
TESI DI DOTTORATO

UNIVERSITA’ DEGLI STUDI DI NAPOLI “FEDERICO II”

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

DOTTORATO DI RICERCA IN
INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI

DIGITAL FPGA CIRCUITS DESIGN

FOR REAL-TIME VIDEO PROCESSING

WITH REFERENCE TO TWO

APPLICATION SCENARIOS

GIORGIO LOPEZ

Il Coordinatore del Corso di Dottorato Il Tutor

Ch.mo Prof. Niccolò RINALDI Ch.mo Prof. Ettore NAPOLI

A. A. 2014–2015

“Poema loquens pictura, pictura tacitum poema”

– Rhetorica ad Herennium

Table of Contents

List of Figures vii

List of Tables xi

Introduction 1

1 FPGAs and Real-Time Video Processing 3
1.1 The role of Field Programmable Gate Arrays in Real-Time

Video Processing . 3
1.2 FPGAs for RTVP: Typical System Architectures 6
1.3 From Algorithm to Hardware: Computational Level Architec-

tures . 8
1.3.1 Design Challenges: Control and Synchronization . . . 11

1.4 Design Tuning and Testing: Techniques and Strategies 12
1.5 An Example of Special Environments:

FPGAs in Space Applications 15

2 An FPGA Based Architecture for the Implementation of the CDVS
Standard for Visual Search 19
2.1 MPEG 7: “the bits about the bits” 20

2.1.1 CDVS standardisation effort and TMuC 20
2.2 The CDVS Algorithm . 22

2.2.1 Interest Point Detection Insights 25
2.2.2 CDVS and SIFT: LoG and DoG 29

2.3 Filtering Unit . 32
2.3.1 Filtering Processor Datapath Optimisation 34
2.3.2 Implementation Results 38

v

Table of Contents

2.4 Keypoints Refinement Unit 40
2.4.1 Proposed Processor Architecture 43
2.4.2 Algorithm optimization for fixed-point hardware design 44
2.4.3 Implementation Results 48

2.5 Gradients Extractor and Orientations Detector 49
2.5.1 Processor architecture 52
2.5.2 Implementation results 59

3 An Algorithm for Fast Lossless Compression of Hyperspectral Im-
ages 63
3.1 Introduction: hyperspectral images and

the CCSDS-123.0-B-1 algorithm 64
3.2 CCSDS-123.0-B-1 prediction algorithm overview 66
3.3 Entropy coding scheme . 71
3.4 Proposed prediction algorithm modification 73
3.5 Realized processor architecture 76
3.6 Further architectural improvements 77
3.7 Implementation results and comparison with state-of-the-art . 80

Conclusion 85

Acknowledgements 89

Bibliography 91

vi

List of Figures

1.1 Application-Level Algorithms and Operation-Level Algorithms 4

1.2 Structures for parallelism exploitation: (a) shows pipelining
for exploitation of temporal parallelism, (b) shows partition-
ing for exploitation of spatial parallelism, (c) shows dynamic
scheduled partitioning to optimize situation in which the work-
load is unevenly distributed in the image partitions 5

1.3 Typical System Level Architectures: (a) Standalone FPGA; (b)
Multiprocessor Arrangement; (c) Coprocessor Scheme; (d) In-
tegrated Scheme . 7

1.4 A FIFO buffer can be used to provide handshaking logic be-
tween asynchronous processing blocks 11

1.5 Some testing architectures: (a) Co-simulation; (b) Hardware
Debug; (c) Hardware In the Loop Verification 16

2.1 Construction of the band-pass and low-pass pyramids. 21

2.2 Elaboration pipeline of the CDVS Interest Point Detector. . . . 24

2.3 3D matrix of the obtained LoG images. 25

2.4 Effects of keypoint refinement on a sample image: candidate
keypoints before refinement. 26

2.5 Effects of keypoint refinement on a sample image: refined key-
points. 27

2.6 Orientation detection phase: Gaussian weights distribution and
orientation histogram. 28

2.7 Descriptor construction phase: normalisation of the spatial
binning grid to the keypoint orientation. 29

vii

List of Figures

2.8 LoG approximation by means of DoG: a) In order to main-
tain selectiveness (i.e. low bandwidth), the ratio between σe
and σi must be maintained low. The figure shows both the
half-sensitivity bandwidth (+) and the half-power bandwidth
(•). b) On the other hand, low σe and σi ratios limit the peak
sensitivity of the filter: a trade-off is found in values around
1.6. c) The superimposition of a DoG (dotted) and a LoG ker-
nel with appropriate σ. The two profiles are very similar. . . . 31

2.9 Architecture of the filtering unit. 33
2.10 PSNR values for different configurations of the filtering unit.

The dots indicate possible configurations that satisfy condition
(2.3). The Pareto curve traces the sequence of optimal config-
urations for each datapath width. 37

2.11 Comparison between keypoints extracted by the proposed pro-
cessor (red) and keypoints extracted by the CDVS TMuC
(blue). Perfectly matching keypoints are shown in green. . . . 39

2.12 Architecture of the Keypoint Refinement unit. 42
2.13 Dynamic rescaling of the Linear System Equations. 45
2.14 Architecture of the non-uniformly spaced 1/x LUT with Man-

tissa and Exponent. 48
2.15 Soft binning of the pixel gradients: the weight of the contribu-

tion to bin n is inversely proportional to the distance between
the gradient phase and the central angle of the bin itself. 50

2.16 Representation of the Gaussian window: each pixel in the
patch gives a contribution which is inversely proportional to
its distance from the Keypoint location. 51

2.17 Rolling average smoothing: 3 taps window and equivalent
smoothing kernel after the imposed six iterations. 52

2.18 Histogram peak parabolic interpolation. 53
2.19 Architecture of the Orientation Detection processor. 53
2.20 Block diagram of the first order approximation unit used in the

Gaussian Weight Generator. 55
2.21 Architecture of the Gaussian Weight Generator. 57
2.22 Division of the first quadrant into 11 bins. 58
2.23 Architecture of the Angle Binner. 60

viii

List of Figures

3.1 A hyperspectral image in Band Interleaved by Line (BIL) pixel
ordering. In BIL ordering, all bands of each line are stored in
contiguous space, so that both spatial and spectral information
is accessed fairly easily. 64

3.2 Overview of the CCSDS 123.0 compression architecture: a)
Compressor chain. b) Decompresser chain. 67

3.3 Prediction neighbourhood: in the presented implementation, P
is a parameter which can be set in a range from 0 to 5. 68

3.4 Architecture of the implemented entropy coder 72
3.5 Standard CCSDS-123.0 Algorithm Flowchart 73
3.6 Fast CCSDS-123 Lossless Compression Algorithm Flowchart. 75
3.7 Geometrical representation of the optimized mapped residual

formulation. The values reported on the plane represent the
mapped residual values obtained as a function of s and bs̃/2c. 78

3.8 Implementation of the optimized mapped residual calculator . 79

ix

List of Tables

2.1 Computational loads for various block size which are integer
powers of two (VGA image resolution, kernel size=33). 34

2.2 Parameters configuration for some of the optimal filtering unit
configurations (D=8). 36

2.3 Implementation results for the filtering processor on an Altera
Stratix IV device. 38

2.4 Differentials calculation memory fetch order on dual port LoG
buffers: pixel coordinates are expressed as (x, y, s). 43

2.5 Computational complexity (in terms of multiplications and di-
vision) of Linear Equation Systems resolution algorithms. . . . 45

2.6 Effect on precision, timing performance and resource occupa-
tion of the dynamic rescaling linear system solver. 46

2.7 Comparison of precision and LUT size of the proposed seg-
mented LUT technique with mantissa and exponent (M,E)
with standard implementations. 47

2.8 Implementation results for the Orientation Detector on AL-
TERA Stratix IV FPGAs. 61

3.1 Proposed Circuit (Fast CCSDS) Resource Allocation and Per-
formance on a Space Grade Xilinx Virtex 5Q SX50T FPGAs. . 80

3.2 Performance comparison with current literature implementa-
tions: proposed algorithm is shown in bold and, together with
comparison implementations realized during this thesis work,
is denoted by the acronym “t.t.” (this thesis) 81

3.3 Comparison of Resource Occupation on a Xilinx Virtex4 FX60
FPGA with state-of-the-art literature FPGA implementations
of Fast Lossless . 82

xi

List of Tables

3.4 CCSDS toolkit cross-test results: the error metric indicates
how many pixels, in the images processed by the presented im-
plementation, differ from the ones processed by the standard
CCSDS toolkit. The presented image sets are part of AVIRIS,
MODIS and CRISM databases 82

3.5 Power Dissipation of the realized circuits implementing
both the standard CCSDS 123 algorithm and the proposed
Fast CCSDS 123 algorithm. Results are shown for an imple-
mentation on a Xilinx Virtex5QV SX50T FPGA 82

xii

Preface

I n the present days of digital revolution, image and/or video processing has
become a ubiquitous task: from mobile devices to special environments,

the need for a real-time approach is everyday more and more evident. What-
ever the reason, either for user experience in recreational or internet-based
applications or for safety related timeliness in hard-real-time scenarios, the ex-
ploration of technologies and techniques which allow for this requirement to be
satisfied is a crucial point. General purpose CPU or GPU software implemen-
tations of these applications are quite simple and widespread, but commonly
do not allow high performance because of the high layering that separates high
level languages and libraries, which enforce complicated procedures and al-
gorithms, from the base architecture of the CPUs that offers only limited and
basic (although rapidly executed) arithmetic operations. The most practised
approach nowadays is based on the use of Very-Large-Scale Integrated (VLSI)
digital electronic circuits.

Field Programmable Gate Arrays (FPGAs) are integrated digital circuits
designed to be configured after manufacturing, “on the field”. They typically
provide lower performance levels when compared to Application Specific In-
tegrated Circuits (ASICs), but at a lower cost, especially when dealing with
limited production volumes. Of course, on-the-field programmability itself
(and re-programmability, in the vast majority of cases) is also a characteristic
feature that makes FPGA more suitable for applications with changing specifi-
cations where an update of capabilities may be a desirable benefit. Moreover,
the time needed to fulfill the design cycle for FPGA-based circuits (including
of course testing and debug speed) is much reduced when compared to the
design flow and time-to-market of ASICs.

In this thesis work, we will see (Chapter 1) some common problems and
strategies involved with the use of FPGAs and FPGA-based systems for Real
Time Image Processing and Real Time Video Processing (in the following also

1

Preface

indicated interchangeably with the acronym RTVP); we will then focus, in
particular, on two applications.

Firstly, Chapter 2 will cover the implementation of a novel algorithm for
Visual Search, known as CDVS, which has been recently standardised as part
of the MPEG-7 standard. Visual search is an emerging field in mobile applica-
tions which is rapidly becoming ubiquitous. However, typically, algorithms for
this kind of applications are connected with a high leverage on computational
power and complex elaborations: as a consequence, implementation efficiency
is a crucial point, and this generally results in the need for custom designed
hardware.

Chapter 3 will cover the implementation of an algorithm for the com-
pression of hyperspectral images which is bit-true compatible with the
CCSDS-123.0 standard algorithm. Hyperspectral images are three dimen-
sional matrices in which each 2D plane represents the image, as captured by
the sensor, in a given spectral band: their size may range from several millions
of pixels up to billions of pixels. Typical scenarios of use of hyperspectral im-
ages include airborne and satellite-borne remote sensing. As a consequence,
major concerns are the limitedness of both processing power and communi-
cation links bandwidth: thus, a proper compression algorithm, as well as the
efficiency of its implementation, is crucial.

In both cases we will first of all examine the scope of the work with refer-
ence to current state-of-the-art. We will then see the proposed implementations
in their main characteristics and, to conclude, we will consider the primary ex-
perimental results.

2

Chapter 1

FPGAs and Real-Time Video
Processing

I n this Chapter, we will discuss general problems and benefits connected
with the use of FPGAs in the design and development of Real Time Video

Processing circuits and systems. We will consider common design issues and
strategies, as well as typical architecture schemes: we will also focus on a
special scenario, namely space applications, of which we will see an example
in Chapter 3.

1.1 The role of Field Programmable Gate Arrays in
Real-Time Video Processing

Real-Time Video Processing algorithms can be seen at two different abstrac-
tion levels, as shown in Figure 1.1. At a higher level, we have the “application-
level algorithm”: this algorithm determines the sequence of operations or steps
that transform the input image into the desired output. At a lower level, on the
other hand, each of these steps is described by an “operation-level algorithm”:
each of these sub-algorithms can be, itself, complex and articulated (see [1]).

From this characteristic, upon every image processing algorithm descends
an inherent parallelism that is expressed mostly in the following two aspects:

• The decomposition of a RTVP algorithm into a sequence of image
processing operations is a form of temporal parallelism. As a conse-
quence, a separate processing unit may operate each transformation, in

3

Chapter1. FPGAs and Real-Time Video Processing

a pipelined architecture, as shown in Figure 1.2a. If pipeline stages all
have approximately the same latency, so that waiting times between ad-
jacent stages are minimized, throughput can be greatly enhanced. Two
difficulties can arise when using pipelining to implement image process-
ing algorithms. The first is connected with multiple parallel paths: when,
as an example, Processor 4 in Figure 1.2a takes as input also data from
Processor 1, then proper synchronization logic must be set up. The com-
plexity of this logic may range from a simple delay line to more com-
plex structures when the intermediate stages have variable latency. A
greater difficulty is connected with feedback handling, when data from
subsequent stages affects parameters of earlier processors, for example
in adaptive algorithms.

• In many RTVP operation-level algorithms there is a form of parallelism
in terms of loops. A common example is when, typically in the outer-
most loop of each operation, all the pixel in an image are iterated for the
same operation to be applied independently on them. This is a form of
spatial parallelism, which may be exploited by partitioning the image
and performing the operation, on each separate block, using a separate
processor, like in Figure 1.2b. For video processing, the partitioning can

Input Image Operation 1 Operation 2 Operation 3
Elaboration

Result

}Application-Level Algorithm

. . .
for i=1 to rows
 for j=1 to cols
 . . .
 end
end
. . .

Operation-Level
Algorithm

Figure 1.1: Application-Level Algorithms and Operation-Level Algorithms

4

1.1. The role of Field Programmable Gate Arrays in Real-Time Video
Processing

be achieved also in time domain. The two main problems with such a
parallelism are connected respectively with overhead in the image data
distribution among the processors and with uneven workload with differ-
ent partitions. With reference to the latter, this arises when processing
time for each partition may vary significantly with dependence on the
content of the image inside of that particular partition. In such a case, a

Processor 1 Processor 2 Processor 3 Processor 4

(a)

Processor 12

Processor 11

Processor 10

Processor 9

Processor 8

Processor 7

Processor 6

Processor 5

Processor 4

Processor 3

Processor 2

Processor 1

(b)

Processor 5

Processor 4

Processor 3

Processor 1

Processor 2
Processor
Scheduler

(c)

Figure 1.2: Structures for parallelism exploitation: (a) shows pipelining for
exploitation of temporal parallelism, (b) shows partitioning for exploitation
of spatial parallelism, (c) shows dynamic scheduled partitioning to optimize
situation in which the workload is unevenly distributed in the image partitions

5

Chapter1. FPGAs and Real-Time Video Processing

better throughput may be obtained with a dynamic scheduling of parti-
tions to the processors, as Figure 1.2c shows.

As opposed to general purpose CPUs, which operate sequentially on the
instructions that constitute an algorithm, FPGAs are inherently parallel. This
makes them at the same time fast because of the nature of an hardware de-
sign and suitable to exploit the parallelism mechanisms that have now been
exposed. For a pipelined architecture, specific hardware is built for each
operation-level algorithm: if operations are synchronous, data is simply passed
between stages. In cases in which stages do not operate synchronously, ap-
propriate buffers may be needed. Partitioning is also easily implemented on
FPGAs by instantiating multiple copies of the processing hardware and dis-
patching, either statically or dynamically, image partitions to each copy.

Real Time Video Processing on FPGAs, as a consequence of these argu-
mentations, is a very discussed field in the study of RTVP systems. Particularly
notable examples in literature are [2, 3, 4, 5, 6].

1.2 FPGAs for RTVP: Typical System Architectures

In the process of developing FPGA systems for RTVP, a smart coupling of
the algorithm and the implementation is vital for taking full advantage of the
capabilities of hardware: as [7] states, the development of complex, high per-
formance algorithms on FPGAs is “unusually sensitive to the implementation’s
quality”. It is not sufficient to port an algorithm from software onto an FPGA.
The algorithm and the computational architecture must be well matched. Of
course there is not a unique solution, as development, with particular reference
to algorithm development, usually follows heuristic principles ([8]).

The architecture of an FPGA-based RTVP system can be considered at
two levels. At a higher hierarchical level, system level architecture determines
the interaction between the main components of the system: at a lower level,
computational architecture determines the means by which the computation of
the algorithm is performed.

With software-based image processing, the computational architecture is
fixed (the datapath of the CPU), and the system architecture is generally pre-
defined (classical models). On FPGA platforms, conversely, the whole archi-
tecture must be designed and developed. This is of course a burden, but gives
the designer the possibility to strategically configure an architecture which ex-
ploits the algorithm intrinsic parallelism features to the maximum.

6

1.2. FPGAs for RTVP: Typical System Architectures

Taking as a starting point the taxonomies defined by [9, 10] we can identify
the following examples of system level architecture, which are also depicted
in Figure 1.3

• Standalone FPGA: the FPGA operates without the aid of a CPU: an ex-
ternal (DRAM) memory may or may not be present (Figure 1.3a). This
is most indicated when the algorithm is data-intensive and of relatively
low control complexity.

• Multiprocessor arrangement: in this scheme, as shown in Figure 1.3b,
a CPU is present, and the FPGA behaves as an additional processor in

System

FPGA

Memory

(a)

System

FPGA

Local
Memory

CPU Central
Memory

D
M

A

System Bus

(b)

System

FPGA
CPUShared

Memory

System Bus

(c)

System

CPU

Programmable
Logic

(d)

Figure 1.3: Typical System Level Architectures: (a) Standalone FPGA; (b)
Multiprocessor Arrangement; (c) Coprocessor Scheme; (d) Integrated Scheme

7

Chapter1. FPGAs and Real-Time Video Processing

a multiprocessor system. The FPGA resides on the system bus and re-
ceives input data by the CPU via DMA on a local memory, transferring
back the results either through DMA or through mapped registers, de-
pending on the requested processing. In this way, the control flow can
be managed in software by the CPU while computationally dense por-
tions of the algorithm that benefit from FPGA implementation can be
accelerated via hardware implementation. Of course, the CPU may be
part of the FPGA itself, either as a hard core CPU (like the ones imple-
mented in SoC-oriented FPGAs, [11, 12, 13]) or as soft-core IP blocks
implementing standard or custom processors ([14, 15, 16, 17]).

• Coprocessor scheme: a more tightly coupled variation of the previous
scheme, in which the FPGA has access to a memory that is shared with
the CPU. The hardware computation is, also in this case, triggered by the
CPU after the data has been copied in the shared memory, and proceeds
independently from the CPU instruction flow, returning output data with
similar mechanisms to those relative to a multiprocessor system. This
scheme is depicted in Figure 1.3c.

• Integrated scheme: this is the most tightly coupled scheme, as the pro-
grammable logic is integrated inside the processor, often in terms of
custom instructions. Input and output data, in this scheme, is usually
passed through shared registers: as a consequence a limitation is the re-
striction in the amount of data that may be passed with each instruction.
Furthermore, during the processing the main processor is usually stalled,
waiting for the custom instruction to complete, and therefore generating
also a practical limitation in the time that is available to complete the
processing. Figure 1.3d schematises this arrangement.

1.3 From Algorithm to Hardware: Computational
Level Architectures

As we have seen before, at a lower hierarchical level, architectural choices
define how an operation-level algorithm is mapped to an hardware implemen-
tation. Different algorithm structures may need different computational archi-
tectures, with the main schemes being summed up as follows:

• Stream Processing: in an algorithm that is of mostly serial nature, in

8

1.3. From Algorithm to Hardware: Computational Level Architectures

which different image transformation are applied sequentially, the main
bottleneck of software implementations is that it is memory bound. The
CPU needs to read the pixel values from the memory, process them,
and then store the processed pixel value in memory again. In a stream
processing scheme, this bottleneck can be avoided by pipelining oper-
ations, therefore exploiting temporal parallelism. Input is fed from the
camera sensor (or read from memory, or received from a communica-
tion channel) to the first stage of the pipeline. Results from each stage
are immediately passed to the next one. As much processing as possible
should be performed before writing to memory the data even once. Ide-
ally, all the application level algorithm can be performed without using
any buffer to store the image data.

This architectural scheme suits particularly well RTVP algorithms that
can be executed completely during a raster scan, like point operations
(operations that require only input data from a single pixel), or local
filters. If an operation requires data from more than one pixel, local
buffers must be added.

The major constraint of stream processing is that the throughput is fixed
and bound either to the input (e.g: the acquisition speed of the camera
sensor) or to the output (e.g: the display frame rate). As a consequence,
stream processing gives place to synchronous systems.

• Array Processors: in this architectural scheme spatial parallelism is ex-
ploited by allocating multiple “Processing Elements” (PEs) that are co-
ordinated by a common control unit. The control unit performs scalar
operations autonomously, while dispatching vector or matrix operations
to the PEs. An important feature of array processors is the intercon-
nection scheme that allows communications between the different PEs
and between PEs and the shared memory, if any. Typically, this scheme
is either in mesh or hypercube form when memory constitutes a single,
distributed block, or in a crossbar structures when memory is shared
between PEs.

• Systolic Arrays: a particular kind of array processors that are composed
by a set of identical nodes, each including a dedicated memory. The
nodes are interconnected into basic structures (trees, meshes, etc.) that
match the computational graph in order to maintain inter-node commu-
nications to the minimum. Data travels from the central unit memory to

9

Chapter1. FPGAs and Real-Time Video Processing

the processing nodes to return again to the central memory (in analogy
with blood circulation, hence the name). This can be considered a com-
bination of array processing and stream processing, because data flows
between adjacent blocks (like in pipelined architectures) but, while in
stream processing the connected blocks realize different operations, in
systolic arrays all nodes are replicas of the same processing element.

• Buffered Processing: in some cases, pixels must be accessed from ev-
erywhere in the memory during the algorithm computation as there are
no constraints in the pattern of data access (the scheme is also referred
to as “random access processing”). As a consequence, the whole image
must be available in a frame buffer, which will likely reside on exter-
nal memory, except in the case in which image size is very small. In a
sense, buffered processing is most similar to software processing, and it
is easier to map a software algorithm onto such an architecture. Simply
“porting” an algorithm to hardware with buffered processing will give
limited advantage over a software implementation because of memory
bandwidth limitations. Where possible, local buffers can substitute a
frame buffer to improve external memory access. Another consequence
of the adoption of such a scheme is that the hard timing constraints of
stream processing are relaxed: the output may not be regular, and there
may be a variable number of clock cycles to produce each pixel in the
output. This will, however, generate difficulties in the synchronization
between algorithm steps.

Of course, hybrid solutions exist in between these schemes: ideally, the
best performance is usually achieved when the whole algorithm is imple-
mented during a single raster scan, and the use of buffering is minimized. In
some applications, on the other hand, this is not possible and, while the use
of frame buffers can be limited to a minimum, an hybrid approach is the only
pursuable solution.

In other cases, the algorithm can be remodelled by substituting one or more
processing steps with other equivalent or similar operations: in some cases,
substituting an operation may slightly change the obtained results, and some
functionality verification with respect to the original algorithms must be per-
formed.

10

1.3. From Algorithm to Hardware: Computational Level Architectures

1.3.1 Design Challenges: Control and Synchronization

One of the most challenging aspects of designing circuits for RTVP is con-
nected to algorithm control flow and and data stream management. Either with
streaming processing, which usually requires small sliding window buffers, or
with larger buffers that must be properly managed and accessed, synchroniza-
tion and control logic are crucial points.

An example is related to synchronization between asynchronous algorithm
steps. When different processors have variable processing times, intermediate
buffers are necessary to arrange the situations in which either the downstream
unit is not able to accept incoming data or the upstream unit is not ready to
produce output data. In some cases FIFOs (or dual clock FIFOs, when the
two adjacent units operate at different clock frequencies) may be sufficient,
but sometimes entire frame buffers are needed. Figure 1.4 shows a typical
synchronization scheme, in which a FIFO provides basic handshaking logic.

Another problem arises when spatial parallelism is exploited in an image
processing algorithm: different parts of the image are allocated to separate pro-
cessors. In this case, however, it is also fundamental to consider the overhead
generated by the transfer of data between central memory (e.g: a frame buffer)
to local processing memory and vice versa. In other cases, some strategies of
bank switching, like Ping-Pong buffering, may be needed to avoid idle times
in the schedule of the processing elements.

More generally, one of the major issues in the process of mapping algo-
rithms to embedded RTVP processing is meeting the various constraints. A
common trade-off occurs between speed and accuracy ([18]), and must be re-
solved in the observance of three main typologies of constraint: timing con-

Asynchronous
Processor B

Asynchronous
Processor A

Out Data Valid

Out Data In Data

Ready to Accept Data

FIFO Is Empty

FIFO Buffer

FIFO is Full

Figure 1.4: A FIFO buffer can be used to provide handshaking logic between
asynchronous processing blocks

11

Chapter1. FPGAs and Real-Time Video Processing

straints, memory bandwidth constraints and resource constraints.
Two types of timing constraints are typical of every real-time application:

throughput and latency. Throughput is typical of stream processing architec-
tures and is often imposed by input or output considerations. Latency is im-
portant for real-time control applications where the output from an image pro-
cessing algorithm is used to provide feedback. High latency, in these cases,
may lead to unstable systems.

Memory bandwidth constraints are particularly relevant when dealing with
external memory. While on-chip memory, in fact, can be less of a problem be-
cause it can be organized in a larger number of small blocks, external memory
tends to be monolithic, and often pipelined. In some cases this leads to the
need to transfer data from off-chip memory into multiple blocks of on-chip
memory, where the constraints are more relaxed.

Resource constraints consist in two interrelated aspects: firstly, in a com-
mercial application, to minimize production cost it is desirable to use the small-
est fitting device. Therefore, is vital to make an efficient use of the available
resources. On the other hand, a more circumscribed resource usage can lead
to better timing scores: a smaller design can, in fact, result in an easier routing
across the device, with resulting shorter routing delays. Conversely, when the
size of the design approaches the resource availability of the FPGA, the design
becomes harder to route efficiently, and routing delays may cause the clock
frequency to decrease.

1.4 Design Tuning and Testing: Techniques and
Strategies

Another challenge in the design and development of digital circuits for RTVP
is connected with tuning and testing phases.

Most image processing algorithms have parameters (e.g: threshold levels,
filtering parameters, etc.) that require optimization to achieve the best per-
formance. When these parameters are hard wired into the implementation,
at each parameter change the whole system needs to be re-implemented and
re-mapped to hardware. As a consequence, since a completely run time con-
figurable implementations lead to complicated and less optimized hardware
definitions, it is necessary to have a proper trade off between run-time config-
urable and implementation-time configurable parameters.

12

1.4. Design Tuning and Testing: Techniques and Strategies

In each case, though, performing the elaboration on whole images is even-
tually the only way to verify the effect of the parameters set on the algorithm
implementation. The same principle applies to algorithm verification or test-
ing, with the difference that while tuning usually requires an evaluation of the
test case output on its own, testing typically requires some comparison with a
reference or “golden” implementation.

However, generally speaking, it is not possible to perform an exhaustive
test of the complete algorithms: in RTVP applications, every image that is
processed will produce different behaviours in the algorithm and in its control
flow. As a consequence, failures may not be the result of a wrong implemen-
tation, but also the effect of a not completely robust implementation. This
problem is of course common to most design testing, and not only to image
processing applications, but some specific problems and strategies apply to
RTVP designs.

With reference to testing, the most common way to verify the proper func-
tioning of an algorithm implementation is a comparison with a “golden imple-
mentation”: this may be, for example, a reference implementation released by
a standardisation committee ([19]), or simply a pre-existent hardware or soft-
ware implementation. We could either have or not access to an internal view of
the reference implementation (e.g: source code): in the first case we can speak
of a “white box” reference, which can be of great help in testing of debugging
single sub-parts of complex algorithms, while in the latter we can speak of a
“black box” reference. In both cases we can choose between two strategies:

• Random selection of input test vectors: this is of particular use when
debugging subsections of a complex algorithm, since in such a situation
the space of possible input vectors reduces and it is easier to achieve a
more representative sample of the input, even on a randomly generated
test vectors set. Of course the approach can be extended to the test of the
whole algorithm by choosing a set of random (real world or synthetic)
images. In this case, proper care must be taken in choosing an adequate
set.

• Standard dataset verification: this is typically connected with the testing
of standard algorithms. In the testing framework an image set is defined
for both specification adherence verification and performance compar-
ison. These datasets are built to be well representative of the final use
context of the system not only in the choice of images, but also in terms

13

Chapter1. FPGAs and Real-Time Video Processing

of use conditions (i.e. noise, light conditions, etc.): as a consequence
they tend to be very robust and, at the same time, very large.

In all cases, the verification on large test vector sets can be a very time
consuming process, and more than one strategy is pursuable:

• Software verification: in most cases, mapping an algorithm to hardware
requires changes in the actual implementation. Such change may be lim-
ited to a different control flow, a change in data representation (e.g: fixed
point as opposed to floating point), or a substitution of some operations
to better suit hardware capabilities and limitations. In these cases, a first
verification can (and should) be performed in software before mapping.
Software verification is, in fact, much easier both for the abundance of
tools (MATLAB, step debuggers, etc.) and for the time required to per-
form changes in the implementation.

• Simulation: a further step from software verification. Taking for granted
the availability of simulation models (included in the development kits
released by FPGA manufacturers), simulation allows verification of the
actual hardware behaviour before deploying it on the device and with
the ability to inspect internal elaboration nodes very easily. On the
other hand, since simulation consists in a serial processor (the host
CPU) simulating concurrent hardware (the deployed circuit), the pro-
cess can be quite time consuming, especially for large designs and for
timing-accurate simulation. As a consequence, testing against large test
image sets may be prohibitive.

• Co-simulation: this is an intermediate solution between the previous
two, in which a part of the algorithm is simulated and a part is executed
in software. This approach can be used to verify with greater reliability
critical portions of the algorithm, while speeding up the total process by
having the more straightforward parts executed in software, therefore re-
ducing workload on the simulator. A scheme of this approach is shown
in Figure 1.5a

• Hardware debug: in this scheme, the system is completely deployed on
the FPGA. This gives the maximum throughput, provided that input and
output data are fed to the device and retrieved from it without significant
overhead. However, this environment presents two major disadvantages:

14

1.5. An Example of Special Environments:
FPGAs in Space Applications

firstly, visibility of internal nodes can only be obtained by modifying the
interface of the Device Under Test (DUT): in this case, the simplest
approach is to route the desired internal signals to unused I/O ports,
making them observable from outside the FPGA. A logical analyser or
an oscilloscope can then be used to monitor the signals. In some other
cases, if the resource occupation on the device is not too high, a logic
analyser can be embedded within the FPGA, alongside with the DUT.
However, each modification to the hardware or, beyond some extent, to
the logic analyser configuration requires a new synthesis and routing of
the device which may be very time consuming. Another issue related
to modifying the circuit to include signal probes and/or logic analysers
is that these alterations modify how the connections are routed on the
FPGA. These can change timing characteristics of the design, potentially
masking or generating timing problems ([20, 21]). This approach is
depicted in Figure 1.5b

• Hardware in the Loop Verification: this approach, depicted in Fig-
ure 1.5c is quite similar to co-simulation, except that the hardware de-
ployed part of the algorithm is executed on the device. Data is trans-
ferred from software to the hardware and results are transferred back
to the software host. A “loop” is thus obtained, in which the FPGA
is used to accelerate processing with respect to simulation, but with a
lesser degree of inspectability, with similar problems and solutions as in
hardware debug. In general terms, the DUT will be encapsulated in a
wrapper which connects it to the HIL framework. Today, several tools
for Hardware in the Loop verification exist, like MatLAB HDL Verifier
([22]).

1.5 An Example of Special Environments:
FPGAs in Space Applications

A particular yet important environment in which FPGAs excel, especially
when compared to other technologies, is related to space applications. The
issues connected with the high levels of ionizing radiation pose a severe chal-
lenge to circuit designers: in space, electronic systems must endure extreme
levels of radiation without risks to their reliability. While design techniques
can mitigate the probability of failures, radiation hardened (Rad-Hard) compo-

15

Chapter1. FPGAs and Real-Time Video Processing

nents offer a much higher level of dependability. Nowadays, rad-hard FPGAs
offer capabilites which overcome the state-of-the-art of rad-hard ASICs, grant-

Testing Host

Software
Debugger

Hardware
Simulator

(a)

FPGA

Hardware
DUT

In-Device
Logic Analyzer

Oscilloscope/
Logic Analyzer

FPGA
Development Kit

Host

(b)

Testing Host
FPGA

HIL Wrapper

Hardware
DUT

Software
Debugger/HIL

Interface

Oscilloscope/
Logic Analyzer

(c)

Figure 1.5: Some testing architectures: (a) Co-simulation; (b) Hardware
Debug; (c) Hardware In the Loop Verification

16

1.5. An Example of Special Environments:
FPGAs in Space Applications

ing much lower development costs and risks. As an example, NASA Mars
rover missions Spirit and Opportunity used this kind of devices for the im-
plementation of critical functions like landing and wheel movement control
([23]).

Rad-Hard FPGAs are divided into two categories: anti-fuse-based, One-
Time-Programmable (OTP) devices and SRAM-based, reprogrammable de-
vices. Anti fuse devices offer a slightly higher level of reliability, thanks
to the intrinsically lower amount of programmable elements that can be up-
set by the ionizing radiation and to a pervasive use of redundant circuitry.
The process for realization of SRAM-based devices offers an advantage of
multiple process generations with respect to anti-fuse device process (and to
Rad-Hard CMOS process for the realization of ASICs), offering greater ca-
pacity, better performance, and lower power consumption per gate. On the
other hand, SRAM-based devices need to be configured at power-on, and
radiation-tolerance can result in the requirement for error mitigation tech-
niques such as ECCs: this error mitigation, though, can be applied selec-
tively, optimizing the usage of resources. Of course, reprogrammability and
boot-time configuration are an enormous source of flexibility: in a satellite
system, bugs can be fixed or requirement changes can be accommodated even
after launch.

The application example discussed in Chapter 3 is intended for air-borne
and satellite-borne image sensing and makes use of a Xilinx Virtex 5QV
Rad-Hard SRAM-based FPGA. In these devices, the standard 6-transistors
configuration memory cell is replaced with a 12-transistors cell, which is about
three orders of magnitude more resilient to changes in state than commercial
SRAM cells, to mitigate the criticalities of boot-time configuration.

17

Chapter 2

An FPGA Based Architecture
for the Implementation of the
CDVS Standard for Visual
Search

T his chapter will cover the development of a standard algorithm for Vi-
sual Search known as CDVS (Compact Descriptors for Visual Search).

Computer Vision is a more and more pervasive technology in modern im-
age and video processing applications: examples include image driven search,
stereoscopic image matching, panorama stitching and industrial automation
tasks such as automatic control or robot navigation.

CDVS has been recently proposed as part of the MPEG-7 standard: it
is based on a very well known algorithm in Computer Vision, namely SIFT
(Scale Invariant Feature Transform). SIFT has been firstly formulated by
D.G.Lowe in [24, 25] and, since then, it has been much discussed and appreci-
ated by the scientific community thanks to its characteristics. Various other
algorithms are based on variations of its rationale and elaboration pipeline
([26, 27, 28, 29]), but SIFT remains the most considered, to date. It has also
been implemented in many forms and variants in literature ([30, 31, 32]): how-
ever, no implementation of the released CDVS standard (which differs from
SIFT in more than one aspect) has to date been proposed.

This thesis work is part of a large-scale effort to produce a series of pro-
cessors capable of implementing, with a full hardware approach, a real-time

19

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

implementation (with a throughput around 24 frames per second) the CDVS
pipeline. The project has been carried out, in co-operation with ST Microelec-
tronics, member of the MPEG committee, and with University of Salerno. The
joint project gave the opportunity to divide the complex elaboration pipeline
into sub-parts and apply a multitude of approaches and expertises to the same
problems. We will now see an FPGA implementation of the majority of the
CDVS algorithm steps that operates on the basic philosophy, in particular for
what concerns the filtering operations, of block-wise, frequency domain oper-
ation.

2.1 MPEG 7: “the bits about the bits”

MPEG 7 is a standard for content description of multimedia formats, so it does
not deal with the actual encoding of data streams like other MPEG standards
(MPEG-2, MPEG-4, etc.): for this reason, its application scope is often loosely
referred to as “the bits about the bits”. The draft was standardized as ISO/IEC
document number 15938, which is composed of several parts: part 13 of the
document regards Compact Descriptors for Visual Search.

Traditionally, visual search algorithms require query images to be sent
from the client device (typically a mobile device) to a remote server, where
the actual visual search is performed over a reference image database. This
implies a certain latency to transmit even a downsampled version of the image
over a slow link. An alternative, to reduce latency, is based on extraction and
compression of the query image (translated into a set of “features” that consti-
tute a descriptor) directly on the client device: in this fashion only the descrip-
tor is transmitted, with an improvement on performance, user experience, and
power consumption, since less data is to be transmitted over wireless links. In
addition, this approach has a positive impact on privacy concerns, since the
features are anonymous, while pictures taken by a mobile device may contain
user sensitive data.

2.1.1 CDVS standardisation effort and TMuC

CDVS standardisation has been conducted between the 92nd and 108th MPEG
committee meetings: in particular, up to the 96th meeting, a group of experts
has widely investigated applications and requirements of visual search. Dur-
ing the 97th meeting, an official call for proposals was formulated; at the 106th

20

2.1. MPEG 7: “the bits about the bits”

meeting, CDVS entered the status of committee draft. Finally, during the 108th
meeting, it entered the draft of international standards. In the document, the
format of compact visual descriptors as well as the feature extraction process
pipeline is addressed, in order to provide a common ground for interoperating
applications. An evaluation framework (also referred to as Test Model under
Consideration - TMuC or simply TM) has been constructed, encompassing
two types of experiments: retrieval and pairwise matching. Retrieval experi-

Lowpass Pyramid
(Gaussian)

Bandpass Pyramid
(LoG)

Figure 2.1: Construction of the band-pass and low-pass pyramids.

21

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

ments consist in the research, in a large dataset, of images containing the same
objects or scene as the query, while pairwise matching is the direct confronta-
tion of a query image with a reference image to determine whether they depict
the same object/scene or not. Experiments are validated on an image dataset
accompanied by a set of experiments which are used to evaluate the perfor-
mance of the descriptors and of their implementation. This dataset, which is
in turn divided into subsets, is composed of a large number of query and ref-
erence images. As an example, the largest subset contains 3,499 queries and
11,677 reference images of buildings. In addition, 3,805 matching pairs and
48,675 non matching pairs are defined. Being one of the most important areas
of investigation of CDVS related to addressing the practical issue of descriptor
rate scalability, the CDVS descriptors adapt to six operating points, each cor-
responding to a specific “bit budget”. The proper configuration is then chosen
on the basis of the specific use conditions.

2.2 The CDVS Algorithm

The CDVS Algorithm is based on scale-space theory, as formulated by Tony
Lindeberg in [33]: the theory states that, being objects only meaningful at
their characteristic size, when performing an automated visual search an im-
age must be analysed at several different scales. This results in the elaboration
of the concept of image pyramid. An image pyramid is a set of images ob-
tained, by means of filterings and subsamplings, from a single original image.
In CDVS, as Figure 2.1 shows, two parallel image pyramids are constructed:
a low-pass pyramid, constituted by the results of filtering the original image
with Gaussian kernels with different standard deviations σ, and a band-pass
pyramid, constituted by filtering the same image with Laplacian of Gaussian
(LoG) kernels. The first is used for describing the image at the various scales,
while the latter is used to determine points of interests in the image.

The elaboration pipeline of the CDVS algorithm (or, in other terms, its ap-
plication level algorithm) constitutes a very complex sequence of elaborations:
for the sake of clarity we will divide it into five macro steps:

• Interest Point Detection: in this phase, the image is decomposed into the
two pyramids and keypoints are individuated. Successively, orientations
are assigned to the keypoints and the local descriptor for each keypoint
is evaluated.

22

2.2. The CDVS Algorithm

• Feature Selection: the compactness of the generated descriptor depends
on the number of local features. In addition, a reason to perform a fea-
ture selection is that, removing less significant (e.g: noisy) features, the
overall quality and discriminative power of the descriptor may improve.

• Local Descriptor Compression: another aspect that impacts the size of
the descriptor is, of course, compression of the single local descriptors.
For this purpose, CDVS encompasses a quantization scheme with a vari-
able decimation that is dynamically adapted to the desired output bitrate.
This step and the previous are jointly tuned to provide a good balance
between the number of elements per descriptor and the number of de-
scriptors that can be packed at a given descriptor length.

• Coordinate Coding: keeping track of the coordinates of keypoints is very
important for geometric matching of objects and scenes, but may result
in a significant memory occupation. Given a VGA (640x480) image, 19
bits are needed to encode the location of a keypoint without compres-
sion. If an image contains 500 keypoints, 1.16 KBs are needed simply
to encode location of the keypoints: this information alone exceeds the
lowest operating point (512 bytes) allowed by CDVS. As a consequence,
to indicate keypoint coordinates, the image is divided into a grid and a
histogram is built. Arithmetic coding is then employed to encode his-
togram values and the histogram map.

• Global Descriptor Aggregation: as a final step, a subset of the local de-
scriptors is aggregated into a global descriptor with a technique known
as Scalable Compressed Fischer Vector (SCFV) which, compared to
other approaches in literature, combines high discriminative power with
an unequalled scalability.

The circuits described in this chapter realize functions which relate to the
first macro-step: as a consequence, we will examine this in major detail in the
next sections.

23

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

St
ep

 “
a”

K
ey

po
in

t
D

et
ec

tio
n

in
pu

t:

3D

Lo
G

sc

al
e-

sp
ac

e
o

u
tp

u
t:

ke

yp
oi

nt

ca
nd

id
at

e
lo

ca
tio

ns
 l

ist

(L
oG

 lo
ca

l e
xt

re
m

a)

St
ep

 “
al

ph
a”

Im
ag

e
fil

te
rin

g/

Lo
G

 c
on

st
ru

ct
io

n
in

pu
t:

 o
rig

in
al

 im
ag

e
ou

tp
u

t:

ba
nd

pa
ss

(L

oG
)

an
d

lo
w

pa
ss

(g

au
ss

ia
n

)
im

ag
e

py
ra

m
id

s

St
ep

 “
b”

K
ey

po
in

t
Re

fin
em

en
t

in
pu

t:

ke
yp

oi
nt

lis

t,
ke

yp
oi

nt
 n

eig
hb

or
ho

od
s

ou
tp

ut
:

in
te

rp
ol

at
ed

ke

yp
oi

nt

co
or

di
na

te
s,

re
fin

ed

lis
t

(e
dg

es

ar
e

di
sc

ar
de

d,

so

as

lo
w

co
nt

ra
st

 k
ey

po
in

ts
)

St
ep

 “
c”

G
ra

di
en

t
Ex

tr
ac

tio
n

in
p

u
t:

ke

yp
oi

nt

ne
ig

hb
or

ho
od

s
in

th

e
lo

w
p

as
s

py
ra

m
id

(“p

at
ch

es
”)

ou
tp

u
t:

gr

ad
ie

nt

m
ap

s f
or

 th
e

pa
tc

he
s

St
ep

 “
d”

O
rie

nt
at

io
n

D
et

ec
tio

n

in
p

u
t:

re

fi
n

ed

ke
yp

oi
nt

co

or
di

na
te

s,
gr

ad
ien

t p
at

ch
es

ou
tp

u
t:

ke

yp
oi

nt

do
m

in
an

t
or

ien
ta

tio
ns

(u

p
to

 fo
ur

)

St
ep

 “
e”

Lo
ca

l D
es

cr
ip

to
r

Ca
lcu

la
tio

n

in
p

u
t:

re

fi
n

ed

ke
yp

oi
nt

co

or
di

na
te

s,
gr

ad
ie

nt

pa
tc

he
s,

ke

yp
oi

nt
 o

rie
nt

at
io

ns
ou

tp
ut

:
hi

st
og

ra
m

re

pr
es

en
tin

g
gr

ad
ien

ts

a

Lo
G

 1
Lo

G
 2

Lo
G

 3
Lo

G
 4

Lo
G

 0
K

P
K

P

Im
ag

e
To

p

Im
age

 To
p

KP

ga
us

sia
n

we
ig

ht
 o

f t
he

 p
ix

el

or
ie

nt
at

io
ns

in

th

e
ke

yp
oi

nt
 n

eig
hb

or
ho

od

(“l
oc

al
 d

es
cr

ip
to

r”)

bi
n

n
ce

nt
er

an

gl
e

bi
n

n+
1

ce
nt

er

an
gl

e

di
st

an
ce

fro

m
 b

in
 n

ce

nt
er

di
st

an
ce

 fr
om

bi

n
n+

1
ce

nt
er

10
0%

80
%

36
 b

in
s,

ea
ch

 sp
an

ni
ng

 1
0°

lo
ca

l m
ax

im
a

un
de

r 8
0%

of

 th
e

to
p

pe
ak

 a
re

n'
t

ta
ke

n
in

to
 a

cc
ou

nt

se
co

nd
ar

y
pe

ak
s

to
p

pe
ak

st
ep

s
al

ph
a

-
a:

ex
ec

ut
ed

 o
nc

e/
im

ag
e

st
ep

s
b-

d:
ex

ec
ut

ed
 o

nc
e/

ke
yp

oi
nt

st
ep

 e
:

ex
ec

ut
ed

 o
nc

e/
or

ien
ta

tio
n

Fi
gu

re
2.

2:
E

la
bo

ra
tio

n
pi

pe
lin

e
of

th
e

C
D

V
S

In
te

re
st

Po
in

tD
et

ec
to

r.

24

2.2. The CDVS Algorithm

2.2.1 Interest Point Detection Insights

Details of the application-level algorithm for the interest point detection phase
of the CDVS pipeline are shown in Figure 2.2: in particular, a sequence of six
steps is individuated.

The first step (step “alpha”, in the figure) is the construction of the image
pyramid. For what concerns this phase, the CDVS algorithm is characterized
by an important difference with respect to SIFT: while the latter utilizes, as
a detection filter, the Difference of Gaussians (DoG) kernels, which are an
approximation of the Laplacian of Gaussians, CDVS utilizes the LoG them-
selves. As an additional difference, while SIFT makes use of space domain
convolution (also because, as we will see, DoG filtering can be achieved by
means of separable filters), CDVS involves a block partitioning and a fre-
quency domain filtering of the original image. These characteristics, which
result in the architecture known as “FBLoG” (Frequency Block-based LoG),
are based on a proposal designed and developed in collaboration with ST Mi-
croelectronics during as part of this Ph.D thesis work and presented in the
US patent [34]. During this algorithm step, in addition, the low-pass Gaussian
pyramid is produced.

The step “a” shown in Figure 2.2 is the keypoint individuation phase. In
this phase, as shown in Figure 2.3, the 3D space of the LoGs is scanned for
local extrema. A local extremum, in this context, is a pixel in the LoG that
has value either greater or lesser than all of its 26 neighbours (8 neighbouring
pixels in the same LoG, 9 in the “above” LoG and 9 in the “below” LoG). All

LoG 1
LoG 2
LoG 3
LoG 4

LoG 0

Figure 2.3: 3D matrix of the obtained LoG images.

25

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

Figure 2.4: Effects of keypoint refinement on a sample image: candidate key-
points before refinement.

of these pixels are marked as candidate keypoint locations and inserted into a
queue for elaboration by the downstream steps.

Step “b” performs a refinement of the keypoints: this has the dual purpose
of rejecting both low-contrast and poorly localized keypoints, which may be
respectively caused by noise in the filtered images or by edge response. With
particular reference to this latter case, edge response keypoints are prone to
exhibit instability and, thus, give place to descriptors which have low repro-
ducibility and reliability. The effect of this phase on a sample image is shown
in Figure 2.4 and Figure 2.5 .

Step “c” consists in the extraction of luminosity gradients from the Gaus-
sian filtered images produced in step alpha: on the basis of the gradients which
lie in the proximity of the detected keypoints, in fact, the algorithm will build
the final local descriptors.

Step “d” is the dominant orientations detection phase: this is needed to

26

2.2. The CDVS Algorithm

Figure 2.5: Effects of keypoint refinement on a sample image: refined key-
points.

“normalize” the descriptors in terms of the given orientation in which the key-
points appear in the image and, thus, give robustness to the descriptor itself
whenever the image (or the object in the image) is rotated. To accomplish to
this, the gradients extracted in step “c” are weighted with their distance from
the keypoint location and accumulated into a histogram accordingly with their
phase. Up to four “local extrema” bins (reaching the 80% of the absolute peak)
are taken as dominant orientations. Figure 2.6 summarizes the operation-level
algorithm relative to this step.

Step “e” is the final step connected with the computation of local descrip-
tors, and it represents the calculation of the descriptor itself. The descriptor
represents a histogram obtained by accumulating gradient orientations in a way
similar to the one discussed for step “d”, but with some differences. Firstly,
gradient phases are normalized with respect to the dominant orientation (when
more than one orientation is detected for the keypoint, a different descriptor is

27

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

calculated for each of them). Secondly, gradients are spatially binned accord-
ingly to their coordinates or, to be more precise, accordingly to their offset with
respect to the keypoint location. This spatial binning divides the area around
the keypoint in a grid of 4 × 4 = 16 bins and, again, is normalized to the ori-
entation of the keypoint. As a last difference, while in step d the orientations
histogram was composed by 36 bins each spanning 360◦/36 = 10◦, the local
descriptor is composed by 8 orientation bins per spatial bin. The total dimen-
sionality of the descriptor is hence 4×4×8 = 128. The normalization process
and binning scheme is shown in Figure 2.7: the arrow represents the dominant

KP

gaussian weight of the pixel

100%

80%

36 bins

local maxima under 80% of
the top peak aren't taken into

account

secondary peaks

top peak

Figure 2.6: Orientation detection phase: Gaussian weights distribution and
orientation histogram.

28

2.2. The CDVS Algorithm

KP KP

Image Top

Im
age

 To
p

Figure 2.7: Descriptor construction phase: normalisation of the spatial binning
grid to the keypoint orientation.

orientation of the keypoint, while the 4 × 4 grid represents the described spa-
tial binning of the gradients. It is also to be noted that this is a “soft binning”,
in which each pixel gradient gives contribution to the four nearest spatial bins
and to the two orientation bins which lie closer to the gradient phase.

As it has been stated earlier in this chapter, this thesis work is part of a
joint development by research groups from University of Naples and Univer-
sity of Salerno. As a result, while some blocks (alpha to b) have been im-
plemented independently and with different approaches by the two involved
research groups, some other blocks have been assigned to the groups to be
developed with a common interface in mind for later integration. In this per-
spective, steps c and d have been also designed and developed as part of this
thesis work while step e, which for this reason is shown in Figure 2.2 with a
dashed outline, has been developed by University of Salerno.

2.2.2 CDVS and SIFT: LoG and DoG

As we mentioned in §2.2.1, one of the most relevant differences between the
CDVS algorithm and SIFT (as formulated in [24, 25]) lies in the adopted edge

29

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

detection filter. Despite a common rationale consisting of the Scale-Space the-
ory formulated by Lindeberg in [33], which is based on the use of a Laplacian
of Gaussian as the generating kernel for the band-pass pyramid, the algorithms
feature a different, albeit tightly coupled, choice.

The SIFT algorithm employs, in fact, a well known edge detection filter
known as Difference of Gaussian and presented for the first time in [35]. This
filter consists, as the name suggests, in the difference between two Gaussian
kernels: as proven in [36], selecting a proper ratio between the standard devia-
tions σi and σe of the two involved Gaussian kernels, the resulting function ap-
proximates to a certain extent the profile of the Laplacian of Gaussian (though
with some criticalities in the trade-off between bandwidth selectiveness and
peak sensitivity of the filter). The advantage in such approach lies in the pos-
sibility of performing the filterings with the simple (and separable) Gaussian
kernels while subtracting the results of the two filterings afterwards, obtaining
the result of the DoG filtering. In this way, a computationally expensive 2D
convolution, which would be necessary in case of a LoG filtering (or a direct
DoG filtering), is avoided.

CDVS, being oriented to Frequency Domain filtering, does not incur in
any computational overhead due to the use of Laplacian of Gaussian kernels.
Furthermore, as proven in [37], LoG-based edge detectors produce the most
stable features when compared to other typically used kernels.

Figure 2.8 shows the similarity between the two function profiles, and the
criticality in the choice of the ratio between the two standard deviations σi and
σe.

30

2.2. The CDVS Algorithm

!e/!i

ba
nd

wi
dt

h

!e/!i
pe

ak
 se

ns
iti

vi
ty

 (%
)

a) b)

c)

Figure 2.8: LoG approximation by means of DoG: a) In order to maintain
selectiveness (i.e. low bandwidth), the ratio between σe and σi must be main-
tained low. The figure shows both the half-sensitivity bandwidth (+) and the
half-power bandwidth (•). b) On the other hand, low σe and σi ratios limit the
peak sensitivity of the filter: a trade-off is found in values around 1.6. c) The
superimposition of a DoG (dotted) and a LoG kernel with appropriate σ. The
two profiles are very similar.

31

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

2.3 Filtering Unit

Step “alpha”
Image filtering

and LoG
construction

Step “a”
Keypoint
Detection

Step “b”
Keypoint

Refinement

Step “c”
Gradient

Extraction

Step “d”
Orientation
Detection

Step “e”
Local

Descriptor
Calculation

The first processor that will be presented is the filtering unit: as we
have mentioned before, the novelty of the CDVS approach, with respect
to prior, similar feature extraction algorithms, consists in the adoption of a
Frequency-based Blockwise filtering for the production of LoG images and
low-pass Gaussian images (FBLoG). This approach is based on the proposed
filtering processor, which we will now see. The processor is based on a 1D,
mixed-radix, Decimation in Frequency, fixed-point FFT Unit which is itera-
tively used to produce the 2D Fourier transform of the block. The overall
architecture of the processor is shown in Figure 2.9: the block size and, thus,
the size of the block buffers, has been determined by exploiting the technique
described in [38]. This technique takes into account, as a first factor, the “dura-
tion” of the impulse response of the filters which will be used in the computa-
tion: this impulse response length, in fact, sets the need for an overlap between
adjacent blocks which in turn results in overhead of a fixed amount, indepen-
dent from block size. The second factor to be considered is the total number of
operations that will be performed on the single block. The optimization, thus,
is carried out by minimizing the product of this amount of operations by the
total number of blocks which depends on the blocks overlap and, obviously,
on image size: if we denote the image width and height respectively by W and
H , the block size by N and the maximum filter “tail” by L, the total number of
blocks is easily found as:⌈

W

N − L+ 1

⌉
·
⌈

H

N − L+ 1

⌉
. (2.1)

The next point is determining the computational load for the elaboration of a
single block. To accomplish for this, we must analyse the algorithm flow: for
each block we need to perform

• N forward FFTs in the row direction

• N forward FFTs in the column direction

32

2.3. Filtering Unit

1D FFT
Unit

Block
Buffer 1

Block
Buffer 2

Filters
Bank

...

+

Block
Pixels

Filtered
Pixels

Figure 2.9: Architecture of the filtering unit.

and, for each filter in the filter bank,

• N2 multiplications

• N inverse-FFTs in the row direction

• N inverse-FFTs in the column direction

Since for each FFT we can assume a complexity of N log2(N), suppos-
ing the filter bank to be composed by 8 filters coherently with the pyramid
construction phase as formulated in CDVS, we obtain:

9 · (2N · (N log2(N))) + 8N2. (2.2)

Limiting our attention to block sizes that are integer powers of two, we
obtain the computational loads in Table 2.1, which refer to a case in which the
image resolution is set to be standard VGA size and maximum kernel size “L”
is 33, according to CDVS formulation.

As it can be seen from the table, the computational load does not follow an
unimodal curve. This is due to the presence of the “ceiling” function in (2.1).

Another optimisation that has been exploited during the development of the
filtering processor is connected to the filter response storage: descending from

33

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

Table 2.1: Computational loads for various block size which are integer powers
of two (VGA image resolution, kernel size=33).

Block size Total computational load
(pixels) (operations)

64 1.43× 107

128 7.68× 106

256 8.97× 106

512 8.91× 106

1024(†) 1.97× 107

(†) indicates that, for this size, the processing is done
within a single block. Please note that, for this filter size,

64 is the minimum meaningful block size.

the fact that the Fourier transform of a real and even signal is itself real and
even, we can see that it is not necessary to store the totality of the filter samples.
Furthermore, being actually our filters radially symmetric, their transform will
only depend on radial frequency: as a consequence we can store just a quadrant
of its real part (since its imaginary part will be identically zero) and save 7/8
of the memory that would be needed to store the whole transform.

2.3.1 Filtering Processor Datapath Optimisation

The definition of the processing datapath width has been a crucial step in the
definition of the processor architecture. When performing a Fourier transform
(FT) in fixed point, the reorganisation of signal energy among the samples can
lead to a practical increase in the dynamic range of the manipulated data. As an
example, we can consider the DC component of the signal, which corresponds
to the sum of its samples. Being our image defined in the [0, Smax] range, the
DC component of the Fourier transform of a signal composed by 128 samples
can be as large as 128 ∗ Smax = 27 ∗ Smax. This leads to an expansion of
7 bits in the dynamic range of the signal for each FFT step. In addition, the
least significant bit (lsb) of the output of the FT will have the same weight
as the lsb of the input. As a consequence, to have greater detail in the FT
samples (especially in the samples which have low power or, in other terms,
smaller absolute values), it is appropriate to add “zeros” as lsbs of the input to
artificially expand its dynamic range. Normalisation of the FT output is also a
factor that can be considered: at the output of each FT step, a right shift of a

34

2.3. Filtering Unit

certain amount of bits can be performed to reduce the dynamic range into the
datapath width. This normalisation, in a two-steps 2D transform (i.e. obtained
from two successive 1D transforms), can be obviously performed after each
transform step.

To conclude, this leads to a number of inter-connected parameters in the
definition of the datapath:

• Dynamic range of the input signal, in bits (D)

• Datapath width, in bits (W)

• Weight of the lsb, expressed as a power of two (L)

• First FT step normalisation, in terms of right shifts (N1)

• Second FT step normalisation, in terms of right shifts (N2)

where, to have the maximum exploitation of the datapath width, the fol-
lowing condition must apply:

D − L−N1−N2 + 7 + 7 = W. (2.3)

This results in a set of configurations all of which produce a certain PSNR
when compared to a “golden” reference, which can be represented by floating-
point calculation.The PSNR plot of Figure 2.3.1 is the result of a thorough
examination of these combinations: the sequence of optimal configurations,
one for each datapath width, produces the depicted Pareto curve. Table 2.2
shows the parameters combination for some of the optimal configurations.

As the table shows, the best resource allocation strategy consists in reduc-
ing the weight of the lsb in the input signal and performing normalisation after
each FT step: in this way, during the data manipulations which are performed
inside of each FT, the maximum amount of information is preserved. When the
datapath width approaches 22 bits, the optimal configurations become almost
equivalent and further increments do not provide significant gain in terms of
computational precision.

35

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

Table 2.2: Parameters configuration for some of the optimal filtering unit con-
figurations (D=8).

Datapath size L N1 N2 PSNR
(pixels) (2’s power) (right shifts) (right shifts) dB

14 -5 7 7 29.02
15 -6 7 7 33.82
16 -7 7 7 38.31
17 -8 7 7 41.98
18 -9 7 7 44.24
19 -9 6 7 45.24
20 -10 6 7 45.58
21 -10 6 6 45.68
22 -11 6 6 45.71
23 -12 6 6 45.72
24 -12 6 5 45.72
25 -13 6 5 45.72
26 -15 6 6 45.72

36

2.3. Filtering Unit

da
ta

pa
th

 w
id

th
 (b

its
)

PSNR (dB)

14
16

18
20

22
24

26
28

30
32

34

202530354045

Fi
gu

re
2.

10
:

PS
N

R
va

lu
es

fo
r

di
ff

er
en

tc
on

fig
ur

at
io

ns
of

th
e

fil
te

ri
ng

un
it.

T
he

do
ts

in
di

ca
te

po
ss

ib
le

co
nfi

gu
ra

tio
ns

th
at

sa
tis

fy
co

nd
iti

on
(2

.3
).

T
he

Pa
re

to
cu

rv
e

tr
ac

es
th

e
se

qu
en

ce
of

op
tim

al
co

nfi
gu

ra
tio

ns
fo

re
ac

h
da

ta
pa

th
w

id
th

.

37

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

Table 2.3: Implementation results for the filtering processor on an Altera
Stratix IV device.

Logic Elements Block RAM DSP Elements fmax
(amount) (kBs) (amount) (MHz)

7486 304.8 96 93.23

2.3.2 Implementation Results

Table 2.3 shows the implementation results for the 22 bit datapath version of
the filtering processor on an ALTERA Stratix IV device. To obtain the image
throughput of the processor we must take into account the following:

1. The filtering processor outputs two pixels per clock cycle

2. A VGA image decomposes into 35 blocks

3. Each block is processed in 147k clock cycles.

As a consequence, the throughput, in terms of frames per second, can be
obtained as:

9.32e7
35 ∗ 147k

' 18fps. (2.4)

This throughput can be considered sufficient for real-time applications in
which typical frame rates are around 24 fps: a simple 2-to-1 subsampling in
time domain would lead to a frame rate of 12 fps that could be accommodated
by the unit. In addition, the proposed architecture adapts to many possible
optimisation: as an example, by adding a second FFT unit, the inverse FFTs
could be parallelised: in this way, each block would be processed in ∼82k
clock cycles, leading to a throughput of 32.5fps.

Figure 2.11 shows a comparison between keypoints detected by the real-
ized processor and keypoints extracted by the CDVS TMuC. As the image
shows, the majority of the most significant keypoints (the ones with greater
contrast and localization) is similarly distributed.

38

2.3. Filtering Unit

Fi
gu

re
2.

11
:C

om
pa

ri
so

n
be

tw
ee

n
ke

yp
oi

nt
s

ex
tr

ac
te

d
by

th
e

pr
op

os
ed

pr
oc

es
so

r(
re

d)
an

d
ke

yp
oi

nt
s

ex
tr

ac
te

d
by

th
e

C
D

V
S

T
M

uC
(b

lu
e)

.P
er

fe
ct

ly
m

at
ch

in
g

ke
yp

oi
nt

s
ar

e
sh

ow
n

in
gr

ee
n.

39

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

2.4 Keypoints Refinement Unit

Step “alpha”
Image filtering

and LoG
construction

Step “a”
Keypoint
Detection

Step “b”
Keypoint

Refinement

Step “c”
Gradient

Extraction

Step “d”
Orientation
Detection

Step “e”
Local

Descriptor
Calculation

The Keypoint Refinement phase has the following two functions:

• Individuating local extrema at a sub-pixel scale by a first order Taylor
expansion of the 3D-fitting function of the Laplacian of Gaussians.

• Discarding unstable keypoints, such as edge responses which are poorly
localized (unlike angle keypoints) or low contrast keypoints.

The algorithm firstly approximates first and second order derivatives by means
of finite differences, and then obtains the offsets {δx, δy, δs} by solving the
following linear equations system:Dxx Dxy Dxs

Dyx Dyy Dys
Dsx Dsy Dss

 ∗
 δx
δy
δs

 =

 −Dx−Dy
−Ds

 ,

where, if P (x, y, s) represents the pixel at (x, y, s) in the scale-space, then
for example Dx represents the quantity [P (x + 1, y, s) − P (x − 1, y, s)]/2
and Dxy represents the quantity [P (x+ 1, y, s)− P (x− 1, y, s) + P (x, y +
1, s) − P (x, y − 1, s)]/4. As a consequence, Dxy = Dyx and the matrix is
symmetric.

If any of the obtained spatial offsets {δx, δy} has absolute value greater
than 0.6 the corresponding coordinate (and thus the keypoint candidate) is
shifted accordingly and the algorithm is iterated. After five iterations (or less
if, at any point, the offsets are under 0.6 in absolute value) the algorithm is
stopped: in case any of the offsets at the last iteration is greater in absolute
value than a threshold of 1.5 pixels, the candidate is discarded; otherwise, the
offsets constitute the final, sub-pixel coordinates.

After this stage, the quantity P (x + δx, y + δy, s + δs) is calculated on
the basis of the first order Taylor expansion. This interpolated peak value is
then compared with a threshold equal to 0.03 ∗ Pmax, where Pmax is the

40

2.4. Keypoints Refinement Unit

maximum possible pixel value. If the peak absolute value is lower than the
threshold, the keypoint is considered of low contrast and, thus, discarded.

At this point, given the Hessian matrix

H =
[
Dxx Dxy
Dxy Dyy

]
,

its determinant det(H) = Dxx ∗ Dyy − Dxy ∗ Dxy and its trace tr(H) =
Dxx + Dyy are calculated: in case the determinant is negative, the point is a
“saddle” and it is thus discarded.

The matrix trace and its determinant are bound to the eigenvalues α and β
as follows:

tr(H) = α+ β, det(H) = αβ.

Let now be α = rβ:

tr(H)2

det(H)
=

(α+ β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
.

This ratio is at its minimum when the two eigenvalues are equal and it
increases with r. Now, being the eigenvalues proportional to the principal
curvatures of the curve around the point in which the derivatives are calculated
(as proven in [39]), we compare the ratio with a proper threshold r, which
is, in [25], proposed as 10. Above this value, we consider the keypoint to be
representative of an edge and, thus, poorly localized and prone to be unstable.

41

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

K
P

Q
ue

ue

Li
ne

ar
 S

ys
te

m
 S

ol
ve

r

a1
1

a1
2

a1
3

a2
1

a2
3

a3
1

a3
2

D
iff

er
en

tia
l T

er
m

s
Ev

al
ua

to
r

In
pu

t S
ta

ge

a2
2

a3
3

+

1/
x

LU
T

b1 b2 b3

Co
nt

ra
st

Th

re
sh

ol
d

an
d

Ed
ge

Re

je
ct

io
n

N
ex

t I
te

ra
tio

n
Th

re
sh

ol
d

.
 .

 .

.
 .

kp
 c

oo
rd

in
at

es

Lo
G

pi
xe

ls

ite
ra

te

off
se

t

re
fin

ed
 k

p
co

or
di

na
te

s

Lo
G

Bu
ffe

r 1

Lo
G

Bu
ffe

r 2

Lo
G

Bu
ffe

r 3

Fi
gu

re
2.

12
:A

rc
hi

te
ct

ur
e

of
th

e
K

ey
po

in
tR

efi
ne

m
en

tu
ni

t.

42

2.4. Keypoints Refinement Unit

2.4.1 Proposed Processor Architecture

The proposed processor has been designed to receive the input image LoGs on
a block-by-block basis from the filtering unit. An intermediate buffer between
the upstream steps and the keypoint refinement processor is used to discard the
outmost pixels of each block so that only 96 × 96 pixels are processed by the
unit.

Processor architecture is shown in Figure 2.12: the 96 × 96 pixels blocks
are received streamingly in interleaved order (LoG #0 of the first block, LoG
#1 of the first block, ..., LoG #4 of the first block, LoG #0 of the second block,
etc.) and, to optimize buffering, they are stored in round-robin into three block
buffers.

Every time the extrema detector identifies a keypoint in the block, the co-
ordinates are put into a KP queue and sent to the processor, which fetches the
needed pixels from the buffers and calculates the differential approximations.
The fetch order has been engineered to reduce the number of memory accesses
to the minimum and parallelise them as much as possible: the standard CDVS
algorithm performs a total of 27 memory accesses, while our processor only
carries out 19 accesses. By holding values that are used more than once in
registers and exploiting parallel memory access on the FPGA dual-port mem-
ories, only 5 clock cycles are actually sufficient to read all the needed pixel
values, with a notable reduction on access times and an optimised exploita-
tion of the memory bottleneck. Table 2.4 shows the order of memory accesses
on the BRAM ports: the triad (x, y, s) represents the offset of the accessed
neighbouring pixel with respect to the candidate (0, 0, 0).

Table 2.4: Differentials calculation memory fetch order on dual port LoG
buffers: pixel coordinates are expressed as (x, y, s).

Buffer/ Cycles
Port 1st 2nd 3rd 4th 5th
1A (0,0,-1) (-1,0,-1) (0,-1,-1) (+1,0,-1) (0,+1,-1)
2A (0,0,0) (-1,0,0) (0,-1,0) (+1,0,0) (0,+1,0)
2B (+1,+1,0) (+1,-1,0) (-1,+1,0) (-1,-1,0) none
3A (0,0,+1) (-1,0,+1) (0,-1,+1) (+1,0,+1) (0,+1,+1)

After this phase, the linear equations system is populated and solved with
a division-free algorithm, derived from the classical Gauss Jordan: this algo-

43

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

rithm avoids division during the transformations of the linear system matrix,
only requiring divisions for the final calculation of the solutions as the ratios
between the constant terms bi and the pivot elements Aii. However, by aid
of a LUT which computes the 1/x function, this calculation of the final di-
visions is also avoided. If any of the obtained spatial offsets is greater than
the threshold, the keypoint candidate is shifted accordingly and the procedure
is iterated; otherwise, a low-contrast and edge rejection block checks if the
keypoint is stable enough to be further considered by the CDVS algorithm (by
checking the conditions discussed in the previous section) and, if so, outputs
the refined coordinates.

2.4.2 Algorithm optimization for fixed-point hardware design

Being the CDVS algorithm software-oriented, the released C/C++ implemen-
tation requires complex libraries and high processing power, hardly obtaining
real-time performance. Our processor is aimed at a completely different sce-
nario, namely mobile and low-power devices such as smartphones or sensor
networks. As a consequence, a fixed point precision rework of the algorithm
has been conducted to jointly adapt to hardware capabilities and limitations
and meet real-time requirements.

Division Free Linear Equation System Resolution

The linear system resolution has been performed with a division-free variant
of the Gauss method known as the “one step division-free Gaussian elimina-
tion” [40, 41]: the chosen method transforms the A matrix of the linear system
into a diagonal matrix, on the basis of the circuit presented in [42]. As a con-
sequence, divisions are only needed for the final step of dividing the constant
terms by the coefficients on the main diagonal and obtain the unknown vari-
ables vector. Table 2.5 shows the number of multiplications and divisions for
both the one-step method, the traditional Gauss method (which transforms the
matrix into a triangular matrix) and the Gauss-Jordan method (which, as the
one-step method, transforms the matrix into a diagonal matrix) as presented
in [43]: the final divisions are implemented using a Lookup Table (LUT) for
calculation of 1/x.

44

2.4. Keypoints Refinement Unit

Table 2.5: Computational complexity (in terms of multiplications and division)
of Linear Equation Systems resolution algorithms.

Operation One Step Gauss Gauss-Jordan
Divisions 3 6 9

Multiplications 45 18 27

a21 a22 a23 b2

leading zero/one detector

>> >> >> >>

a11 a11
a21 a21| | a11 a12

a21 a22| | a11 a13
a21 a23| | a11 b1

a21 b2
| |

Figure 2.13: Dynamic rescaling of the Linear System Equations.

Linear equations system dynamic rescaling

One of the optimizations carried out to better exploit fixed-point precision is
the dynamical rescaling of equations by use of a leading zero/one detector dur-
ing the linear system resolution: this is based on the well-known property for
which, if one of the equations of a linear system is multiplied by a coefficient,
the solution is unchanged.

Being the general term of the system aij , at each step, given by the deter-
minant of a 2× 2 matrix composed by four terms of the system at the previous
iteration, the dynamic range of the terms would linearly increase with the iter-
ation: as a consequence, being the initial terms 16 bit wide, at the end of the
third iteration the term should theoretically be 128-bit wide, in order to prevent

45

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

any overflow. To reduce register size a rescaling could be performed at each
step, but with a detrimental effect on output precision: to minimize this, the
rescaling is dynamically adapted in order to perform only the strictly necessary
shifts to obtain overflow avoidance. As Figure 2.13 shows, in fact, a leading
zero/one detector is utilized to detect how many shift operations are needed to
avoid overflow and the shifters are accordingly operated.

Table 2.6 summarizes the advantage introduced by this technique over a
classical, static rescaling approach: the error metric is expressed in terms of a
“failure rate” or, in other terms, the percentage of cases in which the absolute
error on the offsets is over 0.5 pixels, which can lead to a failure of the refine-
ment for the considered keypoint. As the numbers show, to obtain comparable
precision it is necessary to implement a considerably larger circuit, ideally the
full 128-bit wide circuit with no rescale, with a much higher usage of DSP
blocks and a much lower maximum clock frequency.

Table 2.6: Effect on precision, timing performance and resource occupation of
the dynamic rescaling linear system solver.

Case Failure Rate(†) Occupied Logic fmax
f (registers size/rescale) (%) (Slices) (DSP) (MHz)
18-bit/Dynamic(*) 0.12 3244 24 183,79
18-bit/Static 95.2 1210 22 183,99
90-bit/Static 0.11 11204 704 73,02
128-bit/No Rescale 0 3765 200 90,6
(*)this thesis
(†)The refinement is considered to fail over a given system
when the absolute error in the offset calculation is over 0.5

Non-Uniformly Spaced 1/x LUT with Mantissa and Exponent

The 1/x function has a notable output range over the considered input interval
(]0, 217 − 1]). To obtain accurate yet small sized LUT versions of the function
several approaches exist in literature, like range reduction (see [44]). Given the
architectural characteristics and resource availability of FPGAs, however, our
implementation has been targeted towards a simpler approach which, levering
on some of the basic principles of range reduction such as lead zero detec-

46

2.4. Keypoints Refinement Unit

tion while utilizing a non-uniformly sampled range with piecewise constant
approximation, obtains good precision and area utilization. Figure 2.14 shows
such circuital implementation.

The input range is divided in two segments. As a consequence, the input
value x is converted into an unsigned value and then the 10 MSBs and the 10
LSBs are extracted: these two sections of x are utilized to address two LUTS.

If the bitwise OR of the leading 7 bits of the MSBs is “0” the output from
LUT C is selected: this LUT holds the values for the]0, 210 − 1] interval,
in which the first derivative of the function has greater absolute values and
high precision is crucial. In this interval, thus, the function is sampled on a
point-per-point basis. If the 7 MSBs are not all zeros, otherwise, the output is
taken from LUT I: this holds the values for the]210, 217−1] interval. Being the
derivative smoother in this interval, the function is sampled with a step equal
to 27 and interpolated using zero order interpolation.

In each case, the output value is represented by a mantissa and by an expo-
nent which represents the LSB weight. Conversion to fixed point is eventually
performed by shifting the mantissa or its complement (if the bit sign is equal
to 1).

Table 2.7 compares precision and LUT size of the optimized segmented
LUTs with mantissa and exponent (M,E) architecture to non segmented (com-
pletely tabulated) LUTs with mantissa and exponent and standard LUTs.

Table 2.7: Comparison of precision and LUT size of the proposed segmented
LUT technique with mantissa and exponent (M,E) with standard implementa-
tions.

Case Error LUT Size
(RMS) (KBs)

11 bit (M,E), segmented* (this thesis) 1.89e-6 3.98
10 bit (M,E), completely tabulated 1.04e-6 240
11 bit (M,E), completely tabulated 4.35e-7 256
18 bit (M,E), completely tabulated 3.97e-9 368
18 bit Standard, completely tabulated 1.08e-6 288
27 bit Standard, completely tabulated 4.30e-9 432
*LUT is completely specified up to 210. Afterwards, one value
is specified each 27 points.

47

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

M
(11 bit)

E
(5 bit)

000

3FF

M
(11 bit)

E
(5 bit)

000

3FF

Bitwise
OR

/
/

18

10 MSB

10 LSB
LUT C

LUT I

0

Sign Bit

1

0

1
0

1Sign
Invert

Shifter

/

5

/

12

/11

/

12

/

36

Bit
Select

/7 MSB

[

/

17

/x
1/x

Signed to
Unsigned
Converter

Figure 2.14: Architecture of the non-uniformly spaced 1/x LUT with Mantissa
and Exponent.

2.4.3 Implementation Results

The presented processor has been implemented and deployed on an ALTERA
Stratix IV EP4SGX230KF40C2 FPGA. The footprint of the processor is neg-
ligible on such a mid-sized device, with the Utilized Logic Slices resulting
in 5080 (3%), the BRAM usage equal to 540 KB (4%), and the DSP blocks
usage equal to 30 (2%).

For what concerns performance analysis, if we consider that each itera-
tion of the algorithm on the keypoint requires 30 clock cycles and that the
maximum number of iterations is equal to 5, the obtained maximum working
frequency of 100 MHz allows a throughput of 6.67 × 105 KPs/sec, which in
turn results in a maximum throughput per frame (at a theoretical frame rate
of 30fps) of 2.22 × 104 KPs per frame. Simulation results confirm a refine-
ment failure rate (as defined in §2.4.2) under 1%, with a mean absolute error
of 3.6× 10−2 pixels on successfully refined keypoints.

48

2.5. Gradients Extractor and Orientations Detector

2.5 Gradients Extractor and Orientations Detector

Step “alpha”
Image filtering

and LoG
construction

Step “a”
Keypoint
Detection

Step “b”
Keypoint

Refinement

Step “c”
Gradient

Extraction

Step “d”
Orientation
Detection

Step “e”
Local

Descriptor
Calculation

One of the characteristics of the CDVS algorithm is to produce “features”
or, in other terms, descriptors which exhibit robustness with respect to several
image transformations such as rescalings, rotations, change in illumination and
point of view, or perspective distortions. This robustness is obtained as a result
of several aspects of the algorithm: as an example, the concept itself of image
pyramid and multi-scale analysis leads to a rescaling invariance of the descrip-
tors. To obtain robustness to rotation, conversely, descriptors are “normalised”
with respect to one or more “dominant orientations” which characterise the
keypoint.

In CDVS, the dominant orientations are calculated by examining the image
luminosity gradients in the areas surrounding the keypoints and accumulating
their phases in a histogram. As a first step, thus, the luminosity gradients need
to be extracted in terms of their magnitude and phase from the appropriate
image in the low-pass pyramid. Being the image denoted with I(x, y), the
gradients are extracted as

m(x, y) =
√

[I(x+ 1, y)−I(x− 1, y)]2+[I(x, y + 1)−I(x, y − 1)]2,
(2.5)

and

θ(x, y) = tan−1

(
I(x, y + 1)− I(x, y − 1)
I(x+ 1, y)− I(x− 1, y)

)
. (2.6)

Gradients are evaluated inside of a circular patch of diameter 4.5 · σkp,
where σkp corresponds to the interpolated scale coordinate of the keypoint, as
calculated in step “b”. As a consequence, keypoints detected in higher scales
will have a larger neighboorhood of gradients analysed for orientation detec-
tion.

The histogram is composed by 36 bins, with the first centred at 5◦, and each
bin spanning 10◦ for a total of 360◦. Gradients contributions, as Figure 2.15

49

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

bin n
center anglebin n+1

center angle

angular
distance from
bin n center

angular
distance from
bin n+1 center

Figure 2.15: Soft binning of the pixel gradients: the weight of the contribution
to bin n is inversely proportional to the distance between the gradient phase
and the central angle of the bin itself.

shows, are calculated with a “soft binning” technique: while with traditional
binning, for example, a gradient with phase equal to 14◦ would just give con-
tribution to the bin centred at 15◦, in this scheme it would give a contribution
of 0.9 to the bin centred at 15◦, plus a contribution of 0.1 to the one centred at
5◦.

In general terms, the contributions to the upper and lower bin are weighted
with the factors

wu = 1−∆θu/10, wl = 1−∆θl/10, (2.7)

where ∆θu and ∆θl represent the differences between the angle of the gra-
dient phase and, respectively, the centre of the upper and lower bin as expressed
in sexagesimal degrees: as a consequence, the following conditions apply.

∆θl, ∆θu ∈ [0, 10] (2.8)

wu, wl ∈ [0, 1] (2.9)

50

2.5. Gradients Extractor and Orientations Detector

KP pixel distance

gaussian weight

1

patch

Figure 2.16: Representation of the Gaussian window: each pixel in the patch
gives a contribution which is inversely proportional to its distance from the
Keypoint location.

wu + wl = 1 (2.10)

The contribution is also weighted with the distance between the keypoint
location and the pixel coordinates following a Gaussian profile, as shown in
Figure 2.16. This “Gaussian weight” is equal to 1 at the keypoint sub-pixel
coordinates (as generated at step “b”), descending towards zero as the distance
from the keypoint increases.

The final formulation of the contributions to the upper and lower bins, cu
and cd, is:

cu(x, y) = m(x, y) ·G(d) · wu(θ(x, y)) (2.11)

cd(x, y) = m(x, y) ·G(d) · wd(θ(x, y)) (2.12)

wherem(x, y) is the gradient magnitude in (x, y) andG(d) is the Gaussian
weight of the pixel at distance d from the keypoint location.

When the histogram is completely built, a rolling average smoothing is
operated. To reduce window size to three, the operation is repeated for a total
of six iterations: the equivalent smoothing kernel is shown in Figure 2.5. After
this phase, the histogram is scanned for up to four local maxima: local maxima
with value under the 80% of the global maximum of the histogram will not
be considered. The local maxima are further interpolated with a parabolic

51

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

0.333

0.193

Figure 2.17: Rolling average smoothing: 3 taps window and equivalent
smoothing kernel after the imposed six iterations.

interpolation as Figure 2.5 shows: in this way the keypoint orientation can be
calculated with maximum precision.

2.5.1 Processor architecture

Figure 2.19 shows the architecture of the orientation detection processor: the
circuit takes as input the gradients calculated at step “c” (expressed in magni-
tude and phase) as well as information regarding pixel distance and keypoint
scale (σ). The two units inside of the histogram builder indicated as “Gaussian
weights generator” and “Angle binner” are the most crucial units for the execu-
tion of the algorithm: we will analyse them in major detail in this section. As
the figure shows, the histogram builder makes use of the squared distance be-
tween the keypoint location and the involved pixel, to simplify the calculation
and avoiding the computation of the square root.

52

2.5. Gradients Extractor and Orientations Detector

25° 35°15°

actual peak orientation: 21°

Figure 2.18: Histogram peak parabolic interpolation.

Gaussian weight generator

The Gaussian weight generator calculates the weight to be assigned to the
generic pixel of coordinates (x, y), situated at a distance d from the coordi-
nates of the keypoint (xkp, ykp). The value of the output is not only dependent

Histogram
Accumulation Duplex

Histogram A

Histogram B

Histogram Builder
hi bin #

lo bin #

hi bin contr

lo bin contr

switch controller

Histogram
Smoother

keypoint
orientations

bin triplet values

center bin#

histogram
values

gradient mag

gradient !

keypoint "

Peak
Detector

Quadratic
Interpolator

Gaussian
Weights

Generator

Angle
Binnerpixel

distance()2

Figure 2.19: Architecture of the Orientation Detection processor.

53

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

on d, but also on the keypoint scale coordinate σkp. The Gaussian function
has, in fact, formulation:

G(d, σkp) = e
− d2

2(1.5·σkp) . (2.13)

The 1.5 coefficient which contributes in determining the standard deviation
of the Gaussian curve is the window magnification factor, as defined by the
CDVS algorithm formulation.

Due to the non-linearity of the described function, the calculation has been
implemented in tabulated form, as the cascade of two units: the first unit cal-
culates the reciprocal value for (1.5 · σkp), while the second one calculates the
actual exponential

exp (d2 · rec(4.5 · σkp)) (2.14)

The tabulation of the exponential and reciprocal function is performed with
a linearly interpolated approach, to obtain a trade off between simplicity and
accuracy.

With such an approach, the function value f(x) is approximated as:

f(x) ' φ(x) = f(xi) +
f(xi+1)− f(xi)

xi+1 − xi
· (x− xi) =

= f(xi) + s(xi) · (x− xi),
(2.15)

where s(xi) represents the slope of the interpolating segment between xi
and xi+1.

As a consequence, to avoid computing slopes “on-line”, it is necessary to
adopt an architecture based on [45] which makes use of two Look Up Tables
(LUT): the first for storing the samples f(xi), and the second for the storage
of the slopes s(xi).

The choice of the sampled values for the LUTs is made so that the most
significant bits of the x values are directly used to access the stored values: in
other terms, supposing that the interval of interest be x ∈ [0, 2N − 1], to be
sampled in N = 2m points, the function is sampled in the set S defined as

S = {n · 2(N−m)−1}, (2.16)

where n is a positive integer in the range [1, 2m].

54

2.5. Gradients Extractor and Orientations Detector

First order interpolation function approximation unit

f(x0)
values
LUT

f’(x0)
values

(slopes)
LUT

+ +

x

f(x)=f(x0+!)

MSB(x)=x0: address

LSB(x)=!: displacem
ent

Figure 2.20: Block diagram of the first order approximation unit used in the
Gaussian Weight Generator.

In this way, as it can be easily seen, the m most significant bits of x can be
used to access the LUTs. The residualN−m least significant bits, conversely,
will be used to determine the offsets with respects to the stored values and
calculate the linear interpolation.

The diagram for the described scheme of first order approximation unit is
shown in 2.20.

At this point it is crucial, to optimise the tables, to define the input ranges
for the inputs of the LUTs, d and σkp. In the CDVS algorithm, orientation
histograms are built from a neighbourhood of the keypoint which can be rep-
resented as a circle contained in a square “image patch” with a fixed maxi-
mum size (in our implementation, 24 pixels). In some critical cases (when the
keypoint is near the image borders) the patch can also be rectangular. As a
consequence, the distance d is limited by the size of this square patch to:

d2
MAX = 122 + 122 = 288⇒ d2 ∈ [0, 288]. (2.17)

On the other hand, the considered neighbourhood has a radius which is
equal to:

r = b(4.5 · σkp)c. (2.18)

By analysing experimentally the outputs of the CDVS dataset, it has been
noted that typical standard deviation values σkpare in the interval [0.36,1.15].

55

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

For keypoints having larger scale, thus, the Gaussian tails of the distribution
of weights will be truncated: of course, these value would anyway be less
impacting on the final histogram. It has to be noted, furthermore, that the
minimum value for σkp is not zero: this can be exploited to reduce LUT size
by subtracting a constant value from the x to obtain the data address in the
Look Up Table.

Let us now consider the LUT for the calculation of the exponential func-
tion: as a first consideration, we may notice that the minimum significant out-
put for the exponential generator is

Gmin = 2LSBG = e−zMAX . (2.19)

As a consequence, the maximum z value to produce a non-zero output will
be:

zMAX = −ln(2LSBG) = −LSBG ∗ ln(2). (2.20)

For any z greter than this threshold the output will be identically zero. To
gain maximum precision, thus, we will scale the z input with a scale factor α
which is easily determined as:

α = − 2k − 1
LSBG ∗ ln(2)

. (2.21)

We will then normalise z by compensating this scale factor inside of the
LUT values, so that the actually tabulated function will be:

G(d2, σkp) = ed
2/2·(4.5σkp)2 = e−z = e−z

∗/α, (2.22)

where z∗ = z · α.
So, summing it up, the tabulated functions will be:

rec(σkp) =
α

2 · (4.5σkp)2
, (2.23)

and
exp(z∗) = e−z

∗/α. (2.24)

The final architecture of the Gaussian weight generator is shown in Fig-
ure 2.21.

The obtained circuit provides a number of parameters to be defined, even
if we consider the representation of the inputs d2 and σkp as being fixed: in

56

2.5. Gradients Extractor and Orientations Detector

Gaussian Weights Generator

Exponential Calculator

Reciprocal Calculator

pixel
distance

Keypoint !

rec
values
LUT

rec
slopes
LUT

-

+ +
+

rec
values
LUT

rec
slopes
LUT

+ +

offset

displacement

displacement

rec

z’

Gaussian
weight

()2

Figure 2.21: Architecture of the Gaussian Weight Generator.

particular, for each of the LUT the number of entries and the representation for
each of them must be determined. In § 2.5.2 we will see the effects of tuning
these parameters to control the produced approximation error in the detected
orientations.

Angle Binner

The second block which constitutes the orientation detection processor is the
angle binner, which determines the two bins the pixel gradient will give con-
tribution to, also calculating the weight of the contribution to each of them on
the basis of the angular distance between the bin centre and the actual gradient
phase (a scheme that is already been described with the name of soft binning).

The only input to the angle binner is the gradient phase in the considered
pixel, which is normalised to π and expressed on 15 bits, so that:

θ(x, y) ∈ [0, 2[(2.25)

and the weights of the most and least significant bits of the signal are,
respectively, 0 and −14.

57

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

0°

90°

!(x,y)

bin center
bin boundary
involved bins

Figure 2.22: Division of the first quadrant into 11 bins.

The histogram divides the range of the phase into 36 bins: being this num-
ber not a power of two, it is not possible to adopt an approach similar to the one
used for the LUTs, i.e. using the most significant bits of the input to identify
the bin. On the other hand, since 36 = 22 ∗ 9, this technique can be exploited,
by examining the 2 most significant bits of the phase, to identify the quadrant
in which the gradient lies in. The other bits of the phase can, then, be used to
discriminate amongst the 9 bins in each quadrant, with an overall reduction in
comparison complexity: the quadrant can be thus utilised as an “offset”.

With this approach, only 11 subtracters are needed to identify the pair of
bins the gradient gives contribution to: 9 of those are needed to discriminate
amongst the 9 bins of the quadrant; the other two are needed to compare the
gradient phase with the first bin of the second quadrant and the last of the
fourth quadrant, as Figure 2.22 shows.

At this point, the sign of the subtractions output will easily give the two
bins to which the gradient shall give contribution: in fact, one of the two will

58

2.5. Gradients Extractor and Orientations Detector

exhibit a positive difference between its centre angle and the gradient phase,
while the other one will exhibit a negative difference.

The other bits of the two difference values which individuate the pair of
affected bins will be used to determine the contribution weight: to accomplish
for this, a normalisation consisting in a subtraction with a constant term is
performed. The final architecture for the angle binner is in Figure 2.23.

2.5.2 Implementation results

The processor architecture implies a typical feed forward cascade of block,
which adapts naturally to a development in pipeline to improve maximum fre-
quency and, thus, throughput. The insertion of 11 pipeline levels, as proven in
[46], reduces overall power consumption of the processor, while maximizing
clock frequency.

To obtain processor throughput, we can consider the worst case scenario
in which each keypoint requires the largest possible patch, composed by 24×
24 pixels. The approximate, worst-case number of clock cycles in which the
orientation detector will process a patch is, thus, 24 ∗ 24 = 576.

The circuit has been deployed on ALTERA Stratix IV FPGA, setting the
pipeline for the target clock frequency of 200 MHz, obtaining the results in
Table 2.8. At this clock speed, the throughput of the processor is:

212.04 MHz

576 clock cycles/KP
= 368.125 KPs/s, (2.26)

which, at a theoretical frame rate of 30fps, would in turn result in a maxi-
mum elaboration capacity of

368.125 KPs/s

30 fps
= 12.271

KPs

frame
, (2.27)

which is certainly over the requirements of a typical VGA elaboration, and
makes the processor suitable also for high-definition processing. The obtained
architecture is, in fact, completely independent of image size.

59

Chapter2. An FPGA Based Architecture for the Implementation of the
CDVS Standard for Visual Search

-

-

-

-

-

-

-

-

-

-

-!(x,y)
bin-1

bin 0

bin 1

bin 2

bin 3

bin 4

bin 5

bin 6

bin 7

bin 8

bin+1

sign
bit

check

quadrant
shifter

+

+

hi bin #

lo bin #

hi bin distance

lo bin distance

Figure 2.23: Architecture of the Angle Binner.

60

2.5. Gradients Extractor and Orientations Detector

Table 2.8: Implementation results for the Orientation Detector on ALTERA
Stratix IV FPGAs.

Logic Elements Block RAM DSP Elements fmax
(amount) (kBs) (amount) (MHz)

4111 0 4 212.04

61

Chapter 3

An Algorithm for Fast Lossless
Compression of Hyperspectral
Images

M ultispectral and Hyperspectral Images are widespread in Remote
Sensing and Space Imaging Applications. They are three dimensional

arrays of pixels and their raw content may include thousands of bands for a to-
tal of over a billion pixels. For adequate storing and transmission over satellite
communication links a proper compression scheme is required. To this purpose
the Consultative Committee for Space Data Systems (CCSDS) standardized,
on May 2012, the 123.0-B-1 standard algorithm for lossless compression of
hyperspectral images.

In this chapter, we will see a modified algorithm for such a lossless
compression that is bit-true to the standard algorithm while allowing higher
throughputs in hardware implementations. A relatively inexpensive FPGA
implementation of the algorithm is also presented. The proposed circuit is,
according to the CCSDS standard, user configurable in various aspects.

The proposed architecture is composed by a space-class FPGA device (Vir-
tex 5QV SX50T), in which the proposed algorithm is implemented, and an ex-
ternal DRAM. The realized circuit overcomes the state-of-the-art in terms of
image pixel throughput (reaching over 100 MSamples/s) and has a negligible
footprint in terms of resource allocation (13%) on the considered, small sized
FPGA. The high throughput of this architecture, furthermore, enables it to be
compliant to the data rate requirement of highly demanding remote sensing

63

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

missions such as NASA HyspIRI.

3.1 Introduction: hyperspectral images and
the CCSDS-123.0-B-1 algorithm

Hyperspectral images (Figure 3.1) are three-dimensional arrays of pixel data
in which each layer is a matrix representing a single image band. Typically, all
three dimensions of the matrix can be in the order of magnitude of hundreds,
approaching thousands in some cases. Hyperspectral image sensors, thus, con-
tinuously capture large amounts of data that are to be steadily transmitted to
ground, given the small memory capacity the host systems typically provide.
On the other hand, communication links between the sensors themselves and
ground stations are quite limited in bandwidth, making an efficient compres-

Image band

Image band
Image band

Width (x=0..NX)

H
ei

gh
t

(y
=

0.
.N

Y
)

• • •

Bands
(z=0..N

Z)

• • •

• • •

Image Band

Figure 3.1: A hyperspectral image in Band Interleaved by Line (BIL) pixel
ordering. In BIL ordering, all bands of each line are stored in contiguous
space, so that both spatial and spectral information is accessed fairly easily.

64

3.1. Introduction: hyperspectral images and
the CCSDS-123.0-B-1 algorithm

sion algorithm a crucial element for these systems. Such an algorithm, in
addition, must also be tailored to the limited computational capability of these
environments of operation.

The Consultative Committee for Space Data Systems (CCSDS) is consti-
tuted by all major space agencies (NASA, ESA, JAXA, etc.) which cooperate
towards the development of data handling standards for space applications.
Several recommended standards have been developed by this committee over
the years, with CCSDS 123.0-B-1 being only the latest for what regards loss-
less hyperspectral imagery compression. CCSDS-released algorithms and pro-
tocols are a relevant area in space-related image and data processing literature,
with many examples of implementations (see [47], [48], [49]).

The CCSDS-123.0-B-1 standard compression algorithm has been recently
released (May 2012) by the CCSDS with the purpose to provide a well doc-
umented and universally accepted approach to lossless compression of mul-
tispectral and hyperspectral images. The algorithm is a variation of the Fast
Lossless algorithm [50], a 3D compression technique which is well known in
current literature for its overall better results when compared to 2D approaches
like LOCO-I [51] and 2D-CALIC [52] or other 3D algorithms such as LCL-3D
[53] or SLSQ [54].

The CCSDS standard does not define any explicit implementation or
throughput requirement. However, the algorithm is intended for on-line (real-
time) streaming use and, as a consequence, for modern demanding missions,
maximum data-rates and throughput may be a critical point. NASA HyspIRI
mission, as an example, has a maximum data-rate of around 70 MSamples/sec
(see [55]). None of the current hardware implementations of the Fast Loss-
less algorithm is capable of reaching such a high-throughput, with a huge gap
in performance yet to be filled. To the best of our knowledge, moreover, no
hardware implementation of the standard CCSDS algorithm exists in current
literature. Software implementations, besides, are typically much slower than
circuital implementations, generating the demand for a completely different
approach.

In this chapter, we will see an algorithm variation which reduces per-
formance criticalities of Fast Lossless and CCSDS-123.0 while preserving
bit-trueness to the original CCSDS Standard, and that will be thus referred
to, in the following, as “Fast CCSDS-123”. An implementation of this algo-
rithm, based on a space-class Virtex5QV FPGA and an external DRAM, is
also presented.

65

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

As we have mentioned in §1.5, FPGAs are available in Space-Grade pack-
ages, representing a viable alternative to Rad-Hard ASICs implementation and
at a much lower cost. Furthermore, the performance benefit that is usually
connected with ASIC implementations is much reduced when dealing with ra-
diation hardened process, leading to FPGAs being a more and more established
technology in this field of application (see [23]).

The implemented circuit is characterized by the architecture shown in Fig-
ure 3.2a. Following a scheme that is quite typical in compression algorithms,
the main elements are a prediction stage, which produces the residuals that are
to be actually coded, and the entropy coder. The two units are connected to
an external memory for convenient storage of some coding statistics, as we
will see in greater detail in the following sections. On the decompresser side,
an entropy decoder obtains the prediction residuals that are fed to an inverse
predictor, giving place to the original samples.

The proposed circuit is configurable by the user and can be adapted to
the dimension of the hyperspectral image (up to 4096 columns, 4096 rows,
and 4096 bands). It also implements both full and reduced prediction modes,
allows the user to select the amount of preceding bands used for prediction (de-
tails in [56]), and can be configured in other details of the compression scheme.
In terms of performance, the proposed circuit overcomes the state-of-the-art
with respect to pixel throughput reaching 100.4 MSamples/s, while keeping a
negligible footprint in terms of logic resource occupation (also when compared
with current literature proposals).

The next section will sketch the workflow of the CCSDS-123.0-B-1 stan-
dardized algorithm. we will then see the standard-compliant implemented
entropy coding scheme, focusing then on the modified algorithm which is at
the core of this proposal. Afterwards we will analyse the architecture of the
implemented compressor processor and some further architectural improve-
ments implemented in the proposed circuit. To conclude we will see FPGA
implementation results with respect to Xilinx Virtex 5 QV family Space Grade
FPGAs.

3.2 CCSDS-123.0-B-1 prediction algorithm overview

In this section the prediction algorithm defined by the CCSDS standard and
indicated with the ‘CCSDS predictor’ block in Figure 3.2a will be described.

The CCSDS-123.0-B-1 is a lossless compression algorithm. As a general

66

3.2. CCSDS-123.0-B-1 prediction algorithm overview

Entropy CoderCCSDS
Predictor

External Memory

line i
pixels

bytecodeprediction
residuals

coding
statistics

prediction
weightsline i-1

pixels

(a)

Inverse PredictorEntropy Decoder

External Memory

bytecode original
samples

prediction
residuals

prediction
weights

coding
statistics

(b)

Figure 3.2: Overview of the CCSDS 123.0 compression architecture: a) Com-
pressor chain. b) Decompresser chain.

indication, in satellite and airborne image processing, a lossless compression
is preferred over lossy schemes because of both the high economical cost con-
nected to the collection of this information and the need for post-processing at
high fidelity and resolution. This is particularly true for satellite-borne sensing
for target recognition or classification. The CCSDS-123.0-B-1 algorithm is a
“causal lossless” algorithm, meaning it only makes use of the causal part of the
image information (i.e. pixels of the image that have already been processed),
based on the Fast Lossless compression technique.

The CCSDS algorithm is a low complexity and low memory impacting al-
gorithm which provides good performance on both calibrated and uncalibrated

67

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

(x-1,y-1,z-P) (x,y-1,z-P)

(x-1,y,z-P) (x,y,z-P)

(x+1,y-1,z-P)

(x-1,y-1,z-1) (x,y-1,z-1) (x+1,y-1,z-1)

NW pixel
(x-1,y-1,z)

N pixel
(x,y-1,z)

W pixel
(x-1,y,z)

current pixel
(x,y,z)

(x+1,y-1,z)

•
 •

•

 • {

P preceeding
bands

current band

local sum neighborhood

Figure 3.3: Prediction neighbourhood: in the presented implementation, P is a
parameter which can be set in a range from 0 to 5.

images. We will discuss it in the remainder of this section, for brevity, without
analysing all the variations supported by the reference standard but focusing on
the working modes that apply to our implementation. Also for brevity, bound-
ary and/or special conditions, which have been implemented faithfully to the
recommended standard, will not be covered. For further information about the
standard the reader is referred to [56].

The CCSDS algorithm predicts the value of each pixel by examining a
three dimensional neighbourhood of the pixel itself (see Figure 3.3). The pre-
diction is linear, which makes it less requiring in terms of computational power,
and it is adaptive (i.e. the set of prediction weights is updated, at each pixel,
on the basis of the prediction error for the preceding one). The prediction
involves P preceding image bands, with a typical P value of 3 or 5. In our

68

3.2. CCSDS-123.0-B-1 prediction algorithm overview

implementation, P is configurable at runtime in a range from 0 to 5.
Let sx,y,z be a pixel value at spatial coordinates (x, y) and band z. We will

refer to this as the current pixel or current sample (for the sake of simplicity,
from now on every variable which is relative to the current sample will be
indicated without subscripts, e.g: sx,y,z will be indicated simply by s). The
CCSDS-123.0 algorithm steps are described in the following:

1. A “neighbour oriented local sum” is calculated from nearby pixels ac-
cording to the following formula:

σx,y,z = (sx−1,y,z + sx−1,y−1,z + sx,y−1,z + sx+1,y−1,z) (3.1)

This local sum represents a first estimate of the pixel value in (x, y, z).

2. A set of “directional local differences” is obtained by subtracting the
local sum from four times the sample values in the current (sx,y,z) pixel
and in the N (sx,y−1,z), NW (sx−1,y−1,z), and W (sx−1,y,z) neighbours
(see Figure 3.3). In addition, if the predictor operates in full prediction
mode, “central” local differences are also calculated for pixel in spatial
coordinates (x, y) for the P preceding bands. If P = 5, in other words,
pixels C1 (sx,y,z−1) to C5 (sx,y,z−5) are also taken into account to form
the local differences vector:

U =
(
uN uNW uW u1 u2 u3 u4 u5

)
.

Otherwise, in reduced prediction mode, only local differences in current
band are accounted, and the local differences vector reduces to:

U =
(
uN uNW uW

)
.

Typically, full prediction mode yields better results for calibrated im-
agery (see [57]).

3. The local differences vector U is multiplied with a weights vector W ,
producing the singleton (scalar) value:

d = U ·W (3.2)

69

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

The weights vector can be initialized either at a default or at a
user-specified value set.

The obtained value, d, is an estimate of the difference between the cur-
rent pixel value and the average value of its neighbours.

4. The “scaled predicted sample value” is calculated as:

s̃ = clip

(⌊
mod∗R[d+ 2Ω(σ − 4smid)]

2Ω+1

⌋
+ 2smid + 1

)
. (3.3)

In the equation, clip indicates the saturation between the input image
dynamic range extrema and bxc is the largest integer that is not greater
than x. The symbol mod∗R[x] represents the two’s complement integer
that is congruent to x modulo 2R (where R is a tunable “register size”
which the standard mentions as needing to be set for overflow avoidance
but without endorsing a specific recommendation); Ω is a parameter
which controls the resolution of prediction weights; σ is the local sum;
smid is the mid-range sample value representable according to the input
image dynamic range. In other words, s̃ makes use of σ and d to predict
the value of the current pixel.

5. Weights are updated on the basis of the scaled prediction error and of
the weight update scaling exponent ρ, which determines at each pixel the
entity of the weights update or, in other terms, the speed of the algorithm
adaptation. At the initial stage the value of ρ is νmin+D−Ω; at regular
intervals, determined by the parameter tinc, ρ is increased by one up
to the maximum value νmax +D − Ω. Also νmin and νmax are user
controllable parameters. At each pixel, and for each component i of the
weights vector, the updated weight Wi,next is thus calculated as:

Wi,next = Wi +
⌊
0.5(sgn[e] ∗ 2−ρ ∗ Ui + 1)

⌋
(3.4)

where Ui is the corresponding element in the local differences vector.

6. The final step in prediction computation is the generation of the mapped
prediction residual: being ∆ = s− bs̃/2c and θ = min{bs̃/2c, 2R−1 −
bs̃/2c}, the mapped prediction residual is defined as:

70

3.3. Entropy coding scheme

δ =

|∆|+θ if |∆|> θ

2|∆| if 0 ≤ (−1)s̃∆ ≤ θ
2|∆|−1 otherwise

(3.5)

3.3 Entropy coding scheme

In this section the coding algorithm defined by the CCSDS standard and indi-
cated with the ‘Entropy Coder’ block in Figure 3.2a is described.

The CCSDS-123.0 standard contemplates two possible entropy coding
schemes, respectively defined as Block-Adaptive Entropy Coding and Sample-
Adaptive Entropy Coding. The first is a GPO-2 based coding scheme also for-
malized by the CCSDS committee in the CCSDS-121.0 standard. This option
is included to provide backwards compatibility with pre-existent space-grade
implementations of the same algorithm. The Sample-Adaptive Entropy Cod-
ing scheme, which proves to be slightly better performing (see [57]), is im-
plemented in the presented circuit. We now briefly introduce the coding algo-
rithm, referring the reader to [56] for further information.

At each pixel the expected value of the mapped prediction residual is esti-
mated. On the basis of this estimation, a variable length coding is assigned to
the pixel itself.

The algorithm is thus composed by the following steps:

1. A counter named “Γz” is incremented at each pixel of band z and halved
each time a certain configurable threshold is reached, producing a saw-
tooth profile.

2. An accumulator named “Σz” is calculated by repeated sums of the
mapped residuals of band z and halved together with “Γz”. The ratio
of Σz and Γz represents the estimation of the mapped prediction resid-
ual at each pixel for band z.

3. The block labelled kz calculates the largest positive integer value for
which the condition

Γz(t)2kz(t) ≤ Σz(t) +
⌊

49
27

Γz(t)
⌋

(3.6)

is verified.

71

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

codewordk

u

l

Codeword
Generator

!
Accumulator

"
Counter

mapped residual

External
Memory
Manager

to/from
external
memory

(ẟ)

Figure 3.4: Architecture of the implemented entropy coder

4. The mapped residual δ is split into its most significant part “u”, obtained
by k right shifts, and its least significant part “l”, which corresponds to
the k least significant bits of the residual itself.

5. If u < Umax, where Umax is a tunable parameter, the codeword for δ is
composed by u zeros, followed by a one, and by the binary representa-
tion of l. Otherwise, the codeword is composed byUmax zeros, followed
by the binary representation of δ.

Figure 3.4 shows the architecture of the realized entropy coder. The blocks
labeled as “Γz” and “Σz” calculate the band compression statistics and are
connected to an external memory manager. The sample adaptive encoding al-
gorithm, in fact, maintains separate coding statistics for each band which, as a
consequence of the BIL encoding chosen for our implementation, results in the
need for a certain memory amount, as we will se in Section 3.5. These coding
statistics, similarly to the prediction weights, can be conveniently stored in an
external DRAM to reduce leverage on in-device memory.

In §3.7 we will compare the output of the proposed circuit with the CCSDS
standard implementation showing the bit-trueness of the proposed circuit with
respect to the standard coder.

72

3.4. Proposed prediction algorithm modification

3.4 Proposed prediction algorithm modification

Figure 3.5 shows the computational flow of the CCSDS-123.0 standard al-
gorithm. The dashed arrow highlights the critical part of the algorithm for
circuital performance: the weight update feedback creates a strict data depen-
dency which, as known in literature, prevents the insertion of pipelining reg-

Weights Update

Local Sum

Local Differences

Inner Product

Scaled Prediction Prediction Error

Mapped Residual

Weight Update
Scaling Exponent

Weights BufferWi

Wi,next

Ui

σ

d

s~
s~

e

�

Figure 3.5: Standard CCSDS-123.0 Algorithm Flowchart
.

73

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

isters thus creating a combinatorial loop which involves high-delay circuitry.
The loop is in fact composed by the following algorithm phases:

• Inner Product, which requires 8 products and a sum tree between the
same, calculating (3.2).

• Scaled Prediction Calculation, which involves the computation of (3.3).

• Prediction Error Evaluation, which requires a subtraction.

• Weights Update, which corresponds to (3.4).

Any circuital implementation of this scheme would incur in such high de-
lay and, thus, would not be able to perform at high-throughput.

The main contribution of this work to the state-of-the-art consists in an
algorithmic modification of the standard CCSDS-123.0 algorithm which we
named the “Fast CCSDS-123” algorithm. The flow-chart diagram of Fig-
ure 3.6 shows the main differences between the two:

• The Weight Update phase is replaced with a redundant computation of
“Lookahead Weights” as the result of the following analysis of (3.4).
The dependency of Wi,next = f(Wi, e, ρ, U) on data at the current iter-
ation i is, in fact, broken down as follows:

the equation
Wi,next = f(Wi, e, ρ, U) (3.7)

can be rewritten as
Wi,next = f(e,Ψ), (3.8)

where
Ψ = Ψ(Wi, ρ, U))) (3.9)

is the “Lookahead Weight” set.

In other terms, the dependency on e is isolated from the calculation. Fur-
thermore, this dependency is of reduced complexity, being the updated
weights actually only dependent on sgn[e]. As a consequence, it is pos-
sible to evaluate the two possible values ofWi,next for both the values of
sgn[e], making the set of the “Look Ahead Weights” actually composed
of just two elements, Ψ+ and Ψ−.

74

3.4. Proposed prediction algorithm modification

• To further benefit from this improvement, the Inner Product phase is also
duplicated in a similar lookahead scheme. This gives place to two pos-
sible inner product values (denoted as d+ and d− in the diagram) among
which the correct one must be selected on the basis of the prediction
error, as the “Select” block shows.

~

Local Sum

Local Differences

Positive
Lookahead

Inner Product

Scaled Prediction Prediction Error

Mapped Residual

Previous Weights

Positive
Lookahead
Weights

Negative
Lookahead

Inner Product

Negative
Lookahead
Weights

Weight
Update
Scaling

Exponent

Select

Select

σ

Ui Ui

!+

! -d+

d-

d sgn(e)

s

�

�

Wi

Wi

Wi,next

Figure 3.6: Fast CCSDS-123 Lossless Compression Algorithm Flowchart.

75

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

This different algorithm, as the figure shows, reduces dramatically the
length of the feedback loop, actually splitting it into two shorter paths. The
first path is the one that involves the computation of Scaled Prediction and
Prediction Error (dashed and dotted, in the figure), which clearly implies a
shorter delay path with respect to the one in the standard algorithm; the sec-
ond path is the one that involves the computation of the lookahead weights
and their selection (dashed, in the figure). In particular, the computation of the
lookahead weights, being free from the part of the calculation that is connected
with the evaluation of sgn[e], is also less impacting than the original Weight
Update phase of the standard algorithm.

3.5 Realized processor architecture

As mentioned in Section 3.1 and shown in Figure 3.2a, the compression pro-
cessor is divided in two main units: the predictor, which implements the mod-
ified algorithm discussed in Section 3.4, and the entropy coder, which realizes
the algorithm exposed in Section 3.3. Both elements are connected to an exter-
nal memory for the storage, respectively, of the prediction weights W and of
the coding statistics {Γ,Σ}. The total external memory occupation, calculated
on the worst case scenario of an image with 4096 bands and P=5, which is the
maximum allowed by the proposed architecture, is obtained as follows:

Weights: (maxnumber of bands) ∗
∗ ((maxP) + 3) ∗ (weights resolution) =

= 4096 ∗ (5 + 3) ∗ 17 = 544 Kb (3.10)

Coding statistics: (maxnumber of bands) ∗
∗ (counter size+ accumulator size) =

= 4096 ∗ (20 + 36) = 224 Kb (3.11)

The memory needed to store the local differences for the P preceding bands
is stored, conversely, in the FPGA Block RAMs to improve circuital perfor-

76

3.6. Further architectural improvements

mance. This memory accounts up to:

(maxnumber of bands) ∗ (maxP) ∗
(local differences resolution) =

= 4096 ∗ 5 ∗ 19 = 380 Kb (3.12)

On the other hand, the external memory allocation of the prediction weights
and coding statistics does not impact performance thanks to the adoption of a
Ping-Pong scheme: during the processing of each band “i”, a “Shadow Regis-
ter” pre-fetches weights for the next band “i+1”. When the processing of band
“i+1” begins, the registers are switched, so that the now-become shadow reg-
ister can store to the external memory the updated weights vector for band “i”:
the same scheme repeats for the compression statistics. This actually poses a
lower bound on the image “Nx” size (the number of columns), which cannot
be less than the number of clock cycles necessary to complete the store/fetch
operation by the memory manager. This limit has been set, accounting for an
appropriate safety margin, to 100 pixels.

As Figure 3.2a shows, the predictor receives input from two subsequent
lines in Band-Interleaved-by-Line (BIL) format. It then produces the mapped
prediction residuals which are sent to the entropy coder. The entropy coder
produces the compressed bytecode which is prepared to be sent over a serial
connection or to be byte-packed.

The overall architecture of the predictor has been pipelined except for the
two combinatorial “loops” seen in §3.4. As a consequence, the critical path
resides in the longest of these loops (namely the one involving the computation
of the lookahead weights) limiting the performance to what will be shown in
§3.7.

3.6 Further architectural improvements

The CCSDS 123.0-B-1 algorithm, defining in real arithmetic the compression
process, is sometimes muddled in its formulation of the various steps. As
a consequence, during circuital implementation, some passages can be com-
pletely reformulated, giving place to conditions and formulas that better suit
the programmable hardware architecture while improving, at the same time,
performance and logic resource occupation. In this section we will, thus, con-
sider some further reformulations we have carried out during the development
of the processor.

77

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

s

2s-s~

s

s/2~

2s-s~
s

Figure 3.7: Geometrical representation of the optimized mapped resid-
ual formulation. The values reported on the plane represent the mapped
residual values obtained as a function of s and bs̃/2c.

• Firstly, the formulation of the Scaled Prediction calculation given in
(3.3) can be rewritten exploiting the features of register arithmetic. By
choosing a register size (“R”) large enough to avoid overflows, since in
our case smid is an integer value, the equation can be simplified to:

s̃ = clip(b(d/2Ω + σ + 2)/2c). (3.13)

Furthermore, the floor operation is carried out by the register logic it-
self and the clipping is simply a saturation to the image dynamic range.
The scaled prediction, in this way, is implemented by using: a shifter, an
adder, and a saturator (implemented with a multiplexer and a compara-
tor).

• The calculation of the mapped residual (3.5) has also been reformulated.

78

3.6. Further architectural improvements

~ s[D..1]~s[D..0]

1

0
<<1

-

+

condition A

condition B

A
<

B?
A

<
B?

A
<

B?
1

0

s[0]~

s[D-1..1]

s[0]

1

condition C

mapped
residual

s[D-1..0]

Figure 3.8: Implementation of the optimized mapped residual calculator

The starting point of this reformulation is the fact that, in two’s comple-
ment arithmetic, a negative number is represented by the bitwise NOT
of the unsigned representation of its opposite augmented by 1. As a
consequence, the second and third cases in (3.5) can be combined and
rewritten as follows:

r =

s

if bs̃/2c < s/2 or

bs̃/2c > {1, bs/2c}

2s− s̃ otherwise

(3.14)

δ =

{
r if bs̃/2c < s

not r otherwise
(3.15)

where {A,B} indicates the concatenation of the bit sequence A with B.

This formula can be represented by the 2D map of Figure 3.7 and im-
plemented by the circuit shown in Figure 3.8. The shown circuit has a

79

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

Table 3.1: Proposed Circuit (Fast CCSDS) Resource Allocation and Perfor-
mance on a Space Grade Xilinx Virtex 5Q SX50T FPGAs.

Slices BRAM Max Frequency
(amount) (kB) (MHz)

Occupied 2800 414 100.4
Available 20480 10728 –

Percentage 13% 3.86% –

combinatorial delay path composed by a comparator, an OR gate, two
2-to-1 multiplexers, and a NOT gate. Such rewriting, thus, yields better
performance when compared to the delay path that would result from the
original standard formulation, which would include at least a subtracter
and two comparators, as (3.5) shows.

• The inner product unit has also been optimized by implementing the sum
of the 8 products with a fully balanced tree in order to reduce summing
stages to log2(8) = 3. In addition, register retiming has also been carried
out inside the tree, dividing the 4 levels (one multiplication level and the
three summing stages) and reducing total combinatorial delay.

3.7 Implementation results and comparison with
state-of-the-art

Table 3.1 shows implementation statistics for the deployment of the realized
circuit on the Virtex5QV SX50T FPGA, which is a small sized FPGA manu-
factured by Xilinx. The Virtex5QV is a space grade, radiation hardened family
of SRAM-based FPGAs which exhibit very high levels of radiation tolerance
(SEU latch-up immunity > 100 Mev-cm2/mg - see also [58]). Resource oc-
cupation percentages show a very small footprint for major statistics even on
such a small device. The maximum clock frequency obtained is of 100.4 MHz,
allowing for a maximum throughput of 100.4 Msamples per second.

While no hardware implementation of the standard CCSDS-123.0-B-1 al-
gorithm is available in current literature for performance comparison, Table 3.2
shows a throughput comparison with some implementations of the original
Fast Lossless compression algorithm, which is in fact very similar to the
CCSDS-standardized algorithm and, thus, to our algorithm. The considered

80

3.7. Implementation results and comparison with state-of-the-art

Table 3.2: Performance comparison with current literature implementations:
proposed algorithm is shown in bold and, together with comparison imple-
mentations realized during this thesis work, is denoted by the acronym “t.t.”
(this thesis)

Proposal Year Throughput Implementation
(MSamp/s) (Technology)

Fast CCSDS-123 (t.t.) 100.4 Xilinx Virtex5QV
CCSDS-123.0 (t.t.) 55.4 Xilinx Virtex5QV
Fast CCSDS-123 (t.t.) 62.9 Xilinx Virtex4†
Keymeulen, al.[61] 2014 44.9 nVidia GTX 580 GPU
Schmidt, al.[60] 2013 29.1 Xilinx Virtex4 (SoC)‡
Schmidt, al.[59] 2012 1.32 Xilinx Virtex4 (SoC)‡

(†) Virtex 4 FX60
(‡) System-on-Chip deployed on a Virtex 4 FX60

published works include [59, 60], which enforce a System-on-Chip (SoC) ap-
proach to implement Radiation Hardening by software, and [61], which rep-
resents a GPU programming approach to the algorithm implementation. The
table shows throughput results for the implementations of both the original
CCSDS-123.0 and the proposed Fast CCSDS-123 algorithms.

As Table 3.2 shows, the presented work overcomes all these implemen-
tations resulting in being the only implementation capable of exceeding, and
with a substantial margin, 50 MSamples/sec; our implementation of the orig-
inal algorithm (which makes use of the circuit-oriented optimizations intro-
duced in Section 3.6) also exceeds 50 MSamples, but the performance gain
connected with the adoption of the modified algorithm is of a factor around
2:1.

With respect to resource allocation, a comparison with FPGA-based liter-
ature proposals is shown in Table 3.3: the table shows how our proposal is
also less impacting in terms of device occupation with respect to the current
state-of-the-art.

The resulting architecture has been cross-tested with the CCSDS-released
software compressing tool on a set of hyperspectral images from spectrometers
such as AVIRIS, MODIS and CRISM showing 100% bit-trueness with the
standard algorithm, as table 3.4 clarifies.

81

Chapter3. An Algorithm for Fast Lossless Compression of Hyperspectral
Images

Table 3.3: Comparison of Resource Occupation on a Xilinx Virtex4 FX60
FPGA with state-of-the-art literature FPGA implementations of Fast Lossless

Proposal Slices FFs 4 Input LUTs
Amount(%) Amount(%)

This Thesis (Fast CCSDS) 1959 (3%) 7116 (14%)
Schmidt, al.[59] (Fast Lossless) 8545 (17%) 7530 (15%)
Schmidt, al.[60] (Fast Lossless) 15736 (31%) 20969 (42%)

Table 3.4: CCSDS toolkit cross-test results: the error metric indicates how
many pixels, in the images processed by the presented implementation, differ
from the ones processed by the standard CCSDS toolkit. The presented image
sets are part of AVIRIS, MODIS and CRISM databases

Image set Pixel count Compression Rate Errors
(amount) (%) (pixels)

AVIRIS 77987840 61.1 0
MODIS 54972400 52.4 0
CRISM 12787200 75.0 0

Table 3.5, to conclude, shows the difference in power dissipation between
a state-of-the-art implementation of the standard CCSDS-123 algorithm real-
ized during this same thesis work and the presented, faster implementation
when run at the same clock frequency of 50 MHz (which is near the maxi-
mum allowed frequency of the CCSDS-123 standard algorithm implementa-

Table 3.5: Power Dissipation of the realized circuits implementing both the
standard CCSDS 123 algorithm and the proposed Fast CCSDS 123 algorithm.
Results are shown for an implementation on a Xilinx Virtex5QV SX50T FPGA

Implemented Algorithm Static Power Dynamic Power
(mW) (mW/MHz)

Fast CCSDS-123 837 3.92
Standard CCSDS-123.0 836 3.36

Keymeulen, al.[61] n/a n/a
Schmidt, al.[60] n/a n/a
Schmidt, al.[59] n/a n/a

82

3.7. Implementation results and comparison with state-of-the-art

tion). The results show an increase in dynamic power dissipation due to the
intrinsic redundancy of the lookahead phase.

83

Conclusions

In this thesis, we have examined the role of digital Field Programmable Gate
Arrays circuits in Real Time Video Processing (RTVP) applications. Starting
from Chapter 1 we have seen how this technology is rapidly emerging as one
of the best candidates for carrying out this task with a good balance between
cost, performance level, and flexibility. In particular, we have explored typical
intrinsic features of RTVP algorithms and matched them with the structure
and capabilities of these devices. We also have examined typical problems and
challenges connected with the use of this technology in the solution of RTVP
problems, like design testing, and reviewed the most important strategies to
overcome these issues.

We have then discussed two practical applications of this topic: in par-
ticular, Chapter 2 has presented a topical literature problem, namely computer
vision algorithms, and one of its most notable solutions, consisting in the Com-
pact Descriptors for Visual Search (CDVS) proposed standard algorithm. The
implementation in either hardware or software of this algorithm is a very chal-
lenging and discussed topic, and this dissertation has show an ample set of
design solutions. In particular, some of these solutions have been considered
by the CDVS committee for inclusion in the standard draft of the algorithm,
marking an important contribution to the state-of-the-art. All of the circuits
proposed in this chapter allow for the accomplishment of the primary task of
the CDVS algorithm: enforcing real-time feature extraction on mobile, low
power devices.

As a concluding remark, it has to be noted that, being CDVS still a “work
in progress” standard draft, the implemented circuits are themselves open to
changes: notably, constant values (e.g: thresholds, characteristics of the Gaus-
sian filters, etc.) as well as other implementation details have been left as
“parameters” in the circuital implementation to let the implementation able to
adapt easily to minor changes in the final definition of the CDVS algorithm.

85

Conclusion

In Chapter 3, to conclude, we have analysed an example of space ap-
plcaions, a special application field with stricts technology requirements in
which FPGAs excel, being nowadays the best option in terms of speed, flexi-
bility and reliability. We have examined an algorithm for the compression of
hyperspectral images, developed during this Ph.D. course, that is bit-true with a
well known standard algorithm by the Consultative Committee for Space Data
Systems (CCSDS). Our proposal, circumventing an inherent bottleneck of the
CCSDS proposed algorithm, allows higher throughput, overcoming any state-
of-the-art implementations of the original algorithm and making it suitable for
modern, demanding space missions with strict throughput requirements.

Publications

• G.Lopez, N.Petra, D.De Caro, E.Napoli, “An FFT-based Coprocessor
for Real-time Video Processing ”, Proceedings of GE 2012.

• G.Lopez, E.Napoli, A.G.M.Strollo, “Towards a Frequency Domain Pro-
cessor for Real-Time SIFT-based Filtering”, Applications Pervading In-
dustry, Environment and Society, Lecture Notes in Electrical Engineer-
ing, (in press).

• E.Napoli, G.Lopez, A.G.M.Strollo, “Noise with Colored Power Spec-
trum Derived from a Single bit White Noise Input”, 20th IMEKO TC4
International Symposium and 18th International Workshop on ADC
Modelling and Testing, 2014.

• G.Lopez, E.Napoli, A.G.M.Strollo, “A Frequency Domain Processor for
Real-Time CDVS Keypoints Extraction”, SITIS 2014 - The 10th Inter-
national Conference on Signal Image Technology and Internet Based
Systems, 2014.

• G.Lopez, E.Napoli, A.G.M.Strollo, “FPGA Implementation of the
CCSDS-123.0-B-1 Lossless Hyperspectral Image Compression Algo-
rithm Prediction Stage”, LASCAS 2015 - 6th IEEE Latin American Sym-
posium on Circuits and Systems, 2015.

• G.Lopez, E.Napoli, A.G.M.Strollo, “An FPGA Processor for Real-Time,
Fixed-Point Refinement of CDVS Keypoints”, ISCAS 2015 - Interna-
tional Symposium on Circuits and Systems, 2015 (accepted).

86

Conclusion

• G.Lopez, E.Napoli, A.G.M.Strollo, D.De Caro, N.Petra, “Definition and
Hardware Implementation of a High Throughput Lossless Image Com-
pression Algorithm Bit-true Compatible with CCSDS-123.0”, IEEE
Transactions on Circuits and Systems for Video Technology (submitted
for publication)-

87

Acknowledgements

At the end of my Ph.D. course, I’d like to thank sincerely all the personnel
of the Electronics Engineering research group: in particular my thoughts go
to the greatly skilled young researchers who literally fight daily, hoping for
better days for Research, University, Education. Like them, I strongly believe
in these values, and hope that they will return to be the pillars of our society,
like they were in each of the Golden Ages of mankind.

I would like to thank Davide de Caro, Nicola Petra, Michele Riccio and
Luca Maresca who helped me more than once in finding my way; a very special
thanks goes to Michele de Martino who has been a great lab (and laughs) mate;
and then, last but not least, I would like to thank my tutor Ettore Napoli, who
gave me the chance to live this great self-improving experience.
I hope our roads will cross again.

89

Bibliography

[1] D. G. Bailey, Design for embedded image processing on FPGAs. John
Wiley and Sons (Asia) Pte Ltd, 2011.

[2] H. S. Neoh and A. Hazanchuk, “Adaptive edge detection for real-time
video processing using FPGAs,” Global Signal Processing, vol. 7, no. 3,
pp. 2–3, 2004.

[3] P. M. Athanas and A. L. Abbott, “Real-time image processing on a cus-
tom computing platform,” Computer, vol. 28, no. 2, pp. 16–25, 1995.

[4] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W.
Jeon, “FPGA design and implementation of a real-time stereo vision sys-
tem,” Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 20, no. 1, pp. 15–26, 2010.

[5] J. Woodfill and B. Von Herzen, “Real-time stereo vision on the parts re-
configurable computer,” in Field-Programmable Custom Computing Ma-
chines, 1997. Proceedings., The 5th Annual IEEE Symposium on. IEEE,
1997, pp. 201–210.

[6] I. S. Uzun, A. Amira, and A. Bouridane, “FPGA implementations of Fast
Fourier Transforms for real-time signal and image processing,” in Vision,
Image and Signal Processing, IEE Proceedings-, vol. 152, no. 3. IET,
2005, pp. 283–296.

[7] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model,
and D. DiSabello, “Achieving high performance with FPGA-based com-
puting,” Computer, vol. 40, no. 3, p. 50, 2007.

[8] P. Ngan, “The development of a visual language for
image processing applications,” Ph.D. dissertation, Massey

91

Bibliography

University, New Zealand, 1992. [Online]. Available:
http://mro.massey.ac.nz/bitstream/handle/10179/3007/02 whole.pdf

[9] K. Compton and S. Hauck, “Reconfigurable computing: a survey of sys-
tems and software,” ACM Computing Surveys (csuR), vol. 34, no. 2, pp.
171–210, 2002.

[10] T. J. Todman, G. A. Constantinides, S. J. Wilton, O. Mencer, W. Luk,
and P. Y. Cheung, “Reconfigurable computing: architectures and design
methods,” IEE Proceedings-Computers and Digital Techniques, vol. 152,
no. 2, pp. 193–207, 2005.

[11] “Zynq-7000 all programmable SoC” - Xilinx, Inc. [Online]. Available:
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[12] “Stratix 10 FPGA overview” - Altera Corporation USA. [Online].
Available: https://www.altera.com/products/fpga/stratix-series/stratix-
10/overview.html

[13] “Cyclone V SoCs overview” - Altera Corporation USA. [On-
line]. Available: https://www.altera.com/products/soc/portfolio/cyclone-
v-soc/overview.html

[14] R. B. Foist, C. S. Grecu, A. Ivanov, and R. Turner, “An FPGA design
project: creating a PowerPC subsystem plus user logic,” Education, IEEE
Transactions on, vol. 51, no. 3, pp. 312–318, 2008.

[15] N. Ohba and K. Takano, “An SoC design methodology using FPGAs and
embedded microprocessors,” in Proceedings of the 41st annual Design
Automation Conference. ACM, 2004, pp. 747–752.

[16] D. Etiemble, S. Bouaziz, and L. Lacassagne, “Customizing 16-bit float-
ing point instructions on a Nios II processor for FPGA image and media
processing,” Embedded Systems for Real-Time Multimedia, pp. 61–66,
2005.

[17] J. Cho, H. Chang, and W. Sung, “An FPGA based SIMD processor with
a vector memory unit,” in Circuits and Systems, 2006. ISCAS 2006. Pro-
ceedings. 2006 IEEE International Symposium on. IEEE, 2006, pp.
4–pp.

92

Bibliography

[18] N. Kehtarnavaz and M. Gamadia, “Real-time image and video process-
ing: from research to reality,” Synthesis Lectures on Image, Video & Mul-
timedia Processing, vol. 2, no. 1, pp. 1–108, 2006.

[19] “MPEG-4 reference software implementation” - the
Moving Picture Experts Group. [Online]. Available:
http://mpeg.chiariglione.org/standards/mpeg-4/reference-software

[20] P. S. Graham, “Logical hardware debuggers for FPGA-based systems,”
Ph.D. dissertation, Brigham Young University, 2001.

[21] J. Tombs, M. A. Echanóve, F. Munoz, V. Baena, A. Torralba,
A. Fernandez-León, and F. Tortosa, “The implementation of a FPGA
hardware debugger system with minimal system overhead,” in Field Pro-
grammable Logic and Application. Springer, 2004, pp. 1062–1066.

[22] “HDL Verifier” - the MathWorks, Inc. [Online]. Available:
http://it.mathworks.com/products/hdl-verifier/

[23] “Curiosity and NASA’s mission to Mars: a case for
small business” - National Aeronautics and Space Admin-
istration. [Online]. Available: http://osbp.nasa.gov/docs/MARS
OSB CS55 FINAL LO=TAGGED.pdf

[24] D. Lowe, “Object recognition from local scale-invariant features,” Inter-
national Conference on Computer Vision, 1999, pp. 1150–1157, 1999.

[25] D. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[26] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust fea-
tures (surf),” Computer vision and image understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[27] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

93

Bibliography

[28] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation
for local image descriptors,” in Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2. IEEE, 2004, pp. II–506.

[29] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and
B. Girod, “CHoG: Compressed Histogram of Gradients a low bit-rate
feature descriptor,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 2504–2511.

[30] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architecture
of optimised SIFT feature detection for an FPGA implementation of an
image matcher,” in Field-Programmable Technology, 2009. FPT 2009.
International Conference on. IEEE, 2009, pp. 30–37.

[31] J. Qiu, T. Huang, and T. Ikenaga, “A FPGA-based dual-pixel processing
pipelined hardware accelerator for feature point detection part in SIFT,”
in INC, IMS and IDC, 2009. NCM’09. Fifth International Joint Confer-
ence on. IEEE, 2009, pp. 1668–1674.

[32] F.-C. Huang, S.-Y. Huang, J.-W. Ker, and Y.-C. Chen, “High-
performance SIFT hardware accelerator for real-time image feature ex-
traction,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 22, no. 3, pp. 340–351, 2012.

[33] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures
at different scales,” Journal of applied statistics, vol. 21, no. 1-2, pp.
225–270, 1994.

[34] D. Pau, A. Bruna, E. Napoli, and G. Lopez. (2014, Jul. 17) “Method
and apparatus for computing image pyramids and related computer
program product”. US Patent App. 14/156,327. [Online]. Available:
http://www.google.com/patents/US20140198995

[35] H. R. Wilson and S. C. Giese, “Threshold visibility
of frequency gradient patterns,” Vision Research, vol. 17,
no. 10, pp. 1177 – 1190, 1977. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0042698977901523

94

Bibliography

[36] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the
Royal Society of London. Series B. Biological Sciences, vol. 207, no.
1167, pp. 187–217, 1980.

[37] K. Mikolajczyk and C. Schmid, “A performance evaluation of local de-
scriptors,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 27, no. 10, pp. 1615–1630, 2005.

[38] B. Hunt, “Minimizing the computation time for using the technique of
sectioning for digital filtering of pictures,” Computers, IEEE Transac-
tions on, vol. C-21, no. 11, pp. 1219–1222, Nov 1972.

[39] H. Guggenheimer, Differential Geometry: McGraw-Hill [1963]., ser.
McGraw-Hill series in higher mathematics. University Microfilms,
1963.

[40] E. H. Bareiss, “Sylvester’s identity and multistep integer-preserving
Gaussian elimination,” Mathematics of Computation, vol. 22, no. 103,
pp. 565–578, Jul. 1968.

[41] S. Peng and S. Sedukhin, “Array processors design for division-free lin-
ear system solving.” Comput. J., vol. 39, no. 8, pp. 713–722, 1996.

[42] R. Martinez-Alonso, K. Mino, and D. Torres-Lucio, “Array processors
designed with VHDL for solution of Linear Equation Systems imple-
mented in a FPGA,” in Electronics, Robotics and Automotive Mechanics
Conference (CERMA), 2010, Sept 2010, pp. 731–736.

[43] S. Peng and S. Sedukhin, “Parallel algorithm and architectures for two-
step division-free gaussian elimination,” in Algorithms and Architectures
for Parallel Processing, 1997. ICAPP 97., 1997 3rd International Con-
ference on, Dec 1997, pp. 489–502.

[44] A. G. Strollo, D. De Caro, and N. Petra, “Elementary functions hard-
ware implementation using constrained piecewise-polynomial approxi-
mations,” Computers, IEEE Transactions on, vol. 60, no. 3, pp. 418–432,
2011.

[45] D. De Caro, N. Petra, and A. G. Strollo, “High-performance special func-
tion unit for programmable 3-d graphics processors,” Circuits and Sys-
tems I: Regular Papers, IEEE Transactions on, vol. 56, no. 9, pp. 1968–
1978, 2009.

95

Bibliography

[46] R. Martinez-Alonso, K. Mino, and D. Torres-Lucio, “Array processors
designed with VHDL for solution of linear equation systems imple-
mented in a FPGA,” in Electronics, Robotics and Automotive Mechanics
Conference (CERMA), 2010, Sept 2010, pp. 731–736.

[47] H. Jiang and X. Zhou, “A VLSI implementation of CCSDS for mete-
orology image lossless compression,” in Advances in the Astronautical
Sciences, vol. 117, 2004, pp. 183–188.

[48] L. Li, G. Zhou, B. Fiethe, H. Michalik, and B. Osterloh, “Efficient im-
plementation of the CCSDS 122.0-B-1 compression standard on a space-
qualified Field Programmable Gate Array,” Journal of Applied Remote
Sensing, vol. 7, no. 1, 2013.

[49] E. Della Sala, E. Sciagura, D. De Caro, A. Caravella, P. Longob-
ardi, P. Zicari, V. Garofalo, G. Capuano, P. Corsonello, E. Napoli, and
G. Strollo, “High rate data down link,” in European Space Agency, (Spe-
cial Publication), no. 647 SP, 2007, pp. 217–222.

[50] M. A. Klimesh, “Low-complexity lossless compression of hyperspectral
imagery via adaptive filtering,” The Interplanetary Network Progress Re-
port, vol. 42-163, pp. 1–10, 2005.

[51] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS,”
IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324,
Aug 2000.

[52] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,”
IEEE Transactions on Communications, vol. 45, no. 4, pp. 437–444, Apr
1997.

[53] S. Hunt and L. Rodriguez, “Fast piecewise linear predictors for lossless
compression of hyperspectral imagery,” in Proceedings of IGARSS ’04,
Geoscience and Remote Sensing Symposium, vol. 1, Sept 2004, p. 312.

[54] F. Rizzo, B. Carpentieri, G. Motta, and J. Storer, “Low-complexity loss-
less compression of hyperspectral imagery via linear prediction,” Signal
Processing Letters, IEEE, vol. 12, no. 2, pp. 138–141, Feb 2005.

96

[55] C. Hartzell, L. Graham, T. Tao, H. Goldberg, J. Carpena-Nunez,
D. Racek, C. Taylor, and C. Norton, “Data system design for a hyper-
spectral imaging mission concept,” in Aerospace conference, 2009 IEEE,
March 2009, pp. 1–21.

[56] “CCSDS recommended standard for lossless multispectral
& hyperspectral image compression”. [Online]. Available:
http://public.ccsds.org/publications/archive/123x0b1ec1.pdf

[57] J. Sanchez, E. Auge, J. Santalo, I. Blanes, J. Serra-Sagrista, and A. Kiely,
“Review and implementation of the emerging CCSDS recommended
standard for multispectral and hyperspectral lossless image coding,” in
First International Conference on Data Compression, Communications
and Processing (CCP), June 2011, pp. 222–228.

[58] G. R. Allen, L. Edmonds, C. W. Tseng, G. Swift, and C. Carmichael,
“Single-event upset (SEU) results of embedded error detect and cor-
rect enabled block random access memory (block ram) within the xilinx
xqr5vfx130,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, p.
3426, 2010.

[59] A. Schmidt, J. Walters, K. Zick, M. French, D. Keymeulen, N. Aranki,
M. Klimesh, and A. Kiely, “Applying radiation hardening by software
to Fast Lossless compression prediction on FPGAs,” in 2012 IEEE
Aerospace Conference, March 2012, pp. 1–10.

[60] A. Schmidt and M. French, “Fast lossless image compression with ra-
diation hardening by hardware/software co-design on platform FPGAs,”
in 2013 IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), June 2013, pp. 103–106.

[61] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sarture, and D. Dol-
man, “Airborne demonstration of FPGA implementation of fast lossless
hyperspectral data compression system,” in 2014 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), July 2014, pp. 278–284.

Bibliography

98

