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ABSTRACT 

Thyroid cancer is one of the most frequent malignancies of the endocrine system, 

and its incidence is predicted to become the fourth leading cancer diagnosis by 

2030. In spite of the progressive knowledge of the molecular mechanisms involved 

in thyroid transformation, its prognosis remains unpredictable and the 

identification of new biological markers are needed in addition to already known 

molecules, to correctly stratify patients at risk of recurrence and progression, 

eventually providing new targeted therapies. We recently showed that the 

transcriptional regulator PATZ1 is constantly down-regulated in human thyroid 

cancer and acts as a tumor suppressor in thyroid cancer cell lines by targeting p53-

dependent genes involved in Epithelial-Mesenchymal Transition and cell 

migration.  The aim of the present work was to elucidate the upstream signaling 

pathway regulating PATZ1 expression during thyroid transformation. We first 

identified miR-23b and miR-29b to specifically target PATZ1 expression, which 

was inversely correlated to their expression in rat thyroid cells stimulated to 

proliferate with Thyroid-stimulating hormone (TSH). Next, using an inducible cell 

system, we found that miR-29b was up-regulated by oncogenic Ras during 

transformation of FRTL-5 rat thyroid cells toward an undifferentiated phenotype 

resembling that of anaplastic carcinomas and characterized by the acquisition of a 

migratory and invasive behavior. Conversely, PATZ1 was down-regulated, with 

an inverse correlation compared to miR-29b expression, and was specifically 

targeted by miR-29b in untransformed FRTL-5 cells. Restoration of PATZ1 

expression in FRTL-5 cells stably expressing oncogenic Ras inhibited cell 

proliferation and migration, indicating a key role of PATZ1 in Ras-driven thyroid 

transformation. These results confirm the tumor suppressor role of PATZ1 in 

thyroid cancer and suggest that its downregulation in thyroid cancer requires the 

activation of Ras GTPase signaling via miR-29b.  
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1. BACKGROUND 

 

1.1 The POK protein family 

Transcription factors (TFs) play a key role in several biological mechanisms by 

which specific genes are expressed in a temporal and tissue-specific manner and, 

as modular proteins, they can be classified mainly based on the structure of their 

DNA binding or protein-protein interacting domains. The POK (Poxviruses and 

Zinc-finger (POZ) and Krüppel) family of transcription repressors is characterized 

by a typical structure, consisting in an amino-terminal POZ/Broad Complex, 

Tramtrack, and Bric a' brac (BTB) domain and several Krüppel-type zinc fingers 

at the carboxyterminal side (Lee and Maeda 2012; Costoya 2007) (Figure 1). The 

BTB domain, also known as Poxviruses and Zinc-finger (POZ) domain, is an 

evolutionary conserved protein-protein interaction domain. In most cases this 

domain is associated with C2H2 zinc finger motifs in TFs involved in 

transcriptional regulation through chromatin re-modeling (Kelly and Daniel 2006). 

C2H2 Krüppel-type name is due to the fact that it resembles the Drosophila 

segmentation protein Krüppel. It represents one of the most common types of 

DNA binding domains, with approximately more than 600 genes in the human 

genome encoding C2H2 motifs (Venter et al. 2001), suggesting that this class of 

TFs represents a substantial portion of the genes in the human genome. The 

biological functions of POK proteins are defined on the basis of the homo- and 

hetero-dimerization as well as protein-protein interactions properties conferred by 

the BTB/POZ domain, while the Krüppel-like C2H2 zinc fingers mediate the 

specific binding to DNA sequences located within gene-regulatory regions. Thus, 

the BTB/POZ domain promotes homo- and hetero-dimerization and exerts its 

transcriptional role through its interaction with transcriptional co-factors, including 

SIN3A, SMRT, NCOR1 and other co-repressors, which in turn recruit HDACs 

(Histone DeACetylases). On the other hand, transcription is highly dependent on 

DNA packaging. DNA can be tightly compacted, thus preventing accessibility of 

TFs, or can be available to TFs via modification of the nucleosome,    fundamental 

subunit of chromatin. This architecture of chromatin is strongly influenced by 

post-translational modifications of the histones. POK proteins are able to act as a 

molecular switch opening or closing the chromatin through the deacetylation of 

the histones, and therefore regulating the transcription of their target genes 

(Costoya 2007). Most POK proteins studied so far have displayed a consistent 

trans-repressive activity in a variety of cell types and on various promoters, 

although it remains possible that the transcriptional activity of POK proteins may 

be dependent on the cellular environment and may include the ability to trans-
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activate (Kobayashi et al. 2000). There are many proteins belonging to the POK 

family, involved in several biological and pathological processes, such as 

development, stem cell biology, and cancer. Among them there is the POZ/BTB 

and AT-hook-containing Zinc finger protein 1, also known as PATZ1.  

 

 

 
 
 

Figure 1. Structure of selected POK transcription factors. These proteins are characterized by 

the same structure: an amino-terminal POZ/BTB domain and several carboxy-terminal Krüppel-

type zinc fingers. They have been shown to play important roles in hemopoiesis, cancer, 

development and stem cell biology. 
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1.2 PATZ1 gene and protein structure: the discovery 

The POZ/BTB and AT-hook-containing Zinc finger protein1 (PATZ1), also 

known as Zinc finger Sarcoma Gene (ZSG), MAZ-Related factor (MAZR) or Zinc 

Finger Protein 278 (ZNF278/Zfp278), is coded by the PATZ1 gene, located on 

human chromosome 22 at the position 22q12. It was originally cloned in the 2000, 

by three independent groups (Fedele et al. 2000; Kobayashi et al. 2000; 

Mastrangelo et al. 2000). Mastrangelo and co-workers described a submicroscopic 

inversion of chromosome 22q in a patient presenting a small round cell sarcoma 

with a t(1;22)(p36.1;q12) translocation. The result of the mutation was a chimeric 

transcript contained exon 8 of the Ewing sarcoma (EWS) gene fused in-frame to 

exon 1 of the PATZ1 gene, creating a protein with the transactivation domain of 

EWS fused to the zinc finger domains of PATZ1. Subsequently, the same group 

found that this paracentric inversion of chromosome 22q12 interrupted the 

UQCRH gene, with the breakpoint in intron 3, and created fusion genes with both 

EWS on der(22) and PATZ1 on der(1). At the same time, Kobayashi and co-

workers, as well as our group, isolated PATZ1 by yeast 2-hybrid screenings. As a 

bait, Kobayashi and co-workers used the POZ domain of Bach2, while our group 

used the RING finger protein-4 (RNF4) (Fedele et al. 2000; Kobayashi et al. 

2000).  

PATZ1 gene consists of 6 exons and encodes, by alternative splicing that give 

rise to PATZ1 variants 1-4, four protein isoforms (ranging from 537 to 687 amino 

acids) that share a common modular structure consisting of a N-terminal 

BTB/POZ domain, one AT-hook (in the central region) and four to seven C2H2 

Zinc fingers at the C-terminus (Fedele et al. 2000) (Figure 2). Although such 

motifs are common to factors involved in transcriptional regulation, the presence 

of all these domains in the same protein appears to be an unique feature of PATZ1. 

The AT-hook motif is a small AT-rich DNA binding domain that was first 

described in the high mobility group non-histone chromosomal protein (HMGA1) 

and then identified in a few other proteins such as HMGA2 and ALL-1, and is 

involved in the binding to the minor groove in correspondence of AT-rich regions 

(Fedele et al. 1998). The BTB/POZ and zinc finger domains makes PATZ1 a 

member of the POK family of transcriptional repressors (Costoya 2007). 

Consistent with its protein structure and with the presence of typical features of 

nuclear proteins, including two nuclear localization signals, the subcellular 

localization of PATZ1, at least in physiological conditions, is in the nucleus, with 

a typical speckled distribution (Figure 3) (Fedele et al. 2000). 
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Figure 2. Schematic representation of human PATZ1 gene and its encoded protein isoforms. 

(A) The human PATZ1 gene consists of 6 exons, which give rise, trough alternative splicing, to 4 

mRNA variants and 4 protein isoforms (depicted by exons-connecting lines). (B) Two short 

isoforms of 537 aa and the two long isoforms of 641 and 687 aa are represented by their 

characteristic domains. 

 

 
 

Figure 3. PATZ1 localization. The PATZ1 localization was detected with anti-PATZ rabbit 

polyclonal antibodies and Texas red-conjugated goat anti-rabbit IgG (Fedele et al. 2000). 
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1.3 Transcriptional activity of the PATZ1 gene 

Similarly to the other BTB/POZ proteins, the transcriptional activity of PATZ1 

requires the POZ domain (Fedele et al. 2000). However, the mechanisms by which 

transcriptional regulation by PATZ1 occurs remain to be elucidated. The POZ 

domain of the POK proteins BCL6 and PLZF, as well as other POZ domain 

containing proteins, associates with the SMRT-mSin3AHDAC-1 complex and 

forms a multimeric repressor complex involving histone deacetylation activity 

(Huynh  and Bardwell 1998). PATZ1 may also be involved in the formation of 

such complex, since we have demonstrated that its binding to gene promoters is 

influenced by HDACs inhibitors (unpublished data). Moreover, it is likely that the 

zinc finger motifs could target the PATZ1 protein to specific G-rich sequences 

(Kobayashi et al. 2000; Ow et al. 2014). PATZ1 has been shown to regulate 

expression of different genes in either a positive or negative manner. This dual 

behavior is in the nature of POZ-containing TFs, because their transcriptional 

activity is due to the POZ-mediated oligomers formation, and therefore they may 

function either as activators or repressors depending on the presence of proteins 

able to interact with them, which may be different depending on the cellular 

context. Moreover, PATZ1 contains an AT-hook, a motif characteristic of 

architectural transcriptional factors, such as the HMGA proteins, whose activity in 

gene transcription depends on the cellular context (Fedele and Fusco 2010). 

For all these reasons, there are several studies in literature, reporting that 

PATZ1 can be either an activator or a repressor of transcriptional regulation. 

Fedele and co-workers showed that PATZ1 acts as a transcriptional repressor of 

basal transcription, as a co-repressor of RNF4 RING finger protein, on the c-myc, 

CDC6, galectin-1 and SV40 promoters (Fedele et al. 2000). On the other hand, it 

has been reported that PATZ1 acts as a transcriptional activator of the c-myc 

promoter in B cells and that the c-myc transcriptional activation by BACH2 is 

enhanced by its interaction with the BTB/POZ domain of PATZ1 (Kobayashi et al. 

2000). Moreover, PATZ1 is able to activate mouse Mast cell protease 6 (mMCP-6) 

(Morii et al. 2002) and FGF4 (Kobayashi et al. 2000), and to repress androgen 

receptor (Pero et al. 2002), CD8 (Bilic et al. 2006) and BCL-6 genes (Pero et al. 

2012). Consistent with the CD8 regulation, it has been shown that PATZ1 plays a 

key role in the transcription factor network that controls the CD4 versus CD8 

lineage fate of double-positive thymocytes (Sakaguchi et al. 2010). 

Recently, our group has demonstrated that the cellular context can influence the 

regulatory activity of PATZ1. In fact, we showed that PATZ1 is able to interact 

with the tumor suppressor p53 and enhance the expression of p53-dependent gene 

promoters, such as BAX, CDKN1A and MDM2, increasing the susceptibility to 

apoptosis. Consistently, knockdown of PATZ1 in p53-wild type human cell line 

(HEK293) reduces promoter activity of these genes and inhibits their expression. 
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However, PATZ1 binds p53-target genes also independently from p53, exerting, in 

the absence of p53, an opposite function on their expression. Indeed, knockdown 

of PATZ1 in p53-null osteosarcoma cells (SAOS-2) upregulates BAX expression 

and decreases cell survival (Valentino et al. 2013a). A recent work by Ma and co-

workers, in collaboration with our group, using global gene expression analysis, 

showed that histone deacetylases, such as HDAC2, 4 and 11, were generally 

down-regulated upon Patz1 loss, while histone acetylases, such as Hat1 and Kat2a, 

were up-regulated. This implies that Patz1 may crosstalk with many epigenetic 

factors and modulate chromatin modification (Ma et al. 2014a). 

  

1.4 PATZ1 expression and role in development 

There are several studies in literature about the physiological role of PATZ1, 

but its function is still not completely known. Among them, Fedele and co-workers 

described an important role in testis development and spermatogenesis. Indeed, 

PATZ1 is expressed in spermatogonia, in which it could exert the role of 

transcriptional repressor to maintain the stem cell pool, and its lack led to 

increased apoptosis of the spermatocytes and total absence of spermatids and 

spermatozoa with subsequent male infertility (Fedele et al. 2008). On the other 

side, PATZ1 is strongly and widely expressed during the early steps of the mouse 

embryogenesis, in particular between 8.5 and 17.5 days post coitum (dpc), the 

period during which the most critical events of organogenesis take place. Indeed, 

the expression of PATZ1 in the central nervous system (CNS) is clearly restricted 

to the actively proliferating neuroblasts in the periventricular neocortical 

neuroepithelium, in the telencephalic cortical plate, in the hippocampus, and in the 

striatal neuroepithelium and subventricular zone; then, even though it keeps to be 

ubiquitously expressed, it is still abundant in restricted organs during the medium 

and late developmental stages (Valentino et al. 2013b). Its ubiquitous expression is 

kept in the adult life, but it is generally lower than in embryonic tissues and is still 

abundant in selected tissues, including skeletal muscle, spinal cord and thyroid 

(Fedele, unpublished data). In order to understand the role of PATZ1 in 

development, adult life and cancer, a Patz1 knock-out mouse model has been 

generated in our laboratory. The analysis of Patz1 -/- mouse embryos showed 

defects in the CNS with a clear reduction of periventricular cells, and altered 

positioning of the cardiac out-flow tract  (OFT) suggesting that this gene plays an 

important role in the development of the CNS and the cardiac OFT. Moreover, 

most Patz1 -/- embryos dye in utero: homozygous mutant pups totaled only 4% of 

the newborn offspring from heterozygous intercrosses, instead of the expected 

25%, indicating that most PATZ1-null mice died during embryogenesis, probably 

because of defects accumulated during CNS and cardiac OFT development. The 

few Patz1 -/- mice that survived showed a general growth retardation and defects 
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in spermatogenesis, resulting in infertility (i.e. increased apoptosis of the 

spermatocytes and total absence of spermatids and spermatozoa (Fedele et al. 

2008; Valentino et al. 2013b). The growth defects may be due, at least in part, to 

alterations in cell cycle progression and premature senescence. In fact, Patz1 -/- 

mouse embryonic fibroblasts (MEFs) showed arrest at or beyond the restriction 

point in either G1 or G2 phase and enter into premature cellular senescence 

(Valentino et al. 2013b). The results obtained on the Patz1-null MEFs are 

consistent with recent data showing that knockdown of PATZ1 in young cells 

induced cellular senescence, which was confirmed by growth arrest and increased 

p53 protein levels and SA--gal activity, and accumulation of phospho-H2AX 

foci; conversely, the upregulation of PATZ1 in old cells reversed senescence 

phenotype (Cho et al. 2012).  

 

1.5 PATZ1 in stem cells 

Embryonic stem cells (ESCs) are obtained by culturing the inner cell mass 

(ICM) of the preimplantation stage blastocyst in vitro. They are pluripotent, and 

can be self-renewed by culturing with leukemia inhibitory factor (LIF) and bone 

morphogenetic protein 4 (Bmp4) for murine ESCs (mESCs) or basic fibroblast 

growth factor (bFGF) and transforming growth factor β (TGFβ) for human ESCs 

(hESCs) (Ow et al. 2014). The intrinsic transcriptional network that maintains 

pluripotency is conserved, with Oct4, Sox2 and Nanog as the master regulators 

that control this network (Masui et al, 2007). The importance of these factors in 

stem cell maintenaince is testified by their pivotal role in induced pluripotent stem 

cells (iPSCs) (Takahashi K and S Yamanaka 2006). Recent studies have shown 

that several zinc finger proteins are crucial for maintaining pluripotent ESCs. 

Among them, Sal14 is important in the regulation of Oct4 and interacts with 

Nanog to control many downstream genes; Zic3 suppresses differentiation of 

ESCs into the endodermal lineage through direct interaction with Nanog; Zfp206 

acts as a transcriptional activator of Nanog and Oct4. Moreover, Zfp143 and 

Zfp281 are able to activate Nanog (Ow et al. 2014). Among the  zinc finger 

proteins, PATZ1 was found highly expressed in the pluripotent mouse ICM 

compared to the nonpluripotent trophectoderm (Yoshikawa al. 2006), and in Oct4+ 

cells relative to Oct4- cells (Tang et al. 2010). In addition, the Patz1 genomic 

region is bound by various important transcription factors, such as Oct4, Nanog, 

Sox2, Klf4 and c-Myc (Nishiyama et al. 2009). Together, these data suggest that 

PATZ1 potentially regulates pluripotency in ESCs, even though its mechanism of 

action function is poorly studied. In a recent study, Ow and co-workers have 

shown that, through Patz1 knock-down and Chromatin Immuno-Precipitation 

assays (CHIP), PATZ1 binds to the regulatory elements of the master pluripotency 
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regulators Oct4 and Nanog and directly activates their gene transcription. The 

consequent down-regulation of Nanog and Oct4 led to differentiation and loss of 

pluripotency in Patz1-knocked-down cells, reduction of alkaline phosphatase 

staining, and up-regulation of germ layer markers (Ow et al. 2014). All these data 

highlighted the importance of PATZ1 in maintaining the expression of 

pluripotency regulators, thus sustaining ESCs in the undifferentiated state. 

Subsequently, the same authors, in collaboration with our group, showed a role for 

PATZ1 also in the reprogramming process (Ma et al. 2014a). 

It is well known that the pluripotent state can be generated from mouse somatic 

cells by ectopic expression of transcription factors Oct4, Sox2, Klf4 and c-Myc 

(OKSM) (Takahashi K and S Yamanaka 2006). These induced pluripotent stem 

cells (iPSCs) resemble ESCs, possessing the abilities to self-sustain pluripotency 

and to differentiate into many cell types (Ma et al. 2014a). However, the 

acquisition of induced pluripotency remains a relatively slow and inefficient 

process. Indeed, there are cellular “barriers” for a somatic cell to overcome in 

order to be reprogrammed into a pluripotent stem cell. Several study have revealed 

that the cell fate conversion from somatic cells to iPSCs is a dynamic process that 

involves a cascade of cellular events, such as silencing lineage-specific genes and 

reactivation of pluripotency genes, mesenchymal to epithelial transition (MET), 

overcoming cellular senescence and acquisition of cell immortality, reactivation of 

X chromosome and resetting the chromatin signatures (Apostolou, 2014). Ma and 

co-workers showed that the overexpression of PATZ1 inhibits the acquisition of 

pluripotency, while interference or heterozygous loss of PATZ1 enhances iPSC 

generation. On the other hand, complete knockout of PATZ1 seriously affects the 

reprogramming process by inducing cellular senescence. This suggests that a 

critical control of PATZ1 dosage is essential for the generation of iPSCs (Figure 

4). In particular, heterozygous knockout of PATZ1 in mouse embryonic fibroblasts 

(MEFs) down-regulates repressive histone marks and upregulates active histone 

markers, creating a more open chromatin accessible for transcriptional activation 

of pluripotency factors, thus facilitating the reprogramming. In the absence of 

PATZ1 (Patz1-/- MEFs), p53/p16 axis is activated, and the cells undergo cellular 

senescence. When only one of Patz1 alleles is disrupted (Patz1+/- MEFs), 

Ink4a/Arf locus is repressed, whereby preventing the cells from senescence 

induction. Conversely, overexpression of PATZ1 robustly activates p53 and p16, 

thereby inhibiting cell proliferation in MEFs (Ma et al. 2014a). 
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Fig. 4 Proposed role of Patz1 during somatic cell reprogramming. Overexpression of Patz1 

(Patz1 OE) creates a condensed chromatin, which represses the reprogramming process; Patz1 

overexpression also represses c-Myc and induces cell senescence inhibiting reprogramming. 

Heterozygous knockout of Patz1 can promote MET, activate c-Myc, overcome Ink4a/Arf barrier to 

surpass senescence and also create an open, hyperdynamic chromatin structure accessible for 

pluripotency gene reactivation, thus enhancing cellular reprogramming. Patz1-/- MEFs undergo 

cell senescence and are hard to be reprogrammed (Ma et al. 2014a). 

 

 

1.6 PATZ1 in cancer 

Recently it has been produced a wide literature about the involvement of  

PATZ1 in cancer but its cancer-related function is still debated between being a 

tumor suppressor or an oncogene. In support of the view that PATZ1 is a tumor 

suppressor, Mastrangelo and co-workers demonstrated that the human PATZ1 gene 

maps on the FRA22B fragile site (on chromosome 22) which suffers loss of 

heterozygosity in several solid tumors. Indeed, it has been found rearranged with 

EWS gene in a small round cell sarcoma, with the loss of heterozygosis of the 

wild-type PATZ1 allele (Mastrangelo et al. 2000; Burrow et al. 2009). In recent 

years, our research group has supported the tumor suppressor role for PATZ1, 

conducting different studies. First, we showed that in some cell lines PATZ1 is 

able to reduce the promoter activity of the proto-oncogene c-myc and may 

cooperate with the oncoprotein BCL6 in the inhibition of its own promoter. In 

particular, we demonstrated that PATZ1 can bind BCL6 exon 1 and negatively 

modulate BCL6 promoter activity in GC-derived lymphoma B cells, thus acting as 

a tumor suppressor in lymphomagenesis (Fedele et al. 2000, Pero et al. 2012). 
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Moreover, we demonstrated that in testicular seminomas, teratomas and 

embryonal carcinomas there is a significant overexpression of PATZ1; however, it 

localized in cytoplasm rather than nucleus, suggesting a reduction of its 

transcriptional function (Fedele et al. 2008). Interestingly, it has been also shown 

that the delocalization of PATZ1 in testicular seminomas depends on estrogen 

receptor- levels and the translocation from cytoplasm to the nucleus is mediated 

by cAMP (Esposito et al. 2012a), as it was previously demonstrated in other cell 

systems, such as PC3M prostate carcinoma cells and normal fibroblasts (Yang et 

al. 2010). Yang and co-workers demonstrated that PATZ1 binds the RIα subunit of 

the cAMP-dependent protein kinase in the cytoplasm, and it is known that 

alteration of RIα expression, and then of the cAMP signaling, may confer cell 

growth advantage. Therefore, the sequestration of PATZ1 in the cytoplasm 

through its interaction with RIα would enable PATZ1 to translocate into nucleus 

and transactivate/repress its target genes upon activation of the cAMP pathway 

(Yang et al. 2010). More recently, once again in support of a tumor suppressor role 

for PATZ1, we showed that PATZ1 could play a key role in opposing to thyroid 

carcinogenesis. Indeed, we demonstrated that PATZ1 is down-regulated in thyroid 

carcinomas compared to normal thyroid tissues, with an inverse correlation to the 

degree of cell differentiation. In particular, PATZ1 has been found significantly 

further down-regulated in poorly differentiated and anaplastic thyroid cancers 

compared to the papillary histotype, also resulting  increasingly delocalized from 

the nucleus to the cytoplasm proceeding from differentiated to undifferentiated 

thyroid carcinomas. More interestingly, restoration of PATZ1 expression in three 

thyroid cancer-derived cell lines, all characterized by fully dedifferentiated cells, 

significantly inhibited their malignant behaviors, including in vitro proliferation, 

anchorage-independent growth, migration and invasion, as well as in vivo tumor 

growth. Consistent with recent studies showing a role for PATZ1 in the p53 

pathway, we showed that ectopic expression of PATZ1 in thyroid cancer cells 

activates p53-dependent pathways opposing epithelial-mesenchymal transition 

(EMT) and cell migration to prevent invasiveness (Chiappetta et al. 2014). Finally, 

a strong effort to the tumor-suppressor hypothesis derived by the analysis of 

PATZ1 knock-out mice carried out in our laboratory. In fact, we have shown that 

both heterozygous and homozygous Patz1 knock-out mice spontaneously develop 

tumors, including BCL6-expressing Non-Hodgkin lymphomas, sarcomas, 

hepatocellular carcinomas and rare lung adenocarcinomas (Pero et al. 2012). In 

particular, at the age of 4-24 months (average of 19 months), pathological analysis 

demonstrated that 9 out 63 Patz1 +/+ mice, 50 out of 75 Patz1 +/- mice, and 9 out 

of 11 Patz1 -/- mice developed multiple neoplastic lesions, including both 

malignant tumors and benign lymphoproliferative diseases (Pero et al. 2012). All 

the tumors raised in heterozygous animals do not lose or mutate the second wild-

type allele, and express the wild-type PATZ1 protein, thus excluding loss of 
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heterozygosity as an explanation for the increased occurrence of tumors in Patz1 

+/- mice compared to Patz1 +/+ mice and suggesting an haploinsufficient tumor 

suppressor role for PATZ1. Consistent with the role of PATZ1 in BCL6 

autoregulation, Patz1-knock-out mice developed thymus hyperplasias or 

lymphomas and showed increased levels of BCL6, thus suggesting that PATZ1 

causes up-regulation of BCL6 expression, which in turn could be responsible for 

the thymus pathological phenotype. This hypothesis was validated crossing Patz1 

+/- mice with Bcl6 +/- mice to generate double mutants that had shown a normal 

phenotype rescue, indicating a key role for BCL6 expression in its pathologic 

development (Pero et al. 2012).  

 On the other hand, an oncogenic role for PATZ1 has also been suggested. It 

has been shown that PATZ1 is capable to activate c-myc in a B cellular context 

(Kobayashi et al. 2000), is overexpressed in colon carcinomas (Tian et al. 2008) 

and its down-regulation by siRNA either blocks the growth or induces apoptosis of 

cell lines derived from colorectal cancer or gliomas, respectively (Tian et al. 2008; 

Tritz et al. 2008). In addition, a recent paper by Keskin and co-workers showed 

that PATZ1 can interact and inhibit the DNA binding and transcriptional activity 

of p53 in colon cancer cells, once again suggesting an oncogenic role for PATZ1 

in colon cancer (Keskin et al. 2015). 

The controversial role of PATZ1 in tumorigenesis could be easily explained 

considering that its transcriptional modulation is highly dependent on specific 

molecular partners of a particular cellular context. Moreover, as for other well 

known architectural factors, it is possible an involvement in the development of 

neoplastic disease either if hyper- or hypo-expressed, stressing the great 

importance of the correct gene dosage for these factors. 

 

1.7 Thyroid cancer  

Thyroid cancer is the most common endocrine malignancy and its incidence is 

predicted to become the fourth leading cancer diagnosis by 2030 (Rahib et al. 

2014). Many studies have provided evidences for this increase; however, why 

thyroid cancer incidence keeps rising is still debated and there are conflicting 

reports of factors leading to the increase in its incidence (Ito et al. 2013; Rahib et 

al. 2014). The thyroid carcinoma is a good multi-step carcinogenesis model 

because it differs in malignant potential as a result of different genetic alterations 

(Figure 5). The majority of thyroid carcinomas (over 95%) derive from follicular 

thyroid cells, also known as thyroid epithelium or thyroid principal cells, 

responsible for thyroid hormone production and secretion, while a minority (3-

5%), named medullary thyroid carcinomas, originates from para-follicular or C-

cells (Kondo et al. 2006; Rossing 2013). Thyroid tumors are divided into benign 
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and malignant tumors; while benign tumors are represented by goiters and 

follicular adenomas (FTA), malignant tumors,  histologically thyroid carcinomas, 

can be classified into papillary (PTC), follicular (FTC), and anaplastic thyroid 

cancer (ATC) (Guan et al. 2009). The most common follicular cell-derived 

carcinomas are PTCs, which account for 80–90% of all thyroid cancers and have a 

5-year survival above 90% (Kondo et al. 2006). PTCs are characterized by the 

classic papillary architecture and cells with typical nuclear alterations (ground-

glass nuclei). Often, they are multifocal and tends to metastasize to regional lymph 

nodes (De Lellis et al. 2004). The second most common follicular cell-derived 

carcinomas are FTCs, accounting for 10% of thyroid cancers (Kondo et al. 2006). 

The frequency of distant metastases at the time of diagnosis of FTCs is up to 20%. 

Nevertheless, the prognosis of FTCs is still favorable with a 5-year survival close 

to 90% (Kondo et al. 2006). FTCs are the malignant counterparts of benign FTAs, 

which represent the most common follicular cell-derived tumors of the thyroid 

(Faquin 2008). The sole morphological feature differentiating follicular thyroid 

adenomas from FTCs is the lack of invasion (capsular and/or vessel); indeed, 

invasion is the diagnostic criterion for FTCs (Faquin 2008). Poorly differentiated 

(PDTC) and undifferentiated thyroid cancer, also known as ATC, represent a small 

subset of follicular cell-derived cancers with a poor prognosis. The growth patterns 

of ATCs and PDTCs are highly invasive and more than 50% of patients have 

distant metastases at the time of diagnosis (Kondo et al. 2006). The 5-year survival 

rate of ATCs is no more than 5%, illustrating why this tumor is considered one of 

the most fatal human cancers (Kebebew et al. 2005). PDTCs and ATCs can 

develop de novo although many of them arise through the process of stepwise 

dedifferentiation of PTCs and FTCs (Nikiforov and Nikiforova 2011). The theory 

of sequential progression of well-differentiated thyroid carcinoma (WDTC) trough 

the spectrum of PDTC to ATC is supported by the presence of pre- or co- existing 

WDTC with less differentiated types and the common core of genetic loci with 

identical allelic imbalances in co-existing well-differentiated components (van der 

Laan et al. 1993). Similar to other cancer types, thyroid tumor initiation and 

progression may be separate events and occur through gradual accumulation of 

various genetic (rearrangements that activate proto-oncogenes, point mutations 

and loss of tumor suppressor function) and epigenetic alterations, including 

activating and inactivating somatic mutations, alteration in gene expression 

patterns, micro-RNA dysregulation and aberrant gene methylation (Kim et al. 

2014). A molecular analyses conducted by Jung and co-workers revealed three 

important trends in the mutational composition of PTCs over time: (1) the overall 

proportion of Ras point mutations increased significantly after 2000, and this was 

entirely due to increases in the follicular variant of PTC, (2) the proportion 

of BRAF mutations was largely stable, although it increased significantly within 

the classic papillary type of PTC, and (3) the proportion 
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of RET/PTC rearrangements significantly decreased, suggesting that recent 

increases in thyroid cancer are likely not due to ionizing radiation exposure (Jung 

et al. 2014).  

In PTCs non overlapping mutations of genes involved in the activation pathway 

of mitogen-activated protein kinase (MAPK), such as RET, TRK, RAS and 

BRAF, have been found in about 70% of the cases (Kimura e al. 2003, Soares et 

al. 2003, Frattini et al. 2004). Indeed, a fraction of about 30% of PTCs present a 

typical gene alteration consisting in the rearrangement of the RET proto-oncogene 

(Santoro et al 2004). The RET/PTC rearrangement consists in the fusion of the 

tyrosine kinase domain (TK) of RET with other genes that provide the chimeric 

gene of promoter and 5' coding region. In about 10% of PTC cases, 

rearrangements of the gene coding for TRK, another TK  protein, which 

determines its fusion to partner genes similarly to RET/PTC rearrangements, were 

identified. At least ten different types of RET/PTC rearrangements have been 

reported (Nikiforov 2002). RET/PTC1 was generated by the fusion of RET TK 

domain with the 5’ terminal region of the gene CCD6 (Grieco et al. 1990), 

whereas in RET/PTC3 the TK domain of RET is fused to the RFG gene (Santoro 

et al. 2004).  

Approximately 45% of PTCs and 25% of PTCs-derived ATCs harbor a 

thymine-to-adenine transversion (T1799A) point mutation, in the gene encoding 

the serine/threonine-kinase B-type Raf kinase (BRAF), with substitution of valine 

by glutamate (V600E). Mutated BRAF generates a constitutive activation of the 

MAPK signaling pathway, which plays a critical role in transmitting proliferative 

signals generated by cell surface receptors and cytoplasmic signaling elements, to 

the nucleus (Lopes and Fonseca 2011; Guan et al. 2009). In PTCs, BRAF mutation 

and RET/PTC rearrangements are mutually exclusive and cannot be found 

simultaneously in the same patients, yet they are not completely equivalent, since 

it has been shown that PTCs positive for BRAF are more aggressive than those 

positive for RET/PTC (Kimura et al. 2003; Soares et al. 2003).  

Ras genes (K-RAS, H-RAS, and N-RAS) mutations represent early molecular 

lesions. Point mutation in codons 12, 13 and 61, are observed in 10-20% of PTCs 

(Namba et al. 1990; Vasko et al. 2004), and are frequently found in FTAs, which 

are considered FTCs precursors. Mutations of Ras genes are also observed in 40-

50% of conventional FTCs, while 35% of conventional FTCs presents the 

PAX8/PPARγ rearrangement (Pallante et al. 2010). The PAX8/PPARγ 

rearrangement leads to the fusion between a portion of the PAX8 gene, which 

encodes a paired domain transcription factor, and PPARγ gene (Kroll et al. 2000); 

this fusion results in strong overexpression of the chimeric PAX8/PPARγ protein 

(Kroll et al. 2000; Sahin et al. 2005), although the mechanism of its transforming 

activity remains to be fully understood.  
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In PDTCs RET/PTC rearrangements (13%) and mutations in the Ras (46-55%) 

and BRAF (12-17% ) genes were identified, while in the ATC only mutations of 

Ras (6-52%) and BRAF (25-29%) genes were reported. In more advanced stages 

of thyroid carcinogenesis, alterations of PI3K and PTEN were also found (Paes 

and Ringel 2008). The molecular alteration that characterizes ATCs compared 

with WDTCs is the mutation of the p53 tumor suppressor gene. Almost all ATCs 

show inactivation of p53 and is therefore highly probable that it is the deficiency 

of p53, combined with mutations of oncogenes such as Ras and BRAF, to 

determine the high proliferative index and high aggressiveness of this tumor. 

Indeed, p53 mutations are common to both PDTCs (17-38%) and ATCs (67-88%), 

but rare or absent (0-9%) in WDTCs (Ito et al. 1992; Donghi et al. 1993; Fagin et 

al. 1993). Even though critical molecular mechanisms of thyroid carcinogenesis 

have been clarified, other molecular steps of neoplastic progression still need to be 

investigated. 

 
 

Figure 5. Model of multi-step carcinogenesis of thyroid tumors. Three distinct pathways have 

been proposed for the initiation of thyroid tumors including hyper-functioning follicular thyroid 

adenoma, FTC and PTC. Genetic defects that result in activation of RET or BRAF represent 

frequent early initiating events associated with radiation exposure that leads to PTC development. 

Ras mutations represent frequent early initiating events, associated with iodine deficiency, that lead 

to FTC development. By contrast, most PDTCs and ATCs are considered to derive from pre-

existing well-differentiated thyroid carcinoma through the accumulation of additional genetic 

events that include nuclear accumulation of β-catenin (encoded by CTNNB1) and p53 inactivation.  
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1.8 MicroRNA 

MicroRNAs (miRNAs or miRs) are endogenous small non-coding single-

stranded RNAs of ~22 nucleotides in length, first described in 1993 when Ambros 

and colleagues discovered a gene, Lin4, that affected the development in 

Caenorhabditis Elegans (Lee et al. 1993). After these seminal findings, the 

cloning and characterization of small, ~22 nucleotides long, members of the non-

protein coding RNA family, has led to the identification of more than 1300 

miRNAs, for which the main feature is to negatively regulate the gene expression 

at post-transcriptional level (Iorio and Croce 2009; Croce 2009; Pallante et al. 

2014). 

MiRNA genes are evolutionarily conserved and may be located either within 

the introns or exons of protein-coding genes (70%) or in intergenic areas (30%). 

Most of the intronic or exonic miRNAs are oriented in sense with their host gene, 

suggesting that they are transcribed in parallel with their host transcript, while 

others are transcribed from intergenic regions or gene deserts comprising 

independent transcription units. Frequently, miRNAs are located in clusters and 

transcribed as polycistrons, therefore showing similar expression patterns (Garzon 

et al. 2009; Nikiforova et al. 2009). Generally, they are transcribed by Polymerase 

II into long primary transcripts, up to several kilobases, called pri-miRNA, that are 

subsequently processed in the nucleus by the enzyme Drosha to become ~70-nt-

long precursor strands, or pre-miRNA (Figure 6). Subsequently, this precursor is 

exported by exportin 5 to the cytoplasm, where it is bound to the RNAse Dicer and 

to the RNA-induced silencing complex (RISC). RISC is composed of the 

transactivation-responsive RNA binding protein (TRBP) and Argonaute 2 (Ago2). 

First, Ago2 cleaves the pre-miRNA 12 nt from its 3’ end (forming Ago2-cleaved 

precursor miRNA) and then the Dicer cleaves the Ago2-cleaved precursor miRNA 

into a mature ~22 nt miRNA duplex. While the active or mature strand is retained 

in RISC, the passenger strand is removed and degraded (Garzon et al. 2009). At 

this point, the active and mature miRNAs can negatively regulate their targets in 

one of two ways depending on the degree of complementarity between the miRNA 

and its target. MiRNAs that bind with perfect or nearly perfect complementarity to 

protein coding mRNA sequences induce the RNA-mediated interference (RNAi) 

pathway. Briefly, mRNA transcripts are cleaved by ribonucleases in the miRNA-

associated, multiprotein RNAinduced- silencing complex (miRISC), which results 

in the degradation of target mRNAs. This mechanism of miRNA-mediated gene 

silencing is commonly found in plants, but miRNA-directed mRNA cleavage has 

also been shown to occur in mammals. However, most animal miRNAs are 

thought to use a second mechanism of gene regulation that does not involve the 

cleavage of their mRNA targets. These miRNAs exert their regulatory effects by 

binding to imperfect complementary sites within the 3′ untranslated regions 
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(UTRs) of their mRNA targets, and they repress target-gene expression post-

transcriptionally, at the level of translation, through a RISC complex that is similar 

to, or possibly identical with, the one that is used for the RNAi pathway. 

Consistent with translational control, miRNAs that use this mechanism reduce the 

protein levels of their target genes, but the mRNA levels of these genes are barely 

affected. However, recent findings indicate that miRNAs that share only partial 

complementarity with their targets can also induce mRNA degradation, but it is 

unclear if translational inhibition precedes destabilization of the gene targets in 

these cases (Esquela-Kerscher and Slack  2006). The interplay between miRNAs 

and mRNAs constitutes a powerful regulatory network that is involved in several 

fundamental processes, such as cell growth and differentiation, development, 

metabolic regulation and apoptosis as well as in pathological processes, including 

cancer in a range of organisms, such as C. Elegans, plants, D. Melanogaster and 

mammals (including humans) (Croce 2009; Pallante et al. 2014). This regulatory 

network is extremely complex; in fact, in humans a single miRNA is able to 

regulate several mRNAs, and one gene can be under the control of multiple 

miRNAs (Pallante et al. 2014). 
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Figure 6. The biogenesis of microRNAs. MicroRNA (miRNA) genes are transcribed by RNA 

Polymerase II in the nucleus to form large pri-miRNA transcripts, then processed by Drosha and its 

co-factor, Pasha, to release the ~70-nucleotide pre-miRNA precursor product (the mature miRNA 

sequence is shown in red) RAN–GTP and Exportin 5 transport the pre-miRNA into the cytoplasm. 

Subsequently, Dicer processes the pre-miRNA to generate a transient ~22- nucleotide miRNA 

duplex. This duplex is then loaded into the miRISC complex, where the mature single-stranded 

miRNA (red) is preferentially retained. The mature miRNA then binds to complementary sites in 

the mRNA target to negatively regulate gene expression in one of two ways that depend on the 

degree of complementarity. The full complementarity leads to mRNA cleavage, while the 

imperfect complementarity leads to translational repression (Esquela-Kerscher and Slack  2006). 
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1.9 MicroRNA in thyroid cancer. 

Increasing evidences have revealed the involvement of miRNAs in human 

malignancies. The deregulation of miRNAs expression is believed to be an 

important regulator of tumor development and progression. Due to its repression 

effect, deregulation of specific miRNAs could lead to the repression of tumor 

suppressor gene and/or increase of oncogene expression. Consequently, these 

molecular changes favor cell proliferation, differentiation and apoptosis (Li et al. 

2013). Like a protein-coding gene, miRNAs can act either as tumor suppressors or 

oncogenes; in fact, their loss or gain of function can initiate or contribute to the 

malignant transformation of a normal cell. Moreover, miRNA expression profiles 

resulted in being different not only between tumors and normal tissues, but also 

between different subtypes of tumors and between primary tumors and metastatic 

tumors (Li et al. 2013; Pallante et al. 2014). Several studies have analyzed miRNA 

expression in numerous and different types of thyroid tumors, evidencing a 

miRNA deregulation in cancer tissues compared to their normal counterpart 

(Pallante et al. 2006; He et al. 2005; Takakura et al. 2008). In thyroid tumors 32% 

of all known human miRNAs resulted upregulated and 38% downregulated with 

more then 2-fold change as compared to normal tissues (Nikiforova et al. 2009). 

Moreover, the miRNA expression profile presents a significant variability between 

different kinds of thyroid cancers, even if they originate from the same type of 

thyroid cells (Nikiforova et al. 2008). In fact, papillary tumors, conventional 

follicular tumors (adenomas and carcinomas), and oncocytic follicular tumors 

(adenomas and carcinomas) revealed separate clusters. Less differentiated tumors 

(PDTCs and ATCs) did not show individual clusters and were scattered within the 

PTC and FTC clusters or separately, supporting the concept of stepwise 

progression and dedifferentiation of thyroid tumors (Nikiforova et al. 2009). 

In the last years, several studies by the group of Prof. Fusco, a major 

contributor in this field, demonstrated that several miRNAs have a crucial role in 

thyroid cancer. In particular, they showed that: in PTCs, microRNAs -221 and -

222 are up-regulated and play a key role into neoplastic transformation by 

targeting p27 (Kip1) protein, a key regulator of cell cycle (Visone et al. 2007a); in 

the ATCs there is a significant decrease in miR-30d, miR-125b miR-26a and miR-

30a-5p,  in comparison to normal thyroid tissue (Visone et al. 2007b); in FTCs, 

miR-191, miR-142-3p and Let-7a are downregulated, playing a role in thyroid 

neoplasias of the follicular histotype, by targeting proteins involved in cell cycle, 

Hox gene expression and adhesion, such as CDK6, ASH1L, MLL1 and  FXYD5 

(Colamaio et al. 2011; 2012; 2015). Moreover, the down-regulation of miR-25 and 

miR-30d could contribute to the process of thyroid cancer progression, leading to 

development of anaplastic carcinomas, targeting the polycomb protein Enhancer of 

Zeste Homolog 2 (EZH2) (Esposito et al. 2012b); in thyroid adenomas, goiters and 
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carcinomas, miR-1 expression is drastically down-regulated, in comparison with 

normal thyroid tissues, resulting in enhancement of proliferation and cell 

migration, due to the miR-1 capacity to target cyclin D2, the receptor for the 

stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-

1/CXCL12 (Leone et al. 2011); up-regulation of miR-146b and down-regulation of 

miR-200b contribute to the cytotoxic effect of HDAC inhibitors on Ras-

transformed thyroid cells (Borbone et al. 2013).  

Recent studies have demonstrated that in FRTL5, well characterized normal rat 

thyroid epithelial cells, extensively used to study the molecular mechanisms of 

neoplastic transformation in vitro, the oncogene Ras is able to drive cell 

transformation toward an undifferentiated phenotype, resembling that of ATC and 

characterized by a high migratory and invasive aptitude (De Vita et al. 2005; 

Frezzetti et al. 2011; De Menna et al. 2013). Using a tamoxifen-inducible 

construct in these cells, De Vita and co-workers demonstrated that activation of 

oncogenic Ras is able to induce aberrant expression of miRNAs (Landgraf et al. 

2007). Among the top scored up-regulated miRNAs, there was miR-21, which 

they showed to play an important role in oncogenic Ras-induced cell proliferation 

(Frezzetti et al. 2011), but other miRNAs, including miR-29b, appears 

significantly up-regulated downstream of oncogenic Ras (Landgraf et al. 2007).  

At the moment, the exact biological roles of miRNAs in thyroid carcinogenesis 

remain to be fully elucidated but it seems reasonable that the distinctive pattern of 

miRNA expression in thyroid tumors compared to normal thyroid tissue may be 

useful in diagnosis and/or therapy of thyroid neoplasia and that different miRNA 

expression patterns in different types of thyroid tumors could be useful tools for 

their classification (Table 1). 
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Table1. MiRNAs deregulated in thyroid cancer (Pallante et al. 2014) 

 

Upregulated Downregulated 

  

Papillary thyroid carcinoma  

miR-181a, miR-221, miR-222, miR-146, 

miR-155, miR-220, miR-21 

miR-26a-1, miR-345, miR-138, miR-219 

miR-221, miR-222, miR-181b, miR-213, 

miR-20 

Let7f, miR-142, miR-140, miR-199, 

miR-151 

miR-221, miR-222, miR-21, miR-31, 

miR-172, miR-34a, miR-213, miR-181b, 

miR-223, miR-224 

miR-218, miR-300, miR-292, miR-345, 

miR-30c 

 miR-30, miR-26, Let7 

miR-187, miR-221, miR-222, miR-146b, 

miR-155, miR-122a, miR-31, miR-205, 

miR-224 

miR-1 

miR-221, miR-222, miR-200a, miR-200b, 

miR-200c, miR-141 

miR-191 

miR-146b, miR-146-3p, miR-146-5p, 

miR-221, miR-222, miR-222-5p, miR-

375, miR-551b, miR-181-2-3p, miR-99b-

3p 

 

miR-146a, miR-146b, miR-221, miR-222  

  

  

Follicular thyroid carcinoma  

miR-197, miR-346  

miR-96, miR-146b, miR-155, miR-187, 

miR-181b, miR-182, miR-200a, miR-221, 

miR-222, miR-224 

miR-191, Let7a 

miR-221, miR-222, miR-96, miR-182, 

miR-597 

miR-199b-5p, miR-144, miR-199b-3p, 

miR-199a-5p, miR-144 

miR-182, miR-183, miR-221, miR-222, 

miR-125a-3p 

miR-542-5p, miR-574-3p, miR-455, 

miR-199a 

miR-21  

  

  

Anaplastic thyroid carcinoma  

miR-21 miR-25, miR-30d, miR-125b, miR-26a, 

miR-30a-5p 

miR-17-5p, miR-17-3p, miR-18a, miR-

20a, miR-92-1 

miR-200, miR-30 

miR-146a miR-1, miR-138 
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1.10 miR-23b and miR29b in cancer 

Structure, function, and regulation of miR-29b are highly conserved in human, 

mouse and rat and contains miR-29b-1 and miR-29b-2 (Liu et al. 2014). MiR-29b-

1 is transcribed into the same primary transcript from a locus at chromosome 7q32 

and separated by 652 bases, which coincides with a common fragile site (FRA7H), 

while miR-29b-2 is from the same transcript, located on 1q32, separated by 507 

bases; since the mature miR-29 family members share the same seed sequence, 

which determines the target sequences, the genes that miR-29s regulate are nearly 

the same (Wang et al. 2013). In the last years, several studies reported that miR-

29b was highly expressed in normal tissues and down-regulated in different types 

of cancer, including gastric cancer, prostate cancer, breast cancer, lung cancer and 

glioblastomas, affecting several biological processes, such as proliferation, 

apoptosis, invasion and metastasis, therefore supporting, a tumor suppressor role 

(Wang et al. 2013). Gene expression analysis of miR-29b-overexpressing acute 

myeloid leukemia (AML) cells showed the suppressive effect on cell cycle 

regulatory factor CDK6 (Liu et al. 2014; Garzon et al., 2009). Down-regulation of 

miR-29b targets CDK6 directly and leads to up-regulation of CDK6 in mantle cell 

lymphoma (MCL). Overexpression of cyclin D1 was always found in MCL, which 

leads to the acceleration of G1-S cell-cycle progression. MiR-29b further 

attenuates cell-cycle progression and suppresses tumor cell proliferation, which 

demonstrated the cooperation between CDK6 and cyclin D1 (Zhao et al. 2010). 

The miR-29b has been shown to be correlated with good prognosis in patients with 

AML, and functions as a tumor suppressor in leukemic blasts by targeting 

proliferation pathways, apoptosis and cell cycle (Garzon et al. 2008). Moreover, in 

cholangiocytes/cholangiocarcinoma, miR-29b targeted MCL1, a pro-survival 

member of the Bcl2 family protein, and sensitized tumor cells treated with tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis (Mott et al. 

2007). Very recently, it has been shown that miR-29s (including miR-29a-c) 

inhibit the malignant behavior of glioblastoma cells by targeting CNMT3A and 3B 

(Xu et al. 2015). Finally, it has been reported that miR-29b is involved in 

epithelial-mesenchymal transition (EMT), a process by which epithelial cells lose 

their cell polarity and cell-cell adhesion, and gain migratory and invasive 

properties to become mesenchymal stem cells. In fact, miR-29b directly targets 

Snail to inhibit tumor metastasis in prostate cancer cells. (Ru et al. 2012). 

Consistently, exogenous expression of miR-29b inhibits Mcl-1 and MMP-2 

protein expression, and affects metastatic cascade including tumor invasion, 

motility, cellular survival, and proliferation (Ru et al. 2012).  

On the other hand, a number of papers describes an oncogenic role for miR-

29b. In bladder urothelial cancer cells, miR29b-1 and miR-29c levels were higher 

than normal urothelial cells, which growth was suppressed by Knockdown of both 
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miRNAs (Xu et al. 2013). Furthermore, Pekarsky and co-workers demonstrated a 

crucial role for miR-29b in indolent Chronic Lymphoid Leukemia (CLL), showing 

it was up-regulated in indolent CLL compared to normal tissues and induces 

indolent CLL when overexpressed in mice (Pekarsky et al. 2006; Santanam et al. 

2010). Finally, in thyroid cells, miR-29b up-regulation was induced upon a 

stimulus to proliferate and its overexpression inhibited thyroid cell growth, as 

further detailed below (Leone et al. 2012). 

miR-23a and miR-23b belong to the miR- 23a/24/27a cluster, which is located 

on chromosome 19p13.12 and the miR-23b/27b/24-1 cluster which is located on 

chromosome 9q22.32, respectively (Ma et al. 2014b). Several studies reported that 

miR-23s are involved in acute lymphoblastic leukemia (ALL), AML, 

glioblastoma, hepatocellular carcinoma, gastric cancer, pancreatic cancer and 

uterine leiomyoma (Ma et al. 2014b; Donadelli et al. 2014; Shang et al. 2014; Cao 

et al. 2012; Cheng et al. 2014). As for miR-29b, also miR-23b has a dual role in 

carcinogenesis. In fact, it has been found to be either up-regulated or down-

regulated in tumors compared with normal tissues, functioning as either tumor 

promoter or tumor suppressor (Li et al. 2013). In a variety of human tumors, 

downregulation of miR-23b have been demonstrated to promote cancer 

progression. For example, Li and co-workers (2014) reported that decreased 

expression of miR-23b was significantly correlated with tumor aggressiveness and 

poor prognosis of patients with epithelial ovarian cancer and could suppress 

ovarian cancer progression by targeting runt-related transcription factor-2; another 

group have demonstrated that miR-23b was involved in cytoskeletal remodelling 

through the enhancement of cell-cell interactions, reduction of cell motility and 

invasion during cancer progression (Pellegrino at al. 2013); Majid et al. (2012) 

have revealed that miR-23b expression was dramatically reduced in bladder cancer 

cell lines and tumor tissues compared to the non-malignant counterparts, and 

conferred proliferative advantages, cell migration and invasion traits to these cells 

by regulating the expression of Zeb1, a direct target of this miRNA. Although the 

role of miR-23b as a tumor suppressor has been well established, many studies 

demonstrated that it can also acts as an oncomir. For example, it has been observed 

that the suppression of miR-23b could inhibit tumor survival, induce apoptosis and 

inhibit glioma invasion (Chen et al. 2012); Tian et al. (2013) showed that a 

combination of four miRNAs, including miR-23b, could promote prostate cancer 

cell proliferation by regulating PTEN and its downstream signals. In human gastric 

cancer, there has been only one report indicating that miR-23b was one of 16 

miRNAs upregulated in gastric cancer tissues, implying that this miRNA might be 

an oncomir for this cancer (Li et al. 2011). 

Both miR-23b and miR-29b have been recently reported as involved in thyroid 

cell proliferation (Leone et al. 2012). Indeed, Leone and co-workers demonstrated 

that treatment of rat thyroid cells (PC Cl3) with TSH, which induces entry into S 
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phase of the cell cycle, is associated with the up-regulation of mir-23b and miR-

29b. The expression level of these miRNAs increases as early as 30 min after TSH 

stimulation and lasts for at least 4 h before returning to the levels observed in 

quiescent cells (Figure 7). The authors also showed that both these miRNAs 

increase the proliferation rate of thyroid cells, leading to an increased 

accumulation of the PC Cl 3 cells in the S phase of the cell cycle (Figure 8). 

Finally, they reported experiments in vivo confirming that the up-regulation of 

miR-23b and miR-29b might have a role in thyroid cell proliferation. Indeed, both 

these miRNAs were found overexpressed in experimental murine PTU-induced 

models and in human goiters (Figure 9) (Leone at al. 2012). 

 

 

 

 
 

Figure 7. miR-23b, and miR-29b are up-regulated by TSH. qRT-PCR results showing 

expression of miR-23b (left panel) and miR-29b (right panel) in PC Cl3 rat thyroid cells at 

different time points of TSH treatment after starvation compared to untreated cells (Leone et al. 

2012). 
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Figure 8. Flow cytometric analysis of PC Cl 

3 cells untransfected (NT) or transfected 

with miR-23b, miR-29b, or the scrambled 

oligonucleotide. After transfection, the DNA 

of the transfected PC Cl 3 cells was analyzed 

72 h later by flow cytometry after propidium 

iodine staining. The transfection efficiency 

was about 85%. Each bar represents the 

mean value _ SE from three independent 

experiments performed in triplicate (P _ 0.05 

compared with the scrambled 

oligonucleotide) (Leone et al. 2012). 

 

 

 

 

 

 
 

Figure 9. Up-regulation of miR-23b and miR-29b experimental and human thyroid goiters 

compared to normal thyroid tissues. (Left Panels) qRT-PCR showing the relative expression of 

miR-23b and miR-29b in goiters from a cohort of 8 mice treated with propylthyouracil, compared 

to thyroids from untreated mice. (Right Panels) qRT-PCR showing the relative expression of miR-

23b and miR-29b in a cohort of 8 human goiters compared to normal thyroid tissue. The relative 

expression values indicate the relative change in the expression levels between goiters and normal 

thyroids, assuming that the value of normal thyroid tissue is equal to 1. The range of variability of 

miR-23b and miR-29b in normal thyroid tissues was less than 10% (Leone et al., 2012). 
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2. AIM OF THE STUDY 

Carcinoma of the thyroid gland is one of the most frequent malignancies of the 

endocrine system and its incidence has been steadily increasing in many regions of 

the world. Among the most frequent genetic alterations occurring in thyroid 

transformation, oncogenic mutations of Ras-family genes (K-Ras H-Ras, and N-

Ras) have been identified in all types of thyroid malignancies, leading to the 

suggestion that they are an early event in thyroid tumorigenesis; furthermore, 

mutated Ras genes are detected with higher frequency in poorly differentiated and 

undifferentiated thyroid cancers, suggesting that they could contribute to the 

partial or complete loss of differentiation, characteristic of the more aggressive 

thyroid cancers. Mutated Ras is also able to induce aberrant expression of 

miRNAs during the transformation of thyroid epithelial cells.  

The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) is a 

transcription factor whose expression is frequently de-regulated in human cancer; 

in particular PATZ1 results down-regulated in thyroid cancer and its restoration in 

human thyroid cell lines inhibits their malignant behaviors, including in vitro 

proliferation, anchorage-independent growth, migration and invasion, as well as in 

vivo tumor growth. 

The first aim of my study was to understand how PATZ1 is downregulated in 

thyroid cancer focusing on microRNAs. Then, I intended to explore the 

relationship between PATZ1 and Ras-induced thyroid transformation, whether 

PATZ1 downregulation is a direct consequence of Ras oncogenic activation, how 

PATZ1 is downregulated by activated Ras and whether down-regulation of 

PATZ1 plays a causal role in Ras-induced thyroid transformation. 

Elucidation of the molecular pathways downstream of oncogenic Ras, which 

are crucial for thyroid transformation, will help to find new therapeutic targets in 

thyroid cancer carrying Ras mutations. 
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3. MATERIALS AND METHODS 
 

3.1 Bioinformatic analysis  

For the identification of PATZ1 potentially targeted miRNAs it has been used 

on-line available tool miRanda (www.microrna.org). This tool is based on a 

combination of specific-base pairing rules and conservational analysis to score 

possible match between 3’UTR of specific genes with several miRNAs, using a 

dynamic programming algorithm weighted to favour 5’ complementarity to 

enumerate initial target sites. 

 

3.2 Cell cultures 

Continues rat thyroid cell lines FRTL5 and FRTL5-Ras were cultured in Ham’s 

F-12 medium and Coon’s modification supplemented with 5% CS, 5% L-

glutamine, 5% penicillin/streptomycin (GIBCO-BRL) and  in the presence of a 

mix containing six growth factors, 6H (10 nM TSH, 10 nM hydrocortisone, 100 

nM insulin, 5 mg/ml transferrin, 5 nM somatostatin, and 20 g/ml glycyl-histidyl-

lysine), in a 5% CO2 atmosphere. Human embryonic kidney HEK293 cells were 

cultured in DMEM supplemented with 10% FBS, 5% L-glutamine and 5% 

penicillin/streptomycin (GIBCO-BRL) in a 5% CO2 atmosphere. The selected cell 

clones of FRTL5-Ras cells and the control cells were cultured in Ham’s F-12 

medium and Coon’s modification supplemented with 5% CS, 5% L-glutamine, 5% 

penicillin/streptomycin (GIBCO-BRL) and  in the presence of a mix containing 

6H, in a 5% CO2 atmosphere. 

 

3.3 Transfections and plasmids 

HEK293 transfections were performed by Lipofectamine 2000 (Invitrogen) 

according to manufacturer’s instruction, with 100nM Scramble, 100nM miR-23b 

and 100nM miR-29b miRNA precursors (Ambion, Austin, TX) together with 

PGL-3-CTRL vector containing the 3’UTR of the PATZ1 variants 1/2 cloned 

downstream the firefly luciferase gene.  For the PATZ1-3'UTR luciferase reporter 

construct, the 1098bp 3'-UTR region of PATZ1 gene, variant 1/2, including 

binding sites for miR-32b and miR-29b was amplified from HEK293 cells DNA 

by using the following primers: Fw PATZ1 3’UTR V1/2: 5'-

ATATGATATCGGCAGCTGCTGTGTCC-3' and Rev PATZ1 3’UTR V1/2 5'-
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GCATGATATCGTACAAACATTTTTAAT-3'. The amplified fragment was cut 

with EcoRV and cloned into pGL3-Control firefly luciferase reporter vector 

(Promega, Madison, Wisconsin, USA) at the XbaI site. For stable transfection 

FRTL5-Ras cells were transfected by Fugene6 (Roche) according to 

manufacturer’s instruction with HA-PATZ1 plasmid encoding for PATZ1 variant 

4 or the empty vector pCEFL-HA, both expressing the gene for the resistance to 

neomycin. Stable transfectants were clonally selected in medium with 1g/ml 

neomycin (G418) (Life Technologies) for 10 days, and cell clones were screened 

for PATZ1 expression by qRT-PCR and Western blot analysis.  

 

3.4 Protein extraction, Western blotting and antibodies 

Cells were lysed in buffer containing 1% Nonidet P-40, 1 mmol/liter EDTA, 50 

mmol/liter Tris-HCl (pH 7.5), and 150 mmol/liter NaCl supplemented with 

Complete protease inhibitors (Roche Applied Science). Total proteins were 

resolved in a 8% polyacrylamide gel under denaturing conditions and transferred 

to nitrocellulose filters for Western blot analyses. Membranes were blocked with 

5% BSA in TBS and incubated with the primary antibodies. Membranes were then 

incubated with the horseradish peroxidase–conjugated secondary antibody 

(1:3.000) and the reaction was detected with a Western blotting detection system 

(enhanced chemiluminescence; GE Healthcare). The primary antibodies used are 

anti-PATZ1 antibody (polyclonal antibody raised against a conserved peptide 

recognizing all PATZ1 isoforms of rat, mouse and human origin). To ascertain that 

equal amounts of protein were loaded, the membranes were incubated with 

antibodies against the anti-vinculin protein (sc-7649) (Santa Cruz Biotechnology, 

Santa Cruz, CA). 

 

3.5 RNA extraction and qRT-PCR analysis 

Total RNA was isolated using TRI-reagent solution (Sigma, St Louis, MO, 

USA) and treated with DNase (Invitrogen). Reverse transcription was performed 

according to standard procedures (Qiagen, Valencia, CA). qRT-PCR analysis was 

performed using the Power SYBR Green PCR Master Mix (Applied Biosystems) 

according to manufacters’ instructions with the following primer sequences to 

amplify the indicated genes: 

hPATZ1all-V-Fw: 5’-TACATCTGCCAGAGCTGTGG-3’ 

hPATZ1all-V-Rev: 5’-TGCACCTGCTTGATATGTCC-3’ 

hG6PD-Fw: 5’-GATCTACCGCATCGACCACT-3’ 

hG6PD-Rev: 5’-AGATCCTGTTGGCAAATCTCA-3’ 
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To calculate the relative expression levels we used the 2-ΔΔCT method (Livak and 

Schmittgen, 2001). Primers specific for the glucose-6-phosphate dehydrogenase 

(G6PD) were used for normalization of qRT-PCR data. 

 

3.6 Luciferase assay 

For Luciferase assays, the pCMV-Renilla plasmid (Promega, Mannheim, 

Germany) was co-transfected with 3’UTR region of PATZ1 Variant 1/2. 

Luciferase and Renilla activities were assessed with the Dual-Light Luciferase 

system (Promega), according to the manufacturer’s protocol, 72 h after the 

transfection. Luciferase activity was normalized for the Renilla activity.  

 

3.7 Proliferation assay 

For the growth curves the cells (3 × 10
4
 cells/dish) were plated in a series of 6-

cm culture dishes and counted daily for 5 consecutive days through the Bürker 

chamber. The count was performed in the presence of  Trypan blue, a dye that 

penetrate in cells that have lost membrane integrity and which shows, therefore, 

dying cells. 

 

3.8 Flow cytometric analysis 

2 x10
5
 cells were plated and analyzed after 24h under normal culture conditions 

by flow cytometry  Briefly, cells were washed once with PBS, and fixed for 2 h in 

cold ethanol (70%). Fixed cells were washed once in PBS and treated with 40 

μg/ml ribonuclease A in PBS for 30 min. They were then washed once in PBS and 

stained with 50 μg/ml propidium iodide (Roche, Indianapolis, IN). Stained cells 

were analyzed with a flow cytometer (Accuri™ C6 flow cytometer,  BD 

 Biosciences, East Rutherford, New Jersey). The data were analyzed using a BD 

Accuri C6 software. 

 

3.9 Migration assays  

To detect the changed capacity of tumor cell migration, we performed a wound-

healing assay. Specifically, cells were digested with 0.25% trypsin and adjusted 

for a concentration of 5 × 10
5
 cells/ml of cell suspension, and then inoculated into 

60mm plates and cultured at 37°C overnight. In the next day, cells were cultured 

http://en.wikipedia.org/wiki/East_Rutherford,_New_Jersey
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in serum-free medium, reached approximately 95–100% confluence, and cell 

monolayer was wounded by 20 μl tips. The cells were incubated for 96 h. At 0h, 

24h, 48h, 72h, and 96h, cells were photographed under an inverted microscope. 

The migration assay was conducted using plates Transwell cell culture chambers 

according to described procedures (Corning Costar Corp., Cambridge, MA). 

Briefly, confluent cell monolayers were harvested with trypsin/EDTA, centrifuged 

at 1.200 rpm for 5 min, resuspended in medium without serum and without 6H and 

plated (5 × 10
4
 cells) to the upper chamber of a polycarbonate membrane filter of 8 

μM pore size. The lower chamber was filled with complete medium. The cells 

were then incubated at 37°C in a humidified incubator in 5% CO2 for 24h. Non 

migrating cells on the upper side of the filter were wiped off and migrating cells 

on the reverse side of the filter were stained with 0.1% crystal violet in 20% 

methanol for 30 min, washed in PBS 7.4 (137 mM NaCl; 2.7 mM KCl, 4.3 mM 

NaH2PO4), photographed and counted.  

 

3.10 Soft agar colony forming assay 

For soft agar assays 7 ml of mixture of serum supplemented medium and 0.5% 

agar  were added in a 60-mm culture dish and allowed to solidify (base agar). 

Next, on top of the base layer was added a mixture of serum supplemented 

medium and 0.35% agar (total of 2 mL) containing 2x10
5
 of FRTL5, FRTL5-Ras-

ctrl and FRTL5-Ras-PATZ1 cells (obtained as described before) and allowed to 

solidify (top agar). Subsequently, the dishes were kept in culture incubator 

maintained at 37
0
C and 5% CO

2
 for 40 days to allow for colony growth. After 40 

days the colonies were counted and photographed. 

 

3.11 Statistical analysis. 

 Student’s t-test was used to determine the significance for quantitative 

experiments. Error bars represent the standard errors (SE) of the average. 

Statistical significance for all the tests, assessed by calculating the p-value, was 

<0.05. 
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4. RESULTS 

4.1 Identification of predicted PATZ1-targeting miRNAs 

In order to identify miRNAs potentially able to down-regulate the expression of 

PATZ1 protein, we used the www.microRNA.org web system that is based on the 

miRanda application (Hohn et al. 2005) and uses the mirSVR predicted target site 

scoring method, giving a downregulation score and identifying a significant 

number of experimentally determined non-canonical and non-conserved sites 

(Betel et al. 2010). We searched miRNAs targeting each of the transcriptional 

variants of PATZ1, that share some similarities and diversity. In particular, Variant 

1 and Variant 2 share a common 3’-UTR (NM_014323.2/NM_032050.1); Variant 

3 includes 372 additional nucleotides (NM_032052.1) with respect to Variant 1 

and 2. Conversely, PATZ1 transcript Variant 4 has a completely different 3’-UTR 

(NM_032051.1), both in terms of sequence and length. The analysis identified 

several miRNAs as potential PATZ1-targeting miRNAs (Table 2). The targeting 

sites of these PATZ1-targeting miRNAs on the 3’-UTR of PATZ1 are extremely 

conserved among different species, as resulted by the PhastCons score (Figure 10).  

 
Table 2  PATZ1-targeting miRNAs 

Variants 1/2 Variant 3 Variant 4 

miR-22 miR-1271 miR-365 

miR-491-5p miR-96 miR-150 

miR-216b miR-136 miR-18a/b 

miR-361-5p miR-26a/b miR-31 

miR-544 miR-1297 miR-138 

miR-339-5p miR-185 miR-491-5p 

miR-142-3p + all V.1-2 miRs miR-107 

miR-29a/b/c  miR-103 

miR-376a/b  miR-340 

miR-24  miR-590-3p 

miR-421   

miR-653   

miR-134   

miR-200b/c   

miR-429   

miR-495   

miR-590-3p   

miR-448   

miR-153   

miR-490-3p   

miR-23a/b   

miR-383   

miR-543   

http://www.microrna.org/
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Due to its described up-regulation in thyroid cell proliferation and 

transformation (Leone et al. 2012; Landgraf et al. 2007), we focused our attention 

on miR-23b and miR-29b to validate their inhibitory effect on the 3’-UTR of the 

PATZ1 Variants 1 and 2. As shown in Figure 10, Panels A and B,  in which the 

miR/PATZ1 alignment is shown, the mirSVR score is -0.1870 for miR-29b and -

0.1391 for miR23b, predicting a significant down-regulation of PATZ1 protein 

and/or mRNA. 

 

 

Figure 10. Representation of alignment between miR-23b/miR-29b and PATZ1. Schematic 

representation of alignment between miR-29b (A) and miR-23b (B) and 3’UTR of PATZ1 variant 

1/2. For each alignment is reported the mirSVR and Phast Conserved scores, predicting down-

regulation and conservation, respectively. 

 

4.2 PATZ1 is a direct target of miR-23b and miR-29b 

In order to validate the prediction derived by the bioinformatic research, we 

transfected HEK293 cells, a human cell system which expresses significant levels 

of all Variants of PATZ1, with 100nM of either miR-23b or miR-29b synthetic 

miRNA precursor and evaluated PATZ1 protein levels by western blotting after 72 

hours, comparing the results with those obtained in cells transfected with the same 

amount of a scramble  synthetic miRNA precursor. As shown in Figure 11, Panel 

A, PATZ1 protein levels were significantly reduced in cells transfected with either 

miR-23b or miR-29b in comparison with the cells transfected with the scramble 

oligonucleotide. Moreover, to study if these two miRNAs also affected the 

expression of PATZ1 mRNA, quantitative real-time PCR (qRT-PCR) experiments 

was performed. The results indicate that miR-23b and miR-29b did not affect the 

expression of PATZ1 mRNA (Figure 11, Panel B). Finally, in order to 
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demonstrate that miR-23b and miR-29b target directly and, consequently, inhibit 

PATZ1 protein, we performed luciferase assays. In particular, we used a PGL-3-

CTRL vector containing the 3’-UTR of the PATZ1 Variants 1-2 cloned 

downstream the firefly luciferase gene. This reporter vector was transfected in 

HEK293 cells along with 100nM of synthetic miRNA precursors or the scramble 

control, and luciferase activity was assessed 72h after the transfection. As shown 

in Figure 11, Panel C, overexpression of either miR-23b or miR-29b significantly 

reduced luciferase activity in comparison with the same amount of scramble 

control. All together these results validate both miR-23b and miR-29b as direct 

down-regulators of PATZ1 expression.  

 

Figure 11. Effects of miR-23b and miR-29b on PATZ1. (A) 72h after transfection with miR-23b 

or miR-29b, PATZ1 protein expression significantly decreases, compared with the scramble 

control, as assessed by western blot. (B) qRT-PCR of RNA samples derived from the same 

experiment as in B, showing that the expression of PATZ1 mRNA does not change following 

transfection of either miR-23b or miR-29b. (C) In presence of either miR-23b or miR-29b the 

luciferase activity of a construct carrying the 3’UTR of PATZ1 Variant 1/2 significantly decreases 

in comparison with that of cells transfected with the scramble control.  Data in B and C show mean 

values + SE of three independent experiments performed in duplicate or triplicate, respectively. *, 

P <0.05; *** P < 0.001, as assessed by Unpaired T test. Vinculin was used for Western Blot 

control; G6pd was analyzed for qRT-PCR loading control and luciferase activity was normalized 

for the Renilla activity. 
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4.3 miR-23b and miR-29b target PATZ1 in thyroid cells 

To verify the effect of miR-23b and miR-29b on PATZ1 expression in a thyroid 

cell system, we used PC Cl3 rat thyroid cell line that keeps in vitro all the markers 

of thyroid cell differentiation, and represents an excellent system to study the 

mechanism regulating thyroid cell proliferation, which requires TSH for their 

growth (Fusco et al. 1987). Since it was previously reported that in PC CL3 cells 

miR-23b and miR-29b are up-regulated following stimulation with TSH (Leone et 

al. 2012), we analyzed the expression of PATZ1 mRNA after TSH stimulation and 

correlated it to the expression of the two miRNAs. As shown in Figure 12, we 

found an inverse correlation between PATZ1 and miRNAs expression at 30’ and 

2h following treatment with TSH. Then, miR-23b and miR-29b turned back to 

unchanged levels at 8h, 12h and 24h of TSH stimulation, whereas PATZ1 

expression was kept lowered at 8h and 12h, and even further down-regulated at 

24h.  

 

 

Figure 12. inverse correlation between PATZ1 and miR23b/miR29b expression following 

TSH treatment. miR-23b and miR29b result upregulated starting from 30’ up to 2h following 

treatment with TSH. Conversely, the expression of PATZ1 mRNA is downregulated, starting at 

30’, and remains low and further downregulated at 24h. U6 and G6pd were used as loading 

controls. Data shown represent mean values + SE of one experiment performed in duplicate. 
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Encouraged by these results, we studied the effects of both miRNAs on PATZ1 

protein and mRNA expression in thyroid cells. To this aim, we transfected PC Cl3 

cells with 100nM scramble control, miR-23b and miR-29b synthetic precursor and 

evaluated PATZ1 protein levels after 72h by western blotting. As shown in Figure 

13, Panel A, PATZ1 protein levels were reduced when PC Cl3 cells were 

transfected with miR-29b, but not with a scramble miRNA or miR-23b precursor, 

indicating that in thyroid cells miR-29b is confirmed to target  PATZ1, while miR-

23b does not. At the same time, we analyzed the effect of both miRs on PATZ1 

mRNA, performing qRT-PCR; as reported in Figure 13, Panel B, we did not 

observe any change in the expression of PATZ1 mRNA, confirming that miR-23b 

does not target PATZ1 in these cells and suggesting that targeting of PATZ1 

expression by miR-29b in this cell system acts only at post-transcriptional level. 

This also imply that the observed inverse correlation between PATZ1 and miR-

23b/miR-29b mRNA levels following TSH induction in PC Cl3 cells (Figure 12) 

is not a direct consequence of miRs up-regulation. 

 

 

 

Figure 13. miR-23b and miR-29b on PATZ1 protein and mRNA. (A) Western blot analysis 

showing downregulation of PATZ1 protein levels in presence of 100 nM of miR-29b, but not in 

presence of Scramble control or miR-23b. (B) qRT-PCR analysis showing that in presence of both 

niR-23b and miR-29b the expression of PATZ1 mRNA does not change significantly, as assessed 

by Unpaired T-test. Vinculin for Western blot and G6PD for qRT-PCR were also analyzed as 

loading controls. Data in B show mean values + SE of three independent experiments performed in 

duplicate. 
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4.4 Inverse correlation between PATZ1 and miR-29b in thyroid cells 

expressing oncogenic Ras 

By screening the www.microRNA.org web system for miRNA expression in 

thyroid cells, we found that miR-29b was one of the most up-regulated miRNAs in 

FRTL-5 rat thyroid cells following expression of an oncogenic Ras gene (Figure 

14, Panel A). In order to validate these findings, we used a similar cell system, in 

which the expression of an oncogenic Ras  was induced at different time points by 

a tamoxifen-inducible construct (De Vita et al. 2005), and analyzed the expression 

of PATZ1 and miR-29b. As shown in Figure 14, Panel B, consistent with the data 

extracted from the web, miR-29b was up-regulated following induction of Ras as 

early as after 24h of treatment with tamoxifen. Opposed to miR-29b, PATZ1 was 

down-regulated at both mRNA and protein levels, confirming the functional miR-

29b/PATZ1 interaction in thyroid cells (Figure 14, Panels B and C). The 

expression of miR-29b and PATZ1 was also analyzed in the two previously 

established V27 and V29 FRTL-5 cell clones stably expressing an oncogenic Ras 

(De Vita et al. 2005). As shown in Figure  14, Panels B and C, the inverse 

correlation between miR-29b and PATZ1 was confirmed and even emphasized in 

these cells. qRT-PCR analysis of FRTL-5 cells transfected with miR-29b 

precursor confirmed the targeting of PATZ1 in these cells at the mRNA level 

(Figure 14, Panel D), indicating that, differently from PC Cl3, the targeting of 

PATZ1 by miR-29b in FRTL-5 cells acts also at mRNA level. All together these 

results confirm that miR-29b targets PATZ1 in thyroid cells and suggest that 

PATZ1 is a downstream effector of the oncogenic Ras signaling. 

http://www.microrna.org/
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Figure 14. Inverse correlation between miR-29b and PATZ1 in Ras-induced FRTL5. (A) 

Results obtained by screening of www.microRNA.org, showing upregulation of miR-29b in FRTL-

5 rat thyroid cells following expression of an oncogenic Ras gene. (B) qRT-PCR analysis showing 

miR-29b up-regulation following induction of Ras as early as after 24h of treatment with tamoxifen 

and in two FRTL-5 cell clones stably expressing an oncogenic Ras (V27 and V29). Opposed to 

miR-29b, PATZ1 resulted strongly downregulated. (C) Western blot analysis of the same samples 

as in B, showing downregulation of PATZ1 also at protein level. (D) 72h after transfection with 

miR-29b, PATZ1 mRNA decreases, compared with the scramble control, as assessed by qRT-PCR. 

Vinculin for Western blot; U6 and G6PD for qRT-PCR were analyzed as loading controls. Data in 

B and D represent mean values + SE of three  and two independent experiments performed in 

triplicate, respectively.  

 

 

 

 

 

http://www.microrna.org/
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4.5 Restoration of PATZ1 expression in FRTL5-Ras cells 

In order to investigate a causal role of PATZ1 in thyroid carcinogenesis 

induced by oncogenic Ras, we used the stable clone FRTL5 V29, in which a high 

overexpression of miR-29b and a strong downregulation of PATZ1 was observed 

(Figure 14), to restore PATZ1 expression. Following the transfection of a PATZ1-

expression plasmid, and positive selection with the appropriate antibiotic, 15 

PATZ1-transfected and 5 empty vector-transfected clones, plus the remaining 

mass populations of both transfections, were analyzed for PATZ1 expression. As 

shown in Figure 15, restoration of PATZ1 expression was confirmed by qRT-PCR 

and Western-Blot analysis in most of PATZ1-transfected clones and the mass 

population compared to clones and mass population transfected with the empty 

vector. Then, we selected 3 FRTL5-Ras-PATZ1 clones and 4 negative controls for 

functional studies aimed to characterize growth and malignant properties of these 

cells. 

 
Figure 15. Restoration of PATZ1 expression in FRTL5-Ras cells. Western Blot (A) and qRT-

PCR (B) analysis of PATZ1 in cell clones and mass populations (MP) obtained by transfection of 

either a PATZ1-expressing plasmid (PA) or the empty vector (C-). Clones and MP circled in red 

(Panel A) and green (Panel B) were selected for further experiments. Vinculin for Western blot and 

G6PD for qRT-PCR were also analyzed as loading controls. Data in B represent mean values + SE 

of one experiment performed in duplicate. 
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4.6 PATZ1 expression in Ras-transformed thyroid cells inhibits proliferation 

In order to investigate whether re-expression of PATZ1 could affect 

proliferation of Ras-transformed thyroid cells, we performed growth curves on the 

selected clones. As reported in Figure 16, FRTL5-Ras-PATZ1 cells showed a 

significant decrease in the proliferation rate compared to control (FRTL-Ras-ctrl). 

Interestingly, the growth rate of FRTL5-Ras-PATZ1 was not significantly 

different from that of untransformed FRTL5 cells. On the other side, as expected, 

FRTL5-Ras-ctrl growth curves were undistinguishable from those of parental 

FRTL5 V29 cells (FRTL5-Ras).  

 

Figure 16. PATZ1 effects on the growth rate and apoptosis. Growth curves performed on 

different stably expressing PATZ1 cell clones of FRTL5-Ras compared to control cells expressing 

the empty vector (FRTL5-Ras-ctrl), parental cells (FRTL-Ras) and normal control cells (FRTL5). 

The curves show mean values + SE of 3 independent cell lines for both FRTL5-Ras-ctrl and 

FRTL5-Ras-PATZ1. Mean values + SE of one cell line counted in triplicate for each time point  

are shown for both FRTL5 and FRTL5-Ras. 

 

 

Tripan Blue exclusion test, which was applied during cell counting, did not 

reveal any significant rate of cell death that could account for the observed 

differences on the growth rate (data not shown).  In order to better investigate cell 

proliferation, we decided to analyze cell cycle by FACS. Preliminary results 

obtained in proliferating cells showed a decreased S and an enhanced G2/M phase 

in PATZ1-expressing cells compared to controls, suggesting a specific role for 

PATZ1 in the G2/M checkpoint (Figure 17). Further experiments, also using 

BrDU coupled to FACS analysis, which allows to better synchronize cells in the 

different phases of cell cycle, are still in progress to confirm these suggestions. 
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Figure 17. Propidium iodide flow cytometry (A, B, C) Representative FACS Plots of FRTL5-

Ras-ctrl, FRTL5-Ras-PATZ1 and FRTL5 cells. (D) The percentage of cells in each phase, as 

assessed by BD Accury C6 software, of the cell cycle is represented. 

 

4.7 PATZ1 expression in Ras-transformed thyroid cells inhibits migration 

Cell migration is a key feature of cancer cells responsible for tumor progression 

and metastasis (Bravo-Cordero et al. 2012). To analyze whether PATZ1 re-

expression affects the migratory capability in FRTL5-Ras cells, wound healing 

and Transwell migration assays were performed. Specifically, a wound with a 20l 

tip was performed in plates in which cells were at 95% confluence. The same field 

was photographed  at 0h, 24h, 48h, 72h and 96h (Figure18). For all time cells were 

starved, thus avoiding the possibility that the effect on cell proliferation could 

interfere with the read out of the assay. As shown in Figure 18, the migration 

capacity of PATZ1-transfectants was significantly reduced compared with that of 

control cells, suggesting that PATZ1 expression can inhibit migration of Ras-

http://www.ncbi.nlm.nih.gov/pubmed?term=Bravo-Cordero%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=22209238
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transformed thyroid cells. However, the wound-healing assay is particularly 

suitable for studying the effects of cell-matrix and cell-cell interactions on cell 

migration, but does not give insights on migration in response to a particular 

chemical signal, which is usually referred to as chemotaxis. To better investigate 

this issue we performed a Transwell assay, analyzing cell migration across 8-m 

membrane pores (Boyden chambers) in response to Calf Serum (CS) and 6H. The 

results of this migration assay were concordant with those of the wound healing 

assay, showing for all the three PATZ1-expressing clones a drastic reduction in 

their migration capability compared to controls (Figure19). 

 

 

Figure 18. PATZ1 overexpression in FRTL5-Ras cells delayed wound closure. Representative 

images of one control clone expressing the empty vector and one clone overexpressing PATZ1. 

After 96h the wound was completely closed in control cells, whereas it was still unclosed in cells 

transfected with PATZ1. The graph shows the percent of open wound at different time points 

expressed as mean values + SE of three control clones and three clones overexpressing PATZ1. 
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Figure 19. PATZ1 overexpression inhibits transwell migration. Representative images of a 

Transwell assay performed on FRTL5, FRTL5-Ras-ctrl and FRTL5-Ras-PATZ1 cells. The graph 

shows the mean values + SE of three clones for each transfected construct, obtained by counting 

the number of cells that have migrated underneath the Boyden chamber. ***, P < 0.001 as assessed 

by Unpaired T test. 
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4.8 PATZ1 expression in Ras-transformed thyroid cells inhibits anchorage-

independent growth  

In order to confirm the hypothesis that PATZ1 may have a tumor-suppressor 

function in Ras-transformed thyroid cells, the malignant phenotype of the 

tumorigenic FRTL5-Ras cells was analyzed in vitro by a soft agar assay, a 

common method to monitor anchorage-independent growth by measuring colony 

formation in a semisolid culture medium. As shown in Figure 20,  differently from 

FRTL5-Ras-ctrl cells, FRTL5-Ras-PATZ1 cells showed a drastic reduction of 

growth in soft agar. These results suggest that PATZ1 expression inhibits 

tumorigenic potential of Ras-transformed thyroid cells. However, further in vivo 

experiments, by generating xenografts in nude mice, are needed to better elucidate 

this issue. 

 

 

Figure 20. PATZ1 expression inhibits FRTL5-Ras capacity to grow in soft agar. 

Representative images of growth in soft agar of normal rat FRTL5, FRTL5-Ras-ctrl and FRTL5-

Ras-PATZ1 cells. Colonies with a diameter greater than 20 μm were counted after 40 days. The 

experiment was performed in quadrupled. *, P < 0.05, as assessed by Unpaired T test. 
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5. DISCUSSION 

Projections of cancer incidence revealed that by 2030 thyroid cancer, together 

with melanoma and uterine cancer, is going to surpass colorectal cancer and 

become the second highest diagnosis of cancer in women, and fourth in absolute 

cases (Rahib et al. 2014). Anyway, the average annual increase in thyroid cancer 

incidence is the highest among all cancers (Xing et al. 2013). Many studies have 

provided evidence for this increase; however, why thyroid cancer incidence keeps 

rising is still debated and there are conflicting reports of factors involved (Ito et al. 

2013). The thyroid carcinogenesis represents a good multi-step model of cancer 

disease because initiation and progression occurs through gradual accumulation of 

various genetic and epigenetic alterations, including somatic mutations, alterations 

in gene expression patterns, miRNA dysregulation and aberrant gene methylation 

(Nikiforov and Nikiforova 2011). Based on these alterations, there are different 

lesions, including benign, such as goiters or adenomas, and malignant neoplasms, 

including carcinomas of different degree of differentiation. Indeed, among 

carcinomas, we can  make a further classification according not only to the degree 

of differentiation, but also to the prognosis. At the first stage we meet well 

differentiated thyroid carcinoma (WDTC), associated with a favorable prognosis, 

which includes papillary and follicular tumors; an intermediate stage is represented 

by poor differentiated thyroid carcinoma (PDTC), while the last stage, combined 

with a poorer prognosis, is represented by undifferentiated thyroid carcinoma, also 

known as anaplastic thyroid cancer (ATC). PDTCs and ATCs can develop de 

novo, although many of them arise through the process of stepwise 

dedifferentiation of PTCs and FTCs (Nikiforov and Nikiforova 2011). The theory 

of sequential progression is supported by the presence of pre- or co- existing 

WDTC with less differentiated types and the common core of genetic loci with 

identical allelic imbalances in co-existing well-differentiated components (van der 

Laan et al. 1993). The different thyroid cancer hystotypes are characterized by 

distinct arrays of genetic alterations that mainly  activate the Ras signaling 

cascade. However, in PTC, where PATZ1 is less downregulated, Ras mutations  

are hardly detected, while in FTC, PDTC and ATC, where PATZ1 is more 

strongly downregulated, mutations of Ras are more frequently found (Kondo et al. 

2006; Chiappetta et al. 2014). Ras mutations occur as an early event in FTA and 

may increase the potential for malignant transformation. There are in fact recent 

data suggesting that Ras may predispose WDTC to subsequent de-differentiation 

into PDTC and ATC (Howell et al. 2013). Evidences that support  this theory, 

derived in part from in vitro findings using normal rat thyroid cells, showed that 

oncogenic Ras can promote chromosomal instability  (Saavedra et al. 2000; 

Abulaiti et al. 2006; Knauf et al. 2006). 
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However, even though critical molecular mechanisms of thyroid transformation 

have been clarified, other molecular steps of neoplastic progression still need to be 

investigated.  

Recently, our research group has shown that PATZ1 exerts an onco-suppressor 

role in thyroid cancer through the regulation, at least in part, of p53-target genes 

EpCam, RhoE and Caldesmon, thus resulting in reduced migration and invasion in 

vitro, as well as Mesenchimal-Epithelial transition (MET) and reduced tumor 

growth in vivo. Through functional studies in undifferentiated human cancer cell 

lines, in which PATZ1 was strongly downregulated, we have shown that the re-

expression of PATZ1 is able to revert, at least in part, the neoplastic phenotype in 

terms of proliferation, migration, invasiveness, soft-agar growth and  in vivo 

tumorigenicity (Chiappetta et al. 2014). Starting from this study, we questioned 

what could be the molecular mechanism underlying the down-modulation of 

PATZ1 in thyroid carcinogenesis. Among possible mechanisms, we decided to 

focus on miRNAs, which are the actual challenge in both diagnostic and therapy 

for biomedical purposes. Indeed, the miRNAs signature may be an additional 

diagnostic tool in the management of human tumors, especially when combined 

with the analysis for specific genetic lesions. Moreover, innovative therapy based 

on restoration of downregulated miRNAs or inhibition of upregulated miRNAs by 

antagomirs, could improve the response to treatment of patients affected by tumors 

refractory to conventional radiotherapy and chemotherapy, as could be the case of 

ATC. 

MiRNAs can act either as oncogenes or tumor suppressors, depending on the 

cellular context and specific diseases. This is the case of miR-23b and miR-29b, 

the two miRNAs that here I found to target PATZ1 in different cellular systems 

including thyroid cells. Several evidences suggest that miR-23b and miR-29b act 

as crucial regulators in a variety of cancers, influencing cell proliferation, 

apoptosis, differentiation, migration and/or invasivity, metastasis and 

chemosensitivity (Pellegrino et al. 2013; Majid et al. 2013; Liu et al. 2014; Yan et 

al. 2015). In thyroid  cancer, a study conducted by Leone and co-workers 

demonstrates that up-regulation of miR-23b and miR-29b is a critical event for 

thyroid cell proliferation; indeed these two miRNAs promote thyroid cell growth 

synergizing with the traditional proliferation; moreover an increased expression of 

both these miRNAs were found in experimental murine PTU-induced models and 

in human goiters (Leone et al. 2012). 

To verify the effect of miR-23b and miR-29b on PATZ1 expression in thyroid 

cells, I used the same cell system of Leone and co-workers (2012), showing an 

inverse correlation between PATZ1 and both these miRNAs at 30’ and 2h 

following treatment with TSH. Then, miR-23b and miR-29b turned back to 

unchanged levels at 8h, 12h and 24h of TSH stimulation, whereas PATZ1 

expression was kept lowered at 8h and 12h, and even further down-regulated at 
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24h, suggesting that further events other than miR-23b and miR29b 

overexpression may contribute to the maintenance of PATZ1 silencing in thyroid 

cells induced to proliferate. These results sustain a role for PATZ1 in negative 

regulation of normal thyroid cell proliferation. 

Interestingly, analyzing high throughput data from a study conducted by 

Landgraf at al. (2007), I found that miR-29b was one of the most up-regulated 

miRNAs in FRTL-5 rat thyroid cells following expression of an oncogenic Ras 

gene. Using their same cell system, in which the expression of the oncogenic Ras 

V12 was induced at different time points by a tamoxifen-inducible construct, as 

well as FRTL-5 cells in which RasV12 was stably expressed (De Vita et al. 2005), 

I found that the expression of PATZ1 and miR-29b were inversely correlated at 

both mRNA and protein level. These results support a functional miR-29b/PATZ1 

interaction downstream of oncogenic Ras in thyroid cells and suggest that PATZ1 

may be a negative effector of the oncogenic Ras signaling.  

In order to deepen a causal role of PATZ1 downregulation in thyroid 

carcinogenesis induced by oncogenic Ras, I overexpressed PATZ1 in Ras 

transformed FRTL-5 cells, finding a significant impairment of different cellular 

functions related to the transformed phenotype, including proliferation, migration 

and capacity to grow in soft agar. This was particularly evident at the proliferation 

level, where growth curves obtained from PATZ1-expressing FRTL-Ras cells 

were undistinguishable from those of untransformed FRTL-5 cells, suggesting that 

re-expression of PATZ1 is potentially able to bring the proliferation rate to the 

normal status. Therefore, it appears that PATZ1 downregulation is indeed a crucial 

step in Ras oncogenic signaling, acting in different processes of cellular 

transformation induced by activated Ras. These data are also consistent with the 

role of PATZ1 that our group has demonstrated in human cancer cell lines, in 

which the same cellular processes have been found to be regulated by PATZ1 

(Chiappetta et al. 2014).  

From my data it appears that downregulation of PATZ1 is achieved by up-

regulation of miR-29b in FRTL5 cells and possibly by both miR-23b and miR-29b 

in PC Cl3 cells. If we will be able to demonstrate by further experiments that, 

using antagomirs directed against one or both these miRNAs, the expression of 

PATZ1 in Ras transformed cells is upregulated, we can envisage a future therapy 

useful in thyroid cancer carrying Ras mutations. 

MicroRNAs are promising candidates for  drug targeting, especially when 

combined with the analysis for specific genetic lesions. Indeed, innovative 

therapies, based on modulation of miRNAs and their relative targets, are believed 

to improve the response to treatment of patients affected by tumors refractory to 

conventional radiotherapy and chemotherapy, as in the case of ATC (Pallante et al. 

2014). 
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For these reasons, it is our intention to continue this work studying, both in 

vitro and in vivo, a possible effect of miR-29b antagomir on PATZ1. Our goal 

would be the inhibition of PATZ1-targeting miR-29b in cancer cells as a way to 

up-regulate PATZ1 expression and hopefully revert the transformed phenotype. It 

would be particularly interesting to analyze in vivo, by xenografts in nude mice, a 

possible suppressive action against tumor proliferation, following delivery of  

PATZ-targeting miR-29b antagomir. 
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6. CONCLUSION 

 

In order to understand the mechanisms by which PATZ1 is downregulated in 

thyroid cancer I focused on miRNAs and found that two miRNAs, miR-23b and 

miR-29b, specifically target PATZ1 in thyroid cells. 

Both these miRNAs are involved as both oncogenes or tumor-suppressors in 

different types of malignancies, depending on the cellular context, exactly as 

PATZ1 does. In thyroid cells both miR-23b and miR-29b are up-regulated, while 

PATZ1 is downregulated, following a proliferation stimulus, and miR-29b is up-

regulated, while PATZ1 is downregulated, following expression of oncogenic Ras. 

Focusing on the latter observation, I demonstrated that PATZ1 overexpression in 

Ras
V12

-expressing thyroid cells is able to revert, at in least in part, their 

transformed phenotype.  

All in all these results suggest that PATZ1 is a pivotal regulator acting 

downstream of miR29b to suppress thyroid cell transformation driven by 

oncogenic Ras, highlighting a new potential therapeutic target to fight highly 

malignant thyroid cancer. 

 

 



55 

 

7. ACKNOWLEDGEMENTS 
 

 

I acknowledge with gratitude Prof. Lucio Nitsch, coordinator of the Genetics and 

Molecular Medicine Doctorate Program, for the beautiful opportunity that gave me 

to work at the Dipartimento di Medicina Molecolare e Biotecnologie Mediche of 

the Università degli Studi di Napoli Federico II. 

  

A special thank goes to my mentor Dr. Monica Fedele for having encouraged my 

interest in research, for the trust shown and for all experience and knowledge made 

available to me. 

 

I wish to present my sincere thank to Prof. Alfredo Fusco and Dr. Gabriella de 

Vita for their great collaboration. 

 

A special thank goes to my colleague and friend Teresa, my guide! thanks for 

teaching me everything I know, and for having been close with a lot of patience 

and skill. 

 

I thank all my colleagues for their support, the scientific and moral help, but 

especially for the kind moments together. 

 

I would especially thank my family and Claudio for their unconditional support 

and for their infinite patience. 

 

 

 

 

 

 

 

 

 
 

 



56 

 

7. REFERENCES 

 

Abulaiti A, Fikaris AJ, Tsygankova OM, Meinkoth JL. 

Ras induces chromosome instability and abrogation of the DNA damage response. 

Cancer Res. 2006 Nov 1;66(21):10505-12. 

Apostolou, E. and Hochedlinger, K. Chromatin dynamics during cellular 

reprogramming. Nature. 2013. 502, 462-471. 

 

Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of 

microRNA targets predicts functional non-conserved and non-canonical sites. 

Genome Biol. 2010;11(8):R90. 

 

Bilic I, Koesters C, Unger B, Sekimata M, Hertweck A, Maschek R, Wilson CB,  

Ellmeier W. Negative regulation of CD8 expression via Cd8 enhancer-mediated 

recruitment of the zinc finger protein MAZR. Nat Immunol 2006; 7:392-400. 

 

Borbone E, De Rosa M, Siciliano D, Altucci L, Croce CM,  Fusco A. Up-regulation 

of miR-146b and down-regulation of miR-200b contribute to the cytotoxic effect 

of histone deacetylase inhibitors on ras-transformed thyroid cells. J Clin 

Endocrinol Metab. 2013 Jun;98(6):E1031-40. 

 

Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration 

during metastasis. Curr Opin Cell Biol. 2012 Apr; 24(2):277-83.  

 

Burrow AA, Williams LE, Pierce LC, Wang YH. Over half of breakpoints in gene 

pairs involved in cancer-specific recurrent translocations are mapped to human 

chromosomal fragile sites. BMC Genomics 2009;10:59. 

 

Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, 

Yoshimura A, Cai L, Gemma A. MiR-23a regulates TGF-β-induced epithelial-

mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol 

2012; 41: 869-875. 

 

Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A, Wang Y, Song Y, Li Y, Jiang T, 

Pu P, Jiang C, Kang C. VHL regulates the effects of miR-23b on glioma survival 

and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. 

Neuro Oncol 2012; 14: 1026-1036. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Abulaiti%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17079472
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fikaris%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=17079472
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsygankova%20OM%5BAuthor%5D&cauthor=true&cauthor_uid=17079472
http://www.ncbi.nlm.nih.gov/pubmed/?term=Meinkoth%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=17079472
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ras+Induces+Chromosome+Instability+and+Abrogation+of+the+DNA+Damage+Response
http://www.ncbi.nlm.nih.gov/pubmed/?term=Betel%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20799968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Koppal%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20799968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Agius%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20799968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sander%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20799968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leslie%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20799968
http://www.ncbi.nlm.nih.gov/pubmed/20799968
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Rosa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Siciliano%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Altucci%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23543665
http://www.ncbi.nlm.nih.gov/pubmed/23543665
http://www.ncbi.nlm.nih.gov/pubmed/23543665
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bravo-Cordero%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=22209238
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hodgson%20L%5BAuthor%5D&cauthor=true&cauthor_uid=22209238
http://www.ncbi.nlm.nih.gov/pubmed/?term=Condeelis%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22209238
http://www.ncbi.nlm.nih.gov/pubmed/?term=bravo-cordero+2012


57 

 

Cheng L, Yang T, Kuang Y, Kong B, Yu S, Shu H, Zhou H, Gu J. MicroRNA-23a 

promotes neuroblastoma cell metastasis by targeting CDH1. Oncol Lett 2014; 7: 

839-845. 

 

Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, Sepe 

R, Luciano A, Pallante P, Palmieri D, Aiello C, Rea D, Losito SN, Arra C, Fusco 

A, Fedele M. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting 

p53-dependent genes involved in EMT and cell migration. Oncotarget. 2014 Dec 

16. 

 

Cho JH, Kim MJ, Kim KJ, Kim JR. POZ/BTB and AT-hook-containing zinc finger 

protein 1 (PATZ1) inhibits endothelial cell senescence through a p53 dependent 

pathway. Cell Death Differ. 2012 Apr; 19(4):703-12. 

 

Colamaio M, Borbone E, Russo L, Bianco M, Federico A, Califano D, Chiappetta 

G, Pallante P, Troncone G, Battista S, Fusco A. miR-191 down-regulation plays a 

role in thyroid follicular tumors through CDK6 targeting. J Clin Endocrinol 

Metab. 2011 Dec;96(12):E1915-24. 

 

Colamaio M, Calì G, Sarnataro D, Borbone E, Pallante P, Decaussin-Petrucci 

M, Nitsch L, Croce CM, Battista S, Fusco A. Let-7a down-regulation plays a role 

in thyroid neoplasias of follicular histotype affecting cell adhesion and migration 

through its ability to target the FXYD5 (Dysadherin) gene. J Clin Endocrinol 

Metab. 2012 Nov; 97(11):E2168-78 

 

Colamaio M, Puca F, Ragozzino E, Gemei M, Decaussin-Petrucci M, Aiello 

C, Bastos AU, Federico A, Chiappetta G, Del Vecchio L, Torregrossa L, Battista 

S,Fusco A. miR-142-3p down-regulation contributes to thyroid follicular 

tumorigenesis by targeting ASH1L and MLL1. J Clin Endocrinol Metab. 2015 

Jan; 100(1):E59-69. 

 

Costoya JA. Functional analysis of the role of POK transcriptional repressors. Brief 

Funct Genomic Proteomic. 2007; 6(1):8-18.  

 

Croce CM. Causes and consequences of miroRNA dysregulation in cancer. Nat Rev 

Genet. 2009 Oct;10(10):704-14. 

 

DeLellis RA, Lloyd RV, Heitz PU, Eng C. Thyroid and parathyroid tumours. In 

World Health Organization. Classification of Tumours. Pathology and Genetics of 

Tumours of Endocrine Organs. 2004. pp 51-56. Lyon, France: IARC Press. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Valentino%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vitiello%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pasquinelli%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Monaco%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palma%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sepe%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sepe%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luciano%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palmieri%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rea%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Losito%20SN%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Arra%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25595894
http://www.ncbi.nlm.nih.gov/pubmed/25595894
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cho%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=22052190
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=22052190
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22052190
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=22052190
http://www.ncbi.nlm.nih.gov/pubmed/?term=cho+2011+patz1
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colamaio%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Russo%20L%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bianco%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Federico%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Califano%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiappetta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiappetta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Troncone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battista%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21956418
http://www.ncbi.nlm.nih.gov/pubmed/21956418
http://www.ncbi.nlm.nih.gov/pubmed/21956418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colamaio%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cal%C3%AC%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sarnataro%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Decaussin-Petrucci%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Decaussin-Petrucci%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nitsch%20L%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battista%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22965940
http://www.ncbi.nlm.nih.gov/pubmed/22965940
http://www.ncbi.nlm.nih.gov/pubmed/22965940
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colamaio%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Puca%20F%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ragozzino%20E%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gemei%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Decaussin-Petrucci%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aiello%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aiello%20C%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bastos%20AU%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Federico%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiappetta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Del%20Vecchio%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Torregrossa%20L%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battista%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battista%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25238203
http://www.ncbi.nlm.nih.gov/pubmed/25238203
http://www.ncbi.nlm.nih.gov/pubmed?term=Costoya%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=17384421
http://www.ncbi.nlm.nih.gov/pubmed/?term=Functional+analysis+of+the+role+of+POK+transcriptional+repressors
http://www.ncbi.nlm.nih.gov/pubmed/?term=Functional+analysis+of+the+role+of+POK+transcriptional+repressors
http://www.ncbi.nlm.nih.gov/pubmed/19763153
http://www.ncbi.nlm.nih.gov/pubmed/19763153


58 

 

De Menna M, D'Amato V, Ferraro A, Fusco A, Di Lauro R, Garbi C, De Vita G. 

Wnt4 inhibits cell motility induced by oncogenic Ras. Oncogene. 2013 Aug 

29;32(35):4110-9. 

 

De Vita G, Bauer L, da Costa VM, De Felice M, Baratta MG, De Menna M,  Di 

Lauro R. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes.  

Mol Endocrinol. 2005 Jan; 19(1): 76-89. 

 

Donadelli M, Dando I, Fiorini C, Palmieri M. Regulation of miR-23b expression and 

its dual role on ROS production and tumour development. Cancer Lett 2014; 349: 

107-113. 

 

Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA . Gene p53 

mutations are restricted to poorly differentiated and undifferentiated carcinomas of 

the thyroid gland Journal of Clinical Investigation 1993; 91: 1753-1760. 

 

Esposito F, Boscia F, Gigantino V, Tornincasa M, Fusco A, Franco R, Chieffi P.The 

high-mobility group A1-estrogen receptor β nuclear interaction is impaired in 

human testicular seminomas. J Cell Physiol. 2012 a Dec; 227(12):3749-55. 

 

Esposito F, Tornincasa M, Pallante P, Federico A, Borbone E, Pierantoni GM, Fusco 

A. Down-regulation of the miR-25 and miR-30d contributes to the development of 

anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin 

Endocrinol Metab. 2012 b May; 97(5):E710-8.  

 

Esquela-Kerscher A and Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat 

Rev Cancer. 2006 Apr;6(4):259-69. 

 

Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH & Koeffler HP. High 

prevalence of mutations of the p53 gene in poorly differentiated human thyroid 

carcinomas. Journal of Clinical Investigation 1993; 91:179–184. 

 

Faquin WC. The thyroid gland: recurring problems in histologic and cytologic 

evaluation. Arch Pathol Lab Med. 2008 Apr;132(4):622-32.  

 

Fedele M, Berlingieri MT, Scala S, Chiariotti L, Viglietto G, Rippel V, Bullerdiek J, 

Santoro M, Fusco A. Truncated and chimeric HMGI-C genes induce neoplastic 

transformation of NIH3T3 murine fibroblasts. Oncogene. 1998 Jul 30;17(4):413-8. 

 

Fedele M, Benvenuto G, Pero R, Majello B, Battista S, Lembo F, Vollono E, Day 

PM, Santoro M, Lania L, Bruni CB, Fusco A and Chiariotti L. A novel member of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Menna%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%27Amato%20V%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferraro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=Garbi%20C%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vita%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23027131
http://www.ncbi.nlm.nih.gov/pubmed/?term=de+menna+de+vita++2013
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vita%20G%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bauer%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=da%20Costa%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Felice%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baratta%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15388794
http://www.ncbi.nlm.nih.gov/pubmed/22392906
http://www.ncbi.nlm.nih.gov/pubmed/22392906
http://www.ncbi.nlm.nih.gov/pubmed/22392906
http://www.ncbi.nlm.nih.gov/pubmed/?term=Esposito%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tornincasa%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Federico%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pierantoni%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22399519
http://www.ncbi.nlm.nih.gov/pubmed/22399519
http://www.ncbi.nlm.nih.gov/pubmed/22399519
http://www.ncbi.nlm.nih.gov/pubmed/?term=Esquela-Kerscher%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16557279
http://www.ncbi.nlm.nih.gov/pubmed/?term=Slack%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=16557279
http://www.ncbi.nlm.nih.gov/pubmed/?term=Esquela-Kerscher+and+Slack++2006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Esquela-Kerscher+and+Slack++2006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Faquin%20WC%5BAuthor%5D&cauthor=true&cauthor_uid=18384214
http://www.ncbi.nlm.nih.gov/pubmed/18384214
http://www.ncbi.nlm.nih.gov/pubmed/9696033
http://www.ncbi.nlm.nih.gov/pubmed/9696033


59 

 

the BTB/POZ family, PATZ, associates with the RNF4 RING finger protein and 

acts as a transcriptional repressor. J Biol Chem 2000; 275:7894-7901. 

 

Fedele M, Franco R, Salvatore G, Paronetto MP, Barbagallo F, Pero R, Chiariotti L, 

Sette C, Tramontano D, Chieffi G, Fusco A, Chieffi P.PATZ1 gene has a critical 

role in the spermatogenesis and testicular tumours. J. Pathol. 2008; 215:39-47. 

 

Fedele M and Fusco A. HMGA and cancer. Biochim Biophys Acta. 2010 Jan-Feb; 

799(1-2):48-54. 

 

Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P, Bongarzone 

I, Collini P, Gariboldi M, Pilotti S, Pierotti MA, Greco A. Alternative mutations of 

BRAF, RET and NTRK1 are associated with similar but distinct gene expression 

patterns in papillary thyroid cancer. Oncogene. 2004 Sep 23;23(44):7436-40. 

 

Frezzetti D, De Menna M,  Zoppoli P, Guerra C, Ferraro A, Bello AM, De Luca 

P, Calabrese C, Fusco A, Ceccarelli M, Zollo M, Barbacid M, Di Lauro R, De Vita 

G. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. 

Oncogene. 2011 Jan 20;30(3):275-86. 

 

Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and 

two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. 

Mol Cell Biol. 1987 Sep;7(9):3365-70. 

 

Garzon R, Garofalo M, Martelli MP Briesewitz R, Wang L, Fernandez-Cymering 

C, Volinia S, Liu CG, Schnittger S, Haferlach T, Liso A, Diverio D, Mancini M, 

Meloni G, Foa R, Martelli MF, Mecucci C, Croce CM, Falini B. Distinctive 

microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated 

nucleophosmin. Proc Natl Acad Sci U S A. 2008; 105, 3945-50. 

 

Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev 

Med. 2009;60:167-79. 

 

Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti 

MA, Della Porta G, Fusco A & Vecchio G. PTC is a novel rearranged form of the 

ret proto-oncogene and is frequently detected in vivo in human thyroid papillary 

carcinomas. Cell 1990;60 557-563. 

 

Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P, Zhang Y, Shan Z, Teng W, Xing M. 

Association of high iodine intake with the T1799A BRAF mutation in 

papillary thyroid cancer. J Clin Endocrinol Metab. 2009 May;94(5):1612-7. 

http://www.ncbi.nlm.nih.gov/pubmed/20123067
http://www.ncbi.nlm.nih.gov/pubmed/15273715
http://www.ncbi.nlm.nih.gov/pubmed/15273715
http://www.ncbi.nlm.nih.gov/pubmed/15273715
http://www.ncbi.nlm.nih.gov/pubmed/?term=Frezzetti%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Menna%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zoppoli%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guerra%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferraro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bello%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Luca%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Luca%20P%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calabrese%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ceccarelli%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zollo%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Barbacid%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vita%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vita%20G%5BAuthor%5D&cauthor=true&cauthor_uid=20956945
http://www.ncbi.nlm.nih.gov/pubmed/20956945
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Berlingieri%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Fiore%20PP%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Portella%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grieco%20M%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vecchio%20G%5BAuthor%5D&cauthor=true&cauthor_uid=3670314
http://www.ncbi.nlm.nih.gov/pubmed/3670314
http://www.ncbi.nlm.nih.gov/pubmed/?term=Briesewitz%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20L%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fernandez-Cymering%20C%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fernandez-Cymering%20C%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schnittger%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haferlach%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liso%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Diverio%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mancini%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Meloni%20G%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Foa%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Martelli%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mecucci%20C%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Falini%20B%5BAuthor%5D&cauthor=true&cauthor_uid=18308931
http://www.ncbi.nlm.nih.gov/pubmed/?term=Garzon%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19630570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calin%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=19630570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=19630570
http://www.ncbi.nlm.nih.gov/pubmed/19630570
http://www.ncbi.nlm.nih.gov/pubmed/19630570
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guan%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ji%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bao%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20H%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hou%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shan%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Teng%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xing%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19190105
http://www.ncbi.nlm.nih.gov/pubmed/19190105


60 

 

 

He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers 

S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. 

A microRNA polycistron as a potential human oncogene. Nature. 2005 Jun 

9;435(7043):828-33. 

 

Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. 

Oncologist. 2013;18(8):926-32. 

 

Huynh KD and Bardwell VJ. The BCL-6 POZ domain and other POZ domains 

interact with the co-repressors N-CoR and SMRT. Oncogene 1998; 17:2473-2484. 

 

Iorio MV and Croce CM. MicroRNA involvement in human cancer. 

Carcinogenesis. 2012 Jun;33(6):1126-33. 

 

Ito T, Seyama T, Mizuno T, Tsuyama N,Hayashi T, Hayashi Y, Dohi K, Nakamura N 

and Akiyama M. Unique association of p53 mutations with undifferentiated but 

not with differentiated carcinomas of the thyroid gland. Cancer Research 1992; 

52:1369-1371. 

 

Ito Y, Nikiforov YE, Schlumberger M, Vigneri R. 

Increasing incidence of thyroid cancer: controversies explored. Nat Rev 

Endocrinol. 2013 Mar; 9(3):178-84. 

 

Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA Jr, Sigurdson AJ, Nikiforov 

YE. The increase in thyroid cancer incidence during the last four decades is 

accompanied by a high frequency of BRAF mutations and a sharp increase in RAS 

mutations. J Clin Endocrinol Metab 2014; 99:E276-85. 

 

Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid 

carcinoma. Treatment outcome and prognostic factors. Cancer. 2005 Apr 

1;103(7):1330-5. 

 

Kelly KF and Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and 

development. Trends Cell Biol 2006;16:578-87. 
 

Keskin N, Deniz E, Eryilmaz J, Un M, Batur T, Ersahin T, Cetin Atalay R, Sakaguchi 

S, Ellmeier W, Erman B. PATZ1 is a DNA damage responsive transcription factor 

that inhibits p53 function. Mol Cell Biol. 2015 Mar 9. pii: MCB.01475-14.  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=He%20L%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thomson%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hemann%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hernando-Monge%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mu%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goodson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Powers%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Powers%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cordon-Cardo%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lowe%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hannon%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hammond%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=15944707
http://www.ncbi.nlm.nih.gov/pubmed/?term=He+2005.+a+microrna+polycistron+as+a+potential
http://www.ncbi.nlm.nih.gov/pubmed/?term=Howell%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=23873720
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hodak%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=23873720
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yip%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23873720
http://www.ncbi.nlm.nih.gov/pubmed/?term=RAS+Mutations+in+Thyroid+Cancer+Howell+GM
http://www.ncbi.nlm.nih.gov/pubmed/22491715
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ito%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23358352
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nikiforov%20YE%5BAuthor%5D&cauthor=true&cauthor_uid=23358352
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schlumberger%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23358352
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vigneri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23358352
http://www.ncbi.nlm.nih.gov/pubmed/?term=Increasing+incidence+of+thyroid+cancer%3A+controversies+explored.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Increasing+incidence+of+thyroid+cancer%3A+controversies+explored.
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kebebew%20E%5BAuthor%5D&cauthor=true&cauthor_uid=15739211
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greenspan%20FS%5BAuthor%5D&cauthor=true&cauthor_uid=15739211
http://www.ncbi.nlm.nih.gov/pubmed/?term=Clark%20OH%5BAuthor%5D&cauthor=true&cauthor_uid=15739211
http://www.ncbi.nlm.nih.gov/pubmed/?term=Woeber%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=15739211
http://www.ncbi.nlm.nih.gov/pubmed/?term=McMillan%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15739211
http://www.ncbi.nlm.nih.gov/pubmed/15739211
http://www.ncbi.nlm.nih.gov/pubmed/?term=Keskin%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deniz%20E%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eryilmaz%20J%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Un%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Batur%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ersahin%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cetin%20Atalay%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sakaguchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sakaguchi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ellmeier%20W%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=Erman%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25755280
http://www.ncbi.nlm.nih.gov/pubmed/?term=keskin+2015+patz1


61 

 

Kim TY, Kim WG, Kim WB, Shong YK. Current status and future perspective 

in differentiated thyroid cancer. Endocrinol Metab. 2014 Sep;29(3):217-25. 

 

Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE & Fagin JA. High 

prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive 

activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid 

carcinoma. 2003. Cancer Research 63:1454-1457. 

 

Knauf JA, Ouyang B, Knudsen ES, Fukasawa K, Babcock G, Fagin JA. 

Oncogenic RAS induces accelerated transition through G2/M and promotes defect

s in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem. 2006 Feb 

17;281(7):3800-9. 

 

Kobayashi A, Yamagiwa H, Hoshino H, Muto A, Sato K, Morita M, Hayashi N, 

Yamamoto M, Igarashi K. A combinatorial code for gene expression generated by 

transcription factor Bach2 and MAZR (MAZ-related factor) through the BTB/POZ 

domain. Mol Cell Biol 2000; 20:1733-1746. 

 

Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell 

neoplasia. Nature Reviews Cancer 2006; 6: 292-306. 

 

Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. 

PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. 

Science. 2000 Aug 25;289(5483):1357-60. 

 

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice 

A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti 

S,Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels 

U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti 

D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro 

R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing 

T, Lichter P, Tam W,Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander 

C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on 

small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401-14. 

 

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes 

small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 

3;75(5):843-54. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20TY%5BAuthor%5D&cauthor=true&cauthor_uid=25309778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20WG%5BAuthor%5D&cauthor=true&cauthor_uid=25309778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20WB%5BAuthor%5D&cauthor=true&cauthor_uid=25309778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shong%20YK%5BAuthor%5D&cauthor=true&cauthor_uid=25309778
http://www.ncbi.nlm.nih.gov/pubmed/?term=Current+Status+and+Future+Perspectives+in+Differentiated+Thyroid+Cancer
http://www.ncbi.nlm.nih.gov/pubmed/?term=Knauf%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ouyang%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Knudsen%20ES%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fukasawa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Babcock%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fagin%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=16316983
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oncogenic+RAS+Induces+Accelerated+Transition+through+G2%2FM+and+Promotes+Defects+in+the+G2+DNA+Damage+and+Mitotic+Spindle+Checkpoints*
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kroll%20TG%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sarraf%20P%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pecciarini%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20CJ%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mueller%20E%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spiegelman%20BM%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fletcher%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=10958784
http://www.ncbi.nlm.nih.gov/pubmed/10958784
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rusu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sheridan%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sewer%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Iovino%20N%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aravin%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pfeffer%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rice%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rice%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kamphorst%20AO%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Landthaler%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Socci%20ND%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hermida%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fulci%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiaretti%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiaretti%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fo%C3%A0%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schliwka%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fuchs%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Novosel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=M%C3%BCller%20RU%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schermer%20B%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bissels%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bissels%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Inman%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Phan%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chien%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weir%20DB%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Choksi%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Vita%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Frezzetti%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Frezzetti%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Trompeter%20HI%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hornung%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Teng%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hartmann%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palkovits%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Di%20Lauro%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wernet%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Macino%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rogler%20CE%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagle%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ju%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Papavasiliou%20FN%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benzing%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Benzing%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lichter%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tam%20W%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Brownstein%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bosio%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borkhardt%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Russo%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sander%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sander%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zavolan%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tuschl%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17604727
http://www.ncbi.nlm.nih.gov/pubmed/17604727
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20RC%5BAuthor%5D&cauthor=true&cauthor_uid=8252621
http://www.ncbi.nlm.nih.gov/pubmed/?term=Feinbaum%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=8252621
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ambros%20V%5BAuthor%5D&cauthor=true&cauthor_uid=8252621
http://www.ncbi.nlm.nih.gov/pubmed/8252621


62 

 

Lee S and Takahiro Maeda. POK/ZBTB proteins: an emerging family of proteins that 

regulate lymphoid development and function. Immunological Reviews. 2012 May; 

247(1): 107-119.  

 

Leone V, D'Angelo D, Pallante P, Croce CM, Fusco A.Thyrotropin regulates thyroid 

cell proliferation by up-regulating miR-23b and miR-29b that target SMAD3. J 

Clin Endocrinol Metab. 2012 Sep;97(9):3292-301. 

 

Leone V, D'Angelo D, Pallante P, Croce CM, Fusco A. Thyrotropin regulates thyroid 

cell proliferation by up-regulating miR-23b and miR-29b that target SMAD3. J 

Clin Endocrinol Metab. 2012 Sep; 97(9):3292-301.  

 

Li X, Luo F, Li Q, Xu M, Feng D, Zhang G, Wu W. Identification of new aberrantly 

expressed miRNAs in intestinal-type gastric cancer and its clinical significance. 

Oncol rep. 2011 Dec; 26(6): 1431-9. 

 

Li X, Abdel-Mageed AB, Mondal D, Kandil E. MicroRNA expression profiles in 

differentiated thyroid cancer. A review. Int J Clin Exp Med. 2013; 6(1): 74-80. 

 

Li W, Liu Z, Zhou L, Yao Y. MicroRNA-23b is an independent prognostic marker 

and suppressess ovarian cancer progression by targeting-related transcription 

factor-2. FEBS lett 2014 May2; 588(9): 1608-15. 

 

Liu H, Wang B, Lin J, Zhao L. MicroRNA-29b: an emerging player in human cancer. 

Asian Pac J Cancer Prev. 2014;15(21):9059-64. 

 

Livak KJ and Schmittgen TD. Analysis of relative gene expression data using real-

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 

25(4):402-408. 

 

Lopes JP and Fonseca E. BRAF gene mutation in the natural history of papillary 

thyroid carcinoma: diagnostic and prognostic implications. Acta Med 

Port. 2011 Dec; 24 Suppl 4:855-68. 

 

Ma H, Ow JR, Tan BC, Goh Z, Feng B, Loh YH, Fedele M, Li H, Wu Q. 

The dosage of Patz1 modulates reprogramming process. Sci Rep. 2014 a Dec 

17;4:7519. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Leone%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%27Angelo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/22730517
http://www.ncbi.nlm.nih.gov/pubmed/22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leone%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%27Angelo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22730517
http://www.ncbi.nlm.nih.gov/pubmed/22730517
http://www.ncbi.nlm.nih.gov/pubmed/22730517
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20X%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Luo%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xu%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Feng%20D%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20G%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20W%5BAuthor%5D&cauthor=true&cauthor_uid=21874264
http://www.ncbi.nlm.nih.gov/pubmed/21874264
http://www.ncbi.nlm.nih.gov/pubmed/?term=Abdel-Mageed%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=23236561
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mondal%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23236561
http://www.ncbi.nlm.nih.gov/pubmed/?term=MicroRNA-29b%3A+an+emerging+player+in+human+cancer
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lopes%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=22863493
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fonseca%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22863493
http://www.ncbi.nlm.nih.gov/pubmed/22863493
http://www.ncbi.nlm.nih.gov/pubmed/22863493
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ma%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ow%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tan%20BC%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goh%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Feng%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loh%20YH%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fedele%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20H%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=25515777
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+dosage+of+Patz1+modulates+reprogramming+process


63 

 

Ma G, Dai W, SangA, Yang X, Gao C. Upregulation of microRNA-23a/b promotes 

tumor progression and confers poor prognosis in patients with gastric cancer. Int J 

Clin Exp Pathol. 2014 b ;7(12):8833-8840. 

 

Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K, Tanaka Y, Dahiya 

R, Yamamura S. MicroRNA-23b functions as a tumor suppressor by regulating 

Zeb1 in bladder cancer. PLoS One. 2013 Jul 2;8(7):e67686.  

 

Mastrangelo T, Modena P, Tornielli S, Bullrich F, Testi, MA, Mezzelani A, Radice P, 

Azzarelli A, Pilotti S, Croce CM, Pierotti MA, Sozzi G. A novel zinc finger gene 

is fused to EWS in small round cell tumor. Oncogene 2000; 19:3799-37804. 

 

Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi 

H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. Pluripotency governed by 

Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell 

Biol. 2007 Jun;9(6):625-35. 

 

Morii E, Oboki K, Kataoka TR, Igarashi K, Kitamura Y. Interaction and cooperation 

of mi transcription factor (MITF) and myc-associated zinc-finger protein-related 

factor (MAZR) for trascription of mouse mast cell protease 6 gene. J Biol Chem 

2002; 277:8566-8571. 

 

Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein 

expression and apoptosis. Oncogene. 2007;26, 6133-40. 

 

Namba H, Rubin SA & Fagin JA. Point mutations of ras oncogenes are an early event 

in thyroid tumorigenesis. Molecular Endocrinology 1990;4:1474–1479. 

 

Nikiforov YE.  RET/PTC rearrangement in thyroid tumors. Endocrine Pathology. 

2002;13 3-16. 

 

Nikiforov YE and Nikiforova MN. Molecular genetics and diagnosis of thyroid 

cancer. Nat Rev Endocrinol. 2011;7(10):569-80.  

 

Nikiforova MN, Tseng GC, Steward D, Diorio D & Nikiforov YE MicroRNA 

expression profiling of thyroid tumors: biological significance and diagnostic 

utility. Journal of Clinical Endocrinology and Metabolism. 2008; 93 1600-1608. 

 

Nikiforova M. N, Chiosea S. I., and Y. E. Nikiforov. “MicroRNA expression profiles 

in thyroid tumors,” Endocrine Pathology. 2009. vol. 20, no. 2, pp. 85-91. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Majid%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dar%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saini%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Deng%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chang%20I%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Greene%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tanaka%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dahiya%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dahiya%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamamura%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23844063
http://www.ncbi.nlm.nih.gov/pubmed/?term=majid+2013+microRNA-23b
http://www.ncbi.nlm.nih.gov/pubmed/?term=Masui%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakatake%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Toyooka%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shimosato%20D%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yagi%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okochi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okochi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Okuda%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matoba%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sharov%20AA%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ko%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=Niwa%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17515932
http://www.ncbi.nlm.nih.gov/pubmed/?term=masui+2007+nanog
http://www.ncbi.nlm.nih.gov/pubmed/?term=masui+2007+nanog
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gores%20GJ%5BAuthor%5D&cauthor=true&cauthor_uid=17404574


64 

 

Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta 

S, Yee S, Nakatake Y, Stagg C, Sharova L, Correa-Cerro LS, Bassey U, Hoang, 

Kim HE, Tapnio R, Qian Y, Dudekula D, Zalzman M, Li M, Falco G, Yang HT, 

SL Lee, M Monti, I Stanghellini, MN Islam, R Nagaraja, I Goldberg, W Wang, 

Longo DL, Schlessinger D,  Ko MS. Uncovering early response of gene regulatory 

networks in ESCs by systematic induction of transcription factors. Cell Stem Cell. 

2009; 5:420-433. 

 

Ow JR, Ma H, Jean A, Goh Z, Lee YH, Chong YM, Soong R, Fu XY, Yang H, Wu Q. 

Patz1 regulates embryonic stem cell identity. Stem Cells Dev.  2014 May 

15;23(10):1062-73. 

 

Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in 

thyroid neoplasia. Endocrinol Metab Clin North Am 2008 Jun;37(2):375-87.  

 

Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta 

G, Liu CG, Santoro M, Negrini M, Croce CM, Fusco A MicroRNA deregulation in 

human thyroid papillary carcinomas. Endocr Relat Cancer. 2006 Jun;13(2):497-508. 

 

Pallante P, Visone R, Croce CM & Fusco A. Deregulation of microRNA expression 

in follicular cell-derived human thyroid carcinomas. Endocrine Releated Cancer 

2010; 17: F91- F104. 

 

Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of MicroRNA expression 

in thyroid neoplasias. Nat Rev Endocrinol. 2014 Feb;10(2):88-101. 

 

Pellegrino L, Stebbing J, Braga VM, Frampton AE, Jacob J, Buluwela L, Jiao LR, 

Periyasamy M, Madsen CD, Caley MP, Ottaviani S, Roca-Alonso L, El-Bahrawy 

M, Coombes RC, Krell J, Castellano L. miR-23b regulates cytoskeletal 

remodeling, motility and metastasis by directly targeting multiple transcripts. 

Nucleic Acids Res 2013; 41: 5400-5412. 

 

Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov 

V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce 

CM. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and 

miR-181. Cancer Res. 2006 Dec 15;66(24):11590-3. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ow%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ma%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jean%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goh%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20YH%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chong%20YM%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Soong%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fu%20XY%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=24380431
http://www.ncbi.nlm.nih.gov/pubmed/?term=Patz1+regulates+embryonic+stem+cell+identity
http://www.ncbi.nlm.nih.gov/pubmed/18502332
http://www.ncbi.nlm.nih.gov/pubmed/18502332
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Visone%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferracin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferraro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Berlingieri%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Troncone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiappetta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chiappetta%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santoro%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Negrini%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16728577
http://www.ncbi.nlm.nih.gov/pubmed/16728577
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=24247220
http://www.ncbi.nlm.nih.gov/pubmed/?term=Battista%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24247220
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pierantoni%20GM%5BAuthor%5D&cauthor=true&cauthor_uid=24247220
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24247220
http://www.ncbi.nlm.nih.gov/pubmed/24247220
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pekarsky%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santanam%20U%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cimmino%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palamarchuk%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Efanov%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maximov%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Maximov%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alder%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rassenti%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calin%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hagan%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kipps%20T%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17178851
http://www.ncbi.nlm.nih.gov/pubmed/17178851


65 

 

Pero R, Lembo F, Palmieri EA, Vitiello C, Fedele M, Fusco A, Bruni CB, Chiariotti 

L. PATZ attenuates the RNF4-mediated enhancement of androgen receptor-

dependent transcription. J Biol Chem 2002; 277:3280-3285. 

 

Pero R, Palmieri D, Angrisano T, Valentino T, Federico A, Franco R, Lembo F, 

Klein-Szanto AJ, Del Vecchio L, Montanaro D, Keller S, Arra C, Papadopoulou 

V, Wagner SD, Croce CM, Fusco A, Chiaretti L, Fedele M. POZ-, AT-HOOK-, 

and zinc fingercontaining protein(PATZ) interacts with human oncogene B cell 

lymphoma 6 (BCL6) and is required for its negative autoregulation. J Biol Chem 

2012; 287(22):18308-17. 

 

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. 

Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, 

liver, and pancreas cancers in the United States. Cancer Res. 2014 Jun; 

74(11):2913-21. 

 

Rossing M. Classification of follicular cell-derived thyroid cancer by global RNA 

profiling. J Mol Endocrinol. 2013 Mar; 18;50(2):R39-51. 

 

Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses 

prostate cancer metastasis by regulating epithelialmesenchymal transition 

signaling. Mol Cancer Ther. 2012; 11, 1166-73. 

 

Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, Stambrook 

PJ, Fagin JA. 

The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the M

APK pathway. Oncogene. 2000 Aug 10;19(34):3948-54. 

 

Sahin M, Allard BL, Yates M, Powell JG, Wang XL, Hay ID, Zhao Y, Goellner 

JR, Sebo TJ, Grebe SK, Eberhardt NL, McIver B. PPARgamma staining as a 

surrogate for PAX8/PPARgamma fusion oncogene expression in follicular 

neoplasms: clinicopathological correlation and histopathological diagnostic value. 

J Clin Endocrinol Metab. 2005 Jan;90(1):463-8. 

 

Sakaguchi S, Hombauer M, Bilic I, Naoe Y, Schebesta A, Taniuchi I, Ellmeier W. 

The zinc-finger protein MAZR is part of the transcription factor network that 

controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat 

Immunol 2010; 11:442-448. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Rahib%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20BD%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Aizenberg%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rosenzweig%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fleshman%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matrisian%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=24840647
http://www.ncbi.nlm.nih.gov/pubmed/24840647
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rossing%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23355745
http://www.ncbi.nlm.nih.gov/pubmed/23355745
http://www.ncbi.nlm.nih.gov/pubmed/?term=Phillips%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=22402125
http://www.ncbi.nlm.nih.gov/pubmed/?term=Toth%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22402125
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ray%20RB%5BAuthor%5D&cauthor=true&cauthor_uid=22402125
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saavedra%20HI%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Knauf%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Shirokawa%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ouyang%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Elisei%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stambrook%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stambrook%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fagin%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=10951588
http://www.ncbi.nlm.nih.gov/pubmed/?term=The+RAS+oncogene+induces+genomic+instability+in+thyroid+PCCL3+cells+via+the+MAPK+pathway
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sahin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Allard%20BL%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yates%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Powell%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20XL%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hay%20ID%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goellner%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goellner%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sebo%20TJ%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Grebe%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Eberhardt%20NL%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=McIver%20B%5BAuthor%5D&cauthor=true&cauthor_uid=15483076
http://www.ncbi.nlm.nih.gov/pubmed/?term=Powell+2004+PAX8%2FPPAR


66 

 

Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia 

S, Alder H, Rassenti L, Kipps T, Croce CM, Pekarsky Y. Chronic lymphocytic 

leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci U 

S A. 2010 Jul 6;107(27):12210-5. 

 

Santoro M, Carlomagno F, Melillo RM, Fusco A. Dysfunction of the RET receptor in 

human cancer. Cell Mol Life Sci. 2004 Dec;61(23):2954-64. 

 

Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q, Wang F, Sun S. MicroRNA-23a 

antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 

apoptotic pathway in colorectal cancer cells. J Cell Biochem 2014; 115: 772-784. 

 

Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Ma´ximo V, Botelho T, 

Seruca R & Sobrinho-Simo˜es M. BRAF rearrangements are alternative events in 

the etiopathogenesis of PTC. Oncogene 2003; 22:4578-4580. 

 

Takahashi K and Yamanaka S. Induction of pluripotent stem cells from mouse 

embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 

25;126(4):663-76. 

 

Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch 

TI, Nakazawa Y, Hayashi T, Ohtsuru A, Yamashita S. Oncogenic role of miR-17-

92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008 Jun;99(6):1147-54. 

 

Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K and Surani MA. 

Tracing the derivation of embryonic stem cells from the inner cell mass by single-

cell RNA-Seq analysis. Cell Stem Cell. 2010; 6:468-478. 

 

Tian X, Sun D, Zhang Y, Zhao S, Xiong H, Fang J. Zinc finger protein 278, a 

potential oncogene in human colorectal cancer. Acta Biochim Biophys Sin 

(Shanghai) 2008; 40:289- 296. 

 

Tian L, Fang YX, Xue JL, Chen JZ. Four microRNAs promote prostate cell 

proliferation with regulation of PTEN and its downstream signals in vitro. PLoS 

One. 2013 Sep 30;8(9):e75885. 

 

Tritz R, Mueller BM, Hickey MJ, Lin AH, Gomez GG, Hadwiger P, Sah DW, 

Muldoon L, Neuwelt EA, Kruse CA. siRNA Down-regulation of the PATZ1 Gene 

in Human Glioma Cells Increases Their Sensitivity to Apoptotic Stimuli. Cancer 

Ther. 2008; 6:865-876. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Santanam%20U%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zanesi%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Efanov%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Costinean%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Palamarchuk%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hagan%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alder%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rassenti%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kipps%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pekarsky%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=20566844
http://www.ncbi.nlm.nih.gov/pubmed/20566844
http://www.ncbi.nlm.nih.gov/pubmed/20566844
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santoro%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15583857
http://www.ncbi.nlm.nih.gov/pubmed/?term=Carlomagno%20F%5BAuthor%5D&cauthor=true&cauthor_uid=15583857
http://www.ncbi.nlm.nih.gov/pubmed/?term=Melillo%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=15583857
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15583857
http://www.ncbi.nlm.nih.gov/pubmed/15583857
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=16904174
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamanaka%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16904174
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi+K+and+S+Yamanaka+2006
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takakura%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mitsutake%20N%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakashima%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Namba%20H%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Saenko%20VA%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rogounovitch%20TI%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rogounovitch%20TI%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nakazawa%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hayashi%20T%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ohtsuru%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yamashita%20S%5BAuthor%5D&cauthor=true&cauthor_uid=18429962
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takakura+2008+miRNA
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tian%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24098737
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fang%20YX%5BAuthor%5D&cauthor=true&cauthor_uid=24098737
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xue%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=24098737
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20JZ%5BAuthor%5D&cauthor=true&cauthor_uid=24098737
http://www.ncbi.nlm.nih.gov/pubmed/24098737
http://www.ncbi.nlm.nih.gov/pubmed/24098737


67 

 

Valentino T, Palmieri D, Vitiello M, Pierantoni GM, Fusco A, Fedele M PATZ1 

interacts with p53 and regulates expression of p53-target genes enhancing 

apoptosis or cell survival based on the cellular context. Cell Death Dis. 2013(a) 

Dec 12; 4:e963. 

 

Valentino T, Palmieri D, Vitiello M, Simeone A, Palma G, Arra C, Chieffi P, 

Chiariotti L, Fusco A, Fedele M. Embryonic defects and growth alteration in mice 

with homozygous disruption of the Patz1 gene. J Cell Physiol 2013(b);228(3):646-

53.  

 

van der Laan BF, Freeman JL, Tsang RW and Asa SL. The association of 

welldifferentiated thyroid carcinoma with insular or anaplastic thyroid carcinoma: 

evidence for dedifferentiation in tumor progression. Endocr. Pathol. 1993; 4, 215-

221. 

 

Vasko VV, Gaudart J, Allasia C, Savchenko V, Di Cristofaro J, Saji M, Ringel MD & 

De Micco C. Thyroid follicular adenomas may display features of follicular 

carcinoma and follicular variant of papillary carcinoma. European Journal of 

Endocrinology 2004; 151: 779-786. 

 

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. 

Science 2001; 291:1304-51. 

 

Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone 

E, Petrocca F, Alder H, Croce CM, Fusco A. MicroRNAs (miR)-221 and miR-

222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 

protein levels and cell cycle. Endocr Relat Cancer. 2007 (a) Sep;14(3):791-8. 

 

Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia 

S, Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin 

GA,Scarpa A, Colato C, Tallini G, Santoro M, Croce CM, Fusco A. Specific 

microRNAs are downregulated in human thyroid anaplastic carcinomas. 

Oncogene. 2007 Nov (b) 29;26(54):7590-5.  

 

Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J 

Cell Biol. 2013 Mar;92(3):123-8. 

 

Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of 

differentiated thyroid cancer. Lancet. 2013 Mar 23;381(9871):1058-69. 

 

http://www.ncbi.nlm.nih.gov/pubmed/24336083
http://www.ncbi.nlm.nih.gov/pubmed/24336083
http://www.ncbi.nlm.nih.gov/pubmed/24336083
http://www.ncbi.nlm.nih.gov/pubmed/?term=Visone%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Russo%20L%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=De%20Martino%20I%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferraro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leone%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petrocca%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Alder%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17914108
http://www.ncbi.nlm.nih.gov/pubmed/17914108
http://www.ncbi.nlm.nih.gov/pubmed/?term=Visone%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pallante%20P%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vecchione%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cirombella%20R%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferracin%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferraro%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Volinia%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Coluzzi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leone%20V%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Borbone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20CG%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Petrocca%20F%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Troncone%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calin%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Calin%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Scarpa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Colato%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tallini%20G%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Santoro%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Croce%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fusco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17563749
http://www.ncbi.nlm.nih.gov/pubmed/17563749
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23357522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=23357522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23357522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23357522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%20X%5BAuthor%5D&cauthor=true&cauthor_uid=23357522
http://www.ncbi.nlm.nih.gov/pubmed/23357522
http://www.ncbi.nlm.nih.gov/pubmed/23357522
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xing%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23668556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Haugen%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=23668556
http://www.ncbi.nlm.nih.gov/pubmed/?term=Schlumberger%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23668556
http://www.ncbi.nlm.nih.gov/pubmed/23668556


68 

 

Xu F, Zhang Q, Cheng W, Zhang Z, Wang J, Ge J. Effect of miR-29b-1* and miR-29c 

knockdown on cell growth of the bladder cancer cell line T24. J Int Med Res. 

2013b; 41, 1803-10. 
 

Xu H, Sun J, Shi C, Sun C, Yu L, Wen Y, Zhao S, Liu J, Xu J, Li H, An T, Zhou 

X, Ren L, Wang Q, Yu S. miR-29s inhibit the malignant behavior of U87MG 

glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett. 2015 Mar 

17;590:40-6. 

 

Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB, Yang JR. The role of miR-29b in 

cancer: regulation, function, and signaling. Onco Targets Ther. 2015 Mar 3;8:539-

48. 

 

Yang WL, Ravatn R, Kudoh K, Alabanza L, Chin KV. Interaction of the regulatory 

subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278). Biochem 

Biophys Res Commun 2010; 391:1318-1323. 

 

Yoshikawa T, Piao Y, Zhong J, Matoba R, Carter MG, Wang Y, Goldberg I and Ko 

MS. High-throughput screen for genes predominantly expressed in the ICM of 

mouse blastocysts by whole mount in situ hybridization. Gene Expr Patterns. 

2006; 6:213-224. 

 

Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski 

LC, Rezania D, Dalton WS, Sotomayor E, Tao J, Cheng JQ. microRNA expression 

profile and identification of miR-29 as a prognostic marker and pathogenetic 

factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010; 115, 2630-9. 

 

 

 

 

 

 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24265332
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24265332
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ge%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24265332
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xu+2015+miR-29s
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yan%20B%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guo%20Q%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fu%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yin%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wei%20YB%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=25767398
http://www.ncbi.nlm.nih.gov/pubmed/25767398
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20H%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guo%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kong%20W%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dessureault%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moscinski%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moscinski%20LC%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rezania%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dalton%20WS%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sotomayor%20E%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tao%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20086245
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cheng%20JQ%5BAuthor%5D&cauthor=true&cauthor_uid=20086245


www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.7

PATZ1 acts as a tumor suppressor in thyroid cancer via targeting 
p53-dependent genes involved in EMT and cell migration

Gennaro Chiappetta1,*, Teresa Valentino2,*, Michela Vitiello2, Rosa Pasquinelli1, 
Mario Monaco1, Giuseppe Palma3, Romina Sepe2,4, Antonio Luciano3, Pierlorenzo 
Pallante2, Dario Palmieri5, Concetta Aiello1, Domenica Rea3, Simona Nunzia Losito1, 
Claudio Arra3, Alfredo Fusco2,4, Monica Fedele2

1 Department of Experimental Oncology, Functional Genomic Unit, National Cancer Institute “Fondazione Giovanni Pascale”, 
IRCCS, 80131 Naples, Italy

2Institute of Experimental Endocrinology and Oncology (IEOS), National Research Counsil (CNR), 80131 Naples, Italy
3Animal Facility, National Cancer Institute “Fondazione Giovanni Pascale”, IRCCS, 80131 Naples, Italy
4Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy
5 Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, Ohio State University, 
Columbus, OH 43210, USA

*These authors have contributed equally to this work

Correspondence to:
Monica Fedele, e-mail: mfedele@unina.it
Gennaro Chiappetta, e-mail: g.chiappetta@istitutotumori.na.it
Keywords: thyroid cancer, PATZ1, Epithelial-Mesenchymal Transition, cell migration
Received: July 22, 2014 Accepted: November 18, 2014 Published: January 20, 2015 

ABSTRACT
PATZ1, a POZ-Zinc finger protein, is emerging as an important regulator of 

development and cancer, but its cancer-related function as oncogene or tumor-
suppressor is still debated. Here, we investigated its possible role in thyroid 
carcinogenesis. We demonstrated PATZ1 is down-regulated in thyroid carcinomas 
compared to normal thyroid tissues, with an inverse correlation to the degree of cell 
differentiation. In fact, PATZ1 expression was significantly further down-regulated 
in poorly differentiated and anaplastic thyroid cancers compared to the papillary 
histotype, and it resulted increasingly delocalized from the nucleus to the cytoplasm 
proceeding from differentiated to undifferentiated thyroid carcinomas. Restoration 
of PATZ1 expression in three thyroid cancer-derived cell lines, all characterized by 
fully dedifferentiated cells, significantly inhibited their malignant behaviors, including 
in vitro proliferation, anchorage-independent growth, migration and invasion, as well 
as in vivo tumor growth. Consistent with recent studies showing a role for PATZ1 in 
the p53 pathway, we showed that ectopic expression of PATZ1 in thyroid cancer cells 
activates p53-dependent pathways opposing epithelial-mesenchymal transition and 
cell migration to prevent invasiveness. These results provide insights into a potential 
tumor-suppressor role of PATZ1 in thyroid cancer progression, and thus may have 
potential clinical relevance for the prognosis and therapy of thyroid cancer.

INTRODUCTION

Carcinoma of the thyroid gland is one of the most 
frequent malignancies of the endocrine system, and its 
incidence is predicted to become the fourth leading cancer 
diagnosis by 2030 [1, 2]. Thyroid carcinomas are divided 

into well-differentiated (WDTCs), poorly differentiated 
(PDTCs) and anaplastic thyroid carcinomas (ATC) [3, 4]. 
WDTCs encompass papillary (PTCs) and follicular 
carcinomas (FTCs). The PTC is the most common thyroid 
carcinoma (80% of cases). It is often multifocal and tends 
to metastasize to regional lymph nodes [3]. The FTC is a 
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relatively rare cancer (10% of thyroid cancers) that may 
develop from a pre-existing benign adenoma (FTA) or 
directly from the normal tissue. PDTCs and ATCs, can 
develop de novo although many of them arise through the 
process of stepwise dedifferentiation of PTCs and FTCs 
[1]. In particular, ATC is a very rare (2–5% of thyroid 
cancers), highly aggressive and lethal tumor characterized 
by very undifferentiated cells, mostly insensitive to 
radiotherapy and conventional chemotherapy [5, 6]. PDTC 
has an intermediate behavior between WDTC and ATC. 
Similar to other cancer types, thyroid cancer initiation 
and progression occurs through gradual accumulation 
of various genetic and epigenetic alterations. Therefore, 
according to the theory of sequential progression from 
WDTC to ATC through PDTC [7], mutations occurring 
in the early stages of WDTCs are also reported in PDTCs 
and ATCs [8]. The molecular alteration discriminating 
ATCs from WDTCs is the inactivation of the p53 tumor 
suppressor gene. P53 inactivation is observed in almost all 
ATCs suggesting that p53 deficiency, in association with 
activating mutations of oncogenes such as RAS and BRAF, 
drive the high proliferative index and high aggressiveness 
of these tumors. However, inactivating mutations of p53 
observed in several types of human tumors are not frequent 
in thyroid cancer, but studies on p53 protein expression 
in a large series of thyroid tumor specimens suggest that, 
although not mutated, p53 activity may be inhibited in 
thyroid cancer by other mechanisms [9].

In spite of the progressive knowledge of the 
molecular mechanisms involved in thyroid transformation, 
the prognosis of thyroid cancer remains unpredictable and 
the identification of new biological markers are needed in 
addition to already known molecules, to correctly stratify 
patients at risk of recurrence and progression [10].

The POZ/BTB and AT-hook-containing zinc finger 
protein 1 (PATZ1) is a transcriptional regulatory factor 
also known as Zinc finger Sarcoma Gene (ZSG), MAZ-
Related factor (MAZR) or Zinc Finger Protein 278 
(ZNF278/Zfp278). PATZ1 has been demonstrated to 
regulate, either positively or negatively, the expression of 
different genes depending on the cellular context [11–17].

Several studies suggest a role for PATZ1 in cancer but 
its cancer-related function as oncogene or tumor suppressor 
is still debated. PATZ1 oncogenic role is supported 
by its overexpression in human malignant neoplasias, 
including colon and breast tumors [18, 19] and its down-
regulation by siRNAs either blocks the growth or induces 
apoptosis of cell lines derived from colorectal cancer or 
gliomas, respectively [18, 20]. Similarly, we previously 
demonstrated that PATZ1 is overexpressed in testicular 
tumors, but protein localized into the cytoplasm rather than 
into the nucleus, suggesting a reduction of its transcriptional 
function [21]. Recently, we showed that PATZ1-knockout 
mice develop lymphomas and other neoplasias, indicating 
PATZ1 as a potential tumor-suppressor in lymphomagenesis 
and likely other tumors [17].

In this study we have analyzed PATZ1 expression 
and function in human thyroid cancer, identifying a 
potential tumor suppressor role in this type of cancer, 
mainly involved in inhibition of epithelial-mesenchymal 
transition (EMT) and cell migration.

RESULTS

PATZ1 is down-regulated and delocalized in 
thyroid cancer

The expression of PATZ1 gene was analyzed, by 
quantitative RT-PCR (qRT-PCR), in human thyroid cancer 
cell lines and tissues compared to normal thyroids (NT).

The thyroid cancer cell lines used were derived 
from papillary (TPC1, BC-PAP), follicular (WRO) and 
anaplastic (FRO, FB1, ACT1, 850-5c) thyroid carcinomas. 
As shown in Figure 1A, in all the analyzed cell lines, 
PATZ1 expression was significantly reduced compared to 
normal control, represented by mean value of three normal 
thyroid tissues.

The analysis of PATZ1 expression on tissue samples, 
carried out on 5 NTs, 28 PTCs, 4 FTCs, 2 PDTCs and 11 
ATCs, showed a significant down-regulation of PATZ1 
in 64% of PTCs, 91% of ATCs and 100% of FTCs and 
PDTCs (Figure 1B). Indeed, as shown in Figure 1C, the 
multiple comparison analysis of the results demonstrated 
that PATZ1 was not only significantly downregulated in 
PTC (P < 0.05), FTC (P < 0.01) and PDTC/ATC (P < 
0.0001) versus NT, but also it was significantly further 
down-regulated in PDTC/ATC versus PTC (P < 0.001).

These results indicate that PATZ1 expression is 
negatively associated with thyroid cancer progression, 
suggesting it could play a tumor suppressor role in 
thyroid cancer, mainly involved in the late stages of 
carcinogenesis.

Subsequently, we analyzed PATZ1 protein 
expression and localization by immunohistochemistry 
(IHC). The analysis was performed on paraffin embedded 
normal and neoplastic thyroid samples, including 27 NTs, 
2 goiters, 11 FTAs, 33 PTCs, 12 FTCs, 5 PDTCs and 18 
ATCs. All samples of normal thyroid parenchyma and 
goiters expressed PATZ1 at a high level in the nucleus, 
which coincides with the strong PATZ1 staining in all 
follicles. Conversely, compared to normal samples, PATZ1 
expression in the nucleus was found to be weaker in a high 
percentage of FTAs (73%), PTCs (36%) and FTCs (50%), 
and weak or completely negative in most PDTCs (100%) 
and ATCs (83%) (Figure 2 and Table 1). Interestingly, 
PATZ1 protein showed a progressive displacement from 
the nucleus to the cytoplasm with a direct correlation 
with the undifferentiated and malignant phenotype. 
Indeed, in all NTs (100%, 27/27) and goiters (100%, 2/2) 
analyzed, PATZ1 was expressed and present only in the 
nucleus, while in most FTAs (64%), PTCs (82%) and 
FTCs (100%), PATZ1 protein was partially or completely 
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localized into the cytoplasm. In 60% (3/5) of PDTCs 
PATZ1 protein was localized only in the cytoplasm as in 
11% of ATCs. Moreover, in 20% of PDTCs and in 22% of 
ATCs, PATZ1 expression was completely absent (Table 1). 
These results confirmed an inverse correlation between 
PATZ1 expression and the thyroid malignant phenotype.

PATZ1 expression inhibits growth of BC-PAP 
and FRO cells

To determine whether the expression of PATZ1 
plays a role in thyroid cancer cell growth, we carried out 
colony-forming assays in three thyroid cancer cell lines 

(TPC1, BC-PAP and FRO), transfected with a vector 
coding for the human PATZ1 variant 4 (HA-PATZ) or 
the empty vector (pCEFL-HA). As shown in Figure 3A, 
in both BC-PAP and FRO cells an evident decrease of 
the colony number was detected in PATZ1 transfected 
cells compared to controls. Conversely, no appreciable 
differences were found in TPC1 cells transfected with 
PATZ1 or the empty vector.

Next, in order to deeply investigate a possible 
causal role of PATZ1 in thyroid cancer cell proliferation 
and other thyroid cancer cell functions, we transfected a 
PATZ1-EGFP-C2 plasmid carrying human PATZ1 variant 
4 cDNA, or the empty vector pEGFP-C2 into the three 

Figure 2: Representative images of PATZ1 staining in normal thyroid (NT), papillary thyroid carcinoma (PTC) and 
anaplastic thyroid carcinoma (ATC). PATZ1 staining was intense in the nucleus of normal thyroid tissue; it is present also in the 
cytoplasm of PTC; it was absent in ATC. Scale bars = 100 nm.

Figure 1: PATZ1 expression in human thyroid cancer cell lines and tissues. (A) qRT-PCR analysis of PATZ1 in 2 PTC-derived 
cell lines (TPC1 and BC-PAP), 1 FTC-derived cell line (WRO) and 4 ATC-derived cell lines (FRO, FB1, ACT1, 850-5c) in comparison 
with 3 normal thyroid gland tissues, whose mean value of expression was set to 1. Mean values ± SE of triplicate samples compared to each 
normal control are shown. NT = mean value ± SE of the three normal thyroid tissues used as control. (B) qRT-PCR analysis of PATZ1 in 
28 PTCs, 4 FTCs, 2 PDTC and 11 ATCs in comparison with mean value of 5 normal thyroid samples (first lane). Mean values ± SE of two 
independent experiments for each sample, performed in duplicate, compared to each normal control, which has been set to 1, are shown. 
All values in A and B are shown in a logarithmic scale and were analyzed by one-way ANOVA followed by Dunnett’s multiple comparison 
test. (C) All samples shown in B were grouped for histotype and analyzed by one-way ANOVA followed by Tukey’s multiple comparison 
test. Mean values ± SE are shown. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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thyroid cancer cell lines already used for the colony assays 
and selected mass populations and/or cell clones in which 
PATZ1 expression was stably up-regulated compared 
to parental cells transfected with the empty vector 
(supplementary Figure S1).

To confirm the results of the colony assays and 
deeper investigate the cause of growth inhibition, we 
performed growth curves and cell viability assays on 
selected clones of TPC1/PATZ1, BC-PAP/PATZ1 and 

FRO/PATZ1 compared to their respective controls 
(Figure 3B). In agreement with the results from the colony 
assays, the growth rate of TPC-1/PATZ1 clones did not 
show any difference compared to control. Conversely, 
BC-PAP/PATZ1 clones, and FRO/PATZ1 clones, showed 
decreased proliferation capacity, starting to be significant 
at 7 or 5 days of cell culture, respectively, without 
differences in trypan blue incorporation (data not shown), 
compared to control cells.

Table 1: PATZ1 nuclear expression and sub-cellular localization
Nuclear anti-PATZ1 reactivity PATZ1 sub-cellular localization

Hystotype N. Negative Weak Strong Nuclear Nucl/cyt Cytosol Negative

NT 27 0 6 (22%) 21 (78%) 27 (100%) 0 0 0

Goiter 2 0 0 2 (100%) 2 (100%) 0 0 0

FTA 11 2 (18%) 8 (73%) 1 (9%) 4 (36%) 6 (54%) 1 (9%) 1 (9%)

PTC 33 0 12 (36%) 21 (64%) 6 (18%) 27 (82%) 0 0

FTC 12 0 6 (50%) 6 (50%) 0 12 (100%) 0 0

PDTC 5 4 (80%) 1 (20%) 0 0 1 (20%) 3 (60%) 1 (20%)

ATC 18 6 (33%) 9 (50%) 3 (17%) 7 (39%) 5 (28%) 2 (11%) 4 (22%)

Figure 3: Analysis of cell growth in PATZ1-transfected thyroid cancer cells. (A) Colony-forming assays in human thyroid 
cancer cell lines transfected with PATZ1. TPC-1, BC-PAP and FRO cells were transfected with a vector expressing PATZ1 cDNA or its 
corresponding empty vector. Cells were cultured for 10 days, selected for resistance to G418, and stained with crystal violet. (B) Growth 
curves on different stably expressing PATZ1 cell clones and/or mass populations of TPC1, BC-PAP and FRO cells compared to controls 
expressing the empty vector. Mean values ± SE of at least three clones for each cell line are reported: For TPC1, clone C-1, parental TPC1 
and mock-transfected mass population were used as control, whereas clones PA1, PA5 and PA6 were used as PATZ1-transfected cells; for 
FRO, clones C-4, C-7 and parental FRO were used as control, whereas clones PA11, PA13 and PA17 were used as PATZ1-transfected cells; 
for BC-PAP, clone C-1, parental BC-PAP and mock-transfected mass population (mp C-) were used as control, whereas PA2, PA3, PA7, 
PA10 and PATZ1-transfected mass population (mp PA) were used as PATZ1-transfected cells. PATZ1 expression in each clone or mass 
population is shown in supplementary Figure S1. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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PATZ1 expression inhibits cell migration and 
invasion of TPC-1, BC-PAP and FRO cells

Next, using a wound-healing assay, we tested the 
migration capacity of PATZ1-transfectants, showing that 
it was significantly reduced in FRO/PATZ1 compared 
with the control cells (Figure 4A–4B). Conversely, no 
significant differences were observed in BC-PAP and TPC1 
cells (data not shown). These data indicate that PATZ1 can 
inhibit migration of thyroid cancer cells, but also suggest 
that this role is cell context-dependent. However, the 
wound-healing assay is particularly suitable for studying 
the effects of cell-matrix and cell-cell interactions on 
cell migration, but does not give insights on migration in 
response to a particular chemical signal, which is usually 
referred to as chemotaxis. To better investigate this issue 
we analyzed cell migration across 8-μm membrane pores 
in response to FBS. At 24 h after seeding, all PATZ1-
transfected clones, including TPC1, BC-PAP and FRO 
cells, migrated less than empty vector control cells 
(Figure 4C–4D). At this experimental time, influence of 
PATZ1 in cell proliferation was absent (supplementary 
Figure S2). Next, we also directly examined the in vitro 

capacity of these cells to invade through a Matrigel-
coated membrane, which has been reported to mimic 
the whole process of invasion, including adhesion to 
a substrate, dissolution of the extracellular matrix and 
migration [25]. Using this assay, we observed a decrease 
in invading capacity of PATZ1-transfected cells compared 
to empty vector controls, that reached significant levels 
in FRO and BC-PAP and was close to be significant in 
TPC1 cells (supplementary Figure S3). All together these 
results indicate that PATZ1 has a key role in suppressing 
migration and invasiveness of thyroid cancer cells, but 
also suggest that this role could involve different aspects 
of cell migration in different cellular contexts.

PATZ1 expression inhibits tumorigenicity of 
FRO cells and induces a mesenchymal- 
epithelial-like transition

To characterize the malignant phenotype of the stable 
transfectants, we analyzed their ability to grow in soft agar. 
Only parental and backbone vector-transfected FRO cells 
were able to form large, progressively growing colonies. 
In contrast, FRO/PATZ1 transfectants showed a drastic 
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Figure 4: PATZ1 inhibits cellular migration in TPC1, FRO and BC-PAP cells. (A) Representative images of a wound healing 
assay in control (CTRL) and PATZ1-expressing FRO cells at 0, 24 h and 30 h after a confluent cell monolayer was wounded. (B) Percent 
of open wound calculated as mean values ± SE of two FRO/CTRL (C-4 and C-7) and four FRO/PATZ1 cell clones (PA2, PA10, PA11 and 
PA13). (C) Representative images of a transwell assay in CTRL and PATZ1-expressing TPC1, FRO and BC-PAP cells. Migrating cells were 
stained with crystal violet. (D) The number of migrating cells was calculated by measuring the percentage of stained cells. Mean values ± 
SE of at least 3 different clones (C-1, parental TPC1, PA1, PA5 and PA6 for TPC1; C-4, C-7, parental FRO, PA2, PA13, PA16 and PA17, 
for FRO; mp C-, mp PA, PA2, PA3, PA7 and PA10 for BC-PAP) in 3 independent experiments are reported. PATZ1 expression in each clone 
or mass population is shown in supplementary Figure S1. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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reduction in colony-forming efficiency (Figure 5A–5B).  
Both TPC1 and BC-PAP cell lines, with or without 
transfected PATZ1, did not form any colony in soft agar 
(data not shown). We next investigated the capacity 
of FRO/PATZ1 and their controls to generate tumor 
xenografts in nude mice. Tumor growth was observed in 7 
out of 7 mice injected with empty vector-transfected FRO 
(FRO/EV) and 7 out of 7 mice xenografted with FRO/
PATZ1 cells. However, size and growth rate of tumors 
derived from FRO/PATZ1 cells were drastically reduced 
compared to those of tumors generated by control cells 
injected into the contralateral leg (Figure 5C–5D). The 
histopathological analysis of the tumors, excised at the end 
of their growth observation, revealed that, unlike all FRO/
EV-induced tumors, in which tumor tissue was composed 
of anaplastic cells irregularly arranged in a mass with 
solid aspects, 4/7 FRO/PATZ1-derived xenografts 
appeared heterogeneous with some areas displaying a 
phenotypic switch towards a better organized structure 
with epithelial-like features, sometimes resembling 
follicular structures (Figure 6). Interestingly, only in 
FRO/PATZ1 tumors showing follicular-like structures 
we observed overexpression of PATZ1, due to residual 

areas of cells expressing PATZ1, whereas in all the others 
PATZ1 expression was completely lost, as in tumors 
originated from control-transfected cells (supplementary 
Table S1 and Figure S4). It is likely that cells in which 
PATZ1 expression is lost are able to grow faster in vivo, 
giving rise to tumors that phenocopy the anaplastic tumor 
from which FRO cells originated. Conversely, PATZ1-
expressing cells grow slower and the general tumor growth 
is likely due to those cells in which expression of PATZ1 
was lost, which tend to prevail over those expressing 
PATZ1. Moreover, consistent with a possible association 
between PATZ1 expression and mesenchymal-epithelial 
transition, in tumor areas showing expression of PATZ1 
and follicular-like structures we observed positive staining 
for E-cadherin (Figure 6).

PATZ1 expression activates the p53 pathway 
involved in the block of EMT, migration and 
invasiveness

To gain insight into the molecular mechanisms 
involved in PATZ1-mediated inhibition of cell migration, 
we analyzed expression of a panel of genes playing 

Figure 5: PATZ1 inhibits in vitro and in vivo tumorigenicity in FRO cells. (A) Representative images of growth in soft agar of 
control (CTRL) and PATZ1-expressing FRO cells. (B) Colonies larger than background (as observed in normal control cells) were counted 
after 2 weeks. Mean values ± SE of two controls (C-4 and parental FRO) and three PATZ1-expressing clones (PA13, PA16, PA17) are 
reported. PATZ1 expression in each clone is shown in supplementary Figure S1. **, P < 0.01. (C) Representative nude mouse (upper panel) 
injected with FRO/PATZ1 cells (clone PA13) at the left side and FRO/EV (CTRL) cells (clone C-4) at the right side. Tumors (lower panel) 
were excised when one of the two contralateral tumors reached the cut-off of 1500 mm3. (D) Tumor growth curves in cohorts of 3 mice (left 
panel) and 4 mice (right panel). Mean values ± SE are reported. *, P < 0.05; ** P < 0.01. FRO/EV = empty vector-transfected FRO cells.
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crucial roles in this key stage of metastatic progression. 
In particular, we focused on genes downstream of p53, 
because of recent data showing a functional interaction 
between PATZ1 and p53 [11, 26], analyzing their 
expression before and after a stimulus to migrate. 
To this aim, TPC1/PATZ1, FRO/PATZ1, BC-PAP/
PATZ1 transfectants and their respective controls were 
starved for 48 h and then stimulated with epidermal 
growth factor (EGF) for 24 h. It is known that p53 
maintains a transcriptional program to prevent EMT 
by downregulating genes, such as EpCAM, that inhibit 
molecules involved in stabilizing cell-cell junctions (such 
as E-cadherin), or by directly inhibiting components of 
the adhesive machinery, such as Fibronectin, that are 
known to contribute to cell motility through the stroma 
[27]. p53-regulated genes also include molecules involved 
in inhibition of podosome formation, such as the actin-
binding protein Caldesmon, which is up-regulated by 
p53 [28]. Finally, p53 can also up-regulate molecules 
that control actin dynamics, such as RhoE and NOTCH, 
which both converge in the inhibition of cytoskeletal 
changes accompanying tumor cell migration and invasion 

[27]. It is noteworthy that TP53 gene is hypo-fuctioning, 
but wt in FRO and TPC1 cells [29, 30], whereas it is 
mutated in BC-PAP cells [30]. As shown in Figure 7A, 
by (q)RT-PCR, expression of EpCam and Caldesmon in 
all three cell lines, and RhoE in TPC1 and BC-PAP cells, 
were significantly changed in PATZ1 expressing clones 
compared to control cells. Conversely, no changes were 
observed in RhoE and Fibronectin gene expression, 
in FRO and all three cell lines, respectively, between 
PATZ1-expressing clones and controls. In particular, 
EpCam expression was downregulated about 3-fold in 
FRO control cells following treatment with EGF, and 
significantly further downregulated, up to about 5-fold, in 
FRO clones expressing PATZ1 (Figure 7A); Caldesmon 
and RhoE were up-regulated about 2-fold and 1.5-fold, 
respectively, in TPC1 control cells following treatment 
with EGF, and further up-regulated, up to about 3- and 
7-fold, respectively, in TPC1 clones expressing PATZ1 
(Figure 7A). All together these results suggest that in both 
FRO and TPC1 cells a partial functional p53 protein, at 
least on the EpCam promoter in FRO cells and on the 
Caldesmon and RhoE promoters in TPC1 cells, is present 

Figure 6: FRO/PATZ1 xenografts showed an epithelial-like phenotype. Representative images of tumor tissues derived from nude 
mice injected with FRO/PATZ1 (B, C, E, F, H, I) or control (CTRL) cells (A, D, G) from the experiments shown in Figure 5C. Tumors 
developed from PATZ1-expressing cells showed features of epithelial-like differentiation represented by follicular-like structures (arrows). 
Consistently, E-cadherin immunostaining revealed a strong positive reaction in such follicular-like structures (H, I). Immunostaining for PATZ1 
showed strong expression of PATZ protein in delimited areas including cells with an epithelial-like phenotype (E, F), whereas it was negative 
in all the other areas of PATZ1 xenografts (E) and in CTRL counterparts (D) Scale bars = 100 nm. H&E = hematoxilin and eosin staining.
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Figure 7: PATZ1 re-introduction affects expression of p53 target genes involved in EMT, migration and 
invasion. (A) FRO/PATZ1, TPC1/PATZ1, BC-PAP/PATZ1 transfectants and their respective controls were starved for 48 h (T0) and 
then stimulated with epidermal growth factor (EGF) for 24 h (T24). qRT-PCR showing expression, measured as fold changes at T24 with 
respect to T0, of EpCAM, Caldesmon, RhoE and Fibronectin genes. Mean values ± SE of two or three independent clones are reported. 
For TPC1, parental TPC1 and clone C-1 were used as control, whereas clones PA1, PA5 and PA6 were used as PATZ1-transfected cells; 
for FRO, clones C-4 and parental FRO were used as control, whereas clones PA11 and PA17 were used as PATZ1-transfected cells; for 
BC-PAP, parental BC-PAP, clone C-1 and mock-transfected mass population (mp C-) were used as control, whereas PA7, PA10 and PATZ1-
transfected mass population (mp PA) were used as PATZ1-transfected cells. PATZ1 expression in each clone or mass population is shown 
in supplementary Figure S1. *, P < 0.05; ** P < 0.01. (B) Western blot analysis of EpCam expression in FRO cells at 0 h (T0) and 24 h 
(T24) from EGF treatment. Where indicated, CTRL = control; PATZ1 = PATZ1-expressing cells. (C) representative ChIP experiments in 
FRO cells, transiently transfected with HA-PATZ1 and immunoprecipitated with anti-HA Ab, to detect in vivo binding of PATZ1 to EpCam 
(˗218/˗65), RhoE (˗2239/˗2183) and Caldesmon (˗106/˗2) promoter regions. IgG = not-specific Ab, Cald. = Caldesmon, Ctrl = Caldesmon 
region ˗951/˗841, Input = PCR products with genomic DNA without immunoprecipitation. (D) Semi-quantitative analysis of ChIP assays 
on FRO, TPC1 and BC-PAP cells performed by densitometric evaluation of the gels (ImageJ64 software). Results shown are the mean 
values ± SD of two independent experiments for each gene and cell line, expressed as percentage of PATZ1 immunoprecipitated DNA 
relative to the Input. IgG and Ctrl abbreviations are as in (C).
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but its activity can be enhanced by PATZ1, which appears 
to cooperate with p53 in opposing to EMT in FRO cells 
and to cell motility and invasiveness in TPC1 cells.

Conversely, as expected by the presence of a mutant 
p53 in BC-PAP cells [30], treatment with EGF in these 
cells resulted in an opposite regulation of the above 
mentioned genes, including upregulation of EpCam 
and Fibronectin, and down-regulation of Caldesmon 
and RhoE, with the consequent activation of the EMT 
and cell migration programs (which are not opposed 
by a functional p53). Importantly, in BC-PAP/PATZ1 
transfectants these functions are partially or totally 
rescued. In fact, as shown in Figure 7, following EGF 
treatment, EpCam was up-regulated in BC-PAP control 
cells, whereas it was downregulated in 2 out of 3 PATZ-
expressing BC-PAP clones. Similarly, Caldesmon and 
RhoE were downregulated in BC-PAP control cells, 
whereas they were upregulated in PATZ1 transfectants. 
Notably, EpCam resulted up-regulated also in TPC1 
control cells following EGF treatment, but this behaviour 
was completely reverted in TPC1/PATZ1 clones. These 
results suggest that PATZ1 can activate the p53 pathway 
opposing EMT, migration and invasiveness also in 
presence of a mutant p53.

Subsequently, to assess a direct action of PATZ1 on 
transcription of these genes, we performed ChIP assays 
to avaluate PATZ1 protein binding to their promoters. 
Therefore, TPC1, FRO and BC-PAP cells, transiently 
transfected with a HA-tagged PATZ1 expression vector, 
were cross-linked and immunoprecipitated with anti-HA 
or isotype-matched preimmune IgG. Immunoprecipitation 
of chromatin was then analyzed by qualitative PCR, using 
primers spanning regions including the binding site for p53 
or potential consensus elements for PATZ1. As shown in 
Figure 7C–7D, PATZ1 binding to EpCam and Caldesmon 
genes was detected in all three cell lines, binding to 
RhoE was detected in TPC1 and FRO cells, whereas a 
distal region on the Caldesmon promoter (Ctrl) was not 
amplified in any cell line, strenghtening the specificity of 
the binding of PATZ1 detected in the ChIP assays.

Only for EpCam, which has been recently suggested 
to be involved in the development of the aggressive 
phenotype of ATC [31] and has evoked significant interest 
as a target in cancer therapy [32] we analyzed protein 
expression changes in proliferating, starved (T0) and EGF-
induced (T24) FRO, TPC1 and BC-PAP cells. Consistent 
with the work of Okada et al [31], reporting that EpCam 
protein was expressed only in anaplastic–derived thyroid 
cancer cell lines, we detected EpCam expression by 
Western blot only in FRO cells (Figure 7B and data not 
shown). Interestingly, EpCAM appeared to undergo a 
post-translational modification following treatment with 
EGF, as suggested by the uppershift of the protein size. 
This change appears to be inhibited by the presence of 
PATZ1 (Figure 7B).

DISCUSSION

Despite an increasing body of evidences is 
highlighting PATZ1 as a cancer-related gene [15–21], 
little is known about its function. A dual role favoring 
transformation or protecting from it, depending on the 
cellular context, seems to apply for the PATZ1 protein [11]. 
However, still few tumors have been analyzed for PATZ1 
expression and function. Here we focus on thyroid cancer, 
one of the most frequent malignancies of the endocrine 
system, whose mechanisms of transformation are still far 
from being completely elucidated [1]. We first analyzed 
a wide panel of thyroid cancer cell lines and tissues, 
observing that PATZ1 is expressed at significantly lower 
levels compared to normal thyroid tissues. Moreover, 
PATZ1 protein is partially or completely delocalized 
from nucleus to cytoplasm in most of carcinoma samples. 
Interestingly, PATZ1 downregulation, as well as its 
cytoplasmic localization, correlates with the acquisition of 
a less differentiated phenotype, suggesting that PATZ1 loss 
and cytoplasmic localization could be considered as a valid 
marker of an undifferentiated, mesenchymal and aggressive 
phenotype. Notably, we showed that PATZ1 is strongly 
downregulated in all the thyroid cancer cell lines analyzed. 
However, despite their different origin, these cell lines have 
gene expression profiles more closely related to each other 
than to the in vivo differentiated tumors they were derived 
and have characteristics of fully dedifferentiated cells, 
close to undifferentiated carcinomas [33].

Therefore, choosing the thyroid cancer cell 
lines TPC1, BC-PAP and FRO, as cellular models for 
undifferentiated tumors, we showed that in all of them 
reintroduction of PATZ1 leads to inhibition of cellular 
capacity to migrate and invade, supporting a role for 
PATZ1 in opposing the late steps of thyroid transformation, 
consisting in the acquisition of a mesenchymal phenotype 
(EMT), capable to migrate and invade surrounding 
tissues, thus giving rise to local and distal metastases. 
Consistent with the involvement of PATZ1 in EMT, it 
has been recently shown that PATZ1 is part of a group of 
transcription factors, including proteins already linked to 
EMT, such as EGR-1, Sp1, Sp2, NME1, CTCF, PLAG1 
and WT1, potential regulators of TGF-β1 [34]. PATZ1 
reintroduction in BC-PAP and FRO cells also affected 
cell proliferation, suggesting a possible role for PATZ1 in 
this cellular function depending on the cellular context. 
We finally showed that PATZ1 significantly inhibits 
FRO tumorigenic potential both in vitro and in vivo. 
Interestingly, tumors grafted from PATZ1-expressing cells 
showed some epithelial-like features, including follicular-
like structures and E-cadherin expression. Notably, the 
tumor areas displaying such features were also enriched 
in PATZ1 expression, supporting the idea that PATZ1 
could have a direct role in a mesenchymal to epithelial 
transition (MET)-like state. Consistently, the majority 



Oncotarget5319www.impactjournals.com/oncotarget

of the tumors derived from the injection of PATZ1-cells 
resulted mostly negative for PATZ1 expression and 
displayed a mesenchymal phenotype similar to those 
arisen from control cells. Therefore, it is likely that PATZ1 
has been negatively selected in vivo as a way to allow an 
EMT phenotype.

EMT is involved in many biological processes 
including embryonic development, wound-healing and 
cancer progression [35]. In thyroid cancer it seems to be 
specifically involved in the development of ATCs [36], 
but there are evidences of its involvement also in local 
invasion of PTCs [37]. It is increasingly acknowledged 
that EMT plays an important role in the metastasis 
of many types of carcinomas [38, 39] and has been 
implicated in therapeutic resistance and tumor recurrence 
[40, 41]. Therefore, the identification of genes able to 
modulate these cellular processes has a great potential 
for a targeted cancer therapy. One of the major players 
opposing to EMT is the tumor suppressor p53 protein, 
whose loss has been shown to influence motility 
contributing to the invasive and metastatic potential of 
cancer cells [27]. In particular, it has been shown that 
p53 maintains a transcriptional program to prevent EMT 
and that loss of this suppression may contribute to the 
induction of an EMT-like phenotype [42, 43].

Recent data, showing that PATZ1 is able to interact 
with p53 and to directly regulate transcription of p53-
regulated genes [11], suggested a possible mechanism 
by which PATZ1 may be involved in EMT. Consistently, 
we observed that PATZ1 binds in vivo some of the 
p53-regulated genes involved in preventing EMT, and 
its overexpression causes changes in their expression 
changes associated to the stimulation of cell migration 
by EGF. Importantly, in cells carrying a wild-type TP53 
gene, such as TPC1 and FRO, the resulting effect is a 
potentiation of the transcriptional program opposing 
EMT, migration and invasiveness. Conversely, in 
cells carrying a mutant TP53 gene, such as BC-PAP, 
the presence of PATZ is only partially able to activate 
such program, indicating that PATZ1 is not sufficient 
to regulate these p53-dependent genes in presence of 
a mutant p53. Interestingly, PATZ1 expression seems 
to affect expression of different genes depending on 
the cellular context: in FRO cells it downregulates 
EpCAM, involved in the inhibition of E-cadherin [27], 
and upregulates Caldesmon, implicated in the inhibition 
of invadopodia [27]; in TPC1 cells it upregulates 
RhoE, implicated in the inhibition of cytoskeletal 
changes accompanying tumor cell migration [27], 
and Caldesmon, whereas downregulates EpCam; in  
BC-PAP cells it modulates all three of these genes. The 
absence of PATZ1 binding to the RhoE promoter in  
BC-PAP cells suggests that a functional p53 gene is 
required for this binding. However, we cannot exclude 
that in this cell line, EGF treatment is necessary to induce 

binding of PATZ1 to this gene. Further axperiments are 
needed to better elucidate the dynamic of PATZ1 binding 
to these genes in the different cell lines and in relation to 
the presence/absence of a functional p53 protein.

Notably, when we looked at protein expression 
levels of EpCam, a protein that recently acquired increased 
interest for its multiple roles in enhancing tumorigenesis 
[32], and has been reported to be involved in the 
aggressive phenotype of ATCs [31], we found that PATZ1 
expression affects hyper-glycosylation of the protein 
associated with the EGF treatment of the cells. According 
to a previous report [44], this could have effects on EpCam 
stability, with likely consequences on its pro-tumorigenic 
functionality. Therefore, PATZ1 overexpression in FRO 
cells affects EpCam expression at both RNA and protein 
levels, and this may account for the suppressor role of 
PATZ1 on EMT.

In conclusion, we demonstrated that PATZ1 exerts 
an oncosuppressor role in thyroid cancer, particularly in 
the progression to an anaplastic phenotype, through the 
regulation, at least in part, of p53-target genes EpCam, 
RhoE and Caldesmon, thus resulting in reduced migration 
and invasion in vitro, as well as MET and reduced tumor 
growth in vivo.

METHODS

Tissue collection

Thyroid tissues were collected at the Istituto dei 
Tumori di Napoli, Italy and the Service d’Anatamo-
Pathologie, Centre Hospitalier Lyon Sud, Pierre Benite, 
France. For each tumor, some fragments were frozen 
and stored in liquid nitrogen, others were fixed in 4% 
paraformaldehyde and embedded in paraffin. Informed 
consent for the scientific use of biological material was 
obtained from all patients and the work has been approved 
by the local Ethical Committee.

RNA extraction and quantitative real time 
(qRT)-PCR

Total RNA extraction was performed with 
TRIzol reagent (Invitrogen, Carlsbad, CA), 
according to the manufacturer’s instructions. Reverse 
transcription was performed according to standard 
procedures. qRT-PCR analysis was carried out using 
the Power SYBR Green PCR Master Mix (Applied 
Biosystems), according to manufacturer’s instructions. 
Primer sequences were as follows: human PATZ1 
(5′-TACATCTGCCAGAGCTGTGG-3′/5′-TGCACCTGC 
TTGATATGTCC-3′); human G6PD (5′-GATCTACC 
GCATCGACCACT-3′/5′-AGATCCTGTTGGCAAATCT 
CA-3′); murine PATZ1 (5′-GAGCTTCCCCGAGCTCAT-
3′/5′-CAGATCTCGATGACCGACCT-3′); murine G6PD  
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(5′-GAAAGCAGAGTGAGCCCTTC-3′/5′-CATAGGAAT 
TACGGGCAAAGA-3′); EpCam (5′-CCATGTGCTG 
GTGTGTGAA-3′/5′-TGTGTTTTAGTTCAATGATGATC 
CA-3′); fibronectin (5′-CTGGCCGAAAATACATTGT 
AAA-3′/5′-CCACAGTCGGGTCAGGAG-3′); Caldesmon  
(5′-GAGCGTCGCAGAGAACTTAGA-3′/5′-TCCTCTG 
GTAGGCGATTCTTT-3′); RhoE (5′-AAAAACTGCGC 
TGCTCCAT-3′/5′-TCAAAACTGGCCGTGTAATTC-3′).

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was 
carried out with an acetyl-histone H3 immune 
precipitation assay kit (Upstate Biotechnology, Lake 
Placid, NY, USA) according to the manufacturer’s 
instruction, as previously described [45]. Input and 
immunoprecipitated chromatin were analyzed by PCR 
for the presence of EpCam, RhoE and Caldesmon 
promoter, choosing regions also including p53 consensus 
site or putative PATZ1 consensus elements. Antibodies 
used to immunoprecipitate chromatin were: anti-HA 
(sc-805; Santa Cruz), control IgG (sc- 2027; Santa 
Cruz). PCR reactions were performed withAmpliTaq 
gold DNA polymerase (Perkin-Elmer, Monza, 
Italy). Primers used were: EpCam (-218/-65): 
(5′ – ATGGAGACGAAGCACCTGG - 3′ / 5′ - 
GGGACTGCTCACCTCTGG-3′); RhoE (-2239/-
2183): (5′ - TGAGTCCACCAATGAAGCCA - 3′ / 5′ 
- TATGAGGAAATGCAAGTGACGT - 3′); Caldesmon 
(-106/-2): (5′ - CAGGACAATGCATACCACCG - 3′ / 
5′ - TAAAACTCCAGACCGCCCTT - 3′); Caldesmon 
(-951/-841): (5′ - ATGAAGAGTTGGTCGGAGCA - 3′ / 
5′ – ATGAAGAGACCCACCACCTG - 3′). PCR products 
were resolved on a 2% agarose gel and stained with 
ethidium bromide. Semi-quantitative analysis of the gel 
bands was performed by ImageJ64 software.

Histological analysis and immunohistochemistry

Mounted sections (6 μm) were stained with H&E 
using routine procedures. For immunohistochemistry, 
sections were deparaffinized, placed in a solution of 
absolute methanol and 0.3% hydrogen peroxide for 30 
min, washed in PBS and incubated overnight at 4°C in 
a humidified chamber with diluted antibodies. The slides 
were subsequently incubated with biotinylated goat anti-
rabbit IgG for 20 min (Vector Laboratories, Burlingame, 
CA, USA) and then with premixed reagent ABC (Vector) 
for 20 min. The immunostaining was performed by 
incubating the slides in diaminobenzidine solution (DAB-
DAKO) for 5 min. After chromogen development, the 
slides were washed, dehydrated with alcohol and xylene 
and mounted with cover slips using a permanent mounting 
medium (Permount). The antibodies used were: anti-
PATZ1 [11]; anti-E-cadherin (610181, BD Transduction 

laboratories). Negative controls were performed by 
omitting the first antibody. The proportion of cells that 
were positively stained with the anti-PATZ1 antibody 
was scored as: – (negative), no positive cells; + (low), < 
10% of nuclear positive cells; ++ (moderate), 11–50% 
of nuclear positive cells; +++ (high), > 50% of nuclear 
positive cells [22]. At least 20 high-power fields were 
chosen randomly, and 2,000 cells were counted.

Protein extraction and western blot analysis

For protein extraction, cells were lysed in lysis 
buffer containing 1% NP40, 1 mM EDTA, 50 mM Tris-
HCl (pH 7.5) and 150 mM NaCl, supplemented with 
complete protease inhibitors mixture (Roche, Monza, 
Italy). Total proteins were separated on a 8–10% 
polyacrylamide-SDS gel electrophoresis and transferred 
to nitrocellulose membranes (GE Healthcare, Milano, 
Italy) by electroblotting. Membranes were blocked with 
1X TBS, 0.1% Tween-20 with 5% BSA and incubated 
with antibodies. The antibodies used were as follows: anti-
PATZ1 (polyclonal antibody raised against a conserved 
peptide recognizing all PATZ isoforms of mouse and human 
origin), anti-EpCam (sc-25308; Santa Cruz), anti-γ-tubulin 
(sc-17787; Santa Cruz), anti-vinculin (sc-7649; Santa Cruz).

Cell lines, transfections and plasmids

All human thyroid carcinoma cell lines were 
cultured in DMEM supplemented with 10% FBS, 
L-glutamine, and penicillin/streptomycin (GIBCO-BRL) 
in a 5% CO2 atmosphere. TPC1 and FRO cells were 
transfected using Neon Transfection System (Invitrogen), 
whereas BC-PAP cells were transfected using Lipo2000 
(Invitrogen), according to manufacturers’ instructions. For 
stable transfections all the cell lines were transfected with 
PATZ1-EGFP-C2 plasmid carrying human PATZ1 variant 
4 cDNA, or with the empty vector pEGFP-C2 (Clontech). 
Stable transfectants were clonally selected in complete 
medium containing 1 μg/ml G418 (Life Technologies). 
pCEFL-HA [23], and HA-PATZ1 plasmids, carrying the 
human PATZ1 variant 4 cDNA fused to the HA tag, were 
used in the colony assay.

Colony assay and growth curves

For colony assay the cells were plated at a density 
of 90% in 100-mm dishes, transfected with 5 μg of 
empty vector pCEFL-HA, or HA-PATZ1 plasmid, and 
supplemented with G418 (Life Technologies) 24 h later. 
Two weeks after the onset of drug selection, cells were 
fixed and stained with 0.1% crystal violet in 20% methanol 
for 30 min, washed with PBS and photographed.

For the growth curves the cells (4 × 104 cells/dish) 
were plated in a series of 6-cm culture dishes and counted 
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daily for 10 consecutive days through the Bürker chamber. 
The count was performed in the presence of trypan blue, 
to assess cell viability.

Migration and invasion assays

To detect the changed capacity of tumor cell 
migration, we performed a wound-healing assay. 
Specifically, cells were digested with 0.25% trypsin 
and adjusted for a concentration of 5 × 105 cells/ml of 
cell suspension, and then inoculated into 6-well plates 
and cultured at 37°C overnight. In the next day, cells 
were cultured in serum-free medium for 6 h, reached 
approximately 95–100% confluence, and cell monolayer 
was wounded by 20 μl tips. The cells were then rinsed 
twice with culture medium and incubated for 48 h. At 0, 
6, 24 and 30 h, cells were photographed under an inverted 
microscope.

To evaluate tumor cell migration trans-well cell 
culture chambers were used, according to described 
procedures (Corning Costar Corp., Cambridge, MA). 
Briefly, confluent cell monolayers were harvested with 
trypsin/EDTA, centrifuged at 1.200 rpm for 5 min,  
re-suspended in medium without serum and plated 
(3–5 × 104 cells) to the upper chamber of a polycarbonate 
membrane filter of 8 μm pore size. The lower chamber 
was filled with complete medium. The cells were then 
incubated at 37°C in a humidified incubator in 5% CO2 for 
24 h and 48 h. Not migrating cells on the upper side of the 
filter were wiped off and migrating cells on the reverse side 
of the filter were stained with 0.1% crystal violet in 20% 
methanol for 30 min, washed with PBS and photographed 
under light microscope.

The rate of invasion was carried out by using 
transwell cell culture chambers in the presence of Matrigel 
(BD Biosciences). The chambers were pretreated with a 
cold solution containing serum-free medium and Matrigel 
(diluted 1:4) and left 45 min in incubator at a temperature 
of 37°C, at which Matrigel polymerizes to produce a 
biologically active matrix that resembles the basement 
membrane of mammalian cells. Then the assay was 
performed as the migratory assay. Stained cells were lysed 
in SDS and then counted by measuring their absorbance at 
595 nm in three independent experiments.

In vitro and in vivo tumorigenic assays

Soft agar assays were performed according to the 
technique described [24]. Colonies larger than background 
colony size, set with untransformed rat thyroid cells (PC 
Cl 3), were counted and the results were expressed as 
number of colonies/plate. In vivo tumorigenicity was 
evaluated by inoculating control- and PATZ1-transfected 
cells (2 × 106 cells) subcutaneously into the left and right 
flank, respectively, of seven immunodeficient nude (7 weeks 
old) Foxn1 nu/nu female mice (Harlan Laboratories). 

Tumor occurrence was monitored by measuring with 
calipers at least once every three days. Tumor volume was 
determined as (length × width)/2. Care and use of the mice 
were in accordance with institutional guidelines and were 
approved by the local ethical committee.

Statistics

Differences among multiple groups of data were 
analyzed by one-way ANOVA followed by Dunnett’s or 
Tukey’s multiple comparisons test. Differences between two 
groups of data were analyzed by two tailed unpaired t-test.
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PATZ1 interacts with p53 and regulates expression of
p53-target genes enhancing apoptosis or cell survival
based on the cellular context

T Valentino1,2,4, D Palmieri3,4, M Vitiello1,2, GM Pierantoni1,2, A Fusco1,2 and M Fedele*,1,2

PATZ1 is a transcriptional factor functioning either as an activator or a repressor of gene transcription depending upon the
cellular context. It appears to have a dual oncogenic/anti-oncogenic activity. Indeed, it is overexpressed in colon carcinomas,
and its silencing inhibits colon cancer cell proliferation or increases sensitivity to apoptotic stimuli of glioma cells, suggesting an
oncogenic role. Conversely, the development of B-cell lymphomas, sarcomas, hepatocellular carcinomas and lung adenomas in
Patz1-knockout (ko) mice supports its tumour suppressor function. PATZ1 role in mouse lymphomagenesis is mainly because
of the involvement of PATZ1 in BCL6-negative autoregulation. However, this does not exclude that PATZ1 may be involved
in tumorigenesis by other mechanisms. Here, we report that PATZ1 interacts with the tumour suppressor p53 and binds
p53-dependent gene promoters, including those of BAX, CDKN1A and MDM2. Knockdown of PATZ1 in HEK293 cells reduces
promoter activity of these genes and inhibits their expression, suggesting a role of PATZ in enhancing p53 transcriptional
activity. Consistently, Patz1-ko mouse embryonic fibroblasts (MEFs) show decreased expression of Bax, Cdkn1a and Mdm2
compared with wild-type (wt) MEFs. Moreover, Patz1-ko MEFs show a decreased percentage of apoptotic cells, either
spontaneous or induced by treatment with 5-fluorouracil (5FU), compared with wt controls, suggesting a pro-apoptotic role for
PATZ1 in these cells. However, PATZ1 binds p53-target genes also independently from p53, exerting, in the absence of p53,
an opposite function on their expression. Indeed, knockdown of PATZ1 in p53-null osteosarcoma cells upregulates BAX
expression and decreases survival of 5FU-treated cells, then suggesting an anti-apoptotic role of PATZ1 in p53-null cancer cells.
Therefore, these data support a PATZ1 tumour-suppressive function based on its ability to enhance p53-dependent transcription
and apoptosis. Conversely, its opposite and anti-apoptotic role in p53-null cancer cells provides the perspective of PATZ1
silencing as a possible adjuvant in the treatment of p53-null cancer.
Cell Death and Disease (2013) 4, e963; doi:10.1038/cddis.2013.500; published online 12 December 2013
Subject Category: Cancer

The human PATZ1 gene, also known as MAZR, ZSG or
ZNF278, encodes four alternatively expressed proteins,
ranging from 537 to 687 amino acids, that share a common
modular structure consisting of a POZ domain, an AT hook
and four to seven C2H2 zinc fingers.1–3 According to these
domains, PATZ1 is a member of the POK (POZ and kruppel-
like zinc finger) family, an unique group of transcription factors
having key roles in development and cancer through their
involvement in a variety of cellular processes, including cell
proliferation, senescence and apoptosis.4,5 Many POK
proteins, such as HIC-1, Bcl6, PLZF, Nac-1 and others, have
been linked directly or indirectly to p53 regulation,5–7 and
PATZ1 itself has been recently shown to inhibit endothelial
cell senescence through a p53-dependent pathway.8

However, the mechanism of action of these proteins is largely
unknown.

As for other POK family members, the transcriptional
activity of PATZ is dependent on the POZ-mediated oligomer
formation, suggesting PATZ1 as an architectural transcription
factor rather than a typical transactivator, thus working either
as activator or repressor depending on the presence of the
interacting proteins in the cellular context. Consistently,
PATZ1 has been reported to either activate or repress
c-myc,1,2 to activate mast cell protease 6 and FGF4,2,9 and
to repress androgen receptor, CD8 and BCL6 genes.10–13

Several studies indicate a role of PATZ1 in carcinogenesis;
however, it has not defined yet whether it behaves as a tumour
suppressor or an oncogene. In fact, the PATZ1 gene has been
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found to be rearranged with the EWS gene in a small round
cell sarcoma where the other PATZ1 allele is lost.3 Moreover,
loss of heterozygosity has been found at the FRA22B fragile
site, where the PATZ1 gene is located, in several solid
tumours,14 then supporting a potential tumour suppressor role
for PATZ1. Furthermore, both heterozygous and homozygous
Patz1-knockout (ko) mice spontaneously develop several
tumours, including BCL6-expressing Non-Hodgkin lympho-
mas, sarcomas and hepatocellular carcinomas,13 and Patz1-
null mouse embryonic fibroblasts (MEFs) showed increased
expression of various proteins involved in cell cycle activation,
including cyclin D2, CDK4, Cyclin E, HMGA1 and HMGA2,
even though they also express abundant levels of cell cycle
inhibitors, arrest in both G0/G1 and G2/M phases of the cell
cycle and undergo premature senescence.15

On the other hand, PATZ1 overexpression has been
described in various human malignant neoplasias, including
colon, testicular and breast tumours,16–18 and PATZ1 down-
regulation by siRNA either blocks the growth of colorectal
carcinoma cells16 or increases sensitivity of glioma cell lines to
apoptotic stimuli.19

We have previously demonstrated that a critical mechanism
for the development of B-cell lymphoma in Patz1-ko mice
relies on the increased Bcl6 expression levels consequent to
the lack of negative regulation by PATZ1.13 However, other
mechanisms may be envisaged, especially those involved in
the development of solid tumours, such as hepatocarcinomas
and lung adenomas in Patz1-ko mice.

In order to elucidate other possible mechanisms by which
PATZ1 may be involved in carcinogenesis, we decided to
search for PATZ1-interacting proteins. To this aim,
we screened an antibody (Ab) array that allowed us to identify
several potential PATZ1 interactors. Then, we focused on the
p53 tumour suppressor because of its widely demonstrated
role in cancer.20

We first validated the PATZ1/p53 interaction by
co-immunoprecipitating the endogenous proteins in mammalian
cells, and then we demonstrated that the PATZ1/p53 complex
is present on p53-targeted genes, where PATZ1 enhances
p53 transcriptional activity. Next, we showed that PATZ binds
p53-targeted genes in p53-null Saos-2 cells, where it

regulates transcription in an opposite manner compared
with p53. Finally, we showed that PATZ1 is endowed of both
pro-apoptotic and anti-apoptotic activities, depending on the
cellular context.

Results

PATZ is in the same complex with p53. In order to identify
new PATZ1-interacting proteins, we employed an Ab array
containing hundreds of high-quality antibodies against
well-studied proteins, involved in cell cycle regulation,
apoptosis and signal transduction. The array was incubated
with total cell extracts from HEK293 cells transfected with the
human full-length PATZ1 cDNA, tagged with the HA-epitope
and immunoblotted with anti-HA Ab. The results indicated
an interaction between PATZ1 and several proteins
(Supplementary Figure S1a); among these, we focused our
attention on the oncosuppressor p53 because of its
relevance in cancer pathogenesis.

To confirm the interaction between PATZ1 and p53,
endogenous PATZ1 and p53 were co-immunoprecipitated in
total cell extracts from HEK293 with anti-p53 Ab and analysed
by western blotting with anti-PATZ1 Ab (Figure 1a, upper
panel). Western blot with monoclonal p53 Ab confirmed the
correct immunoprecipitation (IP) of the p53 protein (Figure 1a,
lower panel). The reciprocal experiment performed immuno-
precipitating with anti-PATZ1 Ab and revealing with anti-p53
Ab confirmed the interaction (Supplementary Figure S1b).
Consistent with the specificity of this interaction, no co-IP was
observed when nonspecific IgG was used to immunoprecipi-
tate. These results demonstrate that PATZ1 and p53 are
found in the same complexes in mammalian cells.

To identify the p53 domain involved in the interaction with
PATZ1, pull-down assays were performed using HEK293
total cell extracts and two bacterially expressed p53 deletion
mutants fused to GST (Figure 1b).21 HA-PATZ1 was
transiently transfected into HEK293 cells that were harvested
48 h later. Protein extracts were tested for their interaction
with the GST-p53 deletion mutants. The complexes were
immobilized on a glutathione-Sepharose matrix, separated by
polyacrylamide-SDS gel electrophoresis (SDS-PAGE) and

Figure 1 PATZ and p53 are in the same complex. (a) Co-immunoprecipitation of endogenous PATZ and p53 in HEK293 cells. (b) GST pull-down assay of the GST-p53
fusion proteins represented on the left with cell lysates of HEK293 cells. The bound complexes were separated by SDS-PAGE and the filter was incubated with anti-PATZ Ab
(lower panel). A parallel twin gel was stained with coomassie-blue to show equal amount of the GST-fusion proteins used in the assay (upper panel). IgG¼ nonspecific
antibody; input¼ total cell lysates
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blotted, and the filters were hybridized with an anti-HA Ab. The
GST-p53(295–390) mutant keeps the ability to bind PATZ1,
whereas no binding was observed with the GST-p53(13–295)
(Figure 1b, lower panel). No PATZ1 was detectable in the
complexes obtained with the GST protein alone (Figure 1b,
lower panel). Equal amounts of GST-fusion proteins were
loaded in the pull-down assay, as shown by the blue-
Coomassie staining of a parallel twin gel (Figure 1b, upper
panel). These results suggest that the C-terminal domain of
p53, which comprises the tetramerization (aa 323–356) and
the regulatory (363–393) domains, is responsible for the
interaction with PATZ1.

PATZ1 binds BAX, CDKN1A and MDM2 promoters
together or not with p53. p53 is a sequence-specific
transcription factor whose DNA-binding consensus is present
in a large number of promoters.22 Similarly, PATZ1 is a
transcription factor that binds DNA to specific consensus
sequences in promoter regions of several genes.23 Thus,
we asked whether the physical interaction between PATZ1 and
p53 takes place on promoter regions of known p53 targets.
Therefore, we evaluated whether PATZ1 protein binds the
promoters of p53-target genes, such as BAX, MDM2 and
CDKN1A, by performing chromatin IP (ChIP) assays.
Chromatin from Raji cells was crosslinked and immunopre-
cipitated with anti-PATZ1 or nonspecific IgG. Immunopreci-
pitated chromatin was then analysed by PCR, using primers
spanning the � 250/� 530 region of BAX, the � 400/� 100
region of MDM2 and the � 1550/� 1200 region of CDKN1A,
previously shown to co-immunoprecipitate with p53.21

Occupancy by PATZ1 of the above indicated promoter
regions was detectable in anti-PATZ1-precipitated chroma-
tin. Conversely, no precipitation was observed with IgG

precipitates, and when primers for the control promoter LPL
were used, indicating that the binding of PATZ1 is specific for
the selected promoters (Figure 2a). To determine whether
PATZ1 occupies these promoter regions along with p53,
we performed ChIP and Re-ChIP analysis on HEK293 cells
transiently transfected with HA-tagged-PATZ1, p53 or both
expression vectors. Cells were crosslinked and immunopre-
cipitated (ChIP) with anti-HA Ab, and then re-immunopreci-
pitated (Re-ChIP) with anti-p53 Ab. In particular, a part of the
anti-HA-immunoprecipitated chromatin was analysed using
quantitative PCR for BAX, MDM2 and CDKN1A promoter
amplification, confirming the binding of PATZ to these
promoters (Figure 2b). Another part of the PATZ1 complexes
was subjected to Re-ChIP with anti-p53 Ab, and then
analysed using real-time PCR for BAX, MDM2 and CDKN1A
promoters. The results shown in Figure 2c demonstrate that
PATZ1 and p53 take part to the same complex on BAX and
CDKN1A but not on MDM2 promoters. The reciprocal
experiments, using anti-p53 Ab for the first ChIP and anti-
HA antibodies for the Re-ChIP, confirmed the results
(Supplementary Figure S2). It is worth noting that ChIP and
Re-ChIP experiments have been performed on exogenously
expressed proteins because of the difficulty to obtain good
results when endogenous proteins are not abundantly
expressed.

Taken together, these results indicate that PATZ1 binds the
human BAX, MDM2 and CDKN1A promoters in vivo, and
participate to the same DNA-bound complexes that contain
p53 on the BAX and CDKN1A genes.

Interestingly, the PATZ1 protein was also capable of
binding BAX, MDM2 and CDKN1A promoters in the osteo-
sarcoma-derived p53-null Saos-2 cells (Figure 2d), suggesting
that p53 is not required for the binding of PATZ1 to these

Figure 2 Binding of PATZ to p53-target genes. (a) ChIP assay in Raji cells to detect the endogenous in vivo binding of PATZ to CDKN1A, MDM2 and BAX gene
promoters, as indicated. LPL gene promoter was also analysed as a negative control. (b) ChIP assay, revealed by real-time PCR, in HEK293 cells, transiently transfected with
HA-PATZ and p53, to detect the binding of PATZ to the indicated gene promoters. (c) Re-ChIP assay of the samples shown in b to detect the binding of p53 to PATZ/DNA
complexes on the indicated gene promoters. (d) ChIP assay in Saos-2 cells, transiently transfected with HA-PATZ, to detect the binding of PATZ to the indicated gene
promoters. Mean values±S.D. of triplicates are shown in b–d). IgG¼ nonspecific Ab
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promoters. Moreover, by in silico analysis, using the TraFac
Homology Server,24 we found the specific responsive
elements of PATZ1 (here indicated as MAZR) in the promoter
regions of MDM2 and CDKN1A, suggesting that the binding of
PATZ1 to these genes may be direct (Supplementary Table S1).

PATZ1 regulates transcription of p53-target genes. To
study the functional consequences of the complex including
PATZ1 and p53 on p53-target genes, we used reporter
constructs driving luciferase gene expression under control
of the BAX (BAX-luc), MDM2 (MDM2-luc) and CDKN1A
(p21-luc) promoters. HEK293 cells were co-transfected with
each of these reporter constructs together with plasmids
expressing PATZ1, p53 or both proteins. As expected, p53
expression resulted in the upregulation of these promoters.
No significant differences were observed when PATZ1 was
transfected alone, whereas co-transfection of PATZ1 and
p53 significantly enhances BAX promoter activity compared
with that obtained by p53 alone, but had no significant effect
on the other two promoters (Supplementary Figure S3).
As HEK293 cells express abundant endogenous levels
of PATZ1 (Figure 3a), we decided to analyse the
p53-responsive promoter activities in HEK293 cells

interfered for PATZ1. The knockdown of PATZ1 in these
cells, by stable transfection of specific short hairpin (sh)-RNA
(ShPATZ1) (Figure 3b), resulted in the reduction of BAX,
MDM2 and CDKN1A promoter activities and/or gene
expression with respect to the control cells (ShCTRL)
(Figures 3c and d). Furthermore, differently from ShCTRLþ
p53-transfected cells, in which activities of all the promoters
analysed were significantly upregulated compared with
ShCTRL controls, in ShPATZ1þ p53-transfected cells
CDKN1A and MDM2 promoter activities were not signifi-
cantly upregulated compared with ShPATZ1 controls, sug-
gesting that p53 is not able to transactivate CDKN1A and
MDM2 promoters in ShPATZ1 HEK293 cells (Figure 3c).
Consistently, Patz1þ /�MEFs showed decreased levels of
endogenous Bax, Mdm2 and Cdkn1a mRNA, compared with
control wild-type (wt) cells (Figure 3e). These results suggest
that PATZ1 activate expression of the MDM2, CDKN1A and
BAX genes in both HEK293 cells and MEFs, and that it is
required for proper p53 activity on MDM2 and CDKN1A
promoters.

As we showed that PATZ1 is able to bind p53-dependent
gene promoters also in the absence of p53, we also analysed
the affects of PATZ1 knockdown on their transcriptional

Figure 3 PATZ1 knockdown and knockout downregulates p53 activity and p53-target genes in HEK293 cells and MEFs. (a) Western blot analysis of PATZ expression in
different cell lines, as indicated above the panels. Vinculin expression was evaluated as a loading control. Relative expression levels, compared with HEK293 cells and
normalized with respect to vinculin, are indicated on the bottom. (b) Western blot analysis of PATZ expression in Short hairpin (Sh)PATZ1 (ShPATZ1) and backbone vector
(ShCTRL)-expressing HEK293 cells. Vinculin expression was evaluated as a loading control. Relative expression levels, compared with ShCTRL cells and normalized with
respect to vinculin, are indicated on the bottom. (c) Promoter activity of the BAX, CDKN1A and MDM2 genes as assessed by luciferase assay in cells shown in b. Where
indicated, p53 was co-transfected with the reporter plasmids. The data shown express the relative mean values±S.E., compared with ShCTRL, of three or four independent
experiments, each one performed in duplicate. Asterisks indicate the statistical significance compared with ShCTRL. N.S.¼ not significant. (d) qRT-PCR analysis of BAX,
MDM2 and CDKN1A gene expression in ShCTRL and ShPATZ1 cells. Expression levels are normalized to GAPDH, and the levels in ShCTRL cells were set as 1. Mean
values±S.E. of at least four independent experiments are shown. Asterisks indicate the statistical significance versus control cells. (e) qRT-PCR analysis of bax, mdm2 and
cdkn1a gene expression (normalized to Gapdh) in MEFs from Patz1þ /þ and Patz1þ /� mice. Expression levels in Patz1þ /þ samples were set to 1. The data shown
express the mean values±S.E. of at least four experiments. Asterisks indicate the statistical significance compared with Patz1þ /þ MEFs
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regulation in p53-null cells. To this aim, Saos-2 cells,
interfered for the PATZ1 gene, were transfected with the
reporter vectors above indicated, with or without a plasmid
expressing p53, and luciferase activity was analysed (Figures
4a and b). As shown in Figure 4a, the activities of BAX, MDM2
and CDKN1A promoters were increased in cells interfered for
PATZ1 (ShPATZ1) compared with control cells (ShCTRL).
Moreover, the activity of a co-transfected p53 had a trend to
be enhanced in ShPATZ1 cells compared with their control.
Consistently, the endogenous levels of BAX, MDM2 and
CDKN1A mRNA in Saos-2 cells interfered for PATZ1 were
upregulated compared with control cells (Figure 4c). To verify
whether the different behaviour of PATZ in Saos-2 cells
compared with HEK293 cells depends on the absence of p53,
H1299 cells – another p53-null cancer cell line – were used to
analyse the effect of the expression of PATZ on the BAX
promoter, representing one of the above reported promoters.
The results shown in Supplementary Figure S4 confirm also in
this cell line an inhibitory effect of PATZ1 expression on BAX
activity.

Therefore, at odds with the data obtained in HEK293 cells
and MEFs, which endogenously express p53, these results
indicate that PATZ1 downregulates the expression of the
BAX, MDM2 and CDKN1A genes in p53-null cells and
suggest an oncogenic role for PATZ1 in p53-null cells.

PATZ1 can act either as a pro-apoptotic or anti-apoptotic
factor depending on the cellular context. One of the main
functions of p53 is the positive modulation of apoptosis in
response to genotoxic conditions.20 Therefore, to investigate
the biological consequences of the functional interaction
between PATZ1 and p53, we analysed the potential role of
PATZ1 in apoptosis. To this aim, we analysed PARP and
Caspase-3 cleavage in wt and Patz1-ko MEFs using western
blot. As shown in Figure 5a, the expression of the cleaved
Caspase-3, representing cells that undergo apoptosis, is
lower in Patz1� /� MEFs compared with wt controls.
Similarly, Patz1� /� cells also showed reduced levels of
the cleaved PARP protein, another hallmark of apoptosis.
Conversely, no significant differences were observed for
heterozygous cells compared with wt controls. These results
are consistent with reduced spontaneous apoptosis in Patz1-
null MEFs compared with wt controls. Moreover, the
percentage of mortality evaluated by counting viable cells
after exposure to 5-fluorouracil (5FU), a known pro-apoptotic
chemotherapeutic agent acting in both a p53-dependent and
a p53-independent manner,25 was significantly reduced,
or tended to be reduced, in Patz1� /� and Patz1þ /� MEFs,
respectively, compared with wt controls (Figure 5d).
These results suggest a pro-apoptotic role for PATZ1 in
these cells.

Next, we analysed 5FU-induced apoptosis in HEK293 and
Saos-2 cells interfered or not for PATZ1. As shown in
Figure 5e, PATZ1 silencing enhanced sensitivity of Saos-2
cells to the pro-apoptotic treatment. This was consistent with
the increased levels of the Bax gene in Saos-2 cells interfered
for PATZ1. Conversely, no significant differences were
observed in HEK293 cells likely because of the high
data variability among independent experiments. However,
in each experiment we observed a high tendency of HEK293-
interfered cells to be more sensitive to the chemotherapeutic
treatment compared with control cells (Supplementary Figure S5).
All together, these results suggest a dual pro-apoptotic/
anti-apoptotic role for PATZ1, which depends on the cellular
context, and open new interesting therapeutic possibilities in
osteosarcomas.

Discussion

The development of several malignancies in Patz1-ko mice
suggests a key role for the PATZ1 gene in tumorigenesis,13

which appears to be confirmed by its frequent misexpression
in human cancer.3,16–18 We employed an Ab array screening
to identify the proteins interacting with PATZ1 in order to
unveil the mechanisms by which PATZ1 is involved in
tumourigenesis. From this screening we identified the tumour
suppressor p53 in the same complex with PATZ1. Subse-
quently, we have studied the functional consequences of
this interaction demonstrating that PATZ1 interference
(in HEK293 cells carrying a wt p53) results in the inhibition of
the p53 activity on the transcriptional regulation of p53-target
genes, including BAX, MDM2 and CDKN1A, thus suggesting
a positive role for PATZ1 on p53 transcriptional activity.
Moreover, Patz1-null MEFs show a decreased number of
apoptotic cells, either spontaneous or induced by treatment
with the 5FU pro-apoptotic drug, compared with wt controls.

Figure 4 PATZ1 knockdown upregulates p53 activity and p53-target genes in
Saos-2 cells. (a) Promoter activity of the BAX, CDKN1A and MDM2 genes as
assessed by luciferase assay in Saos-2 cells interfered for PATZ1 (ShPATZ1) and
their backbone vector expressing control (ShCTRL). Where indicated, p53 was co-
transfected with the reporter plasmids. The data shown express the mean
values±S.E. of three independent experiments. Asterisks indicate the statistical
significance versus promoter basic activity. (b) Western blot analysis of PATZ
expression in cells shown in a. Vinculin expression was evaluated as a loading
control. Relative expression levels, compared with ShCTRL cells and normalized
with respect to vinculin, are indicated on the bottom. (c) qRT-PCR analysis of BAX,
MDM2 and CDKN1A gene expression in cells shown in a and b. The data shown
express the mean values±S.E. of three independent experiments
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These results are in agreement with the potential tumour
suppressor role of PATZ1, as it enhances the activity of a
tumour suppressor gene and its loss confers resistance to
apoptosis.

Whereas the positive effect of PATZ1 on p53 activity
evidences a clear tumour suppressor function of PATZ1,
we also describe an oncogenic potential for PATZ1. Apparently,
this occurs when PATZ1 works in absence of p53. Indeed,
PATZ1 knockdown upregulates transcriptional activity and
expression of the BAX, MDM2 and CDKN1A genes in the
p53-null Saos-2 cells, and enhances their sensitivity to 5FU
pro-apoptotic treatment. Consistently, PATZ1 expression in
another p53-null cancer cell line (H1299) causes down-
regulation of BAX promoter activity. This is in agreement with
previous results showing that siRNA downregulation of
PATZ1 increases sensitivity of glioma cells (mostly carrying
a mutant p53 gene and resistant to conventional chemotherapy)
to apoptotic stimuli.19 Therefore, we can speculate that
targeting of PATZ1 in p53-null tumours, which are mostly
resistant to conventional chemotherapic treatment, could be
envisaged as an adjuvant therapy to improve the sensitivity
of the cancer cells to the conventional chemotherapy.
Conversely, if a tumour retains the wt TP53 gene and PATZ1
is underexpressed, increasing the expression of PATZ1 could
enhance p53 activity, thus improving induction of the
apoptotic process.

It has been previously shown that HMGA1, a protein
interacting with PATZ1, binds to p53 and inhibits its apoptotic
activity.21,23 It would be interesting to determine whether the
interaction between PATZ1 and HMGA1 might interfere with
the activity of p53. We can hypothesize that in tumours

carrying a wt TP53 gene, the balance between HMGA1 and
PATZ1 protein levels might have opposite effects on the
activity of p53 and, consequently, in tumourigenesis and in
response to anticancer treatments. It is noteworthy that in
differentiated thyroid cancer, which shows a very low
frequency of mutations in the TP53 gene but a reduced p53
activity,26 HMGA1 is overexpressed27 and PATZ1 is down-
regulated compared with normal thyroid tissue (Chiappetta
et al., manuscript in preparation).

Recent deep-sequencing analyses confirmed earlier
reports of TP53 somatic mutations in B20% of diffuse large
B-cell lymphomas (DLBCLs),28–30 a much lower percentage
than in certain non-haematologic malignancies.31,32 None-
theless, 66% of DLBCLs show decreased abundance of
functional p53 and reduced levels of p53 targets.33 Therefore,
additional bases of p53 deregulation in DLBCLs are still to be
defined. Owing to the role of PATZ1 on p53 activity, we could
speculate that the downregulation of the PATZ1 gene might
be one of the upstream events in the deregulation of
p53-dependent pathways in these lymphomas. Consistently,
the main malignant phenotype in Patz1-ko mice is the
development of DLBCLs, where BCL6, which is known to
suppress p53 expression,34 is upregulated.13

In conclusion, our data demonstrate that PATZ1 is able to
interact with p53 and enhance the expression of the genes
regulated by p53, then increasing the susceptibility to
apoptosis, according to a tumour suppressor role of PATZ.
However, the absence of p53 leads PATZ1 to inhibit the same
genes, enhancing cell survival. Therefore, our data seem to
confirm an oncogenic or anti-oncogenic role for PATZ1 in
carcinogenesis depending on the cellular context.

Figure 5 PATZ1 deficiency has a dual anti-apoptotic/pro-apoptotic role depending on the cellular context. (a) Western blot analysis of cleaved caspase-3 and PARP
protein expression in Patz1þ /þ , Patz1þ /� and Patz1� /� MEFs. Relative expression levels, compared with Patz1þ /þ cells and normalized with respect to tubulin, are
indicated on the bottom. (b) Cell viability assay in Patz1þ /þ , Patz1þ /� and Patz1� /� MEFs treated with different doses of 5FU as indicated on the top. The results show
the percentage of cell mortality, expressed as mean values±S.E. of three independent experiments, compared with not treated controls. Asterisks indicate the statistical
significance compared with Patz1þ /þ MEFs. (c) Saos-2 and HEK293 cells interfered (ShPATZ1) or not (ShCTRL) for PATZ1 were treated with 5FU at different doses, as
indicated at the bottom. The percentage of cell viability is shown as mean±S.E. of four independent experiments. Asterisks indicate the statistical significance compared with
ShCTRL cells
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Materials and Methods
Cell cultures. HEK293, Saos-2 and H1299 cells were grown in DMEM
containing 10% fetal bovine serum (Life Technologies, Monza, Italy), 1% glutamine
(Life Technologies) and 1% penicillin/streptomycin (Life Technologies). Primary MEFs
obtained from 12.5-day-old embryos of timed pregnancies between Patz1þ /� mice,
previously described,13 were grown in DMEM (Life Technologies) containing 10%
fetal bovine serum (Hyclone, Erembodegem, Belgium), 1% glutamine, 1%
penicillin/streptomycin and 1% gentamicin (Life Technologies).

Plasmids, transfections, gene interference and luciferase
activity assays. Full-length PATZ1 cDNA (variant 4) for the human PATZ
protein was subcloned into the EcoRI site of the pCEFL-HA vector, in frame with
the upstream HA tag (pHA-PATZ). Expression plasmid for wt p53 (pCAG-p53) has
been described previously.35 PATZ1 knockdown in HEK293 and Saos-2 cells was
carried out by stable transfection of specific sh-RNA for human PATZ1
(KH08765P; Qiagen, Milano, Italy) after selection in 1 mg/ml puromycin. pBAX-
luc, pMDM2-luc or p21-luc reporter vectors have been described previously.21

All transfections were carried out by Lipofectamine 2000 (Life Technologies)
according to the manufacturer’s protocol. For Luciferase assays, the pCMV-Renilla
plasmid (Promega, Mannheim, Germany) was co-transfected with pHA-PATZ and/
or pCAG-p53. Luciferase and Renilla activities were assessed with the Dual-Light
Luciferase system (Promega), according to the manufacturer’s protocol, 48 h after
the transfection. Luciferase activity was normalized for the Renilla activity. All the
experiments were performed at least three times in duplicate or triplicate and the
mean±S.E. was reported.

Ab array. We used an Ab array filter (Hypromatrix Incorporation, Worcester,
MA, USA) in which 100 antibodies, including those against proteins involved in cell
cycle regulation, apoptosis and signal transduction pathways, are immobilized on a
membrane, at predetermined positions, and retained their capabilities of
recognizing and capturing antigens. After incubation with total cell lysates from
HEK293 cells overexpressing HA-PATZ, an immunoblot assay was performed
following the manufacturer’s instructions using an HRP-conjugated anti-HA Ab
(sc-805 HRP; Santa Cruz Biotechnology, Dallas, TX, USA).

Protein extraction, IP and western blotting. For protein extraction,
cells were lysed in lysis buffer containing 1% NP-40, 1 mM EDTA, 50 mM Tris-HCl
(pH 7.5) and 150 mM NaCl, supplemented with complete protease inhibitors
mixture (Roche, Monza, Italy). Total proteins were separated on a 8–10% SDS-
PAGE and transferred to nitrocellulose membranes (GE Healthcare, Milano, Italy)
by electroblotting. Membranes were blocked with 1� TBS, 0.1% Tween-20 with
5% BSA and incubated with antibodies. The antibodies used were as follows: anti-
p53 (DO-1/sc-126 mouse monoclonal, Santa Cruz Biotechnology; and Ab7 sheep
polyclonal, Calbiochem, Billerica, MA, USA), anti-PATZ (polyclonal Ab raised
against a conserved peptide recognizing all PATZ isoforms of mouse and human
origin), anti-HA (sc-805; Santa Cruz Biotechnology), control IgG (sc-2027; Santa
Cruz Biotechnology), anti-Myc (sc-40; Santa Cruz Biotechnology), anti-PARP
(sc-7150; Santa Cruz Biotechnology) and anti-cleaved Caspase-3 (9664P; Cell
Signaling Technology, Danvers, MA, USA). IP and Co-IP procedures were carried
out as previously described.36

GST pull-down assay. Bacterial expressed GST-p53 mutant GST-p53(13–295)
and GST-p53(295–390) proteins were bound to glutathione agarose and used for
binding assays with total extracts from HEK293 cells transfected or not with
pHA-PATZ expression plasmid. Briefly, proteins in the extracts were allowed to
associate with the beads carrying either GST or GST-p53 mutants for 2 h in NETN
buffer (20 mM Tris pH 8.0; 100 mM NaCl; 1 mM EDTA; 0.5% NP-40) at 4 1C.
The protein complexes were washed four times in the same buffer, dissociated by
boiling in loading buffer, and electrophoresed on a 12% SDS gel. The proteins
were transferred to nitrocellulose and visualized with Red Ponceau staining.
Subsequently, they were washed and processed with western blot for PATZ
detection as described above.

ChIP and re-ChIP assays. ChIP was carried out with an acetyl-histone H3
immunoprecipitation assay kit (Upstate Biotechnology, Lake Placid, NY, USA)
according to the manufacturer’s instruction, and subjected to Re-ChIP as
previously described.36 Chromatin samples, derived from Raji or HEK293 cells
transfected or not with pHA-PATZ and pCAG-p53, were subjected to IP with the
following specific antibodies: anti-PATZ, anti-HA, anti-p53 (Calbiochem). For

qPCR, 3 ml of 150ml IP DNA was used to amplify BAX, CDKN1A and MDM2
promoter regions. IgG was used as nonspecific controls, and input DNA values
were used to normalize the values from quantitative ChIP samples. Percent of IP
chromatin was calculated as 2DCt� 3, where DCt is the difference between Ctinput

and CtcIP.37 Primer sequences are available on request.

RNA extraction and quantitative (q)RT-PCR. Total RNA was
extracted using TRI-reagent solution (Life Technologies) according to the
manufacturer’s protocol. qRT-PCR was performed with the SYBR Green PCR
Master Mix (Life Technologies) under the following conditions: 10 min at 95 1C,
followed by 40 cycles (15 s at 95 1C and 1 min at 60 1C). Each reaction was
performed in triplicate in three independent experiments. We used the 2�DDCt

method to calculate the relative expression levels.38 Primer sequences are
available upon request.

Cell viability analysis. MEF wt or ko for Patz1, as well as HEK293 and
Saos-2 cells, interfered or not for PATZ1 were treated with 5FU and cell viability
was assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega),
according to the manufacturer’s instructions. Percentage of cell mortality was
calculated applying the formula 1� cell survival of treated cells/cell survival of
untreated cells.

Statistical analyses. The one-way ANOVA followed by Tukey’s multiple
comparison test was used to compare groups of experiments. Differences
between two sets of data were analysed by two-tailed unpaired t-test, where
significance levels were set as follows: *Pr0.05; **Pr0.01; ***Pr0.001.
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Embryonic Defects and
Growth Alteration in Mice
With Homozygous Disruption
of the Patz1 Gene
TERESA VALENTINO,1 DARIO PALMIERI,1 MICHELA VITIELLO,1 ANTONIO SIMEONE,2

GIUSEPPE PALMA,3 CLAUDIO ARRA,3 PAOLO CHIEFFI,4 LORENZO CHIARIOTTI,1,5

ALFREDO FUSCO,1 AND MONICA FEDELE1*
1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR and Dipartimento di Biologia e Patologia Cellulare e Molecolare,

Università di Napoli ‘‘Federico II’’, Naples, Italy
2CEINGE, Biotecnologie Avanzate, Naples, Italy
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PATZ1 is an emerging cancer-related gene coding for a POZ/AT-hook/kruppel Zinc finger transcription factor, which is lost or
misexpressed in human neoplasias. Here, we investigated its role in development exploring wild-type and Patz1-knockout mice during
embryogenesis. We report that the Patz1 gene is ubiquitously expressed at early stages of development and becomes more restricted at
later stages, with high levels of expression in actively proliferating neuroblasts belonging to the ventricular zones of the central nervous
system (CNS). The analysis of embryos inwhich Patz1was disrupted revealed the presence of severe defects in theCNS and in the cardiac
outflow tract, which eventually lead to a pre-mature in utero death during late gestation or soon after birth.Moreover, the Patz1-null mice
showed a general growth retardation, which was consistent with the slower growth rate and the increased susceptibility to senescence of
Patz1�/�mouse embryonic fibroblasts (MEFs) compared to wild-type controls. Therefore, these results indicate a critical role of PATZ1
in the control of cell growth and embryonic development.
J. Cell. Physiol. 228: 646–653, 2013. � 2012 Wiley Periodicals, Inc.

The PATZ1 gene encodes four alternatively expressed proteins,
ranging from 537 to 687 amino acids, that share a common
modular structure consisting of a POZ domain, two AT-hooks
and four to seven C2H2 Zinc fingers (Fedele et al., 2000;
Kobayashi et al., 2000; Mastrangelo et al., 2000). According to
these domains, PATZ is a member of the POK (POZ and
Kruppel) family of transcriptional repressors (Costoya, 2007),
but it may function either as activator or repressor depending
upon the cellular context. Indeed, it has been reported to either
activate or repress c-myc (Fedele et al., 2000; Kobayashi et al.,
2000), to activate mast cell protease 6 (Morii et al., 2002) and
FGF4 (Kobayashi et al., 2000), and to repress androgen
receptor (Pero et al., 2002) and CD8 (Bilic et al., 2006) genes.
Consistentwith theCD8 regulation, it has been recently shown
that PATZ is an important part of the transcription factor
network that controls the CD4 versus CD8 lineage fate of
double-positive thymocytes (Sakaguchi et al., 2010). Moreover,
we have previously reported that PATZ has a critical role in the
spermatogenesis, by regulating the apoptotic pathways in germ
cells (Fedele et al., 2008).

Several studies suggest a role of PATZ in carcinogenesis. In
fact, the PATZ1 gene maps on the FRA22B fragile site, which
suffers loss of heterozygosity in several solid tumors (Burrow
et al., 2009), and it has been found rearranged with the EWS
gene in a small round cell sarcoma, with the loss of
heterozygosity of thewild-type PATZ1 allele (Mastrangelo et al.,
2000), suggesting a potential tumor suppressor role. However,
an oncogenic role for PATZ1 has also been suggested since it is
overexpressed in some human malignant neoplasia, including
colon (Tian et al., 2008), testicular (Fedele et al., 2008), and
breast (Tritz et al., 2008) tumors. Consistently, PATZ

down-regulation by siRNA either blocks the growth or induces
apoptosis of cell lines derived from colorectal cancers or
gliomas, respectively (Tian et al., 2008; Yang et al., 2010). PATZ
was found mislocalized in testicular seminomas, teratomas, and
embryonal carcinomas from the nucleus to the cytoplasm,
suggesting that its function could be impaired in these tumors
or, alternatively, that it may acquire some new cytoplasmic
function that could contribute to neoplastic transformation
(Fedele et al., 2008). Interestingly, it has been recently shown
that such delocalization of PATZ in testicular seminomas
depends on oestrogen receptor-b levels and the translocation
from cytoplasm to the nucleus is mediated by cAMP (Esposito
et al., 2011), as it was previously demonstrated in other cell
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systems, such as PC3M prostate carcinoma cells and normal
fibroblasts (Tritz et al., 2008).

Since it is known that a large number of genes involved in
embryonic development are either tumor suppressor or
oncogenes (Dean, 1998), we focused on studying the role of
PATZ during development. To this aim we first analyzed Patz1
expression during normal mouse development. Then, we
analyzed the phenotype of mouse embryos null for Patz1 in
comparison with wild-type (WT) controls. Finally, we
examined the growth characteristics of Patz1�/�mice and their
embryo-derived fibroblasts.

Materials and Methods
In situ hybridization

The probe used for this study was a 489 bp fragment carrying a
portion of the mouse Patz1 cDNA. The same fragment, cloned in
the opposite orientation in pGem3Z, was used to obtain a sense
probewhich we used as a control of the specificity of hybridization.
Probe synthesis and labeling was carried out as previously
described (Chiappetta et al., 1996). Embryos of 8.5, 10.5, 12.5, 14.5,
and 17.5 days post coitum (dpc), obtained from C57/Bl6 mice
mated between 9 pm and 10 pm, were collected and classified
according to the Theiler staging (Theiler, 1989). Three
independent embryos for each stage have been analyzed. Tissue
preparation, hybridization, and washes were carried out as
previously described (Chiappetta et al., 1996). Ethical Committee
approval was given in all instances.

Generation and genotyping of mutant mice

The Patz1 gene targeting vector was derived from a lFXII phage
library of a 129SvJ mouse strain (Stratagene, La Jolla, CA). It was
designed to delete a 2,317-bp PstI–XhoI fragment, including the
start codon, the coding regions for the POZ domain, the AT-hook
and the first four zinc fingers (Supplementary Fig. 1). It was
constructed by subcloning the 50-flanking region (the SpeI–PstI 3 kb
fragment), the neo cassette and the 30-flanking region
(the XhoI–XbaI 3.2 kb fragment) into the Bluescript plasmid
(Stratagene) that contained a PacI digestion site inserted at a
distance from the multi-cloning site (Pero et al., 2012). The
targeting vector was linearized with PacI before electroporation
into embryonic stem (ES) cells (Incyte Genomics, Palo Alto, CA).

Two correctly targeted ES cell lines were injected into C57Bl/6J
blastocysts. Both ES cell lines gave rise to germ line chimeras that
were backcrossed to C57Bl/6J females in order to obtain Patz1
heterozygous offspring. For Southern blot analysis, tail DNA
samples were digested with StuI and probed with an external 50
genomic fragment that detects 9.3 or 8-kb fragments,
corresponding to theWT andmutant alleles, respectively. All mice
were maintained under standardized nonbarrier conditions in the
Laboratory Animal Facility of Istituto dei Tumori di Napoli (Naples,
Italy), and all studies were conducted in accordance with Italian
regulations for experimentations on animals.

Histological analysis

For histological examination, the embryoswere gently immersed in
Bouin solution (picric acid, 37% formaldehyde, 100% acetic acid
15:5:1). Sections (6mm thick) were stained with hematoxylin and
eosin according to standard procedures.

MEF growth and BrdU-FACS analysis

PrimaryMEFs, obtained from12.5-day-old embryos, were cultured
at 378C (5%CO2) in Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% fetal bovine serum (Hyclone, Logan, UT)
supplemented with penicillin/streptomycin. To determine the cell
doubling time, each cell line (4� 105 cells) was plated in 6-cm
culture dishes and counted daily with a hemocytometer. MEFs in
logarithmic growth were incubated for 2 h with 30mM BrdU

(Becton Dickinson, San Jose, CA) and then trypsinized and fixed in
70% ethanol for cell cycle analysis by FACS. Afterwashingwith PBS,
cells were re-suspended in 250ml of PBS and incubated with 250ml
of 4M HCl for 30min at RT followed by two washes with PBS-
Tween 0.1%. Subsequently, the cells were stained, first, with 20ml
anti-BrdU-FITC (Becton Dickinson) for 1h at RT in the dark, and
then washed twice with PBS-Tween 0.1% and re-stained with
5mg/ml propidium iodide containing RNase (20mg/ml), for 20min
at RT in the dark, and analyzed with a FACScan flow cytometer
(Becton Dickinson) interfaced with a Hewlett-Packard computer
(Palo Alto, CA). Gating excluded cell debris and fixation artifacts,
and the G1, S, and G2/M populations were quantified using
CellQuest software. In each experiment, a similar number of
events was analyzed.

Senescence associated-b-galactosidase assay

Cells (4� 104), plated 24 h before the assay, were washed twice
with PBS and immersed in fixation buffer [2% (w/v) formaldehyde,
0.2% (w/v) glutaraldehyde in PBS] for 7min. After three additional
PBS washes, the cells were stained overnight in staining solution
(40mM citric acid/sodium phosphate pH 6.0, 150mM NaCl,
2.0mM MgCl2, 1mg/ml X-gal) at 378C without CO2 to avoid
modification of the PH. The next day, the stained solution was
replaced with PBS, and all of the cells in at least 24 fields of view
were counted under the light microscope.

RNA extraction and qRT-PCR

Total RNA was extracted using TRI-reagent solution (Sigma,
St Louis, MO) according to the manufacturer’s protocol, treated
with DNAse I (Invitrogen/Life Technologies Italia, Monza, Italy),
and reverse-transcribed using random hexanucleotides as primers
and MuLV reverse transcriptase (Perkin-Elmer, Waltham, MA),
following manufacturer’s instructions. For quantitative RT-PCR
each reaction was performed three times in triplicate using SYBR
Green PCR Master Mix (Applied Biosystems, Foster City, CA), as
previously described (Pero et al., 2012).

Protein extraction and immunoblot analysis

Protein extraction and Western blot analysis were carried out as
previously described (Melillo et al., 2001). The antibodies used
were as follows: anti-p27 (610241; BectonDickinson), anti-vinculin
(sc-7649; Santa Cruz Biotechnology, Santa Cruz, CA), anti-p21
(sc-397, Santa Cruz Biotechnology), anti-p16Ink4a (ab-54210;
Abcam, Cambridge, UK), anti-cyclin D2 (sc-754; Santa Cruz
Biotechnology), anti-p19arf (ab-80; Abcam), anti-cyclin E (sc-481;
Santa Cruz Biotechnology), anti-p53 (sc-126; Santa Cruz
Biotechnology), anti-cdk1 (Ab-1; Calbiochem, San Diego, CA),
anti-cdk2 (sc-748; Santa Cruz Biotechnology), anti-cdk4 (sc-260;
Santa Cruz Biotechnology), anti-cyclin A (sc-751; Santa Cruz
Biotechnology), anti-HMGA1 (Melillo et al., 2001), and anti-HMGA2
(Fedele et al., 2006).

Statistics

The one-way ANOVA followed by Tukey’s multiple comparison
test was used to compare groups of experiments. The statistical
significant difference was considered when P-value was <0.05.

Results
Developmental expression of Patz1 gene

To define the temporal and spatial profile of Patz1 expression,
we performed an in situ hybridization analysis on mouse
embryos between 8.5 and 17.5 days dpc, the period during
which the most critical events of organogenesis take place. In
general, the expression of Patz1 gene was ubiquitous at early
stages of development and became more restricted at later
stages. Interestingly, Patz1 was expressed at high levels in the
central nervous system (CNS) becoming confined at later
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stages to actively proliferating neuroblasts belonging to the
ventricular zones (Figs. 1 and 2).

Early gestation (8.5–10.5 dpc). At 8.5 dpc Patz1
transcripts were widely distributed in all embryonic tissues
(Fig. 1, Panel A). At 9.5 dpc Patz1 was still expressed in the
majority of the embryonic tissues even though it was markedly
transcribed along the CNS, throughout the branchial arches, in
the otic vescicles and in stomach primordium (Fig. 1, Panels B
and C). All the other tissues showed a reduced level of
expression. At 10.5 dpc (Fig. 1, Panels D and E) Patz1 mRNA
was detected at high level in the differentiating spinal and
cephalic ganglia. A lower expression was also detected through
the limb buds, branchial arches, stomach and the epato-biliary
primordium.

Midgestation (12.5–14.5 dpc) and late gestation
(17.5 dpc). At 12.5 dpc Patz1 transcripts were detected at
high level in the cephalic and spinal ganglia as well as in the brain,
hindbrain, and spinal cord (Fig. 2, Panels A and B). Their
distribution along the CNS was not uniform and resulted more
abundant in the proliferating neuroblasts belonging to the
ventricular zones (Fig. 2, Panels A–D). Additional sites of
strong expression were the olfactory and respiratory
epithelium in the nasal pit (Fig. 2, Panels A and B), the retina
(Fig. 2, Panel C), kidney (Fig. 2, Panel A), and Rathke’s pouch
(Fig. 2, Panel D). At 17.5 dpc Patz1 was detected at high level
along the CNS and in specific organs such as lung, liver, and
kidney (Fig. 2, Panels E–G). In the CNS, its high expression
appeared at this stage clearly confined to the actively
proliferating neuroblasts in the periventricular neocortical
neuroepithelium. Moreover, in the telencephalon it was
expressed also in the cortical plate, in the hippocampus, and in
the striatal neuroepithelium and subventricular zone (Fig. 2,
Panels F andG). A high expressionwas also found in the thymus,
thyroid, salivary glands (Fig. 2, Panels E and F), and in the tooth
primordia (Fig. 2, Panel G).

Embryonic lethality and developmental defects in
Patz1-null mice

To gain insights into the physiological role of Patz1 during
development and adult life, we generated mice carrying a null
mutation at the Patz1 locus.

Mice heterozygous for the Patz1 null allele appeared normal
and were fertile. Homozygous mutant pups totaled only 4% of
the newborn offspring from heterozygous intercrosses, instead
of the expected 25%, indicating that most Patz1-null mice
died during embryogenesis. Embryos from timed matings
between heterozygotes were analyzed at different gestation
stages (Table 1). Until 15.5 dpc all the embryos analyzed had
beating hearts with no gross abnormalities except for a slight
body size decrease inmost of the homozygousmutant embryos
(data not shown) and exencephaly in 4 out of 15 at 13.5 dpc
(Fig. 3 and Supplementary Fig. 2A). Exencephaly is a cranial

Fig. 1. Expression of the Patz1 gene in early gestation. Patz1
expression at 8.5 dpc (A), 9.5 dpc (B) and 10.5 dpc (D) in sagittal (A, B,
D) and frontal (C, E) sections. Abbreviations stand as follows: fb
andmb indicate the fore- andmid-brain, respectively; Te, Di, Ms, and
Mt indicate the telencephalon, diencephalon, mesencephalon, and
metencephalon, respectively; he, heart; sc, spinal cord; sg, spinal
ganglia; so, somites; ov, otic vescicles; ma, mandibular arch; st,
stomach.

Fig. 2. Expression of the Patz1 gene inmid- and late gestation. Patz1
expression at 12.5 dpc (A–D) and 17dpc (E–G) in sagittal (A, E, F) and
frontal (B–D, G) sections. Abbreviations stand as in the previous
figureplus: lu, lung; ki, kidney; np, nasal pit; ey, eye;Rp, rathke’s pouch;
tg, trigeminal ganglion; sa, salivary gland; li, liver; th, thymus; tp, tooth
primordium.

TABLE 1. Embryonic lethality in Patz1�/� mice

Litters Patz1þ/þ Patz1þ/� Patz1�/� Deada Readsorbed Total

E8.5 2 4 11 5 0 0 20
E9.5 2 5 8 5 0 0 18
E10.5 2 2 10 3 0 0 15
E11.5 2 5 12 3 0 0 20
E12.5 5 5 10 9 0 4 24
E13.5 7 13 30 15 0 5 59
E14.5 2 4 9 3 0 2 16
E15.5 10 15 50 15 12 (80%) 10 80
E16.5 10 20 70 1 0 15 91
E18.5 10 10 40 0 — 20 50
3Wb 24 50 (38%) 76 (58%) 5c (4%) 0 — 131

Embryos were isolated at the indicated time of gestation and analyzed for viability by
observing heart beating. E, embryonic day; 3W, 3 weeks after birth.
aPercent of total Patz1�/� embryos given in parentheses.
bPercent of total pups given in parentheses.
cGrowth retarded.
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neural tube defect, resulting from failed closure of the neural
folds during neurulation. In the mouse, the neural tube initiates
closure at 8.5 dpc, beginning at the cervical/hindbrain boundary.
Two additional de novo closure sites occur at the caudal and
rostral limits of the forebrain. Closure then spreads along the
neural folds in the rostral and caudal directions. By 9.5 dpc,
closure is normally complete (Juriloff et al., 1991). Differently
from theWTcontrols, the Patz1�/� embryoswith exencephaly
(Fig. 3A and Supplementary Fig. 2A) had failure of closure of the
anterior neuropore and severe malformation of the brain with
the possible exception of the most caudal region of the
hindbrain (caudal medulla oblongata). Histological examination
of all the other 13.5 dpc homozygous mutant embryos with no
exencephaly (11 out of 15) revealed some anomalies of brain
development with a size and configuration roughly
corresponding to 12.5–13 dpc. In particular, the brain of the
mutants is smaller, the whole ventricular system is larger and,
although the pattern of folding is preserved, the structures that
bulge out such as the ganglionic eminence and the diencephalon
are less pronounced (Fig. 3B and Supplementary Fig. 2B).
Moreover, the thickness of the nervous tissue around the
ventricular cavities is reduced overall, and it is particularly
evident at the level of the telencephalon and diencephalon. The
choroid plexus of the 4th ventricle is hypoplasic. The

neuroepithelium of the isthmus and prospective cerebellum
remains apart caudally (Fig. 3Bg), although in more cranial
sections the ventral part comes together (Fig. 3Bb) and
eventually fuses (Fig. 3Ba). Interestingly, in some mutant
embryos (7 out of 15) a tongueof cells projects from themidline
(median sulcus) of the floor of the rhomboencephalon within
the ventricular cavity, extending rostrally to the region of the
mesencephalon (arrows in Fig. 3B and Supplementary Fig. 2B).

Another anomaly, common to all the Patz1�/� embryos
analyzed, is the origin of the aorta. In mutant embryos there is a
clear malformation of the great vessels that exit the ventricular
chambers of the heart. In contrast to WT embryos, where the
descending aorta is located in the midline towards the left
behind the esophagus (Fig. 4A, left), in 5 out of 15 mutant
embryos the descending aorta is located towards the right of
themidline (Fig. 4A, right). This suggests an origin from the right
primitive dorsal aorta, in contrast to the normal development,
in which the descending aorta originates from the left primitive
dorsal aorta. From these histological sections it is not clear the
real identity of the ascending aorta and pulmonary trunk. A
possibility is that the identity of the two outflow trunks is the
same as in theWT based on its relative position to each other.
In this case, the ductus arteriosus assumes a left to right
orientation, whereas the junction between the ascending aorta
and the aortic arch is locatedon the right side. The course of the
ascending aorta follows a ventral to dorsal direction with
minimal displacement to the side. An alternative possibility is
that the identity of the ascending aorta and pulmonary trunk is
reversed in the mutant embryo, in such a way that the vessel
occupying the position of the WT aorta is in reality the
pulmonary trunk, and vice versa, the vessel that should be the
pulmonary trunk is the ascending aorta. This malformation
would be a transposition of the great vessels. In either case, the
aortic arch would derive from the 4th right branchial arch
artery and the ductus arteriosus from the 6th right branchial
arch artery. In all the other mutants, the descending aorta is
normally located in the left side of the esophagus but the aorta
appears always ventral to the pulmonary trunk at its origin
(Fig. 4B), suggesting outflow-tract (OFT) defects possibly
including transposition or malposition of the great vessels.
Consistent with these histological data, the cardiac OFT
macroscopically analyzed in two agonizing newborn Patz1�/�

pups appeared impaired by different types of vessels anomalies
(Supplementary Fig. 3).

Growth retardation in Patz1-null mice

Almost all the Patz1�/� mice were 10–20% smaller than sex-
matched littermate controls following weaning and these
differences were kept almost unchanged throughout the whole
of their lives (Fig. 5A,B). Similarly, their mean body weight was
significantly lower than that of Patz1þ/þ mice in both sexes
(P< 0.01), as depicted by the growth curves in
Figure 5C. Conversely, the mean body weight of Patz1þ/�mice
did not differ from that of WT mice (Fig. 5C). To examine
whether visceral organ size was proportional to the body
weight we measured the wet weight of the heart, liver, spleen,
kidney, and lung. The ratio of organ to body weight was
consistently smaller in Patz1�/�mice as compared toWTmice
(Fig. 5D).

Cell cycle profile alterations and premature senescence
in Patz1-knockout MEFs

MEFs were prepared from Patz1þ/þ, Patz1þ/�, and Patz1�/�

embryos at 12.5 dpc. The growth properties of the MEFs were
assessed at passage 4 by growth curves and cell-doubling time.
As shown in Figure 6A–C, Patz1�/� MEFs grew significantly
slower than theirWT counterparts. Conversely, heterozygous
Patz1-knockout MEFs grew significantly faster than WT MEFs.

Fig. 3. CNS developmental defects in Patz1�/� embryos.
A: Macroscopic comparison of a Patz1�/� embryo at 13.5 dpc with
exencephaly (right side) with a normal WT embryo from the same
littermate (left side). Lateral (a), dorsal (b), frontal (g), and apical
views (d) are shown. B: Series of brain cross sections, progressively
more caudal, of representative WT and Patz1�/� (without
exencephaly) embryos at 13.5 dpc. For each panel, parallel sections
are compared. Ca, cerebral aqueduct; d, diencephalon; tv, third
ventricle; lvU lateral ventricle; fv, fourth ventricle; M,
neuroepithelium of the isthmus; arrow indicates a tongue of cells
projecting from the floor of the rhomboencephalon within the
ventricular cavity.
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To determine whether the growth alterations observed in
Patz1�/� and Patz1þ/� MEFs were due to altered progression
through the different phases of the cell cycle, proliferating MEFs
in the logarithmic phase were analyzed by bromodeoxyuridine
(BrdU) incorporation and flow cytometry. A drastic reduction
in BrdU incorporation was observed in Patz1�/� compared to
bothWT and Patz1þ/� cells, suggesting a significant decrease in
S phase entrance in Patz1-null MEFs. Consistently, staining with
propidium iodide for DNA content confirmed that the cell
population in S phase was significantly decreased in Patz1�/�

compared to both WT and heterozygous cells (Fig. 6D).
Conversely, an increased number of Patz1�/� cells in both
G0/G1 and G2/M has been observed compared to WT and
Patz1þ/� MEFs (Fig. 6D).

We next examined the susceptibility to senescence of the
MEFs at different culture passages by measuring senescence-
associated b-gal activity. As shown in Figure 6, Panels E and F,
Patz1�/� MEFs entered into premature cellular senescence
when they were cultured beyond seven passages.

To further investigate the mechanisms underlying the cell
cycle profile alterations of Patz1-knockout MEFs, we examined
the expression of cyclins, CDKs and CDK-inhibitor proteins in
Patz1þ/þ, Patz1þ/�, and Patz1�/� cells. Proteins involved in cell
cycle activation, such as HMGA1 and HMGA2, were also
examined. Consistent with the slow growth rates (Fig. 6A–C)
and the increased susceptibility to senescence of Patz1�/�MEFs
(Fig. 6E,F), an increased expression of cell cycle inhibitors,
including p53, p21, p27, p16, and p19, was observed in Patz1�/�

MEFs compared to their WT and heterozygous counterparts.
Paradoxically, Patz1�/� cells also showed increased expression
of various proteins involved in cell cycle activation, including

cyclin D2, CDK4, Cyclin E, HMGA1, and HMGA2 (Fig. 6G). It is
likely that conflicting signals could account for cell cycle arrest
(hypermitogenic arrest) that might then induce premature
senescence (Blagosklonny, 2003).

Collectively, these data suggest that cells devoid of two Patz1
alleles enter the cell cycle more slowly thanWT cells do, arrest
in both G0/G1 and G2/M phases of the cell cycle and undergo
premature cellular senescence. Conversely, heterozygous
MEFs cells grow faster than WT controls but do not show
significant differences in BrdU uptake and cell cycle profile,
compared to WT cells.

Discussion

PATZ is an emerging cancer-related transcription factor,
whose role in cancer pathogenesis is not clear, due to
controversial reports supporting either a tumor suppressive or
a tumor inducing activity (Mastrangelo et al., 2000; Fedele et al.,
2008; Tian et al., 2008; Tritz et al., 2008; Yang et al., 2010; Pero
et al., 2012). From the analysis of Patz1-null mice, we previously
reported an important role for the PATZ1 gene in testis
development and spermatogenesis. Indeed, the lack of the Patz1
gene led to increased apoptosis of the spermatocytes and total
absence of spermatids and spermatozoa, with the subsequent
loss of tubular structure andmale infertility (Fedele et al., 2008).
Consistent with these data, among the germ cells, PATZ1 is
exclusively expressed in spermatogonia (Fedele et al., 2008), in
which, as Plzf, another member of the POK family, it could
regulate the maintaining of a stem cell pool (Buaas et al., 2004;
Costoya et al., 2004). Also by generating Patz1-null mice, but
focusing on T-cell development, it has been subsequently

Fig. 4. Outflow-tract defects in Patz1�/� embryos. A:Cross sections, at theheart level, of representativeWTandPatz1�/�embryos at 13.5 dpc.
Parallel sectionsarealigned forcomparison.B:Cross section,at theheart level, ofaPatz1�/�embryoat13.5 dpcdifferent fromthat shown inA.All
sections shown are progressivelymore cranial going from the top to the bottom (A) and for the left to the right (B). M, descending aorta and aortic
arch; a, ascending aorta; p, pulmonary trunk; d, ductus arteriosus.
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shown that PATZ regulates transcription of the cd8 gene and is
part of the transcription factor network that controls the fate of
double positive thymocytes (Sakaguchi et al., 2010).

In the present work, we have more deeply studied the
expression of PATZ during development, extending the
analysis to the whole embryo. Interestingly, we found that it is
widely expressed at high levels during embryogenesis, especially
in the CNS, where it is clearly restricted to the actively
proliferating neuroblasts in the periventricular neocortical
neuroepithelium, in the telencephalic cortical plate, in the
hippocampus, and in the striatal neuroepithelium and
subventricular zone, suggesting the involvement of PATZ in
CNS development, as then validated by the phenotype of
Patz1�/� embryos. In fact, they show defects in the CNS with a
clear reduction of periventricular cells. The critical role of
PATZ in CNS development is consistent with previously
published data reporting that PATZ is strongly expressed in the
midbrain region (Kobayashi et al., 2000) and that it is one of the
transcriptional factors that regulate a group of candidate genes
for susceptibility to the fetal alcoholic syndrome, which is
characterized by severe defects at the CNS (Lombard et al.,
2007).

Interestingly, most of the CNS districts, where PATZ1
expression is confined at later stages of development, harbor
embryonic neural stem cells (NSCs; Temple, 2003), once
again suggesting a crucial role of PATZ1 in maintaining a stem
cell pool. This is consistent with the reduction of the

subventricular zone, which is one of the key neurogenic sites
harboring the adult NSC niche (Doetsch, 2003), in Patz1-null
embryos. It is noteworthy that in adult mammals, NSCs
generate new neurons that are important for specific types of
learning andmemory (Yamasaki et al., 2007; Zhang et al., 2008).
The control of adult NSC number and function is fundamental
for preserving the stem cell pool and ensuring proper levels of
neurogenesis throughout life. Indeed, decreased neurogenesis
is implicated in the development of pre-mature aging and
disorders in learning, memory, and cognition (Lemaire et al.,
2000; Drapeau and Abrous, 2008; Kitamura et al., 2009).
Therefore, the definition of the mechanisms underlying NSC
maintaining may open the possibility of preventing the onset or
progression of these disorders by therapeutically enhancing
neurogenesis.

Another interesting phenotype, observed by the
morphological analysis of Patz1�/� embryonic tissues at
12.5 dpc, and subsequently confirmed by macroscopic
observations in newborn pups, was the altered positioning of
the cardiacOFT. It is likely that these defects are responsible for
the intrauterine or early neonatal death ofmost Patz1-nullmice.
In fact, the wrong positioning of the vessels that carry blood to
and from the heart can cause birth asphyxia due to respiratory
distress following the transition from placental to pulmonary-
based breathing (Ranjit, 2000). Similar cardiovascular defects
are reminiscent of common congenital heart defects, most of
them known as DiGeorge syndrome, seen in human newborns.

Fig. 5. Growth retardation of Patz1�/�mice. A: Gross appearance of a representative 1-year-old Patz1-null mouse (right) in comparison with a
sex-matched wild-type sibling (left). B: Naso-anal length of cohorts of 10 mice, males or females, was measured at 12 months of age. Values are
meanWSD,MP<0.05.C:Bodyweightscurvesofcohortsof10WT,10Patz1R/�and10Patz1�/� female(left)andmale(right)miceasafunctionofage.
Value are meanWSD. The curves of Patz1�/� mice were significantly lower than both Patz1R/R and Patz1R/� mice (P<0.01), as calculated by
ANOVARTukey test. D: Ratio of organ to body weight on mean values of four mice for each genotype above indicated. MP<0.05.
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This disease has an incidence of 1 of 4,000 born and is caused
by the alteration of several genes located in 22q11-22q12
(Schinke and Izumo, 2001). Since PATZ1 is also located on
chromosome 22q12, and many human newborns with aortic
arch and/or OFT defects do not display characteristic
mutations in well known genes associated to the DiGeorge
syndrome (DGS), such as TBX1, PATZ1 might be a good
candidate among the genes responsible for some types of DGS.
It is noteworthy, at this regard, that many experimental models

of DSG focus on the cardiac neural crest cells, a unique subset
of cells that migrate from the dorsal aspect of the neural tube
to remodel the pharyngeal arch arteries and the septation
of the cardiac OFT into two individual vessels: the
pulmonary trunk and ascending aorta (Hutson andKirby, 2007).
Therefore, the two main pathological phenotypes observed in
Patz1�/� embryos (neural tube and cardiac OFT defects)
could be linked by a common pathological event in the neural
crest cells.

Fig. 6. Growth alterations in Patz1-knockout embryonic fibroblasts. A: MEFs were prepared from Patz1R/R, Patz1R/�, and Patz1�/� embryos at
12.5 dpc. At passage 4 their growth properties were examined in vitro. Representative clones from each genotype, as indicated in the figure,
are shown 3 days after plating an equal number of cells from each. B: Growth curves of MEFs as described in (A). MEFs were plated equally and
counted daily for 8 days. The values are themeanWSEof three different cell clones (each originating fromadifferent embryo) for each genotype.
C:Cell-doublingtimeofMEFsasdescribedin(A),calculated4daysafterplating.ThevaluesrepresentthemeanWSDofthreedifferentcellclonesas
described in(B).D:BrdURPropidiumiodideflowcytometryofasynchronousMEFsasdescribed in(A).Thepercentage(expressedasmeanWSD)
of cells in each phase of the cell cycle is indicated. E: Light microscopy of representativeWT and homozygous Patz1-knockout MEFs stained for
b-galactosidase activity at culture passage 8 (Scale bare: 10mm). F: Quantification of the percent of cells positive for b-galactosidase activity
(i.e., senescent cells) in Patz1R/R, Patz1R/�, and Patz1�/� MEFs is expressed as meanWSD of three independent experiments. G: Expression of
cell cycle and senescence regulators in representative MEFs from each genotype, as indicated on the bottom, was determined byWestern blot.
Relative expression levels, compared to WT cells and normalized with respect to vinculin, are indicated on the top of each panel. H: Relative
Patz1 expression inMEFs as in the previous panels, evaluated by qRT-PCR. Values are themeanWSDof three independent experiments in three
different clones for each genotype.
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The fewmice Patz1�/� that survive to the birth harbor no or
just slight cardiovascular defects (decrease in the diameter of a
vessel), having a quite normal life expectancy, except for those
which die prematurely for the onset of lymphomas (Pero et al.,
2012). Interestingly, most of these adult mice are growth-
retarded since they are 10–20% smaller and 40–50% lighter
than theirWTand Patz1þ/� sex and age-matched controls. This
phenotype is compatible with defects in the CNS development
(Shanske et al., 1997). Nevertheless, the analysis of MEF growth
properties suggest that this phenotype may be due, at least in
part, to alterations in cell cycle progression and premature
senescence. Indeed, cell cycle analysis of Patz1�/� MEFs shows
arrest at or beyond the restriction point, in either G1 or G2
phase, which is compatible with a hypermitogenic arrest
(Blagosklonny, 2003). Indeed, Patz1-null MEFs showed
conflicting signals due to increased levels at the same time of
both mitogenic cyclins and CDK inhibitors. This could
conceivably create an oncogenic stress, which would be
responsible for premature senescence (Serrano et al., 1997).

The results obtained on the Patz1-null MEFs are consistent
with very recent data showing growth inhibition and
accelerated senescence in human endothelial cells interfered
for PATZ1 expression (Cho et al., 2011). Apparently, this anti-
senescence function seems to conflict with the role of tumor
suppressor that we envisaged for PATZ (Pero et al., 2012).
However, the different cellular context may play a critical role
in the effect of PATZ on cell fate. Moreover, a dual tumor
suppressor/anti-senescence role has been previously reported
for other genes (Pan et al., 2011). Indeed, differently from
apoptosis that leads cells to death, senescence is a stable and
metabolically active state, which in fibroblasts is associatedwith
resistance to apoptosis caused by radiation (Yeo et al., 2000).

In conclusion, our findings in Patz1-knockout mice highlight
the critical role that PATZ plays during neural and cardiac OFT
development, deficiencies of which dramatically impact on
embryonic development and postnatal growth. Moreover, they
also indicate that PATZ1 gene can affect cell-cycle decision,
supporting its cancer-related function.
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Abstract
We have previously demonstrated that HMGA1B and HMGA2 overexpression in mice induces the
development of GH and prolactin (PRL) pituitary adenomas mainly by increasing E2F1
transcriptional activity. Interestingly, these adenomas showed very high expression levels of
PIT1, a transcriptional factor that regulates the gene expression of Gh, Prl, Ghrhr and Pit1 itself,
playing a key role in pituitary gland development and physiology. Therefore, the aim of our study
was to identify the role of Pit1 overexpression in pituitary tumour development induced by
HMGA1B and HMGA2. First, we demonstrated that HMGA1B and HMGA2 directly interact with
both PIT1 and its gene promoter in vivo, and that these proteins positively regulate Pit1 promoter
activity, also co-operating with PIT1 itself. Subsequently, we showed, by colony-forming assays
on two different pituitary adenoma cell lines, GH3 and aT3, that Pit1 overexpression increases
pituitary cell proliferation. Finally, the expression analysis of HMGA1, HMGA2 and PIT1 in human
pituitary adenomas of different histological types revealed a direct correlation between PIT1 and
HMGA expression levels. Taken together, our data indicate a role of Pit1 upregulation by HMGA
proteins in pituitary tumours.
Endocrine-Related Cancer (2012) 19 123–135
Introduction

Pituitary adenomas are one of the most frequent

intracranial tumours with a prevalence of clinically

apparent tumours close to one in 1000 of the general

population and are the third most common intracranial

tumour type after meningiomas and gliomas

(Scheithauer et al. 2006). They are mostly non-

metastatising monoclonal neoplasms arising from

adenohypophyseal cells in the anterior pituitary, and

exhibit a wide range of hormonal and proliferative

activity. The most common types (about 50%) of

pituitary adenomas are prolactinomas, while GH- or

ACTH-secreting adenomas account for 20 and 10%

of pituitary tumours respectively, and TSH-secreting
Endocrine-Related Cancer (2012) 19 123–135
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adenomas are rare (1%) (Llyod et al. 2004). About one-

third of pituitary adenomas are named non-functioning

adenomas because they do not exhibit signs of

hypersecretion or gonadotrophin adenomas related to

FSH–LH immunoreactivity (Trouillas et al. 1986).

They are usually large tumours diagnosed following

local compressive effects on brain structures and

cranial nerves.

Pituitary tumorigenesis is generally considered a

model of the multi-step process of carcinogenesis, in

which molecular genetic alterations represent the

initialising event that transforms cells, and hormones

and/or growth factors promote cell proliferation (Asa

& Ezzat 2002). However, the molecular events leading
Britain
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to pituitary tumour development are still unclear, since

somatic mutations identified in other neoplasias, such

as the BRAF and RAS genes, are rare events in pituitary

adenomas (Lania et al. 2003, De Martino et al. 2007a).

Activating mutations of Gsa (the so-called gsp

mutations) are the most important somatic mutation

in pituitary adenomas, being present in up to 40% of

GH-secreting adenomas (Lyons et al. 1990). Mutations

of MEN1A, the gene mutated in the MEN-1 syndrome,

which includes pituitary adenomas, are uncommon in

sporadic tumours (Zhuang et al. 1997, Schmidt et al.

1999). Similarly, other genes involved in familial

pituitary adenomas, such the AIP gene, responsible for

familial isolated pituitary adenomas, or the CDKN1B

gene, mutated in the MEN-1-like syndrome MEN-4,

have been found to be mutated in about 3% of sporadic

GH-secreting adenoma or never in sporadic pituitary

adenomas respectively (Occhi et al. 2010). However,

epigenetic events, such as hypermethylation and/or

microRNA-dependent impairment of protein trans-

lation, are likely to be responsible for the down-

regulation of gene and/or protein expression associated

with pituitary tumorigenesis (Amaral et al. 2009,

Dudley et al. 2009, Tateno et al. 2010). Moreover, a

parental-specific methylation pattern of the Gsa gene,

responsible for a tissue-specific near-exclusive

expression of Gsa from the maternal allele, is relaxed

in the majority of GH-secreting pituitary adenomas

negative for gsp (Hayward et al. 2001). Therefore, both

genetic and epigenetic alterations appear to be

involved in pituitary tumorigenesis. Our recent studies

have identified a crucial role for the high-mobility

group A (HMGA) proteins in pituitary tumour

development (Fedele et al. 2002, 2005).

HMGA protein family includes four members,

HMGA1A, HMGA1B and HMGA1C, splicing isoforms

of the HMGA1 gene, and HMGA2, encoded by the

HMGA2 gene (Fusco & Fedele 2007). They are small

acidic non-histone nuclear factors that bind the minor

groove of AT-rich DNA sequences through their amino-

terminal region containing three short basic repeats, the

so-called AT-hooks (Fusco & Fedele 2007). HMGA

proteins do not have transcriptional activity per se, but

regulate gene expression interacting with other tran-

scription factors and modifying the structure of DNA, in

order to modulate the formation of stereo-specific

complexes on the promoter/enhancer regions of target

genes (Thanos & Maniatis 1992, Falvo et al. 1995).

Both HMGA genes have a critical role during

embryogenesis, when they are widely expressed,

whereas their expression is absent or low in normal

adult tissues (Zhou et al. 1995, Chiappetta et al. 1996).

Conversely, they are frequently overexpressed in several
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human cancers including thyroid (Chiappetta et al.

1998, 2008), prostate (Tamimi et al. 1993, Winkler et al.

2007), cervix (Bandiera et al. 1998), colorectum (Fedele

et al. 1996) and pancreas carcinoma (Abe et al. 2000,

2003), and several studies indicate that HMGA proteins

are causally involved in tumour development (Fusco &

Fedele 2007). In fact, overexpression of both HMGA1

and HMGA2 results in the transformation of rat1a

fibroblast and human lymphoblastoid cells (Wood et al.

2000) while inhibition of their expression prevents

thyroid transformation induced by mouse transforming

retroviruses (Vallone et al. 1997) or induces apoptosis in

two different thyroid anaplastic carcinoma cell lines

(Scala et al. 2000).

Several data support a critical role for HMGA2 (and

probably for HMGA1) in the generation of human

pituitary adenomas (Fedele et al. 2010). Indeed,

HMGA2 was found amplified and overexpressed in a

large set of human prolactinomas (Finelli et al. 2002),

and pituitary adenomas secreting prolactin (PRL) and

GH developed in transgenic mice overexpressing

HMGA1B or HMGA2 (Fedele et al. 2002, 2005). Our

previous studies demonstrated that HMGA2 induces

pituitary tumour development by enhancing E2F1

activity (Fedele et al. 2006). Indeed, following the

interaction with the retinoblastoma protein pRB,

HMGA2 displaces histone deacetylase 1 (HDAC1)

from the pRB/E2F1 complex, increasing E2F1 acetyl-

ation and transcriptional activity. Consistently,

functional loss of E2F1 activity (obtained by mating

Hmga2 transgenic and E2f1 knockout mice) strongly

reduced the incidence of pituitary tumours (Fedele et al.

2006). However, Hmga2 mice still develop pituitary

neoplasias also in an E2f1 knockout background,

although with a lower frequency and a less aggressive

phenotype, suggesting that other molecular pathways

may be involved in pituitary tumour development

induced by HMGA overexpression. Recently, using a

genechip microarray approach, we have shown that

HMGA proteins can contribute to pituitary cell

transformation through the transcriptional modulation

of target genes, such as Mia (Cd-rap) (De Martino et al.

2007b) and Ccnb2 (De Martino et al. 2009).

Our previous findings also showed a very abundant

expression of Pit1 (whose expression was not

detectable in adult mouse pituitary) in pituitary

adenomas from Hmga1b and Hmga2 transgenic mice

(Fedele et al. 2002, 2005). PIT1, also named GHF1, is

a member of the POU transcription factor family

(Delhase et al. 1996), and plays a key role in the

specification, expansion and survival of three specific

pituitary cell types (somatotropes, lactotropes and a

subset of thyrotropes) during the development of the
www.endocrinology-journals.org
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anterior pituitary (Lefevre et al. 1987, Nelson et al.

1988, Li et al. 1990), and its transcriptional activity

on many genes, such as GH, PRL, TSHB, GHRHR

and PIT1 itself, is crucial for pituitary gland

physiology (Lefevre et al. 1987, Nelson et al. 1988,

Chen et al. 1990, Li et al. 1990, McCormick et al.

1990). Moreover, PIT1 is overexpressed in GH, PRL

and TSH pituitary adenomas (Asa et al. 1993,

Delhase et al. 1993, Friend et al. 1993, Pellegrini

et al. 1994, Pellegrini-Bouiller et al. 1997).

The aim of the present study was to investigate the

role of Pit1 overexpression in the generation of pituitary

adenomas in Hmga1b and Hmga2 transgenic mice.

Here, we demonstrate that both HMGA1B and

HMGA2 bind both PIT1 and PIT1-responsive DNA

elements, thus positively modulating Pit1 promoter

activity. Functional studies show that Pit1 overexpres-

sion enhances pituitary adenoma cell proliferation.

Finally, a correlation was found between PIT1 and

HMGA overexpression in human pituitary adenomas,

further supporting a role of HMGA-mediated PIT1

overexpression in pituitary tumours.
Materials and methods

Plasmids, siRNAs, recombinant proteins and

antibodies

Expression vector containing the V5-tagged full-length

cDNA for Pit1 sub-cloned in the pcDNA3.1/GS vector

was purchased from Invitrogen. HA-tagged HMGA1B

and HMGA2 expression plasmids were previously

described (Fedele et al. 2001, 2006). The PIT1

promoter construct, carrying the region K1321 to

C15, related to the transcriptional start site, of the

human PIT1 gene fused to the luciferase cDNA (PIT-1-

Luc), was a generous gift of Dr M Delhase (Brussels,

Belgium). The pBABE-puro vector was previously

described (Monaco et al. 2001). The siRNA anti-

HMGA1 was purchased from Santa Cruz Bio-

technology (Santa Cruz, CA, USA). GST- and His-

HMGA1B and HMGA2 fusion proteins were

expressed in Escherichia coli strain BL21 (DE3) and

purified using glutathione sepharose or nickel beads

as described previously (Baldassarre et al. 2001,

Pierantoni et al. 2001). Full-length PIT1 protein,

anti-HA (sc-805) and anti-PIT1 supershift antibodies

(sc-442X) were purchased from Santa Cruz

Biotechnology, whereas anti-V5 (R960-25) antibody

was purchased from Invitrogen. Anti-HMGA1 and

anti-HMGA2 antibodies were previously described

(Fedele et al. 2006, Pierantoni et al. 2007).
www.endocrinology-journals.org
Cell cultures and transfections

Human embryonic kidney (HEK) 293T, rat pituitary

adenoma GH3 and mouse pituitary adenoma aT3 cells

were cultured in DMEM supplemented with 10% FCS

(GIBCO-BRL, Life Technologies). DNA was trans-

fected by the calcium phosphate procedure, as

described previously (Graham & Van der Eb 1973),

in HEK293T, and by Lipofectamine 2000 (Invitrogen),

according to the manufacturer’s instructions, in GH3

and aT3 cells.
GST pull-down assay, protein extraction and

co-immunoprecipitation

For in vitro protein–protein binding, 5 mg PIT1

recombinant protein were incubated with 5 mg resin

conjugated to GST, GST-HMGA1B or GST-HMGA2

recombinant proteins. Reactions and analysis of the

protein–protein interactions were performed as

described previously (Pierantoni et al. 2001). A similar

procedure was also applied to HEK293T cells tran-

siently transfected with the Pit1-V5 expression vector.

Briefly, 500 mg total protein extracts were incubated

with 5 mg resin conjugated to GST, GST-HMGA1B or

GST-HMGA2 recombinant proteins. The protein–

protein complexes formed on the resin were pulled

down by centrifugation. The resin was washed five times

at 4 8C with 1 ml cold NETN buffer containing 0.1%

NP-40, 1 mM EDTA, 50 mM Tris–HCl (pH 7.5),

150 mM NaCl, 20 mM pirophosphate, 0.2 mg aprotinin,

4 mM PMSF, 25 mM sodium fluoride, 10 mM activated

sodium orthovanadate (Sigma) and a cocktail of

protease inhibitors (Roche Applied Science).

Protein extracts were obtained by lysing cells

and tissues in NETN buffer and then processed

for co-immunoprecipitation as described previously

(Pierantoni et al. 2001).
Electrophoretic mobility shift assay

Recombinant proteins (5 ng) were incubated for

15 min at RT in binding buffer (10 mM Tris–

HCl, pH 7.5, 50 mM NaCl, 1 mM DTT, 2 mg BSA,

1 mg poly-dCdG) with a 32P-end-labelled double-

strand (DS) oligonucleotides (specific activity,

8000–20 000 c.p.m./fmol), corresponding to the PIT1

consensus (sc-2541; Santa Cruz Biotechnology) or to

the same element mutated in the PIT1 binding site

(sc-2542). Up to 400-fold excess of specific unlabelled

competitor oligonucleotide was added as the control.

Supershift analysis was carried out by incubating the

reaction mix with 1 mg antibody for 30 min in ice.

The DNA–protein complexes were resolved on 6%
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non-denaturing acrylamide gels and visualised by

exposure to autoradiographic films.
Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was carried

out with an acetyl-histone H3 immune precipitation

assay kit (Upstate Biotechnology, Lake Placid, NY,

USA) according to the manufacturer’s instruction, as

described previously (De Martino et al. 2009). Input

and immunoprecipitated chromatin were analysed by

PCR for the presence of the Pit1 promoter sequence.

PCR were performed with AmpliTaq gold DNA

polymerase (Perkin–Elmer, Monza, Italy). Primers

used to amplify the sequence of the Pit1 promoter

were 5 0-GCACCAACCTATCATTAC-3 0 (forward)

and 5 0-TGCTACTAACACAATTGC-3 0 (reverse).

PCR products were resolved on a 2% agarose gel,

stained with ethidium bromide, and scanned using a

Typhoon 9200 scanner. The intensity of the bands was

quantified by densitometric analysis using ImageQuant

software (GE Healthcare, Milan, Italy).
Luciferase and colony assays

For the luciferase assay, a total of 2!105 cells were

seeded into each well of a six-well plate and transiently

transfected with 1 mg PIT-1-Luc and with the indicated

amounts of HA-HMGA1B and HA-HMGA2, together

with 0.5 mg Renilla and various amounts of the

backbone vector to keep the total DNA concentration

constant. Transfection efficiency, normalised for the

Renilla expression, was assayed with the dual

luciferase system (Promega Corporation). All transfec-

tion experiments were repeated at least three times.

For the colony assay, GH3 and aT3 cells were seeded

at a density of 2.5!106 per 10 mm dish. Two days after,

the cells were transfected with 10 mg pcDNA3.1 or

10 mg pcDNA3.1/Pit1-V5 or 5 mg Pit1 shRNA (Santa

Cruz Biotechnology) or 5 mg scrambled shRNA (Santa

Cruz Biotechnology) plus 2 mg pBABE-puro. After

about 15 days of positive selection in puromycin, the

cells were stained with 500 mg/ml crystal violet in 20%

methanol, and the resulting colonies were counted.
Tissue samples

The human pituitary adenoma samples were obtained

from 46 surgical excision biopsies, including 13 GH

and 33 PRL adenomas) from patients of ’Federico II’

University (Naples) and Neurosurgical Department (Pr

Jouanneau E) of Hospices Civils de Lyon (France).

One part of each pituitary adenoma was saved for

routine histopathology evaluation, including
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immunohistochemistry with the systematic detection

of GH, PRL, ACTH, TSH, FSH and LH, and the other

one immediately frozen at K80 8C until the extraction

of nucleic acids. Informed consent for the scientific use

of biological material was obtained from all patients.
RNA extraction and real-time RT-PCR

Total RNA was extracted from tissues using TRI

REAGENT (Molecular Research Center, Inc., Cincin-

nati, OH, USA) solution, according to the manufacturer’s

instructions. The RNA integrity was verified by

denaturing agarose gel electrophoresis (virtual presence

of sharp 28S and 18S bands) and spectrophotometry. One

microgram of total RNA of each sample was reverse-

transcribed with the QuantiTect Reverse Transcription

(Qiagen) using an optimised blend of oligo-dT and

random primers according to the manufacturer’s instruc-

tions. To ensure that RNA samples were not contami-

nated with DNA, negative controls were obtained by

performing the PCR on samples that were not reversed-

transcribed but identically processed. Quantitative PCR

was performed with the SYBR Green PCR Master Mix

(Applied Biosystems, Foster City, CA, USA) as follows:

95 8C for 10 min and 40 cycles (95 8C for 15 s and 60 8C

for 1 min). A dissociation curve was run after each PCR

in order to verify amplification specificity. Each reaction

was performed in duplicate. To calculate the relative

expression levels, we used the 2KDDCt method (Livak &

Schmittgen 2001).

Primer sequences are available upon request.
Statistical analyses

For the comparison between two groups of experi-

ments, Student’s t-test was used. Three or more groups

of experiments were compared using the one-way

ANOVA followed by Tukey’s multiple comparison

test. All results are expressed as meanGS.D. The

statistical significant difference was considered when

P value was !0.05. Linear regression analysis was

performed to determine the association of PIT1 with

HMGA1 or HMGA2 expression levels in human

pituitary adenomas. The square of correlation coeffi-

cient (R2) close to 1 was considered to be indicative of

a significant direct correlation.
Results

HMGA proteins interact with PIT1

To investigate the role of HMGA proteins in the

modulation of PIT1 function, we first hypothesised that

HMGA proteins directly bind PIT1 protein. The finding
www.endocrinology-journals.org



PIT1

A

B

C

PIT1

Pit-1-V5

HMGA2

HMGA1B

IP α-V5 input

Et.Br.

PIT1

HA-HMGA1B/2

E2F1

IP α-HA

Et.Br.

WB

α-HA

α-V5

α-E2F1

GST
GST

GST-H
M

GA1B

GST-H
M

GA2

GST
In

pu
t

In
pu

t
GST

GST-H
M

GA1B

GST-H
M

GA2

+
+ + + + + + + +

– + –+ + – +

Figure 1 In vitro and in vivo interaction between PIT1 and
HMGA proteins. (A) Recombinant PIT1 protein was incubated
with immobilised GST-HMGA1B, GST-HMGA2 or GST alone in
a GST pull-down assay. (B) HEK293T cells were transiently
transfected with the Pit-1-V5, HA-HMGA1B and HA-HMGA2
expression plasmids where indicated. Protein extracts were
immunoprecipitated (IP) with the anti-V5 or anti-HA, and probed
with either anti-HA, anti-V5 or anti-E2F1 antibodies, as
indicated on the right. Proteins detected are indicated on the
left. Ethidium bromide was added to the IP reaction to make
sure that the interaction was not mediated by any contaminating
DNA. Western blot anti-V5 (lower panel) was done as a positive
control of the IP reaction. Fifty micrograms of total cell extracts
before IP were loaded as the control (input). (C) Protein extracts
from pituitary adenoma tissues developed by Hmga1b (blot on
the left) and Hmga2 transgenic mice (blot on the right) were
incubated with immobilised GST-HMGA1B, GST-HMGA2 or
GST alone in a GST pull-down assay, and then probed with
anti-PIT1 antibody.
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that other members of the POU transcription factor

family, such as Oct-6 and Oct-2A, interact with HMGA

proteins through their POU domain supports this

hypothesis (Abdulkadir et al. 1995, Leger et al. 1995,

Zwilling et al. 1995). Therefore, we performed a GST

pull-down assay incubating the PIT1 recombinant

protein with GST-HMGA1B or GST-HMGA2 fusion

proteins. As shown in Fig. 1A, PIT1 was able to directly

interact with both GST-HMGA1b and GST-HMGA2,

but not with GST alone. To confirm this interaction in a

cellular context, we transfected HEK293T cells with

expression vectors containing the full-length cDNAs for

PIT1, HMGA1b or HMGA2, fused to the V5 (Pit-1-V5)

and HA (HA-HMGA1b and HA-HMGA2) tags respect-

ively. Total cell extracts were immunoprecipitated with

anti-V5 antibody and analysed by immunoblot with

anti-HA antibody. As shown in Fig. 1B (left panels),

HA-HMGA1b and HA-HMGA2 were immunoprecipi-

tated by the anti-V5 antibody only when transfected

along with Pit-1-V5. This result was confirmed by

reverse co-immunoprecipitation carried out by immu-

noprecipitating with anti-HA antibody and analysing

with anti-V5 antibody (Fig. 1B, right panels). The

negative result obtained by blotting for the unrelated

and endogenous E2F1 protein confirmed the specificity

of the PIT1/HMGA interactions. Ethidium bromide was

added to the immunoprecipitation reaction to prevent

DNA-mediated interaction between proteins. Interest-

ingly, cells co-transfected with PIT1 and each of the

HMGA proteins show more abundant levels of HMGA

proteins than those transfected with HMGA1b or

HMGA2 alone (input in Fig. 1B, middle panels),

suggesting that PIT1 can positively influence their

expression. Western blot anti-V5 or anti-HA antibody,

for samples immunoprecipitated with anti-V5 or anti-

HA antibody respectively was performed to control the

successful immunoprecipitation reactions (Fig. 1B).

Finally, to validate the HMGA/PIT1 interaction in the

context of the pituitary tumours, we pulled down pituitary

adenoma extracts from Hmga1b or Hmga2 transgenic

mice, where PIT1 is abundantly expressed (Fedele et al.

2002, 2005), from GST-HMGA1B or GST-HMGA2

beads. Figure 1C shows that both GST-HMGA1B and

GST-HMGA2, but not GST, interacted with endogenous

PIT1 protein in transgenic mouse tumours. These data

demonstrate that HMGA proteins are direct molecular

partners of PIT1 both in vitro and in vivo.
HMGA proteins bind to and activate the Pit1

promoter

PIT1 is able to directly regulate the expression of

several genes with a key role in pituitary gland
www.endocrinology-journals.org
physiology such as PRL, GH, GHRHR and PIT1 itself

(Lefevre et al. 1987, Nelson et al. 1988, Chen et al.

1990, Li et al. 1990, McCormick et al. 1990). Since

HMGA proteins physically interact with PIT1, we

investigated whether this interaction may affect PIT1

activity. HMGA1B or HMGA2 recombinant proteins

were incubated with a 32P-end-labelled DS oligonu-

cleotide corresponding to the consensus site recognised

by PIT1 in an electrophoretic mobility shift assay

(EMSA). As shown in Fig. 2A, both HMGA1B and

HMGA2 were able to bind the PIT1 responsive

element (Pit-1-RE) in vitro. The specificity of the

binding was assessed using a 100- and 400-fold molar

excess of the specific unlabelled DS oligonucleotide or

a 100-fold molar excess of the same unlabelled, but

single-strand (SS) oligonucleotide as specific and non-

specific competitors respectively. Moreover, the
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Figure 2 In vitro binding of HMGA proteins to the PIT1 consensus
site. (A) Electrophoretic mobility shift assay (EMSA) performed
with the radiolabelled PIT1 consensus site incubated with
recombinant His-HMGA1B and His-HMGA2 as indicated.
To assess the specificity of the binding, a 100- and 400-fold
excess of unlabelled double-strand (DS) oligonucleotide was
added as a specific competitor, and a 100-fold excess of
unlabelled single-strand (SS) oligonucleotide was added as a
non-specific competitor. (B) EMSA performed with the same
oligonucleotide as in (A), incubated with recombinant PIT1,
His-HMGA1B and His-HMGA2 as indicated. Supershift assay
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different autoradiographic exposure times were needed to allow a
good view of both the binding of HMGA proteins and that of PIT1:
upper panel, 18 h; lower panel, 1 h. (C) The same EMSA as in (B),
but with an oligonucleotide mutated in the PIT1 consensus site.
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binding was also abolished pre-incubating the reaction

mix with anti-HMGA1 and anti-HMGA2 antibodies,

which, as reported previously (Martinez Hoyos et al.

2009), specifically displace HMGA proteins from their

target DNA (data not shown). As shown in Fig. 2B, the

binding of HMGA proteins to the Pit-1-RE does not

interfere with the binding of PIT1 to the same

oligonucleotide. Moreover, as shown by the absence

of a slower migrating spot when both HMGA and PIT1

proteins are incubated with the probe, it appears that

they do not form a unique complex, but independently

bind the same DNA response element. We also used, as

a control of specificity of the PIT1 binding, an

oligonucleotide mutated in a key residue within the

PIT1 consensus site, which was incapable of binding

PIT1 (Fig. 2C, lane 1). Interestingly, this mutant

oligonucleotide still binds HMGA1B with the same

efficiency of the wild-type Pit-1-RE, whereas the

binding to HMGA2 was highly compromised

(Fig. 2C, lanes 2 and 3). Therefore, it is likely that

HMGA1B and HMGA2 do not bind exactly to the

same residues nearby the PIT1 consensus site.

Next, since one of the PIT1 targets is Pit1 gene itself,

we focused on the potential role of HMGA in PIT1-

dependent Pit1 gene regulation in pituitary adenomas.

For this purpose, we first performed a ChIP assay in

pituitary adenomas from Hmga1b or Hmga2 transgenic

mice. Chromatin was immunoprecipitated using

specific anti-HMGA1 or anti-HMGA2 antibody, or

IgG as the negative control, and analysed by PCR using

primers specific for the mousePit1 promoter. Figure 3A

shows the in vivo binding of both Hmga1 and Hmga2 to

the Pit1 promoter, while no amplification was obtained

in the negative control. Then, we investigated the

functional effect of the physical interaction between

HMGA proteins and PIT1 on thePIT1 promoter activity

by luciferase assays. HEK293T cells were transiently

transfected with a reporter vector (PIT1-1-Luc),

containing the luciferase gene under the control of

the PIT1 promoter, along with vectors coding for

HA-HMGA1B, HA-HMGA2 or Pit-1-V5 proteins.

As shown in Fig. 3B, only HA-HMGA2, but not

HA-HMGA1B, was able to positively regulate the

activity of the PIT1 promoter. Moreover, a strong and

significant cooperation between HMGA2 and PIT1 was

observed (P!0.001), while HMGA1 only slightly but

significantly increased the positive transcriptional effect

of PIT1 on its promoter (P!0.05). To confirm these

data in a pituitary context, we transiently transfected

GH3 cells, derived from a rat pituitary PRL- and

GH-secreting adenoma expressing high levels of

endogenous PIT1 (Fig. 3D), with HMGA1B or

HMGA2 expression vectors, along with the Pit-1-Luc
www.endocrinology-journals.org128



0

0.5

1

1.5

2

2.5

3 HEK-293T

*** ***

***

*

Pit1

Hmga1b

Hmga2

+

–

–

–

+

–

–

–

+

+

+

–

+

–

+

–

–

–

R
el

at
iv

e 
lu

ci
fe

ra
se

ac
tiv

ity

0

0.5

1

1.5

2

GH3

Hmga1b
Hmga2

–
–

+
–

–
+

*

R
el

at
iv

e 
lu

ci
fe

ra
se

ac
tiv

ity

Pit1

α-
H

M
G

A
1

PA/A1b PA/A2

α-
H

M
G

A
2

Lg
G

Lg
G

In
pu

t

In
pu

t

H
2O

H
2O

0

5

10

100

0

5

10

15

95

100

15

GH3

PIT1

HMGA2

HMGA1

TUBULIN

293T

R
el

at
iv

e 
de

ns
ito

m
et

ry

0
0.2
0.4
0.6
0.8

1
1.2

0 h 96 h

Hmga1 Pit1

GH3

R
el

at
iv

e 
ge

ne
ex

pr
es

si
on

siHMGA1

*

*

A

C

B

ED

Figure 3 In vivo binding and activation by HMGA of the PIT1 promoter. (A) Chromatin immunoprecipitation (ChIP) assay performed
on pituitary adenomas from Hmga1b and Hmga2 transgenic mice to detect the endogenous in vivo binding of HMGA proteins to the
Pit1 promoter gene, as indicated. As an immunoprecipitation control, IgG was used. Input, PCR products with genomic DNA without
immunoprecipitation. All the PCR products were quantified with ImageQuant software and reported in the histograms below each
band. (B and C) Luciferase activity (fold of activation vs promoter basic activity) of the PIT1 promoter in HEK293T (B) and GH3
(C) cells. Where indicated, PIT1 and/or either Hmga1b or Hmga2, or both, expression vectors were co-transfected with the
PIT1-1-Luc plasmid. Data express meanGS.D. of three independent experiments. Asterisks indicate the statistical results of a
multiple comparison test vs promoter basic activity. *P!0.05; ***P!0.001. (D) Western blot analysis to detect HMGA1, HMGA2 and
PIT1 expression in GH3 and HEK293T cells. (E) qRT-PCR analysis of Pit1 and Hmga1 expression in GH3 cells interfered for
HMGA1 with 100 nM of siHMGA1 for 96 h. The reported data (meanGS.D. of three independent experiments) are normalised with
respect to scrambled siRNA-treated cells. *P!0.05.

Endocrine-Related Cancer (2012) 19 123–135
vector. As shown in Fig. 3C, HA-HMGA2 expression

led to a significant increase in Pit1 promoter

activity, while only a slight but not significant increase

was observed after the transfection of the HA-

HMGA1B construct. These data clearly demonstrate

that HMGA2 is able to positively regulate PIT1

promoter activity in co-operation with PIT1, whereas

they suggest that HMGA1 shows only a very weak effect

on the regulation ofPIT1 gene expression. The abundant

expression of HMGA1 in GH3 cells, in contrast to the

total absence of HMGA2 expression (Fig. 3D), could

probably account for the lack of a significant effect

of HMGA1 transfection on PIT1 promoter activity.

To further evaluate the role of endogenous HMGA1 on

Pit1 expression in pituitary cells, Pit1 expression was

analysed in GH3 cells interfered for HMGA1, through

an anti-HMGA1 siRNA, in comparison with GH3 cells

treated with a scrambled siRNA. As shown in Fig. 3E,

Pit1 mRNA levels were significantly decreased in cells

knocked down for HMGA1 compared with their

scrambled-treated controls. Therefore, both HMGA1

and HMGA2 play a crucial role in the regulation of Pit1

expression in GH3 cells.
www.endocrinology-journals.org
Overexpression of Pit1 increases the

proliferation rate of pituitary adenoma cells

To evaluate the role of Pit1 overexpression in cell

proliferation in a pituitary context, we performed a

colony-forming assay in GH3 cells. As shown in

Fig. 4A, the number of colonies obtained, after

puromycin selection, by transfection of a Pit1

expression vector, was significantly higher (a fourfold

increase) compared with that obtained by transfecting

the empty vector. Consistently, the knock-down of the

endogenous PIT1 in GH3 cells caused a significant

decrease in their growth in a colony-forming assay

(data not shown). Similar results were obtained using a

different pituitary cell type, such as the mouse

gonadotroph cell line aT3. Indeed, as shown in

Fig. 4B, Pit1 overexpression caused a twofold increase

in the number of colonies with respect to the backbone

vector. Since aT3 cells do not express Pit1 normally,

we asked whether the exogenous expression of Pit1

upregulates the classical PIT1 targets, such as Gh and

Ghrhr. To answer this question, we performed

RT-PCR analysis in aT3 cell clones stably expressing

Pit1, with the result that Gh was not expressed in these
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cells (data not shown), and Ghrhr expression did not

change significantly between parental and Pit1-

transfected cells (Fig. 4C). Similarly, the expression

of Pit1 in these cell clones does not lead to a different

expression, compared with the parental cells, of genes,

such as Ccnb2 and Mia (Cd-rap) (Fig. 4C), that are

directly regulated by HMGA proteins in pituitary

adenomas (De Martino et al. 2007a,b, 2009). Con-

versely, as reported for other cell systems (Gaiddon

et al. 1999), the expression of Pit1 in aT3 cells, but not

in GH3 cells, leads to the upregulation of c-Fos

(Fig. 4C and D). Surprisingly, overexpression of Pit1

in GH3 cells inhibits the expression of Mia (Cd-rap)

(Fig. 4D). These findings indicate that Pit1 over-

expression positively regulates pituitary cell prolifer-

ation through different mechanisms depending on the

specific pituitary cellular context.
Positive correlation between HMGA and PIT1

expression in human pituitary adenomas

Overexpression of PIT1 is a common feature of GH-,

PRL- and TSH-, but not of ACTH-, FSH-, LH- or non-

functioning human pituitary adenomas (Pellegrini-

Bouiller et al. 1997). Moreover, we have previously

demonstrated that HMGA1 and HMGA2 expression
130
levels are significantly increased in human pituitary

adenomas compared with normal gland (De Martino

et al. 2009). To evaluate whether there is a direct

correlation between HMGA1/2 and PIT1 mRNA levels,

we analysed a panel of 46 human pituitary adenomas

(including 13 GH and 33 PRL adenomas) for the

expression of PIT1, HMGA1 and HMGA2 mRNAs by

quantitative RT-PCR. As shown in Fig. 5, a direct

correlation between PIT1 and HMGA1 or HMGA2

mRNA levels was observed. In fact, the correlation

coefficients for the fold changes between adenomas and

normal gland, calculated in both PIT1 and HMGA1, as

well as PIT1 and HMGA2 expression levels, were R2Z
0.82 (P!0.001) andR2Z0.61 (P!0.001) respectively.
Discussion

Various studies support a critical role of HMGA

proteins in the development of human pituitary

adenomas (Finelli et al. 2002, De Martino et al.

2009, Qian et al. 2009, Wang et al. 2010). However,

the mechanism by which they act in pituitary tumour

development is still not completely known. We have

previously demonstrated, using mouse models over-

expressing HMGA2 and knockout for E2F1, that
www.endocrinology-journals.org
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induction of pituitary adenomas in Hmga2 transgenic

mice is mainly due to E2F1 activation (Fedele et al.

2006). Nevertheless, alternative pathways that may

co-operate in the achievement of the full pituitary

phenotype have been envisaged because of the

incomplete rescue of the pituitary tumour phenotype

in double HMGA2/E2F1 mutants (Fedele et al.

2006). Analysing the gene expression profile of

pituitary adenomas from Hmga2 transgenic mice in

comparison with normal pituitary glands from control

mice (De Martino et al. 2007b), we identified Mia

(Cd-rap) and Ccnb2 genes as directly downregulated

or upregulated respectively by both HMGA1 and

HMGA2 proteins, and able to affect pituitary cell

proliferation (De Martino et al. 2007b, 2009).

Here we report another mechanism, based on Pit1

induction, by which HMGA overexpression may

induce the development of pituitary adenomas. Indeed,

we previously demonstrated that Pit1 is expressed at

high levels in pituitary adenomas developed by Hmga

transgenic mice (Fedele et al. 2002, 2005), and here we
www.endocrinology-journals.org
show that HMGA proteins bind both PIT1 and PIT1-

responsive DNA elements, thus positively modulating

the PIT1 promoter activity, also synergistically

co-operating with Pit1. Moreover, we demonstrated

that Pit1 overexpression drastically enhances (up to

fourfold) pituitary cell proliferation by inducing the

expression of c-Fos in gonadotroph cells or by

inhibiting the expression of Mia (Cd-rap) in GH/

PRL-secreting cells. Therefore, these results indicate a

potential causal role of the aberrant Pit1 expression in

the cell biology of pituitary tumour.

We can envisage two different, but not mutually

excluding, mechanisms by which HMGA-mediated

Pit1 upregulation may contribute to pituitary cell

transformation:

a) HMGA overexpression may upregulate Pit1 levels

in pituitary adenoma cells of the Pit1 lineage,

enhancing their proliferation.

b) The enhancement of Pit1 expression by HMGA

during development might lead to abnormal

growth of the embryonic cells secreting GH and

PRL, which results in pituitary adenoma during

adult life.

Interestingly, high expression levels of PIT1

represent a constant feature of human pituitary GH,

PRL and TSH adenomas (Asa et al. 1993, Delhase

et al. 1993, Friend et al. 1993, Pellegrini et al. 1994,

Pellegrini-Bouiller et al. 1997), and several previous

studies suggested a potential role for PIT1 in cell

proliferation, the prevention of apoptotic death and the

pathogenesis of pituitary tumours (Castrillo et al. 1991,

Gaiddon et al. 1999, Salvatori et al. 2002, Pellegrini

et al. 2006). In fact, microinjection of Pit1 antisense

sequences blocks cell growth in the GC somatotroph

cell line (Castrillo et al. 1991) and dominant-negative

mutants of Pit1 reduce cell viability by decreasing the

growth rate and inducing apoptosis via a caspase-

independent pathway (Pellegrini et al. 2006). More-

over, PIT1 can also upregulate the expression of genes,

such as c-Fos (Gaiddon et al. 1999) and Ghrhr

(Salvatori et al. 2002), involved in cell proliferation.

Interestingly, recent studies have identified an

increased expression of PIT1 also in breast tumours

(Ben-Batalla et al. 2010), suggesting a potential role of

PIT1 in the proliferation of different cell types.

In conclusion, our data demonstrate that the high

expression of Pit1 in the pituitary adenomas of Hmga

transgenic mice is induced by a positive regulation by

HMGA proteins of Pit1 transcription and support a role

for Pit1 overexpression in pituitary tumour.
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factors responsible for bone loss before and after OLT and to examine the
predictive value of changes in BMD for risk of fracture in these patients.
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Genetic analysis of CDKN1B gene in familial primary
hyperparathyroidism
Elena Pardi1, Simona Borsari1, Federica Saponaro1, Chiara Banti1,
Natalia Pellegata3, Misu Lee3, Edda Vignali1, Antonella Meola1,
Marco Mastinu2, Stefano Mariotti2, Claudio Marcocci1 & Filomena Cetani1
1Department of Clinical and Experimental Medicine, University of Pisa,
Pisa, Italy; 2Endocrinology Unit, Department of Medical Sciences,
Policlinico di Monserrato, University of Cagliari, Cagliari, Italy; 3Institute
of Pathology, Helmholtz Zentrum München-German Research Center for
Environmental Health, Neuherberg, Germany.

Primary hyperparathyroidism (PHPT) is usually a sporadic disorder, but in !10%
of cases occurs as part of hereditary syndromes, including multiple endocrine
neoplasia types 1 and 2A (MEN1 and MEN2A), hyperparathyroidism-jaw tumor
syndrome (HPT-JT) and familial isolated hyperparathyroidism (FIHP).
MEN 1 is an autosomal dominant disorder characterized by tumours in multiple
endocrine glands, most commonly parathyroid, enteropancreatic and anterior
pituitary glands. To date, germline mutations in the MEN1 gene have been
identified in 70–80% of MEN1 kindreds. FIHP has a heterogeneous molecular
ethiology, since germline mutations in MEN1, HRPT2 and CASR genes have been
reported. Recently, germline mutations of cyclin dependent kinase inhibitor 1B
(CDKN1B) gene, encoding the p27 protein, have been identified in 8 kindreds
with MEN1 syndrome which were negative to the MEN1 genetic screening.
The aim of this study was to perform a genetic screening of CDKN1B gene in
patients with MEN1 syndrome and FIHP (33 and 17, respectively). All MEN1 and
FIHP probands were negative for MEN1 gene mutations at genetic testing.
Genomic DNA from index cases was analyzed by PCR amplification of the entire
coding region and splice sites, and direct sequencing was performed by a
16-capillaries automatic sequencer.
A novel frameshift germline mutation in CDKN1B gene, c.372_373delCT/p.As-
n124AsnfsX2, was identified in a MEN1 proband. A construct expressing
p27_c.372_373delCT was generated to assess the functional properties of the
mutant protein in vitro. Indirect immunofluorescence demonstrated that the
mutant protein is mainly retained in the cytoplasm, affecting the cell cycle
inhibitory function of p27 in the nucleus. Our results confirm that germline
CDKN1B mutations are involved, althought rarely, in parathyroid tumorigenesis.

DOI: 10.1530/endoabs.32.OC2.5

OC2.6
Hypomineralized teeth as biomarkers of exposure to endocrine
disruptors
Katia Jedeon1,2, Muriel Molla De La Dure2,3, Steven Brookes4,
Clemence Marciano1, Marie-Chantal Canivenc-Lavier5, Ariane Berdal1,3 &
Sylvie Babajko1

1INSERM UMRS 872, Laboratory of Molecular Oral Pathophysiology,
Paris, France; 2Université Paris-Diderot, UFR d’Odontologie, Paris, France;
3Reference Centre for Rare Malformations of the Face and Oral Cavity,
Hospital Rothschild, Paris, France; 4Department of Oral Biology, Leeds
Dental Institute, Leeds, UK; 5INRA UMR 1324, Université de Bourgogne,
Dijon, France.

MIH for Molar Incisor Hypomineralization is a recently described pathology
affecting around 18% of six year old children. Although a number of putative
factors have been hypothesized, etiology of MIH remains unknown. The parallel
increase of exposure to endocrine disruptors (EDs) and the prevalence of MIH led
us to investigate a possible relationship between both events.
Rats were orally exposed daily to low dose of bisphenol A (BPA), genistein,
vinclozolin, alone (for BPA) or in combination, from the conception to the
sacrifice, mimicking human environmental exposure. Macroscopic observation of
male rat incisors showed that the phenotype induced by BPA was the most evident
with 75% of rats presenting random opaque white spots comparable to those
observed in human MIH, whereas only 50% of GEN and VINCLO treated rats
shared similar phenotype. Human MIH and BPA treated rat teeth were analyzed
in parallel by scanning electron microscopy (SEM) - Energy dispersive X-ray
(EDX) and histology. Both of them exhibited the same hypomineralization
phenotype. BPA targeted specifically the expression of two major enamel genes,

enamelin and kallikrein 4 (Klk4) at the transcriptional level. Rat ameloblastic
HAT-7 cells were stably transfected with plasmids containing KLK4 promoter,
and treated with 1 nM BPA, 1 nM GEN, 1 nM VINCLO. BPA decreased both
KLK4 mRNA level and KLK4 promoter activity. Conversely, GEN increased
KLK4 expression whereas VINCLO had no effect on this gene, a possible reason
for the lesser effect on enamel hypomineralization.
Our data strongly support a role for EDs acting as BPA in MIH pathology. In
conclusion, MIH teeth may represent a much needed early biomarker, easily
accessible, for ED exposure in humans.
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Targeting of PATZ1 by miR-29b is a downstream effect of oncogenic
Ras signalling in thyroid cells
Michela Vitiello1,2, Teresa Valentino1,2, Marta De Menna2, Luigia Serpico1,
Sonia Mansueto1, Gabriella De Vita2, Alfredo Fusco1,2 & Monica Fedele1

1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Naples,
Italy; 2Dipartimento di Biologia e Patologia Cellulare e Molecolare,
Università degli Studi di Napoli “Federico II”, Naples, Italy.

PATZ1, a member of the POZ-ZF protein family of transcription factors is
emerging as an important cancer-associated factor that can act either as oncogene
or tumour-suppressor depending on the cellular context. Consistent with a
tumour-suppressor role in thyroid cells, we have shown that PATZ1 is highly
downregulated in anaplastic thyroid carcinomas compared to normal thyroid
tissue and is a powerful inhibitor of anaplastic thyroid cancer cell survival,
migration, invasiveness and tumorigenicity.
Looking for the upstream signalling pathway regulating PATZ1 expression in
thyroid cells, we searched for microRNAs targeting PATZ1. In order to identify
miRNAs predicted to bind the 3 0UTR of PATZ1 we used bioinformatics free
tools, based on the miRanda application and the mirSVR predicted target site
scoring method. Among the miRNAs identified by this analysis we validated
miR-29b. Indeed, we demonstrated that it is able to target PATZ1 and cause
downregulation of PATZ1 expression at both mRNA and protein level in different
cell systems, including rat thyroid cells. Interestingly, miR-29b is induced by Ras
during transformation of FRTL-5 rat thyroid cells toward an undifferentiated
phenotype, resembling that of anaplastic carcinomas and characterized by the
acquisition of a migratory and invasive behaviour. In these cells, we observed a
strong down-regulation of PATZ1 expression, which starts as early as 2 h after
Ras induction, and an inverse correlation between the expression of miR-29b and
PATZ1 mRNA and protein levels.
These results are consistent with the suppressor role of PATZ in thyroid
carcinogenesis and suggest that down-regulation of PATZ1 expression, through
miR-29b, may be a downstream effect of the oncogenic Ras signalling in thyroid
cell transformation.
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Mitochondrial mass and function is regulated by PI3K signaling in
thyroid cancer cells
K Alexander Iwen, Erich Schröder, Julia Resch, Ulrich Lindner,
Peter König, Hendrik Lehnert, Nina Perwitz, Saleh Ibrahim &
Georg Brabant
Universität zu Lübeck, Lübeck, Germany.

Objective
Abnormal mitochondria are well known in oxyphilic thyroid tumors but recent
data also confirm profound mitochondrial alterations in other thyroid carcinomas.
These changes are linked to the aggressiveness of the tumors. Our group recently
demonstrated in an in vivo model, that inhibition of phosphoinositide 3-kinase
(PI3K) signalling suppressed the invasive and metastatic behaviour of thyroid
cancer cells. Here, we evaluated whether a modulation of PI3K signalling changes
mitochondrial mass and function.
Methods
We used follicular (FTC-133, WRO) and anaplastic (8505C) carcinoma cell lines
to characterize mitochondrial mass and function both under baseline conditions
and inhibition of PI3K signaling. Therefore, we transfected phosphatase and
tensin homolog (PTEN) mutated FTC-133 cells with wild type PTEN or empty
vector. We compared these chronic effects with an acute inhibition of PI3K
signaling over 18 h using the pan-PI3K inhibitor GDC-0941 in all cell lines.
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Conclusion: This study correlates the expression of UBE2C to radio and
chemo resistance of breast cancer cells, providing a potential target in a subset
of patients whose tumors express high levels of UBE2C in breast cancer.

168 L597VBRAF Acts as an Epistatic Modifier of G12DKRAS

L. Cheung1, C. Andreadi1, T. Kamata1, S. Giblett1, B. Patel1, R. Marais1,
C. Pritchard1. 1University of Leicester, Biochemistry, Leicester, United
Kingdom

Introduction: The RAS/RAF/MEK/ERK signalling pathway plays a crucial role
in the control of cell growth and is a mutational target in human cancer.
Oncogenic BRAF and RAS mutations are detected in ~7% and 30% of
samples respectively. L597V BRAF is the fifth most common residue in BRAF
mutated in human cancers and gives rise to a mutant with moderately elevated
BRAF kinase activity. Unlike the most common BRAF mutation, V600E BRAF,
L597V BRAF co-exists with other oncogenic driver mutations, particularly KRAS
mutations. RAS and BRAF mutations have also been found in a group of
developmental syndromes, collectively known as RASopathies that have heart,
skin and facial abnormalities with some predisposition to cancer. L597V BRAF
is one of only seven mutations in BRAF detected in both cancer and
RASopathies, and my research is aimed at addressing how this mutant can
contribute to both pathologies.
Material and Method: A conditional knock-in, Cre-lox-regulated mouse
model (Braf+/LSL−L597V) was used to express the L597VBraf mutation in mouse
tissues and embryonic fibroblasts (MEFs). To examine cooperation between
L597VBraf and oncogenic RAS, Braf+/LSL−L597V mice were intercrossed with
the Jacks/Tuveson Kras+/LSL−G12D conditional knockin mice. The effects of the
mutations on cancer hallmarks and downstream signalling pathway activation
were examined
Results and Discussion: Constitutive expression of endogenous L597VBraf
induced Braf activity by ~2-fold and led to weak activation of the downstream
Mek/Erk pathway. This was associated with induction of RASopathy hallmarks
including facial dysmorphia, short stature and cardiac hypertrophy but was
not sufficient to transform MEFs in vitro or induce tumours in vivo. By co-
expressing L597V Braf with oncogenic G12DKras, the two mutations synergised
to induce Mek/Erk signalling to levels comparable to that induced by the high
activity mutant V600EBraf. Morphological transformation of MEFs was more
similar to that induced by V600EBraf than G12DKras and microarray analysis
confirmed that the double mutant cells had a gene expression signature more
similar to V600EBraf than G12DKras. In the lung, there was also a shift from
predominantly adenomatous alveolar hyperplasia lesions, normally induced
by G12DKras, to predominantly adenomas, as occurs with V600EBraf. However,
we show using siRNA that, unlike V600EBraf, Mek/Erk pathway activation
was mediated by both Craf and Braf in the L597VBraf mutant cells and,
furthermore, ATP-competitive RAF inhibitors induced paradoxical Mek/Erk
pathway activation in a similar way to cells expressing WTBraf.
Conclusion: Weak activation of the Mek/Erk pathway underpins RASopathy
conditions but, for cancer, L597VBraf works to epistatically modify the
transforming effects of driver oncogenes by enhancing Mek/Erk signalling.

169 Oxidative Stress Regulation is Abrogated by Loss of NKX3.1

Expression in Acute and Chronic Inflammation

B. Debelec-Butuner1, C. Alapinar2, K.S. Korkmaz3. 1Ege University,
Pharmaceutical Biotechnology, Izmir, Turkey, 2Ege University, Institute of
Science Dept of Biotechnology, Izmir, Turkey, 3Ege University, Faculty of
Engineering Dept. of Bioengineering, Izmir, Turkey

Background: Prostatic inflammation is associated with the development
of carcinoma, which was reported in previous studies. Inflammatory
microenvironment leads to generation of reactive oxygen species (ROS)
during inflammation and alters many cellular mechanisms, which contributes to
tumorigenesis. In this study, we aimed to identify the components of oxidative
stress response during acute and chronic inflammation, and the role of NKX3.1
protein loss, which was induced by pro-inflammatory cytokines in deregulated
antioxidant defense.
Material and Methods: Inflammatory microenvironment was mimicked by
treatment of prostate cell lines with inflammatory conditioned media. Then
cellular responses were determined by immuno-blotting, RT-PCR and real-
time cell proliferation system. Cellular ROS was measured with DCFH on
flow-cytometer.
Results: We established an inflammation model of prostate by treating
prostate cells with inflammatory conditioned media (CM) with known cytokine
concentrations. For the production of CM, U937 monocytes were differentiated
into macrophages and induced by lipopolysaccharide for the secretion of
inflammatory cytokines into media. Following induction of acute inflammation in
prostate cells, ROS generation and subsequent DNA damage increased, and
these changes were suppressed by ectopic expression of NKX3.1. Further,
oxidative stress genes such as ENOX2, GPX2, GPX3, PRDX6 and QSCN6
were found deregulated in the absence of NKX3.1. In addition, abnormal
morphological changes and increased proliferation were also evident during

inflammation, and these alterations were suppressed by NKX3.1 expression
as well as antioxidant N-acetyl-L-cysteine treatment. In a conclusion, prostatic
inflammation leads to sustained oxidative damage, and NKX3.1 related
mechanisms influence ROS scavenging to regulate the growth of prostate
cells.
Conclusion: These results suggest that antioxidant effect of NKX3.1 is
considerably significant for its tumor suppressor function.

170 PATZ1 is a New Candidate Tumour-suppressor Gene in Thyroid

Cancer

T. Valentino1, M. Vitiello1, R. Pasquinelli2, D. Palmieri3, M. Monaco2,
G. Palma2, C. Arra2, A. Fusco1, G. Chiappetta2, M. Fedele1. 1Università
Federico 2º, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Naples, Italy, 2 Istituto dei Tumori di Napoli Fondazione G. Pascale, Naples,
Italy, 3MVIMG The Ohio State University, Columbus. Ohio, USA

Background: Thyroid carcinoma arising from the thyroid follicular epithelium
represents the most frequent endocrine malignancy and is mainly associated
with gene rearrangements, generating RET/PTC and TRK oncogenes, as well
as BRAFV600E and RASV12 activating point mutations. Except for p53, which
appears to be involved only in poorly differentiated and aggressive histotypes,
a role of tumour-suppressor genes in the pathogenesis of thyroid cancer is
still poorly known.
We found that the POZ/AT-hook/kruppel Zinc finger 1 (PATZ1) gene, encoding a
transcription factor that has been proposed to be involved in cancer, is down-
regulated, with an inverse correlation to the degree of malignancy and loss
of differentiation, in a vast majority of thyroid cancer cell lines and tumours
compared to normal thyroid.
Materials and Methods: Papillary thyroid cancer (PTC)-derived TPC1 and
anaplastic thyroid cancer (ATC)-derived FRO cell lines stably expressing
peGFP-C2 empty vector or peGFP-PATZ1 plasmid, were generated. In these
cell lines we performed different functional assays (i.e. growth curves, FACS,
colony forming, TUNEL, wound healing, trans-well migration, soft agar growth
and xenograft in nude mice) to characterize differences in growth, death,
migration, invasive capacity and malignancy, with or without PATZ1.
Results: Restoration of PATZ1 expression had no effect on the growth of
both cell lines. Conversely, it led FRO cells to apoptosis and highly reduced
migratory and invasive capabilities of both TPC1 and FRO cells. Finally,
differently from the FRO parental cell lines expressing the empty vector,
the PATZ1 transfectants did not form colonies in soft agar and had reduced
transforming ability in vivo compared to their controls.
Conclusions: Our data suggest that downregulation of PATZ1 expression
exerts a functional role in the pathogenesis of thyroid cancer, and are also
consistent with a specific role of PATZ1 in the signaling pathways involved in
cell survival and metastatic progression in both papillary and anaplastic thyroid
cancer.

171 Bcl-2 Family Members and Survival Under Stress Conditions

in Multidrug Resistant Leukemic Cells

D. Cerezo1, M. Lencina1, C. Bernal1, M. Canovas1, P. Garcia-Peñarrubia1,
E. Martin-Orozco1. 1University of Murcia, Biochemistry and Molecular Biology
B and Immunology, Murcia, Spain

Over-expression of several anti-apoptotic Bcl-2 family members has been
reported in hematologic malignancies and has been associated with survival
and/or chemotherapy resistance in various human cancers. Thus, differential
expression of a single Bcl-2 family member can disturb the balance between
life and death and the permutations for pro-survival signaling in the context
of cancer cells. In an attempt to address this question in leukemic cells
we have investigated the Bcl-2 family expression profile in MDR leukemic
cells (L1210R) compared with its parental cell line, L1210 and with P-gp-
transfected parental cells (CBMC-6). We have undertaken the study comparing
two different kinds of stress conditions: cold temperature and daunomycin
exposure. Cold temperature induces preferential cell death in leukemic MDR
cells meanwhile daunomycin treatment induces cell death in parental but not
in sensitive cells. We have focus here in the study of Bcl-xL and Bcl-2, as anti-
apoptotic members; and Bax (belonging to the multi-domain or Bax subfamily)
and Bad (belonging to the BH3-only subfamily) as pro-apoptotic members. By
using western-blot techniques, we have detected expression levels of Bcl-2
family members in leukemic cells treated with daunomycin for different doses
and/or time points. Furthermore, we have performed silencing experiments in
order to analyze the contribution of each individual member of the Bcl-2 family
to the survival of parental (L1210), resistant (L1210R) and P-gp-transfected
(CBMC-6) leukemic cells in presence of the chemotherapeutic agent. We have
compared these data with those obtained previously by using the model of cold
stress-induced cell death. Together, these findings demonstrate that during the
process of drug resistance, leukemic cells undergo alterations on Bcl-2 family
members expression that could influence their response to different types of
stress.




