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ABSTRACT

The flow of non-Newtonian fluids has recently gained considerable
importance because of its applications in various branches of science,
engineering and technology: particularly in material processing,
chemical and nuclear industries, geophysics, and bioengineering.

The study of non-Newtonian fluids flow is also of significant interest in
oil reservoir engineering.

The inadequacy of the Navier-Stokes equations in describing
the dynamics of such complex fluids has led to the formulation of
other mathematical models able to predict their behaviour. One
of them is the Oldroyd-B fluid model that acquired a particular
importance since it can be seen as a conjunction of two special cases:
the classical Newtonian fluid and the elastic fluid described by the
Upper Convected Maxwell model. Moreover it is able to well describe
the dynamics of highly dilute polymer solutions, the so-called Boger’s
fluids.

The aim of this thesis is to investigate the linear stability of fluids
described by the Oldroyd-B constitutive equation in cylindrical
geometry from the point of view of modal and non-modal analysis.
Note that only in recent years non-modal stability analysis of the flow
of such kind of fluids, only in two-dimensional channel configuration,
has been worked out since of its complexity that does not allow to
apply in a straightforward way the classical non-modal analysis tools.

Detailed parametric analyses of Oldroyd-B fluids in annular pipe
have been performed. This flow configuration has been chosen not
only for its wider application in industrial process, but also because
it represents an intermediate case between the channel and the
Hagen-Poiseuille flow by varying the inner radius of the pipe.

This investigation has demonstrated the different behaviour of



ii

Oldroyd-B fluid with respect to the classical Newtonian one, and the
energy budget analysis of the disturbance energy amplification has
allowed to highlight some interesting physical mechanism governing
such fluids.

KEYWORDS: viscoelastic fluids, Oldroyd-B, linear stability, annular
pipe flow.



PREFACE

This doctoral thesis is a theoretical/numerical work that deals with the
linear stability analysis of Oldroyd-B fluids in cylindrical geometries.
This study arose inside the FARO project (October 2012 - December
2014) carried out in conjunctions with other departments of the
university and focused on the analysis of the non-Newtonian phenomena
that appears on confined shear flows of viscoelastic fluids. The main
advisor of this work is Professor Gennaro Coppola while Professor
Luigi de Luca acts as co-advisor.

The work is subdivided as follows:

The first chapter is an introduction to the basic characteristics of
viscoelastic fluids. It is aimed at giving a quick resume of the main
concepts underlying the formulation of constitutive equations in
order to provide a better understanding of the most important
parameters governing the dynamics of dilute polymer solutions.

The second chapter is a description of the main tools used in the
linear stability analysis. A particular attention has been given to
the non-modal stability analysis and to the problems that arise in
applying it to viscoelastic fluids.

The third chapter is devoted to the problem formulation, i.e. the
description of the analyzed flow geometries and the development of
an opportune numerical code.

The fourth chapter details the results obtained by the linear stability
analysis.

The conclusions are reported in the last chapter where the main
originalities of this work are highlighted.
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Parts of the results here reported have been presented at the

following conferences:

1. A. Petrucci Orefice, G. Coppola, L. de Luca - Linear stability
analysis of pipe Poiseuille flow for an Oldroyd-B fluid « APS Division
of Fluid Mechanics - 66th Annual Meeting, 24-26 November 2013,
Pittsburgh, Pennsylvania, USA

2. A. Petrucci Orefice, G. Coppola, A. Orazzo, L. de Luca - Linear
stability of viscoelastic Poiseuille flows in cylindrical configurations o
10th European Fluid Mechanics Conference, 14-18 September 2014,
Copenhagen, Denmark
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VISCOELASTIC FLUIDS

Viscoelastic fluids are mainly suspensions of long-chain polymer
molecules in a solvent. Adding polymers in a Newtonian solvent
significantly varies its rheological properties even if the concentration
is very small. The fluid changes and becomes non-Newtonian.

The term non-Newtonian fluid is an all-encompassing term denoting

any fluid that does not obey to the Newton’s law for the shear stress.
This definition indicates just how these complex fluids do not behave,
but in fact many new effects appear and have to be considered to
define a suitable law" for the stress tensor.

One approach for defining a constitutive equation is to postulate a
model for the microstructure then explore the consequences on the
macroscopic level.” This viewpoint, which is opposed in some ways
to the pure continuum approach,® has been preferred in recent times
because gives more insights into the physical mechanisms underlying
the non-Newtonian phenomena. Moreover it allows for an iterative
process in which macroscopical effects excluded by simpler model can
be added with subsequent revisitations of the representation of the
microscopic structures.

Many authors®* seem to agree with the fact that the microscopic
approach has to be always preferred even by who wants just to deal
with the effects related to the larger scales, because they inevitably
depend on what happens to the molecular structure.

Bird and Wiest expressly stated about this matter that

! CONSTITUTIVE EQUATION

2N. Phan-Thien (2012).
Understanding Viscoelasticity.
Springer.

3see]. G. Oldroyd (1950).
“On the Formulation of
Rheological Equations of
State” In: Proceedings of the
Royal Society of London A:
Mathematical, Physical and
Engineering Sciences 200.1063,
pp. 523-541.

‘e.g. see R. B. Bird and J. M.
Wiest (1995). “Constitutive

equations for polymeric liquids”.

In: Annual review of fluid
mechanics 27.1, pp. 169-193;

J. M. Rallison and E. J. Hinch
(1988). “Do we understand

the physics in the constitutive
equation?” In: Journal of Non-
Newtonian Fluid Mechanics 29,
pp. 37-55.

J
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«
The importance of molecular viewpoint cannot be overlooked, and the fluid dynamicist
who fails to take cognizance of the advances in kinetic theory limits his ability to solve
»

problems.

SIMPLE MOLECULAR MODELS

Polymers are macromolecules organized as chains of monomers that
in equilibrium tend naturally to curl up for probabilistic reasons due
to the fact that fewer configurations are available in an extended
conformation . Because of the Brownian forces they do not actually
stand in a single configuration but explore different equiprobable
ones while retaining the same average dimension. This state is the so
called random coil and happens in dilute polymer solutions, in which
contacts between polymers are negligible and interactions with the
solvent are predominant.

In some peculiar conditions, i.e. if the solvent is not a good solvent
for the polymer and is at the so called 6-temperature, the polymer
macromolecule can be modeled with a freely rotating chain with N
segments, the ideal chain or Kramer chain. Its segments are called
statistical monomers or Khun segments and do not correspond to the
actual monomers of the polymer chain nor are physical entities, i.e.
they are freely rotating irrespective of the neighbouring segments and
can cross each other without any limitation.’

In this hypothesis the chain is completely equivalent to the random
walk mathematical model for which the end-to-end vector is

N
R=) R (1.1)

j=1

On the average the randomly oriented vector will have zero mean

(R)=0 (1.2)
0 if i#)

Ri-Rpp = 1o g i=j

(1.3)

where the angular brackets denote the average with respect to the
probability density function of the considered variable. Thus it has

good solvent interacts
favourably with the polymer,
leading to an expanded chain
configuration.

O-temperature is the
temperature at which the
attractive and repulsive
forces of mutual interaction
of the monomers are
compensated. A solvent
at this temperature is also
called a 6-solvent.

For the sake of completeness it
has to be pointed out that much
more detailed chain models
would consider the fact that,
because of the chemical bonds,
the angle of rotation between
two successive segments is
actually quite narrow. (P. J. Flory
[1969]. Statistical mechanics

of chain molecules. Wiley-
Interscience)

® Phan-Thien, Understanding
Viscoelasticity.



Random coil Rouse model

zero end-to-end vector on average
N
(R)=) (R)Y=0 (1.4)
j=1

while the average dimension will be

(R?) = (R - R) = Nb? (1.5)

Elastic dumbbell model

The most important model that describes the dynamics of the ideal
chain is the Rouse model. The forces are schematized associating a
point mass, i.e. a bead, and a spring with each Khun segment. The
Zimm model is an extension that includes hydrodynamic interactions.
The elastic dumbbell model is a simplification of the Rouse model in
which the polymer macromolecule is described by only two beads and
a connecting spring (Figure 1.1). It is a quite crude model that does
not describe any detail of the molecular architecture at all and is quite
inadequate for chemists interested in the kinetic theory approach.’
Nevertheless, it captures some important features of dilute polymer
solutions. The dumbbell can rotate and stretch because of the flow and
the elastic behaviour can describe the slowest, and in some extent also
the most important, motion of the polymer chain, i.e. the deformation
of the entire macromolecule. These aspects make it suitable at least for

VISCOELASTIC FLUIDS

W

Dumbbell model

Figure 1.1: Schemes of simple
molecular models

6 R.B. Bird et al. (1987b).

Dynamics of Polymeric Liquids.
Kinetic Theory. Second Edition.

Vol. I1. Wiley-Iterscience.

3
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the qualitative description of many effects on the dynamics of dilute
polymer solutions.

THE FORCES ACTING ON EACH BEAD are mainly three and can
be subdivided as follows, while neglecting external forces, such as
gravitational or electric ones, and hydrodynamic interactions:

Hydrodynamic drag force is the resistance of the bead moving through
the solution. The Reynolds number related to this effect is small
because of the size of the polymer, thus the average motion of the
chain is modeled with the Stokes’ law and the frictional coefficient
{ = 6muga is introduced, where a represent the bead radius and g is
the viscosity of the solvent.

1.
Fq=5{(R=R-VV) (1.6)

Brownian force acts on the bead because of the thermal fluctuations.
An expression of this force can be obtained using the configurational
distribution function, v,

dlny
OR

where T is the temperature and k; is the Boltzmann’s constant.

FB = kBT (1.7)

Intramolecular force is the elastic spring force that acts on the two
beads. The choice of the law governing the behaviour of the spring
is crucial for gaining accurate constitutive equations that are able
to match the experimental data. Assuming a Gaussian chain,”
modelled with the Hooke’s law

F, = HR (1.8)

3k, . . . . .
where H = N];‘; is the constant spring stiffness, gives rise to

the linear elastic dumbbell model. This assumption seems to
be fair until the extension of the spring is below one third of the
characteristic dimension of the polymer chain.’

OLDROYD-B CONSTITUTIVE EQUATION

The definition of a constitutive equation is necessary for expressing the
behaviour of the tensor stress that will be used in the momentum

7R. G. Larson (1999). The
Structure and Rheology

of Complex fluids. Oxford
University Press, New York.

8 Larson, op. cit.
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balance equation. The Oldroyd-B model® is among the simplest ® also convected Jeffreys model

differential constitutive equations.'® It is a 2-constants variant of the 10 R.B. Bird et al. (1987a).
Dynamics of Polymeric

L . . . Liquids. Fluid Mechanics.
derivation of the complete model is based on considerations on the Second Edition. Vol. L. Wiley-

8-constants constitutive equations proposed by Oldroyd in 1950. The

foundational mathematical aspects that a constitutive equations should ~ Iterscience.
respect.

While it has been originally developed from a continuum point
of view, the B version can be derived also by the dumbbell model
described before. The dilute polymer solution is then modelled as a
dispersion of dumbbells in the Newtonian solvent. The interpretation
from the two points of view, along with its almost simple analytical
formulation, makes it a suitable tool for a deeper understanding of the
macroscopic viscoelastic effects on the flows.

Solving for R the balance of the three forces, expressed by equations
(1.6), (1.7) and (1.8), acting on the dumbbell

1 al
SUR=R-VV) + HR + kT ny

R - 0 (1.9)

and inserting the result in a probability balance equation

oy

e
'R (Ry) =0 (1.10)

gives the Fokker-Planck or Smoluchowski equation that reads

oy 2k;Toy 2H
The equation governing the evolution of the conformation tensor (RR)
can be obtained integrating over the R coordinates

J(RR 4H 4k
AR _ VVT-(RR) — (RR) - VV + —(RR) — faal TR (1.12)
ot ¢ ¢
This equation can be rearranged as The term in parenthesis is the

upper-convected derivative of

J(RR) 1 ) the conformation tensor. In
(RR) + 1 {T — VVT-(RR) — (RR) - VV} = ng I (1.13) general the upper-convected
derivative of a tensor is
introducing the Rouse relaxation time ? - g CVVT . e—e .YV
t t
Nb?
¢ = ¢ (1.14)

T aH T 12k, T
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The evolution of the polymer-contributed stress o, = VH(RR),
where v is the concentration of dumbbells in the volume unit, can be
obtained by multiplying (1.13) by vH

aop
GP+/1{7—VVT-GP—GP-VV}=G| (1.15)
where 1
G= ngZVH = vk, T. (1.16)

The stress tensor due to the polymer contribution can be also
rearranged as

1, =0, -Gl (1.17)
obtaining from (1.15)
Ity
TP+A{§ —VVf-TP—Tp-VV} =2u,D (1.18)
where D = (VV + VVT)/2 and
WIND® 1 )
Hp = GA = 5 = Em/aNb Us (1.19)

is the polymer-contributed viscosity.

THE OLDROYD-B MODEL is obtained considering that, for a dilute
solution of dumbbells, the contribution to the stress due to the Newtonian
solvent T, = 2u,D can not be overlooked. Adding T to T, and
considering equation (1.18) gives

ot 6D
T+/11§ =2ﬂ(D+A25) (1.20)

where 1; and 1, are the two constants of the Oldroyd-B model and are
respectively the relaxation time, A, and the retardation time, Ay, /u.
The total viscosity is the sum of the solvent viscosity and the polymer-
contributed one

W= s + py (1.21)

The total stress tensor can be written analogously as

m=—pl+T,+7T (1.22)

P

where the pressure is the sum of the solvent and polymer contribution,
p = ps + pp. Arearrangement of the previous equation can be

UPPER CONVECTED MAXWELL

Since o, is proportional to (RR)
is positive definite while T, is

not.

OLDROYD-B MODEL

1 Bird et al., Dynamics of
Polymeric Liquids.
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obtained including all the isotropic terms in the pressure

n=—pl+1,+0 (1.23)

b
This model can be seen as intermediate between the Newtonian law
and the Upper Convected Maxwell model. Indeed for 4, = 0 the
retardation time is zero, 1, = 0, and the total viscosity is equivalent
to the polymer related one, thus equation (1.18) is recovered. The
Newtonian limit can be obtained in two different ways

#p = 0 that implies that the total viscosity is equivalent to the solvent
one and also that the retardation time is equal to the to relaxation
one, 1, =1; =1

A =0 thusl, = 0again but this time the contribution of the polymer
to the stress is not zero. It just acts as the Newtonian component,
i.e. with relaxation time equal to zero.

Some unphysical aspects can limit the use of the Oldroyd-B model;
these are given essentially by the fact that the spring has not limits to
its extendibility, i.e. the polymer can become infinite. For this reason
the model predicts an infinite stress for finite elongational rate of
1/(21). Constitutive equations such as FENE (Finitely Extensibile
Nonlinear Elasitc) models limits the maximum extensibility of the
polymer and overcome this kind of drawback. This is made by multiplying
Tp» defined by equation (1.17), for a suitable function. One common
choice is the Peterlin’s closure function that leads to the FENE-

P model. Another way of resolving this unwanted behaviour is to
insert non-linear terms in equation (1.18). An example of this kind of

approach is the Giesekus constitutive equation."? 12H. Giesekus (1982). “A
simple constitutive equation
for polymer fluids based on
interesting behaviour. It predicts constant viscosity for steady state the concept of deformation-
shear flows. dependent tensorial mobility”.
In: Journal of Non-Newtonian
Fluid Mechanics 11.1, pp. 69—
such restrictive but in fact it is quite untypical for the majority of the 109.

The Oldroyd-B model exhibits another unlike but at the same time

The independence of the viscosity by the shear rate seems to be not

polymer solutions that are inherently shear-thinning.
There is however a class of fluids, the Boger’s fluids, that are dilute BOGER’S FLUIDS
polymer solutions, so dilute that the variation of viscosity with shear

rate can be ignored."® The viscosity of the solvent is then so predominant ~ *D. E. James (2009). “Boger
Fluids” In: Annual review of

that the total viscosity is independent of shear rate or nearly so. , !
fluid mechanics 41, pp. 129-142.
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The introduction of this type of fluids has been important in
separating the purely elastic effects from the viscous ones in non-
Newtonian flows because the viscous ones can be determined with the
Newtonian fluids.

GOVERNING EQUATIONS

The governing equations for the incompressible flow of Oldroyd-B
fluids are given by the continuity equation

pV-V=0, (1.24)
and the momentum balance
1%

P +pV-VV=V.m (1.25)

An equation related to the evolution of the polymeric stress tensor, i.e.
an equation chosen between (1.13),(1.15) and (1.18), has to be added to
close the problem. The total stress tensor is given by equation (1.22),
where the polymer stress tensor can be rewritten taking into account
equations (1.16) and (1.19) as

_ Hp (Op _ Hp H
5 ="2 (E - |) -2 (kBT<RR) - l) (1.26)

The momentum balance can be then rearranged as

H
ke T

oV
Por +pV-VV+Vp =y, V2V+@ V-(

1 (RR) — I) (1.27)

THE DIMENSIONLESS EQUATIONS are

V-U=0 (1.28)
ou B, 1-8
E+U-VU+Vp—@VU+ Re V-t, (1.29)

and can be obtained by introducing the Reynolds number Re = pUl/u
where 7/ and [ represent appropriate choices of velocity and length
scales for the problem under investigation, while 4 is the total viscosity
of the polymeric solution. The dimensionless number 8 = pu,/u

is the viscosity ratio and can be seen as a measure of the polymer
concentration in the solution; for 5 = 1 the Newtonian case is
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recovered while decreasing it the amount of polymer increases until
B = 0 and the Upper Convected Maxwell model is reached.
The dimensionless polymer stress tensor t; is obtained by taking
into account equation (1.26) and non-dimensionalizing (RR) by k, T/H
t, = - (IW::) (1.30)
where the Weissenberg number Wi = A U/l is the product of the
polymer relaxation time A and the rate of strain 7///. When Wi — 0

also the polymer relaxation time tends to zero, thus the Newtonian
limit is recovered again.
The evolution of the dimensionless conformation tensor C is
obtained by equation (1.13) and reads
oC (1-0

—_— . = . T, —_—
at+LI vVC=C-VU+(VU)*-C+ W (1.31)






LINEAR STABILITY

Starting from a steady state solution Q of the set of governing differential
equations, presented in the previous Chapter, an infinitesimal disturbance
q is added so that the perturbed vector of state becomes

Q=Q+q. 2.1)

The evolution of the disturbance is obtained by subtracting the steady
state equation from the complete set of non-stationary governing
equations of the perturbed quantity; linearization is then applied
neglecting all the quadratic perturbation terms and leads to

0
9= Lq (2.2)

where 7 is the spatial differential operator. The discretization of this
equation leads to

J =L (2.3)
a—ﬂ- q .

MODAL STABILITY ANALYSIS is obtained applying the temporal
normal mode position, i.e.

q=q°e (2.4)
and leads to the following eigenvalue problem
—iwg = Lg (2.5)

where the imaginary part of @ gives informations on the asymptotic
behaviour of the disturbance, i.e. if ®; < 0 the modal disturbance is
stable.
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NON-MODAL STABILITY ANALYSIS captures the transient behaviour
of the disturbances. The problem is changed to an initial value problem.
It has been demonstrated that even in subcritical modal conditions
some initial disturbances may experience an amplification during in

the short time of the evolution before decaying. This effect has been
proven to be due to the non-normality of the linearized differential

operator' thus the name of non-modal stability analysis. Usee L. N. Trefethen and M.
Embree (2005). Spectra and

The solution of the linearized problem expressed by equation (2.2) !
pseudospectra: the behavior

can be written as of nonnormal matrices and
eLth =q (2.6) operators. Princeton University
Press, pp. xviii + 606; P. J.
where ¢ is the generic vector of state at the time ¢ while gy is the initial Schmid and D. S. Henningson

(2001). Stability and transition

condition, i.e. g at the time ¢ = 0. in shear flow. Springer.

The definition of a suitable norm to use for measuring the vector
of state is one of the most important aspects in order to proceed with

the non-modal analysis and compute the transient growth.” In fact 2P, J. Schmid (2007).
“Nonmodal Stability Theory”.

. R . . In: Annu. Rev. Fluid Mech. 39,
measured, i.e. with some norms the transient growth may not exist. pp. 129-162.

the appearance of the transient amplification depends on how it is

Moreover also the physical meaning of the transient growth depends
on the chosen norm.

In the case of incompressible flow of Newtonian fluids the state
vector is the velocity vector and the total energy, i.e. the kinetic energy,
is given by

T
E- fo g"MgdV (2.7)

and naturally induce an energy norm and an inner product. The
amplification of such a norm is easily understandable as an amplification
of the kinetic energy of the flow field. Moreover its equivalence with

the Euclidean norm can be obtained by the following equation

Il = IIFqll, (2.8)

where F is obtained by the Cholesky decomposition, M = FTF, of the
symmetric positive-definite weight matrix M.

THE TRANSIENT GROWTH FUNCTION is thus the induced norm of
the operator defined by equation (2.6)

F F el
G(t) = max Il = max IFql> = max w = max ||F el F_1||2

||‘I0||E - ||Fq0||2 - ||qu||2
(2.9)




It gives the maximum amplification obtainable at a certain time
considering all the possible initial conditions. This implies that for

two different instants the initial disturbance that reaches the maximum

amplification may be different.

Changing even slightly the problem, for example dealing with
compressible flows of Newtonian fluids,’ the definition of a scalar
product and associated norm becomes not so obvious, but it is anyway

possible to define a suitable norm for the vector of state that is expression

of the the total energy.
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3 see A. Hanifi et al. (1996).
“Transient growth in
compressible boundary layer
flow”. In: Physics of Fluids 8.3,
pp. 826-837.

THE PROBLEM OF NON-MODAL ANALYSIS FOR VISCOEALSTIC

FLUIDS

In the particular case of incompressible flows of viscoelasitc fluids, the
total energy is sum of the kinetic energy and of the elastic energy

of polymers. An estimate of the contribution to the total energy
related to the conformation tensor is given by Lozinski and Owens.*
However the polymer contribution does not induce a natural norm
for the conformation tensor® as it happens for the kinetic energy and
the velocity vector in the Newtonian case of incompressible flows.
Moreover the space of the symmetric positive-definite conformation
tensors is not even a linear vector space.

On the other hand it is anyway possible to define a norm for the
conformation tensor, e.g. the Frobenius norm, but it will be difficult to
give physical interpretations to the results. These considerations make
impossible the use of the transient growth tool for the non-modal
analysis in a straightforward way.

An idea that seems suitable for overcoming the problems stated
above would be to change the polymer variable from the conformation
tensor to its unique positive definite square root. This change has been
proposed for simulative purposes and a complete evolution equation
of this tensor has been written.’

One of the main advantages of this formulation is that the scalar
product of the square root of the conformation tensor gives the elastic
energy associated to the polymer. However the spectral characteristics
of this differential operator would be different from the ones of the

set of equations related to the conformation tensor. It is sufficient to
bear in mind that the relation between the conformation tensor and its

*see A. Lozinski and R. G.
Owens (2003). “An energy
estimate for the Oldroyd B
model: theory and applications”.
In: Journal of Non-Newtonian
Fluid Mechanics 112.2, pp. 161—
176.

5 C. R. Doering et al. (2006).
“Failure of energy stability in
Oldroyd-B fluids at arbitrarily
low Reynolds numbers”. In:
Journal of Non-Newtonian Fluid
Mechanics 135.2, pp. 92-96.

5 N. Balci et al. (2011).
“Symmetric factorization of

the conformation tensor in
viscoelastic fluid models” In:
Journal of Non-Newtonian Fluid
Mechanics 166.11, pp. 546-553.
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square root is not linear. This fact should not limit the usage of such
set of equations for the linear stability analysis of Oldroyd-B fluids
flows but its suitability has not been investigated yet.

Non-modal analysis with filters

Only in recent times works on linear stability analysis of the channel
flow of viscoelastic fluids started to deal with non-modal effects and
many ideas have been proposed for facing the problems stated above
for both inertial” and inertialess® cases. These authors tackle the non-
modal stability problem using an input-output stochastic approach.

Another interesting approach is to focus only on the kinetic part of
the total energy.’ This idea is based on the fact that a fluid dynamicist
is interested in what happens to the flow field. This is also the one that
can be perturbed and monitored in laboratory during the experiments,
thus also in performing the linear stability non-modal analysis it is
supposed to perturb only the kinetic part of ¢ and to monitor the
evolution of the velocity field only.

The generalization of this approach is to give the possibility to
perturb only one part of the vector of state and to monitoring the
evolution of another one. This can be made by introducing two
rectangular matrices, B and P, defined to obtain the filtered vectors
of state q¢;, = Bqy and q,,; = Pq. As exemplifying case suppose to
deal with the incompressible flow of a Newtonian fluid for which the
vector of state is the velocity vector g = [, v, w]™ and to be interested
in perturbing the v and w components, thus g;, = [v, w]” and in seeing
how it affects the u and v components, thus g, = [#, v]". In this case

!
o)

The projection g;, and q,,,; onto the original space of the complete

the filter matrices will be

L —
—_
- O =

vector of state could be done by using BT and PT. It has to be stressed
that this is not the inverse of the previous operation, i.e. if g;, = Bgy, in
general

4o # 4oin = B qin = BTBqy (2.10)

7 see Hoda et al. “Energy
amplification in channel flows
of viscoelastic fluids” (2008)

and “Frequency responses

of streamwise-constant
perturbations in channel flows
of Oldroyd-B fluids” (2009);

and also see Jovanovi¢ and
Kumar “Nonmodal amplification
of stochastic disturbances in
strongly elastic channel flows”
(2011)

8 see M. R. Jovanovié and S.
Kumar (2010). “Transient
growth without inertia” In:
Physics of Fluids 22.2, p. 023101.

® M. Zhang et al. (2013). “Linear
stability analysis of channel flow
of viscoelastic Oldroyd-B and
FENE-P fluids”. In: Journal of
Fluid Mechanics 737, pp. 249—
279.

For the particular case of being
interested in the same part of
the vector of state for both the
perturbation and the evolution,
e.g. in the same components of
the velocity vector, then P = B.
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For the previous example it is trivial to see that g;, = [0, vo, Wy] is not B
equal to g, that can have any value for the # component.

Only for the subset of g;, operations such as B are bijective. The
main idea is then to evolve only the subset of vectors g, i. e. vectors
with

+ non zero components homologous to g;,

Figure 2.1: Operation B is not
« other components equal to zero bijective.

Evolving this subset will individuate another subset in the codomain
of the evolved vectors g. In general the evolved vectors will not have
zero values in the components non homologous to g;, but it possible
anyway to decide to monitor only some of the components of the
evolved vector by using the filter matrix P.

P e“BTq, = qout (2.11)

is the evolution of the chosen components of the vector of state, g,
starting by an initial condition of gy, = B'q;,, where components not
homologous to g;,, are zero. The energy associated to g;, and g, can
be written as

Epn = [ 4 MingindV (2.12)
Egue = qugutMoutqoutdv (2.13)
THE TRANSIENT GROWTH FUNCTION with filfers matrices will be
then
G(t) = max ”qOUt”EOut — max ”FoutqoutHZ _ ”Fout P eLtBTqinHZ _
”qin”Ein ”FinqinHZ ”FinqinHZ
IFout P e'B gyl -
= max Out”F‘nq‘ ”2 inl2 _ maX”Fout P eLt BTI:ml”2
1 n
(2.14)

PROJECTION ONTO THE EIGENVECTORS BASIS

For many reasons of computational costs and accuracy of the solution
it is possible to make a projection of the state vector onto the basis of
the eigenvectors of the linear differential operator L

q = Sk
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where S is the matrix of the eigenvectors (columns) of L and k is the
vector of the contravariant components of g with respect of this basis.
If this basis is complete, thus the eigenvectors are linearly independent,
then equation (2.6) can be easily diagonalized obtaining

eMk,y = k (2.15)

where A is the diagonal matrix of the eigenvalues of L. Substituting in
the definition of the energy

E= | K'STMSkdV (2.16)
fo)
and being k = k(t), i.e. it is function of the time only,
E=K' [ STMSdVk (2.17)
Q
and to define the matrix of inner products of the eigenvectors

M = f STMS dV (2.18)
0

that can be decomposed as M = FTF because is symmetric and
positive-definite as the weight matrix, M.
The energy norm for g can be rewritten as

lgllz = IFglly = IIFKl, (2.19)
and the transient growth function (2.9) become

F Fk
G(t) = max lale _ max IFql, _ max IFKll, _ max ||F e F71|,

llgolle - IFqoll, N ||Fk0||2 -
(2.20)

In other words it is possibile to obtain the energy norm of g measuring

it in the eigenvector space.

The main advantage of using equation (2.20) is that one computes
the exponential of a diagonal matrix, i.e. At. Moreover it is possible to
choose only a subset of the eigenvector, say the N eigenvectors related
to the N more critical eigenvalues, e. g. for the Newtonian Hagen-
Poiseuille flow the non normality of the differential operator relies in
the eigenvectors related to the eigenvalues near the intersection of the
branches of the characteristic Y-shaped spectrum.’

IN THE CASE OF FILTER MATRICES is it possible to use the projection
onto the eigenvectors basis of the the energy norms defined with

M is called Gramian (see Schmid
and Henningson) and is not
equal to the weight matrix M
thus F # F.

0P, J. Schmid and D. S.
Henningson (1994). “Optimal
energy density growth in Hagen-
Poiseuille flow”. In: J. Fluid
Mech. 277, pp. 197-225.



equations (2.12) and (2.13). For example considering g;,

Ein = quaminqindvz qugBTMianOdv

(2.21)
_ ka”of STBTM, B S kodV
it is possible to obtain the matrix
M, = jﬂ STBTM, BS dV (2.22)

and its decomposition M, = F: F,,. Analogously it is possible to write
m
M, = FE_F, thus the transient growth becomes

out
oul F F, .k
G(t) = max oot _ ax TPoutdoulls _ max W oucklly (2.23)
Iginllg, IFinginll2 IFinkoll:
Remembering that
q = Sk = e“'BTq,,, (2.24)
where g;, = Bgy = B Sk, ed e** = S e* S~1 it is possible to write
k = eM S—1BTB Sk, (2.25)

that give the correct projection of equation (2.20) onto the eigenvector
space
G(t) = max||F,,eM S~'BTBS F. |, (2.26)

This equation is here proposed for the first time and even with some
limitations that will be shown in the next chapters it will be an useful
tool for inspecting the eigenspectrum of the linear differential operator
involved in this work and its non-normal characteristics.
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k, is the projection onto
eigenvector basis of the
generic initial vector of state
q,. This vector will have the
zero components only after the
filtering then.

ko =S"'q0 # S g = ki
because

4o # doin = B' @i = B' By
In particular it is true that

k, = ST'BTBSK,






PROBLEM FORMULATION

Linear stability analysis is performed on shear flows confined in a
circular pipe, Hagen-Poiseuille flow (HPF), or between two coaxial
circular cylinders, annular Poiseuille flow (APF). A cylindrical polar
system of coordinates (r, 8, z) representing the radial, azimuthal and
streamwise direction is considered in both cases and the corresponding
velocity components are U, Vand W.

THE STEADY SOLUTIONS for the Newtonian case are solution also
for the flows of Oldroyd-B fluids, thus for the chosen geometries they
are parallel flows of the type U = {0,0, W(r)}. The dimensionless
stationary solution for the Hagen-Poiseuille Flow is

W(r)=1—1r2 (3.1)

where the dimensionless radius r is obtained using as reference length
the radius of the pipe [ = R. For the annular Poiseuille flow the
dimensionless solution is

Wi(r) = (3.2)
By [ 1
5 +lo 2| —r?
o5 [ vlos(72) | -7
log( o )
where the reference length is / = R2;R1 , i.e. half of the gap between the

inner cylinder with radius R, and the outer cylinder of radius R,.
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r— 6 plane r r —z plane

u radius of the
cylinder

REFERENCE =
Length: l - R

PIPE Poiseuille flow

Figure 3.1: Hagen-Poiseuille
Flow — base flow and geometry
The maximum velocity 7/ has been taken as reference in both

cases. For the Hagen-Poiseuille flow it is located on the symmetry
axis, rp.x = 0, while for the annular Poiseuille flow its location is given
by

(3.3)

The annular geometry is interesting because can be interpreted
as an intermediate configuration between the channel flow and the
Hagen-Poiseuille flow. Introducing the radii ratioy = ry/r, for y
that tends to 1 the channel flow case is obtained while nullifying # the

flow tends to the Hagen-Poiseuille flow.! An explicit expression of the 1C. J. Heaton (2008). “Linear
instability of annular Poiseuille
) ) . flow”. In: Journal of Fluid
derived by equation (1.31) and written as Mechanics 610, pp. 391—-406.

conformation tensor corresponding to these base flows can be easily

1 0 Wi w
C-= 1 0 (3.4)
—2
Sym 1+2Wi2 W
where the symbol “ ' ” denotes derivation of the steady state quantities
for r.

The base flow is perturbed so that the total velocity components
pressure and conformation tensor become

U=fl+u,P=l_)+p,C=E+c (3.5)

where capital letters mean (total) perturbed quantities, small letters
infinitesimal disturbances and bar refers to the base flow.
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r— 0 plane r—z plane
outer cylinder

Ry
radius of the
n R2 outer cylinder

radius of the
u R]. inner cylinder

inner cvlinder

REFERENCE [ = (Ry-R1)/2 Ri

Length:

RADIRatio: 7] = R1/Ra

-~

1

ANNULAR Poiseuille flow

Figure 3.2: Annular Poiseuille
Flow — base flow and geometry

Linearization is applied both to the Navier—Stokes equations
Vu=0 (3.6)
ou

— +U-Vu+u-VU=-Vp+ £V2u+ 1-5
ot Re ReWi

and to the evolution equation for the polymer conformation tensor

V-c (3.7)

2 o . _ _
& U-VC+TU-Ve—c-VT—C-Vu— (VIDT-c— (V)T-C = ——. (3.8)
ot Wi

Fourier decomposition in azimuthal and axial directions leads to the
following expressions for disturbance quantities

[u, v, w,p(r,6,2,t) = [it,, W, p](r, t) - el"O+k2) (3.9)
i(mbO+kz)

(3.10)

[Crr' Cr0) Crzr 0> Coz» sz] (}’, 9’ z,t) = [Err’ ar@} arzr 660’ 292’ Ezz] (r,t)-e

where m € Zandk € R are the azimuthal and the axial wave
numbers. Adding the temporal normal mode position leads to

[u, v, w, p](r, 6,2,t) = [i1, ¥, W, p](r) - e!MO+kz=e) (3 17)

i(mO+kz—wt)

(3.12)

[Crw €105 Crzr €C9r Cozr sz] (}", 0’ 2, t) = [Err’ Erﬁ’ 5rz’ 596’ 592’ 5zz:| (V) €

where w € C represents the temporal frequency. The real and
imaginary parts of  are respectively w, and w; and the amplitude
functions (eigenfunctions) are denoted by the symbol “~”. The projection
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of (3.6), (3.7) and (3.8) to the chosen system of reference leads to
equations reported on Appendix A.

The linearized equations can be reorganized in the following
generalized eigenvalue problem

—iwNg = A (3.13)

where ¢ is the phase space vector and contains the velocity components,
conformation stress components and pressure. N is the unsteady
operator and A is the convection-diffusion operator.

The problem is closed by specifying boundary conditions; for
annular Poiseuille flow the velocity has to satisfy the homogeneous
boundary conditions on the cylinders walls, for the Hagen-Poiseuille
flow regularity conditions at r = 0 have to be specified for the velocity
field in order to be continuous and single-valued.?

Regularity conditions at » = 0 have been derived for the conformation
tensor too by imposing

A (3.14)
00 '
that, taking into account equation (3.12), leads to
Err EVG Erz _26}"9 Err - Z619 _EGZ
im Egg Eﬁz + 25,9 Erz =0 (315)
Sym Coz Sym 0
that can be rewritten as
[im 0 0 -2 0 01][¢,]
0 im O 2 0 0 ||Ce
0 0 i 0 0 0 c
e ‘2| _0 (3.16)
1 -1 0 im 0 O ||cyg
0 0 0 0 im —1||¢,
L0 0 0 O 1 im ||y, ]

If the determinant of the matrix in equation (3.16) is not zero the only

admissible solution is the homogeneous one and then the compatibility

conditions on the axis are all zeros. This is the case of m > 2.
Otherwise the following conditions can be obtained

m=0

Crr — 599 = ErG = Erz = 562 =0

C,, finite (3.17)

2 M. R. Khorrami et al. (1989).
“Application of spectral
collocation techniques to the
stability of swirling flows” In: J.
Comp. Phys. 81, pp. 206—229;

R. L. Ash and M. R. Khorrami
(1995). “Vortex Stability in Fluid
Vortices”. In: Kluwer, pp. 317—
372.
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Er.r = Eg@ = EZZ = Erg = Erz + izgz =0 (318)

=¢,, = agz = Err + 509 = Err + iE,g =0 (319)

The failure of the eigenvalue problem in predicting the experimental
critical values of the parameters that trigger transitions in wall bounded
flows is well known; thus more recent studies have pointed out the
importance of the transient behavior of initial disturbances due to the
non-normality of the evolution operator.

The problem is then cast in an initial value problem of the type

%—Z[ =Ly (3.20)
In order to obtain the differential operator L it has been necessary
to recast the set of differential equations in a more compact form
that eliminates the singularity in the differential operator N used
in equation (3.13). Resolving the conservation of mass for w and
the momentum balance along z for p and substituting in the other
equations leads to the set of governing equation for the recast vector of
state ¥ = [, V, ¢, Crgs Crpr Copy Cozr Coz ™

As written above, only the initial disturbances that have zero value
for the conformation tensor components, i.e. ¥, = [, v,0,0,0,0,0,0]T,
are considered and only the kinetic energy of the evolved phase vector
is monitored. This is made possible by defining the filter matrix

g_[t 0000000
o100 00 00

for both the output and input vectors so that w, = BTy, and @, =
B y. For the generic filtered vectors yy, i.e. y;, and ¥, the kinetic
energy is

1
Eq=3 jQ ¥ My; dQ (3.21)

where M is the energy weight matrix that can expressed as M = FTF
with a Cholesky decomposition. Being T = B e'* BT the evolution
tensor that routes from y;;, to ¥, the growth function is

Woulls,,

= |IFB e BTF~! 3.22
Wl I ll2 (3.22)

G(t) = max

23
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Kinetic Energy Budget

An useful tool for gaining a deeper understatement of the mechan

ism

that leads to instabilities is the kinetic energy analysis. By multiplying

the linearized momentum equations written for the generic Fourier

mode by the complex conjugates of i, D, w, and subsequently integrating

over the domain the following expression of the kinetic energy budget

can be obtained

B (., o) _,9(vr)
22 wprdr= - Re{f (Wi ) rdr} = ipl, , + [0 50+ 7
a(ar) 2 o(vr)2 ow;2 4dm SO
_ @ .Q[r2| |+ r2| "+ 5‘ +TIm{uv}+
e G+ 5 + -
+ (&;G + a;r@ + iﬁcge + 1kC92)V + (Erz + aac;z + iTmCze + lksz)

where [« = (1@ + [91? + |W|?), Q is the domain of integration and BQ

its boundary. The following terms can be recognized in equation 3.23

OE 10
<=5 = 53 Wl dr

I= —Re{f (V_V/itﬂv*)r dr}

[ ‘8(ur)|2 ‘a(vr)‘z ‘awz 4m

v = +

[)’ C 8c im _ Cop N ~,
W, = +Re{ Wie Jo [(f + a;’ + —c,e +ikC,, — T)M +

2¢ dac im_ c oc,, im_
+ + + —c +ikcy, )V* + + ikc rdr
( - 0 06 ikc 0z ) ¥ ( ;Z 29 ike zz) ] d }

r or ar

where Ey is the kinetic energy rate, I the Reynolds stress production ,

D, viscous dissipation and W, is the rate of work done by the polymer

on the flow, it is an exchange term and its sign is indefinite. The
boundary condition contribution to the kinetic energy budget is

B orione s meon]
B = — =[O + PO)P];

and equation 3.23 can be written arranged as

EI(=1+DV+WP+B

(3.24)

(3.25)

¥

0

]r dr}

+ —Im{M*} + (—2 + k2 )Ilullz]r dr

ow

"or

o]

2
(r:_z + kZ)IIuIIZ]r dr

(3.23)

+
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For the APF the boundary contribution B is zero because of the
homogeneous conditions thus

Ex=1+D,+ W, (3.26)

CODE DESCRIPTION AND VALIDATION

The generalized eigenvalue problem (3.13) has been discretized along
the radial direction by employing a standard Chebyshev collocation
method; the finite domain has been mapped to the interval [—1, 1] via
a linear transformation. Boundary conditions on the walls and/or on
the axis are enforced by replacing rows.

Moreover a particular attention has been given to the boundary
conditions of the initial value problem expressed by equation (3.20) in
order to avoid unphysical spurious eigenvalues. These highly unstable
eigenvalues, that drastically affect the behaviour of the linear operator,
are different from numerical spurious ones and occur mainly because
of misapplications (e.g. redundancies) of the boundary conditions.’

Validation

The narrow gap limit of the annular flow is the planar Poiseuille flow.
This fact has been useful during the code validation phase. The results
obtained for the annular configuration for r; tending to infinity, i.e.

# tending to 1, have been validated against the references found in
literature for the channel flow of viscoelastic fluids.*

The convergence for increasing r; of the least stable eigenvalue,
¢y, to the values provided by Sureshkumar and Beris for the flow
parameters Re = 3960, 8 = 0.5, Wi = 3.96,k = 1.15and m = 0
has been verified using a grid of 129 points. The results are plotted
in Figure 3.4. Numerical values for r; equal to 102, 103 and 10* are
reported in Table 3.1 and compared to the ones found in works by
Sureshkumar and Beris and Zhang et al.

In Figure 3.3 the complete eigenspectrum obtained for r; = 103,
Re = 2310, Wi = 2.31,8 = 0.5,k = 1.31, m = 0 and two values of
the grid points numbers, N = 128 and N = 256, is plotted. It has been
compared to the results presented by Sureshkumar and Beris for the
same flow parameters and the same numbers of grid points and and an
complete agreement with eigenvalues depicted in black has been found

%]. P. Boyd (2000). Chebyshev
and Fourier spectral methods.
Second Edition. Dover
Publications.

*R. Sureshkumar and A. N.
Beris (1995). “Linear stability
analysis of channel flow of
viscoelastic Oldroyd-B and
FENE-P fluids” In: Journal of
Non-Newtonian Fluid Mechanics
56, pp. 151-182; Zhang et al.,
“Linear stability analysis of
channel flow of viscoelastic
Oldroyd-B and FENE-P fluids”.
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ANNULAR FLOW CHANNEL FLOW
" (‘)cr (‘)cr
102 0.34088888 — 1.0122 x 10>} SB 0.34089442 + 1.9696 x 10~7i

10®  0.34089435 + 0.9379 x 1077 Zhang etal. 0.34089441 + 1.9888 x 10~7i
10*  0.34089441 + 1.9875 x 10~ 7i

Table 3.1: Validation of the code
for both N = 128 and N = 256. These are the eigenvalues related to the for the annular pipe flow against
the results by Sureshkumar

. . ‘ . & Beris and Zhang et al. for
from the component in the azimuthal direction, v. channel flow of an Oldroyd—B

non-swirling components of the velocity, # and w, that are decoupled

Because of the Squire’s theorem that has been proven valid also fluid
for Oldoryd-B fluids, Sureshkumar and Beris consider only two-
dimensional disturbances and this is why the eigenvalues related to the
azimuthal direction (depicted in red) do not appear in their analysis.
Indeed for m = 0 equations (A.1), (A.2), (A.4), (A.5), (A.8), (A.10)
and (A.7) related to the components {u, W, ¢,,, Cgg, €, C,} Of the for these equations see
state vector are decoupled from equations (A.3), (A.6), (A.9) related Appendix A
to {v, ¢4, cg,} and the complete eigenspectrum can be obtained as
superposition of two distinct eigenspectra.

Figure 3.3: Re = 2310, Wi =
S IR 2.3L,8=05k=13Lm=0,
© & r o= 10°,N = 128(0) &
N = 256(+)

3 r e
00O ®®Paq
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c10° Figure 3.4: Least stable
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While the Squire’s theorem for the planar flow allows to consider
only the longitudinal disturbances for the linear stability analysis of
both Newtonian and Oldroyd-B fluids, for the cylindrical case also the
swirling disturbances must be taken into account because there is no
analogue of such a theorem for this configuration.’ ® Heaton, “Linear instability of

This is confirmed by preliminary tests on the least stable eigenvalue annular Poiseuille flow”.
o of the APF for m = 0 conducted by varying the inner radius r;.
The results for the case of Re = 3960, 5 = 0.5, Wi = 3.96,k =1.15
are plotted in Figure 3.4. In Figure 3.4 a discontinuity in the first
derivative of @; can be seen for r; & 10%%'7; for the same value of
ry a discontinuity in @, occurs too. These discontinuities are due to
the fact that for great values of the inner radius the leading eigenvalue
belongs to the part of the spectrum of the longitudinal disturbances, as
it has to be for the Squire’s theorem, while for small values it belongs to
the one related to the azimuthal disturbances. A further confirmation
is given by the eigenspectra calculated for r; = 1 and r; = 10 that are
plotted in Figures 3.5 and 3.6 respectively alongside the eigenfunctions
related to the least stable eigenvalue, o,.

Zhang performed the modal energy analysis on the channel flow of
a FENE-P fluid. The limit of the of the FENE—-P constitutive equation
for the maximum extensibility of the polymer L tending to infinity is
the Oldroyd—B model. A comparison between the results of the modal
energy analysis performed on the channel flow of a FENE-P fluid for
Re = 5600, Wi =6, = 0.9,k = 1.02, m = 0, L = 500 and the results
obtained for the narrow gap limit, r; = 103, of the annular pipe flow
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Figure 3.5: Re = 3960, § = 0.5,
Wi=3.96k=115m=0,r =
1: a) Planar (o) and azimuthal

u d \
"‘,m,w L (o) parts of the eigenspecrtum;
v i N ] b) real () and imaginary (-)
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(a) Eigenspectrum (b) Eigenfunctions for w_,
Figure 3.6: Re = 3960, 8 = 0.5,
Wi =3.96,k=1.15m =0, r o=
10: a) Planar (o) and azimuthal
0 (o) parts of the eigenspecrtum;
b) real () and imaginary ()
-0.2 parts of the eigenfunctions for
©,, = 0.340432582595774 —
-0.4 0.000876450762291i (b)
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TerMs APF Oldroyd-B  ZHANG et alii
D, -14.456 x10~*  -14.449 x10~*
W, -137.533 x10™*  -137.530 x10~*

I 150.151 x10~*  149.969 x10~*

TOTAL -1.838 x10™4 -2.010 x10™*

20 -1.838 x107* -2.010 x10~*

of an Oldroyd-B fluid with same parameters is shown in Table 3.2. The
imaginary part of w,, for the Oldroyd-B costitutive equation is greater
than for the FENE model, confirming the stabilizing effect of the finite
extensibility of the polymeric chains. The main cause of this behaviour
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Table 3.2: Comparison between
modal energy analysis of

the annular pipe flow of an
Oldroyd-B fluid for r; = 10%,
Re = 5600, Wi = 6,8 = 0.9,

k = 1.02, m = 0 and the results
by Zhang et al. for the channel
flow of a FENE—-P fluid with

L =500

seem rely mainly in a greater Reynolds stress production J; sinstead the

polymeric and viscous dissipation D, and W, are almost the same for
both case.

Larson in 1992 stated the lack of works dealing with the linear
stability of viscoelastic inertial flows past circular pipes and even if
nowadays some weakly non-linear analysis on the inertialess Hagen-
Poiseuille flow of viscoelastic fluids have been found,® the linear
stability of the inertial regime of Oldroyd-B fluids in circular pipes
has not been investigated yet, thus only the Newtonian case has been
used as reference.”

As it has been seen the Newtonian limit can be reached starting by
the Oldroyd-B in two ways, i.e for 8 = 1 or for Wi — 0. While the
former leads to the trivial decoupling of equation (1.31) and (1.31),
the limit for Wi — 0 is much more interesting. In this case the
two equations remains coupled while the stress tensor related to the
polymer contribution must act as the viscous dissipation.

Converge tests has been performed for the Hagen-Poiseuille flow
for the Weissenberg number, Wi, tend to zero. In Figure 3.7 it is
highlighted both the imaginary part of the least stable eigenvalue and
the complete eigenspectrum converge to the values of the Newtonian
case.

Even if the transient growths presented in Chapter 4 have been
computed using equation (3.22), some tests have been made with
equation (2.26) proposed in 2 that uses the projection onto the
eigenvectors basis.

As it happens for the Newtonian case of the circular pipe flow® the

¢ B. Meulenbroek et al. (2004).
“Weakly nonlinear subcritical
instability of visco-elastic
Poiseuille flow”. In: Journal of
Non-Newtonian Fluid Mechanics
116, pp. 235-268.

7 see Schmid and Henningson,
“Optimal energy density growth
in Hagen-Poiseuille flow”.

8 Schmid and Henningson,
“Optimal energy density growth
in Hagen-Poiseuille flow”.
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convergence of the growth function can be gained by using only few

eigenvectors. Convergence to the reference growth function computed

by the mean of equation (3.22) for parameters Re =

1000, 5 = 0.45,

Wi =1,k =0.5m=0,5 = 0.5 are presented in Figure 3.8. Using just

the first Nejq

suffice to obtain the 98 % of the total G, ,,.
From a computational point of view this seems to be advantageous

= 21 eigenvectors, i.e. the eigenvectors with &; > —0.5,

because the matrix involved for computing the reference value (black

line) with equation (3.22) is of dimensions 6N x 6N; moreover bad

calculated eigenvectors® are not included in the computation. However

equation (2.26) gives some problems at the time step t = 0 where the
value of G(¢) # 1, that seems to be related to the unsuitableness of
such a few eigenvectors to describe the constraint of zero values for the

conformation tensor components.

Spectrum structure

The spectrum structure of the Hagen-Poiseuille flow of an Oldoryd-B

fluid is quite easily recognizable from previous observations on the

spectrum of both inertialess and inertial case of the channel flow.*

In Figure 3.9 the eigenspectra computed for two sets of governing

parameters are plotted.
In this figure it is possible to individuate the characteristic Y-shaped

part of the Newtonian case, a continuum spectrum located at —1/ Wi

Figure 3.7: Validation of the
eigenspectrum of the Hagen-
Poiseuille flow of an Oldoryd-B
fluid against the Newtonian case
(Schmid and Henningson)

Re =3000,k=1,m=1,8=0.7
at various Wi

%i.e. the numerical spurious
eigenvalues

10 see H. J. Wilson et al. (1999).
“Structure of the spectrum in
zero Reynolds number shear
flow of the UCM and Oldroyd-B
liquids” In: Journal of Non-
Newtonian Fluid Mechanics
80.2, pp. 251-268; Sureshkumar
and Beris, “Linear stability
analysis of channel flow of
viscoelastic Oldroyd-B and
FENE-P fluids”.
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Figure 3.8: Convergence of the
transient growth depending
on the number of involved
eigenvectors

. 1

and a second continuum spectrum located at — W Moreover

because of the smallness of the streamwise wave number, k = 1 in both

sets of parameter, an almost circular structure can be seen. The center
1

of this circle is approximately at 2/3k — Wi and the mean radius is

almost Iﬁ - ﬁl, thus tends to infinity for the UCM case, § — 0 and
the circle tends to a line located at — szWz reported by Sureshkumar and
Beris for the UCM fluid.

Increasing the value of k stretches this circle that firstly becomes
elliptical and for further increments, i.e. when k becomes comparable
to [ﬁ, the circle drastically changes and becomes a more complex
structure (see Figure 3.3). The azimuthal wave number m does not
affect this part of the spectrum.
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0 L A L B B Figure 3.9: Spectrum structure
L 1 fork = 1.
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STABILITY ANALYSIS OF ANNULAR PIPE FLOW

The modal and non-modal linear stability of Oldroyd-B fluids in the
annular pipe flow configuration is investigated in this chapter .

The choice of analyzing in detail such kind of flow is due to the large
application of non-Newtonian flow in annular horizontal pipe in many
industrial process, two example being annular heat exchangers in the
food industry and drilling operations, and moreover because, as just
told in Chapter 3, this geometry can be interpreted as an intermediate
configuration between the channel flow and the Hagen-Poiseuille
flow: for a radii ratio # tending to O the flow tends to the one in a
circular pipe, while for a radii ratio tending to infinite the channel
flow limit is reached. Here, indeed, parametric analysis, by varying
the fundamental parameters governing the flow, in particular the radii
ratio, 7, the Weissenberg number Wi and the viscosity ratio, j, are
presented.

Among the first studies on the modal stability analysis of inertial
flow of viscoelastic fluids the most relevant are by Porteous and Denn
in 1972 and Ho and Denn in 1977, followed by Sureshkumar and
Beris in 1995. A more extensive explanation of the non-monotonic
viscoelastic effects on the critical Reynolds number is given by Sadanandan
and Sureshkumar in 2002. All these works deals with the plane Poiseuille
case.

The non-modal effects on the linear stability of viscoealstic fluids
has been investigated by authors such as Hoda et al., Jovanovi¢ and
Kumar and Zhang et al. only in recent times. All these authors have
studied the energy amplification of Oldroyd-B fluids again only for
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channel flow. Hoda et al., Jovanovié¢ and Kumar studied the transient
growth of the instabilities from an input-output point of view, considering
the amplification of stochastic disturbances, while Zhang et al. explained
the energy amplification by a more classical initial value problem
approach, even modified by the mean of the filter matrices.

The non-modal analysis has been here performed by using the filter
method that has been extensively explained in Chapter 2 and just the
kinetic energy of the flow has been considered. The effects of both
two-dimensional and three-dimensional perturbations have been taken
into account and comparisons with the Newtonian case, obtained as
limit of the Oldroyd-B model for the viscosity ratio 3 tending to 1 or
for the Weissenberg number Wi tending to 0," are reported in order to !see Chapter 1 for further

better understand the different behaviour of viscoelastic fluids. details.

MODAL STABILITY ANALYSIS

Neutral stability curves in the (k, Re) plane are the points defined
by the couples of k and Re for which the imaginary part of the most
critical eigenvalue, @;_, obtained solving the eigenvalue problem
expressed by equation (3.13) is zero. They can be seen as the delimitation
between the zone of stable (k, Re), that is the area included in the
curves, and the zone of parameters leading to modal instability.

Given a neutral curve there is a value of the Reynolds number
for which only one disturbance, related to a particular value of the
streamwise wavenumber K, is stable. This value of the Re is the critical
Reynolds number, Re,,, and its associated wavenumber is k..

Modifications of the neutral stability curves caused by the viscosity
ratio, 8, the Weissenberg number, Wi, and inner radius, r; have been
evaluated.

In Figure 4.1 the effect of the viscosity ratio 8 on the marginal
curves for two values of the inner radius, r; € {2, 5}, and two
values of the Weissenberg number, Wi € {1, 15} are presented.
The macroscopic effect of decreasing the radii ratio # and then tending
to the circular pipe is to increase the critical value of the Reynolds
number, Re,,. Moreover for small values of Wi, i.e. Wi << 10, the
effect of decreasing /3 is always destabilizing, while for greater values
of the Weissenberg number the effect is slightly stabilizing before
becoming destabilizing. This behaviour can be seen also in Figure 4.3.
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Figure 4.1: Modifications on
the neutral curves depending
on f3. The effect of 3 is always

In Figure 4.2 the effect of the Weissenberg number Wi on the c,l;/sitabﬂmng for small values of

marginal curves for two values of the inner radius, r; € {2, 5}, and ’

two values of the viscosity ratio, 8 € {0.7, 0.9} are presented. Starting

from the Newtonian case (black line) the increase of the Weissenberg

number has a mixed effect on the modal stability of the flow. At the

beginning it destabilizes the flow and thus the Re., diminishes until

a certain value of Wi is reached above which further increases of Wi

become stabilizing. The range of Wi, in which the destabilization

occurs, depends on the inner radius r;; for the r; = 5 case there is

destabilization for Wi up to approximately 2 while for ; = 2 the

increase of the Weissenberg number is destabilizing for Wi up to 5.

Hence when the geometry tends to the circular pipe an extension of

the range of destabilizing Wi appears.

The non-monotonic dependence of the critical Reynolds number on

Wi is highlighted in Figure 4.3 where the Re,, is graphed as a function
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of Wi for m = 0. This behaviour is analogous to what happens in the
channel flow case.” The results have been obtained for three different
values of the viscosity ratio, 8 = {0.9, 0.7, 0.5}, and for two different
values of the inner radius, r; = {5, 2}, computing the critical Reynolds
number and its associated streamwise wavenumber k., that in general
differs for each point.

The effects of the inner radius r; (or equivalently of the radii ratio
of the annulus, #) can be better understood using the radius of the
outer cylinder, i.e. the radius of the complete pipe, as the reference
length and introducing the corresponding Reynolds number, Rer,.

In Figure 4.4 the Weissenberg number Wi is plotted as a function of
(Rec, — Reer | Newt) 2> 1.€. the critical Reynolds number referred to ry
and normalized with the critical Reynolds number of the Newtonian

== NEWTONIAN

— Wi=

— YWi=25

— Yi=5

m— Ui =10

— YWi=15
Wi =20

Figure 4.2: Neutral curves for
varying Wi

2 see Sureshkumar and Beris,
“Linear stability analysis of
channel flow of viscoelastic
Oldroyd-B and FENE-P fluids”.
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case so that all the curves start from zero. The curves corresponding
to the same viscosity ratio 8 but to two different values of r; collapse

in the same line for the smaller values of the Weissenberg number,
indicating a similarity in the behaviour of the destabilizing effect of
increasing Wi with respect to r,. However the minimum Reynolds
number reached by the configuration closer to the circular pipe, i.e.

ry = 2, is smaller and suggests a more prominent destabilizing effect of
the Weissenberg number for the smaller values of r;, even if the global
effect of diminishing 7; is to shift forward the critical Reynolds number
of the Newtonian case and thus to globally stabilize the flow.

The introduction of a suitable Deborah number, De = o Wi?
that compares the relaxation time to the real part of the frequency of
the least stable eigenvalue leads to Figure 4.5 where De is plotted as
a function of the Reynolds number related to the polymer viscosity,

Figure 4.3: Effects of Wi and
(e =0.9,e =0.7,o =0.5) on the
marginal curves of the APF for
rp=5(-)andr; =2 (--)

% B. Sadanandan and R.
Sureshkumar (2002).
“Viscoelastic effects on the
stability of wall-bounded shear
flows”. In: Physics of Fluids 14.1,
pp. 41-48.



38 LINEAR STABILITY ANALYSIS OF OLDROYD-B FLUIDS FLOW IN PIPES

Figure 4.4: Effects of Wi and

15 (e =09, =0.7,» = 0.5) on
Re,, 1, of the APF for r; = 5(-)
andr; =2 (- -)

10 |

Wi
5 L
0
-25 -2 -15 -1 -0.5 0 0.5

x10*
(ﬂecr - Teecr | Newt)r2

(Rec, — Regr | Newt)/ (1 — B). In this figure the minimum critical

Reynolds number is reached for approximately unitary values of

De. This indicates how the destabilizing effect of increasing the

Weissenberg number occurs until the relaxation time is shorter

than the characteristic time of the instability. Moreover the curves

related to different value of the viscosity ratio § collapse in the same

line for the smaller values of De. This is due to the choice of modified
Reynolds number, (Re, — Recr | Newt)/ (1 — B), and implies a proportionality

of the destabilizing effect with the polymer-induced viscosity.* * Zhang et al., “Linear stability
analysis of channel flow of
viscoelastic Oldroyd-B and

NON-AXISYMMETRIC DISTURBANCES must also be considered FENE-P fluids”.

when the marginal curves are calculated since there is no analogue

of Squire’s theorem in the cylindrical geometry not even for the

Newtonian case.

The critical Reynolds number, Re_,, is plotted as a function of the
radii ratio, 7, in Figure 4.6, while in Figure 4.7 the related streamwise
wavenumbers, k., for the axisymmetric disturbances, m = 0, is

reported.
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Figure 4.5: Effects of De and
45 B(e =090 =070 =05)
on Re_,./(1 — ) of the APF for
rp=5(-)andr; =2(--)
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As it happens for the Newtonian case of APF?® disturbances with 5 see Heaton, “Linear instability
m # 0 can be the cause of the marginal instability when moving of annular Poiseuille flow”.
from the planar channel case, # = 1, to the circular pipe; on the other
hand, for the limit of # that tends to 1 the Squire’s theorem has to be
valid and in fact, even if it is not caught by the resolution of Figure 4.6,
the asymptotic Re., for y — 1 of disturbances with azimuthal wave
number m = 1 is greater than the one of disturbances with m = 0.
Heaton, applying asymptotic arguments to the Newtonian case,
extended previous results by Mott and Joseph and Cotrell and Pearlstein
and demonstrated that that non-axisymmetric disturbances, i.e.
m # 0, become stable at all Re, i.e. Re., blows up to infinity, for
finite values of the radii ratio # less than a certain value. In particular
for disturbances with m = 1 there is a vertical asymptote for # = 0.117.
For the case of m = 0 the asymptote is located at # that tends to zero
implying that for # < 0.117 a finite critical Reynolds number exists.
Even if an extensive investigation on the presence of such asymptotes
also for the viscoelastic case has not been conducted, Figure 4.6
suggests the also for the APF of Oldroyd-B fluids the same behaviour
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10°
—— NEWTONIAN
— Wi=25
— Wi=5
—  Wi=10
— Wi=15

Figure 4.6: Effects of # and m
on the critical Reynolds number

happens: a vertical asymptote seems to be located approximately at Re,, of the APF for 8 = 0.7 and
n = 0.117 for disturbances with unitary azimuthal wavenumber while various values of W
for the axisymmetric disturbances the critical Reynolds numbers

seems to go to infinity for  — 0.

Kinetic Energy Analysis

The analysis of the budget of kinetic energy for the modal disturbances
has been evaluated at various 7 and Wi for the critical values of Re
and k. The azimuthal wavenumber m has been chosen depending on

y as the most critical between m = 0 and m = 1 by using the results
reported in Figure 4.6.
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The choice of the critical values of Re and k implies that
Ex=1+D,+W,=0 (4.1)

where the contributions to the kinetic energy budget are the Reynolds
stress production, I, the viscous dissipation D, and the polymer work
W), as expressed by equation (3.26). In fact for Re,,, k., the imaginary
part of the least stable eigenvalue is zero by definition then £ = 0
being valid the equivalence £y = 2w; for the modal case.

The viscosity ratio 5 has been chosen equal to 0.7 in all the computation
while the Newtonian case has been obtained with both § = 1 and
Wi — 0 procedures.

The results for a value of the radii ration # = 0.9 near to the narrow
gap limit are plotted in Figure 4.8 while some numerical results are
reported in Table 4.1; for small values of Wi, the viscous dissipation D,
mainly compensates for the destabilizing effect of the Reynolds stress
I while the negative work of the polymer plays a secondary role. On
the other hand for Wi = 15 the Reynolds stress production is highly
attenuated while the polymer stress is the main destabilizing cause that
is offset by a great increase of the viscous dissipation.

Figure 4.7: Effects of 7 on the
critical streamwise wavenumber
k. of the APF for = 0.7, m =0
and various values of Wi
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In Figure 4.10 the results of the energy budget performed for # = 0.2
are graphed, while in Table 4.2 some numerical values are reported. As
it can be seen by Figure 4.6, for this configuration the critical case is
given by a disturbance with 7 = 1. In comparison with the previous
case in which the most critical case was give by an axisymmetric
disturbance the viscous dissipation D, behave differently because
firstly increases and after decreases with Wi while the behaviour of the
Reynolds stress production and polymer stress work remains the same.

Figure 4.8: Kinetic energy
analysis of APF 7 = 0.9 8 = 0.7
for Re,, k., and m . = 0. Note
that all the terms have been
multiplied by 10%.

Figure 4.9: Kinetic energy
analysis of APF 7 = 0.1 8 = 0.7
for Re,, k., and m, = 0.

Note that all the terms have
been multiplied by 10%,
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Figure 4.10: Kinetic energy

600 ‘ = analysis of APF 7 = 0.2 8 = 0.7
- Dy for Re,,, k., and m_, = 1.
=] Note that all the terms have
400 f“\’\‘ been multiplied by 10%.
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A PARTICULAR ATTENTION must be given to the Newtonian case.
For the 5 = 1 case the polymer work is zero and only the viscous
dissipation compensate for the Reynolds stress production. This is due
to the decoupling of the governing equations related to the evolution
of the conformation tensor from the ones related to the conservation
of mass and the momentum balance. Moreover this implies that
eigenvectors related to the latter equations will have zeros on the
components of the conformation tensor. For the case of Wi tending
to zero there is no decoupling and then the eigenvectors do not
necessarily have zero values for the conformation tensor components;
thus more in general even if the eigenspectra for S = 1 and the ones for
Wi — 0 tend to coincide the eigenvectors do not.

However the polymer-contributed stress tensor behave as the
viscous one and the following considerations on the Newtonian case
obtained with both limits be made

+ the total dissipation D, + W, of the Wi — 0 case coincide with the
viscous dissipation of the 8 = 1 case

+ both the total dissipation D, + W/, of the Wi — 0 caseand the
viscous dissipation of the 8 = 1 case are equal in modulus to the
Reynolds stress production / as a consequence of the choice of
critical values
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TErRMSx10* Newt. p=1 Wi=25 Wi=5 Wi =15 Table 4.1: Kinetic energy
W, -57.5233 537181 2214662 nalysisofAPEy=0.9(=07
for Re,, k., and m. =0
D, 146.5444 -126.1754 -129.8034 -311.6306
I 1465444  183.6987  183.5215  90.1288
TerMs x10* Newt. =1 Wi=25 Wi=5 Wi=15 Table 4.2: Kinetic energy
W, 862732 -614777  -17.1622  2nalysisofAPFr=02f=07
for Re,,, k., and m . =1
D, -352.8304 -317.5215 -333.5614 -259.8976
I 352.8833  403.8632  395.1088  277.0844

«+ inthe Wi — 0 case, the contribution of the polymer work to
the total dissipation is given by the factor 1 — 5. An analogous
proportion is valid for the viscous dissipation for which the factors.

These proportions, that are valid only for the limit of the Weissenberg
number that tends to zero and do not apply when it increases, show
how making the relaxation time tend to zero implies that the polymeric
part of the stress acts in the same way as the viscous one. By this
point of view the viscosity ratio S becomes merely a proportionality
factor between two parts of the total stress tensor that act both in a
Newtonian way.

NON-MODAL STABILITY ANALYSIS

Non-modal stability analysis has been performed by perturbing

only the velocity vector and evaluating only its amplification. The
amplification that the disturbances experience are relevant and
comparable to the ones obtained for the Newtonian case. Some
examples of G(¢) are graphed in Figure 4.11 for an oblique disturbance
k =1.02, m = 2, Re = 4000, 5 = 0.5, # = 0.3 for two different values of
the Weissenberg number Wi = 2 and Wi = 15 and compared with the
Newtonian case 5 = 1.

In figure 4.12 the ratio, Gyax/ Gmax|Newt between the maximum
growth for the Oldroyd-B fluid and the corresponding maximum
growth for the Newtonian case is plotted for various values of the
Weissenberg number Wi and the viscosity ratio 8. The effect of
increasing the Weissenberg number on oblique disturbances is different
from the impact on the quasi-planar ones. For the latter, i.e. for
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disturbances related to small values of k, augmenting Wi makes the
maximum growth increase monotonically. For oblique disturbances
instead increasing the Weissenberg number affects the behaviour of
Gpnax in @ mixed way. In fact it firstly increases until a certain value
of Wi is reached and then decreases. The effect of decreasing the
viscosity ratio, 3, is to amplify the effects of the Weissenberg.

Kinetic energy budget may help to understand this two different
behaviours. The optimal disturbance, i.e. the initial disturbance that
reaches the maximum of the growth has been evaluated by mean of
the Singular Value Decomposition, SVD, of the evolution operator
defined with the filter matrices and the kinetic energy budget have
been performed for various cases of the of the Weissenberg number
and compared with the Newtonian case.

A first look must be given to the Newtonian case obtained starting
from the Oldlroyd-B model either by putting S equal to one or by
making the Weissenberg number tend to zero. The results for the
kinetic energy analysis performed on the case with Re = 4000, k =
1.02,m = 2and B = 0.7 are graphed in Figure 4.13. The solid lines
represent the case of Wi — 0 while the circles are obtained for 8 = 1.

Figure 4.11: Growth function
G(¢) for Re = 4000, 8 = 0.5,
n=0.3,m=2,k=1.02and two
different values of Wi compared
to the Newtonian case



46 LINEAR STABILITY ANALYSIS OF OLDROYD-B FLUIDS FLOW IN PIPES

0.75

0.7

0.651

Figure 4.12: Maximum of

the growth function G,
depending on the Weissenberg
number, Wi, and the streamline
wave number, &, for various

values of the viscosity ratio,
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As it is possible to see from this figure, both the Reynolds stress

production, I, and the overall kinetic energy time derivative, EK, are the

same in both the Wi — 0 and 8 = 1 cases.

Moreover, as it happens for the kinetic energy analysis performed

on the modal disturbance, the viscous dissipation of the 8 = 1 case

coincide with the total dissipation W, + Dj, of the Wi — 0 case.

This time the proportionality factor given by 1 — j5 for the polymer

work is extended to the overall evolution of this term, confirming

that the polymer contribution actually behaves exactly as the viscous

dissipation when the relaxation time is zero.

Increasing the Weissenberg number Wi has the following general

effects on oblique disturbances with respect to the Newtonian case

+ the maximum of the Reynolds stress production I diminishes

+ the minimum of the total dissipation diminishes in modulus and is

reached in longer times

« the polymer work increases

The overall effect on the growth function is mixed and depends on the
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Figure 4.13: Non-modal kinetic

40 - energy analysis for an oblique
—t 7 disturbance (Newtonian case).
AL Re = 4000, k = 1.02, m = 2,

30 H

1 = 0.3; Newtonian case is
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Ocircles =1

Weissenberg number W/, as it has been seen by Figure 4.12.

In order to explain the causes underlying the increase of the maximum
of the growth function for oblique disturbances at low Weissenberg
number, the kinetic energy analysis has been performed for Re = 4000,
k=1.02,m=2,5=0.5,7=0.3,and Wi = 2. The results are graphed
(solid lines) in Figure 4.14 and are compare with the Newtonian case
(B = 1, circles). Note that the red dashed line (- —) represents both
the viscous dissipation and polymer work W), for the Newtonian case
obtained for Wi — 0; they coincide because 8 = 0.5.

As it is possible to see, the total dissipative effect given by the sum
of the viscous dissipation and the polymer work, D, + W}, diminishes
with respect to the Newtonian case and compensates for the decrease
of the maximum of the Reynolds stress production. In this case the
reduction is due by the fact that the increase of the polymer work (the
green line is above the dashed line) is not completely counteracted by
the more prominent dissipative effect given by the solvent viscosity
(the red line is beneath the the dashed line).

However the most important effect of the Weissenberg number
is that the maximum of the absolute value of the total dissipation is
reached in longer times compared to the Newtonian case. This is due
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40 !
I
Wp
—_—Dy
Dv + WI)
30 Total

Figure 4.14: Non-modal kinetic
energy analysis for an oblique
disturbance.

to a shift forward of both the minimum of the viscous dissipation and o
— solid lines Re = 4000,

the polymer work. In fact, while the compensation of the decrease of k=1.02m=28=0.5,

I, given by the drop of the dissipative effects, let the time derivative of 7=03 Wi=2

the kinetic energy remain the same until the maximum is reached at O circles Newtonian case f§ = 1
t & 17, the retardation of the the dissipative effect maximum make the - —dashed line D, = W,

Ex decrease (for ¢ > 17) more slowly than in the Newtonian case, thus gi“gznian case Wi —» 0 &

letting the growth function reach a greater maximum value.

The influence of the retardation effect on the total dissipation due to
the increase of the Weissenberg number Wi becomes less important
when the reduction of the Reynolds stress production I becomes so
predominant that can not be compensated by the increase of the
polymer work on the fluid. In Figure 4.15 the results of the kinetic
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Figure 4.15: Non-modal kinetic

40 = energy analysis for an oblique
—_— B’p disturbance.
— Dy
——Dy+Wp D

301 Total _f — solid lines Re = 4000,

6% k=1.02m=2p =05,
© n=03, Wi=15
20

O circles Newtonian case § =1

D

ant VLY

10 20 30 40 50 60 70

analysis performed on the case of Re = 4000, k = 1.02, m = 2,8 = 0.5,
n = 0.3 and Wi = 15 are graphed. In this case the the decrease of the
Reynolds stress production is so significant that not even the positive
work made by polymer can counteract it. The overall effect is then a
reduction the growth function maximum.

The monotonic increase of the maximum value of the growth
function, G, on the quasi-planar disturbances due to augmenting
the Weissenberg number, Wi, can be explained with a different
mechanism than the one shown for oblique disturbances. The results
of the kinetic energy analysis on the case with Re = 4000, k = 0.1,
m=2,=057y= 0.3, Wi = 5are plotted in Figure 4.16. As it
has been seen for oblique disturbances, the polymer work increases
and the viscous dissipation decreases with respect to the Newtonian
case (Wi — 0, — — dashed line). Even if this fact does not significantly
affect the absolute value of the maximum of the total dissipation and
neither its position, it is important for the amount of dissipation in
the first time steps that is reduced with respect to the Newtonian case.
Adding this effect to the fact that the Reynolds stress production grows
faster makes the time derivative of the kinetic energy reach a greater
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Figure 4.16: Non-modal kinetic

25 = energy analysis for an oblique
S ‘Li)*p disturbance.
20t v W] .
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maximum than the Newtonian case. The overall effect is then that the

growth function maximum increases.



CONCLUSIONS

The linear stability of inertia dominated shear flows in pipes of highly
dilute polymer solution has been performed. The Oldroyd-B model
has been chosen as the constitutive equation for describing the
behaviour of the stress tensor of these fluids.

A preliminary study has been carried out on the state of the art
of the mathematical tools used for the linear stability analysis, in
particular the non-modal one, and some new ideas has been presented.
In fact, the mathematical framework is such as to prevent a straightforward
use of the non-modal stability analysis as proposed for the incompressible
Newtonian case and this is one of the reasons why papers focusing on
this kind of analysis appeared only recently.

They dealt exclusively with the channel flow configuration while in
this work the annular flow has been extensively studied. The cylindrical
geometry is more interesting than the more academic planar configuration
also by an industrial and applicative point of view but presents further
problems of both mathematical and numerical nature that have been
faced up in order to deal with it.

The main results obtained are related to the effects of the Weissenberg
number and the curvature of the annular geometry on the characteristic
of the modal stability of the flow. The critical Reynolds number
exhibits the characteristic non-monotonic behaviour depending on
the Weissenberg number and the overall effect of tending to the pipe
is to modally stabilize the flow. However the destabilizing effect of
the Weissenberg number with respect to the Newtonian case is more
prominent when the geometry tends to the pipe.
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The non-modal stability analysis has been carried out by taking
into account perturbations of the velocity vector only and monitoring
only its amplifications. The effect of the Weissenberg number is to
increase the maximum amplification of quasi-planar disturbances.
The effect on oblique disturbances is instead non-monotonic, i.e.
there is a maximum after which further increases of the Weissenberg
number lead to a drop in the amplification. This behaviour has been
investigated by means of the kinetic energy analysis.

The damping of the maximum amplification for oblique disturbances
at high Weissenberg number can be simply explained by the drop of
the Reynolds stress production. An analogous motivation is related to
the increase of the maximum amplification for quasi-planar disturbance
at the same values of the Weissenberg number: the greater amplification
is due to an increase of the Reynolds stress production. Instead, the
increase of the maximum amplification at intermediate values of the
Weissenberg number for oblique disturbances is related to different
mechanisms. In this case the main role is played by the timing of the
productive and dissipative effects, that are both damped by the action
of the Weissenberg number. The greater amplification is due to a shift
forward of the time at which the dissipative effect reaches its peak.



LINEAR OPERATORS

The projection of (3.6) and (3.7) to the chosen system of reference

leads to

J 1
Oz(a—r+;>ﬁ+i%f/+ikv~u (A1)
| = B ? 10 m+1 \|. _ Bm_ op
—lwu—[—lkW+@ ﬁ-‘-;;’_ ) —k u—21@r—2v—§
1-8 1 9d). Lm Ly Cop
+w[(;+5)crr+176,9+1kcrz—7] (A2)
B m o — B (* 1o mr+l \]. .m_
—1wV—21—‘3r—2u+ I:—lkW‘l'@ (ﬁ-'— ;5‘ — r2 —/( ):|V—l7p
1-g[(2 o\. .m,
+ —Y{e‘W/ii (; + a_r) Crp + 17c99 + 1kcez] (A.3)
Lo =t o— B (F* 10 m  N\]. ..
—1&)W——WM+|:-1/(W+@ ﬁ‘l’;g—r—z—k W—lkp
1-B (L o9\. m_
+ ‘Reﬂ/f/ii (; + a_r) Crp + 17092 + 1/(022] (A.4)




54 LINEAR STABILITY ANALYSIS OF OLDROYD-B FLUIDS FLOW IN PIPES

and of (3.8) leads to
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