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ABSTRACT 

 

Glioblastoma (GBM) is the most common primary brain tumor in adults, with 

a poor prognosis and a survival rate of only 12 months after diagnosis. Long-

term survivors (LTS) are a small subgroup of glioblastoma patients 

characterized by a survival rate longer than 12-14 months. There is an 

increasing interest in the identification of molecular signatures to predict 

patient prognosis in GBM and delineate the best therapeutic approach. In this 

work, we reported miR-340 as a novel prognostic tumor-suppressor miRNA in 

glioblastoma. We analyzed miRNAs expression in two different cohorts of 

glioblastoma patients accounting for >500 patients, demonstrating that miR-

340 is strongly down-regulated in glioblastoma, while is over-expressed in 

LTS patients compared to short term survivors (STS). Further, we 

demonstrated that miR-340 expression predicts a better prognosis of GBM 

patients. miR-340 overexpression in glioblastoma cells had a strong tumor-

suppressive activity in vitro and in vivo in nude mice. Finally, we identified N-

RAS as a direct critical target of miR-340, and demonstrated that, through N-

RAS, miR-340 negatively influence multiple aspects of glioblastoma 

tumorigenesis, regulating AKT and ERKs pathways. Taken together, our data 

suggest that miR-340 is down-regulated in glioblastoma, where it exerts a 

strong tumor-suppressive effect by regulating N-RAS. Thus, miR-340 may 

represent a novel potential marker for the diagnosis, prognosis and treatment of 

GBM. 
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1. BACKGROUND 

 

 
1.1 Central nervous system tumors. 

 

Central nervous system (CNS) tumors or gliomas are a large collection of 

primary brain tumors that present features similar to glia, astrocytes and 

oligodendrocytes (and their precursors) which together support the function of 

neurons in the brain (Tran B and Rosenthal MA 2010). Gliomas are the most 

frequently occurring types of primary brain tumors in in USA (Porter KR et al. 

2010), accounting for 80% of patients and with an annual incidence of 5,26 per 

100000 population, or 17000 new cases diagnosed per year (Dolecek TA et al. 

2012). Prevalence studies estimate that 138054 patients had a diagnosis of a 

primary malignant brain tumor in the United States in 2010 (Porter KR et al. 

2010). Because these tumors arise in the central nervous system and affect the 

surrounding brain structure, patients commonly develop symptoms that include 

headaches, local neurologic alterations or languages disturbance (Tran B and 

Rosenthal MA 2010). So, brain tumors are among the most feared kinds of 

cancer, not only for their poor prognosis, but also because of the direct 

repercussion on quality of life and cognitive functions. 

 

1.2 Pathology and risk factors. 

 

Classification of CNS tumors is essentially based on histology and prognosis. 

The most recent classification of brain tumors is the World Health 

Organization (WHO) classification, which was first formalized in 1979 and 

updated in 2007 (Louis DN et al. 2007). The WHO classification divides 

gliomas into 4 histological grades, defined by increasing degrees of 

undiffrentiation, anaplasia and aggressiveness (Louis DN et al. 2007). So, in 

addition to a morphological grouping of brain tumors on the basis of presumed 

histogenesis, the WHO scheme has been notable for grading individual tumor 

classes (I, II, III and IV) as a mean of biological behaviors. In this way, higher 

grade tumors are expected to show a more aggressive clinical course than their 

lower grade counterparts (Huse JT and Holland EC 2010). The WHO scheme 

divides the brain tumors into astrocytic, oligodendroglial and mixed categories. 

Additionally, the presence of histological features such as nuclear atypia, 

increased proliferation, microvascular proliferation and necrosis typically 

results in higher grade classification, as either anaplastic glioma or 

glioblastoma (Figure 1). 

Glioblastoma multiforme (GBM) accounts for 82% of cases of 

malignant gliomas (Dolecek TA et al. 2012). GBMs are heterogeneous 

intraparenchymal masses that display evidence of necrosis and haemorrhage. 

Histologically, they are characterized by considerable cellularity and mitotic 

activity, and vascular proliferation. Glioblastoma consists of several cell types: 
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the glioma cells, hyper-proliferative endothelial cells, macrophages, and 

trapped cells of the normal brain structures that are overrun by the invading 

neoplastic mass. The blood vessels both within and adjacent to the tumor are 

hypertrophied. Furthermore, the nuclei of tumor cells are extremely variable in 

size and shape, a characteristic called nuclear pleomorphism. Tumors cells 

characteristically invade the surrounding normal brain parenchyma, migrating 

through the white matter tracts to collect around blood vessels and neurons. 

The extent to which these tumors invade adjacent structures is variable; at its 

extreme, large portion of the brain are diffusely infiltrated by individual tumor 

cells with no clear focus of tumor. GBM cells are typically confined to the 

central nervous system and do not metastasize. Glioblastoma may develop 

from diffuse low grade or anaplastic astrocytomas (secondary glioblastoma), 

but more frequently, they manifest de novo, without a less malignant precursor 

lesion (primary glioblastoma). 

Low grade gliomas are divided into two histological variants: astrocytomas and 

oligodendrogliomas. 

Anaplastic astrocytoma arises from low grade astrocytomas, but are diagnosed 

at first biopsy without a less malignant precursor lesion. This kind of tumor 

consists of a cell with large amounts of cytoplasm which expresses the 

astrocyte-specific marker gene GFAP (GLIAL FIBRILLARY ACIDIC 

PROTEIN). These tumors tend to progress to glioblastoma. 

Anaplastic oligodendroglioma is a diffusely infiltrating tumor composed of 

oligodendroglia-like tumor cells which have small rounded nuclei, a minimal 

cytoplasm and do not express GFAP, with focal or diffuse histological features 

of malignancy (Huse JT and Holland EC 2010).  

CNS tumors are usually detected by computed tomography (CT) and magnetic 

resonance imaging (MRI) scans (Tran B and Rosenthal MA 2010).  

Malignant gliomas arise in a multistep process involving sequential and 

cumulative genetic alterations resulting from intrinsic and environmental 

factors (Gu J et al. 2009). Malignant gliomas may manifest at any age 

including congenital and childhood cases. Peak incidence is, however, in adults 

older than 40 years. Males are more frequently affected then females (Ohgaki 

H and Kleihues P 2005).  

Excepted for inherited tumor syndromes (10% of all brain tumors) the etiology 

is still largely unknown. A number of rare hereditary syndromes are associated 

with an increased risk of glioma, including Cowden, Turcot, Li-Fraumeni, 

neurofibromatosis type 1 and type 2, tuberous sclerosis, and familial 

schwannomatosis (Gu J et al. 2009; Ohgaki H and Kleihues P 2005; Hottinger 

AF and Khakoo Y 2007). A family history of glioma is rarely observed but, 

when present, is associated with a 2-fold increase in the risk of developing 

glioma. Genome-wide association studies have identified a few susceptibility 

variants such as 20q13.33 (RTEL), 5p15.33 (TERT), 9p21.3 (CDKN2BAS), 

7p11.2 (EGFR), 8q24.21 (CCDC26), and 11q23.3 (PHLDB1), but these genes 

are only weakly associated with glioma, possibly reflecting multiple molecular 

subsets (Shete S et al. 2009; Rajaraman P et al. 2012). Preventive measures, 
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such as lifestyle changes, are ineffective in averting gliomas. Early diagnosis 

and treatment unfortunately do not improve outcomes, precluding the utility of 

screening for this disease. 

The only unequivocal risk factor for glioma development is therapeutic 

ionizing irradiation. This association was demonstrated in children receiving 

prophylactic CNS irradiation for acute lymphatic leukemia (ALL) and in 

individual exposed to atomic bomb and nuclear weapon testing. No association 

of exposure to radiation used in diagnostic procedures, electromagnetic fields, 

viral infections or diet and glioma has been proven so far (Ohgaki H and 

Kleihues P 2005).  

 

 

 
 
Figure 1. Current World Health Organization classification for diffuse glioma and 

medulloblastoma. Adapted from Huse and Holland 2010. 
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1.3 Pathogenic pathways involved in gliomagenesis. 

 

In general, neoplastic disorders are genetic diseases. The genetic alterations are 

associated with alteration of cell proliferation, apoptosis, senescence, 

migration, and cell-to-cell communication. Genetic alterations in malignant 

gliomas are extremely complex and diverse. Clarifying the mechanisms of 

tumorigenesis, proliferation and treatment resistance in malignant gliomas are 

critical for the development and application of molecular-targeted therapies. As 

in other tumors, also in glioblastoma have been identified multiple alterations 

in the expression levels of genes and/or proteins, including both activation of 

oncogenes and/or silencing of tumor-suppressor genes. Three signaling 

pathways are commonly de-regulated in GBM, including alterations in 

pathways related to receptor tyrosine kinase (RTK)/Ras/PI3K, p53 and Rb 

signaling (Cancer Genome Atlas Research Network 2008). Alterations in these 

three pathways play a central role for the development of glioblastoma, but it 

remains possible that other pathways will be uncovered to be essential in 

glioblastoma tumorigenesis. 

 

1.3.1 RTK/RAS/PI3K pathway. 

Different RTKs are frequently involved in GBM tumorigenesis. EGFR 

amplification is the most common oncogenic alteration, identified in 

approximately 40% of GBM patients (Cancer Genome Atlas Research 

Network 2008). In approximately 50% of tumors with amplified EGFR, a 

unique EGFR variant is present (EGFRvIII), resulting in ligand-independent 

constitutive activation of downstream signaling pathways (Huang HS et al. 

1997). It has been found also a co-amplification of multiple RTKs (such as 

PDGFR or MET), and it has been suggested that co-activation of redundant 

RTKs reduces tumor responsiveness to therapies (Stommel JM et al. 2007; 

Snuderl M et al. 2011; Szerlip NJ et al. 2012). In glioma these growth factor 

receptors activate several common signaling pathways, mainly RAS and AKT 

pathways. 

PI3K family initiates activation of Akt and other downstream effectors which 

affects tumor cell growth, proliferation, and survival (Engelman JA et al. 2006; 

Engelman JA 2009). The phosphatase and tensin homolog (PTEN) tumor 

suppressor gene, located on chromosome 10q, encodes a protein that dephos-

phorylates phosphatidylinositol (3,4,5)-trisphosphate, which counteracts PI3K 

activity (Engelman JA 2009). PTEN mutations and homozygous deletions are 

found in 36% of glioblastomas, and result in an increased tumorigenesis 

(Cancer Genome Atlas Research Network 2008) (Figure 2a).  

The Ras/MAPK pathway has been implicated in a wide variety of cellular 

processes, such as growth, differentiation, and apoptosis (Downward J 2003). 

Different reports also identified inactivating mutations or deletions of the 

neurofibromin (NF1) gene (Cancer Genome Atlas Research Network 2008), a 

negative regulator of Ras, underlining the critical role of Ras/MAPK signaling 

pathway in glioblastoma (Figure 2a). 
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1.3.2 p53 and Rb pathways. 

Cell-cycle pathways alterations are also frequently identified in malignant 

gliomas, including disruption of the p53 and Rb pathways (Cancer Genome 

Atlas Research Network 2008). The TP53 tumor-suppressor gene, located on 

the short arm of chromosome 17, encodes a protein that determines cell-cycle 

arrest in the G1 and/or G2 phase of the cell cycle, and also promotes apoptosis 

upon DNA damage (Vousden KH and Lane DP 2007). Loss of its function due 

to TP53 mutation or deletion confers a growth advantage, resulting in clonal 

expansion of glioma cells (Sidransky D et al. 1993). Impairment of DNA repair 

as a result of TP53 mutations induces genetic instability (Bogler O et al. 1995). 

Moreover, inactivation of the p53 protein may be also determined by MDM2 

amplification, which is found in high-grade gliomas in the absence TP53 

mutation (Reifenberger G et al. 1993). Other frequent genetic alterations 

include loss of p14ARF through homozygous deletion of the cyclin-dependent 

kinase (CDK) inhibitor 2A (CDKN2A) gene, resulting in MDM2 

overexpression and functional p53 loss (Ohgaki H and Kleihues P 2009) 

(Figure 2b). 

The Rb pathway has been found to be defective in a significant number of high 

grade gliomas. Normally, Rb protein keeps the cell cycle in check until phos-

phorylated by cyclin D, CDK4 and CDK6. Rb mutations and CDK4 

amplification lead to dysregulation of the Rb signaling pathway (Cancer 

Genome Atlas Research Network 2008). Moreover, amplification of Rb 

negative regulators cyclin-dependent kinase 4 (CDK4) and, less frequently, 

CDK6 can be found in GBM, leading to dysregulation of Rb signaling. 

p14ARF and p16INK4a are translated from the same gene, CDKN2A, 

underscoring the cooperative function of these two pathways (Stott FJ et al. 

1995) (Figure 2c). 
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Figure 2. Schematic representation of genetic alterations occurring in glioblastoma in 

RAS/PI3K, p53 and RB signaling pathway. Adapted from Tanaka et al. 2013. 

 

 

 

 

 

1.3.3 Proangiogenic pathways.  
Microvascular proliferation is one of the diagnostic hallmarks in glioblastoma 

(Norden AD 2009). Activation of several proangiogenic pathways contributes 

to this tumorigenic feature. VEGF and its receptor (VEGFR) have a central 

role in this process. VEGF binding to VEGFR on endothelial cells and tumor 

cells results in dimerization of VEGFR, which activates an intracellular 

signaling cascade through stimulation of the PI3K/Ras/MAPK pathway. All 

this process determines an enhanced endothelial cell proliferation, migration, 

and survival (Gomez-Manzano C et al 2003; Yoshino Y et al. 2006; Kerbel RS 

2009). Moreover, angiopoietin-2 destabilizes the tumor vessels and promotes 

angiogenesis upon binding to its receptor Tie-2 located on endothelial cells, 

whereas angiopoietin-1 exerts opposing effects by stabilizing the tumor 

vasculature (Kerbel RS 2009). Other proangiogenic factors include bFGF, 

HIF-1α and HGF (Gomez-Manzano C et al 2003; Yoshino Y et al. 2006; 

Kerbel RS 2009; Jain RK et al. 2007). The Notch signaling pathway is another 
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important contributor to tumor angiogenesis (Kerbel RS 2009; Jain RK et al. 

2007). Under physiological conditions, the effects of proangiogenic factors are 

balanced by endogenous antiangiogenic factors such as angiostatin, endostatin, 

and thrombospondins (Jain RK 2005). All these mechanisms are alterated in 

tumor, including in malignant gliomas.  

 

1.3.4 Glioma stem cells (GSCs).  

Glioma stem-like cells (GSCs) are characterized by their ability of self-

renewal, multilineage differentiation and tumorigenicity. Identification of 

GSCs has increased our understanding of signaling pathways involved in the 

development of treatment resistance in malignant gliomas (Dietrich J et al. 

2008; Dietrich J et al. 2010). For instance, Sonic Hedgehog (SHH) and Notch 

are fundamental regulators of GSCs. Notch signaling contributes to 

maintenance and proliferation of GSCs. Binding of SHH to the transmembrane 

receptor protein Patched Homolog 1, determines the releasing of the membrane 

protein Smoothened homolog, resulting in activation of the Gli proteins 

(Dietrich J et al. 2010). Gli proteins are zinc-finger transcription factors that, 

upon translocation to the nucleus, promote the expression of target genes, such 

as MYC and CCND1 (Dietrich J et al. 2010). Different reports suggest that 

activated Notch signaling within the vascular niche propagates GSCs and 

facilitates their self-renewal (Hovinga KE et al. 2010; Shen Q et al. 2004). 

Other signaling pathways critical for GSCs are Wnt/β-catenin, Polycomb 

complex protein BMI-1, and the RTK-mediated pathways, including VEGF, 

EGF, bFGF and PDGF (Dietrich J et al. 2010; Hovinga KE et al. 2010; Shen Q 

et al. 2004; Vescovi AL et al. 2006). 

 

1.3.5 Invasion and cell motility. 

The vast majority of glial tumors are invasive and, typically, the degree of 

invasiveness does not necessarily correlate with the grade of malignancy. The 

invasion of high-grade gliomas often shows extensive infiltration of normal 

brain. After surgical removal of a malignant glioma, in more than 95% of the 

cases a recurrent tumor will manifest, frequently immediately adjacent to the 

resection cavity. However, distant lesions far away from the site of the initial 

tumor may also be found (Giese A et al. 2003). Invasion is a complex multistep 

process (Dear TN and Kefford RF 1990). The initial step requires receptor-

mediated adhesion of tumor cells to matrix proteins, followed by the 

degradation of matrix by tumor-secreted proteases and accompanied by 

biochemical processes supportive of active cell movement (Gressens P 2000). 

The proteolytic activity of matrix-metalloproteinases has been correlated with 

invasiveness in tumors of various tissue types and may be an important 

mediator of glioma invasion. Protease degradation of extracellular matrix 

creates an intercellular space into which invading cells can migrate (Mariani L 

et al. 2001).  
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1.4 Therapeutic approaches for glioblastoma. 

 

Primary brain tumors are widely regarded as being particularly resistant to the 

most commonly used antineoplastic strategies. Although surgery plays a 

central role in removing some brain tumors, often the tumor cannot be 

effectively removed. Both radiation and chemotherapy are often not well 

effective because many glial-derived tumors seem to be particularly resistant to 

apoptosis following DNA damage, and are very difficult to reach by the drugs 

because they should be able to pass the hematoencephalic barrier. However, 

the strategies used to fight primary brain tumors are based on the use of 

alkylating agent. Recently, the increased understanding of signaling pathways 

involved in the initiation of malignant gliomas has stimulated the development 

of targeted therapies, such as anti-EGFR molecules, antiangiogenic therapy and 

novel treatment strategies, such as targeting glioma stem cells and the use of 

immunotherapies. 

 

1.4.1 Conventional therapy: temozolomide. 

A new alkylating agent, Temozolomide (TMZ), has been recently introduced 

for the treatment of primary or recurrent high grade gliomas (Plowman J et 

al.1994; Stupp R et al. 2005). TMZ has several advantages over other existing 

alkylating agents because of its features: TMZ is a small lipophilic molecule 

that can be administrated orally and crosses the blood brain barrier. Moreover, 

temozolomide is less toxic to the hematopoietic progenitor cells than 

convential chemotherapeutic agent, because it doesn’t result in chemical cross-

linking of the DNA strands. For all this characteristics, temozolomide is a 

promising agent for the treatment of malignant gliomas (Agarwala SS and 

Kirkwood JM 2000). 

There are different evidence which demonstrate how temozolomide is able to 

improve survival and increase the likelihood of long-term survivors when 

given currently with radiotherapy and then following surgery, instead of 

radiotherapy alone following by surgical resection (Stupp R et al. 2005). 

O6-methylguanine DNA methyltransferase (MGMT) is a key enzyme in the 

DNA repair network that remove mutagenic, cytotoxic adducts from O6-

guanine in DNA, the preferred point of attack of alkylating agents as 

temozolomide. This transfer irreversibly inactivates MGMT. Accordingly, 

MGMT knockout mice are hypersensitive against alkylating drugs, including 

TMZ, and depletion of the enzyme by the substrate analog O8-benzylguanine 

increased the sensitivity of glioma cells against alkylating drugs (Bobola MS et 

al 2004; Liu L and Gerson SL 2006; Friedman HS et al.2002). A direct 

relationship between MGMT activity and resistance to alkylating agents has 

also been proved in cell lines and xenografts derived from a variety of human 

tumors, including gliomas (Esteller et al. 2001). Therefore, adjuvant 

chemotherapy based on temozolomide is limited by the action of this enzyme, 

contributing to the very poor survival of glioblastoma patients.  
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The loss of MGMT expression is commonly attributable to deletion, mutation, 

or rearrangement of MGMT gene or messenger MGMT instability. MGMT 

activity is frequently lost in the presence of CpG island hypermetylation in the 

promoter region of certain types of human primary neoplasm, including 

gliomas. Therefore, the methylation status of the MGMT promoter was 

considered to be indicative of a good outcome in patients with malignant 

gliomas treated with an alkylating agent. The most complete data were 

provided by Hegi et al., who investigated the MGMT methylation status in a 

large cohort of glioblastoma by comparing patients receiving either 

radiotherapy alone or radiotherapy combined with concomitant and adjuvant 

TMZ (Hegi ME et al. 2005). Patients with methylated MGMT tumors 

benefited the most from the addition of TMZ, while those with unmethylated 

MGMT tumors showed only a non-significant improvement in survival with 

TMZ. 

 

1.4.2 Novel therapeutic approaches. 

Recently, a variety of cancer-specific molecular alterations have been 

identified and explored as potential targets for glioblastoma treatment.  

a) EGFR-targeted therapies: The EGFR tyrosine kinase inhibitors (TKIs) 

erlotinib and gefitinib were the first generation of targeted agents to be 

investigated in newly diagnosed and recurrent malignant gliomas, either as 

monotherapy, or in combination with other cytotoxic drugs. These agents were 

not associated with any significant treatment benefit (Brown PD et al. 2008; 

van den Bent MJ et al. 2009; Lassman AB et al. 2005), and limited activity was 

also evaluated with cetuximab, a monoclonal antibody directed against EGFR ( 

et al. 2009). With the development of next-generation TKIs that determine 

irreversible EGFR inhibition and are currently in clinical testing, such as 

afatinib, dacomitinib, and nimotuzumab (a humanized monoclonal antibody 

against EGFR), there is hope that future therapies designed to target EGFR 

signaling will be more beneficial. 

b) Inhibitors of other signaling pathways: mTOR antagonists such as 

temsirolimus and everolimus have long been used to treat various solid 

cancers, and also have been tested in a phase II clinical trial (Galanis E et al. 

2005; Kreisl TN et al. 2009). However, these agents were only associated with 

minimal activity and no overall survival benefit in gliomas. 

Inhibition of PDGFR signaling, another important RTK pathway in glioma 

development, was considered to be a promising strategy. However, clinical 

trials with imatinib, which in addition to Bcr-Abl and c-Kit also inhibits 

PDGFR, displayed only a minimal activity (Wen PY et al.2006; Reardon DA et 

al. 2009; Dresemann G et al. 2010). 

Because of the minimal activity of existing RTK signaling inhibitors in 

glioblastoma, novel agents designed to interfere with downstream molecules 

have increasingly gained attention. For instance, PD-0332991, an inhibitor of 

CDK4 and CDK6, is currently being tested in a phase II study of recurrent 

glioblastoma with known Rb-pathway alterations (Michaud K et al. 2010). 
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Another treatment approach involves inhibition of histone deacetylases 

(HDAC), regulators of chromatin structure and gene expression.  

c) Targeting glioma stem cells: a growing body of evidence implicates GSCs in 

the mechanism of resistance to cytotoxic therapies, such as radiotherapy and 

chemotherapy, and indicates that GSCs are critical in the insurgence of tumor 

recurrence (Liu G et al. 2006). Thus, GSCs and GSC-associated signaling 

pathways have been proposed as new attractive treatment strategy. For 

instance, RO4929097, an inhibitor of γ-secretase that has a critical role in 

Notch signaling, is currently being evaluated in phase II clinical trials in 

patients with recurrent glioblastoma, and in a phase I clinical trial in 

combination with standard chemo-radiation in newly diagnosed glioblastoma. 

Vismodegib, a small molecule designed to target sonic hedgehog signaling, 

received FDA approval in 2012 for the treatment of metastatic basal-cell 

carcinoma (Sekulic A et al. 2012). A phase II surgical trial is currently 

recruiting patients with recurrent glioblastoma. 

d) Antiangiogenic therapies: One of the most important features of malignant 

gliomas is extensive neovascularisation, which is thought to provide oxygen 

and nutrients to rapidly growing tumor cells in hypoxic tumor environments. 

This process is known as angiogenesis. Angiogenesis is regulated by several 

proteins that promote or prevent this process. During tumor progression, 

growth is sustained by nutrients and oxygen through passive diffusion. Once 

new blood vessels form, the tumor start to grow and spread faster. In gliomas, 

angiogenesis is typically associated with an increase in vascular endothelial 

growth factor (VEGF), a protein that stimulates new blood vessel formation 

(Hanahan D and Folkman J 1996). The majority of the anti-angiogenic drugs 

that have been evaluated in clinical trials to date interfere with the VEGF 

pathway by directly blocking ligand or VEGF-receptor. However, there is 

increasing interest in targeting proangiogenic molecules that function by 

alternative mechanisms. For example, the neuropilins are non-tyrosine kinase 

receptors that are activated by VEGF binding and potentiate VEGFR signaling. 

Neuropilin-1 also facilitates HGF/SF signaling (Hu B et al. 2007). The 

angiopoietins (Ang-1 and Ang-2) are involved in the stability and maintenance 

of the tumor vasculature. Binding of Ang-2 to its cognate receptor, Tie-2, 

serves to destabilize vessels, which is a requirement for angiogenesis to 

proceed. Ang-2 inhibitors are therefore of interest as therapeutic agents (Oliner 

J et al. 2004). After bevacizumab was approved by the FDA for colon cancer, 

several neuro-oncology centers began to use it to treat patients with recurrent 

malignant glioma, often in combination with irinotecan. Different reports 

demonstrated that bevacizumab therapy leads to rapid reductions in 

peritumoral edema, often permitting a decrease in dose or even cessation of 

corticosteroid use. These studies also indicated that bevacizumab treatment is 

well tolerated in most cases. The risk of intracranial haemorrhage is low. 

Common toxicities related to bevacizumab therapy in the malignant glioma 

population include hypertension, proteinuria, fatigue, thromboembolic events, 

and wound-healing complications (Pope WB et al. 2006; Poulsen HS et al. 
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2009). In addition to VEGF inhibitors, small molecule inhibitors of VEGFR 

have been tested in recurrent malignant gliomas. Cediranib (AZD2171) inhibits 

all known subtypes of VEGFR and was evaluated in a phase 2 trial of patients 

with recurrent GBM. Cediranib therapy reduced blood vessel size and 

permeability. In addition to VEGF or VEGFR inhibition, a variety of other 

approaches may have antiangiogenic activity. Because of its role in pericyte 

recruitment, inhibition of PDGFR may prove useful. Several trials of PDGFR 

and dually targeted VEGFR/PDGFR inhibitors are ongoing. Although 

antiangiogenic therapies prolong progression-free survival, further progression 

of disease is inevitable. Combining antiangiogenic therapy with anti-invasion 

therapy may therefore delay disease progression.  
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1.5 Long term survivors (LTS) glioblastoma patients. 

 

Glioblastoma multiforme is the most common and most malignant primary 

tumor of the brain and is associated with one of the worst 5-year survival rates 

among all human cancers (Louis DN et al. 2004). Despite multimodal 

aggressive treatment, comprising surgical resection, local radiotherapy and 

systemic chemotherapy, the median survival time after diagnosis is still in the 

range of just 12 months, with population-based studies indicating even shorter 

median survival (Krex D et al. 2007; Stupp R et al. 2009). Nevertheless, a 

small fraction of glioblastoma patients survives for more than 36 months. 

These patients are referred to as long-term survivors (Krex D et al. 2007).  

Despite the progress in the understanding of the genetic alterations in 

glioblastomas, clinically useful molecular markers that help to predict response 

to therapy and prognosis are still rare. To date, only IDH1/2 mutation status 

and the methylation status of the O-6-methylguanine methyltransferase 

(MGMT) gene have become molecular markers of clinical significance 

(Reifenberger G et al. 2014). MGMT encodes a DNA repair protein that causes 

resistance to DNA alkylating agents, such as nitrosoureas and temozolomide. 

Transcriptional silencing of the MGMT gene by promoter hypermethylation is 

seen in 50% of glioblastomas and has been linked to prolonged progression-

free and overall survival in glioblastoma patients treated with alkylating agents 

(Hegi ME et al. 2005; Esteller M et al. 2000). Combined deletions of the 

chromosomal arms 1p and 19q have been shown to be associated with a 

favorable prognosis in oligodendroglial tumors. In glioblastoma, however, this 

aberration is rare and its prognostic significance is less clear (Krex D et al. 

2007). The investigation of glioblastoma long-term survivors could help to 

identify yet unknown clinical, environmental and/or molecular factors that are 

associated with favorable prognosis. 
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1.6 N-RAS and glioblastoma. 
 

The three cellular Ras genes encode four highly homologous 21 kD proteins: 

HRAS, NRAS, KRAS4A and KRAS4B . KRAS4A and KRAS4B result from 

alternative splicing at the C terminus. The N-terminal portion (residues 1–165) 

of HRAS, KRAS and NRAS comprises a highly conserved G domain that has a 

common structure. Ras proteins diverge essentially at the C-terminal end, 

which is known as the hypervariable region. This region contains residues that 

specify post-translational protein modifications that are essential for targeting 

Ras proteins to the cytosolic leaflet of cellular membranes. All Ras proteins are 

farnesylated at a terminal CAAX motif, in which C is cysteine, A is usually an 

aliphatic amino acid and X is any amino acid. NRAS, HRAS and KRAS4A are 

additionally modified by one or two palmitic acids upstream of the CAAX 

motif. The addition of the hydrophobic farnesyl moiety is complemented by the 

hydrophobic palmitates (the so-called ‘second signal’) to firmly anchor these 

Ras proteins in the membrane. By contrast, KRAS4B, the predominant splice 

variant referred to from now on as KRAS, contains an alternative second signal 

that is composed of a poly-basic stretch of lysine residues. In this case, 

membrane anchoring is mediated by the electropositive lysines that form ionic 

bonds to the predominantly electronegative lipid head groups of the inner 

leaflet of the plasma membrane (Schubbert S et al. 2007) (Figure 3). 

 

 

 

 

 
 
Figure 3. The four isoforms of Ras. Adapted from Scubbert et al. 2007. 
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N-RAS is a member of Ras oncogene family (comprising K-Ras, H-Ras and N-

Ras), that encodes small GTPases involved in cellular signal transduction. Ras 

is activated by a complex signal cascade and in turn triggers downstream 

signaling pathways, including the mitogen-activate protein kinases (MAPKs) 

pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway to 

modulate cell growth and survival (Scubbert and al. 2007) (Figure 4).  

 

 

 

 
 

Figure 4. The Ras signaling pathway. Adapted from Scubbert et al. 2007. 

 

 

 

Various studies have demonstrated a recurrent aberrant N-RAS activation in 

glioblastoma. Mutation in N-RAS gene contributes to the aberrant activation of 

RAS signaling only in approximately 5% of glioblastomas. In most 

glioblastomas, however, RAS activation must be due to other alterations, such 

as amplification and/or overexpression of growth factor receptor genes, or 

aberrations in yet other RAS pathway genes (Knobbe CB et al 2004). 

Moreover, recently several miRNAs –miR-181d, let-7, miR143- have been 

reported to suppress RAS expression, thus acting as tumor-suppressors, 

suggesting that miRNAs targeting RAS may have an important role in 

carcinogenesis (Johnson SM et al. 2005; Lee ST et al. 2011; Wang L et al. 

2014). 



22 

 

1.7 MicroRNAs. 

 

In the last decade, many non-coding RNAs were found to regulate a wide 

variety of biological processes. Among these, microRNAs (miRNAs) are the 

best characterized. miRs are a class of endogenous non-coding RNA of 19-24 

nucleotides in length that play a central role in the negative regulation of gene 

expression, blocking translation or directly cleaving the targeted mRNA. The 

biogenesis of miRNAs is a complex and coordinate process in which are 

involved different enzymes and proteins (Bartel DP 2004).  

miRNAs genes encoded in the genome are transcribed into long primary 

miRNAs (pri-miRNAs) by polymerase II or in little rare case, by polymerase 

III. Typically, pri-miRNAs display a 33bp stem and a terminal loop structure 

with flanking segments. Primary miRNA processing begins in the nucleus 

where an RNAseIII enzyme, Drosha, removes the flanking segments and 11 bp 

of the stem region, inducing the conversion of pri-miR into precursor miRNAs 

(pre-miRs). Pre-miRs are 60-70 nt long hairpin RNAs with 2-nt overhangs at 

the 3’ end. Pre-miRNAs are transported into the cytoplasm for further 

processing to become mature miRNAs. The transport occurs through nuclear 

pore complexes and is mediated by the RanGTP-dependent nuclear transport 

receptor exportin-5 (EXP5). EXP5 exports the pre-miRNA out of the nucleus, 

where hydrolysis of the GTP results in the release of pre-miRNA. In the 

cytoplasm the pre-miRNA is subsequently processed by Dicer, an 

endonuclease cytoplasmic RNAse III enzyme, to create a mature miRNA. 

Dicer is a highly specific enzyme that cleaves pre-miRNAs into 21-25 nt long 

miRNA duplex, of which each strand shows 5’ monophosphate, 3’ hydroxyl 

group and 3’ 2-nt overhang. Of a miRNA duplex, only one strand, designed the 

miRNA strand, is selected as the guide of the effector RNA-induced silencing 

complex (RISC). The core component of RISC is a member of Argonaute 

(Ago) subfamily proteins. During RISC loading, the miRNA duplexes are 

incorporated into Ago proteins. RISC loading is not a simple binding of the 

duplexes and Ago proteins, but also an ATP-dependent active process. After 

RISC loading, the duplex is unwound and in the complex is maintained only 

the miRNA strand (Bartel DP 2004; Lee Y et al.2002; Gregory RI and 

Shiekhattar R 2005). 

 miRNAs target sites in the 3’ untranslated region (UTR), because the 

movement of ribosome (the translation), counteracts RISC binding. Typically, 

a target mRNA contains multiple binding sites of the same miRNA and/or 

several different miRNAs. Not all nucleotides of a miRNA contribute equally 

to RISC target recognition. The recognition of the target is largely determined 

by base pairing of nucleotides in the seed region and is enhanced by additional 

base-pairing in the middle of the 3’UTR region. The binding of RISC to 3’ 

UTR of mRNA, through the action of Ago protein, is capable of RNA 

cleavage, but this reaction requires extensive base-pairing between the miRNA 

strand and mRNA target. This is the same mechanisms used by siRNAs. If the 

complementarity between the miRNA strand and the mRNA is limited, RISC is 
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unable to cleave the target. In such case, Ago protein can recruit other factors 

required for translation repression and subsequently mRNA 

deadenylation/degradation (Lewis BP et al. 2003). To date, the exact 

mechanisms used by RISC to repress translation are subjects of debate. 

Between the mechanisms proposed at least six seems to be possible: RISC 

could induce deadenylation of mRNA which cause decrease the efficiency of 

translation by blocking mRNA circularization, RISC could block the cap at 5’ 

or the recruitment of ribosomal subunit 60S; RISC could block the initial step 

of elongation or could induce proteolysis of nascent peptides; RISC could 

recruits mRNA to processing bodies, in which mRNA is degraded or 

temporary stored in an inactive form. These models do not necessarily exclude 

each other (Kwak PB et al. 2010). 

 

 

 

 
 
Figure 5. miRNAs biogenesis. Adapted from Winter et al. 2009. 
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1.7.1 Evolution and Physiological function. 

miRNAs play key role in the regulation of many processes in mammals. For 

example, miRNAs have an evolutionarily conserved role in the development 

and in the physiological functions in animals.  Knockout gene strategies have 

been used in different mammals to study the role of miRNAs in developmental 

processes. A dicer knockout was made in zebrafish and this revealed a role of 

the family of miR-140, which plays a fundamental role in neurogenesis. 

miRNAs can also control late-stage mouse development by miR-196 which 

acts upstream Hox B8 and Sonic hedgehog in limb development. miR-1 and 

miR-133 are important for muscle generation and differentiation of 

cardiomyocytes and myoblast (Chen JF et al. 2003). miR-181 is preferentially 

expressed in B-lymphocytes and regulates mouse hematopoietic lineage 

differentiation (Chen CZ et al. 2004). miR-181 is also able to regulate 

homeobox proteins involved in myoblast differentiation. miR-122a is highly 

expressed in adult livers, and its expression is upregulated during mammalian 

liver development. miR-143 is strongly expressed in adipose fat tissue and is 

upregulated during the differentiation of human pre-adipocytes into adipocytes 

(Esau C et al. 2004). miRNAs are also involved in skin morphogenesis; for 

example, miR-134 acts in dendritic spine development (Schratt GM et al. 

2006).  

Some miRNAs regulate multiple physiological processes, for example miR-

375 is expressed in pancreatic islets and inhibits glucose-induced insulin 

secretion, or miR-16 which controls the ARE-containing mRNAs. Recently, it 

has been found that some endogenous miRNAs participate in adenoviral 

defense mechanisms; for example miR-32 protects human cells from retrovirus 

type 1.  

Others studies have established a role of miRNAs in cellular processes 

including apoptosis, proliferation, stress resistance, metabolism, and cancer. 

 

1.7.2 miRNAs and cancer. 

Cancer is characterized by abnormally proliferative cells that undergo rapid 

and uncoordinated cell growth. Malignant cancers are able to invade adjacent 

tissues and/or metastasize to more distant, and sometimes specific, tissues. 

Genes involved in cancer are generally classified into oncogenes or tumor 

suppressor genes.  

The first evidence for miRNAs involvement in human cancer came from a 

study by Calin et al., examining a recurring deletion at chromosome 13q14 in 

the search for a tumor suppressor gene involved in chronic lymphocytic 

leukemia (CLL). They found that the region of deletion encodes two miRNAs, 

miR-15a and miR-16-1. Subsequent investigations have confirmed the 

involvement of these two miRNAs in the pathogenesis of CLL (Calin GA et al. 

2002).  To date, a lot of miRs have been characterized for their function in 

human cancers.  Let-7 family contains miRNAs that have been shown to 

regulate the RAS family of oncogenes (Johnson SM et al. 2005). Constinean et 

al reported, for the first time, that a miRNA by itself could induce a neoplastic 
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disease. In fact, by using a transgenic mouse model, they demonstrated that 

overexpression of miR-155 in B cells was able to induce a pre-B leukemia 

(Costinean S et al. 2006). Petrocca et al have demonstrated that the miR-106b- 

25 cluster plays a key role in gastric cancer, regulating both cell cycle and 

apoptosis (Petrocca F et al. 2008). miRNAs have an important role also in 

tumor metastasis. miR10-b was found to be highly expressed in metastatic 

breast cancer cells, and Tavazoi et al found that miR-26 and miR-335, whose 

expression is lost in human breast cancer cells, modulate metastatic potential 

(Tavazoie SF et al. 2008).  Deregulation of miRNA expression levels emerges 

as the main mechanism that triggers their loss or gain of function in cancer 

cells. The activation of oncogenic transcription factors such as MYC, 

represents an important mechanism for altering miRNA expression. Genomic 

aberrations such amplification, chromosomal deletions, point mutations or 

aberrant promoter methylation might alter miRNA expressions. Chromosomal 

abnormalities can trigger oncogenic actions of miRNAs by modulating miRNA 

expression in the wrong cell type or at wrong time.  

Several examples of miRNAs whose expression is deregulated in human 

cancer have been reported. miR-155 is overexpressed in Hodgkin lymphoma, 

in pediatric Burkitt lymphoma and in diffuse large B-cell Lymphoma (Eis PS et 

al. 2005; Kluiver J et al. 2005; Metzler M et al. 2004). miR-21 is upregulated 

in breast cancer and in glioblastoma, while miR-143 and miR-145 genes are 

significantly down-regulated in colon cancer tissue compared with colonic 

mucosa. Evidence now indicates that the involvement of miRNAs in cancer is 

much more extensive than initially expected. Studies that investigated the 

expression of the entire microRNAome in various human solid tumors and 

hematologic malignancies have revealed differences in miRNAs expression 

between neoplastic and normal tissues (Calin GA et al. 2005; Ciafre SA et al. 

2005; Pallante P et al. 2006; Weber F et al. 2006). These studies show that each 

neoplasia has a distinct miRNAs signature that differs from that of other 

neoplasms and that of the normal tissue counterpart. Moreover, it has become 

clear that some miRNAs are recurrently deregulated in human cancer. In most 

case, miRNAs are upregulated or down-regulated in all tumors, suggesting a 

crucial role for these miRNAs in tumorigenesis. However, there are some 

unusual situation: for example members of the miR-181 family are up-

regulated in some cancers, such as thyroid (Pallante P et al. 2006), pancreatic 

(He L et al. 2005), and prostate carcinomas (Volinia S et al. 2006) but 

downregulated in others, such as pituitary adenomas (Bottoni A et al. 2007). 

 

1.7.3 miRNAs and glioblastomas. 

The first report on altered miRNA expression in glioblastomas came in 2005. 

In this report, miR-21 was shown to be highly upregulated and to have anti-

apoptotic capabilities in both early-passage glioblastoma cultures and 

commercial cell lines (Chan JA et al.2005). Almost simultaneously, Ciafre et 

al. confirmed miR-21 up-regulation in glioblastomas using global expression 

profiling of both glioblastoma cell lines and patient biopsies (Ciafre SA et al. 
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2005). Since then, miRNA expression in glioblastomas has been evaluated by 

several profiling studies, while other studies have focused on specific 

promising miRNAs. These studies were based on a comparison to normal brain 

tissue, which is difficult to acquire. Consequently, normal brain tissues 

comprise of tissue adjacent to tumor and non-neoplastic brain. Furthermore, 

‘‘non-neoplastic brain’’ is a broad category covering tissue recovered from 

autopsy as well as tissue from patients with gliosis, epilepsy, severe head 

trauma or arteriovenous malformations.  

The most consistently upregulated miRNAs in glioblastomas or glioblastoma 

cell lines, when compared to normal brain tissue, were miR-21, miR-10b, miR-

155, miR-210 and miR-221. The most consistently down-regulated were miR-

128(-1,a), miR-330, miR-124, miR-149, miR-153, miR-154*, miR-181(a, b, c), 

miR-323 and miR-328 (Table1). These prominent miRNAs hold great potential 

as new biomarkers and/or therapeutic targets as they are oncomiRs, or tumor 

suppressor-miRs, which are directly involved in regulation of apoptosis, 

proliferation, tumor growth, angiogenesis, invasion, migration, cell cycle, 

chemosensitivity, tumorigenesis and differentiation. All of these are key factors 

in the development and growth of glioblastoma (Hermansen SK and Kristensen 

BW 2008). 

 

 

 

 
 
Table 1. Up- and down-regulated miRNAs in GBM or GBM cell lines compared to 

non-neoplastic controls. Adapted from Hermansen et al. 2008. 
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In the last years, many miRNAs have been associated with survival and 

prognosis of GBM, and proposed as new promising biomarkers. 

Overexpression of miR-196 family has been shown to indicate poor prognosis 

in GBM (Guan Y et al. 2010). Zhi et al showed that high expression levels of 

miR-21 and low of miR-181b also was able to predict glioblastoma prognosis 

(Zhi F et al. 2010). Moreover, Jiang et al. demonstrated that miR182 

expression is associated with poor overall survival of malignant gliomas (Jiang 

L et al. 2012). High levels of miR-195 and miR-196b were later associated 

with longer overall survival (Lakomy R et al. 2011). These results contradict 

the findings of Guan et al. that reported miR-196 associated with shorter 

survival (Guan Y et al. 2010). Recently, Wu et al. found an association 

between low levels of miR-328 and worse overall survival in primary 

glioblastomas, using frozen samples (Wu Z et al. 2012). Until now, up-

regulation of miR-21, miR-182, combined up-regulation of miR-196a and 

miR-196b and down-regulation of miR-181b, miR-195, miR 196b and miR-

328 have been associated with poor prognosis in glioma (Hermansen SK and 

Kristensen BW 2013). However, miRNA biomarkers do not rely necessarily on 

a single highly up- or down-regulated miRNA. Future miRNA biomarkers are 

expected to consist of disease-specific miRNA signatures. Niyazi et al. found a 

specific 30-miRNA signature in glioblastomas that effectively distinguished 

short-term survivors from long-term survivors (Niyazi M et al. 2011). 

Srinivasanet et al. found a 10-miRNA signature that independently predicted 

survival collecting a large number of glioblastoma patients from the Cancer 

Genome Atlas Database (TCGA) (Srinivasan S et al. 2011). Surprisingly, none 

of the identified miRNAs overlapped in these two studies. Moreover, recently 

Hayes et al. reported a panel of nine microRNAs able to predicts the clinical 

outcome of GBM patients (Hayes J et al. 2015), and Huang et al. performed an 

analysis of miRs, mRNA and survival of glioblastoma multiforme (Huang YT 

et al. 2014). 
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2. AIM OF THE STUDY 

 

 
Glioblastoma is the most aggressive and lethal malignant brain tumor, with an 

average survival rate of only 12 months. However, a small subgroup of patients 

survives longer, and is defined as LTS. Therefore, the study of the molecular 

features typical of LTS is really attractive. The aim of this work is to 

individuate the microRNAs de-regulated in LTS subgroup of glioblastoma 

patients and their role in patients survival. The results achieved by this project 

may represent a good starting point to develop novel markers for the diagnosis, 

prognosis and treatment of this tumor.  
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3. MATERIALS AND METHODS 
 

 

3.1 Cells and tissue specimens.  

 

Glioblastoma cell lines T98G, U87MG, LN229 and LN18 were obtained from 

American Type Culture Collection (ATCC), (LG Standards, Milan Italy), 

U251MG, LN428, LN308, SF767, and A172 were kindly donated by Frank 

Furnari (La Jolla University, San Diego, CA, USA). U87, U251, T98G, AM38, 

A172, LN319, LN308, LN428 and SF767 were grown in Dulbecco’s modified 

eagle’s Medium, while LN18 and LN229 in Advanced Dulbecco’s modified 

eagle’s Medium. Media were supplemented with 10% heat-inactivated fetal 

bovine serum (FBS) -5% FBS for LN229 and LN18, -2 mM L-glutamine, and 

100 U/ml penicillin/streptomycin. All media and supplements were from 

Sigma Aldrich (Milan, Italy). Glioblastoma surgical specimens (n=61) were 

obtained from patients undergoing surgery at the Cancer Center of Eastern 

Finland (University of Eastern Finland, Kuopio, Finland). A total of 61 

formalin-fixed, paraffin-embedded (FFPE) tissue samples were collected from 

the archives of the Department of Pathology, University Hospital of Kuopio, 

Finland. Among the 61 samples, survival information for 43 cases was 

available. Permission to use the material was obtained from the National 

Supervisory Authority for Welfare and Health of Finland, and the study was 

accepted by the ethical committee of the Northern Savo Hospital District, 

Kuopio, Finland. 

 

3.2 TCGA data analysis.  

 

The collection of the data from TCGA platform was compliant with laws and 

regulation for the protection of human subjects, and necessary ethical 

approvals were obtained. Analysis of all data was done using GraphPad Prism 

6 (San Diego, CA, USA). For different expression analysis and determination 

of the effect of miR-340 and N-RAS on patient’s survival, we downloaded 

Agilent 8x15 miRNA expression (level 2) and HT_HG-U133A (level 3) along 

with clinical information from TCGA database in April 2014.   

 

3.3 Cell transfection.  

 

For miRs and siRNAs transient overexpression, cells at 50% confluence were 

transfected using Oligofectamine (Invitrogen, Milan, Italy) and 100nM of pre-

miR-340, scrambled miR, anti-miR-340, scrambled anti-miR (Ambion®, Life 

Technologies), siN-RAS or a siRNA Control (Santa Cruz Biotechnologies, 

MA, USA). For transient overexpression of 4 µg of pcDNA3-N-RAS, 

pcDNA3-AKT
+
, pcDNA3-ERK

+
 or pcDNA3, cells were transfected using X-

tremeGENE 9 DNA Transfection Reagent (Roche, Milan, Italy). 
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Temozolomide for cell treatment was purchased from Sigma Aldrich (Milan, 

Italy). 

 

3.4 RNA extraction and real-time PCR.  

 

Cell culture: Total RNA (microRNA and mRNA) was extracted using Trizol 

(Invitrogen, Milan, Italy) according to the manufacturer’s protocol. Tissue 

specimens: total RNA (miRNA and mRNA) from FFPE tissue specimens was 

extracted using RecoverAll Total Nucleic Acid isolation Kit (Ambion, Life 

Technologies, Milan, Italy) according to the manufacturer’s protocol. Reverse 

transcription of total RNA was performed starting from equal amounts of total 

RNA/sample (500ng) using miScript reverse Transcription Kit (Qiagen, Milan, 

Italy) for miR analysis, and using SuperScript® III Reverse Transcriptase 

(Invitrogen, Milan, Italy) for mRNA analysis. Quantitative analysis of miR-340 

and RNU6A (as an internal reference) were performed by Real-Time PCR 

using specific primers (Qiagen, Milan, Italy) and miScript SYBR Green PCR 

Kit (Qiagen, Milan, Italy). Real-Time PCR was also used to assess the mRNA 

of N-RAS and β-actin (as an internal reference), using iQTM SYBR Green 

Supermix (Bio-Rad, Milan, Italy). The primer sequences were:  

N-RAS-Fw: 3’-CGCACTGACAATCCAGCTAA-5’,  

N-RAS-Rv: 3’-TCGCCTGTCCTCATGTATTG-5’,  

Act-FW: 5’-TGCGTGACATTAAGGAGAAG-3’,  

Act-Rv: 5’-GCTCGTAGCTCTTCTCCA-3’.  

The reaction for detection of mRNAs was performed in this manner: 95 °C for 

5’, 40 cycles of 95 °C for 30’’, 60 °C for 30’’ and 72 °C for 30’’. The reaction 

for detection of miRs was performed in this manner: 95 °C for 15’, 40 cycles 

of 94 °C for 15’’, 55 °C for 30’’ and 70 °C for 30’’. All reactions were run in 

triplicate. The threshold cycle (CT) is defined as the fractional cycle number at 

which the fluorescence passes the fixed threshold. For relative quantization, the 

2
(-ΔΔCT)

 method was used. Experiments were carried out in triplicate for each 

data point, and data analysis was performed by using Applied Biosystems 

StepOne Plus™ Real-Time PCR Systems. 

 

 

3.5 miRNAs expression microarray and data analysis.  

 

From each sample, 5 µg of total RNA (from 6 long- and 6 short- glioblastoma 

survivor’s patients) was reverse transcribed using biotin-end-labelled random 

octamer oligonucleotide primer. Hybridization of biotin-labelled cDNA was 

performed on an Ohio State University custom miRNA microarray chip 

(OSU_CCC version 3.0), which contains 1150 miRNA probes, including 326 

human and 249 mouse miRNA genes, spotted in duplicates. The hybridized 

chips were washed and processed to detect biotin-containing transcripts by 

streptavidin-Alexa647 conjugate and scanned on an Axon 4000B microarray 

scanner (Axon Instruments, Sunnyvale, CA, USA). Raw data were normalized 
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and analyzed with GENESPRING 7.2 software (zcom Silicon Genetics, 

Redwood City, CA, USA). Expression data were median-centered by using 

both the GENESPRING normalization option and the global median 

normalization of the BIOCONDUCTOR package (www.bioconductor.org) 

with similar results. Statistical comparisons were done by using the 

GENESPRING ANOVA tool, predictive analysis of microarray and the 

significance analysis of microarray software 

(http://www.stat.stanford.edu/Btibs/SAM/index.html). 

 

3.6 Establishment of miR-340 stable expressing glioblastoma cells.  

 

Lentivirus encoding an expression cassette containing a puromycin resistance 

gene, the green fluorescent protein (GFP) gene and the miR-340 sequence 

under the hCMV promoter were purchased from GE Healthcare Dharmacon 

(Milan, Italy). U251MG cells were infected with the lentivirus or control 

Empty virus (lacking the miR-340 sequence) at a final concentration of 20 

MOI. After culturing in selection media supplemented with puromycin, GFP 

was detected by fluorescence microscopy. Finally, puromycin resistant and 

GFP positive clones were picked. 

 

3.7 Protein isolation and western blotting.  

 

Cells were lysed in JS buffer (50 mM HEPES pH 7.5 containing 150 mMNaCl, 

1% Glycerol, 1% Triton X100, 1.5mM MgCl2, 5mM EGTA, 1 mM Na3VO4, 

and 1X protease inhibitor cocktail). Protein concentration was determined by 

the Bradford assay (BioRad, Milan Italy) using bovine serum albumin as the 

standard, and equal amounts of proteins were analyzed by SDS-PAGE (12% 

acrylamide). Gels were electroblotted into nitrocellulose membranes (G&E 

Healthcare, Milan Italy). Membranes were blocked for 1 hr with 5% non-fat 

dry milk in Tris Buffered Saline (TBS) containing 0.1% Tween-20, and 

incubated at 4°C over night with the primary antibody. Detection was 

performed by peroxidase-conjugated secondary antibodies using the enhanced 

chemiluminescence system (Thermo, Euroclone Milan Italy). Primary 

antibodies used were: anti-N-RAS (Santa Cruz Biotechnologies, MA, USA), 

anti-pP42/44, anti-pAKT (Cell Signaling, Danvers, MA,USA), and anti-βActin 

(Sigma Aldrich, Milan Italy). 

 

3.8 Cell proliferation assay.  

 

Cell vitality was evaluated with the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega, Madison, WI), according to the manufacturer’s 

protocol. The assay is based on reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) to 

a colored product that is measured spectrophotometrically. After 24 hrs from 

the miRs or siRNAs transfection as described, cells (1x10
3
) were plated in 96-



32 

 

well plates in triplicate, and incubated at 37°C in a 5% CO2 incubator. 

Metabolically active cells were detected by adding 20 μl of MTS to each well. 

After 30 min of incubation, the plates were analyzed on a Multilabel Counter 

(Bio-Rad, Richmond, VA, USA). 

 

3.9 Cell cycle analysis.  

 

Cell cycle was analyzed via propidium iodide incorporation in permeabilized 

cells by flow cytometry. The cells (5x10
4
) were washed in PBS and 

resuspended in 200 μl of a solution containing 0.1% sodium citrate, 0.1% 

Triton X-100 and 50 μg/ml propidium 6 iodide (Sigma Aldrich, Milan, Italy). 

Following incubation at 4°C for 30 min in the dark, nuclei were analyzed with 

a Becton Dickinson FACScan flow cytometer. Cellular debris was excluded 

from analyses by raising the forward scatter threshold, and the DNA content of 

the nuclei was registered on a logarithmic scale. The percentage of elements in 

the hypodiploid region was calculated. 

 

3.10  Soft-Agar assay. 

 

10
4 

cells were plated in 60mm dishes in a solution containing Dulbecco’s 

modified Eagle’s medium 2× (Sigma, St Louis, MO, USA), TPB Buffer 

(Difco, BD, Franklin Lakes, NJ, USA), and 1.25% of Noble Agar (Difco, BD, 

Franklin Lakes, NJ, USA). Briefly, cells were harvested and counted then a 

layer of 7ml with the solution containing Noble Agar were left to polymerize 

on the bottom of the dishes. Then cells were resuspended in 2ml of same 

solution and plated. Cells were left grown for 2 weeks in the incubator. 

 

3.11  Cell death quantification and apoptosis detection.  

 

Cells were transfected with miRNAs as described and were plated in 96-well 

plates in triplicate, treated and incubated at 37°C in a 5% CO2 incubator. 

Temozolomide was used at final concentration of 300µM for 24 h. Cell 

viability was assessed using the CellTiter 96® AQueous One Solution Cell 

Proliferation Assay (Promega, Madison, WI), as described above. Apoptosis 

was analyzed with Caspase-Glo® 3/7 Assay Systems (Promega, Madison, WI), 

as reported by instruction manual. Briefly, cells were incubated with medium 

supplemented with caspase 3/7 reagent. Following incubation for 30 minutes at 

room temperature, luminescence was measured. 

 

3.12  Rescue experiments. 

 

To determine whether N-RAS mediate the effects of miR-340, rescue 

experiments were performed in which the effects of miR-340 were measured in 

the setting of overexpression of a deletion mutant of N-RAS lacking the 

3’UTR. Cells were transfected with miR-340 and with the mutant N-RAS 
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lacking the 3’UTR using X-tremeGENE 9 DNA Transfection Reagent (Roche, 

Milan, Italy), as described. Growth and cell cycle were assessed as above. 

 

3.13  In vivo tumor formation.  

 

Female 5 week-old CD1 nude mice (Charles River, Milan, Italy) were 

maintained in special pathogen free condition for one week. Animal handling 

and experimental procedures were in accordance with the guidelines and 

approved by the Animal Experimental Ethics Committee of University of 

Naples. U251MG cells stably expressing miR-340 or miR-Empty were injected 

subcutaneously into the left flank of nude mice (2x10
6
 cells in 100µl). Tumor 

size was weekly examined by HFUS (Vevo 2100) with a 40 MHz probe after 

one, two, and three weeks from injection. The procedures were performed 

under general anesthesia with 2% isoflurane in 100% oxygen at 0.8 L/min. For 

each tumor, mediolateral, anteroposterior and craniocaudal  diameters were 

measured. Tumor volumes (TV) were calculated according to the formula V = 

(height ✕ width ✕ length ✕ 3.16)/6. 

 

3.14  Luciferase assay.  

 

The two predicted region on the 3’ UTR of the human N-RAS gene (R1 and 

R2) containing the putative miR-340 binding site were PCR amplified using 

the following primers: 

N-RAS-R1-FW 3’-GCTCTAGATGGCATCTGCTCTAGATTCATAAA-5’, 

N-RAS-R1-Rv 3’-GCTCTAGATTTCATACATGTACAAAATGGCATC-5’, 

N-RAS-R2-FW 3’-GCTCTAGACTATTTTAGTGGGCCCATGTT-5’,  

N-RAS-R2-Rv 3’-GCTCTAGACAAGAAGCAGAACGCACC-5’ , 

and cloned downstream of the Renilla luciferase stop codon in pGL3 control 

vector (Promega, Milan Italy). An inverted sequence of the miRNA-binding 

sites was used as negative control. A549 cells were transfected with miR-340 

or Scrambled miR for 6 hours. Then, the cells were co-transfected with 1.2μg 

of  3’UTR N-RAS -R1 or –R2 plasmids or relative mutant constructs  and 

400 μg of a Renilla luciferase expression construct, pRL-TK (Promega, Milan, 

Italy), with Lipofectamine 2000 (Life Technologies, Milan, Italy). Cells were 

harvested 24 hrs post-transfection and the luciferase activity was assayed with 

Dual Luciferase Assay (Promega, Milan, Italy), according to the 

manufacturer’s instructions. Three independent experiments were performed in 

triplicate. 

 

3.15  Statistical analysis.  

 

All experiments were repeated at least three times. Continuous variables are 

given as mean ± 1 standard deviation. For two groups comparison, the 

Student’s t test was used to determine differences between mean values for 

normally distributed. Survival was illustrated by Kaplan-Meier curves; survival 
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differences between groups were examined with log-rank test. All data were 

analyzed for significance using GraphPadPrism 6 (San Diego, CA, USA) 

software, where probability level <0.05 was considered significant throughout 

the analysis. 
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4. RESULTS 

 

 
4.1 miR-340 expression is correlated with survival of glioblastoma 

patients.  

 

In order to identify the potential miRNAs de-regulated in long vs short 

glioblastoma survivors, we performed a miRNA profile in primary 

glioblastoma tissues obtained from 6 long and 6 short survivors patients. The 

analysis was performed with a microarray chip containing 1150 miR probes, 

including 326 human and 249 mouse miRs, spotted in duplicates. Data 

obtained indicated that seven miRs (miR-193b, -340, -19b, -20a-b, -219-5p, -

137 and -129-3p) were significantly de-regulated in long vs short glioblastoma 

survivors, with at least >1.5-fold change (Table 2).  

 

 

 

  

Unique id 
Ratio of 

geom means  
Long vs Short survivors 

1 hsa-mir-193b 0.491352201 
2 hsa-mir-340 1.505219391 
3 hsa-mir-19b 1.537663509 
4 hsa-mir-20a - b 1.880932671 
5 hsa-mir-219-5p 1.905150526 
6 hsa-mir-137 2.235717499 
7 hsa-mir-129-3p 2.644557823 

 
Table 2. miRNAs differentially expressed between long and short glioblastoma 

survivors patients. Note: only the most significant are listed. Fold change values were 

generated from the median expression of the miRNAs in the groups compared.  
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Among these differentially expressed miRNAs, we focused our attention on 

miR-340, since we and others have already demonstrated its oncosuppressive 

role in different human tumors. Accordingly with microarray data, miR-340 

levels resulted up-regulated in LTS patients, as assessed by Real-Time PCR 

(figure 6).  

 

 

 

 
 
Figure 6. Array validation. Real-time PCR of the miRNAs resulted deregulated in 

LTS vs STS. Representative of three independent experiments. 

 

 

 

 

Then, we analyzed miR-340 expression in a larger cohort of glioblastoma 

patients (n=61), as well as in data collected from the TCGA database (493 

glioblastomas and 10 normal brain samples). As expected, the expression level 

of miR-340 was significantly decreased in the short survivors compared to the 

LTS (p<0.05; figure 7a-b), and in glioblastoma compared to normal brain 

(P<0.0001; figure 7c). Furthermore, Log-Rank analyses of two different 

cohorts of glioblastoma patients (43 glioblastoma patients from our lab and 327 

from TCGA) showed that the patients with higher levels of miR-340 had a 

longer overall survival, indicating a prognostic role of miR-340 (P<0.05; 

P<0.01). The Kaplan-Meier curves of the patient cohorts are shown in fig.7d-e. 

These data show a strong down-regulation of miR-340 in glioblastoma, and 

reveal the potential role of this miRNA as a biomarker for glioblastoma 

prognosis. 
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Figure 7. miR-340 is down-regulated in GBM and correlated with prognosis of GBM 

patients. The analysis was performed on two independent patient cohorts from our lab 

and from TCGA database. a, b, and c, miR-340 expression in: a, the FFPE tissues 

from 36 LTS and 25 STS glioblastoma patients; b, 180 LTS and 172 STS 

glioblastoma patients from TCGA; c, 10 normal brain and 493 glioblastomas collected 

from TCGA. Significant increase of miR-340 expression was identified between LTS 

vs STS in both cohorts and in normal brain vs glioblastoma. miR-340 expression level 

was assessed by Real-Time PCR. The transcript level was normalized against U6. An 

a b 

c 

d e 
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arbitrary cut-off of 12 months was used to divide patients. P was calculated using 

Student’s t test. P<0.05 was considered significative. d and e, Kaplan-Meier survival 

curve analysis of the correlation between miR-340 and overall survival of: d, the 

FFPE tissues from 16 high and 27 low miR-340 expressing glioblastoma patients; e, 

140 high and 187 low miR-340 expressing glioblastoma patients collected from 

TCGA. High miR-340 expression predicted a better prognosis in both cohorts. The 

patients were assigned to the high- or low-miR-340 expression group using the media 

as a threshold. P was calculated using log-rank test test. P<0.05 was considered 

significative. 
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4.2 N-RAS is a direct target of miR-340. 

 

To identify possible miR-340 targets involved in the long survival phenotype, 

we used bioinformatic databases (Targetscan, Miranda, Pictar), that revealed 

the presence in the 3’UTR of N-RAS of two distinct putative miR-340 binding 

sites (fig.8a). To analyze if the miR-340 directly binds the two putative regions 

in the 3’UTR of N-RAS, we cloned these regions downstream of a luciferase 

reporter gene in the pGL3 vector. A549 cells were co-transfected with the 

reporter plasmids singularly or in combination, in the presence of the control 

miR (Scrambled miR) or miR-340. As shown in Figure 8b, both the N-RAS 

3’UTR luciferase reporters activity were repressed by the addition of miR-340. 

Moreover, the effect was higher in cells co-transfected with both the reporters, 

indicating that both the regions of N-RAS 3’UTR are direct targets of miR-

340. Luciferase activity was not affected by miR-340 overexpression in the 

presence of mutant constructs, in which the seed sequences were inversely 

cloned (Fig.8a-b).  

 

 

 
 

 
Figure 8. miR-340 directly targets N-RAS. a, the predicted miR-340 binding sites in 

the N-RAS-3’UTR region 1 and 2 (3’UTR NRAS R1 and 3’UTR NRAS R2) by 

MIRANDA and the designed mutant sequences (3’UTR NRAS R1mut and 3’UTR 

NRAS R2mut). b, N-RAS luciferase constructs containing a wild-type or mutated N-

RAS-3’UTR R1 or R2, were co-transfected alone or in combination with miR-340 or 

scrambled miR in A549 cells. Luciferase activity was measured 24 hrs after 

transfection. Reporter activities of cells co-transfected with Scrambled miR sequence 

are arbitrary set as 100. The results were obtained from three independent experiments 

a 

b 
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and are presented as mean +/- SD. P was calculated using Student’s t test. 
*
,p<0.05; 

**
, 

p<0.01; 
***

, p<0.001. 

 

 

 

 

To establish a causative effect between miR-340 and N-RAS, we transfected 

different glioblastoma cell lines with miR-340 and analyzed N-RAS levels by 

Real-Time PCR and Western Blot. We revealed a strong decrease of both N-

RAS mRNA and protein levels consistently in all cell lines transfected (Figures 

9a and 9b). On the contrary, AntimiR-340 induced an increase of N-RAS levels 

in T98G cells (Figures 9a and 9b).  

 

 

 

 

 

 
 

 

a 
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Figure 9. miR-340 overexpression decreased N-RAS levels. Glioblastoma cell lines 

(U251MG, U87MG and AM38) were transfected with a Scrambled miR sequence and 

miR-340, or with Scrambled AntimiR sequence and AntimiR-340 in T98G cells for 72 

hrs. Real-time PCR (a) and Western blot (b) were performed to analyze N-RAS 

mRNA and protein levels. Western blot analyses are from representative experiments. 

Actin was used as loading control. The experiments were repeated at least three times. 

In a, the results are presented as mean +/- SD. P was calculated using Student’s t test.
*
, 

p<0.05; 
**

, p<0.01. 
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4.3 Effects of miR-340 in glioblastoma cells. 

 

We investigated the tumor suppressive role of miR-340 in different GBM cell 

lines (U251MG, U87MG and AM38) transfected with miR-340 or with 

Scrambled miR. We chose these three cell lines since they expressed low levels 

of miR-340, as assessed by Real-Time PCR on a panel of 11 different 

glioblastoma cells (figure 10).  

 
Figure 10. miR-340 expression in glioblastoma cell lines. 

 

 

 

 

We analyzed the effects of miR-340 on cell cycle, cell proliferation and 

sensitivity to therapy. miR-340 transfection induced a significant block of the 

S-phase of the cell cycle, as assessed by FACS analysis after propidium iodide 

staining (figure 11), and a significant decrease in cells proliferation, as assessed 

by MTT assay (figure 12a). On the contrary, expression of Anti-miR340 in 

T98G was able to increase cell proliferation (figure 12b). We next investigated 

whether miR-340 expression had an impact on anchorage independent cell 

growth by a soft agar assay. As showed in fig.13, miR-340 induced a reduction 

of the colony formation in U251MG, U87MG and AM38 cells. Finally, we 

investigated a possible role of miR-340 in Temozolomide (TMZ) sensitivity. 

MTT and Caspase 3/7 assays showed that miR-340 induced an increase of 

TMZ sensitivity in all the cells analyzed (figure 14a-b). These results clearly 

demonstrate that miR-340 acts as tumor-suppressor in glioblastoma cells by 

regulating cell cycle, proliferation, anchorage independent cell growth and 

TMZ-sensitivity.  
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Figure 11. miR-340 blocks cell cycle in glioblastoma cells. Glioblastoma cell lines 

(U251MG, U87MG and AM38) were transfected with a Scrambled miR sequence and 

miR-340 and cell cycle was analyzed by flow cytometry after propidium iodide 

staining 72 hrs after transfection. The data show that miR-340 overexpression blocks 

cell cycle. The data are representative of three independent experiments. 
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Figure 12. miR-340 decreases proliferation in glioblastoma cells. Glioblastoma cell 

lines (U251MG, U87MG and AM38) (a, b) were transfected with a Scrambled miR 

sequence and miR-340, or with Scrambled AntimiR sequence and AntimiR-340 in 

T98G (b) cells. Cell proliferation was analyzed by MTT assay 1, 3, 5 and 7 days after 

transfection. The data show that miR-340 overexpression decreases cell proliferation. 

Data are mean values +/- SD from three independent experiments. P was calculated 

using Student’s t test.
*
, p<0.05; 

**
, p<0.01; 

***
, p<0.001. 

 

 

 

 

 
Figure 13. miR-340 decreases anchorage independent cell growth in glioblastoma 

cells. Glioblastoma cell lines (U251MG, U87MG and AM38) were transfected with a 

Scrambled miR sequence and miR-340 for 24 hrs. Anchorage independent cell growth 

was analyzed by Soft Agar cell growth 14 days after transfection. The data show that 

miR-340 overexpression decreased anchorage independent cell growth. The 

experiment was repeated three times. 

a 

b 

U251MG U87MG 
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Figure 14. miR-340 increases TMZ sensitivity of glioblastoma cells. Glioblastoma 

cell lines (U251MG, U87MG and AM38) were transfected with a Scrambled miR 

sequence and miR-340 for 24 hrs, and then treated with TMZ 300µM for 24 hrs. Cell 

death and apoptosis activation were analyzed respectively by MTT assay (a) and 

caspase assay (b). The data show that miR-340 overexpression promotes the TMZ 

induced apoptosis. Presented data are mean values +/- SD from three independent 

experiments. P was calculated using Student’s t test.
*
, p<0.05; 

**
, p<0.01; 

***
, p<0.001. 

 

 

 

 

 

 

 

 

 

 

 

a

b 
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4.4 N-RAS is the key target molecule for miR-340 effects. 

 

N-RAS is a key oncogene, deregulated in many different human cancers. In 

order to demonstrate a causative link between miR-340 an N-RAS, we 

performed rescue experiments transfecting U251MG with miR-340 and with a 

construct expressing N-RAS lacking the 3’UTR. Levels of transfected N-RAS 

were detected by western blot. Interestingly, the re-expression of N-RAS was 

able to rescue the effects of miR-340 on cell cycle, proliferation and anchorage 

independent cell growth (figure 15a-b-c).  

 

 

 
 
Figure 15. N-RAS mediates the effects of miR-340 on cell cycle, proliferation and 

anchorage independent cell growth. U251MG glioblastoma cells were co-transfected 

with miR-340 and N-RAS vector lacking 3’UTR or control vector. Exogenous N-RAS 

expression was able to partially rescue the effects of miR-340 on cell cycle (a), 

proliferation (b) and anchorage independent growth (c). Presented data are mean 

values +/- SD from three independent experiments. P was calculated using Student’s t 

test. 
*
, p<0.05; 

**
, p<0.01; 

***
, p<0.001. 

 

 

a 

b c 
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Similarly, the N-RAS knock-down by a specific N-RAS siRNA blocked cell 

cycle and reduced proliferation (figure 16a-b), and was effectively able to 

decrease N-RAS and phosphorylated forms of ERK and AKT kinases (figure 

16c). Then, we analyzed N-RAS expression in a cohort of 39 glioblastoma 

patients and we found that N-RAS was down-regulated in long vs short 

survivors (p<0.05, figure 17a). Moreover, N-RAS expression resulted higher in 

542 glioblastoma tissues compared to 10 normal brain (data collected from 

oncomine database, p<0.0001, figure 17b). Further, Log-Rank analysis of 28 

glioblastoma patients showed that patients with higher levels of N-RAS had a 

shorter overall survival (figure 17c). This result was also confirmed collecting 

the data from the R2.aml database (504 tissues, p<0.05, figure 17d). In 

conclusion, our results suggest that the anti-tumoral effects of miR-340 are, at 

least in part, mediated by N-RAS targeting. 

 

 
 
Figure 16. N-RAS Knock-Down reproduces the effects of miR-340 transfection in 

GBM cells. U251MG cells were transfected with a siRNA Control or with a siNRAS 

sequence. N-RAS silencing was able to mimic the effects of miR-340 on cell cycle (a) 

and proliferation (b), and to decrease the molecular pathways downstream N-RAS 

mediated by AKT and ERKs kinases (c). Presented data are mean values +/- SD from 

three independent experiments. Western blot analyses are from representative 

a 

b 
c 
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experiments. Actin was used as loading control.  P was calculated using Student’s t 

test. 
*
, p<0.05; 

**
, p<0.01; 

***
, p<0.001; 

****
, p<0.0001. 

 

 

 

 

 
 

Figure 17. N-RAS is down-regulated in GBM and correlated with prognosis of GBM 

patients. The analysis was performed on three independent patient cohorts from our 

lab (a), from ONCOMINE database (b), and from R2.aml database (c). miR-340 

expression in: a, the FFPE tissues from 10 LTS and 29 STS glioblastoma patients; b, 

10 normal brain and 542 glioblastoma patients from ONCOMINE. Significant 

increase of N-RAS expression was identified between STS vs LTS (a) and in 

glioblastoma vs normal brain (b). miR-340 expression level was assessed by Real-

Time PCR. The transcript level was normalized against U6. An arbitrary cut-off of 12 

months was used to divide patients. P was calculated using Student’s t test. P<0.05 

was considered significative. c, d, Kaplan-Meier survival curve analysis of the 

correlation between N-RAS and overall survival of 13 high and 15 low N-RAS 

expressing glioblastoma patients from our lab (c), and of 336 high and 41 low N-RAS 

expressing glioblastoma patients collected from R2.aml database (d). Low N-RAS 

expression predicted a better prognosis in GBM patients. The patients were assigned 

to the high- or low-N-RAS expression group according toR2.aml database. P was 

calculated using log-rank test test. P<0.05 was considered significative. 

a b 

c d 
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4.5 miR-340 blocks cell cycle and cell proliferation via inhibition of 

signaling pathways downstream N-RAS.  

 

AKT and ERK1/2 pathways act as major downstream of RAS signaling, 

promoting multiple RAS oncogenic features, such as cell proliferation and 

apoptosis resistance. We investigated by western blot the levels of 

phosphorylated (activated) forms of AKT and ERK1/2 (p-AKT and p-ERK1/2) 

in glioblastoma cells transfected with miR-340 or Scrambled miR sequence. As 

shown in fig.18, miR-340 drastically reduced p-AKT and p-ERK1/2 levels in 

U251MG, U87MG and AM38 cells. On the contrary, transfection of AntimiR-

340 induced an increase of p-AKT and p-ERK1/2 in T98G cells (fig.18).  

 

 
Figure 18. miR-340 inhibits molecular pathways downstream N-RAS. Glioblastoma 

cell lines (U251MG, U87MG and AM38) were transfected with a Scrambled miR 

sequence and miR-340, or with a Scrambled Anti miR sequence and AntimiR-340 in 

T98G cells for 72 hrs. Western blot was performed to analyze pAKT and pERK1/2 

protein levels. Western blot analyses are representative experiments. Actin was used 

as loading control.  The experiments were repeated at least three times. 

 

 

 

 

 

 

Next, we wondered whether the block of cell cycle and cell proliferation 

observed upon miR-340 transfection were mediated by the inhibition of AKT 

and ERK1/2 signaling pathways downstream of N-RAS. To this aim, we 

transfected U251MG with miR-340 and with two constructs expressing the 

constitutively active forms of AKT (AKT
+
) and ERK1 (ERK

+
) for 48 hrs, 

alone or in combination. Levels of transfected AKT
+ 

and ERK
+
 were detected 

by western blot (data not shown). Interestingly, AKT
+ 

and ERK
+ 

were able to 

partially rescue the effects of miR-340 both on cell cycle and proliferation 

(fig.19a-b). Importantly, these effects were higher in cells co-transfected with 

both AKT
+ 

and ERK
+
 compared with cells transfected with AKT

+
 or ERK

+
 

alone (fig.19a-b). These results further support the notion that miR-340 acts as 

tumor-suppressor in glioblastoma targeting N-RAS, and thus inhibiting AKT 

and ERK1/2 downstream pathways. 
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Figure 19. Molecular pathways downstream N-RAS mediates the effects of miR-

340 on cell cycle and proliferation. U251MG glioblastoma cells was co-transfected 

with miR-340 and dominant positive mutants constructs of ERK and AKT kinases 

alone or in combination, or with control vector. Exogenous dominant positive 

expression of both ERKs and AKT expression was able to partially rescue the effects 

of miR-340 on cell cycle (a) and proliferation (b). Presented data are mean values +/- 

SD from three independent experiments. P was calculated using Student’s t test. 
***

, 

p<0.001; 
****

, p<0.0001. 

 

 

 

 

 

a 
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4.6 Overexpression of miR-340 inhibits glioblastoma growth in vivo. 

 

To analyze a possible role of miR-340 in glioblastoma tumorigenesis, we 

assessed the effects of miR-340 overexpression on tumor growth in vivo. To 

this aim, U251MG cells stably over-expressing miR-340 and their respective 

control cells (figure 20a-b) were subcutaneously injected in the left flank 

(2x10
6
 cells per flank) of CD1 nude mice. Tumors volume and vessel 

formation were measured weekly by HFUS (Vevo 2100) and color-doppler 

HFUS (Vevo 2100) with a 40MHz probe for three weeks. Xenograft tumor 

volumes and vessels formation from miR-340-U251MG cells resulted 

significantly smaller compared to miR-Control-U251MG cells xenografts (n=6 

animals per group, figure 20c-d).  

 

 

 

 
 

Figure 20. miR-340 inhibits the growth of glioblastoma xenograft in vivo. a, 

U251MG cells were stably infected with a lentivirus encoding mature miR-340 or 

Control sequence, together with GFP and puromycin-resistance gene (MOI=20). 

Stably infected clones were isolated by GFP expression in a medium supplemented 

with puromycin. Expression levels of miR-340 were checked by Real-Time PCR. The 

transcript level was normalized against U6 (b). U251MG stably infected with a 

lentivirus encoding miR-340 or Control particles were subcutaneously injected in the 

left flank of CD1 nude mice (n=6 for each group). Tumors volume and vessels 

formation were measured weekly by HFUS (Vevo 2100) and color-doppler HFUS 

a b

c d 
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(Vevo 2100) with a 40MHz probe for three weeks. Data from c and d showed that 

miR-340 was able to reduce glioblastoma cell-derived xenograft growth and vessels 

formation. 
****

, p<0.0001. 
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5. DISCUSSION 
 

 

GBM is one of the most aggressive types of human tumors, and is the most 

lethal form of brain cancer. It is characterized by an extremely bad prognosis, 

with a median survival rate of only 12 months after diagnosis (Tran B and 

Rosenthal MA 2010). Interestingly, a small subgroup of patients survives 

longer, and is defined as long term survivors (LTS) (Krex D et al. 2007; Stupp 

R et al. 2009). The understanding of the specific molecular features typical of 

LTS may represent an excellent chance to improve diagnosis, prognosis, 

treatment and lastly survival of GBM patients. At present, several molecular 

markers have been correlated to glioblastoma prognosis, and many need further 

validation before their use in clinical settings. The most important and well 

established marker of glioblastoma prognosis is MGMT promoter methylation, 

which is associated with a favorable outcome after Temozolomide 

chemotherapy in patients with new diagnosed glioblastoma (Hegi ME et al. 

2005). However, despite the deep efforts of the last years, the cellular and 

molecular features of LTS are not been elucidated yet.  

 In the last decade, microRNAs have been frequently indicated to be 

deregulated in different human cancers, acting both as oncogenes or tumor-

suppressors. It is well reported that microRNAs are involved in basic cellular 

functions, including proliferation, cell death, differentiation, metabolism and, 

importantly, tumorigenesis. In addition, these noncoding RNAs have the 

capacity to target tens to hundreds of genes simultaneously. Thus, they are 

attractive candidates as prognostic biomarkers and therapeutic targets in 

cancer. Since their discovery more than a decade ago, microRNAs are 

emerging as new key players in the scenario of tumor biology. Several recent 

studies have demonstrated that the expression of miRNAs is deregulated in 

gliomas. Ciafre` et al. examined the alterations of 245 miRNAs in World 

Health Organization grade IV GBMs, in which miR-221 was up-regulated, 

whereas miR-128, miR-181a, miR-181b, and miR-181c were down-regulated 

(Ciafre SA et al. 2005). Chan et al. showed that expression of miR-21 was 

markedly up-regulated in primary GBMs and glioma cell lines compared with 

normal brain tissues and non-tumor glial cells. In contrast, miR-124 and miR-

137 were found to be significantly decreased in grade III anaplastic gliomas 

and grade IV GBMs compared with adjacent non-tumor brain tissues. 

Additionally, miR-128, miR-181a, miR-181b, and miR-451 were found to be 

down-regulated in glioblastoma tissues and cell lines compared with normal 

brain tissues (Chan JA et al.2005). These findings suggest that miRNAs are 

involved in glioma development and progression. 

 In addition, our previous studies reported an active role of three distinct 

miRNAs in different features important for glioblastoma tumorigenesis.  

Firstly, we identified a new molecular mechanism of PTPµ down-regulation in 
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human glioblastoma by two miRs, miR-221 and-222, that directly target this 

phosphatase, decreasing glioblastoma cells motility (Quintavalle C et al. 2010). 

Moreover, we found that miRs-30c and -21 were able to sensitize glioblastoma 

cells to TRAIL induced apoptosis by targeting, respectively, caspase 3 and 

Tap63 (Quintavalle C et al. 2012). Finally, we demonstrated that 

overexpression of miRs-221 and -222 produced an increase of Temozolomide 

sensitivity, via a reduction of MGMT expression levels (Quintavalle C et al. 

2013). 

 Moreover, in the last years different reports established direct 

connections between different microRNAs and glioblastoma patients 

prognosis. Jiang et al. found that expression levels of miR-182 is strongly 

correlated with histological grades and overall survival times of glioblastoma 

patients, providing evidence in support of the possibility that up-regulation of 

miR-182 might play an important role in the progression and aggressiveness of 

glioblastoma (Jiang L et al. 2012).  

It has been shown recently that GBMs display a distinct miRNA 

expression signature and a number of recent studies have linked these 

microRNAs alterations to key hallmarks of GBM including proliferation, 

survival, invasion, angiogenesis, and stem-cell like behavior. Among these 

studies, some of them reported panels of microRNAs associated with prognosis 

in glioblastoma. For example, the study from Niyazi et al. resulted of a strong 

interest. They defined two complementary miRNAs patterns able to predict 

early death compared to long term survival (split at 450 days) in a significant 

way (p<0.01), and this prediction was independent of MGMT status. Their 

findings indicated that complex alterations of the regulatory network involved 

in tumor gene expression are at least as important as a single disturbance of a 

single DNA repair enzyme. Among the miRNAs reported as deregulated, there 

are some with relatively unknown cell cycle function, such as miR-3163, miR-

1305, and miR-1260. The most deregulated miRNA resulted let-7a. It was 

found to be associated with several cancers, such as lung, colon, and 

glioblastoma, by inhibiting cell growth, inducing apoptosis and decreasing 

survival. For example, in Hep-2 cells, let-7a induced apoptosis down-

regulating RAS and c-MYC oncogenes (Niyazi M et al. 2011). Another 

interesting study about miRNAs expression pattern and glioblastoma survival 

was performed recently by Srinivasan et al. They reported a signature of ten 

miRNAs, identifying three protective miRs (miR-20a, miR106a, and miR-17-

5p), and seven risky miRs (miR-31, miR-222, miR148a, miR-221, miR-146b, 

miR-200b, miR-193a). The protective miRNAs were expressed at higher level 

in the low risk group and the risky miRNAs were expressed at higher level in 

the high risk group compared to in the low risk group. The protective and risky 

nature of these miRNAs was predictive of their oncosuppressive or pro-tumor 

roles (Srinivasan S et al. 2011). Also Hayes et al. performed an interesting 

study about glioblastoma, miRs, and survival (Hayes J et al. 2015). They found 

a biologically relevant 9-microRNAs signature that predicts patients survival in 

glioblastoma (miR-124a, miR-10b, miR-222, miR-34a, miR-182, miR-148a, 
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miR-145, miR-370, and miR-9). All these miRNAs had an already 

demonstrated role in glioblastoma, with the exception of miR-370.  

 Different studies reported the tumor-suppressive activity of miR-340 in 

human cancers. This miRNA was first reported to play an oncosuppressive role 

by Wu et al. They found that miR-340 was able to inhibit breast cancer cell 

migration and invasion by targeting c-Met, and that loss of its expression was 

associated with tumor metastasis and poor prognosis (Wu ZS et al. 2011). 

Another work reported that miR-340 cooperates with miR-137 and miR-124 to 

regulate colorectal cancer growth via inhibition of Warburg effect (Sun Y et al. 

2012). In osteosarcoma, miR-340 was found down-regulated compared to 

normal tissue, and it was identified ROCK-1 as a target of miR-340. miR-340 

overexpression was correlated with ROCK-1 down-regulation, leading to the 

inhibition of cell proliferation, migration and invasion (Zhou X et al. 2013). 

Further, it was reported that miR-340 and ROCK-1 expression levels were 

respectively decreased and increased in pediatric osteosarcoma tissues 

compared to normal bone tissues. Low miR-340 expression, high ROCK-1 

level, and the combined miR-340 down-regulation and ROCK-1 up-regulation 

may be considered as bad prognostic factor in pediatric osteosarcoma (Cai H et 

al. 2014). More recently, Poenitzsch et al. demonstrated for the first time the 

pleiotropic regulation of the RAS-RAF-MAPKs pathway by miR-340 in 

melanoma, resulting in a strong tumor-suppressive activity (Poenitzsch AM et 

al. 2014). In addition, Fernandez et al. characterized the tumor-suppressive 

activity of miR-340 in lung cancer, where it mediated cell growth inhibition 

and apoptosis activation by an accumulation of p27 (Fernandez S et al. 2014). 

In fact, they found that miR-340 directly targeted three different post-

transcriptional negative regulators of p27 (PUM1, PUM2 and SKP2). Finally, 

Yamashita et al. reported that miR-340 suppressed the stem-like cell function 

of glioma-initiating cells (Yamashita D et al. 2015). In particular, they 

identified miR-340 as a novel miRNA whose expression was significantly 

lower in glioma initiating cells and in glioma cell lines compared to normal 

stem cells. Further, they observed that miR-340 suppressed not only 

glioblastoma initiating cell proliferation and invasion in vitro, but also 

glioblastoma initiating cells tumor formation in nude mice brain. Their findings 

indicate that miR-340 could acts as a tumor-suppressor in glioma initiating 

cells, particularly affecting gliomagenesis and extensive tumor invasion. 

Moreover, they found that PLAT was directly targeted by miR-340 and 

mediated its effects. In addition to PLAT, miR-340 overexpression in glioma 

initiating cells decreased Sox2, c-MET, CD44, and DNMT1 expression. c-

MET and CD44 regulated cell invasion, while Sox2 and CD44 were crucial for 

the maintenance of stem phenotype. 

 Definitely, identification of new biomarkers that play a central role in 

the progression of GBM will benefit diagnosis and targeted therapies of this 

disease. In this study, we demonstrated that miR-340 has a strong 

oncosuppressive role in GBM. We investigated miR-340 expression, functional 

role and mechanism of action in vitro and in vivo.  Our data, together with that 



56 

 

obtained from “The Cancer Genome Atlas” (TCGA) database, demonstrated 

that miR-340 expression is significantly lower in GBM samples compared to 

normal brain. More importantly, data from two different cohorts of GBM 

patients (61 primary GBM specimens present in our lab and 352 from TCGA) 

demonstrated that this miRNA is over-expressed in LTS compared to STS. 

Furthermore, in both these cohorts, statistical analysis revealed that patients 

with higher expression of miR-340 displayed a significant longer survival and, 

finally, a better prognosis. Taken together, these data suggest that higher 

expression of miR-340 is a significant predictor of good prognosis in GBM.  

 Our in vitro functional studies showed that addition of miR-340 in 

glioblastoma cells determined a significant block of cell cycle that led to an 

inhibition of cell proliferation, a decrease of anchorage independent cell 

growth, and an increase in Temozolomide induced apoptosis. Further, we 

demonstrated that miR-340 is able to directly bind two different regions on N-

RAS 3’UTR, thus strongly inhibiting N-RAS expression. The RAS protein 

family consists of 4 highly homologous enzymes (N-RAS, H-RAS, K-RAS4A 

and K-RAS4B). These are signal molecules that regulate cell fates by coupling 

receptor activation to downstream effector pathways that control different 

cellular responses, such as proliferation, resistance to therapy and survival. 

Activating mutations of RAS proteins are common in human cancers. In 

particular, N-RAS activating mutations were found in hematopoietic cancers, 

colorectal cancer and melanoma. In glioblastoma, N-RAS activation could be 

due to a direct mutation (5%) or to other alterations, such as amplification, 

overexpression of growth factor receptor or aberrations in other RAS pathway 

genes (Knobbe CB et al 2004). Recently, several miRNAs -miR-181d, let-7, 

miR-143- have been reported to suppress RAS expression and function as 

tumor-suppressor, suggesting that miRNAs targeting RAS may have an 

important role in carcinogenesis. In particular, the study of Wang et al. 

demonstrated the strong oncosuppressive activity of miR-181d in glioma 

(Wang XF et al. 2012). They found that this miRNA was down-regulated in 

human glioma tissues, with a concomitant up-regulation of its targets K-RAS 

and BCL-2. Moreover, Lee et al. demonstrated a strong tumor-suppressive role 

of let-7a in glioblastoma, by targeting N-RAS (Lee ST et al.2011); also Wang 

et al. revealed the anti-tumor activity of miR-143 in glioblastoma, via targeting 

N-RAS and so enhanced Temozolomide induced apoptosis (Wang L et al. 

2014).  

 Our findings indicated that miR-340, targeting N-RAS, decreased the 

activation of its downstream pathways, mediated by AKT and ERKs kinases. 

Rescue experiments using dominant positive mutants of AKT and ERKs 

clearly showed that both these pathways are involved in miR-340 mediated 

effects in glioblastoma. In summary, we have identified a new link between 

miR-340 and N-RAS, which is a novel constituent of GBM tumorigenesis.  

 In animal models, it has been demonstrated that several tumor-

suppressor miRNA replacement therapies, using either virus-mediated 

transduction or non-viral vehicle, had inhibitory effects on tumor growth and 
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metastasis formation. For example, Esquela-Kerscher et al. reported a reduced 

tumor growth by viral transfer of let-7 in mouse models of lung cancer 

(Esquela-Kerscher A et al. 2008). Furthermore, tumor-suppressor miRNA 

uptake is believed to confer no adverse effects to normal cells, because the 

pathways regulated by them are already activated by endogenous miRNAs. In 

the present study we found that the lentiviral mediated overexpression of miR-

340 in glioblastoma cells was able to inhibit cell growth in nude mice, thus 

suggesting its possible use as therapeutic molecule.  

 In conclusion, we observed for the first time a direct relation between 

miR-340 expression and survival in GBM, and demonstrated that miR-340 has 

a powerful oncosuppressive effect in vitro and in vivo, mediated, at least in 

part, by N-RAS targeting via its downstream pathways of ERKs and AKT 

kinases. Our findings suggest miR-340 as a novel potential tool for 

glioblastoma prognosis and diagnosis, as well as a new and useful molecular 

targeted therapeutic to enhance GBM survival. 
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6. CONCLUSIONS 
 

 

Our findings report miR-340 expression as a novel constituent of long-term 

survivor glioblastoma patients molecular signature. We demonstrated that this 

miRNA is down-regulated in glioblastoma, but its levels were higher in LTS 

patients compared to STS. Moreover, we found a direct correlation between 

miR-340 expression and overall survival of a wide cohort of glioblastoma 

patients. Based on these data, miR-340 levels may be considered as a favorable 

prognostic factor in glioblastoma. Further, we provided evidence of a strong 

tumor-suppressive activity of miR-340 in vitro, and found N-RAS as a new 

target of this miRNA directly involved in the determination of multiple miR-

340 effects. miR-340 had an anti-tumoral activity not only in glioblastoma cell 

lines, but also in tumor xenografts in nude mice. Taken together, these results 

may represent the pre-clinical validation for considering the use of miR-340 as 

a novel potential therapeutic tool for glioblastoma treatment.  
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Abstract

Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for
treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence
suggests that the intracellular level of the alkylating enzyme O6-methylguanine–DNA methyltransferase (MGMT)
impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter.
However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto
unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-ββ1 and miR-βββ are
upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell
death. However, miR-ββ1/miR-βββ also increase DNA damage and, thus, chromosomal rearrangements. Indeed,
miR-ββ1 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-
expression of MGMT. Thus, chronic miR-ββ1/βββ-mediated MGMT downregulation may render cells unable to repair
genetic damage. This, associated also to miR-ββ1/βββ oncogenic potential, may poor GBM prognosis.
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Introduction

Glioblastoma multiforme (GBM) is the most common and
deadly primary tumor of the central nervous system. Despite
several therapeutic advances, the prognosis for GBM remains
poor, with a median survival lower than 15 months [1,β].
Currently, first-line therapy for GBM comprises surgery with the
maximum feasible resection, followed by a combination of
radiotherapy and treatment with the alkylating agent
temozolomide (TMZ), also referred to by its brand name
Temodal [γ,4,5]. TMZ is a methylating agent that modifies DNA
in several positions, one of them being O6-methylguanine MeG
(O6MeG) [6]. If the methyl group is not removed before cell
division, this modified guanine preferentially pairs with thymine

during DNA replication, triggering the DNA mismatch repair
(MMR) pathway, DNA double-strand breaks, and, therefore,
the apoptotic pathway [7,8]. O6-methylguanine–
methyltrasferase (MGMT) is a suicide cellular DNA repair
enzyme ubiquitously expressed in normal human tissues.
MGMT does not act as a part of a repair complex but works
alone [9]. To neutralize the cytotoxic effects of alkylating
agents, such as TMZ, it rapidly reverses alkylation at the O6

position of guanine, transferring the alkyl group to an internal
cysteine residue in its active site. In this form, the enzyme is
inactive and, thus, requires de novo protein synthesis. In
tumors, high levels of MGMT activity are associated with
resistance to alkylating agents [10]. In contrast, epigenetic
silencing of MGMT gene expression by promoter methylation
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results in sensitization to therapy [11,1β]. However, some
studies have reported that MGMT promoter methylation does
not always correlate with MGMT expression and with response
to therapy [1γ,14]. Therefore, the existence of other
mechanisms of MGMT regulation should be postulated.

MicroRNAs (miRs) are small regulatory molecules that have
a role in cancer progression and in tumor therapy response
[15,16]. By negatively regulating the expression of their targets,
miRs can act as tumor suppressors or oncogenes [17]. miRs
may also regulate DNA damage response and DNA repair,
interfering with the response to chemotherapy or radiotherapy
[18]. Several studies have indicated that the modulation of miR
expression levels is a possible therapeutic strategy for cancer.

The paralogues miR-ββ1 and miR-βββ have frequently been
found to be dysregulated in glioblastoma and astrocytomas
[19,β0,β1,ββ]. Their upregulation increases glioma cell
proliferation, motility, and in vivo growth in mouse models.
miR-ββ1/βββ have also been shown to be implicated in cellular
sensitivity to tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-treatment [βγ,β4,β5]. In this manuscript, we
provide evidence that miR-ββ1 and miR-βββ regulate MGMT
expression levels in glioblastoma, increasing the response to
TMZ, but due to their oncogenic potential, affect overall patient
survival negatively.

Materials and Methods

Cell culture and transfection
U87MG, T98G, LN4β8, LNγ08, A17β, and HEK-β9γ cells

were grown in DMEM. LNββ9 were grown in Advanced DMEM
(Gibco, Life technologies, Milan, Italy). T98G, U87MG, and
LNββ9 were from ATCC (LG Standards, Milan Italy); LN4β8,
LNγ08, and A17β were kindly donated by Frank Furnari (La
Jolla University). Media were supplemented with 10% heat-
inactivated fetal bovine serum (FBS) -5% FBS for LNββ9 -β
mM L-glutamine, and 100 U/ml penicillin/streptomycin. All
media and supplements were from Sigma Aldrich (Milan, Italy).
For overexpression of miRs, cells at 50% confluency were
transfected using Oligofectamine (Invitrogen, Milan, Italy) and
100nM pre-miR-ββ1 or pre-miR-βββ, a scrambled miR or anti-
miR-ββ1/βββ (Applied Biosystems, Milan, Italy). For
overexpression of MGMT, cells were transfected using
Lipofectamine and Plus Reagent with 4 µg of MGMT cDNA
(Origene, Rockville MD USA). Temozolomide was purchased
from Sigma Aldrich (Milan, Italy).

Human Glioma samples
A total of γ4 formalin-fixed, paraffin-embedded (FFPE) tissue

samples were collected from the archives of the Department of
Pathology, University Hospital of Kuopio, Finland. Permission
to use the material was obtained from the National Supervisory
Authority for Welfare and Health of Finland, and the study was
accepted by the ethical committee of the Northern Savo
Hospital District, Kuopio, Finland.

Primary cell cultures
Glioblastoma specimens were obtained as previously

described [19]. Samples were mechanically disaggregated, and
the lysates grown in DMEM-F1β medium supplemented with
10% FBS, 1% penicillin streptomycin, and β0 ng/ml epidermal
growth factor (EGF; Sigma-Aldrich, Milan, Italy). To determine
the glial origin of the isolated cells, we stained the cultures for
glial fibrillary acidic protein (GFAP), a protein found in glial
cells.

Protein isolation and Western blotting
Cells were washed twice in ice-cold PBS and lysed in JS

buffer (50 mM HEPES pH 7.5 containing 150 mM NaCl, 1%
Glycerol, 1% Triton X100, 1.5mM MgClβ, 5mM EGTA, 1 mM Na
γVO4, and 1X protease inhibitor cocktail). Protein concentration
was determined by the Bradford assay (BioRad, Milan, Italy)
using bovine serum albumin (BSA) as the standard, and equal
amounts of proteins were analyzed by SDS-PAGE (1β.5%
acrylamide). Gels were electroblotted onto nitrocellulose
membranes (GE Healthcare, Milan, Italy). For immunoblot
experiments, membranes were blocked for 1 hr with 5% non-fat
dry milk in Tris-buffered saline (TBS) containing 0.1%
Tween-β0, and incubated at 4°C overnight with primary
antibody. Detection was performed by peroxidase-conjugated
secondary antibodies using the enhanced chemiluminescence
system (GE Healthcare, Milan, Italy). Primary antibodies used
were: anti-ȕ-actin from Sigma-Aldrich (Milan Italy); anti-
caspase-γ and anti-PARP from Santa Cruz Biotechnologies
(Santa Cruz, CA, USA), anti-ȖHβAX from Millipore (Milan,
Italy), anti-p5γ, pser15 p5γ, and phosphorylated-ATM from Cell
Signaling Technology (Milan, Italy).

RNA extraction and Real-Time PCR
Cell culture: Total RNA (microRNA and mRNA) were

extracted using Trizol (Invitrogen, Milan, Italy) according to the
manufacturer’s protocol.

Tissue specimens
Total RNA (miRNA and mRNA) from FFPE tissue specimens

was extracted using RecoverAll Total Nucleic Acid isolation Kit
(Ambion, Life Technologies, Milan, Italy) according to the
manufacturer’s protocol. Reverse transcription of total miRNA
was performed starting from equal amounts of total RNA/
sample (1µg) using miScript reverse Transcription Kit (Qiagen,
Milan, Italy), and with SuperScript® III Reverse Transcriptase
(Invitrogen, Milan, Italy) for mRNA. Quantitative analysis of
MGMT, ȕ-actin (as an internal reference), miR-ββ1, miR-βββ,
and RNU5A (as an internal reference) were performed by
RealTime PCR using specific primers (Qiagen, Milan, Italy),
miScript SYBR Green PCR Kit (Qiagen, Milan, Italy), and iQTM

SYBR Green Supermix (Bio-Rad, Milan, Italy), respectively.
The reaction for detection of mRNAs was performed as follows:
95°C for 15’, 40 cycles of 94°C for 15″, 60°C for γ0″, and 7β°C
for γ0″. The reaction for detection of miRNAs was performed as
follows: 95°C for 15’, 40 cycles of 94°C for 15″, 55°C for γ0″,
and 70°C for γ0″. All reactions were run in triplicate. The
threshold cycle (CT) is defined as the fractional cycle number
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at which the fluorescence passes the fixed threshold. For
relative quantization, the β(-ΔCT) method was used as previously
described [β6]. Experiments were carried out in triplicate for
each data point, and data analysis was performed by using a
Bio-Rad software (Bio-Rad, Milan, Italy).

Luciferase assay
The γ’ UTR of the human MGMT gene was PCR amplified

using the following primers: MGMT-Fw:
5’TCTAGAGTATGTGCAGTAGGATGGATGγ’; MGMT-Rv: 5’
TCCAGAGCTACAGGTTTCCCTTCCγ’, and cloned
downstream of the Renilla luciferase stop codon in pGLγ
control vector (Promega, Milan, Italy). A deletion was
introduced into the miRNA-binding sites with the QuikChange
Mutagenesis Kit (Stratagene, La Jolla CA USA) using the
following primers: MGMT-mut Fw: 5’
CTATATCCAAAAGGGAAACCTGTAGCTCTTGC γ’. MGMT-
mut Rw: 5’- GCAGAGCTACACGTTTCCCTTTTGGATATAG γ’.
HEK-β9γ cells were co-transfected with 1.βµg of plasmid and
400 µg of a Renilla luciferase expression construct, pRL-TK
(Promega, Milan, Italy), with Lipofectamine β000 (Invitrogen,
Milan, Italy). Cells were harvested β4 hrs post-transfection and
assayed with Dual Luciferase Assay (Promega, Milan, Italy)
according to the manufacturer’s instructions. Three
independent experiments were performed in triplicate.

Cell death quantification
Cell viability was evaluated with the CellTiter 96 AQueous

One Solution Cell Proliferation Assay (Promega, Milan, Italy)
according to the manufacturer’s protocol. Metabolically active
cells were detected by adding β0 µL of MTS to each well. After
β hrs of incubation, the plates were analyzed in a Multilabel
Counter (BioTek, Milan, Italy). For caspase-γ inhibition
experiments, ZVAD-Fmk was purchase from Calbiochem.

Comet assay
Alkaline comet assay was performed accordingly to

manufacturer’s instructions (Trevigen, Gaithersburg, Maryland,
USA). Briefly, 1βx104 glioblastoma cell lines were transfected
with miRs or MGMT cDNA and then treated with TMZ in 6-well
plates. Cells were collected and then combined with
LMAgarose. The mixture was applied to Comet slides and kept
at 4°C in the dark for 10’. The slides were immersed in pre-
chilled lysis buffer for γ0 min. The slides were washed and then
electrophoresis was carried out. The slides were fixed in 70%
ethanol for 5 min and let dry overnight. SYBR green was added
and comets were photographed at 100 x microscopes (Carl
Zeiss Inc., NY, USA).

γH2AX flow cytometric analysis
Treated cells were fixed with β% paraformaldehyde for 1 hr.

Fixed cells were permeabilized with 0.1% Triton-X100/PBS for
5 min on ice. Blocking was done in PBS+β% BSA. Anti-
phosphorylated HβAx antibody(Ser1γ9, ȖHβAx, Millipore,
Milan, Italy) was diluted in PBS and then FITC-conjugated goat
anti-mouse antibody (Santa cruz Biotechnology, CA, USA) was

used. Cells were analyzed with a Becton Dickinson FACScan
flow cytometer.

Caspase Assay
The assay was performed using the Colorimetric CaspACETM

Assay System, (Promega, Milan, Italy) as reported in the
instruction manual. Briefly, T98G cells were transfected with
miR-ββ1 and/or MGMT cDNA, plated in 96-well plates, and
then treated with γ00 µMol of temozolomide or with 10 µMol of
ZVAD-Fmk. After treatments, 100 µl caspase-γ/-7 reagent was
added to each well for 1 hr in the dark. The plates were
analyzed in a Multilabel Counter (BioTek, Milan, Italy).

MGMT Methylation Analysis
DNA methylation status in the CpG island of MGMT was

established by PCR analysis of bisulfite modified genomic
DNA, which induces chemical conversion of unmethylated, but
not methylated, cytosine to uracil. DNA was extracted from cell
lines using the DNeasy blood and tissue kit (Qiagen, Milan,
Italy). DNA (1 µg) was modified with sodium bisulfite using the
EZ DNA methylation-gold kit (Zymo Research, CA, USA)
according to the manufacturer’s instructions. Methylation-
specific polymerase chain reaction (MSP) was performed with
primers specific for either methylated or the modified
unmethylated DNA. Primer sequences for the unmethylated
reaction were 5'TTTGTGTTTTGATGTTTGTAGGTTTTTGTγ'
(forward primer) and
5'AACTCCACACTCTTCCAAAAACAAAACAγ' (reverse
primer), and for the methylated reaction they were
5'TTTCGACGTTCGTAGGTTTTCGCγ' (forward primer) and
5'GCACTCTTCCGAAAACGAAACGγ' (reverse primer.) The
annealing temperature was 59°C. The cell line SW48 and in
vitro methylated DNA (CpGenome Universal Methylated DNA,
Millipore) were used as a positive control for the methylation of
MGMT and DNA from normal lymphocytes used as a negative
control. Controls without DNA were used for each set of
methylation-specific PCR assays. The methylation-specific
PCR product was loaded directly onto β% agarose gels,
stained with syber safe, and examined under ultraviolet
illumination.

Colony Assay
Cells were transfected with scrambled miR or miR-ββ1 for β4

hrs, harvested, and β.4 x104 cells plated in 6-well plates. After
β4 hrs, cells were treated with γ00 µMol TMZ for β4 hrs, as
indicated. Cells were transferred to 100-mm dishes and grown
for 6 days. Finally, the cells were colored with 0.1% crystal
violet dissolved in β5% methanol for β0 min at 4°C. Dishes
were washed with water, left to dry on the bench, and then
photographs taken.

Statistical analysis
Student’s t test and nonparametric Mann-Whitney tests were

used to determine differences between values for normally
and, respectively, not normally distributed variables. A
probability level <0.05 was considered significant throughout
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the analysis. Data were analyzed with GraphPad Prism (San
Diego, CA, USA) for Windows.

Results

Sensitivity of human glioma cell lines to temozolomide
We analyzed the sensitivity to TMZ of human glioma cell

lines by exposing the cells to γ00 µMol TMZ for 48 hours and
then assessing cell viability with the MTT assay (Figure 1A).
We observed different TMZ sensitivities, which correlated with
MGMT levels analyzed by Western blot (Figure 1B). We also
observed an inverse correlation between the level of MGMT
(Figure 1B) and miR-ββ1 expression in glioma cell lines (Figure
1C). An RNA hybrid alignment bioinformatics search identified
a possible binding site for miR-ββ1/βββ at position 970 of the γ’
UTR of MGMT.

To examine whether miR-ββ1/βββ interfered with MGMT
expression by directly targeting the predicted γ’ UTR region,
we cloned this region downstream of a luciferase reporter gene
in the pGLγ vector. HEK-β9γ cells were co-transfected with the
reporter plasmid plus the negative control miR (scrambled
miR), miR-ββ1, or miR-βββ. Only transfection of either miR-ββ1
or miR-βββ with the wild-type MGMT-γ’UTR reporter plasmid
led to a significant decrease of luciferase activity. On the

Figure 1.  TMZ sensitivity and MGMT and miR-221/222
expression in glioma cells.  (A) Glioma cells were treated
with TMZ (γ00µMol) for β4 hr. Cell viability was evaluated with
an MTT assay. (B) Western blot analysis of MGMT expression
in glioblastoma cells. (C) Real time PCR of miR-ββ1 expression
in glioblastoma cells. (D) RNA Hybrid prediction analyzes of
miR-βββ, miR-ββ1, and MGMT γ’ UTR. In bold are shown the
mutated oligonucleotides. Luciferase activity of HEK-β9γ cells
transiently co-transfected with the luciferase reporter containing
wild-type MGMT-γ’UTR or mutant MGMT-γ’UTR in the
presence of pre-miR-βββ, miR-ββ1, or scrambled
oligonucleotide. Representative of at least three independent
experiments. *** p<0.001 versus control, ** p<0,00γ7 versus
control.
doi: 10.1γ71/journal.pone.0074466.g001

contrary, co-expression of the scrambled miR had no effect
(Figure 1D). In addition, miR-ββ1/βββ’s effect on the promoter
of MGMT was reduced with the mutant MGMT-γ’UTR reporter,
in which the seed sequence was mutated. Together, these
results demonstrate that miR-ββ1/βββ directly target
MGMT-γ’UTR, thereby reducing MGMT expression.

miR-221/222 target MGMT protein and mRNA
In order to establish a causal link between miR-ββ1/βββ and

MGMT expression, we transfected T98G cells with either pre-
miR-ββ1 or pre-miR-βββ for 7β hrs and then analyzed MGMT
levels by Western blot and real time-PCR. Upon miR
transfection, MGMT protein and mRNA were downregulated
(Figure βA). In contrast, MGMT expression was increased
upon transfection with anti-miR-ββ1 or -βββ in U87MG cells
(Figure βB). Similarly, miR-ββ1/βββ, induced downregulation of
MGMT in LN4β8 cells, another TMZ-resistant glioma cell line
(Figure βC), and in Aγ75 cells, a TMZ-resistant melanoma cell
line (Figure βD). Since MGMT expression is mainly dependent
on the methylation status of its promoter [β7], we determined if
miR-ββ1/βββ acted by modulating MGMT promoter
methylation. To this end, we performed a bisulfite modification
assay by PCR using specific primers for both methylated and
unmethylated MGMT promoter. As shown in Figure βE,
miR-ββ1/βββ expression in T98G cells, or anti-miR expression
in U87MG cells, did not modify the methylation profile of the
MGMT promoter.

miRs-221/222 modulate TMZ sensitivity in glioma cells
To verify if miR-ββ1/βββ play a role in the modulation of TMZ

sensitivity because of their effects on MGMT expression, we
characterized the viability of T98G, LN4β8, and Aγ75 cells
transfected with miR-ββ1/βββ and then treated with TMZ for β4
hrs. As shown in Figure γA, miR-ββ1/βββ transfection
increased the response to TMZ. These results were also
confirmed by proliferation and colony assays (Figure γB and
γC). To establish a causal link between miR-ββ1 expression
and MGMT downregulation, we performed a rescue experiment
with simultaneous overexpression of miR-ββ1 and MGMT
cDNA in two different cell lines (T98G and LN4β8). As shown in
Figure γD, the effect of miR-ββ1 on TMZ response was
abolished by MGMT overexpression. We then verified in nine
different glioblastoma primary cell lines and in six glioma cell
lines any correlation between miR-ββ1 expression and TMZ
sensitivity. As shown, TMZ sensitivity positively correlated with
the expression level of miR-ββ1 (Figure γE).

miR-221 promotes apoptotic cell death
In order to evaluate the mechanism of TMZ-induced cell

death, we assessed the presence of apoptotic cells by PI
staining and flow cytometry upon miR-ββ1 transfection and
TMZ treatment. We found that TMZ increased apoptotic cell
death in miR-ββ1-overexpressing cells compared with control
cells. Interestingly, this effect was rescued by the co-
expression of MGMT cDNA with miR-ββ1 (Figure 4A).
Caspase-γ/7 activation assay further confirmed the
involvement of the apoptotic machinery. As shown in Figure
4B, miR-ββ1 expression increased caspase-γ activity upon
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TMZ treatment, while the co-expression of MGMT cDNA with
miR-ββ1 abolished this effect. Simultaneous treatment with the
caspase inhibitor ZVAD-fmk and TMZ was able to decrease
caspase activity, confirming that TMZ induced cell death by a
caspase-mediated mechanism. Caspase-γ activation,
observed by Western blot in miR-ββ1-transfected cells after β4
hrs of TMZ treatment, was rescued by MGMT cDNA (Figure
4C). Coherently, we observed an increase in cell viability after
miR-ββ1 transfection and simultaneous treatment with TMZ
and ZVAD-fmk (Figure 4D).

miR-221 promotes DNA damage after TMZ treatment
MGMT activity repairs DNA by removing DNA adducts

caused by TMZ treatment. The absence of MGMT increases
cell death upon exposure to TMZ, but, as a long-term effect,
may increase DNA damage, and thus the accumulation of
mutations. We investigated whether miR-ββ1 may increase
DNA damage upon TMZ treatment by down-modulating MGMT
expression. This was assessed by a comet assay, which
quantifies double-stranded DNA (dsDNA) breaks, in T98G cells
transfected with miR-ββ1 or a scrambled sequence and then
treated with TMZ at different times. We found that miR-ββ1
produced a significant enhancement of dsDNA breaks (Figure
5A). To strengthen our hypothesis, we looked for the
phosphorylation status of histone HβAX (ȖHβAX) at Ser1γ9,
which reflects dsDNA break formation. As shown in Figure 5B,

Figure 2.  miR-221/222 target MGMT.  (A) Western blot
analysis and real time PCR of MGMT protein and RNA after
miR-ββ1/βββ transfection of T98G cells. (B) Western blot
analysis and real time PCR of MGMT protein and RNA after
anti-miR-ββ1 and -βββ transfection of U87MG cells. (C)
Western blot of MGMT expression upon miR-ββ1 transfection
of LN4β8 cells. (D) Western blot analysis of MGMT expression
in T98G cells, as a control, and the melanoma cell line Aγ75
upon miR-ββ1 transfection. (E) Analysis of methylation status
of MGMT promoter in T98G and U87MG upon miR- or anti-
miR-ββ1/βββ transfection. U is for the un-methylated form, M
for methylated form, NL is for normal lymphocytes, used as
control.
doi: 10.1γ71/journal.pone.0074466.g00β

miR-ββ1 significantly increased ȖHβAX, as assessed by
immunocytofluorescence (upper panel) or by Western blot
(lower panel), suggesting that miR overexpression may induce
DNA damage. This effect was even stronger in the presence of
TMZ, but was rescued by MGMT cDNA (Figure 5B, middle
panel). Furthermore, we also observed an increase of other
DNA damage markers, such as P-ATM, P-p5γser15 and PARP
cleavage, upon miR-ββ1 transfection; this was even stronger
upon treatment with both miR-ββ1 and TMZ (Figure 5C). These
effects were rescued by the simultaneous expression of MGMT
with miR-ββ1. Taken together, these data suggest that the
targeting of MGMT by miR-ββ1 increases DNA damage. This
effect was amplified by TMZ treatment.

MGMT and miR-221 expression in glioblastoma
patients

We then evaluated the expression of MGMT and miR-ββ1 in
human glioblastoma samples. Patients were clustered into two
separate groups: a long survival (survival >15 months) group
and a short survival (survival <15 months) group, according to
common classification [β].

We first analyzed the methylation profile of the MGMT
promoter, and then MGMT mRNA and miR-ββ1 levels. We
performed methylation-specific PCR (MSP) on γγ human

Figure 3.  miR-221 modulates TMZ sensitivity.  (A) Cell
viability of T98G, LN4β8, and Aγ75 cells transfected with
miR-ββ1 and miR-βββ upon TMZ treatment (γ00 µMol) for β4
hrs. **p value<0.008β versus scr column, ***p value<0.005
versus scr column. (B) Growth curve of T98G and LN4β8 cells
transfected or not with miR-ββ1 after β4 hrs of treatment with
TMZ. (C) Colony assay of T98G and LN4β8 cells transfected
with miR-ββ1 and then treated for β4 hrs with TMZ (γ00 µMol).
Cells were left to grow for 6 days after treatment removal. (D)
MGMT expression rescues cell viability after TMZ treatment in
T98G and LN4β8 cells overexpressing miR-ββ1 **p
value<0.008β versus untransfected MGMT column. (E)
Correlation between miR-ββ1 expression and TMZ sensitivity in
nine primary glioblastoma cell lines and in six glioblastoma cell
lines.
doi: 10.1γ71/journal.pone.0074466.g00γ
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glioblastoma paraffin-embedded tissues, and found β7 to be
unmethylated and 4 to be methylated (samples β, β1, ββ, and
β8) (Figure S1). For two samples (#γ1 and #γβ), it was not
possible to define the MGMT promoter methylation profile. We
then analyzed the effect of miR-ββ1 on MGMT regulation
among 15 unmethylated samples from which we obtained
sufficient RNA for real time PCR analysis. We identified 4 long-
(#1, #4, #10, and #14) and 11 short- (#6, #7, #8, #1β, #1γ, #17,
#18, #βγ, #β5, #γβ, and #γγ) survival patients. We found that
the short-survival group exhibited a higher miR-ββ1 level and a
lower MGMT level compared with the long-survival group
(Figure 6 A,B). These data supports our in vitro evidence of an
inverse correlation between miR-ββ1 and MGMT expression.
Furthermore, this observation identifies miR-ββ1 as a negative
prognostic factor for survival.

Discussion

Much evidence suggests that the intracellular level of the
alkylating enzyme MGMT affects TMZ response in GBM
patients [10,11]. Low levels of MGMT are associated with a
better TMZ response, because in the absence of MGMT the
cells are not able to repair the TMZ-induced base mismatch.

Figure 4.  miR-221 promotes DNA damages upon TMZ
treatment.  (A) Apoptotic cell death assessed by FACS in
T98G cells transfected with miR-ββ1 or scrambled sequence
and MGMT and treated with TMZ for β4 hrs. *** p value< 0.005
versus untrasfected MGMT column. (B) Active caspase-γ
quantification in T98G cells as indicated and treated with TMZ
for β4 hrs in the presence or absence of γ hrs pre-treatment
with ZVAD-fmk. (C) Upper panel Time course analysis of
caspase-γ activation upon TMZ treatment in T98G cells
transfected with miR-ββ1 or with scrambled sequence. Lower
panel Western blot analysis of caspase-γ activation after
miR-ββ1 and MGMT transfection. (D) Cell viability of T98G
cells transfected with miR-ββ1 or with scrambled sequence
treated with TMZ for β4 hrs in the presence or absence of γ hrs
pre-treatment with ZVAD-fmk. ** p value< 0.00γ4 versus only
treated TMZ column, Student’s t test.
doi: 10.1γ71/journal.pone.0074466.g004

Hence, double-strand DNA breaks, DNA mismatch repair, and
the apoptotic pathway are activated. MGMT expression is
regulated by the methylation of its promoter. MGMT promoter
methylation lowers MGMT levels and accounts for a greater
TMZ response when associated with radiotherapy. However, a
fraction of patients with unmethylated MGMT show some TMZ
response, suggesting that promoter methylation is not the only
regulatory mechanism of MGMT expression [1γ,14].

In the present study, we addressed this specific issue by
investigating the involvement of miRs in MGMT regulation.
First, we characterized TMZ sensitivity in a subset of

Figure 5.  miR-221 promotes DNA damage.  (A) Alkaline
comet assay of T98G cells transfected with miR-ββ1 and
treated with TMZ for the indicated times. (B) Analysis of ȖHβAX
in T98G cells transfected with scrambled control miR or
miR-ββ1, treated with TMZ in the presence or in the absence of
MGMT cDNA, by immunocytofluorescence (upper and medium
panel) or by Western blot (lower panel). (C) Western blot
analysis of the indicated proteins upon transfection of T98G
cells with miR-ββ1 and MGMT cDNA and TMZ treatment for β4
hrs.
doi: 10.1γ71/journal.pone.0074466.g005

Figure 6.  Association of miR-221 and MGMT
expression.  Mann–Whitney U test analysis was performed to
evaluate the association between miR-ββ1 and MGMT
expression in long- and short -survival groups of patients. The
expression of miR-ββ1 (β^-Dct) (A-B) and MGMT (β^-Dct) are
inversely correlated with patient survival (p < 0.0490 and
p = 0.04γ, respectively).
doi: 10.1γ71/journal.pone.0074466.g006
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glioblastoma cell lines and primary cells obtained from GBM
patients. We found that the analyzed glioblastoma cell lines
(T98G, LN4β8, U87MG, and A17β) expressed different levels
of miR-ββ1/βββ and displayed a consistent difference in MGMT
expression. This inverse correlation was also observed in
glioblastoma biopsies.

Bioinformatics identified a possible miR-ββ1/βββ binding site
on MGMT. This was confirmed by a luciferase assay and
overexpression experiments. The effect of miR-ββ1/βββ on
MGMT levels was direct and not related to MGMT promoter
methylation, since miR transfection did not alter the MGMT
methylation profile. Instead, we found evidence that
miR-ββ1/βββ regulated MGMT levels, leading to increased
TMZ-induced apoptosis, reduced anchorage-independent
growth, and reduced cell viability. Overexpression of MGMT
cDNA with miR-ββ1/βββ rescued the effects on TMZ sensitivity.
This result was not restricted to glioma cells, but was obtained
also in other cancer cells sensitive to TMZ, such as human
malignant melanoma.

It has been demonstrated that MGMT may be a target also of
other miRs, such as miR-181, in GBM [β8]. Zhang et al.
demonstrated that miR-181d targets MGMT γ’ UTR, and
reported an inverse correlation between miR-181d and MGMT
levels in human GBM samples, in particular in those samples in
which the MGMT promoter was unmethylated [β8]. However,
the modest correlation between miR-181d and MGMT
suggested that other miRs may regulate MGMT expression.
Therefore, miR-ββ1/βββ may be part of this cohort.

MGMT expression may be regulated also thought the p5γ
pathway. Blough et al. provided evidence that p5γ regulates
MGMT expression in murine astrocytes, and presented data
suggesting that p5γ contributes to the regulation of MGMT
gene expression in the human astrocytic glioma cell line SF767
[β9].

In this manuscript, we demonstrate that miR-ββ1
overexpression increases DNA damage in glioma cells. In fact,
miR-ββ1-overexpressing glioma cells exhibited an increase in
DNA damage markers, such as P-ATM, P-p5γ, cleaved PARP,
and ȖHβAX. These markers were activated even in the
absence of TMZ, and became increased upon TMZ treatment.
MGMT participates in the repair of DNA. Thus, miR-ββ1/βββ
induces chronic MGMT downregulation, rendering the cells
unable to repair DNA damage. It is well established that
miRββ1/βββ are oncogenic microRNAs that are upregulated in
a number of human tumors [γ0,γ1,γβ]. In GMB tissue and cell
lines, upregulated miR-βββ and miR-ββ1 expression correlated
with the stage of the disease, cell motility, and TRAIL response
[19,βγ,γ1,γγ]. We found that miR-ββ1 is a negative prognostic
factor, since it is up regulated in short-survival patients and is
downregulated in long-survival ones. However, we did not
observe the expected correlation between miR-ββ1 expression
and response to temozolomide/survival. Arguably, overall
survival and therapy response have to be linked to other
factors. It therefore seems that the pro-oncogenic effect of
miR-ββ1 is more powerful than its potentiation of the response
to temozolomide.

The role of MGMT in DNA damage repair has been
investigated also in animal models. Reduced expression of this

repair enzyme has been thought to result in a spontaneous
‘mutator’ phenotype and to promote neoplastic lesions in the
presence of either endogenous or exogenous sources of
alkylation stress. Sakumi, et al. showed that Mgmt−/− mice
develop thymic lymphomas and lung adenomas to a greater
extent when exposed to methylnitrosourea (MNU), suggesting
that the DNA repair methyltransferase protected these mice
from MNU-induced tumorigenesis [γ4]. Sandercock et al.
reported that MGMT-deficient cells exhibited an increased
mutational burden, but only following exposure to specific
environmental mutagens [γ5]. Takagi et al. demonstrated that
mice with mutations in Mgmt as well as in the DNA mismatch
repair gene Mlh1 developed numerous tumors after being
administered MNU. When exposed to a sub-lethal dose of
MNU (1mM), the mutation frequency in Mgmt−/−/Mlh1−/− cells
was up to 1β times that of untreated cells; this effect was not
present in control mice [γ6]. Walter et al. generated transgenic
mice overexpressing MGMT in brain and liver, or in lung [γ7].
They found that expression of the transgene correlated with a
reduced prevalence of MNU-induced tumors in liver and in lung
and also with reduced spontaneous hepatocellular carcinoma.
Reese et al. found that overexpression of MGMT decreased
the incidence and increased the latency of thymic lymphoma
induction in mice with both heterozygous and wild type p5γ
alleles [γ8]. This protective effect was described also by Allay
et al., who reported that the incidence of lymphomas was much
lower in MGMT transgenic mice compared with controls [γ9].
Those studies thus suggest that MGMT, other than being
involved in the response to therapy, is also involved in DNA
repair. Therefore, its inactivation may produce devastating
effects on DNA integrity.

In summary, we have provided evidence of the existence of
an adjunct mechanism of MGMT regulation, besides promoter
methylation, involving miR targeting its γ’ UTR. We have also
shown that overexpression of miR-ββ1/βββ produces an
increase in sensitivity to TMZ via a reduction in the level of
MGMT. On the other hand, these miRs increase DNA damage,
conferring oncogenic features to glioma cells. This may link
miR-ββ1/βββ to poor GBM prognosis.

Supporting Information

Figure S1.  Methylation-specific PCR analyses for MGMT
methylation in glioblastoma human tumors. γγ glioblastoma
samples were used for analysis. The SW48 cell line and in vitro
methylated DNA (IVD) are shown as a positive control for
methylation, normal lymphocytes (NL) as a negative control for
methylation, and water (HβO) as a negative PCR control. U
and M indicate the presence of unmethylated or methylated
MGMT, respectively. Red colour is for methylated samples,
green for unmethylated and orange for undetermined samples.
(TIF)
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Impact of a High Loading Dose of Atorvastatin on
Contrast-Induced Acute Kidney Injury

Cristina Quintavalle, PhD*; Danilo Fiore, PhD*; Francesca De Micco, PhD; Gabriella Visconti, MD;
Amelia Focaccio, MD; Bruno Golia, MD; Bruno Ricciardelli, MD; Elvira Donnarumma, PhD;

Antonio Bianco, PhD; Maria Assunta Zabatta, PhD; Giancarlo Troncone, MD, PhD;
Antonio Colombo, MD; Carlo Briguori, MD, PhD; Gerolama Condorelli, MD, PhD

Background—The role of statins in the prevention of contrast-induced acute kidney injury (CIAKI) is controversial.

Methods and Results—First, we investigated the in vivo effects of atorvastatin on CIAKI. Patients with chronic kidney

disease enrolled in the Novel Approaches for Preventing or Limiting Events (NAPLES) II trial were randomly assigned

to (1) the atorvastatin group (80 mg within 24 hours before contrast media [CM] exposure; n�202) or (2) the control

group (n�208). All patients received a high dose of N-acetylcysteine and sodium bicarbonate solution. Second, we

investigated the in vitro effects of atorvastatin pretreatment on CM-mediated modifications of intracellular pathways

leading to apoptosis or survival in renal tubular cells. CIAKI (ie, an increase �10% of serum cystatin C concentration

within 24 hours after CM exposure) occurred in 9 of 202 patients in the atorvastatin group (4.5%) and in 37 of 208

patients in the control group (17.8%) (P�0.005; odds ratio�0.22; 95% confidence interval, 0.07–0.69). CIAKI rate was

lower in the atorvastatin group in both diabetics and nondiabetics and in patients with moderate chronic kidney disease

(estimated glomerular filtration rate, 31–60 mL/min per 1.73 m2). In the in vitro model, pretreatment with atorvastatin

(1) prevented CM-induced renal cell apoptosis by reducing stress kinases activation and (2) restored the survival signals

(mediated by Akt and ERK pathways).

Conclusions—A single high loading dose of atorvastatin administered within 24 hours before CM exposure is effective in

reducing the rate of CIAKI. This beneficial effect is observed only in patients at low to medium risk. (Circulation.

2012;126:3008-3016.)

Key Words: apoptosis � contrast media � kidney � prevention � statins

Iodinated contrast media (CM) are used in both diagnostic

and interventional cardiovascular procedures. In addition

to the risk of allergic reactions, the major concern in regard to

CM use is a deterioration of kidney function termed contrast-

induced acute kidney injury (CIAKI). The reported incidence

of CIAKI varies widely (�1% to �50%), depending on the

patient population, the baseline risk factors, and the defini-

tion.1 Hemodynamic changes of renal blood flow, which lead

to hypoxia of the renal medulla, and direct toxic effects of

CM on renal cells are thought to contribute to the pathogen-

esis of CIAKI.2 We have observed previously both in vitro

and in vivo that CM induce apoptotic cell death via 3

important signaling pathways: (1) the reactive oxygen species

(ROS) pathway, (2) the Jun N-terminal kinase (JNK)/p38

pathway, and (3) the intrinsic apoptosis pathway, which are

triggered by CM in this sequence.3,4 The causal relationship

between these 3 sequential pathways supports the investiga-

tion of novel therapeutic approaches to prevent CIAKI.

Clinical Perspective on p 3016

Statins exert several effects through their non–lipid-related

mechanisms. These so-called pleiotropic effects encompass

several mechanisms that modify inflammation responses,

endothelial function, plaque stability and thrombus forma-

tion, and the apoptotic pathway.5–7 The effectiveness of statin

pretreatment in reducing the incidence of CIAKI has been

examined in some observational8–10 and randomized stud-

ies.11–13 Because of the controversial results, there is a general
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consensus that statins merit further study for the prevention of

CIAKI. In the present study, we investigated (1) the in vivo

effects of atorvastatin pretreatment on CIAKI and (2) the in

vitro effects of atorvastatin pretreatment on CM-mediated

modifications of intracellular pathways leading to apoptosis

or survival in renal tubular cells.

Methods

Patient Population
The patients included in the present study represent the subgroup

with chronic kidney disease (CKD) enrolled in the Novel Ap-

proaches for Preventing or Limiting Events (NAPLES) II trial7

(Figure 1). The design of the NAPLES II trial has been reported

previously. From January 2005 to December 2008, 1348 naive

patients (ie, those not taking statins) scheduled for elective coronary

angiography or percutaneous coronary intervention in de novo

lesions in native coronary arteries were considered eligible for the

study. The day before the procedure, all eligible patients were

randomly assigned to atorvastatin treatment (atorvastatin group) or to

no atorvastatin treatment (control group). Randomization was per-

formed by a 1:1 ratio with computer-generated random numbers.

Patients randomized in the atorvastatin group started atorvastatin

treatment (80 mg) within 24 hours before CM exposure. The

prophylaxis for CIAKI in all patients with CKD included (1)

N-acetylcysteine (NAC) (Fluimucil, Zambon Group SpA, Milan,

Italy; 1200 mg PO twice daily, the day before and the day of

administration of CM) and (2) hydration with sodium bicarbonate

solution14 (154 mEq/L in dextrose and H2O). It was administered

with the initial intravenous bolus of 3 mL/kg per hour for 1 hour

immediately before CM injection, followed by 1 mL/kg per hour

during contrast exposure and for 6 hours after the procedure.14,15

Iodixanol (Visipaque, GE) a nonionic, iso-osmolar (290 mOsm/kg of

water) contrast agent, was used in all patients. CKD was defined as

an estimated glomerular filtration rate (eGFR) �60 mL/min per 1.73

m2.16 The risk score for predicting CIAKI was calculated according

to the following algorithm: hypotension (integer score 5), intra-aortic

balloon pump support (integer score 5), congestive heart failure

(integer score 4), age �75 years (integer score 4), diabetes mellitus

(integer score 3), eGFR �60 mL/min per 1.73 m2 (integer score

2–6), preexisting anemia (integer score 3), and CM volume (integer

score 1 for each 100 mL). The global scores �5, 6 to 10, 11 to 16,

and �16 anticipate a CIAKI risk of 7.5%, 14%, 26.1%, and 57.3%,

respectively.17 Serum creatinine (sCr), cystatin C (sCyC), blood urea

nitrogen, sodium, and potassium were measured the day before the

procedure and at 24 and 48 hours and 1 week after CM administra-

tion. Additional measurements were performed in all instances in

which there was a deterioration of baseline renal function. The

primary outcome measure was the development of CIAKI, defined

as an increase in sCyC concentration 10% above the baseline value

at 24 hours after administration of CM.18 Secondary outcome

measures were (1) an increase of sCr concentration �0.5 mg/dL at

48 hours from baseline value and (2) an increase of sCr concentration

�25% at 48 hours from baseline value. To address whether a single
high (80 mg) dose of atorvastatin may affect the sCr or sCyC levels,
we analyzed an additional 20 patients with CKD not scheduled for
CM exposure and not enrolled in the original NAPLES II trial. The
clinical characteristics of the 20 enrolled patients are summarized in
Table I in the online-only Data Supplement. The trial was conducted
in 2 interventional cardiology centers in Italy and was approved by
our ethics committees.

Culture Conditions and Reagents
Two cell lines were utilized: Madin Darby distal nonhuman tubular
epithelial (MDCK) cells and human embryonic proximal tubules
(HK2) cells. MDCK cells were grown in a 5% CO2 atmosphere in
Dulbecco’s modified Eagle’s medium containing 10% heat-inacti-
vated fetal bovine serum, 2 mmol/L L-glutamine, and 100 U/mL
penicillin-streptomycin. HK2 cell lines were grown in Dulbecco’s
modified Eagle’s medium–F12 mixture with 10% heat-inactivated
fetal bovine serum, 2 mmol/L L-glutamine, and 100 U/mL penicillin-
streptomycin. Cells were routinely passaged when 80% to 85%
confluent. Media, sera, and antibiotics for cell culture were from
Sigma-Aldrich (Milan, Italy). Protein electrophoresis reagents were
from Bio-Rad (Richmond, VA), and Western blotting and enhanced
chemiluminescence reagents were from GE Healthcare (Milan,
Italy). The following antibodies were used for immunoblotting:
anti-�-actin (Sigma-Aldrich), anti-phospho-JNK, anti-caspase-3,
anti-phosphoserine15 p53, anti-p53, anti-phospho-Akt, anti-Akt, anti-
phopsho-ERK, anti-ERK, anti-HSP70 (Cell Signaling, Danvers,
MA), and anti-JNK (DB Bioscience, Milan, Italy).

Atorvastatin was kindly donated by Pfizer (Pfizer Inc, New York,
NY), and NAC was donated by Zambon (Zambon Group SpA,
Milan, Italy). MDCK and HK2 cells were pretreated with atorvasta-
tin at a dose of 0.2 �mol/L19 or 100 mmol of NAC.4 The dose of
atorvastatin was selected according to the standard doses used in cell
lines. Iodixanol was used in all experiments.

Caspase Assay
The assay was performed with the use of the Colorimetric CaspACE
Assay System (Promega, Madison, WI) according to the manufac-
turer’s protocol. Briefly, MDCK cells were pretreated with
0.2 �mol/L atorvastatin for 12 hours and then treated for 3 hours
with iodixanol. Cells were harvested in caspase assay buffer, and
proteins were quantified by Bradford assay. Fifty micrograms of
protein was used.

Protein Isolation and Western Blotting
Cellular pellets were washed twice with cold phosphate-buffered
saline and resuspended in JS buffer (HEPES 50 mmol/L, NaCl 150
nmol/L, 1% glycerol, 1% Triton X-100, 1.5 mmol/L MgCl2,
5 mmol/L EGTA) containing Proteinase Inhibitor Cocktail (Roche,
Basel, Switzerland). Solubilized proteins were incubated for 1 hour
on ice. After centrifugation at 13 200 rpm for 10 minutes at 4°C,
lysates were collected as supernatants. Eighty micrograms of sample
extract was resolved on a 12% sodium dodecyl sulfate–polyacryl-
amide gel with the use of a mini-gel apparatus (Bio-Rad Laborato-

Figure 1. Flow of participants through
each stage of the trial according to the
CONSORT guidelines. eGFR indicates
estimated glomerular filtration rate.
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ries) and transferred to Hybond-C extra nitrocellulose (GE Health-
care). Membrane was blocked for 1 hour with 5% nonfat dry milk in
Tris-buffered saline containing 0.05% Tween-20 and incubated
overnight at 4°C with specific antibodies. The indicated antibody
was used for immunoblotting. Washed filters were then incubated for
45 minutes with horseradish peroxidase–conjugated anti-rabbit or
anti-mouse secondary antibodies (GE Healthcare) and visualized
with chemiluminescence detection (GE Healthcare).

Cell Death Quantification
Cell vitality was evaluated with the CellTiter 96 AQueous One Solution
Cell Proliferation Assay (Promega), according to the manufacturer’s
protocol. The assay is based on reduction of 3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium in-
ner salt (MTS) to a colored product that is measured spectrophoto-
metrically. Cells were plated in 96-well plates in triplicate,
stimulated, and incubated at 37°C in a 5% CO2 incubator. Iodixanol
and atorvastatin were used in vitro at doses and times indicated.
Metabolically active cells were detected by adding 20 �L of MTS to
each well. After 30 minutes of incubation, the plates were analyzed
on a Multilabel Counter (Bio-Rad). Apoptosis was also analyzed via
propidium iodide incorporation in permeabilized cells by flow
cytometry. The cells (2�105) were washed in phosphate-buffered
saline and resuspended in 200 �L of a solution containing 0.1%
sodium citrate, 0.1% Triton X-100, and 50 �g/mL propidium iodide
(Sigma-Aldrich). After incubation at 4°C for 30 minutes in the dark,
nuclei were analyzed with a Becton Dickinson FACScan flow
cytometer. Cellular debris was excluded from analyses by raising the
forward scatter threshold, and the DNA content of the nuclei was
registered on a logarithmic scale. The percentage of elements in the
hypodiploid region was calculated.

Biological Material
Exfoliated cell pellets from the urine of 10 enrolled and randomly
selected patients (5 in each group) were collected by centrifugation
at 1200 rpm for 25 minutes. A fraction of urine samples was sent to
the pathologist for cytological analysis and a fraction to the labora-
tory for in vitro assay. All samples were stored at �80°C for a
maximum of 2 months. Urine samples were resuspended in ice-cold
TRAP (Tris-HCl 10 mmol/L, pH 7.5, MgCl2 1 mmol/L, EGTA
1 mmol/L, phenylmethylsulfonyl 0.1 mmol/L, �-mercaptoethanol
5 mmol/L, CHAPS 0.5%, and glycerol 10%) and incubated on ice for
1 hour. The lysate was centrifuged for 20 minutes at 13 200 rpm at
4°C. The supernatant was collected. The presence of tubular cells
was assessed with the use of morphological criteria on cytospin
preparations stained by standard Papanicolaou staining methods. To
this end, cell block preparations were employed. To ensure their
adequacy, cell blocks were stained with hematoxylin and eosin.
Caspase-3 expression was detected with the use of rabbit polyclonal
antibody (Cell Signaling 9661, Danvers, MA). Signal was developed
by the polyvalent LSAB-peroxidase Dako kit (Dako, Denmark).

Statistical Analysis
The sample size was selected to demonstrate a reduction in the
primary end point of CIAKI from 20% in the control group to 10%
in the atorvastatin group.18,20 With the use of a 2-sided �2 test with
a significance level of 0.05, a total of at least 400 randomized
patients (200 in each arm) provided the study with 80% power. This
is a prespecified secondary end point of the NAPLES II trial.

Continuous variables are given as mean�1 SD or median and first
and third quartiles, when appropriate. The Student t and nonpara-
metric Mann-Whitney tests were used to determine differences
between values for normally and nonnormally distributed variables,
respectively. Categorical variables were reported as percentage and
were analyzed by either �2 or Fisher exact test, as appropriate.
Multiplicity issues were addressed with the use of the Bonferroni
adjustment. To test the impact of the prophylactic regimen (as
defined by the 2 treatment groups) on changes in sCyC concentra-
tion, we used a linear mixed model, taking into account the clustered
features of the data, after transforming sCyC levels into a natural

logarithm (to overcome the problem of nonnormal distribution).

Specifically, we considered the treatment strategy (as defined in the

control and atorvastatin groups), time period, and time�treatment

strategy interaction as fixed effects and patients as a random effect.

P�0.05 was considered significant throughout the analysis. Data

were analyzed with SPSS 13.0 (Chicago, IL) for Windows. The

authors had full access to and take responsibility for the integrity of

the data. All authors have read and agree to the manuscript as

written.

Results

Clinical Results
The clinical and biochemical characteristics were well

matched between the 2 groups (Tables 1 and 2). sCyC

increased significantly more in the control group than in the

atorvastatin group (P�0.005; F�5.52 by repeated-measures

ANOVA; Figure 2A). CIAKI occurred in 9 of 202 patients in

the atorvastatin group (4.5%) and in 37 of 208 patients in the

control group (17.8%) (P�0.005; odds ratio�0.22; 95%

confidence interval, 0.07–0.69; Figure 2B). sCr increased

significantly more in the control group than in the atorvastatin

group (P�0.018; F�4.97 by repeated-measures ANOVA).

An increase of sCr concentration �0.5 mg/dL at 48 hours

from baseline value occurred in 7 of 202 patients (3.5%) in the

atorvastatin group and in 16 of 208 patients (7.7%) in the control

Table 1. Clinical Characteristics of Patients Enrolled in the

2 Groups

Control Group

(n�208)

Atorvastatin

Group (n�202)

Age, y 70�8 70�6

Male 120 (58) 103 (51)

Weight, kg 75�15 76�13

Height, m 1.67�0.5 1.65�0.5

Body mass index, kg/m2 28�5 28�4

Blood pressure, mm Hg

Systolic 150�22 151�23

Diastolic 76�10 77�13

Mean 101�13 102�15

LV ejection fraction, % 50�8 50�9

Systemic hypertension 182 (87.5) 172 (85.5)

Diabetes mellitus 80 (38.5) 89 (44)

Drugs

ACE inhibitor 83 (40) 76 (38)

Calcium channel blocker 64 (31) 64 (32)

Angiotensin II receptor inhibitor 64 (31) 66 (33)

Diuretics 100 (48) 111 (55)

�-blockers 137 (66) 131 (65)

Procedure performed

Coronary angiography 68 (23) 78 (27)

PCI 140 (77) 124 (73)

Volume of contrast media, mL 184�78 177�74

Contrast ratio �1 55 (26) 51 (25)

Continuous values are expressed as mean�SD; categorical values are

expressed as total number and percentage of the global population (in

parentheses). LV indicates left ventricular; ACE, angiotensin-converting en-

zyme; and PCI, percutaneous coronary intervention.
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group (P�0.085). An increase of sCr concentration �25% at 48

hours from baseline value occurred in 6 of 202 patients (3%) in

the atorvastatin group and in 14 of 208 patients (7%) in the

control group (P�0.10) (Figure I in the online-only Data

Supplement). We also performed a stratified analysis to deter-

mine the benefit of atorvastatin according to the severity of CKD

(eGFR �30 versus 31–60 mL/min per 1.73 m2) and the

presence of diabetes mellitus (Figure 2C). The rate of CIAKI

was lower in the atorvastatin group in both diabetics and

nondiabetics and in patients with eGFR 31 to 60 mL/min per

1.73 m2. On the contrary, no difference was observed in the

subgroup with severe CKD (eGFR �30 mL/min per 1.73 m2).

We observed that neither sCr nor sCyC was altered by admin-

istration of a single high (80 mg) atorvastatin loading dose

(Figure II in the online-only Data Supplement).

One-year outcome was available in 402 of 410 patients

(98%). Clinical and biochemical characteristics of the patients

are reported in Tables II and III in the online-only Data

Supplement. Major adverse events (including death and dialysis)

occurred in 37 of 402 patients (9%). In particular, death occurred

in 29 patients (7%) and chronic dialysis in 8 patients (2%).

Major adverse events occurred in 9 of 45 patients (20%) with

CIAKI (ie, a CyC �10% at 24 hours after contrast exposure)

and in 28 of 357 patients (7.8%) without CIAKI (P�0.013).

Atorvastatin Effects on CM-Induced Renal
Cell Damage
In both MDCK and HK2 cells exposed to CM, pretreatment

with atorvastatin induced an increase in cell vitality and a

reduction of cell death (Figure 3). This protective effect was

evident after 6 hours and reached a peak at 12 hours of

atorvastatin pretreatment. Interestingly, we observed that

pretreatment with atorvastatin reduced the CM-induced acti-

vation of caspase-3, JNK, and p53 (Figures 4 and 5).

We then evaluated the effects of atorvastatin pretreatment

on survival signals mediated by Akt and ERK pathways. CM

induced a strong reduction of the phosphorylated (activated)

forms of Akt and ERK (Figure 5C and 5D). Interestingly,

atorvastatin almost completely restored the survival signal in

kidney cells. We performed a further experiment to investi-

gate the effect of 2 hours of NAC pretreatment (100 mmol/L)

in the presence of atorvastatin (0.2 �mol/L) on cell death

after 3-hour incubation with iodixanol (200 mg/mL). The

beneficial effect of the combination of NAC and atorvastatin

was higher than that obtained with the NAC or atorvastatin

alone (P�0.010; F�10.5 by ANCOVA test; Figures 3C, 3D,

and 4B). Finally, we did not observe any involvement of the

Table 2. Biochemical Characteristics of Patients Enrolled in

the 2 Groups

Control Group

(n�208)

Atorvastatin

Group (n�202)

Serum creatinine, median

(range), mg/dL

1.29 (0.88–1.61) 1.32 (0.96–1.62)

Serum cystatin C, median

(range), mg/dL

1.25 (1.0–1.59) 1.23 (1.06–1.62)

eGFR, mL/min per 1.73 m2 43�14 42�13

�30 mL/min per 1.73 m2 38 (18.5) 37 (18.5)

Contrast nephropathy risk score* 7.5�2.7 8.1�2.8

Serum urea nitrogen, mg/dL

Baseline 78�31 80�35

After 48 h 70�30 76�35

Serum sodium, mEq/L

Baseline 140�5 140�3

After 48 h 140�5 141�4

Serum potassium, mEq/L

Baseline 4.7�0.7 4.6�0.7

After 24 h 4.5�0.7 4.6�0.7

Continuous values are expressed as median and first and third quartiles

(serum creatinine and cystatin C) or mean�SD; categorical values are

expressed as total number and percentage of the global population (in

parentheses). eGFR indicates estimated glomerular filtration rate.

*According to Mehran et al.17

Figure 2. A, Serum cystatin C concen-
tration at baseline and 24 and 48 hours
after contrast media administration in the
control group (open symbol, continuous
line) and in the atorvastatin group
(closed symbol, dashed line); P�0.005;
F�5.32 by linear mixed model. B, Inci-
dence of contrast-induced acute kidney
injury (CIAKI) in control and atorvastatin
groups. C, Benefit of atorvastatin
according to severity of chronic kidney
disease (estimated glomerular filtration
rate [GFR] �30 vs 31–60 mL/min per
1.73 m2) and presence of diabetes melli-
tus. CI indicates confidence interval.
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JAK/STAT pathway in atorvastatin renal cell protection.

Indeed, no differences in HSP70 protein (one of the signaling

molecules of this pathway) expression have been detected in

cells treated with atorvastatin (Figure 5B).

To clarify the clinical impact of these features, we evaluated

the activation of JNK, p53, and caspase-3 in epithelial tubular

cells collected at 24 and 48 hours after CM exposure from 10

patients (5 in the atorvastatin group and 5 in the control group).

The presence of epithelial tubular cells was confirmed by

immunohistochemistry by hematoxylin and eosin staining (Fig-

ure 7). In controls, an increase of both JNK and p53 phosphor-

ylation (activation) was observed at 24 and 48 hours after CM

exposure (Figure 6A through 6C). In contrast, in all 5

atorvastatin-treated patients, we observed a significant reduction

of JNK and p53 phosphorylation (Figure 6B through 6D). Cells

collected from patients were also analyzed immunohistochemi-

cally with anti-caspase-3 antibodies. Consistent with Western

blot data, the activation of pro-caspase-3 at 24 and 48 hours was

observed in the control group but not in the atorvastatin group

(Figure 7).

Discussion

Clinical Findings
The present study demonstrates that a single high (80 mg)

loading dose of atorvastatin administered within 24 hours

before CM exposure is effective in reducing the rate of

CIAKI. This beneficial effect was observed in patients with

and without diabetes mellitus as well as in those with

moderate CKD (eGFR 31–60 mL/min per 1.73 m2). On the

contrary, no advantage was evident in patients with severe

CKD (eGFR �30 mL/min per 1.73 m2).

At present, the evidence for the use of statins to prevent

CIAKI is conflicting and inconclusive.8–12,21 A number of

considerations may be involved in the conflicting results.

First, the sample size is often modest to detect significant

differences in the CIAKI rate. This may often be due to the

enrollment of patients at low risk for CIAKI.17 The lack of

observed benefit may therefore represent a type II error (ie,

concluding that a benefit does not exist when one really

does).22 Toso et al,12 for example, did not observe any

significant effect of atorvastatin loading dose on the CIAKI

rate. However, the 304 patients enrolled in that study were

insufficient to detect the expected 50% relative decrease in

CIAKI rate in the atorvastatin group (from 15% in the

placebo group) with 90% power at the conventional, 2-sided

significance level of 5%. Indeed, �350 subjects in each

group would have been required to test the hypothesis.

Moreover, our study is also underpowered to demonstrate the

impact of the atorvastatin loading dose in preventing CIAKI

with the use of the current sCr cutoffs.23 Indeed, with an

Figure 3. Effects of atorvastatin (Ato)
(0.2 �mol/L) pretreatment for different times
(2, 4, 6, 12, 24, 36 hours) on contrast medi-
a–induced Madin Darby distal nonhuman
tubular epithelial (MDCK) and human embry-
onic proximal tubules (HK2) cell damage,
assessed as viability (cell titer proliferation
assay) (A and B) and percentage of apo-
ptotic cells evaluated by fluorescence-acti-
vated cell sorting analysis (C and D). Pre-
treatment with both N-acetylcysteine (NAC)
(100 mmol) and atorvastatin (0.2 �mol/L)
was more effective than each single com-
pound alone in the prevention of contrast
media–induced apoptosis; *P�0.001 vs col-
umn (NAC� and atorvastatin�); ‡P�0.03 vs
columns (NAC� and atorvastatin�) and
(NAC� and atorvastatin�) . All cells were
incubated for 3 hours with iodixanol (200 mg
iodine/mL). Each experiment was repeated 3
times. In A and B, a mixed linear model for
repeated measures was used, with Bonfer-
roni adjustment. In C and D, the Student t

test was used.

Figure 4. Effect of atorvastatin (Ato)
(0.2 �mol/L) pretreatment on contrast medi-
a–induced Madin Darby distal nonhuman
tubular epithelial (MDCK) (A) and human
embryonic proximal tubules (HK2) (B) cell
damage, assessed by caspase-3 assay or
by Western blot of pro-caspase-3. *P�0.001
vs control; ‡P�0.001 vs column (iodixanol�
and atorvastatin�). Pretreatment with both
N-acetylcysteine (NAC) (100 mmol) and ator-
vastatin (0.2 �mol/L) was more effective than
each single compound alone in the preven-
tion of contrast media–induced caspase-3
activation. *P�0.001 vs column [NAC� and
atorvastatin�); ‡P�0.03 vs columns (NAC�

and atorvastatin�) and (NAC� and atorva-
statin�). Each experiment was repeated 3
times. The Student t test was used.
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absolute sCr increase �0.5 mg/dL as primary end point, to

demonstrate a reduction from 10% to 5%, �1000 patients

(450 in each arm) would be required.14 In addition, when the

�25% sCr increase is selected as the primary end point, to

demonstrate a reduction of CIAKI from 5% to 2%, �1200

patients (600 in each arm) would be required.15,18,24 In the

present study, we used sCyC as a marker of kidney function

to detect CIAKI for several reasons: (1) sCyC is more

sensitive than sCr to rapidly detect acute changes in renal

function25,26; (2) sCyC allows an early (24 hours) diagnosis of

CIAKI18,27; and (3) sCyC predicts the occurrence of major

adverse events at follow-up in patients with CKD undergoing

CM exposure.18,20

The second consideration is primary end point definition.

In the negative Prevention of Radiocontrast Medium Induced

Nephropathy Using Short-Term High-Dose Simvastatin in

Patients With Renal Insufficiency Undergoing Coronary An-

giography (PROMISS) trial,11 the authors hypothesized an

absolute sCr difference between baseline and 48 hours of 0.36

mg/dL in the simvastatin group and 1.1 mg/dL in the control

group. This means that, with a baseline sCr level of 1.2

mg/dL, the authors expected a peak increase in the sCr

concentration of 28% for the simvastatin group and 92%

percent for the control group. Although such a large effect

size has been observed in a single-center CIAKI trial,28

multicenter trials generally produce a much smaller effect,

with an absolute sCr difference between baseline and 48

hours �0.20 mg/dL and a peak increase in the sCr concen-

tration of 20% to 30%.24,25,29–31 In addition, the absolute sCr

difference is generally not a good primary outcome because it

Figure 5. Western blot analysis showing
the effect of atorvastatin (Ato)
(0.2 �mol/L) pretreatment on contrast
media–induced activation of Jun
N-terminal kinase (JNK) and p53 in
Madin Darby distal nonhuman tubular
epithelial (MDCK) (A) and human embry-
onic proximal tubules (HK2) (B) renal
cells. The activation of JNK and p53 was
evaluated by detection of the phosphor-
ylated (activated) form of the proteins
(pJNK and pP53ser15). Pretreatment with
both N-acetylcysteine (NAC) (100 mmol)
and atorvastatin (0.2 �mol/L) was more
effective than each single compound
alone. No differences of HSP70 protein
(one of the signaling molecules of the
JAK/STAT pathway) expression have
been detected in cells treated with ator-
vastatin (B) in Western blot analysis,
showing that atorvastatin (0.2 �mol/L)
pretreatment induced an increase of the
phosphorylated (activated) levels of both
Akt and ERK (pAkt and pERK) in the
presence of iodixanol in MDCK (C) and
HK2 (D) cells.

Figure 6. In vivo effects of contrast
media on epithelial tubular renal cells.
Western blot analysis assessing Jun
N-terminal kinase (JNK) and p53 phos-
phorylation (activation) levels in epithelial
tubular cells from 2 patients in the con-
trol group (A through C) and 2 patients
in the atorvastatin group (B through D) is
shown. The analysis revealed that acti-
vation of JNK and p53 was higher in the
control group than in the atorvastatin
group.
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has not been validated to predict adverse outcomes (such as

CIAKI).

The third consideration is type and dose of statin admin-

istered. Although results of retrospective studies (which

included patients receiving a multitude of statins) may sug-

gest the presence of a class effect,8 the majority of prospec-

tive randomized trials demonstrating prevention of CIAKI in

patients undergoing CM exposure used short-term pretreat-

ment with high doses of atorvastatin. Some evidence also

exists on the better prophylactic effect of a high versus a low

statin dose.32,33 Thus, when a strategy of short-term pretreat-

ment with statins before CM exposure is adopted, it would be

appropriate to use potent statins at high doses.

Mechanisms of Prevention of CM-Induced Renal
Cell Damage by Atorvastatin
The cornerstone of the prophylaxis of CIAKI is hydration;

however, strategies to prevent CM-induced renal cell apopto-

sis seem to play a clinical role. Previous studies have

demonstrated that CM induce an increase in ROS produc-

tion.3,34 This leads to eventual activation of the stress kinases

JNK1/2 and p38. For this reason, clinical trials have been

performed with the use of various antioxidant compounds

with the aim of lowering the occurrence of CIAKI by

scavenging ROS. The present study shows the additive

protective effect of atorvastatin over the combined adminis-

tration of sodium bicarbonate solution and NAC; this sup-

ports the hypothesis that the combination of different antiox-

idant compounds seems to be more effective than a single

agent in preventing CIAKI.14 The Acetylcysteine for Preven-

tion of Renal Outcomes in Patients Undergoing Coronary and

Peripheral Vascular Angiography (ACT) trial showed no

advantages in routine NAC use.35 However, several aspects

need to be addressed before one reaches the strong conclusion

that NAC should be abandoned, including baseline CKD

severity, consistency of hydration protocol, and impact of

CM selection. Indeed, a recent meta-analysis of 30 trials

showed a renoprotective benefit with NAC.36 NAC pretreat-

ment inhibits CM-induced ROS production and therefore

inhibits JNK and p38 activation as well as apoptosis, sug-

gesting the existence of a specific target for NAC upstream of

the apoptosis-executing stress kinases in the CM-activated

signaling pathway.3,4,37 Atorvastatin may work at a different

level in preventing activation of the intrinsic apoptotic path-

way. Statins reduces the intracellular ROS levels in many

cellular systems38,39 by acting on the inhibition of ROS-

producing enzymes. In our in vitro model, pretreatment with

a high dose of atorvastatin reduced contrast-induced JNK

activation, which therefore led to intrinsic apoptosis pathway

activation.40 On the contrary, activation of the JAK2/STAT5

pathway does not seem to have a role in the protective effect

of atorvastatin on contrast-induced renal cell damage; indeed,

unlike asialo-erythropoietin, atorvastatin does not induce an

increase in HSP70 cellular levels.41 Atorvastatin induces an

increase in the survival signals and a reduction of the death

signals mediated by CM treatment of kidney cells. This effect

was time dependent, reaching a maximum effect at 12 hours

of statin incubation. We also, for the first time, confirmed in

vivo these mechanisms. In vitro studies addressing the

pathophysiology of CM-induced apoptosis have been criti-

cized because of several limitations, including the following:

(1) assessment of only 1 potential mechanism of CM-induced

renal cell damage in the absence of confounding variables

that can be found in vivo (eg, hypoxia due to hemodynamic

changes or other systemic mechanisms); (2) exposure to a

constant concentration of CM to all cell lines, whereas in vivo

the more distal epithelial tubular cells are exposed to much

higher concentrations; (3) the potentially high dose of CM;

and (4) differences in the tested drug/compound metabolism

and transport across cell membranes. Cultured cells are

attached with their basolateral membrane to the culture dish.

This may preclude the access of atorvastatin to the cells

through the active mechanism because the organic amino-

transporting polypeptide is mainly present on the basolateral

side of the epithelial renal cells.42 Of note, however, the

cytochrome 3A4, which metabolizes atorvastatin into active

Figure 7. Immunohistochemistry of kidney tubular
cells. Urine cytological cell block was prepared as
described in Methods. This specimen type was
used to perform a specific tubular cell marker im-
munostaining preparation (hematoxylin and eosin
staining �400) and to assess the activation of
active caspase-3 in patients in the control group
(A) and atorvastatin group (B) at different times.
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metabolites, is consistently expressed in proximal tubular

epithelial cells.43 Moreover, several studies indicate that the

parent drug is equipotent to the active metabolites in vitro.44

Study Limitations
The present study is a prespecified secondary end point of the

NAPLES II trial, which was designed to assess whether a

single, high (80 mg), loading (within 24 hours) dose of

atorvastatin is effective in preventing elevation of biomarkers

of myocardial infarction after elective coronary stent implan-

tation.7 The lack of randomization of the patients with CKD

may represent a limitation. However, the most important

characteristics of the 2 groups were well balanced, without

significant differences. The present study was powered with

sCyC as a marker of kidney damage. The current gold

standard for kidney function is still sCr. Having the sCr

cutoffs as primary end points would have required a much

larger (�1000 patients) sample size to detect the beneficial

prophylactic effect of atorvastatin. Moreover, serum CyC is a

reliable marker for both an early (24 hours) diagnosis of

CIAKI and for predicting the occurrence of major adverse

events at follow-up in patients with CKD undergoing CM

exposure.18 Finally, the 4% loss to follow-up rate should be

taken into account when our results are interpreted. Indeed,

although the 17 patients lost at follow-up were largely similar

to those analyzed (online-only Data Supplement), every

patient lost to follow-up can be considered a potential threat

to robust and precise inference.

Conclusions
A single high loading dose of atorvastatin administered

within 24 hours before CM exposure is effective in reducing

the rate of CIAKI by preventing CM-induced epithelial

tubular renal cell apoptosis and increasing the survival

signaling pathways. The advantage of adding an atorvastatin

loading dose to the sodium bicarbonate solution and NAC

seems to be effective in patients at low to medium risk but not

in those at high risk.
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CLINICAL PERSPECTIVE
Patients with chronic kidney disease were randomly assigned to (1) the atorvastatin group (atorvastatin loading dose [80

mg] within 24 hours before contrast media exposure; n�202) or (2) the control group (n�208). All patients received a high

dose of N-acetylcysteine and sodium bicarbonate solution. Contrast-induced acute kidney injury (defined as an increase

�10% of serum cystatin C) occurred in 9 of 202 patients in the atorvastatin group (4.5%) and in 37 of 208 patients in the

control group (17.8%) (P�0.005; odds ratio�0.22; 95% confidence interval, 0.07–0.69). In the in vitro model,

pretreatment with atorvastatin (1) prevented contrast media–induced renal cell apoptosis by reducing activation of stress

kinases and (2) restored survival signals (mediated by Akt and ERK pathways). The present study demonstrates that a

single high loading dose of atorvastatin administered within 24 hours before contrast media exposure (on top of

conventional strategies) is effective in reducing the rate of contrast-induced acute kidney injury by preventing contrast

media–induced epithelial tubular renal cell apoptosis and increasing survival signaling pathways.

3016 Circulation December 18/25, 2012

 by guest on January 28, 2015http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


 1 

SUPPLEMENTAL MATERIAL 
 

 

Effect of high loading dose of atorvastatin on serum creatinine concentrations after 

contrast media exposure. sCr increased significantly more in the Control group than in 

the Atorvastatin group (p=0.018; F = 4.97 by repeated measure of variance). An increase 

of sCr concentration 0.5 mg/dL at 48 hours from baseline value occurred in 7/202 (3.5%) 

patients in the Atorvastatin group and in 16/208 patients (7.7%) in the Control group (p = 

0.085). An increase of sCr concentration 25% at 48 hours from baseline value occurred 

in 6/202 (3%) patients in the Atorvastatin group and in 14/208 patients (7%) in the Control 

group (p = 0.10) (Figure 1S). 
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 2 

Effect of high loading dose of atorvastatin on serum creatinine and cystatin C 

concentrations. We analyzed 20 patients with chronic kidney disease and assessed the 

effects of a single high (80 mg) atorvastatin loading dose on renal function in the absence 

of contrast media exposure, using two surrogate markers of GFR, serum creatinine and 

cystatin C. These markers were measured simultaneously before and 24 h and 48 h after 

atorvastatin administration. These patients were not part of the original NAPLES II trial. 

This amendment of the NAPLES II trial was approved by our Ethic Committee, and all the 

20 patients signed the informed consent. The clinical characteristics of the 20 enrolled 

patients are summarized in the Table 1S. We observed that neither serum creatinine nor 

cystatin C was altered by administration of a single high (80 mg) atorvastatin loading dose 

(Figure 2S). 

 

 
Table1S. Clinical characteristics of the 20 patients.  
 
Age, years 75±11 
Male  10 (50%) 
BMI (kg/m2) 28±6 
sCr, mg/dL 1.45 (1.06-1.67) 
eGFR, ml/min/1.73 m2 43±9 
sCyC, mg/dL 1.48 (1.30-1.80) 
Diabetes mellitus 9 (45%) 
Hypertension 15 (75%) 
LV ejection fraction, % 55±7 
Drugs: 
   ACE inhibitor 
   Calcium channel   blocker 
   Angiotensin II receptor inhibitor 
   Diuretics 
   Beta blockers 

 
8 (40%) 
6 (30%) 
6 (30%) 

10 (50%) 
14 (70%) 

 
BMI = body mass index. sCr = serum creatinine; eGFR = estimated glomerular filtration rate; sCyC 
= serum cystatin C; LV = left ventricular. sCr and sCyC are expressed as median and Q1-Q3.  
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Figure 2S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*p >0.05 by paired t test versus baseline. 
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 4 

Patients lost at follow-up. 

 
 

Table 2S. Clinical characteristics of the patients lost at follow-up 

 Patients 
included 
(n= 410) 

Patients lost  
at follow-up  

(n= 17) 

P 

 
Age (years) 

 

70  9 

 

68  6 

 
0.53 

 
Male  

 
223 (54%) 

 
10 (59%) 

 
0.80 

Body-mass index (kg/m2) 
 

285 
 

272 
 

0.37 

LV ejection fraction (%) 
 

509 

 

517 

 
0.58 

Systemic Hypertension 
 

354 (86%) 
 

15 (88%) 
 

0.95 

Diabetes Mellitus  
 

169 (41%) 
 

7 (41%) 
 

0.80 

 
Volume of contrast media (ml) 
   Contrast ratio >1 

 

18076 
106 (26%) 

 

17149 
4 (23%) 

 
0.51 
0.96 

 

LV = left ventricular; Continuous values are expressed as mean ± standard deviation; 

categorical values are expressed as a total number and as a percentage of the global 

population (in parenthesis).  

 

Table 3S. Clinical characteristics of the patients lost at follow-up. 

 Patients included 
(n= 410) 

Patients lost  
at follow-up  

(n= 17) 

P 

Serum creatinine, median (range), mg/dl 1.30 (0.88-1.62) 1.30 (1,20-1.45) 
 

0.56 

Serum cystatin C, median (range), mg/dl 1.25 1.0-1.62) 1.22 (1.02-1.55) 
 

0.56 

eGFR (ml/min/1.73 m2) 43 ± 14 45 ± 8 0.54 
 
Contrast nephropathy risk score* 

 
7.8 ± 2.7 

 
8.1 ± 2.8 

 
0.65 

 

eGFR = estimated glomerular filtration rate. *According to Mehran et al. 7. Continuous 

values are expressed as median and first and third quartiles (serum creatinine and 

cystatin C) or mean ± standard deviation; categorical values are expressed as a total 

number and as a percentage of the global population (in parenthesis).  
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FIGURE LEGENDS Supplement 

 
Figure 1S. Panel A: serum creatinine concentration at baseline, 24 and 48 hours after contrast 
media administration in the Control group (open symbol, continuous line) and in the Atorvastatin 
group (closed symbol, dashed line); Panel B: incidence of contrast-induced-acute kidney injury 
(CIAKI; defined as a serum creatinine increase ≥0.5 mg/dl at 48 hours) in the Control group and in 
the Atorvastatin group. Panel C: incidence of contrast-induced-acute kidney injury (CIAKI; defined 
as a serum creatinine increase ≥25% at 48 hours) in the Control group and in the Atorvastatin 
group. 

 
 
Figure 2S. Serum creatinine (panel A) and cystatin C (panel B) concentrations at baseline and at 
24 and 48 hours after a single high (80 mg) loading dose of atorvastatin in patients with chronic 
kidney disease. *p >0.05 by paired t test versus baseline. 
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ORIGINAL ARTICLE

Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in

glioma cells
C Quintavalle1,2,7, E Donnarumma3,7, M Iaboni1,2, G Roscigno1,2, M Garofalo4, G Romano3, D Fiore1, P De Marinis5, CM Croce4

and G Condorelli1,2,6

Glioblastoma is the most frequent brain tumor in adults and is the most lethal form of human cancer. Despite the improvements in

treatments, survival of patients remains poor. To define novel pathways that regulate susceptibility to tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL) in glioma, we have performed genome-wide expression profiling of microRNAs (miRs). We show

that in TRAIL-resistant glioma cells, levels of different miRs are increased, and in particular, miR-30b/c and -21. We demonstrate that

these miRs impair TRAIL-dependent apoptosis by inhibiting the expression of key functional proteins. T98G-sensitive cells treated

with miR-21 or -30b/c become resistant to TRAIL. Furthermore, we demonstrate that miR-30b/c and miR-21 target respectively the

30 untranslated region of caspase-3 and TAp63 mRNAs, and that those proteins mediate some of the effects of miR-30 and -21 on

TRAIL resistance, even in human glioblastoma primary cells and in lung cancer cells. In conclusion, we show that high expression

levels of miR-21 and -30b/c are needed to maintain the TRAIL-resistant phenotype, thus making these miRs as promising

therapeutic targets for TRAIL resistance in glioma.

Oncogene advance online publication, 10 September 2012; doi:10.1038/onc.2012.410

Keywords: glioblastoma; TRAIL; therapy; microRNA; treatment; apoptosis

INTRODUCTION

Glioblastomas are the most common primary tumors of the brain
and are divided into four clinical grades on the basis of their
histology and prognosis.1 These tumors are highly invasive, very
aggressive and are one of the most incurable forms of cancer in
humans.2 The treatment strategies for this disease have not
changed appreciably for many years, and failure of treatment
occurs in the majority of patients owing to the strong resistant
phenotype. Therefore, the development of new therapeutic
strategies is necessary for this type of cancer.
A novel interesting therapeutic approach is the reactivation of

apoptosis using member of TNF (tumor necrosis factor)-family, of
which the tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) holds the greatest interest. Apoptosis is a particularly
desirable treatment outcome, as it eradicates cancer cells without
causing a major inflammatory response, which could provide
unwanted survival signals. However, many cancers develop
functional defects in the drug-induced apoptosis pathway, which
may lead to constitutive or acquired resistance. To this end,
alternative pathways, such as the one activated by death
receptors including Fas/Apo-1, or DR4 (TRAIL-R1) and DR5
(TRAIL-R2), are being explored for cancer treatment. TRAIL is a
relatively new member of the TNF family, known to induce
apoptosis in a variety of cancers.3 Treatment with TRAIL induces
programmed cell death in a wide range of transformed cells, both
in vivo and in vitro, without producing significant effects in normal
cells.3,4 Therefore, recombinant TRAIL or monoclonal antibodies
against its receptors (TRAIL-R1 and TRAIL-R2) are in phase II/III

clinical trials for different kinds of tumors, either as a single agent
or in combination with chemotherapy.5,6

However, a significant proportion of human cancer cells are
resistant to TRAIL-induced apoptosis, and the mechanisms of
sensitization seem to differ among cell types. Different studies
relate resistance to TRAIL-induced cell death to downstream
factors. It has been shown that downregulation of two anti-
apoptotic proteins such as PED (Phosphoprotein enriched in
diabetes) or cellular-FLICE such as inhibitory protein (c-FLIP)
can sensitize cells to TRAIL-induced apoptosis.7–9 However the
mechanism of TRAIL resistance is still largely unknown.
miRs are a class of endogenous non-coding RNA of 19–24

nucleotides in length that has an important role in the negative
regulation of gene expression blocking translation or directly
cleaving the targeted mRNA.10 miRs are involved in the
pathogenesis of most cancers.10 In the last few years, our
understanding of the role of miRNA has expanded from the
initially identified functions in the development of round worms
to a highly expressed and ubiquitous regulators implicated in a
wide array of critical processes, including proliferation, cell death
and differentiation, metabolism and, importantly, tumorigenesis.11

We have recently showed an important role of microRNAs in TRAIL
sensitivity in non-small cell lung cancer (NSCLC).12–14

In this study, to identify novel mechanisms implicated in TRAIL
resistance in human glioma, we performed a genome-wide
expression profiling of miRs in different cell lines. We found
that miR-30b/c and -21 are markedly upregulated in TRAIL-
resistant, and downregulated in TRAIL-sensitive glioma cells.
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Our experiments indicate that miR-30b/c and -21 modulate TRAIL
sensitivity in glioma cells mainly by modulating caspase-3 and
TAp63 expression and TRAIL-induced caspase machinery.

RESULTS

Selection of TRAIL-sensitive vs TRAIL-resistant glioma cell lines

We analyzed TRAIL sensitivity of different human glioma cell lines.
Cells were exposed to TRAIL at two different concentrations for
24 h and cell death was assessed using the MTT assay (Figure 1a)
or propidium iodide staining (Figure 1b). As shown in Figure 1, we
can distinguish two sets of cells: TB10, LN229, U251 and U87MG
cells exhibited total or partial TRAIL resistance, whereas T98G and
LN18 cells underwent TRAIL-induced cell death.

miRs expression screening in TRAIL-resistant vs TRAIL-sensitive
glioma cell lines

To investigate the involvement of miRs in TRAIL resistance in
glioblastoma cell lines, we analyzed the miRs expression profile in
the most TRAIL-resistant glioma cells (TB10 and LN229) vs the
TRAIL-sensitive cells (T98G and LN18). The analysis was performed
with a microarray chip containing 1150 miR probes, including 326
human and 249 mouse miRs, spotted in duplicates. Data obtained
indicated that seven miRs (miR-21, -30b, -30c, -181a, -181d, -146
and -125b) were significantly overexpressed in resistant glioma
cells with at least 41.9-fold change (Table 1). Quantitative real-
time-polymerase chain reaction (qRT–PCR) validated the micro-
array analysis (data not shown).

Role of miRs in TRAIL resistance in glioma

To test the role of these overexpressed miRs in TRAIL sensitivity in
glioma, we transfected T98G TRAIL-sensitive cells with miR-21,
-30b, -30c, -181a, -146 and -125b. TRAIL sensitivity was evaluated
by MTT assay, propidium iodide staining and colony assay. We
obtained significant results only for miR-30b/c and miR-21 that

were then extensively investigated. In fact, data obtained with
MTT assay and FACS analysis showed that the overexpression of
miR-30b/c and -21 was able to revert TRAIL sensitivity in T98G
(Figures 2a and b). Similar results were obtained in LN18 cells
(Figures 2c and d). This effect was not restricted to glioma, as
miR-30 and miR-21 were able to exert an anti-apoptotic action
also in non small cell lung cancer (NSCLC) (Supplementary
Figure 3B). We further evaluated TRAIL sensitivity by colony assay.
T98G and LN18 cells were transfected with miR-scrambled, miR-
30b/c and miR-21 for 48 h and then were treated with 50 or
100 ng/ml of superKiller TRAIL for 24 h. Cells were grown for 6 days
and then coloured with crystal violet-methanol solution
(Supplementary Figures 1A and B). The results indicated that
both miRs induced an increase of TRAIL resistance.
To further explore the role of miR-21 and -30b/c on TRAIL

sensitivity, we transfected U251 (Figure 3a) or LN229 (Figure 3b)
TRAIL-resistant cells with anti-miR-21, -30b, 30c, or with a
scrambled sequence. As shown in Figures 3a and b, transfection
of the anti-miR sequences was able to sensitize U251 and LN229
cells to TRAIL. Anti-miR-21 and -30c were also able to sensitize
to TRAIL the CALU-1-resistant non-small cell lung cancer (NSCLC)
TRAIL-resistant cell lines (Supplementary Figure 3C), indicating
that this effect was not restricted to glioma.

Identification of cellular targets of miR-30b/c and miR-21
in glioma cells

To identify cellular targets of miR-30b/c and -21, we used as first
attempt a bioinformatic search, using programs available on the
web including Pictar, TargetScan, miRanda and Microcosm target.
miR-21 targets different tumor suppressor genes and proteins

potentially involved in TRAIL resistance in glioblastoma
cells, such as PTEN (phosphatase and tensin homologue),
PDCD4 (programmed cell death 4), TPM1 (Tropomyosin 1) and
p53.15–17 Computer-assisted analysis identified the presence of
evolutionary-conserved binding sites for miR-21 in TAp63 gene.
We focused our attention on this p53 family member, as it
regulates the expression of TRAIL receptors and molecules
involved in TRAIL signaling.18 We also searched for miR-30
targets and among them we focused on caspase-3.
TRAIL-resistant and TRAIL-sensitive glioma or NSCLC cells

exhibited different levels of miR-21 and -30c assessed by either
qRT–PCR (Figure 4a and Supplementary Figure 3A) or by northern
blot analysis (Supplementary Figure 4). Interestingly, we observed
a reduction of protein (Figure 4b and Supplementary Figure 3D)
and mRNA (Figure 4c) levels of TAp63 and caspase-3 upon,
respectively, miR-21 or miR-30c and miR-30b (data not shown)
transfection in TRAIL-sensitive cell lines. We didn’t observe a
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Figure 1. TRAIL sensitivity of glioblastoma cells. Glioblastoma cell
lines (104 cell) were treated with superKiller TRAIL. After 24 h of
treatment, the effect on cell death was assessed with MTT assay
(a) or by propidium iodide staining and FACS analysis (b).

Table 1. microRNA identified in TRAIL-resistant glioma (LN229 and

TB10) compared with TRAIL-sensitive (T98G, LN18) cells

miR P-value Fold difference

hsa-miR-125b1-A 6.09e! 05 3.033
hsa-miR-30b-A 9.14e! 05 2.041
hsa-miR-30c-A 0.0001199 2.337
hsa-miR-146b-A 0.0001556 5.972
hsa-miR-181a-5p-A 0.0004698 2.66
hsa-miR-181d-A 0.0004817 3.035
hsa-miR-21-A 0.0032482 1.949

miRNA expression profiles in TRAIL-sensitive vs TRAIL-resistant cells.

miRNA screening was performed in triplicate for TRAIL-sensitive and

TRAIL-resistant cell lines by a microarray as described in Materials and

methods. A two-tailed, two-sample t-test was used (Po0.05). Seven

miRNAs were found to be significantly deregulated in TRAIL-resistant cells

compared with the TRAIL sensitive.
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decrease in the levels of other caspases upon miR-30c transfection
(Figure 4b). On the contrary, TAp63 and caspase-3 protein levels
increased upon anti-miR-21 and anti-miR-30c transfection
(Figure 3c and Supplementary Figure 3D) in TRAIL-resistant cell
lines. To verify a direct link between the miR-21/TAp63 and miR-
30b/c and caspase-3, we performed luciferase assay by co-
transfecting pGL3-30 untranslated region (UTR) vectors along with
miR-21 or miR-30c. The results obtained indicated a direct
interaction of miR-21 with TAp63 and miR-30c with caspase-3
(Figure 4d). As indicated in Figure 4d, miR-30b and -30c have the
same seed sequence that recognizes caspase-3, differing only at
the latest four nucleotides of the 50. Therefore, miR-30b down-
regulates caspase-3 at the same extent than miR-30c (data not
shown). Deletions in seed complementary sites rescued the
repression of miR-21 and miR-30c on their identified targets
(Figure 4d).

Validation of miR-21 and miR-30b/c mechanisms of action

To demonstrate that miR-21 and miR-30b/c, by downregulating
TAp63 and caspase-3, are responsible for the TRAIL resistance
observed in T98G and LN18 cells, we transfected T98G with

caspase-3 or TAp63 complementary DNAs lacking the miRNA-
binding site in their 30UTR or with a control vector and miR-30c
(Figure 5a) or miR-21 (Figure 5b). Interestingly, transfection of
TAp63 and caspase-3 was able to overcome the effects of miR-21
and miR-30c, decreasing cell viability and increasing apoptosis
(Figures 5a and b). The data were confirmed by colony assay in
T98G cells (Supplementary Figures 2A and B). Similar results were
obtained when we analyzed miR-30b (data not shown). These
rescue experiments proved the causative link between miR-21/
TAp63 and caspase-3/miR-30b/c and TRAIL sensitivity.

Effect of miR-21 and miR-30c expression on TRAIL sensitivity in
primary human glioma cell lines

MiR-21 and miR-30c expression levels were measured by qRT–PCR
in nine different human primary cell lines (Figure 6a), eight
derived from glioblastoma tumors (patient no. 1 to no. 8) and one
from tissue surrounding the tumor (patient no. 9), and compared
with TRAIL sensitivity. As shown in Figure 6b, TRAIL sensitivity
correlated with miR-21 and miR-30c expression levels in all cases
analyzed, with the exception of control sample that did not
respond to TRAIL. Moreover, anti-miRs expression in TRAIL-
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resistant primary cultured cells (patient no. 1 and no. 2) was able
to determine an increase of TRAIL sensitivity (Figure 6c) and
concomitantly an increase of the levels of TAp63 and caspase-3
(Figure 6d).

DISCUSSION

Sensitization of cancer cells to apoptosis could be a valuable
strategy to define new treatment options for cancer, in particular

when using agents that aim to directly activate apoptotic
pathways. A promising agent is the death receptor ligand TRAIL,19

as it induces apoptosis in most cancer cells, but not in normal
cells.20,21 Moreover, TRAIL exhibits potent tumoricidal activity
in vivo in several xenograft models, including malignant
glioma.22,23 Indeed, agonistic anti-TRAIL receptor monoclonal
antibodies (mAbs), including mapatumumab (HGS-ETR1, anti-
human DR4 mAb),24 lexatumumab (HGS-ETR2, anti-human DR5
mAb)25 and MD5-1 (anti-mouse DR5 mAb) are currently under
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intensive investigation. The former two mAbs have been tested in
phase 1 clinical trials in patients with systemic malignancy,
exhibiting excellent safety profiles. Anti-mouse DR5 mAb MD5-1
could also be administered safely without inducing hepatotoxicity
either alone or in combination with histone deacetylase inhibitors
in mice.26 The induction of apoptosis by TRAIL is essentially
dependent on the expression of specific TRAIL receptors and on
the activation of caspases,20 thus the regulation of the expression
levels of those molecules is of fundamental importance.
MicroRNAs are emerging as key regulators of multiple pathways

involved in cancer development and progression,27–29 and may
become the next targeted therapy in glioma. The present study
shows that microRNA expression may modulate TRAIL-induced
apoptosis in glioma cells, by the regulation of caspase-3 and
TAp63 levels. We analyzed the miRs profile of TRAIL-resistant
compared with TRAIL-sensitive glioma cells. We then focused our
attention on miR-30b/c and miR-21, as only these miRs among
those identified by the array, demonstrated the ability to revert
the TRAIL-sensitive phenotype. We also provided evidences that
this regulation is not restricted to glioma, but it is present also in a
different type of cancer such as NSCLC.
MiR-21 has been found overexpressed in high-grade glioma

patients30 and studies have identified different miR-21 key targets
for glioma biology, such as RECK, TIMP3, Spry2 and Pdcd4 genes,
which are suppressors of malignancy and inhibitors of matrix
metalloproteinase.16,31–33 Moreover, levels of expression of miR-21
have been associated to patients survival.34

Other studies indicate that knockdown of miR-21 in cultured
glioblastoma cells triggers activation of caspases and leads to
increased apoptotic cell death.35 Corsten et al.36 hypothesized that
suppression of miR-21 might sensitize gliomas for cytotoxic tumor
therapy. With the use of locked nucleic acid (LNA)-anti-miR-21
oligonucleotides and neural precursor cells (NPC) expressing a
secretable variant of TRAIL (S-TRAIL), they showed that the
combined suppression of miR-21 and NPC-S-TRAIL leads to a
synergistic increase in caspase activity and a decreased cell
viability in human glioma cells in vitro and in vivo in xenograft
experiments. Interestingly, Papagiannakopoulos et al.15 described
that miR-21 targets multiple important components of the p53
tumor-suppressive pathways. They showed that downregulation
of miR-21 in glioblastoma cells leads to repression of growth,

increased apoptosis and cell cycle arrest, through the regulation of
target proteins such as HNRPK and TAp63. Our study describes for
the first time the direct link between miR-21, TAp63 and TRAIL
sensitivity. We demonstrated that miR-21 targets the 30UTR
sequence of TAp63, and that transfection of miR-21 is able to
downregulate TAp63 at both mRNA and protein levels. More
importantly, we demonstrated that miR-21, through TAp63, is able
to modulate TRAIL sensitivity, as the co-transfection of miR-21 and
TAp63 cDNA renders the cells again responsive to TRAIL. TAp63 is
a transcription factor that regulates the expression levels of
different apoptosis-regulating genes, such as TRAIL receptors,
bcl2l11 and Apaf1.18 Thus, it is possible that those apoptosis-
regulating molecules are regulated by miR-21 through TAp63.
Several studies link miR-30 to apoptosis and human cancer.

Li et al.37 demonstrated that miR-30 family members inhibited
mitochondrial fission through the suppression of the expression
of p53 and its downstream target Drp1, whereas, Joglekar et al.38

demonstrated that miR-30 may have a role in epithelial-to-
mesenchymal transition. Our recent data demonstrate that miR-
30 targets the anti-apoptotic protein BIM, participating to
gefitinib resistance in lung cancer.39 MiR-30 has been also
associated with stem cell properties. Yu et al.40 described that
miR-30 is reduced in breast tumor stem cells (BT-ICs), and
demonstrated that enforced expression of miR-30 in BT-ICs
inhibits their self-renewal capacity by reducing Ubc9,
and induces apoptosis through silencing ITGB3. In our hands,
miR-30 overexpression inhibits TRAIL-induced apoptosis in
glioma cells by targeting caspase-3. In fact, modulating the
expression of either miR-30 or caspase-3, we observed a
modification of TRAIL sensitivity of glioma cells. The opposing
results on the role of miR-30 on cell death may be ascribed either
to different cell system (breast vs glioma), or to different type of
cancer cell (stem vs differentiated cells). In favour of this
hypothesis, many reports describe opposing role of miRs in a
different cell contest.28 Recently, miR-30d has been described to
target caspase-3 in breast cancer cells, and thus to regulate
apoptosis.41 The seed sequence recognizing the 30UTR of
caspase-3 is highly homologous within the members of the
miR-30 family (miR-30b/c/d) suggesting a more generalized role
of miR-30 family members in the regulation of cell death and
cancer progression.
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In many experiments, we observed that there is a redundancy
within miR-21 and miR-30 in the regulation of TRAIL sensitivity.
Our data, either in primary or in established cell lines,
demonstrates that it is sufficient that one of the two miRs is
highly expressed in the cells, that apoptosis resistance will
manifest. We have also observed that miR-30 has a predominant
effect in contrasting TRAIL-induced apoptosis. This may be related
to the effect of this miR in targeting one important component of
the cell death machinery, that is, caspase-3.
In conclusion, our study analyzed microRNA expression pattern

in TRAIL-resistant and TRAIL-sensitive glioma cells, and identified
specific miRs and their targets involved in the regulation of the
apoptotic programme. This may be of relevance for future cancer
therapy improvement in glioma.

MATERIALS AND METHODS

Cell culture and transfection

U87MG, T98G, U251, TB10, CALU-1 and 293 cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM). H460 were grown in RPMI. Media were
supplemented with 10% heat-inactivated fetal bovine serum, 2mM

L-glutamine and 100U/ml penicillin/streptomycin. LN229 and LN18 were
grown in Advanced DMEM (Invitrogen, Milan Italy)þ 2mM Glutamineþ 5%
fetal bovine serum. For miRs transient transfection, cells at 50% confluency
were transfected using Oligofectamine (Invitrogen) with 100 nM of pre-miR-
30c, -30b, -125b, -146b, -181a, -21, miR-scrambled or anti-miR- (Applied
Biosystems, Milan, Italy). For caspase-3 and TAp63 transient transfection,
cells were transfected using Lipofectamine and Plus Reagent with 4 mg of
caspase-3 cDNA (Origene, Rockville, MD, USA) or TAp63 cDNA for 24 h.
TAp63 cDNA was obtained from Professor Viola Calabrò (Naples).
SuperKiller TRAIL for cell treatment was purchased from Enzo Biochem
(New York, NY, USA).

Primary cell cultures

Glioblastoma specimens were collected at neurosurgical Unit of Cardarelli
hospital (Naples). All the samples were collected according to a prior
consent of the donor before the collection, acquisition or use of human
tissue. To obtain the cells, samples were mechanically disaggregated, then
the lysates were grown in DMEM-F12 medium supplemented with 10%
fetal bovine serum 1% penicillin streptomicyn and 20 ng/ml EGF (Sigma-
Aldrich, Milan, Italy). To exclude a fibroblast contamination, cells were
stained for GFAP, a protein found in glial cells.

Protein isolation and western blotting

Cells were washed twice in ice-cold phosphate-buffered saline, and lysed
in JS buffer (50mM HEPES pH 7.5 containing 150mM NaCl, 1% Glycerol, 1%
Triton X-100, 1.5mM MgCl2, 5mM EGTA, 1mM Na3VO4 and 1# protease
inhibitor cocktail). Protein concentration was determined by the Bradford
assay (Bio-Rad, Milan, Italy) using bovine serum albumin as the standard,
and equal amounts of proteins were analyzed by SDS–PAGE (12.5%
acrylamide). Gels were electroblotted onto nitrocellulose membranes
(Millipore, Bedford, MA, USA). For immunoblot experiments, membranes
were blocked for 1 h with 5% non-fat dry milk in Tris-buffered saline
containing 0.1% Tween-20, and incubated at 4 1C over night with primary
antibody. Detection was performed by peroxidase-conjugated secondary
antibodies using the enhanced chemiluminescence system (GE Healthcare,
Milan, Italy). Primary antibodies used were: anti-bActin from Sigma-Alrich;
anti-caspase-8, 9 and 10 were from Cell Signalling Technology (Boston, MA,
USA); anti-Caspase 3 and anti-TAp63 from Santa Cruz Biotechnologies
(Santa Cruz, CA, USA).

miRNA microarray experiments

From each sample, 5 mg of total RNA (from T98G, LN18, TB10, LN229 cells)
was reverse transcribed using biotin-end-labelled random-octamer oligo-
nucleotide primer. Hybridization of biotin-labelled cDNA was performed on
an Ohio State University custom miRNA microarray chip (OSU_CCC version
3.0), which contains 1150 miRNA probes, including 326 human and 249
mouse miRNA genes, spotted in duplicates. The hybridized chips were
washed and processed to detect biotin-containing transcripts by
streptavidin-Alexa647 conjugate and scanned on an Axon 4000B micro-
array scanner (Axon Instruments, Sunnyvale, CA, USA).

Raw data were normalized and analyzed with GENESPRING 7,2 software
(zcomSilicon Genetics, Redwood City, CA, USA). Expression data were
median-centered by using both the GENESPRING normalization option
and the global median normalization of the BIOCONDUCTOR package
(www.bioconductor.org) with similar results. Statistical comparisons were
done by using the GENESPRING ANOVA tool, predictive analysis of
microarray and the significance analysis of microarray software (http://
www-stat.stanford.edu/Btibs/SAM/index.html).

RNA extraction and real-time PCR

Total RNAs (miRNA and mRNA) were extracted using Trizol (Invitrogen)
according to the manufacturer’s protocol. Reverse transcription of total
miRNA was performed starting from equal amounts of total RNA per
sample (1mg) using miScript reverse Transcription Kit (Qiagen, Milan, Italy),
for mRNASuperScript III Reverse Transcriptase (Invitrogen) was used. For
cultured cells, quantitative analysis of Caspase-3, Tap63, b-Actin (as an
internal reference), miR-30b/c, miR-21 and RNU5A (as an internal
reference) were performed by real-time PCR using specific primers
(Qiagen), miScript SYBR Green PCR Kit (Qiagen) and iQ SYBR Green
Supermix (Bio-Rad), respectively. The reaction for detection of mRNAs was
performed as follow: 95 1C for 150 , 40 cycles of 94 1C for 150 , 60 1C for 300

and 72 1C for 300 . The reaction for detection of miRNAs was performed as
follow: 95 1C for 150 , 40 cycles of 94 1C for 150 , 55 1C for 300 and 70 1C for
300 . All reactions were run in triplicate. The threshold cycle (CT) is defined
as the fractional cycle number at which the fluorescence passes the
fixed threshold. For relative quantization, the 2(!DCT) method was used
as previously described.42 Experiments were carried out in triplicate
for each data point, and data analysis was performed by using software
(Bio-Rad).

Northern blot analysis

RNA samples (30mg) were separated by electrophoresis on 15%
acrylamide, 7mol/l urea gels (Bio-Rad, Hercules, CA, USA) and transferred
onto Hybond-Nþ membrane (Amersham Biosciences, Piscataway, NJ,
USA). Hybridization was performed at 37 1C in 7% SDS/0.2 mol/l Na2PO4

(pH 7.0) for 16 h. Membranes were washed at 42 1C, twice with 2#
standard saline phosphate (0.18mol/l NaCl/10mmol/l phosphate (pH 7.4)),
1 mmol/l EDTA (saline–sodium phosphate–EDTA; SSPE) and 0.1% SDS and
twice with 0.5# SSPE/0.1% SDS. The oligonucleotides (PRIMM, Milan, Italy)
used, complementary to the sequences of the mature miRNAs, were: miR-
21-probe 50-TCAACATCAGTCTGATAAGCTA-30 ; miR-30c-probe 50-GCTGAG
AGTGTAGGATGTTTACA-30 . An oligonucleotide complementary to the
U6 RNA (50-GCAGGGGCCATGCTAATCTTCTCTGTATCG-30) was used to
normalize the expression levels. Totally, 100 pmol of each probe were
end labelled with 50mCi [g-32P]ATP using the poly-nucleotide kinase
(Roche, Basel, Switzerland). Blots were stripped by boiling in 0.1% SDS for
10min before re-hybridization.

Luciferase assay

The 30 UTR of the human Caspase-3 genes was PCR amplified using the
following primers: Caspase-3 forward: 50-TCTAGAAGGGCGCCATCGCCAAG
TAAGAAA-30 , Caspase-3 reverse: 50-TCTAGACCCGTGAAATGTCATACTGA
CAG-30 and cloned downstream of the Renilla luciferase stop codon in
pGL3 control vector (Promega, Milan, Italy). A deletion was introduced into
the miRNA-binding sites by using the QuikChange Mutagenesis Kit
(Stratagene, La Jolla, CA, USA) using the following: primers: Caspase-3
mut forward 50-GCAAAATTCTTAAGTATGTTATTTTCTGTTGAAATCAAAGGA
AAATAGTAATGTTTTATACT-30 . Caspase-3mut reverse 50-AGTATAAAACAT
TACTATTTTCCTTTGATTTCAACAGAAAATAACATACTTAAGAATTTTGC-30 .
The 30 UTR of the human TAp63 gene was PCR amplified using the

following primers: TAp63 forward: 50-TCTAGAGCAAGAGATAAGTCTTT
CATGGCTGCTG-30 , TAp63 reverse: 50-TCTAGATGGAAATCCCACTATCCCA
AG-30 , and cloned downstream of the Renilla luciferase stop codon in
pGL3 control vector (Promega). A deletion was introduced into the miRNA-
binding sites by using the QuikChange Mutagenesis Kit (Stratagene) using
the following: primers:TAp63 mut forward 50-CTGGTCAAGGGCTGTCATTG
CACTCCATTTTAATTT-30 TAp63 mut reverse 50-AAATTAAAATGGAGTGCAAT
GACAGCCCTTGACCAG-30 .
Hek-293 cells were cotransfected with 1.2mg of generated plasmid and

400mg of a Renilla luciferase expression construct pRL-TK (Promega) with
Lipofectamine 2000 (Invitrogen). Cells were harvested 24 h post transfec-
tion and assayed with Dual Luciferase Assay (Promega) according to the
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manufacturer’s instructions. Three independent experiments were per-
formed in triplicate.

Cell death quantification

Cells were plated in 96-well plates in triplicate, stimulated and incubated
at 37 1C in a 5% CO2 incubator. SuperKiller TRAIL was used at final
concentration of 50 or 100 ng/ml for 24 h. Apoptosis was analyzed via
propidium iodide incorporation in permeabilized cells by flow cytometry.
The cells (2# 105) were washed in phosphate-buffered saline and
resuspended in 200ml of a solution containing 0.1% sodium citrate, 0.1%
Triton X-100 and 50 mg/ml propidium iodide (Sigma). Following incubation
at 4 1C for 30min in the dark, nuclei were analyzed with a Becton Dickinson
FACScan flow cytometer (Becton Dickinson, Milan, Italy). Cellular debris
was excluded from analyses by raising the forward scatter threshold, and
the DNA content of the nuclei was registered on a logarithmic scale. The
percentage of elements in the hypodiploid region was calculated. Cell
viability was evaluated with the CellTiter 96 AQueous One Solution Cell
Proliferation Assay (Promega) according to the manufacturer’s protocol.
Metabolically active cells were detected by adding 20ml of MTS to each
well. After 2 h of incubation, the plates were analyzed in a Multilabel
Counter (BioTek, Milan, Italy).

Colony assay

Cells were transfected with miR-scrambled, miR-30b/c or miR-21 for 24 h,
then were harvested and 2.4# 104 cells were plated in six-well plates. After
24 h, cells were treated with 50 or 100 ng/ml of superKiller TRAIL for 24 h,
as indicated. Cells were transferred to 100mm dishes and let grown for
6 days. Finally, the cells were coloured with 0.1% crystal violet dissolved in
25% methanol for 20min at 4 1C. Dishes were washed with water and then
let dry on the bench, and then photographs were taken.
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