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Introduction

Structural Equation Modeling (SEM) is a powerful multivariate analysis technique

that allow us to analyze relationships among several blocks of observed variables,

called manifest variables (MV), by summarizing them with a few number of un-

observed variables, the so-called latent variables (LV).

In 1970 Karl Jöreskog first proposed to use a covariance-based approach to analyse

causal relationships - defined according to a theoretical model - linking two or more

latent complex concepts, each measured through a number of observable variables

(Jöreskog, 1970). Maximum likelihood method (ML-SEM) is one of the most

well-known covariance-based estimation methods for SEM (Jöreskog, 1970, 1973,

1977).

Quite at the same time (in 1975), Herman Wold finalized the so-called soft model-

ing approach for analyzing relationships among several blocks of variables linked

by a network of relations specified by a path diagram: the PLS Path Modeling

(PLS-PM) (Wold, 1975a,b, 1982).

PLS-PM was originally presented as an alternative approach to the covariance-

based SEM (Jöreskog and Wold, 1982b). However, the two approaches belong to

two families of statistical methods.

The origin of the Partial Least Squared (PLS) methods goes back to the idea of

Herman Wold who in 1996 devised the NILES (Non-linear Iterative Least Squares)

(Wold, 1966a,b), an iterative algorithm based essentially on a sequence of simple

Ordinary Least Squares (OLS) regressions, and proposed it as an alternative esti-

mation method for Principal Components Analysis (Hotelling, 1933). NILES was

later re-named Non-linear Iterative PArtial Least Squares (NIPALS) by the same

author (Wold, 1975b) and it was then extended to a more general technique that

analyzes several blocks of variables linked by a network of relations specified by a

1



Introduction 2

path diagram. Thus, it was proposed to the estimation of SEM parameters, as a

Soft Modeling (Wold, 1982) alternative to Jöreskog’s approach (Jöreskog, 1970).

This technique is well known with the name PLS Path Modeling (PLS-PM). The

acronym PLS (Partial Least Square) has also been interpreted by H. Wold et al. as

Projection to Latent Structures. Since this interpretation has a more descriptive

meaning we opt for it in this dissertation. The term “Path Modeling” refers to

the objective of modeling a network of linear dependence relationships between

variables, represented by a system of simultaneous equations.

Nowadays, PLS-PM is commonly used in several subjects where it is common to be

associated with hypothetical constructs, defined as a conceptual term used to de-

scribe a phenomenon of theoretical interest (e.g., in Marketing studies, Economics,

Social and Behavioural Science, Educational Research, Organizational Research,

and so forth so on).

PLS-PM is a powerful method because of the minimal demands on measurement

scales, sample size, and data distributions. It is particularly applicable for pre-

dictive applications and theory building, but it can be also used appropriately for

theory confirmation (Chin, 1998; Falk and Miller, 1992).

Even though it is almost unanimously agreed that PLS-PM serves well for predic-

tive purposes, predictive validity is not included as a standard assessment when

evaluating path models. The inclusion of predictive validity as an essential part

of model assessment in PLS-PM is very important, and further criteria and eval-

uation techniques should be also considered (Dolce et al., 2015; Sarstedt et al.,

2014).

The main differences between Jöreskog’s approach and the Wold’s approach lie in

the definition and the conceptual meaning of the unobserved variables included in

the model (Marcoulides et al., 2009) and in the different objectives of the analysis,

statistical assumptions, estimation procedures and related outputs. These differ-

ences have recently led to a thoughtful discussion (see Bentler and Huang, 2014;

Dijkstra, 2014; Henseler et al., 2014; Marcoulides et al., 2009; Rigdon, 2012, 2014;

Sarstedt et al., 2014, among others).

A deep study on the relationships between LVs and MVs is of chief importance be-

cause there is growing evidence that measurement model misspecification has the

potential for poor parameter estimates and misleading conclusions (see Dolce and
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Lauro, 2014; Jarvis et al., 2003; MacKenzie et al., 2005, among others). Its effects

extend also to the estimates of the path coefficients connected to the misspecified

block. We address this issue in the second chapter of the thesis.

Relationships between MVs and LVs can be modeled in two different ways. In

the outwards directed scheme (Lohmöller, 1989) or reflective scheme (Fornell and

Bookstein, 1982) MVs are considered as being caused by the related LV: variation

in LV yields variation in MVs. On the contrary, in the inwards directed scheme

(or formative scheme) MVs are viewed as causes of a LV: variation in MVs causes

variation in LV.

A common impression found in the literature is that only PLS-PM allows the

estimation of SEM including formative blocks. The implication of formative MVs

in Covariance-Based framework is a rather difficult task. However, if certain model

specification conditions are satisfied the model is identified, and it is possible to

estimate a Covariance-Based SEM with formative blocks (Bollen and Davis, 2009;

Williams et al., 2003).

Due to the complexity of both SEM estimation methods, we study their relative

performance in the framework of the same simulation design, investigating the

effects of measurement model misspecification and the implications of formative

MVs on both ML-SEM and PLS-PM parameter estimates.

In the third chapter of the thesis we focus on the problem in PLS-PM about its

incoherence with the direction of the relationships specified in the structural model.

The directions of the links in the structural model do not play a role in the PLS-

PM algorithm. In the search for optimally correlated constructs, the estimation

process amplifies interdependence among blocks and misses to distinguish between

dependent and explanatory blocks in the structural model. As a consequence, there

is often a difference between what PLS-PM wants to model and what is actually

computed by the PLS-PM algorithm.

We propose a new approach, called Non-Symmetrical Component-based Path

Modeling (NSC-PM), based at maximizing the explained variance of MVs of the

endogenous blocks by the components of the explanatory blocks (i.e. a new ap-

proach based on the optimization of a redundancy-related criterion in a multi-block

framework).
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The proposed method respects the direction of the relationships specified in the

Path diagram (i.e. the path directions), since the directions of the links in the

inner model play a role in the algorithm. In particular, bridge LVs (i.e., LVs

that appear as both explanatory and dependent LVs in the structural model) are

considered as explanatory when they play an explanatory role in the particular

step of the algorithm, and as dependent when play a dependent role.

In order to assess the quality and validity of results, we provide a new goodness-

of-fit index based on redundancy criterion and prediction capability together with

a classical bootstrap-based inferential approach.

Finally, we show the functioning of the proposed algorithm (implemented in a

R code) through a simulation study. The performance of the proposed method

in terms of explained variability, predictiveness and interpretation is compared

to the classical PLS-PM as well as to other component-based methods such as

Regularized Generalized Canonical Correlation Analysis (Tenenhaus and Tenen-

haus, 2011) and Generalized Structured Component Analysis (Hwang and Takane,

2004), using artificial data.

Compared to the other component-based methods, NSC-PM seems to be a good

compromise between favoring stability (high explained variance) in the blocks and

correlation between components.

In chapter four we focus on the particular case where there may be more than a

single slope (i.e, the regression coefficient measuring the rate of change) describing

the relationship between response variables and predictor variables. This especially

occurs in the case of heteroscedastic variance, when dependent variable are highly

skewed (as it is typical in subjective measurements), in the presence of outliers,

or when the interactions between the factors affecting the dependent variables are

very complex and cannot all be measured and accounted for in a model.

In several applications it can be interesting to investigate dependence relationships

between variables considering all parts of the response variable distributions. For

example, in the business and market research, it can be interesting to evaluate

if and how much the impact of consumer preferences on satisfaction is different

among highly, medium or low satisfied customers with the objective of differenti-

ating leverages to increase the satisfaction.
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A new method, called Quantile Composite-based Path Modelling (QC-PM), in-

troduces both Quantile regression (QR) (Koenker and Basset, 1978) and Quantile

correlation (QC) (Li et al., 2014) in the classical PLS-PM algorithm, in order to

exploit their features and enhance PLS-PM potentialities when we wish to distin-

guish regressor effects on different parts of the dependent variable distributions.

As a matter of fact, QC-PM accommodates heterogeneity and is able to explore

the entire conditional distribution of the response variables. Instead of the only

estimation of conditional means it allows the estimation of a set of conditional

quantile functions, providing multiple slopes and a more complete picture of the

relationships between variables.

QC-PM is advisable as a complementary analysis to the classical PLS-PM re-

sults, when heterogeneity in both the measurement and the structural model is

expected, and in the case where there is no relationships (or only weak relation-

ships) between LVs or between LVs with their own MVs, even if the underlying

theory would suggest the opposite. The exploration of different parts of the de-

pendent variable distributions could highlight significant relationships. It could

also be expected that the sign and the size of path coefficients change if the anal-

ysis explores not only average effects but the entire conditional distribution of the

response variables.

We go through the assessment and the validation of the proposed method extend-

ing the goodness of fit measures typically used in PLS-PM.

Finally, the functioning of the QC-PM is shown through a real data application in

the area of the American Customer Satisfaction Index and through a Monte Carlo

simulation study.



Chapter 1

Component-based Predictive

Path Modeling: Recent

Developments and Open Issues

1.1 Introduction

PLS-PM is a method aimed at modeling a network of linear dependence rela-

tionships between blocks of variables where each block is summarized by a linear

composite of its own variables.

PLS-PM was originally presented as an alternative approach to the covariance-

based SEM (Jöreskog and Wold, 1982b). However, the two approaches belong to

two families of statistical methods.

The main difference between Jöreskog’s approach and the Wold’s approach lies in

the definition and the conceptual meaning of the unobserved variables included in

the model (Marcoulides et al., 2009).

The basic idea behind the Jöreskog’s method is that the complexity inside a system

can be studied taking into account a network of dependence relationships among

unobserved variables, called latent variables (LV), each measured by several ob-

served indicators usually defined as manifest variables (MV). Jöreskog’s method

is commonly referred to as a factor-based (or covariance-based) approach to SEM,

6
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as the LVs are defined as common factors, which aim to explain the covariances

among their own set of MVs.

PLS-PM, instead, assumes that each block of MVs can be summarized by an

unobserved variable defined as a component or a composite (i.e., an exact linear

combination of the MVs). Since LVs are defined as components which aim to

explain the variances of their own set of MVs, PLS-PM is commonly referred to as

a component-based (or variance-based) approach (Lohmöller, 1989; Wold, 1975a,b,

1982).

This difference in the definition of the unobserved variables included in the model

has led to a thoughtful discussion on the differences of the two approaches in terms

of aims of the analysis (see Bentler and Huang, 2014; Dijkstra, 2014; Henseler et al.,

2014; Marcoulides et al., 2009; Rigdon, 2012, 2014; Sarstedt et al., 2014, among

others). Furthermore, several authors have compared the two approaches over

the years (e.g., Fornell and Bookstein, 1982; Jöreskog and Wold, 1982a, among

others).

On the whole, the two approaches differ in the objectives of the analysis, the

statistical assumptions, the estimation procedures and the related outputs.

Covariance-based SEM is typically used for performing confirmatory analyses that

aim to validate researchers hypotheses on the relations between LVs. If the theo-

retical model is correct and the standard assumptions underlying covariance-based

SEM are satisfied, its estimators are unbiased. PLS-PM estimators lack the ac-

curacy of covariance-based estimators. However, PLS-PM is a powerful method

because of the minimal demands on measurement scales, sample size, and data

distributions. It is particularly applicable for predictive applications and theory

building, but it can be also used appropriately for theory confirmation (Chin, 1998;

Falk and Miller, 1992).

Even though it is almost unanimously agreed that PLS-PM serves well for predic-

tive purposes, predictive validity is not included as a standard assessment when

evaluating path models. The inclusion of predictive validity as an essential part

of model assessment in PLS-PM is very important, and further criteria and eval-

uation techniques should be also considered (Dolce et al., 2015; Sarstedt et al.,

2014).
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When predictive ability is interpreted as the ability to explain variance in the MVs

of the endogenous blocks, we think that the new approach proposed by Dolce et al.

(2015) could be of interest.

The remainder of this chapter proceeds as follows. Firstly, we discuss the distinc-

tive differences and common features of component-based methods and factor-

based methods for SEM. In the third section we present the PLS-PM in more

details. We focus then on the predictive ability of PLS-PM and on the related

evaluation criteria. In the last sections of this chapter we address some inconsis-

tencies and critical issues in PLS-PM. To overcome some of these problems, we

propose methodological contributions which are presented in details in the third

and fourth chapter of this dissertation.

1.2 Is PLS-PM an alternative approach for “la-

tent variable” modeling?

As underlined by Bollen (2002), the term “latent variable” has multiple mean-

ings and it is commonly used in Statistics (see Muthén, 2003, among others) to

refer to a large number of different concepts (i.e., “common factor”, “conceptual

variable”, “construct”, “random effects”, “missing data”, “latent classes”, and so

on). Moreover, frequently researchers use the term “latent variable” to refer to a

“composite” or a “component”.

In general, LV refers to a variable whose values can not be directly observed

(Jöreskog and Sörbom, 1979). In this optic, any model dealing with unobserved

variable could be classified as a “latent variable” model. In our opinion, since either

Jöreskog’s approach and Wold’s approach aim to take into account a network of

dependence relationships among unobserved variables, they can both be consider

as “latent variable” models. However, a difference arise in the way Jöreskog and

Wold deal with the unobserved variables in their respective approaches.

In PLS-PM, unobserved variables are essentially defined as linear composites or

weighted sums of MVs (Fornell and Bookstein, 1982; Mathes, 1993; Nooan and

Wold, 1982). The composite (or component) belongs to the space spanned by its

own MVs (Esposito Vinzi and Russolillo, 2013), and as a consequence it is no

longer a “latent variable”. At best it can be consider as an approximation of the
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LV with some given properties (see Section 1.4 for details). On the contrary, in

Jöreskog approach the unobserved variables are included in the model as hidden

factors (equivalent to common factors) defining the covariance structure among

the MVs. In this perspective, the hidden factors are hypothetical existing entities

defined as “latent variables” (Marcoulides et al., 2009).

Whether PLS-PM components can be consider a good approximations of factor-

based method LVs or not mainly depends on the magnitude of the measurement

error associated to each MV. As underlined by Marcoulides et al. (2009) the higher

the measurement error associated to a block of MVs, the less the PLS-PM com-

ponent will be able to approximate the true LV.

1.3 Is PLS-PM a method for Structural Equa-

tion Modeling?

In the literature, Jöreskog’s approach is commonly referred to as a factor-based (or

covariance-based) approach to SEM, as the LVs are defined as common factors,

which aim to explain the covariances among their own set of MVs. PLS-PM,

instead, is commonly referred to as a component-based (or composite-based or

variance-based) approach, as LVs are defined as components which aim to explain

the variances of their own set of MVs (Lohmöller, 1989; Wold, 1975a,b, 1982).

Jöreskog’s approach was designed as a confirmatory method for validating re-

searchers’ hypotheses on the relations between observed and unobserved variables

and among unobserved variables (theory building). Parameter estimates are cho-

sen to minimize overall discrepancy between observed and model-implied covari-

ance matrix. Component-based approaches focus on explaining MV variances and

provide unobserved variable scores as a weighted aggregate of its own MVs (i.e.,

composites or components). PLS-PM is so far the most popular component-based

approach for SEM (see Esposito Vinzi et al., 2010a; Tenenhaus et al., 2005, for an

overview with recent developments).

PLS-PM currently enjoy widespread popularity in many disciplines while being

harshly criticized in some academic literature (e.g., Rigdon, 2012; Rönkko and

Evermann, 2013). Rönkko and Evermann (2013) argued that PLS-PM is not truly
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an SEM method, but it was the misinterpretation of the original articles on PLS-

PM that led to incorrectly classify it as an SEM method. In the same direction,

Rigdon (2012) suggested to sever every tie between PLS-PM and covariance-based

SEM.

Researchers have been using few arguments supporting theses statements. Among

them, Rigdon (2012) claimed that we should not consider PLS-PM as an SEM

estimator because of the lack of unbiasedness and consistency of PLS-PM esti-

mators and of an overidentification test. Indeed, PLS-PM produces inconsistent

and biased estimates (Jöreskog and Wold, 1982b) especially when a small number

of MVs is associated to each LV - i.e., “finite item bias” - (Lu, 2004; Lu et al.,

2005). However, the bias decreases as the number of observations used and the

number of MVs per block increase - i.e. consistence-at-large - (Dijkstra, 1983;

Jöreskog and Wold, 1982b; Schneeweiss, 1993). Moreover, Dijkstra (2011) showed

that PLS-PM algorithm yield all the ingredients for obtaining CAN (consistent

and asymptotically normal) estimations of loadings and LVs squared correlations

in a “clean second order factor model”.

Furthermore, as Rigdon (2014) himself and Henseler et al. (2014) highlighted,

PLS-PM estimates only appear to be biased when interpreted as effects between

LVs instead of effects between composites. As the variances of measurement errors

decrease in the population model the bias of PLS-PM estimates decreases. If the

variances of measurement errors are equal to zero in the population model, then

PLS-PM can yield asymptotically unbiased parameter estimates (Becker et al.,

2013).

According to Henseler et al. (2014), SEM allows more general model then tra-

ditional common factor models. A more general model, called by Henseler et al.

(2014) composite factor model, relaxes the strong assumption that the covariances

among a set of MVs is explained by a common factor, thus no restriction is im-

posed on the covariances between MVs of the same block. Furthermore, each

block of MVs is summarized by a composite (i.e., an exact linear combination of

the MVs). As showed by Henseler et al. (2014), since common factor model has

the same restrictions as the composite factor model plus some additional ones,

common factor model is nested within the composite factor model.

Hence, if we define SEM as a multivariate analysis technique that allow us to

analyze the relationships among theoretical concepts, each one measured by a set
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of observed variables, then PLS-PM can certainly be considered a soft modeling

approach to estimate SEM parameters.

Another argument used for supporting the idea that PLS-PM should not be con-

sidered a method for SEM is the lack of a probabilistic framework for inference and

a global criterion for assessing the fit of the model (Rigdon, 2012). However, in

PLS-PM computational inference is commonly used for computing empirical con-

fidence intervals and for hypothesis testing - e.g., blindfolding, permutation and

resampling techniques - (Chin, 2010). Furthermore, an on going work at UCLA

(Huang, 2013, PhD Dissertation with P. Bentler), proposing a modified PLS-PM

suitable for confirmatory research via χ2 goodness of fit tests and classical infer-

ence, seems to be quite promising in this direction.

In our opinion, we should keep looking upon PLS-PM as an alternative method

for SEM as well as a descriptive and prediction oriented method. This double

nature of PLS-PM seemed to be a natural thing to Wold since its origins. As

notes by Dijkstra (2014) “If he had just wanted to extend principal components

and canonical variables analysis, there would have been no need to develop the

concept of consistency-at-large, that allows one to say when the difference between

a factor model and one of PLS-PM modes would be small. In fact, he insisted

that a fundamental principle of soft modeling is that all interaction between the

blocks of observables is conveyed by the latent variables (Wold, 1981, 1982)”.

Instead of severing every tie between component-based methods and factor-based

methods we think that researchers should commit themselves in finding out which

approach works best in which circumstances. As Dijkstra (2014) suggests ”let

us establish empirically where each works best. For problems in well-established

fields highly structured approaches like mainstream SEM may be appropriate,

other fields will be well served by highly efficient means of extracting information

from high dimensional data”.

However, in any comparison study it is of extremely importance to bear in mind

the distinctive statistical characteristics of the two approaches and the objectives

of the analysis. For this reasons, the comparison between the two approaches

should not ground only on parameter recovery.

If the theoretical model is correct and the standard assumptions underlying covariance-

based SEM are satisfied, factor-based approach is expected to outperform PLS-PM

in accurately estimating the parameters of the model. PLS-PM estimators lack
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the accuracy of covariance-based estimators but is a powerful method because of

the minimal demands on measurement scales, sample size, and data distributions.

It is particularly applicable for predictive applications and theory building, but

it can be also used appropriately for theory confirmation (Chin, 1998; Falk and

Miller, 1992).

Hence, it could be also interesting, in our opinion, to study into the details the

predictive ability of PLS-PM and compare it to the predictive ability of covariance-

based SEM.

In conclusion, we think that a continuous dialogue between the community of

researchers who works on component-based methods to SEM and the one who

works on factor-based methods to SEM it is highly recommended for progress in

this area of research. The two approaches should be considered as complementary

rather than competitive methods.

1.4 PLS path modeling

PLS Path Modeling aims at studying the relationships among K blocks, X1, . . . ,

Xk, of MVs, which are expression of K LVs, ξ1, . . . , ξk, . . . , ξK , that are essentially

defined as components or composites.

1.4.1 Model Specification

As in covariance-based SEM, the general model consist of two sub-models: the

structural model and the measurement model. The measurement model relates

each MV to its own LV. Each MV, xpk, is assumed to be generated as a linear

function of its LV, ξk, and its measurement error variable, εpk,

xpk = λpk0 + λpkξk + εpk (1.1)

where λpk0 is a location parameter and λpk is the loading coefficient.

The structural model specifies the relationships between LVs. A LV is called

endogenous if it is supposed to depend on other LVs in the model and exogenous

otherwise. In the structural model a generic endogenous LV, ξm (m = 1...M),
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is linked to corresponding latent predictors by the following multiple regression

model:

ξm = βm0 +
∑
k→m

βmkξk + ζm (1.2)

where βmk is the so-called path coefficient capturing the effects of the predictor ξk

on the dependent LV ξm, and ζm is the inner residual variable.

As a vehicle for the estimation of the model parameters, PLS-PM computes each

unobserved variable as a perfect linear combination of its own MVs, i.e.:

ξ̂k =

Pk∑
p=1

wpkxpk (1.3)

where xpk (p = 1, . . . , Pk; k = 1, . . . , K) is the generic centered and properly scaled

MV of the k-th block, Pk is the number of MVs in the same block and wpk is a

weight coefficient.

1.4.2 The Algorithm

In PLS-PM the weight vectors, w1, . . . ,wk, . . . ,wK , to be associated to each block

of MVs, are estimated by an iterative procedure by alternating inner and outer

estimation steps.

In the outer estimation step each outer composite is obtained as a standardized

weighted aggregate (vk) of its own MVs, i.e. vk ∝
∑

hwjkxjk = Xkwk (outer es-

timation). Then, in the inner estimation step, each inner composite is obtained as

a weighted aggregate (zk) of the connected composites, i.e. zk ∝
∑

vk′→vk
ek′kvk′ .

Two composites are connected if there exists a link between the two blocks: an

arrow goes from one LV to the other in the path diagram, independently of the

direction (Tenenhaus et al., 2005).

For the computation of both the outer weights, wjk, and the inner weights, ek′k,

several options are available.

In the outer estimation step, weights are computed by ordinary least-squares re-

gressions. Generally, two different schemes are utilized. In the Mode A each MV

are regressed on the corresponding instrumental inner composite zk. In the Mode
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B the weights are computed as the regression coefficients in the multiple regression

of the inner composite zk on its own MVs xpk (p = 1, ..., Pk). Then, the weights

are normalized such as var(Xkwk) = 1.

However, it must be bear in mind that PLS-PM is a composite-based method, thus,

whatever measurement scheme we apply, composites are computed as weighted

aggregates of their MVs.

In the inner estimation step, there are three options for calculating the inner

weights: centroid scheme, factorial scheme, path weighting scheme. In the centroid

scheme, the inner weights ekk′ are equal to the signs of the correlations between

vk and the vk′ ’s connected to vk. In the factorial scheme, the inner weights ekk′

are equal to the correlations between vk and the vk′ ’s connected to vk. In the

path weighting scheme the LVs connected to vk are divided into two groups: the

antecedents of vk, which are LVs explaining vk, and the followers, which are LVs

explained by vk, depending on the cause-effects relationships between the blocks

of variables specified in the path diagram. If a vk′ is a follower of vk then the inner

weight, ekk′ is equal to the correlation between vk and vk′ . On the other hand, for

the antecedents vk′ of vk, the inner weights ekk′ are the regression coefficient of

vk′ in the multiple regression of vk on the all vk′ ’s associated to the antecedents

of vk.

These two steps are iterated until numerical convergence of outer weights, wk

(k = 1, ..., K).

The convergence is proven in case of two blocks (Lyttkens et al., 1975), while em-

pirical convergence is observed in most of the real applications with more than two

blocks of variables. In 2010 Henseler showed a few examples of non-convergence

of the PLS-PM algorithm (Henseler, 2010). However, according to Esposito Vinzi

and Russolillo (2013), non convergence seems to be due to model misspecification

rather than numerical pitfalls of the algorithm.

1.4.3 Optimizing Criteria

In PLS-PM there is not an overall scalar function optimized. This is mainly due

to the different available options in the inner and outer estimation steps, but also

to the fact that PLS Path models may differ in number of LVs and in the path of

relationships linking them (Esposito Vinzi and Russolillo, 2013). Many researchers
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have focused on this issue in the last years. Nowadays, the stationary equations

for most of the specific models obtained by running a PLS-PM are known and

it is possible to show that the PLS-PM generalizes many Multivariate Analysis

techniques.

Glang (1988) and Mathes (1993) were among the first who paid attention to the

optimization criteria behind the PLS-PM. Let cqq′ be the generic element of the

Boolean square matrix C of order K, where ckk′ = 1 if ξk is connected to ξ′k and

ckk′ = 0 otherwise (ckk = 0). The Authors showed that the Lagrange equations

associated with the optimization of the criterion

∑
k 6=k′

ckk′g(cor(Xkwk,Xk′wk′)) (1.4)

subject to ‖Xkwk‖ = ‖Xk′wk′‖ = 1, give exactly the stationary equation of

PLS-PM algorithm when the weights in all the blocks in the outer estimation step

are computed by means of multiple regressions of zk over its MVs Xk (Mode B).

g(.) is the absolute value or the square function depending on the option used in

the inner estimation step. More recently, Hanafi (2007) proved that the PLS-PM

iterative procedure is monotonically convergent to these criteria.

In 2007 Krämer showed that Wold’s PLS-PM algorithm with Mode A applied to

all the blocks, does not lead to a stationary equation related to the optimization of

a twice differentiable function (Krämer, 2007). In 2011 Tenenhaus and Tenenhaus

have extended the results of Hanafi to a modified Mode A in which the outer

weights, rather than the components, are normalized to unitary variance at each

step of the algorithm (Tenenhaus and Tenenhaus, 2011). Contrary to to classical

Mode A, this new estimation mode has the major advantage to maximize a known

criterion. In particular, the Authors showed that Wold’s procedure, applied to a

PLS Path model where the new Mode A is used in all the blocks for the outer

estimation, monotonically converges to the following criterion,

arg max
‖wk‖=‖wk′‖=1

∑
k 6=k′

ckk′g(cov(Xkwk,Xk′wk′)) (1.5)

where g(.) is exactly the same as in equation 1.4.

By comparing equations 1.4 and 1.5 it is easy to notice that the criteria associated

to Mode B are based on maximizing correlations among adjacent composites, while
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the ones associated to New Mode A are based based on maximizing covariances

among composites.

1.5 Prediction-oriented Component-based Meth-

ods

Composite-based approaches are necessary as there are many situations where

researchers find that the assumptions of factor-models are not fulfilled. More-

over, frequently composite-based methods are preferred to factor-based methods

since the objective of the research is to develop a predictive model (Shmueli and

Koppius, 2011).

“Factor-based methods are fundamentally unsuitable for prediction, especially for

prediction outside the dataset used to estimate the factor model, because of factor

indeterminacy” (Rigdon, 2014). PLS-PM is an alternative to factor-based SEM

in several applications, but it is also a descriptive/predictive approach and has

strengths as a tool for prediction which have not been fully explored and appreci-

ated. We go into further details on this topic in the this section.

Predictive models are developed in order to be able to predict values for individual

cases. The aim in predictive analysis is not to test whether the relationships among

variables are significant, but instead to accurately predict observations for specific

cases that are similar to those in the sample.

PLS-PM is a powerful method for predictive purposes, and it is certainly an im-

portant technique deserving a prominent place in research applications when the

aims of the analysis is prediction (Becker et al., 2013).

Reproducing model parameters is not the same thing as making valid predictions

about individual observations. For these reasons, PLS-PM evaluation cannot focus

only on parameter recovery and on the quality of the measurement model and the

structural model - in terms of explained variance - indiscriminately.

The PLS-PM evaluation criteria should include the predictive ability and further

criteria and evaluation techniques for PLS-PM are needed (Sarstedt et al., 2014).

Thus, an interesting topic for further research in PLS-PM is the extension and

development of further measures and evaluation criteria for the assessment of PLS
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path models in terms of predictive capability. Based on the proposed criteria,

further extensions and modifications should be made on the basic PLS-PM al-

gorithm in order to improve the predictive capabilities of the model estimation.

The non-symmetrical approach for component-based path modelling proposed by

Dolce et al. (2015) and presented in the third chapter of this dissertation is an

example of work in this direction.

In our opinion, prediction in composite-based methods could refer to different

concepts. Predictive ability could be interpreted as either the ability to explain

variance in the endogenous LVs or the ability to predict individual observations.

Moreover, individual observations may refer to either individual LV score obser-

vations or individual observations for MVs of the endogenous blocks. Finally, it

should be made a distinction between in-of-sample and out-of-sample prediction.

1.5.1 In-of-Sample Prediction

As said above, the PLS-PM literature offers two main modes in the outer estima-

tion step for computing the outer weights, which are known as Mode A and Mode

B.

Mode B applies multiple linear regression of the inner composite on the corre-

sponding MVs. Thus, it takes into account both the correlation between each MV

and the corresponding LV and the intercorrelations among the MVs of the same

block. On the contrary, Mode A ignores correlations among MVs.

Multiple linear regression adjust for Multicollinearity and gives less weights to

more redundant predictors. When assumptions hold, OLS regression coefficients

optimize R2 for the data which are used to estimate the parameters of the model.

Hence, we can expect that Mode B would perform better in term of in-of-sample

prediction of LV.

Furthermore, within the literature on forecasting, it is well established that when

the objective is to make as good a forecast as possible then combinations of fore-

casts can yield improvements in terms of prediction compared to single forecasts

(Armstrong, 2001; Bates and Granger, 1969; Makridakis and Hibon, 2000), as

each forecast nearly always contains some useful independent information. In this

perspective, multiple indicator approaches should have an advantage in prediction
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over single indicator methods. Thus, Mode B in PLS-PM is certainly consistent

with this “best practice” from the forecasting literature (Becker et al., 2013).

However, as said above, PLS-PM optimization criteria change depending on the

way the outer weights are calculated. When all weights are computing using Mode

B, PLS-PM maximizes correlation between composites, whereas applying Mode

A to all blocks maximizes the composite covariances, thus, it takes into account

the composite variances as well. Mode B in PLS-PM produces higher R2 in the

structural model, providing most accurate in-of-sample prediction for individual

endogenous component observations. Mode A produces higher R2 values in the

regression of the MVs on their own LV, leading better in-of-sample individual

observations prediction of MVs.

As noted by Rigdon (2012), “researchers applying PLS path modeling often assert

the ‘predictive’ nature of their research, though researchers often seem to mean

nothing more than aiming to maximize R2 for dependent variables”. However,

when the goal of the analysis is prediction of individual score observations, the

appropriate metric for assessing the predictive ability of the model is the R2 in

the structural model, but when prediction is to be made for individual observa-

tions of MVs of the endogenous blocks, redundancy-based prediction is preferred.

Moreover, in either cases above, the metric used for assessing the model regards

the in-sample predictive ability.

When prediction is to be made for individual observations of MVs of the endoge-

nous blocks, the fit of the global model can be judged as satisfactory if the average

of the redundancy indexes for each block is high enough. The new approach pro-

posed by Dolce et al. (2015) and presented in the third chapter of this thesis is

very promising in this case.

1.5.2 Out-of-Sample Prediction

Different outer modes within PLS-PM methodology certainly lead to different out-

of-sample predictive capabilities of models as well.

Dana and Dawes (2004) demonstrated, in the context of conventional regression,

that correlation weights (which ignore collinearity among the predictors) outper-

form multiple regression weights for out-of-sample prediction unless sample size
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is very large. For this reasons, the authors urged researchers to avoid using mul-

tiple regression weights for out-of-sample prediction. As noted by Becker et al.

(2013) and Rigdon (2012), Dana and Dawes’s suggestions would translate into

an advantage for Mode A estimation of outer weights (which corresponds to the

use of correlation weights) over Mode B (which corresponds to the use of multiple

regression weights). However, further studies are necessary in order to examine

this issue into further details.

Dana and Dawes (2004) have also demonstrated that out-of-sample predictive

ability depends on sample size. Becker et al. (2013) considered the sample size

as an experimental condition in simulation studies aimed at analyzing the out-of-

sample prediction capability of PLS-PM. The results of their study showed that

if the criterion is out-of-sample predictive ability, PLS-PM perform poorly when

sample size is small. Sample sizes that would be adequate for the estimation of the

parameters of the model may be highly inadequate for out-of-sample prediction.

Predictive capability of component-based method can be also improved extract-

ing more than one component for each block. PLS-PM generally consider one

component for each block of variables. In some case we can lose information in

predictor blocks that may be of extremely importance for the predicting endoge-

nous composites or the MVs related to them. Some proposals in this directions

has already been introduced. Among the others, we think that future research

may focus on the study and improvement of the extended method for PLS-PM

proposed by Lohmöller (1989), that allows for more complex methods and, in

particular, several components for each block can be simultaneously extracted.

As a measure of out-of-sample predictive relevance, the predictive sample reuse

technique as developed by Stone (1974) and Geisser (1975) - the Stone-Geisser’s

Q2 - is more appropriate.

The PLS-PM adaptation of this approach follows a blindfolding procedure that

proceeds as following. Given a block of n cases and P MVs, e.g. the MVs of

the endogenous blocks, the procedures takes out a portion of the considered block

during parameter estimations and then attempts to estimate the omitted part

using the estimated parameters. To estimate the model, the omitted values are

typically replaced with the variable mean, though other imputation techniques

may be used (Chin, 1998). Based on the estimated model, the estimates for the

omitted values are compared to the observed values, using the squared difference
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(E). At the same time, the difference between the variable mean (or otherwise

imputed values) and the observed values are also compared using the squared

difference (O). This procedure is repeated until every data point has been omitted

and estimated. The predictive measure for these MVs is the calculated as:

Q2 = 1−
∑

mEm∑
mOm

(1.6)

where m is the number of times the procedure is repeated to assure that every

data point are omitted.

Q2 represents a measure of how well-observed values are reconstructed by the

model and its parameter estimates (Chin, 2010). Q2 > 0 implies the model has

predictive relevance whereas Q2 < 0 represents a lack of predictive relevance.

Blindfolding can be done on any set of variables. However, the predictive ability

of the model typically concerns the MVs for the endogenous blocks.

Different forms of Q2 can be obtained based on different procedures for predict-

ing observations from the model. In cross-validated communality Q2 prediction

of observations are made by the computed composite and the estimated loadings.

Cross-validated redundancy Q2 is still based on the estimated loadings but the

composite are predicted from the structural model using the estimated path co-

efficients. Redundancy-based Q2 is applicable only to observations of MVs of the

endogenous blocks, while communality-based Q2 can be applied to all MVs (Chin,

2010; Evermann and Tate, 2012).

Even though Herman Wold recognized that Stone-Geisser’s procedure fits PLS-

PM approach “like hand in glove” (Wold, 1982, p. 30), this criterion is seldom

reported in PLS-PM studies. Generally, despite the predictive aim of many PLS-

PM studies, most of them do not provide appropriate predictive ability metrics

(Becker et al., 2013; Hair et al., 2012a,b; Ringle et al., 2012; Sarstedt et al., 2014),

and this is surprising considering that PLS-PM is said to be a powerful method

for predictive purposes deserving a prominent place in research applications when

the aims of the analysis is prediction.
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1.6 Misspecification of the Measurement Model

A block of variables is conceptually defined as outwards directed (Lohmöller, 1989)

or reflective (Fornell and Bookstein, 1982) if the MVs are considered as being

caused by the corresponding LV: variation in LV yields variation in MVs. In this

case, MVs should be highly correlated, as they are caused by the same common

factor. In other words, the block is expected to be unidimensional and internally

consistent (Tenenhaus et al., 2005). The PLS-PM literature has long suggested

that the MVs weights in block defined as outwards directed (of reflective) are

to be estimated using Mode A - i.e., each MV is regressed on the corresponding

instrumental composite in the outer estimation step (e.g., Chin, 1998; Esposito

Vinzi and Russolillo, 2013; Fornell and Bookstein, 1982; Hair et al., 2011; Henseler

et al., 2009).

When each MV is viewed as cause of a LV (i.e., variation in MV causes variation

in LV), the block can be conceptually defined as inwards directed or formative.

MVs in formative blocks can represent different and weakly correlated ingredients

of the underlying concept. In such a case, literature suggests that MVs weights

are to be estimated using Mode B (i.e., weights are computed as the regression

coefficients in the multiple regression of the instrumental composite on its own

MVs).

The differences between the two measurement models are not trivial. Since there is

no reason to expect high correlation among MVs of a formative block (Tenenhaus

et al., 2005), conventional measures used for evaluating the validity and reliability

of a LV cannot be applied for formatively-measured LVs (Bollen and Lennox, 1991;

Diamantopoulos, 2006). Confirmatory tetrad analysis (CTA) (Bollen and Ting,

2000) is an example of an alternative way for testing construct validity. MVs of a

reflective block are interchangeable: dropping an indicator from the measurement

model should not alter the meaning of the LV (Bollen and Lennox, 1991). This

is not required when considering MVs of formative blocks. As for the nature of

the error term in formative blocks, several definitions are found in the literature

(Bollen and Lennox, 1991; Diamantopoulos, 2006; Edwards and Bagozzi, 2000).

The error term in formative blocks is not a measurement error and it is more

properly called as “disturbance”.

In some particular situations determining the real nature of a LV is a difficult task

(Edwards and Bagozzi, 2000). Morover, most researchers consider MVs as effects
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of a LV (reflective scheme) without even questioning their appropriateness for the

specific LV at hand.

Measurement model misspecification is fairly common among published research

studies, and it is proven that it holds the potential for poor parameter esti-

mates and misleading conclusions (see Dolce and Lauro, 2014; Jarvis et al., 2003;

MacKenzie et al., 2005, among others).

Its effects extend also to the estimates of the path coefficients connected to the

misspecified block. In covariance-based SEM this is mainly due to the fact that

a reflective treatment of a block that should instead be modeled as formative

reduces the variance of the LV. The variance of a reflectively-measured LV equals

the common variance of its MVs, whereas the variance of a formatively-measured

LV encompasses the total variance of its indicators (Fornell et al., 1991). Let

us consider the common case of an exogenous formative block misspecified as

reflective. If the level of the variance of the endogenous LVs is maintained, the

estimates of the path coefficients connected to the misspecified exogenous LV is

likely to be substantially inflated (Diamantopoulos et al., 2008).

1.7 The Path Direction Incoherence in PLS Path

Modeling

As said above, in the inner estimation step of the PLS-PM algorithm, there are

three main options to calculate the inner weights: Centroid scheme, Factorial

scheme, Path weighting scheme. The path weighting scheme is said to have the

advantage of taking into account both the strength and the direction of the paths

in the structural model. However, the path direction is taken into account only in

the way the inner weights are computed, but each LV is still defined in the inner

step of the algorithm as a function of all the connected LVs. The way the inner

weights are calculated leads to some inconsistencies in terms of coherence with

the direction of the relationships specified in the path diagram, and it does this

for all inner schemes. The PLS-PM estimation process amplifies interdependence

among blocks, and as a consequence it misses to distinguish between dependent

and explanatory blocks.
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As for the outer model, generally MV weights are computed using either Mode B

or Mode A. However, beyond the theoretical differences between the two different

measurement model schemes (outward directed or inward directed), depending on

the way the outer weights are calculated in the measurement model (Mode A or

Mode B), the role of the LVs in the structural model changes. Thus, when choosing

which mode to use for computing the outer weights it should be take into account

the role of the LVs in the structural model as well. The predictive direction in the

structural model is given by the utilized outer scheme, while the directions of the

links in the structural model do not play a role in the PLS-PM algorithm.

The only way for giving an explanatory role to a LV is to apply Mode B, while

applying Mode A gives it a role of dependent variable, whatever the path direction

is (Dolce et al., 2015). However, in the case of more then two blocks of variables,

where some endogenous LVs may appears as both explanatory and dependent LVs,

this choice can be a much more complicated matter (Dolce et al., 2015).

As a matter of fact, under conditions of low theoretical knowledge on the concep-

tual definition of the LVs, a rule of thumb in PLS-PM is to apply Mode B to the

exogenous block and Mode A to the endogenous block (Wold, 1980). However, to

the best of our knowledge, there are hardly any studies in the literature that give

reasons for following this rule and analyze into details this issue.

PLS-PM does not rigidly adhere to an underlying theoretical model (Chin, 1998),

and there is often a difference between what PLS-PM wants to model (the hypoth-

esized model depicted in the path diagram) and what is actually computed by the

PLS-PM algorithm. Furthermore, some underlying theoretical models depicted in

path diagrams have nonsense in the strict framework of structural equation mod-

eling. Dolce and Hanafi (2015) illustrates this issue by using a simple model, the

case of two blocks of variables. The authors shows that Wold (1980) suggestion

about using Mode B to the exogenous block and Mode A to the endogenous block

is not just a rule of thumb. Instead, applying Mode B for the endogenous block

does not make sense in the framework of SEM.

Dolce et al. (2015) propose a new algorithm that takes into account the directions

of the links in the structural model and aims at maximizing the explained variance

of the MVs of the endogenous blocks, i.e. a new approach based on the optimiza-

tion of a redundancy-related criterion in a multi-block framework, in order to

inherit its prediction oriented objective as well as its non-symmetrical approach
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that takes the direction of relationships explicitly into account. We present this

new method in the third chapter of this dissertation.

1.8 A more comprehensive analysis of the Rela-

tionships in Component-based Path Model-

ing

In some particular case, PLS-PM may give an incomplete picture of the relation-

ships between variables, since the estimates coefficients may not be the same along

all parts of the dependent variable distributions.

PLS-PM algorithm is a procedure based on simple and multiple ordinary least

squares (OLS) regressions, thus the obtained coefficients measure the rates of

change in the mean of the dependent variables (both manifest and latent variables)

distributions as a function of changes in the set of predictors. Focusing exclusively

on changes in the means may underestimate, overestimate, or fail to distinguish

real non-zero coefficient.

This issue may especially occur in the case of heteroscedastic variances, when de-

pendent variables are highly skewed (as it is typical in subjective measurements),

in the presence of outliers, or when the interactions between the factors affect-

ing the dependent variables are very complex and cannot all be measured and

accounted for in a model.

In these case, there may be more than a single slope (i.e, the regression coeffi-

cient measuring the rate of change) describing the relationship between response

variables and predictor variables.

For example, when all the factors that may affect an endogenous LV are not

included in the models used to investigate relationships between LVs, there may

be a weak or no dependence relationship between the mean of the endogenous

LV distribution and the corresponding predictive LVs. However, there may be a

stronger and useful dependence relationship with other parts of the endogenous

LV distribution. The same may happen in the dependence relationships between

LV and their own MVs.
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In several applications it can be interesting to investigate if the relationships be-

tween dependent variables and regressors changes across the different parts of the

response variable distributions. For example, in the business and market research,

it can be interesting to evaluate if and how much the impact of consumer prefer-

ences on satisfaction is different among highly, medium or low satisfied customers

with the objective of differentiating leverages to increase the satisfaction.

Quantile regression (QR) (Koenker and Basset, 1978) is an extension of the clas-

sical OLS regression for estimating functional relations between variables for all

parts of the distribution of the response variable. Instead of the only estimation of

the conditional mean it allows the estimation of a set of conditional quantile func-

tions, providing a more complete picture of the relationships between variables.

Compared to the OLS regression QR estimates are more robust against outliers.

In this perspective, Li et al. (2014) introduced a correlation measure to examine the

linear linear relationships between any two variables for a given quantile, named

quantile correlation (QC).

A new method, called Quantile Composite-based Path Modelling (QC-PM) and

presented in details in the fourth chapter of this dissertation, introduced both QR

and QC in the classical PLS-PM algorithm (Davino and Esposito Vinzi, 2015;

Davino et al., 2015a), in order to enhance PLS-PM potentialities when we wish

to distinguish regressor effects on the different parts of the dependent variable

distribution.

QC-PM accommodates heteroscedastic variances and outliers and is able to ex-

plore the entire conditional distribution of the response variables. It is advisable

as a complementary analysis to the classical PLS-PM. For example, when path

coefficient estimates of classical PLS-PM are not significant, even if the underlying

theory would suggest the opposite, the exploration of different parts of the depen-

dent variable distribution could highlight significant relationships. It could also

be expected that the sign and the size of the path coefficients change if the analy-

sis explores not only average effects but also the different parts of the dependent

variable distributions.
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1.9 Other critical issues in PLS-PM

PLS-PM is said to be a powerful method because of the minimal demands on

measurement scales, sample size, and data distributions (Chin, 1998; Falk and

Miller, 1992).

The topic of minimal requirements on sample size in PLS-PM has been widely de-

bated in recent years (e.g., Hair et al., 2012a; Henseler et al., 2014; Marcoulides and

Saunders, 2006; Rönkko and Evermann, 2013) and has been empirically studied

in various simulation studies (e.g., Areskoug, 1982; Goodhue et al., 2012; Hulland

et al., 2010; Vilares and Coelho, 2013).

In the literature it there seems to be a common belief that sample size issue does

not play a role in the application of PLS-PM (Henseler et al., 2014). Many authors

follow the “ten times” rule of thumb (Barclay et al., 1995) according to which

the sample size should be equal to the larger number of explanatory variables in

each particular measurement model and structural model. Namely, the minimum

sample size should be equal to the larger number of (1) ten times the largest

number of the MVs whose weights are estimated by the inward directed scheme at

a particular block, or (2) ten times the largest number of structural paths directed

at a particular LV in the structural model.

However, the ten-times rule of thumb does not take into account the magnitude

of the relationships, the reliability, the number of indicators, distributional char-

acteristics of the data, or other factors which are known to affect the statistical

power. It is only in the case of a strong effect size (and high reliability) that

“ten times” rule of thumb may lead to acceptable power (Goodhue et al., 2006),

thus, it cannot be applied indiscriminately to all situations (Henseler et al., 2009;

Marcoulides and Saunders, 2006).

The distributional characteristics of the data, potential missing data and the prop-

erties of the variables examined are also to be considered when deciding on an ap-

propriate sample size to use. Marcoulides and Saunders (2006) noted that ”when

moderately non-normal data are considered, a markedly large sample size is needed

despite the inclusion of highly reliable indicators in the model”.

Another issue to take into account in PLS-PM concerns the problem of multi-

collinearity. Since Mode B is based on multiple regression, the stability of the MV

outer weights, which reflect the impact of the MVs on the LV, are affected by the
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strength of the MV intercorrelations as well as the sample size. Therefore, the

issue of multicollinearity is particularly important in formative blocks (Albers and

Hildebrandt, 2006; Diamantopoulos and Winklhofer, 2001)

On the contrary, under Mode A, multicollinearity is not an issue because only

simple regressions are involved, and theoretically it is desired.

In the case of a perfect collinearity between two formative MVs (i.e., one MV is a

linear combination of another MV), PLS-PM cannot estimates the parameters of

the model since the covariance matrix of the formative MVs is singular and cannot

be inverted, as requested in the multiple regression when using Mode B. In this

particular case, we can just drop one of the redundant MV.

Excessive multicollinearity among formative MVs (i.e., any single MV is highly

correlated with the others), instead, makes it difficult to separate the distinct

influence of the individual MV on the LV. Multicollinarity can inflate bootstrap

standard errors leading to type II errors (i.e., it may yields non-significant outer

weights when actually the MVs have an effect on the corresponding LV), or else

the outer weights may be non-interpretable, having incoherent signs with the cor-

relation with the corresponding LV.

The issue of multicollinearity in formative blocks is still under research and some of

solutions found in the literature are not satisfactory. Furthermore, in the literature

most of the studies where formative blocks are included in the models do not

consider the multicollinearity assessment (Hair et al., 2012a).

A suggestion found in the literature is to simply interpret only the standardized

loadings (i.e. correlations between a LV and its own MVs) instead of the outer

weights (Cenfetelli and Bassellier, 2009; Hair et al., 2012a), bearing in mind that

while the outer weight is a measure the relative contribution of a MV to its LV,

the loading can only be used to evaluate the absolute importance of a MV to its

LV. However, as Chin (1998) noticed, it makes no sense to compare formative MV

loadings with one another as the intraset correlations for each block were never

taken into account in the estimation process.

The problem of multicollinearity can be addressed by providing a PLS regression

for estimating the outer weights as an alternative to OLS regression (Esposito

Vinzi et al., 2010b). This new approach, called Mode PLS, can be considered as

a fine-tuning between Mode A and Mode B since it is based on the selection of a
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certain number of components of the PLS regression1. Mode PLS adapts well also

to formative multidimensional blocks with fewer dimensions than the number of

MVs. This new mode is available in the PLSPM module of the XLSTAT software.

While the elimination of a MV with small weight within formative measurement

models should be always approached with caution, since this may implies the

omission of a substantial and meaningful part of the construct (see Chapter 2),

dropping a MV from a formative measurement model in the case of excessive

multicollinearity in the block might be recommended.

A possible way to check for multicollinearity in a formative block is computing the

“tolerance” of each MV as 1−R2, where the R2 is the coefficient of determination

for the regression of the the specific MV on the other MVs of the block. Obviously,

as the tolerance value increases the degree of multicollinearity increases. A measure

related to the tolerance is the Variance Inflation Factor (VIF), computed as the

inverse of the tolerance (V IF = 1/TOL) (Hair et al., 2010). A large VIF value

indicates a high standard error of the specific weight due to multicollinearity among

the MVs.

As a rule of thumb, the VIF should not exceed a value of 10, but, particularly when

samples size is small, the critical value may be smaller then 10 (Hair et al., 2010).

In general, the critical value should be defined considering the specific analysis

objectives 2.

1Mode A correspond to taking the first component from a PLS regression, while Mode B
correspond to taking all the PLS regression components

2For some suggested guidelines to follow, see Hair et al. (2010)



Chapter 2

Formative Versus Reflective

Measurement Model in

Structural Equation Modeling

2.1 Introduction

Research often places great emphasis on explaining causal relationships among LVs

but devote little attention to the nature and direction of relationships between LVs

and MVs.

Even though there are situations in which MVs are more realistically thought of

as causes of a LV (formative scheme), most researchers consider them as effects

(reflective scheme) without even questioning their appropriateness for the specific

LV at hand.

Furthermore, a common impression found in the literature is that only PLS-PM

allows the estimation of SEM including formative blocks. The implication of

formative MVs in Covariance-Based framework is a rather difficult task. However,

if certain model specification conditions are satisfied the model is identified, and

it is possible to estimate a Covariance-Based SEM with formative blocks (Bollen

and Davis, 2009; Williams et al., 2003).

A deep study on the relationships between LVs and MVs is of chief importance be-

cause there is growing evidence that measurement model misspecification has the

29
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potential for poor parameter estimates and misleading conclusions (see Dolce and

Lauro, 2014; Jarvis et al., 2003; MacKenzie et al., 2005, among others). Its effects

extend also to the estimates of the path coefficients connected to the misspecified

block.

Due to the complexity of both SEM estimation methods, we study their relative

performance in the framework of the same simulation design, investigating the

effects of measurement model misspecification and the implications of formative

MVs on both ML-SEM and PLS-PM parameter estimates.

The results presented in this section are based on the paper by Dolce and Lauro

(2014).

The simulation results show that the effect of measurement model misspecifica-

tion is much larger on the ML-SEM parameter estimates. For a model that in-

cludes a correctly specified formative block, we find that the inter-correlation level

among formative MVs and the magnitude of the variance of the disturbance in

the formative block have evident effects on the bias and the variability of the

estimates. For high inter-correlation levels among formative MVs, PLS-PM out-

performs ML-SEM, regardless of the magnitude of the disturbance variance. For

a low inter-correlation level among formative MVs the performance of the two

methods depends also on the magnitude of the disturbance variance. For a small

disturbance variance, PLS-PM performs slightly better compared to ML-SEM. On

the contrary, as the disturbance variance increases ML-SEM outperforms PLS-PM.

2.2 Nature and Direction of the relationships be-

tween latent variables and manifest variables

LVs, while not directly observed, are measured by a set of MVs. This observable

variables may appear as effects of the LVs, or cause of the LVs, or as both effects

and cause. Hence, relationships between MVs and LVs can be modeled in two

different ways, depending on the direction of the relationship between the LV and

its own MVs.

In the outwards directed scheme (Lohmöller, 1989) or reflective scheme (Fornell

and Bookstein, 1982) MVs are considered as being caused by the related LV:

variation in LV leads to variation in its MVs (Bollen, 1989). On the contrary, in
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the inwards directed scheme or formative scheme MVs are viewed as causes of a

LV (Blalock, 1971): variation in MVs are assumed to causes variation in LV (see

Figure 2.1).

Figure 2.1: Different measurement models

The theoretical differences between the two schemes are not trivial and in some

particular situations determining the real nature of a LV is a difficult task (Edwards

and Bagozzi, 2000).

2.2.1 Internal consistency reliability and the issue of Mul-

ticollinearity

In the reflective measurement model MVs are caused by the same common factor,

thus variance in each measure is explained by a LV common to all measures and

error unique to each measure, and covariance among MVs is attributed to their

common cause, the underlying LV. In this respect, blocks of variables thought as

outwards directed (of reflective) are expected to be unidimensional and should

possess internal consistency - i.e., MVs in each block are supposed to be highly

correlated among each other - (Tenenhaus et al., 2005). Many reliability estimates

are based on this internal consistency concept (Bollen and Lennox, 1991), and there

exist several tools to check the internal consistency (i.e., the unidimensionality) of

a block (Tenenhaus et al., 2005).

On the contrary, when blocks are defined as inwards directed (or formative), MVs

can represent different ingredients of the underlying concept. In the formative

model, the block of MVs can be multidimensional, each MV or each sub-block of
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MVs could represent different dimensions of the underlying concept, so these MVs

need not to covary.

An important issue for formative blocks is that of multicollinearity (Albers and

Hildebrandt, 2006; Diamantopoulos and Winklhofer, 2001). This is because the

formative measurement model is based on multiple regression, and therefore the

stability of the MV outer weights, which reflect the impact of the MVs on the

LV, are affected by the sample size and strength of the MV intercorrelations.

Excessive collinearity among MVs thus makes it difficult to separate the distinct

influence of the individual MV on the LV. Note that under reflective measurement,

multicollinearity is not an issue because only simple regressions are involved (in

which the MV serves as the criterion and the LV as the predictor).

In order to overcome the multicollinearity problem in formative measurement

model, an alternative approach recently proposed by Esposito Vinzi et al. (2010b)

can be used as well. This new approach, called Mode PLS, computes the outer

weights applying the PLS regression (Tenenhaus, 1998; Wold et al., 1983). The

Mode PLS can be considered as a fine-tuning between Mode A and B since it is

based on the selection of a certain number of components of the PLS regression 1.

2.2.2 Validity of indicators

Since in formative scheme the magnitude of the MV correlations is not explained

by the model, we cannot say much about the validity of the MVs as a measure of

the corresponding LV.

As said above, there is no reason to expect high correlation among MVs of a forma-

tive block (Bollen, 1984; Tenenhaus et al., 2005), thus conventional measures used

for evaluating the validity and reliability of a LV cannot be applied for formatively-

measured LVs (Bollen and Lennox, 1991; Diamantopoulos, 2006). Indeed, as noted

by Bollen and Lennox (1991, p. 312), “causal indicators are not invalidated by low

internal consistency so to assess validity we need to examine other variables that

are effects of the latent construct.” However, there is not recommendations about

magnitude of correlations for MVs of formative blocks, because these correlations

are explained by factors outside of the model.

1Mode A correspond to taking the first component from a PLS regression, while Mode B
correspond to taking all the PLS regression components
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The literature is unclear as to measure the validity of MVs in formative blocks

(Edwards and Bagozzi, 2000), and the assessment of formatively-measured LVs is

still an open question and under research.

Given that each MV weight shows the direct relation between the MV and its LV

and the impact of the MV on the LV, the magnitudes of the MV weight can be

interpreted as validity coefficients (Bollen, 1989). MV with non significant weight

could be considered for elimination as they cannot represent valid indicators of

the construct. However, removing a MV in formative blocks may implies remov-

ing a theoretically meaningful part of the LV and should always be approached

with caution. Furthermore, it must be noticed that high multicollinearity among

MVs could lead to difficulties in assessing indicator validity on the basis of the

magnitude of the MV coefficients (Bollen, 1984; Diamantopoulos and Winklhofer,

2001; MacKenzie et al., 2005).

As for assessing validity at the overall construct level, one common approach is

focusing on nomological and criterion-related validity: estimating hypothesized

relationships of the LV with theoretically related LVs, checking if the estimated

relationships is consistent with the expected direction and significantly different

from zero. Diamantopoulos and Winklhofer (2001) stated that “validation along

these lines requires (1) that information is gathered for at least one more construct

than the one captured by the index, (2) that this other construct is measured

by means of reflective indicators, and (3) that a theoretical relationship can be

postulated to exist between the constructs”.

On this perspective, a way for evaluating formative measurement models could

be by testing whether the formatively-measured LV is highly correlated with a

reflective measure of the same theoretical concept (Hair et al., 2014). This can be

achieved applying a redundancy analysis use the formatively-measured LV as an

exogenous LV predicting an endogenous LV measured by one or more reflective

MVs, but theoretically both sets of MVs should be tied to the exact same LV. The

strength of the path coefficient linking the two LVs is indicative of the validity of

the designated set of formative indicators in tapping the LV of interest. Ideally, a

magnitude of 0.90 or at least 0.80 and above is desired (Chin, 1998) for the path

coefficients between the two LVs.

Diamantopoulos (2006) proposed using the variance of the error term as an indi-

cation of construct validity. The error term represents that part of the construct’s
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domain that the set of MVs neglect. Hence, if the set of MVs include all important

construct facets, the residual variance should be small, and the construct meaning

is validly captured.

Finally, confirmatory tetrad analysis (CTA), (Bollen and Ting, 2000; Gudergan

et al., 2008) offered a basic test of LV validity. Although Bollen and Ting (2000,

p. 4) originally proposed CTA as “an empirical test of whether a causal or effect

indicator specification is appropriate”, interpreting evidence supporting the latter

as also supporting the LV’s validity is reasonable.

2.2.3 Interchangeability of the manifest variables

Another important issue related the measurement model is evaluate the conse-

quence of removing MVs of a unidimensional block. As already said above, MVs

should cover all facets of the LV, they need to capture the domain space of the it

(Little et al., 1999). If each of our original MV is ”representative” of distinct facets

of a LV, removing a MV implies removing a theoretically meaningful part of the LV

and changing the meaning of the LV (Bollen and Lennox, 1991). Failure to consider

all facets of the LV will lead to an exclusion of relevant MVs (Diamantopoulos and

Winklhofer, 2001). Furthermore, since the formative measurement model assumes

that all the measures have an impact on a single LV, the MVs may be correlated,

but the model does not assume or require this. Indeed, it would be entirely con-

sistent for MVs in formative blocks to be completely uncorrelated (Jarvis et al.,

2003). This might be the case where a formatively-measured LV is represented by

mutually exclusive types of behaviour. What is important to understand is that

even if correlated, in formative blocks MVs are not interchangeable.

On the contrary, Reflective MVs are interchangeable: dropping a MV from the

measurement model should not alter the meaning of the LV (Bollen and Lennox,

1991). Because all the MVs are assumed to be equally valid indicators of the

underlying LV, any two equally reliable effect indicators of an unidimensional

construct are interchangeable. Thus, when a MV is dropped the construct validity

should be unchanged (Bollen and Lennox, 1991), even if the reliability estimates

of the set of MVs will be lower if fewer variables are included in the measurement

model.



Chapter 2. Formative Versus Reflective Measurement Models: Comparing ML
and PLS Estimates 35

In summary, for reflective unidimensional block, equally reliable indicators are es-

sentially interchangeable. If many facets of a LV mean many dimensions, then each

dimension should be treated separately with its own set of MVs. For formatively-

measured LV, excluding a MV may alter the meaning of the LV.

2.2.4 The error term in formative measurement model

As for the nature of the error term in formative blocks, several definitions are found

in the literature. In a papers by Bollen and Lennox (1991) and MacCallum and

Browne (1993), for example, the error is simply referred to as a “disturbance” with

no further elaboration on its nature. Edwards and Bagozzi (2000) stated that “the

disturbance term represents that part of the construct [...] that is not explained

by the [...] measures and thus may be interpreted as measurement error”. (Jarvis

et al., 2003), stressed that in formative measurement models “error is represented

at the construct level rather than at the individual item level [...] one obtains an

estimate of the overall amount of random error in the set of items rather than an

estimate attributable to each individual item”

Diamantopoulos (2006) criticized all statements concerning the nature of error

in formative measurement, claiming that none of them is completely true: “the

type of error involved is not random measurement error; the reliability of the scale

cannot be improved by estimating the error term; and the error is not associated

either with individual items or the set of items as a whole. In fact, the error term in

a formative measurement model tells us hardly anything about the items already

used as indicators in the model”. Diamantopoulos (2006) showed that, unlike for

reflective blocks, the error term in formative blocks is not a measurement error

but it is more properly called as “disturbance” term which impacts on the LV and

it is uncorrelated with the MVs of the block, “violation of this assumption would

result in biased estimates in the [path coefficients] (much in the same way that

omission of relevant independent variables which are related to included predictors,

would bias the estimates in a multiple regression model)”. Thus, the omitted MVs

should not be correlated with those included in the formative blocks. He also

showed that a correct interpretation of the disturbance may be quite informative

regarding MVs not incorporated in the model, thus, can aid in model specification

and re-specification.
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The magnitude of the error term can be useful in the interpretation of a formative

measure model. Setting the disturbance equal to zero means that all possible

causes on the LV are accounted for by the MVs in the model. However, since it is

very difficult that this occurs in practice, it is a good practice to incorporate the

error term in the formative measurement model specification.

2.2.5 Surplus meaning of the latent variable

Another issue to be taken into account is the surplus meaning of LVs. LVs hold

surplus meaning beyond that captured by their own MVs used to measure them

in both formative and reflective measurement models(Jarvis et al., 2003).

Given that variation in reflective measurement models precedes variation in their

own MVs, LVs have surplus meaning because they are assumed to exist indepen-

dently by of measurement.

On the other hand, since variation in MVs are assumed to causes variation in

formatively-measured LV, the latter are inextricably tied to their MVs, thus the

nature of their surplus meaning is very different from the reflectively-measured

LVs.

Diamantopoulos (2006) claim that “the surplus meaning of formative constructs

is directly associated with the error term included in the formative model speci-

fication [...] thus, the surplus meaning possessed by a formative construct relates

to the influence of unmeasured causes, i.e. indicators not included in the model”.

2.2.6 Criteria for Distinguishing Between Reflective and

Formative measurement Models

Even though the theoretical differences between the two measurement models are

well defined, in some particular situations determining the real nature of a LVs

can be a difficult task.

Edwards and Bagozzi (2000) suggested several criteria derived from the litera-

ture on causation that might be employed in this regard, including association,

temporal precedence, and the elimination of rival causal explanations.
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Another way for distinguishing between formative and reflective measurement

Models is to perform ”mental experiments,” in which a change in the LV is imag-

ined and then it must be judge whether a subsequent change in all the MVs is

reasonable. If so, then this is consistent with a reflective measurement model. On

the other hand, if for a change in all the MVs we expect a change in the LV, then

this is consistent with a formative measurement model (Bollen, 1989).

Bollen and Ting (2000) suggested that a simple examination of a set of MVs along

with a “mental experiment” may be insufficient to make a clear distinction between

the two different measurement meodels. For this reason the Authors developed

an empirical tool for determining whether the covariance structure among a set of

MVs is more consistent with a formative or reflective measurement model based

on Vanishing Tetrad Analysis (see Bollen and Ting, 2000; Gudergan et al., 2008,

to go into further details).

2.2.7 Misspecification of relationships between latent vari-

ables and manifest variables

Conventional measurement model in marketing and business research, psychology

and the other social sciences are based by default upon reflective measurement.

However, in some situations the measurement models are incorrectly specified as

reflective when they should have been as formative.

Even though there are situations in which MVs are more realistically thought of

as causes of a LV (formative scheme), most researchers consider them as effects

(reflective scheme) without even questioning their appropriateness for the specific

LV at hand.

This attitude may lead to misspecified models and there is growing evidence that

measurement model misspecification has the potential for poor parameter esti-

mates and misleading conclusions (see Dolce and Lauro, 2014; Jarvis et al., 2003;

MacKenzie et al., 2005, among others).

Its effects extend also to the estimates of the path coefficients connected to the

misspecified block. In covariance-based SEM this is mainly due to the fact that

a reflective treatment of a block that should instead be modeled as formative

reduces the variance of the LV. The variance of a reflectively-measured LV equals
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the common variance of its MVs, whereas the variance of a formatively-measured

LV encompasses the total variance of its indicators (Fornell et al., 1991). Let

us consider the common case of an exogenous formative block misspecified as

reflective. If the level of the variance of the endogenous LVs is maintained, the

estimates of the path coefficients connected to the misspecified exogenous LV is

likely to be substantially inflated (Diamantopoulos et al., 2008).

2.3 Formative blocks in Covariance-based SEM

Several alternative formulations have been proposed for SEM specification, but a

very general formulation was given by Bentler and Weeks (1980). In the Bentler-

Weeks approach any variable in the model (MVs, LVs, errors and so on) is either

a dependent or an independent variable. The distinction between latent and man-

ifest variables is secondary to the distinction between dependent and independent

variables. The covariances among the independent variables can be part of the

model parameters while the covariances among the dependent variables, or be-

tween the dependent variables and the independent variables, are explained by

the model through the so-called free parameters. This model specification permits

the inclusion of formative MVs in Covariance-Based SEM.

The general structural equation is written as

η = Bη + Γξ (2.1)

The vector η (m × 1) contains all dependent variables, η′ = [y′,π′], where y is

a vector of reflective MVs and π represents the endogenous LVs in the model.

The vector ξ (n× 1) of all independent variables, ξ
′

= [x′, τ ′, ζ
′
, ε′], contains the

formative MVs x, the exogenous LVs τ , the disturbances ζ, and measurement

errors ε. B (m ×m) and Γ (m × n) contain coefficients capturing the effects of

the independent variables on the dependent variables.

To simplify matters, let us consider η, ξ, y, x as deviations from their means.

Since some of the variables in η are measured variables y, we obtain them by

means of a suitable selection matrix G with elements equal to 0 or 1 such that:

y = Gyη (2.2)
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If we have formative MVes x in the vector ξ we extract them by:

x = Gxξ (2.3)

Gx and Gy are Boolean matrices with all zero entries except for a single element

equal to 1 in each row to select x from ξ and y from η respectively.

From the “general structural equation” and the “selection models” follows the

“implied covariance matrix”, given by the following matrix elements:

Σyy = Gy(I−B)−1γΦγ
′
(I−B)−1G

′

y

Σyx = Gy(I−B)−1γΦG
′

x

Σxx = GxΦG
′

x (2.4)

where Φ is the covariance matrix of the independent variables ξ, and it is not

function of other parameters.

When no measured variable is included in ξ, there are no formative MVs, thus

Σyx and Σxx are null, and Σyy = Σ.

Identification of formative measurement models still represents an open problem.

Obviously, a necessary but not sufficient condition is the “t-rule” (i.e., the number

of free parameters must not exceed the number of elements in the covariance

matrix). Regarding the “scaling rule” (i.e. each LV needs to be scaled for the

model to be identified), among other options, we can fix a weight from a formative

MV to the LV at some non-zero value (MacCallum and Browne, 1993).

To resolve the indeterminacy associated with the LV level error term, a necessary

but not sufficient condition is the so-called “2+ Emitted Paths Rule”. Every LV

with an unrestricted variance or unrestricted error variance must emit at least two

directed paths to other variables, when these latter variables have unrestricted

error variances (Bollen and Davis, 2009). Another solution is to fix the variance of

the disturbance term to zero. However, dropping the residual term implies the the-

oretical assumption that the formative MVs completely capture the underlying LV

and no unexplained variance exists. The obtained variable becomes a “composite

variable”, not a formatively-measured LV (MacCallum and Browne, 1993).
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Another strategy to identification is the so-called “piecewise identification”, based

on breaking the model into smaller pieces and establishing the identification of

one piece before moving on to the next piece (Bollen and Davis, 2009).

Once a model is identified, we can estimate its parameters by standard estimation

procedures (Bentler and Weeks, 1980).

Another important issue that needs to be addressed when modeling formative

blocks is what to do with the covariances among MVs in the model (MacCallum

and Browne, 1993). Since formative MVs are simply exogenous variables, they

may be correlated due to spurious causes not considered in the model, thus it

would be more appropriate to free all covariances among them.

Finally, it must be stressed that in the recent SEM literature there is an interesting

discussion on the meaning of the formatively-measured LV. Some researchers state

that the known solutions for the matter of identification imply interpretation dif-

ficulties. A recent paper by Treiblmaier et al. (2011) clearly illustrates this issue.

The authors state that a formatively-measured LV is actually a second-order factor

that is predicted by some MVs and that explains the correlation of its consequent

variables. Without this correlation the formatively-measured LV would disappear,

and this is contrary to the idea that the LV is created solely by their exogenous

MVs. This is a very interesting topic which needs further investigations.

2.4 A simulation Study

2.4.1 Design of the Simulation Study

The aim of this study is to investigate, within the same simulation design, the

performance of both PLS-PM and ML-SEM when a block is modeled as formative.

In order to satisfy the above mentioned identification rules, we considered a for-

mative exogenous block with unrestricted disturbance variance, that emits at least

two directed paths to other LVs, and the covariances between the measurement

errors of the MVs related to the endogenous LVs were fixed to zero.

A model with this framework is particularly justified when dealing with customer

satisfaction data. Indeed in the European Customer Satisfaction Index model
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(ECSI, 1998) literature suggests that the LV Image may be formatively-measured.

We considered the ECSI model consisting of one formatively-measured exogenous

LV, Image (π1), and five reflectively-measured endogenous LVs, from π2 to π6,

that represent Customer Expectations, Perceived Quality, Perceived Value, Cus-

tomer Satisfaction and Customer Loyalty, respectively.

The Monte Carlo simulation was conducted by EQS 6.1 for Windows. The data

generation process is consistent with the procedure described by Paxton et al.

(2001) for a Monte Carlo SEM study. We first pre-specified the relationships in

the SEM and then simulated data for the given parameter values.

The true path coefficient values were chosen in order to be as similar as possible

to those commonly encountered in the marketing literature (Vilares et al., 2010).

The postulated structural model is:

π2 = 0.9π1 + ζ2

π3 = 0.8π2 + ζ3

π4 = 0.3π2 + 0.7π3 + ζ4

π5 = 0.3π1 + 0.1π2 + 0.4π3 + 0.3π4 + ζ5

π6 = 0.3π1 + 0.7π5 + ζ6 (2.5)

For the LV Image, we adopted the following formative model:

π1 = 0.4x1 + 0.25x2 + 0.15x3 + 0.1x4 + 0.1x5 + ζ1 (2.6)

Afterwards, the outer weights were modified in order to obtain the variance of π1

equal to one, taking into account the variance of the disturbance σ2
ζ1

as well. In

order to focus on the issue of formative blocks in SEM, the loadings between the

reflective MVs and the related LVs were set all to 1.

We conducted the simulation setting different variance values of the disturbance

ζ1 in the formative block. In particular, we set four different values of σ2
ζ1

, from a

small value of 0.05 (yielding a R2 of 0.95) to a large value of .5 (yielding a R2 of

.5). The values of σ2
ζ1

were chosen to satisfy the equation:

R2 = 1− Dev(ζ1)

Dev(π1)
(2.7)
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For the model considered in this simulation study, the 2+ emitted path rule and t

rule are met. To satisfy the scaling rule a loading was fixed to 1 in each reflective

block, and the first weight in the formative block was fixed to the given parameter

value. Furthermore, to confirm the identification of the model we can use the

piecewise identification strategy (Bollen and Davis, 2009).

2.4.2 Data Generation and Simulation Results

Once the population parameter values were set, we generated a total of 500 sets

of data for three different sample sizes (100, 250, 500), four different disturbance

variance values σ2
ζ1

(0.05, 0.2, 0.35, 0.5), three different numbers of MVs in the

formative block (3, 5, 7), and three different levels of inter-correlation among

MVs in the formative block (0.2, 0.4, 0.6). We did not take into account inter-

correlation levels greater than 0.6 to avoid the issue of multicollinearity which

might arise when estimating a formatively-measured LV. Given that very often

the data do not follow multivariate normal distributions, we also generated data

from non-symmetric distributions with different degrees of skewness and kurtosis

(0.5, -0.8; 1.5, 2.5; 2.5, 9) following the Vale and Maurelli (1983) technique built

in EQS 6.1.

In order to estimate the ML-SEM and PLS-PM parameters, we employed the

“ML” Discrepancy function by means of EQS, and the “centroid scheme” by means

of the package PLSPM in R, respectively.

Three commonly reported measures were used to assess how well the methods es-

timate the parameters: the Relative Bias (RBias), the Standard Deviation (StD)

and the Root Mean Square Error (RMSE) of the estimates. RBias is computed as,

RBias =
1

n

n∑
i=1

(θ̂i − θ)
θ

i = 1, 2, ..., 500 (2.8)

where n represents the number of replications in the simulation, θ̂i is the parameter

estimate for each replication, and θ is the corresponding population parameter.

StD is computed as,√√√√ 1

n

n∑
i=1

(θ̂i − E(θ̂))2 i = 1, 2, ..., 500 (2.9)
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where E(θ̂) is the mean of the estimates across the 500 simulated datasets. StD

provides information on the efficiency of estimates.

Finally, RMSE is computed as,√√√√ 1

n

n∑
i=1

(θ̂i − θ)2 i = 1, 2, ..., 500 (2.10)

Obviously, it holds that MSE = bias(θ̂)2 + V ar(θ̂). Thus RMSE entails infor-

mation on both bias and variability of the estimates.

In order to understand the effects of measurement model misspecification on the

parameter estimates, we compared the performance of the two methods (PLS-

PM and ML-SEM), applying both the correct measurement scheme for π1 (i.e.,

formative scheme) and the wrong measurement scheme (i.e., reflective scheme).

For the sake of simplicity, at this step we present only the mean of the RMSE in

the path coefficients connected to the exogenous LV π1.

Figure 2.2a reports the mean of RMSE of the PLS-PM estimates for both the

correctly specified measurement model and the misspecified measurement model,

for each inter-correlation level among MVs (0.2, 0.4, 0.6).

(a) PLS-PM (b) ML-SEM

Figure 2.2: Mean of the RMSE in the path coefficients connected to π1, for
normal data scenario

The RMSE of the PLS-PM estimates slightly increases when the measurement

model is misspecified, but the inter-correlation level among MVs does not have any

effect on the estimates. We found that the variability of the PLS-PM estimates is

very low and almost equal for all these considered experimental conditions, thus

different RMSE values are due exclusively to the bias of the estimates. Confirming

the expectation, PLS-PM tends to underestimate the path coefficients, and this

bias slightly increases when the measurement model is misspecified.
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This is not the case for the ML-SEM estimates (Figure 2.2b). The RMSE in-

creases drastically when the measurement model is misspecified. This is due to

the fact that ML-SEM overestimates the path coefficients connected to the exoge-

nous misspecified block. As said above, reflective treatment of a block that should

instead be modeled using the formative scheme reduces the variance of the LV.

In ML-SEM the MVs inter-correlation level influences the extent of the RMSE in

the path coefficients connected to the misspecified block. This is due to the fact

that the greater the level of the MVs inter-correlation, the smaller the change in

the variance of a LV produced by measurement model misspecification. High MVs

inter-correlations yield a less severe misspecification effect.

As regards the variability of the estimates, we found that the StD of the ML-

SEM estimates increases when the measurement model is misspecified, for inter-

correlation levels among MVs equal to 0.2 and 0.4. When the inter-correlation is

on average equal to 0.6, the variability of the estimates is lower in the misspecified

measurement model. Even though an inter-correlation level equal to 0.6 - on aver-

age - is not extremely high, this result may be due to the issue of multicollinearity.

High correlation among MVs of a formative block can be a significant problem for

measurement model parameter estimates, while it is a virtue for reflective blocks.

However, the RMSE of the estimates is higher when the measurement model is

misspecified, for all the inter-correlation levels among MVs.

In keeping with these results, we think that in the case of uncertainty on the real

nature of a LV (i.e., the probability of erroneously selecting a measurement scheme

is high), researchers should choose PLS-PM rather than ML-SEM, as the RMSE

of the ML estimates is much higher when the measurement model is misspecified.

Figure 2.3 reports the mean of the PLS-PM estimates RMSE (3a) and the mean of

the ML-SEM estimates RMSE (3b) for both the correctly specified measurement

model and misspecified measurement model, for the non-normal data scenario. It

does this for each inter-correlation level among MVs (0.2, 0.4, 06). For the sake of

simplicity we show only the results for data with the highest degrees of skewness

and kurtosis, i.e., 2.5 and 9, respectively.

As we can see in Figure 2.3, these results are not significantly different from those

of the normal data scenario, for both the PLS-PM and the ML-SEM estimates. It

is well known that PLS-PM is a powerful method because of the minimal demands

on distributional assumptions of the variables (Chin, 1998)). However, ML-SEM is
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(a) PLS-PM (b) ML-SEM

Figure 2.3: Mean of the RMSE in the path coefficients connected to π1, for
non-normal data scenario

also generally robust against the violation of distributional assumptions (Satorra,

1990). This may explain our simulation results for the non-normal data scenario.

We also compared the performance of the two methods for three different numbers

of MVs in the formative block (3, 5, 7), and for three different sample sizes (100,

250, 500). The results were not unexpected and we obtained no interesting findings

in the case of measurement model misspecification. On the whole, we found that

ML-SEM estimates are sensitive to the sample size and the number of MVs in the

formative block, while PLS-PM estimates are extremely robust.

For all the reasons above and for the sake of simplicity, we did not take into

account these experimental conditions, which would also complicate the reading

of the results. Following we show the results for the ECSI model presented above,

with a sample size of 250 and five formative MVs2.

Table 2.1 shows RBias, StD, RMSE, and their absolute mean, Mean(abs), for

the formative block outer weights (except for the first weight that was fixed in the

ML-SEM), for both the smallest value of σ2
ζ1

equal to 0.05 (left hand side) and the

largest value equal to 0.5 (right hand side), for an inter-correlation level among

the MVs equal to 0.6.

σζ1 =
√

0.05 , ρ = .6 σζ1 =
√
.5 , ρ = .6

Outer Bias StD RMSE Outer Bias StD RMSE
Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML
π1,x2 0.027 0.040 0.079 0.101 0.080 0.102 π1,x2 0.393 0.178 0.140 0.204 0.163 0.208
π1,x3 0.023 0.046 0.080 0.091 0.080 0.092 π1,x3 0.456 0.227 0.139 0.142 0.150 0.145
π1,x4 0.080 0.084 0.084 0.088 0.084 0.089 π1,x4 0.356 0.194 0.141 0.138 0.144 0.139
π1,x5 -0.020 0.018 0.079 0.086 0.079 0.086 π1,x5 0.275 0.151 0.140 0.134 0.142 0.135

Mean(abs) 0.037 0.047 0.080 0.091 0.081 0.092 Mean(abs) 0.370 0.187 0.140 0.154 0.150 0.157

Table 2.1: RBias, StD and RMSE of outer weights, for σζ1 =
√

0.05 and
σζ1 =

√
.5), and high inter-correlation level (ρ = .6)

2Note that 250 is the common sample size used to estimate an ECSI model, and it is also a
large enough number for good parameter estimations in both methods.



Chapter 2. Formative Versus Reflective Measurement Models: Comparing ML
and PLS Estimates 46

When σ2
ζ1

is small, the outer weight estimates are nearly unbiased and with low

variability in both methods. As the variance of ζ1 increases (see the right-hand

side of Table 2.1), we found that the bias of both PLS and ML estimates grows, but

PLS-PM estimates are by far more biased compared to the ML’s. The variability of

the estimates increases for both methods, but PL-PM still produces estimates with

lower variability. In terms of the RMSE we found that PLS-PM performs slightly

better than ML-SEM, regardless of the magnitude of the disturbance variance.

Considering an inter-correlation level equal to 0.2 (see Table 2.2), we found that

ML-SEM outperforms PLS-PM in terms of bias of the estimates, regardless of the

disturbance variance magnitude. As σ2
ζ1

increases the bias of the PLS estimates

grows drastically, while it slightly increases in the ML estimates. The variability

of the estimates is almost similar for the two methods when the variance of ζ1 is

small. As the variance of ζ1 increases the StD of both methods estimates increases,

but in this case ML-SEM outperforms PLS-PM also in terms of StD. In terms

of the RMSE, when the variance of ζ1 is low the two methods perform almost

similar. As the variance of ζ1 increases ML-SEM outperforms PLS-PM.

σζ1 =
√

0.05 , ρ = .2 σζ1 =
√
.5 , ρ = .2

Outer Bias StD RMSE Outer Bias StD RMSE
Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML
π1,x2 0.018 0.007 0.055 0.066 0.056 0.066 π1,x2 0.396 0.041 0.100 0.100 0.147 0.101
π1,x3 0.017 0.007 0.059 0.063 0.060 0.064 π1,x3 0.429 0.066 0.101 0.086 0.123 0.087
π1,x4 0.034 0.016 0.063 0.063 0.064 0.064 π1,x4 0.358 0.014 0.104 0.082 0.111 0.082
π1,x5 -0.018 -0.019 0.055 0.056 0.056 0.057 π1,x5 0.328 0.011 0.103 0.079 0.109 0.080

Mean(abs) 0.022 0.013 0.059 0.063 0.059 0.063 Mean(abs) 0.378 0.033 0.102 0.087 0.123 0.087

Table 2.2: RBias, StD and RMSE of outer weights, for σζ1 =
√

0.05 and
σζ1 =

√
.5, and low inter-correlation level (ρ = .2)

Let us consider now the path coefficients connected to π1 when the inter-correlation

level among MVs is equal to 0.6 (Table 2.3). On average, the PLS estimates are

more biased compared to those of the ML-SEM, and the difference is more evi-

dent when σ2
ζ1

increases. In terms of StD, PLS-PM outperforms ML-SEM by far.

As σ2
ζ1

increases the variability of the PLS estimates remains stable, while it in-

creases in the ML estimates. In terms of RMSE, PLS-PM outperforms ML-SEM,

regardless of the magnitude of σ2
ζ1

.

It must be noticed that ML-SEM method extremely overestimates the path coef-

ficient between “Image”, (π1), and “Customer Satisfaction”,(π5), and it does this

systematically. This result is unexpected and needs further investigations.
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σζ1 =
√

0.05 , ρ = .6 σζ1 =
√
.5 , ρ = .6

Outer Bias StD RMSE Outer Bias StD RMSE
Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML
π1,π2 -0.181 -0.002 0.029 0.150 0.166 0.151 π1,π2 -0.400 0.000 0.044 0.275 0.362 0.275
π1,π5 -0.253 0.388 0.055 0.200 0.093 0.231 π1,π5 -0.644 0.406 0.045 0.438 0.199 0.455
π1,π6 -0.181 0.124 0.046 0.099 0.071 0.106 π1,π6 -0.540 0.062 0.038 0.144 0.166 0.145

Mean(abs) 0.205 0.171 0.043 0.150 0.110 0.162 Mean(abs) 0.528 0.156 0.042 0.286 0.242 0.292

Table 2.3: Inner Paths Coefficients RBias, StD and RMSE, for σζ1 =
√

0.05
and σζ1 =

√
.5, and high inter-correlation level (ρ = .6)

Considering a low inter-correlation level among MVs (see Table 2.4), we found

that ML-SEM outperforms PLS-PM in terms of bias of the estimates, while PLS-

PM outperforms ML-SEM in terms of StD, regardless of the magnitude of the

disturbance variance. In terms of the RMSE, we found that PLS-PM performs

slightly better than ML-SEM for a low variance of the disturbance. As the variance

of ζ1 increases ML-SEM outperforms PLS-PM.

σζ1 =
√

0.05 , ρ = .2 σζ1 =
√
.5 , ρ = .2

Outer Bias StD RMSE Outer Bias StD RMSE
Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML
π1,π2 -0.190 0.016 0.028 0.086 0.173 0.088 π1,π2 -0.400 0.003 0.044 0.155 0.363 0.155
π1,π5 -0.285 0.253 0.052 0.162 0.100 0.179 π1,π5 -0.645 0.379 0.046 0.370 0.199 0.387
π1,π6 -0.139 0.197 0.042 0.081 0.059 0.100 π1,π6 -0.541 0.058 0.039 0.114 0.167 0.115

Mean(abs) 0.205 0.155 0.041 0.110 0.111 0.122 Mean(abs) 0.529 0.147 0.043 0.213 0.243 0.219

Table 2.4: Inner Paths Coefficients RBias, StD and RMSE, for σζ1 =
√

0.05
and σζ1 =

√
.5, and low inter-correlation level (ρ = .2)

Overall, our simulation results confirm that PLS estimators lack the parameter ac-

curacy of ML estimators, and this bias is manifested in overestimating the loadings

and underestimating the path coefficients, and the larger the disturbance variance

the bigger the bias. On the contrary, PLS generally produces estimates with lower

variability compared to those obtained using ML estimation method3.

In order to provide researchers with some guidelines when having to choose be-

tween ML-SEM and PLS-PM to estimate formative blocks in SEM, we can take

into account the RMSE of the estimates. In keeping with the results we ob-

tained, we think that for a quite high inter-correlation level among formative MVs

(ρ= 0.6), researchers should prefer PLS-PM rather than ML-SEM, regardless of

the disturbance variance. For low inter-correlation levels among formative MVs

the decision depends on the magnitude of the disturbance variance. When σ2
ζ1

is

3We do not show the results for the outer loadings in the reflective blocks and for the path
coefficients not connected to π1 because they showed no interesting findings. Confirming the
expectation, we found that PLS estimates present systematically more bias and lower variability
compared to those obtained using ML estimation, regardless of the experimental conditions.
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small, PLS-PM performs slightly better compared to ML-SEM. On the contrary,

as the disturbance variance increases ML-SEM outperforms PLS-PM. Hence, in

the latter case, researchers should prefer ML-SEM rather than PLS-PM.

2.5 Conclusion and Future Research

Measurement model misspecification may yield severe effects especially on the ML-

SEM parameter estimates. Therefore, it is important to understand the effects of

including formative blocks in SEM.

This study attempted to give some insight into this issue, comparing the bias and

the variability of the ML-SEM estimates with those of the PLS-PM in the same

simulation study.

For a model with a correctly specified formative block, we found that the inter-

correlation level among formative MVs and the magnitude of the disturbance

variance in the formative block have evident effects on the bias and the variability

of the estimates.

In order to merge the information on the bias to the information on the variabil-

ity of the estimates, we computed the RMSE of the estimates. In terms of the

Mean Square Error of the estimates, we found that for high inter-correlation levels

among formative MVs, PLS-PM outperforms ML-SEM, regardless of the magni-

tude of disturbance variance. For low inter-correlation levels the performance of

the two methods depends on the magnitude of the disturbance variance. When

the disturbance variance is small, PLS-PM performs slightly better compared to

ML-SEM. On the contrary, as the disturbance variance increases ML-SEM out-

performs PLS-PM.

Different levels of complexity of the inner model were also included in this study.

When the values of the population parameters were kept constant the complexity

of the inner model did not have any effect on the estimates. On the contrary,

the bias and the variability of the estimates were sensitive for different population

parameter values. Since in a simulation study the value of the parameters should

reflect values commonly encountered in applied research, we think that it would be

interesting to run simulation studies considering other well-established models (like

the ECSI model), where measurement model misspecification frequently occurs.



Chapter 2. Formative Versus Reflective Measurement Models: Comparing ML
and PLS Estimates 49

Different model specifications can also be considered including an endogenous

formatively-measured LV.

Besides the descriptive statistics that we used to summarize and present the sim-

ulation results, inferential statistics can be used as well. For example, the experi-

mental conditions can be dummy or effect coded, and main effects and interactions

among experimental conditions can be evaluated using standard regression proce-

dures.

Finally, we think that it would also be interesting to look further into the issue of

multicollinearity among formative MVs.



Chapter 3

Non-Symmetrical

Component-based Path Modeling

3.1 Introduction

PLS-PM is a method aimed at modeling a network of linear dependence rela-

tionships between blocks of variables where each block is summarized by a LV

(Tenenhaus et al., 2005).

In order to respect the directions of the structural relationships specified in the

Path diagram (i.e. the path directions), the estimation process should implicitly

assume that there is a network of dependence relationships among LVs. However,

it is known that PLS-PM presents some inconsistencies in terms of coherence with

the direction of the relationships specified in the path diagram.

The directions of the links in the structural model do not play a role in the algo-

rithm apart from the specific case of the so-called path weighting scheme for the

inner estimation (Tenenhaus et al., 2005).

In the inner step of the PLS-PM algorithm, each LV is defined as a linear com-

bination of all the connected LVs. Two LVs are connected if there exists a link

between the two blocks: an arrow goes from one LV to the other in the Path

diagram, independently of the direction. In the path weighting scheme, the path

direction is taken into account only in the way the inner weights are computed,

but each LV is still defined in the inner step of the algorithm as a function of all

the connected LVs.

50
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PLS-PM provides components that are as much correlated as possible to each

other while being somehow representative of each corresponding block of MVs. In

the search for optimally correlated components, the estimation process amplifies

interdependence among blocks and misses to distinguish between dependent and

explanatory blocks in the structural model.

As a consequence, there is often a difference between what PLS-PM wants to

model and what is actually computed by the PLS-PM algorithm.

We will first illustrate this inconsistency of PLS-PM by using a simple model, the

case of two blocks of variables. For the case of more than two blocks of variables,

we will look at the different criteria optimized by PLS-PM in order to show this

issue.

The role of the LVs in the structural model depends on the way the outer weights

are calculated. The only way for giving an explanatory role to a LV is to apply

Mode B, while applying Mode A gives a role of dependent variable, whatever the

path direction is (Dolce et al., 2015). However, in the case of more then two blocks,

we cannot apply this rule (i.e., Mode B to the exogenous block and Mode A to the

endogenous block), since some endogenous LVs appear only as dependent variable

LVs, but others appear as both explanatory and dependent LVs. We defined the

latter as “Bridge” LVs.

In this chapter, we propose a more suitable non-symmetrical approach that aims

at maximizing the explained variance of the MVs in one block given the others,

i.e. a new approach based on the optimization of a redundancy-related criterion

in a multi-block framework.

In this new approach, the distinction between reflective and formative measure-

ment model is disregarded. The nature of LVs and the direction of relationships

between LVs and MVs is not taken into account. On the contrary, it is placed great

emphasis on the dependence relationships between LVs in the structural model.

We only make a distinction between explanatory blocks and dependent blocks in

the structural model. Bridge blocks are considered as explanatory when they play

an explanatory role in the particular step of the algorithm, and as dependents

when play a dependent role.
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In order to assess the quality and validity of results, we provide a new goodness-

of-fit index based on redundancy criterion and prediction capability together with

a classical bootstrap-based inferential approach.

Finally, we show the functioning of the proposed algorithm (implemented in a R

code) through a simulation study.

The performance of the proposed method in terms of explained vatiability, pre-

dictiveness and interpretation is compared to classical PLSPM as well as to other

component-based methods such as Regularized Generalized Canonical Correlation

Analysis (Tenenhaus and Tenenhaus, 2011) and Generalized Structured Compo-

nent Analysis (Hwang and Takane, 2004) using artificial data.

3.2 Dependence and Interdependence Relation-

ships Between Blocks

The problem of finding quantitative relationships between groups of variables is

central in multivariate analysis.

Multivariate techniques can be categorized as either interdependence or depen-

dence techniques.

Interdependence techniques involve the simultaneous analysis of the relationships

among variables in the data set, where variables are not classified as either depen-

dent or explanatory. In the situations where we discard the fact that one block is

the predictor and the other the criteria block, the direction of the relationship be-

tween the two blocks of variables is symmetrical, and the appropriate multivariate

method in this case should predictive in both way, X1 →X2 and X2 →X1.

With dependence technique it is applied a non symmetrical analysis that takes

into account a priori information on the different roles of the variables or sets of

variables (Lauro and D’Ambra, 1984). The asymmetry is focused on the direc-

tional analysis in terms of dependence between the variables. A single variable or a

set of variables is identified as the dependent variable to be explained or predicted

by other variables known as explanatory or independent variables, and the analy-

sis focus on deriving those combinations of predictors which explain most of the

variation in the set of dependent variables. The aim is to develop a quantitative
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relationship between a predictor matrix X1 and a response matrix X2, that is,

the predictive direction of the relationship between the two blocks of variables is

asymmetrical, X1 →X2.

The difference between the two techniques is, in fact, very much related to the

classical issue of defining correlation versus regression.

In the case of two blocks of variables, canonical correlation analysis (CCA) (Hotelling,

1935, 1936) is one of the most commonly multivariate methods used when the aim

of the analysis is to study the symmetrical relationship between two sets of vari-

ables.

CCA predicts the “most predictable criterion”, which is a purely mathematical

criterion and not something that it is determined by the researcher to be worth

predicting for substantive reasons (Lohmöller, 1989). Hence, in CCA both blocks

are treated in the same way and there is no distinction between predictor and cri-

teria block. Weights for the set of variables X1 and for the set of variables X2 are

chosen simultaneously to maximize the correlation between pairs of components

(i.e., linear combinations of the original variables, one in each set), the component

of X1 and the component of X2.

The problems with canonical correlation relate at least partly to the fact that

the linear combinations derived might explain only very little of the variation in

the original sets of variables. Furthermore, the correlations between canonical

components cannot be interpreted as the degree of relation between the sets of

variables. In particular, the squared canonical correlations represent the variance

shared by the two canonical components of the same pair but not the variance

shared by the two sets of observed variables. Two components might correlate

very highly, while the explained variance of the variables is very low, which can

lead to difficulties in interpretation.

To overcome the difficulty in using the squared canonical correlations as a measure

of the shared variance between the two sets, a non-symmetric redundancy index

was proposed by Stewart and (Stewart and Love, 1968). Based on Stewart and

Love (1968) index, Wollenberg (1977) proposed an alternative method to CCA,

which he refers to as redundancy analysis (RA), that maximizes the redundancy

index.
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Given two groups of variables RA searches for linear combinations of variables in

one group that maximizes the variance of the other group explained by the linear

combination. In RA the two blocks are not treated in the same way, one block is

the predictor and the other the criteria block.

3.3 PLS-PM incoherence with Path Directions

There is often a difference between what PLS-PM wants to model (the hypothe-

sized model depicted in the path diagram) and what is actually computed by the

PLS-PM algorithm.

Generally, the directions of the links in the structural model do not play a role in

the algorithm, as a consequence it misses to distinguish between dependent and

explanatory LVs.

We first illustrate this issue by using a simple model, the case of two blocks of

variables. For the case of more than two blocks of variables, a closer look at the

different criteria optimized by PLS-PM will confirm the inconsistency in terms of

coherence with the direction of the relationships specified in the path diagram.

3.3.1 PLS-PM Solutions for a Two-Block Model

In a simple hypothetical two-block model, each block of variables is felt to capture

an underlying construct represented by a LV. An hypothetical two-block model

(and in general all the path models with more than two blocks) can be represented

by drawing a picture of it, the so-called Path Diagram. The Path Diagram provides

a graphical representation of the relationships between LVs and between MVs

and LVs, with the special property that they can be translated into a system of

simultaneous equations.

Figure 3.1 presents the most commonly used graphical notation for the represen-

tation in Structural equation modeling.

Specifically, ellipses or circles represent the LVs and rectangles or squares refer to

the MVs. Arrows show relatioships among the variables (either latent or manifest),
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Figure 3.1: Commonly used graphical notation in Structural Equation
modeling

and the direction of the arrow define the direction of the relation, i.e. variables

receiving the array are to be considered as dependent variables in the specific

relationship. Recursive relation means no reciprocal causation or feedback loops

between variables. Nonrecursive relation, on the contrary, means reciprocal cau-

sation or feedback loops between variables.

As said above, PLS-PM does not rigidly adhere to an underlying theoretical model

depicted in the path diagram Chin (1998), and there is often a difference between

what PLS-PM wants to model and what is actually computed by the PLS-PM

algorithm.

In the case of two blocks of variables, X1 and X2, the PLS-PM algorithm con-

verges to three different stationary equations, depending on the way the outer

weights are calculated.

As Chin (1998) stated “when modeling path diagrams, it is important to con-

sider the path relations among constructs as well as between constructs and their

respective indicators”.

Figure 3.2 depicts a path diagram of two-block model with four MVs per block 1.

In this example the hypothesized relationship between the two LVs in the struc-

tural model is asymmetrical, predictive direction is from ξ1 to ξ2, that is, ξ1 is

the predictor LV and ξ1 is the dependent LV. This suggests that the aim of the

analysis is to seek a quantitative dependence relationship between the two blocks

1Path diagram generally shows the relations between all variables, including disturbances and
measurement errors. However, in this case we do not consider disturbances and measurement
errors since we shall focus on the relationships between LVs and between MVs and LVs
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Figure 3.2: Two-block model with outwards directed scheme

of variables, in order to predict ξ2 from ξ1. As for the measurement model, both

blocks are defined as outwards directed (Lohmöller, 1989) or reflective (Fornell

and Bookstein, 1982), since the MVs are considered as being caused by the corre-

sponding LV: variation in LV yields variation in MVs.

The PLS-PM literature has long suggested that the MVs weights in block defined

as outwards directed are to be estimated using Mode A (e.g., Chin, 1998; Dolce and

Lauro, 2014; Esposito Vinzi and Russolillo, 2013; Fornell and Bookstein, 1982; Hair

et al., 2011; Henseler et al., 2009). Therefore, for the two-block model depicted

in Figure 3.2, weights are computed by using Mode A, obtaining composites such

that their are able to explain as much variance as possible in their respective

MVs, giving minimum residual variances in the block structure (Wold, 1980). This

model is equivalent to Tucker’s (1958) inter-battery factor analysis (Chin, 1998;

Tenenhaus et al., 2005). As a matter of fact, for this model, PLS-PM algorithm

maximizes the covariance between the two composites, thus predictive direction of

the structural model (i.e, the direction of the relationship in the structural model)

is not explicitly considered in the algorithm.

In order to be coherent between what is depicted in the path diagram and what

PLS-PM actually does, we think that the appropriate path diagram for a two-block

model estimated by using Mode A in both blocks is the one depicted in Figure 3.3.

The predictive direction is in both way, ξ1 → ξ2 and ξ2 → ξ1. PLS-PM algorithm

aims at obtaining composites such that their are able to explain as much variance

as possible in their respective MVs, analyzing and amplifying interdependence

among them. Hence, in this case PLS-PM adheres to the underlying theoretical

model depicted in the path diagram.

Let’s consider now the model in Figure 3.4. The hypothesized relationship between

the two LVs in the structural model is asymmetrical, as the model in Figure 3.2.

The predictive direction is from ξ1 to ξ2, thus ξ1 is the predictor LV and ξ1 is

the dependent LV. Hence, the aim of the analysis should be to seek a quantitative
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Figure 3.3: Two-block model with outwards directed scheme: not oriented
arrows

dependence relationship between the two blocks of variables, for the prediction of

ξ2 from ξ1. In the measurement model, MVs are viewed as causes of a LV (i.e.,

variation in MVs causes variation in LV), the block can be conceptually defined

as inwards directed or formative. In such a case, literature suggests that MVs

weights are to be estimated using Mode B.

Figure 3.4: Two-block model with inwards directed scheme

PLS-PM algorithm using Mode B for both blocks computes the outer weights

optimally in order to maximize the correlation between the two composites, and

no attempt is made to explain the variances of the MVs (Chin, 1998; Tenenhaus

et al., 2005; Wold, 1980). In this case, PLS-PM algorithm does converge to the first

canonical components of canonical correlation analysis of X1 and X2, giving the

first canonical coefficient as the estimated correlation between the two composites.

Even in this case, the directions of the link in the structural model (i.e., the role

of the blocks in the model) are not explicitly considered in the algorithm. The

procedure misses to distinguish between dependent and explanatory blocks in the

model. Blocks are treated in the same way, that is the direction of the relationship

between the two blocks of variables is symmetrical. For this reason, we think that

the coherent path diagram for a two-block PLS path model estimated using Mode

B should consider a predictive direction in both way, ξ1 → ξ2 and ξ2 → ξ1, as the

one depicted in Figure 3.5.
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Figure 3.5: Two-block model with inwards directed scheme: not oriented
arrows

3.3.2 Illogical form of Redundancy Analysis in PLS-PM

As a third case, we consider a two-block model where a block is defined as inwards

directed and the other as outwards directed. In particular, the exogenous block is

specified as formative, while the endogenous block as reflective (see Figure 3.6).

In such a case, in PLS-PM the outer weights of the exogenous LV ξ1 are gener-

ally computing by Mode B, while they are usually computing by Mode A in the

endogenous block. PLS algorithm converges to the same results of the RA of X2

with respect to X1 (Chin, 1998; Tenenhaus et al., 2005; Wollenberg, 1977).

Figure 3.6: Two-block model with inwards and outwards directed scheme:
Redundancy analysis

Redundancy refers to the mean variance in the endogenous block of variables,

being predicted by the exogenous LV, ξ1 (i.e, a linear composite of the MVs of the

block X1).

In this example, the hypothesized relationship between the two LVs in the struc-

tural model is asymmetrical, predictive direction is from ξ1 to ξ2, thus ξ1 is the

predictor LV and ξ1 is the dependent LV. PLS-PM adheres to an underlying

theoretical model, being coherent with what is depicted in the path diagram in

Figure 3.6.

The choice between using Mode A instead of Mode B for the computation of

the outer weights, mainly depends on the theoretical difference between the two

scheme, based essentially on the hypothesized relationships between LVs and their

own MVs (see Chapter 2). Under conditions of low theoretical knowledge on the
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nature of the LVs, a rule of thumb in PLS-PM is to apply Mode B to the exogenous

block and Mode A to the endogenous block (Wold, 1980). However, to the best of

our knowledge, there are hardly any studies in the literature that give reasons for

following this rule and analyze into details this issue.

Dolce and Hanafi (2015) illustrated this issue by using a simple model, the case of

two blocks of variables. The authors showed that Wold (1980) suggestion about

using Mode B to the exogenous block and Mode A to the endogenous block is not

just a rule of thumb. Instead, applying Mode B for the endogenous block does not

make sense in the framework of SEM.

In general, beyond the theoretical differences between the two different measure-

ment model schemes, depending on the way the outer weights are calculated the

role of the LV in the structural model changes. The only way for giving an ex-

planatory role to a LV is to apply Mode B, while applying Mode A gives it a role of

dependent variable, whatever the path direction is. Thus, the predictive direction

in the structural model is given by the utilized outer mode.

The model in Figure 3.7 shows a two-block model where the hypothesized rela-

tionship between the two LVs in the structural model is asymmetrical, predictive

direction is from ξ1 to ξ2, thus ξ1 is the predictor LV and ξ2 is the dependent LV.

Figure 3.7: Two-block model for an illogical form of redundancy analysis in
PLS-PM

However, the exogenous block is specified as reflective (i.e., outwards directed)

and the endogenous block as formative (i.e., inwards directed). Thus, in PLS-PM

the outer weights of the exogenous LV ξ1 are computing by Mode A, while they

are computing by Mode B in the endogenous block. In this case, PLS algorithm

converges to the same results of the RA of X1 with respect to X2 (the predictive

direction is from ξ2 to ξ1, ξ2 → ξ1). As a consequence, PLS-PM does not adhere

to an underlying theoretical model, since it is not coherent with what is depicted

in the path diagram in Figure 3.7. What it is depicted in the path diagram in

Figure 3.7 can be defined as an illogical form of redundancy analysis in PLS-PM.
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As a matter of fact, the only case where PLS-PM adheres to the underlying theoret-

ical two-block model depicted in the path diagram, is for the model in Figure 3.6,

that is, when the exogenous block is specified as formative (and the outer weights

are computed by Mode B), and the endogenous block is specified as reflective (and

the outer weights are computed by Mode A), which is equivalent to performing a

RA of the endogenous block with respect to the exogenous one.

3.3.3 PLS-PM solutions for Multi-Block Models

Recent works by Hanafi (2007), Krämer (2007) and Tenenhaus and Tenenhaus

(2011), proved that the PLS-PM iterative algorithm optimizes different statistical

criteria according to the different options chosen for the computation of the outer

and inner proxies of the components, also for the case of more than two blocks of

variables.

As it was shown in the first chapter, the stationary equations for most of the

specific models obtained by running PLS-PM are known and it is possible to show

that the PLS-PM generalizes many Multivariate Analysis techniques.

For the sake of easy reference, we show again here the different criteria optimized

by PLS-PM.

When all the outer weights are calculated by means of Mode B, Hanafi proved

that the Wold’s PLS-PM algorithm monotonically converges to the the following

criterion

arg max
||Xkwk||2=||Xk′wk′ ||2=1

∑
k 6=k′

ckk′g
(
cor(Xkwk,Xk′wk′)

)
(3.1)

where g is one of the two functions

g(x) =

x2 if factorial

|x| if centroid.

In 2007 Kramer showed that the PLS-PM algorithm was not based on a stationary

equation related to the optimization of a twice differentiable function when Mode

A was used for all the blocks in the model. In the same work, Kramer proposed
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a slight modified version of the classical Mode A outer scheme in which a nor-

malization constraint is put on outer weights rather than latent variable scores.

If this new scheme - also referred as New Mode A by Tenenhaus and Tenenhaus

(2011) - is used for all the blocks in the model, PLS-PM iterative algorithm is

monotonically convergent to the criterion:

arg max
||wk||2=||wk′ ||2=1

∑
k 6=k′

ckk′g
(
cov(Xkwk,Xk′wk′)

)
(3.2)

where g is defined as above.

Looking at the different optimized criteria, it is clear that PLS-PM algorithm does

not focus on directional analysis in terms of dependence relationships between

blocks of variables.

Depending on the chosen estimation modes (for the measurement model) and

schemes (for the inner model), PLS-PM provides composite scores that are as

much correlated as possible to each other while being somehow representative of

each corresponding block of manifest variables. The PLS-PM estimation process

analyzes symmetrical relationships between blocks, thus, it misses to distinguish

between the role of dependent and explanatory blocks in the inner model.

When both new Mode A and Mode B are used in the same model, Wold’s procedure

is shown to converge to the criterion

arg max
wk

∑
k 6=k′

ckk′g
(
cor(Xkwk,Xk′wk′)×

√
var(Xkwk)τk

√
var(Xk′wk′)τk′

)
subject to τk||wk||2 + (1− τq)||Xkwk||2 = 1, k = 1, ..., K.

(3.3)

where τk = 1 when the block k is estimated by new Mode A and τk = 0 when

the block k is estimated by Mode B, ckk′ is the generic element of the Boolean

square matrix C of order K, where ckk′ = 1 if ξk is connected to ξ′k and ckk′ = 0

otherwise (ckk = 0), g(.) is the absolute value or the square function depending on

the option used in the inner estimation step.

In the case of two block of variables, X1 and X2, the redundancy analysis of X2

with respect to X1 maximize the following criterion:
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arg max
w1,w2

cor(X1w1,X2w2)× var(X2w2)
1/2

subject to ||X1w1||2 = ||w2||2 = 1

(3.4)

Looking at Equation 3.4 and Equation 3.3 it is clear that the role of the blocks in

the structural model depends on the way the outer weights are calculated. The

only way for giving an explanatory role to a LV is to apply Mode B, while applying

Mode A gives a role of dependent variable, whatever the path direction is.

However, in the case of more then two blocks, we cannot apply this rule (i.e.,

Mode B to the exogenous block and Mode A to the endogenous block), since some

endogenous LVs appear only as dependent variable LVs, but others appear as both

explanatory and dependent LVs.

3.4 The Proposed Method

We propose a non-symmetrical component-based estimation approach for model-

ing a network of dependence relationships between blocks of variables where each

block is summarized by a LV.

The proposed method, the Non-Symmetrical Component-based Path Modeling

(NSC-PM), is based on the optimization of a redundancy-related criterion, and

it is more suitable for prediction purposes. It aims at maximizing the explained

variance of the MVs in one block given the others. The NSC-PM is applied in a

multiblock framework, where relationships among blocks are specified in a path

diagram.

In the PLS-PM literature, a LV which never appears as a dependent variable is

called as exogenous LV. Otherwise, it is called as endogenous LV. Hence, some

endogenous LV appears only as dependent variable while others appears as both

explanatory and dependent. We defined the latter as “Bridge” LVs.

Taking into account the two roles that Bridge LVs play into the model, in NSC-

PM they are considered as explanatory when they play an explanatory role in the

particular step of the algorithm, and as dependent when play a dependent role.
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The distinction between reflective and formative measurement model is disre-

garded. We only make a distinction between explanatory blocks and dependent

blocks in the structural model.

3.4.1 Model Specification

Let us assume that P variables are collected in a partitioned table of standardized

data X in K blocks:

X = [X1, ...,XJ ,XJ+1, ...,XJ+Q,XJ+Q+1, ...,XK ],

where Xk (k = 1, ..., J) are exogenous blocks, Xk (k = J+1, ..., J+Q) are bridge

blocks and Xk (k = J + Q + 1, ..., K ) are endogenous blocks. We denote by ξk

(k = 1, ..., K) the corresponding components for each block of variables.

As for the PLS-PM, the NSC-PM consists of two sub-models: the structural (or

inner) model and the measurement (or outer) model.

In the inner model a generic endogenous LV - or bridge LV - ξm (m = 1, ...,M)

is linked to corresponding latent predictors by the following multiple regression

model:

ξm = βm0 +
∑
m′→m

βmm′ξm′ + ζm (3.5)

where βmm′ is the so-called path coefficient capturing the effects of the predictor

ξm′ on the dependent component ξm and ζm is the inner residual variable.

In the measurement model each MV xpk is assumed to be generated as a linear

function of its component ξk and its measurement error variable εpk,

xpk = λpk0 + λpkξk + εpk, k = 1, ..., K. (3.6)

where λpk0 is a location parameter and λpk is the loading coefficient.

As a vehicle for the estimation of the model parameters, the components are

estimated as weighted aggregates of their indicators, regardless of the specified

measurement model:
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ξ̂k =

Pk∑
p=1

wkpxpk, k = 1, ..., K. (3.7)

where wkp is the outer weight.

3.4.2 The algorithm

The algorithm for estimating the unknown parameters of the model proceeds in

two stages. The MVs are treated as deviation from their means and have unit

variance.

In the first stage, the outer weight vectors, wk (k = 1, ..., K), are estimated by an

iterative algorithm alternating outer and inner estimation steps, as in PLS-PM.

In this stage we distinguish between explanatory and dependent blocks. As said

above, in a path model there are LVs that play a role of explanatory variables,

LVs that play a role of dependent variables and LVs that play a role of both

explanatory and dependent variables (i.e., bridge LVs).

The NSC-PM iterative procedure consider the bridge blocks as explanatory when

they play an explanatory role in the particular step of the algorithm, and as

dependents when play a dependent role.

In the following, the matrix C = [ckk′ ] denotes a (K,K) binary lower-triangular

matrix, which take into account the link between the latent variables. It is defined

from the conceptual structural design of the model. The elements of the matrix

C are defined as follows: ckk′ = 1 if the LV ξk depends on the LV ξk′ , otherwise

ckk′ = 0. In the algorithm we make use of C and of its transpose C′. The element

of C′ are denoted as c′kk′ .

The matrix Θ = [θkk′ ] denotes a (K,K) matrix defined from the correlation matrix,

R = [r(Xkwk,Xk′wk′)], between the outer approximations of the LVs, Xkwk,

k = 1, ..., K. The matrix Θ is used to compute the inner weights in the inner

estimation step. We consider two options to calculate the inner weights: centroid

scheme and factorial scheme.

If the centroid scheme is applied, θkk′ is equal to the signs of the correlation between

Xkwk and Xk′wk′ . In the factor scheme, θkk′ is simply the correlation between

Xkwk and Xk′wk′ .
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Using the same formulation as in Hanafi (2007), the first stage of the algorithm is

consisted as the following procedure. This procedure is iterate until convergence

of the weight vectors wk (k = 1, ..., K).

A. Initialization

A.1. Choose arbitrary outer weight w̃
(0)
k (k = 1, ..., K)

A.2. Weight normalization such as w
(0)
k =

w̃
(0)
k

‖w̃(0)
k ‖

B. Inner estimation for dependent block Xk, (k = J + 1, ..., J +Q, ...,K)

B.1. For (k′ = 1, ..., J, J + 1, ..., J +Q); (k > k′)

Compute r
(s)
kk′ =

r
(
Xkw

(s)
k ,Xk′w

(s)
k′

)
if 1 < k′ ≤ J

r
(
Xkw

(s)
k ,Xk′w

(s+1)
k′

)
if J < k′ ≤ J +Q

B.2. Compute θkk′ as,

θ
(s)
kk′ = sign(r

(s)
kk′) if centroid weighting scheme

θ
(s)
kk′ = r

(s)
kk′ if factorial weighting scheme

B.3. Compute z
(s)
k =

∑
k′≤J

ckk′θ
s
kk′Xk′w

(s)
k′ +

∑
J<k′<k

ckk′θ
s
kk′Xk′w

(s+1)
k′ .

C. Outer estimation for dependent block Xk, (k = J + 1, ..., J +Q, ...,K)
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C.1. Compute w̃
(s+1)
k = X ′

kZ
(s)
k ,

C.2. Compute w
(s+1)
k =

w̃
(s+1)
k

‖w̃(s+1)
k ‖

D. Inner estimation for explanatory blockXk, (k = J+Q, J+Q−1, ..., J, ..., 1)

D.1. For (k′ = K,K − 1, ..., J +Q, ..., J); (k < k′)

Compute r
(s)
kk′ =

r
(
Xkw

(s+1)
k ,Xk′w

(s+1)
k′

)
if J < k < J +Q

r
(
Xkw

(s)
k ,Xk′w

(s+1)
k′

)
if 1 < k < J

D.2. Compute θkk′ as,

θ
(s)
kk′ = sign(r

(s)
kk′) if centroid weighting scheme

θ
(s)
kk′ = r

(s)
kk′ if factorial weighting scheme

D.3. Compute z
(s)
k =

∑
k′>k

c′kk′θ
s
kk′Xk′w

(s+1)
k′ .

E. Outer estimation for explanatory blockXk, (k = J+Q, J+Q−1, ..., J, ..., 1)

E.1. Compute w̃
(s+1)
k = (X ′

kXk)
−1X ′

kZ
(s)
k ,

E.2. Compute w
(s+1)
k =

√
n

w̃
(s+1)
k

‖Xkw̃
(s+1)
k ‖

The procedure starts by choosing arbitrary normalized outer weight vectors wk

(k = 1, ..., K). Then it updates the outer weights of the LVs that play a dependent

role in the structural model at least in one equation, and subsequently it updates
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the outer weights of the LVs that play explanatory role in the structural model at

least in one equation until convergence of the weights wk (k = 1, ..., K).

Note that the numerical implementations of the algorithm follows the essence of

the multivariate Gauss–Seidel algorithm and, thus, Wold’s original algorithm for

PLSPM (Krämer, 2007). When computing the inner dependent component z
(s)
k

at the iteration (s), it takes the weights from the iteration (s + 1), w
(s+1)
k′ , when

J < k′ ≤ J + Q, and the weights from the iteration (s), w
(s)
k′ , when 1 < k′ ≤ J .

When computing the inner explanatory component z
(s)
k at the iteration (s) it takes

the weights from the iteration (s+ 1), w
(s+1)
k′ , since k′ > k.

In the second stage, components are computed as weighted aggregates of their

indicators:

ξ̂k =

Pk∑
p=1

wkpxpk, k = 1, ..., K. (3.8)

Note that when convergence is achieved, for the exogenous and bridge blocks

the weights wk used for computing the components ξ̂k (k = 1, ..., J, ..., J + Q)

are the ones computed in E.2, while the weights for the endogenous block, wk

(k = J +Q+ 1, ..., K), are the ones computed in C.2.

The loadings are estimated by simple ordinary least squares (OLS) regressions of

the manifest variables xkp on the corresponding estimated component scores ξ̂k.

The path coefficients are estimated through OLS simple or multiple regressions

among the computed components, according to the equation 3.5.

3.4.3 Model Assessment

Like PLS-PM, the assessment of the quality of the NSC-PM results should take

different aspects into account. The quality of the model depends on the goodness

of fit of both the outer and the inner models, as it searches for component scores

that well explain their own blocks while being related to each other as strongly as

possible in accordance with the path diagram.

Moreover, as NSC-PM is based on the maximization of the explained variance

of the MVs of the endogenous blocks, it is of extremely importance that the
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assessment of the quality of the model takes also into account appropriate measures

of predictive ability.

Generally, the measures commonly used in PLS-PM can be used.

As in PLSPM, goodness of the inner model depends on the portion of variability

of each endogenous components explained by the corresponding exogenous predic-

tors, that can be measure by the multiple linear determination coefficient (R2).

As for the measurement model, given that each MV xpk is predicted by the corre-

sponding components ξ̂k:

xpk = λpkξ̂k + εpk (3.9)

it follows that the MVs consist of a systematic part (λpkξ̂k) and a residual part

(εpk). The proportion of the variance of xpk which is reproduced by ξ̂k is equal

to cor2(xpk, ξ̂k) that, in the case of standardize MVs, corresponds to λ̂2pk. This

measures is also called “communality”. If all the MVs are standardized, for each

block k, the average of the communalities is equal to the average variance extracted

(AVE) that expresses the part of variance of the block explained by ξ̂k:

Comk =
1

Pk

Pk∑
p=1

cor2(xpk, ξ̂k) =
1

Pk

Pk∑
p=1

λ̂2pk =

∑Pk
p=1 λ̂

2
pk∑Pk

p=1 var(xpk)
= AV Ek (3.10)

The weighted average of all the K blocks specific communality indexes, with

weights equal to the number of MVs in each block, can be use as a goodness

of fit of the whole measurement model.

In NSC-PM communality index is conceptually appropriate just for the endogenous

blocks.

For the LVs that appear at least in one equation of the structural model as predic-

tors (i.e., exogenous and bridge LVs), MVs do not necessarily measure the same

underlying construct, i.e., they are not supposed to be highly correlated. The com-

ponents of the blocks that appear only as predictors (i.e, the exogenous blocks)

are expected to maximize the explained MVs variance of the related dependent
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blocks. The components of the bridge blocks are expected to maximize the ex-

plained MVs variance of the related dependent blocks while being correlated with

its own predictors LVs.

Moreover, since in the NSC-PM algorithm multiple regressions are applied when

the outer weights are computed for the explanatory LVs, excessive correlations

among MVs is not desired. However, in order to avoid the multicollinearity prob-

lem we proposed a solution (see next Section).

The interpretation of exogenous and bridge components should be based on the

weights. The weights provide information about the direct relation between the

MV and its LV, which reflect the impact of the MVs on its own LV (Bollen, 1989),

and a comparison among them gives information about which MVs contribute

most effectively to the LV. Loadings can also be used for interpretation, bearing

in mind that while the outer weight is a measure of relative contribution of a MV

to its LV, the loading can only be used to evaluate the absolute importance of a

MV to its LV.

On the contrary, MVs of the endogenous blocks are theoretically expected to be

unidimensional and to measure the same construct (i.e., MVs in each block are

supposed to be highly correlated among each other). In this case, multicollinearity

is not an issue as only simple regressions are involved.

The components of the endogenous blocks are expected to be as much correlated

as possible to their predictor LVs, while being somehow representative of each

corresponding block of MVs. The interpretation of endogenous components should

be based on the loadings.

As a measure of the quality of the global model, the goodness-of-fit (GoF) index

proposed by Amato et al. (2005) is not conceptually appropriate for measuring the

global quality of NSC-PM. As a matter of fact, Gof index, as proposed by Amato

et al. (2005), is computed as the geometric mean of the average communality and

the average R2 of the M linear determination coefficients:

GoF =
√
Com×R2 (3.11)
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Thus, GoF index is partly based on average communality, as a consequence is

conceptually appropriate only for the endogenous blocks. For this reason, we

cannot use Gof index in NSC-PM.

A way of assessing the global model in NSC-PM may be measuring the amount

of variance in the sets of variables of the dependent blocks explained by their

own latent predictors. In this direction, we can use the redundancy index which

measures the portion of variability of dependent block of MVs explained by its

own predictors.

Given two blocks of variables, X1 = (x11, ...,xP11) and X2 = (x12, ...,xP22), re-

dundancy index as proposed by Stewart and Love (1968) measures the proportion

of the variance in the dependent set X2 that is accounted for by the predictor set

X1. The redundancy analysis model, proposed by Wollenberg (1977), searches for

the linear combination, ξ̂1 = X1w1 (the so-called first redundancy variate), that

maximizes the redundancy index, RX2 , defined as

RX2 =

P2∑
p=1

corr(ξ̂1,xp2)
2/P2 (3.12)

under the restriction that the variance of ξ̂1 = 1.

In the context of canonical correlation analysis (Hotelling, 1935, 1936), the redun-

dancy index (Equation 3.12) can be written as:

RX2 = ρ2
P2∑
p=1

corr(ξ̂2,xp2)
2/P2 (3.13)

where ρ is the canonical correlation coefficient and ξ2 = X2w̃2 is the first canonical

component of X2 (Rencher, 1998).

For each endogenous block, in PLS-PM the redundancy index is computed as

following,

Redk = Comk ×R2
k. (3.14)
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where Comk is the average of the communalities in the kth block and R2
k is multiple

linear determination coefficient in the regression model of ξ̂q on its own predictor

LVs.

Looking at the redundancy index from the two different perspectives, it is clear

that in PLS-PM the redundancy index is computed as in the context of CCA.

Since NSC-PM aims at maximizing the explained variance of the MVs in one block

given the other (i.e., a redundancy-related criterion in a multi-block framework),

as a redundancy measure in NSC-PM we propose to computed for each MVs of

the endogenous and bridge blocks, the portion of its variability explained by its

own predictors represented by the explanatory components as:

Redxpk = R2(xpk, {ξ̂
′
k′s explaining ξ̂k} (3.15)

that is, as in the context of RA.

For a block k, the redundancy index is defined as

Redk =

Pk∑
p=1

Redxpk (3.16)

Lohmöller gives some advice on evaluating the quality of the model, and it stated

that the fit of the global model (outer and inner model) can be judged as satisfac-

tory if the average of the redundancy indexes is high enough. Thus, he considered

the redundancy index as an index of Goodness of fit of the global model.

In this perspective, we propose as a global goodness of prediction fit the average

of all the Redxpk , as it is based on redundancy criterion and prediction capability.

If we denote by P̃ the number of MVs of the bridge and endogenous blocks, the

global goodness of prediction fit is defined as

Red =
1

P̃

K∑
k=J+1

Pk ×Redk (3.17)

Just as with canonical correlations, no generally accepted guidelines have been

established for the minimum acceptable redundancy index needed to judge a fit of
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the model as satisfactory. The researcher must judge the specific research problem

being investigated to determine whether the redundancy index is sufficient to

justify interpretation.

Model validation regards also the way relations are modeled, in both the structural

and the measurement model. In these regards, since NSC-PM does not require

any distributional hypothesis on MVs, confidence intervals for model parameters

can be obtained by resampling techniques, such as Jackknife and Bootstrap.

NSC-PM is a method for predictive purposes, and could be an important technique

deserving a prominent place in research applications when the aims of the analysis

is prediction.

For these reasons, NSC-PM evaluation cannot focus only on parameter recovery

and on the quality of the measurement model and the structural model - in terms

of explained variance - indiscriminately.

In order to evaluate the model in terms of predictive ability the so-called Blind-

folding procedure, using the Stone-Geisser’s approach to crossvalidation, can be

used (Chin, 1998; Geisser, 1975; Stone, 1974) (see Chapter 1).

3.4.4 A solution to the issue of Multicollinearity

As it is shown above, in the NSC-PM algorithm multiple regressions are applied

when the outer weights are computed for the explanatory LVs. As a consequence,

the stability of the MV outer weights are affected by the strength of the MV

intercorrelations. For this reason, multicollinearity should be an important issue

to take into account also in NSC-PM.

For the LVs that appear only as dependent variables in the structural model,

multicollinearity is not an issue because only simple regressions are involved, and

theoretically it is desired.

Excessive multicollinearity among MVs of explanatory LVs makes it difficult to

separate the distinct influence of the individual MV on the LV or else the outer

weights may be non-interpretable, having incoherent signs with the correlation

with the corresponding LV.
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A possible way to check for multicollinearity in a block of variables is computing the

“tolerance” of each MV as 1−R2, where the R2 is the coefficient of determination

for the regression of the the specific MV on the other MVs of the block (see

Chapter 1). A measure related to the tolerance is the Variance Inflation Factor

(VIF), computed as the inverse of the tolerance (V IF = 1/TOL) (Hair et al.,

2010). A large VIF value indicates a high standard error of the specific weight due

to multicollinearity among the MVs.

As a rule of thumb, the VIF should not exceed a value of 10, but, particularly when

samples size is small, the critical value may be smaller then 10 (Hair et al., 2010).

In general, the critical value should be defined considering the specific analysis

objectives.

As a preliminary analysis to NSC-PM, multicollinearity is checked in the blocks

that appear as explanatory at least in one equation of the structural model.

If excessive multicollinearity occurs in a block, we extract fewer principal com-

ponents obtained by principal component analysis (PCA) on the specific block of

variables, and then we use them instead of the original variables in the outer esti-

mation step when the blocks play an explanatory role. In particular, it is applied a

multiple regression of the instrumental inner composite zk on the extracted princi-

pal components and then the outer composite is computed as weighted aggregates

of the principal components.

A drawback of this procedure is that PCA creates components to explain the

observed variability in the MVs, without considering at all the relationships of

this variables with the MVs of the dependent blocks.

An alternative approach could be similar to the one proposed by Esposito Vinzi

et al. (2010b) in the PLS-PM algorithm, i.e., providing PLS regression for esti-

mating the outer weights as an alternative to OLS regression. As it is well known,

PLS regression does take into account the relationships of the explanatory MVs

with the response MVs.
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3.5 A Comparison with other Component-based

approaches

Among the component-based methods for SEM, PLS-PM is the most utilized

(Wold, 1982). However, more recently two component-based methods have been

presented as alternative approaches for the analysis of multi-block data.

Hwang and Takane (2004) have proposed a new full information method opti-

mizing a global criterion and named Generalized Structured Component Analysis

(GSCA). GSCA can be considered as a generalisation of principal component anal-

ysis to the case of several data tables connected by causal links.

More recently, Tenenhaus and Tenenhaus (2011) have presented a Regularized

Generalized Canonical Correlation Analysis (RGCCA) as a new approach to mul-

tiple table analysis via a modified PLS-PM algorithm.

In this Section we compare the performance of the proposed method in terms of

explained vatiability, predictiveness and interpretation to the classical PLS-PM as

well as to the RGCCA and GSCA using artificial data.

Each component-based method considered in this simulation study optimizes a

criterion and, obviously, it is the best method if we want to optimize this specific

criterion. For this reason, the comparison in the simulation study is not made to

show which method performs better, but rather to demonstrate how each method

behaves in the particular case considered in the simulation study, and respect to

the criterion that we are concerned.

3.5.1 Other Component-based approaches for multi-block

data

In 2004 Hwang and Takane proposed the (GSCA) as an alternative to PLS-PM

(Hwang and Takane, 2004). GSCA used a formulation similar to SEM even if the

LVs are defined as weighted components of the MVs.

GSCA positions itself clearly as a component-based approach by defining a LV as

a component from the stage of model specification.

The general models involves three sub-models:
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• Measurement model: Z = Cγ + ε

• Structural model: γ = Bγ + ζ

• Weighted relation: γ = Wζ

and combines the sub-models into a single one:

[
z

γ

]
=

[
C

B

]
γ+

[
ε

ζ

]
[

I

W

]
z =

[
C

B

]
Wz+

[
ε

ζ

]

Vz = AWz + e (3.18)

The unknown parameters of GSCA are estimated such that the sum of squares of

the residuals ei is as small as possible.

The single least-squares criterion to be minimized is the following:

Φ =
N∑
i=1

(Vzi −AWzi)
′(Vzi −AWzi) (3.19)

More recently Tenenhaus and Tenenhaus (2011) proposed a new method, the

RGCCA which is also used for analyzing relationship between blocks MVs. How-

ever, RGCCA is based on a monotonically convergent iterative algorithm and rely

on an explicit optimization problem.

In RGCCA a continuum is built between the covariance criterion (new Mode A)

and the correlation criterion (Mode B) (see Chapter 1) by means of the tuning pa-

rameter 0 ≤ τ ≤ 1, called shrinkage constant (see equation 4). Indeed, Tenenhaus

and Tenenhaus (2011) have proved that fixing the tuning parameter to zero (i.e.

using standardized LV scores) leads to criteria based on maximizing correlations

among adjacent LVs while fixing the tuning parameter to one (i.e. using outer

weights with unitary variance) leads to criteria based on maximizing covariances

among adjacent LVs.
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In the case of 0 < τ < 1, called mode Ridge, the determination of the shrinkage

constant can be also computed optimally by using the analytical formula proposed

by Scháfer and Strimmer (2005).

As already showed in Equation 3.3, the RGCCA optimization problem is :

arg max
wk

∑
k 6=k′

ckk′g
(
cor(Xkwk,Xk′wk′)×

√
var(Xkwk)τq

√
var(Xk′wk′)τk′

)
subject to τk||wk||2 + (1− τk)||Xkwk||2 = 1, k = 1, ..., K.

(3.20)

τk = 1 when the block k is estimated by new Mode A and τk = 0 when the block

k is estimated by Mode B.

Equation 3.20 is very interesting from the theoretical point of view and with the

introduction of the New Mode A PLS-PM seems to be an heuristic approach only

when the path weighting scheme is used (Esposito Vinzi and Russolillo, 2013).

However, it is not clear how users should interpret results obtained using a tuning

parameter different from 0 or 1 that yields a method maximizing a mixture of

correlations and covariances among adjacent LVs.

3.5.2 Design of the Simulation Study

In order to show the functioning and the performance of NSC-PM in terms of ex-

plained variability, predictiveness and interpretation, we compare it to the classical

PLSPM, RGCCA and GSCA, in the framework of the same simulation design.

The reference model is the one depicted in Figure 3.8.

In the case of strong correlation within-blocks, the results of the most component-

based methods are quite similar, because of the strength of the correlations. The

same happens for the NSC-PM: the results are almost the same of the PLS-PM

ones when correlation within-blocks is high.

For this reason, in order to understand the proprieties of the different component-

based methods, the blocks are contaminated.
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Figure 3.8: Theoretical Model for Simulated Data

In the case of two blocks of variables, when there are two variables, one in each set,

which are not characteristic for the whole set, but yet highly correlated with each

other, CCA may yields highly correlated, but unimportant components (i.e, the

mean explained variance in each block is low). RA could overcome this problem as

in the maximization problem it takes into account the variance of the dependent

block as well as the correlation between the two components.

In this direction, we contamination the three blocks of variables in the model as

following. Three MVs, one in each set, are not characteristic for the whole set,

but yet highly correlated among each other. In particular, the variable x4 and the

variable x8 are not highly correlated with the variables of their own blocks, but

instead are both more correlated with the variable x12 (see Figure 3.8).

The mean of the correlations between the three related variables in each block is

equal to 0.6. By including the fourth contaminating variable in each block we get

a mean correlation level within-blocks equal to 0.35. However, in each block the

Cronbach’s α is about 0.7, only the first eigenvalue is greater than 1, while the

second one is slightly less than 1. Hence, this is an extreme situation where the

blocks of variables are generally considered as consistent and unidimensional.
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3.5.3 Data Generation and Simulation Results

The data generation process and the subsequent analysis are conducted by EQS

for Windows and R. Data are draw from a multivariate distribution with a pre-

specified covariance matrix.

We generate 500 Monte Carlo samples for six different levels of correlation averages

between-blocks (ρ̄ = 0.05, 0.10, 0.15, 0.2, 0.25, 0.30), to understand also the effects

of different strengths of relationships between blocks.

In order to compare the performance of the different methods, we use three com-

monly reported measures (communality, redundancy and R2) as well as the dis-

tribution of the path coefficient estimates represented by box plots.

We compare the NSC-PM with the PLS-PM, applying first Mode B for the three

blocks - we refer this model as PLS-PM(B,B,B) - then for the three blocks we

apply Mode A - PLS-PM(A,A,A). As for the comparison between NSC-PM and

RGCCA, we do not consider the results of the RGCCA setting τ = 0 for the

three blocks - referred as RGCCA(0,0,0) - and τ = 1 - referred as RGCCA(1,1,1),

as they are very similar to the PLS-PM(B,B,B) results and the PLS-PM(A,A,A)

results, respectively. More interesting is the comparison between NSC-PM and

RGCCA(0,0.5,1) - RGCCA setting the value of τ = 0 for the exogenous block,

τ = 0.5 for the bridge block and τ = 1 for the endogenous block - and between

NSC-PM and RGCCA(ridge mode) - RGCCA determining the shrinkage constants

by using the Scháfer and Strimmer (2005) formula. Finally NSC-PM is compared

to GSCA.

For the sake of simplicity we show only the results for correlation averages between-

blocks equal to 0.15, the conditions that represent a middle ground between the

case of very low correlation between blocks (ρ̄ = 0.05) and the case of high corre-

lations between blocks (ρ̄ = 0.3). Showing the results for all levels of correlation

average between-blocks would be redundant, since they showed no more findings

and the results for one specific level of correlation average can be generalize for

the all correlation levels.

Figure 3.9 reports the communalities of each MVs, for the PLS-PM(B,B,B) and

the NSC-PM, when the correlation averages between-blocks is equal to 0.15.
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Figure 3.9: Communalities in PLS-PM(B,B,B) and NSC-PM

When all the outer weights are calculated by means of Mode B, PLS-PM maximizes

correlations between components (see Formula 3.1). In the search for optimally

correlated LV scores, PLS-PM(B,B,B) components explain better the MVs x4, x8

and x12, since they are highly correlated among each others. On the contrary,

NSC-PM takes into account also the explained variance of the dependent block.

As a consequence, NSC-PM explains on average more of the variations in the

original variables compared to the PLS-PM.

In order to measure the the explained variance of the dependent MVs by the ex-

planatory components, we computed the redundancies of the MVs of the endoge-

nous and bridge blocks. As it is shown in Figure 3.10, on average the explained

variance of the dependent MVs in one block given the others is larger in NSC-PM.

As for of the portion of variability of each endogenous component explained by

the corresponding exogenous predictors, we computed the R2 in the structural

model. As expected the R2 is higher in PLS-PM(B,B,B) in both regression models

of the structural model (see Figure 3.11), since the PLS-PM(B,B,B) maximizes

correlations between components.

Finally, we compare the distributions of the path coefficient estimates represented

by box plots (see Figure 3.12). Path coefficient estimates of PLS-PM(B,B,B) are

higher as compared to the NSC-PM ones. In terms of variability of estimates, the

two methods perform similarly.
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Figure 3.10: Redundancies in PLS-PM(B,B,B) and NSC-PM

Figure 3.11: R2 of the structural model in PLS-PM(B,B,B) and NSC-PM

To sum up, PLS-PM(B,B,B) provide highly correlated, but less important com-

ponents compared to the NSC-PM ones. This can also lead to difficulties in the

interpretation on the results.

The performance of the NSC-PM is then compared with the performance of the

PLS-PM(A,A,A).

Figure 3.13 reports the communalities of each MVs, for the PLS-PM(A,A,A) and

the NSC-PM, when the correlation averages between-blocks is equal to 0.15.
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(a) (b)

Figure 3.12: Distributions of path coefficient estimates

When all the outer weights are calculated by means of Mode A, PLS-PM algo-

rithm is not based on a stationary equation related to the optimization of a twice

differentiable function (Krämer, 2007). However, for the slight modified version of

the classical Mode A, the so-called New Mode A, PLS-PM maximizes covariancec

between components (see Formula 3.2), thus it takes into account the variances of

the blocks as well as the correlation between components.

Figure 3.13: Communalities in PLS-PM(A,A,A) and NSC-PM

On average PLS-PM(A,A,A) explains more of the variations in the original vari-

ables compared to the NSC-PM. However, PLS-PM(A,A,A) components explain



Chapter 3. Non-Symmetrical Component-based Path Modeling 82

much less the MVs x4, x8 and x12. Hence, it may lose in prediction capability as

these MVs are important for prediction being highly correlated among each other

Figure 3.14: Redundancies in PLS-PM(A,A,A) and NSC-PM

Even if PLS-PM(A,A,A) explains on average more of the variations in the original

variables compared to the NSC-PM, the explained variance of the endogenous and

bridge blocks by the explanatory components is larger in NSC-PM.

Figure 3.15 reports the R2 of the regression models in the structural model for

both PLS-PM(A,A,A) and NSC-PM. The portion of variability of each endogenous

component explained by the corresponding exogenous predictors, is higher in NSC-

PM.

Finally, the distributions of the path coefficient estimates is represented in Fig-

ure 3.16). Path coefficient estimates of NSC-PM are higher as compared to the

PLS-PM ones, while there is no evident difference in terms of variability of the

estimates.

To sum up, in this case, PLS-PM(A,A,A) favours too much stability with respect

to correlation, compared to the NSC-PM.

Let consider now the comparison between the NSC-PM and the RGCCA. Firstly

we compare the NSC-PM with the RGCCA determining the shrinkage constants

(τ) by using the Scháfer and Strimmer (2005) formula - RGCCA(ridge mode). The

optimal shrinkage parameters estimated by RGCCA are τ = 0.028, 0.028, 0.028.
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Figure 3.15: R2 of the structural model in PLS-PM(B,B,B) and NSC-PM

(a) (b)

Figure 3.16: Distributions of path coefficient estimates

Figure 3.17 reports the communalities of each MVs, for the RGCCA(ridge mode)

and the NSC-PM, when the correlation averages between-blocks is equal to 0.15.

Since in this case the optimal shrinkage parameters estimated by RGCCA are

τ = 0.028, 0.028, 0.028, it is expected to have results similar to the PLS-PM(B,B,B)

ones2

2As said above, fixing the value of τ equal to zero leads to criteria based on maximizing
correlations among adjacent LVs, as in PLS-PM(B,B,B)
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Figure 3.17: Communalities in RGCCA(ridge mode) and NSC-PM

In the search for optimally correlated LV scores, RGCCA(ridge mode) components

explain better the MVs x4, x8 and x12, since they are highly correlated among

each others. NSC-PM explains on average more of the variations in the original

variables compared to the RGCCA(ridge mode).

As it is shown in Figure 3.18, on average the explained variance of the dependent

MVs by the explanatory components is larger in NSC-PM.

Figure 3.18: Redundancies in RGCCA(ridge mode) and NSC-PM

As expected the R2 is higher in RGCCA(ridge mode) in both regression models of

the structural model (see Figure 3.19), since the RGCCA(ridge mode) maximizes

correlations between components.
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Figure 3.19: R2 of the structural model in RGCCA(ridge mode) and NSC-PM

Let us compare now the NSC-PM with the RGCCA, setting the value of τ = 0 for

the exogenous block, τ = 0.5 for the bridge block and τ = 1 for the endogenous

block - RGCCA(0,0.5,1).

Figure 3.20 reports the communalities of each MVs, for the RGCCA(0,0.5,1) and

the NSC-PM, when the correlation averages between-blocks is equal to 0.15.

Figure 3.20: Communalities in RGCCA(0,0.5,1) and NSC-PM

RGCCA(0,.5,1) communalities are very similar to the NSC-PM ones. The same

happens for the redundancy indices (see Figure 3.21) and for the R2 (see Fig-

ure 3.22).
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Figure 3.21: Redundancies in RGCCA(0,0.5,1) and NSC-PM

Figure 3.22: R2 of the structural model in RGCCA(0,0.5,1) and NSC-PM

This similarity between RGCCA(0,0.5,1) results and NSC-PM results is not sur-

prising, if one recall what said above about the dependence of the LVs role on the

way the outer weights are computing in PLS-PM. To give a role of explanatory

variable to an exogenous LV, outer weights are to be computed applying Mode B

(that corresponds to fix the value of τ = 0 in RGCCA). On the contrary, outer

weights of endogenous LVs are to be computed applying Mode A - or new Mode

A (that corresponds to fix the value of τ = 1 in RGCCA) to give them a role of

dependent variables. In the case of more then two blocks, we cannot apply this
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rule for all blocks of variables since some LVs appear as both explanatory and de-

pendent LVs (the bridge blocks). Setting the value of τ = 0.5 for the bridge blocks

might be a valuable alternative to our approach. Clearly, further investigation are

needed on this argument.

Finally, we compare the NSC-PM with the GSCA.

As it is shown in Figure 3.23, GSCA explains on average more of the variations in

the original variables compared to the NSC-PM. However, GSCA components do

not explain the MVs x4, x8 and x12, being the commulalities for these MVs close

to zero.

Figure 3.23: Communalities in GSCA and NSC-PM

As a consequence, the portion of variability of each endogenous component ex-

plained by the corresponding exogenous predictors is higher in NSC-PM compared

to the GCSA in both regression models of the structural model (see Figure 3.24).

In this simulation study, GSCA seems to favour too much stability with respect

to correlation. GSCA components explain much variations in their own blocks of

MVs but the correlations between components are very low. GSCA is the method

that favours the more stability in the blocks of variables compared to the other

component-based methods, even more than PLSPM (A,A,A).
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Figure 3.24: R2 of the structural model in GSCA and NSC-PM

3.6 Conclusion

NSC-PM is a non-symmetrical approach that aims at maximizing the explained

variance of the MVs of the endogenous and bridge blocks ( i.e. an approach based

on the optimization of a redundancy-related criterion in a multi-block framework).

The proposed method respects the direction of the relationship specified in the

Path diagram (i.e. the path directions), since the directions of the links in the

inner model play a role in the algorithm. In particular, bridge LVs (i.e., LVs

that appear as both explanatory and dependent LVs in the structural model) are

considered as explanatory when they play an explanatory role in the particular

step of the algorithm, and as dependent when they play a dependent role.

Compared to the other component-based methods, NSC-PM seems to be a good

compromise between favouring stability (high explained variance) in the blocks

and correlation between components.

The NSC-PM components of the blocks that appear only as predictors (i.e, the

exogenous blocks) are simultaneously stables (i.e., they explain much of variability

in their own blocks) and explain as much as possible the variance of the MVs of the

related dependent blocks. The components of the bridge blocks explain as much

as possible the variance of the MVs of the related dependent blocks while being

correlated with its own predictors LVs. The components of the endogenous blocks
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Figure 3.25: Evolution of the criterion as function of iterations for the algo-
rithm

are as much correlated as possible to their predictor LVs, while being somehow

representative of each corresponding block of MVs.

We have found always the convergence of the algorithm in practice. We looked

then at the evolution of different criteria as a function of the iterations and we

found that the following criterion increases monotonically (see Figure 3.25):

max
wk,wk′

∑
k 6=k′

ckk′ [cor(Xkwk,Xk′wk′)var(Xkwk)
1/2] (3.21)

where ckk′ = 1 if the k-th block depends on the k′-th block, 0 otherwise.

This is a redundancy-related criterion in a multi-block framework, since for each

pair of connected blocks it takes into account the variance of the dependent block

as well as the correlation between the two components.

Further research will be carried out to find out if the algorithm optimizes a global

criterion. Stability of the algorithm and coherence of the different steps are promis-

ing for the investigation of a global optimizing criteria of the procedure.



Chapter 4

Quantile Component-based Path

Modeling: proposed methods,

performances and interpretations

4.1 Introduction

Since PLS-PM algorithm is a procedure based on simple and multiple ordinary

least squares (OLS) regressions, the obtained coefficients measure the rates of

change in the mean of the dependent variable distributions as a function of changes

in a set of predictor variables. However, in some case, classical OLS regression

can give an incomplete picture of the relationships between variables. The single

regression coefficient may not be the same along all the dependent variable dis-

tribution, and focusing exclusively on changes in the means may underestimate,

overestimate, or fail to distinguish real nonzero coefficients.

This is also especially problematic in the case of heteroscedastic variances, when

dependent variables are highly skewed (as it is typical in subjective measure-

ments), in the presence of outliers, or when the interactions between the factors

affecting the dependent variables are very complex and cannot all be measured

and accounted for in a model.

All the factors that may affect an endogenous LV are usually not included in the

models used to investigate relationships between LVs. As a consequence, there

90
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may be a weak or no dependence relationship between the mean of the endoge-

nous LV distribution and the corresponding predictive LVs. However, there may

be a stronger and useful dependence relationship with other parts of the response

variable distribution. The same may happen in the dependence relationships be-

tween LVs and MVs.

In several applications it can be interesting to investigate dependence relationships

between variables considering all parts of the response variable distributions. For

example, in the business and market research, it can be interesting to evaluate

if and how much the impact of consumer preferences on satisfaction is different

among highly, medium or low satisfied customers with the objective of differenti-

ating leverages to increase the satisfaction.

Quantile regression (QR) (Koenker and Basset, 1978) is an extension of the clas-

sical OLS regression for estimating functional relations between variables for all

parts of the distribution of the response variable. Instead of the only estimation of

conditional mean it allows the estimation of a set of conditional quantile functions,

providing multiple slopes and a more complete picture of the relationships between

variables. Compared to the OLS regression QR estimates are more robust against

outliers.

In this perspective, Li et al. (2014) introduced a correlation measure to examine

the linear relationships between any two variables for a given quantile, named

quantile correlation (QC).

Quantile Composite-based Path Modelling (QC-PM) introduces both QR and QC

in the classical PLS-PM algorithm (Davino and Esposito Vinzi, 2015; Davino et al.,

2015a), and enhance PLS-PM potentialities when we wish to distinguish regressor

effects on the different parts of the dependent variable distribution. As a matter

of fact, QC-PM accommodates heteroscedastic variances and outliers and is able

to explore the entire conditional distribution of the response variables.

QC-PM is advisable as a complementary analysis to the results deriving from a

classical PLS-PM in the cases where there is no relationships (or only a weak

relationship) between LVs or between LVs with their own MVs, even if the under-

lying theory would suggest the opposite. The exploration of different parts of the

dependent variable distribution could highlight significant relationships. It could

also be expected that the sign and the size of the path coefficients change if the
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analysis explores not only average effects but the entire conditional distribution of

the response variables.

The proposed QC-PM is expected to be of interest in several real applications

as the involved methodologies (PLSPM, QR and QC) have attracted researchers

from various disciplines, for instance Economics (see Buchinsky, 1994; Fitzenberger

et al., 2002; Hendricks and Koenker, 1992, among others), Social and behavioral

sciences (see among many (see Davino and Vistocco, 2008; Eide and H.Showalter,

1998; Hsu et al., 2006; Kristensen and Eskildsen, 2010, among others), Sensory

analysis (see Davino et al., 2015b; Guinot et al., 2001, among others), Marketing

(see Hair et al., 2012b; Henseler et al., 2009; Whittaker et al., 2005, among others),

Management of Information Systems (see Huarng, 2014; Ringle et al., 2012, among

others), Strategic Management (see Hair et al., 2012a; Li, 2014, among others),

Accounting (see Lee et al., 2011, among others).

4.2 Quantile Regression

QR was developed by Koenker and Basset (1978) as an extension of the classical

OLS regression for estimating functional relations between variables for all parts

of the distribution of the response variable. Instead of the only estimation of the

conditional mean it allows the estimation of a set of conditional quantile functions,

providing a more complete picture of the relationships between variables.

QR is a suitable solution when the homoschedastic assumption of the classical

regression model can not be satisfied (for example because the variability of the

dependent variable is not the same at every level of a regressor) or the dependent

variable has skewed distribution (this event typically occurs in the evaluation of at-

titudes and preferences) or data are characterized by outliers (in many applicative

contexts, it is often the extremes of the distribution that are most informative).

The estimates are semiparametric in the sense there is no parametric distributional

assumption on the random errors of the model, but a parametric form is assumed

for the deterministic part of the model.

For a given quantile θ, QR model can be formulated as follows:

Qθ (ŷ|X) = Xβ̂ (θ) (4.1)
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where y is the response variable observed on n individuals,X = [1,Xp] is a matrix

with p regressors and a vector of ones for the intercept estimation, 0 < θ < 1 and

Qθ(.|.) denotes the conditional quantile function for the θth quantile.

Although different functional forms can be used, here we consider functions of X

that are linear in the parameters.

The conditional quantiles denoted by Qθ (ŷ|X) are the inverse of the conditional

cumulative distribution function of the response variable, F−1θ (ŷ|X), where θ ∈
[0, 1] denotes the quantiles (Koenker and Machado, 1999). For example, for θ =

0.6, Q0.6 (ŷ|X) is the 60th percentile of the distribution of y conditional on the

values of a set of variables X. Note that for symmetric distributions, the 0.50

quantile (or median) is equal to the mean.

Unconditional quantiles of a variable could be estimated by an optimization func-

tion minimizing a sum of weighted absolute deviations, where the weights are

asymmetric functions of θ (Fox and Rubin, 1964; Koenker and Basset, 1978). In

the same way, the conditional quantile estimator can be estimated as:

β̂θ = argminβθ

n∑
i=1

ρθ
(
yi − x′iβ(θ)

)
(4.2)

where ρθ is the so-called check function which weights positive and negative resid-

uals asymmetrically, respectively with weights equal to (1− θ) and θ.

For each quantile of interest, the solution of Equation 4.2 provides the related pa-

rameter estimates. It follows that, for each quantile, a regression line is estimated

and, consequently, a fitted response vector can be obtained. The median regres-

sion is a special case of QR with equal weights for positive and negative errors

which assures that there is the same number of observations above and below the

median line (Koenker and Hallock, 2001).

Parameter estimates in linear quantile regression models have the same interpre-

tation as those in any other linear model. The intercept measures the dependent

variable value deriving from setting to zero all the regressors. Each slope coefficient

is interpreted as the rates of change of the θth conditional quantile of the depen-

dent variable distribution as a function of changes in a predictor. The parameters

vary with θ due to effects of the θth quantile of the unknown error distribution.
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Regression quantiles, retain their statistical properties under any linear or non-

linear monotonic transformation of y as a consequence of this ordering property,

thus, they are equivariant under monotonic transformation of y (Koenker and

Machado, 1999).

The most widespread algorithm for the estimation of the model parameters is

the one proposed by Koenker and d’Orey (2001) as a version of the Barrodale

and Roberts (1974) simplex algorithm. Although it is theoretically possible to

extract infinite quantiles, a finite number is numerically distinct in practice, which

is known as the quantile process. A fairly accurate approximation of the whole

quantile process can be obtained using a dense grid of equally spaced quantiles in

the unit interval [0, 1] (Davino et al., 2013).

QR estimators are asymptotically normally distributed with different forms of the

covariance matrix depending on the model assumptions (independent and identi-

cally distributed errors or non-identically distributed errors) (Koenker and Bas-

set, 1978, 1982a,b). Resampling methods can represent a valid alternative to the

asymptotic inference (Efron and Tibshirani, 1993) because they allow the estima-

tion of parameter standard errors without requiring any assumption in relation to

the error distribution. Several bootstrap procedures have been proposed in the

QR framework. The simplest and widespread is the xy-pair method or design ma-

trix bootstrap (Parzen et al., 1994). It consists of constructing a given number of

samples (B), usually with the same size of the original dataset, where each sample

is obtained by a random sampling procedure with replacement from the original

dataset. The resampling procedure is simultaneously applied to the regressors and

to the dependent variable. B quantile regressions are performed on the bootstrap

samples and a vector (or a matrix in case of a multiple regression) of the param-

eter estimates is retained for each quantile of interest (Davino et al., 2013). The

model parameters are estimated through the average of the bootstrap values. The

standard error of the vector of parameter bootstrap estimates represents an esti-

mate of the quantile regression standard error useful in confidence intervals and

hypothesis tests.

Generally, in quantile regression sampling variation differs among quantiles, and

it is usually larger as the value of θ approaches 0 or 1, thus, estimates further

from the 50th conditional percentile usually cannot be estimated as precisely. In

this case it would be more appropriate to use extreme value testing theory than

conventional testing approaches (Chernozhukov and Umantsev, 2001).
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The assessment of goodness of fit of QR model is based on the following the idea

of the typical R2 in classical regression analysis. The most common goodness

of fit index in the QR framework, is called pseudoR2 citepKoeMac99. For each

considered quantile θ, it can be computed a residual absolute sum of weighted

differences using the selected model (RASW) (corresponding to the residual sum of

squares in classical regression) and a residual absolute sum of weighted differences

(TASW) (corresponding to the total sum of squares of the dependent variable in

classical regression) using a model with only the intercept (Davino et al., 2013;

Hao and Naiman, 2007). Let us consider the simplest regression model with one

explanatory variable:

Qθ(ŷ|x) = β̂0(θ) + β̂1(θ)x. (4.3)

For each considered quantile θ, RASW is the corresponding minimizer:

RASW (θ) =
∑

yi≥β̂0(θ)+β̂1(θ)xi

θ
∣∣∣yi − β̂0(θ)− β̂1(θ)xi∣∣∣+

∑
yi<β̂0(θ)+β̂1(θ)xi

(1− θ)
∣∣∣yi − β̂0(θ)− β̂1(θ)xi∣∣∣ (4.4)

where ρθ is the so-called check function which weights positive and negative resid-

uals asymmetrically, respectively with weights equal to (1− θ) and θ.

The TASW is:

TASW (θ) =
∑
yi≥θ

θ
∣∣∣yi − θ̂∣∣∣+

∑
yi<θ

(1− θ)
∣∣∣yi − θ̂∣∣∣ . (4.5)

and the obtained pseudoR2 can be computed as follows:

pseudoR2 (θ) (y,x) = 1− RASW (θ)

TASW (θ)
. (4.6)

As RASW (θ) is always less than TASW (θ), the pseudoR2 (θ) ranges between

0 and 1. It is worth noticing that the pseudoR2 the index cannot be considered

a measure of the goodness of fit of the whole model because it is related to a

given quantile. For each considered quantile, the corresponding pseudoR2 can be
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evaluated at a local level, thereby indicating whether the presence of the covariates

influences the considered conditioned quantile of the response variable.

4.3 Quantile Correlation

In the quantile framework, Li et al. (2014) introduced a correlation measure to ex-

amine the linear linear relationships between any two variables for a given quantile

θ ∈ (0, 1), named quantile correlation (QC). The authors claimed that QC can be

used as broadly as the classical correlation in various contexts.

Like the Pearson correlation coefficient, QC is defined just as the ratio between a

covariance measure and the the squared root of the product between a measure of

variability of the two variables.

For 0 < θ < 1, quantile covariance is defined as:

qcovθ {y,x} = cov {I (Y −Qθ(y) > 0) ,x}

= E {ψθ [y −Qθ (y)] [x− E (x)]} (4.7)

where Qθ (y) is the θth unconditional quantile of y, I (·) is the indicator function

and ψθ(u) = θ − I(u < 0).

It follows that the QC can be defined as:

qcorθ {y,x} =
qcovθ {y,x}√

var {ψθ [y −Qθ (y)]} var (x)
=

qcovθ {y,x}√
(θ − θ2) var (x)

(4.8)

QC has the same properties as Pearson correlation coefficient. It increases with

the slope of the simple linear regression and it lies between -1 and 1. However,

It is noteworthy that QC does not enjoy the symmetry property of the classical

correlation index. For this reason, it is necessary to identify the role played by the

two variables. In Equation 4.8 the y variable is the dependent variable.

To evaluate the significance of QC, the following distribution convergence can be

exploited (Li et al., 2014):
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√
n
(
q̂corθ {y,x} − qcorθ {y,x}

)
→ N(0,Ω1) (4.9)

where q̂cor is the sample QC and Ω1 the asymptotic variance.

As the estimation of Ω1 is rather complex, a bootstrap approach is proposed for

this purpose. The xy-method (Efron and Tibshirani, 1993) used for QR standard

error estimates can be also applied in case of QC. Once the B samples have been

generated, QC is computed on each sample and the the standard error of the

bootstrap QC vector represent an estimate of the QC standard error.

To appreciate strengths and weaknesses of QC, an example based on synthetic data

is provided. Let us consider two variables with a low Pearson correlation coefficient

equal to 0.022. Figure 4.1a shows the scatter plot of these two variables. Using a

dense grid of quantiles (from 0.001 to 0.999 with a step equal to 0.001), Figure 4.1b

depicts the trend of the QC values across quantiles. The full circle represents the

value of the Pearson correlation coefficient. For the sake of interpretation it was

vertically aligned to the median.

(a) (b)

Figure 4.1: A scatter plot of synthetic data (a) and QC values for a set of
selected quantiles (b)

As it is shown in Figure 4.1, even though the Pearson correlation coefficients be-

tween the two variables is close to zero, the relations between the two variables

changes when exploring other parts of the dependent variable distribution. In
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particular, considering the part of the distribution on the left of the median, the

quantile correlations is negative, while it is positive on the right of the median.

These two opposite relationships balance out and the Pearson correlation coeffi-

cients turn out to be close to zero. This is the case where the investigation of

all parts of the response variable distributions gives more interesting information

about the relationships between the two variables.

4.4 Quantile Composite-based Path Modelling

Quantile Composite-based Path Modelling (QC-PM) introduces both QR and QC

in the classical PLS-PM algorithm (Davino and Esposito Vinzi, 2015; Davino et al.,

2015a).

A very basic approach consists in exploiting QR potentialities a posteriori, after

the convergence of a classical PLS-PM and once the LVs scores are estimated. For

each quantile θ of interest, QR can be introduced to estimate the path coefficients

measuring the impact of LVs on the whole distribution of the endogenous LVs.

This quantile approach to PLS-PM can be considered quite basic as it is applied

on LVs derived from OLS regressions. However it can be still of interest when we

would like to investigate whether differences occur only for path coefficients across

quantiles, regardless the measurement model.

A more complex and powerful method is obtained introducing either QR and

QC in all the outer and inner estimation steps of the algorithm as well as in the

estimation of path coefficients loadings. Hence, for each quantile of interest θ we

have estimates for the all model parameters.

According to the scheme adopted in the various estimation steps, different versions

of the QC-PM are available.

In the outer estimation, simple (Mode A) or multiple (Mode B) QR allows to

compute outer weights for each quantile of interest (see Figure 4.2). A new mode

(named Mode Q) is introduced in the outer estimation. In Mode Q weights are

obtained by computing QC between LVs and their own MVs (Davino and Esposito

Vinzi, 2015). Since QC is an asymmetric correlation coefficient, Mode Q allows us

to handle both outwards-directed and inwards-directed measurement models (see

Figure 4.3).
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(a) (b)

Figure 4.2: Outer model schemes: Mode A (a) and Mode B (b)

(a) (b)

Figure 4.3: Outer model schemes: Mode Q outwards-directed (a) and Mode
Q inwards-directed (b)

In the inner estimation step, inner weights are computing depending on the adopted

weighting scheme. If the path weighting scheme is chosen, the inner weights linking

the mth endogenous LV to its predecessors are computed through a QR:

Qθ

(
ξ̂m|Ξ→m

)
= Ξ→mβ̂ (θ) (4.10)

where Ξ→m is the matrix of the ξm’s predecessor LVs. Instead, the weights among

the mth LV and its successor LVs are determined using the QC proposed by Li et al.

(2014). Since in the quantile framework even the correlation is a non symmetric

measure, the use of QC distinguishes between predecessors and successors. Let ξm

and ξq→m be respectively a LV and one of its predecessor LVs, the former plays the

role of the dependent variable and the latter is the regressor. The QC proposed

by Li et al. (2014) and adapted in the QC-PM framework, is defined as:

qcorθ =
qcovθ {ξm, ξq→m}√
(θ − θ2) var (ξq→m)

(4.11)
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where qcovθ {ξm, ξq→m} = cov {I (ξq→m −Qθ(ξq→m) > 0) , ξm}, Qθ(·) is the θth un-

conditional quantile and I (·) is the indicator function.

QC is also proposed as an alternative to the Pearson correlation coefficient if either

the centroid or the factorial scheme is adopted.

Once convergence is reached and LV scores are computed, path coefficients are

estimated by means of quantile regressions.

Table 4.1 shows twelve proposed QC-PM deriving from the combination of outer

and inner schemes. The last column and last row refer to the methodology used in

the outer estimation mode and the inner estimation scheme, respectively. Mode

Q is the previously defined new option for updating the outer weights.

Inner Scheme
Path Weighting Factorial Centroid Methodology

Outer Outwards QCPM1 QCPM2 QCPM3 Simple QR
Mode Inwards QCPM4 QCPM5 QCPM6 Multiple QR

Mode Q - Outwards QCPM7 QCPM8 QCPM9 QC
Mode Q - Inwards QCPM10 QCPM11 QCPM12 QC
Methodology QR & QC QC QC sign

Table 4.1: The different estimation options for QC-PM (QR=Quantile Re-
gression, QC=Quantile Correlation)

Some preliminary simulation studies revealed that the use of the path weight-

ing scheme yields convergence problems in case of low correlations within and/or

between blocks. Further studies will be devoted in future to this issue. In the

following we will not consider QC-PM with the path weighting scheme.

Like PLS-PM, the assessment of the quality of the QC-PM results should take

different aspects into account. The quality of the model depends on the goodness

of fit of both the outer and the inner models. Moreover, the evaluation of the

statistical significance of the coefficients should be carried out.

The assessment of QC-PM is performed exploiting the main indexes proposed in

PLS-PM (Davino et al., 2015a): communality and average communality, multiple

linear determination coefficient (R2), redundancy index, average redundancy index

and global criterion of goodness of fit (GoF). It is worth noticing that QC-PM

is estimated for each quantile θ of interest thus it provides a set of assessment

measures for each estimated model.
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In PLS-PM, the communality index measures the amount of the variability of a

MV explained by its LV, and it is obtained as the square of the correlation between

each MV and its LV. Therefore, for a generic xpq MV belonging to the qth block, the

communality is equivalent to the R2 of the simple regression xpq = α0+α1ξq. In the

quantile framework, we can exploit the pseudoR2 index (Koenker and Machado,

1999), as defined above.

For a generic xpq MV of the qth block and a quantile θ of interest, the communality

expresses the quality of each simple regression xpq = α0 + α1ξq, at the specific

quantile, in terms of weighted residuals and can be defined as:

Compq(θ) = pseudoR2 (θ) (xpq, ξq) (4.12)

The model assessment can also be carried out for the generic qth block with pq

MVs as:

Comq(θ) =
1

pq

pq∑
p=1

pseudoR2 (θ) (xpq, ξq) (4.13)

or for the whole measurement part of the model (Com) through averages respec-

tively of the communalities related to the block and to all the MVs (weighted by

the number of MVs in each block):

Com(θ) =
1∑
q pq

∑
q

pqComq(θ) (4.14)

With respect to the structural model, the pseudoR2 index can be computed for

each structural equation and each of them measures the amount of variability of

a given endogenous LV explained by its predecessor LVs. The average of all the

pseudoR2 indexes (pseudoR2(θ)) provides a synthesis of the evaluations regarding

the structural part of the model.

Another important measure is the redundancy because it is able to take into

account also the contribution of the MVs related to the qth endogenous LV, that

is linking the prediction performance of the measurement model to the structural

one (Amato et al., 2005). In the QC-PM framework the redundancy of a generic
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qth endogenous LV is proposed as:

Redq(θ) = Comq(θ)× pseudoR2(θ)(ξ̂q; Ξ̂→q) (4.15)

where Ξ̂→q is the matrix of the predictor LVs for the qth LV.

An overall assessment of the quality of the structural part is provided by the

average redundancy (Red(θ)) obtained as a mean of the redundancies associated

to the set of endogenous LVs.

With respect to the goodness-of-fit of the general model, following the global

goodness-of-fit index, the GoF, proposed by (Amato et al., 2005), in QC-PM the

absolute GoF is obtained as geometric mean of the average communality and the

average

pseudoR2:

GoF (θ) =

√
Com(θ)× pseudoR2(θ) (4.16)

The first and the second term in Equation 4.16 measure the predictive performance

respectively of the measurement and the structural model (Amato et al., 2005)

(Esposito Vinzi et al., 2008). GoF is able to take both the measurement and the

structural part of the model into account.

Further developments will regard the exploration of different goodness of fit mea-

sure in the quantile framework and the adjustment to the QPLS-PM of further

assessment indexes proposed in PLS-PM framework (Henseler et al., 2009) (e.g.

the average variance extracted (Fornell and Larcker, 1981), the Stone-Geisser’s

Q2 using blindfolding procedures (Stone, 1974), the relative GoF (Amato et al.,

2005)).

The evaluation of the statistical significance of the coefficients related to the differ-

ent quantiles can be carried out exploiting the asymptotically normal distribution

of the QR estimators as well as the bootstrap approach classically used in PLS-PM

and QR.

A bootstrap approach can also applied to obtain a variability measure of the quan-

tile correlation estimates obtained choosing Mode Q in the measurement model

and/or factorial or centroid scheme in the structural model.
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In future work, a jackknife approach could be explored especially in case of small

samples to estimate the standard errors of the parameter estimators and statistical

tests could be introduced in a QC-PM to to test if coefficients across quantiles can

be considered statistically different Gould (1997).

In the following sections, the functioning and performance of the QC-PM are shown

through a real data application in the area of the American Customer Satisfaction

Index (ACSI) and through a simulation study.

Since the results of the different QC-PM options are not much different among

them, in the real data application we will show the results only for the QC-PM9.

As regards to the simulation study we will compare the results of the classic

PLS-PM with the basic approach that apply QR using the scores of the classical

PLS-PM, referred as QC-PMØ, the QC-PM3 and the QC-PM9.

4.5 A real data application

The proposed method is applied to a real dataset in the area of the ACSI (ACSI,

2000; Anderson and Fornell, 2000) 1. The results presented in this section are

mainly based on the paper by Davino et al. (2015a).

This index was established in 1994 and it is the only national cross-industry mea-

sure of customer satisfaction in the United States. The index measures the sat-

isfaction of U.S. household consumers with the quality of products and services

offered by both foreign and domestic firms with significant share in U.S. markets.

The real data application refers to the food processing sector including 1617 ob-

servations. The customer satisfaction is driven by three factors (customer expec-

tations, perceived value and perceived quality) and has loyalty as outcome. The

complaints LV has been excluded because the number of complaints was very small

(1%). The relationships among the five LVs are represented in the path diagram

in Figure 4.4. Each LV is measured through a set of MVs measured on a scale

1-10 (see Table 4.2).

A preliminary analysis of the MV distribution right tails is advisable before ap-

plying QC-PM because data deriving from customer satisfaction surveys are often

1http://www.theacsi.org/
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Figure 4.4: Path diagram of the ACSI model

LV MV Label Mean θ=0.1 θ=0.25 θ=0.41 θ=0.5 θ=0.75 θ=0.9

Customer Expectations about overall quality OVERALLX 8 6 8 8 9 10 10
Expectations Expectations about customization CUSTOMX 9 7 8 9 9 10 10

Expectation about reliability WRONGX 8 3 7 9 9 10 10

Perceived Quality
Meeting personal requirements CUSTOMQ 9 7 8 9 9 10 10
Things went wrong WRONGQ 9 6 9 10 10 10 10

Perceived Value
Price given Quality PQ 8 5 7 7 8 9 10
Quality given Price QP 8 6 7 8 8 9 10

Customer Customer Satisfaction SATIS 9 7 8 9 9 10 10
Satisfaction Overall Quality OVERALLQ 9 7 8 9 9 10 10

Confirmation to Expectations CONFIRM 8 5 6 8 8 9 10
Close to ideal product/service IDEAL 8 5 7 8 8 9 10

Customer Loyalty Repurchase Intention REPUR 8 6 8 9 9 10 10

Table 4.2: LVs and MVs of ACSI dataset: Means and main quantile values

characterised by a very high concentration of the responses on the upper values

or even the maximum of the used scales. The deriving effect is an absence of

variability in a given part of the distribution which is not interesting to explore.

This information is highlighted by computing the quantile values (Table 4.2).

In Figure 4.5, the distribution of the maximum quantile value for each MV is

shown. In the ACSI dataset all the MVs show a considerable percentage of cus-

tomers expressing an evaluation equal to 10. We notice, for example, that it is

not interesting to explore the variable WRONGQ from the 0.41 quantile forward

because all the quantile values will be equal to 10.



Chapter 4. Quantile Component-based Path Modeling 105

Figure 4.5: Maximum quantile value for each MV

Even if the maximum quantile value is different for each MV, QC-PM cannot

be performed beyond the minimum threshold quantile which corresponds to 0.41,

as for each quantile of interest QC-PM applies regression models simultaneously

for all the equations of the model. The requirement to confine the analysis at

a lowest maximum quantile value is the most of the case is not a limit, because

QC-PM aims at the exploration of the different parts of the dependent variables

distribution when they are characterised by different and not constant effects of the

regressors. Moreover, in this case, for example, even if the analysis is restricted up

to the quantile 0.41, we are still able to model a portion of very satisfied customers

as shown in Table 4.2.

For this application we apply QC-PM using the factorial scheme in the inner

estimation and the outwards-directed relationship in the outer estimation using

the QC (Mode Q). We obtain also the PLS-PM results using the factorial scheme

and Mode A.

Table 4.3 shows the obtained outer weights for a selected grid of quantile of interest

(θ = [0.1, 0.25, 0.41]). Outer weights that evidently differ across quantiles are in

bold.

The differences in the weights across quantiles can be also appreciated using a

graphical representation. Figure 4.6 depicts, for the Expectation LV, the PLS-PM

and QC-PM outer weights with respect to the average values of the corresponding

MVs. Labels 10, 25 and 41 refer to QC-PM weights for quantiles equal to 0.10,

0.25 and 0.41, respectively. PLS-PM weights are pointed out with the MV names.

QC-PM and PLS-PM weights related to the same MV are vertically aligned with
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Outer weights

LV MV PLSPM θ=0.1 θ=0.25 θ=0.41

Expectation
OVERALLX 0.478 0.436 0.487 0.542
CUSTOMX 0.575 0.674 0.532 0.471
WRONGX 0.228 0.054 0.300 0.315

Quality
CUSTOMQ 0.811 0.820 0.767 0.713
WRONGQ 0.352 0.340 0.413 0.481

Value
PQ 0.459 0.451 0.477 0.493
QP 0.633 0.641 0.616 0.602

Satisfaction

SATIS 0.374 0.390 0.375 0.326
OVERALLQ 0.373 0.377 0.367 0.312
CONFIRM 0.249 0.221 0.225 0.309
IDEAL 0.256 0.258 0.286 0.323

Table 4.3: Outer weights

respect to the MV average. According to the PLS-PM results, it is not possible

to identify how to improve satisfaction because, for example, WRONGX shows

the lowest average values but also the lowest weight. QC-PM complements such a

result suggesting that an improvement of WRONGX has a higher impact on the

most satisfied customers. As regards to CUSTOMX, the impact of an improvement

is more evident on the less satisfied customers.

Table 4.4 shows both the PLS-PM path coefficients and the QC-PM path coeff-

cients for the selected grid of quantile of interest. Path coefficients that evidently

differ across quantiles are in bold.

Path Coefficients
LV PLS-PM θ=0.1 θ=0.25 θ=0.41
Quality Expectation 0.585 0.748 0.823 0.713

Value
Expectation 0.174 0.154 0.162 0.214
Quality 0.401 0.479 0.434 0.409

Satisfaction
Expectation 0.252 0.253 0.259 0.238
Quality 0.435 0.520 0.434 0.389
Value 0.328 0.342 0.364 0.373

Loyalty Satisfaction 0.604 0.903 0.828 0.687

Table 4.4: PLS-PM path coefficients and QC-PM path coefficients for a set
of quantiles (θ = [0.1, 0.25, 0.41])

A graphical representation of path coefficients better highlights the differences

among PLS-PM and QC-PM results and among QC-PM path coefficients at dif-

ferent quantiles. Figure 4.7 shows the estimated path coefficients of the Customer

Satisfaction LV across quantiles. Full circles refer to the PLS-PM path coefficients
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Figure 4.6: Outer weights with respect to the MV averages of the Expectation
LV

while stars represent QC-PM path significant coefficients for each quantile of in-

terest. For the sake of interpretation, PLS-PM results are vertically alligned to the

last considered quantile (0.41). It is worth noting that path coefficients vary in the

extreme parts of the distribution, meaning that the impact of a given LV changes

for either very low and very high satisfied customers. For example, considering

the Quality LV, its effect decreases moving from the first 10% of the distribution

to the last considered quantile.

In order to evaluate the quality of the model, at first, we consider the QC between

MVs and LVs. The results are expected to show higher correlations between a LV

with its own block of MVs than with other LVs representing different blocks of

MV (cross-correlations). The underlying concept of each LV should differ from the

other theoretical concepts. In Table 4.5 PLS-PM and QC-PM correlations between

MVs and LVs are shown. QC-PM correlations are computed as QC where MVs

play the role of dependent variable and LVs the role of explanatory.

The results are satisfactory for all the LVs (for the sake of brevity cross-correlations
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Figure 4.7: QC-PM path coefficients for a set of quantiles

Correlations LV-MVs

LV MV PLS-PM θ=0.1 θ=0.25 θ=0.41

Expectation
OVERALLX 0.825 0.652 0.770 0.689
CUSTOMX 0.894 0.908 0.804 0.589
WRONGX 0.401 0.083 0.491 0.406

Quality
CUSTOMQ 0.945 0.849 0.796 0.595
WRONGQ 0.661 0.688 0.647 0.593

Value
PQ 0.883 0.763 0.832 0.736
QP 0.938 0.864 0.793 0.734

Satisfaction

SATIS 0.877 0.884 0.803 0.543
OVERALLQ 0.846 0.816 0.775 0.509
CONFIRM 0.697 0.640 0.568 0.629
IDEAL 0.714 0.712 0.715 0.636

Table 4.5: Correlations and Quantile Correlations LV-MVs

are not shown but they are in all cases lower than the correlations). It is worth

noting the change of the correlation values across quantiles. For example, the

correlation of CUSTOMX to the Expectation LV is higher in the lower part of the

distribution (θ=0.1) and even greater than the PLS-PM loading. Considering the
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Communality
LV MV PLS-PM θ=0.1 θ=0.25 θ=0.41

Expectation
OVERALLX 0.680 0.503 0.494 0.520
CUSTOMX 0.799 0.759 0.639 0.563
WRONGX 0.161 0.016 0.232 0.209
ComExpectation 0.546 0.426 0.455 0.431

Quality
CUSTOMQ 0.892 0.851 0.768 0.670
WRONGQ 0.438 0.550 0.464 0.450
ComQuality 0.665 0.701 0.616 0.560

Value
PQ 0.779 0.516 0.587 0.616
QP 0.881 0.749 0.774 0.731
ComV alue 0.830 0.632 0.681 0.674

Satisfaction

SATIS 0.768 0.617 0.590 0.515
OVERALLQ 0.716 0.537 0.533 0.462
CONFIRM 0.486 0.235 0.328 0.385
IDEAL 0.510 0.356 0.381 0.402
ComSatisfaction 0.620 0.436 0.458 0.441

Com 0.646 0.517 0.526 0.502

Table 4.6: Measurement model assessment indexes

MV WRONGX the correlation is almost equal to zero for a quantile equal to 0.1

while it increases as the quantile increases.

To evaluate the quality of the measurement model communalities and average

communalities are computed. Table 4.6 shows the PLS-PM and QC-PM commu-

nalities. We recommend not to compare QC-PM communalities to those of the

PLS-PM, as they are based on different residuals. We can just compare QC-PM

communalities among each other and across quantiles.

As for the quality of the structural model, Table 4.7 shows the PLS-PM R2 and

the QC-PM pseudoR2.

Also for this measure, we recommend not to compare QC-PM pseudoR2 to the

PLS-PM R2, as they are based on different residuals. It is well known that the

typical determination index is not a satisfactory assessment index and it is gen-

erally smaller than the R2 (Koenker and Machado, 1999). We can just compare

QC-PM pseudoR2 among each other and across quantiles.

Table 4.8 shows the PLS-PM redundancy and the QC-PM redundancy.
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R2 pseudoR2

LV PLS-PM θ=0.1 θ=0.25 θ=0.41
Quality 0.335 0.240 0.298 0.275
Value 0.250 0.180 0.181 0.153
Satisfaction 0.659 0.502 0.496 0.429
Loyalty 0.364 0.276 0.297 0.282
MeanofR2 0.402 0.299 0.318 0.285

Table 4.7: R2 and pseudoR2 in the Structural model

Redundancy
LV MV PLS-PM θ=0.1 θ=0.25 θ=0.41

GoF
CUSTOMQ 0.299 0.204 0.229 0.184
WRONGQ 0.146 0.132 0.138 0.124
RedQuality 0.223 0.102 0.136 0.118

Table 4.8: Redundancy measures

An an overall assessment of the quality of general model, we computed the GoF.

As it is shown in Table 4.9 the quality of the general model does not much differ

across quantiles.

PLS-PM θ=0.1 θ=0.25 θ=0.41
GoF 0.510 0.393 0.409 0.378

Table 4.9: Goodness of fit (GoF) indices

4.6 Simulation Study

Due to the complexity of PLS-PM, and consequently of QC-PM, the analysis of

its relative performance can hardly be assessed in an analytical form. This is the

case where simulation studies come to our aid.

We will perform a simulation study organized in three different scenarios that aim

at showing the functioning of QC-PM, studying the QC-PM capabilities in han-

dling the cases where the relationships between variables change across quantiles

in both the measurement model and the structural model.

In this simulation study we analyze the artificial data applying the classic PLS-

PM, the basic approach that apply QR using the scores of the classical PLS-PM,

referred as QC-PMØ, the QC-PM3 and the QC-PM9.
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Figure 4.8: Theoretical Model for Simulated Data

4.6.1 Design of the simulation study

In order to facilitate the interpretation of the results and to simulate a real data

application, we shall perform the study in the field of the customer satisfaction

analysis. It will be considered a simple model which it was already used by Esposito

Vinzi et al. (2007) and Trinchera (2007) for their simulation studies.

Customer satisfaction is the central variable of this model, having as antecedents

or drivers the Price Fairness and Quality. Therefore, the SEM underpinning our

design and subsequent analyses consists of one endogenous LV, Customer Satis-

faction, and two exogenous LVs, Price Fairness and Quality. Each exogenous LV

(i.e., Price Fairness and Quality) are measured by five MVs, and the endogenous

LV, Customer Satisfaction, is measured by three MVs (see Figure 4.8). All the

blocks are considered as reflective.

In marketing applied research it can be interesting to verify if the effects of con-

sumer preferences on satisfaction differ across different parts of the distribution of

the satisfaction variable. As a matter of fact, the impact of consumer preferences

on satisfaction may vary as the degree of satisfaction changes. It is very likely that

the preferences of satisfied customers are different compared to the preferences of

unsatisfied customers. If we have this information we could differentiate leverages

to increase satisfaction. This heterogeneity frequently occurs when variables are

highly skewed, and this is a typical characteristic of data collected in behavioral

research.
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The simulation study is organized in three different scenarios. In the first scenario

data are generated assuming homogeneity, hence the effects of the variables do

not differs across quantiles of the dependent variable distributions. In the second

scenario we assume heterogeneity in the structural model. In particular, the path

coefficients differ across quantiles of the endogenous LV distribution. In the third

scenario we assume heterogeneity in the measurement model. The relationships

between MVs and LVs differ across quantiles of the variables distribution.

We intentionally chose the simple model in Figure 4.8 for the simulation study,

as the process to generate sample of data from two or more different populations

(i.e., customers with different degrees of satisfaction) is complicate, and it would

be difficult to control all the factors that can have severe effects on the results in

a complex model.

The data generation process is based on the classical covariance-based approach

for SEM and it is consistent with the procedure described by Paxton et al. (2001)

for a Monte Carlo simulation study for SEM. Once all the model parameters of the

SEM are pre-specified, the implied covariance matrix is obtained from the given

parameter values, then data were draw from a multivariate distribution with that

specific implied covariance matrix. Hence, we assumed that the model parameter

values are known. The data generation process and the subsequent analysis were

conducted by EQS for Windows and R.

In the next section, we shall present first the simulation study concerning the

case of homogeneity in the relatioships between variables (see subsection 4.6.2).

Then, QC-PM performance in handling heterogeneity in the relationships of the

structural model will be investigated in the second simulation study (see subsec-

tion 4.6.3). Finally, we will deal with the case of heterogeneity in the relationships

of the measurement model in the third simulation study (cf. subsection 4.6.4).

4.6.2 The Case of Homogeneity

In the first simulation study we assume homogeneity in the model. The data are

generated according to the model in Figure 4.8. We conducted the simulation

setting different values for both β3,1 and β3,2, which are the path coefficients

capturing the effect of Price Fairness on Customer Satisfaction and Quality on

Customer Satisfaction, respectively. We assume that the relationship between



Chapter 4. Quantile Component-based Path Modeling 113

Price Fairness and Customer Satisfaction and the relationship between Quality

and Customer Satisfaction is the same. In particular, we set six different values

for the path coefficients (β3,1=β3,2 = 0.3, 0.4, 0.5, 0.6). In order to focus only on

different levels of correlation between blocks, the loadings between LVs and the

corresponding MVs were set all to 1.

Once all the other population parameter values were set, for each path coefficient

value a total of 250 sets of multivariate normal data were drawn from a population

with the model-implied covariance matrix Σ which is a complex function of the

model parameters. Each data set has a sample size of 250, a common sample size

usually used in marketing research to estimate the customer satisfaction.

In this case we expect that the effect of Price Fairness and Quality on Customer

Satisfaction is homogeneous across quantile of Customer satisfaction distribution.

For the all considered quantiles, the path coefficient estimates should be for a

common parameter, and any deviation among them is simply due to sampling

variation.

The path coefficient values across quantiles are investigated considering a dense

grid of quantiles from 0.2 to 0.8.

Since the path coefficients value are set to be equal (β3,1=β3,2), we will show the

results only for one path coefficient (β3,1) as they are almost the same to the

results of the other path coefficient. Moreover, for the sake of simplicity we will

show only the results for two values of path coefficient, β3,1 = 0.3 and β3,1 = 0.6.

Showing the results for all path coefficients values would be redundant, since they

showed no more interesting findings.

Figure 4.9 shows the the different QC-PM path coefficient estimates across quan-

tiles as well as the PLS-PM path coefficient estimates.

As a first result, we see that PLS-PM path coefficients are very similar to QC-PM

for θ=0.5. Note that for symmetric distributions, the 0.50 quantile (or median) is

equal to the mean, thus the quantile regression coefficient is similar to the ordinary

least squares regression coefficient. As a consequence we find the same results when

comparing QC-PM and PLS-PM when variables distributions are symmetric.

In general, deviations among path coefficients across quantiles are not evident and

may be simply due to sampling variation.
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Figure 4.9: Path coefficient estimates across quantiles: β31 = 0.3 (a) and
β31 = 0.6 (b)

However, future research must be focused on testing statistical significance of

differences among QC-PM estimates at different quantiles, using resampling pro-

cedures such as bootstrapping methods (Efron and Tibshirani, 1993; Gould, 1997).

4.6.3 The Case of Heterogeneity in the Structural Model

In the second simulation study we assume heterogeneity in the structural model.

The exogenous LVs exert both a change in means and a change in variance on the

distribution of endogenous LV, hence the path coefficients differ across quantiles.

In order to generate data whit this feature, we suppose that two different pop-

ulations exist, and for each population the model parameters are different. In

particular we divide the customers in two classes. The fist class is represented by

the less satisfied customers, while the second class is represented by the more sat-

isfied customers. The two classes of customers have different preferences, leading

to two different models.

We suppose that the two groups of customers have the following characteristics:

• less satisfied customers - characterized by a strong relationship between Price

Fairness and Customer Satisfaction and a weak relationship between Quality

and Customer Satisfaction (see Figure 4.10a);
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• more satisfied customers - characterized by a strong relationship between

Quality and Customer Satisfaction and a weak relationship between Price

Fairness and Customer Satisfaction (see Figure 4.10b).

(a) (b)

Figure 4.10: Theoretical Model for Simulated Data. Less satisfied customers
(a) and more satisfied customers (b)

For the less satisfied customers, Price Fairness enhance satisfaction more than

Quality, while for the more satisfied customers is just the opposite, Quality en-

hances satisfaction more than Price Fairness.

The simulation procedure was broken down into three steps. Firstly, data were

drawn from a multivariate normal population, X ∼ N (0,Σ), where Σ is the

implied population covariance matrix derived by the parameters of the model

shown in the Figure 4.10a. We generated 250 data set, each one of sample size

equal to 250. Given a specific MV of Customer Satisfaction block, for each data

set we kept the observations until the 0.6 quantile of this MV, thus once the

observations are sorted in non-decreasing order with respect to the values on this

MV, we kept the first 60% of the observations (equivalent to 150 units). Then, the

MVs of the endogenous block are transformed into new variables such that they

take values between 1 and 6.

In the second step, data were drawn from a multivariate normal population, X ∼
N (0,Σ), where Σ is the implied population covariance matrix derived by the

parameters of the model shown in the Figure 4.10b. The sample size is equal to

150. We generated 250 date set, each one of sample size equal to 250. For each

data set, once the observations are sorted in non-decreasing order with respect to

the values on a specific MV of Customer Satisfaction block, we kept the 40% of

observation about its mean (equivalent to 100 units), thus 20% of the observations

on its left-neighborhood and the other 20% on its right-neighborhood. Then, the
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MVs of the endogenous block are transformed into new variables such that they

take values between 6 and 10.

In the third step, the two data sets are merged, obtaining an unique data set of

sample size equal to 250. Note that the MVs of the exogenous blocks in the two

models come from the same population, while the same does not hold for the MVs

of the endogenous block.

The distribution of a generic MV of the endogenous block looks like the one de-

picted in Figure 4.12.

Figure 4.11: Simulated Distribution of a generic manifest variable

We expect that for quantiles smaller than 0.6 the model estimates refer to the

population parameter of the model shown in the Figure 4.10a, while for quantiles

larger than 0.6 the model estimates refer to the population parameter of the model

shown in the Figure 4.10b.

Figure 4.12 shows the the different QC-PM path coefficient estimates across quan-

tiles as well as the PLS-PM path coefficient estimates, for the path coefficient β31

(a) and β32 (b).

Looking at Figure 4.12 it is evident that QC-PM is able to distinguish the different

effects in the different parts of the distribution for both β31 and β32. β31 decreases

for quantiles larger than 0.6. To the contrary β32 increases for quantiles larger

than 0.6.

However, even the basic approach that apply QR using the scores of the classical

PLS-PM, the QC-PMØ, is able to is able to distinguish the different effects in the
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Figure 4.12: Path coefficient estimates across quantiles: β31 (a) and β32 (b)

different parts of the distribution in this case, and this is because the heterogeneity

appears only in the structural model.

When heterogeneity arises in the measurement model, QC-PMØ is not able to

distinguish the different effects of MVs on LVs as the weights of the QC-PMØ are

those computed in the classical PLS-PM, which considers only the changes in the

means.

In order to highlight also differences in the weights for different parts of the MV

distributions, we will show an example with heterogeneity in the measurement

model.

4.6.4 The Case of Heterogeneity in the Measurement Model

In the third simulation study we assume heterogeneity in the measurement model.

In particular, the relationships between MVs and the corresponding endogenous

LV differ across quantiles.

As above, we suppose that two different populations exist, and for each population

the model parameters are different.

In this case, we suppose that the two groups of customers have the following

characteristics:
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• a first group characterized by a weak correlation between the first and second

MV of the Customer Satisfaction block;

• in the second group all the correlations between Customer Satisfaction and

itw own MVs are the same.

In particular, for the first population, we suppose that the path coefficients be-

tween Price Fairness and Customer Satisfaction and between Quality and Cus-

tomer Satisfaction are the same and equal to 0.5 (in order to focus only on the

measurement model). In the Customer Satisfaction measurement model the first

and the second loadings are set equal to 0.3, while the third loadings is equal to

1 (see Figure 4.13a). In the second model, instead, the path coefficients are still

both equal to 0.5, the first and and the second loadings are set equal to 1 in the

Customer Satisfaction measurement model, while the third loading is equal to .3

(see Figure 4.13b).

(a) (b)

Figure 4.13: Theoretical Model for Simulated Data

Figure 4.12 shows the outer weights across quantiles of the QC-PM3 (a) and QC-

PM9 (b).

Both QC-PM3 and QC-PM9 are able to distinguish differences in the weights for

different quantiles. However, QP-PM9 results seem to be more coherent with the

simulation design. As a matter of fact, the weights of the first two MVs of the

block Satisfaction are smaller before the quantile 0.6 and they increase as the

quantile is greater than 0.6. The contrary happens for the weight of the third MV,

according to the simulation design.
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Figure 4.14: Outer weights across quantiles

4.7 Conclusion

QC-PM enhances PLS-PM potentialities when regressor effects is different for

different parts of the dependent variable distributions. As a matter of fact, QC-

PM accommodates heteroscedastic variances and outliers and is able to explore

the entire conditional distribution of the response variables.

The basic approach that apply QR using the scores of the classical PLS-PM, the

QC-PMØ, is able to distinguish different exogenous LVs effects in the different

parts of the endogenous LVs distributions. However, QC-PMØ is not able to

distinguish the different effects of MVs on LVs as the weights of the QC-PMØ are

those computed in the classical PLS-PM.

On the contrary, the more complex QC-PM, that introduces either QR and QC

in all the outer and inner estimation steps of the algorithm, is able to distinguish

the different effects of MVs on LVs as well as the different exogenous LVs effects

in the different parts of the endogenous LVs distributions.

Future researches should concentrate on developing statistical test for evaluating

the significance of differences among QPLSPM coefficients across quantiles.

Moreover, the outer inwards scheme in QC-PM should be investigated in more

details with the consequent problem of multicollinearity.



Conclusions

In this dissertation we discussed some issues in PLS-PM and proposed method-

ological contributions to enhance PLS-PM potentialities.

PLS-PM is a component-based method for SEM. Instead of severing every tie

between component-based methods and factor-based methods we think that re-

searchers should commit themselves in finding out which approach works best in

which circumstances, and a continuous dialogue between the two communities of

researchers is highly recommended for progress in this area of research.

In the second chapter, we compared PLS-PM and ML-SEM in the framework

of the same simulation design, investigating the effects of measurement model

misspecification and the implications of formative MVs on both methods.

The implication of formative blocks in Covariance-Based framework is a rather

difficult task. However, if certain model specification conditions are satisfied the

model is identified, and it is possible to estimate a Covariance-Based SEM with

formative blocks (Bollen and Davis, 2009; Williams et al., 2003).

Measurement model misspecification has the potential for poor parameter esti-

mates and misleading conclusions (see Dolce and Lauro, 2014; Jarvis et al., 2003;

MacKenzie et al., 2005, among others). Its effects extend also to the estimates of

the path coefficients connected to the misspecified block. Our simulation results

showed that misspecification is a severe problem in covariance-based SEM, while

it is not a crucial issue in PLS-PM.

This work represent only a first step in this direction of comprehension. Different

levels of complexity of the structural model with different population parameter

values should be considered for further studies. Since in a simulation study the

value of the parameters should reflect values commonly encountered in applied

120
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research, we think that it would be interesting to run simulation studies consid-

ering other well-established models (like the ECSI model), where measurement

model misspecification frequently occurs. Different model specifications can also

be considered including an endogenous formatively-measured LV.

Moreover, besides the descriptive statistics that we used to summarize and present

the simulation results, inferential statistics can be used as well. For example, the

experimental conditions can be dummy or effect coded, and main effects and inter-

actions among experimental conditions can be evaluated using standard regression

procedures.

Finally, we think that it would also be interesting to look further into the issue of

multicollinearity among MVs in formative blocks.

Besides considering PLS-PM as an alternative method for SEM, PLS-PM is a de-

scriptive and prediction oriented method, deserving a prominent place in research

applications when the aims of the analysis is prediction (Becker et al., 2013). For

this reasons, further studies on the predictive ability of PLS-PM are needed.

The PLS-PM evaluation criteria should include the predictive ability and further

criteria and evaluation techniques for PLS-PM are needed (Sarstedt et al., 2014).

Based on the proposed criteria, further extensions and modifications should be

made on the basic PLS-PM algorithm in order to improve the predictive capabili-

ties of the model estimation. The non-symmetrical approach for component-based

path modelling (NSC-PM) presented in the third chapter of this dissertation is an

example of work in this direction.

NSC-PM is a non-symmetrical approach that aims at maximizing the explained

variance of the MVs of the endogenous and bridge blocks ( i.e. an approach based

on the optimization of a redundancy-related criterion in a multi-block framework).

Unlike PLS-PM, which analyzes symmetrically the relationships between LVs,

without taking into account the roles of the dependent and explanatory LVs in

the structural model, NSC-PM respects the direction of the relationship specified

in the path diagram (i.e. the path directions), since the directions of the links

in the structural model play a role in the algorithm. Compared to the other

component-based methods, NSC-PM seems to be a good compromise between

favouring stability (high explained variance) in the blocks and correlation between
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components. NSC-PM is a new method to consider if prediction is the main

purpose.

Further research will be carried out to find out if the algorithm optimizes a global

criterion. Stability of the algorithm and coherence of the different steps are promis-

ing for the investigation of a global optimizing criteria of the procedure.

In the last chapter of the thesis we presented the Quantile Composite-based Path

Modelling (QC-PM). QC-PM exploits both Quantile regression (QR) (Koenker

and Basset, 1978) and quantile correlation (QC) (Li et al., 2014), which allow

respectively the estimation of a set of conditional quantile functions and a corre-

lation measure to examine the linear relationships between any two variables for

different quantiles, providing a more complete picture of the relationships between

variables.

QC-PM is advisable as a complementary analysis to the classical PLS-PM, in the

case where it is interesting to investigate if the relationships between dependent

variables and regressors changes across different parts of the response variable

distributions.

Future researches will be needed to develop statistical test for evaluating the sig-

nificance of differences among QPLSPM coefficients across quantiles. Moreover,

the outer inwards scheme in QC-PM should will be investigated in more details

with the consequent problem of multicollinearity.
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