy
e =

∫
Ω

u2
i /2dV , which represent the linear and quadratic invariants, respectively. In a

continuous setting, these properties hold for any expression adopted for the non-linear
term. When discretized, Eqs. (2.17–2.19) have been shown to behave differently, both
in terms of conservation properties [47] and aliasing issues [53].

A semi-discretized version of Eqs. (2.15–2.16) can be expressed as

du
dt

+C(u)u =−Gp+
1

Re
Lu, (2.20)

Mu = 0, (2.21)

where u is the discrete velocity vector containing the three components on the three-
dimensional mesh, u = [ux uy uz]

T , the matrices G ∈ RNu×Np and M ∈ RNp×Nu are
the discrete gradient and divergence operators, respectively, while L ∈ RNu×Nu is the
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block-diagonal Laplacian diag(LLL,LLL,LLL) with LLL ∈ RNp×Np . In what follows, it will be
assumed that the gradient, divergence and Laplacian operators are discretized consis-
tently, in such a way that the relations GT =−M and LLL= MG hold. The convective
term is expressed as the product of a linear block-diagonal convective operator C(u)
and u:

C(u)u =

 CCC(u) CCC(u)
CCC(u)

 ux

uy

uz

 . (2.22)

By extending the one-dimensional case to three dimensions, the operator C(u) can
assume one of the following forms:

C(u) =


DDD ≡ diag(DxUx +DyUy +DzUz) divergence, (2.23a)

AAA ≡ diag(UxDx +UyDy +UzDz) advective, (2.23b)

SSS ≡ 1
2
(AAA+DDD) skew-symmetric, (2.23c)

In Eq. (2.23), the matrices D(·) and U(·) represent the discrete derivative operators and
the diagonal matrices of the discretized velocity components along the three directions
(e.g., Ux = diag(ux)).

A regular arrangement of the variables on the grid is employed [47], for which the
velocity components ui and pressure p are stored at the same points. Centered finite-
difference and spectral discretizations on a Cartesian, periodic and equally spaced
grid will be considered here. Under such hypotheses, the derivative operators satisfy
a discrete summation-by-parts rule; from an algebraic point of view, this implies that
the derivative matrices are all skew-symmetric, DT = −D. As a consequence, it can
easily be shown that the convective operator SSS also inherits this property for all u,
unlike the other two forms.

The discrete conservation properties can be analyzed by deriving the evolution
equation of the discrete kinetic energy E = uT u/2, which reads

dE
dt

=−uT C(u)u−uT Gp+
1

Re
uT Lu. (2.24)

In Eq. (2.24), the pressure term is conservative if GT = −M and Mu = 0. The
convective and diffusive terms appear as quadratic forms with associated matrices
C(u) and L, respectively. The diffusive term is clearly not conservative (if properly
discretized, the operator L is a negative-definite matrix), while the convective term is
conservative if the skew-symmetric operator of Eq. (2.23c) is adopted. In the other
two cases, the convection matrices C(u) are in general not skew-symmetric and hence
conservation of energy is not guaranteed.

An analysis similar to the one carried out at the end of Section 2.1.1 reveals that
errors coming from the divergence and advective forms have opposite signs. The key
observation is that, for skew-symmetric discrete derivative operators, the following
relation holds

AAAT =−DDD, (2.25)
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which immediately implies −uTAAAu = uTDDDu and hence that the energy variation due
to the divergence and advective forms are equal and of opposite sign.

2.2 Time-advancement

In contrast to spatial discretizations, energy conservation properties of time-integration
algorithms are much less discussed in literature. It is generally believed that the er-
rors due to the spatial discretization are much larger than those coming from time-
advancement, especially in numerical simulation of turbulent flows. In such cases, the
time-step is usually dictated by accuracy and not by stability restrictions [42], leading
to particularly small energy errors. Common choices for time-integration methods
are the multi-step Adams-Bashforth or the multi-stage Runge-Kutta schemes. In the
present work, the attention will be focused on the latter.

Application of a generic Runge-Kutta scheme to a convective term C(u)u reads

un+1 = un−∆t
s

∑
i=1

biC̃(ui)ui, (2.26)

ui = un−∆t
s

∑
j=1

ai jC̃(u j)u j, (2.27)

where s is the number of stages and ai j and bi are the coefficients of the scheme.
Equations (2.26)-(2.27) apply to either the one-dimensional convective operator (2.7)
or the Navier-Stokes operator (2.23). However, the tilde ·̃ indicates that the discrete
convection matrix C̃ is projected by means of an operator P:

C̃ = PC. (2.28)

The projection operator P can assume different values depending whether the Burgers’
equation or the Navier-Stokes equations are under consideration:

P =

{ I Burgers’ equation, (2.29a)

I−GLLL−1M Navier-Stokes equations, (2.29b)

where I is an identity matrix of proper dimensions. In the case of the Navier-Stokes
equations the convective operator has to be projected to yield a divergence-free veloc-
ity field. This is usually accomplished by means of fractional-step methods [71; 72].
Similarly, D̃DD, ÃAA and S̃SS are the projected divergence, advective and skew-symmetric
operators. It is worth to note that the projection operator has a number of interesting
properties, which are valid for both Burgers’ and Navier-Stokes equations:

PT = P, (2.30)

Pk = P, (2.31)

Pu = u, uT P = uT ∀u |Mu = 0, (2.32)
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i.e., the projection operator is symmetric, idempotent and leaves unaffected divergence-
free velocity fields (this is true for all vectors u in the case of the Burgers’ equation).
For the Navier-Stokes equations, the operator is also singular.

The coefficients ai j and bi are often arranged into the so-called Butcher array [73]:

c1 a11 a12 . . . a1s

c2 a21 a22 . . .
...

...
...

...
. . .

...
cs as1 . . . . . . ass

b1 . . . . . . bs

,

where ci = ∑ j ai j. Since the semi-discretized equations under study constitute a sys-
tem of autonomous ordinary differential equations, the ci coefficients will not be dis-
played hereinafter. Nonetheless, these coefficients might still come into play when-
ever time-dependent source terms or boundary conditions are considered. The coef-
ficients ai j and bi are usually determined in order to maximize the formal order of
accuracy of the solution. The order conditions are a set of non-linear constraints on
the coefficients. Their number increases as the desired order of time-accuracy on the
computed solution increases. The relations needed to obtain up to fourth-order ac-
curacy are reported in Table 2.1. In particular, Eq. (2.33) is the first-order relation,
Eq. (2.34) is needed for second-order accuracy, Eqs. (2.35–2.36) have to be added
to achieve third order and finally the four Eqs. (2.37–2.40) are the fourth-order con-
ditions. For Runge-Kutta schemes up to four stages s, one has p ≤ s, where p is
the order of accuracy. Notable examples of Runge-Kutta schemes are summarized in
Table 2.2.

Order Relation

1 ∑i bi = 1 (2.33)

2 ∑i j biai j = 1/2 (2.34)

3
∑i jk biai jaik = 1/3 (2.35)

∑i jk biai ja jk = 1/6 (2.36)

4

∑i jkl biai jaikail = 1/4 (2.37)

∑i jkl biai jaikakl = 1/8 (2.38)

∑i jkl biai ja jka jl = 1/12 (2.39)

∑i jkl biai ja jkakl = 1/24 (2.40)

Table 2.1: Conditions for order of accuracy up to four for Runge-Kutta schemes
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Two-stage, second-order Kutta scheme RK4

0
1

2θ
0

1−θ θ

0
1
2 0

−1 2 0
1
6

2
3

1
6

0
1
2 0

0 1
2 0

0 0 1 0
1
6

1
3

1
3

1
6

Table 2.2: Some common Runge-Kutta schemes.

The discrete energy balance for the entire space-time algorithm can eventually be
derived. Eqs. (2.26–2.27) can be manipulated to give an expression for the evolution
of energy in a single time step of the Runge-Kutta procedure. By defining ∆E =
En+1−En, Eqs. (2.26–2.27) easily lead to the relation [66]:

∆E
∆t

=−
s

∑
i=1

biuT
i C̃(ui)ui︸ ︷︷ ︸

I

− ∆t
2

s

∑
i, j=1

(biai j +b ja ji−bib j)uT
i C̃T (ui) C̃(u j)u j︸ ︷︷ ︸

II

(2.41)

The two terms on the right-hand side of Eq. (2.41) can be defined as

I) Spatial error: ∑
s
i=1 biuT

i C̃(ui)ui

II) Temporal error:
∆t
2

∑
s
i, j=1 (biai j +b ja ji−bib j)uT

i C̃T (ui) C̃(u j)u j

The first one is composed by a linear combination of s different terms, each having
the usual structure of a quadratic form for the convection matrix C̃. Each term is
identically zero if a skew-symmetric form is adopted for C̃, hence the name spatial
error appears to be appropriate.

The second quantity causing a variation of energy has a more complex structure
and does not vanish in general, even in the case of skew-symmetric operators C̃. It
usually inherits the same order of the scheme and can be nullified only for suitably
chosen Runge-Kutta integrators, and this justifies the term temporal for this part of
the error. It is well known that for the temporal error to be zero one has to employ
so-called symplectic methods, for which biai j + b ja ji− bib j = 0, a constraint which
cannot be satisfied by explicit methods [74]. It is worth noting that the presence of the
projection operator does not influence the discrete energy, as long as Mui = 0 [66].



2.3. COMPUTATIONAL COST 35

2.3 Computational cost

The above considerations can be summarized as follows. If one employes a spa-
tial discretization in which the skew-symmetric form for the convective operator is
adopted, the spatial error on energy conservation is absent. The temporal error due
to Runge-Kutta integration is however still present and it can be shown to vanish, as
∆t is reduced, at least with the same order of accuracy p of the Runge-Kutta scheme
employed. If one wants to completely nullify the temporal error, implicit (symplectic)
methods have to be chosen. However, these can not be used for many cases of interest
due to the unaffordable computational effort that would require. The employment of
a non energy-conserving spatial discretization (e.g. in divergence or advective forms),
on the other hand, produces a zeroth-order error on energy conservation (due to the
spatial part of the error) independently of the accuracy of the Runge-Kutta procedure.
This situation cannot be alleviated by the time integration procedure, since the error
is completely due to the spatial discretization and would still be present in an exact
integration of the system of ODEs.

The number of floating point operations required to perform a complete time-
advancement step depends heavily on the form adopted for the non-linear term. The
practical implementation of the skew-symmetric form in a finite-difference code is
easily shown to be roughly twice as expensive as standard divergence or advective
forms alone. In the framework of incompressible Navier-Stokes equations, for in-
stance, the splitting form requires 18 derivatives evaluations, while the advective or
divergence forms take 9 derivatives [7]. In 1D, both numbers are reduced by a factor of
9. In spectral algorithms, the computation of the convective term in skew-symmetric
form requires twice the number of discrete Fourier transforms (forward and backward)
with respect to the other formulations. Although the other modules of the overall solu-
tion algorithm can take a certain part of the total CPU time (e.g., solution of pressure
equation, computation of viscous terms, etc.), the net cost increase due to the use of
the skew-symmetric splitting can be noteworthy, especially for explicit time-marching
algorithms or in spectral codes. In the latter case, the Poisson equation for pressure
is practically costless, while the viscous term is often treated analytically. By using
the cost metric presented in Appendix A, it can be shown that in order to advance
in time the convective term with a standard RK4 scheme and a second-order centred
scheme, 52 operations per node are required for the skew-symmetric form, while 28
operations are needed for divergence or advective forms. The difference increases as
the spatial order of accuracy is increased. The objective of the present work is to in-
vestigate time-advancing strategies that are able to retain the beneficial properties of
the skew-symmetric form at a reduced computational cost.
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3. The alternating RK strategy

The rationale underlying this method stems from the fact that the global errors on
energy conservation associated with discretized divergence and advective forms have
opposite signs. The basic idea is to take advantage of the time-advancement scheme
to cancel the errors of these two forms up to a certain order of accuracy. By using only
divergence or advective forms, the resulting scheme can be more cost-effective than a
skew-symmetric-based one. In the following analysis, only inviscid flow is considered
(Re→ ∞), since interest is focused exclusively on the conservation properties of the
convective term.

3.1 Core of the method

The core of the method consists in advancing the non-linear term by means of a mod-
ified, explicit Runge-Kutta algorithm, which can be expressed as

un+1 = un−∆t
s

∑
i=1

biC̃i(ui)ui (3.1)

ui = un−∆t
i−1

∑
j=1

ai jC̃ j(u j)u j (3.2)

where s is the number of stages, ai j and bi are the Runge-Kutta coefficients. The novel
procedure is valid for projected, quadratic non-linear operators of the type of Eq. 2.28.
It can hence be applied to both the convective operator of the Burgers’ equation (2.7)
and that of the Navier-Stokes equations (2.23). Equations (3.1-3.2) differ from the
standard Runge-Kutta procedure (2.26)-(2.27) in that they can accommodate a differ-
ent formulation for the non-linear term within the stages. In fact, the operator C̃ is
indexed by a suffix, meaning that it can be expressed in either divergence or advective
form at each stage.

The overall aim of this method is to find a set of coefficients, along with a sequence
of divergence and advective forms, that maximizes the formal order of accuracy on
both the discrete solution u and the discrete energy conservation. A prescribed order
of accuracy for the discrete solution u can be attained by imposing a proper set of
order conditions (cfr. Table 2.1). Hereinafter, the term order conditions will be used
to refer to accuracy on the discrete solution. The resulting nonlinear system is usually
underdetermined: the remaining degrees of freedom can be exploited to impose an
additional set of equations for energy conservation.

37
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The order conditions will be derived in the next subsection. Then, the derivation
of the energy-conservation equations, which is the central part of the novel procedure,
will be described in detail.

3.1.1 Order conditions

In this section, the order conditions for the modified Runge-Kutta schemes presented
in Eqs. (3.1–3.2) are derived. It will be shown that the use of different operators at
each sub-stage does not alter the convergence towards the exact solution of the par-
tial differential equation. Indeed, since the discrete operators Ci(ui)ui tend all to the
continuous term N(u) as ∆x→ 0, the convergence properties of the proposed proce-
dure turns out to have the same characteristics of those of classical semi-discretized
algorithms.

For the sake of simplicity, a three-stage, third-order case will be taken into con-
sideration; however, the analysis can easily be extended to a more general case. By
following the standard path, the right-hand side of Eq. (3.1) is expanded in Taylor
series to yield:

un+1 = un +∆t
s

∑
i=1

bifi +∆t2

[
s

∑
i=1

(
biḟi

s

∑
j=1

ai jf j

)]
+

+∆t3

 s

∑
i=1

biḟi

(
s

∑
j=1

ai j ḟ j

s

∑
k=1

a jkfk

)
+

1
2

s

∑
i=1

bif̈i

(
s

∑
j=1

ai jf j

)2
+O(∆t4)

(3.3)

where dots denote differentiation and fi = Ci(un)un. In Eq. (3.3), the powers and
products between vectors have to be intended as element-wise operations. The var-
ious terms fi and ḟi can be collected out by invoking the accuracy of the spatial dis-
cretization. In fact, assuming that both the discrete divergence and advective operators
have been constructed by employing a derivative matrix of order of accuracy p, the
difference between them is an order-p infinitesimal function, as the spatial mesh size
∆x→ 0. In practice, one has:

fi = f j +O(∆xp) = f+O(∆xp), (3.4)

where f represents the evaluation of the exact nonlinear convective term on the spatial
mesh; an analogue relation holds for ḟi.

By using Eq. (3.4), Eq. (3.3) can be rewritten as:

un+1 = un +∆tf
s

∑
i=1

bi +∆t2f ḟ

[
s

∑
i=1

bi

s

∑
j=1

ai j

]
+

+∆t3

ḟ2 f
s

∑
i=1

bi

s

∑
j=1

ai j

s

∑
k=1

a jk +
1
2

f̈ f2
s

∑
i=1

bi

(
s

∑
j=1

ai j

)2
+

+ e1 + e2 + e3 + e∆t ,

(3.5)
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where ek = ∆tkO(∆xp) and e∆t = O(∆t4).
The Taylor expansion of the exact solution reads:

un+1 = un +∆tf+
1
2

∆t2f ḟ+
1
6

∆t3 [ḟ2 f+ f̈ f2]+ e∆t . (3.6)

A term-by-term comparison between Eq. (3.5) and Eq. (3.6) shows that the order
conditions that have to be enforced on the coefficients ai j and b j to satisfy third-order
accuracy coincide with the classical conditions (2.33)-(2.36):

∑i bi = 1, (3.7)

∑i bi ∑ j ai j =
1
2
, (3.8)

∑i bi
(
∑ j ai j

)2
=

1
3
, (3.9)

∑i bi ∑ j ai j ∑k a jk =
1
6

. (3.10)

However, in contrast to the standard procedure, the difference between computed and
exact solutions is composed by additional errors, besides the third-order term e∆t . The
other terms are constituted by the product of two infinitesimal functions of time- and
space-step sizes. The situation illustrated above can be easily generalized to order r
Runge-Kutta schemes, for which the satisfaction of order conditions will produce an
error made up of the term e∆t = O(∆tr+1) as well as of a sum of additional terms ek,
with k = 1,2, . . . ,r.

A similar situation is also present in the classical case in which the same form is
adopted at each stage of the Runge-Kutta method. Although a convergence study of
the procedure towards the semi-discretized system of ordinary differential equations
possible in that case, the analysis of the convergence of the discretization with respect
to the original partial differential equation conduct to an equation similar to Eq. (3.5).
In this case, the ei terms stem from the substitution of the spatially discretized right
hand side of the system of ODE with the evaluation of the continuous nonlinear term
on the spatial mesh.

The behavior of the error components ei (whose leading term is e1) can be ana-
lyzed by considering different convergence processes, involving time, space or both
time and space refinements. As an example, if one considers a limit process in which
both space and time increments are reduced in such a way that the ratio λ = ∆t/∆x is
taken fixed, the generic error ek asymptotically behaves as K∆t p+k/λ p, which means
that for this limit process the temporal order of accuracy is governed by both spatial
and temporal discretization accuracy. The leading order term e1 will scale at the same
rate of e∆t , as the time step is reduced, in the particular case in which p = r. Hence,
the method will be still of order r (with respect to temporal accuracy) if the space
discretization has order p≥ r.

A more interesting limit process is the one in which the space discretization step
is taken fixed and time increments are reduced. In this case the procedure will be
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formally not consistent, since asymptotically the global error, whose leading term
is again proportional to e1, will be a constant. However, since this constant can be
made arbitrarily small by refining the spatial step size ∆x, for practical purposes a
sufficiently accurate space discretization will reduce the terms ek below the quantity
e∆t for the time steps of interest. Put in another way, given any region of variation of
the time step ∆t, there exists a sufficiently accurate space discretization for which the
errors ek assume a magnitude which is smaller than the temporal error e∆t . For such
space discretizations the modified Runge-Kutta procedure behaves as the classical
procedure, for what concerns the temporal accuracy of the solution.
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Figure 3.1: Convergence of the error on the solution. (Left) Sequence CDC, for a number
of points N from 20 to 40. (Right) Sequence CCD, for a number of points N from 60 to
300. Additional details are available in the text.

Figure 3.1 confirms the analysis. Results are obtained by integrating the invis-
cid Burgers’ equation with periodic boundary conditions on the domain [−1,1], with
initial condition u0(x) = sin(πx). Several values of N (number of points) and ∆t are
examined, and numerical solution is compared to the exact solution by calculating an
L2 norm, ‖u−uex‖. A sixth-order compact scheme is used for spatial integration [37],
while for time-integration a 3-stage, third-order Runge-Kutta scheme is adopted. As
the number of points is increased, the contribution of ei is progressively diminished,
until the correct third-order slope of the temporal method is correctly recovered. It
is interesting to note that the sequence CDC converges much more quickly with re-
spect to the sequence CCD. This behaviour is due to the inherent energy-conservation
properties of the CDC sequence, that will be revealed in the subsequent sections.

3.2 Energy-conservation conditions

In this section, the energy-conservation conditions for the alternating Runge-Kutta
methods are derived and discussed. This is the peculiar part of the novel procedure,
as the derivation of such conditions is not trivial and requires particular care.
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3.2.1 Energy analysis

The total discrete energy error introduced over a single time-step advancement by
Eqs. (3.1–3.2) can be obtained by taking the inner product between un+1 and itself.
By defining ∆E = En+1−En, Eqs. (3.1–3.2) can be manipulated to yield

∆E
∆t

=−
s

∑
i=1

bi uT
i C̃i (ui)ui︸ ︷︷ ︸

I

− ∆t
2

s

∑
i, j=1

gi j uT
i C̃T

i (ui) C̃ j (u j)u j︸ ︷︷ ︸
II

, (3.11)

where gi j = biai j +b ja ji−bib j. Equation (3.11) is very similar to Eq. (2.41), but the
introduction of alternating forms for the convetive term yields significant differences.
Again, the two terms on the right-hand side of Eq. (3.11) can be defined as

I) Spatial error: Θs =−∑
s
i=1 biuT

i C̃i (ui)ui,

II) Temporal error: Θt =−
∆t
2

∑
s
i, j=1 gi j uT

i C̃T
i (ui) C̃ j (u j)u j.

The spatial error vanishes for standard skew-symmetric methods (C̃i ≡ C̃ = S̃̃S̃S),
while the temporal error can still be nullified by symplectic methods. However, the use
of different discretized forms inside the stages of the Runge-Kutta procedure gives rise
to new possibilities for obtaining cost-effective energy-preserving algorithms. An ap-
propriate choice of Runge-Kutta coefficients can lead to methods in which the mixed
spatial and temporal errors are nullified up to a certain order of accuracy.

The starting point of the analysis is the evaluation of the energy error as a Taylor
series expansion in the time step increment ∆t. This expression can be obtained by
recursively substituting Eq. (3.2) into the right hand side of Eq. (3.2) itself and in
Eq. (3.11). The key ingredient of the procedure will be, as shown below, the linearity
of Ci(ui) as a function of ui. By expressing the terms u j at the right hand side of
Eq. (3.2) through Eq. (3.2) itself and by employing the exact relation

C̃ j (u j) = C̃ j (un)−∆t ∑
k

a jkC̃ j

(
C̃k (uk)uk

)
, (3.12)

one easily obtains

ui = u−∆t

(
∑

j
ai jC̃ ju

)
+∆t2

[
∑
j,k

ai ja jk

(
C̃ jC̃k +C jk

)
u

]
+O

(
∆t3) , (3.13)

where the summations are extended to the number of stages s. The following conven-
tions have been adopted: u = un; C̃ j = C̃ j (un) and

C jk ≡ C̃ j

(
C̃k (un)un

)
. (3.14)

In these last two relations, and in the following ones involving the matrices C̃i, paren-
theses denote functional dependence. In all the other cases in which the functional
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dependence of the matrices C̃ j is not specified, it is assumed that the quantities are
evaluated at un.

Equation (3.13) can be employed to express C̃i (ui) as a Taylor series in ∆t through
Eq. (3.12):

C̃i (ui) = C̃i−∆t ∑
j

ai jCi j +∆t2
∑
i, j

ai ja jk
(
Ci, jk +Ci jk

)
+O

(
∆t3) , (3.15)

where the further definitions have been introduced:

Ci, jk ≡ C̃i

(
C̃ jC̃ku

)
, (3.16)

Ci jk ≡ C̃i
(
C jku

)
. (3.17)

By substituting Eqs. (3.13–3.15) into Eq. (3.11) one obtains the expression for
the energy variation ∆E as a Taylor series. The spatial and temporal parts of the
error are reported in Eq. (3.19) and Eq. (3.20), respectively. The sum of the two
contributions Θs +Θt can be eventually rearranged to yield Eq. (3.21), where g′i j =
biai j−b ja ji +bib j and

Fi
jk ≡ C̃T

i C jk + C̃T
i C̃ jC̃k (3.18)

have also been defined.
It is interesting to note that, unlike standard methods, in the novel procedure the

temporal error Θt does not inherit the original order of the Runge-Kutta scheme. In-
stead, it has a non-vanishing term of O(∆t) that mixes with the spatial contribution.

Eq. (3.21) constitutes the basic relation on which the optimized Runge-Kutta
schemes can be constructed. The procedure is based on the principle that suitable
choices for the coefficients bi and ai j can nullify the successive terms in the series
expansion of ∆E, thus identifying optimal schemes for what concerns conservation of
energy.

3.2.2 Determination of energy-conservation equations

The determination of the coefficients is obtained by explicitly imposing the conditions
that the various terms at the right hand side of Eq. (3.21) vanish, independently on
u. These constraints conduct to the determination of algebraic nonlinear equations
involving the coefficients bi and ai j which can be coupled to classical order conditions
to give a global system for the determination of new Runge-Kutta schemes. The
number and the structure of the nonlinear equations related to energy conservation
depend on several parameters, such as the number of stages, the chosen sequence of
C̃i’s and the details of the spatial discretization. In general, each of the operators
involving the product or the composition of two or more matrices C̃i (i.e. each of
the terms C̃iC̃ j, Ci j, C̃T

i C̃ j, . . . ) has to be considered as an independent function
of the state vector u. In these general cases the number of constraint to be imposed
to the coefficients dramatically grows with both the number of stages and the order
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Θs =−∑
i

biuT
i C̃i (ui)ui =

−uT

(
∑

i
biC̃i

)
u+∆t uT

[
∑
i, j

biai j

(
C̃iC̃ j +Ci j + C̃T

j C̃i

)]
u+

−∆t2 uT
∑
i, j,k

biai j
[
a jk
(
C̃iC̃ jC̃k + C̃iC jk +Ci, jk +Ci jk +Fi

jk
)
+aik

(
Ci jC̃k +F j

ik

)]
u+O(∆t3),

(3.19)

Θt =−
∆t
2 ∑

i j
gi juT

i C̃T
i (ui) C̃ j (u j)u j =

− ∆t
2

uT

[
∑
i, j

gi jC̃T
i C̃ j

]
u+

∆t2

2
uT

[
∑
i, j,k

gi ja jkFi
jk +gi jaikF j

ik

]
u+O

(
∆t3) , (3.20)

∆E
∆t

= Θt +Θs =

−uT

[
∑

i
biC̃i

]
u+

∆t
2

uT

[
∑
i, j

2biai j

(
C̃iC̃ j +Ci j

)
+gi jC̃T

i C̃ j

]
u+

− ∆t2

2
uT

{
∑
i, j,k

2biai j

[
a jk

(
C̃iC̃ jC̃k + C̃iC jk +Ci, jk +Ci jk

)
+aik

(
Ci jC̃k

)]
+g′i j

(
Fi

jka jk +F j
ikaik

)}
u+O

(
∆t3) .

(3.21)
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(a) fix the number of stages of the method;

(b) choose a sequence of advective and divergence forms;

(c) group the terms of Eq. (3.22) and Eq. (3.23) into combinations of few indepen-
dent terms;

(d) impose conditions on ai j and bi to nullify the terms.

Table 3.1: Summary of steps needed to determine the energy-conservation conditions
for alternating schemes

of accuracy, since the number of independent groups to be nullified grows linearly
with the number of stages and more than linearly with the order of accuracy. In such
situations the global system of equations quickly becomes overdetermined, especially
in the more appealing case of explicit schemes. In what follows, it will be shown
that the structure of Eq. (3.21) can be highly simplified to lead to a tractable set of
conditions.

The analysis will be limited to the requirement of a maximum of second-order on
energy conservation. Higher-order energy conservation is possible, but would require
involved calculations which add little to the exposition of the main idea, and are pos-
sible subjects of future work. The two terms that have to be nullified are reported here
again from Eq. (3.21) for convenience:

Θ1 = uT

[
∑

i
biC̃i

]
u, (3.22)

Θ2 =
∆t
2

uT

[
∑
i, j

2biai j

(
C̃iC̃ j +Ci j

)
+gi jC̃T

i C̃ j

]
u. (3.23)

The practical determination of a suitable set of conditions is then obtained in the
four steps depicted in Table 3.1. The steps (a) and (b) indicate that the resulting
equations are clearly dependent upon the number of stages and the particular sequence
employed. Therefore, different equations are expected for each sequence that can be
possibly adopted for a fixed s−stage Runge-Kutta method. The core of the method lies
in the treatment of step (c). The key observation that strongly simplifies the structure
of the required constraints is that in several circumstances the physically compatible
relation DT =−D for the discrete derivative operator can be assumed. In these cases
the advective and divergence discrete forms are related by relations already derived in
Section 2.1 and reported here for convenience:

AAAT =−2DDD (3.24)

for the 1D Burgers’ equation and

AAAT =−DDD (3.25)
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for the Navier-Stokes equations. Equations (3.24–3.25) do not hold for the cor-
responding projected forms. However, the following equivalence operator ∼ can
be introduced. The operator applies to matrices and holds when the corresponding
quadratic forms associated with a vector u are equal for any value of u, e.g.

A∼ B ⇐⇒ uT Au = uT Bu ∀ u ∈ RNu .

By using this notation, the following relations can be derived:

Ã̃ÃA∼−2D̃̃D̃D (3.26)

for the Burgers’ equation and
Ã̃ÃA∼−D̃̃D̃D (3.27)

for the Navier-Stokes equations; in the derivation, the properties of the projection op-
erator (2.30)–(2.32) have also been used. Equations (3.26–3.27) will be hereinafter
referred to as transformation relations since they allow to transform the various prod-
ucts or compositions of matrices C̃i into a set of independent functions of u.

In the following, the first- and second-order terms will be analyzed individually
to apply the transformation relations and obtain a set of constraints.

First-order term

The first-order term Θ1 reported in Eq. (3.22) is a linear combination of convec-
tive operators. By using the transformation relations, a single term proportional to
a quadratic form in which only one of the two operators D̃̃D̃D or Ã̃ÃA is present, can be
collected out. Therefore, a final equation of the type

∑
i

αibi = 0 (3.28)

is obtained for first-order conservation of energy, where the coefficients αi depend on
the sequence adopted and on the particular relation between the convective operators.
The projection operator is found to be irrelevant in this term, provided that Mu = 0.

Second-order term

The treatment of the second-order term Θ2 needs some additional care. In fact,
Eq. (3.23) shows that it is composed by the sum of several terms, each being propor-
tional to a quadratic form involving one of the operators C̃iC̃ j, C̃T

i C̃ j, Ci j. The first
two operators, constituted by the product of convective matrices, are equivalent in all
cases to one of the operators Ã̃ÃAÃ̃ÃA,D̃̃D̃DD̃̃D̃D,Ã̃ÃAD̃̃D̃D and D̃̃D̃DÃ̃ÃA multiplied by a scalar. In fact,
one has Ã̃ÃAÃ̃ÃA ∼ 4D̃̃D̃DD̃̃D̃D for the Burgers equation and Ã̃ÃAÃ̃ÃA ∼ D̃̃D̃DD̃̃D̃D for the Navier-Stokes
operators. As a consequence, the number of independent forms reduces to three, as
each of the products between two convective matrices C̃iC̃ j or C̃T

i C̃ j is equivalent to
one of the basic operators Ã̃ÃAÃ̃ÃA,Ã̃ÃAD̃̃D̃D and D̃̃D̃DÃ̃ÃA, multiplied by a proper scalar.
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It can be also shown, although not completely evident at first, that also the com-
posite terms Ci j are equivalent to one of the three forms Ã̃ÃAÃ̃ÃA,Ã̃ÃAD̃̃D̃D and D̃̃D̃DÃ̃ÃA. This
fact can be shown by observing that for every vector u and for every matrix B the
following relation holds:

diag(Bu)u = UBu, (3.29)

where, as usual, U = diag(u). This relation can be employed in order to express the
forms Ci j into one of the basic forms Ã̃ÃAÃ̃ÃA, Ã̃ÃAD̃̃D̃D and D̃̃D̃DÃ̃ÃA. As an example, for the terms

D̃̃D̃D
(
Ã̃ÃAu
)

and Ã̃ÃA
(
Ã̃ÃAu
)

(parentheses denoting functional dependence) one has, for the
Burgers’ equation:

uT D̃̃D̃D
(
Ã̃ÃAu
)

u = 1
2 uT PDdiag

(
Ã̃ÃAu
)

u (3.29)
= 1

2 uT PDUÃ̃ÃAu = uT D̃̃D̃DÃ̃ÃAu, (3.30)

uT Ã̃ÃA
(
Ã̃ÃAu
)

u = uT Pdiag
(
Ã̃ÃAu
)

Du =

= uT Pdiag(PUDu)Du =

(2.32)
= uT diag(PUDu)Du =

transp.
= −uT Ddiag(PUDu)u =

(3.29)
=−uT DUPUDu =

(2.32)
= −uT PDUPUDu =

=−2uT D̃̃D̃DÃ̃ÃAu.

(3.31)

By acting in a similar way on the other possible terms Ci j one finally obtains the
following equivalences:

D̃̃D̃D
(
Ã̃ÃAu
)
∼ D̃̃D̃DÃ̃ÃA,

Ã̃ÃA
(
Ã̃ÃAu
)
∼−2D̃̃D̃DÃ̃ÃA,

Ã̃ÃA
(
D̃̃D̃Du
)
∼−1

2
Ã̃ÃAÃ̃ÃA,

D̃̃D̃D
(
D̃̃D̃Du
)
∼ D̃̃D̃DD̃̃D̃D∼ 1

4
Ã̃ÃAÃ̃ÃA,

(3.32)

for the Burgers’ equation and

Ã̃ÃA
(
Ã̃ÃAu
)
∼−D̃̃D̃DÃ̃ÃA,

Ã̃ÃA
(
D̃̃D̃Du
)
∼−D̃̃D̃DD̃̃D̃D,

D̃̃D̃D
(
Ã̃ÃAu
)
∼ D̃̃D̃DÃ̃ÃA,

D̃̃D̃D
(
D̃̃D̃Du
)
∼ D̃̃D̃DD̃̃D̃D,

(3.33)

for the incompressible Navier-Stokes equations. These relations can be employed in
the evaluation of the second-order term in Eq. (3.21), and allow to group the various
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terms into three independent ones, associated with the forms Ã̃ÃAÃ̃ÃA, Ã̃ÃAD̃̃D̃D and D̃̃D̃DÃ̃ÃA, inde-
pendentely on the number of stages. Hence, the number of equations associated with
the fulfillment of second-order accuracy on energy conservation is three. The form of
these equations depends, of course, on the particular alternation sequence.

Summary

The application of step (d) of Table 3.1 leads to the conclusion that one additional lin-
ear constraint on the coefficients bi has to be added to enforce first-order conservation
of energy, whereas three nonlinear equations on the coefficients bi and ai j are needed
for second-order conservation. The constraints on energy can be coupled to classical
order conditions to give a global system for determining new Runge-Kutta schemes.

The energy-conservation conditions for both 1D and incompressible Navier-Stokes
equations are reported in Appendix B.
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4. Novel Runge-Kutta schemes

In this chapter, the energy-conservation relations derived in Chapter 3 will be coupled
to classical order conditions to derive novel low-cost Runge-Kutta schemes with a
prescribed order of accuracy on both solution and energy-conservation. The procedure
will be carried out at first for the Burgers’ equation and then for the incompressible
Navier-Stokes equations.

A summary of the steps needed to derive the RK coefficients for the novel schemes
is given in Table 4.1. Regarding step (a), two-, three- and four-stage schemes will be
considered, as they have been applied historically to numerical simulations of turbu-
lent flows and allow for a relatively large number of degrees of freedom. However, the
analysis is general and can be in principle applied to methods of an arbitrary number of
stages. An s-stage RK method gives s(s+ 1)/2 degrees of freedom. Second-, third-
and fourth-order conditions on the solution take 2, 4 and 8 equations, respectively,
whereas the first- and second-order conditions on energy conservation for alternating
schemes take 1 and 3 equations. Depending on the number of available parameters
provided by the method, order conditions and energy-preserving properties can be
combined in many different ways, as indicated in step (b). The execution of steps (c),
(d) and eventually (e) leads to several families of schemes. In order to cope with the
large number of possible methods, a proper nomenclature has been established, which
is reported in the following section.

(a) fix the number of stages of the method;

(b) choose a desired accuracy on solution and energy, compatibly with the number
of degrees of freedom available;

(c) choose a sequence of divergence and advective forms, among the possible se-
quences permitted by the stages of the method;

(d) construct the non-linear system by using the relevant order conditions from
Table 2.2 and the energy-conservation equations from Appendix B;

(e) solve the system.

Table 4.1: Summary of steps needed to derive the Runge-Kutta coefficients.

49
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4.1 Nomenclature

The novel Runge-Kutta schemes will be labeled by the following synthetic notation.
Each method is first designated by a symbol that indicates whether it applies to 1D
Burgers’ equation (1D) or to the Navier-Stokes equations (NS). Then, an acronym re-
ports the sequence of divergence (D) and advective (A) forms within the stages of the
Runge-Kutta method for which the scheme has been built. Then, the theoretical or-
ders of accuracy on solution (S) and on energy conservation (E) are specified. Finally,
a cost coefficient proportional to the number of derivatives required per time-step is
reported in brackets, to serve as a simple cost metric for comparing the performances
of the various schemes. In general, the number of matrix-vector products is reason-
ably approximated by sd2 for advective and divergence forms and 2sd2 for the skew-
symmetric form, where d is the number of dimensions. For simplicity, d = 1 will be
assumed hereinafter for the estimation of the cost-coefficients for both the Burgers’
and Navier-Stokes schemes. In this simplified metric, the cost of the skew-symmetric
form is doubled with respect to divergence and advective forms. The results of a more
detailed cost analysis, reported in Appendix A, show that this is in many cases a very
good approximation, at least for explicit finite-difference schemes. As an example,
the label

1D/ADDA︸ ︷︷ ︸
Sequence

–

Order︷ ︸︸ ︷
3S2E (4)︸︷︷︸

Cost

indicates a four-stage scheme for the 1D Burgers’ equation which has to be used
in conjunction with an ADDA sequence and is third-order accurate on solution and
second-order accurate on energy conservation. When multiple methods are available,
a subscript is used next to the sequence, e.g. ADDA1,2. It can also happen that a
method applies to a sequence as well as to its dual counterpart (e.g., ADA and DAD).
In this case, a circle arrow is reported next to the sequence, e.g. ADA	.

4.2 1D schemes

In this section, alternating schemes for the Burgers’ equation are derived and dis-
cussed. In order to keep the presentation as clear as possible, the description in this
section will be particularly detailed, especially for what concerns the application of
the theoretical developments described in Section 3.2.2. At the end of the section, the
predicted order of accuracy will also be verified numerically.

4.2.1 Two-stage methods

The analysis is firstly conducted for the simple case of two-stage explicit Runge-Kutta
methods. The free parameters for these schemes are b1,b2 and a12 and the maximum
order conditions which can be satisfied are that of a second order scheme: b1+b2 = 1
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1D/AD–2S1E(2) 1D/DA–2S1E(2)

0
3
4 0
1
3

2
3

0
3
2 0
2
3

1
3

Table 4.2: Two-stage optimized Runge-Kutta methods for Burgers’ equation.

and b2a21 = 1/2. By imposing these two constraints one obtains the well known one-
parameter family b1 = 1−θ ,b2 = θ and a12 = 1/2θ , with θ 6= 0. The free parameter
θ can be fixed by requiring that also the first order condition on energy conservation
is satisfied by b1 and b2, for each given alternation of forms, leading to

uT
(

b1C̃1 +b2C̃2

)
u = 0. (4.1)

For a standard Runge-Kutta method in which C̃1 = C̃2, this term cannot vanish, except
for the case in which the skew-symmetric form is employed, since the condition to
be satisfied by b1 and b2 would be b1 + b2 = 0, which is not compatible with the
first-order condition b1 + b2 = 1. In the case in which an alternation of forms is
employed, one has different conditions on the bi’s, one for each alternation sequence.
For instance, if the first stage is computed by adopting the advective form and the
second with the divergence form (sequence AD) one has the condition

uT
(

b1Ã̃ÃA+b2D̃̃D̃D
)

u = 0. (4.2)

The transformation relation (3.26) allows to factor out one of the operators in Eq. (4.2),
which is hence satisfied, independently on u, if and only if b2 = 2b1. This last condi-
tion fixes the parameters of the Runge-Kutta scheme to the values b1 = 1/3,b2 = 2/3
and a12 = 3/4, which has second-order accuracy on the convergence of the solution
and first-order accuracy on the conservation of energy. In the established notation, the
derived scheme is referred to as 1D/AD–2S1E(2). The dual scheme 1D/DA–2S1E(2)
can be easily obtained with the same procedure, which leads to b1 = 2b2. The coeffi-
cients of the schemes are summarized in Table 4.2.

4.2.2 Three-stage methods

Optimized three-stage methods can be derived by applying a similar procedure. The
number of free parameters for the case of explicit three stages schemes rises to six
(s(s+ 1)/2), while the number of conditions to be satisfied for the case of a third-
order scheme is four. Hence, the family of classical third-order, three-stage schemes
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is at best parametrized by two constants, although two one-parameter families of third-
order schemes also exist (cfr. Butcher [73]). The degrees of freedom constituted by
the free parameters allows to derive either 3S1E(3)–type schemes, or 2S2E(3)–type
methods.

3S1E(3) schemes

The number of possible sequences in which the same form is not repeated three times
is six, and for each of these sequences a relation between the constants bi has to be
satisfied for first-order conservation of energy. This additional constraint can then be
imposed to the coefficients satisfying third-order relations to obtain 3S1E(3) schemes,
as it has been done for two-stage schemes. A complete picture of all the possible
solutions would require considerable effort. Here, a treatment is presented in which,
by renouncing to the complete analysis of all the possible solutions, the full system
of order relations (on the solution and on the energy) is directly solved in the general
case, without discussing the many exceptional cases. The treatment can be developed
at once for all the possible sequences by observing that in all cases the equation related
to first order conservation of energy

uT
(

b1C̃1 +b2C̃2 +b3C̃3

)
u = 0, (4.3)

leads to the relation
α1b1 +α2b2 +α3b3 = 0, (4.4)

where αi = 1 or αi =−1/2 in the cases C̃i = Ã̃ÃA or C̃i = D̃̃D̃D, respectively. For the deter-
mination of 3S1E(3) families of schemes, Eq. (4.4) has to be coupled to the classical
relations for a third-order Runge-Kutta scheme, i.e., Eqs. (2.33)–(2.36). The general
solution for this system can be obtained in two steps: first, derive b1,b2 and b3 from
the linear Eqs. (2.33) and (4.4) as a one-parameter family of coefficients. Second,
solve for a21, a31 and a32 from the nonlinear system (2.34–2.36) by considering b2
and b3 as parameters. The first step furnishes:

b1 =−
α2

α1−α2
+

(
α2−α3

α1−α2

)
θ ; b2 =

α1

α1−α2
−
(

α1−α3

α1−α2

)
θ ;

b3 = θ ,

(4.5)

in the case α1 6= α2 and

b1 =−
α3

α1−α3
+

(
α3−α2

α1−α3

)
θ ; b3 =

α1

α1−α3
−
(

α1−α2

α1−α3

)
θ ;

b2 = θ ,

(4.6)

in the dual case α1 6= α3. The second step furnishes:

a21 =
1−2b3c±

2b2
; a32 =

1
6b3a21

; a31 = c±−a32, (4.7)
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where

c± =
1

2(b2 +b3)

1±

√
1− (b2 +b3)(3−4b2)

2b3

 , (4.8)

which is real for (b2+b3)(3−4b2)/2b3≤ 1. Equations (4.7–4.8) furnish two families
of one-parameter schemes for each sequence of alternating forms inside the three
stages, provided that b1,b2 and a12 6= 0 and that the coefficients b2 and b3 lie in the
range of real values for c±.

As an example, for the sequence C̃1 = Ã̃ÃA, C̃2 = D̃̃D̃D, C̃3 = Ã̃ÃA, (i.e. for the sequence
ADA), first-order conservation of energy leads to the relation: b1− b2/2+ b3 = 0
which, coupled to Eq. (2.33) has the solution b1 = 1/3− θ ,b2 = 2/3 and b3 = θ .
In Fig. 4.1 the coefficients a21, a31 and a32 of the two families associated with this
sequence are reported. The dots on the curves relative to the first family of coefficients
are the values of the coefficients of the classical Kutta scheme (b1 = b3 = 1/6, b2 =
2/3, a21 = 1/2, a31 = −1, a32 = 2), which is a member of this class of schemes and
hence has a first order accuracy on energy conservation when employed in conjunction
with the ADA alternation of forms. In Fig. 4.1, the range of values of b3 is such that
b1 > 0, as in Runge-Kutta methods the coefficients bi are normally taken positive for
stability reasons [73].

0 0.1 0.2 0.3
−4

−2

0

2

4

b3

a 2
1,

a 3
1,

a 3
2

a21
a31
a32

Figure 4.1: Coefficients a21, a31 and a32 as functions of the parameter b3 for the two
families associated with the 3S1E(3)–type schemes for the sequence ADA. The black-
filled circles represent the Kutta scheme.

2S2E(3) schemes

In this case, the non-linear system is constituted, for each sequence, by four equations
for second-order conservation of energy (reported in Section B.1.1) and two relations
to obtain second-order accuracy for the solution, Eqs. (2.33)–(2.34). The result is a
system of six nonlinear equations in the six unknowns b1, b2, b3, a21, a31 and a32 for
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b1 +b2 +b3 = 1 1st order on the solution

b2a21 +b3 (a31 +a32) =
1
2

2nd order on the solution

b1−
b2

2
+b3 = 0 1nd order on en. cons.

b2
2−b3a32 = 0

2−b3 (a32−2a31)+b2b3 +b1b2 = 0

b2
1−2b2a21 +2b3a31 +2b1b3 +b2

3 = 0

 2nd order on en. cons.

Table 4.3: Nonlinear system for 1D/ADA–2S2E(3) schemes

1D/ADA–2S2E(3) 1D/DAD–2S2E(3)

0
1
3 0 0
1

6θ

1
9θ

0
1
3 −θ

2
3 θ

0
1
3 0 0
1

3θ

1
18θ

0
2
3 −θ

1
3 θ

Table 4.4: Three-stage, 2S2E(3)–type optimized Runge-Kutta methods for Burgers’
equation. Both schemes are valid for θ 6= 0.

the determination of explicit three stage 2S2E(3)–type Runge-Kutta schemes. Due to
non-linearity, it is difficult to ascertain if this system has in general a solution and,
in that case, if it is unique. Among all the possible sequences of forms for the case
of explicit three stage methods, it is found that only in the case of the two sequences
ADA and DAD a solution exists. In all the other cases the system has no solution.
Moreover, the solution, when available, is not unique.

For ease of exposition, the complete nonlinear system for the sequence ADA is
reported here in Table 4.3. Its solution is easily found by successive substitution, and
the resulting one-parameter families of schemes for the ADA and DAD sequences are
reported in Table 4.4. It can be readily seen that none of these schemes can satisfy
the third-order relation Eqs. (2.35)–(2.36) for a particular value of θ , and hence three-
stage 3S2E(3) schemes cannot be obtained.

4.2.3 Four-stage methods

Four-stage explicit Runge-Kutta methods are characterized by ten coefficients, which
can be determined (at least as families of values) by imposing the required order of ac-
curacy on the solution in the form of non-linear constraints. The standard procedure
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is to obtain the families of coefficients by imposing the eight nonlinear conditions
necessary to obtain 4th order accuracy. The complete solution to this system is quite
cumbersome to reproduce here, and is usually given as one- or two-parameter fami-
lies of coefficients. An extensive treatment of this problem, together with the steps to
be carried out in order to solve the nonlinear systems of conditions, can be found in
the classical book by Butcher [73]. The undertaken approach will be again to com-
plement the classical procedure by introducing the possibility of alternating the forms
inside the various stages of the Runge-Kutta method and by including the nonlinear
constraints on the coefficients associated to conservation of energy at a given order of
accuracy. The complete discussion of all the particular cases which can arise in this
procedure is out of the scope of the present work. The variety of nonlinear conditions
and the number of particular cases exceptionally grows as one introduces all the pos-
sible sequences of alternating forms. In this paragraph, it will be simply illustrated
how the general program can be studied, and some representative examples will be
given. Two cases are investigated: 4S1E(4)–type and 3S2E(4)–type schemes.

4S1E(4) schemes

The analysis starts with 4S1E(4) schemes, which can be obtained by imposing the
first-order condition on energy conservation on the families of schemes satisfying
fourth-order conditions on the solution. As examples, some of the one-parameter
classes of schemes identified by Kutta are analyzed, which are reported in the book
by Butcher [73] and labelled as case I–case V. The corresponding Butcher arrays are
reported in Table 4.5.

In the first special case identified by Kutta (case I), given a generic sequence of
forms, identified as usual by the sequence of αi, the first-order condition on energy
conservation gives: (α1 +α4)µ(θ)+ (α2 +α3) = 0 which leads to the requirement
that the function µ(θ) assumes specific values in correspondence of each sequence of
αi,

µ(θ) =−(α2 +α3)

(α1 +α4)
. (4.9)

The result is that the sequences AAAD and DAAA produce two 4S1E(4) schemes,
corresponding to θ = (1±

√
3)/2, as well as the sequences AADA and ADAA, which

also produce two 4S1E(4) schemes corresponding to θ = (2±
√

2)/4. All the other
sequences produce zeroth-order schemes on energy conservation.

The case II family of schemes is a 4S1E(4) family, independently on θ , for the
two sequences ADDA and AADA. The cases III, IV and V are 4S1E(4) schemes with
the sequences ADAA, AADA and ADDA respectively. Note that class V schemes are
of particular interest, since the classical RK4 scheme belongs to this class for the case
θ = 1/3. The analysis shows that when implemented with a sequence ADDA this
Runge-Kutta scheme has a first order conservation of energy.
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N
O

V
E

L
R

U
N

G
E

-K
U

T
TA

SC
H

E
M

E
S

case I case II
0

1−θ 0
6θ 2(1−2θ)

γ(θ)
6θ 2

γ(θ) 0
12θ 3−24θ 2+17θ−4

2(1−θ)µ(θ)
θ(1−2θ)

2(1−θ)µ(θ)
1−θ

µ(θ) 0
µ(θ)
γ(θ)

1
γ(θ)

1
γ(θ)

µ(θ)
γ(θ)

0

θ 0
1
2 −

1
8θ

1
8θ

0
1

2θ
−1 − 1

2θ
2 0

1
6 0 2

3
1
6

case III case IV case V
0
1
2 0

− 1
12θ

1
12θ

0

−1
2 −6θ

3
2 6θ 0

1
6 −θ

2
3 θ

1
6

0

1 0
3
8

1
8 0

1− 1
4θ

− 1
12θ

1
3θ

0
1
6

1
6 −θ

2
3 θ

0
1
2 0

1
2 −

1
6θ

1
6θ

0

0 1−3θ 3θ 0
1
6

2
3 −θ θ

1
6

Table 4.5: The five cases of one-parameter families of fourth-order Runge-Kutta schemes, as reported in [73]. In the case I family, γ(θ) =
12θ(1−θ), µ(θ) = 6θ−1−6θ 2 and a31+a32 = θ . This family produces fourth-order schemes provided that a21 6∈

{
0,1/2,1/2±

√
3/6,1

}
.
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3S2E(4) schemes

In addition to 4S1E(4) schemes above illustrated, the ten coefficients arising in four-
stage Runge-Kutta methods can be fixed by imposing, for each of the possible se-
quences of alternating forms, a third-order accuracy on the solution (four equations)
together with a second-order accuracy on energy conservation (four equations). The
solution of the eight-equation nonlinear system (when available) will produce 3S2E(4)
schemes. Also, since the system of equation is overdetermined, in general one expects
that families of schemes, having one or more parameters, will appear. The nonlinear
systems associated to the 14 possible sequences of alternating forms all have four
common equations, given by the third-order constraints for a four-stage method

b1 +b2 +b3 +b4 = 1,

b2a21 +b3(a31 +a32)+b4(a41 +a42 +a43) =
1
2
,

b2a2
21 +b3(a31 +a32)

2 +b4(a41 +a42 +a43)
2 =

1
3
,

a21(b3a32 +b4a42)+b4a43(a31 +a32) =
1
6
.

(4.10)

In addition to these equations there is the first-order energy-conservation constraint

α1b1 +α2b2 +α3b3 +α4b4 = 0, (4.11)

where, as usual, the coefficients αi depend on the particular sequence of forms, and
three equations for second-order conservation of energy, whose structure depends on
the particular sequence. In Appendix B the four equations associated to second-order
conservation of energy are reported for all the possible sequences of alternating forms.
Each of these nonlinear systems can be separately studied in order to obtain families
of 3S2E(4) schemes for every given sequence. The complete characterization of all
the possible solutions for each alternating sequence is, again, out of the scopes of the
present study. However, some general considerations, together with some particular
solutions, will be presented, as it has been done for previous cases. In many cir-
cumstances symbolic nonlinear solvers can also be employed to simplify the task of
obtaining solutions.

The structure of the nonlinear system is such that in many cases significative sim-
plifications can be obtained by firstly considering the equations for first-order accu-
racy on both solution and energy. These two equations involve only the bi’s and
immediately furnish the numerical value of one of the unknowns (when three forms
are equal within the sequence) or of the sum of two unknowns. In some circumstances
this information alone can be sufficient in order to conclude that the non-linear system
has no solutions, as in the cases of the sequences AAAD and AADD. In general, it is
found that in many cases a next useful step is the derivation of the bi’s as parametric
functions of the ai j’s by solving the linear equations in the bi’s. At this point, the re-
maining fully nonlinear equations can be attacked. It results that, among the possible
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1D/ADDA1–3S2E(4) 1D/ADDA2–3S2E(4) 1D/ADAD–3S2E(4)

0
3
2 0
1
3 0 0
14
25

28
75 0 0

1
28 0 2

3
25
84

0
1
3 0
3
2 0 0
14
25 0 28

75 0
1
28

2
3 0 25

84

0
1
3 0
14
25 δ1 0

0 0 1
3 0

δ2
1
4

25
84

5
12

Table 4.6: Optimized 3S2E(4)–type Runge-Kutta schemes. For the 1D/ADAD–3S2E(4)
scheme, δ1 =

37+1/3
100 and δ2 =

177+11/7
5×103 .

14 series, the six sequences starting with AA or DD have no solution, together with
the two sequences ADDD and DAAA. The remaining six sequences have solutions
which are parametrized by one or more constants. Such families of schemes are usu-
ally quite difficult to express compactly, but representative examples can be obtained
by fixing one or more constants.

As an example, the case of the sequence ADDA is considered, for which the
complete nonlinear system for the coefficients is given by Eqs. (4.10), for third-order
accuracy on the solution, and by Eqs. (B.20) for second-order accuracy on energy
conservation. By making the assumption a32 = 0 and b2 = 0 or b3 = 0, after some
manipulations one obtains the two families:

0
25θ−42
75θ−28 0

1
3 0 0
14
25

28
75 −θ θ 0

1
28 0 2

3
25
84

0
1
3 0

75θ+98
225θ

0 0
14
25

28
75 −θ θ 0

1
28

2
3 0 25

84

.

The choice of the parameter θ = 0 for the first family and θ = 28/75 for the second is
particularly convenient from a computational point of view and leads to the schemes
reported in Table 4.6.

For the other sequences, solutions to the corresponding nonlinear system are in
general quite difficult to obtain analytically. In all these cases, however, a sym-
bolic solver is usually able to derive one or more families of solutions typically
parametrized by two constants. From these expressions one can optimize the scheme
by imposing additional requirements. An example of the result of this procedure is
the scheme reported in Table 4.6, which has been obtained with the aid of a symbolic
manipulator and by requiring a maximum number of zeros in the Butcher array for
the sequence ADAD.
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Note that for some methods, ci > 0 occurs (cfr. 1D/DA–2S1E(2) and 1D/ADDA1,2–
3S2E(4) schemes.) In such cases, care must be taken when these methods are used in
conjunction with time-dependent terms [73].

4.2.4 Order of accuracy verification

An order of accuracy study has been carried out to numerically verify the predicted or-
ders of accuracy. In Fig. 4.2 and Fig. 4.3, numerical results are presented concerning
the time-step convergence of the errors on energy conservation for various alternating
schemes. Results are obtained by integrating the inviscid Burgers’ equation with pe-
riodic boundary conditions on the domain [0,1], discretized by N = 100 equidistant
mesh points, with initial condition u0(x) = sin(πx) and ∆t = 10−4. A fourth-order
explicit centered scheme is used for spatial integration.

Figures 4.2 and 4.3 show the time-step convergence of the relative error on energy
conservation

ε(t) =
E(t)−E0

E0
, (4.12)

at t f = tb/2, where tb is the break-time at which characteristic lines intersect.
In Fig. 4.2, the convergence of the relative error on energy conservation for differ-

ent Runge-Kutta schemes with 2 and 3 stages is reported. The curve labelled 1D/AD-
2S1E(2) is relative to the two-stage Runge-Kutta scheme reported in Table 4.2, while
the curve labelled 1D/ADA-3S1E(3) is the classical Kutta scheme with the ADA al-
ternation of forms. The curves displaying second-order convergence are relative to the
schemes given in Table 4.4. The plot shows that all the schemes exhibit the correct
scaling with time step ∆t.

Figure 4.3 shows the time step convergence of energy conservation for the four-
stage schemes. The scheme 1D/ADAA–4S1E(4) is the fourth-order RK scheme la-
belled as case III, for the value of the parameter θ = 1/12. The scheme 1D/ADDA–
4S1E(4) is the classical fourth-order Runge-Kutta scheme belonging to case V for
θ = 1/3. In all cases the theoretically predicted scaling is recovered.

4.3 Schemes for Navier-Stokes equations

In this Section, the strategy outlined in Table 4.1 is applied to the incompressible
Navier-Stokes equations.

4.3.1 Three-stage methods

As in the 1D case, two families of new schemes are expected: 2S2E(3) (6 condi-
tions) and 3S1E(3) (5 conditions) for a total number of 2s− 2 possible sequences of
advective and divergence forms.

As regards 2S2E(3)–type schemes, no solutions were found, for any of the 6 se-
quences available. This result is in contrast with the one-dimensional case, where
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Figure 4.2: Convergence of the relative error on energy conservation as a function of the
time step ∆t for alternating Runge-Kutta schemes with 2 and 3 stages.
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Figure 4.3: Convergence of the relative error on energy conservation as a function of the
time step ∆t for alternating Runge-Kutta schemes with 4 stages.

plenty of results were obtained. The reason is probably due to the inherent struc-
ture of the nonlinear system for three-stage methods, which favors the -2:1 ratio of
the transformation relations between divergence and advective quadratic forms that
occurs in a one-dimensional setting.

On the other hand, the derivation of 3S1E(3)–type schemes is straightforward and
can be achieved by imposing the order-1 condition on energy conservation on the
parametrized families given in [73]. For instance, the “case II” and “case III” one-
parameter families of schemes reported in [73]

case II case III
0
2
3 0

2
3 −

1
4b3

1
4b3

0
1
4

3
4 −b3 b3

0
2
3 0

− 1
4b3

1
4b3

0
1
4 −b3

3
4 b3

,
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NS/DAD	–3S1E(3) NS/DDA	–3S1E(3)
0
2
3 0

−1
3 1 0

1
4

1
2

1
4

0
2
3 0
1
6

1
2 0

1
4

1
4

1
2

Table 4.7: 3S1E(3)–type optimized Runge-Kutta schemes for Navier-Stokes equations.

generate 3S1E(3) schemes when the free parameter is fixed in such a way that the
linear constraint on first-order energy conservation is enforced for each sequence of
forms. The results of this analysis are that “case II” schemes obtained with b3 =
1/4 or b3 = 1/2 ensure first order conservation of energy when employed with the
sequences DAD (or ADA) and DDA (or AAD), respectively. The “case III” schemes
corresponding to b3 = −1/4 or b3 = 1/2, on the other hand, are 3S1E(3) schemes
when employed with the sequences ADD (or DAA) and DDA (or AAD), respectively.
These latter schemes possess negative bi coefficients. This is not desirable in Runge-
Kutta methods for stability reasons [73], hence the two schemes derived from case II
are to be preferred and are reported in Table 4.7.

4.3.2 Four-stage methods

In four-stage methods, 10 degrees of freedom are available. Hence, either 4S1E(4) or
3S2E(4) schemes can be constructed, which have to be compared to 4S4E(8) skew-
symmetric methods.

A large number of 4S1E(4) schemes can easily be obtained by applying the first-
order condition on energy to the parametrized fourth-order families provided in Ta-
ble 4.5. Perhaps the most convenient choice is to use an alternating version of the
classical Runge-Kutta scheme (RK4), as it can be conveniently implemented. If
one employs an ADAD or a DADA sequence inside the stages, the RK4 satisfies
the first-order condition on energy conservation while retaining fourth-order accu-
racy on solution. Hereinafter, the alternating RK4 will be considered as the reference
NS/ADAD	–4S1E(4), and is reported in Table 4.8.

In the case of 3S2E(4)–type schemes, solutions exist only for the two couples
of sequences ADAD/DADA and ADDA/DAAD. The nonlinear systems have all four
equations in common, which correspond to the third-order conditions already reported
in Eq. (4.10). These equations have to be augmented by one linear constraint and three
nonlinear equations to have second-order accuracy on energy conservation. The form
of these equations depends on the specific sequence under study, see Appendix B. For
the cases under study, the equations will be reported here for convenience. For the
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couple of sequences ADAD/DADA one has, respectively,

b1−b2 +b3−b4 = 0,

2a31b3−2a32b3 +4a42b4−2(b1 +b3)(b1 +b4) = 0,

(b2 +b4)
2−2a32b3 = 0,

(b1 +b3)
2 +2a31b3−4a21b2−4a41b4−4a43b4 = 0,

(4.13)

and

b1−b2 +b3−b4 = 0,

4a31b3−2a21b2−2b4 (a41 +2a42−2a43)−2(b1 +b3)(b1 +b4) = 0,

(b2 +b4)
2 +2a42b4−4a32b3 = 0,

(b1 +b3)
2−2a21b2−2a41b4−2a43b4 = 0.

(4.14)

The two systems provide two identical families of solutions, each with two free pa-
rameters, which can be expressed by the following Butcher array

0
3θ1±A

6θ1
0

1
8θ1

1
8θ1

0

−3θ1−16θ1θ2+4θ2B+4θ1B±2A
24θ1θ2

1
8θ2

θ1±A
6θ2

0
1
2 −θ1

1
2 −θ2 θ1 θ2

,

where

A= 3θ2

√
−θ1(10θ1−3)

3θ2(2θ2−1)
, B= θ1±A. (4.15)

The system admits solutions for{
θ1 ∈ ]−∞,0[ ∪ [3/10,+∞[

θ2 ∈ ]0,1/2[
∪

{
θ1 ∈ ]0,3/10]

θ2 ∈ ]−∞,0[ ∪ ]1/2,+∞[.
(4.16)

In this range, the parameters θ1 and θ2 can be optimized to achieve various goals,
e.g., low dissipation and dispersion characteristics, or a computationally efficient im-
plementation. For the latter case, a convenient choice is θ1 = 3/10 and θ2 = 7/20,
which leads to the Butcher array given in Table 4.8. However, this families of schemes
have a limited stability range, see Section 4.3.3.

The sequences ADDA/DAAD lead to the following conditions:

b1−b2−b3 +b4 = 0,

4a32b3 +2a41b4−2a42b4−2a43b4−2(b1 +b4)(b2 +b3) = 0,

(b2 +b3)
2−2a42b4−2a43b4 = 0,

(b1 +b4)
2 +2a41b4−4a21b2−4a31b3,= 0

(4.17)
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NS/ADAD	–4S1E(4) NS/ADAD	–3S2E(4) NS/ADDA	–3S2E(4)
0
1
2 0

0 1
2 0

0 0 1 0
1
6

1
3

1
3

1
6

0
1
2 0
5

12
5

12 0

0 5
14

1
7 0

1
5

3
20

3
10

7
20

0
1
3 0

0 1 0
1
3 0 1

3 0
1
8

3
8

1
8

3
8

Table 4.8: 4S1E(4)– and 3S2E(4)–type schemes for Navier-Stokes equations.

and

b1−b2−b3 +b4 = 0,

2a32b3−2a31b3−2a21b2 +4a41b4−2(b1 +b4)(b2 +b3) = 0,

(b1 +b4)
2−2a21b2−2a31b3 = 0,

(b2 +b3)
2 +2a32b3−4a42b4−4a43b4 = 0.

(4.18)

In order to solve the systems, it turns out to be convenient to add two conditions on
some coefficients to set them to zero. For instance, adding such conditions on a31
and a42, it is easy to derive the Butcher array reported in Table 4.8. In the follow-
ing section, it is shown that the two-parameter family of schemes for the sequences
ADAD/DADA has the absolute stability footprint of a three-stage scheme. On the
contrary, the second scheme is fourth-order accurate for linear equations. Therefore,
the latter will be the reference 3S2E(4) scheme for the numerical tests presented in
the following chapter.

It is worth noting that many of the schemes presented in this section as well as
in Section 4.2 can be further optimized to achieve multiple purposes, which were not
taken into consideration in the present work. For instance, the remaining degrees of
freedom of the proposed 3S2E–type methods can be exploited to optimize the dis-
persion and dissipation properties in wavenumber space [75–77], or to improve the
accuracy of the pressure, as in [78]. Moreover, low-storage implementations [79]
have not been taken into account.

4.3.3 Linear stability of new Runge-Kutta schemes

The absolute stability of the newly derived Runge-Kutta schemes can be studied in
a classical way by evaluating the so-called stability function [73; 80]. The latter is
derived by applying a RK scheme to a linear differential equation u′(t) = λu(t). For
s-stage, s-order standard Runge-Kutta methods, the stability function is easily proved
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to be a polynomial of degree s of the type

R(σ) = 1+σ +
σ2

2!
+ ...+

σ s

s!
, (4.19)

where σ = λ∆t. If the Butcher array is indicated concisely as

c A

bT ,

then the stability function is given by

R(σ) = 1+σbT (I−σA)−1 1T . (4.20)

Equation (4.20) can be used to calculate the stability function of the newly derived
Runge-Kutta schemes given in Section 4.3. In particular, one of the two-parameter
families of NS/ADAD	-3S2E(4) schemes has the stability function

R(σ) = 1+σ+

(
1
2
−
√

3θ2A

9θ1

)
σ

2 +

(
1
6
+

√
3A

36θ1

)
σ

3+

+

( √
3A

216θ1
− 15θ1−9/2

θ1 (576θ2−288)
− 24θ1−9

576θ1

)
σ

4.

(4.21)

A term-to-term comparison between Eq. (4.20) and Eq. (4.21) shows that in order to
match the low-order coefficients, it must result A= 0, hence θ1 = 3/10. However, this
choice leads to a violation of the fourth-order coefficient. The same result is obtained
with the other two-parameter family. As a consequence, the NS/ADAD	–3S2E(4)
schemes can not be fourth-order accurate for linear equations, and therefore have the
linear stability footprint of a three-stage, third-order scheme.

On the contrary, by applying Eq. (4.20) to the Butcher array of NS/ADDA	–
3S2E(4) schemes, as reported in Section 4.3.2, it can be found that it has the stability
function of a four-stage, fourth-order scheme, and hence the same stability region. It
is thus to be preferred to NS/ADAD	–3S2E(4) schemes.



5. Numerical results

In this chapter, the alternating strategy is applied to a number of numerical tests. The
aim of the analysis is twofold: to prove the consistency of the theoretical framework
and to assess the performances of the new schemes. For the Navier-Stokes equations,
the NS/ADDA	–3S2E(4) will be considered as the reference 3S2E scheme, while the
alternating RK4 will be the reference 4S1E method. For clarity, they will be indicated
simply as 3S2E and 4S1E. The schemes are systematically compared to the RK4 in
fully skew-symmetric form (i.e., a 4S4E(8) scheme). The final goal of the tests is to
show that the new methods provide similar results to the skew-symmetric form at a
reduced computational cost.

5.1 1D efficiency analysis

The performances of the schemes derived in Section 4.2 have been assessed by means
of a comparison in terms of computational efficiency, i.e., on an Error-Cost plane.

Several choices can be made regarding the error. In accordance with the aim of
the study, the kinetic energy conservation error is considered here. As a representative
unit time, t f = tb/2 is chosen, where tb is the break-time at which characteristic lines
intersect for the inviscid Burgers’ equation. The computational cost is calculated by
means of the cost metric presented in Appendix A.

The results are reported in the graph of Fig. 5.1. The plot was constructed by
analyzing the energy errors in a range of Courant numbers C = u∆t/∆x, in particu-
lar 0.1 < C < Cmax, where Cmax is the maximum bound allowed by linear stability
for each scheme. The cost is then obtained by multiplying the number of floating-
point operations by the number of time-steps needed to integrate the inviscid Burgers’
equation from t0 to t f . The left-end of each curve corresponds to the simulation run at
the maximum Courant number. In the upper portion of the graph, the corresponding
Courant number dependence is also reported for convenience. One 3S1E, two 4S1E
and two 3S2E alternating schemes are compared to three-stage and four-stage Runge-
Kutta methods in fully skew-symmetric form. For the latter, the classical Kutta and
RK4 methods are considered, respectively. The computational cost for all the curves
is normalized with respect to the cost of the RK4 in skew-symmetric form run at
the maximum Courant number. The results were obtained by integrating the inviscid
Burgersplo’ equation with periodic boundary conditions on the domain [0,1], dis-
cretized by N = 100 equidistant mesh points, with initial condition u0(x) = sin(πx).
A fourth-order explicit central scheme was used for spatial integration. Varying the
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Figure 5.1: Comparison in terms of computational efficiency between classical and
novel schemes.

number of mesh points did not significantly affect the qualitative picture in terms of
efficiency comparison among the various schemes. Several conclusions can be drawn
from the graph. For the smallest error levels, the classical RK4 in skew-symmetric
form is the most efficient scheme, due to the high order of accuracy, together with
the particularly compact Butcher tableau. However, there is a very large range of
energy errors in which several alternating schemes are the most efficient ones. For
such methods, the plot shows that the possible computational time saving can be up
to 50%, although this value can be rather case dependent. In particular, the ADDA–
4S1E, i.e. the alternating version of the classical RK4 scheme, results as the most
efficient method. This result is particularly remarkable, since many computational
codes built upon the skew-symmetric RK4 can be easily recast in a more efficient
procedure by simply switching the SSSS sequence to the alternating ADDA one. By
using the same arguments, it can also be concluded that the three-stage Kutta method
in skew-symmetric form can be profitably substituted by its alternating counterpart. It
is worth reminding that for classical skew-symmetric spatial discretizations, the global
energy error is constituted only by the temporal part, while for the new methods it is
a mix of spatial and temporal contributions.

Further insight can be gained from the following considerations. The crossover
point in efficiency is the result of a balance between two effects: the reduction in com-
putational cost of the alternating procedure and the higher formal order of accuracy on
energy conservation of the skew-symmetric schemes. At lower values of C the formal
order of accuracy prevails, while at higher values the errors of the two approaches
become comparable and the maximum time saving is reached.

In the case previously discussed, the crossover point in efficiency occurs for Courant
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numbers greater than≈ 0.4. It has to be underlined that this point can shift somewhere
to the left or right depending on various parameters, such as the final integration time
or the initial condition. However, additional numerical tests (not reported here) show
that the main trends are retained in a variety of situations. The fact that the better per-
formances of the novel schemes occur in the range of moderate values of the Courant
number is advantageous, since this is the range of practical interest for many applica-
tions.

As an alternative, the performances of the ADAD–3S2E scheme are also partic-
ularly good. In addition, one has to consider that 3S2E schemes have two remaining
degrees of freedom, that can be further exploited to achieve specific targets, depending
on the problem under study.

5.2 2D periodic inviscid flow

Two-dimensional inviscid flow simulations are carried out on a periodic domain to
confirm the theoretical results obtained in the previous sections.

5.2.1 Random flow

At first, an order of accuracy analysis is performed. To this aim, following [47], a
square region of size 2π × 2π is considered, discretized on a mesh of 16× 16 mesh
points. The solenoidal initial velocity field is constructed from a stream function
of random numbers, normalized such that 1T ux = 1T uy = 0 and E0 = 1.0, where
E0 = E(t = 0). A random initial condition guarantees that the flowfield is devoid of
any symmetries, and hence prevents any apparent order improvement. A centered
second-order finite-difference scheme is used for convection; for time-advancement,
the various Runge-Kutta schemes developed in Section 4.3 are used.

Figure 5.2 (left) shows the time step convergence of the energy error for three
Runge-Kutta methods measured at t f = 10. The slopes confirm the predicted orders
of accuracy for the new schemes 4S1E(4) and 3S2E(4), proving the consistency of the
theoretical framework. The divergence form gives a constant error, which corresponds
to the spatial contribution of Eq. (3.11); a similar behavior is found for the advective
form (not shown here). The first part of the time-evolution of the energy error is
shown in Fig. 5.2. The non-conservative formulations show a large error growing
steeply during the first instants of the simulation. On the contrary, the skew-symmetric
method as well as the alternating Runge-Kutta schemes remain bounded; in particular,
the 3S2E(4) scheme is identical to the skew-symmetric method within the plotting
accuracy. It is interesting to observe that, in the very first part of the simulation, the
divergence and advective forms provide errors which are approximately equal and of
opposite sign, as predicted by Eq. (2.25), that is a linear approximation. Then, non-
linearity takes place and the the violation in energy-conservation leads to a sudden
blow-up.
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Figure 5.2: Results for 2D periodic, inviscid flow simulations. (Left) Time-step con-
vergence of the relative error on energy conservation (Right) Time evolution of kinetic
energy conservation error; all simulations have been performed with ∆t = 0.1.

Scheme ε(t = 2)
(Div.) 0.0315
(Adv.) 0.0200
(Skew.) −5.3157×10−9

(3S2E) −4.9925×10−8

(4S1E) −6.8404×10−4

Table 5.1: Kinetic energy conservation errors at t = 2 (see Figure 5.2) for different
Runge-Kutta methods and convective forms.

Table 5.1 gives a more detailed comparison among the errors provided by the
various methods.

5.2.2 Temporal mixing layer

The temporal mixing layer is a well-known test case to study the properties of a nu-
merical algorithm in terms of handling steep gradients and formation of smaller scales.
The domain is a square region of size 2π×2π with periodic boundary conditions. A
very coarse mesh of 202 points is used to prove the robustness of the various schemes.
Simulations are carried out with a constant time-step ∆t = 10−2 and no viscosity. The
same numerical setting used for the previous test is adopted here. The initial flowfield
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Figure 5.3: Vorticity contours of mixing layer at t=8. Iso-contours ranging from -4 to
4 with steps 0.5. (Top-left) Convective term computed in advective form. (Top-right)
Convective term computed in skew-symmetric form. (Bottom-left) Method 4S1E(4), se-
quence DADA. (Bottom-right) Method 3S2E(4), sequence DAAD.

is given by

u =


tanh

(
y−π/2

δ

)
, y≤ π,

tanh
(

3π/2− y
δ

)
, y > π,

(5.1)

v = ε sin(x). (5.2)

The perturbation on the v-velocity is used to promote the roll-up of the shear
layer; as in [66], ε = 0.05 is used. A single instability mode is activated by choosing
δ = π/15 [81].

In Fig. 5.3, the iso-contours of the vorticity field at t = 8 are shown for the ad-
vective (top-left) and the skew-symmetric form (top-right). The latter is identical to
the ones resulting from 4S1E(4) and 3S2E(4) schemes (bottom figures). While for
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Figure 5.4: Results for the mixing layer. (Left) Time-evolution of kinetic energy con-
servation error. (Right) Two-dimensional energy spectra at t = 8.

this test the divergence form blew-up due to over-production of energy, the advec-
tive form dissipates the kinetic energy of the flow, and the resulting vorticity field is
much more smeared in comparison to the conservative formulations. Further insight
is given by observing the time-evolution of the energy error ε(t) as well as the two-
dimensional energy spectra calculated at t = 8, both shown in Fig. 5.4. The advective
form provides a large amount of dissipation, especially at the highest wavenumbers.
The alternating schemes perform remarakably well, particularly the 3S2E(4), which
is again identical to the skew-symmetric method within the plotting accuracy.

5.3 Homogeneous Isotropic Turbulence (HIT)

5.3.1 Inviscid HIT

As a second test-case, simulations of inviscid homogeneous isotropic turbulence (HIT)
are performed. A standard pseudo-spectral code has been adopted, using a projec-
tion method in spectral space to enforce the divergence-free condition. The pseudo-
spectral solver uses a classical parallel design based on two-dimensional subdivisions.
The 3D Fast Fourier Transform (FFT) is split in three one-dimensional transforms.
The parallelization is carried out by subdividing the 3D geometry along only 2 direc-
tions: along Y and Z in the real space and along X and Y on the spectral space. The
code has been recently used to test a hybrid spectral-particle method for the turbulent
transport of a passive scalar [82]. All derivatives are performed in spectral space and
all products are performed in physical space. Modified wavenumbers are used to em-
ulate centered second-order finite-difference schemes [53]. The tests are performed
without subgrid-scale (SGS) model and the simulations are not de-aliased. The initial
condition is designed to satisfy a given energy spectrum, typical of decaying isotropic
turbulence. A mesh of 323 grid points on a domain of length 2π is used. The simula-
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Figure 5.5: Time evolution of kinetic energy conservation error for inviscid HIT.

Scheme ε(t = 30) TCPU/Tskew

(Div.) +∞ 0.6429
(Adv.) +∞ 0.4810
(Skew.) −1.1816×10−6 1
(3S2E) −1.1896×10−6 0.5690
(4S1E) +1.3044×10−6 0.5690

Table 5.2: Kinetic energy conservation errors at t = 30 (see Figure 5.5) and correspond-
ing normalized CPU time for different Runge-Kutta methods and convective forms

tions differ only by the form of the convective term and the Runge-Kutta scheme used
for time advancement.

The time evolution of the turbulence kinetic energy is shown in Fig. 5.5. The
advective and divergence forms soon diverge due to violation of kinetic energy con-
servation. On the other hand, the energy-preserving formulations are stable. In partic-
ular, the 3S2E(4) scheme is very close to the skew-symmetric form, while the 4S1E(4)
shows a slight over-production of energy. These considerations are confirmed by the
computational results shown in Table 5.2, in which the CPU times are also reported.

In this test, the projection method does not require any iterative algorithm, hence
computation of the convective term has an important impact on the global computa-
tional time. The proposed Runge-Kutta schemes allow a saving in computational time
of about 43% with respect to the skew-symmetric form. This important time-saving is
independent of the mesh-size. In the spectral algorithm used in this work, it is due to
the fact that the skew-symmetric form needs roughly to perform twice more forward
and inverse FFTs for each sub-step of the Runge-Kutta scheme than those required by
divergence or advective forms alone. It was proved that also in a finite-difference con-
text the computational time required by the skew-symmetric form is approximately
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Figure 5.6: Results for forced HIT. (Left) Time evolution of kinetic energy. (Right)
Three-dimensional energy spectra.

doubled [83]. Finally, it is noteworthy that for the 3S2E(4) scheme used, the error on
energy is dissipative, hence the scheme is stable for long-time simulations.

5.3.2 Large-eddy simulation of forced HIT

In the last test, large-eddy simulation of forced HIT is performed and compared with
direct numerical simulations. The same pseudo-spectral code of the previous test is
used here, with the diffusive term being computed exactly. The forcing strategy con-
sists only in “freezing” the low wavenumbers (|~k| < 3), to avoid the introduction of
randomness as in classic forcing schemes [84]. In this test, centered second-order
finite-difference schemes are mimicked by using modified wavenumbers. A dynamic
Smagorinsky model is used to account for subgrid-scales [14; 85]. For the DNS the
Navier-Stokes equations are discretized using 2563 grid points on a domain of length
2π , whereas the LES are performed on 643 grid points. The Reynolds number based
on the Taylor micro-scale is around 90, which is a typical value for DNS to be per-
formed on 2563 grid points. The time step is computed from the CFL condition, with
a maximum CFL number of 0.5. All the results shown in this work correspond to no-
dealiased simulations. Similar results are found with a dealiasing procedure, because
the dealiasing only impacts the highest wavenumbers which are already neglected by
the use of lower-order schemes. Note that for LES, the skew-symmetric form adds
only 15% of additional CPU time, because the SGS model computation with the dy-
namic procedure has a significant impact on overall CPU time. It is known that the
use of a SGS model written in physical space has a large impact on the computational
time, especially when a dynamic procedure is used to compute the model coefficient.
In fact, a pseudo-spectral code needs to compute various forward and inverse FFTs to
apply the model. The SGS model contribution to the overall computational cost could
be reduced by using spectral SGS models.
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Figure 5.6 shows the kinetic energy evolution in time and the three-dimensional
energy spectra for various Runge-Kutta schemes and convective forms. Two spatial
schemes are considered for LES: second-order and spectral differentiation. A spectral
DNS curve is also shown for comparison. In the spectral case (dashed curves) all
methods coincide, both for LES and DNS. Differences emerge when a second-order
modified wavenumber is used: the divergence and advective forms are unstable, while
the 4S1E(4) scheme gives a slight under-prediction of energy. In both cases, the
3S2E(4) scheme is confirmed to be practically equivalent to the skew-symmetric form,
its predictions being identical within the plotting accuracy. Similar results can be
found in wavenumber space, showing that the beneficial aliasing properties of the
skew-symmetric form are also retained by the new schemes.
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6. Conclusions

A novel time-advancing strategy has been developed with the aim of reproducing
the energy-conservation properties of skew-symmetric-based schemes at a reduced
computational cost. The method is based on a Runge-Kutta scheme in which the di-
vergence or advective forms for convection are suitably alternated within the stages to
retain the conservation properties of the skew-symmetric form up to a certain order of
accuracy. A comprehensive theoretical framework has been established to derive new
alternating Runge-Kutta methods with prescribed order of accuracy on both solution
and energy-conservation. It is found that one and three additional constraints are re-
quired to obtain first- and second-order accuracy on energy conservation, respectively.
The novel method has been applied both to the Burgers’ equation and the incompress-
ible Navier-Stokes equations. By being efficient and discretely energy-preserving at
the same time, the new method is particularly suitable for DNS and LES of turbulent
flows.

Extensive numerical tests have shown that the newly derived schemes can be more
efficient than traditional methods, and that the skew-symmetric form results are well
reproduced in a variety of situations.

The advantage in terms of CPU time depends upon the details of the algorithm. In
general, the new schemes are highly convenient is situations where the computation of
the nonlinear term takes a large part of the overall CPU time. For instance, in a peri-
odic, fully-spectral framework, the Poisson equation as well as the viscous terms need
a negligible computational effort, and the time-saving proved to reach up to 43% of
the total time. The method is then very suitable for spectral codes for direct numerical
simulations of homogeneous isotropic turbulence. In finite-difference discretizations,
with pressure calculated in physical space by an iterative algorithm, the time saving
is expected to drop to about 10%. However, a further improvement could be achieved
by the use of the approximate projection method presented in Appendix C, in which
the Poisson equation is solved only at the final step of the Runge-Kutta iteration.

Among the various schemes that have been derived, the ones labeled as 3S2E(4)–
type, i.e., third-order accurate on solution and second-order accurate on energy con-
servation, yielded remarkably good results, and are thus highly recommended to be
used in place of the more costly skew-symmetric form. The alternating version of the
classical RK4 also proved to be particularly efficient.

The ideas presented in this work can be extended in many ways. A promising
subject of future work would be the application of the underlying idea to situations
with at least one direction of non-homogeneity, e.g. a channel flow. Discretizations
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that satisfy a discrete summation-by-parts rule [86], could be coupled to the alternat-
ing paradigm proposed here, leading to cost-effective methods. Also, the application
of the novel method to compressible flows, in which no costly pressure Poisson equa-
tions have to be solved, would lead to a significant gain in computational efficiency.



A. Cost metric

In this Appenix, a proper cost metric is developed. The aim is to evaluate the com-
putational effort required to integrate the non-linear convective term by means of a
Runge-Kutta scheme. Explicit centred finite-difference schemes are considered; the
advective, divergence and skew-symmetric forms are considered.

A.1 Operations count

In a one-dimensional setting, an explicit central difference discretization of the non-
linear convective term reads, for the i-th grid point:

∂x
u2

2

∣∣∣∣
i
≈

L

∑
l=1

wl
(
u2

i+l−u2
i−l
)
, (A.1)

u∂xu|i ≈ ui

L

∑
l=1

wl (ui+l−ui−l) , (A.2)

in case of divergence and advective form, respectively. In (A.1) and (A.2), L deter-
mines the size of the computational stencil and thus the accuracy of the approximation
(i.e., 2L), while it is implicitly assumed that the coefficients of the scheme already take
into account the grid spacing. On a grid of N elements, the number of floating-point
operations required to calculate the above terms (spatial operations) is equal for the
divergence and advective terms. It involves N multiplications to evaluate the products
u2 or u · ∂u, plus L multplications and L sums per node to calculate the difference
formula, yielding a total of

Osp
a,d = N(1+2L). (A.3)

It is assumed that additions and multiplications take roughly the same computational
effort. The skew-symmetric form requires the evaluation of advective and divergence
forms separately, together with a linear combination of these quantities, for a total of:

Osp
s = 2N(1+2L)+3N. (A.4)

If an explicit s-stage Runge-Kutta scheme is adopted for time-advancement:{
un+1= un−∆t ∑

s
k=1 bkN(Uk)

Uk = un−∆t ∑
k−1
j=1 ak j N(U j), (A.5)

then the number of floating-point operations contains, assuming that ∆t is already
taken into account by the coefficients:
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• sOsp evaluations of the non-linear term;

• b̂N sums and b̂N multiplications for the final update, where b̂ is the number of
non-zero bk coefficients;

• âN multiplications between the non-zero (and non unity) coefficients ak j and
the terms N(Uk);

• (s−1)N sums between un and the other terms, within the stages, except for the
first stage;

• (â−1)N sums between the remaining terms, within the stages.

The total (i.e. spatial and temporal) number of operations is then

Otot
a,d = 2N(s+Ls+ â+ b̂−1), (A.6)

for advective or divergence forms, while for the skew-symmetric form is

Otot
s = 2N(3s+2Ls+ â+ b̂−1). (A.7)

By comparing Eqs. (A.6) and (A.7), an average factor of order 2 can be established
between the approaches.

A.2 Numerical validation

The developed cost metric has been validated against the measured CPU times ob-
tained with a Fortran 90 numerical code. Two reference Runge-Kutta schemes have
been considered for validation, namely the three-stage Kutta scheme (RK3) and the
classical RK4 from Table 2.2, for both the convective, divergence and skew-symmetric
cases, and for a second- and fourth-order difference scheme. The measured CPU times
have been averaged over 10 runs. Various parameters have been varied during the nu-
merical experiments (e.g., the number of nodes, the size of the arrays, the number of
time-steps, etc.) showing minor effect on the results. The comparison between the
cost metric and the CPU times is reported in Table A.1. The agreement between the
operation count and the actual CPU times is satisfactory, if one considers that the cost
metric does not take into account issues related to storage or access to array variables.
The results may also depend slightly upon the optimization level of the compiler and
on the architecture of the computer.
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Scheme â b̂ s
L = 1 L = 2

Otot
a,d Tcpu Otot

s Tcpu Otot
a,d Tcpu Otot

s Tcpu

RK3 2 2 3 18 1.00 32 1.46 24 1.29 48 2.19
RK4 2 2 4 22 1.28 46 1.90 30 1.69 62 2.86

Table A.1: Comparison between cost metric estimates and measured CPU times for two
Runge-Kutta schemes and various spatial discretizations. The CPU times have been nor-
malized with respect to the RK3 scheme with second-order central difference in advec-
tive/divergence form. For convenience, the number of operations is reported for N = 1.
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B. Energy-conservation relations

In the following, the first equation represents the first-order constraint; the subsequent
three are the relations needed to enforce second-order conservation of energy.

B.1 1D Burgers’ equation

B.1.1 Three-stage schemes

ADA

2b1−b2 +2b3 = 0

b2
1−2b2a21 +2b3a31 +2b1b3 +b2

3 = 0

b3 (a32−2a31)+b2b3 +b1b2 = 0

b2
2−4b3a32 = 0

(B.1)

AAD

2b1 +2b2−b3 = 0

2a21b2−b1b3−b2b3 = 0

b2
3 = 0

−2b2
1−4b1b2−2b2

2−4a21b2 +4a31b3 +4a32b3 = 0

(B.2)

ADD

−2b1 +b2 +b3 = 0

9a32b3−8b1b2−8b1b3 = 0

−b2
2−2b2b3−b2

3−a32b3 = 0

−4b2
1 +8a21b2 +8a31b3−a32b3 = 0

(B.3)

DAA

−b1 +2b2 +2b3 = 0

2a32b3−a31b3−a21b2−b1b2−b1b3 = 0

−b2
1 +4a21b2 +4a31b3 = 0

−2b2
2−4b2b3−2b2

3−4a32b3 = 0

(B.4)
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DAD

b1−2b2 +b3 = 0

a31b3−a21b2−b1b2−b2b3 = 0

−b2
1−2b1b3−b2

3 +4a21b2 = 0

−2b2
2 +4a32b3 = 0

(B.5)

DDA

b1 +b2−2b3 = 0

9a21b2−8a31b3−8a32b3−8b1b3−8b2b3 = 0

−b2
1−2b1b2−b2

2−a21b2 +4a31b3 +4a32b3 = 0

4b2
3 +a21b2 = 0

(B.6)

B.1.2 Four-stage schemes

AAAD

2b1 +2b2 +2b3−b4 = 0

2b2a21 +2b3(a31 +a32)−b4 (b1 +b2 +b3) = 0

b2
4 = 0

2b2a21 +2b3(a31 +a32)−2b4(a41 +a42 +a43)+(b1 +b2 +b3)
2 = 0

(B.7)

AADA

2b1 +2b2−b3 +2b4 = 0

2b2a21 +b4 (2a41 +2a42−a43)−b3 (b1 +b2 +b4) = 0

b2
3−4b4a43 = 0

2b2a21−2b3(a31 +a32)+2b4(a41 +a42)+(b1 +b2 +b4)
2 = 0

(B.8)

AADD

2b1 +2b2−b3−b4 = 0

2b2a21 +b4a43− (b1 +b2)(b3 +b4) = 0

(b3 +b4)
2 = 0

2b2a21−2b3(a31 +a32)−2b4(a41 +a42)+(b1 +b2)
2 = 0

(B.9)
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ADAA

2b1−b2 +2b3 +2b4 = 0

b3(2a31−a32)+b4 (2a41−a42 +2a43)−b2 (b1 +b3 +b4) = 0

−b2
3 +4b3a32 +4b4a42 = 0

2b2a21−2b3a31−2b4(a41−a43)− (b1 +b3 +b4)
2 = 0

(B.10)

ADAD

2b1−b2 +2b3−b4 = 0

8b3(2a31−a32)+9b4a42−8(b1 +b3)(b2 +b4) = 0

4b3a32−b4a42− (b2 +b4)
2 = 0

16b2a21−16b3a31 +2b4 (8a41−a42 +8a43)−8(b1 +b3)
2 = 0

(B.11)

DAAA

−b1 +2b2 +2b3 +2b4 = 0

4b2a21 +4b3a31 +4b4a41−b2
1 = 0

2b3a32 +2b4(a42 +a43)+(b2 +b3 +b4)
2 = 0

b2a21 +b3(a31−2a32)+b4(a41−2a42−2a43)+b1 (b1 +b3 +b4) = 0

(B.12)

DADA

−b1 +2b2−b3 +2b4 = 0

b2a21−b3a31 +b4(a41−2a42 +a43)(b1 +b3)(b2 +b4) = 0

4b2a21 +4b4(a41 +a43)− (b1 +b3)
2 = 0

2b3a32−2b4a42− (b2 +b4)
2 = 0

(B.13)

DADD

b1−2b2 +b3 +b4 = 0

b2a21−b3a31−b4(a41 +a43)+b2 (b1 +b3 +b4) = 0

4b2a21 +(b1 +b3 +b4)
2 = 0

2b3a32 +2b4a42−b2
2 = 0

(B.14)

DDAA

b1 +b2−2b3−2b4 = 0

b2a21−4b3(a31 +a32)−4b4(a41 +a42)+(b1 +b2)
2 = 0

b2a21 +8b4a43 +8(b3 +b4)
2 = 0

9b2a21−8b3(a31 +a32)−8b4(a41 +a42−2a43)−8(b1 +b2)(b3 +b4) = 0

(B.15)



84 B. ENERGY-CONSERVATION RELATIONS

DDAD

b1 +b2−2b3 +b4 = 0

9b2a21−8b3(a31 +a32)+9b4(a41 +a42)−8b3(b1 +b2 +b4) = 0

b2a21−4b3(a31 +a32)+b4(a41 +a42)+(b1 +b2 +b4)
2 = 0

b2a21 +b4(a41 +a42−8a43)+4b2
3 = 0

(B.16)

DDDA

b1 +b2 +b3−2b4 = 0

b2a21−b3a31−b4(a41 +a43)+b2 (b1 +b3 +b4) = 0

4b2a21 +(b1 +b3 +b4)
2 = 0

2b3a32 +2b4a42−b2
2 = 0

(B.17)

ADDD

−2b1 +b2 +b3 +b4 = 0

9b3a32 +9b4 (a42 +a43)−8b1 (b2 +b3 +b4) = 0

b3a32 +b4 (a42 +a43)+(b2 +b3 +b4)
2 = 0

8b2a21 +b3 (8a31−a32)+b4 (8a41−a42−a43)−4b2
1 = 0

(B.18)

DAAD

−b1 +2b2 +2b3−b4 = 0

b2a21 +b3 (a31−2a32)−b4a41 +(b1 +b4)(b2 +b3) = 0

2b2a21 +2b3a31−
1
2
(b1 +b4)

2 = 0

2b3a32 +2b4 (a42 +a43)+(b2 +b3)
2 = 0

(B.19)

ADDA

2b1−b2−b3 +2b4 = 0

9b3a32 +8b4 (2a41−a42−a43)−8(b1 +b4)(b2 +b3) = 0

b3a32−4b4 (a42 +a43)+(b2 +b3)
2 = 0

8b2a21 +b3 (8a31−a32)−8b4a41−8(b1 +b4)
2 = 0

(B.20)
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B.2 Navier-Stokes equations

B.2.1 Three-stage schemes

ADA

b1−b2 +b3 = 0

2a31b3−2a32b3−2b1b2−2b2b3 = 0

−b2
2 +2a32b3 = 0

−b2
1−2b1b3−b2

3−2a31b3 +4a21b2 = 0

(B.21)

AAD

b1 +b2−b3 = 0

2a21b2−2b1b3−2b2b3 = 0

−b2
3 = 0

−b2
1−2b1b2−b2

2−4a21b2 +4a31b3 +4a32b3 = 0

(B.22)

ADD

−b1 +b2 +b3 = 0

4a32b3−2b1b2−2b1b3 = 0

−b2
2−2b2b3−b2

3 = 0

−b2
1 +4a21b2 +4a31b3 = 0

(B.23)

DAA

−b1 +b2 +b3 = 0

2a32b3−2a31b3−a21b2−2b1b2−2b1b3 = 0

−b2
1 +2a21b2 +2a31b3 = 0

−b2
2−2b2b3−b2

3−2a32b3 = 0

(B.24)

DAD

b1−b2 +b3 = 0

4a31b3−a21b2−2b1b2−2b2b3 = 0

−b2
1−2b1b3−b2

3 +2a21b2 = 0

−b2
2 +4a32b3 = 0

(B.25)
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DDA

b1 +b2−b3 = 0

3a21b2−2a31b3−2a32b3−2b1b3−2b2b3 = 0

2b2
1 +4b1b2 +2b2

2 +a21b2−4a31b3−4a32b3 = 0

2b2
3 +a21b2 = 0

(B.26)

B.2.2 Four-stage schemes

AAAD

b1 +b2 +b3−b4 = 0

2a21b2 +2a31b3 +2a32b3−2b1b4−2b2b4−2b3b4 = 0

b2
4 = 0

4a41b4−2a31b3−2a32b3−2a21b2+

+4a42b4 +4a43b4−2b1b2−2b1b3−2b2b3−b2
1−b2

2−b2
3 = 0

(B.27)

AADA

b1 +b2−b3 +b4 = 0

2a21b2 +2a41b4 +2a42b4−2a43b4−2b1b3−2b2b3−2b3b4 = 0

b2
3−2a43b4 = 0

+2a21b2−4a32b3 +2a41b4−4a31b3+

+2a42b4 +2b1b2 +2b1b4 +2b2b4 +b2
1 +b2

2 +b2
4 = 0

(B.28)

AADD

−b1−b2 +b3 +b4 = 0

2a21b2 +4a43b4−2b1b3−2b1b4−2b2b3−2b2b4 = 0

b2
3 +2b3b4 +b2

4 = 0

b2
1 +2b1b2 +b2

2 +2a21b2−4a31b3−4a32b3 +4a41b4 +4a42b4 = 0

(B.29)

ADAA

b1−b2 +b3 +b4 = 0

2a31b3−4a21b2 +2a41b4 +2a43b4+

+2b1b3 +2b1b4 +2b3b4 +b2
1 +b2

3 +b2
4 = 0

b2
2−2a32b3−2a42b4 = 0

2a31b3−2a32b3 +2a41b4−2a42b4 +2a43b4−2b1b2−2b2b3−2b2b4 = 0

(B.30)
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ADAD

b1−b2 +b3−b4 = 0

2a31b3−2a32b3 +4a42b4−2b1b2−2b1b4−2b2b3−2b3b4 = 0

−b2
2−2b2b4−b2

4 +2a32b3 = 0

−b2
1−2b1b3−b2

3−2a31b3 +4a21b2 +4a41b4 +4a43b4 = 0

(B.31)

DAAD

b1−b2−b3 +b4 = 0

−b2
1−2b1b4−b2

4 +2a21b2 +2a31b3 = 0

−b2
2−2b2b3−b2

3−2a32b3 +4a42b4 +4a43b4 = 0

2a32b3−2a31b3−2a21b2 +4a41b4−2b1b2−2b1b3−2b2b4−2b3b4 = 0

(B.32)

DADA

−b1 +b2−b3 +b4 = 0

4a31b3−2a21b2−2a41b4 +2a42b4+

−2a43b4−2b1b2−2b1b4−2b2b3−2b3b4 = 0

−b2
1−2b1b3−b2

3 +2a21b2 +2a41b4 +2a43b4 = 0

−b2
2−2b2b4−b2

4−2a42b4 +4a32b3 = 0

(B.33)

DADD

b1−b2 +b3 +b4 = 0

4a31b3−2a21b2 +4a41b4 +4a43b4−2b1b2−2b2b3−2b2b4 = 0

−b2
1−2b1b3−2b1b4−b2

3−2b3b4−b2
4 +2a21b2 = 0

−b2
2 +4a32b3 +4a42b4 = 0

(B.34)

DDAA

b1 +b2−b3−b4 = 0

4a21b2−2a31b3−2a32b3−2a41b4+

−2a42b4 +2a43b4−2b1b3−2b1b4−2b2b3−2b2b4 = 0

−b2
1−2b1b2−b2

2 +2a31b3 +2a32b3 +2a41b4 +2a42b4 = 0

−b2
3−2b3b4−b2

4−2a43b4 = 0

(B.35)

ADDD

−b1 +b2 +b3 +b4 = 0

4a32b3 +4a42b4 +4a43b4−2b1b2−2b1b3−2b1b4 = 0

−b2
2−2b2b3−2b2b4−b2

3−2b3b4−b2
4 = 0

−b2
1 +4a21b2 +4a31b3 +4a41b4 = 0

(B.36)
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DDAD

b1 +b2−b3 +b4 = 0

4a21b2−2a31b3−2a32b3 +4a41b4+

+4a42b4−2b1b3−2b2b3−2b3b4 = 0

−b2
1−2b1b2−2b1b4−b2

2−2b2b4−b2
4 +2a31b3 +2a32b3 = 0

−b2
3 +4a43b4 = 0

(B.37)

DDDA

b1 +b2 +b3−b4 = 0

4a21b2 +4a31b3 +4a32b3−2a41b4+

−2a42b4−2a43b4−2b1b4−2b2b4−2b3b4 = 0

b2
4 = 0

b2
1 +2b1b2 +2b1b3 +b2

2 +2b2b3 +b2
3−2a41b4−2a42b4−2a43b4 = 0

(B.38)

ADDA

−b1 +b2 +b3−b4 = 0

−b2
2−2b2b3−b2

3 +2a42b4 +2a43b4 = 0

−b2
1−2b1b4−b2

4−2a41b4 +4a21b2 +4a31b3 = 0

4a32b3 +2a41b4−2a42b4−2a43b4−2b1b2−2b1b3−2b2b4−2b3b4 = 0

(B.39)

DAAA

−b1 +b2 +b3 +b4 = 0

2a32b3−2a31b3−2a21b2−2a41b4+

+2a42b4 +2a43b4−2b1b2−2b1b3−2b1b4 = 0

−b2
1 +2a21b2 +2a31b3 +2a41b4 = 0

−2a32b3−2a42b4−2a43b4−2b2b3−2b2b4−2b3b4−b2
2−b2

3−b2
4 = 0

(B.40)



C. An approximate projection
method for the incompressible
Navier-Stokes equations

An algorithm for computing unsteady incompressible flow is developed and analyzed.
The method is based on a Runge-Kutta procedure of an arbitrary number of stages.
In order to save computational time, the Poisson equation for pressure is solved only
at the final sub-step as in [87]; however, a better approximation for pressure is used
at intermediate stages. Numerical tests show that this modification increases the ro-
bustness as well as the formal accuracy of the method, and is thus suitable for finite-
difference algorithms based on Runge-Kutta time-stepping schemes.

C.1 Introduction

In the context of time-advancing algorithms for the incompressible Navier-Stokes
equations, reported here for convenience

∂ui

∂ t
+Ni(u) =−

∂ p
∂xi

+
1

Re
∂ 2ui

∂x j∂x j
, (C.1)

∂ui

∂xi
= 0, (C.2)

the divergence-free condition is commonly enforced by means of fractional-step meth-
ods [72]. When a Runge-Kutta scheme is used for time-integration, the Poisson equa-
tion for pressure has to be solved at each RK sub-stage to impose the incompress-
ibility constraint and retain the temporal order of accuracy of the procedure. In order
to save computational time, Le & Moin proposed a modified algorithm in which ve-
locity was projected only at the final step [87] . During the intermediate sub-stages,
the pressure field was approximated to first-order, leading to an overall second-order
accuracy and a time-saving of about 40%. On the other hand, the robustness of the
method was found to be deficient, due to non-zero divergence of intermediate velocity
fields, which can lead to sudden blow-up [88].

In the following, a method is proposed in which the Poisson equation is solved
only at the final RK step, as in [87], but with improved robustness and accuracy.

89
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C.2 Numerical Method

The numerical procedure is based on a family of standard explicit Runge-Kutta schemes
for time-integration. A s-stage time advancement of Eqs. (C.1) and (C.2) reads

ui = un +∆t ∑
i−1
j=1 ai j [L(u j)−N(u j)]−∆t G(pi),

un+1 = un +∆t ∑
s
i=1 bi [L(ui)−N(ui)]−∆t G(pn+1),

(C.3)

where u and p are the discretized velocity and pressure fields, while L, N and G

represent proper approximations to the Laplacian, non-linear and gradient operators,
respectively.

In a classical fractional-step method, the pressure pi in Eq. (C.3) is calculated by
means of the usual splitting

u∗i = un +∆t ∑
i−1
j=1 ai j [L(u j)−N(u j)]

DG(pi) =
1
∆t

D(u∗i )

ui = u∗i −∆t G(pi), i = 2, . . . ,s,

(C.4)

where D is the discrete divergence operator. The algorithm which results from com-
bining Eqs. (C.4) and (C.3) will be referred to as FS. In this case, s Poisson equations
have to be solved for pressure: (s−1) for the intermediate stages and a final one after
the last step to project un+1,∗ (assuming un is divergence-free).

A significant saving in CPU time can be obtained if one seeks to solve only one
Poisson equation after the last step. This task can be accomplished by using a suitable
approximation for pressure within the mid-stages, e.g.

pi ≈ p̂i = F(pn,pn−1). (C.5)

In particular, two formulas will be considered here:

(a) p̂i = pn;

(b) p̂i = 2pn−pn−1,

which correspond to constant and linear extrapolation from previous values, respec-
tively. The splitting in Eq. (C.4) becomes a single equation,

ûi = un +∆t
i−1

∑
j=1

ai j [L(u j)−N(u j)]− ci∆t G(p̂i), (C.6)

where ci = ∑ j ai j. By combining Eq. (C.6) with Eq. (C.4), one obtains a procedure in
which no Poisson equations have to be solved for stages i= 2, . . . ,s. A final projection
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step is still required for un+1,∗. The resulting algorithms will be labeled FSa and FSb
depending on the approximation used for p̂i. Note that the method FSa is actually
a generalization of the procedure proposed by [87], hence is globally second-order
accurate, assuming the time-integration scheme is at least second-order. It can be
shown that the new method FSb is third-order accurate in time on velocity, as it will
be demonstrated numerically in the next section.

C.3 Results

C.3.1 2D Taylor-Green Vortex

The 2D Taylor-Green Vortex (TGV) is simulated numerically to confirm the theoreti-
cal results presented in the previous sections. The Navier-Stokes equations are solved
in a periodic domain of length 2π , discretized on a mesh of 322 points. The exact
solution is given by

u(x,y, t) =−cos(x)sin(y)e−2νt ,

v(x,y, t) = sin(x)cos(y)e−2νt ,

p(x,y, t) =−1
4
(cos(2x)+ cos(2y))e−4νt .

(C.7)

Starting from t = 0, Eqs. (C.7) are solved numerically with a second-order centered
scheme for both convective and viscous terms. A standard three-stage, third-order
Runge-Kutta method is used for time-integration. The three algorithms presented in
Section C.2 are used. The temporal order of accuracy is best revealed for vanishing
viscosity and is shown in Figure C.1 (left). The results confirm the theoretical predic-
tions. In Figure C.1 (right), the residual divergence of the intermediate velocity fields
is compared for methods FSa and FSb in case of Re = 1/ν = 1000. After the second
sub-step, the method FSb provides a substantially lower residual with respect to FSa.
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Figure C.1: Results for 2D TGV. (Left) Time-step convergence on velocity error for
the two approximate projection methods, Re→ ∞. (Right) Time evolution of residual
divergence after steps i = 1 (solid) and i = 2 (dashed) for the methods FSa (circles) and
FSb (×), Re = 1000.
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