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Summary 

In this thesis I tried to develop new automatic imaging methods, aiming at improving 

the interpretation of potential field anomalies related to mining and environmental studies. 

The major improvements, which I obtained, are the stability, which is normally low for 

methods such as the local wavenumber, and the full automaticity in retrieving the source 

parameters (depth and structural index).  

Starting from the theory of the Depth from Extreme Points (DEXP) method, I first applied it 

to the self-potential data related to mineralization and to groundwater flow. DEXP is a fast 

imaging method transforming the field data, or its derivatives, into a quantity proportional to 

the source distribution. The method is particularly suited to handle at high-resolution noisy 

data, as it is stable even using high-order derivatives. DEXP imaging depends on the 

knowledge of the structural index of the source. While this parameter may be a priori 

determined by the method itself, i.e., by a preliminary application of related multiscale 

methods based on the study of the scaling function, it may also assumed a priori, as done for 

other imaging methods such as migration, correlation or the sandwich model. I showed the 

usefulness of DEXP method to self-potential datasets, regarding mineral exploration at 

Malachite mine, Colorado, (USA), Sariyer area (Turkey) and Bender area (India) and water-

table depth estimation in a pumping well and in sinkholes at the area of San Vittorino Plain 

(Rieti, central Italy). The estimated depths well agree with the known information about the 

sources. 

 As any imaging method (DEXP, correlation, migration and others) needs to assume, 

inherently or explicitly, a value for the structural index and that it is valid throughout the 

whole explored source volume, I  tried to develop new imaging methods to estimate the depth 

to the sources of potential fields independent from value of the structural index. The first of 

them consists of applying the DEXP transformation to the ratio ( ) between two different-
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order partial derivatives of the field. While the scaling function used in the DEXP 

transformation depends on the structural index, I showed that the scaling function of   

merely depends on the difference between the two used orders of differentiation. This allows 

three main features to be established for the DEXP transformation of  : a) it is independent 

from the structural index; b) the estimation of the source depths is fully automatic, simply 

consisting in the search of position of the extreme points of the DEXP image; c) the structural 

index of each source is finally determined from the scaling function or the extreme points 

using the estimated depth. Besides the well known characteristics of the DEXP 

transformation, such as high-resolution and stability, the DEXP transformation of   enjoys 

one more relevant feature: it can be applied to multi-source cases, yielding simultaneously 

correct estimations of structural index and depth for each source in the same image.  

However, while the DEXP transformation is a linear transformation of the field, the DEXP 

transformation of   is nonlinear, and a procedure is described to circumvent the nonlinear 

effects. 

 The method is tested with synthetic examples and applied to real magnetic data for 

mineral exploration from the Pima copper mine, Arizona, USA, Hamrawien area, Egypt and 

Cataldere, Bala district of Turkey. The results are consistent with the known information 

about the causative sources. 

 I developed also a method for source parameter estimation, based on the local 

wavenumber function. Even in this case I made use of the stable properties of the DEXP 

method, so to deal with local wavenumber of high-order, as DEXP is able to overcome its 

known instability caused by the use of high-order derivatives. Also in this case, i.e., the 

DEXP transformation of the local wavenumber, the scaling-law is independent of the 

structural index, is fully automatic and may be implemented as a very fast imaging method, 

mapping different-kind sources at their own correct depth. The method was demonstrated to 
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synthetic cases and applied to real-data examples from Bulgaria and from a test site for buried 

drums in Italy. 

I also developed a new method to analyze the local wavenumber, based on the 

fractional-order differentiation of potential fields, to the end of applying it in a more stable 

way. Such kind of differentiation allows a fractional-order local wavenumber to be defined, 

whose usefulness is two-fold: a) the positions of the peaks of the two different-order local 

wavenumber are essentially the same; b) the well known instability of the method, due to the 

noise-enhancement related to the field standard differentiation, may be kept to a minimum, if 

a fractional-order field differentiation is used. The method is applied to synthetic and real 

examples for mineralization and archaeological exploration and it provided a good estimation 

of both depth to sources and structural index.   
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Introduction 

Gravity and magnetics are examples of passive geophysical methods. The non-

invasive surveys of magnetic and gravimetric fields have the ability to provide information in 

relatively short time and low cost, even over large areas. 

Gravity method is a potential field technique, which involves measurements of the 

spatial variations in the Earth's gravitational field.  These variations are caused by density 

contrasts in the Earth's rocks. It has many geological and environmental applications such as 

regional geological mapping; oil and gas exploration, sediment thickness studies, mineral 

exploration, archaeological surveys, and cavity detection for urban applications. 

  Magnetic method is another passive method related to measurements of the variations 

in the geomagnetic field. Such measurements are the sum of different contributions: the main 

field, produced in the fluid core by means of a mechanism that goes under the name of 

geodynamo; the crustal field, produced by the magnetized rocks of the terrestrial crust. The 

typical applications of the magnetic method are in the fields of archaeology, mineral 

exploration, and geological and environmental mapping (e.g., the search of buried 

ferromagnetic objects). 

The self-potential method is one of the oldest geophysical methods; it involves 

measurements of the natural electric potential on the Earth’s surface with two potential 

electrodes. The self-potential anomalies have a mathematical form similar to that of the 

gravity and magnetic field. For this reason, the interpretation methods of potential field 

methods can also be applied to the self-potential data. The interpretation of self-potential data 

for the monitoring of environmental problems such as detection of mineralization, water table, 

cavities and sinkholes, geothermal power and contamination is appreciated in geophysical 

literature. 
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 The interpretation methods are greatly improved with the development of automatic 

modelling programs and by introducing new analysis methods, not only in order to locate the 

position of the sources, but also to determine the shape and physical property. One category of 

these methods is that of multiscale methods such as the Depth from EXtreme Points (DEXP) 

method (Fedi, 2007), in which the field at different levels or altitudes is scaled with a scaling-

law. The form of the scaling law theoretically depends on the structural index N, a quantity 

related to the geometry of the source. So the method involves an a priori estimation of N. 

However, it may be fixed arbitrarily, similar to other imaging methods (migration, for 

instance, which intrinsically assume cylinder-like sources (Fedi and Pilkington, 2012, Table 

2). The scaled field at different altitudes yields an image of the source distribution where the 

extreme points indicate the depth to the source. The method is fast, accurate and stable against 

noise and at whatever-order differentiation of the field. 

The first goal of this thesis is to introduce the application of the DEXP method in the 

interpretation of self-potential data, related to mineral exploration and environmental studies 

of ground water flow such as well-pumping monitoring and sinkholes detection.  

The second goal is to develop an automatic DEXP imaging method independent from 

the value of the structural index of the causative source and apply it to examples for mineral 

exploration.  

The third goal is making use of the stable properties of the DEXP method to improve 

the local-wavenumber method for the estimation of the depth and shape of the causative 

sources and apply this new imaging approach to real examples for mineral exploration and 

finding of buried metal drums.   
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The fourth goal is to introduce a fractional-order local wavenumber to attenuate the 

effect of noise in the data, to improve the estimation of depth and shape of the causative 

sources and to apply this new approach to examples of archaeology and mineral exploration. 

The software codes written during this thesis are: 

- MATLABTM codes of 2D and 3D AUTOMATIC DEXP applied to the ratio between 

two derivatives of the field. 

- MATLABTM codes of 2D and 3D AUTOMATIC DEXP applied to two analytic signal 

moduli of the field. 

- MATLABTM codes of 2D and 3D LOCAL-WAVENUMBER DEXP imaging. 

- MATLABTM code for calculating the FRACTIONAL-ORDER LOCAL 

WAVENUMBER and estimation of depth and structural index of the causative sources. 

By the end of my doctorate three articles from this thesis are already published in peer-

reviewed international journals: 

- Fedi, M., and Abbas, M. A., 2013, A fast interpretation of self-potential data using the 

depth from extreme points method. Geophysics, 78(2), E107-E116. 

- Abbas, M. A., and Fedi, M. (2014). Automatic DEXP imaging of potential fields 

independent of the structural index. Geophysical Journal International, 199(3), 1625-

1632. 

- Abbas, M. A., Fedi, M., and Florio, G., 2014, Improving the local wavenumber 

method by automatic DEXP transformation. Journal of Applied Geophysics, 111, 250-

255. 

Two other articles are just to be submitted to peer-reviewed international journals. 
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Chapter 1 

Interpretation of self-potential data using the DEXP method 

This chapter is published as: Fedi, M., and Abbas, M. A., 2013, A fast interpretation of 

self-potential data using the depth from extreme points method. Geophysics, 78(2), E107-

E116. 

1.1 Introduction 

 Self-potential method (SP) is one of the oldest geophysical methods. It involves 

measurements of ground electric potential, as developed in the Earth by many source 

mechanisms. An often-referenced mechanism for explaining the self-potential, even if not so 

general, is due to Sato and Mooney (1960). It requires the causative body to straddle the water 

table; below it, electrolytes in the pore fluids undergo oxidation and release electrons, which 

are conducted upwards through the ore body. At the top of the body, the released electrons 

cause reduction of the electrolytes. A circuit thus exists, in which current is carried 

electrolytically in the pore fluids and electronically in the body, so that the top of the body 

acts as a negative terminal. 

 Many methods of interpretation were developed for self-potential data. They include 

methods assuming a fixed-geometry for the sources (e.g., Yüngül, 1950; Meiser, 1962; Paul, 

1965; Bhattacharya and Roy, 1981, Rao and Babu, 1983), methods using Fourier analysis 

(e.g., Rao et al., 1982), and inverse methods (e.g., Shi and Morgan, 1996, Jardani et al., 2007; 

Minsley et al., 2007 and Mendonça, 2008). Assuming a simple geometry for the sources 

requires a prior knowledge of the shape of the anomalous body and most of the methods use 

few characteristic points and distances, nomograms, or standardised curves to determine the 

depth. Thus, they are highly subjective and can lead to major errors in estimating the depth of 

the buried structure. On the other hand inverse methods are computationally expensive. 



11 
 

Other methods are based on the continuous wavelet transform (CWT), which allows 

the characterization of discontinuities or abrupt changes in the measured signal. For potential 

fields the Poisson kernel family is normally used (e.g., Moreau et al., 1997, Sailhac and 

Marquis, 2001, Fedi et al., 2010); a recent extension of the CWT applied to potential fields 

allows the use of any kind of wavelet (Fedi and Cascone, 2011). Depths are determined at the 

intersection of the maxima of the absolute values of the field lines (amplitude of the wavelet 

coefficient), which converge to the source. In the wavelet transform method the type of the 

source is not assumed but is derived by a direct estimation of the structural index from the 

CWT coefficients. Gilbert and Sailhac (2008) noted, however, that the CWT is not simply 

related to the source distribution, so it cannot be easily used as an imaging method. 

 SP anomalies have also been interpreted through cross-correlation of the field with 

that by assumed elementary scanning-sources, for example a point-source by Patella (1997a, 

b) and a dipole-source by Revil et al. (2001) and Iuliano et al. (2002). The zero-lag cross-

correlation may be mapped at different depths and horizontal positions of the scanning-

source, so describing a possible distribution of source density, this depending however on the 

a priori type of scanning-source used, e.g. a single pole, a dipole or any other. The correlation 

method has an inherent lack of criteria to assess a priori the best type of scanning-source 

(Gilbert and Sailhac, 2008).  In fact Bhattacharya et al. (2007) compared the cross-correlation 

results for dipole and pole sources of SP data over graphite and sulphide ore deposits in India, 

but were not able to indicate the best result. 

 The enhanced local wave-number technique (Salem et al., 2005) was applied by 

Srivastava and Agarwal (2009) to the interpretation of the SP anomalies. The basic advantage 

of this technique lies with the determination of the location and depth without a priori 

knowledge of the nature of the causative source. In fact, the structural index is obtained from 

the earlier determined parameters. The drawback of this technique is that it is sensitive to 
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noise, due to second-order derivatives computation. Recently, Agarwal and Srivastava (2009) 

applied the conventional and extended Euler homogeneity equation (Thompson, 1982; and 

Mushayandebvu et al., 2001) to analyze self-potential anomalies and so compute the location, 

depth and the structural index of the causative source. 

 Fedi (2007) introduced the Depth from Extreme Points method (DEXP) to estimate the 

depth to the causative source, the excess mass or the dipole moment intensity and the 

structural index from potential field data. The first two source parameters are estimated by the 

extreme points values of the DEXP transformed field; the structural index, a parameter related 

to the kind of the source, may be estimated in several ways, for example from the invariance 

of the estimated depth with respect to the order of the DEXP transformation and from the 

evaluation of the scaling exponent intercept. The method has a very low sensitivity to noise 

and, differently from CWT, it is also an imaging method, providing a meaningful image of the 

source distribution (Fedi et al., 2010; Fedi and Pilkington, 2012). Here, we adapt the DEXP 

transformation to the interpretation of SP anomalies, in order to estimate the horizontal 

location, the depth and the structural index of the sources. 

1.2 Theory 

 There are two major contributions to the self-potential anomaly: the reduction-

oxidation effect, associated with ore bodies and organic matter-rich-contaminants, and the 

streaming potential, related to water flow. Other contributions, like diffusion potential and 

thermo-electrical effects, have minor relevance (Jardani et al. 2008). Also, the effect of the 

reduction-oxidation and streaming potential can be separated (see Trique et al., 2002; Naudet 

et al., 2003; 2004; Rizzo et al., 2004). According to Patella (1997), despite of the many 

possible source models, SP anomalies are the surface evidence of a (approximately) steady 

state of electric polarization, related to electric circulation in conductive rocks. Hence, the 
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inverse SP problem consists of finding the location and the geometries of any accumulated 

electric charge underground.  

 In this chapter, we will use the DEXP theory to interpret the SP anomalies of interest 

for mineral exploration. In such cases, we mainly expect that SP anomalies are produced by 

reduction-oxidation processes of mineralization, in the form of electrically polarized bodies 

within a homogeneous subsurface. In this case, the simplest SP anomalies are produced, due 

to the accumulation of positive and negative charges in the form of either compact point poles 

(for spherical target) or pole lines (for cylindrical and sheet type targets). Thus, point poles 

and lines of poles may be considered as fundamental blocks for obtaining the SP anomalies 

due to more complicated pattern of positive and negative poles distributed in 3-D space 

(Agarwal, 1984). 

The total SP anomaly can be defined as:   

    �(�) = ∫ ∇.
�

�

 

�
d�                                                                  (1-1) 

where K is the electric dipole moment due to charge accumulation, either primary or induced, 

and r is the distance from the observation point P. 

 From a mathematical point of view, the theory of self-potential anomalies is quite 

similar to that for gravity and magnetic prospecting. For instance, the electric field and the 

electric potential due to a body with uniform polarization are analogous to the magnetic field 

and the magnetic scalar potential associated with the body, whenever it is uniformly 

magnetized in the same direction as the electric polarization. Hence, the electric potential has 

the same mathematical form as the magnetic potential and, in case of vertical polarization, as 

the gravity field (Babu, 2003). 

 As stated above, DEXP is a high resolution, stable method for estimating the source 

depth and structural index. The DEXP transformation is carried out by scaling a potential field 
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according to scaling laws of different form, related to the structural index or, in other words, 

to the model-type of the source (such as poles, dipoles or others). The important point is that 

the structural index may be experimentally determined from the measured data themselves. 

Alternatively one may simply assume a given source-model. Once the structural index is 

determined, the second step is to transform the field by scaling it with an appropriate scaling 

law. The depths to sources are then obtained from the extreme points of the transformed field.  

 We here outline briefly the theory of the DEXP method in the case of the SP. For further 

details, refer to Fedi (2007), in which the whole theory for potential fields is detailed. Let us 

consider any pth order directional derivative of a homogeneous Newtonian potential U: 

    �� =
���(�)

���                             (1-2) 

A key concept in the DEXP theory is the scaling function��. According to Fedi (2007) ��may 

be defined as the derivative of the logarithm of the pth derivative ��(�) of� with respect to 

log(z): 

   �� =
� ��� ��(�)

����(�)
= −(� + 1)

�

����
                           (1-3) 

where –(p+1) is the homogeneity degree of ��, z is the altitude and z0  is the depth to the 

source. As said before, the elementary sources involved in the SP method are of dipolar 

nature. From a mathematical point of view, we may therefore refer to the DEXP theory of the 

magnetic potential (Fedi, 2007). So, for the SP of a dipole source (or a polarized sphere) we 

may pose p=1 and S=f1 in equation (1-3). The scaling function of S at x0= y0=0, then becomes 

    � =
� ��� �

����(�)
=

���

����
       (1-4) 

Note that � is singular in the source region, at z=z0. The most interesting thing, however, is 

that in the harmonic region, at z=-zo: 

  τ =
� ��� �

����(�)
= −1 ,                                                                         (1-5) 
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According to Fedi (2007) we deduce from equation (1-5) that: 

 
� ��� �

��
= −

����(�)

��
                              (1-6) 

or: 

 
�[��� �� ���(�)]

��
= 0               (1-7) 

which means that: 

 
�(��)

��
= 0         (1-8) 

From equation (1-8) it is now easy to argue that the function Ω formed by scaling the SP, S 

with the power law z 

    � = ��                                         (1-9) 

has its extreme point (a maximum or a minimum) at z=-zo. The scaled field Ω is called the 

DEXP function. This result generalizes for any p-order derivative of the SP, for which the 

scaling function writes: 

    �� =
�(�� �)�

����
                                                                                     (1-10) 

where–(p+2) is the homogeneity degree of the p-order derivative of the SP. 

The structural index Np, a quantity associated to the shape of the source in the Euler 

deconvolution theory (Thompson, 1982), has been defined as the opposite of the homogeneity 

degree for the magnetic field or for the gravity field. We can rewrite equation (1-10) as: 

    �� =
�� ��

����
                    (1-11) 

If we let N to indicate the structural index in the case of the self-potential, N1 will refer to that 

of its first-order derivative (or its electric field) and so on. This is similar to the gravity 

method where N refers to the gravity field and N1 refers to its first-order derivative. In the SP 

method, N assumes the values [2, 1, 0, -1] respectively for the polarized sphere (3D), the 

horizontal cylinder (2D), the dyke (2D) and the contact (2D) (see Table 1.1). According to 

Fedi (2007), Np will be given simply by: 
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    Np=p+N.                                                                                   (1-12) 

Hence the DEXP transformation is generalized as: 

    ��(�) = �� �/���(�),                                                            (1-13) 

where z is any altitude greater or equal to the measurement level zm . 

 Scaling properties of sources have been derived from power spectra of potential fields 

for fractal modelling of density and magnetic susceptibility (Pilkington and Todoeschuck, 

1993; Fedi, 2003; Bansal and Dimri, 2005; Bansal et al., 2010). For homogeneous functions, 

the scaling law in equation (1-13) is also  related to the source-distribution homogeneity. Note 

however that, differently from power spectrum estimates of depth, which are only localized in 

frequency, the DEXP transformation estimates are localized in both space and scale (altitude), 

which is in turn related to frequency. 

Table 1.1: Source-types and related structural indices for the SP and its first- and second-order 

derivatives. 

Source model Depth to N (SP) N1 (first-order 
derivative of SP) 

N2 (second order 
derivative of SP) 

Dipoles, Spheres center 2 3 4 
Line of dipoles, infinite 
horizontal or vertical 
cylinder, thin bottomless 
prism, point-pole 

Center or top 1 2 3 

Semi-infinite plane, thin 
dyke, sill 

Center or top 0 1 2 

Semi-infinite contact top -1 0 1 
 

 We argue from equation (1-13) that, in order to scale the field and form the DEXP 

function, we must either assume or estimate the structural index (equation 1-12). The 

structural index Np may be estimated from the scaling function in several ways (see Fedi and 

Florio, 2006; Fedi, 2007). To this end, we will describe in the next section the most suitable 

approach. From equation (1-13), it is clear that the numerical implementation of the method 

uses upward continuation and vertical differentiation of order p for the computation of fp and 

τp. At a first sight, upward continuation should not be allowed for SP anomalies, being the air 
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infinitely resistive. A similar problem also occurs for Euler Deconvolution and enhanced local 

wavenumber methods applied to SP data, where the vertical derivative of the field is also 

needed (Agarwal and Srivastava, 2009; Srivastava and Agarwal, 2009). We nevertheless 

agree with those authors that the upward continuation of SP, from the measurement level zm to 

the level zm+a, is physically consistent. In fact it may be viewed as the SP at zm of the same 

source located not at z0 but at the deeper depth z0+a. The meaning of the vertical derivative 

follows consequently.  

 In conclusion, the DEXP transformation of the SP and of its derivatives is a full 3D 

method, enjoying important properties: a) its maxima (and minima) correspond to the depth to 

the source; b) the scaling function analysis allows the structural index (and so the shape of the 

source) to be estimated as well. In other words, no a priori assumptions about the kind of 

elementary source are necessary. This property does not hold in the correlation method 

(Patella, 1997a, 1997b) in which the concept of charge occurrence probability (COP) was 

introduced through the cross-correlation of the field with that of a point-source, assumed a 

priori. Similar considerations apply also to the so-called dipole occurrence probability (DOP), 

defined as the cross-correlation of the field with that of a dipole-source, once again assumed a 

priori and not estimated by the data (Revil et al., 2001). 

 One more main property of the DEXP is its high stability, with respect to the noise level 

and to the differentiation order of the potential. This was shown in several papers (Fedi, 2007; 

Cella et al., 2009 and others) as due to the optimal mixing, in a single operator, of the 

wavenumber low-pass behaviour of the upward continuation operator with the enhancement 

high-pass properties of a p-order derivative operator. In practice, the behaviour of the DEXP 

operator in the frequency domain was shown to be that of a band-pass filter, even when a 

high-order differentiation of the original signal is involved. This performance makes the 

DEXP transformation a high-resolution imaging method. We note, finally, that the DEXP 
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transformation, in the case of multi-sources, allows analysis of sources at different depths 

with no filtering preseparation (Fedi, 2007). 

1.3 Determining the depth to the source by the geometrical method 

  As a consequence of the dilation of potential fields versus the altitude, the maxima of 

the field modulus describe lines across the altitudes (ridges). These lines are defined by the 

zeros of the horizontal and vertical derivatives of the potential field at all the continued levels, 

forming a so-called multiridge set (Fedi et al., 2009). The number of ridges depends on the 

order of partial differentiation of the SP data. Moreau et al., (1997) first noted that these lines 

may be easily extrapolated in the source region, where we can estimate the position of the 

sources at their intersection (the centre of a sphere, the top of a dyke, etc.). This method has 

been called the  “geometrical method” by Fedi et al., (2009), who extended it to the multiridge 

set and linked it to the DEXP theory. Figure 1.1 shows the SP anomaly of a point pole of unit 

strength at a position [x0, y0, z0]=[0, 0, 10] m together with its second-order vertical derivative. 

The ridges computed for the second vertical derivative of the self-potential are shown (solid 

cyan lines). We considered the second-order vertical derivative in order to obtain a consistent 

number of ridges. We recall that the number of ridges increases with the order of 

differentiation (Fedi et al., 2009). Note how the ridges intersect each other at the right source 

position.  
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Figure 1.1: Estimation of the depth to the source by the geometrical method.(a) The SP (solid 

line) and its second vertical derivative (dashed line) of a unit-strength point pole at 10 m and 

(b) ridges (white solid lines) for the second vertical derivative of the potential of the point 

pole. Note that the ridges intersect at the right source position. 

1.4 Determining the scaling law: estimation of the scaling exponent 

 We saw previously that the DEXP transformation needs the scaling law �� �/� to be 

fixed, to be effective. The structural index Np may be either assumed or estimated from the 

data before performing DEXP. This task may be easily fulfilled by analyzing the scaling 

function along any ridge, because it contains all the necessary information. 

Noting that the altimetry zero-level is arbitrary, the altitude and depth may be shifted by 

a guess quantity ��̀ as� − ��̀ and �� − ��̀, respectively. Hence, updating equation (1-11) in 

such way and putting z=1/q, we obtain that, for any given guess ��̀, the corresponding scaling 

function assumes the form: 

    ��(�,��̀) = −
� �(����̀�)

�����
.                                                                 (1-14) 
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This means that, depending on the guess depth ��̀,�� will be a decreasing, increasing or 

constant function of q, respectively for ��̀ lower, greater or equal to the true z0. The structural 

index Np is given with a good accuracy by the intercept of �� versus q, provided ��̀ is 

reasonably not too far from the true depth to the source (Fedi and Florio, 2006). Note also that 

the depth z0 can be estimated by the guess ��̀ yielding the best approximation to a zero-slope 

for �� (Florio et al., 2009). As an example, we select the vertical ridge of the 2nd order vertical 

derivative on Figure (1.1b) and compute the corresponding scaling function by using equation 

(1-11). We obtain N2= 3, corresponding to N=1 in the case of potential, according to equation 

(1-12), (Figure 1.2). Regarding the depth estimation, we get a zero-slope for �� when 

��̀ = 10 m , this value giving us our estimate for the depth to the source.   

 

 

Figure 1.2: Scaling function for the second vertical derivative of the SP of a point pole source. 

The intercepts indicate N2= 3; i.e., N= 1 for the SP (Table 1). The depth to the source z0 is 

given by the value of ��̀ yielding the zero-slope for τ2 (q,��̀); that is, ��̀= 10 m. 

1.5 Synthetic Examples 

 The SP anomalies produced by some simple polarized geological structures may be 

conveniently expressed by the general equation (Yüngül, 1950; Bhattacharya and Roy, 1981; 

Abdelrahman and Sharafeldin, 1997) 

    �(�,�) = �
(����) ����� (����) ����

((����)�� (����)�)�
                                               (1-15) 
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where, zo is the depth of the body, θ is the polarization angle between the axis of polarization 

and the horizontal, K is the magnitude contrast of the polarization electric dipole moment, x is 

the horizontal position coordinate, and m is the shape factor, a quantity related to the shape of 

the buried structure which is similar but not equal to the structural index. The shape factors 

for a sphere (3D), a horizontal cylinder (2D), and a semi-infinite vertical cylinder (2D) are 

1.5, 1.0, and 0.5, respectively. The shape factor approaches zero as the structure approaches a 

horizontal sheet and 1.5 when the structure becomes a sphere.  The shape factor is related to 

the structural index by a known relationship:  N=2m-1 (Roy, 2001). 

 Let us first consider isolated sources. SP anomalies are computed from equation (1-15) 

with the following parameters: 1) Sphere model with K=-600 mV, θ=90o and zo=30m (Figure 

1.3a), and 2) Horizontal cylinder model with  K=-300 mV, θ=45o and zo=10m (Figure 1.4a). 

We used equation (1-9) to compute the DEXP transformed fields for the sphere model from 

the first vertical derivative of the self-potential (Figure 1.3). The geometrical method yields a 

good estimate of the depth to the source, zo=30 m, at the position where the ridges intersect 

each other. The scaling exponent was determined (Figure 1.3d) accurately by analysing the 

scaling function for a selected ridge, yielding N1=3, i.e. N=2, corresponding to the right type 

of source (Table 1.1).  Using this value and equation (1-13), we then formed the DEXP 

transformation of the field (Figure 1.3c) and estimated the depth to the causative source at its 

extreme, a low at 30 m depth (white marker). This result confirms the estimate obtained with 

the geometrical and scaling function methods. Let us now consider the horizontal cylinder 

model (Figure 1.4). First, we applied the geometrical method by computing the ridges (cyan 

lines) for the 1st order vertical derivative of the SP (Figure 1.4a). Once again the first-order 

vertical derivative was chosen in order to obtain a consistent number of ridges. Note that 

ridges are now not symmetrically disposed as in the sphere case. This is because we assumed 

a θ=45o dip for the polarization. Nevertheless, the ridges (Figure 1.4b) clearly indicate the 
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depth to the source intersecting each other at the right 10 m depth. Note that the symmetry of 

the ridge set may be used as diagnostic for determining the dip of the dipole moment. 

 The scaling function is computed for the ridge at x=106 (Figure 1.4d) giving N1=2, i.e., 

an N=1 structural index estimate, so indicating rightly the nature of the source (horizontal 

cylinder, see Table 1.1). Using equation (1-13) again we formed the DEXP transformed field, 

shown in Figure 1.4c. We may immediately notice that in this case there are two extreme 

points: a low and a high, because  the dipole polarization is not vertical. The depth estimate is 

nevertheless well deduced by both the extreme positions. 

 

Figure 1.3: The DEXP of the first vertical derivative of the SP anomaly of a polarized sphere. 

(a) The SP anomaly (solid line) and its first-order vertical derivative (dashed line), (b) first 

vertical derivative up to z = 40 m and ridges (white solid lines): they intersect at the source 

position (30 m depth), (c) first-order DEXP transformation, the minimum (white dot) is at the 

right depth to the source, (d) scaling function for the central ridge: the intercept indicates N1 = 

3, i.e., N = 2, and the depth to the source z0 is given by the value of ��̀ yielding the zero-slope 

for τ1 (q, ��̀), that is, ��̀= 30 m.  
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Figure 1.4: The DEXP of the first vertical derivative of the SP anomaly of a polarized 

horizontal cylinder. (a) SP anomaly (solid line) and its first-order vertical derivative (dashed 

line), (b) first vertical derivative at different altitudes and ridges (white solid lines), which 

intersect at the right source position, (c) first-order DEXP transformation: the extreme points 

(white dots) indicate the depth to the source, (d) scaling function for the central ridge: the 

intercept indicates N1 = 2, i.e., N = 1, and the depth to the source z0 is given by the value of 

��̀, yielding the zero-slope for τ1 (q, ��̀); that is, ��̀ =10 m. 

 In the next example we test the effect of the noise on the results of the DEXP method. 

We used the same horizontal cylinder as in the previous example, with addition of 5% white 

noise (Figure 1.5). Looking at the ridges (b) it is clear that they appear slightly perturbed only 

at very low scales, so not affecting the depth estimation with the geometric method. This 

behaviour is confirmed also in the case of the DEXP transformation (c) where the depth of the 

horizontal cylinder is again well estimated at the extreme points. 
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Figure 1.5: The DEXP of the first vertical derivative of the SP anomaly of a polarized 

horizontal cylinder contaminated with 5% Gaussian noise. (a) The SP anomaly (solid line) 

and its first-order vertical derivative (dashed line), (b) first vertical derivative at different 

altitudes and ridges (white solid lines), which intersect at the source position. We note that the 

added noise only affects ridges at the lowest scales, letting the ridges indicate safely the 

source position as well, (c) first-order DEXP transformation: the extreme points (white dots) 

indicate the depth to the source at 10 m. 

 Finally we test the efficiency of the method with a multi-source model (Figure 1.6). In 

order to do this, we used SP data of two sources; a vertically polarized sphere and a horizontal 

cylinder, with the following parameters: (1) Sphere model with  K=-500 mV, θ=90o , x= 120, 

y=41 and zo=10 m , and (2) horizontal cylinder model with  K=-200 mV, θ=90o , x= 80 and 

zo=20 m . 

 The model is sized (201m x 201m x 40m) with 1 m horizontal step and 0.2 m altitude-

step. With a PC with a 2.0 GHz processor, the DEXP transformation required only 97.79 

seconds to be computed.  Interference effects are dominant in the SP of this model (Figure 

1.6a, left) but by increasing the order of differentiation this effect is substantially reduced 
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(Figure 1.6a, center and right). Regarding the geometrical method, Figure 1.6 clearly shows 

that we need to analyze at least the second-order derivative of the SP to warrant a sufficient 

number of well-resolved ridges for both sources. For the horizontal cylinder the ridges are 

already well developed at the first derivative, while the 2nd order derivative show better-

resolved ridges for the sphere. We made similar considerations in order to estimate the 

structural index: for the horizontal cylinder, we selected the vertical ridge at x=81, and 

estimated N1= 2, i.e., N=1 (Figure 1.6c, left); for the sphere we selected the vertical ridge at 

x=121, estimating N2 = 4 (Figure 1.6c, right), i.e., N=2. Both the estimated values agree with 

those for their own source-type (Table 1.1).  

 We note finally, also, that also the resolution of the DEXP images increases with the 

order of differentiation (Figures 1.6d; e). We must however take into account the DEXP 

theory in order to get correct depth estimations. In fact, N=1 is the right value for estimating 

the depth of the horizontal cylinder (Figure 1.6d, left, p=0; center, p=1; right, p=2) but is not 

appropriate for the sphere (Table 1.1), for which a shallower depth is estimated. Conversely, 

when we use N=2, the DEXP images show a correct depth for the sphere and too deep a depth 

for the horizontal cylinder (Figure 1.6e, left: p=0; center: p=1; right, p=2). This indicates the 

importance of estimating the appropriate structural index for calculating the scaling-law for 

imaging methods such as DEXP. At the same time this gives the DEXP method a clear 

advantage over other methods, such as the cross-correlation or the migration, which behave as 

assuming a single and prefixed value for the structural index (Fedi and Pilkington, 2012), no 

matter different kinds of sources are present.  
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Figure 1.6: The DEXP method applied to a multisource model. (a) The SP anomaly (left), its 

first vertical derivative (center), and its second vertical derivative (right), (b) the continued 

sections of the different order of derivatives (left, p = 0; center, p = 1; right, p = 2), (c) scaling 

functions for the horizontal cylinder (left) calculated along the vertical ridge at x = 81 m of 

the first-order derivative, N1 = 2, i.e., N = 1, and for the sphere (right) calculated from the 

vertical ridge at x = 121 m of the second-order derivative, N2 = 4, i.e., N = 2, (d) DEXP 

images calculated using N = 1 for the SP anomaly (left), its first vertical derivative (center), 

and its second vertical derivative (right), (e) DEXP images calculated using N = 2 for the SP 

anomaly (left), its first vertical derivative (center), and its second vertical derivative (right). 

1.6 Field Examples 

In this section we apply the DEXP method to the SP anomalies of some real cases. 

A) Malachite Mine, Colorado, (USA): 

 We analyzed the self-potential anomaly profile described in (Dobrin, 1960, 

Abdelrahman et al., 2004) over the Malachite Mine, Jefferson County, Colorado. The SP 

anomaly measurements were performed and described by Heiland et al. (1945). This anomaly 

profile is due to a nearly vertical cylindrical massive sulphide ore body, approximately 11 m 



27 
 

wide and buried at about 13.7 m depth, according to drilling information (Heiland et al., 

1945). 

 The anomaly is digitized with a 1 m step, and continued with a 0.2 m step until 25 m 

altitude (Figure 1.7). We estimate the structural index by calculating the scaling function for 

the ridge at x=83. Looking at the intercept, the estimated structural index value N3 equals 3.5, 

i.e., N equals 0.5, indicating a source model which may be explained as a polarized vertical 

cylinder quite extended along the horizontal direction, this being in agreement with the 

geometry of the source, as resulting from drillings. DEXP and geometrical methods (order 3) 

both yield about 13.6 m for the depth to the source (Figure 1.7b; c) and this is in agreement 

with the known drilling depth, as it was mentioned above.  

 

Figure 1.7: The DEXP method for the SP anomaly profile over the Malachite Mine, Jefferson 

County, Colorado, USA: (a) the SP profile (blue solid line) and its third-order vertical 

derivative (green dashed line); (b) third-order vertical derivative of the SP anomaly at 

different altitudes and ridges (cyan solid lines): the selected ridges intersect each other at 

about 13.6 m depth; (c) DEXP transformation of the third-order vertical derivative of SP: the 

extreme point (white dot) also indicates a 13.6 m source depth; (d) scaling function of the 

ridge on the right yielding N3 = 3.5, i.e., N = 0.5. 
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B) The Sariyer anomaly (Turkey): 

 Yüngül (1950) describes an SP survey in the Sariyer area (Turkey), which led to the 

discovery of a sulfide mass containing zones with copper concentration as high as 14%. The 

depth to the sulfide mass is about 25 m, as obtained from the data from boreholes, shafts, and 

tunnels. The anomaly is digitized with a 1 m step and continued with a 0.2 m step until 40 m 

altitude (Figure 1.8). The structural index is estimated by calculating the scaling function for 

the ridge at x=73 (b). Looking at the intercept (d), the estimated structural index value N2= 3, 

i.e., N= 1, so indicating a source model which could be explained as a polarized cylinder. The 

DEXP method (order 2) and the geometric method yield 23.2 m for the depth to the source in 

good agreement with the known drilling depth (Figure 1.8b; 1.8c).  

 

Figure 1.8: The DEXP method for the SP anomaly profile in the Sariyer area, Turkey. (a) SP 

profile (blue solid line) and its second-order vertical derivative (green dashed line), (b) 

second-order vertical derivative of the SP anomaly at different scales and ridges (cyan solid 

lines): the selected ridges intersect each other at 23.8 m depth, (c) DEXP transformation of the 

second-order vertical derivative SP: the extreme point (white dot) also indicates a 23.8 m 

source depth, and (d) scaling function of the central ridge, showing N2 = 3; i.e., N = 1. 
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C) Bender anomaly (India)  

 Here we interpret the Bender anomaly (Figure 1.9), Balangir, Orissa, India 

(Bhattacharya et al., 1984, 2007). The rock units in the area are mainly of the Archaean 

crystalline complex; garnetiferouss illuminate schists, gneisses and garnetiferrous quartzites 

traversed by quartzite and pegmatite veins. In most parts, the rocks are covered by laterite and 

alluvium. The most important occurrence of graphite is graphite veins associated with 

pegmatites. The deposits are shallow and the ore was extracted by open cast mining and the 

actual depth to the top was 5 m. The open cast mine stopped due to flooding by groundwater 

but the presence of the ore is still seen at the bottom of the abandoned mine  (Bhattacharya et 

al., 1984). Bhattacharya et al. (2007) interpreted this anomaly and computed COP and DOP 

maps from SP cross-correlation. However, they obtain inconsistent results, yielding a much 

deeper result in the DOP case (their figure 3). A main problem is that the cross-correlation 

method does not allow us to judge which result is the best, since the scanning function 

(related to a pole source and a dipole source for COP and DOP, respectively) is not estimated, 

but a priori assumed.  

 

Figure 1.9: Self-potential Bender anomaly map, India. The red solid vertical line indicates the 

selected profile chosen to represent the DEXP transformed field. 
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According to what is shown in this work, the DEXP method instead allows the depth 

to be determined in a more objective way. The scaling law is in fact not assumed but 

computed on the basis of our estimation of the structural index, as far as the scaling function τ 

is analysed before performing the DEXP transformation. The anomaly was digitized with 1 m 

interval (Figure 1.9). The structural index was then estimated by calculating the scaling 

function for the central ridge (Figure 1.10b) of the first-order vertical derivative of the SP 

(Figure 1.10a, green line).  The number of ridges is in this case not sufficient to yield an 

estimate of the depth to the source with the geometrical method. Looking at the intercept 

(Figure 1.10d), the estimated structural index was estimated as N1=2 i.e. N=1 (equation 1-12), 

so indicating a polarized horizontal cylinder source-model (Table 1.1). The DEXP method 

(p=1) yields 16.8 m for the depth to the centre of the source (Figure 1.10c), in agreement with 

Agarwal and Srivastava (2009).  Finally, we used the estimated structural index to scale the 

SP anomaly and produce a 3D representation of the DEXP transformed SP (Figure 1.11). The 

low area around 16.8 m yields a nice picture of the causative source at its correct depth. 

 

Figure 1.10: DEXP method for the SP profile of the Bender anomaly. (a) The SP profile (blue 

solid line) and its first vertical derivative (green dashed line), (b) first-order vertical derivative 

of the SP anomaly at different scales and ridges (cyan solid lines), (c) DEXP transformation 

of the first-order vertical derivative of SP: the extreme point (white dot) indicates 16.8 m 
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depth to the center of the source, and (d) scaling function of the first-order vertical derivative 

of the SP anomaly, from which we estimate N1 = 2, i.e., N = 1. 

 

 

Figure 1.11: The 3D DEXP transformation of the SP Bender anomaly map. Contour lines 

along the central slice indicate the depth to the source at the local minimum. 
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Chapter 2 

Application of the DEXP method to the streaming potential data. 

2.1 Introduction  

The self-potential anomalies have two main mechanisms; the oxidation-reduction 

associated with ore deposits and streaming potential (SP) associated with ground water flow 

through the electrokinetic coupling (Revil et al., 2004). There are two approaches for 

interpreting the origin of the SP anomalies related to ground water flow. The first approach 

supposes that SP signals could be mainly related to the thickness of the unsaturated (vadose) 

zone in which water penetrate vertically until the water table (Zablocki, 1978; Jackson 

&Kauahikaua, 1987; and Aubert et al., 1993). Another approach presumes that the main SP 

contribution is located along the water table and that the variations of the hydraulic head are 

directly responsible for the electrical potential anomalies measured at the ground surface 

(Fournier, 1989; Revil et al., 2004). 

The SP anomalies have been interpreted by direct and inverse methods. The self-

potential surface (SPS) method (Aubert and Atangana, 1996), wavelet transform (Sailhac and 

Marquis, 2001) and cross-correlation method (Patella, 1997a &1997b, Revil et al., 2003) are 

examples of direct methods. On the other hand, several inversion techniques have been 

developed for the SP anomalies (e.g., Darnet et al., 2003; Fernández-Martínez et al., 2010, 

Jardani et al., 2006; Jardani et al., 2009). 

 In the cross-correlation method, the SP anomalies are interpreted through cross-

correlation of the field with that by assumed elementary scanning-sources, e.g. a point-source 

by Patella (1997a, b) or a dipole-source by Revil et al. (2001) and Iuliano et al. (2002). The 

zero-lag cross-correlation may be mapped at different depths and horizontal positions of the 

scanning-source, so describing a possible distribution of source-density, this depending 
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however on the a priori type of scanning-source used, e.g. a single pole, a dipole or any other. 

The cross-correlation method was however shown to be equivalent to a multiscale approach 

(Gilbert and Sailhac, 2008; Fedi and Pilkington, 2012). Furthermore, an inherent lack of 

criteria was pointed out, to assess the best type of scanning-source (Gilbert and Sailhac, 

2008). 

 In this chapter, we consider the application of a different multiscale method; the Depth 

from EXtreme Points (DEXP) method (Fedi, 2007; Fedi and Abbas, 2013), for the 

interpretation of the streaming potential data related to the flow of ground water. 

2.2 Theory 

Considering that the SP sources are along the water table (Figure 2.1), the electric 

potential �(r) (in mV) measured at the point P(r) located on the Earth’s surface is related to 

the hydraulic head h at point M(rq) at the water table (in m) by a Fredholm equation of the 

first kind (Fournier, 1989; Revil et al., 2004), 

  �(�) =
��
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where n is the unit normal vector over the water table W , �� is a surface element of the 

water table, �′ is an apparent streaming potential coupling coefficient (in mV m-1) given by 

�′= �� − �� , where C and Cs are the electric potential coupling coefficients of the vadose 

and saturated zone respectively. � is the ratio between the electrical conductivity of the 

saturated and unsaturated zones (Revil et al., 2004). 

For a 2D profile, assuming that the variation in y direction can be neglected, the electric 

potential is obtained by (Revil et al., 2004): 
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where � represents the curvilinear coordinate along the water table line. 
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Figure 2.1: Sketch of the geometry of the water table for a pumping well (modified after 

Rizzo et al., 2004) 

If we assume a flat measurement surface, so that n is constant, equation (2-1) will be 

equivalent to the potential field due to a sheet or a simple layer (Baranov, 1975). Hence, as we 

mentioned in the previous chapter, the streaming potential has the same mathematical form as 

the magnetic potential. In fact, any deviation from the horizontal level of the water table can 

be interpreted as a one-point source (point-dipole, line of dipoles, or others). Consequently, 

we can apply the DEXP method to the streaming potential anomaly. The DEXP method is a 

multiscale method in which the potential or its derivative is continued and scaled with a 

scaling-law dependent on the geometry of the source. The scaling exponent is not fixed but 

can be determined directly from the data (Fedi, 2007; Fedi and Abbas, 2013). An important 

issue is that we do not need any a priori estimate of the hydraulic coupling coefficient; one 

more reason to use the DEXP method is that it is fast and stable. 

 Let us assume Cartesian coordinates where x and z are the horizontal and vertical 

directions, respectively, and the depth is positive downward. We can discretize equation (2-2) 
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in terms of the depths of the dipoles along the water table zq assuming a vertical electric 

polarization as:  

    �(�) ≈ −
���

��
∑ ��� − ���.
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�� �                                           (2-3) 

where d is the horizontal step. We can note from equation (2-3) that the two above-mentioned 

approaches for the origin of SP anomalies are in fact equivalent. 

 We have already said that any deviation from the horizontal level of the water table can 

be interpreted as a point source (point-dipole, line of dipoles, or others) so that the DEXP 

transformation (Fedi, 2007 and Fedi and Abbas, 2013) can be applied. The DEXP 

transformation �� is given by Fedi (2007) as: 

    ��(�) = �� �/���(�)                                                              (2-4) 

where Up is the p-th order derivative of U and z is the scale or altitude. The depth to the water 

table can be estimated from the extreme points of the DEXP image ��.  In case of non-

vertical polarization, the DEXP transformation can be applied to the analytic signal modulus 

of the SP anomaly. This is equivalent to the dipole occurrence probability (DOP) of Revil et 

al. (2001) but, once more, in an easier way: we do not need normalization. We also do not use 

a fixed scaling exponent (Fedi and Pilkington,. 2012), which makes the DEXP method more 

suitable to be used in different situations. 

 The application of the DEXP transformation method requires upward continuation and 

vertical differentiation of order p for the computation of Up and ��. As already said in the 

previous chapter, the upward continuation is not allowed for SP anomalies, being the air 

infinitely resistive. However, the upward continuation of SP data, from a measurement level 

zm to the level zm+a, is equivalent to the SP data at zm of the same source located not at the 
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depth z0 but at the deeper depth z0+a. In this way, the concept of vertical derivative of SP data 

may be introduced for SP anomalies as well (Fedi and Abbas, 2013). 

 2.3 Synthetic Example 

 
The SP anomaly of the water table model shown in Figure 2.2b is calculated using 

equation (2-3) . The SP anomaly (Figure 2.2a) was upward continued from 0 to 60 m and its 

2nd order vertical derivative is calculated. Figure 2.3a shows the continued derivative with the 

ridges. The scaling function was calculated along two ridges at horizontal distances 500 m 

and 100 m (Figure 2.3b, c). Both scaling functions yield a scaling exponent equal 0.6. The 

scaling functions calculated along the two other ridges in the central part of Figure 2.3a did 

not give reasonable values of homogeneity degree due to the interference effects connected to 

the complexity of the source in this part. 

I used the estimated scaling exponent to calculate the DEXP image shown in Figure 3.4a. The 

extreme points of the DEXP image give a good estimate of the depth of the water table. Also, 

I used the geometrical method to estimate the depth to the water table at the intersection of the 

ridges of the 4th order derivative of the SP anomaly (Figure 3.4b), this order warranting a nice 

degree of resolution to the problem. The results agree will with the true model of the water 

table.    
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Figure 2.2: The SP anomaly of a water table model. (a) The SP anomaly, and (b) the depth to 

the water table. 

 

Figure 2.3: Scaling function analysis. (a) The upward-continued 2nd order derivative of the SP 

anomaly and its ridges, (b) the scaling function along the ridge at distance 500 m and (c) the 

scaling function along the ridge at distance 100 m.  
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Figure 2.4: Application of the DEXP method and geometrical method for the estimation of 

the depth to the water table. (a) DEXP image calculated with the scaling exponent equal to 

0.6; white stars indicate the estimated depths (b) the depth to the water table estimated by the 

geometrical method. 

2.4 Real Examples 

2.4.1 Well pumping test: 

The DEXP imaging is applied to the streaming potential data collected near a pumping 

well from Bogoslovsky and Oglivy (1973). Figure 2.5 shows the SP anomaly over the 

pumping well (K-1) and also the piezometric depths. We note a positive anomaly with a 

symmetric form over the well location and other two small negative anomalies related to the 

infiltration from the surface drainage ditches. 
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Figure 2.5: The streaming potential data profile near a pumping well (a) and the piezometric 

depths (b) after Bogoslovsky & Oglivy, 1973. 

First, the 1st derivative of the SP anomaly is continued from 0 to 30 m with a 0.2 m 

vertical step (Figure 2.6a). Then the values of scaling exponent is estimated by analyzing the 

scaling function along a vertical ridges at x={95, 163, 270} m (Figure 2.6d,e,and f). We found 

that the central positive anomaly over the pumping well and the negative anomaly related to 

the infiltration of the water in the subsurface at x= 270 m need both a 0.9 scaling exponent, 

whereas the negative anomaly related to the infiltration of water in the subsurface at x= 95 m 

needs a 1.15 scaling exponent. Finally, we obtained two DEXP images with the two estimated 

values of scaling exponents (Figure 2.6b and c). The estimated depths to the water table, 

indicated by the white stars, agree well with the measured piezometric depths. 

The geometrical method was also applied to the SP anomaly by converging the ridges 

of the 3rd order derivative of the SP anomaly to the source area. The results shown in Figure 

2.7 agree well with the piezometric depth information. I deleted the ridges near the border and 

under the noise level to better rendering the results.  
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Figure 2.6: Application of the DEXP method to the SP data near a pumping well. a) The first-

order derivative of the SP at different scales and ridges (cyan solid lines); b) DEXP image 

with 0.9 scaling exponent overlaid by the piezometric depths (white solid line); c) DEXP 

image with a 1.15 scaling exponent overlaid  by the piezometric depths (white solid line); d) 

scaling function along the rightmost; e) scaling function along the central ridge; and f) scaling 

function along the leftmost ridge. White stars in b) and c) indicate the estimated depth to the 

water table. 

 

Figure 2.7: Application of the geometrical method to the SP anomaly in a pumping test. The 

solid blue line shows the piezometric depths. 
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2.4.2 Sinkhole detection: 

Finally, we applied the multiscale approach for the detection and imaging of sinkholes. 

The DEXP transformation is applied to the SP data measured at San Vittorino Plain (Rieti), 

Central Italy (Cardarelli, et al., 2014). The study area is the San Vittorino Plain, located in 

Central Italy near the town of Rieti (around 80 km northern of Rome), along the Velino River 

Valley (Figure 2.8). Significant springs occur along the valley and along its right margin; the 

main springs (on the southern slope and at the northern boundary of the San Vittorino Plain) 

are the Peschiera springs exploited to supply drinking water to the city of Rome (Cardarelli, et 

al., 2014). 

The San Vittorino Plain is an area of discharge of important fractured carbonate 

aquifers belonging to the meso-cenozoic carbonate platform domain. The carbonate bedrock 

is highly tectonized and overlaid by the heterogeneous alluvial deposits of the Velino River 

(Centamore et al. 2009). All the area is prone to piping sinkholes. The most important origin 

of this kind of sinkhole is the upwelling of water and gases from a karst bedrock within the 

alluvial overburden (Cardarelli et al., 2014). 

 

Figure 2.8: Aerial plan of the surveyed areas and map of the field investigations (After 

Cardarelli et al., 2014). 
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Figure 2.9 shows the residual SP map of the area and we can identify two strong 

negative anomalies, possibly related to sinkholes; the first along the profile AB and the 

second along the profile CD. Analyzing the scaling function for the analytic signal magnitude  

of SP data, we see values of the scaling exponent equal to 1.35 and 1.15 for profiles AB and 

CD, respectively (Figure 2.10a and c).  

 

 

Figure 2.9: Residual SP map at San Vittorino Plain (Rieti), Central Italy. The dashed lines 

indicate the profiles used in the analysis. 

 

 

Figure 2.10: The DEXP imaging applied to the SP profiles at San Vittorino Plain (Rieti), 

Central Italy. a) The scaling function of a selected ridge along the AB profile; b) the DEXP 

image of the AB profile; c) the scaling function of a selected ridge along the CD profile; and 

d) the DEXP image of the CD profile. White stars in (b) and (d) indicate the estimated depth. 
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The DEXP images show depths to the sources equal to 13.8 and 9.6 m for profiles AB 

and CD, respectively (Figure 2.10b and d). Finally, the average of the estimated scaling 

exponent is used to make a 3D DEXP transformed volume of SP data (Figure 2.11). It shows 

clearly the position of two sinkholes. These results agree well with that obtained by Cardarelli 

et al. (2014) using the SPS method for the interpretation of SP data, and confirmed by the 

resistivity and seismic methods. 

 

Figure 2.11: 3D DEXP volume of the analytic signal magnitude of the SP map at San 

Vittorino Plain (Rieti), Central Italy. 
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Chapter 3 

Automatic DEXP Imaging of Potential Fields Independent of the Structural 

Index. 

This chapter is published as: Abbas, M. A., and Fedi, M. (2014). Automatic DEXP 

imaging of potential fields independent of the structural index. Geophysical Journal 

International, 199 (3), 1625-1632. 

3.1 Introduction: 

 Automatic or semi-automatic interpretation of potential field data is supported by many 

methods, such as Euler deconvolution (Thompson, 1982; Reid et al., 1990), or others based 

on the horizontal gradient function applied to gravity and pseudo-gravity and reduced to pole 

magnetic data (Cordell and Grauch, 1985; Roest et al., 1992), analytic signal magnitude 

(Nabighian, 1972) (or total gradient) applied to magnetic data, and the local wavenumber 

method applied to magnetic data (Thurston and Smith, 1997; Smith et al., 1998). Hsu et al. 

(1998) used the ratio between the moduli of the second and first-order analytic signals at two 

different altitudes to estimate depth to the source and structural index. Vallée et al., (2004), 

used the ratio of Poisson wavelet coefficients of the first and second orders, equivalent to the 

upward continuation of the analytical signal. Salem et al. (2002) estimated the depths to 

compact magnetic objects from the ratio of the analytic signal magnitudes of the magnetic 

anomaly and of the vertical gradient of the magnetic anomaly. These methods have a simple 

mathematical form for isolated sources; however, for non-isolated sources, the above-

mentioned methods are no longer linear and suffer from the interference effects of the nearby 

sources. 

 Fedi (2007) introduced the Depth from EXtreme Points (DEXP) method in order to get 

depth and structural index estimates of the sources of potential fields and also provide images 
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of the source distribution (Fedi and Pilkington, 2012). The DEXP method consists of scaling 

the potential field, or its partial derivatives, with a specific power-law whose exponent is 

related to the structural index, N, a quantity related to the source geometry. The method has 

been applied to gravity, magnetic and self-potential data, to provide a fast image of the 

respective source distributions (see: Fedi, 2007; Fedi and Pilkington, 2012; Fedi and Abbas, 

2013). Note that the structural index can be estimated in advance by several methods, based 

on the scaling function (Cella et al., 2009; Florio et al, 2009) or, alternatively, it may be 

assumed as equal to a value depending on the expected source. 

 We here propose a new version of the DEXP method, which has the notable 

improvement of using a power-law that does not depend anymore on the structural index of 

the sources. We will show that this feature makes it fully automatic, so that it may be 

implemented as a fast imaging method.  

3.2 Theory 

 We use a Cartesian reference system, where x ,y and z follow the horizontal and 

vertical directions and the depth is positive downward. The key concept of the DEXP theory 

is the scaling function τ, defined as the derivative of the logarithm of the potential field, f, or 

any of its pth-order vertical derivative fp, with respect to the logarithm of z (Fedi, 2007): 

   
 
 z
f p

p
log

log




  .                                                                                       (3-1) 

 The scaling function assumes a simple form for homogenous fields. For instance, along 

the lines defined by the zeros of the field horizontal derivative, here called ridges (Fedi et al., 

2009), it is simply expressed as: 
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p


                                                                                             (3-2) 
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In equation (3-2), z
0
 is the depth to the source and Np is the opposite of the homogeneity 

degree of fp, defined as: 

   pNN p  ,                                                                                            (3-3) 

where N is the structural index, a quantity related to the geometry of the source (Thompson, 

1982). We here adopt the convention to refer N to the opposite of the homogeneity degree of 

the magnetic field and, in the gravity case, to that of the gravity field. Note that the depth z
0
 

may refer to the top of the source or to its centroid. For instance, in the magnetic case, for 

N=3, z
0 

will refer to the center of the sphere, while for N=2 z
0 

will refer to the center in the 

case of an infinitely extended horizontal cylinder, and to the top in the case of a bottomless 

vertical cylinder. This is well known to Euler deconvolution practitioners (e.g. Hsu, 2002). 

Fedi (2007) defined the DEXP transformation Ωp as: 

   p

N

p fz p 2/
W                                           (3-4) 

and showed that the DEXP transformation can be used to evaluate at its extreme points the 

depth to the source.  

 From equation (3-4), we note that the scaling law depends on the value of the structural 

index N. As shown by Fedi and Pilkington (2012), this feature makes this method more 

accurate than other imaging methods such as migration (Zhdanov, 2002), correlation (Patella, 

1997) and others, which use a fixed weighting in their inherent scaling laws. The quality of 

the result depends on the selection of the appropriate N, which may either assumed or 

estimated before performing the transformation.  

 The method proposed in this paper is a modification of the DEXP method, based on 

applying the DEXP transformation (equation 3-4) to the ratio of two different-order vertical 

derivatives of f. 
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 To show this, let us consider the ratio, 
nmmn ff / , between two different-order 

vertical derivatives of a homogenous field f, fm and fn, where m and n are the respective orders 

of differentiation. A little algebra shows that the scaling function of mn may be simply 

obtained using equation (3-1): 
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Using now equations (3-2) and (3-3), we find that )( mn takes the simple form: 

 

   
0

)(
)(

zz

znm
mn




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So, equation (3-6) has the form occurring for homogeneous functions (Fedi, 2007), since mn  

is a homogeneous function of degree –(m-n) away from the zeros of fn. The key point in 

equation (3-6) is that the scaling function is independent from the structural index and 

depends only on a known quantity, that is the difference between the orders of the field 

derivatives fm and fn.  

 In particular, at z=-z
0
, it is:  
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Fedi (2007) has shown that for homogeneous functions the value 
0

)(
zz

f


 is the exponent of 

the power law used to build the DEXP transformation. So, using equation (3-7) we may easily 

form the DEXP-transformed field Ω of the ratio mn as: 

     mnmn

n)-(m
z= W

2/                                                                                (3- 8) 
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Since the exponent (m-n)/2 is known, the estimation of the depth to the sources by the DEXP 

image of mn
 is completely automatic. In fact, all the properties of the DEXP transformation 

hold and, as shown in Fedi (2007), the depth to the sources can be simply obtained by 

estimating the positions of the extreme points of Ω, i.e. those of the DEXP image. This kind 

of automatic DEXP transformation can be obviously applied to the ratio between two 

different-order vertical derivatives of gravity field.  

 We may also build one more type of DEXP transformation, based on the lth-order 

vertical derivative of mn . In fact, since the ratio mn  is homogeneous of order m-n, its lth-

order vertical derivative will be homogeneous of order m-n+l. In this case, the scaling 

function and the corresponding DEXP transformation will be, respectively, given by: 
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and 

      
mnl

lnm
mnl z W 2/ .                                                                             (3-10) 

 

 To show how equations (3-8) and (3-10) could be used in order to make automatic 

DEXP transformations of potential fields, let us first consider the gravity field of a simple 

homogeneous source, an infinitely extended horizontal line source, with a 10 km depth, 

horizontal location x0=100 km, radius 1 km and density contrast 1 g/cm3 (Figure 3.1a). The 

step is 1 km. The ratio, 10
, between the first vertical derivative of the field and the field, and 

its first vertical derivative, 101
, were computed up to 30 km, with a 0.2 km vertical step. 

Both the DEXP images of 10
 and101

(Figure 3.1b and 3.1c, respectively) show extreme 

points at a 10 km depth giving an accurate estimate of the true depth to the source. 
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Figure 3.1: The automatic DEXP transformation applied to a gravity field of an infinite 

horizontal line source. a) The gravity anomaly field, b) the DEXP image of the ratio10
and 

c) the DEXP image of the vertical derivative of the ratio101
. White points indicate the 

estimated depth to the source. 

The measured magnetic and self-potential fields’ anomalies usually have a bipolar 

shape due to the inclination of polarization.  Fedi (2007) showed that the DEXP 

transformation yields in this case a correct depth estimate looking at the extrema 

corresponding to both the low and high of the field (Fedi, 2007: fig. 5a-b). However, since in 

this case the horizontal source position is not well estimated, it could be convenient to 

perform the DEXP transformation of the analytical signal modulus instead, as shown in Fedi 

(2007, fig. 5c). In fact, in the 2D case, the analytical signal modulus is characterized by a bell-

shape independent on the polarization and inducing field directions (Nabighian, 1972, Roest 

et al., 1992). Li (2006) shows that the 3D analytic signal amplitude slightly depends upon 

magnetization direction. Salem et al. (2002) showed that the ratio between the analytic signal 

moduli of the field and of the vertical derivative of the field is independent on the 
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magnetization direction. For these reasons we may take here into consideration the ratio 

between the analytic signal moduli of orders m and n.  The analytical signal modulus |�|� of 

fp , assumes a simple form along ridges of type I (e.g. the lines formed by the zeros of the 

horizontal derivative of the field, Florio et al., 2009): 
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So, for a isolated source, we have along ridges of type I: 
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Since z-z
0
 is positive, we have that |�|�, is a homogenous function of degree . We 

may so deduce that the scaling function of the ratio 
nmmn AA / is the same as that for the 

ratio fm/fn (equation 3-7). Consequently, we have that also equations (3-8) and (3-10) will 

hold. Here we have derived several new versions of the DEXP method; while in the gravity 

case we may just consider the ratio between two derivatives of the field, the ratio between two 

analytic signal magnitudes is recommended for magnetic field, in order to reduce the effects 

of the inclination of the field. The last version, based on scaling the derivative of the ratio, can 

be used in both cases, to further reduce interference effects. 

 Here, we considered the magnetic field of an infinite horizontal line of dipoles, with a 10 

m depth, horizontal location x
0
=100 m and dipole moment 1000 Am2 (Figure 3.2a). 

Inclination and declination of both the inducing field and the magnetization vector are 60o and 

0o, respectively. We computed the ratio 21between the second-order and first-order analytic 

)1(  pN



51 
 

signal moduli of the field, and the ratio 41 between the fourth-order and first-order analytic 

signal moduli of the field, with a 1 m horizontal step and a 0.2 m vertical step. Both the two 

DEXP images (Figures 3.2b and 3.2c) give a good estimate of the depth at 10 m. 

 

Figure 3.2: The automatic DEXP transformation applied to the magnetic field of an infinite 

horizontal line of dipoles. a) The magnetic anomaly field; b) the DEXP image of the ratio  

between the second-order and first-order analytic signal moduli of the field; c) the DEXP 

image of the ratio 41 between the fourth-order and first-order analytic signal moduli of the 

field. White dots indicate the estimated depth to the source. 

3.3 Estimation of the Structural Index 

 Once the depth is estimated automatically, the structural index may be easily determined 

by the scaling function (equation 3-2) at z=-z
0
. We find in fact that: 

                                                                           (3-13)   
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Figure 3.3: Estimation of the structural index using equation (3-13). (a) The scaling function 

of the gravity field of an infinite horizontal line source; (b) the scaling function of the 

magnetic field of an infinite horizontal line of dipoles. In both the figures we see that the 

values of the scaling function at z=-z0 yield the half of Np, according to equation (3-13). 

 Our first example is the gravity field of an infinite horizontal line source. By analyzing 

the scaling function with respect to the altitudes, we may use equation (3-13) and find that, at 

z=-z
0
=10 km, the scaling function is  -0.5, i.e. the structural index N equals 1 (Figure 3.3a), 

which is in agreement with the theoretical value. In the case of the magnetic field of infinite 

horizontal line of dipoles, using again equation (3-13), we found that, at z=-z
0
=10 m, the 

scaling function is-1, that is yielding N=2 which is the correct theoretical value for the 

structural index of this source (Figure 3.3b). 

 Another method to estimate the structural index consists in using both the estimated 

depth and the value of the DEXP extreme points. We will find at z=-z0:  
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Solving equation (3-15) will yield an estimate of Np and then of the structural index N, using 

equation (3-3). In the next sections we will show examples for the application of this method. 
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3.4 Noise and non-linear effects 

 Finally, we apply the method to the magnetic field of a multisource model (Figure 3.4a): 

an infinite horizontal line of dipoles with a 600 Am2 dipole moment at an x
0
=305 m 

horizontal position and a z
0
=10 m depth, and a vertical dyke with 50 Am2 dipole moment at an 

x
0
=175 m horizontal position and a z

0
=20 m depth. The magnetic inclination is 60° and 

declination is 0°. The magnetic data are contaminated by addition of independent Gaussian 

noise, having a zero-mean and a standard deviation of 2% of each datum. We applied the 

DEXP transformation to the ratio between the second and first-order analytic signal moduli of 

the anomaly field. First of all, we note that the noise is confined to low altitudes, due to the 

well-known smoothing effect of the upward continuation operator in the DEXP 

transformation. We also note at high altitudes a curved part of the rightmost ridge, that is 

related to the infinite horizontal line of dipoles model (Figure 3.4b). This is due to 

interference effects, as explained in Appendix B. In addition, we also note that the scaling 

function is not a straight line (Figure 3.4c), this indicating that with this ratio the problem is 

non-linear. 

 As regards the DEXP images, the nonlinear effects due to the interference of the two-

source anomalies are evident as a high-intensity “ghost” appears at depth greater than 25 m 

(Figure 3.4d). Note also that the ghost does not correspond to the horizontal position of any 

apparent anomaly. So the depth to the top of the dike is well estimated at x
0
 = 175 and z

0
=20 

m with a DEXP value of 0.2248. By using equation (3-15) we obtained a 1.01 structural 

index. On the other hand, the depth to the centre of the infinitely extended horizontal cylinder 

is poorly defined because of the nonlinear effects shown by the red circle in Figure 3.4d. This 

ghost source effect may complicate the whole DEXP section and also the identification of the 

extreme point of the DEXP image. Due to this we poorly estimate the local maximum point at 
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x
0
=303 m and z

0
=11.6 m, with a value of 0.4845 m-0.5. By using equation (3-15), we estimated 

a 2.3 structural index, which is higher than the true value (N=2). 

 Such types of non-linearity effects are common to the local wavenumber methods and to 

other methods based on the analytic signal and horizontal gradient magnitude (e.g., Keating 

2009).In the case of the DEXP transformation, we have that while the DEXP of a multisource 

field is a linear function of the effects of the single sources, this is not so for the DEXP 

transformation of the ratio, which loses linearity because the ratio mn
is in this case:  
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where T indicates the number of sources. However, linearity may be approximately acquired, 

in our case, if we meet the conditions that the sources are far enough from each other and/or 

the order n of differentiation is enough high that we may write, locally:  
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where P indicates points P(x,y) around the horizontal positions of each source P(x
i
,y

i
). 

 Let us now describe how the non-linear effect may be made negligible. The key is to 

consider higher-order derivatives in such a way that the interference effects could be reduced. 

To prove this we applied the DEXP transformation to the ratio 32  of the third and second-

order analytic signal moduli. Figures 3.4e and 3.4f show that the ridge is now a straight line 

(Figure 3.4e), as well as the scaling function (Figure 3.4f). Furthermore, the ghost disappears 

in the DEXP image of 32  (Figure 3.4g). We estimated the position of the first source at x
0
 = 

175 m and z
0 

= 20 m with a 0.3356 DEXP value giving an N=1 structural index. For the 

second source, we estimated the position of the source at x
0
 = 305 m and z

0 
= 10.2 m with a 

0.6347 DEXP value giving an N= 2.05 structural index. We conclude that the DEXP of 32
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has enough resolution to make the inherent nonlinearity of the problem negligible and that we 

may now safely estimate the depth to the two sources. Note that this result was possible 

because of the high-resolution property of the DEXP transformation, which is stable no matter 

the order of the differentiation (Cella et al., 2009; Florio et al, 2009). For complex sources, it 

is recommended to use small values of the difference m-n, to make the ratio analysis coherent.     

 

Figure 3.4: Non linearity effects for the automatic DEXP transformation of a multisource 

model (horizontal cylinder and dike). (a) total field magnetic anomaly profile. The ratio 21 

shows effects of non-linearity at higher altitudes (b), as evidenced within the red circle around 

the rightmost ridge  (cyan solid lines). Same effects occur in the corresponding scaling 

function along the rightmost ridge (c) and in the DEXP image of the ratio21 (d). The picture 

is completely different in case 32 : the effects of non linearity are removed as it is clear from 

the ratio at different altitudes (e), the scaling function along the rightmost ridge (f) and the 

DEXP image of the ratio 32 (g).  The white dots are at the DEXP maxima, corresponding to 

the estimated depth to the two sources. 
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3.5 Field Examples 

 Here we apply the automatic DEXP method to the vertical magnetic anomaly from the 

Pima copper mine, Arizona, USA. This anomaly is due to a thin dike located at a 64 m depth, 

as known from drilling information (Gay 1963). The profile was digitized with a 10 m step 

(Figure 3.5a). We computed the ratio 21 between the second-order (m=2) and first-order 

(n=1) analytic signal moduli of the vertical magnetic anomaly at different altitudes, up to z 

=150 m, with a 1 m step. Its DEXP image is shown in Figure 3.5b. We find the extreme point 

at x
0
=380 m and z

0
=64 m, in good agreement with the known drilling depth. Using equation 

(3-13), we get N
1
=1.91, that is the structural index is N=0.91, indicating, approximately, a thin 

dike model.  

 

 

Figure 3.5: The automatic DEXP transformation applied to the magnetic anomaly (vertical 

component) from the Pima copper mine, Arizona, USA. (a) magnetic anomaly profile and (b) 

The DEXP image of the ratio 21. The white dot is at the DEXP maximum, corresponding to 

the depth to the source in agreement with known information. 

 

In the second example we analyzed aeromagnetic data (Figure 3.6a) measured during 

a high-resolution survey over the Hamrawien area, along the western margin of the Red Sea, 

Egypt (Salem et al. 2005). The flight lines were directed N60E and the average terrain 
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clearance was 150 m, with a sampling interval of approximately 10 m. We digitized the data 

from figure 3a of Salem et al. (2005) with a sampling step of 10 m. The data have two high-

amplitude anomalies that were interpreted as diabase dykes associated with the Red Sea 

rifting (Salem et al. 2005). These two anomalies were interpreted by the Enhanced Local 

Wavenumber method (Salem et al., 2005), the AN-EUL method (Salem and Ravat, 2003) and 

multi-deconvolution analysis (Salem, 2011) and the results indicated for both sources a 

structural index N between 1.17–1.6, and depths between 422–600 m below the magnetic 

sensor. More recently, Florio and Fedi (2014) interpreted the same data with the multiridge 

Euler deconvolution method and obtained for the two sources depth estimates between 400 

and 430 m, corresponding to structural indices of 1.05-1.1. 

 

 

Figure 3.6: The automatic DEXP transformation applied to the aeromagnetic anomaly over 

the Hamrawien area, Egypt. (a)  magnetic anomaly profile and (b) The DEXP image of the 

ratio 21. The white dots are at the DEXP maxima, corresponding to the depth to the sources. 

We applied the DEXP transformation to the ratio 21 between the second- and first-

order analytic signal moduli of the aeromagnetic line. The DEXP image (Figure 3.6b) shows a 

690 m depth at a 0.05521 m-0.5 DEXP extreme point for the south-western source giving a 1.9 

structural index, indicating a depth to the centre of the source. In the case of the north-eastern 
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source, the DEXP image shows a 400 m depth at a 0.0516 m-0.5 DEXP extreme point giving a 

1.06 structural index indicating a depth to the top of the source. 

 Finally we applied the method to a magnetic survey carried out for iron exploration in 

Cataldere, Bala district of Turkey. The surface of the area is entirely covered by an alluvial 

horizon with a thickness of 2–3 m and the topography is rather flat. The few small 

outcropping magnetite blocks in the skarn zone appear in a very small part of the area, east of 

the drill-hole C1 (Aydin, 2008). 

 The magnetic total field intensity measurements were acquired using a proton 

magnetometer with an accuracy of 1 nT; they have varying intervals from 2 m to 10 m along 

profiles spaced at 20 m, because the density of the measurement stations was increased in the 

places where the magnetic gradient was high. Figure 3.7a shows the magnetic anomaly map 

with the drilling locations and the depths to the ore projected along a profile AA’ (modified 

after Aydin, 2008).  The magnetic map is digitized with a 2 m horizontal step (Figure 3.7a). 

Figure 3.7b shows the available information from drillings, showing that the biggest thickness 

of the ore is at the middle part of the map (boreholes C1 and CD1), while it decreases at 

borehole C3 and is negligible at boreholes C2 and CD7.  

 The DEXP transformation is applied to the ratio 21 of the total gradient with a 2 m step 

along z-axis and a 10 % stabilization. Figure 3.8 shows two slices of the DEXP transformed 

volume passing through the causative source. The extreme value of the DEXP slices at a 

depth of 62 m corresponds to the causative source depth. The DEXP result agrees well with 

the drilling information shown in Figure 3.8b in boreholes C2 and CD7.  
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Figure 3.7: a) The magnetic contour map of a survey in Cataldere, Bala district of Turkey and 

the locations of boreholes and b) boreholes drilling depths to the ore along the profile AA’ 

(modified after Aydin, 2008). Solid lines indicate the boreholes along the profile and dashed 

lines indicate a projection of boreholes on the profile. 
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Figure 3.8: The 3D automatic-DEXP transformed field. Two Slices of the DEXP transformed 

volume with extreme point at z=62 m. Note that the noise is restricted to the low altitudes. 
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Chapter 4 

Improving the local wavenumber method by automatic DEXP transformation 

This chapter is published as: Abbas, M. A., Fedi, M., and Florio, G., 2014, Improving the 

local wavenumber method by automatic DEXP transformation. Journal of Applied 

Geophysics, 111, 250-255. 

4.1 Introduction 

 In the last decades some semi-automated methods were developed to perform a fast 

interpretation of potential fields. These methods help recovering the horizontal position, the 

depth and the structural index of ideal simple sources approximating the true geologic 

structures. The structural index N is an integer defining the source shape and varies from 0 to 

3 in the magnetic case (Thompson, 1982). Among these semi-automated methods, the local 

wavenumber (LWN) is widely known (Thurston and Smith, 1997). The LWN function is 

defined as the horizontal derivative of the local phase, its computation involving second-order 

spatial derivatives. The LWN method has evolved as a multi-model technique (Smith et al., 

1998), able to provide depth and structural index estimates for any 2D source. However, due 

to the use of the second-order local wavenumber, it involves computation of third-order 

derivatives of the field. A further enhancement of the LWN method uses the local-

wavenumber and its phase-rotated version, so allowing the estimation of the 2D source 

parameters using derivatives up to the second order (Salem et al., 2005). Later, Salem et al. 

(2008) derived a 3D Euler equation using the derivatives of the tilt angle, a quantity very 

similar to the local phase. This method relies on second-order derivatives of the field and can 

provide depth and structural index estimates. Finally, Keating (2009) devised one more 

method to estimate the source parameters from the vertical derivative of the LWN, based on 
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the computation of the local wavenumber at different altitudes and applying a finite-

difference algorithm. A 3D formulation of LWN was also given by Phillips et al. (2007). 

 As can be appreciated from this brief presentation of methods based on the LWN, a very 

important issue, often limiting the practical application of this class of methods, regards the 

noise amplification due to the use of high-order derivatives. To circumvent this effect, we 

present a new multiscale method, which is highly stable vs. high wavenumber noise. In 

particular, we will consider the DEXP transformation (Fedi, 2007, Fedi and Abbas 2013) of 

the LWN and will derive a simple scaling-law, which is specific for this function. 

 The DEXP transformation of potential fields is very stable (Fedi, 2007; Fedi and 

Pilkington, 2012; Fedi and Florio, 2013), thanks to its composite upward continuation-vertical 

derivative operator, which behaves as a band-pass filter (Cella et al., 2009; Florio et al., 

2009). As a very attractive feature, the DEXP transformation of the LWN may be fully 

automated, so to be implemented as a fast imaging method, mapping every source at the 

correct depth. 

 We finally recall that LWN is a nonlinear function of the potential fields of interfering 

sources. We will show that the above-mentioned stability of the Local Wavenumber DEXP 

transformation in handling with high-order field derivatives, may be used as an effective tool 

to control the effects of non-linearity. 

4.2 Theory 

 Let us assume a Cartesian coordinate system where x and z are the horizontal and 

vertical directions respectively and the depth is positive downward., the first-order local 

wavenumber k1 of a potential field, f, for 2D sources is defined as the rate of change of the 

local phase of the analytic signal (Bracewell, 1965): 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Pilkington,+M&fullauthor=Pilkington,%20Mark&charset=UTF-8&db_key=PHY
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 Thurston and Smith, 1997, showed that k1could be written as  
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is the 2D modulus of the analytic signal A(Nabighian, 1972).  

The local wavenumber of the magnetic field of a 2D source at a horizontal position x0 and a 

depth z0, can be written as (Smith et al., 1998):  
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where N is the structural index, a quantity related to the source geometry (Thompson, 1982), 

assuming, in the magnetic case, the integer values 0, 1, 2 for contact, dyke and horizontal 

cylinder models, respectively. 

The second-order local wavenumber can be written as (Smith et al., 1998): 
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We can generalize equations (4-4) and (4-5) for any higher order of the local wavenumber of 

the potential field as: 
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where p is the order of the local wavenumber and N
p
=N+p. 

 We now recall the main theoretical aspects of the DEXP transformation (Fedi, 2007) and 

apply it to the local wavenumber function. The key concept of the DEXP theory is the scaling 
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function τ, defined as the derivative of the logarithm of the potential field, f, or of any of its 

partial derivatives of order p, f
p
, with respect to log(z) (Fedi, 2007). Along any line defined by 

the zeros of the horizontal derivatives of f
p
,  assumes the simple expression:  
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Similarly, we may compute now the scaling function of the local wavenumber k
p
. Using 

equation (4-6), we so obtain: 
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Equation (4-8) shows that k
p
) is, differently from f

p
), independent of N.  

Again following the approach by Fedi (2007) we note that, at z=-z
0
, τ=-0.5. From this result, it 

follows that: 
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or 
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So, the function    zk p log5.0log  has an extreme point at z=-z
0
. Consequently, we have also 

that: 
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From this equation, we may finally obtain the formula for the DEXP transformation of the 

local wavenumber of p-order:  

   pp
kz 5.0W

                   
(4-12) 

which shows that Local Wavenumber DEXP has an extreme point at z=-z
0
, i.e. at the altitude 

equals to the opposite of the depth to the source. This is similar to the DEXP transformation 
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of potential fields (Fedi, 2007), but has the advantage of not depending on the preventive 

determination of the structural index, Np. 

However, we may easily estimate also Np, at the local wavenumber DEXP maxima Wmax . In 

fact, using equations (4-6) and (4-12), at the points (x, z) = (x
0
,-z

0
) we find:  

   pzN  max
5.0

02 W                                                                                       (4-13) 

The method can be extended to the 3D case by using the appropriate formulation of the local 

wavenumber (Phillips et al., 2007). 

 We conclude that, differently from the DEXP transformation of potential fields, the 

DEXP transformation of the local wavenumber k
p
 yields the depth to the source, independent 

of the structural index. This is a major improvement on the original theory, because sources of 

different N may be now automatically imaged at the correct depth in the same section.  

4.3 Synthetic Examples 

 We test the method analyzing the magnetic field of three different kinds of sources:  a 

magnetic contact with a 0.05 A/m magnetization at the position (x
0
, z

0
) = (75, 10) m, a vertical 

dyke with a 1 A/m magnetization at the position (x
0
, z

0
) = (150, 5) m and an infinite horizontal 

dipole-line with a 4 A/m magnetization at the position (x
0
, z

0
) = (225, 5) m. The magnetic 

inclination and declination are 56° and 2°, respectively. 

 The magnetic data profile (Figure 4.1a) is sampled at 0.25 m step and the local 

wavenumber is computed at altitudes from 0 to 20 m with a 0.1 m step. The first-order local 

wavenumber k1 at the ground level (z=0) is computed using equation (4-1) and it is shown in 

Figure 4.1b. Here we assume that we know the exact values of the structural indices of the 

three causative sources, and we used these values to calculate the depth to the sources by the 

standard approach of Smith et al. (1998) using equation (4-4). The local peak values of k1 
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corresponding to the three sources are 0.09128 m-1, 0.3634 m-1 and 0.5137 m-1 for the 

magnetic contact, dyke and cylinder, respectively, and the corresponding depth estimates are 

10.96 m, 5.5 m and 5.48 m. The error in the depth estimation could be related to the 

interference effect. 

 Let us now apply the DEXP transformation (equation 4-12) to the local wavenumber, 

after having computed it at different altitudes. We obtain the DEXP image shown in Figure 

4.1c. From this image, using the extreme values, we can estimate a 10 m depth to the 

magnetic contact source at a horizontal position of 75 m with a 0.1598 m-0.5 local wavenumber 

DEXP value, yielding a structural index of N=0.01. This result agrees well with the known 

parameters of the model. In the area of the other two sources, the local wavenumber DEXP 

section  displays two couples of strong highs and lows (highlighted by the two dashed circles 

in Figure 4.1c). These features, clearly not usable for any depth estimation, are interpretable 

as the effect of interference. This kind of feature is actually well known (e.g., Keating, 2009) 

and is due to the inherent nonlinearity of the local wavenumber function. Interestingly, it 

results very easy to identify these spurious features in the DEXP section, because these 

localized bipolar behaviour in the interference area cannot be related to any real source. To 

reduce the interference effect and to increase the resolution of the DEXP image, we can 

however use a higher-order local wavenumber, since, as already said, the DEXP 

transformation is very stable vs. the differentiation order. Here we calculated the second-order 

local wavenumber, as shown in Figure 4.1d, and the DEXP transformation was applied to the 

local wavenumber computed at different altitudes (Figure 4.1e). In this way, the resolution of 

the DEXP image is improved and the effect of the interference is reduced; the bipolar feature 

can be seen only in a shallow part of the image at a horizontal position x=200 m as indicated 

by the dashed circle in Figure 4.1e. From the extreme points of the DEXP image, we obtained 

correctly the depth to the three sources as 10 m, 5 m and 5 m for the magnetic contact, dyke 

and horizontal cylinder, respectively. The values of the DEXP image at the extreme points are 
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0.3157 m-0.5, 0.6758 m-0.5and 0.8962 m-0.5, yielding estimated structural indices equal 0, 1.02 

and 2.01, so well corresponding to those of magnetic contact, dyke and horizontal cylinder, 

respectively. These results agree with the known parameters of the models. 

 

Figure 4.1:  The DEXP transformation applied to the local wavenumber of the noise-free 

magnetic field of a contact (leftmost), a vertical dike (middle) and a horizontal cylinder 

(rightmost). (a) The magnetic anomaly profile, (b) the first-order local wavenumber computed 

at the ground level, (c) the DEXP image obtained from the first-order local wavenumber, (d) 

the second-order local wavenumber computed at the ground level and (e) the DEXP image 

obtained from the second-order local wavenumber. The white points in the DEXP images in 

c) and e) indicate the sources’ locations whereas the dashed circles in c), d) and e) highlight 

the nonlinear effects.   

 In the second example we contaminated the previous model data with addition of 

independent Gaussian noise having a zero mean and a standard deviation of 1% of each datum 

(Figure 4.2a). In Figure 4.2b the first-order local wavenumber k1 at the ground level is shown. 

It is evident the strong enhancement of the noise that makes it almost impossible to recognize 
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any features related to the original signal. On the other hand, in the DEXP image (Figure 

4.2c), the noise is confined to the shallowest scales and the signal at deeper levels is 

preserved, allowing good depth and structural index estimates to be obtained. The depth to the 

contact model is well defined by the DEXP extreme point at (x, - z) = (75 m,10 m) at which 

the value of the scaled local wavenumber DEXPequals  0.1596 m-0.5. By substitution of this 

value in equation (4-13), we estimated the structural index as N=0.01 which agrees with the 

theoretical structural index of a magnetic contact. As in the noise-free case (Figure 4.1c) it is 

possible to note in Figure 4.2c the presence of a localized bipolar behaviour in 

correspondence of the other two sources, at x=146 m and x = 223 m, preventing any reliable 

depth estimation. So, similarly to the previous case, we calculated the DEXP of the second-

order local wavenumber k
2 

(Figure 4.2d) and from this we obtained the local wavenumber 

DEXP image in Figure 4.2e. Again, the noise results confined to the shallowest scales in this 

DEXP image, while the local wavenumber at the ground level (Figure 4.2d) is overwhelmed 

by noise. Once more, we highlight as multiscale methods such as DEXP are inherently stable 

and the use of high-order derivatives does not imply, at most scales, a deterioration of the 

signal-to-noise ratio. On the other hand, high-order derivatives allow the resolution of the 

DEXP image to be increased, reducing the nonlinearity effects. It is easy to see that the 

maxima of the DEXP image in Figure 4.2e are at the correct depth for each of the three 

different sources, even though the sources have different structural indices. We found a 0.32 

m-0.5 maximum at (x, - z) = (74.8 m, 10 m), a 0.68 m-0.5 maximum at (x, - z) = (150 m, 5.2 m) 

and a 0.89 m-0.5 maximum at (x, - z) = (225 m, 5 m). These depth and horizontal position 

estimates are then used in equation (4-13) to obtain the structural index for each source. The 

obtained values for N are: N=0, N=1.08, and N=2.01, respectively, so indicating a contact, a 

dike and a horizontal cylinder model. These results agree well with the theoretical structural 

indices of the three sources. 
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Figure 4.2:  The DEXP transformation applied to the local wavenumber of the noisy magnetic 

field of a contact (leftmost), a vertical dike (middle) and a horizontal cylinder (rightmost). (a) 

The magnetic anomaly profile, (b) the first-order local wavenumber computed at the ground 

level, (c) the DEXP image obtained from the first-order local wavenumber, (d) the second-

order local wavenumber computed at the ground level and e) the DEXP image obtained from 

the second-order local wavenumber. The white points in the DEXP images in c) and e) 

indicate the sources’ location whereas the dashed circles in c) highlight the nonlinearity 

effect. 

 Finally, we applied the method to the magnetic field of a prism with a 10 m depth to the 

top, a 100 m depth to the bottom and a 1 A/m magnetization. The inclination and declination 

of the magnetic field are 90° and 0°, respectively. The magnetic data map, sampled with a 1 m 

step, is shown in Figure 4.3a. We applied the DEXP transformation to the first-order local 

wavenumber computed at different altitudes and we obtained the DEXP volume shown in 

Figure 4.3b. First we note that the local wavenumber DEXP well points out the depth to the 

top of the prism, which is well assessed all around its boundary, at the correct depth. This is 

clearly indicated by the highest values of the local wavenumber DEXP occurring at 10 m 
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depth. Once again we note that this fine estimate is automatically determined, since the local 

wavenumber DEXP is independent of the structural index value. 

 

Figure 4.3: The DEXP transformation applied to the first-order local wavenumber of the 

magnetic field of a prism model. a) The magnetic anomaly map, and (b) horizontal slices of 

the DEXP volume computed from the first-order local wavenumber. The DEXP 

transformation images correctly the top of the prism at the appropriate depth at 10 m all 

around its boundaries. 

4.4 Field Examples 

4.4.1 Known Source: test site, Central Italy  

 As a first real case, we applied our method to the magnetic vertical gradient anomaly 

of a group of buried drums in a test site set-up to study the magnetic signature of metallic 

objects in the Apennines, Central Italy (Marchetti et al., 1998). The site is characterized by 

fluvial-glacial deposits consisting of conglomerate in a silt-sandy matrix, with very low 

magnetic properties (Marchetti et al., 1998). 
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 A group of 12, 55-gallon, new steel drums were vertically oriented, and buried at 4.5 

m depth.  The entire buried body had the rough shape of a prism 88 cm thick, having a 2x3 m 

base with its longer side E-W oriented. A magnetic gradiometry survey was carried out in the 

site with a proton precession magnetometer in an area of 22m x 25 m. The distances to the 

ground level of the bottom and top sensors were 75 cm and 150 cm respectively. The survey 

was carried out along profiles spaced 1 m each other at a sampling interval of 1 m. The 

vertical gradient ranges between -18 nT/m and 23 nT/m (Marchetti et al., 1998). We carefully 

digitized these data from figure 4 of Marchetti et al.(1998). 

 We upward continued the vertical gradient at a range of altitudes from 0 to 10 m with 

a 0.2 m vertical step and we computed their second-order local wavenumber k
2 

(Figure 4.4a). 

Then, we applied the DEXP transformation by using equation (4-12) and two vertical sections 

of the DEXP volume are plotted in Figure (4.4b,c) to image the distribution of the causative 

sources in the subsurface. Because of the ratio between the depth to the drums and their 

thickness is sufficiently  big, the drums can be seen as a unique body in the DEXP volume. 

The found depth is 4.5 m after subtracting the average sensor altitude (1.12 m), perfectly 

consistent with the true burial depth, and the estimated structural index is 2.6. In both sections 

the noise is confined at the shallow altitudes.  
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Figure 4.4:  The DEXP transformation applied to the local wavenumber of the magnetic 

vertical gradient field over buried drums  in a test site in central Italy. (a) The magnetic 

vertical gradient anomaly map; and (b) two vertical slices along the DEXP volume computed 

from the second-order local wavenumber. 

4.4.2 Unknown source: southeast Bulgarian Black Sea shelf 

 We analyzed a profile perpendicular to an elongated anomaly from the southeast 

Bulgarian Sea shelf (Gerovska et al., 2009; Stavrev et al., 2009). The area is characterized by 

magnetic anomalies related to Upper Cretaceous volcanic and plutonic structures. The reverse 

magnetization is dominant in the area. The profile was carefully digitized from Stavrev et al. 

(2009, figure 6) with a 0.01 km horizontal step (Figure 4.5a). The DEXP transformation was 

applied to the first-order LWN calculated at different altitudes. The local wavenumber DEXP 

(Figure 4.5b) shows an extreme point at a 3 km depth. At the extreme point we also estimated 

a 1.56 structural index. Stavrev et al. (2009) interpreted this anomaly using differential 

similarity transforms and estimated very similar source parameters (2.8 km depth and N=1.7). 
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However, with respect to their method, involving the search for the position of a central 

similarity point for tentative structural indices, the application of our method is easier for both 

depth and structural index. 

 

 

Figure 4.5:  The DEXP transformation applied to the local wavenumber of a magnetic profile 

from southeast Bulgarian Sea shelf. a) The magnetic anomaly profile; b) The DEXP image 

computed from the first-order local wavenumber. The white point indicate the estimated depth 

to the source. 
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Chapter 5 

Fractional-order local wavenumber: an improved source-parameter estimator 

(accepted as a poster presentation at the 77th EAGE Conference & Exhibition, 

Madrid, 2015). 

5.1 Introduction 

 As it was mentioned in the previous chapter the main factor limiting the use of the local 

wavenumber methods in the interpretation of potential field data is the amplification of noise 

effect in the data due to the use of high-order derivatives in their computations. In this chapter 

we propose to use a local wavenumber based on fractional-order field derivatives. We will 

show that a fractional-order local wavenumber allows noise reduction and improved depth 

and structural index estimates. As regards the application of the fractional-order 

differentiation to potential fields, Gunn et al. (1997) noticed the use of fractional-order 

vertical derivatives, such as those of order 0.5, 1.5, to the end of reducing the noise 

amplification. Cooper and Cowan (2003) showed that the use of the fractional-order gradients 

of potential field data enhanced the analytic signal and Euler deconvolution techniques. 

Phillips et al. (2007) used a half-order vertical integral of magnetic data in the application of 

the total gradient (analytic signal magnitude) method to estimate the depth to the sources. 

5.2 Theory 

If we consider the potential field f of 2D sources and its directional derivatives in x- and z-

directions in Cartesian coordinates, the first-order local wavenumber k
1 

is defined by Thurston 

and Smith (1997) as: 
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In cases of magnetic contact, thin sheet and horizontal cylinder, k
1
was shown by Smith et 

al.(1998) to be equal to: 
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where x
0
 is the source horizontal location, z

0
 is the depth to the source and N is the structural 

index of the source, respectively equal to 0, 1, and 2 for magnetic contact, thin sheet and 

horizontal cylinder (Thompson, 1982). 

Similarly, Smith et al. (1998) showed that the second-order local wavenumber, k
2
, 

    




















 

zx

f

z

f

x
k

2

2

2
1

2 tan                                                                       (5-3) 

may be defined as: 
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To reduce the LWN noise amplification involved by high-order derivatives, we here propose 

to define the local wavenumber on the basis of fractional-order field derivatives instead than 

integer-order derivatives. 

 To this end, we first generalize equations 5-1, 5-2, 5-3 and 5-4 for any real p-order 

derivative of the field: 
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Note that when p<1, this means that the local wavenumber is calculated from a fractional-

order derivative of the integral of the field. 

The p-order derivative/integral fp of a potential field f can be calculated in the frequency 

domain (Gunn, 1975; Cooper and Cowan, 2003) as: 

       fFfF p
p                                                                                         (5-6)                                     

where F is the Fourier transform and   is the wavenumber. 
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Here, we show that a suitable selection of fractional order p of the fractional 

integration-differentiation allows a local wavenumber formulation which is more convenient 

than that based on the standard integer-order differentiation. To this end, let us first assume 

that: 

     
  2

0

2

0

0

zxx

zpN
kp






                                                                                    (5-7).                  

Even though we do not demonstrate theoretically equation (5-7), we found numerically that it 

holds on for ideal source models such as cylinder, dyke and contact (see appendix C). 

Considering the iSPITM method of Smith et al. (1998). They presented a model-independent 

local wavenumber calculated as (k
2
-k

1
), where integer orders field derivatives are used.  

Using equation (5-7), we here generalize the formula for any two real orders of 

differentiation/integration of the field (p
1 
and p

2
) as: 

 
  2

0

2

0

021

21 zxx

zpp
kk pp




                                                                      (5-8). 

The depth to the source can be estimated at the maximum point (x=x
0
) as  

12

12
0

pp kk

pp
z




                                                                                          (5-9). 

and the structural index N can be estimated as 

1

12

12

1
p

kk

pp
kN

pp

p 





                                                                              (5-10). 

Finally we can apply the local wavenumber DEXP imaging (LWN-DEXP) method of 

Abbas et al. (2014) to the fractional-order LWN. The DEXP transformation pW , in case of the 

local wavenumber DEXP imaging, is defined as: 

pp kz 5.0W
                                                                                   (5-11) 

where the depth to the source is estimated from the extreme point of the DEXP image. The 

structural index N  can be found at the extreme point as: 
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pzN  max
5.0

02 W                                                                            (5-12) 

where p is the fractional order of differentiation. 

5.3 Synthetic Examples 

 Here we applied the fractional-order LWN method to the magnetic anomaly field of a 

horizontal cylinder at a 200 m horizontal position and a 10 m depth (Figure 5.1a). The 

inclination and declination of the magnetic field are 60° and 0°, respectively. The data-step is 

1 m. First, to show the validity of the proposed method, we apply a fractional-order local 

wavenumber DEXP (equation 5-11). We calculate the local wavenumber of the magnetic field 

of the above-mentioned model considering different orders of LWN p= 1.3, 1.8 and 2.3 

(Figure 5.1). The estimated depth and structural indices are shown in Table 1. We can note 

that the results agree with the known parameters of the model despite of using fractional 

orders of the LWN. 

 

Figure 5.1: Application of the DEXP transformation to fractional-orders LWN. (a) The 

Magnetic anomaly of a horizontal cylinder model; (b) the DEXP image of the 1.3-order 
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LWN; (c) the DEXP image of the 1.8-order LWN; and (d) the DEXP image of the 2.3-order 

LWN. The white points in b), c), and d) indicate the estimated depth to the source. 

Table 5.1: The results of the DEXP transformation applied to different fractional-orders 
LWN. 

Order of LWN DEXP Maximum point
maxW  Depth z0 Structural index N 

1.3 0.5191 10 1.98 
1.8 0.5983 10 1.98 
2.3 0.6773 10 1.98 

 

 Now, we apply the fractional-order LWN to the iSPITM method (Smith et al., 1998). We 

used p
1
 =1.1 and p

2
=1.2 as fractional orders of differentiation (Figure 5.2a, b, d & e). The 

fractional-order local wavenumber was computed using equations (5-5) and (5-7) as shown in 

Figure 5.2c & f. Then we calculated the depth and structural index (Figure 5.2h & i) at the 

peak of k
1.2

-k
1.1  

shown in Figure 5.2g, using equations (5-9) and (5-10), as z
0
=10 m depth and 

N=2. These estimates agree perfectly with the true values of the source parameters. 

Finally, we test the method against noise by adding to the magnetic field of the 

horizontal cylinder a Gaussian noise having a zero-mean and a standard deviation of 2% of 

each datum. Here we integrated vertically the field one-order and then differentiated it by 

orders p= {0; 0.1}. Then we calculated the LWNs of the orders p
1
 =0, p

2
=0.1 using equation 

(5-5), and also the k
0.1

-k
0
 difference (Figure 5.3).  We compared our results to that obtained by 

the iSPITM method (Smith et al., 1998) applied to the vertical integral of the field i.e., k
1
-k

0
, as 

suggested by Phillips et al. (2007) to reduce the noise amplification.  In the fractional-order 

LWN case, we obtained a 9.88 m depth and an N= 1.87 structural index (Figure 5.3d, e, f). 

  Besides the fine estimates of the source parameters, we note that the peak of the 

difference is well evidenced and correspond to the same horizontal position than those of k
0.1 

and k
0
, so that the application of the method by Smith et al. (1998) is straightforward. Instead, 

in the integer-order LWN case (Figure 5.3g), we note two areas of apparent peaks (at 
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horizontal distances, 90 and 293 m) which do not correspond to any peak in k0 while in the 

central zone the peak corresponding to the source location may hard be identified. However, 

referring to the position at horizontal distance 200 m, corresponding to the peak positions in 

k
0 

and k
1
, we can estimate a 7.06 m depth and an N= 1.77 structural index (Figure 5.3h, i). 

This example shows how the use of fractional-order local wavenumber can improve the 

classical LWN method. 

 

 

Figure 5.2:  Application of the fractional-order local wavenumber to the magnetic field of a 

horizontal cylinder. a) The 1.1-order vertical derivative of the field; b) the 1.1-order 

horizontal derivative of the field; c) the 1.1-order local wavnumber; d) the 1.2-order vertical 

derivative of the field; e) the 1.2-order horizontal derivative; f) the 1.2-order local 

wavenumber; g) the k1.2-k1.1 local wavenumber; h) the estimated depth to the source and i) the 

estimated structural index. 
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Figure 5.3:  Application of the fractional-order local wavenumber to the magnetic field of a 

horizontal cylinder with addition of noise. a) The 0-order local wavenumber; b) the 0.1-order 

local wavenumber; c) the 1-order local wavenumber; d) the k0.1 –k0 localwavenumber ; e) the 

estimated depth from the k0.1 –k0 ; f) the estimated structural index from k0.1 –k0 ; g) the k1 –k0 

local wavenumber; h) the estimated depth from the k1 –k0 and i) the estimated structural index 

from k1 –k0. 

5.4 Field Examples 

5.4.1 A magnetic anomaly from the Pima copper mine, Arizona, USA: 

 We applied the proposed method to the vertical component magnetic anomaly from the 

Pima copper mine, Arizona, USA. This anomaly is caused by a thin dike located at a 64 m 

depth, as known from drilling information (Gay 1963). The profile was digitized with a 10 m 

step (Figure 5.4a). 

 We computed the k0, k1 and k0.1 local wavenumbers (Figures 5.4b,c and e). Then we used 

the integrer-order difference k1–k0   (Figure 5.4d) to estimate the depth and structural index. 

The results are 39.9 m and 0.84, respectively (Figure 5.4g and h). Whereas, when using the 

fractional-order difference k0.1–k0  (Figure 5.4f), we obtain a 67.88 m as estimated depth and a 
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1.01 as estimated structural index (Figure 5.4i and j). These results agree well with the known 

information about the causative source. 

 

Figure 5.4:  Application of the fractional-order local wavenumber to the magnetic anomaly 

(vertical component) from the Pima copper mine, Arizona, USA. a) The magnetic anomaly 

profile; b) the 0-order local wavenumber k0; c) the 1-order local wavenumber k1; d) the k1–k0  

local wavenumber ; e) the 0.1-order local wavenumber k0.1;f) the k0.1–k0  local wavenumber; 

g) the 39.9 m estimated depth from k1–k0 ;f) the estimated structural index N=0.84 from k1–k0; 

i) the 67.88 m estimated depth from k0.1–k0 ; and j) the estimated structural index N=1.01 from 

k0.1–k0 . 

 

5.4.2  Magnetic vertical gradient profile from Terina, Catanzaro,  Southern Italy: 

 We applied the fractal-order local wavenumber to a data profile from a magnetic 

gradient survey carried out for the detection and characterization of archaeological structures 

at Terina (Catanzaro, Southern Italy) (Figure 5.5a). The sensor is at 2 m height and the 

measurements were taken with a 0.5 horizontal step. After excavation, a layer of stones and 

bricks is found at about 0.5 m depth from the surface; i.e., 2.5 m from the sensor (Cella et al., 

2015). 
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 We used the 1.8- and 2-order local wavenumbers (Figure 5.5b & c) to estimate the 

depth. We note that the peaks in k1.8 and k2 are very correlated and that the use of fractional-

order differentiation preserve the shape the form of the peaks allowing a better computation of 

the difference k2 – k1.8, as shown in Figure 5.4d. 

 We discard depth solutions with structural indices less than -0.2 or more than 2.2. The 

estimated depths (from the sensor) over the excavated area are 2.5 m and 2.4 m, at horizontal 

locations x={10 and 12} m respectively (Figure 5.5e). The depth estimates agree well with the 

excavation findings (Cella et al., 2015). On the other side, at horizontal position x={16.5 and 

18} m, the estimated depths are 2.6 m and 2.37 m, respectively. Finally, at x= 20 m, the 

estimated depth is 4.6 m. 

 

 

Figure 5.5:  Application of the fractional-order local wavenumber to the magnetic vertical 

gradient anomaly of Terina (Southern Italy). a) The vertical gradient anomaly profile; b) the 

1.8-order local wavenumber; c) the 2-order local wavenumber; d) the k2–k1.8 local 

wavenumber ; and e) the estimated depth. 
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Conclusions 

 We have introduced the theory of the DEXP method for the interpretation of self-

potential data related to oxidation-reduction process and to ground water flow. The method 

yields estimates of the source horizontal location, depth, and geometry. Also, the method 

provides information about the type of depth (to the centre, to the top). The DEXP theory 

yields a number of tools to evaluate the source parameters: 

 the depth to the source may be estimated by using the geometric method, 

 the symmetry of the whole ridge set can be diagnostic for determining the dip of the 

dipole moment, 

 the scaling function may be used to evaluate the structural index and the depth from any 

single ridge related to the source, and 

 the DEXP transformation may be used to obtain an image of the source distribution  and, 

by searching for its extreme points, to locate at these points the depth and the 

horizontal position of the source.  

 The major features of the DEXP method are that no a priori assumptions about the kind 

of the source are needed; the transformation is very stable; it may be safely used at high-

resolution, i.e. using high-order derivatives of the field because of this stability; it is fast and 

numerically easy to implement for both 2D and 3D problems. The Application of the method 

to synthetic and real cases  in the case of mineral exploration and environmental studies 

(depth to the water table and sinkhole detection) yields consistent results with the known 

information about the sources. 

 We developed a new form of the DEXP imaging method that is fully automatic and 

independent from the structural index. These properties are derived from applying the DEXP 

transformation to the ratio between any pair of different-order vertical derivatives of the field 

or to the partial derivatives of this ratio. Comparing this method to previous imaging methods 
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(Cribb, 1976; Pedersen, 1991; Patella, 1997; Zhdanov, 2002; and Fedi, 2007), we note that 

our method is the only one able to giving correct depth and structural index estimation in case 

of a field generated by a set of different types of sources, such as for instance spherical, 

cylindrical or fault source distributions. For instance, migration assumes intrinsically a single 

type of scaling-law and so gives either correct or incorrect depth estimates, depending on the 

type of source involved (Fedi and Pilkington, 2012); DEXP of potential fields yields correct 

source estimates if the right scaling-law is assumed, but the multi-source case cannot be 

accounted in a single step of imaging. In practice, they are both automatic methods, but may 

fail in a multi-source case. Instead, our new procedure of applying the DEXP transformation 

not to the potential field itself, but to the ratio of different order vertical derivatives of the 

field, yields simultaneously correct estimations for each different source in the same image. 

 This automatic version of the DEXP transformation is fast and warrants accurate depth 

estimation also for large datasets. It allows also estimation of the structural index.  Due to the 

stability vs. noise of the DEXP transformation we may use high-order derivatives of the field 

in the ratio and we showed how this feature is useful to circumvent nonlinear effects due to 

nearby anomalies. We also showed that this feature is in turn useful for establishing whether 

we are meeting the condition of the field to be homogeneous, and that this issue may be 

simply assessed by exploring the behaviour of the intercept of the scaling function computed 

on a selected ridge. 

 Even if the method is stable vs. noise, another kind of stabilization, however, may be 

needed because the ratio possibly tends to be singular, and a specific algorithm was adopted 

to overcome this instability. The application of the method to synthetic and real data shows a 

good agreement with the known information about the causative sources. 

 We presented a new automatic method based on the DEXP transformation of the local 

wavenumber of any order. Our approach consists in analyzing the LWN in the multiscale 
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context of the DEXP transformation, where a very simple scaling-law occurs for this function, 

having a fixed form, independent on the kind of source. We have two main advantages 

compared to other methods using the LWN: a) thanks to the stability property of the DEXP 

transformation it may be applied to LWN of high-order so that the major factor limiting the 

applicability of LWN is strongly attenuated; b) the method is fully automatic, so that it may 

be implemented as a very fast imaging method, mapping every source even of different kind 

(i.e., characterized by a different structural index) at the correct depth. 

  With respect to the DEXP transformation of potential fields, our method has instead 

either advantages or disadvantages: a) the DEXP transformation of the local wavenumber is 

fully automatic, differently from that of potential field which depends on the structural index; 

b) the local wavenumber is a nonlinear function of the potential field anomalies of isolated 

sources and nonlinear effects are likely to occur in complex cases (e.g., Keating, 2009). So, 

also our DEXP imaging shows non-linear effects, which appear as intense bipolar anomalies 

(ghosts). However, thanks to this peculiar shape they are easily recognized and excluded from 

the analysis. In addition, they may be also identified because often they do not correspond to 

any relevant feature of the measured signal. This is a disadvantage with respect to the DEXP 

transformation of potential fields, which is instead a linear function with respect to the 

anomalies of the several sources, and don’t present any spurious effect. 

 The structural index can also be estimated in a fast way, at the extreme points of the 

DEXP of the local wavenumber. Finally, we remark the high resolution of the method which 

sharply separates the effect due to the single sources or, in the case of complex non-ideal 

sources, the contributions due to the several singular parts of the source: this is clearly 

illustrated in the prism case, where the DEXP transform identifies the sides of the prism. 

These features make this new automatic method even more attractive. 
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 We show how the local wavenumber method may be improved, providing a new 

definition in terms of fractional derivatives/integrals. By choosing a suitable fractional order 

of differentiation/ integration we may keep the noise enhancement to a minimum, so making 

the LWN method more stable than with the standard approach, based on integer-order field 

differentiation. 

  In addition, the use of fractional derivatives/integrals almost tends to preserve the shape 

of the local wavenumber of different orders: in other words, it does not change the location of 

the peaks of the local wavenumber allowing a more simple and safe computation of depth and 

structural index. The method is tested for synthetic and real examples and showed good 

results compared to the standard local wavenumber method. In this work the fractional-order 

LWN is applied to the iSPITM method and the LWN-DEXP method, but it can be extended to 

all the other methods based on the local wavenumber.  

 

 

 

 

 

 

 

 

 



Appendix A 

Division by zero problem in the automatic DEXP method.

 Since we are dealing with a ratio between two different orders of derivatives, division by 

zero or by a very small number may affect the numerical estimate and, consequently, the 

automatic DEXP method.   

Division by zero is a typical problem in data proces

imaging of seismic data, occurring for the ratio between the up

wave fields (see e.g., Schleicher et al., 2008
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Figure A1: Stabilization of Automatic DEXP. a) The DEXP image of the 

stabilization. The dashed polygons indicate the area affected by the zero

the DEXP image of the ratio 
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Division by zero problem in the automatic DEXP method. 

Since we are dealing with a ratio between two different orders of derivatives, division by 

zero or by a very small number may affect the numerical estimate and, consequently, the 

 

Division by zero is a typical problem in data processing and can be treated like that in the 

imaging of seismic data, occurring for the ratio between the up-going and the down

Schleicher et al., 2008). Based on this approach we can check the value 

and increase it by a small amount ε  (0 <ε< 1) taken as a fraction of 

at the current depth level. In practice, the ratio, 
mn

 , is rewritten as:

                                                                                

Figure A1: Stabilization of Automatic DEXP. a) The DEXP image of the 

stabilization. The dashed polygons indicate the area affected by the zero

the DEXP image of the ratio 21with =10% stabilization. 

 

Since we are dealing with a ratio between two different orders of derivatives, division by 

zero or by a very small number may affect the numerical estimate and, consequently, the 

sing and can be treated like that in the 

going and the down-going 

). Based on this approach we can check the value 

< 1) taken as a fraction of 

is rewritten as: 

                                                                                (A1) 

 

Figure A1: Stabilization of Automatic DEXP. a) The DEXP image of the 21without 

stabilization. The dashed polygons indicate the area affected by the zero-division problem; b) 
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 To show how this stabilization process works, let us consider the DEXP transformation 

ratio of the ratio 21, based on the values of the gravity field of an infinite horizontal line 

source. We note immediately the instability due to the division by near-zero values (Figure 

A1(a), dashed polygons), as zones characterized by a stripy zone of highs and lows. Even 

though the maximum of the DEXP is exactly placed at the source position (white dot), there is 

however need for a more stable DEXP image. Hence, we can use the stabilization approach of 

equation (A1) to remove the instability zones and so obtain a pretty stabilized image (Figure 

A1(b)). 
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Appendix  B 

The homogeneity-degree of the ratio of potential fields of different orders 

and the ridge behaviour. 

 The ratio between two different-order vertical derivatives or two analytic signal moduli 

of the field is a homogenous function of the spatial coordinates, far away from the zeros of the 

denominator, with a homogeneity degree equal to half of the difference between their orders. 

Considering equation (3-6), let us change the origin by a guess value ��̀. Both the altitude and 

the depth will be shifted as � − ��̀ and �� − ��̀, respectively. By putting z=1/q, equation (3-6) 

becomes: 

   ��(�,��̀) = −
(���)(����̀�)

�����
                                                                                       (B1) 

According to the DEXP theory, the scaling function may be effectively used to estimate the 

structural index (Fedi, 2007; Florio et al., 2009). In fact, it is simple to see in equation (B1) 

that the slope of ��becomes a zero-slope straight line when ��̀ is equal to �� and the 

homogeneity degree is given by the intercept of �� versus q. In the case of the ratio R the 

intercept is known and equal to –(m-n), for homogeneous fields. Hence, from the behaviour of 

the scaling function (slope and intercept) we can have an idea of how the homogeneity of the 

field is a good approximation to our dataset. In particular the intercept must be equal to –(m-

n). Otherwise our assumption will be not verified, at least at the considered set of altitudes. In 

addition, we can also vary the orders m, n in such a way to fit the homogeneity condition and 

so retrieve a valid estimate of N according to one of the procedures described in the third 

chapter. If the homogeneity condition is not fully satisfied at a certain set of altitudes, due to 

the noise and/or the interference effects, we expect also that the ridges will have a curved 

form contrasting with the straight line occurring for perfect homogeneous fields (Fedi et al., 

2009). 
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Appendix  C 

Numerical evaluation of the N-dependent local-wavenumber equation by 

Smith et al. (1998) for a fractional order. 

 We compare the fractional-order local wavenumber, as defined in equation (5-5), with 

the expression given by Smith et al. (1998) (equation 5-7). This formula, very useful because 

it depends only on the source parameters (N and z0), was however demonstrated for an integer 

order by Smith et al. (1998). So we want to see if it is holds also for fractional orders, say 

p={1.2, 1.5, 1.8}, by a numerical comparison with the local wavenumber computed through 

equation (5-5). 

 We used the magnetic field of three ideal models, a horizontal cylinder, a dike, and a 

contact at a 10 m depth. As shown in Figure C1, the two expressions of the local wavenumber 

are comparable and show a perfect matching. This shows that we can use equation (5-7) for 

the estimation of the depth and structural index with fractional orders. 

         

 

Figure C1: Comparison between the fractional-order local wavenumber k1.2  (a; b; c),  k1.5  (c; 

d; e),  k1.8  (g; h; i),  as computed on the basis of equations (5-5) and (5-7), for the magnetic 

anomaly of a horizontal cylinder, a dike, and a contact. Solid line is for local wavenumber on 

the basis of equation (5-5); white circles are for local wavenumber based on equation (5-7). 
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		Many methods of interpretation were developed for self-potential data. They include methods assuming a fixed-geometry for the sources (e.g., Yüngül, 1950; Meiser, 1962; Paul, 1965; Bhattacharya and Roy, 1981, Rao and Babu, 1983), methods using Fourier analysis (e.g., Rao et al., 1982), and inverse methods (e.g., Shi and Morgan, 1996, Jardani et al., 2007; Minsley et al., 2007 and Mendonça, 2008). Assuming a simple geometry for the sources requires a prior knowledge of the shape of the anomalous body and most of the methods use few characteristic points and distances, nomograms, or standardised curves to determine the depth. Thus, they are highly subjective and can lead to major errors in estimating the depth of the buried structure. On the other hand inverse methods are computationally expensive.


