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Abstract 

Among the natural hazards, earthquakes are paramount due to their impact 

on civil structures worldwide. The considerable direct economic losses 

(property losses) due to earthquakes in conjunction with social impact and 

indirect economic losses have prompted a great interest in performance 

assessment of the civil structures to future seismic events. Therefore, 

performance evaluations beyond the traditional goal of life safety, are required 

to rightly estimate expected losses. A key ingredient of this evaluation process 

is the fragility, that describes the probability of failure to meet a performance 

objective depending on demand on the system, providing the link between 

seismic hazard and building losses estimation. 

A correct fragility evaluation necessitates the development of reliable 

nonlinear analysis models that are able to simulate the behavior of structures 

from the onset of damage through collapse. Therefore, proper prediction of the 

nonlinear behavior and formulation of analytical models are essential 

prerequisites for a reliable evaluation of structural fragility and, then, of 

seismic performance and risk assessment of Reinforced Concrete (RC) 

structures. Moreover, within the performance-based approach, it is also essential 

to understand which mechanisms/elements have the higher influence on 

seismic performance depending on the analyzed performance level. 

A lot of work should still be done towards this direction, especially for 

existing under-designed or non-ductile structures. With under-designed or non-

ductile terms it will be referred to structures designed for gravity loads only or 

according to obsolete seismic and technical codes. 

A contribution towards this direction is carried out in this work.  

Starting from the analysis of typical deficiencies of non-ductile RC frames 

and the definition of performance levels of interest, this work aimed to 

contribute to PBEE framework with (i) a critical overview on analysis 

methodologies and modeling approaches of the salient components of RC 

frames, namely flexural or shear-dominated beams and columns, and more in 
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detail, beam-column joints and masonry infills, the core of this work, and (ii) 

with new proposals in terms of nonlinear modeling and analysis procedures to 

provide a more reliable evaluation of seismic performance and risk assessment 

of infilled RC structures, accounting for structural and non-structural (in 

particular masonry infills) elements at different performance levels. 

For these purposes, existing analytical modeling techniques for RC frames‘ 

critical components were first reviewed and discussed. Then, a deep 

investigation on the influence of infills on seismic performance at different 

limit states, also for new constructions, has been carried out, in order to 

highlight the critical points that can interest also this kind of structures 

regarding infill presence. 

The effect of infills on the global seismic behavior of RC frames was 

investigated, by analyzing their influence on global stiffness and strength, on 

the kind of collapse mechanism, on the displacement capacity and, 

consequently, on seismic capacity and seismic fragility at different 

performance levels, depending on the main characteristics of the RC frame, 

such as the design typology and the number of stories. 

Recognized the importance of infills especially at lower seismic intensity 

and the widespread of linear analysis methodology among practitioner, new 

procedures are proposed as tools to better taking into account damage to infills 

also in linear analyses with or without the explicit modeling of infills in the 

numerical model. The attention has been focused both on the design of new 

constructions and the assessment of existing structures, providing a 

contribution towards desirable more comprehensive future code prescriptions 

at lower seismic intensity - that depend on mechanical properties of infills and 

proper displacement capacity thresholds - within the context of linear analyses. 

From the point of view of the bare structure (without infills in the structural 

model) and in particular referring to higher intensity levels, proceeding from 

Damage Limitation (DL) LS towards Near Collapse (NC) LS, the analysis of RC 

frames different for design typology has highlighted the vulnerability points of 

such frames, already pointed out by experimental tests and past seismic 

events. In particular the influence of beam-column unreinforced joints is 

deeper investigated. 

In literature there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of RC beam-

column joints in moment resisting RC frames. In many studies, beam-column 

connections are modeled as rigid. However, many nonlinear joint models are 
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available, but most of them may be unsuitable for modeling all sources of 

nonlinearity for the assessment of older concrete buildings. Some of them were 

developed and calibrated for confined beam-column joints or they are too 

complicated to implement. 

On the basis of an extensive and critical review of previous experimental 

tests and existing joint modeling approaches, a new cyclic shear constitutive 

relationship is proposed for exterior unreinforced joints, different for failure 

typology, in order to describe nonlinear behavior of joint panels, to be used in 

conjunction with an explicit bond-slip spring, thus taking into account all 

sources of nonlinearity and different possible kinds of deficiencies. 

Then, the influence of joint behavior on seismic performance at different 

performance levels, both in terms of strength and deformability contribution, 

also taking into account the record-to-record variability, was investigated in 

nonlinear dynamic analyses of under-designed frames. 

Finally, after the investigation about the sensitivity of joint response to the 

main mechanical and geometrical properties of beam-column sub-

assemblages, the results of two experimental tests are presented and discussed. 

The specimens have deformed bars and show different failure typology. These 

tests conducted under cyclic loading aim to improve the understanding of 

exterior joints seismic performance without transverse reinforcement in 

existing RC buildings. Experimental results are analyzed herein and compared 

with numerical results carried out through the adoption of the proposed 

numerical model. 

 

Keywords: Seismic assessment, RC buildings, performance levels, masonry 

infills, beam-column joints, fragility analysis, static pushover, incremental 

nonlinear analysis, experimental tests. 
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Chapter 1  

INTRODUCTION 
 

 

 

 

 

1.1 Motivation 

Among the natural hazards, earthquakes are paramount due to their impact 

on civil structures worldwide. The considerable direct economic losses 

(property losses) due to earthquakes in conjunction with social impact and 

indirect economic losses have prompted a great interest in performance 

assessment of the civil structures to future seismic events. Therefore, 

performance evaluations beyond the traditional goal of life safety, are required 

to rightly estimate expected losses. 

Realistic losses evaluations require more accurate seismic risk assessment 

tools, in order to help decision- and policy-makers both in pre-earthquake 

planning to mitigate probable losses and in post-earthquake planning to 

develop emergency response and recovery strategies. 

Performance-Based Earthquake Engineering (PBEE) seeks to improve 

seismic risk decision-making through assessment and design methods that are 

transparent, scientific, and informative to stakeholders (Dierlein et al. 2003), 

defining performance metrics that are relevant to decision making for seismic 

risk mitigation and loss estimation. Generally speaking, these metrics reflect 

direct dollar losses (repair and restoration costs), loss in functionality (or 

downtime), and risk of casualties. According to a performance-based 

approach, modern seismic codes worldwide define performance levels aimed 

at avoiding collapse under major earthquakes and ensuring control and 

limitation of damage under more frequent but less severe earthquakes, in 

order to minimize economic and functionality losses. 

In this framework, seismic vulnerability and risk assessment of buildings 

and other structures are essential, starting from the characterization of 

earthquake hazard, and going on with determination of structural response 
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(structural demand), identification of performance limits (structural capacity), 

and degrees of structural damage and losses associated with specific damage 

states. A key ingredient of this evaluation process is the fragility, that describes 

the probability of failure to meet a performance objective depending on 

demand on the system, providing the link between seismic hazard and 

building loss estimation. 

In particular, a correct fragility evaluation necessitates the development of 

reliable nonlinear analysis models that are able to simulate the behavior of 

structures from the onset of damage through collapse. These models have to 

provide engineering demand parameters that are then related with damage 

measures and describe the damage of a building and its components. To 

accurately simulate dynamic response of structures up to collapse, it is 

important to model as well as possible all critical components, by calibrating or 

validating models on the basis of large sets of experimental data. 

Therefore, proper prediction of the nonlinear behavior and formulation of 

analytical models are essential prerequisites for a reliable evaluation of 

structural fragility and, then, of seismic performance and risk assessment of 

RC structures. Moreover, within the performance-based approach, it is also 

essential to understand which mechanisms/elements have the higher influence 

on seismic performance depending on the analyzed performance level. 

A lot of work should still be done towards this direction, especially for 

existing structures, designed for gravity loads only or according to obsolete 

seismic and technical codes, that are referred to as under-designed hereinafter. 

In fact, previous experimental and analytical studies about seismic 

performance of under-designed RC buildings, as well as related previous 

research in the areas of seismic vulnerability and risk assessment, highlighted a 

very high vulnerability of existing structures, revealing a salient influence of 

masonry infills, shear-dominated columns, and beam-column joints (Figure 

1.1). 

Past seismic events and experimental or numerical tests proved these 

deficiencies, as briefly discussed below. 
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Figure 1.1. Critical components of under-designed RC frames 

 

During L‘Aquila earthquake (6th April 2009), for example, most of the 

damage involved infill panels and documented building collapses were 

essentially caused by irregularities in plan or elevation caused also by infills 

distribution (Ricci et al., 2010). Moreover, during Lorca earthquake (2011), 

most of the losses were caused by non-structural damage (Cabañas et al., 2011; 

Goula et al., 2011) and masonry infills have provided an important additional 

strength to RC buildings - especially because no proper seismic principle was 

present in the design of most of Lorca RC buildings - avoiding in many cases 

the collapse of the structure (Gómez-Martínez et al., 2012). Nevertheless they 

are generally considered as non-structural elements and not included in 

numerical models, masonry infills are critical components both in under-

designed and also new-codes-conforming structures, because of 

(i) the onset of possible local interaction effects between infill panel 

and the surrounding frame (Shing et al. 2002, Verderame et al. 2011),  

(ii) possible out-of-plane failures, causing high economic loss and a 

danger for life-safety (Morandi et al. 2013), 

Infills failure

Bond failure

Column failure

Soft-storey Joint axial failure

Joint shear failure
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(iii) the localization of displacement demand, favoring local or 

partial collapse mechanisms, thus reducing structural displacement 

capacity (Dolsek et al. 2001). 

 

Damage observed after the most recent earthquakes (e.g. L‘Aquila 

earthquake 2009) and experimental investigations highlighted also the 

vulnerability of the beam-column joint region (Ricci et al, 2010, Bayhan et al 

2013), especially if no transverse reinforcement are present, and columns that 

can experience brittle failures (Elwood 2004, Ricci et al 2010). From this point 

of view, under-designed structures are usually characterized by 

(i) little amount or no transverse shear reinforcement within the 

beam-column joints leading to high damage level in joint panel zone and 

shear failure of the joint that can evolve  up to axial failure (Pessiki et al. 

1990, Beres et al. 1992, 1996, Hassan 2011), 

(ii) a short embedment length of bottom reinforcement in the beams 

within the beam-column joints leading to premature anchorage failure 

(Hassan 2011), 

(iii) columns that have bending moment capacities that are close to 

or less than those of the joining beams, promoting column-sidesway or 

soft-story mechanisms (Aycardi et al. 1992, 1994), 

(iv) low longitudinal reinforcement ratio in columns (Celik 2007), 

(v) minimal transverse reinforcement amount in columns to 

provide an adequate shear resistance and confinement, leading to likely 

shear failures (Elwood, 2004). 

 

1.2 Research Objectives 

Starting from the analysis of typical deficiencies of non-ductile RC frames 

and the definition of performance levels of interest, this work aims to 

contribute to PBEE framework with (i) a critical overview on analysis 

methodologies and analytical modeling of the salient components of RC 

frames, namely flexural or shear-dominated beams and columns, and more in 

detail, beam-column joints and masonry infills, the core of this work, and (ii) 

with new proposals in terms of nonlinear modeling and analyses procedures to 

provide a more reliable evaluation of seismic performance and risk assessment 
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of infilled RC structures, accounting for structural and non-structural elements, 

at different performance levels. It is worth highlighting that only masonry 

infills will be considered as non-structural elements in this study, even if also 

other typologies of non-structural components (such as internal partitions, 

ceilings, electrical equipment and other building contents) can play a very 

important role in losses estimation. 

For these purposes, existing analytical modeling techniques for RC frames‘ 

critical components are first reviewed and discussed. 

Then, a deep investigation on the influence of infills on seismic performance 

at different limit states, also for new constructions, is carried out, in order to 

highlight the critical points that can interest also this kind of structures 

regarding infill presence. 

The effect of infills on the global seismic behavior of RC frames is 

investigated, by analyzing their influence on global stiffness and strength, on 

the kind of collapse mechanism, on the displacement capacity and, 

consequently, on seismic capacity and seismic fragility at different 

performance levels (or Limit States (LSs)), depending on the main 

characteristics of the RC frame, such as the design typology and the number of 

stories. 

 

Recognized the importance of infills especially at lower seismic intensity 

and the widespread of linear analysis methodology among practitioner, new 

procedures are proposed as tools to better taking into account damage to infills 

also in linear analyses with or without the explicit modeling of infills in the 

numerical model. The attention has been focused both on the design of new 

constructions and the assessment of existing structures, providing a 

contribution towards desirable more comprehensive future code prescriptions 

- that depend on mechanical properties of infills and proper displacement 

capacity thresholds - at lower seismic intensity within the context of linear 

analyses. 

In particular, when infills take explicitly part of the numerical model, the 

attention is focus on the evaluation of an effective stiffness to assign to infill 

panels, to perform linear analyses. If infill panels are not included into the 

numerical model, limitation of damage to infills should be pursued through a 

proper limitation of displacement demand to the structure. 

 

From the point of view of the bare structure (without infills in the structural 
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model) and in particular referring to higher intensity levels, proceeding from 

Damage Limitation (DL) LS towards Near Collapse (NC) LS, the analysis of RC 

frames different for design typology has highlighted the vulnerability points of 

such frames, already pointed out by experimental tests and past seismic 

events.  

In particular the influence of beam-column joints (in particular exterior 

joints) is deeper investigated. 

In fact, in literature there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of RC beam-

column joints in moment resisting RC frames. In many studies, beam-column 

connections are modeled as rigid. However, many nonlinear joint models are 

available, but most of them may be unsuitable for modeling all sources of 

nonlinearity for the assessment of older concrete buildings. Some of them were 

developed and calibrated for confined beam-column joints or they are too 

complicated to implement. 

On the basis of an extensive and critical review of previous experimental 

tests and existing joint modeling approaches, a new cyclic shear constitutive 

relationship is proposed for exterior unreinforced joints, different for failure 

typology, in order to describe nonlinear behavior of joint panels, to be used in 

conjunction with an explicit bond-slip spring, thus taking into account all 

sources of nonlinearity and different possible kinds of deficiencies. 

Then, the influence of joint behavior on seismic performance at different 

performance levels, also taking into account the record-to-record variability, 

was investigated in nonlinear dynamic analysis of under-designed frames both 

in terms of strength and deformability contribution, while shear failure 

detected in columns, other critical points of such frames, is post-processed. 

 

Finally, investigated the sensitivity of joint response to the main mechanical 

and geometrical properties of beam-column sub-assemblages, two 

experimental tests with deformed bars and different failure typology were 

designed and conducted under cyclic loading to improve the understanding of 

exterior joints seismic performance without transverse reinforcement in 

existing RC buildings. Experimental results are analyzed herein and compared 

with numerical results carried out through the adoption of the proposed 

numerical model. 
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1.3 Dissertation outline 

Firstly, analytical modeling techniques for frame‘s critical components in 

non-ductile RC structures are reviewed and discussed. An overview on 

analytical modeling of the salient components of RC frames, namely flexural or 

shear-dominated beams and columns, and more in detail, beam-column joints 

and masonry infills, is carried out in Chapter 2. 

Then, focusing the attention on elements the are commonly defined as non-

structural, the influence of infill panels on seismic performance of RC 

buildings, different for design typology and infills configuration, has been 

investigated in Chapter 3 at different performance levels within a static 

nonlinear framework. A simple modeling of RC elements was adopted in 

lumped plasticity approach and nonlinear behavior of beam-column 

connection is not taken into account.  

Recognized the great importance of infills and their mechanical properties 

especially at low level of seismic demand, a deeper investigation on the role of 

infills at Damage Limitation Limit State was carried out, developing new 

procedures to account for infill presence directly or indirectly via linear 

analyses, as shown in Chapter 4. 

As far as the critical points in the bare structure are concerned, in Chapter 5 

a deep investigation on joint behavior and related modeling issues is carried 

out, leading to a new proposal for modeling nonlinear behavior of exterior 

joints without transverse reinforcement. 

In Chapter 6, the proposed joint model was applied in nonlinear dynamic 

analyses of RC frames, in conjunction with modeling proposals from literature 

for interior joints and beam/column behavior, considering the record-to-

record variability and also highlighting the importance of column shear 

failures in under-designed RC buildings. 

Finally, analysis results of experimental quasi-static tests conducted on two 

beam-column joint specimens with deformed bars and different failure 

typology are shown and commented in Chapter 7.   
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Chapter 2  

BACKGROUND AND CRITICAL ISSUES IN 

MODELING OF NON-DUCTILE RC BUILDINGS 
 

 

 

 

 

Proper prediction of the nonlinear behavior of the component of RC frames 

and formulation of reliable analytical models are essential prerequisites for the 

evaluation of seismic performance of RC structures. 

For this purpose, existing analytical modeling techniques for frames‘ critical 

components are first reviewed and discussed. In particular, an overview on 

analytical modeling of the salient components of RC frames, namely flexural or 

shear-dominated beams and columns, and more in detail, beam-column joints 

and masonry infills, the core of this work, is carried out. 

These models are discussed herein and they will be applied in next chapters 

in the finite element models of RC frames for nonlinear analyses in different 

approaches depending on the objective that it is intended to pursue, and with 

the addition of new proposals. 
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2.1 Modeling of critical components 

2.1.1. Beam/column elements 

2.1.1.1 Classification issue  

Nonlinear behavior of RC elements strictly depends on their failure 

typology and, thus, on the interaction between external force acting on them. 

Flexural response of a RC element can be ―limited‖ because of the onset of a 

premature shear failure and, in reverse, shear capacity can decrease because of 

the cyclic degradation of shear resistance contributions due to the increase in 

ductility demand after yielding. 

Three different failure modes can be identified for a RC column, as a result 

of the adoption of a degrading shear capacity model (Figure 2.1). 

When the initial non degraded shear strength is lower than plastic shear 

capacity (Figure 2.1a), shear failure occurs limiting flexural response, namely 

deformation capacity or energy dissipation capacity, and causing a significant 

sudden strength reduction. 

When the degraded shear strength is higher than the plastic shear (Figure 

2.1c), the flexural response can completely develop, without interaction with 

shear, exhibiting high ductility capacity up to the onset of degrading 

phenomena as bar buckling or concrete crushing and cover spalling. 

In all the other cases, the element can reach yielding, but the inelastic 

flexural response is modified by the onset of a post-yielding shear failure 

(Figure 2.1b).  

Anyway, after shear failure, the behavior of the element becomes strongly 

degrading up to the loss of axial load carrying capacity. 

Thus, the behavior of a RC element can be classified on the basis of the ratio 

between plastic shear capacity and degrading shear strength. Several models 

have been developed to represent the degradation of shear strength with 

increasing inelastic ductility demand (Priestley et al. 1994, Biskinis et al., 2004; 

Sezen and Moehle, 2004). Nevertheless, further literature researches (Zhu et al., 

2007,  Elwood et al., 2007) and some code prescriptions (e.g. ASCE/SEI 41—

Supplement 1) proved that the failure mode classification cannot be adequately 

carried out on the basis only on the shear strength capacity and introduced a 

classification based also on other key parameters, e.g. transverse reinforcement 

ratio or stirrups-spacing-to-section-depth ratio. 
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(a) 

 
(b) 

 
(c) 

Figure 2.1. Classification: shear (a), flexure-shear (b), and flexural behavior (De 
Luca and Verderame 2015) 
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2.1.1.2 Flexural behavior  

Inelastic structural component models can be differentiated depending on 

how plasticity is distributed along the member length and through the 

member cross section. 

The most complex models discretize the element along its length and 

through the cross sections into micro- finite elements (Figure 2.2a) with 

nonlinear hysteretic constitutive properties that can have many input 

parameters, thus offering a great versatility, but also requiring a great effort in 

terms of model parameter calibration and computational resources. 

Reducing the complexity level, the fiber formulation models distribute 

plasticity by numerical integrations through the member cross sections and 

along the member length (Figure 2.2b). Uniaxial material models are adopted 

to define the nonlinear hysteretic axial stress-strain behavior in the cross 

sections. The Bernoulli hypothesis on plane section is assumed, and uniaxial 

material ―fibers‖ are numerically integrated over the cross section to obtain 

stress resultants (axial force and moments) and incremental moment-curvature 

and axial force-strain relations. The cross section parameters are then 

integrated numerically at discrete sections along the member length, using 

displacement or force interpolation functions (Kunnath et al. 1990, Spacone et 

al. 1996). Distributed fiber formulations provide strains in the steel and 

concrete cross section fibers, instead than plastic hinge rotations, and the 

calculated strain demands can be quite sensitive to element length, integration 

method, and strain hardening parameters. 

A further step to reduce complexity and computational efforts is 

represented by the ―finite length hinge model‖ (Figure 2.2c). This modeling 

approach is an efficient distributed plasticity formulation where hinge zones at 

the member ends are pre-defined. Cross sections in the inelastic hinge zones 

are characterized through either nonlinear moment-curvature relationships or 

explicit fiber-section integrations assuming Bernoulli hypothesis on plane 

section. If hinge length is well designed, integration of deformations along the 

hinge length captures the spread of yielding more realistically than the 

concentrated hinges, and the finite hinge length facilitates calculation of hinge 

rotations. 

The simplest models concentrate the inelastic deformations at the ends of 

the element, such as through a rigid-plastic hinge or an inelastic spring with 

hysteretic properties (Figure 2.2d and Figure 2.2e). These elements have 
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numerically efficient formulations thanks to the concentration of the plasticity 

in zero-length hinges with moment-rotation model parameters. 

 

 
Figure 2.2. Flexural modeling - adapted from Dierlein (2010) 

  

Fiber and finite element models capture the axial force-moment (P-M) 

interaction directly, while concentrated and finite length hinge models may 

consider the P-M response through yield surfaces. On the other hand, the 

detailed fiber and finite element models are not necessarily capable of 

modeling effects such as degradation due to reinforcing bar buckling and 

fracture that can be captured by simpler phenomenological models. 

In fact, distributed plasticity formulations are able to model stress and 

strain variations through the section and along the member accurately, but 

important local phenomena, such as strength degradation due to local 

buckling of reinforcing bars, or the nonlinear interaction of flexural and shear, 

are difficult to capture without sophisticated and numerically intensive 

models. Vice-versa, models based on empirically-defined concentrated hinge 

may be more suitable to capture the nonlinear degrading response of members 

through the calibration of phenomenological moment-rotation relationships 

and hysteresis rules, using member test data, with the same or lower 

approximation of more sophisticated formulations. 

Concentrated hinge models obviously require a pre-determination of 

backbone relationships between characteristic forces and deformations of 

structural components, together with the associated hysteresis rules, to define 

component behavior, demand parameters, and acceptance criteria. 

In the adoption of such pre-defined backbones, when a nonlinear analysis 

(a) (b) (c) (d) (e)
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have to be performed, it is important to distinguish between ―monotonic‖ and 

―cyclic envelope‖ curves. The former represents the response that would be 

observed for a component tested under monotonic loading, the latter 

represents the forces-displacements behavior under cyclic loading, depending 

on the applied cyclic loading history. 

When the cyclic effects of earthquake loading are not modeled directly in 

the analysis, e.g. in nonlinear static analyses, the nonlinear component models 

should be defined based on the degraded cyclic envelope. For nonlinear 

dynamic analysis, the choice of components curves depends on how cyclic 

degradation is modeled. Direct modeling of cyclic degradation begins with a 

monotonic backbone curve and degrades this relationship as the analysis 

proceeds (Ibarra et al. 2005, Haselton et al. 2007). In indirect modeling 

approach, the component backbone curve does not degrade and it is defined as 

the cyclic envelope, already including cyclic strength degradation. 

Additional springs can be added to the flexural model in order to take into 

account also shear behavior, as explained in next Section, or bond-slip of 

longitudinal reinforcing bars. 

 

Since its computational efficiency and its capability to capture flexural 

behavior up to the loss of vertical loads carrying capacity, and also other 

deformability contributions as fixed-end-rotation or shear deformability, a 

lumped plasticity approach will be adopted in next Chapters.. 

 

2.1.1.3 Shear behavior  

As explained above, to develop flexural behavior, the member shear 

strength must be larger than the flexural strength, which is the condition 

typically required in capacity design provisions for seismic design. Where the 

shear strength is not sufficient to preclude shear failure (such as in most of the 

existing buildings), shear effects must be considered in the analysis model in 

addition to flexural and axial load effects. 

RC columns in buildings designed for gravity loads only or according to old 

seismic codes provisions are in most cases shear-dominated columns. 

Once this shear failure is triggered before or after flexural yielding, shear 

and deformation capacities are progressively lost. Existing column‘s shear 

failure models are briefly presented and discussed herein. 

Simpler attempts to capture the shear failure in columns were based on a 
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post-processing of analyses results in which only flexural behavior is explicitly 

modeled (Otani and Sozen, 1972, Spacone et al., 1996, Liel et al. 2010). This 

approach is able to detect shear failure in a force-approach, but it does not 

properly estimate inelastic shear deformations and degrading behavior after 

shear failure. 

A fairly straightforward approach to model shear effects is represented by 

the introduction of a nonlinear shear spring in series with the axial-flexural 

model (Pincheira et al. 1999, Lee and Elnashai 2001, Sezen and Chowdhury 

2009, Jeon et al 2015). The definition of the backbone curve characterizing this 

shear spring can be based on the modified compression field theory (MCFT) 

(Vecchio and Collins, 1986) or on drift capacity at shear failure. 

When the MCFT is adopted, only the backbone curve of shear model up to 

the point of maximum strength can be analytically predicted, and therefore 

additional assumptions to define the shear strength degradation are required. 

Pincheira et al. (1999) added a zero length shear spring that can account for the 

strength and stiffness degradation with increasing deformation demand 

(Figure 2.3a). The model is able to represent flexure or shear failure under 

monotonically increasing or reversed cyclic loading and stiffness degradation 

with cyclic loading can also be represented. Although the procedure they 

suggested to solve the convergence issue, it can be very computationally 

demanding and may not predict the dynamic characteristics of a softening 

structure. 

Lee and Elnashai (2001) also utilized the MCFT to define the backbone 

curve of the shear spring and developed hysteretic rules including the 

variation of column axial loads (Figure 2.3b).  

Sezen and Chowdhury (2009) developed the hysteretic model including the 

flexure-shear-axial interaction based on the backbone curve obtained from the 

MCFT, and also employed the bond-slip model developed by Sezen and 

Moehle (2003). 

Jeon et al. (2015) simulated shear response by means of a zero-length shear 

spring located at one end of the column (Figure 2.3c). Shear failure begins once 

the column shear demand exceeds the column shear not-degraded capacity. 

The adopted shear strength prediction derives from the ASCE 41-06 shear 

strength model but it does not take into account the possible degradation of 

shear strength capacity with increased ductility demand. 
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Some shear strength models (Sezen 2002, Biskinis et al. 2004) calibrated on 

empirical data are useful for estimating the column shear strength as a 

function of inelastic ductility demand. However, they do not provide a reliable 

estimate of the drift capacity at shear failure (Elwood and Moehle 2005). 

Nevertheless, models that predict drift capacity for columns experiencing 

shear failure prior to  or after than flexural yielding can be found in literature 

(Pujol et al. 1999, Elwood and Moehle 2005). 

Pujol et al. (1999) proposed a drift capacity model for shear-critical columns 

by means of a statistical evaluation of an experimental database of 92 columns, 

also including columns with quite high transverse reinforcement ratios (higher 

than 0.01), thus not suitable for non-ductile columns. 

Elwood and Moehle (2005) proposed an empirical drift capacity model, 

more inherent to non-ductile elements, by using a database of 50 flexure-shear-

critical RC columns with configurations representative of those used in pre-

1970s American buildings. 

Later, on the basis of this drift capacity model, Elwood (2004) developed a 

drift-based shear failure model (the so-called ―limit state material‖) that can 

identify a shear failure associated with column shear and column‘s total 

deformation by means of a shear spring in series with a nonlinear beam-

column element (Figure 2.3d). The limit state material has a predefined tri-

linear backbone curve and five parameters to define pinching and stiffness 

degradation; the limit state material changes the backbone of the material 

model to include strength degradation once the response of the beam-column 

element exceeds a predefined limit curve. However, a limited number of 

comparison studies with experimental results make it difficult to accurately 

validate the limit curve (Jeon 2013). Additionally, in an analytical model of a 

frame structure, where the column ends are not fully restrained against 

rotation, the computed interstory drift will include a rigid body rotation 

component not present in the experiments used to develop the shear and axial 

capacity models (Elwood and Moehle 2005). 

LeBorgne (2012) extended the model of Elwood (2004) to estimate the lateral 

strength degrading behavior of RC columns prone to shear failure through a 

rotation-based shear failure model that triggers shear failure once either a 

shear capacity or a plastic hinge rotation capacity is reached. When shear 

failure is detected, a zero-length shear spring with a tri-linear backbone curve 

linked in series with the beam-column element modifies its constitutive 

properties to consider pinching and strength and stiffness degradation 
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determined through linear regressions from experimental data. Although the 

shear model offers very accurate results, the direct use of this shear model in 

the current software is not implemented making its applicability still too much 

complex.  

 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 2.3. Examples of modeling of columns shear behavior – Pincheira et al.( 1999) 
(a), Lee and Elnashai (2000) (b), Jeon et al. (2015) (c), Elwood (2004) (d) 
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A review of previous researches on the shear behavior of existing columns 

indicates that a reliable column shear failure model should be accurate, 

computationally efficient and compatible with existing software programs in 

order to practically conduct numerous nonlinear dynamic analyses. However, 

it is quite difficult that column shear models reviewed above satisfies all these 

requirements. Although the problem is still an open and important issue, in the 

present work the attention will be not directly focused on this topic. 

More attention will be addressed to the influence of infills, in particular at 

lower performance level, and to the modeling issue related to RC beam-

column connections. 

 

2.1.2. Beam – column joints 

A joint shear model that can account for the cyclic strength and stiffness 

deterioration is critically important in this work, especially for non-conforming 

RC buildings. 

Different damage or failure modes can occur in the beam-column joint 

panel zone depending on the joint typology (exterior or interior, reinforced or 

unreinforced joint) and on structural details (e.g., use of plain round or 

deformed bars or bar anchorage solution), which ultimately affect the 

efficiency of the shear transfer mechanisms in the joint region and, thus, the 

post-cracking nonlinear behavior. 

In particular, in the assessment of the performance of typical non-

conforming buildings, seismic collapse safety might be significantly affected by 

the non-linear behavior of the joints that are involved in the failure mechanism 

because of poor structural detailing, as the lack of an adequate transverse 

reinforcement in the joint panel or deficiencies in the anchorage of beam 

reinforcement due to the absence of any capacity design principle or seismic 

design. Joint flexibility contributes significantly to overall story drift, especially 

in the nonlinear range. Basically, two contributions to overall deformability 

due to beam-column joints cannot be neglected: (i) the shear strain of the joint 

panel and (ii) the contribution of the fixed-end-rotation due to the slip of the 

longitudinal bars anchored into the joint (e.g., Cosenza et al. 2006). 

Furthermore, under lateral seismic loading, high shear forces are generated 

in the joint core. Beam-column joints bear horizontal and vertical shear forces 

that are usually much larger than those acting within the adjacent beams and 

columns. Thus, joints can experience shear failures which should be avoided 
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by an appropriate design to ensure a ductile response of the whole frame. 

However, such a design does not regard typical non-conforming structures 

designed for gravity loads only or according to old seismic codes. In particular, 

exterior unreinforced RC joints often experience brittle failure under horizontal 

actions. 

In literature there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of RC beam-

column joints in moment resisting RC frames. Many nonlinear joint models are 

available, but most of them may be unsuitable for modeling all sources of 

nonlinearity for the assessment of older concrete buildings. Some of them were 

developed and calibrated for confined beam-column joints or they are too 

complicated to implement. 

In this Section a revision of existing shear strength models and the main 

monotonic or hysteretic modeling techniques is carried out with a particular 

attention to exterior joints without transverse reinforcement, one of the main 

objective of this work. 

 

2.1.2.1 Beam – column joints shear strength  

As far as code prescriptions are concerned, ASCE-SEI 41 (2007) proposes 

recommendations for the shear strength for unreinforced joints for seismic 

rehabilitation purposes based on the pre-standard developed in FEMA 273 

(1997) and FEMA 356 (2000). According to ASCE 41, nominal joint shear 

strength is defined according to Eq. (2.1), independently on the axial load ratio: 

 n n c j cV f b h  (2.1) 

n (MPa)0.5 

Transverse 

reinforcement 

ratio 

Interior 

joint with 

transverse 

beams 

Interior 

joint w/o 

transverse 

beams 

Exterior 

joint with 

transverse 

beams 

Exterior 

joint w/o 

transverse 

beams 

Knee joint 

with or w/o 

transverse 

beams 

< 0.003 1.0 0.8 0.7 0.5 0.3 

≥ 0.003 1.7 1.2 1.2 1.0 0.7 

Table 2.1. Joint shear coefficients according to ASCE-SEI 41 (2007) 

 

In Eq. (2.1) fc is the concrete compressive strength, bj and hc are the effective 
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joint width and the column cross-sectional height, respectively. The values of 

n for joint shear strength are provided depending on the joint typology and 

the transverse reinforcement ratio, as shown in Table 2.1. 

İn literature, several authors have proposed analytical or empirical models 

to predict joint shear strength for interior or exterior, confined or unconfined 

joints. In this Section, a critical overview of the main modeling approaches 

presented in literature to evaluate shear strength for exterior unconfined joints 

is reported. 

Models based on the Modified Compression Field Theory (MCFT) by 

Vecchio and Collins (1986), e.g. Lowes and Altoontash (2003), appeared to 

underestimate the shear strength of lightly reinforced joints (Shin and LaFave 

2004a); thus they are unsuitable for prediction of shear strength of 

unreinforced joints. 

Other strength models proposed in literature are based on an empirical or 

semi-empirical approaches (Bakir and Boduroglu 2002, Celik and Ellingwood 

2008, Hassan 2011, Hegger et al.2003). Most of the empirical models proposed 

in literature have been developed based on statistical regression analysis with 

large scatter or small size or non-homogeneous, in terms of beam 

reinforcement anchorage or reinforcement typology (deformed/plain), 

experimental data sets. 

Bakir and Boduroglu (2002) included the beam reinforcement ratio and the 

joint aspect ratio in the proposed equation for evaluating the contribution of 

concrete to joint shear strength, and anchorage details were included by an 

empirical factor. 

Based on the analysis of an experimental database from literature, Celik and 

Ellingwood (2008) proposed to evaluate maximum joint shear strength 

according to ASCE-SEI approach, but re-calibrating the coefficient n in Eq. 

(2.1) on the basis of collected experimental tests. İn this way, for example for 

exterior unconfined joints, n is found to belong to the range (0.83÷1.00), when 

anchorage failure does not occur, and to the range (0.42-0.62), in the case of 

anchorage failure. 

Hassan (2011) proposed an empirical strength model including the effect of 

joint aspect ratio and axial load ratio for J-mode of failure. Moreover, an 

empirical bond strength model was also proposed to evaluate the joint shear 

strength for exterior and corner joints with short embedment length of beam 

bottom reinforcement in the case of pullout failure before rebar yielding, 
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showing a mean and coefficient of variation values of the ratio of experimental 

and calculated joint shear strength coefficient equal to 0.94 and 0.14, 

respectively. 

Hegger et al. (2003) developed an empirical model including the effects of 

column reinforcement ratio and joint aspect ratio. 

An extensive database of RC joints test specimens (136 and 18 experimental 

sub-assemblages with and without joint transverse reinforcement, 

respectively) was collected by Kim and LaFave (2007a). Influence parameters 

for joint shear strength were assessed, concluding that the most important 

influence parameters on joint shear behavior were found to be somewhat 

different by connection type and failure mode sequence. In Kim et al. (2007b) 

joint shear stress at peak response has been developed by a Bayesian 

parameter estimation method based on the collected database. All test 

specimens included in the database have at least a minimum amount of joint 

transverse reinforcement. For ductile joints, they constructed the joint shear 

strength model by performing a step-wise removal process to extract key 

parameters among ten parameters (namely, spacing ratio, ratio of 

recommended to provided amount of joint transverse reinforcement, ratios of 

beam depth to column depth and beam width to column width, joint 

transverse reinforcement index, beam reinforcement index, joint eccentricity, 

in-plane and out-of-plane geometry, concrete compressive strength). For joints 

without transverse reinforcement, a probabilistic joint strength model was 

established by modifying that related to ductile joints. The ductile joint shear 

strength model provides reliable estimates, while the non-ductile joint shear 

strength model should be improved because of the limited size of non-ductile 

joints in the database. Jeon (2013) later proposed a specialization of the 

regression formulation proposed by Kim and LaFave (2007b) for exterior and 

interior joints without transverse reinforcement. 

 

Another "family" of models proposed in literature to evaluate joint shear 

strength are the principal-tensile-stress-based models. Paulay and Priestley 

(1992) first proposed a comparison between the average principal tensile stress 

of the unconfined joint with some critical values, namely shear cracking and 

shear failure. Priestley (1997) suggested limiting to 0.42√fc the value of the 

principal tensile stress. Eurocode 8 (CEN 2005) and Italian provisions (D.M. 

2008) adopt this approach for unreinforced joints. 
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Other authors proposed a similar approach, introducing an upper bound of 

such critical values in the case of ineffective anchorage (Sharma et al. 2011) or 

in the case of plain bars as longitudinal reinforcement of the adjacent beam and 

bar end hooks (Pampanin et al. 2003). 

Such approaches allows to explicitly take into account the (beneficial) effect 

of the axial load ratio on joint shear strength, but the analysis of the 

experimental results – carried out on specimens with identical geometrical and 

mechanical properties and different axial load ratio level – showed that such 

an influence is quite negligible. More tests are necessary to investigate about 

the influence of the axial load on joint shear strength, especially for high level 

of axial load ratio (Park and Mosalam, 2012a). 

Moreover, the deterioration of the shear strength of beam-column joints 

under cyclic displacement was experimentally observed (Wong 2005, Hakuto 

2000). The diagonal tension cracking of the joint core in alternative directions 

during seismic loading causes the reduction of the diagonal compressive 

strength of the concrete; the joint shear strength may degrade with the increase 

in ductility demand in the adjacent members during cyclic loading.  

Some models in literature attempted to capture this effect proposing a joint 

shear strength that decreases when ductility demand in the adjacent beam 

increases (Park 1997, Hakuto 2000). The relationship between the reduction of 

joint shear strength and the ductility demand – which can be expressed 

through a ductility factor – is empirically proposed in these models, but they 

cannot be accurately generalized because the ductility factor is uncertain and it 

takes also into account the deformation of the members adjacent to the joint. 

Shiohara (2004) proposed a mathematical model to determine the joint shear 

strength of interior, exterior, and knee beam-column joints. The quadruple 

flexural resistance within a joint panel played an important role in defining 

joint shear failures. Joint shear strength was calculated from force equilibrium 

in four rigid segments within the joint panel. However, the model validation 

based on experimental results was not provided by the Author. 

 

Successively, experimental tests were conducted on exterior unreinforced 

beam-column connections aimed at the definition of the main parameters 

having the greatest influence on joint shear strength. Park and Mosalam 

(2012a) investigated the effects of three main parameters, namely (i) joint 

aspect ratio, (ii) beam longitudinal reinforcement ratio, and (iii) column axial 

load, and confirmed that joint aspect ratio and beam longitudinal tension 
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reinforcement ratio and its strength mainly influence joint shear strength. 

 Park and Mosalam (2012b), based on the results of parametric studies, 

proposed another approach to evaluate joint shear strength and its 

degradation after beam yielding without any ductility factor; their model 

directly provides a definition of the failure mode (J- or BJ-failure mode) and it 

is formulated using a mechanical approach based on the strut-and-tie 

mechanism (Park and Mosalam, 2012b).  

The strut-and-tie approach was already proposed and adopted in other 

literature studies (Hwang and Lee 1999,Vollum and Newman 1999, Tsonos 

2007). Most of the ―strut-and-tie-based‖ models have a conceptual limitation, 

because the average equilibrium and compatibility equations they are based on 

are not suitable to reproduce the real behavior of unreinforced beam-column 

joints – for which the joint shear failure is generally localized (Park and 

Mosalam, 2012a). Moreover, the accuracy of the strut-and-tie approach highly 

depends on the estimation of the diagonal strut area that strictly affects the 

joint shear strength.  

Nevertheless the shear strength model proposed by Park and Mosalam 

(2012b) is based on a modified strut-and-tie approach, it shows a good 

agreement with experimental tests. 

 

2.1.2.2 Modeling of joint shear behavior  

In literature there are several models available to reproduce joint shear 

behavior into numerical analyses of RC frames. On the other hand, there are 

only a few technical codes that provide prescriptions in this sense. 

ASCE/SEI 41 first suggests that beam-column joint in monolithic 

construction should be represented as a rigid zone having horizontal 

dimensions equal to the column cross-sectional dimensions and vertical 

dimension equal to the beam depth. Successively, ASCE 41 suggests a 

complete backbone curve for joint shear stress-strain modeling in nonlinear 

analyses, but recommended values for joint shear strength coefficient and 

plastic shear strain appear to be quite conservative (Hassan, 2011). 

ACI 369-R11 defines an implicit beam-column joint using centerlines 

models with semi-rigid joint offsets: only a portion of the beam and column, or 

both, within the joint panel zone, is defined as rigid. 

Many researchers have attempted to model the behavior of beam-column 
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joints in more realistic approaches, basically lumped plasticity approaches, 

multi-spring macro-models or finite element simulations. A brief discussion 

about the main modeling approaches existing in literature is reported in this 

Section. 

One of the first approaches to joint modeling was to reproduce the 

deformability contribution due to bond slip of tensile reinforcement anchored 

into the joint core (as in Otani 1974). Filippou et al. (1983) also proposed a 

model consisting in a rotational spring at beam end connected with a rigid bar 

to the adjacent joint spring in order to consider the bond deterioration on the 

hysteretic behavior of RC joints. 

Nevertheless, such models do not consider also joint shear deformability 

contribution. 

Successively, a very simple model was first suggested by Krawinkler and 

Mohasseb (1987) for steel beam-column connections and successively by Alath 

and Kunnath (1995) for RC joints, the so-called ―scissors‖-model (see Figure 

2.4a). It is composed by a rotational spring that models nonlinear behavior of 

the joint panel with rigid links spreading into the finite size of the panel and it 

is very easy to implement. 

Then it was adopted by Pampanin et al. (2003) and Celik and Ellingwood 

(2008) for interior and exterior unconfined RC beam-column joints, as 

explained more in details in Section 2.1.2.3. Park and Mosalam (2013) also use 

such a model, but including joint panel shear deformability and beam bars 

bond slip contribution together in the definition of the unique spring that 

constitutes this kind of model. 

Within the context of multi-spring modeling approaches, a distinction can 

be made between models that introduce multi-springs to model joint panel 

shear deformability (e.g., Sharma et al. 2011, Youssef and Ghobarah 2001), and 

models in which the multiple springs reproduce different deformability 

contributions (joint panel shear behavior, shear behavior of adjacent 

beam/column, slip contribution of bars anchored into the joint panel) (e.g., 

Biddah and Ghobarah 1999, Lowes and Altoontash 2003, Shin and LaFave 

2004b). 

Biddah and Ghobarah (1999) modeled the joint behavior with separate 

rotational springs for joint shear and bond–slip deformations (Figure 2.4b). The 

shear stress–strain relationship of the joint was simulated using a tri-linear 

idealization based on a softening truss model, while the cyclic response of the 

joint was captured with a hysteretic relationship with no pinching effects. 
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Youssef and Ghobarah (2001) proposed a more refined model in which the 

shear behavior of the joint panel was represented by four rigid elements 

enclosing the joint core pin-connected to one another and two nonlinear axial 

springs along the diagonals of the joint panel (Figure 2.4c).  

Later, a model including four rigid elements enclosing the joint core pin-

connected to one another, with a single rotational spring representing the joint 

panel shear behavior and additional springs modeling the other deformability 

contributions was successively suggested by Lowes and Altoontash (2003) and, 

similarly, by Altoontash (2004) and Shin and LaFave (2004b). In particular, 

Lowes and Altoontash (2003) proposed a 4-node 12-degree-of-freedom joint 

macro-model (Figure 2.4d) constituted by eight zero-length translational 

springs which simulate the bond-slip response of beam and column 

longitudinal reinforcement, a zero-length rotational spring that simulates the 

shear deformation of the joint, and four zero-length shear springs that simulate 

the interface-shear deformations. Shear stress-strain relationship of the panel 

zone is defined through the MCFT and, thus, it is not properly suitable for 

joints with no transverse reinforcement. 

Altoontash (2004) proposed a simplified version of such a model by 

reducing the number of springs related to deformability contributions due to 

the adjacent beam/column elements, but with the same modeling approach 

and shear stress-strain definition for joint panel zone, as shown in (Figure 

2.4e). 

Similarly, Shin and LaFave (2004b) introduced two rotational springs in 

series at beam-joint interfaces to simulate beam bars bond slip deformability 

contribution and beam plastic rotation contribution, separately. Again the 

same modeling approach as Lowes and Altoontash (2003) for joint panel zone 

was adopted, but joint panel shear stress-strain definition was based on MCFT 

(for the envelope) and experimental data (for cyclic behavior). 

Another multi-spring approach has been proposed by Sharma et al. (2011): 

the joint core region was modeled through shear springs in the column portion 

and a rotational spring in the beam region(Figure 2.4f); the backbones of these 

three springs were proposed for monotonic loading in principal stresses, and 

anchorage failure in the case of not sufficient beam bars anchorage length was 

also considered by reducing the critical principal stress. 

It is worth noting that models with multiple nodes and multiple springs 

(e.g. Lowes and Altoontash, 2003; Shin and LaFave, 2004b; Sharma et al., 2011) 
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allow to capture more realistically the joint panel kinematic and simulate the 

horizontal translation that can occur between the centerlines of the columns 

above and below the joint. Vice-versa, scissors model does not capture this 

possible kinematic, but it is the simplest and computationally less demanding 

joint model and it seems to be sufficiently accurate in predicting the 

experimental beam-column joint panel response for simulating the seismic 

response of non-conforming RC frames for purposes of fragility assessment 

and performance-based earthquake engineering (Celik and Ellingwood, 2008). 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 2.4. Models by Alath and Kunnath (1995)(a),Biddah and Ghobarah (1999) (b), 
Youssef and Ghobarah (2001)(c), Lowes and Altoontash (2003) (d),Altoontash (2004) 

(e), Sharma et al. (2011) (f) 
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2.1.2.3 Shear constitutive relationship of the joint panel  

One of the critical issues to include joints into the structural model is the 

properly calibration of the shear stress-strain response of the joint panel. 

A first distinction should be made between analytical and empirical 

constitutive relationship for joint panel behavior. Most of the analytical 

calibrations of such relationships in literature are more suitable for reinforced 

beam-column joints, for example models based on the MCFT, as explained in 

the previous Section.  

In this Section, a critical review of the main constitutive relationships 

empirically calibrated, with a particular focus on exterior joint panels, 

proposed in literature is carried out. 

In Alath and Kunnath (1995), the joint panel moments were computed from 

the column and beam moments, assuming the joint core was under pure shear, 

and joint panel shear properties were empirically defined and validated 

through experimental response of typical gravity load design (GLD) RC 

interior joints. 

Pampanin et al. (2003) proposed a constitutive relationship for joint panel in 

terms of principal stresses versus joint shear strain started from strength 

degradation model for unreinforced joints proposed in literature by Priestley 

(1997) and extended it to poorly detailed with end-hooked plain bars through 

additional experimental tests on two tee-joints (Figure 2.5a).The cyclic 

behavior was modeled by a hysteresis rule able to represent the pinching effect 

due to slip of the reinforcement and shear cracking in the joint. 

Sharma et al. (2011) started from a constitutive relationship similar to 

Priestley (1997), modifying it in terms of joint shear strain - on the basis of 

experimental tests with deformed bars by Clyde et al. (2000), Pantelides et al. 

(2002) and tests with plain bars by Pampanin et al. (2002) - and introducing a 

limitation in critical principal stress in the cases of anchorage failure (Figure 

2.5b). 

The constitutive relationship proposed by Celik and Ellingwood (2008) was 

based on a statistical analysis carried out on ten experimental tests − as far as 

external joints are concerned − non homogeneous for joint reinforcement ratio, 

anchorage conditions and failure mode (for some of these tests, only 

incomplete results were available). They suggested that the shear stress-strain 

backbone curve for the panel zone in typical non-conforming RC beam-column 

joints can be defined through four key points, which correspond to joint shear 
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cracking, reinforcement yielding, joint shear strength/adjoining beam or 

column capacity, and residual joint strength, respectively. The ordinates of the 

backbone points were reduced if the shear failure of the joint occurs before 

beams or columns reach their capacities. Shear failure of the joint is assumed to 

depend on the kind of joint (interior/exterior) and the anchorage conditions. 

Anchorage failure was taken into account through a reduced envelope for the 

joint shear stress-strain relationship. As far as strain capacity is concerned, they 

proposed a range of values for each characteristic point with a uniform 

probability distribution (Celik and Ellingwood, 2010). However, from the 

analysis of the experimental dataset they adopted, it can be observed that the 

proposed joint shear strain values for the four key points are related to interior 

joints tests only; such values are very high if compared with shear strain values 

obtained from experimental tests on exterior beam-column joints. 

A multi-linear backbone curve representing the moment-rotation 

relationship of an unreinforced corner beam-column joint was also proposed 

by Park and Mosalam (2013), see Figure 2.5c. The modeling parameters of such 

a backbone curve were estimated on the basis of experimental results of four 

corner joint specimens tested by the authors with different joint aspect ratio 

and beam longitudinal reinforcement ratio. For strength prediction in the 

developed backbone curve, a simplified version of an analytical model 

proposed by Park and Mosalam (2012b) was adopted. Joint shear strain, j, and 

rotation at the beam joint interface due to bar slip and/or crack opening, θs, 

were both measured during the tests, and the rotation of the proposed 

backbone for joint spring, j, was defined as the sum of them, that is, j =j + s. 

The analysis of the experimental tests by Park and Mosalam (2012c) shows that 

slip contribution to the overall deformability is higher if joint shear failure 

happens after beam yielding; however, when a single-spring approach with a 

unique joint rotation, j -which includes both joint panel shear strain and slip 

rotation - is proposed (Park and Mosalam, 2013), the definition of the backbone 

does not depend at all on the failure typology. Thus, most of the shear 

constitutive relationships are empirically obtained from the few available 

(Pampanin et al. 2003, Park and Mosalam 2013) not homogeneous, in terms of 

beam reinforcement anchorage or reinforcement typology (deformed/plain), 

experimental tests, and independently on the failure typology (Celik and 

Ellingwood 2008, Sharma 2011). 
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(a) 

 
(b) 

 
(c) 

Figure 2.5. Constitutive relationship proposed in literature: Priestley (1997) and 
Pampanin (2003) (a), Sharma et al. (2011) if anchorage failure occurs (b), Park and 

Mosalam (2013) (c) 

 

In this work, an attempt to obtain a new shear constitutive relationship, 

different for failure typology for exterior unreinforced joints, to be adopted in 

the context of scissors model for the joint panel and to use in conjunction with 

an explicit bond-slip spring, is formulated, as it will explained in Chapter 5. 
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Model proposed in literature by Celik and Ellingwood (2008) will be 

adopted for interior joints in dynamic analyses of RC frames, as explained in 

Chapter 6. 

 

2.1.3. Infills 

Several experimental and analytical investigations were performed on 

infilled RC structures, regarding both ―local‖ effects – due to the interaction 

between infill panels and surrounding RC frames – and influence of infills on 

the global seismic performance of the analyzed structure, in order to 

investigate, on one side, on the increase in stiffness and strength provided by 

infills and, on the other side, on the possible localization of ductility demand 

depending on the infill distribution. 

As far as the numerical investigation of the influence of infills on the global 

seismic behavior of RC frames is concerned, several studies have been 

developed from the second half of 1990s on. 

Fardis and Panagiotakos (1997) and Kappos et al. (1998), following first 

code prescriptions about the consideration of infills in seismic design (CEN, 

1995), evaluated the influence of infill walls and their configuration on RC 

frames designed for seismic loads according to contemporary earthquake 

engineering principles.  

Other studies (Negro and Colombo, 1997; Fajfar and Drobnič, 1998) were 

developed based on full-scale experimental tests (Negro and Verzeletti, 1996; 

Pinto et al., 2002), focusing the attention on different issues such as the 

localization of displacement demand and the increase in stiffness and strength 

due to infill presence.  

A wide and thorough series of numerical studies on infilled RC frames was 

carried out by Dolšek and Fajfar: first works were focused on the influence of 

infills on seismic demand depending on their mechanical characteristics and 

the design typology of the structure (2001) and on modeling issues (2002). 

Hence, an effort was made to develop simplified approaches allowing to carry 

out the seismic assessment of infilled RC frames within the N2 method (Fajfar 

and Gaspersic, 1996; Fajfar, 1999). To this end, a R--T relationship accounting 

for the typical degrading force-displacement response of an infilled RC frame 

was proposed in (2004), and it was applied to two case-study structures in the 

companion paper (2005). In (2008a,b) the same seismic capacity assessment 
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procedure was applied to a case study structure in different infill 

configurations, and the influence of infills on the seismic performance at 

different Limit States was also evaluated in terms of failure probability, thus 

accounting for the influence of the inherent uncertainty in capacity and 

response of infill elements.  

The influence of uncertainty on seismic capacity of infilled RC frames was 

also analyzed in (Celarec et al., 2012) and (Dymiotis et al., 2001), based on 

sensitivity and fragility analyses, respectively. 

In these studies, modeling of infills was performed in different possible 

approaches. Infill walls can be modeled either by means of micro- (e.g., FEM) 

or macro- (e.g., single equivalent strut or multi-struts) models.  

The detailed and computationally demanding modeling approach based on 

micro-models (Figure 2.6a) is generally not suitable for seismic analysis of 

multi-bay multi-story frames, whereas macro-models based on the equivalent 

strut approach are widely adopted, since they represent a good compromise 

between simplicity and accuracy. 

In the early 1960s, Polyakov (1960) suggested the possibility to model infill 

panels as equivalent diagonal compressive strut (see Figure 2.6d). This 

modeling approach was later adopted by Holmes (1961) and Smith (1962), that, 

using additional experimental data, proposed the evaluation of the equivalent 

strut width as a function of the relative panel-to-frame-stiffness parameter. 

Later, Mainstone (1971) and Liauw and Kwan (1984) also proposed more 

reliable empirical equations for the calculation of the equivalent strut width on 

the basis of experimental and analytical data. 

However, it is clear that one single strut element is unable to model in detail 

the complex behavior of the infilled frames and, in particular, the possible local 

interaction between th infill panel and the surrounding RC frames. In last two 

decades, more complex macro-models were proposed, different in properties 

definition and number of diagonal struts. 

Thiruvengadam (1985) proposed the use of a multiple-strut model to 

simulate the effect of an infill panel, that consists of a moment-resisting frame 

with a large number of pin-jointed diagonal and vertical struts. Initially, a 

perfect frame-infill bond condition is assumed, and the lateral stiffness of the 

infill by its shear deformation is modeled by a set of pin-ended diagonal struts 

- representing the shear and axial stiffness of the masonry infill - running in 

both directions.  

Hamburger and Chakradeo (1993) proposed a multi-strut configuration that 
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can also account for the openings in a quite complex approach. 

Chrysostomou (1991) and Chrysostomou et al. (2002) aimed to obtain the 

response of infilled frames under earthquake loading by taking into account 

both stiffness and strength degradation of infills. The  infill panel was modeled 

through six compression-only struts (Figure 2.6b). 

More recently, Crisafulli and Carr (2007) proposed a new macro-model to 

represent the effect of masonry-infill panels on the surrounding frame (Figure 

2.6c). The model is implemented as a four-node panel element that is 

connected to the frame at the beam-column joints. Internally, the panel element 

accounts separately for the compressive and shear behavior of the masonry 

panel using two parallel struts and a shear spring in each direction. Such a 

model allows adequately considering the lateral stiffness and the strength of 

masonry panel, in particular if a shear failure along mortar joints or diagonal 

tension failure is expected. 

 

Nevertheless multi-strut models allow to capture the local interaction 

between infill walls and adjacent structural elements, thus allowing to evaluate 

its effects, for example, in terms of local increase in shear demand in RC 

columns, the investigation of this kind of phenomena is beyond the scope of 

this work. 

In next chapters, single strut models will be effectively used, as in the 

literature studies previously reported, in accordance with the aim to 

investigate the effect of infills on the global seismic behavior of RC frames, by 

analyzing their influence on global stiffness and strength, on the kind of 

collapse mechanism, on the displacement capacity and, consequently, on 

seismic capacity and seismic fragility at different performance levels (i.e., Limit 

States), depending on the main characteristics of the RC frame, such as the 

design typology and the number of stories. 

 

Whatever the infill model that it is adopted, the structural response of an 

infilled RC frame is strongly nonlinear and thus it is difficult to predict. The 

positive of negative effects of infills still represents a controversial topic, with a 

critical need of further investigations for the seismic vulnerability assessment 

of extensive classes of existing buildings. Moreover, the interaction between 

unreinforced masonry infills and RC frames can lead to unexpected or peculiar 

effects when compared with the response of the bare frame, either at a local 
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level (e.g. shear failure in columns or damage to joint region) or on the global 

seismic response (e.g. soft story mechanism). The former aspect is not 

accounted for in this work, the latter will be better investigated in Chapter 3. 

 

 
(a) 

  
(b) (c) 

 
(d) 

Figure 2.6. Examples of FEM modeling (b), multi-struts (b, c), and equivalent strut (d) 
models for infills 

 

Equivalent strut

Infill panel
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Moreover, uncertainty in several of the input parameters of the structural 

model – usually neglected in design and assessment procedures – can heavily 

affect the seismic response of infilled RC structures. Simulation studies have 

been performed in order to take into account the effects of uncertainty, as it 

will be shown in Chapter 3. 

 

Recognized the great importance of infills and their mechanical properties 

especially at low level of seismic demand, the attention is then focused on the 

role of infills at Damage Limitation Limit State, developing new procedures to 

account for infill presence directly or indirectly via linear analyses, as reported 

in Chapter 4. 

 

2.2 Structural performance levels 

In this Section, a brief discussion on structural limit states or performance 

levels of interest in this study within the context of PBEE assessment 

framework, is carried out. 

First of all, the four critical parameters that form the basis of a PBEE 

assessment framework are Intensity Measure, Engineering Demand 

parameters, Damage Measure and Decision Variables. The assessing process 

begins with the definition of a ground motion Intensity Measure (IM), which 

defines, in a probabilistic sense, the salient features of the ground motion 

hazard that affect structural response. Ground motion Intensity Measures are 

commonly defined by single parameter variables, such as peak ground 

acceleration/velocity or spectral acceleration/velocity, that correlate better 

with the resulting damage. Engineering Demand Parameter (EDP), describes 

the structural response in terms of deformations, accelerations, or other 

quantities calculated by simulations of the building to earthquake ground 

motions. Perhaps the most distinguishing aspect of the PBEE framework over 

traditional design methods is the explicit calculation of Damage Measures and 

Decision Variables (Dierlein et al. 2003). Damage Measures (DM) describe the 

physical condition of the structure and its components as a function of the 

imposed EDPs. Specific damage levels of the DMs are defined in terms of the 

consequences of the damage, such as necessary repairs to structural or non-

structural components as a function of imposed deformations, life-safety 
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implications associated with falling hazards, fire, blocked egress, etc. Once the 

DMs are determined, the final step in the PBEE process is to calculate Decision 

Variables (DV), which translate damage measures into quantities that relate to 

risk management decisions concerning economic loss and life safety. 

Within this framework, it can be identified a continuous function relating 

DMs with EDPs, and EDPs with IMs, that can be visualized by means of the 

―idealized‖ pushover shown in Figure 2.7.  

 

 
Figure 2.7. Idealized pushover curve (Dierlein et al. 2003) 

 

Typically plotted in terms of earthquake-induced base shear (vertical axis) 

and interstory drift (horizontal axis), the static pushover concept can be 

generalized to relate earthquake input intensity to the resulting performance 

metrics. 

For design or assessment purposes it is convenient to identify discrete levels 

of seismic performance for the major structural and other building components 

that significantly affect building function, property protection, and safety. 

A way to ―discretize‖ the continuous functions relating DMs with EDPs or 

and EDPs with IMs is the definition of Performance Levels (PLs) or, in 

European tradition, Limit States (LSs).  

LSs depict the structural capacities at the thresholds of damage states and 

thus can be expressed through a threshold in damage measure (DM). LSs can 

be defined for structural or non-structural damage states, depending on the 

application, as monetary losses and downtime due to earthquake damage are 

controlled by a combination of those states.  
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In literature and code provisions PLs have typically been defined in 

different modes: 

(i) in ―global terms‖, as the achievement of a particular state in the 

global seismic response of the structure, for example, at 20% of base 

shear degradation after peak load in a static pushover curve (e.g. 

Fardis 2009), or when the tangent stiffness reduction overcomes a 

certain percentage threshold (e.g. Vamvatsikos and Cornell, 2002); 

(ii) in ―local terms‖, as the achievement of a defined condition on the 

element response, for example, the yielding or the ultimate flexural 

rotation capacity (e.g. Fardis 2009, CEN 2005, DM 2008), in the first 

element or in a certain percentage of elements (Celarec et al. 2012); 

(iii) in terms of ―displacement threshold‖, namely defining IDR or roof 

rotation limits related to the considered damage level (e.g. Aslani 

2005 for RC components or Colangelo 2013 for infilled frames). 

The second and, in particular, the third approaches are the most directly 

correlated to the structural damage. In particular, the second approach seems 

to be more easier to pursue since it is a direct consequence of the modeling 

choices; while the third one is more directly related to structural and non-

structural losses (that is the primary goal of PBEE assessment), but it requires a 

strong effort to properly define displacement thresholds. 

 

Several guidelines and codes worldwide qualitatively describe performance 

levels or damage states for purposes of building performance and seismic risk 

assessment. Generally speaking, modern seismic codes define performance 

levels aimed at avoiding collapse under major earthquakes and ensuring 

control and limitation of damage under more frequent but less severe 

earthquakes, in order to minimize economic and functionality losses.  

ASCE 41 (ASCE 2007) provide guidance on three performance levels:  

­ immediate occupancy (IO) – Achieve essentially elastic behavior by 

limiting structural damage (e.g., yielding of steel, significant cracking of 

concrete, and nonstructural damage); 

­ life safety (LS) - Limit damage of structural and nonstructural 

components so as to minimize the risk of injury or casualties; 

­ collapse prevention (CP) – Ensure a small risk of partial or complete 

building collapse by limiting structural deformations and forces to the onset of 

significant strength and stiffness degradation. 
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ASCE 41 provides also acceptance criteria in terms of deformation and force 

demands on individual structural components. 

Similarly, FEMA 273/356 (1997) defines three building performance levels: 

immediate occupancy (IO), life safety (LS), and collapse prevention (CP), and 

assigns inter-story drifts of 1%, 2%, and 4% to define these performance levels 

for RC frames. 

Furthermore, SEAOC Vision 2000 defines five performance (damage) levels: 

fully operational (negligible), operational (minor or light), life safety 

(moderate), near collapse (major or severe), and collapse (complete), while 

European code (CEN 2005) traits with three main LSs, namely damage 

limitation (DL), significant damage (SD) and near collapse (NC) LSs. 

The NC, SD, and DL LSs correspond to ―Collapse Prevention‖, ―Life 

Safety‖(the single performance level for which new structures are designed 

according to most current seismic design codes), and ―Immediate Occupancy‖ 

levels, respectively, of NEHRP Guidelines and ASCE Pre-standards (CEB 

2003). 

 

In this work the definition of LSs in ―local terms‖ and in terms of 

―displacement threshold‖ are adopted. First, the influence of infill distribution 

on seismic performance of RC buildings is estimated at DL LS and NC LS 

(defined in accordance with Eurocode 8 and NTC ‘08 approach), depending 

also on design typology. Then the influence of infills is better investigated at 

performance levels for which they are more influent, namely DL or IO LSs, 

proposing new procedures to account for infills in seismic performance 

evaluation of RC frames at DL LS via linear analyses. 

Finally joint influence on seismic performance will be evaluated from IO to 

CP LSs, also considering some additional LSs, conventionally defined in ―local 

terms‖, namely in correspondence of the achievement of characteristic points 

of beam-column joints or beams/columns nonlinear response. 
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Chapter 3  

INFLUENCE OF INFILL DISTRIBUTION AND 

DESIGN TYPOLOGY ON SEISMIC 

PERFORMANCE OF LOW- AND MID-RISE RC 

BUILDINGS 
 

 

 

 

 

A growing attention has been addressed to the influence of infills on the 

seismic behavior of Reinforced Concrete buildings, also supported by the 

observation of damage to infilled RC buildings after severe earthquakes (e.g. 

L'Aquila 2009, Lorca 2011). In this Chapter, a numerical investigation on the 

influence of infills on the seismic behavior of four different case study 

buildings is carried out: four- and eight- story buildings, designed for seismic 

loads according to the current Italian technical code or for gravity loads only 

according to an obsolete technical code, are considered. Seismic capacity at two 

Limit States (Damage Limitation and Near Collapse) is assessed through static 

push-over analyses, within the N2 spectral assessment framework. Different 

infill configurations are considered (Bare, Uniformly Infilled, Pilotis), and a 

sensitivity analysis is carried out, thus evaluating the influence of main 

material and capacity parameters on seismic response, depending on the 

number of stories and the design typology. Fragility curves are obtained, 

through the application of a Response Surface Method. Seismic performance is 

also expressed in terms of failure probability, given a reference time period. 
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3.1 Introduction 

During last decades, post-earthquake damage (e.g., Kocaeli 1999, L‘Aquila 

2009, Lorca 2011), numerical and experimental studies showed that a growing 

attention must be addressed to the influence of infills on the seismic behavior 

of Reinforced Concrete (RC) buildings. Currently, infills are generally 

considered in RC buildings as partition elements without any structural 

function, thus neglecting their significant influence on the increase in lateral 

stiffness and base shear, on the reduction in period of vibration, on possible 

brittle failure mechanisms in joints and columns due to local interaction 

between panels and the adjacent structural elements, and on the building 

collapse mechanism. As far as performance of RC structures during L‘Aquila 

earthquake (2009) is concerned, the main damage involved non-structural 

elements such as infill panels and documented building collapses were 

essentially caused by irregularities in plan or elevation caused also by non-

structural elements distribution (Ricci et al., 2010). Thus, infill panels have 

played an important role in the observed damage to RC structures (Verderame 

et al, 2010a). Moreover, during Lorca earthquake (2011), most of the losses 

were caused by non-structural damage (Cabañas et al., 2011; Goula et al., 2011) 

and masonry infills have provided an important additional strength to RC 

buildings - especially because no proper seismic principle was present in the 

design of most of Lorca RC buildings - avoiding in many cases the collapse of 

the structure (Gómez-Martínez et al., 2012). 

 

In Chapter 2 (Section 2.1.3), it was shown that some experimental and 

analytical investigations were performed on infilled RC structures, regarding 

both ―local‖ and ―global‖ effects on the seismic performance. Many modeling 

proposals were also carried out in literature (as shown in Section 2.1.3). 

In this Chapter, the effect of infills on the global seismic behavior of RC 

frames is investigated, by analyzing their influence on global stiffness and 

strength, on the kind of collapse mechanism, on the displacement capacity and, 

consequently, on seismic capacity and seismic fragility at different 

performance levels (i.e., Limit States), depending on the main characteristics of 

the RC frame, such as the design typology and the number of stories. 

To this end, RC elements are modeled in one of the simpler approach (in 

lumped plasticity approach, as explained in Section 3.2), beam-column joints 

are rigid and a single strut model is adopted for infills, as in most of the 
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previous literature studies. 

Simulation studies on the effect of uncertainty in several of the input 

parameters of the structural model – usually neglected in design and 

assessment procedures – on the seismic response of infilled RC structures are 

performed through sensitivity and fragility analyses. 

Sensitivity analysis is a quite simple way to underline the effect of each of 

the input Random Variable (RV) on the seismic response of the infilled RC 

structure, thus identifying the input variables which produce the greatest 

impact (Celarec et al., 2012). 

Fragility analysis is a higher step for uncertainty analysis which allows to 

take into account the effect of the contemporary in the variation of the input 

variables on the seismic response at a certain Limit State. Sensitivity and 

fragility analyses are performed, as explained in next sections. 

Four- and eight- story buildings, designed for seismic loads according to the 

current Italian technical code or for gravity loads only according to an obsolete 

technical code, are considered. Infills are modeling through equivalent 

diagonal struts and the potential brittle failure mechanisms due to the local 

interaction between masonry infills and structural RC elements or out of plane 

failures are not accounted for herein.  

Seismic capacity at two different Limit States, namely Damage Limitation 

(DL) and Near Collapse (NC), is assessed by means of Static Push-Over (SPO) 

analyses, within the N2 spectral assessment framework.  

Different infill configurations are considered (Bare, Uniformly infilled and 

Soft-story infilled), and sensitivity analysis is carried out, thus evaluating the 

influence of main material and capacity parameters on seismic response at 

different Limit States, depending on the number of stories and the design 

typology. 

Then, fragility curves are obtained through the application of a Response 

Surface Method and seismic performance is also expressed in terms of failure 

probability, given a reference time period. 

A comprehensive comparison between seismic response related to different 

infill distributions in elevation, number of stories and design typology of the 

bare structure is performed, too, through the analysis of the case study 

structures, hence highlighting the difference in seismic performance at 

different Limit States and for each structure. 

After comparing the expected (median) seismic capacity of the case study 
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structures, failure probabilities will be calculated – based on the results of the 

fragility analysis – and compared, thus highlighting the influence of 

uncertainty on the seismic performance at different Limit States and for each 

design typology and infill configuration. 

 

It will be pointed out the great importance of infills and their mechanical 

properties, especially at low level of seismic demand, namely at Damage 

Limitation Limit State, both for structures designed only for gravity-loading or 

according to new seismic codes provisions, thus highlighting the necessity of a 

deeper investigation towards this direction in developing new procedures to 

account for infill presence directly or indirectly via the more widespread kind 

of analyses (linear analyses), as shown in Chapter 4. 

Vice-versa at higher performance levels, mechanical parameters of RC 

elements have the major influence on seismic capacity. 

 

3.2 Case study structures 

The case study structures analyzed in this Chapter are symmetric in plan, 

both in longitudinal (X) and in transverse (Y) direction, with five bays in 

longitudinal direction and three bays in transverse direction. Interstorey height 

is equal to 3.0 m, bay length is equal to 4.5 m. Slab way is always parallel to the 

transverse direction; dead load from slab (without dead load related to beams 

and columns) is equal to 4.57 kN/m2 for the last storey and 5.77 kN/m2 for all 

of the other ones; live load is equal to 2 kN/m2. So the four case study 

buildings are: 

- two gravity load designed (GLD) buildings, a four-storey and an 

eight-story building, defined by means of a simulated design procedure 

according to code prescriptions and design practices in force in Italy 

between 1950s and 1970s (Regio Decreto Legge n. 2229, 16/11/1939; 

Verderame et al., 2010b). The structural configuration follows the parallel 

plane frames system: gravity loads from slabs are carried only by frames in 

longitudinal direction. Beams in transverse direction are present only in the 

external frames. Element dimensions are calculated according to the 

allowable stresses method; the design value for maximum concrete 

compressive stress is assumed equal to 5.0 and 7.5 MPa for axial load and 
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axial load combined with bending, respectively. Column dimensions are 

calculated according only to the axial load based on the tributary area of 

each column, beam dimensions and reinforcement are determined from 

bending due to loads from slabs. Reinforcing bars are smooth and their 

allowable design stress is equal to 160 MPa. Section dimensions are 

(30x50)cm2 for beams, whereas they are strongly variable for columns, 

depending on the design axial load, ranging from (40x75)cm2 for the 

internal columns at the first story of the eight-story frame to (30x30)cm2 at 

the top story. Longitudinal reinforcement ratio is between 0.5 and 0.9% in 

beams, whereas reinforcement in columns corresponds to the minimum 

amount of 0.8% of the section area, as prescribed by code (Regio Decreto 

Legge n. 2229, 16/11/1939); 

- two seismic load designed (SLD) buildings, a four-storey and an 

eight-storey building, designed for seismic loads according to the current 

Italian code (Decreto Ministeriale del 14/1/2008) in Ductility Class High. 

Beams in transverse direction now are present also in the internal frames. 

The principles of the Capacity Design are applied. C25/30 concrete (fcd = 

14.17 MPa) and B450C steel (fyd = 391.3 MPa) are used. Mean values for 

materials strength are assumed equal to 36 MPa and 550 MPa for concrete 

and steel respectively (Cosenza et al., 2009a,b). They are located in a high 

seismic city in Southern Italy (Avellino, Lon.: 14.793 Lat.: 40.915); soil type 

A (stiff soil) and 1st topographic category are assumed; the Peak Ground 

Acceleration (PGA) used for the design at Significant Damage Limit State 

(SLV) – corresponding to an exceeding probability of 10% in 50 years, that 

is, to a return period of 475 years – is equal to 0.19g. The 8-storey frame has 

both higher elastic period and higher mass with respect to the 4-storey 

frame, but base shear due to seismic loads is very similar in the two cases 

and, therefore, the analyzed frames have identical geometry and 

longitudinal reinforcement for beams and columns. Section dimensions are 

(30x50)cm2 for beams and (30x60)cm2 for columns. Longitudinal 

reinforcement ratio is about equal to 1.0% in beams and to 1.4 and 2.0% in 

external and internal columns, respectively. 

 

The choice of these case study structures can be considered as 

representative of Italian building typologies because it is supported by in-situ 
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surveys carried out in different Italian cities (Cosenza et al., 2003; Pecce et al., 

2004; Polese et al., 2008). 

For each case study, three hypotheses are made about the infill 

configuration: 

- Case 1: infill panels are uniformly distributed along the height 

(Uniformly Infilled frame, see Figure 3.1a). 

- Case 2: first story is bare and upper stories are infilled (Pilotis 

frame, see Figure 3.1b). 

- Case 3: no infill panel is present (Bare frame, see Figure 3.1c). 

 

Infills panels, if present, are uniformly distributed in all the external frames 

of the building. Panel thickness is equal to 20 cm, corresponding to a double 

layer brick infill (120+80) mm thick, which can be considered as typical of a 

non-structural infill masonry wall (Bal et al., 2007). Presence of openings is not 

taken into account. 

Nonlinear response of RC elements is modeled by means of a lumped 

plasticity approach: beams and columns are represented by elastic elements 

with rotational hinges at the ends. A three-linear envelope is used, where 

characteristic points are cracking, yielding and ultimate. Section moment and 

curvature at cracking and yielding are calculated on a fiber section, for an axial 

load value corresponding to gravity loads. The behavior is assumed linear 

elastic up to cracking and perfectly-plastic after yielding. Rotations at yielding 

and ultimate are evaluated through the formulations given in (Fardis, 2007). 

As far as ultimate rotation is concerned, consistent with the characteristics of 

tests included in the experimental database employed to obtain the 

formulation given in (Fardis, 2007), the proposed expression for the ultimate 

rotational capacity should be applied only to members with deformed bars, 

with seismic detailing and without lapping of longitudinal bars in the vicinity 

of plastic hinge region (typical of SLD structures). Nevertheless, this kind of 

formulation can be extended to members with different characteristics (non-

conforming elements) through correction coefficients calibrated on the basis of 

experimental data on non-conforming members (Panagiotakos et al., 2002; 

Fardis and Biskinis, 2003; Fardis, 2009; Biskinis and Fardis, 2010; Verderame et 

al., 2010c), in order to take into account that non-conforming members have a 

lower mean rotational capacity. Notwithstanding, in (Verderame et al., 2010c) 

it is shown that the formulation proposed in (Fardis, 2007) is able to predict the 

deformation capacity at ultimate of non-conforming RC members with plain 
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bars, without the need for the application of any correction coefficient, based 

on experimental data about deformation capacity of this specific kind of 

elements. 

 

(a) (b) (c) 

Figure 3.1. Uniformly infilled (a), Pilotis (b) and Bare (c) frames – four-storeys seismic 
loads design case-study structure 

 

Infill panels are modeled by means of equivalent struts. Modeling infills 

through single compressed struts allows to investigate the effects of the panels 

on the global behavior of the analyzed structure. The adopted model for the 

envelope curve of the force-displacement relationship is the model proposed 

by Panagiotakos and Fardis (Panagiotakos and Fardis, 1996; Fardis, 1997). The 

proposed force-displacement envelope is composed by four branches, as 

shown in Figure 3.2. 

 

 

Figure 3.2. Panagiotakos and Fardis (1996): single-strut infill model 

 

The first branch corresponds to the linear elastic behavior up to cracking; 

Lateral Drift

0.01 Kel

(max,  Fmax =1.30 Fcr)

(cr , Fcr)

Kel (u,  Fu = 0.01 Fmax)

Shear Force F

Ew ∙bw ∙tw ∙dw
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the slope of this branch is the elastic stiffness of the infill panel kel, and it can be 

expressed according to Equation (3.1), being Aw is the transversal area of the 

infill panel, Gw the shear elastic modulus and hw its clear height. If cr is the 

shear cracking stress, the shear cracking strength Fcr can be obtained according 

to Equation (3.2). 

w w
el

w

G A
K

h


 
(3.1) 

cr cr wF A  (3.2) 

The second branch continues up to the maximum strength Fmax, which can 

be calculated according to Equation (3.3). The corresponding displacement 

max is estimated according to the hypothesis that the secant stiffness up to 

maximum is provided by Mainstone‘s formulation (Mainstone, 1971), 

assuming that the width of the equivalent truss bw can be evaluated according 

to Equation (3.4), being hw and dw the height and the diagonal length of the 

panel, respectively, and λh defined according to Equation (3.5). In Equation 

(3.5), Ew and Ec are the elastic Young modulus of the infill panel and of the 

surrounding concrete, respectively;  is the diagonal slope of the equivalent 

truss to the horizontal; tw is the infill thickness; Ic is the moment of inertia of 

the adjacent columns. Secant stiffness up to maximum is provided by the 

expression shown in Equation (3.6). 

max 1.30 crF F   (3.3) 

( 
0.4

0.175w h w wb h d


  (3.4) 

4
sin(2 )

4

w w
h

c c w

E t

E I h


 

 

(3.5) 

sec
2 2

cosw w wE b t
K

L H


  
(3.6) 

The third branch of the envelope is a degrading branch up to the 

achievement of a constant branch, i.e. up to the ―infill residual strength point‖; 

its slope (kdeg) depends on the elastic stiffness through the parameter 

(Panagiotakos and Fardis, 1996)as shown in Equation (3.7). Authors suggest 

values in the range [0.005; 0.1] for the parameter . Last branch is horizontal; it 

corresponds to a residual constant strength; residual-to-maximum strength 
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ratio  can be assumed equal to 1-2% (Panagiotakos and Fardis, 1996). In this 

Chapter, the ratio between post-capping degrading stiffness and elastic 

stiffness (parameter ) is assumed equal to 0.01. The ratio between residual 

strength and maximum strength (parameter ) is assumed equal to 0.01. 

deg elK K 
 (3.7) 

 

3.2.1. Analysis methodology 

Nonlinear static push-over (SPO) analyses are performed on the case study 

buildings both in X and Y direction. The assumed lateral load pattern is 

proportional to the displacement shape of the first mode. Lateral response is 

evaluated in terms of base shear-top displacement relationship. Structural 

modeling, numerical analyses and post-processing of damage data, including 

the 3D graphic visualization of the deformed shape, are performed through the 

―PBEE toolbox‖ software (Dolšek, 2010), combining MATLAB® with OpenSees 

(McKenna et al., 2004), modified in order to include also infill elements (Ricci, 

2010; Celarec et al., 2012). When the lateral response is characterized by a 

strength degradation due to the achievement of the degrading branch of the 

force-displacement relationship of the infills up to their ―infill residual strength 

point‖, a multi-linearization of the pushover curve is carried out by applying 

the equal energy rule respectively between the initial point and the maximum 

resistance point, between the maximum resistance point and the point 

corresponding to the achievement of the last ―infill residual strength point‖, 

between the point corresponding to the achievement of the last ―infill residual 

strength point‖ and the point corresponding to the first RC element 

conventional collapse. Vice versa when the lateral response is not characterized 

by a strength degradation (because infill elements are not present or not 

involved in the collapse mechanism) an elasto-plastic bi-linearization is carried 

out by applying the equal energy rule between the initial point and the 

maximum resistance point.  

Two Limit States (LSs) are investigated: Damage Limitation (DL) and Near 

Collapse (NC). 

The definition of DL LS should take into account that the damage occurring 

at this LS has to be easily and economically repaired. As far as the infills are 

concerned, it can be assumed that the requirement corresponding to such a 
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criterion is that the infill panel has not achieved the inter-storey drift 

corresponding to its maximum resistance, as some experimental results 

pointed out (Colangelo, 2012; Hak et al., 2012), although at this stage some 

cracks have already occurred. In literature, different assumptions can be found 

regarding the diffusion of this kind of damage (that is, the proportion of panels 

reaching the maximum resistance displacement) to be assumed as 

corresponding to the attainment of this LS. As a matter of fact, according to 

different authors this LS occurs when the maximum resistance displacement is 

reached in first infill panel (Dolšek and Fajfar, 2006; Colangelo, 2012; Hak et al., 

2012), in 50% of the infill panels at one story (Celarec and Dolšek, 2012), or in 

all of the infill panels at one story (Dolšek and Fajfar, 2008a). In this study, the 

first definition is conservatively adopted, thus assuming that DL LS in infills is 

attained at the displacement when the first infill panel reaches its maximum 

resistance thus starting to degrade; hence, taking into account also RC 

elements, the achievement of DL LS corresponds to the minimum between 

such displacement and the displacement when the first yielding in RC 

members occurs. However, in the case study structures analyzed in this 

Chapter (the clear span of each infill panel is almost the same) all the infills at 

the same story have the same displacement capacity and reach their maximum 

resistance at same time. However, this issue will be better discussed in Chapter 

4 and it should deserve further discussion in the future. 

NC LS is defined as the point corresponding to the first conventional 

collapse in RC members (i.e., the first RC member reaches its ultimate 

rotation), independent of the displacement demand on the infill panels. The 

definition of NC LS is consistent with the code-based approach (EC8-3, 2004), 

according to which, the failure of one RC member conventionally corresponds 

to structural failure. Such an approach is generally conservative when 

structural elements have a ductile behavior; in fact, also after the first 

conventional failure of a structural member, the structure is yet able to exhibit 

a further reserve of seismic capacity. 

It should be noting that potential brittle failure mechanisms are not taken 

into account in this Chapter. 

IN2 curves (Dolšek and Fajfar, 2004b; Dolšek and Fajfar, 2008b) for the 

equivalent SDoF systems are obtained by assuming as Intensity Measure both 

the elastic spectral acceleration at the period of the equivalent SDoF system 

(Sae(Teff)) and the Peak Ground Acceleration (PGA). Values of these seismic 

intensity parameters corresponding to characteristic values of displacement 
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(ductility) demand (including the considered LSs) are calculated, based on the 

R--T relationships given in (Dolšek and Fajfar, 2004a) or in (Vidic et al., 1994) 

for degrading or non-degrading response, respectively. 

Moreover, the procedure proposed in (Dolšek and Fajfar, 2005) to improve 

the accuracy of the displacement demand assessment in the case of low seismic 

demand is applied, by using specific R--T relationships in this range of 

behavior, as proposed by the Authors. 

Elastic spectra are the Uniform Hazard Newmark-Hall demand spectra 

adopted in Italian code (Decreto Ministeriale del 14/1/2008) – provided by 

(INGV-DPC S1, 2007) – for a high seismic city in Southern Italy (Avellino, Lon.: 

14.793 Lat.: 40.915). Soil type A (stiff soil) and 1st topographic category are 

assumed (no amplification for stratigraphic or topographic effects). It is worth 

noting that a double iterative procedure is required to evaluate Sae(Teff) and 

PGA from the characteristic parameters of equivalent SDoF system – namely 

the ductility at the point of interest (), the period (Teff) and for degrading 

systems also the ductility at the beginning of the degradation (s) and the ratio 

between the residual strength and the maximum strength (ru) – for the 

following reasons: (i) the spectral shape depends on some parameters, such as 

the corner period (TC) and the ratio between the spectral acceleration on the 

constant branch and the PGA (F0), which are not constant with the seismic 

intensity (i.e., with the return period), hence also the ratio between Sae(Teff) and 

PGA changes with the seismic intensity; (ii) some characteristic parameters of 

the elastic spectrum, such as TC, are input parameters for the R--T 

relationship, but also depends on the results obtained from the R--T 

relationship since they depends on the seismic intensity. Due to the fact that 

the ratio between Sae(Teff) and PGA is not constant, the IN2 curves in terms of 

Sae(Teff) or in terms of PGA may have different shapes. 

Demand spectra are provided by (INGV-DPC S1, 2007) in terms of 

parameters PGA, F0 and TC* (which is multiplied by another coefficient 

depending on stratigraphic characteristics, CC, to obtain TC) for a range of 

return periods from 30 to 2475 years. For intermediate values of seismic 

intensity, an interpolation procedure is proposed (Decreto Ministeriale del 

14/1/2008). Nevertheless, in this study there is the need to extend elastic 

demand spectra above and below the extreme values, as in (Liel et al., 2009). 

To this aim, the formulations proposed for the interpolation procedure are also 
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used to extrapolate the above mentioned parameters out of the given range of 

values. 

 

3.3 Sensitivity analysis 

In order to evaluate the influence of material characteristics and element 

capacity on the seismic response of the case study structure, a sensitivity 

analysis is carried out (Celarec et al., 2012; Celarec and Dolšek, 2010).  

 

3.3.1. Selected random variables 

In order to carry out a sensitivity analysis, the following parameters are 

selected as Random Variables (RVs): 

- Concrete compressive strength, fc; 

- Steel yield strength, fy; 

- Chord rotation at yielding in RC members, y; 

- Chord rotation at ultimate in RC members, u; 

- ―Loads‖ of  load-displacement relationship of the infill 

trusses, 
Finfill; 

- ―Displacements‖ of load-displacement relationship of 

the infill trusses, 
Dinfill. 

 

The variable Finfill is a vector whose components are [Fcr;Fmax], where Fcr and 

Fmax are cracking and maximum strength of infills, respectively; similarly, the 

variable Dinfill is the vector [Dcr;Dmax], where Dcr and Dmax are cracking and 

maximum displacement of infills, respectively. Residual strength and 

corresponding displacement of infills are obtained from Finfill and Dinfill 

according to the adopted model (Fardis, 1997). Loads and displacements of the 

load-displacement relationship of the infill trusses can thereby vary 

independently of each other. The variability of Finfill and Dinfill includes both 

mechanical and modeling variability, as explained below. 

A lognormal distribution is assumed for all of the RVs. Each distribution is 

defined through the central (median) value and the Coefficient of Variation 

(CoV)  see Table 3.1. 
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  Seismic Load Design Gravity Load Design 

RV Distribution Median 
Value  

CoV Reference Median 
Value  

CoV Reference 

fc Lognormal 36.0 MPa 0.20 (Cosenza et 
al, 2009a) 

25.0 MPa 0.31 (Verderame et 
al., 2001) 

fy Lognormal 550.0 MPa 0.06 (Cosenza et 
al, 2009b) 

369.7 MPa 0.08 (Verderame et 
al., 2012) 

y Lognormal 1.015× 

y,calculated 

0.331 (Fardis, 
2007) 

1.015× 

 y,calculated 

0.331 (Fardis, 2007) 

u Lognormal 0.995× 

 u,calculated 

0.409 (Fardis, 
2007) 

0.995× 

u,calculated 

0.409 (Fardis, 2007; 
Verderame et 
al., 2010c) 

Finfill Lognormal [Fcr;Fmax] [0.30; 
0.30] 

(Fardis, 
1997; 
Rossetto and 
Elnashi, 
2005; Calvi 
et al., 2004) 

[Fcr;Fmax] [0.30; 
0.30] 

(Fardis, 1997; 
Rossetto and 
Elnashi, 2005; 
Calvi et al., 
2004) 

Dinfill Lognormal [Dcr;Dmax] [0.30; 
0.70] 

(Fardis, 
1997; 
Rossetto and 
Elnashi, 
2005; Calvi 
et al., 2004) 

[Dcr;Dmax] [0.30; 
0.70] 

(Fardis, 1997; 
Rossetto and 
Elnashi, 2005; 
Calvi et al., 
2004) 

Table 3.1. Joint shear coefficient according to ASCE-SEI 41 (2007) 

 

For the concrete compressive strength, reference values come from a 

statistical analysis on the mechanical properties of concrete employed in Italy 

(Verderame et al., 2001; Cosenza et al., 2009a). For the steel yield strength, 

values are referred to Aq50 steel typology (the most widely spread in Italy 

during 1960s) for GLD structures (Verderame et al., 2012), and to B450C for 

SLD structures (Cosenza et al., 2009b).  

The determination of infill material characteristics is affected by high 

difficulties and uncertainties, and literature does not offer an enough large 

amount of experimental data. In this study, a median value of 1240 MPa for the 

shear elastic modulus Gw is adopted, based on wallette tests carried out at the 

University of Pavia on specimens made up of hollow clay bricks with a void 

ratio of 42%, selected as representative of typical light non-structural masonry 

(Fardis, 1997). Nevertheless, there are further infill mechanical characteristics 

to be determined in order to define, according to the adopted model, the load-

displacement relationship of the infill trusses, namely the elastic Young‘s 

modulus Ew and the shear cracking stress cr. A certain amount of correlation 
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certainly exists between these parameters, although it is not easy at all to be 

determined. In this study, the ratio between Ew and Gw is assumed equal to 

10/3 based on the proposal of the Italian code (Circolare del Ministero dei 

Lavori Pubblici n. 617 del 2/2/2009), whereas cr is assumed as independent on 

Gw, due to the independence between the RVs Finfill and Dinfill. 

 

Figure 3.3 shows the load-displacement relationships of the infill trusses 

related to (i) median values of Finfill and Dinfill (red curve), (ii) the variation of 

Finfill only respect to median values (blue curves) and (iii) the variation of Dinfill 

only respect to median values (green curves). These curves are obtained 

assuming median-minus-1.7-standard-deviation and median-plus-1.7-

standard-deviation values for the two RVs. 

 

 
Figure 3.3. Load-displacement relationships of the infill trusses for median 

values of Finfill and Dinfill (red), for the variation of Finfill respect to median values (blue) 
and for the variation of Dinfill respect to median values (green) 

 

As far as the modeling of uncertainty in infill mechanical properties is 

concerned, both mechanical (Young‘s modulus, shear elastic modulus, shear 

cracking strength) and modeling (maximum to shear cracking strength ratio, 

secant to peak stiffness) variability are considered based on experimental tests 

from literature and on experimental-to-predicted ratios obtained from the 

adopted infill model (Fardis, 1997). These two sources of variability are 

previously considered independently of one another: a CoV equal to 0.30 is 

assumed for both the elastic Young‘s modulus Ew (Calvi et al., 2004) – and 

consequently for the shear elastic modulus (Circolare del Ministero dei Lavori 
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Pubblici n. 617 del 2/2/2009) – and the shear cracking stress cr (Calvi et al., 

2004; Dymiotis et al., 2001); CoVs equal to 0.12 and 0.70 for the maximum-to-

shear cracking strength ratio and the secant-to-peak stiffness, respectively, are 

used: they are obtained through the evaluation of the dispersion of the 

experimental-to-predicted ratio derived applying Fardis‘ model (Fardis, 1997) 

to the experimental tests from (Pires, 1990; Stylianidis, 1985), which the model 

itself is based on. The only variability of Gw, with equal all of the other 

variables, would lead to a CoV for Dcr and Dmax equal to 0.30 according to the 

adopted infill model (Fardis, 1997); similarly, the only variability of cr would 

lead to a CoV for Dcr, Dmax Fcr and Fmax equal to 0.30; moreover, the only 

variability of maximum to shear cracking strength ratio would lead to a CoV 

for Fmax and Dmax equal to 0.12: thus modeling variability about maximum-to-

shear cracking strength ratio is negligible. Finally, the only variability of secant 

to peak stiffness would lead to a CoV for Dmax equal to 0.70. Therefore, the 

maximum CoVs for the parameters Fcr, Fmax, Dcr and Dmax – induced by the 

variation of mechanical and modeling variables – are obtained (0.30, 0.30, 0.30 

and 0.70, respectively): the variability of the parameter Dmax is governed by 

model variability due to secant-to-peak stiffness, whereas all of the other 

values of variability are given by variability of material properties. 

As far as deformations at yielding and ultimate in RC members are 

concerned, median and CoV values are evaluated starting from the values 

calculated through the formulations proposed in (Fardis, 2007) and using 

median and CoV values of the experimental-to-predicted ratio, as illustrated 

by the author.  

A sensitivity analysis is carried out to investigate the influence of each 

variable on the seismic capacity of each case study structure. The seismic 

capacity can be defined in terms of Sae(Teff) or PGA. The seismic capacity 

expressed in term of PGA – for a certain LS – is defined as the PGA 

corresponding to the demand spectrum under which the displacement 

demand is equal to the displacement capacity for that LS. PGA capacity at a 

certain LS is represented by the ordinate of the IN2 curves (expressed in terms 

of PGA) corresponding to the displacement capacity of the equivalent SDoF 

system Sd at that LS. In the same way, seismic capacity expressed in term of 

Sae(Teff) can be defined. 

In order to carry out a sensitivity analysis, two models are generated for 

each RV assuming median-minus-1.7-standard-deviation and median-plus-1.7-
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standard-deviation values for the considered variable, and median values for 

the remaining variables. The choice of these values will be better explained 

when the Response Surface Method (RSM) will be used in the fragility analysis 

carried out below. In addition, another analysis is carried out assuming 

median values for all of the variables (Model#1). 

 

3.3.2. Analysis of results 

In the following, obtained results are presented and discussed for 

Uniformly infilled, Pilotis and Bare frames, in both longitudinal and transverse 

directions and at DL and NC LSs in terms of Sae(Teff) or PGA. The [Sd, Sae(Teff)] 

and [Sd, PGA] points on IN2 curves corresponding to DL and NC LSs are 

reported as yellow and red circles, respectively. The dashed horizontal branch 

in IN2 curves after the achievement of the NC LS conventionally represents the 

structural failure. 

SPO (black), multi-linearized SPO (red) and IN2 in terms of Sae(Teff) (blue) 

curves and collapse mechanisms for Models#1 in both directions and for each 

infill configuration are shown in Figures 3.4 and 3.5 for the 4-storey SLD and 

the 4-storey GLD structures, respectively. SPO, multi-linearized SPO and IN2 

curves and collapse mechanisms are also obtained for the 8-storey structures, 

but they are omitted in this Section for the sake of brevity. 

Stories involved in all of the collapse mechanisms and stories involved in 

the achievement of DL LS for Models#1 in both X and Y direction and for each 

infill configuration of all the analyzed structures are reported in Tables 3.2 and 

3.3, respectively. 
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Infill 

config. 

4- SLD 4- GLD 8- SLD 8- GLD 

x y x y x y x y 

Uniformly 

Infilled 

1+2 1+2 1 2 1+2+3 1+2+3+4 2+3 3+4 

Pilotis 1+2 1+2 1 1 1+2 1+2+3+4 1+2 1+2+3 

Bare 1+2+3 1+2+3 3 global 1+2+3+4+5 1+2+3+4+5 2+3+4+5+6 global 

Table 3.2.  Stories involved in the collapse mechanism for the Models#1 of each 
analyzed structure 

 

Infill  

config. 

4- SLD 4- GLD 8- SLD 8- GLD 

x y x y x y x y 

Uniformly 

Infilled 

1+2 2 1 1+2 2 2 2 2 

Pilotis 1 2 1 1 2 2 2 2 

Bare 2 2 2 4 2 2 3+4 3 

Table 3.3.  Stories involved in the achievement of DL LS for the Models#1 of each 
analyzed structure 

 
As shown in Table 3.3, the achievement of DL LS can involve contemporary 

more than one story - despite the definition of DL LS itself - if the first yielding 

occurs contemporary in more than one RC member or if all of the infills in 

more than one story reach their maximum resistance thus starting to degrade. 

SPO and IN2 curves in terms of Sae(Teff) or PGA and collapse mechanisms 

can be obtained for all of the other models - of each case study structure - 

generated through the only variation of one RV (while simultaneously holding 

the remaining RVs to their median values). 

Through a comparison between Model#1 and the other models for each 

structure, change in SPO and capacity curve‘s parameters and PGA capacity at 

both LSs respect to Model#1 due to variations of the assumed RVs can be 

calculated. 

It is to be noted that the influence of each single variable on PGA capacity, 

which will be illustrated through the sensitivity analysis, not only depends on 

the influence of the variable on the seismic response, but also depends on the 

dispersion assumed for that variable through the assigned CoV, which leads to 

consider values more or less distant from the central (median) value. 
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3.3.2.1 IN2 curves  

Therefore, through the analysis of capacity curves‘ parameters and the 

application of a chosen R--T relationship (Dolsek and Fajfar, 2004a; Vidic at 

al.,1994), the effect of the RVs on the seismic capacity can be discussed. Results 

of sensitivity analysis are reported from Figures 3.6 to 3.11 for GLD and SLD 

structures in terms of change in PGA capacity respect to Model#1 due to 

variations of the assumed RVs; the effect due to the variation of each RV on 

seismic capacity in terms of PGA is discussed in Table 3.4 and Table 3.5. 

Change in collapse mechanism that could be due to variation of infill 

mechanical properties respect to their median values, produce significant 

effects also on the PGA capacity, above all at NC LS, since that displacement 

capacity at NC LS depends on the number of stories involved in the collapse 

mechanism. 
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Figure 3.6. Change in PGA capacity (%) respect to Model#1 due to variations of the 
assumed RVs – GLD case study structures: Uniformly Infilled – Upper values (blue) 

and Lower values (red)  of RVs 
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Figure 3.7. Change in PGA capacity (%) respect to Model#1 due to variations of the 
assumed RVs – GLD case study structures: Pilotis – Upper values (blue) and Lower 

values (red) of RVs 
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Figure 3.8. Change in PGA capacity (%) respect to Model#1 due to variations of the 
assumed RVs – GLD case study structures: Bare – Upper values (blue) and Lower 

values (red) of RVs 
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Figure 3.9. Change in PGA capacity (%) respect to Model#1 due to variations of the 
assumed RVs – SLD case study structures: Uniformly Infilled – Upper values (blue) 

and Lower values (red) of RVs 
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Figure 3.10. Change in PGA capacity (%) respect to Model#1 due to variations of 
the assumed RVs – SLD case study structures: Pilotis – Upper values (blue) and Lower 

values (red) of RVs 
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Figure 3.11. Change in PGA capacity (%) respect to Model#1 due to variations of 
the assumed RVs – SLD case study structures: Bare – Upper values (blue) and Lower 

values (red)  of RVs  
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 Gravity Load Design 4- and 8-storeys 

RV LS Remarks 

R
C

 p
a

ra
m

et
er

s 

u NC Parameter with the greatest influence in each case; if it increases, collapse 

ductility and PGANC increase. 

DL No significant influence. 

y NC No significant influence. 

DL The achievement of DL LS is generally due to infills, if they are present in 

the model; for bare configurations, an increase in  y produces an increase 

both in displacement capacity and Teff of the equivalent SDoF, thus 

resulting in no change of PGADL. 

fc NC When it increases, the axial load ratio in columns decreases thus 

producing an increase in u; consequently ductility at collapse and PGANC 

increase. 

DL No significant influence. 

fy NC No significant influence. 

DL Parameter with the greatest influence for bare configurations; an increase 

in fy produces an increase in base shear strength Cs and displacement 

capacity DL, thus leading to an increase in PGADL; not important for 

infilled configurations when the achievement of DL LS is due to infills. 

In
fi

ll
s 

 p
a

ra
m

et
er

s 

Finfill NC Great influence on uniformly infilled configurations through the variation 

of collapse mechanism (i.e. 8-storey structures), of maximum strength 

Cs,max and of Teff ; its influence in terms of PGANC is smaller than u and it 

is different depending on the case-study structure 

DL Its influence is higher for Uniformly Infilled configurations rather than for 

Pilotis ones; in both cases if it increases a beneficial decrease in Teff  is 

produced, thus resulting in an increase in PGADL 

Dinfill NC Except for variation of collapse mechanism (i.e., 8 stories-Uniformly 

Infilled-longitudinal direction), when it increases the yielding 

displacement of the equivalent SDoF Sdy increases too, whereas the 

maximum strength Cs,max and the displacement capacity coll do not 

change, then ductility at collapse and PGANC decrease 

DL Except for the 4 stories-Pilotis-longitudinal direction case-study structure, 

if it increases Teff increases and displacement capacity  DL increases more 

than yielding displacement of the equivalent SDoF Sdy, and so collapse 

ductility and PGADL increase 

Table 3.4 Effects and remarks about sensitivity analysis –  
GLD case study structures 
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 Seismic Load Design 4- and 8-storeys 

RV LS Remarks 

R
C

 p
a

ra
m

et
er

s 

u NC Parameter with the greatest influence in each case; if it increases, collapse 

ductility and PGANC increase. 

DL No significant influence. 

y NC It becomes important just in one case-study (i.e. 8 stories-Uniformly Infilled-

longitudinal direction) where, if it increases, a change in the collapse 

mechanism is produced and PGANC increases. 

DL The achievement of DL LS is generally due to infills, if they are present in the 

model; for Bare configurations, an increase in  y produces an increase both in 

displacement capacity and Teff of the equivalent SDoF, thus resulting in no 

significant change in PGADL. 

fc NC When it increases, the axial load ratio in columns decreases and u increases; 

consequently ductility at collapse and PGANC increase. 

DL No significant influence in general; only in one case (i.e. 4storeys-Uniformly 

Infilled-longitudinal direction), if it increases, an increase in base shear 

strength Cs is observed, thus leading to a beneficial decrease in Teff and in 

PGADL. 

fy NC Important only for Pilotis configurations (i.e. 4- and 8- stories-Pilotis-

longitudinal direction, 8 stories-Pilotis-transverse direction) where its change 

produces a variation of collapse mechanism. 

DL Parameter with the greatest influence for bare configurations due to an increase 

in base shear strength Cs and displacement capacity DL leading to an increase 

in PGADL; not important for infilled configurations when the achievement of 

DL LS is due to infills. 

In
fi

ll
 p

a
ra

m
et

er
s 

Finfill NC Except for variation of collapse mechanism, when it increases, the yielding 

displacement of the equivalent SDoF Sdy decreases and the maximum base 

shear strength Cs,max increases, thus leading to an increase in PGANC 

DL Except for variation of collapse mechanism in which displacement capacity 

DL decreases (i.e., 4 stories-Pilotis-longitudinal direction), if it increases, an 

increase in base shear strength Cs and a decrease in Sdy are produced, thus 

leading to a higher ductility capacity and PGADL. 

Dinfill NC When it increases, the yielding displacement of the equivalent SDoF Sdy 

increases too, whereas the maximum strength Cs,max and the displacement 

capacity coll do not change, and then ductility at collapse and PGANC 

decrease. 

DL Except for variation of collapse mechanism (i.e. 4 stories-Pilotis-longitudinal 

direction), if it increases Teff increases and displacement capacity DL increases 

more than yielding displacement of the equivalent SDoF Sdy, then ductility at 

collapse and PGADL increase. 

Table 3.5. Effects and remarks about sensitivity analysis –   
SLD case study structures 

 

 



Chapter 3 

Influence of infill distribution and design typology on seismic performance of RC buildings 

 

99 

3.4 Comparisons and remarks: infill distribution, design 

typology and number of stories 

In this Section, the influence of the infill configuration, the design typology 

and the number of stories on the seismic capacity of each case study building is 

evaluated. To this aim, IN2 curves are compared, always referring to the 

models where median values are assumed for all of the variables. The 

comparison is carried out in both directions through IN2 curves in terms of 

PGA: a comparison in terms of the elastic spectral acceleration capacity Sae(Teff) 

could be not realistic because of the high difference of effective period that 

exists between an infilled structure and the respective bare one. 

 

3.4.1. Influence of the infill configuration 

First of all, a comparison between three different infill configurations can be 

carried out about four-story and eight-story SLD or GLD case study structures. 

 

If the four-story SLD structures (see Figures 3.12) are considered:  

(i) the Bare configuration shows the highest PGA capacity at DL LS 

(PGADL), both in longitudinal and transverse directions;  

(ii) Uniformly Infilled and Pilotis configurations have almost the same 

PGADL;  

(iii) the Uniformly Infilled and the Pilotis configurations show the highest 

and the lowest PGA capacity, respectively, at NC LS (PGANC) in both 

directions. 

 

If the four-story GLD structures (see Figures 3.12)  are considered, instead:  

(i) the Uniformly Infilled and the Pilotis configurations show the highest 

and the lowest PGA capacity, respectively, at DL LS (PGADL) in both 

directions;  

(ii) Uniformly Infilled configuration has the highest PGANC. 
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Figure 3.12. IN2 curves in terms of PGA – four-story SLD and GLD case study 
structures – Uniformly Infilled (red), Pilotis (black) and Bare (blue) configurations 

 

Similar conclusions can be drawn for eight-story structures (see Figure 

3.13), thus leading to the following general remarks:  

(i) at NC LS, a beneficial effect on PGA capacity generally exists when a 

regular distribution of infill panels is considered, whereas a detrimental effect 

is shown by structures with an irregular infill distribution;  

(ii) at DL LS, the above mentioned beneficial effect is not observed for SLD 

structures;  

(iii) displacement capacity, as expected, is higher for Bare structures both in 

longitudinal and transverse directions at each LS;  

(iv) ratios between Uniformly Infilled or Pilotis PGA capacity and Bare 

PGA capacity are higher for GLD structures whose seismic performances are 

more affected by infill presence respect to SLD structures;  

(v) in SLD structures the presence of infills changes also significantly the 
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collapse mechanism expected for the Bare configuration designed according to 

Capacity Design principles, thus influencing displacement, ductility and PGA 

capacities. 
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Figure 3.13. IN2 curves in terms of PGA – eight-story SLD and GLD case study 
structures – Uniformly Infilled (red), Pilotis (black) and Bare (blue) configurations 
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3.4.2. Influence of the design typology 

A second kind of comparison can be carried out in order to show how the 

seismic capacity is affected by infills depending on the design typology of the 

structure. 

 

IN2 curves in terms of PGA are reported in Figure 3.14 for four-story case 

study structures and discussed below. 

At DL LS:  

(i) in the Uniformly Infilled configuration, GLD structures show a 

concentration of displacement demand at the first story from early range of 

loading, resulting in a stiffening of the multi-linearized SPO curve and an 

increase in PGADL respect to SLD Uniformly Infilled structure;  

(ii) in Pilotis and Bare configurations, SLD structures show the highest 

displacement capacity and PGADL;  

(iii) in Pilotis configurations, in transverse direction, the absence of internal 

beams for GLD structures leads to a higher deformability and displacement 

capacity. 

At NC LS:  

(i) SLD structures, respecting Capacity Design principles, show collapse 

mechanisms involving a greater number of stories and a higher collapse 

ductility and PGANC respect to GDL structures;  

(ii) GLD Bare structure in transverse direction has a greater displacement 

capacity because in this case a global collapse mechanism is observed. 

 

Similar conclusions can be drawn for eight-story structures (see Figure 

3.15), thus leading to the following general remarks: (i) SLD structures 

generally show the best seismic performances at NC LS; (ii) as far as Uniformly 

Infilled configurations are concerned, GLD structures show the highest PGADL; 

(iii) exceptions to the above conclusions are the cases (for eight-story 

structures) in which there is a concentration of displacement demand at 

bottom floors leading to an increase in PGANC due to a stiffening of the multi-

linearized SPO curve (e.g., eight-story Pilotis in longitudinal direction). 
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Figure 3.14. IN2 curves in terms of PGA – four-story case study structures – GLD 
(cyan) and SLD (blue) 
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Figure 3.15. IN2 curves in terms of PGA – eight-story case study structures – GLD 
(cyan) and SLD (blue) 
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3.4.3. Influence of the number of stories 

In this Section, a further analysis is carried out about structural seismic 

capacity depending on the number of stories.  

The same trends are shown by four- and eight-story analyzed structures. It 

is worth noting that:  

(i) eight-story structures have a greater variability in collapse mechanisms 

depending on the infill configuration, input parameters and design typology; 

(ii) eight-story structures are less affected by infill presence in terms of 

PGADL. 

 

3.4.4. A generalization attempt 

A further effort was made in order to generalize the conclusions drawn 

from the above illustrated comparisons. To this end, the influence of infill 

panels on the seismic performance of the structure is explicitly evaluated in 

terms of percentage variation (r) between PGA capacity of the Uniformly 

Infilled model (PGAUI) - or the Pilotis model (PGAP) - and the PGA capacity of 

the Bare one (PGAB).  

In particular, the remarks carried out below are based on the parameter: 

UI B

B

PGA PGA
r

PGA


  (3.8) 

For Models#1 of each case study structure, the PGA capacity of each model 

independent of the direction – at a given Limit State (LS) – can be assumed 

equal to the minimum PGA capacity at that LS between longitudinal and 

transverse direction and the Bare and the corresponding Uniformly Infilled 

models can be compared.  

The percentage variation of PGAUI  respect to PGAB  has been obtained for 

each case study structure and reported in Figure 3.16 at DL and NC LSs, 

separately. 
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Figure 3.16. Percentage variation of PGAUI with respect to PGAB  for GLD and SLD 
case study structures, at NC and DL LSs 

 

From the analysis of Figure 3.16 some general considerations can be drawn:   

 the percentage variation of PGAUI  respect to PGAB  at NC LS is 

higher for GLD structures than SLD structures, thus highlighting the 

higher influence of infill panels on GLD than SLD structures. 

Symbolically: 

UI B UI B

B BGLD SLD

PGA PGA PGA PGA

PGA PGA

 
  (3.9) 

 the percentage variation is more relevant for low-rise structures, 

both at NC and DL LSs, especially for gravity load design typology;  

 at DL LS, the presence of infill panels produce a detrimental 

reduction in PGA capacity for SLD structures (negative value of 

percentage variation), thus highlighting that for SLD structures, at low 

level of displacement demand, the detrimental reduction of the 

displacement capacity at DL LS due to the presence of infills is more 

important than the beneficial increase in stiffness and strength that 

infill panels produce respect to the bare structure designed according to 

new seismic code provisions, whereas an opposite trend is observed in 

GLD structures. 
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3.5 Fragility analysis 

3.5.1. Methodology 

First of all, the methodology used for the evaluation of fragility curves for 

the case study structures is illustrated. 

A fragility curve represents a relationship between a seismic intensity 

parameter and the corresponding probability of exceedance of a given damage 

threshold (typically represented by a displacement capacity). If PGA capacity 

is ―observed‖ in a population of buildings, according to a frequentist approach 

the cumulative frequency distribution of these observations provides the 

fragility curve (based on PGA seismic intensity measure) for that population of 

buildings and for that Limit State, based on the definitions themselves of 

fragility curve and PGA capacity. In this Chapter, such population of buildings 

is generated by a number of samplings of some Random Variables – which are 

input parameters to the determination of the PGA capacity (e.g., material 

characteristics or capacity parameters) – defined by Probability Density 

Functions describing the expected values and the corresponding variability, 

according to a Monte Carlo simulation technique. A stratified sampling of 

Random Variables is executed through the Latin Hypercube Sampling (LHS) 

technique (McKay et al., 1979), assuming a ―median‖ sampling scheme 

(Vorechovsky and Novak, 2009). Nevertheless, it would be too 

computationally demanding to carry out a SPO analysis (for calculating the 

PGA capacity) for each sample of the chosen Random Variables. Hence, a RSM 

is applied (Pinto et al., 2004), assuming a second-order polynomial relationship 

between the PGA capacity, assumed as the scalar output variable, and the 

selected Random Variables, assumed as input variables. The design of 

experiments needed to determine such relationship is carried out according to 

the Central Composite Design (CCD) method. Hence, the number of 

experiments adds to n=1+2k+2k, if k input variables are assumed. In our case, 

the input variables are the Random Variables selected for the sensitivity 

analysis; in addition, the strength reduction factor R evaluated from R--T 

relationship is assumed as a Random Variable, too. The estimate of the 

uncertainty in the evaluation of R – given a value of  corresponding to the 

ductility capacity at a given LS – derives from the record-to-record variability 

observed in the results of the nonlinear dynamic analyses carried out on SDoF 
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systems (with several records) to obtain such R--T relationships. Hence, the 

strength reduction factor R is treated as a Random Variable: the value of R 

calculated by means of the given R--T relationship is assumed as the median 

value, and the corresponding variability is taken into account by assuming the 

lognormal standard deviation R as a function of , depending on the 

characteristics of the SDoF backbone, from (Vamvatsikos and Cornell, 2006). It 

is to be noted that the assumption of R as a Random Variable does not imply 

the execution of further SPO analyses. In order to apply the illustrated 

procedure, the considered input variables are represented by the Random 

Variables normalized to their median values (see Table 3.6). 

 

Variable Distribution Median Value CoV (SLD) CoV (GLD) 

fc Lognormal 1 0.20 0.31 

fy Lognormal 1 0.06 0.08 

y Lognormal 1.015 0.331 0.331 

u Lognormal 0.995 0.409 0.409 

Finfill Lognormal [1;1] [0.30;0.30] [0.30;0.30] 

Dinfill Lognormal [1;1] [0.30;0.70] [0.30;0.70] 

R Lognormal 1 f() f() 

Table 3.6. Random Variables assumed to evaluated fragility curves 

 
Hence, the number of experiments adds to n=1+2·7+27=143 (if infills are 

present, as in Uniformly Infilled and Pilotis frames) or 1+2·5+25=43 (if infills 

are not present, as in Bare frame) for each case study, in each direction. Note 

that the results of the SPO analyses carried out with the sets of values 

corresponding to the 2·k ―star points‖, whose position is assumed at a distance 

of 1.7 times the standard deviation from the centre of design (Liel et al., 2009), 

was illustrated in the sensitivity analysis. 

The resulting PGA capacity data allow to estimate the second-order 

polynomial relationship between the PGA capacity and the assumed Random 

Variables. Subsequently, a LHS of the k=7 considered Random Variables is 

carried out, thus obtaining m sets of values of these variables. In particular, 

m=1000 samplings are executed. The m×k obtained sampling matrix is used to 

estimate – through RSM – the corresponding m values of PGA capacity. This 

procedure is carried out 12 times for each case study structure (note that the 

same sampling matrix is always used; obviously in Bare frame only 5 of the 7 
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columns of the matrix are used). The corresponding cumulative frequency 

distributions of the obtained PGA capacity values provide the 12 fragility 

curves for Uniformly Infilled, Pilotis and Bare frames, in X and Y directions 

and at DL and NC LSs for each case study structure. Results are illustrated in 

the following. The comparison between the median values of the fragility 

curves reported herein has been actually already carried out through the 

observations reported above, when comparing the seismic capacities of 

Uniformly Infilled, Pilotis and Bare frames referring to Models#1 (median 

values for each Random Variable) for each case study. From a qualitative 

standpoint, the slope of the fragility curves – representing the variability 

associated with the seismic capacity – depends on the amount of variation in 

PGA capacity with the variation in each Random Variable, shown in the 

sensitivity analysis. Lower this amount, lower the change in PGA capacity 

with the change in Random Variables, less sensitive the PGA capacity to the 

modeled uncertainties, steeper the fragility curve (as often happens, for 

instance, at DL Limit State). Moreover, further variability due to the variability 

of the strength reduction factor R affects all of the fragility curves, but to a 

different extent: larger the ductility capacity at the LS of interest, larger the 

variability of the corresponding strength reduction factor R, larger the increase 

in the variability of PGA capacity. 

 

3.5.2. Analysis of results 

4-storey GLD: If fragility curves at NC LS in X direction are observed (see 

Figure 3.17a), a quite close median seismic capacity is noted between 

Uniformly Infilled and Pilotis frames, whereas the Bare frame results as the 

more vulnerable. Fragility curves at DL LS in X direction highlight the 

beneficial effect of uniformly distributed infills on the seismic capacity at this 

LS, that is, for relatively low seismic demand. Moreover, it is observed how in 

this case the detrimental effect of localization in displacement demand leads to 

a lower capacity of the Pilotis frame, compared with the remaining ones. 

Nevertheless, the relatively low slope of the fragility curve for the Uniformly 

Infilled frame reflects the particularly high influence of the uncertainty in 

mechanical properties of infill panels on the seismic capacity of this frame at 

DL. In Y direction the fragility curves at NC LS highlight that the best seismic 

performance is provided by the Uniformly Infilled frame. Moreover, also in Y 
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direction the beneficial effect of the increase in stiffness and strength provided 

by uniformly distributed infills on the seismic capacity at DL LS is clearly 

shown. 

 

8-storey GLD: If fragility curves at NC LS in X direction are observed (see 

Figure 3.17b), a closer median seismic capacity respect to the previous case is 

noted between all the infilled configurations, thus highlighting the lower 

influence of infills on the 8-storey case study structures. Fragility curves at DL 

LS in X direction highlight the beneficial effect of uniformly distributed infills 

on the seismic capacity at this LS, similarly to the 4-storey GLD case study 

structure, whereas a quite close median seismic capacity is noted between Bare 

and Pilotis frames. Again, the relatively low slope of the fragility curve for the 

Uniformly Infilled frame reflects the particularly high influence of the 

uncertainty in mechanical properties of infill panels on the seismic capacity of 

this frame at DL. In Y direction, respect to the previous case, the fragility 

curves show that (i) at NC LS, seismic performance of Pilotis is better 

compared with the Bare frame and (ii) at DL LS, Bare frame is less vulnerable 

than the Uniformly Infilled frame. 

 

4-storey SLD: Fragility curves at NC LS in X direction (see Figure 3.18a) 

highlight the beneficial effect of uniformly distributed infills on the seismic 

capacity and the detrimental effect of localization in displacement demand 

leading to a lower capacity of the Pilotis frame, compared with the remaining 

ones. At DL LS, in both directions, seismic performance of Bare frame is better 

compared with the other infilled frames. 

 

8-storey SLD: Fragility curves at NC LS in both directions (see Figure 3.18b) 

highlight the beneficial effect of uniformly distributed infills on the seismic 

capacity whereas a quite close median seismic capacity is noted between Bare 

and Pilotis frames, at this LS. At DL LS, in both directions, seismic 

performance of Bare frame is better compared with the infilled frames. 
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Figure 3.17. (a) Fragility curves – GLD case study structures 
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Figure 3.17. (b) Fragility curves – GLD case study structures  
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Figure 3.18. (a) Fragility curves – SLD case study structures 
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Figure 3.18. (b) Fragility curves – SLD case study structures 

 

 

Fragility curves can be fitted by lognormal cumulative distributions: 

parameters are reported in Table 3.7, with    ̅̅ ̅̅ ̅̅  and PGA representing the 

estimated median (expressed in (g)) and logarithmic standard deviation of 

PGA capacity, respectively.  

The latter provides an useful indication about the overall sensitivity of 

seismic capacity to the variability of the parameters mainly influencing the 

seismic response. 
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3.5.2.1 A comparison between fragility analysis and observed 
damage  

The most recent Italian earthquakes could be considered in order to carry 

out a comparison between observed damage and fragility analysis, e.g. 

L‘Aquila (6th April 2009) event. 

The most representative case of existing structures in Italian building stock 

among those analyzed in this Chapter could be the 4-storey GLD Uniformly 

Infilled or Pilotis structures.  

As far as the fragility analysis is concerned, a unique fragility curve for each 

LS independent of the direction can be obtained (for each experiment carried 

out to obtain the fragility curve the minimum PGA capacity between 

longitudinal and transverse directions is considered) and the failure 

probability Pf at each LS corresponding to the PGA of the event can be 

evaluated. 

On the other hand, damage observed during L‘Aquila earthquake can be 

analyzed through AeDES forms (―scheda di 1° livello di rilevamento danno, 

pronto intervento e agibilità per edifici ordinari nell‘emergenza post-sismica - 

AeDES 05/2000‖, Presidenza del Consiglio dei Ministri Dipartimento 

Nazionale della Protezione Civile) filled immediately after the 6th April 2009 

event. Such forms contain information about geometry, structural typology, 

structural and non-structural damage of the surveyed buildings in the 

epicentral area and they express a ―safety judgment‖: ―A‖ (practicable 

building); ―B‖ (temporally impracticable building); ―C‖ (partially  

impracticable building); ―D‖ (building requiring a deeper investigation); ―E‖ 

(impracticable building), ―F‖ (impracticable building because of external 

danger). 

In particular, the case of Pettino (AQ) is analyzed, taking a sample of 305 RC 

surveyed structures (Pitilakis, 2012).  

Pettino (AQ) is very close to the stations ID AQV-Recorder identifier 

GX066- and ID AQG-Recorder identifier FA030- that recorded the highest PGA 

values in the epicentral area of L‘Aquila earthquake, equal to 0.61 g and 0.43, 

respectively (Iervolino et al., 2010). 

The comparison between the observed damages and fragility analysis is 

more appropriate at DL LS, thanks to the most evident damage that occurred 

in infill panels during the event and also because the greatest part of the 

collapses identified in L‘Aquila buildings after the event can be classified as 
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brittle failure mechanisms (Ricci et al, 2010; Verderame et al, 2010a) – neglected 

in the present study. 

Thus, at DL LS, for the Uniformly Infilled structure, Pf – obtained from the 

related fragility curve – ranges from 0.92 to 0.99 (Figure 3.19a) when the PGA 

ranges from 0.43 g to 0.61 g. Moreover, an equivalence between the 

achievement of the conventional DL LS and the AeDES result ―B‖ is assumed, 

based on the description of the damage associated to this ―safe judgment‖ 

(―Manuale per la compilazione della scheda di 1° livello di rilevamento danno, 

pronto intervento e agibilità per edifici ordinari nell‘emergenza post-sismica 

(AeDES)‖, Presidenza del Consiglio dei Ministri Dipartimento Nazionale della 

Protezione Civile). In a frequentist approach, the failure probability at DL LS 

related to 4 storey RC buildings observed during the earthquake can be 

compared with the percentage of the 4-storey RC buildings that obtained an 

AeDES result equal to ―B‖, ―C‖ or ―E‖ (―D‖ result is never assigned to the 

sample structures). This percentage is equal to 95% (Figure 3.19b). It is worth 

noting that only 4-storey RC structure with regularity in plan and infill 

distribution are considered among the sample of surveyed structures (Pitilakis, 

2012) in order to carry out a comparison with the case study structure analyzed 

in the Chapter. In conclusion, the observation of damage produced during 

L‘Aquila earthquake – evaluated through AeDES forms - seems to be in 

agreement with the estimated Pf – derived from the fragility analysis for the 

considered LS. 

(a) (b) 

Figure 3.19.Fragility curve at DL LS structure independent on direction – 4 storey GLD 
(a); AeDES results –4 storey RC structures with regularity in plan and infill 

distribution (b) 
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3.5.3. Evaluation of failure probability 

A comparison between DL and NC LSs can be carried out also in terms of 

failure probability. The failure probability (Pf) of a structural system 

characterized by a resistance R under a seismic load S can be evaluated as 

(  ( f S R

0

P f S F S dS



   (3.10) 

where fS(S) is the Probability Density Function (PDF) of the seismic intensity 

parameter and FR(S) is the probability that the resistance R is lower than a level 

S of seismic intensity. Hence, FR(S) is represented by a fragility curve, whereas 

the PDF of the seismic intensity S – in a given time window – is obtained from 

seismic hazard studies: based on the seismic hazard data provided by (INGV-

DPC S1, 2007) for the Italian territory, if the coordinates of the site of interest 

are given, PGA values corresponding to different return periods (TR) can be 

determined. Hence, given a PGA value, the corresponding TR(PGA) can be 

calculated. Finally, given a time window (VR), the exceeding probability of the 

same PGA is given by the Poisson process: 

(  ( 
R

R

R

V

T PGA

VP PGA 1 e


   (3.11) 

In the procedure described herein, PGA is assumed as seismic intensity 

parameter S, FR(S) is represented by the calculated fragility curves (assuming a 

linear interpolation between subsequent values of PGA) and fS(S) is derived 

from PVR(PGA), by calculating the PDF of PGA corresponding to the 

Complementary Cumulative Distribution Function (CCDF) of PGA 

represented by PVR(PGA). Hence, the failure probability Pf is calculated 

through Eq (3.10), by means of a numerical integration based on Simpson 

quadrature. Failure probabilities at DL and NC LSs are calculated for each 

frame, based on the fragility curves previously obtained and the seismic 

hazard described by the PGA exceeding probability in 50 years, obtained from 

(INGV-DPC S1, 2007) for the site of interest (Lon.: 14.793, Lat.: 40.915). 
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Figure 3.20. Failure probabilities Pf in 50 years for SLD and GLD case study 
structures 
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The failure probabilities Pf calculated for a time window of 50 years are 

reported in Figure 3.20 and in Table 3.8 for each case study structure, showing 

a direct comparison between different infill configurations, number of stories, 

considered directions and LSs. 

It is worth noting that the effect of the uncertainties on the seismic capacity 

can be clearly observed when the comparison between seismic capacities in 

terms of median PGA capacity at a certain LS is not reflected by the 

comparison between the corresponding failure probabilities at that LS. For 

example, 8-storey SLD case study structure at NC LS in longitudinal direction 

can be considered: even if the expected (median) PGA capacity of the 

Uniformly Infilled model at NC LS is higher than the corresponding PGA 

capacity of the Bare model (see Table 3.7), the failure probability at NC LS is 

higher for the Uniformly Infilled (see Table 3.8), because of the lower slope of 

the fragility curve, that is, the higher logarithmic standard deviation of PGA 

capacity (see Table 3.7) characterizing this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

Influence of infill distribution and design typology on seismic performance of RC buildings 

 

121 

T
a

b
le

 3
.8

. 
F

ai
lu

re
 p

ro
b

a
b

il
it

ie
s 

P
f i

n
 5

0
 y

ea
rs

 f
o

r 
S

L
D

 a
n

d
 G

L
D

 c
a

se
 s

tu
d

y
 s

tr
u

ct
u

re
s 

G
ra

v
it

y
 L

o
a

d
 D

e
si

g
n

 

8
 s

to
re

y
s 

N
C

 

0
.0

0
27

 

0
.0

2
16

 

0
.0

0
17

 

0
.0

2
15

 

0
.0

0
14

 

0
.0

0
4 

D
L

 

0
.0

8
27

 

0
.1

5
5 

0
.1

6
01

 

0
.2

2
67

 

0
.1

3
89

 

0
.0

5
88

 

4
 s

to
re

y
s 

N
C

 

0
.0

0
64

 

0
.0

0
63

 

0
.0

0
39

 

0
.0

0
73

 

0
.0

0
55

 

0
.0

0
78

 

D
L

 

0
.0

1
87

 

0
.0

6
53

 

0
.1

6
26

 

0
.1

8
26

 

0
.0

7
6 

0
.1

5
49

 

S
e

is
m

ic
 L

o
a

d
 D

e
si

g
n

 

8
 s

to
re

y
s 

N
C

 

0
.0

0
14

 

0
.0

0
89

 

0
.0

0
37

 

0
.0

0
84

 

0
.0

0
11

 

0
.0

0
12

 

D
L

 

0
.1

6
6 

0
.2

5
51

 

0
.1

7
11

 

0
.2

7
51

 

0
.0

5
26

 

0
.0

4
7 

4
 s

to
re

y
s 

N
C

 

0
.0

0
11

 

0
.0

0
37

 

0
.0

0
15

 

0
.0

0
39

 

0
.0

0
2 

0
.0

0
14

 

D
L

 

0
.0

9
39

 

0
.1

9
34

 

0
.0

9
98

 

0
.1

6
25

 

0
.0

2
64

 

0
.0

2
49

 

  

 

x
 

y
 

x
 

y
 

x
 

y
 

  

U
I 

P
 

B
 

 



Influence of infill distribution and design typology on seismic performance of RC buildings 

 

122 

3.6 Summary 

In this Chapter, the effect of main parameters influencing the seismic 

capacity of the case study structures has been investigated through a 

sensitivity analysis. Such analysis has shown that the rotational capacity of 

columns, directly influencing the displacement capacity, has the highest 

influence on the PGA capacity at NC for all of the investigated structures. 

Concrete compressive strength significantly influences the capacity at collapse, 

too, through its influence on the rotational capacity of columns. As far as PGA 

capacity at DL LS is concerned, mechanical characteristics of infills have the 

highest influence on the response of the Uniformly Infilled frame, which is 

assumed to attain the DL LS when the first infill in a storey reaches its 

maximum resistance, whereas for Pilotis and above all for Bare frames also 

steel yield strength has a relatively high influence on PGA capacity at DL, since 

this LS can be due to the first yielding in RC members. Presence of infills 

significantly influences the collapse mechanism even if the Bare structure is 

designed according to Capacity Design principles.  

As far as the comparison between three different infill configurations is 

concerned, some conclusions can be drawn:  

 at NC LS, a beneficial effect on PGA capacity generally exists when a 

regular distribution of infill panels is considered, whereas a detrimental effect 

is shown by structures with an irregular infill distribution;  

 at DL LS, the above mentioned beneficial effect is not observed for SLD 

structures;  

 displacement capacity, as expected, is higher for bare structures both in 

longitudinal and transverse directions at each LS;  

 in SLD structures the presence of infills can significantly change the 

(global) collapse mechanism expected for structures designed according to 

Capacity Design, thus influencing displacement, ductility and PGA capacities.  

The fallowing conclusions can be drawn from a comparison between 

different design typologies:  

 seismic performances of GLD structures are more affected in terms of 

PGA capacity by infill panels respect to SLD structures, especially for low-rise 

structures;  

 SLD structures generally show the best seismic performances at NC LS;  

 as far as Uniformly Infilled configurations are concerned, GLD 

structures show the highest PGADL;  
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 exceptions to the above conclusions are the cases (for eight-story 

structures) in which there is a concentration of displacement demand at 

bottom floors leading to an increase in PGANC due to a stiffening of the multi-

linearized SPO curve.  

Moreover, the same trends are shown by four- and eight-story structures. It 

is worth noting that eight-story structures  

 have a greater variability in collapse mechanisms depending on infill 

configuration, input parameters and design typology; 

 they are less affected by infill presence in terms of PGADL. 

It has been pointed out the great importance of infills and their mechanical 

properties, especially at low level of seismic demand, namely at Damage 

Limitation Limit State, both for structures designed only for gravity-loading or 

according to new seismic codes provisions, thus highlighting the necessity of a 

deeper investigation towards this direction in developing new procedures to 

account for infill presence directly or indirectly via the more widespread kind 

of analyses (linear analyses), as it will be shown in Chapter 4. 

Fragility curves were obtained for each case study structure, through the 

application of a Response Surface Method. In order to apply this procedure, 

the considered input variables were represented by the same Random 

Variables already used for the sensitivity analysis in addition to the strength 

reduction factor R, whose variability was taken into account by assuming the 

logarithmic standard deviation as a function of the ductility. Moreover, 

fragility curves were fitted by cumulative lognormal distributions. Analysis of 

seismic vulnerability and its dependence on the Random Variables‘ variability 

was performed in detail for each case study structure. Then, failure 

probabilities in the reference time period of 50 years were evaluated in order to 

underline the difference between seismic performances of each case study 

structure. 

Moreover, it should be pointed out that special attention should be 

addressed to the potential brittle failure mechanisms due to the local 

interaction between masonry infills and structural RC elements and potential 

out of plane failures – which have not been accounted for herein – especially 

for existing RC buildings that have not been designed adopting general 

principles and detailing rules prescribed by modern seismic codes according to 

Capacity Design philosophy. 
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Chapter 4  

LIMITATION OF DAMAGE TO INFILL PANELS 

IN SEISMIC DESIGN AND ASSESSMENT OF RC 

FRAMES VIA LINEAR METHODS 
 

 

 

 

 

Recent earthquakes and numerical studies have demonstrated that the 

presence of infills in Reinforced Concrete buildings cannot be disregarded. In 

this Chapter the attention is focused on the limitation of damage to infill panels 

at Damage Limitation Limit State. 

Nonlinear Incremental Dynamic Analyses are carried out on structural 

models with infills in order to evaluate the intensity measure level 

corresponding to the achievement of Damage Limitation Limit State. Then, the 

results of such analyses are used as a reference to propose modeling and 

analysis tools to be used for seismic design or assessment of infilled Reinforced 

Concrete frames at Damage Limitation Limit State, both in the case in which 

infills are explicitly modeled or not. 

First, the estimation of the ―equivalent‖ Interstorey Drift Ratio capacity on 

the corresponding bare model is carried out. Then, the effective stiffness of 

infill panels to be used in linear analysis (which nowadays is still a widespread 

method, especially for seismic design of new structures) for seismic assessment 

at Damage Limitation Limit State is evaluated. The estimation of a 

displacement limit capacity for a bare model in the context of linear analyses 

and the research of the effective stiffness of infills in the ―true‖ infilled model 

are carried out through two procedures described in this Chapter.  

The results of the application of these procedures for four- and eight-story 

infilled frames, designed for seismic loads - according to the current Italian 

technical code - and for gravity load only - according to an obsolete technical 

code - are presented and discussed.  
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4.1 Introduction 

The observation of damage to infilled RC buildings after recent earthquakes 

(e.g. L'Aquila 2009, Emilia 2012) and numerical studies such as those reported 

in the previous Chapter, have demonstrated that the presence of infills in 

Reinforced Concrete (RC) buildings cannot be disregarded. Infills are usually 

assumed as partition elements without any structural function, but they have a 

significant influence on the increase in lateral stiffness and, consequently, on 

the reduction in period of vibration, on base shear capacity, on possible brittle 

failure mechanisms in joints and columns due to local interaction between 

panels and the adjacent structural elements, and on the building collapse 

mechanism. 

This issue was investigated during last years (see Section 2.1.3) supported 

by numerical (Dolsek et al. 2001, 2002, 2004, 2006, 2008a, 2008b, Celarec et al 

2012, Dymiotis et al 2001, Celarec and Dolsek 2009, Ricci et al. 2012a, 2012b, 

2013) and experimental analyses (Negro and Colombo 1997, Fajfar and 

Drobnic 1998, Negro and Verzelletti 1997, Pinto et al. 2002, Hak et al. 2012, 

Mehrabi et al. 1994, Crisafulli et al. 1997, Colangelo et al 2005), regarding both 

the influence of infills on the global seismic performance of infilled structures 

and local effects due to the interaction between infill panels and surrounding 

RC frames.  

In Chapter 3, the effect of mechanical properties of infills and RC 

influencing the seismic capacity of infilled RC structures has been investigated 

also through sensitivity analyses (see also Celarec et al, 2012, Ricci et al 2012a, 

Ricci et al 2013). Such analyses have shown that the rotational capacity of RC 

columns and concrete compressive strength have the highest influence on the 

seismic capacity at high level of displacement demand; whereas, as far as 

seismic capacity at low level of displacement demand is concerned, e.g. at 

Damage Limitation (DL) Limit State (LS), mechanical characteristics of infill 

panels have the highest influence on the response of uniformly infilled frames 

(Ricci et al 2012a, Ricci et al 2013). Thus, the contribution of infills to the lateral 

seismic response in terms of strength and stiffness significantly changes with 

the displacement demand: displacement and drift demand significantly 

decrease if infills are explicitly taken into account in the numerical model with 

respect to the corresponding bare frame, but such a reduction depends on 

strength and stiffness properties of infills and it is more significant at DL LS 
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than at Ultimate LS (when infills are already extensively damaged). At DL LS 

the presence of infill panels produces a reduction in displacement capacity 

compared with the corresponding bare structure, due to the assumption of 

displacement capacity limits accounting for the damage affecting these 

elements; if such detrimental reduction is not counterbalanced by the 

beneficial increase in stiffness and strength provided by infill panels, a 

reduction in seismic capacity can be observed (Ricci et al. 2012b). 

Since the great importance of infills at low level of displacement demand, it 

is worth deeper investigating about their influence on seismic performance of 

RC frames under seismic action characterized by low return periods.  

In particular, in this Chapter, the attention is focused on DL LS. DL LS is 

intended to limit the costs of reparability and, therefore, the damage which 

occurs at this LS to elements designed without any structural function, such as 

infill panels, should be properly limited.  

 

If infills were explicitly included into the structural model, the limitation of 

damage which occurs to them could be obtained directly limiting the IDR 

demand of the ―true‖ infilled structure to the IDR capacity of the infill panels. 

To this end, a definition of such a IDR capacity is necessary. In literature, there 

are several experimental studies conducted on infilled RC frames that can 

allow to draw a qualitative description of damage occurring to infills at DL LS 

and to translate the degree of damage to unreinforced masonry infill panels 

into an IDR threshold (or IDR range). 

Vice-versa, if the presence of infill panels is neglected in the structural 

model – as generally happens in the design of a new structure – damage 

occurring to infills can be limited in structural analyses through the limitation 

of the IDR demand on the bare structure. 

In particular, if there are no non-structural elements that follow the 

deformations of the structural system, no damage to infills can be due to the 

deformation of the surrounding frame; therefore, it is expected that IDR 

threshold can be completely independent on infill properties. On the opposite 

side, if infill panels are rigidly connected to the surrounding structural frame, 

IDR threshold should be strictly related to their properties and, in particular, to 

their displacement capacity. 

In accordance with this simple reasoning, seismic codes throughout the 

world (CEN 2005, Decreto Ministeriale 2008, ASCE-SEI/41) propose an IDR 
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threshold at DL LS on the bare structure whose value depends on the kind of 

partitions, and, in particular, on the relative degree of connection between 

structural and non-structural elements. In particular, the lower the degree of 

connection between non-structural elements and structural frame, the larger 

the IDR threshold; moreover, the more ―ductile‖ the behavior of non-structural 

elements, the larger the IDR threshold.  

It can be supposed that such IDR thresholds proposed by codes for a bare 

structure are defined on the basis of an implicit equivalence between the ―true‖ 

infilled structure and the ―equivalent‖ bare structure. Actually, from a 

theoretical point of view, the limit of IDR demand on the bare structural model 

can be interpreted as ―equivalent‖ to the IDR directly evaluable on the ―true‖ 

infilled structure; such ―equivalent‖ IDR is the IDR capacity that should be 

assumed when using a numerical bare model in order to obtain a reliable 

estimate of intensity measure (IM) capacity at DL LS, that is, the same IM 

capacity obtained using a ―true‖ infilled model. 

Therefore, seismic capacity assessment or design at DL LS can be performed 

on the ―true‖ infilled numerical model or, alternatively, on the ―equivalent‖ 

bare structural model. Depending on the numerical model which is adopted, 

the displacement threshold at DL LS should be different, and, in particular, 

higher for the bare structural model, intensity measure capacity at the 

investigated LS being equal, because of its lower strength and stiffness with 

respect to the corresponding infilled model. 

Moreover, if the designer would explicitly introduce infills in the structural 

model to perform linear analyses to account for their damage level, infills have 

to be properly modeled – especially in terms of stiffness – and a displacement 

limit directly correlated to their damage should be assumed. 

Information and provisions about these aspects provided by technical codes 

are quite poor. In particular, further efforts to extend the concept of drift 

limitation to obtain some comprehensive design criteria for RC structures, 

explicitly depending on strength and stiffness properties of infill panels, 

should be produced. 

 

In this Chapter, a more realistic way to perform the design of new 

structures – including the evaluation of damage occurring to infill panels – but 

also in the assessment of the existing structures – when assessment at DL LS is 

explicitly required – is proposed within the context of linear analyses. 
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The first issue which is investigated is related to the assessment of bare 

structural models: a procedure is proposed and applied aiming at the 

estimation of the ―equivalent‖ displacement limit capacity on the bare model 

depending on the mechanical properties of the infilled frame. 

The second issue is related to the assessment of infilled structural models: a 

procedure is proposed for the estimation of an effective stiffness of infill panels 

to be used in linear analysis for seismic assessment at DL LS, thus allowing to 

explicitly include these elements also within this kind of analysis approach, 

which nowadays is still a widespread method, especially for seismic design of 

new structures.  

Finally, the results of the application of these procedures for four- and 

eight-story infilled frames, designed for seismic loads according to the current 

Italian technical code, and for gravity load only, according to an obsolete 

technical code, are presented and discussed. 

 

4.2 Code provisions and literature review 

According to a performance-based approach, modern seismic codes define 

performance levels aimed at avoiding collapse under major earthquakes and 

ensuring control and limitation of damage under more frequent but less severe 

earthquakes, in order to minimize economic and functionality losses. The latter 

objective is addressed by serviceability requirements expressed by Damage 

Limitation Limit State and Immediate Occupancy Performance Level (PL) in 

European and US standards, respectively (CEN 2005, ASCE-SEI/41, CEN 

2004). DL LS and IO PL can be considered as corresponding to each other; both 

of them, for an ordinary building, should be verified for a 225yrs return period 

earthquake (CEB 2003). 

In the following, performance requirements and acceptance criteria 

provided by seismic codes are illustrated; then, drift capacity limits are 

analyzed. To this end, data from literature are reported and discussed. 

 

4.2.1. Code provisions on infill modeling and acceptance criteria  

According to Eurocode 8 provisions for new buildings CEN 2004 at Damage 

Limitation LS the costs of damage should not be ―disproportionately high‖ in 
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comparison with the costs of the structure itself; for existing buildings CEN 

1998 non-structural components, such as partitions and infills, may show 

distributed cracking but the damage could be economically repaired, 

permanent drifts should be negligible, and the structure should not need any 

repair measures. 

According to ASCE/SEI 41 provisions for existing concrete buildings ASCE-

SEI/41 Immediate Occupancy PL is assumed to be reached in unreinforced 

masonry infill walls when minor (< 1/8-in. width) cracking of masonry infills 

and veneers and minor spalling in veneers at a few corner openings occur; 

0.1% is provided as an indicative value of the typical range of drift 

corresponding to such damage; permanent drifts should be negligible (Section 

§C1.5.1). According to FEMA 274 (1997) at 0.1% drift minor cracking along bed 

joints develops for weaker mortars, or diagonal cracks form across a panel for 

stronger mortars; these cracks may be noticeable, but no structural repair 

would be necessary. 

 

Such requirements need to be translated in acceptance criteria for individual 

masonry infill panels when carrying out a seismic assessment. Two alternative 

approaches are adopted: 

- a ‖direct‖ approach, based on the explicit modeling of masonry infills 

by means of elements added to the numerical model, usually consisting of 

equivalent struts; in this case, drift demand on infill panels is compared with 

the corresponding capacity provided by acceptance criteria; 

- an ―equivalent‖ approach, allowing to carry out the seismic assessment 

on a bare numerical model; in this case, an ―equivalent‖ IDR capacity is 

assumed, that should ideally provide the same results – in terms of seismic 

safety check – obtained when using the ―direct‖ approach. 

 

If a ―direct‖ approach is adopted, Eurocode 8 does not provide full 

indications for infill modeling, nor for drift capacity limits, whereas the Italian 

―Circolare Esplicativa‖ (§C8.7.2.1) allows to assume the IDR capacity at DL LS 

equal to the value provided for masonry (i.e., 0.3% for unreinforced masonry). 

On the contrary, ASCE/SEI 41 (§7.4) provides much more complete guidelines 

to model and assess the response of unreinforced masonry infill walls. The 

lateral stiffness of the wall is evaluated according to Mainstone‘s formula  

(Mainstone, 1971); for nonlinear analysis procedures, the load-drift response of 
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the wall is assumed to be perfectly plastic after shear strength is reached. 

Deformation capacity is assumed to increase with the ratio of frame to infill 

strengths, and with the slenderness of the infill wall. Acceptance criteria for 

linear analysis procedures indicate that at IO PL some inelastic deformations 

can occur, thus allowing some minor cracking of the infill panels (FEMA 274, 

§C7.5.2.3(A)).  

 

If an ―equivalent‖ approach is adopted (that is, if stiffness and strength 

contributions of infill walls are neglected in the numerical analysis) all of the 

above mentioned seismic codes provide equivalent IDR capacity values 

fictitiously higher than the actual deformation capacity of the infill wall. 

Eurocode 8 – part 1 suggests to limit the IDRs to 0.5%, if the story has brittle 

non-structural elements attached to the structure (notably, ordinary masonry 

infills), or 0.75%, if the story‘s non-structural elements are ―ductile‖, or 1%, 

when there are no non-structural elements that follow the deformations of the 

structural system. Very similar provisions are provided by Italian seismic code 

Decreto Ministeriale 2008.  

In ASCE/SEI 41 (§11.9.2) nonstructural (that are not explicitly modeled and 

assessed as structural elements) ―heavy‖ masonry partitions are checked at IO 

PL for 0.5% IDR. 

 

It is worth highlighting that, both in ―direct‖ and ―equivalent‖ approaches, 

another important modeling issue arises if a linear method of analysis is 

adopted, that is the choice of the stiffness assumed for structural (both in 

―direct‖ and in ―equivalent‖ approaches) and non-structural (in ―direct‖ 

approaches) elements in order to take into account, also in linear analyses, at 

Serviceability LSs, the influence of first cracking which occurs also for low 

level of seismic demand. In particular, in the ―direct‖ approach, literature and 

code provisions regarding this issue for non-structural elements are much 

more limited in comparison with provisions related to RC members. Generally 

speaking, the estimation of such ―effective‖ stiffness should depend on 

displacement demand on the structural elements, and thus it should be 

different for each element in the structure, depending on the level of 

displacement demand involving each of them. However, this kind of – 

necessarily iterative – procedure should require a computational demand 

which seems to be not compatible with the level of approximation that 
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implicitly characterizes a linear analysis. Hence, for a RC structure, when an 

effective stiffness is employed for a linear analysis, a unique value of 

degradation of the elastic stiffness (pre-cracking) is usually applied to RC 

members. 

As far as RC structural members are concerned, several indications are 

provided. Some authors (e.g., Panagiotakos and Fardis, 1999) suggest to use 

the secant-to-yielding stiffness in order to predict displacement and forces 

demand with a good approximation with respect to a nonlinear analysis, as far 

as ultimate limit states are concerned. EC8-part 1 CEN 2004 prescribes an 

effective stiffness equal to one-half of the corresponding elastic one, often 

overestimating the secant-to-yielding stiffness (Fardis, 2009); such an 

overestimation obviously implies a non-conservative underestimation of the 

displacement demand. Thus, in EC8-part 3 CEN 1998 the adoption of a secant-

to-yielding stiffness is explicitly suggested for checks in terms of 

displacements. ASCE-SEI 41/06 – Supplement I ASCE-SEI/41 suggests to use 

the secant-to-yielding stiffness, too, and the value of the effective stiffness for 

RC members depends on the kind of element and the axial load ratio. New 

Zealand standards (NZS 3101, 2006) prescribe a value of effective stiffness 

which not only depends on the kind of element and the axial load ratio, but 

also on the considered LS, on the ductility capacity at Ultimate LS, and on the 

steel yield strength. 

In the ―direct‖ approach context, when infills are modeled for a linear 

analysis, the evaluation of their stiffness is a key point. Such ―effective‖ 

stiffness should ideally account for stiffness degradation due to first cracks and 

detachments between the infill and the surrounding frame. Nevertheless, quite 

poor provisions can be obtained from literature or technical codes about this 

issue for infills. 

If an equivalent strut approach is adopted, the problem of evaluating the 

stiffness assumed for the infill panel is translated into the determination of the 

strut width. EC8-part 1 CEN 2004 does not provide a specific value of width-

to-length ratio for the equivalent strut. Paulay and Priestley (1992) suggest a 

value of this ratio equal to 0.25 in order to estimate the secant stiffness 

corresponding to a lateral load equal to 50% of the maximum load capacity of 

the infilled frame; in Fardis (2009) a width-to-diagonal length ratio equal to 

0.20 is proposed at DL LS, whereas a lower value (namely, 0.10-0.15) is 

suggested at Significant Damage LS. Moreover, as reported above, according 
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to ASCE/SEI 41 (§7.4), infills can be represented with equivalent diagonal 

compression struts, whose lateral stiffness should be evaluated according to 

Mainstone‘s formula (Mainstone, 1971). 

 

4.2.2. Literature review on drift capacity of unreinforced masonry 
infill panels  

The degree of damage to unreinforced masonry infill panels reported 

previously should be translated in drift (or drift range) provided by literature 

studies. Many difficulties arise from the fact that descriptions of damage levels 

reported by different authors are not fully consistent with each other, nor with 

performance levels provided by seismic codes. Moreover, any definition of 

limit state in terms of physical damage and feasibility of repair inherently is 

imprecise, qualitative, and open to individual judgment (e.g., ―minor‖ cracks 

or ―economically‖ repairable damage) (Colangelo, 2012, 2013a, 2013b). 

In the following, main literature studies investigating this issue are 

reported, in an attempt to draw conclusions as general as possible on typical 

range drift corresponding to the investigated performance level. 

In Rossetto and Elnashai (2003) a relationship between a Damage Index and 

the corresponding maximum IDR demand is proposed, based on dynamic 

experimental tests from literature; for infilled RC MRF, ―Light‖ damage – 

starting from cracking at wall-frame interfaces, followed by cracking at corners 

of openings up to diagonal cracking of walls with limited crushing of bricks at 

beam/column connections – occurs for Damage Index values corresponding to 

a drift range between 0.08% and 0.31%. 

In Gu and Lu, (2005), based on 140 specimens collected from literature, a 

―Functional‖ performance level is defined, corresponding to ―limited to minor 

cracks and falling of small pieces of plaster […] many noticeable cracks with 

limited length and width along the diagonal and around the foot corner […] 

only local repair work needed […] small economic loss‖; such damage is 

attained at a drift level equal to 0.25% and corresponding to the peak lateral 

load of the wall. 

Dolšek and Fajfar (2008) assume that Damage Limitation Limit State is 

attained when the last infill in a story reaches its peak load. Such condition is 

assumed to be reached at a story drift between 0.1% and 0.2%, depending on 

the slenderness of the panel and the presence of openings, these values being 
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in good agreement with the observed behavior in the pseudo-dynamic 

experimental test of the frame studied by the Authors (Pinto et al. 2002). 

In Hak et al. (2012) a masonry infill model is proposed, calibrated on the 

experimental results provided by Calvi and Bolognini (2001). The Damage 

Limitation Limit State, at which ―some infills are damaged but can be easily 

and economically repaired‖, is assumed to be attained between 0.2% and 0.3%, 

the latter drift corresponding to the peak load in the infill. In the reference 

work by Calvi and Bolognini (2001), > 2mm wide cracks and damage to brick 

units at corners were observed at 0.2% (see Figure 4.1a). 

In Özcebe et al. (2012) a numerical study on several different case-study 

existing RC frames with infills is carried out. Three Limit States for infills are 

defined, based on the attainment of different strain values in the equivalent 

struts. These values are based on literature studies providing typical material 

properties of Turkish type infill walls (Bal et al. 2007, 2008). The attainment of 

the strain at maximum stress in the infill is assumed as corresponding to the 

onset of non-negligible cracks, leading to ―relevant‖ financial loss. Such Limit 

State is found to be attained for a drift ratio equal to 0.10%. According to the 

Authors, this value is in line with the values reported by Griffith (2008) for the 

drift at which masonry infill cracks, i.e., between 0.07% and 0.3%, based on 

several data collected from literature. 

Behavior of masonry infilled RC frames and corresponding damage levels 

were widely investigated by Colangelo (2001, 2003, 2005, 2012, 2013, 2013a, 

2013b), through experimental and numerical studies. During last years, the 

Author focused his attention on the uncertainty in drift capacity at different 

damage states, accounting for the influence of qualitative and individual 

judgment on damage evaluation through a fuzzy-based approach. In 

Colangelo, 2013a and 2013b, 1st (Slight) and 2nd (Moderate) damage states, 

consisting of ―Onset of cracking in the bricks, associated with the first 

noticeable reduction of stiffness‖ and ―Extended, wide cracks in the infill wall, 

before its peak strength is reached‖ are attained at 0.03% and 0.35%, 

respectively. If fuzziness is accounted for, leading to a decrease in fragility, 

such drift limits increase to 0.04% and 0.49%. 

A summary of the analyzed drift ranges for DL LS from literature is 

reported in Figure 4.1b. 
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(a) (b) 

Figure 4.1. Example of experimental response of the unreinforced infilled RC frame 
(by Calvi and Bolognini, 2001) (a); IDR values corresponding to DL LS from literature 

(b) 

 

In this study, the following description of damage to unreinforced masonry 

infill walls is assumed as corresponding to the investigated performance level: 

“Minor (< 3mm) but distributed and visible cracks occur along mortar bed joints 

and/or brick units. The damage is more than aesthetic, but it is easily and economically 

repairable.” 

Based on the reported literature data, it can be concluded that such kind 

and extent of damage occurs for a typical drift range approximately between 

0.1% and 0.3%, close to the peak load of the infill panel. 

ASCE/SEI 41 provisions, illustrated previously, appear in line with this 

conclusions, on the safe side. 

 

4.3 Methodology 

As explained in the previous Sections, seismic capacity assessment or 

design at DL LS can be performed on the ―true‖ infilled numerical model or, 

alternatively, on the ―equivalent‖ bare structural model. 

It appears clear that the most widespread typology of numerical models 

which are used to approach structural analysis problems are bare structural 

models. Hence, the need to consider damage occurring to infills at DL LS also 

when using bare structural models leads to an ―equivalent‖ approach: an 

Drift 0.2%
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―equivalent‖ displacement threshold at this LS – to be used with bare models – 

has to be evaluated, depending on infills‘ and RC members‘ properties. 

On the other hand, when infills are modeled in a linear analysis approach, 

i.e. in the context of the ―direct‖ approach, the need to include infills into the 

numerical model leads to the research of the effective stiffness which should be 

assigned to such elements, or, if an equivalent strut approach is adopted, the 

determination of the strut width. 

The research of the equivalent displacement capacity, on one side, and of 

the effective stiffness of infills, on the other side, in the context of linear 

analyses is carried out through two procedures, proposed and described 

herein starting from Incremental Dynamic Analyses (IDAs) (Vamvatsikos and 

Cornell, 2002, 2004). 

In IDAs the non-linear infilled structural model is investigated through time 

history analyses under the action of a set of ground motion records; the non-

linear time-history analysis is repeated increasing the scale factor of the record, 

for each record, thus obtaining a relationship between a ground motion 

intensity measure (PGA or spectral acceleration Sa(T1,5%)) and an engineering 

demand parameter (maximum IDR in this case) for the structural model. IDAs 

are carried out on structural models explicitly including infills in order to 

evaluate the intensity measure level corresponding to the achievement of DL 

LS.  

Starting from IDAs, the procedure aiming at the estimation of the IDR 

threshold on the corresponding bare model is described in Section 4.3.1. 

Then, the research of the effective stiffness of infill panels to be used in 

linear analyses for seismic assessment at DL LS is analyzed in Section 4.3.2, 

thus allowing to explicitly include these elements also within this kind of 

analysis approach, which nowadays is still a widespread method, especially 

for seismic design of new structures. 

In the proposed methodology, a great importance is assumed by the 

definition of the investigated LS. The definition of DL LS has to be considered 

still an open issue (see Section 4.2); however, based on the analysis of the 

literature review on the drift capacity of unreinforced masonry infill panels 

(see Section 4.2.2), in this study, DL LS is assumed to occur when the peak 

displacement is reached in the first infill panel, thus starting to degrade, 

consistent with the damage level and IDR range characterizing this LS, as 

discussed in Section 4.2.2. It is worth noting that, even if a different definition 
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of IDR capacity at DL LS is adopted, the procedures described below are still 

valid. 

 

4.3.1. Bare model: equivalent IDR capacity  

In this Section, the procedure aiming at the estimation of a displacement 

limit capacity – in terms of IDR – on the bare model is described. Results from 

nonlinear IDAs are used as a reference, and a principle of equivalence between 

nonlinear analyses on infilled models and linear time histories on the 

corresponding bare ones in terms of PGA capacity at DL LS is applied. 

First of all, the non-linear infilled structural model is investigated through 

time history analyses under the action of the selected set of ground motion 

records, thus obtaining an IDA curve for each record in terms of peak IDR 

demand versus PGA. 

The attention is focused on the DL LS defined as dependent on a 

displacement capacity limit directly related to the damage to infill panels and, 

in particular, to the IDR corresponding to the achievement of the maximum 

strength in the first infill, IDRDL, as explained above. Thus the median value of 

PGA corresponding to this IDR threshold can be evaluated from the 

previously obtained set of IDAs. This value of PGA is the Intensity Measure 

(IM) capacity at DL LS of the infilled frame, PGADL (Step 1).  

Then, Linear Time-History (LTH) analyses are performed on the 

corresponding bare structural frame for each selected record (Step 2). Finally 

the median value of the maximum IDR is estimated at the IM level equal to 

PGADL, namely IDRDL,equiv is obtained (Step 3). Such a IDR represents the 

maximum interstory drift demand on the bare model at DL LS and it 

represents the goal of this procedure, hereinafter referred to as ―equivalent‖ 

IDR. 

In Figure 4.2 a schematic example of the procedure explained above is 

reported. The described procedure can be repeated for different values of 

effective stiffness chosen to model RC members in LTH analyses, thus 

obtaining different values of ―equivalent‖ IDR, depending on the stiffness 

adopted in the modeling of RC elements. Such an effective stiffness can be 

estimated as a rate (RC) of the elastic (pre-cracking) stiffness of each RC 

member, e.g. 50% (EC8-part 1). 
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Figure 4.2. Schematic example of the procedure: research of the equivalent IDR 
capacity (IDRDL,equiv) 
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It is worth noting that such an equivalence is imposed in terms of PGA 

capacity (instead than in terms of first period spectral elastic acceleration) 

because of the high difference in first period of vibration between an infilled 

frame and the corresponding bare one. 

 

4.3.2. Infilled model: effective stiffness of infill panels  

If the designer introduces infills in the structural model to perform linear 

analyses, infills have to be properly modeled. Information and provisions 

about such a modeling provided by technical codes are generally quite poor.  

Generally speaking, effective stiffness for infill panels should be 

intermediate between the initial elastic stiffness and the stiffness secant to the 

capacity point, i.e. the secant-to-maximum stiffness, according to the definition 

of the achievement of DL LS adopted in this study. 

In this Section, a procedure aiming at the estimation of the effective stiffness 

of infill panels to be used in linear analysis for seismic assessment at DL LS is 

proposed. 

First of all, the same IDAs obtained as described before for the infilled frame 

are considered, in terms of peak IDR demand versus elastic spectral 

acceleration Sa(T1,5%), where T1 is the fundamental period of the infilled 

frame. Thus the median value of Sa(T1,5%) corresponding to this IDR 

threshold, Sa(T1,5%)|IDR, can be evaluated from the previously obtained set of 

IDAs. This value of Sa(T1,5%) is the IM capacity at DL LS, Sa(T1,5%)DL. 

Then, LTH analyses are performed, assuming a linear behavior for both RC 

members and infill panels, and assuming a reduction factor () of the initial 

elastic stiffness of all the infill trusses. As shown in Figure 4.3, an iterative 

procedure is applied, varying the coefficient  between 0 (infinitely flexible 

infills) and 1 (infills with initial elastic stiffness). For each  value, LTH 

analyses for all of the selected records are performed, and the median value of 

the maximum IDR demand, IDR|Sa(T1,5%), is estimated at the IM level equal to 

Sa(T1,5%)DL. The iterative procedure stops when the value of IDR|Sa(T1,5%) is 

equal to IDRDL; the corresponding  factor, w, is the reduction factor of the 

initial elastic stiffness of infills providing an effective stiffness of infill panels 

such that a linear dynamic analysis on the infilled numerical model leads to a 

displacement demand in terms of maximum IDR at DL LS which is 
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approximately equal to the maximum IDR demand evaluated through 

nonlinear dynamic analysis on the same model. 

In Figure 4.4 a schematic example of the result of the procedure explained 

herein is reported. 

It is worth noting that, since that it is not possible to know a-priori which 

story is involved in the achievement of DL LS, the reduction factor is applied 

to all of the infill panels. Such a procedure allows to calibrate the factor  that 

provides the ―real‖ maximum IDR demand – at a certain level of IM – through 

a linear analysis, but an error may occur in the estimation of the corresponding 

top displacement. This could be considered as an unavoidable approximation 

due to the limitation of a linear analysis itself, which is not able to capture the 

effects of a concentration of post-elastic displacement demand. However, this 

error could be considered not of a primary importance, since DL LS check is 

performed in terms of another displacement demand parameter, namely 

maximum IDR. 

Nonlinear behavior of RC members can be considered, too, by repeating the 

described procedure for different value of effective stiffness of RC members, 

i.e. for different values of the rate (RC) of the elastic (pre-cracking) stiffness of 

each RC member. For each value of RC, a w factor can be estimated. 
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Figure 4.3. Steps of the procedure: research of the effective stiffness for infill panels 

 

 
Figure 4.4. Schematic example of the result of the procedure: research of the 

effective stiffness for infill panels 
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4.4 Application examples 

The methodology proposed in the previous Section is applied for four case 

study frames. Mechanical and geometrical properties of such frames and their 

modeling are described below. The results are presented and discussed herein. 

 

4.4.1. Case study frames  

The case study structures analyzed herein are infilled RC planar frames 

with five equal-length bays, with a bay length equal to 4.5 m and an interstory 

height equal to 3.0 m. The analyzed frames are extracted from the 3-D 

structures analyzed in Chapter 3; they are symmetric in plan, both in 

longitudinal and in transverse direction, with five bays in longitudinal 

direction and three bays in transverse direction. Slab way is always parallel to 

the transverse direction. 

Thus, starting from different design typologies and number of stories, four 

case study frames are extracted and analyzed: 

­ two gravity load designed (GLD) frames, a four-story and an eight-

story frame, defined by means of a simulated design procedure 

according to code prescriptions and design practices in force in Italy 

between 1950s and 1970s (Regio Decreto Legge n. 2229, 16/11/1939; 

Verderame et al., 2010b); 

­ two seismic load designed (SLD) frames, a four-story and an eight-

story frame, designed for seismic loads according to the current 

Italian code (D.M. 2008) in Ductility Class High; hence, the 

principles of the Capacity Design are applied. 

A more detailed description of these structures is reported in Chapter 3. 

 

In each frame, infill panels are uniformly distributed along the height (see 

Figure 4.5). Panel thickness is equal to 200 mm, corresponding to a double 

layer brick infill (120+80) mm thick, which can be considered as typical of a 

non-structural infill masonry wall (Bal et al. 2007). Presence of openings is not 

taken into account. 
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Figure 4.5. Four story case-study infilled RC GLD (SLD) frame 

 

4.4.2. Modeling and analysis  

Nonlinear response of RC elements is modeled by means of a lumped 

plasticity approach: beams and columns are represented by elastic elements 

with rotational hinges at the ends. A three-linear envelope is used, with 

cracking and yielding assumed as characteristic points. Section moment and 

curvature at cracking and yielding are calculated on a fiber section, for an axial 

load value corresponding to gravity loads. The behavior is assumed linear 

elastic up to cracking and perfectly-plastic after yielding. Rotation at yielding 

is evaluated through the formulations given in (Biskinis and Fardis, 2010). It is 

worth noting that displacement demand in RC members is typically low at the 

investigated LS, and in the analyses carried out in this paper no yielding of RC 

members was observed (for this reason the behavior after yielding is 

represented by a dashed line in Figure 4.6a). As far as the hysteretic behavior 

of RC members is concerned (see Figure 4.6a), no pinching of force and 

deformation is introduced, no damage due to ductility and energy, or 

degradation in unloading stiffness based on ductility are taken into account. 

Strength deterioration becomes an important factor when the structural 
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response approaches the collapse limit state; at earlier steps of inelastic 

behavior, both deteriorating and non-deteriorating systems exhibit similar 

responses (Ibarra et al. 2005). Since the inelastic demand in RC member is 

expected to be very low at the investigated LS, these hypotheses are not 

reasonably expected to introduce any significant lack of generality. Moreover, 

in new structures, with detailing of members for ductility, cyclic degradation 

of strength appears to be negligible (Fardis, 2009). 

 

Infill panels are modeled by means of equivalent struts. Modeling infills 

through single compressed struts allows to investigate the effects of the panels 

on the global behavior of the analyzed structure, consistent with the purpose 

of this study.  

The adopted model for the envelope curve of the force-displacement 

relationship is the model proposed by Panagiotakos and Fardis (1996). In 

literature, there are different models developed for infills in monotonic and 

cyclic conditions, based on the results of different experimental tests. If a single 

strut model is adopted, a simple way to model the behavior of such a 

compressive strut was proposed by Panagiotakos and Fardis (1996) based on 

experimental tests performed by Stylianidis (1985) and Pires (1990) and 

characterized by mechanical and geometrical properties representative of 

European built. It was observed that such a model appeared to be consistent 

also with other experimental results, described in Section 4.2.2, offering a quite 

good prediction of the deformability of the infill (Biondi et al. 2000). 

The adopted force-displacement envelope is composed by four branches, as 

shown in Figure 4.6b and explained in details in Chapter 3. Due to the 

definition itself of DL LS (given in Section 4.2), the field of behavior after the 

peak is not investigated; thus the behavior after the peak is represented by a 

dashed line in Figure 4.6b. 

As far as the response of the equivalent masonry strut due to cyclic loading 

is concerned, no strength and stiffness cyclic degradation is considered, as 

shown in Figure 4.6b, basically due to lack of data leading to high uncertainties 

and modeling difficulties (Fajfar et al. 2001, Zarnic and Gostic 1997, Sattar and 

Liel 2010). However, further studies should also consider this degradation 

investigating on the influence of hysteresis rules on the seismic behavior at the 

analyzed LS. 
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(a) 

 
(b) 

Figure 4.6. Hysteretic behavior of RC members (a) and ―simple hysteresis rule‖ 
(Fajfar et al. 2001) of infill panels (b) 

 
Through the adoption of this model for the case study structures, the IDR 

corresponding to the peak load of infills – which is the parameter of interest 

since the definition of DL LS adopted herein – is equal to 2.2‰, thus belonging 

to the typical drift range characterizing the extent of damage to infills 

associated with DL LS (see Figure 4.7). Moreover, infill panels have identical 

clear length and the same displacement capacity in the same story, thus 

reaching their peak load at same time. 

 

 
Figure 4.7. Force-drift envelope for infills in the case-study frames and drift ranges 

from literature (see Section 4.2) 
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The viscous damping is modeled with a mass- and tangent stiffness-

proportional Rayleigh damping, assuming 2% damping for the first and the 

third modes. 

A summary of the mechanical properties of both RC and infills is reported 

in Table 4.1. 

 

  Mechanical property References 

RC  Concrete compressive 
strength, fc 

20.0 MPa 30.0 MPa Based on Verderame 
et al. (2001) and 
Cosenza et al. (2009a) 

Steel yield strength, fy 369.7 MPa 550.0 MPa Verderame et al. 
(2012) and Cosenza et 
al. (2009a) 

Infill Shear elastic modulus, 
Gw 

1240 MPa Fardis (1997) 

Young elastic modulus, 
Ew 

4133 MPa Fardis (1997) 

Shear cracking stress,  

cr 

0.33 MPa Fardis (1997) 

―Peak‖ IDR  
(IDRDL) 

2.2‰ from model by 
Panagiotakos and 
Fardis (1996) 

Table 4.1. Mechanical properties of RC and Infill 

 

Structural modeling and numerical analyses are performed through the 

―PBEE toolbox‖ software (Dolsek, 2010), combining MATLAB® with OpenSees 

(McKenna et al. 2004), modified in order to include also infill elements (Ricci 

2010, Celarec et al. 2012). A solution algorithm has been introduced in PBEE 

toolbox in order to solve non-converging problems, trying different possible 

solution algorithms, or reducing integration time step, or reducing tolerance as 

suggested in (Haselton et al. 2009). Moreover the ―hunt and fill‖ procedure 

suggested in Vamvatsikos and Cornell (2002, 2004) is adopted to trace IDA 

curves. 

 

4.4.3. Ground motion records selection  

Natural records are selected and scaled to different level of seismicity in 

order to obtain IDA curves. The record selection has been performed by using 

REXEL software (Iervolino et al. 2010), from the European Strong-motion 
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Database, with earthquakes characterized by a magnitude which ranges 

between 6 and 7, with a source-to-site distance ranging between 0 and 30 km, 

and recorded on soil class A. A summary of the main properties of the two 

components of the seven selected records is reported in Table 4.2. On the 

whole, 14 records are used in the dynamic analyses. 

 

Earthquake 

Name 

Mw Fault 

Mechanism 

Epicentral 

Distance  

(km) 

PGAX 

(m/s2) 

PGAY 

(m/s2) 

EC8 

Site 

class 

Campano 
Lucano 

6.9 normal 25 0.588 0.588 

A 

South 
Iceland 

6.4 strike slip 22 0.513 0.386 

South 
Iceland 

6.4 strike slip 28 0.199 0.274 

South 
Iceland 

6.4 strike slip 15 1.248 1.132 

Bingol 6.3 strike slip 14 5.051 2.918 

Montenegro 6.2 thrust 30 0.667 0.754 

Campano 
Lucano 

6.9 normal 26 0.903 0.778 

Table 4.2.  Selected ground motion records 

 

4.4.4. Results 

The results of the application of the procedures are presented and discussed 

herein in terms of equivalent IDR capacity related to bare structural models (in 

Section 4.4.4.1) and effective stiffness of infills for infilled numerical models 

(Section 4.4.4.2). 

First of all, in Table 4.3, fundamental periods, PGA and Sa(T1,5%) capacity 

at DL LS are reported for each case study infilled model. 

 

 T1 (s) PGADL (g) Sa(T1)DL (g) 

SLD 4-story 0.114 0.44 0.43 

SLD 8-story 0.241 0.28 0.40 

GLD 4-story 0.122 0.35 0.36 

GLD 8-story 0.271 0.26 0.38 

Table 4.3.  Elastic periods of infilled frames; PGA and Sa(T1) capacity at DL LS 
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4.4.4.1 Analysis of results: equivalent IDR 

The results of the procedure aiming at the research of the equivalent IDR 

capacity in terms of median nonlinear IDA curves and LTH results (in the case 

of RC=1) are reported in Figure 4.8; IDR values corresponding to the 

achievement of DL LS (rep point), PGA capacity at DL LS, and equivalent IDR 

capacity on the bare models (red square) are also represented. 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.8. Equivalent IDR capacity (for RC=1): 4-story GLD (a) and SLD (b) frames 8-

story GLD (a) and SLD (b) frames 

 
Moreover, Figure 4.9 and Table 4.4 show the trend of such equivalent IDR 

for the analyzed case study frames when an effective stiffness equal to one-half 

of the elastic stiffness (RC=0.5) or equal to the elastic stiffness (RC = 1) is 

assumed for RC members. It can be observed that the equivalent IDR is 

generally higher for GLD frames rather than for the corresponding SLD 

frames, for 4-story rather than for 8-story structures (except for one case). 
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Figure 4.9. Equivalent IDR depending on the parameter RC 

 

Equivalent IDR (%) 

N° story RC GLD SLD 

4 
0.5 1.38 1.22 

1 1.34 0.79 

8 
0.5 1.76 0.92 

1 1.11 0.59 

Table 4.4.  Equivalent IDR if IDRDL=2.2 ‰ 
 

Generally speaking, equivalent IDR depends on (i) IDR capacity of infills at 

DL LS and on (ii) stiffness/strength contribution of these elements to the 

response of the RC frame up to this LS (that can be quantified by means of the 

comparison between infill lateral strength and plastic shear of RC columns at 

each story). Given equal the former, the higher the latter, the higher the 

equivalent IDR. 

In particular, concerning SLD frames, RC members and infills have exactly 

the same geometrical and mechanical properties, and the absolute contribution 

of infills to the overall lateral strength of a story is identical in the two cases 

(four- and eight- story); nevertheless, in the 8-story frame axial load ratio and 

then plastic shear of RC columns (at the same story) are higher, resulting in a 

lower percentage contribution of infills to the overall lateral strength and to the 

post-RC cracking stiffness. Hence, the equivalent IDR for the 8-story frame is 

generally lower than the equivalent IDR for the 4-story frame. 

In the same way, GLD frames are characterized by a higher percentage 

contribution of infills to the overall lateral strength and to the post-RC cracking 
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stiffness and, consequently, they presents higher equivalent IDRs rather than 

the corresponding SLD frames. 

The same trends can be observed also from Figure 4.8: starting from non-

linear IDA curves and corresponding capacity points at DL LS, the equivalent 

IDR increases with the IM (PGA) capacity and decreases with the slope of LTH 

IDA curves for the bare frame (i.e., the lower the stiffness of such numerical 

model). In SLD frames, the higher IM capacity of the 4-story frame is not 

counterbalanced by the lower stiffness of the 8-story bare numerical model, 

thus leading to a higher equivalent IDR for the former. 

This trend is in agreement with a previous study (Ricci et al., 2012), in 

which it was tentatively expressed through the use of a parameter that takes 

into account both the strength and deformation capacity of infills, on a side, 

and lateral strength of RC members, on the other side. 

 

Moreover, it could be expected that, the higher the IDR threshold (IDRDL), 

the higher the PGADL, the higher the equivalent IDR for the bare frame. Such a 

concept is quantified in Table 4.5 and Figure 4.10, where equivalent IDR is 

calculated for a IDRDL values equal to 1‰ (Figure 4.10a) or 3‰ (Figure 4.10b), 

close to the peak load of the panel. 

 

Equivalent IDR (%) 

  IDRDL=1 ‰ IDRDL=3 ‰ 

N° story RC GLD SLD GLD SLD 

4 
0.5 1.15 0.98 1.55 1.36 

1 1.11 0.63 1.5 0.88 

8 
0.5 1.04 0.55 2.16 1.08 

1 0.66 0.35 1.37 0.69 

Table 4.5.  Equivalent IDR if IDRDL=1 ‰ or IDRDL=3 ‰ 
 

Furthermore, in the hypothesis of identifying the achievement of DL LS 

with the achievement of the peak strength of infill panels, if infills are more 

―ductile‖, the equivalent IDR should be higher; on the contrary, if infills are 

more ―brittle‖, such a IDR should be lower. Such a trend is also in agreement 

with Eurocode 8 prescription. 
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(a) 

 
(b) 

Figure 4.10. Equivalent IDR when IDRDL is assumed equal to 1‰ (a) or 3‰ (b) 

 
By observing Figure 4.9 and Figure 4.10, it should be noted that the IDR 

limit value proposed for bare models in most of the code prescriptions (e.g. 

Eurocode 8 and Italian D.M. 2008) – namely 5‰, in the hypothesis of buildings 

having non-structural elements of brittle materials attached to the structure – 

appears to be conservative in the case study frames analyzed herein.  

From a qualitative standpoint, the higher the load and displacement 

capacity of infills with respect to RC members, the higher the equivalent IDR, 

the higher the conservatism of this code prescription. From a quantitative 

standpoint, a more comprehensive study – on the basis of the proposed 

procedures – should be carried out in order to attempt to provide a simple 

prediction formula for the equivalent IDR, depending on strength and 
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deformation capacity of infills and lateral strength of adjacent RC columns, to 

be used in DL LS check for models which do not take explicitly into account 

infill panels. 

If the issue is regarded from the opposite  standpoint, the IDRDL value that 

should be assumed as a threshold at DLLS on the infilled model in order to 

obtain an equivalent IDR equal to 5‰ (proposed by many codes) on bare 

model can be calculated. Table 4.6 and Figure 4.11 shows the results of this 

calculation, proving that IDRDL threshold should be generally lower than 1‰, 

namely infills should reach not even their peak strength point. 

 

 
Figure 4.11 -  IDRDL to be assumed to obtain 5‰ equivalent IDR 

 

IDR threshold (%) 

N° story RC GLD SLD 

4 0.5 0.02 0.03 

1 0.02 0.05 

8 0.5 0.03 0.07 

1 0.06 0.18 

Table 4.6.  IDRDL to be assumed to obtain 5‰ equivalent IDR 

 

4.4.4.2 Analysis of results: effective stiffness for infill panels  

The results of the procedure aiming at the estimation of effective stiffness of 

infills in terms of nonlinear IDA curves and LTH analyses are reported in 

Figure 4.12; Sa(T1,5%) capacity at DL LS and the IDR corresponding to the 
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achievement of DL LS are also represented. The values obtained for w and the 

corresponding elastic periods of the case-study frames are reported in Table 

4.7. 

 

 w T(w) (s) 

SLD 4-story 0.21 0.25 

SLD 8-story 0.28 0.42 

GLD 4-story 0.23 0.24 

GLD 8-story 0.32 0.41 

Table 4.7.  Obtained values of w (with RC=1) and corresponding elastic periods 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.12. Nonlinear IDAs and Linear IDA for w: 4-story GLD (a) and SLD (b) 
frames; 8-story GLD (c) and SLD (d) frames 

 
Moreover, the distribution of IDR demand corresponding to the 

achievement of DL LS can be evaluated through the nonlinear analyses as the 

median of the IDR demand at each story for all of the records when an IM 

value equal to the IM capacity at DL LS is considered. A concentration of IDR 

demand is shown at lower stories both for 4- and 8-storey frames, as shown in 

Figure 4.13. It is worth noting that the maximum IDR demand could also be a 

bit lower than the value of IDRDL because of the procedure by which it is 

estimated: if the IDRDL was achieved at different stories when different records 

are analyzed, the median value of the maximum IDR demand at each story for 

all of the records will result lower than IDRDL. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.13. IDR demand at each story - 4-story GLD (a) and SLD (b) frames, 8-story 
GLD (c) and SLD (d) frames 

 
When the procedure is repeated for different value of effective stiffness that 

can be chosen to model RC members, i.e. for different values of RC, an array of 

w values can be estimated. In Table 4.8 and in Figure 4.14 the variation of w 

depending on the investigated values of RC is reported for each frame. 

 

 W 

RC 4-story GLD 8-story GLD 4-story SLD 8-story SLD 

0 0.23 0.34 0.31 0.39 

0.25 0.23 0.33 0.29 0.32 

0.50 0.23 0.32 0.25 0.32 

0.75 0.23 0.32 0.22 0.32 

1 0.23 0.32 0.21 0.28 

Table 4.8. Variation of w depending on RC 
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(a) 

 
(b) 

Figure 4.14. Variation of w depending on RC for GLD (a) and SLD (b) frames 

Obviously, a zero-stiffness for RC elements (namely RC=0), makes no sense: 

it should be intended as representative of a frame in which RC members have 

free rotational hinges at their ends, that is not a realistic condition for a 

moment resisting RC frame. Herein, this case is just the extreme of a complete 

range of effective stiffness ratio, from 0 to 1. 

Figure 4.14 clearly shows that if RC decreases, a higher effective stiffness 

has to be assumed for infill panels in order to obtain the same displacement 

demand, as expected. However, the curves representing the variability of w 

depending on RC have a very low slope. If frames with the same number of 

stories are considered, a stronger dependence of w on RC is observed for SLD 
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frames with respect to GLD frames. For example, comparing the 4-story SLD 

frame with the 4-story GLD frame, a higher contribution to lateral strength and 

stiffness of RC members is present in SLD case: the higher this contribution, 

the more sensitive the variation of the effective stiffness of infills with respect 

to the effective stiffness chosen to model RC members.  

The value of w is higher in the case of the 8-story frames with respect to the 

4-story frames, whichever RC value is considered. As a matter of fact, note that 

the reduction of stiffness corresponding to the use of w is assumed for all of 

the infill panels in the linear infilled model, whereas IDR demand up to DL LS 

is achieved only in one story, i.e. the one at which IDRDL is attained first. Thus, 

the higher the number of stories, the lower should be such a uniform reduction 

adopted throughout all the stories (i.e., the higher should be w). 

When a value of RC equal to 0.50 is adopted for RC members (as suggested 

in EC8), w changes from 0.25 to 0.32 for SLD frames and it ranges between 

0.23 and 0.32 for GLD frames (see Table 4.8); since DL LS check is performed in 

terms of displacement, a conservative value of w to estimate the effective 

stiffness of infills for those specific case-study frames is the lower value of this 

range, i.e. 0.23. Moreover, Figure 4.14 shows that effective stiffness of infills 

estimated through w is always higher than the secant-to maximum stiffness 

(Mainstone‘s stiffness), i.e. w equal to 0.16 in the analyzed infilled frames. 

Hence, if an effective stiffness equal to the secant-to maximum stiffness is 

adopted for infills, DL LS check could be too conservative (being equal IDR 

capacity, namely IDRDL). Note that Mainstone‘s stiffness is proposed by 

ASCE/SEI 41 provisions for modeling of infills. Details about the 

conservativeness of such a prescription will be provided in Section 4.4.4.3. 

Furthermore, in the hypothesis of identifying the achievement of DL LS 

with the achievement of the peak strength of infill panels, it can be expected 

that, if infill panels are more ―ductile‖, the effective stiffness should be lower, 

being equal elastic stiffness; vice-versa, when infills are more brittle, such an 

effective stiffness should be higher. 

Considering geometrical and mechanical properties of the infill panels 

modeled in the case-study frames (Table 4.1), a w value equal to 0.23 implies a 

width-to-diagonal length ratio (bw/dw) equal to 0.16, a bit lower than the value 

proposed in Fardis (2009), where a width-to-diagonal length ratio equal to 0.20 
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is suggested at DL LS. The variation of that width-to-diagonal length ratio 

depending on RC is shown in Figure 4.15. 

 

 
(a) 

 
(b) 

Figure 4.15. Variation of width-to-diagonal length ratio depending on RC for GLD (a) 
and SLD (b) frames 

 

4.4.4.3 Analysis of ASCE/SEI 41 approach  

ASCE/SEI 41 - American Code for Seismic Rehabilitation of Existing 

Buildings – suggests (§ C7.4.2.1) to assume that the width of the equivalent 

truss used to model infill panel (bw) depends on the height and the diagonal 

length of the panel, hw and dw respectively, and on the parameter λh (Eq. 4.1); 

the latter parameter depends on the elastic Young modulus of the infill panel 

Ew and of the surrounding concrete Ec, the diagonal slope of the equivalent 



Limitation of damage to infill panels in RC frames via linear methods 

 
 

164 

truss to the horizontal , the infill thickness tw, the moment of inertia of the 

adjacent columns Ic (see Eq. 4.2). Moreover, the equivalent strut shall have the 

same thickness and modulus of elasticity as the infill panel it represents. 

Hence, the equivalent strut will be characterized by an effective stiffness equal 

to the Mainstone‘s stiffness. 

( 
0.4

0.175w h w wb h d



 

(4.1) 

4
sin(2 )

4

w w
h

c c w

E t

E I h


 

 

(4.2) 

Since the definition itself of achievement of DL LS (given in Section 4.2), the 

―real‖ effective stiffness will be always lower than the elastic one and higher 

than the secant-to-maximum stiffness (Mainstone‘s stiffness) for each infill 

panel.  

From a qualitative standpoint, if an effective stiffness equal to the secant-to 

maximum stiffness is adopted for infills in an infilled numerical model, DL LS 

check is too conservative. Hence it was necessary to calibrate a proper effective 

stiffness for infills to perform a more accurate analysis at DL LS, as shown in 

the previous Section. 

 From a quantitative standpoint, a simple procedure can be applied in order 

to evaluate the entity of such conservativeness in terms of PGA capacity.  

First of all, the same median IDA curve obtained before for the infilled 

model is considered, in terms of maximum IDR versus PGA. The PGA value 

corresponding to IDRDL on this IDA curve represents the ―true‖ PGA capacity 

at DL LS, i.e. PGADL, related to the infilled frame. Then, LTH analyses are 

performed on the same infilled structural frame for all of the selected records 

assuming an effective stiffness equal to Mainstone‘s stiffness for all of the infill 

panels and the median value of PGA is estimated at a maximum IDR level 

equal to IDRDL, namely adopting a displacement limit capacity directly 

correlated to the infill damage (i.e. IDRDL). Such an IM level represents the 

PGA capacity at DL LS of the infilled numerical model in which Mainstone‘s 

stiffness is adopted as effective stiffness for infills, hereinafter referred to as 

PGADL,MS. The comparison between PGADL and PGADL,MS provides the entity 

of the conservativeness of the ASCE code prescription. In Figure 4.16 a 

schematic example of the procedure explained herein is reported. 
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Nonlinear behavior of RC members can be considered, too, by repeating the 

described procedure for different values of effective stiffness of RC members, 

thus obtaining different values of PGADL,MS. The higher the effective stiffness 

adopted for RC members, the lower the conservativeness of such a 

prescription. 

 

 
Figure 4.16. Schematic example of the  analysis of conservativeness of ASCE/SEI 41 

approach 

 

The results of the procedure aiming at the analysis of the conservativeness 

of the ASCE/SEI 41 approach are reported in Figure 4.17 for each case study 

frame, in terms of nonlinear IDA curves (used as a reference) and LTH 

analyses (in the case of rc=1) when an effective stiffness equal to the secant-to-

maximum stiffness is adopted (median linear IDAMS). The IDR value 

corresponding to the achievement of DL LS (IDRDL), PGA capacity at DL LS 

(PGADL), and PGA capacity corresponding to IDRDL when Mainstone‘s 

stiffness is adopted for infills (PGADL,MS) are represented, too. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4.17. Analysis of the conservativeness of ASCE/SEI 41 approach (with RC=1): 
4-story GLD (a) and SLD (b) frames; 8-story GLD (a) and SLD (b) frames 

 

The same results are reported in Table 4.9 in the cases of RC equal to 0.5 

and 1 for each case study frame. 

The ratio between PGADL,MS and PGADL clearly shows that the adoption of 

an effective stiffness equal to the Mainstone‘s stiffness for infills leads to a very 

conservative estimate of the PGA capacity at DL LS when a displacement limit 

capacity directly correlated to the infill damage (i.e. IDRDL) is adopted. 

 

  



Limitation of damage to infill panels in RC frames via linear methods 

 
 

168 

 

 

RC 

GLD SLD 

PGADL PGADL,MS PGADL,MS/ 
PGADL 

PGADL PGADL,MS PGADL,MS/ 
PGADL 

(g) (g)  (%) (g) (g)  (%) 

4 0.5 0.35 0.274 78.3 0.44 0.316 71.8 

1 0.275 78.6 0.385 87.5 

8 0.5 0.26 0.171 65.8 0.28 0.198 70.7 

1 0.188 72.3 0.216 77.1 

Table 4.9. Analysis of the conservativeness of ASCE/SEI 41 approach depending on 

the parameter RC 
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4.5 Summary 

In this Chapter, modeling and analysis of infilled RC frames at DL LS was 

investigated. To this aim, starting from the analysis of performance criteria and 

associated drift capacity limits for infill panels, procedures were proposed and 

applied in order to provide modeling tools to be used in seismic assessment 

via linear analyses. 

Nonlinear IDAs were carried out on structural models explicitly including 

infills in order to evaluate the IM level corresponding to the achievement of DL 

LS. Then, the results of such analyses were used as a reference. 

First, the ―equivalent‖ displacement limit capacity – in terms of IDR – to be 

used in ―bare‖ numerical models (without infills) was obtained. Then, the 

effective stiffness of infill panels to be used in infilled models was evaluated, 

thus allowing explicitly including these elements also within this kind of 

analysis approach. 

The methodologies aimed at the estimation of such parameters were 

proposed and applied to 4- and 8-story infilled frames, designed for seismic 

loads (according to the current Italian technical code) or for gravity loads only 

(according to an obsolete technical code). The results of this application were 

presented and discussed. 

Equivalent IDR values highlight a general conservatism of code provisions, 

increasing with the contribution of infill panels to stiffness/strength of the RC 

frame.  

Effective stiffness values, based on the adopted model for infill panels, 

highlight the need for a reduction of initial elastic stiffness of infills from 68% 

to 77% (when an effective stiffness equal to one-half of the elastic stiffness is 

assumed for RC elements, as suggested in EC8), in order to take into account 

first cracking prior to the attainment of DL limit, but also the conservatism of 

the widespread Mainstone‘s model, which is also proposed by technical codes. 

Foreseen developments include the analysis of the sensitivity of estimated 

parameters to further characteristics of the infilled RC frames and of their 

response under seismic action up to DL LS, namely displacement capacity and 

hysteresis rules for infills or post-cracking stiffness of RC members, infill-to-RC 

stiffness and strength ratio, and design criteria of RC elements. More generally, 

a comprehensive study could be carried out in order to attempt to provide 

predictive formulations both for equivalent IDR and effective stiffness, 
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depending on geometrical and mechanical characteristics of infill and RC 

elements. Finally, proposed approaches to linear modeling and analysis of 

infilled RC frames at DL LS could be evaluated within the Response Spectrum 

Analysis approach, since the latter is the most widespread method of analysis, 

especially for seismic design of new structures. 
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Chapter 5  

A NONLINEAR MACRO MODEL OF EXTERIOR 

RC JOINTS WITHOUT TRANSVERSE 

REINFORCEMENT UNDER SEISMIC LOAD 
 

 

 

 

 

In the assessment of the performance of typical non-conforming buildings, 

seismic collapse safety might be significantly affected by non-linear behavior 

of joints that are involved in the failure mechanisms. In fact, in typical non-

conforming buildings, joints are characterized by poor structural detailing, as 

the lack of an adequate transverse reinforcement in the joint panel or 

deficiencies in the anchorage of beam reinforcement due to the absence of any 

capacity design principle. 

Few reliable approaches for modeling all sources of nonlinearity are 

available for poorly designed beam-column joints because of relatively poor 

information from experimental tests. 

Many nonlinear joint models are available, but most of them may be 

unsuitable for the assessment of older concrete buildings, either because they 

were developed and calibrated for confined joints or because they are 

complicated to use. 

In this Chapter, the attention is focused on exterior joints with no transverse 

reinforcement and a possible approach to model them in RC frames is 

proposed. 

First, an experimental database of cyclic tests available in literature on joints 

without transverse reinforcement that exhibited different modes of failure 

(shear joint failure and anchorage failure) is collected and analyzed. 

Second, the joint panel constitutive parameters are defined to reproduce the 

experimental joint shear stress-strain relationships, when they were available. 

Then, bond-slip is taken into account by introducing a slip spring whose 

properties are calculated using a bond-slip model and which explicitly 
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introduces a limitation of joint shear strength in the case of anchorage failure. 

Finally, the proposed modeling approach is validated using the 

experimental tests included in the database.   
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5.1 Introduction 

Damage observed after the most recent earthquakes and experimental 

investigations on the seismic performance of non-conforming RC buildings 

highlighted the vulnerability of the beam-column joint region (Ricci et al, 

2010). The behavior of beam-column joints is a critical issue in the assessment 

of seismic performance of RC moment resisting frames; therefore, within the 

context of Performance-Based Earthquake Engineering, a growing attention 

should be addressed to the modeling of RC beam-column connections and the 

influence of failure of joints on the seismic performance of RC buildings. 

In particular, in the assessment of the performance of typical non-

conforming buildings, seismic collapse safety might be significantly affected by 

the non-linear behavior of the joints that are involved in the failure 

mechanisms because of poor structural detailing, as the lack of an adequate 

transverse reinforcement in the joint panel or deficiencies in the anchorage of 

beam reinforcement due to the absence of any capacity design principle or 

seismic design. Joint flexibility contributes significantly to overall story drift, 

especially in the nonlinear range. Basically, two contributions to overall 

deformability due to beam-column joints cannot be neglected: (i) the shear 

strain of the joint panel and (ii) the contribution of the fixed-end-rotation due 

to the slip of the longitudinal bars anchored into the joint (e.g., Cosenza et al. 

2006). 

Furthermore, under lateral seismic loading, high shear forces are generated 

in the joint core. Beam-column joints bear horizontal and vertical shear forces 

that are usually much larger than those acting within the adjacent beams and 

columns. Thus, joints can experience shear failures which should be avoided 

by an appropriate design to ensure a ductile response of the whole frame. 

However, such a design does not regard typical non-conforming structures 

designed for gravity loads only. In particular, exterior unreinforced RC joints 

often experience brittle failure under horizontal actions.  

Basically, two main different modes of failure can be identified (Figure 5.1): 

(i) joint shear failure prior to (J-failure) or after than (BJ-failure) yielding of 

beam longitudinal reinforcement (in hypothesis of strong column-weak beam); 

(ii) anchorage failure of longitudinal reinforcement anchored into the joint 

panel (A-failure) in the case of insufficient bars anchorage length. 
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Figure 5.1. Schematic representation of joint shear failure typologies prior to (J) or after 
than (BJ) beam yielding 

 

In literature there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of RC beam-

column joints in moment resisting RC frames. Many nonlinear joint models are 

available, but most of them may be unsuitable for modeling all sources of 

nonlinearity for the assessment of older concrete buildings. Some of them were 

developed and calibrated for confined beam-column joints or they are too 

complicated to implement. 

Shear stress-strain relationship proposed in models from literature was 

often calibrated independently on the failure typology, even if experimental 

tests can exhibit a joint stress-strain behavior which can be very different 

depending on the failure typology (pure shear failure of the joint panel or joint 

failure after beam yielding), especially as far as peak strength and post-peak 

behavior (softening slope and residual strength) are concerned. Therefore, the 

joint stress-strain envelopes for numerical modeling of RC joints should be 

calibrated depending on the failure typology. It is worth highlighting that a 

pre-classification of failure typology, and consequently of the stress-strain 

envelope, is always possible by knowing only material properties and 

geometry. 

Moreover, especially in the context of displacement-based approaches for 

seismic assessment, another key point is the correct modeling of all the sources 

of deformability of the joint sub-assemblage, and therefore the modeling of the 

slip contribution of longitudinal bars in addition to joint panel shear strain.  

It can be very useful to calibrate only the joint panel deformability 

contribution on the basis of experimental tests and to calculate analytically the 

slip contribution. According to this approach one of the joint deformability 

Joint shear failure

joint shear
capacity

curvature ductility /y

jo
in

t 
sh

ea
r.

 V
jh

Joint shear
demand

joint shear
capacity

Joint shear failure

curvature ductility /y

jo
in

t 
sh

ea
r.

 V
jh

Mb
Vb

T

Mc

Mc

Vc

Vc

VjhJoint shear
demand

Vjh= T- Vc

/y=1 /y=1



BJ-failure J-failure



A nonlinear macro-model of exterior RC joints without transverse reinforcement 

 
 

180 

contributions (slip) can be easily generalized, even with a great accuracy (on 

the basis of consolidated models from literature), for different anchorage 

conditions of longitudinal bars, type of rebar (deformed or plain) and quality 

of bond between concrete and steel. The other contribution (joint panel shear 

strain) should be calibrated with a number of tests as greater as possible (tests 

in which the local stress-strain response has been explicitly measured and 

provided) and as homogeneous as possible for anchorage type. 

A strong effort, especially towards a better calibration of the panel zone 

deformability, and, thus, a deeper analysis of experimental tests on unconfined 

joints on the basis of experimental tests, are still necessary. 

The number of experimental tests performed in last years on unreinforced 

joints is increasing. Experimental databases were collected by some authors, 

e.g. Genesio (2012) or Celik and Ellingwood (2008), generally including tests 

not-homogeneous for anchorage type (effective/ineffective), reinforcement 

typology (deformed/plain), presence of transverse beams or concrete slab. 

Generally, only global force-displacement response was provided by Authors 

of tests; only in a few cases joint shear stress-strain response are available (e.g. 

Clyde et al 2000 and Pantelides et al. 2002 for planar exterior joints). 

 

In Chapter 2, a deep overview on beam-column joint shear strength models 

and joint nonlinear modeling was carried out, with a particular attention to 

exterior unreinforced beam-column joints, that are the core of this Chapter. The 

attention is focused on exterior joints containing no transverse reinforcement 

and a possible approach to model beam-column joints in RC frames is 

proposed. 

First, an experimental database of cyclic tests available in literature on joints 

without transverse reinforcement that exhibited different modes of failure 

(shear joint failure and anchorage failure, respectively) is collected and 

analyzed. 

Second, the joint panel constitutive parameters are defined to reproduce the 

experimental joint shear stress-strain relationships, when they were available, 

depending on the failure typology. Then, bond-slip is taken into account by 

introducing a slip spring whose properties are analytically calculated using a 

bond-slip model and which explicitly introduces a limitation of joint shear 

strength in the case of anchorage failure of beam bars anchored into the joint 

panel. 
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Thus, the proposed model allows the mechanical definition of the bar slip 

contribution for each level of displacement demand (also covering joints in 

which the embedment length is not sufficient) and the adoption of a stress-

strain relationship for the joint panel that is diversified for failure mode and 

calibrated on eight 2D experimental tests, homogeneous for anchorage type. 

Finally, the proposed joint model is validated using other experimental tests 

included in the database. 

 

5.2 Experimental database 

In the past decades many researchers carried out experimental 

investigations in order to understand the nonlinear behavior of RC beam-

column joints. In this Section, first a review of experimental investigations on 

monotonic and cyclic loading of beam-column joints is presented, in particular 

referring to those tests which are closely related to this work, i.e., 2D under-

designed exterior joints; then a database is collected and analyzed, as shown in 

next Sections. 

 

5.2.1. Experimental investigations from literature 

The main aim of experimental tests is the evaluation of the joint shear 

strength of subassemblies built according to different code provisions and with 

different reinforcement detailing. Nevertheless, these tests usually do not 

provide sufficient information to completely evaluate seismic behavior, 

including joint shear deformability, ductility, energy dissipation and post peak 

behavior. Generally, only in a few cases joint shear stress-strain response are 

provided by the Authors of the tests (e.g. Clyde et al 2000 and Pantelides et al. 

2002 for planar exterior joints). 

Jirsa and Marques (1972) tested exterior beam-column connections with 

standard 90° and 180° hooks conforming to ACI 318-71 specifications under 

monotonic loading. Particular focus was given to different types of 

confinement of the core, axial load, hoops in the joint core, longitudinal 

column bars and concrete cover. The analysis of these tests pointed out that (i) 

the level of axial load does not significantly influence the behavior of the 

hooked anchorages, (ii) the hoops in the core have to be closely spaced 
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relatively to the anchorage‘s hooks in order to be effective, (iii) the thickness of 

the concrete cover does not influence the capacity of the anchorage. 

Nilsson (1973) observed the effects of the difference in the detailing between 

exterior and interior joints by means of seven 2/3 scaled tests, with different 

anchorage configurations of beam bars in the joint panel and different joint 

aspect ratios. No hoops in the joints panel were provided. All the specimens 

failed due to diagonal tension cracking. It was highlighted that bar anchorage 

strictly influences joint shear capacity and that shear capacity increases with 

decreasing joint aspect ratio. 

Taylor (1974) and Taylor and Clarke (1976) tested twenty-six 3/4 scaled 

exterior joints under monotonic loading, investigating the influence of the 

beam reinforcement ratio and different beam reinforcement anchorage. One or 

three few hoops were provided in the joint core. It was observed that for high 

beam flexural capacity the joint was not able to transfer shear forces. It was 

also observed that the configurations with 90°-hooks bent into and away from 

the joint, are preferable than U-bars under seismic loads. 

Of the eight specimens tested in the investigation by Uzumeri (1977), three 

exterior RC beam-column joints not reinforced in the joint area were tested 

under constant axial compressive load. The presence of axial load was found to 

be beneficial at the early stages of loading; however, at the latter stages, it was 

pointed out that large axial load might be detrimental rather than helpful. In 

all cases, the beam remained not-damaged while the joint rapidly deteriorated 

with increasing displacements. The joints without transverse reinforcement 

were able to provide anchorage for the beam bars allowing the achievement of 

98% of the theoretical ultimate moment capacity of the beams. The joint was 

unable, however, to sustain the anchorage of the beam bars in cycles 

subsequent to this load level. 

The experimental study of three exterior beam-column joints by Paulay and 

Scarpas (1981) indicates that horizontal joint shear reinforcement may be 

reduced considerably. The amount of shear reinforcement varied between 

specimens; however, the vertical shear reinforcement (i.e., intermediate 

column bars) was the same in all specimens. The effect of the axial load was 

studied: a reduction in column axial load resulted in a dramatic reduction of 

the stiffness, strength, and energy dissipation of the specimen in the 

subsequent loading cycle. 

Ehsani and Wight presented the results of six exterior RC beam-column 
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sub-assemblages that were tested in cyclic loading (1985). It was stated that the 

maximum joint shear stress in exterior connections should be limited to 1√fc 

(MPa) to reduce excessive joint damage, column bar slippage, and beam bar 

pullout. 

Limited experimental evidence suggests that increasing the column axial 

load tends to reduce the total lateral drift at yield (Kurose 1987). Although 

some researchers report that increased column axial load results in increased 

shear strength of joints without reinforcement, the data do not show a 

significant trend (Beres et al. 1992). 

Bond and anchorage of bars in RC beam-column joints were studied by 

Kaku and Asakusa (1991). It was shown that the consequences of bond 

deterioration included pinching of the force story-drift hysteresis curves, 

increasing the slip deformation at the beam-column interface, changing the 

shear transfer mechanism in the joint core, and decreasing the flexural strength 

of the adjoining members. 

Scott (1992), Scott et al. (1994) also evaluated the effect of different joint 

detailing on the shear capacity under monotonic loading through fifteen 

exterior joints, with a particular focus on strain distribution in bar anchorages. 

They concluded that the column axial load increases the joint shear capacity 

and confirmed that the configurations with 90°-hooks bent into and away from 

the joint, are preferable than U-bars. 

Clyde et al. (2000) tested four half-scale RC exterior joints to investigate 

their behavior in a shear-critical failure mode. The joints were typical of 

building frames with non-ductile details in the beam-column joints. The joints 

were subjected to quasi-static cyclic loading, under two levels of axial load 

ratio. Specific performance levels for this type of RC joint were established and 

a comparison was made to current design and rehabilitation standards. 

Hakuto et al. (2000) performed simulated seismic load tests on RC one way 

interior and exterior beam-column joints with substandard reinforcing details 

typical of buildings constructed before the 1970s. The exterior beam-column 

joints contained very little transverse reinforcement in the members and in the 

joint core. In one beam-column joint unit, the hooks at the end of the beam top 

bars were bent up and the hooks at the ends of the bottom bars were bent 

down. In the other beam-column joint unit the hooks at the ends of the bars 

were bent into the joint as in current practice. The improvement in 

performance of the joint with beam bars anchored according to current 
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practice, namely into the joint core, was demonstrated. 

Pantelides et al. (2002) evaluated the seismic performance of exterior joints 

in existing non-ductile one-way RC building frames with three different details 

of beam and beam-column joint reinforcement. These reinforcement details 

were selected to satisfy the 1963 ACI Code (ACI 1963), but do not satisfy more 

recent provisions such as the ACI 352 Committee Report (ACI 1991). A total of 

six test units were tested. All of the test units had top bars bent into the joints 

with a 180° hook; two of the test units had bottom bars extending only 152 mm 

into the joint, two test units had the bottom bars extending all the way into the 

joint, and the remaining two test units had bottom bars bent up into the joint 

with a 180° hook. Two levels of axial compression load were investigated for 

each of the three details: 10% and 25% of the axial column capacity in 

compression. 

Pampanin et al. (2002) carried out two tests and observed that joints with 

plain round bars and 180° hooks as anchorage of the beam bars in the joint 

panel usually exhibit a very poor joint shear capacity and ductility, exhibiting 

the so-called ―concrete wedge‖ damage mechanism. 

Wong (2005) and Wong and Kuang (2008) performed two different 

experimental test series on beam-column joints designed without transverse 

reinforcement in the joint core. The influence of the beam bar anchorage 

(Kuang and Wong, 2006) and the beam-column depth ratio on the joint shear 

behavior were evaluated (Wong and Kuang, 2008). It was shown that the form 

of beam anchorage significantly influenced the joint shear capacity. The need 

to include the effect of beam-column depth ratio in the design of the joint was 

also stated. 

Further studies were performed on as-built beam-column joints in order to 

have a term of comparison with retrofitted joints, generally retrofitted by 

means of FRP material (Tsonos and Papanikolau 2003, Antonopoulos and 

Triantafillou 2003, Di Ludovico 2012), RC jackets (Karayannis 2008), or post-

installed anchors (Genesio 2012). 

Anyway, in most of the tests the focus was generally given only to the 

ultimate shear strength of the joint. Only few authors have measured the joint 

shear deformation, e.g., Clyde, 2000; Pantelides, 2002, that are the main 

references in this study. 
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5.2.2. Analysis of the collected database 

In the previous Section various experimental tests performed on 

unreinforced exterior RC beam-column joints and presented in literature by 

researchers in the past have been presented. 

Thus, in this Section the collection and the analysis of an experimental 

database are carried out based on tests available in literature on joints without 

transverse reinforcement that were subjected to a range of displacement 

histories and joint shear stress demands, and which does not exhibited 

anchorage failure (see Table 5.1). This experimental database includes only 

planar unreinforced joints substantially homogeneous for beam bars anchorage 

type (with bar bent into the joint core), namely no loss of bond can be imputed 

to an anchorage failure.  

Geometrical and mechanical properties are reported for all tests, together 

with axial load ratio (), maximum experimental joint shear (Vj,max), and 

maximum non-dimensional joint shear stress (n,max). All tests were performed 

through the application of a constant or variable axial load on column and a 

cyclic displacement history at the end of beam. No tests on 3D-corner joints 

specimens which include slab influence on joint behavior were considered. 

In the collected database: 

­ axial load ratio ranges () between 0 and 0.31,  

­ concrete compressive strength (fc) ranges between 16.4 and 67.3 MPa,  

­ steel yielding strength (fy) belongs to the range 332÷585 MPa,  

­ and the joint aspect ratio (hb/hc) varies from 0.89 to 2.00.  

Since the proposed model is an empirical model for joint shear stress-strain 

behavior, its applicability is intended to be limited in such ranges of 

mechanical and geometric parameters. 

 

A separate database was collected for experimental tests characterized by 

anchorage failure. It can be noted that the number of such tests presented in 

literature is more limited, but expanding. In addition to geometrical and 

mechanical properties, fundamental data about beam bars anchorage length 

(lb), experimental joint shear (Vj,Aexp) and non-dimensional joint shear stress 

(j,Aexp) corresponding to anchorage failure are reported for such tests in Table 

5.2. 
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5.2.3. Experimental versus predicted joint shear strength 

First, joint shear strength related to experimental tests without anchorage 

failure is investigated. 

In Table 5.1 maximum experimental joint shear (Vj,max) obtained from such 

tests is reported for each specimen, and a comparison between models by Park 

and Mosalam (2012b), referred to as P&M, Priestley (1997), Celik and 

Ellingwood (2008), referred to as C&E, and ASCE SEI-41/06, referred to as 

ASCE, versus experimental results is carried out. 

In particular, as far as the model by Celik and Ellingwood (2008) is 

concerned, the mean value (0.915 MPa0.5) of the proposed range of shear 

strength coefficient n is adopted (see Chapter 2). 

Since the maximum experimental joint shear cannot be higher than joint 

shear corresponding to beam flexural capacity, the predicted joint shear 

strength was limited to the joint shear corresponding to the achievement of 

beam capacity (flexural capacity is evaluated in a fiber-approach as later 

explained in Section 5.4). This limitation is already implicit for models by Park 

and Mosalam (2012b), since their definition of joint shear strength (as 

explained in Chapter 2). 

From Table 5.1 it can be observed that the code-based approach (ASCE SEI-

41/06) in a seismic assessment is very conservative (31% on average) and 

characterized by the highest CoV (25%). 

The model by Celik and Ellingwood (2008) appears to overestimate joint 

shear strength (the error is about +15% with a CoV of model-to-experimental 

strength ratio equal to 19%). 

As far as model by Priestley (1997) is concerned, since joint capacity is 

expressed in terms of principal tensile stress, a simple equation was adopted to 

calculate the corresponding shear stress, taking into account the effective 

column axial load. This model provides a mean value of model-to-

experimental strength ratio quite lower than unity (0.92 on average), and it also 

shows a quite high CoV of such a ratio (25%). 

It can be observed that the mean of the model-to-experimental strength ratio 

is the closest to unity (1.02) and the CoV is the lowest (11%) when model by 

Park and Mosalam (2012b) is adopted to predict shear strength with respect to 

the adoption of code provisions or other models from literature. 

The strength model proposed by Park and Mosalam (2012b) is adopted in 
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the model proposed in this study to define the ordinate of the peak point, as 

reported in Eq. (5.1) (in MPa): 

( 












4/cos

cos
hbfkV cjcn  (5.1) 

where  is a function of the joint aspect ratio (beam height/column depth), 

bj and hc are the effective joint width and the column cross-sectional depth, 

respectively, fc is the concrete compressive strength and ―k‖ is a strength factor 

accounting for the effect of the beam longitudinal reinforcement ratio. 

In addition, such a model directly provides the expected joint failure 

typology. When "k" is equal or higher than the unity, a J-failure occurs; the 

value of "k" is limited to 1.0 corresponding to which Vn in Eq. (5.1) assumes its 

maximum value. The minimum value of Vn is reached when "k" is equal to 0.4. 

When the parameter "k" ranges between 0.4 and 1.0 a BJ-failure occurs. 

It can be argued that model by Park and Mosalam (2012b) takes into 

account the effect of the joint aspect ratio on joint shear strength, but it neglects 

the effect of column axial load, unlike models that provide critical principal 

stresses (e.g. Priestley, 1997). Starting from the comparison between model-to-

experimental strength ratio results related to models by Park and Mosalam 

(2012b) and Priestley (1997), it seems that joint aspect ratio has a higher 

influence on joint shear strength with respect to column axial load. 

On the other hand, it seems that any possible beneficial (or detrimental) 

effect of column axial compression on joint shear strength is not clearly 

highlighted from the analysis of literature studies or from the collected 

database. In particular, in the case of weak column - strong beam, an increase 

of the column axial load (up to the column cross-section balanced point) 

improves the column moment capacity and, in turn, joint shear strength (Park 

and Mosalam, 2009, 2012a). Vice-versa, in the case of strong column -weak 

beam, that is the case of most tests in the collected database, high column axial 

load might give both beneficial and detrimental effects to the joint shear 

strength (Park and Mosalam, 2009, 2012a). Column compression block depth 

obviously increases with the increase of the column axial load; thus the 

compressive diagonal strut width increases too, improving joint strength. 

Furthermore, high column axial load improves bond strength between the 

beam reinforcing bars and the surrounding concrete leading to increasing joint 
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shear strength. Meanwhile, the crack propagation is accelerated when the 

column axial load increases and consequently the joint has a lower shear 

strength. Moreover, P-Delta effects and buckling of the column bars – which 

are enhanced by high values of axial load ratio – lead to further negative 

effects on the joint shear strength (Park and Mosalam, 2009, 2012a). 

Bonnaci and Pantazopoulou (1993) and Moiser (2000) concluded that 

column axial load has no important effect on joint strength by the analysis of a 

collected experimental database. Also Hassan (2011) highlighted that joints 

with higher axial load failed at lower principal tension stress, while joints at 

lower axial load failed at higher principal tension stress, suggesting that the 

principal tension stress model can overestimate the effect of axial load on joint 

shear strength. In particular, Hassan (2011) suggested that the beneficial effect 

of axial load is more pronounced if axial load ratio is higher than 0.2, while for 

lower axial load ratio, the joint shear strength enhancement due to increasing 

axial load is not so much significant. Similar conclusions were drawn by Kim 

and LaFave (2009, 2012), finding that all correlation coefficients between joint 

shear strength and column axial stress ratio were more closer to zero than 

unity. 

In Figure 5.2 a comparison between experimental and predicted joint shear 

strength by ASCE SEI-41 (2006), Priestley (1997), Celik and Ellingwood (2008), 

Park and Mosalam (2012b) is carried out regarding tests collected in the 

experimental database. Black lines in Figure 5.2 represent regression lines 

passing from the origin of the axes. The comparison carried out in Figure 5.2 

allows highlighting that, when model by Park and Mosalam is adopted, the 

regression line is closer to the bisector in this graph (with respect to the other 

models) and dispersion of points is quite restrained. 
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Figure 5.2. Comparison between experimental and predicted joint shear strength 

for tests from database 
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5.2.4. Anchorage failure 

In Table 5.2 maximum experimental joint shear (Vj,Aexp) obtained from 

experimental tests with anchorage failure is reported for each specimen. A 

comparison between experimental results and three models, (Celik and 

Ellingwood, 2008, Sharma et al., 2011 and the proposed one) is carried out; first 

two models are empiric models, while the proposed model is based on 

analytical formulations. 

According to the model by Celik and Ellingwood (2008), the yield moment 

capacities of the beams related to ineffective anchorage length of bars are 

scaled by a factor , which is reported to vary between 0.40 and 0.70, to 

account for anchorage failure. This moment can be converted in shear stress 

(see Eq. 5.5 presented below) so that a comparison with the joint shear strength 

(jh,max) can be carried out; shear stress corresponding to anchorage failure is 

the minimum shear stress obtained through such a comparison. In particular, 

for the exterior beam-column joints, the joint shear strength (jh,max) falls within 

the range (0.42-0.62)√fc(MPa). Mean values of the proposed ranges of values 

for factor (=0.55) and joint shear strength jh,max(=0.52√fc) are assuming in 

Table 5.2 for experimental versus numerical comparison. By observing mean 

value of numerical-to-experimental shear strength, it can be concluded that 

this model is a good proposal in terms of strength (mean=0.94, CoV=0.23). 

Sharma et al. (2011) proposed a limitation of the principal tensile stress to 

the value of 0.19√fc(MPa) in the cases of anchorage failure. Therefore, this limit 

is converted in shear stress for each test and compared with the corresponding 

experimental value. Mean value of numerical-to-experimental shear strength is 

quite higher than unity (1.28), and variability is also significant (CoV=0.98). 

The mechanical approach adopted herein (referred to as ―proposed‖ in 

Table 5.2) to account for deformability contribution due to slip and possible 

strength limitation due to anchorage failure is based on the local bond stress-

slip relationship (b-s) proposed by Model Code 2010. The local bond stress 

initially increases with slip until a plateau is reached; then, after a softening 

branch for increasing slip values, bond stress reaches a constant residual value. 

In Figure 5.3a the bond stress-slip relationship adopted herein is reported; it is 

related to the case of ―other bond conditions‖ and pull-out failure (that is the 

failure typology exhibited in the analyzed experimental tests). 

Such model is very similar to local bond stress-slip models previously 
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proposed in literature (e.g. Eligehausen et al., 1983) and it also allows to 

consider the effect of steel strains (when yielding strain is overcame) and 

transverse pressure on local bond stress-slip relationship, as shown in Figure 

5.3b and c. In the analyzed experimental tests, yielding of bottom bars (with 

ineffective anchorage length) does not occur before anchorage failure; thus no 

degradation of bond stress due to steel strain is considered until the maximum 

strength is reached. The effect of transverse pressure is assumed to be due to 

column axial load; thus the higher axial load ratio, the higher local bond stress. 

 

 

(a) 

  

(b) (c) 

Figure 5.3. Bond stress-slip model by Model Code 2010: local bond stress-slip 
relationship in case of pull-out failure (―other bond conditions‖) (a); influence of steel 

strains (b) and transverse pressure (expressed as axial load ratio) (c) 

 

The anchorage failure condition is evaluated through the steel stress (s) – 

slip (s) response of a straight bar (with abscissa x) with length lb and diameter 

b embedded in concrete (as in Figure 5.4). It is well known that the response of 

0 1.8 3.6 6
0

slip (mm)

 
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P
a
)
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the embedded bar is ruled by the equation of translational equilibrium of the 

bar in conjunction with the compatibility equation between steel bar and 

surrounding concrete, namely: 

)x(
4

dx

d
b

b

s 





 (5.2a) 

)x(
dx

ds
s  (5.2b) 

where s and s are steel stress and strain, respectively. Eq. 5.2b is presented in 

the hypothesis of negligible tensile concrete strain. 

Starting from the knowledge of steel stress-strain and bond stress-slip 

relationships, s(x) and s(x) have to be obtained from the equations above, by 

defining two boundary conditions. The first boundary condition is defined in 

correspondence to the free end of the steel bar (x=0), for which s=0. The 

second condition can be defined in terms of slip once again at section with 

abscissa equal to zero (x=0). The solution can be obtained through a numerical 

integration procedure (e.g. Cosenza et al, 2006).  

Therefore, starting from the generic condition s(x=0)=s*, the corresponding 

steel strain, s(x=lb), and steel stress, s(x=lb), can be calculated. When s* 

increases, in turn s(x=lb) increases, until the achievement of a peak value 

s,max, beyond which bond slip increases while s(x=lb) decreases, according to 

equilibrium equation and bond stress-slip relationship. On the basis of 

equilibrium and compatibility equations at beam-joint interface, the value of 

beam moment corresponding to s,max, namely Mb (s,max), can be univocally 

obtained. 

The corresponding joint shear strength (Vj,A) is calculated as the difference 

between the tensile force in beam longitudinal bars (T) and column shear (Vc), 

both evaluated in correspondence to anchorage failure, namely when s=s,max: 

c

max,sb

b,smax,smax,scmax,sA,j L2

)(M
A)(V)(TV


  (5.3) 

where Lc is the column shear span and As,b is the area of the beam bottom 

reinforcement layer. Such strength is compared with the experimental 
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maximum joint shear Vj,Aexp. The mean value of numerical-to-experimental 

shear strength related to the proposed model is very close to unity (0.99), even 

if CoV is quite high (0.28). 

 

 
Figure 5.4. Longitudinal beam bar anchored into the joint core 

 

5.3 Proposed joint modeling 

The proposed model is based on the introduction of rigid links spreading 

through the panel zone dimensions and the adoption of two rotational springs 

in series: the first one is located in the centerline of the joint panel and it 

represents the shear behavior of the joint panel; the other one is located at the 

interface between the joint panel and the adjacent beam and it represents the 

bond-slip contribution (Figure 5.5). 

The joint panel constitutive parameters are defined to reproduce the 

experimental joint shear stress-strain relationships on the basis of experimental 

tests for which they were available. Bond-slip rotational spring properties are 

calculated using an analytical bond-slip model. 

T

x=lb

b

xx=0
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Figure 5.5. Proposed joint modeling 

 

When a RC frame has to be modeled for nonlinear analyses including joint 

behavior, beams and columns will be modeled according to a distributed 

plasticity approach or a lumped plasticity approach, without the deformability 

contribution of fixed-end-rotation; in addition, rigid links spreading into the 

joint panel should be introduced (as in Figure 5.5) together with two rotational 

springs (joint panel spring and bond slip spring) defined as explained in 

Section 5.3.1 and 5.3.2. 

 

5.3.1. Calibration of shear stress-strain relationship of the joint panel 

The joint panel zone model was calibrated through tests well documented 

in the literature, different for the failure mode they exhibited, namely J-failure 

(by Pantelides et al., 2002) and BJ-failure (by Clyde et al., 2000), for which 

experimental stress-strain relationships for joint panel were available. 

Pantelides et al. (2000) performed cyclic tests on six full-scale models of 

exterior beam–column joints with two different axial load ratio levels (10% and 

25% of compressive strength of concrete fc) and no transverse reinforcement 

within the joint core. All specimens had the same dimensions. Reinforcement 

bars in beam and columns were designed to prevent yielding, forcing a shear 

mode of failure in the joint (J-failure). Two specimens (test units 1 and 2) were 

designed with typical gravity load detailing and the bottom beam 

rigid links

joint panel

spring
bond slip

springs

bond slip

spring

B
A

joint panel
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reinforcement bars did not have adequate embedment inside the joint. Such 

specimens have been excluded from the analyzed database in Table 5.1 

because a loss of bond due to anchorage failure occurred, but later they have 

been considered in Table 5.2, as explained in Section 5.2. The other four 

specimens (test units 3, 4, 5 and 6) had both top and bottom beam bars bent 

into the joint. Test units 5 and 6 presented a U-hook type of anchorage for both 

top and bottom beam bars. 

Clyde et al. (2000) performed cyclic tests on four half-scale exterior 

unreinforced RC beam-column joints, with two different levels of axial load on 

the column, namely 10% and 25% of the compressive strength of concrete (fc). 

All beam-column specimens had exactly the same dimensions and detailing. 

Both bottom and top beam reinforcements were bent up and down, 

respectively, into a hook in the joint. The yielding of beam longitudinal 

reinforcement bars before joint failure was documented by the authors (BJ-

failure). 

As shown in Figure 5.5, the proposed joint panel zone model is a scissors 

model.  

It can be implemented by defining duplicate nodes, node A (master) and 

node B (slave), with the same coordinates at the center of the joint panel. Node 

A is connected to the column rigid link and node B is connected to the beam 

rigid link. A zero length rotational spring connects the two nodes and allows 

only relative rotation between them through a constitutive model which 

describes the shear deformation of the joint panel zone. Such a rotational 

spring (schematically represented in Figure 5.6) is defined as a quadri-linear 

moment (Mj) – rotation (j) spring characterized by four points for J- and BJ-

mode of failure, separately: cracking, pre-peak, peak and residual points. 

These key points are explained in details below. 

 

Figure 5.7a and Figure 5.7b reports the shear stress-strain envelopes and 

their mean envelopes constituted by these four characteristic points that have 

been identified for joints tested by Clyde et al. (2000) and Pantelides et al. 

(2002), respectively; shear stress is intended to be calculated as )fA(V cjj
. 
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Figure 5.6. Schematic proposed stress-strain relationship for joint panel 

 

  
(a) (b) 

Figure 5.7. Shear stress-strain envelopes for joints tested by Clyde et al. (2000) – BJ-

failure (a) and Pantelides et al. (2002) – J-failure (b) 

 

Table 5.3 shows the values of shear strain and shear stress-to-peak strength 

ratios (j/j,peak) related to the experimental tests used for the calibration of the 

panel zone constitutive relationship for each characteristic point of the 

proposed backbone. 

 

 

 

 

 

2j

j

Mj

j

cracking

pre-peak

peak
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Backbone 

point 

Clyde et al. (2000) - BJ-failure 

test #2 test #6 test #4 test #5 

j (%) j/j,peak j (%) j/j,peak j (%) j/j,peak j (%) j/j,peak 

cracking 0.07 0.52 0.03 0.31 0.11 0.68 0.05 0.44 

pre-peak 0.31 0.94 0.18 0.69 0.34 1.02 0.21 0.88 

peak 0.72 1.00 0.48 1.00 0.85 1.00 0.48 1.00 

residual 2.87 0.53 0.75 0.83 2.64 0.71 5.85 0.75 

Backbone 

point 

Pantelides et al. (2002) - J-failure 

test #5 test #6 test #3 test #4 

j (%) j/j,peak j (%) j/j,peak j (%) j/j,peak j (%) j/j,peak 

cracking 0.06 0.54 0.08 0.69 0.05 0.65 0.06 0.59 

pre-peak 0.23 0.84 0.27 0.95 0.19 0.93 0.18 0.92 

peak 0.61 1.00 0.65 1.00 0.33 1.00 0.31 1.00 

residual 1.96 0.81 3.05 0.46 4.37 0.42 2.07 0.68 

 

Backbone 

point 

Clyde et al. (2000) - BJ-failure 

min max mean min max mean 

j (%) j/j,peak 

cracking 0.03 0.11 0.06 0.31 0.68 0.49 

pre-peak 0.18 0.34 0.26 0.69 1.02 0.88 

peak 0.48 0.85 0.63 1.00 1.00 1.00 

residual 0.75 5.85 3.03 0.53 0.83 0.71 

Backbone 

point 

Pantelides et al. (2002) - J-failure 

min max mean min max mean 

j (%) j/j,peak 

cracking 0.05 0.08 0.06 0.54 0.69 0.62 

pre-peak 0.18 0.27 0.21 0.84 0.95 0.91 

peak 0.31 0.65 0.48 1.00 1.00 1.00 

residual 1.96 4.37 2.86 0.42 0.81 0.59 

Table 5.3. Stress-strain relationships for joint panel for BJ- and J-mode of failure 

 

Cracking point 

The cracking point represents the onset of hairline cracks in the joint panel. 

Experimental tests adopted in this chapter to calibrate the stress-strain shear 
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behavior of the joint panel suggested that the corresponding shear strain (j) is 

the same for J- and BJ-mode of failure and equal to 0.06%. 

Cracking strength is calibrated on the basis of the stress-strain response of 

experimental tests in which they were available (4 J- and 4 BJ-failure). In 

particular, cracking strength has been compared with analytical formulations 

presented in literature (Park and Mosalam, 2013; Priestley, 1992; Uzumeri, 

1977) and the expression suggested by Uzumeri (1977), which shows the lower 

mean error for the analyzed tests is adopted as reported in Eq. (5.4): 

j

ccr,j
A

P
29.01f29.0    (MPa) (5.4) 

where P represents the column axial load and Aj the joint area (that can be 

calculated according to ACI-318-05 or ASCE SEI-41). 

 

Pre-peak point 

In the case of BJ-failure the pre-peak point corresponds to the yielding of 

longitudinal beam bars, thus the pre-peak strength is explicitly defined in a 

mechanical approach and it is calculated as the joint stress corresponding to 

the achievement of yielding in the adjacent beam. The corresponding joint 

shear strain obtained from tests is assumed equal to its mean value (0.26%). 

In the case of J-failure, the pre-peak point corresponds to the widening of 

the main diagonal cracks and the developing of other cracks in the joint panel. 

The corresponding strength is assumed equal to 0.9 times the peak strength 

(defined below), in accordance with the observation of experimental tests by 

Pantelides et al (2002) (see Table 5.3) and other models proposed in literature, 

e.g. Park and Mosalam (2013). The corresponding joint shear strain obtained 

from tests is assumed equal to its mean value (0.21%). 

 

Peak point 

In the case of BJ-failure the peak point corresponds to a joint stress value not 

higher than the joint shear stress related to the achievement of the flexural 

strength in the adjacent beam; in the case of J-failure this point corresponds to 

the achievement of the maximum shear strength specifically inherent to the 

joint, independently on the stress demand in the adjacent beam. As explained 

in Section 5.2.1, the shear strength model proposed by Park and Mosalam 
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(2012b) directly provides joint shear strength and its failure typology, it shows 

a very good agreement with experimental tests and it is adopted in the 

proposed model. 

The joint shear strain corresponding to the peak point obtained from tests is 

assumed equal to its mean value, i.e. 0.63% for BJ-failure and 0.48% for J-

failure. 

 

Residual point 

Residual strength is calibrated on the basis of experimental tests, separately 

for J- and BJ-mode of failure. The softening branch is obtained by a straight 

line connecting the peak point and the ultimate point provided by the authors 

for each experimental test. In this study, a mean residual strength equal to 60% 

or 70% of the peak strength for J-failure mode and BJ-mode, respectively, is 

evaluated from the database. The joint shear strain corresponding to the 

residual point obtained from tests is assumed equal to its mean value, i.e. 

3.03% for BJ-failure and 2.86% for J-failure. However, it is worth to highlight 

that there are very poor data regarding the achievement of this limit state and 

they are not always reliable because of the uncertainties in the experimental 

measurements of joint panel deformation for large displacement demand. 

 

A summary of the coordinates of the characteristic points of the proposed 

backbone is reported in Table 5.4 and a graphic representation of such a 

backbone separately for J- and BJ-mode of failure is reported in Figure 5.8a. 

 

Backbone  

point 

J-failure BJ-failure 

   

cracking From Eq. (5.3) 0.06% From Eq. (5.3) 0.06% 

pre-peak 0.9 peak 0.21%  (Myielding,beam) 0.26% 

peak From Eq. (5.2) 0.48% From Eq. (5.2) 0.63% 

residual 0.6 peak 2.86% 0.7 peak 3.03% 

Table 5.4. Summary of the proposed backbone for the joint panel 

 
In Figure 5.8b, c, d, the proposed constitutive relationship is also 

compared with other proposals of complete shear stress-strain backbone 

presented in literature and previously discussed in Chapter 2. 

In Figure 5.8b, the model by Celik and Ellingwood (2008) is represented 
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in terms of mean values of shear stress and strain for the characteristic points 

of the backbone; such a backbone is characterized by shear strain values 

significantly higher than those related to the proposed backbone. 

 

 

 

(a) (b) 

 
 

(c) (d) 

Figure 5.8. Proposed stress-strain relationship for joint panel (for J- and BJ-mode of 
failure) (a); comparison between proposed model and models by Celik and 

Ellingwood 2008 (b), Priestley 1997 (c), and Sharma et al. 2011 (d). 

 

In Figure 5.8c and d, models by Priestley (1997) and Sharma et al. (2011) are 

presented through their upper bound (referred to as ―UB‖) and lower bound 

(referred to as ―LB‖). Since these two constitutive relationships are provided 

from the authors in principal stresses, the transformation in non-dimensional 

shear stress requires the knowledge of column axial stress. Therefore, such a 

transformation has been carried out for the eight tests adopted herein for the 

calibration of the joint panel shear behavior (Clyde et al. 2000, Pantelides et al. 

2002) in order to obtain backbones that can be directly compared to the 
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proposed ones. Minimum and maximum values for non-dimensional shear 

stress – which define upper and lower bounds – were calculated. Non-

dimensional stress – strain relationship related to models by Priestley (1997) 

and Sharma et al. (2011) appear to be stiffer in post-cracking branches; 

however, peak strains are not so different from the proposed ones. Vice-versa, 

the post-peak behavior related to these two models is characterized by stiffer 

softening branches with respect to the proposed stress-strain relationship. 

It should be specified that Figure 5.8b and d, models by Celik and 

Ellingwood (2008) and Sharma et al. (2011) are presented in the cases of no 

anchorage failure to allow a direct comparison with the backbones of the joint 

panel proposed herein. 

 

For each characteristic point of the backbone, from simple equilibrium 

equations (see Appendix 5), the moment transferred through the rotational 

spring Mj can be obtained as a function of the joint shear stress j (Park and 

Mosalam, 2012b; Sharma et al., 2011) through the Eq. (5.5): 

( 

cb

bc

jjj

Ljd

Lh
AM

2

12/1

1




  
(5.5) 

where Lb and Lc are the beam and column shear span, respectively, evaluated 

from the inflection point to the centerline of the joint panel, jdb is the beam 

level arm, hc the column height and Aj the effective joint area (defined 

according to ASCE SEI-41, Section 6.4.2.3.1). 

It should be noted that the relationship between beam moment and joint 

shear stress (from which Eq. (5.5) is derived) is based on the assumption of a 

fixed inflection point at the mid-length of beam and columns. Such an 

assumption is correct in the cases of tests sub-assemblages belonging to the 

database, for which shear span is known without any ambiguity. In the context 

of the whole structure, actually the assumption becomes an approximation 

(because shear span in beams and columns is not known a-priori), but it is a 

modeling approach quite consolidated in literature (e.g. Celik and Ellingwood 

2008, Hassan 2011) and it makes easier the implementation of joints in the 

structural model of a frame. 

The abscissas of the backbone of such a spring are joint panel shear strainj, 
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because the joint rotation resulting from beam bar slip (s) is explicitly defined 

by a separate zero-length rotational slip spring element located between the 

beam-joint interface section and the end of the beam rigid link (as explained in 

the next section). 

A comparison with other models proposed in literature in terms of joint 

panel deformability is carried out and reported in Table 5.5. 

 

 

Cracking Pre-peak Peak Residual 

J BJ J BJ J BJ J BJ 

proposed model (mean) 0.06% 0.21% 0.26% 0.48% 0.63% 2.86% 3.03% 

Celik and Ellingwood (2008) 0.01-0.13% 0.2-1.0% 1-3% 3-10% 

Genesio (2012) 0.10% - 0.70% 0.50% - 

Park and Mosalam (2012b) - - 2I(+) 2I(+) - 

Sharma et al. (2011) - 0.2% 0.5% 2.5% 

( - ) means that information is not available from literature 
(+)I is the principal tensile strain and it depends on the aspect ratio of the joint. 

Table 5.5. Comparison between the proposed model and other models from literature 

in terms of j 

 

It can be noted that proposed values for shear strain are generally lower 

with respect to values proposed by other literature models for each 

characteristic point of the backbone. 

Model by Celik and Ellingwood (2009) provides the higher values for joint 

shear strain; such values are very high if compared with shear strain values 

obtained from experimental tests on exterior unreinforced beam-column joints. 

Genesio (2012) investigated only two ―limit states‖ in terms of deformability, 

i.e. cracking and peak strength, thus a complete backbone cannot be defined; 

however, shear strain values are quite similar to the proposed ones. 

Park and Mosalam (2013) proposed the adoption of a single spring 

including both slip and joint panel contributions to the overall deformability, 

as reported in Chapter 2. However, in a previous work (Park and Mosalam, 

2012b) they proposed a distinct definition of joint panel shear strain, j, and 

beam longitudinal rebar slip rotation, s (in the hypothesis of strong column 

and weak beam), with regards to the definition of the joint peak strength point, 

assuming that 
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( cbIpeak,j h/h0005.0003.022   (5.6) 

where j,peak represents the joint panel shear strain at peak strength and I is the 

principal tensile strain (expressed as a function of the joint aspect ratio, hb/hc). 

Thus, j,peak does not depend on the failure typology and ranges between 0.65% 

and 0.8% when joint aspect ratio varies from 0.5 to 2; thus it is generally higher 

than the strain values proposed herein for the peak point. 

Sharma et al. (2011) proposed shear strain values similar to the values 

proposed herein by the authors for the case of J-failure and introduced a 

reduction of shear strain related to the achievement of residual strength in the 

case of anchorage failure. 

 

5.3.2. Bond slip spring 

The second deformability contribution related to beam-column joints is the 

rigid rotation (known as fixed-end-rotation) produced by the slippage of the 

longitudinal bars anchored into the joint core due to the moment acting at the 

interface between element (beam or column) and joint (see Figure 5.9). 

This deformability contribution can be computed and taken into account 

through different approaches. Between them, one of the approaches proposed 

in literature to account for slip deformation is the reduction of the effective 

stiffness of beams and columns, as recommended by ASCE/SEI 41 

supplement. However, in general, the deformability contribution due to bond 

slip is explicitly evaluated, in an empirical approach, namely through its 

calibration based on experimental tests (e.g. Park and Mosalam, 2013), or in a 

mechanical approach, namely analytically calculated using a bond-slip model 

(e.g. Hassan, 2011).  

In the latter approach, moment acting at the interface between element 

(beam or column) and joint (below referred to as interface section) can be 

directly related to the corresponding rotation due to the slippage of bars 

anchored into the joint panel. 

In this study, a mechanical approach is adopted; the bond stress-slip 

relationship employed herein is that proposed by Model Code 2010 (as 

explained in Section 5.2.2). 

The slip of steel bars at the joint–element (i.e., beam or column) interface is 
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evaluated by a procedure similar to that described above in Section 5.2.2; a 

translational equilibrium equation (Eq. 5.2a) for the bar and a compatibility 

equation (Eq. 5.2b) between steel and concrete in tension control the problem. 

The solution of the problem is univocally defined if the boundary conditions 

are provided in the two end sections of rebar. 

At the interface between joint and element (x=lb), the boundary condition is 

obtained using translational and rotational equilibrium equations. In fact, 

starting from axial load P and moment Mb acting at the interface section, 

tensile steel strain s and neutral axis depth x can be calculated through 

equilibrium equations. Similarly, starting from tensile steel strain s and axial 

load P, the corresponding neutral axis depth and moment Mb can be obtained. 

In section at x=0, the boundary conditions depends on the behavior of the 

anchorage detail, see Figure 5.9. From a theoretical point of view, in this 

section, two limit conditions can be identified: 

 if anchorage is rigid, slip at the inner end of the rebar is equal to zero 

(s=0), and a steel stress develops on the anchoring device; 

 if the anchorage is not present, straight rebar is characterized by a free 

end, thus a unrestricted slippage occurs, so that s=0. 

In the first case, a pull-out of bars leads to the premature failure of the 

member end section (anchorage failure); conversely, rigid anchorage allows 

the full development of flexural capacity of the member end section 

(Fabbrocino et al. 2004). 

Commonly, anchorage devices have a response that lies between the above 

boundaries, so that both slip and steel strain are not zero and are dependent on 

the response of the end anchorage.  

When the rebar is terminated with an end hook, the steel element can be 

treated as composed by the hook plus the straight portion. Steel–concrete 

interaction in the straight region is described by the adopted –s bond 

relationship, while the hook can be modeled as a translational non-linear 

spring, whose behavior is governed by the stress–slip (h–sh) relationship 

computed in the common section between the hook and the straight part, as 

depicted in Figure 5.9a. In literature, there are several proposals for stress–slip 

of anchorage device, both for deformed bars (Soroushian et al., 1988, Alsiwat 

and Saatcioglu, 1992; Monti et al., 1993) and plain bars (Fabbrocino et al. 2004, 

Fabbrocino et al. 2005). 
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(a) (b) 

Figure 5.9. Rotation s due to slip of end-hooked (a) and straight (b) longitudinal bars 

Thus, given a certain value of steel strain s, the corresponding beam (or 

column) moment Mb at the interface section and the corresponding slip can be 

univocally calculated. The rigid rotation s related to the calculated value of 

slip (s) can be obtained as proposed by (Otani and Sozen, 1972), namely: 

'
s

s

d d
 


 (5.7) 

where (d-d′) is the distance between tensile steel bars and compressive steel 

bars, and slip involving the compression rebar is considered negligible. Thus, it 

is possible to completely define the relationship between moment Mb acting at 

the interface and the corresponding slip rotation s. Moreover, such a 

relationship appears to be different if hook is present or not at the end section 

of the embedded bar. 

In the case of bar anchored through a terminal hook, it can be assumed that 

anchorage is effective allowing a complete development of the flexural 

response at the interface section. Therefore, Mb-s, slip spring can be defined in 

order to follow the flexural behavior at the interface section. In particular, the 

quadri-linear slip spring (see Figure 5.10a) is defined by four points.  

The first point of the spring is identified by the cracking moment Mcr and no 

slip deformation is assumed (s=0); therefore, the first branch of the slip spring 
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is a rigid branch. The second and third points are defined by yielding moment 

My and beam flexural capacity, respectively; the corresponding s can be 

calculated assuming a strain value in tensile bars which corresponds to the first 

yielding and the flexural capacity of the beam, respectively. The fourth point 

identifies the softening branch and it is defined from the beam softening 

branch. 

Vice-versa, in the case of bar anchored without an end hook (see Figure 

5.9b), an anchorage failure can occur. In this case, in Mb-s slip spring, the point 

related to anchorage failure can be identified in the post-cracking phase, with 

rotation s,peak and moment MA-failure corresponding to the attainment of the 

peak strength s,max in the stress-slip relationship at the free end of the straight 

bar (see Section 5.2.2 and Figure 5.10b). Post-peak phase is characterized by the 

reduction in steel strain of the embedded bar (related to the flexural unloading 

at interface section), on one hand, and the increase in the slippage of the bar, 

on the other hand, until a residual bond strength is achieved in 

correspondence to the complete pull-out of the bar, corresponding to s,res and 

Mres (see Figure 5.10b). The latter point, corresponding to the complete pull-

out, is identified in Mb-s relationship assuming a slip at free end section of the 

bar equal to the slip corresponding to residual bond stress in the employed 

bond stress-slip relationship. In order to better define the slip spring response, 

a further point is defined between cracking and peak strength conditions (see 

point s,2–M2 in Figure 10b); in this study, it is evaluated assuming that bar slip 

at the free end section is equal to the slip corresponding to the beginning of the 

bond strength plateau in the employed bond stress-slip relationship. 

Finally, it should be noted that slip spring is a multi-linear approximation of 

the ―real‖ moment-slip rotation spring that could be computed as a continuous 

function (see dotted line in Figure 5.10b). The quadri-linear approximation 

(solid lines in Figure 5.10b) is proposed herein to make easier the 

implementation of such a spring in most common structural software, such as 

OpenSees (McKenna and Fenves, 2006). 
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(a) (b) 

Figure 5.10. Quadri-linear springs without (a) and with (b) anchorage failure 

 

5.4 Validation by experimental tests 

The proposed joint model is validated using some of the experimental test 

data included in the database, reported in Table 5.1 and Table 5.2.  

The comparison between numerical and experimental results is performed 

taking into account tests for which test setup, material and geometrical 

properties are completely known without any ambiguity. Numerical 

simulations are performed first on tests characterized either by a BJ- or by a J-

failure mode, and then on tests which exhibited anchorage failure. The 

classification of the failure mode is carried out according to model by Park and 

Mosalam (2012a). 

Tests with no anchorage failure for which strength predicted by Park and 

Mosalam (2012a) (adopted in the proposed model) does not differ from 

experimental strength more than 20% are reported in this Section. The total 

amount of tests (characterized by J or BJ failure mode) used in the validation 

phase is 17 (all characterized by strong column-weak beam hierarchy). 

Tests by Clyde et al. (2000) and Pantelides et al. (2002), which have been 

used for the calibration of shear stress-strain relationship of the joint panel, 

were also considered in this validation step. Since geometry and test setup are 

not completely known for tests by Pantelides et al (2002), such tests are not 

taken into account in the comparison between the numerical and the 

experimental response of the sub-assemblages. As far as tests by Clyde et al. 

(2000) are concerned, it is worth to highlight that, according to Park and 
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Mosalam‘s strength model, these tests are in a limit range of behavior between 

J- and BJ-failure (i.e. k in Eq. (5.1) is close to 1), but the predicted mode of 

failure is a J-failure. Such a prediction does not reflect exactly what happens in 

the experimental tests because of the unavoidable error associated to a 

prediction model. However, the mean error associated to this strength model is 

the lower one between the models existing in literature for the analyzed 

database, as highlighted in Section 5.2.1. Thus, in the validation step, 

consistently with the adopted strength model, tests by Clyde et al. are 

simulated by using the stress-strain relationship related to J-failure mode. 

Experimental tests with no anchorage failure (4 tests) for which numerical 

simulations have been carried out are reported below in this Section. 

The finite element analyses of the specimens were performed using 

OpenSees (McKenna and Fenves, 2006); Figure 5.11 shows the structural model 

developed for analyses. 

 

 

Figure 5.11. Numerical model for beam-column joint sub-assemblages simulations 

 

In particular, flexural response of beam and column is modeled in a fiber 

approach. Concrete and steel properties were obtained from the analyzed test 

program reports; the Kent-Scott-Park model was adopted for concrete (Kent 
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and Park, 1971; Scott et al., 1982) and an elastic-plastic-hardening stress-strain 

relationship was adopted for steel (Concrete01 and ReinforcingSteel uniaxial 

materials in OpenSees software, respectively). 

Beam-column joint response is modeled through the scissors model. Mj-j 

relationship for joint panel is obtained from constitutive relationships 

proposed by different models analyzed herein (Priestley 1997, Celik and 

Ellingwood 2008, Park and Mosalam 2013, ASCE SEI-41, ―rigid joint‖ and the 

proposed joint model) and specialized for geometrical characteristics and load 

conditions related to each test. 

As far as the model by Celik and Ellingwood (2008) is concerned, the 

characteristic points of the Mj-j relationship are related to the mean values of 

the proposed ranges of shear stress and strain of the joint panel. 

Beam-column joint response is implemented with a four-point backbone 

moment-rotation relationship (Pinching4 uniaxial material in OpenSees 

software). 

Deformability contribution due to the slippage of beam longitudinal bars 

anchored into the joint core is reproduced through another zero-length 

element introduced at beam-joint interface. The related Mb-s relationship is 

obtained as defined in Section 5.3.2, by specifying geometrical and mechanical 

properties for each tests. 

When the model by Park and Mosalam (2013) is applied, since the 

deformability parameter of the relative constitutive relationship includes both 

joint panel shear strain and slip contribution due to the slippage of the beam 

bars, bond-slip spring is not introduced in the numerical model. 

In the case of ―rigid Joint‖ neither joint panel shear strain nor slip 

deformability contribution are considered. In the cases of models by ASCE/SEI 

41, deformability contribution due to slip is not taken into account. Moreover, 

when model by Celik and Ellingwood (2008) is adopted slip contribution is 

neglected as proposed by the authors of the model. 

Some of all the simulated tests with no anchorage failure (6 J-failures and 2 

BJ-failures) are reported in Figure 5.12, which shows beam shear versus drift 

(calculated as the ratio between top displacement of beam and total length of 

beam). Grey dotted horizontal thin lines represent beam yielding. 
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Figure 5.12. Comparisons between experimental and numerical results 
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In Figure 5.12, first column represents the comparison between 

experimental data, rigid joint model and ASCE SEI-41 model; second column 

represents the comparison between experimental data, model proposed herein 

and models by Priestley (1997), Celik and Ellingwood (2008), and Park and 

Mosalam (2013). It can be noted that the peak point and softening behavior are 

generally predicted quite well by adopting the proposed modeling approach, 

as it will be shown better later in Table 5.6, Table 5.7, Table 5.8 and Figure 5.14. 

Moreover, in general, models by Priestley and Celik and Ellingwood represent 

the lower and upper bounds, respectively, for the other models and the 

experimental response for the post-peak behavior. 

 

For all of the analyzed tests, the comparisons between numerical and 

experimental responses are performed for each model for three points, that are 

considered to be representative of the pre-peak behavior, peak response and 

post-peak behavior (see Table 5.6, Table 5.7 and Table 5.8). In particular: 

 numerical drift corresponding to 60% of experimental peak force is 

evaluated for each model and compared with the experimental one; the 

corresponding error is referred to as e[D60]; 

 numerical drift corresponding to the predicted peak force is evaluated 

for each model and compared with the experimental peak drift (namely, drift 

at experimental peak force); the corresponding error is referred to as e[Dpeak]; 

 numerical force corresponding to the drift at the last point of the 

experimental response (―residual‖) is evaluated for each model and compared 

with the experimental corresponding force; the corresponding error is referred 

to as e[Fres]. 

Figure 5.13 reports a schematically representation of the errors in terms of 

drift at 60% of the peak Force (e[D60]), peak drift (e[Dpeak]), and residual Force 

(e[Fres]). 
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(a) 

 
(b) 

 
(c) 

Figure 5.13. Schematic sketch of the errors in terms of drift at 60% of the peak Force 
(e[D60]), peak drift (e[Dpeak]), and residual Force (e[Fres]).  
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It is worth noting that a direct comparison in terms of experimental-versus-

numerical peak force is already presented in Table 5.1 (in terms of joint 

strength). 

Table 5.6, Table 5.7, Table 5.8 show experimental values and percentage 

errors (e) of peak drift (Dpeak), drift at 60% of the peak Force (D60), and residual 

Force (Fres) for the proposed model (Prop.), models by Celik and Ellingwood 

(C&E), Park and Mosalam (P&M), Priestley (Priest.) and ASCE (related to the 

experimental behavior on the peak strength side). A negative value of the 

percentage error means that the model underestimates the experimental value.  

It can be observed that on average model by Celik and Ellingwood better 

predicts drift at 60% of the peak force among models from literature (the 

related error is about 12%). The proposed model and model by Priestley 

provide a higher error on D60 (about 23% and 33% respectively). Moreover, for 

some of the analyzed tests, numerical simulation related to model by ASCE is 

characterized by a numerical peak force that is lower than 60% of the 

experimental peak force; thus, for these tests, in Table 5.7 no values of e[D60] 

are provided for model by ASCE. One similar case occurs also for model by 

Priestley (test Clyde#6). 

As far as the post-peak behavior is concerned, in Table 5.8 it can be noted 

that the proposed model provides the lower error in terms of Fres, so that it 

describes better than other models from literature the softening behavior of the 

experimental response. Models by Priestley and above all the code approach 

(ASCE) significantly underestimate residual strength (errors equal to -55% and 

-100% respectively) and the corresponding joint deformability. 

The peak response is described through numerical-versus-experimental 

comparison in terms of peak force (already presented in Table 5.1) and peak 

drift (in Table 5.6). Peak response is well described in terms of Dpeak by the 

proposed modeling approach (the error is equal to 7%). Only model by 

Priestley provides a bit higher error in terms of Dpeak (18.6%). The error 

evaluated according to other models from literature are higher than 60%. 

 

In Figure 5.14 graphical representation of the relative errors of peak drift 

(e[Dpeak]), drift at 60% of the peak Force (e[D60]), and residual Force (e[Fres]) is 

shown for all of the simulated tests and for all of the analyzed models from 

literature. 

 



Chapter 5 

A nonlinear macro-model of exterior RC joints without transverse reinforcement 

217 

 

Test 
failure 
mode 

Fpeak, 

exp 
Dpeak,

exp 
e [Dpeak] (%) 

(kN) (%) Prop. C&E P&M Priest ASCE 

WONG BS-L J 100.50 1.1 41.2 473.8 113 48.5 -56.4 
WONG BS-L600 J 134.58 1.3 2.6 105.2 17.9 65.4 -60.3 
WONG BS-U J 111.35 1.4 9.0 318.2 64.2 14.6 -66.4 
WONG BS-L-LS J 110.35 1.4 12.4 321.1 69.3 19.7 -65.3 
WONG JA-NN03 BJ 81.96 2.0 12.1 276.9 36.5 12.1 -57.3 
WONG JA-NN15 BJ 87.16 1.4 16.4 358.1 55.2 170.3 -59.5 
WONG JB-NN03 BJ 58.18 2.3 50.5 167.7 48.8 12.4 -62.0 
TSONOS L1 J 60.00 1.5 -18.3 64.8 36.2 -5.2 -66.4 
ANTONOPUOLOS C1 J 31.30 1.8 -17.0 82.4 27.0 -25.6 -65.6 
ANTONOPUOLOS C2 J 31.10 1.4 15.0 37.0 71.0 -5.0 -52.7 
DI LUDOVICO TC J 80.50 1.3 41.6 168.0 85.7 53.1 -50.4 
DI LUDOVICO TC_2 J 76.50 1.3 57.6 142.2 69.2 99.2 -67.6 
GENESIO JT_1 BJ 76.90 3.2 -35.4 145.8 95.6 -51.7 -60.6 
CLYDE #2 J 290.00 2.0 -12.4 47.2 49.2 -41.9 -80.1 
CLYDE #6 J 279.20 1.9 -30.2 -21.2 47.2 -41.1 -79.6 
CLYDE #4 J 290.00 1.0 7.5 23.0 157 18.8 -75.7 
CLYDE #5 J 275.00 1.6 -33.7 -31.7 56.3 -27.6 -85.2 

mean value 
 

7.0 157.6 64.6 18.6 -65.4 

Table 5.6. Experimental values and percentage errors (e) of peak drift (Dpeak), for the 
proposed model (Prop.), models by Celik and Ellingwood (C&E), Park and Mosalam 

(P&M), Priestley (Priest.) and ASCE 
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Test 
failure 
mode 

F60,exp D60,exp e [D60] (%) 

(kN) (%) Prop. C&E P&M Priest ASCE 

WONG BS-L J 60.30 0.4 22.64 9.49 48.97 13.61 -8.34 
WONG BS-L600 J 80.75 0.3 24.33 16.59 74.52 13.12 -3.23 
WONG BS-U J 66.81 0.3 82.14 70.14 111.18 60.26 33.05 
WONG BS-L-LS J 66.21 0.4 33.56 37.56 70.53 20.14 0.24 
WONG JA-NN03 BJ 49.18 0.5 36.45 15.74 54.77 28.52 5.65 
WONG JA-NN15 BJ 52.30 0.5 0.53 -17.91 31.73 -13.72 -29.03 
WONG JB-NN03 BJ 34.91 0.7 19.42 -4.54 23.90 8.82 -12.48 
TSONOS L1 J 36.00 0.5 -25.98 -30.10 1.18 -34.28 -50.27 
ANTONOPUOLOS C1 J 18.78 0.5 28.22 7.50 36.09 96.03 -8.80 
ANTONOPUOLOS C2 J 18.66 0.3 110.36 79.19 125.92 167.45 57.67 
DI LUDOVICO TC J 48.30 0.3 92.22 68.58 124.44 72.67 69.15 
DI LUDOVICO TC_2 J 45.90 0.3 38.28 30.68 79.95 15.74 10.04 
GENESIO JT_1 BJ 46.14 0.5 48.18 12.80 38.16 143.17 0.89 
CLYDE #2 J 174.00 1.0 -46.55 -42.60 -44.08 -0.09 - 
CLYDE #6 J 167.52 0.9 -35.94 -34.34 -35.38 - - 
CLYDE #4 J 174.00 0.5 -2.21 11.90 8.15 -15.59 - 
CLYDE #5 J 165.00 0.7 -30.28 -21.82 -30.81 -42.29 - 

mean value 
 

23.26 12.29 42.31 33.35 4.96 

Table 5.7. Experimental values and percentage errors (e) of drift at 60% of the peak 
Force (D60) for the proposed model (Prop.), models by Celik and Ellingwood (C&E), 

Park and Mosalam (P&M), Priestley (Priest.) and ASCE 
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Test 
failure 
mode 

Fres,exp Dres,exp e [Fres] (%) 

(kN) (%) Prop. C&E P&M Priest ASCE 

WONG BS-L J 60.61 2.9 24.85 113.91 53.93 -54.22 -100. 
WONG BS-L600 J 67.31 3.1 29.44 157.52 38.29 -43.11 -100 
WONG BS-U J 51.94 4.1 24.21 159.43 29.55 -100.00 -100 
WONG BS-L-LS J 84.57 2.6 0.38 49.28 24.20 -55.93 -100 
WONG JA-NN03 BJ 60.96 3.0 8.51 30.25 14.09 -68.43 -100 
WONG JA-NN15 BJ 81.67 2.2 -16.03 -3.73 -9.39 1.50 -100 
WONG JB-NN03 BJ 60.02 4.8 -28.36 -0.81 -34.43 -100.00 -100 
TSONOS L1 J 27.94 6.4 26.49 123.63 26.51 -100.00 -100 
ANTONOPUOLOS C1 J 21.85 3.2 -4.85 108.84 16.90 -72.31 -100 
ANTONOPUOLOS C2 J 19.39 3.2 26.41 80.56 54.31 -68.95 -100 
DI LUDOVICO TC J 73.59 2.4 -7.39 17.41 5.73 -44.39 -100 
DI LUDOVICO TC_2 J 46.38 3.2 27.43 122.61 22.18 -11.17 -100 
GENESIO JT_1 BJ 53.04 3.5 35.10 86.52 54.55 -92.91 -100 
CLYDE #2 J 120.67 2.8 70.67 142.21 135.83 -57.98 -100 
CLYDE #6 J 119.64 3.2 40.27 125.00 112.45 -73.40 -100 
CLYDE #4 J 91.37 2.2 131.93 205.49 188.93 28.60 -100 
CLYDE #5 J 100.00 2.8 75.70 159.19 75.44 -29.54 -100 

mean value 
 

27.34 98.66 47.59 -55.43 -100 

Table 5.8. Experimental values and percentage errors (e) of residual Force (Fres) for the 
proposed model (Prop.), models by Celik and Ellingwood (C&E), Park and Mosalam 

(P&M), Priestley (Priest.) and ASCE 
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An overview of numerical-versus-experimental comparisons can be carried 

out by summing up data provided in Table 5.1, Figure 5.12 and Figure 5.14. 

From Figure 5.12 it can be observed that the rigid joint model generally 

overestimates the sub-assemblage strength, especially for J-failure mode. In 

this model there is no limitation of strength due to joint failure and thus the 

adjacent elements can explicate their flexural strength (if shear failure is 

prevented, as in these cases). 

On the contrary, for the selected tests, ASCE SEI-41 underestimates the 

strength (as it can be verified also in Table 5.1) and the displacement capacity 

of the sub-assemblage. The mean percentage error related to ASCE SEI-41 

model is always negative, both for peak force and peak displacement (see 

Table 5.1 and Tables 5.6-8); thus this code-approach appears to be very 

conservative. 

Model proposed by Celik and Ellingwood (applied using the mean values 

of the proposed range of values for each characteristic point) generally 

overestimates maximum strength and displacement capacity for the analyzed 

experimental tests; the proposed joint strength (0.83-1.00√MPa for exterior 

joints) seems to be too high. With respect to other simulations, such a model 

provides also higher values of peak drift because of the high values of joint 

drift capacity (mean of 2% at peak point). Mean relative error in terms of peak 

drift is almost always positive (see Table 5.6 ) and it overcomes the unity when 

model by Celik and Ellingwood is adopted in numerical simulations. 

Model proposed by Priestley (1997) slightly underestimates peak load and 

overestimates peak drift on average; however it shows a good prediction of 

beam-column joint sub-assemblage behavior, even if it often shows a softening 

branch that is quite steeper than the experimental response. 

Finally, model by Park and Mosalam captures well the strength of the sub-

assemblages, as shown also in Table 5.1, but not also their deformability. Since 

model by Park and Mosalam (2012b) is adopted herein for strength prediction, 

the mean error in terms of peak force for the proposed model and model by 

Park and Mosalam are overlapped in Figure 5.14. 

Since the great spread of displacement-based approaches for seismic 

assessment, a very important role is assumed by the comparison between 

models from literature and experimental values in terms of drift capacity. 

By comparing the mean errors in Table 5.6, it can be observed that model by 

Park and Mosalam generally overestimates the peak deformability of the sub-
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assemblages, while the proposed model shows the lower mean error (see 

Tables 5.6 and 5.8) at peak drift and residual strength with respect to the other 

models from literature. Thus, the proposed model can be very suitable for 

seismic assessment in the context of displacement-based approaches. 

It is worth noting that relative errors for almost all of the tests by Clyde et 

al. (Table 5.6) appear to be quite high in terms of peak deformability; these 

data could be considered unexpected since stress-strain envelope (for BJ-

failure) of the joint panel has been calibrated just from tests by Clyde et al.. 

Actually relative errors for tests by Clyde et al. are due to the predicted mode 

of failure according to the adopted strength model (Park and Mosalam, 2012b), 

that is a J-failure mode and does not reflect exactly what happens in the 

experimental tests. However, in the validation step, consistently with the 

adopted strength model, tests by Clyde et al. are simulated by using the stress-

strain relationship related to J-failure mode, i.e. a stress-strain envelope that is 

different from the envelope calibrated just on these test data, and, therefore, 

the peak deformability is generally underestimate (negative percentage error). 

As far as the initial stiffness is concerned, for each test, results obtained 

from all joint models by numerical simulations are very similar to each other, 

and they are very close to experimental results. This outcome related to the 

elastic range of behavior is the evidence of a higher deformability of the 

adjacent beam/column elements with respect to the pre-cracking 

deformability of the joint panel. 

 

A numerical versus experimental comparison is also carried out for tests 

that exhibited anchorage failure. Also in this case such a comparison is 

performed taking into account tests for which test setup, material and 

geometrical properties, and load-drift global response are completely known 

without any ambiguity.  

In Figure 5.15 the experimental response is compared with numerical 

response obtained through the proposed model and by adopting a ―rigid joint‖ 

model; the represented quarter is that characterized by anchorage failure of 

beam bars. 

 

 



Chapter 5 

A nonlinear macro-model of exterior RC joints without transverse reinforcement 

223 

  
(a) (b) 

  
(c) (d) 

Figure 5.15.  Comparisons between experimental and numerical results for tests which 
exhibited anchorage failure: El-Amoury-Ghobarah 2002 (a), Genesio JT1-3 2012 (b), 

Shafaei et al. 2014 (c), Murty et al. 2011 (d); gray dotted line identifies yielding of the 
beam 

 

In Table 5.9 the experimental values and errors for peak force (shear in 

beam) (Fpeak) and peak drift (peak) related to the proposed model are reported. 

A negative value of the percentage error means that the model underestimates 

the experimental value. 
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Test failure 
mode 

Fpeak,exper peak,exper e [Fpeak] 
(%) 

e [peak] 
(%) 

(kN) (%) Prop. Prop. 

El-Amoury and 
Ghobarah T0 

Anchorage 
failure 

60.0 1.50 8.72 -2.67 

Shafaei et al. C3 40.9 1.52 -17.73 3.95 

Genesio JT1-3 21.1 1.43 -40.76 27.27 

Murty et al. S1 43.2 1.13 19.17 43.36 

Table 5.9. Experimental values and percentage errors (e) of peak force (Fpeak) and peak 

drift (peak) for the proposed model (Prop.) – anchorage failure 

 
Much more experimental data should be necessary to a proper calibration 

and validation of such a model in the cases of anchorage failure, but first 

comparisons shown herein appear to be quite promising. 
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5.5 Summary 

In literature, there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of exterior 

unconfined beam-column joints in moment resisting RC frames. Many 

nonlinear joint models are available, but most of them may be unsuitable for 

modeling all sources of nonlinearity for the assessment of older concrete 

buildings, because they were developed and calibrated for confined beam-

column joints, or on the basis of statistical regression analysis with quite small 

size and large scatter of experimental datasets, and independently on the joint 

failure typology. 

In this Chapter, a macro-model for exterior unconfined joints has been 

proposed. It depends on the joint failure typology and it has been defined in a 

―semi-empirical‖ approach, according to the steps described as follows: 

• An experimental database consisting of 39 tests on exterior 

unreinforced beam-column joints that exhibited J-, BJ- or Anchorage failure 

mode has been collected and illustrated. 

• The joint panel constitutive parameters have been defined in order to 

reproduce the experimental joint shear stress-strain behavior, when they were 

available from tests. The proposed model for joint panel is a scissors model 

characterized by a quadri-linear Moment–Rotation spring with four points for 

J- and BJ-mode of failure, namely: cracking, pre-peak, peak, and residual point. 

• The peak strength has been evaluated according to the model by Park 

and Mosalam (2012a), which directly provides joint shear strength depending 

on the failure typology and shows a very good agreement with analyzed 

experimental tests. 

• Bond-slip has been taken into account by introducing an explicit slip 

spring (at the beam-joint interface) whose properties are analytically calculated 

using a finite difference model of the bar anchored into the joint panel. 

• Cases of anchorage failure due to an insufficient embedment length of 

the straight longitudinal bar into the joint core (which represents typical 

anchorage conditions of bottom reinforcement layer at beam‘s ends in non-

conforming frames designed for gravity loads only) have been taken into 

account limiting the peak strength of the slip spring consistent with the 

maximum stress allowed in the bar. 

• The proposed joint model has been validated using some of the 
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experimental tests included in the database, and a comparison between the 

proposed model and other models from literature and code provisions has 

been carried out. The proposed model conducts to the lower errors in terms of 

peak strength, peak drift and residual strength, if compared with the other 

models. 

Future investigations shall be conducted to calibrate the cyclic behavior of 

interior joints, too, starting from the available cyclic experimental tests.  

Moreover, joint axial failure should be better investigated and introduced 

into the model, starting from the analysis of some theoretical and empirical 

friction models that have been recently proposed in literature (Hassan and 

Moehle, 2013). 
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Appendix 5: Mj-j relationship 

Equilibrium equations to obtain the moment transferred through the 

rotational spring Mj as a function of the joint shear stress j are reported in 

details in this Appendix. The symbology is the same adopted throughout the 

Chapter. 
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Chapter 6  

INFLUENCE OF JOINT RESPONSE ON SEISMIC 

ASSESSMENT OF NON-CONFORMING RC 

FRAMES 
 

 

 

 

 

In the seismic performance assessment of existing Reinforced Concrete 

buildings, non-ductile failures related to both columns and beam-column joint 

regions represent a critical issue. 

A growing attention should be addressed to the behavior of non-ductile 

elements, starting from the classification of the failure typology of beams and 

columns and the analysis of the behavior of beam-column connections. 

As explained in the previous Chapter, in typical existing buildings, seismic 

collapse safety might be significantly affected by the non-linear behavior of 

joints which are involved in the failure mechanisms because of poor structural 

detailing (e.g. lack of an adequate transverse reinforcement in joint panel, 

deficiencies in the anchorage or absence of any capacity design principle). 

Conventional modeling approaches consider only beam and column flexibility, 

although joints can provide a great contribution to the global deformability as 

well as a significant strength reduction. 

In this Chapter, a numerical investigation on the influence of joint failures 

on the seismic performance at different performance levels of two RC case 

study frames - designed for gravity loads only and for seismic loads according 

to obsolete technical codes - is performed. A preliminary classification of joint 

failure typology within the frames and the definition of the corresponding 

nonlinear behavior are carried out. Structural models that explicitly include 

beam-column joints are built. In particular, the joint model proposed and 

presented in Chapter 5 was applied, in conjunction with modeling proposals 

from literature for interior joints and beam/column behavior. 



Chapter 6 

Influence of joint response on seismic assessment of non-conforming RC frames 

235 

A probabilistic assessment based on nonlinear dynamic simulations of the 

structural response is performed taking into account record-to-record 

variability and also highlighting the importance of column shear failure in 

under-designed RC buildings. 
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6.1 Introduction 

Assessment of seismic performance of structures requires the development 

of nonlinear analysis models that can detect all possible local and global 

collapse modes. 

Since, potential element deterioration and failure modes are a consequence 

of the design and detailing requirements, materials properties and structural 

system, once all failure typologies have been identified for a given structural 

system, the attention can be focused on a subset of likely collapse mechanisms 

by means of the analysis of experimental test data, engineering judgment, 

analytical models, and observations from past earthquakes. The identified 

collapse modes then serve as the basis for selecting appropriate simulation and 

damage models that can be used to predict structural seismic performance. 

The building code requirements for modern special moment frames are 

designed to promote ductile and more desirable collapse modes, and to 

prevent the formation of the brittle collapse modes (ACI 2002; CEN 2005, DM 

2008). The strong column – weak beam requirement promotes flexural hinging 

in beams before columns. Likewise, shear strength capacity design provisions 

for beams and columns should ensure that shear failure is highly unlikely in 

beam-column elements. Vice-versa, older RC moment frames, with minimal 

detailing requirements used in their design, are vulnerable to a wider range of 

possible collapse modes (Aycardi et al. 1994; Kurama et al. 1994; Kunnath et al. 

1995; Kunnath et al. 1995; El-Attar et al. 1997; Filiatrault et al. 1998; Filiatrault et 

al. 1998). These structures have a demonstrated tendency to fail in soft story or 

column-hinging mechanisms (Liel, 2008), when they are designed for gravity 

loads only, or to exhibit joint failures (Celik and Ellingwood, 2008), also if old 

seismic codes are adopted for the design (Jeon et al. 2015). Moreover, column 

shear failure may occur, depending on the column‘s design and gravity 

loading (Elwood 2004). Less stringent detailing requirements may also 

promote lap-splice failure or pull-out of the bottom beam reinforcing bars 

anchored into the joint panel. 

 
In particular, in seismic performance assessment of non-conforming (or 

―under-designed‖) RC buildings, non-ductile failures related to both columns 

and beam-column joint regions represent a critical issue. 
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In this Chapter, a numerical investigation on the influence of joint failures 

on the seismic performance at different performance levels of two RC case 

study frames - designed for gravity loads only and for seismic loads according 

to an obsolete technical code - is performed. A preliminary classification of 

joint failure typology within the frames and the definition of the corresponding 

nonlinear behavior is carried out. Structural models that explicitly include 

beam-column joints are built. In particular, the joint model proposed and 

presented in Chapter 5 was applied, in conjunction with modeling proposals 

from literature for interior joints and beam/column behavior, as it will be 

explain in Section 6.2. 

A probabilistic assessment based on nonlinear dynamic simulations of the 

structural response is performed taking into account record-to-record 

variability and also highlighting the importance of column shear failure in 

under-designed RC buildings. 

 

6.2 Structural modeling 

Analytical evaluation of seismic performance at different performance 

levels requires primarily the accurate modeling of nonlinear behavior and 

deterioration due to seismic loading for each of the constituent element in the 

structural system, such that all possible local and global collapse modes can be 

captured. Therefore, to ensure that the model faithfully represents the 

structure and its possible failure modes, accurate representation of material 

properties and deterioration of beam-column elements and joints is needed. 

Nonlinear element models for RC beam-columns calibrated by Haselton et 

al. (2007) is adopted in this Chapter to capture the yielding, strain hardening, 

and spalling and rebar buckling that lead to degradation of strength and 

stiffness in the structure, as described in Section 6.2.1. 

Modeling of joint shear behavior in beam-column joints is the focus of 

Section 6.2.2. 

Dynamic analyses are performed in two conditions: (i) with ―rigid joints‖, 

assuming a very high stiffness and shear strength for beam-column 

connections and (ii) ―with joints‖, explicitly modeling the nonlinear behavior 

of joints. 
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An overview of the frame modeling is shown in Figure 6.1 and it will be 

described more in details in Sections 6.2.1 and 6.2.2. 

 

 
Figure 6.1. Adopted structural modeling 

 

It is worth noting that, despite the care taken in developing nonlinear 

analysis models, the simulation model is not able to capture all possible 

collapse modes, in particular degrading behavior after shear failures in 

columns and axial load failure in beam-column joints. To avoid non-

conservative under-prediction of collapse fragility, these non-simulated failure 

modes should be at least considered by post-processing the dynamic analyses 

results to determine whether these failure modes may occur before the 

conventional collapses that were explicitly simulated. 

In particular, in non-ductile RC frame structures, columns are potentially 

vulnerable to brittle shear failure, a failure that may eventually cause collapse 

of a portion of the structure when the column loses its ability to carry gravity 

loads. In this study, for the columns which are expected to yield before failing 

in shear, the model described in Section 6.2.1 captures the important aspects of 
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strength and stiffness deterioration as the column yields and, subjected to 

increasing deformations, fails in shear. However, the model cannot capture 

explicitly the onset of shear failure and the subsequent axial collapse of 

column, because the column model does not incorporate axial-shear 

interaction. Post-processing for identifying this non-simulated failure mode is 

discussed in detail in Section 6.2.3. 

Likewise, axial failure in beam-column joints regions will be detected in 

post-processing because of the lack of experimental data and reliable models 

that allow to capture this failure mode explicitly in the modeling. 

 

6.2.1. Beams and columns modeling 

The choice of the model for nonlinear response and deterioration related to 

beam-column flexural hinging is discussed in more detail in this Section. 

Either fiber-type or lumped plasticity models could be used to model 

behavior associated with flexural deterioration, as discussed in Chapter 2. In 

this Chapter, a lumped plasticity model, calibrated to reproduce the effects of 

yielding, spalling and bar buckling, is used in the numerical model for RC 

elements. 

While lumped plasticity models lack the detail and spread-plasticity 

capabilities of fiber models, they can be properly calibrated on the basis of data 

from experimental tests to capture the deterioration associated with rebar 

buckling and stirrup fracture leading to loss of confinement (Ibarra 2003, 

Haselton 2006). Fiber-type models were judged unsuitable for simulating 

structural collapse because available steel material models are not able to 

replicate the behavior of rebar as it buckles or fractures (Haselton, 2006).  

Lumped plasticity models also account for bond-slip that occurs in regions 

of high bond stresses in beam-column joints. Also rebar pull-out and the 

resulting loss in strength could be accounted for by introducing an additional 

spring, defined similarly to the modeling approach suggested in Chapter 5. 

However, in the analyzed cases, the latter possible failure is excluded, by 

assuming that a sufficient anchorage length or efficient anchorage devices are 

guaranteed, as common construction practice provided for, especially for 

seismic designed structures. 

The lumped plasticity model adopted herein to simulate plastic hinges in 

beam-column elements utilizes a nonlinear spring model developed by Ibarra, 
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Medina, and Krawinkler (2005), implemented in OpenSees by Altoontash 

(2004), and calibrated by Haselton et al. (2007). 

Figure 6.2 shows the tri-linear monotonic backbone curve, together with 

associated hysteretic behavior of the model. 

 

 
 

(a) (b) 
Figure 6.2. Monotonic backbone (a) and hysteretic degradation (b) in model by 

Haselton et al (2007) 

Even if the model cannot capture the effect of the variation in axial load 

during the analysis (such as the majority of lumped-plasticity approaches), it 

simulates the post-peak response, modeling the strain softening behavior 

associated with concrete crushing, rebar buckling and fracture. The model also 

captures four modes of cyclic deterioration: strength deterioration of the 

inelastic strain hardening branch, strength deterioration of the post-peak strain 

softening branch, accelerated reloading stiffness deterioration, and unloading 

stiffness deterioration. Cyclic deterioration is based on an energy index that 

has two parameters: normalized energy dissipation capacity, λ, and an 

exponent term to describe how the rate of cyclic deterioration changes with 

accumulation of damage, c. 

Direct modeling of cyclic degradation is adopted in this model, which 

begins with a monotonic backbone curve and degrades this relationship as the 

analysis proceeds (Ibarra et al. 2005, Haselton et al. 2007). 

In total, the model requires the specification of seven parameters to control 

the monotonic and cyclic behavior (see Figure 6.2a): yielding moment (My), 

elastic stiffness (Ke), strength hardening ratio (Mc/My) - that is a measure of 

post-yield stiffness -, plastic rotation at peak strength (θcap,pl), post-peak plastic 

rotation (θpc) – that is related to the post-capping stiffness -, and two 

parameters for cyclic degradation (λ and c). The model can also assign a 
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residual strength, as a function of the ultimate strength. In this research, 1% 

residual strength is used for all beams and columns to avoid problems with 

numerical convergence. It is likely that RC beams and columns actually have 

higher residual strength such that the model is quite conservative, but it is 

difficult to quantify on the basis of available experimental data (Liel, 2008). 

In order to evaluate numerically each of the required parameters, the Ibarra 

model parameters have been calibrated to 255 experimental tests of RC 

columns by Haselton et al. (2007). The calibration of the beam-column element 

model to the data from each experimental test follows a standardized 

procedure, placing a particular emphasis on correct calibration of the capping 

point and post-capping strength deterioration, which can have a significant 

impact on structural collapse prediction. 

These calibrations provided empirical equations relating the design 

parameters of a beam or column to the modeling parameters needed for input 

in the lumped plasticity model. 

The database adopted for the calibration includes RC columns with both 

ductile and non-ductile detailing, and varying levels of axial load and 

geometries and, for each, reports force-displacement history and other relevant 

data. Approximately 35 of the 255 column tests have non-ductile detailing and 

failed in flexure-shear, as expected for the older RC columns of interest in this 

study. However, the model cannot capture explicitly the onset of shear failure 

with the subsequent axial collapse of column, because the column model does 

not incorporate axial-shear interaction. Post-processing for identifying this 

non-simulated failure mode is discussed in detail in Section 6.2.3. 

 

6.2.2. Joints modeling 

To capture nonlinear behavior and deterioration associated with 

degradation of shear strength and stiffness in the beam-column joint regions, 

the shear panel is modeled with an inelastic rotational spring and rigid offsets 

spreading into the joint panel, namely by means of the so-called scissors model 

(Alath and Kunnath, 1996). 

A review of the modeling approaches for beam-column joints existing in 

literature was carried out in Chapter 2, with a particular focus on exterior 

unreinforced joints. 
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It was pointed out that models with multiple nodes and multiple springs 

(e.g. Lowes and Altoontash, 2003; Shin and LaFave, 2004b; Sharma et al., 2011) 

allow to capture more realistically the joint panel kinematic behavior and 

simulate the horizontal translation that can occur between the centerlines of 

the columns above and below the joint. Vice-versa, the scissors model by Alath 

and Kunnath (1996) does not capture this possible kinematic response, but it is 

the simplest and computationally less demanding joint model and it seems to 

be sufficiently accurate in predicting the experimental beam-column joint 

panel response for simulating the seismic response of non-conforming RC 

frames for purposes of fragility assessment and performance-based earthquake 

engineering (Celik and Ellingwood, 2008). 

Therefore, both for exterior and interior joints, the scissors model has been 

adopted. No springs at the interface between the joint panel and the adjacent 

beam representing the bond-slip contribution are introduced in these analyses 

beacause the deformability contribution due to bond slip is already accounted 

for in beam/column rotational springs. 

The joint panel model adopted herein for exterior joints is implemented by 

defining duplicate nodes, node A (master) and node B (slave), with the same 

coordinates at the center of the joint panel. Node A is connected to the column 

rigid link and node B is connected to the beam rigid link. A zero length 

rotational spring connects the two nodes and allows only relative rotation 

between them through a constitutive model which describes the shear 

deformation of the joint panel zone, and that is different for exterior and 

interior joints. In both cases, such a rotational spring is defined as a quadri-

linear moment (Mj) – rotation (j) spring characterized by four points for J- and 

BJ-mode of failure, separately: cracking, pre-peak, peak and residual points. 

In particular, in this study, the model proposed and presented in Chapter 5 

is adopted for exterior joints. The proposed model provides the backbone of 

the joint moment-rotation relationship. The calibration of the cyclic behavior, 

that is essential to perform dynamic nonlinear analyses, is carried out (see 

Section 6.2.2.1) including cyclic degradation in unloading and reloading 

stiffness and pinching effects. 

Moreover, the calibration of the joint moment-rotation relationship 

proposed by Celik and Ellingwood (2008), within the modeling approach of 

the scissors model, is adopted for interior joints, as explained in Section 6.2.2.2. 
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6.2.2.1 Exterior joints 

As shown in Chapter 5, the joint panel zone model for exterior unreinforced 

joints was calibrated through tests well documented in the literature, different 

for the failure mode they exhibited, namely J-failure (by Pantelides et al., 2002 

– here referred to as Pant2, Pant3, Pant5, Pant6) and BJ-failure (by Clyde et al., 

2000 – here referred to as Cly2, Cly4, Cly5, Cly6), for which experimental 

stress-strain relationships for joint panel were available. Key parameters 

defining the quadri-linear backbone of the joint rotational spring have been 

described in details in Chapter 5. 

The same test adopted for the calibration of the backbone are considered to 

calibrate the cyclic behavior of the joint shear stress-strain response of these 

typology of joints. 

The calibration is performed in OpenSees (McKenna et al. 2010) on the basis 

of the hysteresis rules characterizing the Pinching4 material, so that the 

obtained parameters can be practically employed in modeling of RC frames. 

Pinching4 material (see Figure 6.3) is a four-points uniaxial material 

developed by Lowes et al. (2003) and belonging to the library of OpenSees, that 

allows to model the cyclic degradation of unloading and reloading stiffness 

(through the parameters gk and gD, respectively), degradation in strength 

(through the parameters gF) and pinching effects (through the parameters 

rDisp, rForce and uForce). 

 

 

Figure 6.3. Pinching4 uniaxial material (Lowes et al. 2003) 

 

Calibration of these key parameters was performed starting from the 

experimental shear stress-strain backbones (the same adopted in Chapter 5 to 



Influence of joint response on seismic assessment of non-conforming RC frames 

 
 

244 

calibrate the numerical backbone) and minimizing the error in terms of energy 

dissipated between the numerical and the experimental response. No 

degradation in strength was introduced since it is already included in the 

backbone of the joint response obtained from experimental data. 

In Figure 6.4 numerical and experimental cyclic responses are compared: 

experimental backbone and cyclic response are reported in red and grey, 

respectively; numerical cyclic response is reported in black. 

From these figures, it can be seen that the analytical results are well-

correlated with experimental results with regard to un-loading stiffness, and 

pinching effects. 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure 6.4. Cyclic behavior calibration for tests by Pantelides (a, c, e, g); Clyde et al. 
(2000) (b, d, f, h). Experimental backbone and cyclic response are reported in red and 

grey, respectively; numerical cyclic response is reported in black. 

 

Table 6.1 presents the modeling parameters of the Pinching4 material (in 

positive ―P‖ and negative ―N‖ loading directions) adopted to obtain a good fit 

of the experimental response of the analyzed non-ductile exterior beam-

column joints. The mean value of these parameters will be utilized in structural 

analyses for a probabilistic performance assessment. 
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  Pant2 Pant3 Pant6 Pant5 Cly2 Cly4 Cly5 Cly6 Mean Adopted 

rDisp P 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.19 
0.16 

rDisp N 0.2 0.2 0.2 0.2 -0.1 0.2 -0.1 0.3 0.14 

rForce P 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.20 
0.23 

rForce N 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.25 

uForce P -0.2 -0.2 -0.2 -0.05 -0.05 -0.25 -0.2 -0.5 -0.21 
-0.22 

uForce N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.23 

gK1 0.9 0.9 0.9 0.8 0.9 0.95 0.95 0.5 0.85 0.85 

gK3 0.1 0.1 0.1 0.1 0.1 0.2 0.15 0.1 0.12 0.12 

gKlim 0.95 0.95 0.95 0.95 0.95 0.99 0.95 0.95 0.96 0.96 

gD1 0.35 0.35 0.35 0.35 0.25 0.35 0.6 0.4 0.38 0.38 

gD3 0.15 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.34 0.34 

gDlim 0.95 0.95 0.95 0.95 0.95 0.95 0.99 0.99 0.96 0.96 

gF1= gF2= gF3= gF4= gFlim=0; gK2=gK4=0; gD2=gD4=0. 

Table 6.1. Parameters adopted to reproduce the hysteretic behavior of exterior 
unreinforced joints in Pinching4 material 

 

6.2.2.2 Interior  joints 

The joint moment-rotation constitutive relationship proposed by Celik and 

Ellingwood (2008) is adopted in this study for interior joints. 

This relationship was based on a statistical analysis carried out on the basis 

of experimental tests. 

As shown in Chapter 2, Celik and Ellingwood also suggested that the shear 

stress-strain backbone curve for the panel zone in typical non-conforming RC 

beam-column joints can be defined through four key points, which correspond 

to joint shear cracking, reinforcement yielding, joint shear strength or 

contemporary achievement of adjoining beam or column capacity, and 

residual joint strength, respectively. The ordinates of the backbone points were 

reduced if the shear failure of the joint occurs before beams or columns reach 

their capacities. Shear failure of the joint is assumed to depend on the kind of 

joint (interior/exterior) and the anchorage conditions. 

In particular, the abscissas of the four key points j,cr, j,y, j,max, j,res, typicalIy 

fall within the following ranges: 0.0001-0.0013, 0.002-0.010, 0.01-0.03, and 0.03-

0.10 radians, respectively. Joint shear strength j,max is proposed in analogy 

with ASCE-SEI/41 prescription (as explained in Chapter 2) and it falls within 
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the range 0.75-1.00(MPa)0.5 for interior beam-column joints. Residual strength is 

assumed equal to shear stress corresponding to joint cracking (evaluated by 

means of Uzumeri 1977 formulation). 

Mean values of the proposed ranges are adopted in this study, since 

modeling uncertainties are not considered in structural analyses herein. 

The relationship between joint strength and joint moment were reported in 

Appendix 5, for interior joints also. 

The proposal by Celik and Ellingwood also included joint moment-rotation 

constitutive relationship for exterior joints. However, from the analysis of the 

experimental dataset they adopted, it was observed that the proposed joint 

shear strain values for the four key points are related to interior joints tests 

only; such values are very high if compared with shear strain values obtained 

from experimental tests on exterior beam-column joints. Therefore, the 

proposal by Celik and Ellingwood is adopted for interior joints only. 

In the proposal by Celik and Ellingwood (2008), anchorage failure was also 

taken into account through a reduced envelope for the joint shear stress-strain 

relationship. However, in this study, no reduction of joint shear stress is 

considered, since the hypothesis that a sufficient anchorage length or efficient 

anchorage devices are guaranteed, thus excluding this failure mode. 

The advantage of this model is that, by proposing that joint strength should 

be assumed as the minimum between empirical shear strength and the 

maximum joint shear stress related to beam/column flexural capacity, it is the 

only one able to reproduce the softening response of the joint panel also when 

a BJ-failure occurs. This is in accordance with the modeling adopted for 

exterior joints (since the nature of the strength model by Park and Mosalam 

2012 adopted for exterior joints) and with observed experimental results (Park 

and Mosalam 2013), which showed that beam-column intersections always 

exhibited a degradation response if joint cracking was occurred.  

Moreover, the backbone is calibrated on the basis of experimental tests and 

a range of values of shear strength and strain capacity for each characteristic 

point is also proposed with a uniform probability distribution (Celik and 

Ellingwood, 2010), so that the model can be easily adopted in future structural 

analysis devoted to a seismic performance evaluation that takes into account 

also modeling uncertainties.  

Furthermore, since the proposal by Celik and Ellingwood suggests only 

pinching parameters to model joints hysteretic response, the parameters 
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calibrated by Jeon et al. (2015) for the Pinching4 material in OpenSees for the 

hysteretic response of interior joints are adopted herein. However, these 

parameters are modified so that no strength degradation was taken into 

account (since strength degradation is already included in the backbone of the 

joint response obtained from experimental data). 

It is worth noting that, in order reproduce the softening response of the joint 

when a BJ-failure occurs - as observed experimentally (e.g. Park and Mosalam 

2013) – also for interior joints, the adjacent beams have to be modeled with no 

post-peak strength degradation. In fact, in the case of BJ failure, the peak 

strength of interior joints is defined as the maximum shear stress 

corresponding to the contemporary achievement of flexural capacity in both 

the adjacent beams. If beam response degrades after its peak is reached, it is 

highly unlikely that this condition can be achieved during the analysis thus 

leading the interior joint to go through its softening branch. Since the adjacent 

beams are in series with the joint panel spring, it was necessary to model the 

beams response as perfectly-plastic after the peak strength is reached. In this 

way, the contemporary achievement of peak strength in the adjacent beams 

can be obtained and thus the joint can reach its peak strength, then starting to 

degrade. For the same reasons, no degradation in strength should be modeled 

in beams. 

 

6.2.3. Post-processed failure modes 

The simulation model is not able to capture all possible collapse modes, in 

particular degrading behavior after shear failures in columns and axial load 

failure in beam-column joints. To avoid non-conservative under-prediction of 

seismic fragility, these non-simulated failure modes are detected in this study 

by post-processing dynamic analyses results. 

 

6.2.3.1 Shear failure in columns 

Shear failure of beams and columns is characterized by shear cracking in 

concrete and yielding, pull-out or fracture of transverse reinforcement. This 

mode of deterioration is particularly dangerous for columns with significant 

axial load, as shear failure can lead to subsequent vertical collapse of the 

column (Elwood and Moehle 2005). Modeling the cyclic response of a RC 

element experiencing shear deterioration is complex due to the interactions of 
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shear, moment, and axial forces, as well as the overall brittle nature of the 

deterioration mode. 

The review of previous researches on the shear behavior of existing 

columns carried out in Chapter 2 indicated that it is quite difficult that column 

shear models satisfy all the needed requirements of accuracy, computationally 

efficiency and compatibility with existing software programs. Although the 

problem is still an open and important issue, in the present work the attention 

will be not directly focused on this topic, but shear failures are detected by 

post-processing the dynamic analyses. 

In fact, even if the calibration of beam/column behavior (explained in 

Section 6.2.1) took into account also few experimental tests on ―non-ductile‖ 

columns, the model is not suitable to detect directly shear failure and the 

subsequent axial collapse of column. Therefore, where this failure mode is not 

prevented through capacity design provisions, as in the analyzed frames, post-

processing of dynamic analysis data is necessary to account for possible 

column collapse associated with shear failure. 

To this end, in this study, two different approaches are adopted: 

­ a force-based approach, that detects the onset of shear failure when 

shear demand on the  column overcomes shear strength; 

­ a displacement-based approach, that detects the onset of shear failure 

when column drift ratio overcomes a certain capacity limit. 

Anyway, the degradation in column response after shear failure up to the 

subsequent axial collapse cannot be properly detected in both these 

approaches. 

 

For the first approach, the shear strength model by Sezen and Moehle (2004) 

(see Eq. 6.1) has been adopted in the hypothesis that no strength degradation 

occurs after yielding (namely, the coefficient k in Eq. (6.1) is equal to 1) (as in 

Jeon et al. 2015).  

 (  1 0.8
/ 0.5

st ytc
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 
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 
 

 (6.1) 

In Eq. (6.1), Vc and Vs are the contributions of concrete and transverse 

reinforcement, respectively, to the overall shear strength; P, Ag and fc represent 

axial load, gross area and concrete strength (in MPa), respectively; a/d is the 
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shear span-to-effective depth ratio; Ast and fy, represent transverse 

reinforcement area and steel yielding strength, respectively. The coefficient k 

represents shear strength degradation due to cyclic loading and varies from 1 

(no degradation condition) to 0.7 (maximum shear strength degradation). 

This approach can be considered exact only if column fails in shear before 

the beginning of shear strength degradation, namely when total ductility 

demand is lower than the ductility demand at which shear strength 

degradation begins (i.e. 2 in model by Sezen and Moehle, 2004). 

 

In the second approach, fragility functions developed by Aslani (2005) on 

the basis of 92 cyclic tests of RC columns are adopted. Aslani (2005)  defines 

four damage states for flexure-shear critical RC columns: light cracking, severe 

cracking, shear failure and loss of axial carrying capacity. Lognormal fragility 

functions predict the probability of being in each damage state as a function of 

the column drift ratio, column axial load ratio and amount of transverse 

reinforcement. 

Column drift ratio is analogous to the more commonly used interstory drift 

ratio, except that it excludes the drift that occurs due to rotation of the beams 

and deformations in joints, because the fragility functions are largely based on 

data from column component tests. Column drift ratio in this study are 

obtained directly from dynamic analysis and approximated to the interstory 

drift. The third damage state (DS3) is used to identify the onset of column 

shear failure, manifested by the characteristic X-cracking and yielding of 

transverse reinforcement. The related equation that provides IDR capacity at 

DS3 is reported in Eq. (6.2): 

3

1 1
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''
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(6.2) 

In Eq. (6.2), P, Ag, fc, ‘‘ represent axial load, gross area, concrete strength 

and transversal reinforcement ratio in column, respectively. 

It is worth noting that, in a displacement-based approach, such as the 

approach described above, as well as other approaches existing in literature 

(e.g. Elwood, 2004), shear failure will be detected anyway (when IDR demand 

overcomes a certain minimum demand - generally 1%), even if nonlinear 
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behavior of  the element should be classified as ductile, based on the 

comparison between degrading shear strength model and plastic shear or 

according to other classification criteria. Thus, a classification of the element 

behavior (ductile/ brittle) and the consequent choice of the related more 

suitable modeling approach should be always carried out. 

 

6.2.3.2 Axial failure in beam-column joints 

Likewise, axial failure in beam-column joint regions will be detected in 

post-processing because of the lack of experimental data and reliable models 

that allow to capture this failure mode explicitly in numerical modeling. 

Unfortunately very few unconfined joint tests are available with confirmed 

axial failure, since, generally, during laboratory joint tests, a common practice 

has been to terminate the test after dropping to 80% of lateral load resistance 

without testing the axial capacity of the joint. 

In this study, the empirical shear-friction capacity model proposed by 

Hassan and Moehle (2013) calibrated on the basis of available experimental 

data is adopted. The expression of the IDR threshold (IDRAx,J) that identifies 

the onset of joint axial failure is reported in Eq. (6.3): 

 (6.3) 

where P is the axial load acting on the joint, Asb and fyb are longitudinal 

reinforcement area and strength, respectively, of the bottom beam bars, and  

represents the shear critical angle, as reported in Hassan and Moehle (2013). 

Such a proposal leads to a test-to-model drift capacity ratio equal to 1.07 

and COV of 0.26. 

Thus, axial failure in joints is assumed to occur when IDR during the 

analysis achieves the limit value IDRAx,J. 

 

6.2.4. Modeling limitations 

The nonlinear simulation model developed for non-ductile RC frame 

structures is an idealization of the structural geometry, loading and dynamic 

behavior, but it has some deficiencies that may limit the generalization of the 

results. 
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First of all, the simulation model for RC frames is a two-dimensional planar 

analysis of the lateral resisting system, thus drastically reducing the 

computational efforts required by a three-dimensional structure. Nevertheless, 

a two-dimensional model cannot capture the effects of bidirectional loading, 

torsion, or floor diaphragm flexibility in the analysis. Columns are likely to be 

much more highly stressed under biaxial loading. The lack of three-

dimensional loading on the columns is partially compensated for by designing 

the columns only for loading in one direction, so that, both the capacity of the 

column and the demand on the column are underestimated from the real, 

three-dimensional situation. 

In addition to the limitation in detecting post-shear failure behavior, further 

limitations are present in modeling of element deterioration and collapse 

modes of RC frame structures. Behavior related to flexural hinging, which is 

modeled using a lumped plasticity material model calibrated to experimental 

data for RC columns, lacks flexural-axial interaction, and thus cannot simulate 

changes in axial load due to overturning. Moreover, there is a need for 

columns tested at large deformations so as to permit more accurate calculation 

of post-peak response and there is a need for pairs of an higher number of 

identical columns tested under monotonic and various types of cyclic loading 

protocols (Haselton et al. 2007). 

Additionally, the model does not incorporate masonry infills and non-

structural components. The effects of infills on structural response was shown 

in Chapter 3 within a N2 framework, and they are not reproduced herein in 

order to clearly highlight the influence primarily of joints on seismic response. 

It is clear that a future effort to take into account joints and infills and above all 

their possible interaction is decidedly necessary and it is still an open issue. 

 

6.3 Case study frames 

Two symmetric four-story three-bay frames are designed, modeled as 

explained in Section 6.2, and assessed. These case-study frames are the internal 

frames of a structure with 5 m- transverse bay (Ly). Figure 6.5 represents a 

schematic frontal and in-plane view of the frames. Table 6.2 summarizes 

longitudinal and transverse bay-lengths (L1, L2,L3 and Ly) and the interstorey 

height (H). 
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(a) (b) 

Figure 6.5. Case-study frames: frontal (a) and in plane (b) view 

 

Ly H L1 L2 L3 

(m) (m) (m) (m) (m) 

5.0 3.0 4.5 3.0 4.5 

Table 6.2. Geometric dimensions of the case-study frames 

 
Expected levels of gravity loading are applied to the model, including the 

computed dead load and live load for dwellings, as reported in Table 6.3. 

These expected gravity loads are also used in defining seismic masses, which 

are assigned at each floor of the building. Since, the analyzed frames are 

representative of internal frames, the tributary width used in determining the 

seismic mass is equal to the bay width Ly.  

 

Story Gk1+Gk2 Qk 

kN/m2 kN/m2 

1,2,3 7 2 

4 5 1 

Table 6.3. Dead and live loads applied for design and assessment 

 



Influence of joint response on seismic assessment of non-conforming RC frames 

 
 

254 

The first case-study frame (hereinafter referred to as OLD SLD) is intended 

to be realized in 1980s after the Irpinia earthquake (1980) and it is designed by 

means of a simulated procedure according to an obsolete technical code 

(Decreto Ministeriale 1975) in force in Italy until 1990s, by means of the 

allowable tensile stress method. The structure is located in a first-category site, 

corresponding to a design horizontal acceleration equal to 0.1g. Element 

dimensions are calculated according to the allowable stresses method; the 

design value for maximum concrete compressive stress is assumed equal to 6.0 

and 8.0 MPa for axial load (c) and axial load combined with bending (c,f), 

respectively. Reinforcing bars (FeB38K) are deformed and their allowable 

design stress (s) is equal to 220 MPa. Section dimensions are (30x50) cm2 for 

beams and columns of the third and fourth levels, and (30x60) cm2 for beams 

and columns of the first and the second levels. Stirrups spacing in columns 

was defined as the minimum amount of transverse reinforcement required by 

the adopted code. The complete characterization of this frame is reported in 

Figure 6.6.  

 
The second one (hereinafter referred to as GLD)  is designed by means of a 

simulated design procedure according to code prescriptions and design 

practices in force in Italy in 1970s for gravity loads only (Decreto Ministeriale 

1972). The structural configuration follows the parallel plane frames system. 

Beams in transverse direction are present only in the external frames. Element 

dimensions are calculated according to the allowable stresses method; the 

same design values for maximum concrete compressive stress and steel stress 

adopted in the OLD SLD frame are used also for GLD frame. Column 

dimensions are calculated according only to the axial load based on the 

tributary area of each column, beam dimensions and reinforcement are 

determined from bending due to loads from slabs. Section dimensions are 

(30x50) cm2 for beams, and (30x30) cm2 for all columns, except than for the 

internal columns at the first story, where columns section is (30x40) cm2. 

Stirrups spacing in columns was defined as the minimum amount of 

transverse reinforcement required by the adopted code. The complete 

characterization of this frame is reported in Figure 6.7.  

 

Expected values of material properties adopted in the simulated design 

procedure and in the assessment phase for both frames are summarized in 
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Table 6.4, where fc, fy and fyw represent concrete compressive strength, steel 

yielding strength for longitudinal and transverse reinforcement, respectively. 

 

Simulated design Assessment 

s c,c c,f fc fy fyw 

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

220 6.0 8.5 20 450 450 

Table 6.4. Material properties  
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Figure 6.6. OLD SLD frame 
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Figure 6.7. GLD frame 

 

In Table 6.5 and Table 6.6 main properties of exterior and interior columns 

in OLD SLD frame, respectively, are reported. In particular, depth (b), width 

(h), concrete cover (c), top, bottom and web longitudinal reinforcement (As, 
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As‘, and Ash), axial load (N), yielding and maximum moment (My and Mcap, 

respectively), plastic shear (Vpl), stirrup spacing (s), transverse reinforcement 

area (Asw), and maximum shear strength evaluated according to the model by 

Sezen and Moehle (2004) without degradation (Vu)  are shown. 

 

Exterior 
columns 

b h c As A's Ash N My Mcap Vpl 

story mm mm mm mm2 mm2 mm2 kN kNm kNm kN 

1 300 600 40 1256 1256 1256 316 432 524.23 388.32 

2 300 600 40 1256 1256 1256 231 414 504.23 420.19 

3 300 500 40 1256 1256 1256 145 322 392.22 313.77 

4 300 500 40 1256 1256 1256 60 307 375.61 300.49 

Exterior 
columns 

b h c Asw s Vu 

story mm mm mm mm2 mm kN 

1 300 600 40 100.00 240 285.72 

2 300 600 40 100.00 240 296.42 

3 300 500 40 100.00 240 206.09 

4 300 500 40 100.00 240 194.11 

Table 6.5. Flexural and shear characterization of exterior columns – OLD SLD 

 

Interior 
columns 

b h c As A's Ash N My Mcap Vpl 

story mm mm mm mm2 mm2 mm2 kN kNm kNm kN 

1 300 600 40 1256 1256 1256 527 475 572.55 381.70 

2 300 600 40 1256 1256 1256 384 446 540.01 360.00 

3 300 500 40 1256 1256 1256 242 338 410.81 273.87 

4 300 500 40 1256 1256 1256 99 314 383.27 255.51 

Interior 
columns 

b h c Asw s Vu 

story mm mm mm mm2 mm kN 

1 300 600 40 100.00 240 311.96 

2 300 600 40 100.00 240 319.61 

3 300 500 40 100.00 240 221.31 

4 300 500 40 100.00 240 199.83 

Table 6.6. Flexural and shear characterization of interior columns – OLD SLD 
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In Table 6.7 the main properties of beams in OLD SLD frame are reported. 

In particular As- and As+ are the top and bottom reinforcement, respectively, 

and Mcap- and Mcap+ the corresponding flexural capacities. 

 

story beam 
b h c As

- As
+ Mcap

 - Mcap
 + 

mm mm mm mm2 mm2 kNm kNm 

1 
ext 300 600 40 1344 603 376.52 205.94 

int 300 600 40 1344 603 376.52 205.94 

2 
ext 300 600 40 1344 603 376.52 205.94 

int 300 600 40 1344 603 376.52 205.94 

3 
ext 300 500 40 1344 603 306.29 167.53 

int 300 500 40 1344 603 306.29 167.53 

4 
ext 300 500 40 804 402 186.16 95.21 

int 300 500 40 804 402 186.16 95.21 

Table 6.7. Main properties related to beams – OLD SLD 

 
Finally, in Table 6.8, it is shown that column-to-beam flexural capacity 

(Mc/Mb) is significantly higher than the unity; therefore, strong column-weak 

beam hierarchy characterizes this frame. By reporting beam flexural capacity 

to the joint centerline (Mj,b) and by comparing Mj,b and joint moment strength 

(Mj,R), it can be observed that prevalently J-failures characterize this frame. 

Mj,R/Mj,b is equal to the unity when joint strength is limited to the flexural 

capacity of the adjacent beams, according to the modeling approach described 

in Section 6.2.2. 

 

story joint 
Mb Mc Mc/Mb Mj,R Mj,b Mj,R / Mj,b failure 

mode kNm kNm () kNm kNm () 

1 
ext 376.52 1028.46 2.73 384.12 434.45 0.88 J 

int 582.46 1112.56 1.91 528.27 693.41 0.76 J 

2 
ext 376.52 896.44 2.38 358.46 434.45 0.83 J 

int 582.46 950.81 1.63 423.42 693.41 0.61 J 

3 
ext 306.29 767.83 2.51 294.69 344.57 0.86 J 

int 473.82 794.07 1.68 333.49 546.71 0.61 J 

4 
ext 186.16 375.61 2.02 209.43 209.43 1.00 BJ 

int 281.37 383.27 1.36 324.66 324.66 1.00 BJ 

Table 6.8. Beam/column hierarchy and joints classification – OLD SLD 
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The same information are reported for GLD frame in Table 6.9, Table 6.10, 

Table 6.11 and Table 6,12. In this case, column plastic shear is lower than the 

maximum non-degraded shear strength, both for exterior and interior 

columns. Thus, if no degradation in shear strength is considered, no shear 

failures is detected, as it will be shown in Section 6.6. 

 

Exterior 
columns 

b h c As A's Ash N My Mcap Vpl 

story mm mm mm mm2 mm2 mm2 kN kNm kNm kN 

1 300 300 40 508 508 0 316 88 105.86 76.99 

2 300 300 40 508 508 0 231 79 95.59 76.47 

3 300 300 40 508 508 0 145 70 84.81 67.85 

4 300 300 40 508 508 0 60 60 73.74 58.99 

Exterior 
columns 

b h c Asw s Vu 

story mm mm mm mm2 mm kN 

1 300 300 40 100.00 240 100.20 

2 300 300 40 100.00 240 100.48 

3 300 300 40 100.00 240 94.57 

4 300 300 40 100.00 240 87.87 

Table 6.9. Flexural and shear characterization of exterior columns – GLD 

 

Interior 
columns 

b h c As A's Ash N My Mcap Vpl 

story mm mm mm mm2 mm2 mm2 kN kNm kNm kN 

1 300 400 40 508 508 508 527 170.22 203.52 148.01 

2 300 300 40 508 508 0 384 95.14 113.84 91.07 

3 300 300 40 508 508 0 242 80.28 96.94 77.55 

4 300 300 40 508 508 0 99 64.72 78.88 63.10 

Interior 
columns 

b h c Asw s Vu 

story mm mm mm mm2 mm kN 

1 300 400 40 100.00 240 168.25 

2 300 300 40 100.00 240 109.79 

3 300 300 40 100.00 240 101.21 

4 300 300 40 100.00 240 91.10 

Table 6.10. Flexural and shear characterization of interior columns – GLD 
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story beam 
b h c As

- As
+ Mcap

 - Mcap
 + 

mm mm mm mm2 mm2 kNm kNm 

1 
ext 300 500 40 816 562 189.30 132.06 

int 300 500 40 816 562 189.30 132.06 

2 
ext 300 500 40 816 562 189.30 132.06 

int 300 500 40 816 562 189.30 132.06 

3 
ext 300 500 40 816 562 189.30 132.06 

int 300 500 40 816 562 189.30 132.06 

4 
ext 300 500 40 562 562 131.91 131.91 

int 300 500 40 562 562 131.91 131.91 

Table 6.11. Main properties related to beams – GLD 

 

story joint 
Mb Mc Mc/Mb Mj,R Mj,b Mj,R / Mj,b failure 

mode kNm kNm () kNm kNm () 

1 
ext 189.30 201.45 1.06 152.44 219.77 0.69 J 

int 321.36 317.36 0.99 186.45 346.21 0.54 J 

2 
ext 189.30 180.40 0.95 152.44 216.48 0.70 J 

int 321.36 210.78 0.66 186.45 252.93 0.74 J 

3 
ext 189.30 158.56 0.84 152.44 190.27 0.80 J 

int 321.36 175.82 0.55 186.45 210.98 0.88 J 

4 
ext 131.91 73.74 0.56 88.49 88.49 1.00 CJ 

int 263.81 78.88 0.30 94.65 94.65 1.00 CJ 

Table 6.12. Beam/column hierarchy and joints classification – GLD 

 
Column-to-beam flexural capacity (Mc/Mb) is generally lower than the 

unity; therefore, as typically expected for this kind of design approach, strong 

beam-weak column hierarchy  characterizes this frame. By reporting column 

flexural capacity to the joint centerline (Mj,c) and by comparing Mj,c and joint 

moment strength (Mj,R), it can be observed that prevalently J-failures 

characterize also this frame. Mj,R/ Mj,c is equal to the unity when joint strength 

is limited to the flexural capacity of the adjacent columns. 

Joint moment-rotation backbones for interior and exterior joints obtained 

as explained in Section 6.2.2 are shown in Figure 6.8 for OLD SLD (a) and GLD 

(b) frames. 
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(a) (b) 

Figure 6.8. Joint moment-rotation backbones for OLD SLD (a) and GLD (b) frames 

 

6.4 Selected ground motion records and performance levels 

In order to perform dynamic analyses, input ground motion records 

have to be selected and performance levels of interest should be identified. 

 
In this study, natural records representing Italian seismicity are selected and 

scaled to different levels of seismicity in order to obtain IDA curves. The 

records selection has been performed by using REXEL software (Iervolino et al. 

2010), from ITACA strong-motion database. Earthquakes characterized by a 

low-medium magnitude levels (between 4.4 and 5.7), with a source-to-site 

distance ranging between 10 and 40 km, and recorded on soil class B are 

selected. On the whole 50 ground motion records are selected. A summary of 

the main properties of the these records is reported in Appendix 6. The related 

spectra in terms of pseudo-acceleration are reported in Figure 6.9. 

 

As far as performance levels of interest are concerned, the structural 

capacities are primarily defined by the maximum interstorey drifts (IDR) that 

correspond to three widely used performance levels (or limit states) in the 

earthquake community (e.g. Celik and Ellingwood, 2010): immediate 

occupancy (IO), life safety or significant damage (SD), and collapse prevention 

(CP). 
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Figure 6.9. Pseudo-acceleration spectra of the selected ground motion records 

 
These performance levels are adopted so that the results can be compared to 

works published previously by other researchers. As shown in Chapter 2 

(Section 2.2), the IO level is described by the limit below which the structure 

can be occupied safely without significant repair, and is defined by the value 

of maximum IDR at which the frame enters the inelastic range. The ‗‗life 

safety‖ level occurs at a deformation at which ‗‗significant‖ damage occurred, 

but at which a substantial margin remains against incipient collapse. This limit 

is quite hard to quantify in terms of IDR or other structural response 

parameters, and it is commonly identified as the maximum IDR at which 

significant structural damage has occurred. Finally, the CP level is defined by 

the point of incipient collapse of the frame due to either severe degradation in 

strength of members and connections or significant P- effects resulting from 

excessive lateral deformations. 

Table 6.13 reports the values of the IDR thresholds (IDRLS) for the selected 

performance levels, chosen on the basis of previous literature researches (Celik 

2007, Celik and Ellingwood 2010). 

 

 IO LS SD LS CP LS 

IDRLS 0.2% 2% 5% 

Table 6.13. IDR thresholds for the selected performance levels 

 
 



Influence of joint response on seismic assessment of non-conforming RC frames 

 
 

264 

Additional LSs, defined on the basis of the achievement of characteristic 

points in the nonlinear response of the primary structural elements, are 

adopted. In particular the first achievement of a particular condition or a 

―conventional failure‖ is detected, in analogy with the approach of typical 

European code prescriptions (e.g. CEN 2005, DM 2008), as shown in Figure 

6.10. 

 

 
(a) (b) 

Figure 6.10. Characteristic points of columns (a) and joints (b) response 

 
For columns, green circles represent a pre-yielding condition; yellow, 

orange and red circles indicate the achievement of yielding, capping and post-

peak rotations, respectively.  

For beam-column joints, white circle identifies a pre-cracking condition of 

joint; while green, yellow, orange and red circles represent the achievements of 

joint cracking, pre-peak point, peak joint strength, and residual strength, 

respectively.  

Such a convention will be adopted hereinafter when damage states in RC 

elements are presented. The corresponding LSs will be referred to as 

summarized in Table 6.14. 

 

FY first element at yielding (yellow circle) 

FC first element at capping (orange circle) 

FPC first element at post-capping (red circle) 

FcrJ first joint cracking (green circle) 

FpPJ first joint at pre-peak point (yellow circle) 

FPJ first joint at peak strength (orange circle) 

FRJ first joint at residual strength (red circle) 

Table 6.14. Additional LSs acronyms 
  

M

My

Mc

y c pc 

Mj

Mj,pP

Mj,P

j

Mj,cr

j,pP j,P j,Rj,cr
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6.5 Preliminary nonlinear static analyses 

Preliminary, nonlinear static analyses with first-mode-shape--proportional 

lateral load pattern are performed in OpenSees (McKenna et al, 2010) on the 

structural models (obtained as described in Section 6.2)  for OLD SLD and 

GLD frames and in a double condition: (i) with ―rigid joints‖, assuming a very 

high stiffness and shear strength for beam-column connections and (ii) ―with 

joints‖, explicitly modeling the nonlinear behavior of joints, as explained in 

Section 6.2.2. Results of this kind of analysis are reported in this Section. 

 

6.5.1. OLD SLD frame 

First of all, elastic periods from modal analysis are reported in Table 6.15 for 

both conditions (―rigid joints‖ and ―with joints‖). An increment of about 8% in 

elastic period is observed when joint elastic deformability is taken into 

account. 

 

 Rigid joints With joints 

T1 (s) 0.694 0.747 

Table 6.15. Elastic periods – OLD SLD frame 

 

6.5.1.1 Rigid joints 

Rigid joints condition exhibited a global collapse mechanism for OLD SLD 

frames, as expected due to the strong-column-weak-beam hierarchy observed 

in Section 6.3. Static pushover (SPO) curve is reported in Figure 6.11 together 

with the collapse mechanism and the damage level in each beam/column 

hinge at the last step. 

In this case no red circle (namely, no joints that reach post-peak rotation) is 

present, since SPO was interrupted before the first element reached its post-

peak rotation capacity because of convergence issue.  

IDR distributions and qualitative deformed configurations at peak load (a) 

and at last step (b) are reported in Figure 6.12. 
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Figure 6.11. SPO curve and collapse mechanism – OLD SLD - rigid joints 

  
(a) 

  
(b) 

Figure 6.12. IDR distributions and deformed configuration at peak load (a) and at last 
step (b) – OLD SLD - rigid joints 
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6.5.1.2 With joints 

When nonlinear response of beam-column joints is modeled, OLD SLD 

frame still exhibited a global collapse mechanism. 

Static pushover (SPO) curve is reported in Figure 6.13 together with the 

collapse mechanism and the damage level in each beam/column hinge at the 

last step. 

In this case it can be observed that a quite distributed damage level in 

beam-column joints is exhibited, especially from the first to the third story. 

IDR distributions and qualitative deformed configurations at peak load (a) 

and at last step (b) are reported in Figure 6.14. 

 

 
 

Figure 6.13. SPO curve and collapse mechanism – OLD SLD - with joints 

 

  
(a) 
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(b) 

Figure 6.14. IDR distributions and deformed configuration at peak load (a) and at last 
step (b) – OLD SLD - with joints 

 

6.5.1.3 Comparison 

In Table 6.16 a comparison in terms of peak base shear (Vb.max) and the 

corresponding displacement (Dmax) in SPO analyses with joint (wJ) and with 

rigid joints (noJ) is carried out. A graphical comparison also in terms of SPO 

curves is shown in Figure 6.15. 

 

 
Vb,max 

(kN) 

Dmax 

(m) 
Vb,max wJ/ Vb,max noJ (-) 

DwJ/DnoJ 

(-) 

noJ 959.5 0.343 
0.79 1.06 

wJ 745.2 0.362 

Table 6.16. Comparison in terms of peak base shear and peak displacement in SPO – 
with joint (wJ) and rigid joints (noJ) – OLD SLD 

 
It can be observed that the explicit modeling of beam-column joints in the 

structural analysis implies a reduction of the maximum base shear (equal to 

21%) and a higher peak deformability (that increases of about 6%). 
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.  

Figure 6.15. Comparison in terms of SPO curves – OLD SLD 

 

6.5.2. GLD frame 

Elastic periods from modal analysis are reported in Table 6.17 for both 

conditions ―rigid joints‖ and ―with joints‖. An increment of 6% in elastic 

period is observed when joint elastic deformability is taken into account. 

 

 Rigid joints With joints 

T1 (s) 1.154 1.227 

Table 6.17. Elastic periods – GLD frame 

 

6.5.2.1 Rigid joints 

Rigid joints condition exhibited a local collapse mechanism for GLD frames 

located at the second story, as expected due to the weak-column-strong-beam 

hierarchy observed in Section 6.3. Static pushover (SPO) curve is reported in 

Figure 6.16 together with the collapse mechanism and the damage level in each 

beam/column hinge at the last step. Inelasticity demand is clearly 

concentrated in the second story. 

IDR distributions and qualitative deformed configurations at peak load (a) 

and at last step (b) are reported in Figure 6.17. 
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Figure 6.16. SPO curve and collapse mechanism – GLD – rigid  joints 

  
(a) 

  
(b) 

Figure 6.17. IDR distributions and deformed configuration at peak load (a) and at last 
step (b) – GLD – rigid joints 
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6.5.2.2 With joints 

When nonlinear response of beam-column joints is modeled, GLD frame 

exhibited a collapse mechanism that involves the first and the second stories. 

Static pushover (SPO) curve is reported in Figure 6.18 together with the 

collapse mechanism and the damage level in each beam/column hinge at the 

last step.  

In this case it can be observed that joints at the second story are particularly 

invested by inelastic demand reaching their residual strength. 

IDR distributions and qualitative deformed configurations at peak load (a) 

and at last step (b) are reported in Figure 6.19. 

 

 
 

Figure 6.18. SPO curve and collapse mechanism – GLD - with joints 

 

  
(a) 
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(b) 

Figure 6.19. IDR distributions and deformed configuration at peak load (a) and at last 
step (b) – GLD – with joints 

 

In this case, it can be observed a more uniform distribution along the height 

of the IDR demand, that is one of the main effects of joint damage on the 

structural response, as already highlighted in other literature studies, e.g. Calvi 

et al. (2002) or Celik and Ellingwood (2008). 

 

6.5.2.3 Comparison 

In Table 6.18, a comparison in terms of peak base shear (Vb.max) and the 

corresponding displacement (Dmax) in SPO analyses with joint (wJ) and with 

rigid joints (noJ) is carried out for GLD frame. A graphical comparison also in 

terms of SPO curves is shown in Figure 6.20. 

 

 
Vb,max 

(kN) 

Dmax 

(m) 

Vb,max wJ/ Vb,max noJ  

(-) 

DwJ/DnoJ 

(-) 

noJ 340.414 0.161 
0.839 1.472 

wJ 285.73 0.237 

Table 6.18. Comparison in terms of peak base shear and peak displacement in SPO – 
with joint (wJ) and rigid joints (noJ) - GLD 
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Figure 6.20. Comparison in terms of SPO curves –GLD 

 
It can be observed that, in the case of weak column-strong beam design, the 

joint damage reduces the maximum interstorey drift demand implying a 

prevention of the soft-story mechanism and a reduction of the maximum base 

shear (equal to about 16%).  

Actually, the effects of joint damage has been experimentally observed to 

protect or delay soft-story mechanisms (in a predominant weak-

column/strong-beam system), by reducing the rotation demand in the adjacent 

column elements (Calvi et al. 2002). Shake table tests on reduced-scale frame 

models conducted at Cornell University (El-Attar et al., 1997) showed that 

GLD RC frames, typically with weak column-strong beam designs, are 

susceptible to soft-story collapses under earthquake effects: in the case of the 

three-story 1/8-scale frame, the collapse occurred when plastic hinges 

developed at both ends of the first story columns and formed a soft-story 

failure mechanism, without significant damage in the beams, joint panels, or 

column splice regions, indicating that weak column-strong beam behavior 

leads to premature soft-story mechanisms before the other problematic 

reinforcing details are subjected to significant demands. 

As well as in OLD SLD frame (with weak-beam/strong-column hierarchy), 

the effect of joint damage results in a higher deformability and thus higher 

displacement demand. The increment in peak displacement is equal to about 

50%.   
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6.6 Nonlinear dynamic analyses 

The incremental nonlinear dynamic analyses (IDAs) (Vamvatsikos and 

Cornell, 2002) are conducted in OpenSees (McKenna et al, 2010) with the 

selected ground motion records for both case-study frames. Robust 

convergence algorithms for solving simultaneous equations when strength and 

stiffness are degrading are implemented. 

Five percent mass- and tangent stiffness-proportional Rayleigh damping is 

applied to the first and third mode of elastic response. 

In this Section the results of these analyses will be presented and discussed 

for both OLD SLD and GLD frames in a double condition: (i) with ―rigid 

joints‖, assuming a very high stiffness and shear strength for beam-column 

connections and (ii) ―with joints‖, explicitly modeling the nonlinear behavior 

of joints, as explained in Section 6.2.2. 

First, IDA curves have been obtained and, then, fragility curves have been 

calculated. 

A seismic fragility is defined as the probability of reaching stipulated 

performance levels as a function of a specified intensity measure of ground 

motion. The fragility is described by the conditional probability that the 

structural capacity, C, fails to resist the structural demand, D, given the seismic 

intensity measure, IM, and it is commonly modeled by a lognormal cumulative 

distribution function. 

Therefore, if IM capacity is ―observed‖ in a building under a population of 

ground motion records, according to a frequentist approach, the cumulative 

frequency distribution of these observations provides the fragility curve (based 

on that IM measure) for that building and for that Limit State, based on the 

definitions themselves of fragility curve and IM capacity. In this way, the 

fragility functions have been obtained, at different LSs (defined as explained in 

Section 6.4) taking into account only aleatoric uncertainty, namely record-to-

record variability. 

In this study, the structural demand measure is selected to be the maximum 

interstory drift in the frame, IDRmax, that occurs during its dynamic response to 

earthquake shaking. At lower levels of excitation, the IDR typically provides 

insight regarding the potential for damage to non-structural components, 

while at higher levels it is closely related to structural or local collapse. The 

seismic intensity measure is the spectral acceleration at the fundamental period 
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of the frame, Sa(T1), for 5% damping, a measure that is consistent with that 

used in previous studies and that is generally considered as a more efficient 

parameter to characterize earthquake intensity than peak ground acceleration 

(Shome et al. 1998). 

 

6.6.1. OLD SLD frame 

In this Section, IDAs and fragility curves at different LSs for the OLD SLD 

frame are reported and commented. It is worth noting that IDA curves have 

been scaled to Sa(T1), where T1 is the elastic period of the ―with joints‖ 

configuration, namely 0. 747 s. 

 

6.6.1.1 Rigid joints 

In Figure 6.21 IDAs curves related to the ―rigid joints‖ model obtained from 

all the ground motion records (50) are shown in terms of first-period spectral 

acceleration Sa(T1) versus maximum IDR, together with the related median 

IDA curve, Sa(T1)|IDRmax. 

 

 
Figure 6.21. IDA curves and median IDA – OLD SLD – rigid joints 

 
Starting from such IDAs, fragility curves at LSs defined as the achievement 

of a given maximum IDR can be easily obtained, by means of a lognormal fit of 

Sa(T1) given the value of IDR threshold. In this way, fragility curves shown in 

Figure 6.22 have been calculated. 
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Figure 6.22. Fragility curves at IO, SD, and CP LSs – OLD SLD – rigid joints 

 

Related parameters are reported in Table 6.19, with  and  representing the 

estimated median (expressed in (g)) and logarithmic standard deviation of 

Sa(T1) capacity, respectively, at IO, SD, and CP LSs.  coefficient provides an 

useful indication about the overall sensitivity of seismic capacity to the 

variability of the ground motion record, confirming that record-to-

record variability is a very important source of uncertainty. 

Table 6.19 also reports the maximum IDR threshold (IDRmax) corresponding 

to IO, SD, and CP LSs and the median values of Sa(T1), given the maximum 

IDR. 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 

  
(g) 



IO 0.067 0.20 0.062 0.417 

SD 0.783 2.00 0.717 0.506 

CP 2.455 5.00 2.293 0.411 

Table 6.19. Fragility parameters at IO, SD, and CP LSs - OLD SLD – rigid joints 

 
By means of the same approach based on a lognormal fit of the intensity 

measure capacities, fragility curves related to the achievement of a certain 

condition in the elements response (see Figure 6.14) for the first time (i.e. in the 

first element) can be calculated. These fragility curves are reported in Figure 
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6.23 and the related parameters in Table 6.20, where Sa(T1)median is the median 

value of Sa(T1) capacity and median value of IDRmax. 

It can be observed the yielding condition in the first element (FY LS) occurs 

for a value of median value of Sa(T1) equal to 0.158g, while the achievement of 

the peak strength for the first time (FC LS) occurs for a quite high value of 

Sa(T1) median (1.648g) thanks to the uniform distribution of inelastic demand 

in the frame. Also in this case it can be observed that the record-to-record 

variability provides a logarithmic standard deviation of Sa(T1) capacity () of 

about 45% for these LSs. 

 

 
Figure 6.23. Fragility curves at FY, FC, FPC LSs - OLD SLD – rigid joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 

  
(g)



FY 0.158 0.47 0.145 0.464 

FC 1.648 3.71 1.532 0.422 

FPC 2.722 5.43 2.656 0.449 

Table 6.20.Fragility parameters at FY, FC, FPC LSs - OLD SLD – rigid joints 
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6.6.1.2 With joints 

The same results are reported also for the structural model that explicitly 

takes into account joints nonlinear behavior. Figure 6.24 shows IDAs curves 

related to the model ―with joints‖ obtained from all the ground motion 

records, together with the related median IDA curve, Sa(T1)|IDRmax. 

 

 
Figure 6.24. IDA curves and median IDA – OLD SLD – with joints 

 
Figure 6.25 reports the fragility curves at IO, SD, and CP LSs, obtained by 

means of a lognormal fit of Sa(T1) given the value of IDR threshold for each LS, 

and Table 6.21 shows the related parameters. 

Figure 6.26 and Figure 6.27 report fragility curves obtained in this case at 

FY, FC, and FPC LSs, but also, at LSs defined as the achievement of particular 

―limit conditions‖ in joints response, namely FcrJ, FpPJ, FPJ, and FRJ (defined 

in Table 6.14). The related parameters are reported in Table 6.22, where 

Sa(T1)median is the median value of Sa(T1) capacity and IDRmax the 

corresponding median value of maximum IDR. 

It can be observed that the first achievement of peak strength in beam-

column joints anticipates the first achievement of capping strength in beams or 

columns; the achievement of the peak strength in beams or columns occurs for 

a value of Sa(T1) quite close to that corresponding to the achievement of the 

first residual strength in joints, thus confirming that joint damage can be very 

critical in such a frame. 
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Figure 6.25. Fragility curves at IO, SD, and CP LSs – OLD SLD – with joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 



(g) 


IO 0.070 0.20 0.059 0.432 

SD 0.665 2.00 0.617 0.502 

CP 2.034 5.00 1.969 0.362 

Table 6.21. Fragility parameters at IO, SD, and CP LSs - OLD SLD – with joints 

 

 
Figure 6.26. Fragility curves at FY, FC, FPC LSs - OLD SLD – with joints 
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Figure 6.27.  Fragility curves at FcrJ, FpPJ, FPJ, and FRJ LSs - OLD SLD – with joints 

 

DS 
Sa(T1)median 

(g) 
IDRmax 

(%) 



(g) 


FY 0.166 0.49 0.157 0.594 

FC 1.614 4.14 1.572 0.433 

FPC 2.349 5.66 2.441 0.389 

FcrJ 0.081 0.24 0.082 0.435 

FpPJ 0.296 0.87 0.265 0.394 

FPJ 0.470 1.37 0.421 0.385 

FRJ 1.706 4.31 1.685 0.354 

Table 6.22. Fragility parameters at FY, FC, FPC, FcrJ, FpPJ, FPJ, and FRJ LSs – OLD 
SLD – with joints 

 

Also when joints are explicitly modeled into the numerical model, the 

possible axial failure of joints cannot be captured directly due to the features of 

the adopted model (see Section 6.2.2). As anticipated in Section 6.2, a post-

processing of the nonlinear analyses can lead to the detection of such kind of 

failure when the maximum IDR in a story overcomes the minimum IDR 

capacity (IDRAxJ) between joints at that story. In this way, the achievement of 

the first axial failure (FAxJ LS) has been detected for each ground motion 

record and the related fragility curve (Figure 6.28 and Table 6.23) has been 

obtained by means of a lognormal fit. It can be observed that a maximum IDR 

equal to 7.54% leads to the first joint axial failure. 
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Figure 6.28. Fragility curve at FAxJ – OLD SLD – with joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 



(g) 


FAxJ 3.059 7.54 2.947 0.476 

Table 6.23..Fragility parameters at FAxJ LSs – OLD SLD – with joints 

 

6.6.1.3 Comparison 

By comparing median IDA curves between the two analyzed frame 

models (―rigid joints‖ and ―with joints‖), as in Figure 6.29, it can be observed 

that joint damage leads to lower Sa(T1) capacity for a given maximum IDR, 

until about 6% maximum IDR is achieved; successively, when joints involved 

in the mechanism reach their residual strength thus starting to go through a 

constant-strength branch, IDA curves ―with joints‖ (wJ) keeps increasing, 

while IDA related to ―noJ‖ frame goes toward a ―flatline‖. 

The difference in Sa(T1) capacity given IDR that can be observed from the 

comparison between IDA, produces the ―distance‖ between fragility curves 

that can be observed in Figure 6.30. 
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Figure 6.29. Comparison between median IDA curves – OLD SLD 

 

 
Figure 6.30. Comparison between fragility curves at IO, SD, and CP LSs – OLD SLD 

 

The comparison between median Sa(T1) capacity (from lognormal fitting) 

with rigid joints (noJ) and with joints (wJ) for the OLD SLD frame is 

summarized in Table 6.24 for IO, SD, CP LSs, but also at FY, FC, FPC LSs. The 

minimum ratio between Sa(T1) capacity with and without nonlinear joint 

modeling (SawJ/SanoJ) is related to higher seismic intensity, namely at SD and 

CP LSs, thus highlighting that the influence of joints in seismic assessment 

becomes more relevant at higher performance levels. 
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LS 
SanoJ 

(g) 

SawJ 

(g) 

SawJ/SanoJ 

(-) 

IO 0.062 0.059 0.96 

SD 0.717 0.617 0.86 

CP 2.293 1.969 0.86 

FY 0.145 0.157 1.08 

FC 1.532 1.572 1.03 

FPC 2.656 2.441 0.92 

Table 6.24. Comparison between median Sa(T1) capacity with rigid joints (noJ) and 
with joints (wJ) – OLD SLD 

 
It was anticipated in Section 6.2 that column shear failures are detected by 

post-processing analyses results in two different approaches: in a force-based 

approach (according to the shear strength model by Sezen and Moehle, 2004) 

and in a displacement-based approach (adopting the IDR threshold value 

proposed by Aslani, 2005). 

The first approach leads to the calculation of the fragility curves related to 

the first shear failure ―FSF_V‖ LS shown in Figure 6.31; in the second 

approach, fragility curves (at the so called ―FSF_IDR‖ LS) in Figure 6.32 are 

obtained. The parameters related to these fragility curves are reported in Table 

6.25. 

 
Figure 6.31. Fragility curves at FSF with rigid joints (noJ) and with joints (wJ) in force-

based approach (FSF_V) – OLD SLD 



Influence of joint response on seismic assessment of non-conforming RC frames 

 
 

284 

 
Figure 6.32. Fragility curves at FSF with rigid joints (noJ) and with joints (wJ) in 

displacement-based approach (FSF_IDR) – OLD SLD 

 

LS  
Sa(T1)median 

(g) 


(g) 


FSF_V 
(force-based) 

noJ 0.473 0.469 0.305 

wJ 0.799 0.734 0.573 

FSF_IDR 
(displ-based) 

noJ 1.218 1.172 0.393 

wJ 1.052 1.007 0.404 

Table 6.25. Fragility parameters at FSF LS – OLD SLD 

 
When a force-based approach is adopted, joints leads to a limitation of shear 

demand in columns, thus delaying their shear failures and increasing median 

Sa(T1) capacity at this LS from 0.473 to 0.799 g. 

In a displacement-based approach, vice-versa, median Sa(T1) capacity is 

lower if joints nonlinear behavior is explicitly modeled since shear failure 

detected in this way generally occurs for maximum IDR demands that are 

lower than 6%, namely the IDR value beyond which the hierarchy between 

IDA curves changes (as shown in Figure 6.29).  
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6.6.2. GLD frame 

In this Section, IDAs and fragility curves at the considered LSs for the GLD 

frame are reported and commented. IDA curves have been scaled to Sa(T1), 

where T1 is the elastic period of the ―with joints‖ configuration, namely 1.227 s. 

 

6.6.2.1 Rigid joints 

In Figure 6.33, IDAs curves related to the ―rigid joints‖ model obtained 

from all the ground motion records (50) are shown in terms of first-period 

spectral acceleration Sa(T1) versus maximum IDR, together with the related 

median IDA curve, Sa(T1)|IDRmax. 

 

 
Figure 6.33. IDA curves and median IDA – GLD – rigid joints 

 

Starting from such IDAs, fragility curves at LSs defined as the achievement 

of a given maximum IDR have been obtained, by means of a lognormal fit of 

Sa(T1) given the value of IDR threshold. In this way, fragility curves shown in 

Figure 6.34 have been calculated. 
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Figure 6.34. Fragility curves at IO, SD, and CP LSs – GLD – rigid joints 

 

Related parameters are reported in Table 6.26, with  and  representing 

the estimated median (expressed in (g)) and logarithmic standard deviation of 

Sa(T1) capacity, respectively, at IO, SD, and CP LSs. Table 6.26 also reports the 

maximum IDR threshold (IDRmax) corresponding to IO, SD, and CP LSs and 

the median values of Sa(T1), given the maximum IDR. 

 

LS 
Sa(T1),median 

(g) 
IDRmax 

(%) 



(g) 


IO 0.017 0.20 0.017 0.528 

SD 0.256 2.00 0.242 0.321 

CP 0.405 5.00 0.408 0.301 

Table 6.26. Fragility parameters at IO, SD, and CP LSs - GLD – rigid joints 

 

By means of the same approach based on a lognormal fit of the intensity 

measure capacities, fragility curves related to the achievement of a certain 

condition in the elements response (see Table 6.14) for the first time (i.e. in the 

first element) can be calculated. These fragility curves are reported in Figure 

6.35 and the related parameters in Table 6.27, where Sa(T1)median is the median 

value of Sa(T1) capacity and IDRmax the corresponding median value of 

maximum IDR. 
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It can be observed that the yielding condition in the first element (FY LS) 

occurs for a median value of Sa(T1) equal to 0.066g, while the achievement of 

the peak strength for the first time (FC LS) occurs for a median value of Sa(T1) 

equal to 0.251g, quite close to the Sa(T1) related to the FY, due to the 

concentrated inelastic demand generally in only one story (as revealed also by 

nonlinear static analysis). In this case it can be observed that the record-to-

record variability provides a logarithmic standard deviation of Sa(T1) capacity 

() generally lower than the OLD SLD frame, especially for higher 

performance levels. 

 

 
Figure 6.35. Fragility curves at FY, FC, FPC LSs - GLD – rigid joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 



(g) 


FY 0.066 0.73 0.067 0.534 

FC 0.251 1.99 0.245 0.329 

FPC 0.381 5.56 0.382 0.269 

Table 6.27. Fragility parameters at FY, FC, FPC LSs - GLD – rigid joints 

 

6.6.2.2 With joints 

The same results are reported also for the structural model that explicitly 

takes into account joints nonlinear behavior. Figure 6.36 shows IDAs curves 
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related to the model ―with joints‖ obtained from all the ground motion 

records, together with the related median IDA curve, Sa(T1)|IDRmax. 

 

 
Figure 6.36. IDA curves and median IDA – GLD – with joints 

 
Figure 6.37 reports the fragility curves at IO, SD, and CP LSs, obtained by 

means of a lognormal fit of Sa(T1) given the value of IDR threshold for each LS, 

and Table 6.28 shows the related parameters. 

Figure 6.38 and Figure 6.39 report fragility curves obtained in this case at 

FY, FC, and FPC LSs, but also, at LSs defined as the achievement of particular 

―limit conditions‖ in joints response, namely FcrJ, FpPJ, FPJ, and FRJ (defined 

in Table 6.14). The related parameters are reported in Table 6.29, where 

Sa(T1)median is the median value of Sa(T1) capacity and IDRmax the 

corresponding median value of maximum IDR. 

It can be observed that the first achievement of peak strength in beam-

column joints is very close to the first  achievement of capping strength in 

beams or columns; however the first column reaching its post-peak rotation 

(FPC) anticipates the first joint residual strength (FRJ), due to the 

predominance of soft-story mechanism nevertheless the presence of joints. 

As already shown for nonlinear static analyses, in the case of weak column-

strong beam design, the joint damage reduces maximum interstorey drift 

demand and rotation demand in the adjacent column elements (as asserted by 

Calvi et al. 2002), but not always obtaining a prevention of the soft-story 

mechanism in the fifty dynamic analyses. 
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Figure 6.37. Fragility curves at IO, SD, and CP LSs – GLD – with joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax 

(%) 



(g) 


IO 0.017 0.20 0.017 0.513 

SD 0.240 2.00 0.237 0.405 

CP 0.490 5.00 0.496 0.330 

Table 6.28. Fragility parameters at IO, SD, and CP LSs - GLD – with joints 

 

 
Figure 6.38. Fragility curves at FY, FC, FPC LSs - GLD – with joints 
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Figure 6.39. Fragility curves at FcrJ, FpPJ, FPJ, and FRJ LSs - GLD – with joints 

 

DS 
Sa(T1),median 

(g) 
IDRmax  

(%) 



(g) 


FY 0.086 0.879 0.077 0.627 

FC 0.247 2.035 0.268 0.423 

FPC 0.452 5.198 0.444 0.333 

FcrJ 0.037 0.375 0.041 0.561 

FpPJ 0.133 1.258 0.158 0.802 

FPJ 0.236 1.933 0.274 0.587 

FRJ 0.737 12.232 0.750 0.240 

Table 6.29. Fragility parameters at FY, FC, FPC, FcrJ, FpPJ, FPJ, and FRJ LSs – GLD – 
with joints 

 

A post-processing of the nonlinear analyses has led to the detection of joint 

axial failure when the maximum IDR in a story overcomes the minimum IDR 

capacity (IDRAxJ) between joints at that story. In this way, the achievement of 

the first axial failure (FAxJ LS) is detected for each ground motion record and 

the related fragility curve (Figure 6.40 and Table 6.30) can be obtained by 

means of a lognormal fit. It can be observed that a maximum IDR equal to 

8.22% leads to the first joint axial failure. Moreover, it should be noted that, 

since the independence of IDR threshold suggested by Aslani (2005) and the 

joint model adopted in this study, maximum IDR corresponding to the first 
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joint axial failure could be lower than the maximum IDR related to the first 

residual joint strength, as in this case. 

 

 
Figure 6.40. Fragility curve at FAxJ – GLD – with joints 

 

LS 
Sa(T1),median 

(g) 
IDRmax  

(%) 



(g) 


FAxJ 0.649 8.22 0.607 0.437 

Table 6.30 Fragility parameters at FAxJ LSs – GLD – with joints 

 

6.6.2.3 Comparison 

By comparing median IDA curves between the two analyzed frame models 

(―rigid joints‖ and ―with joints‖), as in Figure 6.41, a substantial overlapping of 

the two curves can be observed up to a maximum IDR equal to 2.5%. For 

higher values of maximum IDR, joint damage leads to a more uniform 

distribution of IDR, namely to a lower value of maximum IDR demand for a 

given intensity measure (Sa(T1)). Actually, the GLD frame considered is a weak 

column-strong beam design, and its expected failure mode is a soft-story 

collapse. The soft-story behavior produces very high interstory drifts in the 

first or in the second story of the frame with rigid joints. The first and the 

second story of the frame ―with joints‖ also sustains large deformations, but 

the upper stories experience drifts that are larger than those in the rigid-joint 
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frame. Thus, the roof drifts in the frame with the proposed joint model are 

higher due to the increased flexibility of the frame, but the maximum 

interstorey drifts are less than those in the rigid-joint frame.  

 

 
Figure 6.41. Comparison between median IDA curves – GLD 

 
Since the rigid joint assumption precludes any damage at the joint, it is not 

realistic in the presence of weak column-strong beam behavior and 

exaggerates the soft-story effect. On the other hand, the rigid joint assumption 

can be considered plausible for frames designed for seismic effects according 

to modern seismic code provisions. 

The difference in Sa(T1) capacity given IDR that can be observed from the 

comparison between IDA curves, produce the ―distance‖ between fragility 

curves that can be observed in Figure 6.42. 

The comparison between median Sa(T1) capacity with rigid joints (noJ) and 

with joints (wJ) for the GLD frame is summarized in Table 6.31 for IO, SD, CP 

LSs, and also at FY, FC, FPC LSs. Joints delay the achievement of the first 

yielding, capping and post-capping point in beam/column elements; at higher 

intensity levels (CP LS), the ratio between Sa(T1) capacity (from lognormal 

fitting) with and without nonlinear joint modeling (SawJ/SanoJ) is higher than 

the unity, as expected since the evidences commented before. 
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Figure 6.42. Comparison between fragility curves at IO, SD, and CP LSs – GLD 

 

DS 
Sa noJ 

(g) 
Sa wJ 

(g) 
Sa wJ/Sa noJ 

(-) 

IO 0.017 0.017 0.99 

SD 0.242 0.237 0.98 

CP 0.408 0.496 1.22 

FY 0.067 0.077 1.16 

FC 0.245 0.268 1.09 

FPC 0.382 0.444 1.16 

Table 6.31 Comparison between median Sa(T1) capacity with rigid joints (noJ) and with 
joints (wJ)  – GLD 

 

Also in this case column shear failures have been detected by post-

processing analyses results in two different approaches: in a force-based 

approach (according to the shear strength model by Sezen and Moehle, 2004) 

and in a displacement-based approach (adopting the IDR threshold value 

proposed by Aslani, 2005). 

However, in this case, when the first approach is adopted, no shear failures 

in column are detected since the plastic shear in columns is lower than the 

maximum shear strength (calculated without degradation due to ductility 

demand), as already shown in Section 6.3. 

In the second approach, fragility curves (at the so called ―FSF_IDR‖ LS) in 

Figure 6.43 are obtained. The parameters related to these fragility curves are 
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reported in Table 6.32. In a displacement-based approach, median Sa(T1) 

capacity is quite similar in the two cases (―rigid joints‖ and ―with joints‖). In 

both cases, the achievement of FSF_IDR LS anticipates SD and FC LSs, thus 

confirming that more attention should be addressed to such kind of failures, 

especially for GLD frames. 

 

 
Figure 6.43. Fragility curves at FSF with rigid joints (noJ) and with joints (wJ) in 

displacement-based approach (FSF_IDR) – GLD 

 

 
 

Sa(T1)median 
(g) 



(g) 


FSF_IDR 
noJ 0.226 0.219 0.293 

wJ 0.240 0.235 0.336 

Table 6.32. Fragility parameters at FSF LS – GLD 
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6.7 Summary 

In this Chapter, a numerical investigation on the influence of joint failures 

on the seismic performance at different performance levels of two RC case 

study frames - designed for gravity loads only (GLD) and for seismic loads 

according to an obsolete technical code (OLD SLD) - was presented. A 

preliminary classification of joint failure typology within the frames and the 

definition of the corresponding nonlinear behavior were carried out. Structural 

models that explicitly include beam-column joints were built. In particular, the 

joint model proposed and presented in Chapter 5 was applied for exterior 

joints, in conjunction with modeling proposals from literature for interior joints 

and beam/column behavior. A probabilistic assessment based on nonlinear 

dynamic simulations of the structural response was performed taking into 

account record-to-record variability. 

The structural capacities were primarily defined by the maximum 

interstorey drifts (IDR) that correspond to three widely used performance 

levels (or limit states) in the earthquake community: immediate occupancy, life 

safety or significant damage, and collapse prevention. Additionally LSs, 

defined on the basis of the achievement of characteristic points in the nonlinear 

response of the primary structural elements, have been adopted. In particular, 

the first achievement of a particular condition or a ―conventional failure‖ has 

been detected, in analogy with the approach of typical European code 

prescriptions (e.g. Eurocode 8, DM 2008). 

Preliminary nonlinear static analyses and incremental nonlinear dynamic 

analyses under selected ground motion records have been performed in 

OpenSees (McKenna et al, 2010) in a double condition:  

(i) with ―rigid joints‖, assuming a very high stiffness and shear 

strength for beam-column connections; 

(ii) ―with joints‖, explicitly modeling the nonlinear behavior of 

joints. 

 

In the case of the OLD SLD frame (characterized by strong column-weak 

beam design),  it was observed that  

 the minimum ratio between Sa(T1) capacity with and without 

nonlinear joint modeling is related to higher seismic intensity 
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levels, thus highlighting that the influence of joints in seismic 

assessment becomes more relevant at higher performance levels; 

 as far as column shear failures are concerned, when a force-based 

approach is adopted to detect column shear failures, joints lead to 

a limitation of shear demand in columns, thus delaying their 

shear failures and increasing median seismic capacity.  

 in a displacement-based approach, vice-versa, median Sa(T1) 

capacity related to the first column shear failure is lower if joints 

nonlinear behavior is explicitly modeled. 

 

In the case of the GLD frame, characterized by weak column-strong beam 

design, it can be concluded that: 

 the joint damage reduces the maximum interstorey drift demand 

implying a prevention or a delay of the soft-story mechanism, by 

reducing the rotation demand in the adjacent column;  

 since the rigid joint assumption precludes any damage at the 

joint, it is not realistic in the presence of weak column-strong 

beam behavior and exaggerates the soft-story effect. On the other 

hand, the rigid joint assumption can be considered plausible for 

frames designed for seismic effects according to modern seismic 

code provisions; 

 when column shear failures are detected in a force-based 

approach, no shear failures in columns are captured since their 

plastic shear is lower than the maximum shear strength 

(calculated without degradation due to ductility demand); 

 vice-versa, in a displacement-based approach, the achievement of 

the first column shear failure anticipates the achievement of 

Severe Damage and ―first capping‖ limit state, thus confirming 

that more attention should be addressed to such kind of failures, 

especially for GLD frames. 

 

Incremental dynamic analysis alone does not account for how well the 

nonlinear simulation model represents the real building, since no modeling 

uncertainties have been considered. These modeling uncertainties are 

especially important in predicting collapse, because of the high degree of 

empiricism and uncertainty in predicting deformation capacity and other 
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critical parameters for modeling collapse. Thus, also modeling uncertainties 

should be accounted for in future works to a more reliable evaluation of 

seismic performance. 

Another important improvement of the study presented in this Chapter will 

be an explicitly modeling shear failures with degrading behavior after 

detection and consequent axial failure by means of a reliable, realistic and 

computational sustainable model. 

Additionally, the analyzed models do not incorporate masonry infills and 

non-structural components. The effects of infills on structural response was 

shown in Chapter 3 within a N2 framework, and they are not reproduced 

herein in order to clearly highlight the influence primarily of joints on seismic 

response. It is clear that a future effort to take into account joints and infills and 

above all their possible interaction is necessary and it is still an open issue. 
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Appendix 6: selected ground motion records 

Working Group ITACA (2008) - Data Base of the Italian strong motion data (http://itaca.mi.ingv.it) 
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5 3 TLM1 FRIULI 4.8 Thrust 23.5349 0.957 0.044 B 

16 5 TLM1 FRIULI 4.9 Thrust 27.2795 1.147 0.037 B 

17 6 TLM1 FRIULI 4.4 Thrust 26.0094 0.421 0.015 B 

18 7 FRC FRIULI 5.1 Thrust 24.9471 0.409 0.013 B 

19 7 TLM1 FRIULI 5.1 Thrust 31.7127 0.354 0.011 B 

20 8 FRC FRIULI 4.7 Thrust 10.4485 0.303 0.010 B 

22 9 TLM1 FRIULI 5 Thrust 10.3021 0.245 0.010 B 

32 14 FRC FRIULI 4.6 Normal 20.0131 0.451 0.020 B 

47 17 FRC FRIULI 4.7 Normal 16.0989 0.446 0.017 B 

48 17 GMN FRIULI 4.7 Normal 28.1469 0.414 0.007 B 

73 22 FRC FRIULI 5.1 Thrust 16.0768 0.946 0.042 B 

85 24 FRC FRIULI 4.6 Normal 17.122 0.267 0.007 B 

96 26 FRC FRIULI 4.9 Normal 14.092 0.574 0.020 B 

113 29 FRC FRIULI 4.6 
Predominately 

thrust 
12.2554 0.273 0.008 B 

115 30 FRC FRIULI 4.4 Normal 22.2481 0.143 0.005 B 

116 30 GMN FRIULI 4.4 Normal 10.1623 0.408 0.009 B 

125 32 TLM1 FRIULI 5.3 Thrust 11.3944 0.642 0.049 B 

149 40 NRC 
VAL 

NERINA 
5 n/a 10.6285 1.881 0.047 B 

185 48 STR IRPINIA 4.4 n/a 16.3766 0.243 0.013 B 

186 49 BGI IRPINIA 5 Normal 17.011 0.307 0.027 B 

187 49 CLT IRPINIA 5 Normal 17.3497 0.102 0.010 B 

188 49 MRT IRPINIA 5 Normal 42.7021 0.140 0.009 B 

189 49 STR IRPINIA 5 Normal 26.6295 0.284 0.011 B 

193 52 CLT IRPINIA 5 Normal 32.1909 0.136 0.011 B 

197 54 BRN IRPINIA 4.5 n/a 41.9101 0.282 0.010 B 

198 54 CLP IRPINIA 4.5 n/a 20.1463 0.241 0.019 B 

199 54 CNB IRPINIA 4.5 n/a 12.7241 0.276 0.019 B 

200 54 CNP IRPINIA 4.5 n/a 12.2489 0.463 0.036 B 
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201 54 CR1 IRPINIA 4.5 n/a 14.3901 0.493 0.020 B 

203 54 CR3 IRPINIA 4.5 n/a 14.0392 0.329 0.017 B 

253 68 FRN FRIGNANO 5 
Predominately 

thrust 
20.922 0.330 0.016 B 

1025 69 CTC GUBBIO 5.6 Normal 38.1316 0.489 0.036 B 

283 71 STG 
VAL 

COMINO 
5.5 Normal 37.0984 0.263 0.017 B 

334 88 RNR POTENTINO 4.8 Strike-slip 34.101 0.317 0.011 B 

343 90 RNV POTENTINO 5.1 Strike-slip 28.9119 0.329 0.011 B 

344 90 TRR POTENTINO 5.1 Strike-slip 31.6771 0.179 0.013 B 

443 111 NRC 
APP. UMBRO-
MARCHIGIA

NO 
5.4 Normal 33.2226 0.308 0.011 B 

467 114 NRC 
APP. UMBRO-
MARCHIGIA

NO 
5.2 Normal 19.2315 0.371 0.027 B 

539 126 NRC 
APP. UMBRO-
MARCHIGIA

NO 
4.5 Normal 10.7404 0.607 0.021 B 

556 129 NRC 
APP. UMBRO-
MARCHIGIA

NO 
5 Normal 22.9349 0.166 0.008 B 

570 130 SELE 
APP. UMBRO-
MARCHIGIA

NO 
5.3 n/a 30.1095 0.127 0.007 B 

571 130 SELW 
APP. UMBRO-
MARCHIGIA

NO 
5.3 n/a 30.2693 0.220 0.010 B 

583 131 SELE 
APP. UMBRO-
MARCHIGIA

NO 
5.1 Normal 35.7286 0.135 0.006 B 

584 131 SELW 
APP. UMBRO-
MARCHIGIA

NO 
5.1 Normal 35.8448 0.200 0.010 B 

599 133 SELE 
APP. UMBRO-
MARCHIGIA

NO 
4.8 Normal 35.8577 0.059 0.002 B 

600 133 SELW 
APP. UMBRO-
MARCHIGIA

NO 
4.8 Normal 35.99 0.064 0.003 B 

847 181 AQK Gran Sasso 5.1 Normal 12.1648 0.403 0.024 B 

869 183 AQF L'Aquila 5.6 Normal 14.783 0.772 0.031 B 

870 183 AQG L'Aquila 5.6 Normal 15.1391 1.040 0.063 B 

874 183 AQV L'Aquila 5.6 Normal 15.0648 1.441 0.054 B 
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Chapter 7  

EXPERIMENTAL INVESTIGATION ON 

EXTERIOR NON-CONFORMING BEAM-

COLUMN JOINTS 
 

 

 

 

 

In the previous Chapters it was highlighted that in the assessment of the 

performance of typical existing buildings, seismic collapse safety might be 

significantly affected by the non-linear behavior of the joints that are involved 

in the failure mechanisms especially if they are characterized by poor 

structural detailing, such as the lack of an adequate transverse reinforcement 

in the joint panel. Commonly accepted tools to assess existing joint capacity – 

which is the starting point for a rational retrofit strategy – are not available in 

literature. Few reliable approaches for modeling all sources of nonlinearity are 

proposed in literature for poorly designed beam-column joints mainly because 

of relatively poor information from experimental tests. 

Thus, this Chapter aimed to improve the understanding of exterior joints 

seismic performance without transverse reinforcement in existing RC 

buildings through experimental tests. 

Two full-scale exterior unreinforced beam-column joint sub-assemblages 

are tested under cyclic loading. The specimens are different for beam 

longitudinal reinforcement ratio and they are both reinforced with deformed 

bars. Two different kinds of joint failure are expected, with or without the 

yielding of the adjacent beam. Strain gauges located on beam bars and 

displacement transducers on the joint panel allow the complete definition of 

both the deformability contributions of fixed-end-rotation and shear strain of 

the panel. Design criteria, adopted setup and main experimental results are 

described herein. 

Finally experimental results are compared with numerical results carried 

out through the adoption of the model proposed and presented in Chapter 5.   
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7.1  Introduction 

Reinforced Concrete (RC) buildings designed for gravity loads only or 

according to obsolete seismic codes are widespread in Italian and 

Mediterranean building stock. For these buildings, beam-column joints 

represent a critical issue; the lack of capacity design principles leads to a low 

shear strength of the joint, potentially leading to a shear failure that limits the 

deformation capacity of adjoining beams and/or columns (Park and Mosalam, 

2013; Celik and Ellingwood, 2008). 

Past earthquakes showed that shear failure in beam-column joints can lead 

to building collapse (Moehle and Mahin 1991) which often can be attributed to 

inadequate joint confinement. In recent earthquakes all around the word (Izmit 

earthquake (Sezen et al. 2000), Tehuacan earthquake (EERI 1999a), Chi-Chi 

earthquake (EERI 1999c)), the inadequacy of building joints designed 

according to earlier rather than more current standards was one of the main 

causes of severe damages or collapses. In particular, the observations of 

damage after L‘Aquila earthquake (2006) indicated that some RC buildings 

designed in Italy before the mid-1990s may have serious structural deficiencies 

especially in joint regions, mainly due to a lack of capacity design approach 

and/or poor detailing of reinforcement (Ricci et al. 2011). 

A significant amount of research on the seismic performance of RC beam-

column joints has been carried out in the last forty years (see Chapter 2 and 

Chapter 5). The majority of the research literature has emphasized the 

improvement of the performance of RC beam-column joints through new 

design concepts and improved details such as joint hoops or improved 

anchorage. 

 Several researchers have focused on an array of different variables, in 

particular including the effect of column axial load, concrete strength, joint 

aspect ratio, beam longitudinal reinforcement ratio. However, most of the 

authors did not fully investigate experimentally the effect of all the above 

parameters, likely because of the different interests associated with single 

national design standards and above all due to the difficulty in carrying out 

extensive experimental tests programs. Still nowadays, the influence of some 

parameters such as the axial load in the column was not always fully 

recognized. 
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In most of the tests the focus was given to the ultimate shear strength of the 

joint; thus only few authors have measured joint shear strain (e.g., Clyde, 2000; 

Pantelides, 2002 for plain exterior joints or Hassan 2011 and Park and Mosalam 

2013 for corner joints). However a complete characterization of the nonlinear 

local response of the joint panel and fixed-end-rotation contribution is 

necessary to clearly understand beam-column joint behavior also within the 

context of a RC frame. 

Thus, this Chapter aimed to improve the understanding of exterior joints 

seismic performance without transverse reinforcement in existing RC 

buildings through two experimental tests, different for failure typology, 

analyzing also local shear stress-strain response of the joint panel and 

longitudinal bars slippage contribution to the overall deformability. 

 

7.2 Experimental program 

7.2.1. Specimens: design and construction 

Two full-scale exterior unreinforced beam-column joint sub-assemblages 

have been tested under cyclic loading. 

The two specimens are different for beam longitudinal reinforcement ratio 

and they are both reinforced with deformed bars. Specimens are designed to 

obtain two different kinds of joint failure, with or without the yielding of the 

adjacent beam. 

Columns were designed according to capacity design principles in order to 

obtain a weak beam-strong column hierarchy. Beam longitudinal 

reinforcement was designed to observe beam yielding after (Test #1) or before 

(Test #2) joint shear failure occurrence. Stirrup spacing in beam and column is 

designed to avoid shear failure, while no transverse reinforcement is located in 

the joint panel zone. 

The two tests are identical for geometry: the beam is 50 cm wide and 30 cm 

deep and the column section is 30x30 cm2.  

As shown in Figure 7.1, in Test #1, the beam is symmetrically reinforced 

with 4 20 bars for both the positive and negative reinforcement 

(corresponding to a compression and tension reinforcement ratio equal to 

ρ'=ρ=0.84%); also column is symmetrically reinforced with 420 bars for top 

and bottom sides, corresponding to a total reinforcement ratio (ρ'+ρ) equal to 
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2.79%. 

As shown in Figure 7.2, in Test #2, the beam is symmetrically reinforced 

with 4 12 bars for both the positive and negative (corresponding to a 

compression and tension reinforcement ratio equal to ρ'=ρ=0.30%); also 

column is symmetrically reinforced with 4 12 bars for top and bottom sides, 

corresponding to a total reinforcement ratio (ρ'+ρ) equal to 1.01%. 

In both cases, top and bottom beam longitudinal bars are hooked bent at 90° 

into the joint core. 

The transverse reinforcement consists of a 8 mm diameter closed stirrup 

with 90° bend and 10 cm extension on both ends. The stirrups are spaced at 10 

cm along the beam and the column except within 62 cm of beam and column 

end, where the spacing is reduced to 5 cm to give adequate strength at the 

location where forces are applied during the test. 

The longitudinal reinforcement in the column extends continuously up 

through the joint from the bottom to the top of the column. 

 

Column length was designed to be representative of typical interstory 

height (3.4 m) and beam length (1.8 m) is intended to be representative of a 

portion up to a zero point of bending moment diagram in frames designed for 

gravity loads. 

 

The test unit reinforcement cages were constructed according to Figure 7.1 

and Figure 7.2 and cast in place in pairs horizontally (see Figure 7.3). A high-

frequency vibrator was used to consolidate the concrete. Each test unit was 

allowed to cure for at least 72 hours before they were removed from the forms. 
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Figure 7.1. Geometry and reinforcement details - Test #1 
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Figure 7.2 . Geometry and reinforcement details - Test #2 
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Figure 7.3. Specimens construction 
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7.2.2. Materials 

Concrete compressive strength for all specimens was evaluated on four 

15×15×15 cm3 cubic samples (CSs) of the casted concrete. Values of 28-day 

cylindrical strength for each CS and their mean value is reported in Table 7.1. 

 

Cubic sample Cylindrical compressive strength (fc) 
 (MPa) 

CS1 27.2 
CS2 29.2 
CS3 31.2 
CS4 27.4 

mean 28.8 

Table 7.1. Properties of concrete 

 

Commercial typology of reinforcing steel adopted is B450C (NTC 2008), i.e., 

class C reinforcement with fyk=450 MPa according to Annex C provisions of 

Eurocode 2 (EN 1992-1-1:2004 Annex C). Tensile tests were carried out on three 

samples for each bar diameter. Table 7.2 reports mean values of their 

mechanical properties, namely yield strength (fy), ultimate strength (ft) and 

hardening ratio (ft/fy). In Appendix 7A steel stress-strain behavior are reported 

for each sample. 

 

Diameter Yield strength  
(fy) 

Ultimate strength  
(ft) 

Hardening ratio  
(ft/fy) 

(mm) (MPa) (MPa) (-) 

20 486.5 595.5 1.22 
12 459.1 559.7 1.22 
8 492.0 606.8 1.23 

Table 7.2. Properties of steel 

 
 
 
  



Experimental investigation on exterior non-conforming beam-column joints 

 
 

310 

7.2.3. Test setup 

A schematic of the loading apparatus is shown in Figure 7.4. The column 

was mounted horizontally with pinned supports at both ends and the 

specimen was constrained to the strong floor by means of two rigid steel 

frames. Steel spherical hinges were placed between the beam end and floor to 

limit friction and to allow tip beam free movement. 

 The axial load was applied using a small hydraulic jack in load control and 

transferred to the column through a system constituted by four pre-stressed 

rods connected to strong steel plates located on the top and bottom of the 

column. Four strain gauges (sgs B1, B2, B3 and B4 in Figure 7.5), one on each 

pre-stressed rod, were used to check axial stress acting on bars. In particular, a 

constant value of axial load equal to 260 kN (corresponding to an axial load 

ratio equal to 0.1) was adopted. 

An hydraulic actuator applies the lateral load in displacement control at the 

end of the beam by means of a loading collar. A load cell situated between the 

hydraulic actuator and the loading collar measured the quasi-static cyclic load 

applied to the beam. The actuator was pinned at the end to allow rotation 

during the test. 

Five Linear Variable Displacement Transducers (LVDTs) were employed as 

shown in Figure 7.5 to measure rotation of the joint (E, D, F), hinge rotation (A, 

B) and eventual rigid body movement of the specimen. 

Twelve linear potentiometer sensors (LPs) adopted to measure joint shear 

strain and fixed-end-rotations were located in the joint panel along 

longitudinal reinforcement layers of beam and column and along the diagonals 

of the joint panels, as shown in Figure 7.6(a). 

A wire potentiometer was placed at the end of the beam to measure beam 

deflection. 

 Strains in beam longitudinal reinforcement were measured, too, by means 

of six strain gauges (sgs) located as shown in Figure 7.6(b) (three on a bar in 

the top layer and three on a bar in the bottom layer). 

Additional two LVDTs located along beam deep were used in Test #2 in 

order to have a more reliable measure of beam fixed-end-rotation contribution. 

Figure 7.7 shows a photo of test setup (a) and joint panel zone  
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Figure 7.4. Test setup 
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Figure 7.5. Instrumentation layout 

 
 

(a) (b) 
Figure 7.6. Linear potentiometers (LPs) on joint panel (a) and strain gauges location (b) 
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(a) (b) 

Figure 7.7. Test setup (a) and joint panel instrumentation (b) 

 

7.2.4. Load Pattern 

Before beginning each test, the axial load was slowly applied to the column 

until the appropriate level was achieved. Then, the lateral load was applied 

cyclically, in a quasi-static way, at the end of the beam. The loading procedure 

consisted of displacement-controlled steps beginning at a 0.25% drift followed 

by steps of 0.50%, 0.75%, 1.0%, 1.5%, 2.0%, 3.0%, 4.0% and 6.0% drift. Each drift 

step consisted of 3 cycles of push and pull.  

The loading procedure can be stopped before it is fully completed if the 

hydraulic jack cannot sustain in safe the column axial load. 

Table 7.3 and Figure 7.8 show in details the patter load program. 
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Pattern load program 

Cycle Drift Displacement N° of cycles Velocity Time 

# [%] [mm] [-] [mm/sec] [sec] 

1 0.25 4.50 3 0.5 108 

2 0.5 9.00 3 0.5 216 

3 0.75 13.50 3 0.5 324 

4 1 18.00 3 0.5 432 

5 1.5 27.00 3 0.5 648 

6 2 36.00 3 0.5 864 

7 3 54.00 3 1 648 

8 4 72.00 3 1 864 

9 6 108.00 3 1 1296 

Table 7.3. Pattern load program 

 

  
(a) (b) 

Figure 7.8. Imposed displacement (a) and drift (b) history 
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7.3 Analysis of results 

In this Section, lateral load-displacement response of the specimens is 

analyzed (mainly referring to response envelope), and the evolution of 

observed damage with increasing imposed displacement is described (Section 

7.3.1). Then local response is investigated (Section 7.3.2) in terms of joint shear 

strain j and fixed-end rotation s. The convention on signs adopted herein for 

beam load, beam drift and related local response (joint shear strain j and fixed-

end rotation s) is reported in Figure 7.9. 

 

 
Figure 7.9. Convention on sign of beam load, beam drift, joint shear strain and 

fixed-end-rotation 

+

- -

--
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7.3.1. Global response and observed damage 

 

7.3.1.1 Beam lateral load versus drift 

Test #1 

Test #1 exhibited an initial uncracked stiffness, calculated as the secant to 

the experimental backbone in its first point, equal to 14970 N/mm. Such a 

stiffness slightly decreased up to 12654 N/mm in the first millimeter of 

displacement applied to the beam end, and showed a more significant 

reduction when the applied drift ranges between 0.5% and 0.75%, when first 

joint panel cracking occurred, as better shown in Section 7.3.1.2. 

Experimental response was quite symmetric during the push-pull cycles. 

Peak load was reached for a drift equal to 1.40% for positive loading direction 

and -1.38% for negative loading direction. Peak values of beam lateral load 

were 74.02 kN and -72.35 kN, respectively for positive and negative loading 

direction. 

Since beam yielding is expected to occur for a beam lateral load value of 

155.6 kN, such a test can be classified as J-failure, namely joint shear failure 

happens before yielding of beam. Such a classification will be confirmed by the 

measures of bar strains provided by the adopted strain gauges. 

When the test was interrupted (at the first cycle of 6% drift) the strength 

reduction (evaluated from first steps for each cycle) was equal to 47% and 53%, 

respectively in positive and negative direction. 

Beam lateral load (measured by means of the load cell) versus drift 

(measured by means of the wire potentiometer 50-40) response related to Test 

#1 is reported in Figure 7.10. 
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Figure 7.10. Beam lateral load-drift response – Test #1 

 
Test #2 

Test #2 exhibited an initial uncracked stiffness, calculated as the secant to 

the experimental backbone in its first point, equal to 15122 N/mm. Such a 

stiffness rapidly decreased up to 14482 N/mm in the first millimeter of 

displacement applied to the beam end, and showed a more significant 

reduction when the applied drift ranges between 0.25% and 0.50%, when first 

cracks along beam-joint interface started to occur, as better shown in Section 

7.3.1.2. 

Experimental response is quite symmetric during the push-pull cycles. Peak 

load was reached for a drift equal to 0.88% for positive loading direction and -

0.69% for negative loading direction. Peak values of beam lateral load were 

58.33 kN and -53.27 kN, respectively for positive and negative loading 

direction. 

Since beam yielding is expected to occur for a beam lateral load value of 

52.9 kN, such a test can be classified as BJ-failure, namely joint shear failure 

happens after yielding of beam. Such a classification will be confirmed by the 

measures of bar strains provided by the adopted strain gauges. 

Test #2 was interrupted when the three cycles at 2% drift were fully 

completed because the hydraulic jack cannot more sustain in safe the column 

axial load, as explained in details in Section 7.3.2.4. When the test was 

interrupted the strength reduction (evaluated from first steps for each cycle) 

was equal to 27% and 31%, respectively in positive and negative direction. 
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Beam lateral load (measured by means of the load cell) versus drift 

(measured by means of the wire potentiometer 50-40) response related to Test 

#2 is reported in Figure 7.11. 

 

 
Figure 7.11. Beam lateral load-drift response – Test #2 

 

Peak values of beam lateral load for positive (Vb,max,POS) and negative 

(Vb,max,NEG) loading directions and corresponding drifts (PeakDriftPOS and 

PeakDriftNEG, respectively) are summarized in Table 7.4, together with beam 

load value corresponding to beam yielding. 

 

 Vb,max,POS 

(kN) 
PeakDrift,POS 

(%) 
Vb,max,NEG 

(kN) 
PeakDrift,NEG 

(%) 
Vb,beam_yiel 

(kN)  

Test #1 74.02 1.40 -72.35 -1.38 155.6 
Test #2 58.33 0.88 -53.27 -0.69 52.9 

Table 7.4.  ―Peak points‖ and yielding beam load  

 
Complete experimental data related to the backbones of beam lateral load-

drift are reported in Appendix 7B. 
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7.3.1.2 Observed damage 

Test #1 

First cracks in the joint panel started to appear when a drift ratio equal to 

0.5% was imposed, starting from corner B, as shown in Figure 7.12. Between a 

drift value that ranges between 0.5% and 0.75%, diagonal cracks in the joint 

panel occurred and spread along column longitudinal bars. When a drift value 

equal to 2% was reached, cracks at beam-joint interface started to appear and 

increase progressively their width, mainly due to fixed-end-rotation of the 

beam. At 3% drift, existing cracks in the joint panel increased their width and 

concrete cover spalling started to occur from corner C (see Figure 7.12). 

Concrete cover spalling was complete when a drift value of 6% was reached. 

In Figure 7.12 the evolution of joint panel damage state is visually reported 

and Figure 7.13 shows the final damage state of the specimen. In Figure 7.14 

the global response is associated to the corresponding damage states of the 

joint panel. 

Table 7.5 summarizes the evolution of the observed damage for Test #1 

described above. 

Furthermore, Figure 7.15 represents displacement () measured by means of 

the linear potentiometer (LPs) located along the diagonals of the joint panel. 

The data are cut at the step 12600, corresponding to 2% drift, when cracks 

significantly involved the supported points of LPs, causing unreliable lectures. 

It can be observed that LP 50-4 provides the higher values of cracks width (up 

to about 7 mm), proving that joint panel damage was more important along 

the diagonal A-D (perpendicular to LP 50-4 direction). 
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Cycle Joint panel damage state – Test #1 

1 

 
 

Initial state – Drift 0.25% 

2 

 
 

Drift 0.5% 

3 

 
 

Drift 0.75% 
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A  B

C  D
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4 

 
 

Drift 1% 

5 

 
 

Drift 1.5% 

6 

 
 

Drift 2% 
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A  B

C  D

A  B

C  D
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7 

 
 

Drift 3% 

8 

  
Drift 4% 

9 

 
 

Drift 6% - Final State 

Figure 7.12. Evolution of damage – Test #1 
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Figure 7.13. Final damage state: joint panel and beam-joint interface – Test #1 

 
 

Cycle 
Drift 

(%) 

Damage description 

Joint Beam Column 

1 0.25 - - - 

2 0.5 First light cracks at corner B - - 

3 0.75 
Diagonal cracks in the joint 

panel spreading along column 
longitudinal bars 

- - 

4 1 
New diagonal cracks and 

spreading of existing cracks 
- - 

5 1.5 New diagonal cracks - - 

6 2 New diagonal cracks 

Crack opening at 
beam-joint 

interface along 
beam width 

Spreading of 
cracks along 
longitudinal 

bars 

7 3 
Spreading of existing cracks and 

beginning of concrete cover 
spalling  starting from corner C 

Lengthen of 
existing cracks at 

beam-joint 
interface 

- 

8 4 

New diagonal cracks, 
significant cracks lengthen, 

concrete cover spalling 
alongside A-C 

- - 

9 6 
Complete concrete cover 

spalling 
- - 

Table 7.5. Description of the evolution of damage during Test #1 
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Figure 7.14. Global response and corresponding damage states of the joint panel – 

Test#1 

 

  
Figure 7.15. LPs displacements along the diagonals of the joint panel – Test #1 

 

Figure 7.16 shows the experimental envelope for Test #1 and beam load 

corresponding to joint cracking strength prediction according to two of the 
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most adopted models in literature: Uzumeri (1977) and Priestley (1997). 

Starting from the observed damage descripted above and from the observation 

of changes in the slope of the experimental backbone, it can be concluded that 

model by Uzumeri predicts very well joint cracking strength. 

Table 7.6 summarizes beam load values (Vb,cr) corresponding to joint 

cracking strength predictions by Uzumeri and Priestley and the related beam 

end displacements (Dcr) drift and cracking stiffness (kcr) for Test #1. 

 

 
Figure 7.16. Joint cracking strength – Test #1 

 
 

 Vb,cr (kN) Dcr (mm) Driftcr (%) kcr (MPa) 

Priestley 68.5 18.68 1.04 3664 

Uzumeri 54.9 8.08 0.45 6795 

Table 7.6. Beam lateral load, displacement, drift and secant stiffness corresponding to 
joint cracking – Test #1 
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Test #2 

First cracks started to appear at beam-joint interface when a drift ratio equal 

to 0.5% was imposed,  as shown in Figure 7.17. When the drift value was equal 

to 1%, diagonal cracks in the joint panel occurred and spread along column 

longitudinal bars. At 1.5% drift, cracks at beam-joint interface increased 

progressively their width, mainly due to fixed-end-rotation of the beam, and 

new diagonal cracks appeared in the joint core. At 2% drift, existing cracks 

significantly increased their width and buckling of longitudinal bars of column 

and sudden complete cover spalling occurred at the third step of the sixth 

cycle. Hydraulic jack was not able more to sustain in safe column axial load. 

In Figure 7.17 the evolution of joint panel damage state is visually reported 

and Figure 7.18 shows the final damage state of the specimen. In Figure 7.19 

the global response is associated to the corresponding damage states of the 

joint panel. 

Table 7.7 summarizes the evolution of the observed damage for Test #2 

described above. 

Moreover, Figure 7.20 represents displacement  measured by means of the 

linear potentiometer (LPs) located along the diagonals of the joint panel. Data 

are cut at the end of the second cycle at 2% drift, when cracks significantly 

involved the supported points of LPs, causing unreliable lectures. It can be 

observed that LP 50-1 provides the higher values of cracks width (up to about 

7 mm), proving that joint panel damage is more important along the diagonal 

B-C (perpendicular to LP 50-1 direction). 
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Cycle Joint panel damage state – Test #2 

1 

 
 

Initial state – Drift 0.25% 

2 

 
 

Drift 0.5% 

3 

 
 

Drift 0.75% 
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4 

 
 

Drift 1% 

5 

 
 

Drift 1.5% 

6-1 

 
 

Drift 2% - Cycle 1 

A  B

C  D

A  B

C  D

A  B

C  D
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6-2 

 
 

Drift 2% - Cycle 2 

6-3 

 
 

Drift 2% - Final state 

Figure 7.17. Evolution of damage – Test #2 

 

  
Figure 7.18. Final damage state: joint panel and beam-joint interface – Test#2 

A  B

C  D

A  B

C  D



Experimental investigation on exterior non-conforming beam-column joints 

 
 

330 

Cycle 
Drift 

(%) 

Damage description 

Joint Beam Column 

1 0.25 - - - 

2 0.5 - 
Light cracks at beam-

joint interface 
 

3 0.75 - 
New cracks at beam- 

joint interface  
 

4 1 
Light diagonal cracks in the 

joint panel 
- - 

5 1.5 

New diagonal cracks in the 
joint panel and light cracks 
along column longitudinal 

bars 

Lengthen of existing 
cracks at beam-joint 

interface 

Cracks along 
longitudinal 

bars 

6-1 2 
New diagonal cracks in the 

joint panel 
- - 

6-2 2 
Significant lengthen of 

existing cracks 
- - 

6-3 2 
Concrete cover spalling 

alongside A-C 
- Bars buckling 

Table 7.7. Description of the evolution of damage during Test #2 

 

 
Figure 7.19. Global response and corresponding damage states of the joint panel – 

Test#2 
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Figure 7.20. LPs displacements along the diagonals of the joint panel – Test #2 

 
Figure 7.21 shows the experimental envelope for Test #2 and beam load 

corresponding to joint cracking strength prediction according the models by 

Uzumeri (1977) and Priestley (1997). Starting from the observed damage 

descripted above and from the changes in the slope of the experimental 

backbone, it can be concluded that model by Uzumeri predicts joint cracking 

strength better than model by Priestley also for this test. The latter provides a 

joint cracking strength that is higher than the experimental strength. However, 

a significant change in the slope of the experimental backbone is observed 

before joint cracking because of the previous onset of cracks along beam-joint 

interface. 

Table 7.8 summarizes beam load values (Vb,cr) corresponding to joint 

cracking strength predictions by Uzumeri and Priestley and the related beam 

end displacements (Dcr), drift and cracking stiffness (kcr) for Test #2. 
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Figure 7.21 -  Joint cracking strength – Test #2 

 
 

 Vb,cr (kN) Dcr (mm) Driftcr (%) kcr (MPa) 

Priestley 68.5 - - - 

Uzumeri 54.9 12.84 0.71 4273 

Table 7.8.  Beam lateral load, displacement, drift and secant stiffness corresponding to 
joint cracking – Test #2 

 

7.3.1.3 Dissipated energy 

In this Section, dissipated energy of Test #1 and #2 is reported, respectively 

in Figure 7.22 and Figure 7.23, and compared.  

Dissipated energy obviously increases with imposed drift and it is higher 

for Test #1 than for Test #2, on equal drift (Figure 7.24), mainly due to the 

higher beam load values of Test #1. Thus, in order to better compare the 

dissipated energy of the two tests, it appears more convenient to normalize the 

energy to the experimental peak beam load of each test. Such a comparison is 

shown in Figure 7.25 and proves that normalized dissipated energy and, 

consequently, the ―shape‖ of hysteretic loops, are quite similar in the two 

cases. 
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Figure 7.22. Dissipated energy – Test #1 

 

 
Figure 7.23. Dissipated energy – Test #2 
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Figure 7.24. Dissipated energy – comparison 

 

 
Figure 7.25. Normalized dissipated energy - comparison 
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7.3.2. Local behavior 

In this Section, most significant local measurement data, related to main 

damage and deformation mechanisms observed in specimens, are discussed. 

 

7.3.2.1  Joint panel response 

Linear potentiometers located on the joint panel are employed to calculate 

joint shear strain, as suggested by previous experimental studies (e.g. 

Engindeniz, 2008 and Hassan, 2011). Joint shear strain can be expressed as 

shown in Eq. (7.1) 

2 2

,

cos sin

sin cos

x y

s i

    


 

 
  (7.1) 

where, γs,i is the joint shear strain obtained using a certain set of strain 

measures, εx and εz are strains in the horizontal and vertical directions, 

respectively, and εθ is the strain in the diagonal direction with an angle of θ 

measured from the horizontal axis. Four estimates of the joint shear strain were 

obtained by four triangles of LPs located in the joint panel (Figure 7.26) by 

using Eq. (7.1), as follows 
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Joint strain (joint) is finally calculated as the mean of these four estimates. 

Sign convention for shear strain is related to beam displacement sign 

convention (see Figure 7.9), i.e. negative joint shear strain (see Figure 7.26) 

corresponds to downward beam displacement (hydraulic actuator pulls the 
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beam, beam load is negative - measured by the load cell - and drift is negative 

– measured by the wire potentiometer 50-40). 

 

 
Figure 7.26. Joint shear strain calculation 

 
Joint shear stress is calculated on the base of equilibrium equations, in 

conjunction with strain gauges measures (see Section 7.3.2.3). In particular, 

joint shear Vjh is calculated as shown in Eq. (7.6) 

cjh VTV   (7.6) 

where T is the tensile force acting in beam longitudinal bars and Vc 

represents column shear force. Tensile force T is obtained as shown in Eq. (7.7) 

ssy,ssss AEAET    (7.7) 

where s is the strain measures obtained from strain gauges located at beam-

joint interface (sgs #1 and #4), As is the area of longitudinal tensile bars of 

beam and Es represents the Young modulus of steel. Column shear force Vc is 

calculated from the equilibrium, as shown in Eq. (7.8).  

c

bb
cbbcc

L2

LV
VLVVL2


  (7.8) 

where Lb is the total length of the beam and 2Lc represents the total length 

of bottom and top column. 

Joint shear stress (joint) can be calculated as the ratio between joint shear 

1

2

3

4
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force (Vjh) and joint horizontal area (Ajh).  

Hereinafter, joint will represent joint shear stress divided by the square root 

of concrete strength fc. 

In Figure 7.27 and Figure 7.28, joint versus joint strain (joint) experimental 

responses are reported for Test #1 and #2, respectively. Data are represented 

until LPs measures are considered reliable, i.e. until cracks significantly 

involved the supported points of LPs. 

 

Test #1 

In Test #1, the peak values of joint are 0.63 and -0.616 (MPa)0.5 for positive 

and negative direction, respectively. The corresponding joint are equal to 

0.532% and -1.182%. It is worth noting that maximum joint shear strain is 

achieved in negative direction, thus proving that higher cracks width should 

occurs along the joint diagonal A-D. LPs 50-1 and 50-4 shown before in Figure 

7.15 confirms this assertion. 

Joint stress corresponding to joint cracking according to the prediction by 

Uzumeri (1977) – that better predicts experimental behavior – is 0.39 MPa0.5 for 

both tests. 

 

 
Figure 7.27. Joint shear stress – strain experimental response – Test #1 

 

Test #2 

In Test #2, the peak values of joint are 0.423 and -0.388 (MPa)0.5 for 
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positive and negative direction, respectively. The corresponding joint are equal 

to 0.04% and -0.067%. These peak points were reached at the end of the elastic 

phase of behavior of the joint that exhibited a high (pre-cracking) stiffness. 

When positive peak point was reached, joint cracking occurred, causing a 

significant reduction in stiffness and a reduction in strength, following by a 

strength recovery up to 0.359 (MPa)0.5 for positive direction at 0.642% of joint. 

Then a softening phase with a very low (negative) stiffness occurred. In this 

case, cracking strength (evaluated according to the prediction by Uzumeri, 

1977) and joint stress corresponding to beam yielding (namely 0.38 MPa0.5) are 

very close to each other. 

For Test #2 maximum joint shear strain is achieved in positive direction, 

thus proving that higher cracks width should occurs along the joint diagonal 

BC. LPs 50-1 and 50-4 shown before in Figure 7.20 confirms this assertion. 

 

 
Figure 7.28. Joint shear stress – strain experimental response – Test #2 

 
Complete experimental data related to joint stress-strain backbones for both 

tests is reported in Appendix 7B. 

 

7.3.2.2 Fixed-end-rotation 

Fixed-end-rotation (s) contribution to the overall deformability can be 

estimated through LPs located along longitudinal bars of beam and column 
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(see Figure 7.29). In particular, since for Test #2 a more significant 

deformability contribution due to beam was expected, two LVDTs more (037 

and G) were employed (only) for this test (located as shown in Figure 7.29a), in 

order to have a more accurately measure of s. 

 

 
(a) 

 
(b) 

Figure 7.29. Fixed-end-rotation measures for beam (a) and top and bottom columns 
(b) 

 

Starting from each pair of LPs or LVDTs (providing displacement lectures 

d1 and d2) located at a distance l, fixed-end-rotation is calculated according to 

Eq. (7.9): 
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1 2
s

d d

l



  (7.9) 

Fixed-end-rotation is assumed negative when it is clockwise, as previously 

shown in Figure 7.9. 

 
Test #1 

Figure 7.30, Figure 7.31 and Figure 7.32 show the fixed-end-rotation 

contribution for Test #1 evaluated for beam, top column and bottom column, 

respectively. Experimental data are plotted until supported points of LPs were 

involved in significant cracks (i.e. a drift value equal to 3% for the beam and 

2% for the column was reached). It can be observed that fixed-end-rotation 

contribution to the overall deformability related to the column is lower than 

fixed-end-rotation related to the beam and, however, the maximum of 

deformability contribution related to the beam reaches a peak value of 0.8‰, 

i.e. less than one third of the total imposed drift. 

 

  
Figure 7.30. Fixed-end-rotation related to the beam – Test #1  

  
Figure 7.31. Fixed-end-rotation related to the top column 
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Figure 7.32. Fixed-end-rotation related to the bottom column – Test #1 

 
Test #2 

Figure 7.33, Figure 7.34 and Figure 7.35 show the fixed-end-rotation 

contribution for Test #2 evaluated for beam, top column and bottom column, 

respectively. In particular, in Figure 7.33a fixed-end-rotation related to the 

beam is evaluated through LPs 50-5 and 50-6, while in Figure 7.33b through 

LVDTs 037 and G: in first measurement, peak values can be also 50% higher, 

but such measures appear less confusing and more reliable that the second. It 

can be observed that fixed-end-rotation related to the column is significantly 

lower than fixed-end-rotation related to the beam. The latter is more than 50% 

(s,beam,max=1.2%) of the total imposed drift at the end of the test (2%). 

 

  
(a) 
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(b) 

Figure 7.33. Fixed-end-rotation related to the beam evaluated through LPs 50-5 and 50-
6 (a) or evaluated through LVDTs 037 and G (b) – Test #2 

 

  
Figure 7.34. Fixed-end-rotation related to the top column – Test #2 

 

  
Figure 7.35. Fixed-end-rotation related to the bottom column – Test #2 

 
By summing up deformability contributions due to fixed-end-rotation 

related to the beam and joint shear strain the quantity s,tot is obtained (see 

Figure 7.36 and Figure 7.37). It can be observed that these two contributions 



Chapter 7 

Experimental investigation on exterior non-conforming beam-column joints 

343 

represent the quasi-totality of the imposed drift for both tests, especially in the 

direction where joint shear strain is predominant. 

 

  
Figure 7.36. Sum of joint shear panel and beam fixed-end-rotation (s,tot) – Test #1 

  
Figure 7.37. Sum of joint shear panel and beam fixed-end-rotation  (s,tot)– Test #2 

 

7.3.2.3 Beam bars strains 

In this Section axial strain measures related to the beam longitudinal 

reinforcement bars are plotted for strain gauges located at beam-joint interface, 

namely sg #1 and sg #4. Complete data related to all the employed strain 

gauges are reported in Appendix 7C. 

Steel strain of longitudinal beam bars in Test #1 reaches a maximum value 

of 1‰ and thus it is always much lower than the strain corresponding to 

yielding (yielding=2.43‰), thus confirming the failure mode classification for 

this test as J-failure. 
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Figure 7.38. Beam bars strain – Test #1 

 
Steel strain of longitudinal beam bars in Test #2 reaches a maximum value 

of 2.8‰ (when 1% imposed drift was reached) and thus overcomes the 

yielding strain (yielding=2.30‰), thus confirming that Test #2 can be classified 

as BJ-failure. 

 



Chapter 7 

Experimental investigation on exterior non-conforming beam-column joints 

345 

  

  
Figure 7.39.  Beam bars strain – Test #2 
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7.3.2.4 Bar buckling – Test #2 

As explained in previous Sections, Test #2 was interrupted when 2% drift 

was reached. In fact, at this step, concrete cover spalling and sudden buckling 

of column longitudinal bars cause a fast development of damage to the 

specimen, thus forcing a sudden elongation of the hydraulic jack that was no 

more able to support in safe column axial load. Final state of damage in the 

joint area due to bars buckling is shown in Figure 7.40. 

 

 
Figure 7.40. Bar buckling – Test #2 

 

The initial step of the phenomenon can be identified from lectures related to 

the hydraulic jack M2 acting on column and LVDTs located against the vertical 

face of the joint. In particular it can be identified a certain step characterized by 

a sudden increase in the elongation of the hydraulic jack (Figure 7.41) and, 

contemporary, a sudden increase in displacement measured by means of the 

LVDT F (Figure 7.42). This step is identified with a red circle in Figure 7.41 and 

Figure 7.42 and it corresponds to a global imposed drift equal to 2% and a 

beam lateral load that is very close to zero. 
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Figure 7.41. Hydraulic jack M2 acting on column 

 

  
(a) (b) 

Figure 7.42. LVDT-F displacement versus beam lateral load Vb (a); LVDT-F 
displacement versus step (b) 
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7.4 Comments and comparisons 

In this Section, local joint panel responses of Tests #1 and #2 are compared 

­ with strength models existing in literature (Section 7.4.1), and 

­ with joint shear stress-strain nonlinear behavior (Section 7.4.2) 

presented and proposed in Chapter 5. 

 

7.4.1. Strength models from literature 

Figure 7.43 shows the envelope of the experimental shear stress-strain joint 

response related to Test #1. Experimental peak strength (τjoint,max) can be 

compared with joint strength predicted by some of the more diffused 

formulations from codes and literature (discussed in Chapter 5), namely: 

- ASCE-SEI/41, providing τjoint,max depending on the joint typology and 

the transverse reinforcement ratio (equal to 0.5MPa0.5 for unreinforced exterior 

joints without transverse beams); 

- Priestley (1997), which suggests to limit the maximum value of 

principal tensile stress to 0.42fc0.5; 

- Park and Mosalam (2012), a mechanical approach accounting for joint 

shear strength degradation after beam yielding and directly providing a 

definition of the failure mode. 

 

 
Figure 7.43. Joint shear stress-strain: envelope and comparison between experimental 

response and strength models from literature - Test #1 
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In particular, in Figure 7.43 it can be observed that code proposal adopted 

here as a reference (namely, ASCE-SEI/41) underestimates the experimental 

strength, as expected. The model that better predicts experimental strength is 

model by Priestley (1997). Finally, model by Park and Mosalam (2012) 

overestimates the maximum strength: the ratio jn,P&Mjoint,max is equal to 1.14.  

Since Test #1 exhibited J-failure mode, joint stress corresponding to beam 

yielding is about two times the peak experimental value.  

A summary of joint shear strength from different models for Test #1 is 

reported in Table 7.9. 

 

joint,max Jn,P&M Jn,ASCE SEI/41 Jn,Priestley y,beam 

0.64 0.73 0.50 0.64 1.30 

Table 7.9. Experimental strength and models from literature – Test #1 

 
Figure 7.44 shows the envelope of the experimental shear stress-strain joint 

response related to Test #2 and joint strength values predicted by some of the 

more diffused formulations from codes and literature. In this case, the model 

by Park and Mosalam (2012) shows the better agreement with experimental 

response: the ratio jn,P&Mjoint,max is equal to 0.97.  

Joint shear stress corresponding to beam yielding is lower than the peak 

experimental value, thus confirming the classification of Test #2 as a BJ-failure 

mode. Moreover, in this case, joint cracking point and beam yielding were very 

close to each other. 

A summary of joint shear strength from different models for Test #2 is 

reported in Table 7.10. 
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Figure 7.44. Joint shear stress-strain: envelope and comparison between experimental 

response and strength models from literature - Test #2 

 

joint,max Jn,P&M Jn,ASCE SEI/41 Jn,Priestley y,beam 

0.42 0.41 0.50 0.66 0.38 

Table 7.10. Experimental strength and models from literature - Test #2 

 

7.4.2. Comparison between experimental results and the proposed 
model 

In this Section, local joint panel responses of Tests #1 and #2 are compared 

with joint shear stress-strain nonlinear behavior presented and proposed in 

Chapter 5 (hereinafter referred to as ―predicted‖). Comparison between 

experimental and predicted backbones for Test #1 and #2 is reported in Figure 

7.45 and Figure 7.46, respectively. Characteristic points of the predicted 

backbone are summarized in Table 7.11 and Table 7.12 for Test #1 and #2, 

respectively. 

In Test #1 joint shear strength is overestimate (as for model by Park and 

Mosalam 2012, that was adopted in the proposed model). Joint shear strain 

corresponding to peak strength is quite well predicted for the positive 

direction, but underestimated in negative direction; predicted softening slope 

is quite close to the experimental behavior. 
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Figure 7.45. Comparison between experimental and predicted joint response – Test #1 

 

Test #1 

 joint (%) joint (MPa)0.5 

Cracking 0.06 0.39 
Pre-peak 0.21 0.66 

Peak 0.48 0.73 
Residual 2.86 0.44 

Table 7.11. Characteristic points of joint stress-strain ―predicted‖ response – Test #1 

 
Test #2 shows a ―singularity‖ in the predicted backbone since stress 

corresponding to beam yielding (that represents the pre-peak point of the 

proposed joint backbone) is lower than cracking strength predicted by 

Uzumeri (1977) (that was assumed as cracking strength in the proposed 

backbone) but is it associated to a joint shear strain that is higher than strain 

corresponding to joint cracking. 
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Figure 7.46. Comparison between experimental and predicted joint response – Test #2 

 

Test #2 

 joint (%) joint (MPa)0.5 

Cracking 0.06 0.39 
Pre-peak 0.26 0.38 

Peak 0.63 0.41 
Residual 3.03 0.29 

Table 7.12.  Characteristic points of joint stress-strain ―predicted‖ response – Test #2 

 

The comparison between predicted model and experimental response has 

been conducted also regarding the hysteretic behavior, starting from the 

experimental backbones (as shown in Figure 7.47 and Figure 7.48). 
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Figure 7.47. Numerical simulation through proposed joint model in terms of joint 

panel cyclic response (experimental envelope) - Test #1 

 

 
Figure 7.48. Numerical simulation through proposed joint model in terms of joint 

panel cyclic response (experimental envelope) - Test #2 

 
Mean values of the parameters defining pinching and cyclic degradation in 

reloading and unloading stiffness are adopted as far as the predicted response 

is concerned (as shown in Chapter 5). It can be noted that pinching 

experimental response is less pronounced than the predicted one, both for Test 

#1 and #2. Vice-versa, experimental unloading stiffness cyclically degrades 

more than in the predicted response. 
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Finally predicted joint shear stress-strain responses were introduced into a 

numerical model of the sub-assemblage, identical to that adopted for the 

validation phase in Chapter 5 (see Figure 5.11).  

The finite element analyses of such a model were performed using 

OpenSees (McKenna and Fenves, 2010). 

In particular, flexural response of beam and column was modeled in a fiber 

approach. Kent-Scott-Park model was adopted for concrete (Kent and Park, 

1971; Scott et al., 1982) and an elastic-plastic-hardening stress-strain 

relationship was adopted for steel (Concrete01 and ReinforcingSteel uniaxial 

materials in OpenSees software, respectively). Rigid offset were located in the 

joint core area and additional springs representing fixed-end-rotation 

contribution are located at elements-joint interfaces. 

The results of these simulations – under monotonic load - are reported in 

Figure 7.49 and Figure 7.50 for Test #1 and #2, respectively. 

 
 

 
Figure 7.49. Numerical simulation through proposed joint model in terms of load-drift 

envelope - Test #1 
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Figure 7.50. Numerical simulation through proposed joint model in terms of load-drift 

envelope - Test #2 
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7.5 Summary 

In this Chapter, the experimental results of two tests on unreinforced 

exterior RC beam-column joints have been presented and commented. 

Tests were designed in order to show failure of joint panel without (Test #1) 

or with (Test #2) yielding of longitudinal bars. 

Experimental results show, in the former case, that the attainment of 

maximum strength and the post-peak degrading behaviour are controlled by 

joint failure, prior to flexural yielding of the beam, as expected. 

In the latter case, yielding of beam longitudinal bars is observed very close 

to cracking of joint panel, after which a first strength decrease is shown. 

Complete failure is attained corresponding to buckling of longitudinal bars of 

column and sudden complete cover spalling, together with observed failure of 

anchorage of beam longitudinal bars. 

The experimental tests described herein can provide a very useful 

contribution to the characterization of the seismic behavior of unreinforced RC 

beam-column joints, in order to validate/propose capacity models for the 

assessment of existing, non-ductile RC buildings. In particular, experimental 

responses have been compared with predicted proposed joint shear stress-

strain responses presented in Chapter 5; a very good agreement between 

experimental and numerical response was found. 
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Appendix 7A: stress-strain behavior of steel samples 
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Appendix 7B: experimental data 

TEST #1 – positive direction: 
 

   Positive direction 

Cycle Step Imposed 
Drift 

Beam 
lateral 
load 

Drift 
(Potentiometer 

50-40) 

Joint shear 
strength 

coefficient 

Joint 
shear 
strain 

( Vb,max ( j,max (MPa0,5) j (%)

1 1 0.25 38.87 0.21 0.331 0.017 

2 38.18 0.21 0.325 0.013 

3 37.59 0.21 0.320 0.015 

2 1 0.50 53.87 0.41 0.458 0.065 

2 48.96 0.45 0.417 0.122 

3 47.53 0.45 0.404 0.125 

3 1 0.75 61.29 0.69 0.522 0.236 

2 58.55 0.70 0.498 0.204 

3 56.86 0.70 0.484 0.189 

4 1 1.00 66.72 0.93 0.568 0.297 

2 63.05 0.93 0.537 0.283 

3 60.86 0.93 0.518 0.276 

5 1 1.50 74.02 1.40 0.630 0.532 

2 65.73 1.41 0.559 0.525 

3 61.29 1.42 0.522 0.508 

6 1 2.00 68.98 1.89 0.587 0.746 

2 58.80 1.90 0.500 0.708 

3 53.86 1.91 0.458 0.695 

7 1 3.00 62.98 2.86 0.536 - 

2 48.94 2.90 0.416 - 

3 43.14 2.90 0.367 - 

8 1 4.00 49.46 3.85 0.421 - 

2 38.81 3.87 0.330 - 

3 34.04 3.87 0.290 - 

9 1 6.00 39.60 5.85 0.337 - 

2 - - - - 

3 - - - - 
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TEST #1 – negative direction: 
 

   Negative direction 

Cycle Step Imposed 
Drift  

Beam 
lateral 
load 

Drift 
(Potentiometer 

50-40) 

Joint shear 
strength 

coefficient 

Joint 
shear 
strain 

( Vb,max ( j,max (MPa0,5) j (%)

1 1 0.25 -41.37 -0.21 -0.352 -0.033 

2 -40.41 -0.21 -0.344 -0.032 

3 -39.75 -0.20 -0.338 -0.032 

2 1 0.50 -60.70 -0.42 -0.517 -0.069 

2 -54.39 -0.44 -0.463 -0.098 

3 -53.10 -0.44 -0.452 -0.105 

3 1 0.75 -63.10 -0.68 -0.537 -0.304 

2 -59.89 -0.68 -0.510 -0.349 

3 -58.09 -0.68 -0.494 -0.373 

4 1 1.00 -68.16 -0.91 -0.580 -0.587 

2 -64.39 -0.91 -0.548 -0.638 

3 -62.31 -0.91 -0.530 -0.663 

5 1 1.50 -72.35 -1.38 -0.616 -1.182 

2 -65.08 -1.38 -0.554 -1.305 

3 -61.04 -1.38 -0.519 -1.380 

6 1 2.00 -64.60 -1.84 -0.550 -2.058 

2 -56.49 -1.85 -0.481 -2.163 

3 -52.16 -1.85 -0.444 -2.232 

7 1 3.00 -56.57 -0.21 -0.481 - 

2 -47.02 -0.21 -0.400 - 

3 -42.19 -0.20 -0.359 - 

8 1 4.00 -45.48 -0.42 -0.387 - 

2 -37.60 -0.44 -0.320 - 

3 -33.45 -0.44 -0.285 - 

9 1 6.00 -34.34 -0.68 -0.292 - 

2 - - - - 

3 - - - - 
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TEST #2 – positive direction: 
 

   Positive direction 

Cycle Step Imposed 
Drift 

Beam 
lateral 
load 

Drift 
(Potentiometer 

50-40) 

Joint shear 
strength 

coefficient 

Joint 
shear 
strain 

( Vb,max ( j,max (MPa0,5) j (%)

1 1 0.25 30.53 0.22 0.222 0.013 

2 29.53 0.22 0.214 0.010 

3 29.02 0.22 0.211 0.009 

2 1 0.50 44.07 0.45 0.320 0.027 

2 42.76 0.45 0.310 0.026 

3 42.08 0.45 0.305 0.026 

3 1 0.75 54.55 0.70 0.396 0.040 

2 52.61 0.70 0.382 0.031 

3 51.45 0.70 0.373 0.030 

4 1 1.00 58.33 0.88 0.423 0.040 

2 45.61 0.95 0.331 0.233 

3 43.95 0.95 0.319 0.350 

5 1 1.50 49.51 1.44 0.359 0.642 

2 42.72 1.44 0.310 1.052 

3 39.10 1.44 0.284 1.207 

6 1 2.00 42.67 1.92 0.310 1.581 

2 34.85 1.93 0.253 1.793 

3 30.13 1.93 0.219 - 
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TEST #2 – negative direction: 
 

   Negative direction 

Cycle Step Imposed 
Drift 

Beam 
lateral 
load 

Drift 
(Potentiometer 

50-40) 

Joint shear 
strength 

coefficient 

Joint 
shear 
strain 

( Vb,max ( j,max (MPa0,5) j, (%)

1 1 0.25 -30.33 -0.21 -0.220 -0.025 

2 -29.13 -0.21 -0.211 -0.024 

3 -28.53 -0.21 -0.207 -0.024 

2 1 0.50 -44.29 -0.45 -0.321 -0.052 

2 -42.69 -0.45 -0.310 -0.051 

3 -41.87 -0.45 -0.304 -0.050 

3 1 0.75 -53.53 -0.69 -0.388 -0.067 

2 -51.28 -0.70 -0.372 -0.060 

3 -50.16 -0.69 -0.364 -0.057 

4 1 1.00 -49.35 -0.93 -0.358 -0.193 

2 -46.74 -0.93 -0.339 -0.191 

3 -44.72 -0.93 -0.325 -0.196 

5 1 1.50 -48.50 -1.39 -0.352 -0.334 

2 -41.63 -1.40 -0.302 -0.222 

3 -37.66 -1.40 -0.273 -0.184 

6 1 2.00 -37.07 -1.87 -0.269 -0.445 

2 -30.33 -1.88 -0.220 -0.381 

3 -23.45 -1.84 -0.170 - 
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Appendix 7C: data from strain gauges on beam longitudinal bars 

Test#1: 
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Test#2: 
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Chapter 8  

CONCLUSIONS AND FUTURE DEVELOPMENTS 
 

 

 

 

 

Among the natural hazards, earthquakes are paramount due to their impact 

on civil structures worldwide. The considerable direct economic losses 

(property losses) due to earthquakes in conjunction with social impact and 

indirect economic losses have prompted a great interest in performance 

assessment of the civil structures to future seismic events. Therefore, 

performance evaluations, beyond the traditional goal of life safety, are 

required to rightly estimate expected losses. A key ingredient of this 

evaluation process is the fragility, which describes the probability of failure to 

meet a performance objective depending on demand on the system, providing 

the link between seismic hazard and building loss estimation. 

It is well known that a correct fragility evaluation necessitates the 

development of reliable nonlinear analysis models that are able to simulate the 

behavior of structures from the onset of damage through collapse. Therefore, 

proper prediction of the nonlinear behavior and formulation of analytical 

models are essential prerequisites for a reliable evaluation of structural 

fragility and, then, of seismic performance and risk assessment of RC 

structures. Moreover, within the performance-based approach, it is also 

essential to understand which mechanisms/elements have a higher influence 

on seismic performance depending on the analyzed performance level. 

A lot of work should still be done towards this direction, especially for 

existing under-designed or non-ductile structures, namely designed for gravity 

loads only or according to obsolete seismic and technical codes. 

 

A contribution towards this direction has been carried out. Starting from the 

analysis of typical deficiencies of non-ductile RC frames and the definition of 

performance levels of interest, this work aimed to contribute to PBEE 

framework with (i) a critical overview on analysis methodologies and 

analytical modeling of the salient components of RC frames, namely flexural or 
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shear-dominated beams and columns, and more in detail, beam-column joints 

and masonry infills, the core of this work, and (ii) with new proposals in terms 

of nonlinear modeling and analysis procedures to provide a more reliable 

evaluation of seismic performance and risk assessment of infilled RC 

structures, accounting for structural and nonstructural (in particular masonry 

infills) elements, at different performance levels. 

For these purposes, existing analytical modeling techniques for frames‘ 

critical components were first reviewed and discussed. Then, a deep 

investigation on the influence of infills on seismic performance at different 

limit states, also for new constructions, has been carried out, in order to 

highlight the critical points that can interest also this kind of structures 

regarding infill presence. 

The effect of infills on the global seismic behavior of RC frames was 

investigated, by analyzing their influence on global stiffness and strength, on 

the kind of collapse mechanism, on the displacement capacity and, 

consequently, on seismic capacity and seismic fragility at different 

performance levels, depending on the main characteristics of the RC frame, 

such as the design typology and the number of stories. 

The effect of main parameters influencing the seismic capacity of infilled RC 

buildings has been investigated through a sensitivity analysis. Such analysis 

has shown that the rotational capacity of columns, directly influencing the 

displacement capacity, has the highest influence on the PGA capacity at higher 

seismic intensity for all of the investigated structures. Concrete compressive 

strength significantly influences the capacity at collapse, too, through its 

influence on the rotational capacity of columns. As far as PGA capacity at 

Damage Limitation Limit State is concerned, mechanical characteristics of 

infills have the highest influence on the response of the uniformly infilled 

frame, which is assumed to attain the Damage Limitation Limit State when the 

first infill in a story reaches its maximum resistance, whereas for pilotis and 

above all for bare frames also steel yield strength has a relatively high 

influence on PGA capacity at Damage Limitation, since this Limit State can be 

due to the first yielding in RC members. Presence of infills significantly 

influences the collapse mechanism even if the bare structure is designed 

according to Capacity Design principles. 
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Fragility curves were also obtained for the analyzed infilled RC structures, 

through the application of a Response Surface Method, considering materials, 

modeling and seismic input variability. 

It was pointed out that, at higher seismic intensity, a beneficial effect on 

PGA capacity generally exists when a regular distribution of infill panels is 

considered, whereas a detrimental effect is shown by structures with an 

irregular infill distribution.  

Moreover, in seismic designed structures, the presence of infills can 

significantly change the (global) collapse mechanism expected for structures 

designed according to Capacity Design, thus influencing displacement, 

ductility and PGA capacities.  

Seismic performances of gravity loads (only) designed structures are more 

affected in terms of PGA capacity by infill panels, especially for low-rise 

structures. Same trends were found for low- and mid-rise structures, even if 

eight-story structures have a greater variability in collapse mechanisms 

depending on infill configuration, input parameters and design typology, and 

are less affected by infill presence in terms of PGA capacity at lower seismic 

intensity. 

Moreover, it should be pointed out that a special attention should be 

addressed in future works to the potential brittle failure mechanisms due to 

the local interaction between masonry infills and structural RC elements and 

potential out of plane failures – which have not been accounted for herein – 

especially for existing RC buildings that have not been designed adopting 

general principles and detailing rules prescribed by modern seismic codes 

according to Capacity Design philosophy. 

 

Recognized the importance of infills especially at lower seismic intensity 

and the widespread of linear analysis methodology among practitioner, new 

procedures have been proposed as tools to better taking into account damage 

to infills also in linear analyses with or without the explicit modeling of infills 

in the numerical model. The attention has been focused both on the design of 

new constructions and the assessment of existing structures, providing a 

contribution towards desirable more comprehensive future code prescriptions 

- that depend on mechanical properties of infills and proper displacement 

capacity thresholds - at lower seismic intensity within the context of linear 

analyses. 
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In particular, when infills take explicitly part of the numerical model, the 

attention was focused on the evaluation of an effective stiffness to assign to 

infill panels to perform linear analyses. Vice-versa, if infills are not included 

into the numerical model, limitation of damage to infills should be pursued 

through a proper limitation of displacement demand on the structure. 

Therefore, starting from the analysis of performance criteria and associated 

drift capacity limits for infill panels, two procedures were proposed and 

applied in order to provide modeling tools to be used in seismic assessment 

via linear analyses. 

Nonlinear IDAs were carried out on structural models explicitly including 

infills in order to evaluate the intensity measure level corresponding to the 

achievement of Damage Limitation Limit State. Then, the results of such 

analyses were used as a reference. First, the ―equivalent‖ displacement limit 

capacity – in terms of IDR – to be used in ―bare‖ numerical models (without 

infills) was obtained. Then, the effective stiffness of infill panels to be used in 

infilled models was provided, thus allowing explicitly including these 

elements also within this kind of analysis approach. 

The methodologies aimed at the estimation of such parameters were 

proposed and applied to 4- and 8-story infilled frames, designed for seismic 

loads (according to the current Italian technical code) or for gravity loads only 

(according to an obsolete technical code). 

Equivalent IDR values highlighted a general conservatism of code 

provisions, increasing with the contribution of infill panels to 

stiffness/strength of the infilled RC frame. Effective stiffness values, based on 

the adopted model for infill panels, highlighted the need for a reduction of 

initial elastic stiffness of infills, in order to take into account first cracking prior 

to the attainment of Damage Limitation Limit State, but also the conservatism 

of the widespread Mainstone‘s approach, which is also proposed by technical 

codes (e.g. ASCE-SEI/41). 

Foreseen developments of this study should include the analysis of the 

sensitivity of equivalent IDR or effective stiffness of infills to additional 

characteristics of the infilled RC frames and of their response under seismic 

action up to DL LS, namely displacement capacity and hysteresis rules for 

infills or post-cracking stiffness of RC members, infill-to-RC stiffness and 

strength ratio. More generally, a comprehensive study could be carried out in 

order to attempt to provide predictive formulations both for equivalent IDR 
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and effective stiffness of infills, depending on geometrical and mechanical 

characteristics of infills and RC elements. Finally, proposed approaches to 

linear modeling and analysis of infilled RC frames at DL LS could be evaluated 

within the Response Spectrum Analysis approach, since the latter is the most 

widespread method of analysis, especially for seismic design of new 

structures. 

 

From the point of view of the bare structure and in particular referring to 

higher intensity levels, proceeding from Damage Limitation towards Near 

Collapse Limit State, the analysis of RC frames different for design typology 

has confirmed the vulnerability points of such frames, already pointed out by 

experimental tests and past seismic events. In particular the influence of beam-

column joints has been deeper investigated, with particular attention to 

exterior unreinforced joints. 

In literature there is not yet a commonly accepted approach for the 

determination of the shear strength and for nonlinear modeling of RC beam-

column joints in moment resisting RC frames. In many studies, beam-column 

connections are modeled as rigid. However, many nonlinear joint models are 

available, but most of them may be unsuitable for modeling all sources of 

nonlinearity for the assessment of older concrete buildings, or calibrated 

independently on the failure typology. Some of them were developed and 

calibrated for confined beam-column joints or they are too complicated to 

implement. 

On the basis of an extensive and critical review of previous experimental 

tests and existing joint modeling approaches, a new shear constitutive 

relationship is proposed for exterior unreinforced joints, different for failure 

typology, in order to describe nonlinear behavior of joint panels, to be used in 

conjunction with an explicit bond-slip spring, thus taking into account all 

sources of nonlinearity and different possible kinds of deficiencies. 

The proposed model depends on the joint failure typology and it has been 

defined in a ―semi-empirical‖ approach. First, an experimental database 

consisting of 39 tests on exterior unreinforced beam-column joints that 

exhibited J-, BJ- or Anchorage failure mode has been collected and illustrated. 

Then, the joint panel constitutive parameters have been defined in order to 

reproduce the experimental joint shear stress-strain behavior, when they were 

available from tests. The proposed model for joint panel is a scissors model 
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characterized by a quadri-linear Moment–Rotation spring with four points for 

J- and BJ-mode of failure, namely: cracking, pre-peak, peak, and residual point.  

The peak strength has been evaluated according to the model by Park and 

Mosalam (2012a), which directly provides joint shear strength depending on 

the failure typology and shows a very good agreement with analyzed 

experimental tests. Bond-slip has been taken into account by introducing an 

explicit slip spring (at the beam-joint interface) whose properties are 

analytically calculated using a finite difference model of the bar anchored into 

the joint panel.  

Cases of anchorage failure due to an insufficient embedment length of the 

straight longitudinal bar into the joint core (which represents typical anchorage 

conditions of bottom reinforcement layer at beam‘s ends in non-conforming 

frames designed for gravity loads only) have been taken into account limiting 

the peak strength of the slip spring consistent with the maximum stress 

allowed in the bar. 

The proposed joint model has been finally validated using some of the 

experimental tests included in the database, and a comparison between the 

proposed model and other models from literature and code provisions has 

been carried out. It was highlighted that the proposed model conducts to the 

lower errors in terms of peak strength, peak drift and residual strength, if 

compared with the other models. 

Future investigations shall be conducted to calibrate a similar shear stress-

strain relationship for interior unconfined joints, starting from the available 

cyclic experimental response of the joint panel. Joint axial failure should be 

better investigated and introduced directly into the model. 

 

The proposed joint model - completed with the calibration of cyclic 

parameters to be used in the adopted software (OpenSees) - has been also 

adopted for nonlinear dynamic analyses of gravity-loads-designed only and 

old-seismic-designed RC frames, in order to investigate on the influence of 

joint behavior on seismic performance at different performance levels, both in 

terms of strength and deformability contribution, also taking into account the 

record-to-record variability. 

In order to assess the influence of joints on structural seismic performance, 

the capacities were primarily defined by the maximum interstorey drifts (IDR) 

that correspond to three widely used performance levels (or limit states) in the 
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earthquake community: immediate occupancy, life safety or significant 

damage, and collapse prevention. Additional limit states, defined on the basis 

of the achievement of characteristic points in the nonlinear response of the 

primary structural elements, have been adopted, detecting a ―conventional 

failure‖ in analogy with the approach of typical European code prescriptions 

(e.g. Eurocode 8, DM 2008). 

Preliminary nonlinear static analyses and incremental nonlinear dynamic 

analyses under selected ground motion records have been performed in a 

double condition: (i) with ―rigid joints‖, assuming a very high stiffness and 

shear strength for beam-column connections and (ii) ―with joints‖, explicitly 

modeling the nonlinear behavior of joints. 

Joint axial failures and column shear failures have been detected by a post-

processing of the analyses results. A review of previous researches on the 

shear behavior of existing columns indicates that a reliable column shear 

failure model that satisfies the requirements of accuracy, computationally 

efficiency and compatibility with existing software programs, in order to 

practically conduct numerous nonlinear dynamic analyses, is quite difficult to 

calibrate and to find in literature. Although the problem is still an open and 

important issue, in the present work the attention will be not directly focused 

on this topic. 

For the strong-column-weak-beam designed frame, it was observed that the 

minimum ratio between seismic capacity with and without nonlinear joint 

modeling is related to higher seismic intensity levels, thus highlighting that the 

influence of joints in seismic assessment becomes more relevant at higher 

performance levels. Moreover, as far as column shear failures are concerned, 

when a force-based approach is adopted to detect column shear failures, joints 

leads to a limitation of shear demand in columns, thus delaying their shear 

failures and increasing median seismic capacity. In a displacement-based 

approach, vice-versa, median seismic capacity is lower if joints nonlinear 

behavior is explicitly modeled. 

In the case of weak-column-strong-beam designed frame, the joint damage 

reduces the maximum interstorey drift demand implying prevention or delay 

of the expected soft-story mechanism, by reducing the rotation demand in the 

adjacent column. The roof drifts in the frame with the proposed joint model are 

higher due to the increased flexibility of the frame, but the maximum 

interstorey drifts are less than those in the rigid-joint frame. Since the rigid 
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joint assumption precludes any damage at the joint, it is not realistic in the 

presence of weak column-strong beam behavior and exaggerates the soft-story 

effect. On the other hand, the rigid joint assumption can be considered 

plausible for frames designed for seismic effects according to modern seismic 

code provisions. Moreover, when column shear failures are detected in a force-

based approach, no shear failures in columns are captured since their plastic 

shear is lower than the maximum shear strength (calculated without 

degradation due to ductility demand). Vice-versa, in a displacement-based 

approach, the achievement of the first column shear failure anticipates severe 

damage limit state limit state, thus confirming that more attention should be 

addressed to such kind of failures, especially for frames designed for gravity 

loads only. 

Actually, incremental dynamic analysis alone does not account for how well 

the nonlinear simulation model represents the real building, since no modeling 

uncertainties have been considered in these analyses. These modeling 

uncertainties are especially important in predicting collapse, because of the 

high degree of empiricism and uncertainty in predicting deformation capacity 

and other critical parameters for modeling collapse. Thus, also modeling 

uncertainties should be accounted for in future works to a more reliable 

evaluation of seismic performance. 

Another important improvement of this study will be the explicitly 

modeling shear failures with degrading behavior after detection and 

consequent axial failure by means of a reliable, realistic and computational 

sustainable model. 

Additionally, the analyzed models do not incorporate masonry infills and 

non-structural components. The effects of infills on structural response was 

shown in Chapter 3 within a N2 framework, highlighted the most important 

influence at low seismic demand levels of infill panels. Infills are not modeled 

in these dynamic analyses in order to clearly highlight the influence primarily 

of joints on seismic response, but it is clear that a future effort to take into 

account both joints and infills and above all their possible interaction in the 

numerical model is necessary and it is still an open issue. 

 

Finally, investigated the sensitivity of joint response to the main mechanical 

and geometrical properties of beam-column sub-assemblages, in order to 

improve the understanding of exterior joints seismic performance without 
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transverse reinforcement in existing RC buildings, two experimental tests with 

deformed bars and different failure typology were designed and conducted 

under cyclic loading. Experimental results have been analyzed and compared 

with numerical results carried out through the adoption of the proposed 

numerical model. It was observed that the proposed model shows a good 

agreement with experimental results and that the main contributions of the 

overall deformability of the sub-assemblages are provided by shear 

deformation of the joint panel and fixed-end-rotation related to the adjoins 

beam (since the strong-column-weak-beam designed). 

In the future, a more comprehensive experimental investigation on exterior 

and also interior unreinforced joints should be carried out in order to improve 

reliability of the provided numerical models, and also to better analyze the 

sensitivity of these kind of tests to axial load ratio, anchorage detailing, slab 

contribution, joint aspect ratio and bar typology (plain or deformed). In 

particular, very few tests are presented in literature in the case of longitudinal 

plain bars or taking into account the slab contribution. 
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