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PREFACE 
 

In the last years the renewable energy sources have known a state of their 

advanced diffusion considering their advantages compared to the traditional 

energy sources like fossil fuels. For this reason the combined heat and power 

(CHP) plant fueled by renewable sources are widely used.  

The purpose of this Ph.D. thesis is the design of a new Grid-connected Double-

Stage AC-DC/DC-AC Power Converter (DSACPC) for a Concentrating Solar 

plant for Combined generation of Heat and Power (CS-CHP), that consists of 

a thermodynamic sub-system fueled by sunlight and an grid-connected 

electrical sub-system. 

The thermodynamic sub-system converts the high-temperature heat, achieved 

using mirrors to concentrate the sun rays to a receiver tube crossed by thermal 

fluid, into mechanical energy by means of a coupled Organic Rankine Cycle 

(ORC). Such mechanical energy outlet by turbine is input to electrical sub-

system that uses it to generate active and reactive instantaneous power on the 

grid supply. 

The main advantages of grid-connected CS-CHP proposed are CO2 emissions 

operating costs more low and operating costs more content than traditional 

energy sources, because it use a renewable energy source. However due to 

some drawbacks like low efficiency of the stream cycle, caused by low 

operating temperature (400°C for synthetic oil), and high cost of installing (i.e. 

the Concentrating Solar Plants are much larger than photovoltaic plant), it is 

necessary maximize efficiency of the electrical sub-system so to maximize the 

global efficiency of proposed plant.  

Therefore a new Grid-connected Double-Stage AC-DC/DC-AC Power 

Converter (DSACPC) with Second-Order Super-Twisting Integral Sliding 
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Mode Control for electrical sub-system is proposed, in order to make 

competitive the grid-connected CS-CHP in small scale application. 

The thesis is so structured: in Chapter 1 an overview of CS-CHP systems is 

given and CSP and thermodynamic sub-systems are described; in Chapter 2 

the sliding mode control theory is thoroughly investigated, starting to classical 

sliding mode control to discrete-time integral sliding mode control and the 

higher-order sliding mode control; in Chapter 3 the modeling and the design of 

electrical-subsystem is carried out and the control strategy for DSACPC is 

presented; Chapter 4 shows the numerical and experimental  results to validate 

the performance of full proposed system. 
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Chapter 1 

CONCENTRATING SOLAR PLANT FOR COMBINED 

GENERATION OF HEAT AND POWER 

 

1.1 Introduction 

Systems called to generate heat and electricity power are the Concentrating 

Solar Power (CSP), which use mirrors to concentrate and focus the solar 

radiation, so that a receiver could yield this energy to a thermal fluid in order to 

increase its temperature. 

Nowadays, the research in the field of CSP brought to the born of a great 

variety of mirror shapes and solar tracking methods, being a trade-off between 

a good energy storage for the peak loads and the base loads and a significant 

low CO2 emissions. Despite in Europe the installed CSP power grew up very 

quickly in the last years, this kind of energy production is steel marginal in the 

framework of the energy supply, because the energy generation costs are 

higher than the competing technologies. 

Moreover, the low efficiency of this kind of power plants also limits the 

diffusion of this technology; the weak point of the chain efficiency is the steam 

cycle because of the limited operating temperature range of the heat transfer 

fluid (400°C for synthetic oils and 600°C for molten salts), that makes the 

turbine inlet steam to range between 370°C and 550°C respectively [1]. 

CSP plants are typically diffused in large scale (between 50 MW and 280 MW) 

instead of the photovoltaic plants which are also spread in small scale because 

of the high costs and the efficiency which are optimized only for large scale 

installations. For this reason, in this Ph.D. thesis a new electrical sub-system 

for Concentrating Solar plant for Combined generation of Heat and Power (CS-
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CHP) is designed and tested in order to increase the efficiency of the whole 

proposed system also for small scale installation like over house roofs and 

factory sheds. Moreover the synthetic oil option is chosen for CSP plant, 

coupled to Organic Rankine Cycle (ORC) for thermodynamic subsystem in 

order to avoid a so much high plant complexity so as for the molten salt option, 

and achieve the best efficiency as currently possible also for the small scale 

plant. Many efforts were devoted to the study of several CS-CHP plant 

configurations [2]-[3]-[4]-[5], where a mixture of hydrocarbons gases was 

used, showing that the regenerative cycles have: 

 negative effects on the collector efficiency because of the arise of the 

average operating temperature of the first-stage collectors; 

 positive effects on the ORC efficiency; 

 a limiting negative effect on the electrical subsystem’s efficiency, 

which does not overcome about 38%. 

The proposed Concentrating Solar plant for Combined generation of Heat and 

Power (CS-CHP) consists of three subsystems: 

 CSP (Concentrated solar power ) subsystem; 

 Thermodynamic subsystem; 

 Electrical subsystem. 

The following Fig. 1.1. shows the mentioned subsystems. 

 

 

Fig. 1.1. Concentrating Solar plant for Combined generation of Heat and Power (CS-CHP). 
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In the following, the mean CSP’s and Thermodynamic subsystem’s 

components will be described; as regard the electrical subsystem, only a short 

summary of it is given in this chapter because it will be thoroughly depicted in 

Chapter 3. 

1.2 CSP subsystem 

The solar collector consist of two main parts: parabolic linear mirrors, that are 

straight in one direction and parabolically curved in the others, and receiver 

tube.  

The solar radiation is focused by the parabolic mirrors on the receiver tube 

placed along the focal line. The proposed tube has a xenon filled interspace to 

prevent vacuum leakages in contrast to it happens in the commercial tubes. 

Solar collector’s main parameter is the concentration factor: 

 
r

A
C

A
          (1.1) 

where A is the parabolic mirror surface extension and rA is the collector tube 

area. 

 

Fig. 1.2. Solar collector with aluminum parabolic structure covered by adhesive polymeric 

multilayer film with high reflectance 
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Fig. 1.2. shows the concentration parabolic mirror prototype realized at 

Department of Mechanical Engineering (DIME) of university of Naples 

Federico II; it consists of the following two main parts: 

 parabolic mirror; 

 receiver tube. 

Because of the realization issues of the CSP integration with the structure of 

the building, a prototype was realized instead of using commercial parabolic 

mirror. For this reason a parabolic mirror in composite materials with steel 

supporting structure was designed. Moreover a new kind of receiver tube was 

set up so to increase the efficiency of the whole capture subsystem. Hereafter 

the mean features of CSP subsystem’s components will be depicted.   

1.2.1. Parabolic Mirror 

The use of glass as reflective material for the parabolic mirrors was not 

possible due to the high curvature imposed to mirror by the installation 

constraints on the building structure; in fact, using the estimated values of the 

parabola opening (2200 mm) and focal distance (1100 mm) the glass may be 

damaged. Therefore, aluminum parabolic structures coated by adhesive 

polymeric multilayer films with high reflectance were used. 

Fig. 1.3. shows the physical structure of the used reflecting polymeric 

multilayer film: 

 

Fig. 1.3. Structure of the polymeric multilayer films with silver layer deposed under vacuum. 

 

Such polymeric multilayer film shows good performance in terms of 

reflectance coefficient for solar radiation whose spectral frequency belongs to 

the visible, UV and NIR bandwidth. 
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Because of corrosion issues for silver layer and its property to transmit the UV 

radiation with wavelength about 320 nm, the presence of corrosion inhibitors 

and UV radiation absorbers was foreseen on the adhesives used to join the 

many layers of the film and on the protective coatings (layers 6-7); in this way 

the UV radiation of the silver is not allowed to decay the BOPET (Bi-Oriented 

PET ) sub-layer (layers 3-4), where the silver was placed over. 

The width of multilayer flexible film is some hundreds of micrometers. 

The very reflective layer consists of two BOPET layers and silver layer. 

The first BOPET layer (layer 4), touching the silver layer, is free of slipping 

agents in order to enhance the silver reflectance; on the contrary the lower 

BOPET sub-layer (layer 3) has slipping agents so to improve the joining of the 

structure. The silver layer is covered with an acrylic coating layer with 

corrosion inhibitors whose depth is few micrometers (layer 6). 

An additional coating layer with UV absorbers is placed over the latter to 

absorbs the radiations with wavelength 300 400nm nm  . Under the 

BOPET layers there is a pressure sensing adhesive layer (layer 2) to fix the 

reflective structure to that of concentration parabola. An additional acrylic 

protective film (layer 8-9) can be added to previous structure in order to 

prevent the rain and others atmospheric agents to damage the whole structure.  

The realization of the prototype was carried out by using the SILVERLUX 

structure (layer 1-7) and a protective layer as KORAD KLEAR 050005.  
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1.2.2. Receiver Tube  

The commercial receiver tubes are complex and expensive; moreover the 

keeping of the vacuum in the interspace is not guarantee. For this reason a new 

receiver tube has been designed in order to achieve lower costs and 

constructive simplicity. 

Fig. 1.4. shows the schema of proposed receiver tube. 

 

(a) 

 

(b) 

Fig. 1.4. The receiver tube: (a) external visualization - (b) structure of the receiver tube. 

where: 

(1) internal stainless steel receiver tube; 

(2) external cylindrical glass tube;  

(3) glass-metal junction; 

(4) bellows; 

(5) getter; 

(6) external shields; 

(7) internal shields. 

The tube structure is composed by: 

 an internal stainless steel tube where the thermal fluid flows; 

 an external cylindrical glass tube as screen with respect to radiations 

generated by internal tube except in correspondence of a fissure 
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enclosed by a lens that is placed longitudinally along the optical path 

length of the solar radiation reflected by the mirror and it is transparent 

with respect to the latter; 

 an interspace between the external and the internal tubes containing a 

thermally insulating gas (Xenon) that has a pressure range about 

1 31mbar  and a low thermal conductivity ( 0,01W mK ); 

 three irradiative screens are placed between the external surface of the 

internal tube and the external cylindrical tube with a low emissivity 

( 7% ); these screens are composed by aluminum with silver coating. 

 additional reflective screens can be add on the sides of a fissure 

enclosed by a lens in order to reflect the peripheral parts of the radiation 

flux reflected by the mirror on the internal receiver tube. 

A coating is applied on the internal side of the external lens that is with respect 

to radiations with wavelength 320 2000nm nm   (almost the entire solar 

spectrum) and at the same time reflective with respect to radiations with 

wavelength 2000nm   (NIR). An additional coating was applied on the 

external side of the internal receiver tube in order to guarantee a high 

absorption coefficient with respect to radiations with wavelength 

320 2000nm nm   and at the same time a low infrared radiations emissivity 

of the internal tube. 

The coupling joints have been placed at the end of the internal tube so the 

external cylindrical tube can rotate axially around the internal tube together the 

parabolic mirror during the sunlight tracking. 

The thermal efficiency of the whole receiver tube is greater than the others 

commercial tubes because Xenon gas prevents the heat loss of the internal 

receiver tube; moreover the additional irradiative and reflective screens capture 

the almost the entire solar radiation. 

The Table 1.1 lists the main features of the adopted receiver tube with 

operating temperature about 250÷550 °C. 
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TABLE 1.1 - MAIN CHARACTERISTICS OF RECEIVER TUBE 

PROPERTY DATA
 

external glass tube diameter [mm] 115 

glass thickness [mm] 3.0 

internal steel tube diameter [mm] 70 

steel thickness [mm] 3.0 

receiver tube length [mm] 4060 

active length [mm] 3865
 

vacuum level < 1 Pa 

absorbance solar coating > 0.9 

remittance coating < 0.15 

maximum differential  

dilatation [mm] 
40 

maximum temperature  

of the receiver tube [°C] 
550 

maximum temperature  

of the glass tube [°C] 
100 

maximum pressure [Mpa] 1,2 

  

1.3 Thermodynamic subsystem 

The proposed combined heat and power consists of a Concentrating Solar Plant 

(CSP) coupled to ORC. The parabolic mirrors focus the sun rays to receiver 

tube; in this way the thermal fluid archived high temperature (400°C) and by 

means of ORC generates mechanical energy. In the following will be analyzed 

the main components of proposed thermodynamic sub-system. 

The thermodynamic plant consists of two main circuits, as shown in the Fig. 

1.5.: in the primary circuit the primary fluid takes thermal energy from the 

solar collector and yields it to the secondary fluid trough to the evaporator; in 

the secondary circuit an organic fluid flows into a Rankine Cycle (ORC). 



11 
 

 

Fig. 1.5. Scheme of thermodynamic sub-system reporting primary (red) and  

secondary (blue) circuits. 

    

The chosen primary fluid is Dowtherm A, a mixture of two substances: 

biphenyl (C6H12) and diphenyl oxide (C12H10O). 

Since both the substances have the same vapor pressure, the Dowtherm A is 

thermodynamically equivalent to a unique component.  

The main advantages of the Dowtherm A with respect to other thermal fluids 

are the chemical and physic stability and the wide availability, that makes it not 

expansive. 

Table 1.2 shows Dowtherm A main characteristics. 

 

 

 

TABLE 1.2 - MAIN PROPERTIES OF DOWTHERM A  
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The maximum operating temperature of the Dowtherm A in the proposed 

primary circuit is about 400 °C, as reported in the following operating 

conditions: 

 Oil rate: 0,51 kg/s; 

 Tube inlet temperature: 370 °C; 

 Tube outlet temperature: 400 °C. 

As we know, in the Rankine Cycles it is not possible to yield heat to the vapor 

if the operative temperatures are lower than 550 °C, to prevent the turbine’s 

blades erosion. Therefore an organic fluid was chosen that allows expansion in 

superheated condition overcrossing condensation problems, because of the low 

operating temperature; this fluid is called dry fluid. 

For secondary circuit about 60 fluids were analyzed and for each of them were 

considered the same thermodynamic transformations:  

 Compression (1-2); 

 Pre-heating by turbine outlet fluid (2-3); 

 Main heating by primary fluid (3-4); 

 Expansion (4-5) turbine outlet; 

 Primary cooling at turbine outlet (5-6); 

 Condensation in regenerative heat exchanger (6-1). 

having the maximum operating temperature of 370 °C. 

The chosen dry fluid is the Decane; the choice was made in such a way to 

optimize the global efficiency g  of proposed thermodynamic sub-system, 

defined as:  

u
g

s

P

P
            (1.2) 

where gP  is the power at turbine outlet fixed at 10 kW and sP is the solar power 

collected by parabolic mirrors.  

The optimization was carried on by changing the turbine inlet upper pressure 

for each tested fluid; using the Decane fluid, the global efficiency is 18,3 % 

with the following operating conditions: 

 Upper pressure: 18 bar; 

 Lower pressure: 0,5 bar. 
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The high efficiency achieved using the Decane allows to minimize the 

parabolic mirrors surface extension about to 60 m
2
 with a minimum length of 

the 15 m for the receiver tube. 

  

1.4 Electrical subsystem 

In the case of distributed power generation by renewable source (wind, thermal 

solar plant and tidal stream generator), the energy supplied by the renewable 

source is generally converted in electrical energy by means of an electrical 

subsystem that consists of an electrical machine coupled with a power 

electronic interface connected to the grid-utility. Moreover a suitable control 

strategy for the electrical subsystem must be implemented in order to maximize 

the efficiency of the energy flow conversion. Many control strategies have 

been proposed in literature to achieve high performance of the whole 

controlled system [6]-[18]; however the Sliding Mode Control (SMC) has been 

particularly adopted thanks to its easy configuration and set-up and its 

advantages about stability and robustness against parameters and load 

uncertainties with respect to other types of non-linear control strategy for 

Variable Structure System (VSS) [6]-[18]. Unfortunately, the high performance 

and robustness of the sliding mode control are achieved only after the 

occurrence of the sliding mode on a suitable sliding manifold; furthermore the 

sliding mode may be characterized by chattering phenomena due to unmodeled 

dynamic of the controlled system and presence of external disturbances. For 

this reasons the sliding mode control theory is fully treated in Chapter 2 of this 

Ph.D. thesis, where at first the classic sliding mode control theory and 

continuous-time formulation of the sliding mode control are explained and 

after the integral sliding mode control and discrete-time formulation of sliding 

mode control is treated until the higher-order sliding mode control theory, 

while a particular attention is reserved for the most used technique to avoid the 

chattering phenomenon and for sliding mode observer design.       

The electrical subsystem of proposed CS-CHP plant is composed by a 

Permanent Magnet Synchronous Generator (PMSG) coupled with a Double-

Stage AC-AC Power Converter (DSACPC) as shown in Fig. 1.6. 
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Fig. 1.6. Scheme of proposed electrical subsystem. 

 

 

The DSACPC consists of two stages: the Stage 1 is composed by the PMSG 

coupled with a three-phase PWM rectifier and a DC-link capacitor bank, while 

the Stage 2 is composed by a three-phase soft-switched Voltage Source 

Inverter connected to the grid-utility by means of a three-phase step-up 

transformer. The adopted control strategy is focused on the second-order 

Super-Twisting integral sliding mode control that is able to overcome the cited 

problems, guaranteeing the robustness of the system against system parameters 

variation and external disturbances during the whole controlled system 

response and avoiding the chattering phenomena. Thanks to the proposed 

control strategy, the first converter stage is able to track the maximum power 

point drawn from the thermodynamic subsystem and to keep also the DC-link 

voltage to a desired value; the second converter stage instead giving the desired 

active power to the grid can be used also a reactive power compensator under 

balanced conditions of the grid-utility or as a system of current harmonic 

rejection in the case of unbalanced conditions of the grid-utility. 

The modeling and the design of the main components of the proposed electrical 

subsystem are fully developed in Chapter 3 and the control strategy of both 

stages of DSACPC is completely described in the same chapter.  
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Chapter 2 

SLIDING MODE CONTROL 

The Variable Structure Control (VSC) is a general approach for designing of 

robust control system and it is composed by a series of continuous subsystems 

with a suitable logic switching. This type of control has taken on a growing 

importance over the years since they are suitable for controlling of a wide 

range of type systems as linear and nonlinear, time-invariant and time-variant 

systems, single input single output systems (SISO) or multi-input multi-output 

systems (MIMO), continuous or discrete time systems. 

Nowadays the Sliding Mode Control (SMC) has increased its spread thanks to 

the emergence of new classes of problems and the progress in switching 

components. The SMC is a control technique very renowned due to its 

robustness property with respect to the parameters variation of the system and 

the external disturbances. 

However this control technique has drawbacks intrinsic in the discrete and 

discontinuous nature of VSC as undesired chattering and high-frequency 

vibrations, that are dangerous for the system. 
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2.1 Classic Sliding Mode Control 

The main feature of the adoption of the sliding mode control for designing of 

the controller of a VSC consists of forcing the trajectory of the state variables 

vector to lie on a sliding manifold belonging to the state space. 

The sliding surface is coincident with intersection of hyperplanes belonging to 

the state space. Once the state trajectory vector reaches the sliding surface, the 

feedback control action adapt automatically in order to obtain the sliding 

motion on this sliding surface. 

Let us an arbitrary system with a vector control defined as follows: 

     (2.1) 

where the components  is x  of vector  s x  are m  smooth function and i -th 

component  iu x  of vector control  u x  is discontinuous function on the i -th 

surface   0is x . 

The equivalent control method can be used in order to obtain a sliding mode on 

the sliding manifold   s x 0 [19]. 

This method consists of the replacement of discontinuous control u  in a 

neighborhood of sliding manifold by a continuous control called equivalent 

control equ  such that the solution of system (2.1) exists in conventional sense 

with the introduction of this new input control vector. 

Assuming that the initial state vector of system (2.1) is on the sliding manifold, 

which is an intersection of the m discontinuous surfaces, after occurring a 

sliding mode the state trajectories will be confined to the sliding manifold 

  s x 0  for all time instants such that 0t t ; therefore also the time derivative 

of the sliding function is equal to zero for 0t t . 

Hence the time derivative of sliding function can be used in addition 

to constraint   s x 0 in order to characterize the state trajectories during the 

sliding mode. 
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The discontinuous control u will be replaced by equivalent control equ  that is 

calculated by equating to zero the time derivative of the sliding function: 

        (2.2) 

where 




s

x
 is m x n  matrix with gradients of functions  is x as rows.   

If a solution to algebraic equation (2.2) exists, this is called equivalent control 

equ  and it is a continuous function that is solution of the following system: 

        (2.3) 

Replacing  equ  to u  into system (2.1), the following equation is obtained: 

         (2.4)  

which together with the initial conditions   0t s x 0 describes the state 

motion along the sliding manifold   s x 0 . For this reason (2.4) is known as 

motion equation of the sliding mode. 

The procedure that has been described for obtaining the motion equation of the 

sliding mode is the core of the equivalent control method [19].  

From a geometrical view point, the equivalent control method consists by the 

replacement of discontinuous control vector u by a continuous control vector 

equ  such that the velocity state vector (time derivative of the state vector) lies 

in tangential manifold to the sliding surface at least in a neighborhood in the 

vicinity of the switching surface, as shown in the next figure: 
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Fig. 2.1. State velocity vector in sliding mode for nonlinear system with equivalent control 

method 

 

When the state trajectories are confined exactly to the sliding manifold 

  s x 0 , the ideal sliding mode occurs for system (2.1). The term “ideal” for 

the sliding mode is used in this case because an ideal sliding mode is achieved 

only if the discontinuous control vector switches with a very high frequency or 

theoretically infinite on the sliding manifold so that the velocity state vector is 

precisely oriented along the intersection of the discontinuous surfaces (this is 

required for each component of the control vector). 

However, in practical applications the state trajectories run in a boundary layer 

of width 0   in a neighborhood in the vicinity of sliding manifold   s x 0

due to the finite switching frequency of input control and unmodeled dynamics 

such as delay and hysteresis phenomenon, as shown in Fig. 2.2. Under this 

condition the state vector satisfies the following equation: 

   
1/2

Twith  s x s s s        (2.5) 



19 
 

  

Fig. 2.2. Boundary layer of sliding mode equation 

 

This aspect will be examined in Section 2.2 of this thesis. 

2.1.1 Existence Conditions of Sliding Mode 

The occurrence of the sliding mode on a switching manifold needs that the 

existence conditions of sliding mode to be verified in the state space.  

In practical applications the most common systems are linear with respect to 

both the state vector and the control input: 

      (2.6) 

where   nt x  is the state vector,   mt u
 
is the control vector and let that 

each component of  , nt f x  and  , n xmt B x  to be continuous functions 

with bounded derivative with respect to x . 

Each component  ,iu t x  of the control vector is a discontinuous function with 

respect to i-th component of the switching manifold: 

 
   

   

, 0
1,2,...,m

, 0

i i

i

i i

u t for s
u t, i

u t for s





 
 



x x
x

x x
    (2.7) 
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where  is x is i-th component of the  n m  dimensional switching surface 

       1 2

T

ms ,s ,...,s   s x x x x 0 . In particular any surface   0is x is a 

set of points of discontinuity for the respective component  ,iu t x  of the 

control vector.  

The equivalent control method may be used to determine the system motion 

restricted to the switching surface   s x 0 . 

To provide this suppose that the state trajectory reaches the switching surface 

  s x 0 at the time instant 0t  and it remains on the switching surface for all 

subsequent time instants 0t t . In other words a sliding mode exists on the 

switching surface   s x 0  for 0t t . 

Since the existence of a sliding mode on the surface   s x 0  implies 

  0t s x 0  and , the application of the equivalent control 

method yields: 

   , , eqt t
 

      

s s
s x f x B x u 0

x x
     (2.8) 

The expression of equivalent control equ can be derived by (2.8) assuming that 

the product matrix  ,t
 
  

s
B x

x  

is nonsingular for each components of the 

state vector and for all 0t t : 

   
1

, ,eq t t



   
       

s s
u B x f x

x x
       (2.9) 

Then, with constraint   0t s x 0  and by substituting (2.9) into (2.6), the 

dynamics of system (2.6) on the switching surface   s x 0  for all 0t t  will 

be governed by the following sliding mode equation: 

       
1

, , , ,t t t t



   
       

s s
x f x B x B x f x

x x
      (2.10) 

  

The stability of the state trajectory on the sliding surface    s x 0  at least in a 

neighborhood of sliding manifold   | x s x 0  is required in order to derive 
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the existence conditions of sliding mode. In other word at least asymptotically 

convergence of the state vector is required in a neighborhood of sliding 

surface. 

The largest such neighborhood is called the region of attraction of state 

trajectories. From a geometrical viewpoint this means that the velocity state 

vector must point toward the sliding surface in the region of attraction. 

The stability of the projection of state motion of the system (2.6) on the 

switching manifold   s x 0
 

can be analyzed by means of the following 

equation: 

     , ,t t t
 

     

s
s f x B x u

x
      (2.11) 

where the discontinuous control vector is defined as: 

 
   

   

,
,

,

t for
t componentwise

t for





 
 



u x s x 0
u x

u x s x 0
   (2.12) 

The control vector can be expressed as: 

        0, , ,t t t sign u x u x U x s x
     

(2.13) 

where       0

1
, , ,

2
t t t  u x u x u x ,  ,tU x

 
is a diagonal matrix with 

elements       
1

, , ,
2

iU t t t  x u x u x  for 1,...,mi   and the each 

component of discontinuous function  sign s  is a sign function: 

     1 ,...,
T

msign sign s sign s   s
      

(2.14) 

Substituting (2.13) into (2.11) the motion projection on  the switching surface 

is governed by the following equation: 

     
     

     

0, , ,

, ,

, , ,

t t t

t t sign with

t t t

  
       

  
         

s
g x f x B x u

x
s g x G x s

s
G x B x U x

x

 
(2.15) 

As mentioned above the sliding mode existence problem involve a stability 

problem, which can be treated with Lyapunov’s second method [20]. 
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In particular the stability of the state trajectory on a sliding manifold requires 

the existence of a Lyapunov function  ,tV x  that is positive define and it has a 

negative time derivative in the region of attraction. 

The following definition is valid  

Definition 2.1: A domain D  in the manifold   s x 0  is a sliding mode domain 

if for each real
 
e > 0 , there is a real d > 0  such that any motion 

starting within a n-dimensional δ-vicinity of D  may leave the  

n-dimensional ε-vicinity of D  only through the n-dimensional  

ε-vicinity of the boundary of D , as shown in Fig. 2.3. 

 

 

Fig. 2.3. Domain of sliding mode in 2D-dimension 

 

Hence the domain D  lies on the surface   s x 0 . 

Equivalently it could be said that the domain D  is a sliding mode domain for 

the motion governed by (2.15) if the origin of the subspace s  is asymptotically 

stable with finite time convergence for each x D . 

The manifold  s x = 0  is called a sliding manifold if a sliding mode exists for 

all its points, so     | D x x s x 0 . 

The following theorem can be applied: 

Theorem 1:  For the  n m  dimensional domain D  to be the domain of a 

sliding mode, it is sufficient that in some n-dimensional domain
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Ω D , there exists a function  , ,V t x s  continuously 

differentiable with respect to all of its arguments, satisfying the 

following conditions: 

1)  , ,V t x s is positive definite with respect to s ;  

2) the total time derivative of  , ,V t x s  for the system (2.6) 

has a negative supremum  for all x Ω  except for x  on 

the switching surface where the control inputs are 

undefined, and hence the derivative of  , ,V t x s  does not 

exists. 

The sliding mode is globally reachable if the domain of attraction is a subspace 

of the state space (the sliding mode must exists starting from each point of 

domain). 

Considering the next equation: 

        
(2.16) 

if the matrix  ,tG x  is positive definite such that it satisfies the condition: 

   , ,
T

t t >G x G x 0
       

(2.17) 

as results the origin of subspace s  is a asymptotically stable equilibrium point 

with a finite time convergence. 

A Lyapunov function candidate for (2.6) can be defined as: 

   21
, ,

2
V t x s s x

        
(2.18) 

that is globally positive definite. 
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If the switched feedback gains are chosen such that the time derivative of 

 , ,V t x s  is negative in the region of attraction: 

        
(2.19) 

then the state trajectories converge to the sliding manifold and are restricted to 

it for all 
0t t . 

2.2 Chattering phenomenon 

Unmodeled dynamics in the closed loop control are usually neglected in the 

sliding mode control design; this involves finite width and frequency 

oscillations of dynamic behavior of the system during the sliding mode.  

This phenomenon is known as chattering phenomenon and may degrade the 

performance of the system. 

The switching action, that is main element of sliding mode controller, it is not 

classified as chattering because it is intended and its frequency tends on infinity 

in the ideal case; the term “chattering” is valid only for the undesired system 

oscillations with finite frequency caused by unmodeled system imperfections 

as parameters variations of the system and matched noise. 

Accordingly an ideal sliding mode does not exists in the practical applications 

also because it needs that the control input commutes at an infinite frequency. 

The next figure shows the dynamic behavior of the state trajectories in the 

vicinity of the sliding surface in presence of chattering phenomenon: 
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Fig. 2.4. The chattering phenomenon 

The chattering phenomenon can excite unmodeled modes with high frequency 

that may lead the system to instability with high heat losses in power 

electronic components. 

Many procedures have been proposed in literature for reduce or eliminate 

chattering [21]. 

In the following several methods will be discussed in order to avoid the 

chattering phenomenon. 

 

2.2.1 Boundary layer technique 

The simplest of technique for avoid chattering is the boundary layer technique 

that consists of replacing the signum function by a suitable saturation function 

in the control loop. 

The saturation function is a continuous function that approximates the  sign s

term in a boundary layer of sliding surface   0s t  . An ordinary saturation 

function  sat s is depicted in the next figure: 
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Fig. 2.5. Saturation function sat(s) 

where      s x sat s sign s   . Note that the saturation function  sat s  

is a continuous function in a small ε-vicinity of sliding surface with respect to 

the signum function  sign s . Thus the control law becomes as follows: 

 
    

   

for

for

K sign s t s t

u t K
s t s t






  


 


     

(2.20) 

where K  is a high gain. 

For simplicity of treatment, consider the model of a first-order single-input 

single-output system: 

       ,x t ax t bu t d x t  
      

(2.21) 

where a a a   and 0 b b b    are known parameters within known 

bounds,  ,d x t is a bounded disturbance for all operating conditions 

   , ,x t d x t d   . Let us known the desired state value refx and define the 

sliding function as: 

     refs t x t x t          (2.22) 

A Lyapunov function candidate for the stability analysis of the considered 

system can be chosen as: 
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 21

2
V s t

b
          (2.23) 

The differentiation of (2.23) along the system trajectory (2.21) in the case of 

 s t   yields: 

           , ,refV t s t s t f x x t s t K s t       (2.24) 

where the function: 

 
   ,

, ,
ref

ref

x ax t d x t
f x x t

b

 
       (2.25) 

is upper bound under assumption that    refx t x t  as follows: 

 , ,
ref ref

ref

x ax d
f x x t f

b

  





 
       (2.26) 

A suitable choice of the saturation gain 
2

K f
b




   with scalar 0   and 

the substitution of control law (2.20) into (2.24) lead to: 

 
21/2 1

with
2

V t V V s         (2.27) 

which guarantees a finite time convergence to sliding surface   0s x  . 

Generally the substitution of entire control law (2.20) into (2.24) gives: 

 
 

     

1/2 for

for

V s t

V t K
s t f s t s t

 






  


   
   

 

    (2.28) 

which in terms of stability analysis proves the convergence of the state 

trajectory to the boundary layer of sliding surface. 
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Furthermore it can be noted that the system is continuous and linear in the 

boundary layer due to the introduction of the saturation function  sat s ; 

therefore the linear control theory can be used in order to analyze thoroughly 

the system stability. Although this technique reduces the chattering, it may 

compromise the robustness property the system after sliding mode occurring. 

2.2.2 Observer-based technique 

With the use the observer-based technique the chattering is avoided by 

introducing an auxiliary observer in the control loop. The state is estimated by 

means of an auxiliary observer and it is compared to its desired value; so a 

ideal sliding mode can be occurred on the observed sliding surface ˆ( ) 0s t   

since the auxiliary observer loop is free from unmodeled dynamics. After the 

sliding mode occurred in the auxiliary observer loop, the state trajectory  x t  

follows the observed one  x̂ t  according to observe error dynamics. The 

chattering is reduced despite the system has a discontinuous control input  u t . 

A first-order observer for system (2.21) is defined as follows in order to study 

the auxiliary observer loop stability: 

     x̂ ax t bu t Lx t          (2.29) 

where L  is a linear gain of observer,      ˆx t x t x t   is the error of 

observation and let us that the system parameters a  andb  to be known. 

The dynamic equation of observer loop is defined as: 

   ,x d x t Lx t          (2.30) 

If the disturbance is bounded  ,d x t d   then the observation error is 

bounded too: 

 
d

x t
L



          (2.31) 
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Defining the observer sliding surface as: 

     ˆ ˆ
refs t x t x t          (2.32) 

A Lyapunov’s function candidate for stability of auxiliary observer loop can be 

chosen similar to case of boundary layer technique: 

   21ˆ ˆ
2

V t s t         (2.33) 

The differentiation of (2.33) along the system trajectory (2.21) yields: 

        

 

1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2

ˆ ˆ( ) ( )

ref

ref ref

V t s t s t x t ax t Lx t s t K s t
b

x a x d s t K s t   

    

   

   (2.34) 

under the assumption that    refx t x t  and with the following control law: 

   ˆ( )u t Ksign s t         (2.35) 

The satisfaction of the condition 
2

K f
b




   leads to: 

 
21/2 1

with
2

V t V V s  
      

(2.36) 

So an ideal sliding mode occurs on the observer sliding surface (  ˆ 0s t   is 

exactly satisfied) with a finite time convergence to its. Thus the actual state 

 x t  follows the observed one without exhibiting any chattering. 

The observer-based technique guarantees more flexibility to control design 

with respect to other techniques to avoid chattering due to the presence of the 

auxiliary observer; in fact the auxiliary observer may be used to estimate the 

external disturbances in order to increase the tracking performance of the 

whole system. 
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2.2.3 Disturbance rejection technique  

The disturbance rejection technique is able to avoid chattering by means of an 

accurate estimation of the disturbance that may be matched with original 

system. 

This technique consists of dividing the control action in two terms: 

     1 2u t u t u t 
        

(2.37) 

where the continuous component  1u t  is the proper control action used to 

control the behavior of the whole system and  2u t  is the discontinuous 

component used to reject disturbances and to remove parametric uncertainties. 

Considering that the parameter b  is known but the parameter a  is entirely 

unknown for the system (2.21) with a unknown matched disturbance  ,d x t , 

the continuous component is designed such that the tracking error 

     e refx t x t x t   to be equal to zero as follows: 

 
    

1

e refM x t x t
u t

b




       
(2.38) 

where 0M   is a proportional feedback gain. 

The substitution of (2.38) into (2.21) according to the disturbance rejection 

term  2u t  set to zero in (2.37) (      2 10u t u t u t   ) yields: 

             1 , ,e ex t ax t bu t d x t x t K x t f x t          (2.39) 

where      , ,f x t ax t d x t    is the disturbance function. 

The stable error dynamic is governed by equation (2.39) and the tracking error 

 ex t  does not go to zero at regime due to disturbance presence  , 0f x t  . 

Therefore the discontinuous component  2u t  of control input is designed to 
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estimate the matched disturbance in order to decrease the influence of 

disturbance function  ,f x t  on the tracking performance of the state 

trajectory. 

Defining a sliding surface as: 

     es t x t z t 
        

(2.40) 

where  z t  is an auxiliary sliding variable such that    refz t x t  , the 

disturbance rejection term  2u t  can be calculated by using equivalent control 

method as follows: 

           

      

2

2

,

1
,

es t x t z t ax t bu t d x t

u t ax t d x t
b

     

        
(2.41) 

the following dynamic equation of the tracking error can be obtained by 

replacing the entire control law (2.37) into (2.21): 

    0e ex t K x t  
        

(2.42) 

where (2.38) and (2.41) were used to reduce the previous expression. the above 

equation (2.42) assures the asymptotically convergence of actual state  x t  to 

desired one  refx t  due to the rejection of disturbance  ,f x t  that contains 

also uncertainty of the system parameter a . 

In conclusion the actual state  x t  tracks the reference one  refx t  exactly 

despite the presence of unknown system parameter variations and external 

disturbance matched also simultaneously.   
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2.3 Discrete-time Sliding Mode Control 

A discussion about Discrete-Time Sliding Mode Control is necessary since 

many practical applications has represented by discrete-time mathematical 

models as those characterized by implementation of microprocessors or delay 

systems. 

In the case of continuous-time sliding mode control a suitable discontinuous 

control input is required such that the state trajectory reaches the sliding 

surface and lies at least in a neighborhood of it for all subsequent time instant, 

according to that already discussed in the previous sections. 

An ideal sliding mode occurs only with use of high switching frequency of 

control input and in this case the state trajectory lies exactly along the sliding 

surface. However, in practice the implementation of such high switching 

frequency of feedback control action is not possible because it involves high 

switching frequency of the power electronic components of the considered 

system. As results a limitation of operating voltage of the system is inevitable. 

For this reason a discretization of sliding mode control is needs, for example by 

means of microprocessors. In fact if the same discontinuous control law of 

continuous-time systems would be used also for the discrete-time systems, a 

different chattering respect to the chattering phenomenon discussed in the 

previous sections may occur. This other kind of chattering is called 

“discretization chattering” and it is due to the fact that the switching frequency 

of the discrete-time systems is finite and upper limited by the sampling 

frequency of the system so the occurring of a sliding mode is not guaranteed. 

Moreover the state trajectory could not reach the sliding surface because the 

control input is calculated only in correspondence of each sampling time and 

remains constant during the sampling period. 

Increasing the sampling frequency the amplitude of the discretization 

chattering decreases but its frequency increases; only in the case that the 

sampling period tends to zero 0T   the discretization chattering is avoided. 
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However the sampling frequency should be equal to the highest dynamic of the 

system in order to avoid an undesirable computational burden. 

For these reasons for the control of discrete-time systems a discrete-time 

sliding mode control design is indispensable in contrast to the application of a 

continuous-time sliding mode control with a corresponding high switching 

frequency of control input. 

 

2.3.1 Discrete-time sliding mode control design  

To design a discrete-time sliding mode control the following continuous-time 

model of a linear time-invariant system is considered: 

     t t t x Ax Bu        (2.43) 

where   nt x  is the state vector,   mt u  is the control input, A  and B  

are known parameters matrices of the system. 

The corresponding discrete-time representation of the model (2.44) with a 

sampling period T  is defined as: 

1k d k d k  x A x B u         (2.44) 

where T

d e  A
A  and  

0

T T

d e d



  

 
A

B B  are discrete-time parameters 

matrices of the system. 

According to sliding mode control for continuous-time systems, the control law 

can be defined as discrete-time discontinuous function as follows: 

 

 

0

0

for 

for 

k

k

k

 
 

 

u s x 0
u

u s x 0
       (2.45) 

where  k s x 0  is a sliding mode manifold. Since the control input ku  can be 

switched only at each sampling point k t T   and it is constant during the 
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next sampling interval T , the sliding manifold is reached at each sampling 

point but the state trajectory may not belong the sliding surface during the 

sampling period. Therefore, in the case of discrete-time systems the 

implementation of control law (2.43) produces discretization chatter in the 

motion trajectory once the sliding manifold is reached for the first time. For 

this reason the design of a suitable continuous control input is required in order 

to generate a discrete-time sliding mode control such that it is characterized by 

a chatter-free motion after reaching the sliding manifold.  

The following definition is valid for any discrete-time systems [22]: 

Definition 2.2: In the a discrete-time dynamic system: 

  1 , , ,n m

k k k m n    x F x u x u    (2.46) 

 a discrete-time sliding mode takes place on the a subset   of 

the manifold   : σ x s x 0 , 
ms , if there exists an open 

neighborhood   of this subset such that for each x  it 

follows that   1k s F x . 

The following choice of the sliding surface: 

k k s C x          (2.47) 

yields: 

 1 1k k d k d k     s C x C A x B u       (2.48) 

According to definition 2.2 a discrete-time sliding mode exists on manifold 

(2.47) if the matrix  dCB  is nonsingular and the control input can be 

calculated by equating (2.48) to zero: 

   
1

1 ,k k eq d d k



    s 0 u CB CA x      (2.49) 

This control variable ,k equ  is called the equivalent control in analogy to 

continuous-time systems. 
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Let us represent the equivalent control as the sum of two linear functions: 

     
1 1

,k eq d k d d k

 
   u CB s CB CA C x     (2.50) 

For the initial condition k s 0 , the equivalent control may exceed the 

available control resources when 0T   in order to reaching the sliding 

manifold. Therefore suppose that the control is bounded 
, 0k eq u u  and the 

available control resources are such that: 

   
1

0d d k


  CB CA C x u       (2.51) 

Then the control input ku  can be defined as follows: 

, , 0

,

0 , 0

,

for 

for 

k eq k eq

k k eq

k eq

k eq

 


 




u u u

u u
u u u

u

      (2.52) 

In the case that is 
, 0 ,k eq k k eq  u u u u  the state vector converges 

asymptotically to the sliding manifold as it is well known by equivalent control 

theory. 

For 
,

, 0 0

,

k eq

k eq k

k eq

  
u

u u u u
u

, the equation (2.48) can be reformulated as 

follows: 

 1k k d k d k    s s CA C x CB u       (2.53) 

and the assumption 
,

0

,

k eq

k

k eq


u

u u
u

 leads to: 

   0
1 0 ,

,

1 withk k d k k eq

k eq



 
      
 
 

u
s s CA C x u u

u
  (2.54) 
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Thus: 

  0
1

,

1k k d k

k eq



 
     
 
 

u
s s CA C x

u
     (2.55) 

The substitution of the absolute value of (2.50) into (2.55) yields: 

   

   

 

1

,

1

0

1 1

k eq d k d k

d k d k

k

d





 

     

    
 

u CB s CA C x

CB s CA C x u
s

CB

    (2.56) 

Thus: 

 
 

0
1 1k k d k

d

 
   

u
s s CA C x

CB
     (2.57) 

The condition (2.51) can be applied for (2.57): 

 
 0

11 d k k k

d


   

u
CA C x s s

CB
    (2.58) 

The inequality (2.58) proves the convergence to the sliding manifold of 

behavior of the system (2.44). 

in the practical applications may be possible that the system parameter A  is 

unknown. In this case a suitable control law can be defined similar to (2.52): 

   

 

 
 

1 1

0

1

1

0 01

for 

for 

d k d k

k d k

d k

d k

 







 



 
 



CB s CB s u

u CB s
u CB s u

CB s

    (2.59) 

Note that this control law complies with the bounds on the control resources. 

Substitution of (2.59) into (2.48) yields: 
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 
   

10
1 01

1 withk k d k d k

d k



 

 
     
 
 
 

u
s s CA C x u CB s

CB s
 (2.60) 

Similar to (2.57) gives: 

 
 

 
 

0
1 1

0

1

1k k d k

d k

k d k

d

 



 
    
 
 
 

   

u
s s CA C x

CB s

u
s CA C x

CB

    (2.61) 

and according to (2.51): 

1k k s s          (2.62) 

Therefore 
ks  decreases monotonically and, after a finite number of steps, 

control will be within the available resources 0k u u  as for the case with 

complete knowledge of system parameters. 

In conclusion for a discrete-time system the discrete-time sliding mode control 

guarantees the avoid of the discretization chattering at least in a neighborhood 

of the sliding manifold in contrast to case that a continuous-time sliding mode 

control is implemented for the considered discrete-time system. 
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2.4 Continuous-time Integral Sliding Mode Control 

In the case of classical sliding mode control for continuous systems the 

robustness property with respect to external disturbances and variation of 

system parameters is guaranteed only after occurring the sliding mode on the 

sliding surface   s x 0  in contrast it is not guaranteed during the reaching 

phase. In fact the mean idea of sliding mode control for variable structure 

system is to force the state trajectory so that it lies on the sliding manifold in 

the state space, which is an intersection of a set of hyper-surfaces. 

The control input commutes only after that sliding surface is reached by the 

state trajectory in order to confine the state trajectory at least in a neighborhood 

of the sliding manifold; only from this time instant onwards the behavior of the 

controlled system is governed by a motion equation with order  n m  lower 

compared to that of the original system. Moreover only starting from this time 

instant the dynamic response of the system is invariant with respect to 

variations of system parameters and external disturbances. During the reaching 

phase the robustness property of the control may be improved by using high-

gain in the feedback control loop but this can compromise the stability of the 

whole system. 

Integral Sliding Mode Control is an alternative control strategy to overcome 

the drawbacks of classical sliding mode control. In this case the robustness 

property of the control is guaranteed starting from the initial time instant and 

sliding mode occurs without a reaching phase. When the system is in an 

integral sliding mode on a manifold, the state trajectory is governed by a 

motion equation that has the same order than the original uncontrolled system 

(the order of motion equation is n ). 

In the following the definition of integral sliding mode is given [23]: 
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Definition 2.2: An sliding mode is said to be an integral sliding mode if the    

  order of its equation motion is the same of the order of system. 

Therefore with the implementation of integral sliding mode control the 

invariance property of the system with respect to variations of system 

parameters and external disturbances is achieved for the entire response of the 

system.  

Furthermore integral sliding mode control is able to avoid the chattering 

phenomenon due to unmodeled dynamics that may be excited by the 

discontinuity of the control input.  

 

2.4.1 Continuous-time Integral Sliding Mode Control design  

The following state-space equation can be considered for a continuous-time 

dynamic system: 

     ,t  x f x B x u h x        (2.63) 

where nx  is the state vector, 
mu  is the control vector,  , th x  is a 

perturbation terms due to variations of system parameters and external 

disturbances and it is such that the following matching conditions are fulfilled: 

   

   

, with

, , 1,2,...,

m

h

i i

t

h t h t i m

  


  

h x B x u h

x x
      (2.64) 

in other words all components of the vector control influences the perturbation 

term  , th x  by means of matrix  B x  and each component  ,ih tx  of the 

perturbation term is upper bound by a known positive scalar function  ,ih t
x . 

Let us that the state trajectory  tx  follows its reference  * tx  when a 

feedback control law  * tu  is applied and that under this control law the 

motion of state trajectory is invariant with respect to perturbation term: 
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     * * * *t  x f x B x u        (2.65) 

The objective of the integral sliding mode control is to design a suitable control 

law  tu  such that the state trajectory of the system (2.63) follows it reference 

starting from initial condition    *0 0x x  similar to case of application of 

 * tu .  

The control law can be rewritten as sum of two terms: 

  *

1t  u u u         (2.66) 

where the ideal control 
* mu  is defined by (2.65) and 1

mu  is designed 

in order to reject the perturbation term  , th x . A sliding surface can be 

defined as sum of two terms in the same manner of the control law: 

 * s s x z          (2.67) 

where  *
s x  is a linear combination of the state vector and it is designed by 

using conventional sliding mode theory; z  is an integral term and it is 

designed in order to achieve the integral sliding mode on the sliding manifold 

s . 

the substitution of (2.66) into (2.63) yields: 

       *

1 ,t   x f x B x u B x u h x      (2.68) 

The equivalent control 1,equ  of 1u  must satisfies the following equation in order 

to achieve    *t tx x : 

   1, ,eq t B x u h x         (2.69) 

or in terms of (2.64): 
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1, with m

eq h u u h        (2.70) 

The integral term of the sliding surface (2.67) is designed in order to satisfy 

(2.70); for this reason the time derivative of sliding surface can be set to zero 

according to equivalent control theory: 

          
*

* *

1,eq h


       



s
s s x z f x B x u B x u B x u z 0

x
  (2.71) 

where z  is defined in order to guarantee (2.70) as follows: 

        

    

*
*

1,

1,

*
*

eq h

eq h


    


  


   



s
f x B x u B x u B x u z 0

x

u u

s
z f x B x u

x

   (2.72) 

with the initial condition     *0 0 z s x  derived by  0 s 0 . 

So the sliding mode occurs starting from initial time instant. 

The motion equation of the system is equal to: 

      *t  x f x B x u        (2.73) 

because choosing z  according to (2.72), the equation (2.70) is satisfied. Note 

that the motion equation (2.73) is the same of ideal case one (2.65) and its 

order is the same of the uncontrolled system (2.63). Therefore according to 

definition (2.2) an integral sliding mode is achieved on the sliding surface 

  s x 0  with well-known advantages. 
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2.5 Discrete-time Integral Sliding Mode Control 

The advantages of integral sliding mode implementation for continuous-time 

dynamic systems with respect to a classical sliding mode control have been 

exposed in the previous Section 2.4. 

In the present section the concept of integral sliding mode control will be 

extended to discrete-time systems in according to considerations of the 

discrete-time sliding mode control discussed in Section 2.3.   

 

2.5.1 Discrete-time Integral Sliding Mode Control design  

For a continuous-time linear dynamic system a corresponding continuous-time 

dynamic model may be defined as follows: 

       t t t   t  x Ax Bu D       (2.74) 

where nx  is the state vector, 
mu  is the control input, A  and B  are 

system parameters matrices,    t t D C r  is reference input matrix. 

The discrete-time model corresponding to (2.74) is given by:  

 1k d k d k d d s d s d sT ; T ;   T         x A x B u D A I A B B D D  (2.75) 

where the discrete-time matrices are expressed by using Euler’s approximation  

and  k skTx x ,  k skTu u are the sampled vector with sampling period sT  

corresponding to continuous-time vectors in (2.74). 

The design of sliding manifold   should be such that the state trajectory 

follows its reference with desired dynamic features. The sliding manifold is 

generally defined as intersection of m  switching surfaces 

  k ,i k i k| s x s x 0  being is  the i-th row of the sliding surface vector k s 0 . 
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The switching function ks  should be designed so that the motion of the 

dynamic system (2.75) is stable when confined at least in a neighborhood of 

the sliding manifold   | 0k k k   x s s x . Furthermore a suitable control 

law design is necessary to force the state trajectories on the sliding manifold   

(reaching condition) keeping them belong the sliding manifold for all 

subsequent time instants (convergence condition). 

According to it has been discussed in the Section 2.3. for the classical discrete-

time sliding mode control implementation the switching function ks  is define 

as follows: 

k ks Kx          (2.76) 

where K  is a m xm matrix. 

The introduction of an integral term into (2.76) is necessary to achieve an 

integral sliding mode: 

k k s Kx z          (2.77) 

where the integral term is defined as follows: 

1

0

k

s n
n

T




 z H x         (2.78) 

The substitution of (2.78) into (2.77) leads to: 

1

0

k

k k s n
n

T




  s Kx H x        (2.79) 

where K  and H  are m xm  matrices chosen according to desired dynamic 

behavior of the controlled system. The introduction of the integral term in the 

switching function (2.79) guarantees robustness property of the control against 

uncertainties of the system parameters starting from initial time instant because 

a sliding mode occurs without reaching phase similar to case of the continuous-

time integral sliding mode control discussed in the Section 2.4. 
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It is necessary to satisfy the following condition in order to achieve a sliding 

mode: 

1 0 with 0 1 2 3k k , , , ,...  s       (2.80) 

From equation (2.79) follows that: 

 1 1 1
0

k

k k s n k k k s k
n

T T  


    s Kx + H x s K x x H x    (2.81) 

which according to (2.80) leads to: 

 1

1k s kT

  x I K H x        (2.82) 

Since motion equation (2.82) has the same order of the original system (2.75) 

an integral sliding mode occurs on the sliding manifold   according to 

definition 2.2. 

When the integral sliding mode occurs on the sliding manifold  , the behavior 

of the system (2.75) is governed by equation (2.82) it is invariant with respect 

to variations of the system parameters depending only by switching matrices 

K  and H  as it can be noted by (2.82). 

As it has been discussed in the Section 2.3 for continuous-time integral sliding 

mode control, the control law can be redefined as sum of two terms: 

k eq,k s ,k u u u         (2.83) 

where the continuous term eq ,ku  is designed by using equivalent control 

method and the discontinuous term s ,ku  is designed in order to guarantee the 

invariance of system against parametric uncertainties and external 

perturbations. 

Therefore the first term of (2.83) is designed as solution of (2.81) with 

substitution of (2.75) into (2.81): 
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   
1

eq,k d d s k d kT  


       u KB KA H K x KD s    (2.84) 

where K  is chosen such that  dKB  is a nonsingular matrix. The continuous 

control eq ,ku  is called discrete-time equivalent control according to the 

equivalent control method applied for the continuous- time systems. 

The second term of (2.83) is designed as switching function of ks  in order to 

improve the robustness property of control starting from the initial time instant 

and to reduce the reaching time: 

   
1

s ,k d ksign  


    u KB E s       (2.85) 

where E  is a positive constant matrix. 

Since in an integral sliding mode control there is not reaching phase the state 

vector starting from the initial point 0x  of the state space reaches theoretically 

in one sampling period the sliding manifold under the control vector eq ,ku . 

However the control input must respects the bounds of the available control 

resources in order to prevent that is exceed them. For this reason the following 

condition must be imposed: 

   

0

1

0

k

d s k d

u

T u


 



      

u

KB KA + H K x KD
    (2.86) 

where 0u  is the effective limits of available control resources. Therefore the 

control law is redesigned as follows: 

0

0 0

for

for

eq ,k s ,k eq ,k s ,k

k k
eq ,k s ,k

k

u

 
u u

   


 
 



u u u u

u u
u u

u

     (2.87) 

being  
1 2/

T

k k ku u u . 
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The satisfaction of sliding manifold reaching condition and convergence 

condition is equivalent to guarantee the overall stability of the integral sliding 

mode control. The following condition is obtained by means of simple 

equivalence with Lyapunov Theory for continuous-time system: 

 1 0k k k  s s s         (2.88) 

where the time derivative of ks  is substituted by a forward difference. However 

the inequality (2.88) is necessary but not sufficient condition for the existence 

of a discrete-time sliding mode in contrast to the case of continuous-time 

systems [24]. In fact the only satisfaction of (2.88) not assures the convergence 

of the state trajectories on the sliding manifold and it may leads the system to 

instability exciting the chattering phenomenon in state motion. 

The following condition is imposed in order to assure the stability of the whole 

control: 

1k k s s          (2.89) 

The proposed control law (2.87) satisfies (2.89) in the case 
0k uu  as 

discussed in the case of continuous-time integral sliding mode control. 

Therefore is necessary to prove the condition (2.88) in the case that 0k uu . 

The substitution of (2.84) and (2.85) into (2.81) yields: 

 
 0 0

1 1
d s k

k k

k kd k

T u u
  sign

    
        

KA H K x
s E s

u uKD s
   (2.90) 

Thus: 

 
 

0
1 1k k d s k d k

u
T 

       s s KA + H K x KD s
KB

  (2.91) 

by using (2.86). Hence similar to continuous-time integral sliding mode control 

discussed in Section 2.4, the value of ks  decreases monotonically and after a 
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finite number of sampling periods the control will be within the available 

control resources 
0k uu . Therefore the entire control law (2.87) satisfies the 

inequality (2.89) and guarantees a finite time convergence of the state vector to 

the sliding manifold and the state vector will be confined at least in a 

neighborhood of the sliding manifold for all subsequent time instants.  

The constant matrices K  and H  of switching function (2.79) have rank m  

and these are chosen in order to achieve a desired dynamic behavior of the state 

trajectories in vicinity of the sliding manifold. If m

k s  and n

k x  the 

matrices K  and H  may be defined taking into account the following 

conditions [25]: 

for K :   

k.1)  dKB  is a nonsingular matrix;  

k.2) the  
1

d d d d

 
 
A B KB KA  has m  zero poles and n m  

poles inside the unit disk in the complex z-plane; 

 

for H : 

h.1)  d dI   H K A B G  where G  is a matrix defined such 

that the poles of the d dA B G  matrix are distinct and 

within the unite circle around the origin of the complex          

z-plane. 

 

2.5.2 Discrete-time Integral Sliding Mode Control with Disturbances  

Compensation and Reduced Chattering  

In the following a discrete-time integral sliding mode control is designed in 

order to compensate the external disturbances and to reduce chattering 

phenomenon. Introducing into (2.74) a vector z  for tacking in account 

unmodeled dynamics and external disturbances, the model of system becomes:  

           witht t t t   t   t    x Ax Bu f f D z      (2.92) 
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where  tz  is a perturbation term representing matched disturbances. 

The discrete-time representation of the system (2.92) with a sampling period 

sT  is given by; 

 
  

01

0

1

s

s

s

T

T

d d

k d k d k k

T

k s

e ; e d ;

  e k T d







 



 
  

    
 
    
 





A A

A

A B B
x A x B u d

d f   (2.93) 

where  k skTx x  and  k skTu u  are the sampled vectors of the 

corresponding quantities in (2.92). 

As it is well-known the first objective of the sliding mode control is  to design 

a sliding manifold   k k k:  Σ x s s x 0 such that the state trajectories of 

the system have a desired dynamic behavior at least in a neighborhood of the 

sliding manifold, which is an intersection of m  switching planes ,k is  ( m is the 

dimension of the vector control m

k u ), where   k ,i k i k: s x s x 0 , being 

is  the i-th row of the matrix ks . Thus the problem is to design a switching 

function ks  so that the motion of the dynamic system is stable when iy is 

confined at least in a neighborhood of  . 

An integral term is introduced in the switching function in order to overcome 

the main drawbacks of the classical discrete-time sliding mode control as it is 

discussed in the previous section: 

1

0

k

k k s n
n

T




  s Kx H x         (2.94) 

The occurring of a sliding mode on the sliding manifold   implies that: 

1 0 with 0 1 2 3k k , , , ,...  s       (2.95) 

and substituting (2.94) into (2.95): 
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 1 1 1
0

k

k k s n k k k s k
n

T T  


    s Kx + H x s K x x H x    (2.96) 

The motion equation of the state trajectories when the system is in the sliding 

mode is defined as follows: 

 1

1k s kT

  x I K H x        (2.97) 

The control vector can be formulated similar to one of previous section: 

k eq,k s ,k u u u         (2.98) 

where the discrete-time equivalent control eq ,ku  is obtained by substituting 

(2.93) into (2.96) with the discontinuous control term s ,ku set to zero: 

   
1

eq,k d d s k k k
ˆT  


       u KB KA H K x Kd s    (2.99) 

The continuous term eq ,ku  of the vector control is the proper control since 

under it the state vector starting from an initial point reaches the sliding 

manifold in finite time and remains along the sliding manifold or at least in a 

neighborhood of it for all subsequent time instants; in addition the chattering 

phenomenon does not occur because eq ,ku
 
is a continuous function. 

The discontinuous term s ,ku
 
of the control vector is designed such that a 

reduced reaching time is achieved in order to improve the robustness property 

of the whole sliding mode control: 

   
1

s ,k d ksign  


    u KB E s                                      (2.100) 

where E  is a positive constant matrix. 

Moreover, the following conditions must be satisfied in order to respects the 

bounds 0u  of the available control resources since in integral sliding mode 

there is not a reaching phase and the control input may exceed the available 
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control resources tending to infinity if the initial state is far from the sliding 

manifold   or if the sampling period sT  is very small as it has been discussed 

in the previous sub-section 2.5.1.: 

   

0

1

0

k

d s k k

u

ˆT u


 



      

u

KB KA + H K x Kd
             (2.101) 

As a result of these issues the control law is reformulated as follows: 

0

0 0

for

for

eq ,k s ,k eq ,k s ,k

k k
eq ,k s ,k

k

u

 
u u

   


 
 



u u u u

u u
u u

u

              (2.102) 

being  
1 2/

T

k k ku u u  control law guarantees the global stability of the sliding 

mode control as proved in sub-section 2.5.1. Note that the implementation of 

control law (2.102) would requires  the a priori knowledge of the disturbance 

term kd ; for this reason kd  may be estimated by its value corresponding to 

previous sampling point 1kd  with some continuity assumption on the 

disturbances [8] 

1 1 1k k k d k d k
ˆ

     d d x A x B u                (2.103) 

thus, the discrete-time equivalent control (2.99) becomes: 

 
 

 

1

1 1

d s k k

eq,k d

d k d k

T
 



 

   
   

   

KA H x s
u KB

K A x B u
              (2.104) 

The choice of matrices K  and H  can be carried out as it has been discussed 

into sub-section 2.5.1. in order to assure a desired convergence of the state 

vector to the sliding manifold. 

By the application of (2.103) a reduced chattering phenomenon is achieved in 

the sliding motion of the state trajectories at least in a neighborhood of the 

sliding manifold  . 



51 
 

When the system is in sliding mode on the sliding manifold equation (2.95) is 

verified for all time instants such that st kT  with 1,2,...k  . 

Consider the amplitude of the boundary layer of the sliding motion in the inter-

sampling instant st kT    with 0 sT   in order to evaluate the maximum 

deviation of the state by the sliding manifold. 

Considering the continuous-time system (2.92) and the corresponding 

continuous-time representation of the sliding function (2.94), the time 

derivative of the sliding surface equation 0s  is defined as: 

  t       s Kx Hx K Ax f Hx KBu               (2.105) 

Calculating the value of (2.93) for the inter-sample instant st kT    and 

integrating both sides of (2.93) from sT  to st kT   : 

    
s

s

kT

s k

kT

kT t dt





       s s K Ax f Hx KBu             (2.106) 

where  k skTs s . Since in discrete-.time integral sliding mode control the 

control law is a piecewise constant function,   kt u u  during the sampling 

period, the (2.106) becomes: 

    
s

s

kT

s k k

kT

kT t dt


 


       s s K Ax f Hx KBu             (2.107) 

In sliding mode 1 0k k  s s  and the substitution of (2.99) into (2.107) yields: 

    

  
 1

s

s

kT

s

kT

d s k

d

k

kT t dt

T
 

ˆ











      

   
  

  

s K Ax f Hx

KA H K x
KB KB

Kd

              (2.108) 
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Since the state vector x  and the perturbation term  tf  are smooth and 

bounded, the integration term of (2.108) can be approximated by using Euler’s 

method as follows: 

  

        2

s

s

kT

kT

s s s

t   dt

kT   kT     kT   O



 



    

     

 K Ax f Hx

K Ax f Hx

             (2.109) 

Similarly, dA , kd  and dB  can be approximated by using Euler’s method and 

Taylor’s  series expansion truncated to the first term: 

   

        

2 2

2 21

d s s d s s

k s s s s s s

T O T ; T O T ;

 T k T t O T T kT O T

    

     

A I A B B

d f f
             (2.110) 

The substitution  of (2.110) into second side of (2.108) yields: 

    

   

1

2

d d s k k

k k s s

ˆT  

kT   O T


     

     

KB KB KA H K x Kd

KAx Hx Kf
             (2.111) 

With the introduction of two auxiliary variables defined as follows: 

         1

s

s

kT

s s s

kT

q t   dt kT   kT     kT  





            K Ax f Hx K Ax f Hx   (2.112) 

    

 

1

2 d d s k k

k k s

ˆq T  

kT  


      

    

KB KB KA H K x Kd

KAx Hx Kf
             (2.113) 

equation (2.108) becomes: 

   2

1 2s skT q q O T    s                (2.114) 

The last inequality proved that the maximum deviation of the state trajectory 

by the sliding manifold is equal to  2

sO T , which is lower than what can be 

achieved by means of a classical discrete-time sliding mode control, that 

instead has thickness  sO T  [26]. 



53 
 

2.6 Higher-Order Sliding Mode Control 

As discussed in previous sections  the sliding mode control is able to guarantee 

high performance in the tracking of the reference values with respect to 

variations of the system parameters and external disturbances; in contrast it is 

characterized by chattering phenomenon due to un modeled dynamics which 

are neglected in the control design. 

The chattering phenomenon can be avoided by using high-order sliding mode 

control (HOSMC), that involves the high-order time-derivatives of the 

switching function in contrast to the classical sliding mode control that 

involves only the first time-derivative of the switching function. So the 

chattering phenomenon can be avoided and at same time the robustness 

property of the classical sliding mode control are kept. 

Considering the following sliding surface: 

0s                     (2.115) 

the r-th order sliding mode is defined as follows: 

 1
... 0

r
s s s s


                     (2.116) 

In other words, the order of the sliding mode corresponds to the number of the 

time-derivatives of the switching function s  set to zero (including the zero-

order) in a small vicinity of the sliding manifold. 

As can be noted by (2.116) the r-th order sliding mode involves an r-

dimensional condition on the system state.  

However the HOSMC assures typically an asymptotically convergence of the 

state trajectories to the sliding manifold in contrast to the classical sliding mode 

control that assure a finite time convergence being a first order sliding mode ( s  

is discontinuous function). Moreover only in the case of finite time 

convergence, the maximum r-th order of accuracy with respect to  the sampling 

period is achieved by using HOSMC. 

The main drawbacks of HOSMC implementation consist of it needs 

 1
...

r
s s s s


     to be available and only in the case of Super-Twisting 2-

sliding mode control the only knowledge of s  is sufficient. 

In the following sections the second-order sliding mode control (or called as 

“2-sliding mode control”) will be discussed. 
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2.6.1 2-Sliding Mode Control 

A general continuous-time system can be defined as: 

 , ,tx f x u                   (2.117) 

where nx is the state vector,  , mt u u x  is the control input and 

 , ,tf x u  a smooth function. Let us consider a discontinuous control law: 

 
 

 

0

0

for 
,

for 
t

 
 

 

u s x 0
u x

u s x 0
               (2.118) 

where  ,t s x 0  is the sliding manifold. 

Two different cases may arise considering time-derivatives of  ,ts x  [27]: 

1) 1r   s 0  

2)  
2

i
r   s 0  for 1,2,..., 1i r   and 

 r
s 0             (2.119) 

where r  is the relative order of the system. Moreover  a 2-sliding mode control 

can be implemented in order to avoid chattering phenomenon; in this case the 

considered control variable is u  (the first time-derivative of control input) that 

is calculated by keeping s 0  in the 2-sliding mode control such that the 

control input u  of the plant to be a continuous function and chattering is 

avoided. 

Assuming that function  , ,tf x u  into (2.117) to be a 
1C  function and s  to be a 

2C  function and that available current information corresponding only to the 

current values of t ,  tu  and  ,ts x ; thus the second derivative of the sliding 

variable s  is defined as follows: 

   
 

 
 

       

, ,
, ,

, ,
, , , , , ,

t t
t

t

t
t t t t t

t

 
 

 

  
  

  

s x s x
s f x u

x

s x u
s s x u f x u s x u u

x u

            (2.120) 
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Let the second order derivative of the switching variable s  to be uniformly 

bounded in a boundary domain. Therefore the equivalent control theory can be 

used in order to compute the equivalent control  ,eq tu x  such that the equality 

0s  is satisfied. Moreover, if the uncontrolled system is represented by a 

second-order equations system the control input u  can be considered as state 

variable and u  becomes the control variable. 

2.6.1.1 Twisting Algorithm 

With the introduction of two auxiliary variables defined as: 

1

2

y

y






s

s
                  (2.121) 

the second-order sliding mode control has the following associated second-

order system: 

   
1 2

2

with , 0

, , 0 m M

y y

y t t



  

    


       x x u
            (2.122) 

 

where  ,t x  and  ,t x  are uncertain functions such that the control law to 

be [10]: 

   

 

1 1 2

1 1 2

1

0, 1

0, 1

m

M

if

t V sign y if y y

V sign y if y y

 


    

   

u u

u u

u

             (2.123) 

To achieve the finite time convergence to the sliding manifold the following 

conditions are sufficient: 
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0

4

M m

M
m

m

m

m M M m

V V

V
s

V

V V





 



 
 

    

                (2.124) 

In this case the state trajectories converge to the origin of the 2-sliding plane 

1 2y Oy  with finite time performing an infinite number of rotations which 

decrease in geometrical progression as shown in Fig. 2.6. The derivative value 

of the control u  commutes at each axis crossing; for this reason is necessary 

that the sign of the time-derivative of the sliding variable ( 2y ) to be available. 

 
Fig. 2.6. Twisting-algorithm phase trajectory 

 
 

In the practical applications 2y  may be immeasurable; therefore its sign can be 

evaluated by the sign of the first difference of the available sliding variable 1y  

in a time interval   as follows: 

       2 1 1sign y t sign y t y t                  (2.125) 

In this last case the 2-sliding accuracy with respect to the sampling period   is 

achieved and boundary layer size of the sliding manifold is about  2O  . 
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2.6.1.2 Super-Twisting Algorithm 

The use of Super-Twisting algorithm provides that the state trajectories 

converge to the origin of the 2-sliding plane 1 2y Oy  performing in twisting 

around the origin as it has been shown in the previous case of twisting 

algorithm. 

By using Super-Twisting Algorithm the control law is defined as sum of two 

terms: 

     1 2t t t u u u                  (2.126) 

where the first component is defined by means of its discontinuous time-

derivative and the second component is defined as continuous function of 

sliding variable 1y  as follows: 

 
 

 
 

 

1

1

0 1 1 0

2

1 1 1 0

1

1

if
t

W sign y if

s sign y if y s
t

y sign y if y s









 
 

  

  
 

  

u u
u

u

u

             (2.127) 

The satisfaction of the following conditions is sufficient to achieved a finite 

time convergence of the state trajectories to the sliding manifold [27]: 

 

 
2

2

4

0 0.5

m

M

m m

W

W

W





 


  


  

  



                (2.128) 

If the controlled system is linearly dependent on control input  tu , the control 

law can be simplified as follows: 
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 

 

1 1

1 1

sign y

W sign y


   

  

u s u

u
                (2.129) 

As it can be noted the Super-Twisting algorithm implementation does not need 

to know the sign of the time-derivative of the sliding variable 2y  but only that 

the sliding function 1y  s  to be available; this is its main advantage with 

respect to implementation of other second-order sliding mode control. 

Furthermore details on other higher-order sliding mode control technique can 

be found into [28].    
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2.7 Sliding Mode Observer 

In practice the state vector is typically available only in part (only a part of its 

components is known). However the components not available of the state 

vector can be estimated by means of an observer starting from the part of 

components directly measured. These components are called “observed” 

components. 

In the following before a conventional observer will be explained and then a 

sliding mode observer for linear time-invariant systems will be discussed. 

 

2.7.1 Conventional Observer 

Let us consider a linear time-invariant multidimensional system: 

 




x Ax Bu

y Cx
                  (2.130) 

where x  and u  are n  and m  dimensional state and control vector respectively, 

A  and B  are constant matrices with  rank mB , y  is the output vector of 

the system with 
ly  and C  is a constant matrix with  rank lC . In 

addition let that the pair  ,C A  to be observable. Considering the difference 

between the actual value and the observed value of the output vector, a 

conventional observer may be designed with the same form of system (2.130) 

as follows: 

 ˆ ˆ ˆ   x Ax Bu K Cx y                 (2.131) 

where x̂  is the observed value of the state vector and n xlK  is the constant 

observation matrix. 

Subtracting (2.131) from (2.130) the following motion equation for the 

mismatch ˆ x x x  is obtained: 
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    x Ax KCx A KC x                (2.132) 

Assigning the eigenvalues of the matrix  A KC  by means of a suitable 

choice of observation matrix K , the desired convergence rate of the mismatch 

x  to zero is achieved (or equivalently the desired convergence rate of the 

estimated state vector x̂  to actual one x ). Consequently any control algorithms 

with vector x̂  are applicable, also full-state control algorithms.  

 

2.7.2 Sliding Mode Observer design 

In a sliding mode observer design for linear time-invariant system (2.130) has a 

structure very similar to conventional observer (2.131) with replacement of the 

continuous additional term by a discontinuous function of the output 

observation error [29]: 

 ˆ ˆ ˆsign   x Ax Bu K y Cx                (2.133) 

Choosing a suitable gain observation matrix K , the sliding mode for system 

(2.133) occurs on the surface ˆ y Cx 0  and (2.133) becomes equivalent to A 

reduced order observer [30]. 

This result will be proved in the following. 

Set: 

 1 2 1 2with , , rank( )
TT n l l l   x x x x x C             (2.134) 

thus: 

 1 1 2 2 2with det 0y   C x C x C               (2.135) 

In this case is sufficient to design an observer only for vector 1x  because the 

components of vector 2x  may be calculated as function of 1x  [30]: 
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 1

2 2 1 1

 x C y C x                  (2.136) 

The system (2.130) can be rewritten by using linear transformation of state 

variables as follows: 

 

 

1 11 12 1 1

21 22 1 2

a

b

  


   

x A y A x B u

y A y A x B u

               (2.137)  

where: 

11 12 11

21 22 2 1 2

, ,
n l      

       
     

A A B I 0
TAT TB T

A A B C C
            (2.138) 

with the coordinate transformation is nonsingular  det 0 T . 

The motion preceding the sliding mode and the motion on the intersection of 

sliding manifold can be considered independently for design the sliding mode 

observer. According to that has been discussed above, the corresponding 

sliding mode observer for (2.137 (b)) is: 

 21 22 1 2 2
ˆ ˆ ˆ ˆsign    y A y A x B u L y y               (2.139) 

Subtracting (2.317 (b)) from (2.139) the following system respect to mismatch 

ˆ y y y  can be obtained: 

 21 22 1 2 sign  y A y A x L y                (2.140) 

Choosing a suitable gain matrix 2L  the sliding mode occurs for system (2.140) 

on the sliding surface y 0 , then ŷ  tends to y . 

The corresponding sliding mode observer for (2.137 (a)) is structured similar to 

(2.139): 

 1 11 12 1 1 1 2
ˆ ˆ ˆsign    x A y A x B u L L y y               (2.141) 
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The subtraction of (2.137 (a)) from (2.141) gives the following equation for the 

mismatch 1 1 1
ˆ x x x : 

 1 12 1 1 2 sign x A x L L y                 (2.142) 

Let us consider the term  2 signL y  as control variable for (2.142). According 

to equivalent control theory, in sliding mode the system (2.142) behaves as if 

 2 signu L y  is replaced by its equivalent value   2 signeq eq
u L y , that 

can be calculated by system (2.140) with the constraints y 0  and y 0 : 

  2 22 1sign
eq
L y A x                 (2.143) 

The substitution of (2.143) into (2.142) yields: 

 1 12 22 1 1 x A A L x                 (2.144) 

Consequently if the system (2.130) is observable (the pair  ,C A  is 

observable) then the pair  12 22,A A  is observable too. Thus designing an 

appropriate observation gain matrix 1L  for (2.142) a sliding mode occurs on 

the surface 1 x 0  with a desired convergence rate to it ( 1x̂  tends to 1x ). 

In conclusion the vector 2x  can be calculated by (2.136) and any full-state 

control algorithms are applicable to considered system. 
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Chapter 3 

ELECTRICAL SUBSYSTEM: MODELING AND DESIGN 

In this Section the proposed electrical subsystem is explained and its main 

components are modeled and designed. The control strategy adopted for the 

converters of the proposed electrical sub-system is a feedback modulation 

based on the sliding mode control because it is able to guarantee good dynamic 

performance and high robustness property.     

The proposed electrical sub-system that can be treated as a Double Stage AC-

AC Power Converter (DSACPC) consists of two fundamental parts as shown 

in Fig. 3.1: 

 the Stage 1 consists of a PMSG coupled in axis with turbine, a 

boost-type PWM rectifier and a DC-link capacitors bank; these 

components are controlled by means of full sliding mode control that 

is constituted by the Back-EMF and rotor angle sliding mode 

observer, an Integral Sliding Mode Control (ISMC) for the DC-link 

voltage control, a Super-Twisting Integral Sliding Mode Control 

(ST-ISMC1) in order to achieve a sliding mode current control of the 

Stage 1; 
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 the Stage 2 consists of a three-phase Voltage Source Inverter (VSI) 

and a three-phase step-up transformer connected to the grid utility; 

the VSI is controlled by means of a Super-Twisting Integral Sliding 

Mode Control (ST-ISMC2) in order to achieve a sliding mode 

current control of the Stage 2. 

The Space Vector PWM (SVPWM) has been used for generate the switching 

pulses of the power electronic converters of both stages. 

For the Stage 1 the control strategy is based on a full-sliding mode control and 

it is formulated in a rotating reference frame synchronous with the electrical 

angular velocity of the PMSG in order to achieve the following goals: 

1.a) keeping the DC-link voltage at a desired value; 

1.b) tracking of the maximum power point draw from the 

thermodynamic sub-system. 

For the Stage 2 the control strategy is based on second-order integral sliding 

mode control that is formulated in a rotating reference frame synchronous with 

the electrical angular velocity of the grid utility in order to achieve the 

following goals depending on the balancing grid utility conditions: 

2.a) generation of desired values of instantaneous active and reactive 

power on the grid utility, in the case of balanced conditions of the 

grid utility; 

2.b) current harmonic rejection, in the case of unbalanced conditions of 

the grid utility. 

In the following the mathematical models and principal characteristics of the 

main components of both stages are treated. 
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Fig. 3.1. Schema of the proposed Electrical sub-system. 
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3.1 Stage 1: Components Modeling and Control Strategy 

In this section the mathematical model of the PMSG and the three-phase boost-

type PWM rectifier is explained; according to latter the proposed control 

strategy of Stage 1 will be discussed with a thorough explanation of all its 

parts. 

 

3.1.1 Permanent Magnet Synchronous Generator 

A Permanent Magnet Synchronous Generator (PMSG) has been adopted for 

power electric generation because of its many advantages, such as simple 

configuration and lossless field circuit with respect to other types of electrical 

generator.   

Fig. 3.2 shows the electrical schema of the PMSG stator winding: 

 

Fig. 3.2. Electrical schema of the PMSG stator winding. 

The mathematical model of PMSG in the rotating reference frame (d,q frame) 

having the d-axis coincident with direction of the magnetic flux of the 

permanent magnets is defined as: 

sqsd sd
sd s sq

sd sd sd

sq sqsd s
sq s sd

sq sq sq sq

Ldi uR
i i

dt L L L

di uLR
i i

dt L L L L







   




     



     (3.1) 
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where sdu  and squ  are the d-q axis component s of the output phase voltages of 

the stator, sdi  and sqi  are the d-q axis component s of the output phase currents 

of the stator,   is the magnetic flux of permanent magnets, s  is the electrical 

angular velocity of the rotor, R  is the resistance of the stator winding, sdL  and 

sqL  the self-inductance in d-q frame of the stator winding. 

The PMSG electromagnetic torque expression is:  

 
3 3

2 2
e sq sd sq sd sqT p i p L L i i          (3.2) 

where p  is the number of pole pairs of the stator winding. 

 

3.1.2 Three-phase PWM rectifier 

The main power electronic converter of the Stage 1 is the three-phase PWM 

rectifier as shown in Fig. 3.1, which is directly connected to the stator of the 

PMSG. 

The electrical diagram of the three-phase PWM rectifier is shown in Fig. 3.3. 

  

Fig. 3.3. Electrical schema of the three-phase PWM rectifier. 
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The dynamic model of three-phase PWM rectifier in synchronous reference 

frame (d,q) rotating at the angular frequency of the back-EMF of the PMSG is 

given by [31]: 

ˆ
ˆ

ˆ
ˆ

sqsd rd dc sd
sd s sq

sd sd sd sd

sq r q dc sqsd
s sd sq

sq sq sq sq

rd sd rq sqdc Link

Ldi s v eR
i i

dt L L L L

di s v eL R
i i

dt L L L L

s i s idv i

dt C C






    




    

 
  


     (3.3) 

where ˆ
sde  and ˆ

sqe  are the estimated d-q axis components of the back-EMF odf 

the PMSG; ˆ
s is the estimated electrical angular velocity of the PMSG rotor; 

sdi , sqi  are the d-q axis components of the output phase currents of the PMSG; 

R  is the resistance of the stator winding, sdL  and sqL  the self-inductance in d-

q frame of the stator winding; C  is the filter capacitor; dcv is the output voltage 

on the DC-link and Linki  is the current on the DC-link; rds  and rqs  are the d-q 

axis components of the switching pulses vector of the power electronic devices 

of the rectifier.  

The system (3.3) with the equations (3.1- 3.2) are the starting point for the 

control strategy of the Stage 1. 
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3.1.3 Control Strategy of Stage 1 

The control of the Stage 1, shown in Fig.3.1, is a Full Sliding Mode Control, 

expressed in a rotating reference frame synchronous with the electrical angular 

velocity of the PMSG.  

The three-phase PWM rectifier control algorithm takes the following inputs: 

 the desired q-axis component of the stator phase currents of the 

PMSG *

sqi , related to the maximum power extracted from the 

thermodynamic sub-system by means of a suitable MPPT; 

 the desired d-axis component of the stator phase currents of the 

PMSG *

sdi , that is given in output by Integral Sliding Mode 

Controller (ISMC) controlling the error between the desired DC-

link voltage and the actual on; 

 the actual d-q components sdi   and sqi   of the stator phase currents 

of the PMSG.  

The d-q axis components of the stator phase currents of the PMSG are 

computed via Park’s transformation and then compared with the respective 

desired values *

sdi  and *

sqi , after the d-q axis components current errors 

*

sd sd sdx i i   and *

sq sq sqx i i   are processed by the proposed Super-Twisting 

Integral Sliding Mode Controller (ST-ISMC1) to achieve the previous 

mentioned targets: 

1.a) keeping of the DC-link voltage dcv  to a desired value *

dcv ; 

1.b) tracking of the maximum power point draw from the 

thermodynamic sub-system. 

In the following the main components of the control loop of the Stage 1 are 

discussed. 
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3.1.3.1 Back-EMFs and rotor angle Sliding Mode Observer 

The proposed sliding-mode observer estimates the back-EMF vector and the 

rotor angle starting by the measure of the PMSG phase currents and voltages 

[32].    

The model of PMSG can be formulated in the ,   coordinate from equations 

(3.1), as follows: 

1 1

1 1

s
s s

s s s

s

s s

s s s

di R
i e u

dt L L L

di R
i e u

dt L L L


  



  


   



    


      (3.4) 

where su  , su   and si  , si   are the    axis components of the output phase 

voltages and current of the PMSG stator respectively, s s sL L L    is the self-

inductance in    frame of the stator winding for isotropic machine with 

round rotor and the    axis components of the back-EMF e  and e  are 

expressed by: 

sin

cos

s s

s s

e

e





 

 

  


 
        (3.5) 

where s  is the electrical rotor angle of the PMSG. 

Considering the back-EMF time derivative: 

s

s

e e

e e

 

 





 




         (3.6) 

and the model (3.4), the state space equations of PMSG become: 
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s s

s ss

s

i i

i ui

uee

ee

 

 





   
   

            
    

     

A B        (3.7) 

where:  

1 1
0 0 0

1 1
0 0 0,

0 0 0 0 0

0 0 0 0 0

s s s

s s s

s

s

R

L L L

R

L L L





   
    
   
   

     
   
   
   

  

A B     (3.8) 

The model of the proposed Sliding Mode Observer is defined as: 

ˆ

ˆ
ˆ ( )

ˆˆ

ˆ
ˆ

s s

s ss

s

i i

i ui
sgn

uee

e
e

 

 







 
  
                   
    

A B K σ      (3.9) 

where the apex “^” is related to the estimated values of the quantities shown in 

(3.7), while: 

1
0 0

1
ˆ 0 0 ,

ˆ0 0 0

ˆ0 0 0

s s

s s

s

s

R

L L

errorR

L L error









 
  
 

  
     

  
 
 
 

A σ     (3.10) 

The observer sliding surface σ  is defined as a proportional action on the phase 

current errors in the    frame ˆ
s serror i i     and ˆ

s serror i i    . 

The observer gain matrix K  is designed in order to guarantee the sliding 

conditions. 
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The electrical rotor angle is estimated as follows: 

1 ˆˆ tan
ˆ

s

e

e





 
 

   
 

        (3.11) 

Moreover the magnetic flux ̂  necessary for the evaluation of the reference 

component *

sqi  can be computed by means of the equation (3.2). 

 

3.1.3.2 DC-link Voltage Integral Sliding Mode Controller 

The control of the DC-link voltage is carried out by means of an Integral 

Sliding Mode Controller (ISMC), which gives in output the reference d-axis 

component *

sdi  of the stator phase currents of the PMSG (that is coincident with 

the phase current of the rectifier), as shown in Fig. 3.1. 

Let us consider the following power balance condition for the three-phase 

PWM rectifier: 

rd sd rq sqdc Link
s i s idv i

dt C C


         (3.12) 

The equation (3.12) can be reformulated with respect to reference values of the 

of all its variables as follows: 

* * * ** *
rd sd rq sqdc Link

s i s idv i

dt C C


         (3.13) 

The subtraction of (3.12) from (3.13) gives the following equation for the 

mismatch between the reference value and the actual one of the DC-link 

voltage: 

     * * * * * *

dc dc rd sd rq sq rd sd rq sq Link Linkd v v s i s i s i s i i i

dt C C

    
     (3.14) 
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The control of DC-link voltage is implemented considering the reference d-axis 

component *

sdi  of the stator phase currents of the PMSG as control variable: 

x bu c           (3.15) 

where: 

   * * *

*1
,

rq sq rd sd rq sq Link Link

rd

s i s i s i i i
b s c

C C C

  
      (3.16) 

with *

dc dcx v v   is the mismatch between the reference value and the actual 

one of the DC-link voltage and *

sdu i  is the control variable.  

Since the dynamic of the internal current control loop is faster than the external 

DC-link voltage control loop we can assume that the d-q axis components of 

the switching pulses vector of the power electronic devices of the rectifier have 

already reached their reference values ( *

rd rds s  and *

rq rqs s ). Furthermore the 

reference value of the load current can be expressed as function of the 

reference d-q axis components *

sdi  and *

sqi  of the stator phase currents of the 

PMSG and of the reference value of the DC-link voltage *

dcv  as follows: 

*
* * 2 * 2 dc
Link sd sq

dv
i i i C

dt
          (3.17) 

The integral sliding surface is defined as sum of a proportional and an integral 

action on the error x  as follows: 

0

t

s x xdt            (3.18) 

where   and   are positive constants. 

Since (3.15) is linear equation, the equivalent control theory can be used; 

according to this theory the equivalent control equ  can be calculated by 

equating the time-derivative of (3.18) to zero: 
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 
0 eq

c x
s x x u

b

 
 




           (3.19) 

Substituting (3.19) into (3.15) the following motion equation for the mismatch 

x  can be obtained: 

0x x



           (3.20) 

Note that (3.20) is invariant with respect to c  which can be treated as 

perturbation term depending only by positive sliding constants   and  these 

are chosen in order to achieve a desired rate of convergence of the state 

trajectory to sliding surface 0s  . 

It is necessary that control input is bounded in order to not exceed the available 

control resources 0u  as it is discussed in the previous sections. For this reason 

the control law can be reformulated as follows: 

0

0 0

for

for

eq eq

k
eq

eq

u u u

u  u
u u u

u

 


 




      (3.21) 

The control law (3.21) is able to guarantee the stability of the state trajectory as 

it has been discussed in Section 2.4.  
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3.1.3.3 Super-Twisting Integral Sliding Mode Controller 1 

The current control of Stage 1 is achieved by Second-Order Super-Twisting 

Integral Sliding Mode Controller (ST-ISMC1) as shown in Fig. 3.1. 

The control strategy is formulated in a rotating reference frame synchronous 

with the observed electrical angular velocity ˆ
s  of the back-EMF of the 

PMSG. 

The inputs to the current control loop are: 

 the desired q-axis component of the stator phase currents of the PMSG 

*

sqi , related to the maximum power extracted from the thermodynamic 

sub-system by means of a suitable MPPT; 

 the desired d-axis component of the stator phase currents of the PMSG 

*

sdi , given as output of the ISMC controlling the error between the 

desired DC-link voltage and the actual one, as it has been discussed in 

previous sub-section 3.1.3.2.; 

 the actual d-q components sdi  and sqi  of the stator phase currents of 

the PMSG. 

According to the observed electrical rotor angle ˆ
s  that is estimated by sliding 

mode Observer as discussed in sub-section 3.1.3.1., the Park’s transformation 

block of the stage 1 computes the d-q axis components sdi  and sqi of the stator 

phase currents of the PMSG which are compared with the respective reference 

values *

sdi  and *

sqi  ; after the d-q axis components current errors *

sd sd sdx i i   

and *

q qsq s sx i i   are processed by the proposed ST-ISMC1 according to ISMC 

discussed in previous sub-section in order to achieve the following targets: 

 DC-link voltage control; 

 tracking of the maximum power point drawn from the thermodynamic 

sub-system. 
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Considering the dynamic model (3.3) of the three-phase PWM rectifier, the 

following system for the d-q axis components current errors 

* *
TT

s sd sq sd sd sq sqx x i i i i        x  of the stator of PMSG is obtained: 

s s r  x Ax Bv C         (3.22) 

with: 

* * * *

1
ˆ 0

; ;
1

0ˆ

ˆˆ
ˆ

sq

s

sdsd sd

sd
s

sqsq sq

sq sqsd sd
sd s sq s sd sq

sd sd sd sq sq sq

LR

LL L

L R

LL L

L ee LR R
i i i i

L L L L L L





 

   
   

    
   

    
    

 
       
  

A B

C

  (3.23) 

where 
T T

r rd rq dc rd rqv v v s s       v  is rectifier input voltages vector that is 

treated as control vector and ˆ ˆ ˆ
T

s sd sqe e   e  is the estimated back-EMF vector 

of the PMSG that is obtained by Park’ Transformation of observed back-EMF 

ˆ ˆ ˆ
T

e e  
   e  by mean of observed electrical rotor angle ˆ

s . 

The equivalent discrete-time representation of (3.23) is defined as follows: 

1s,k d s,k d r ,k d   x A x B v C   (3.24) 

with (Euler approximation): 

d s d s d sT ; T ;   T     A I A B B C C       (3.25) 

where sT  is the sampling period and for generic vector a is: 

 k skTa a          (3.26) 

The sliding surfaces in the ST-ISMC1 of the Stage 1 are defined as the sum of 

a proportional and an integral action on the current errors: 
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      (3.27) 

where 1 1 1

T

d qs s   s 0  is the sliding manifold of the ST-ISMC1, the 1d , 

1q , 1d , 1q  are positive gains of sliding surface in according with the 

desired dynamic state trajectories behavior. 

According to Super-Twisting algorithm discussed in sub-section 2.6.1.2., the 

reaching law can be expressed as follows: 

   

   
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


   (3.28) 

where  1 ,sgn d ks  and  1 ,sgn q ks  represent the signum function of 1 ,d ks  and 

1 ,q ks  respectively, while 11k , 12k , 21k , 22k  represent control parameters 

determined by Lyapunov stability analysis for the convergence velocity and 

steady-state error. 

Considering the corresponding continuous-time representation of (3.28): 
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

    (3.29) 

A Lyapunov function candidate can be defined as follows: 
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that is a positive definite function. The time-derivative of (3.29) yields: 

0,5

11 12 1

0,5

21 22 1

0
d

q

k k sd

dt k k s

 
    
 
 

V
V       (3.31) 

By the equation (3.31) can be noted that the time-derivative of the Lyapunov 

function V  is definitely negative. So the switching function 1s  and its first 

time-derivative 1s tend to zero according to that has been discussed in sub-

section 2.1.1. Therefore this proves that the control system is asymptotically 

stable; this results also by (3.28) in which we can note that the control actions 

*

,rd kv  and *

,rq kv  become weaker and weaker as 1s  approach to 0 making the 

control enough smooth. 
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3.2 Stage 2: Components Modeling and Control Strategy 

The main component of Stage 1 is the three-phase soft-switched Voltage 

Source Inverter (VSI) that consist of Quasi-Resonant branch and a three-phase 

PWM inverter as shown in Fig. 3.1. This converter is connected too grid utility 

by means of three-phase step-up transformer. The dynamic models of the 

mentioned power electric components and the control strategy of Stage 1 will 

be explained in this section.  

 

3.2.1 Three-phase Soft-Switched Voltage Source Inverter (VSI) 

The three-phase soft-switched Voltage Source Inverter (VSI) is the most 

important component of the Double Stage AC-AC Power Converter in order to 

maximize the efficiency of energy conversion. This converter has high 

performance due to the presence of Quasi-Resonant branch. 

Although there are many configurations of soft-switching inverter in the 

literature, the configuration scheme shown in Fig.3.4. has been adopted in 

order to obtain a very inexpensive and simple structure, but at the same time a 

robust converter.   

 

Fig. 3.4. Electrical scheme of the there-phase Quasi-Resonant VSI. 

Indeed the soft-switched VSI differs from a traditional three-phase VSI only 

for the introduction of the quasi-resonant branch, that consists of a single 

electronic switch component as shown in Fig. 3.4. 
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The dynamic model of PWM VSI in synchronous reference frame (d,q) 

rotating at the angular frequency   of the grid voltages is defined as 
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    (3.32) 

where: di  and qi  are the d-q axis components of the output phase currents of 

VSI; 0v  is the resonant capacitor voltage; dcv  is the output voltage on the DC-

link; Linki  is the current on the DC-link; ds  and qs  are the d-q axis components 

of the switching pulses vector of the VSI switches, ,g du  and ,g qu  are the d-q 

axis components of the grid voltages; tk  is the transformer ratio; sR  is the VSI 

components’ ESR, LR  and fL  are the phase inductance and resistance of the 

output filter to VSI, respectively; rL  and rC  are the inductance and capacitor 

of the quasi-resonant branch, respectively. 

The main advantages of use soft-switched VSI are: high switching frequencies 

of VSI, therefore improved quality of output waveforms; high efficiency 

(minimum equal to 96%); reduced dimensions of the output filters. However, 

there is the voltage overshoot problem (the voltage of electronic switch 

component can reach twice the voltage on the DC-link). Thus the use of grid-

connected step-up tree-phase transformer is necessary for operate with low 

voltage on the DC-link. 

In the following the Quasi-Resonant phenomenon will be explained. 

The equivalent single-phase scheme of soft-switched VSI is shown in Fig. 3.5.  
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Fig. 3.5. Equivalent single-phase scheme of three-phase soft-switched VSI 

where VSI is considered equivalent to an ideal current source and the DC-link 

voltage is considered constant with respect to the time. 

The DC-link current Linki  and the voltage 0v  at the terminals of the resonant 

capacitor rC  as time functions are depicted in the next figure: 

 

Fig. 3.6. DC-link current Linki  and resonant capacitor voltage 0v  as time functions 

It is assumed that the diode 
0D  is conducting the full current 0I  and the 

electronic switch component is turn-on at initial time instant 0t  . The 

behavior of the DC-link current Linki  is governed by the following equation in 

the first time interval  10, t : 
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  1for 0dc
Link

r

V
i t t t t

L
         (3.33) 

Therefore the DC-link current Linki  increase linearly with respect to the time 

until reaching the value 0I  at instant time 1t as it can be noted by (3.33). Thus 

the instant time 1t  may be calculated by: 

  0
0 1

r
Link

dc

L I
i t I t

V
          (3.34) 

After the time interval 1t  the diode 0D  is turn-off and so starting the resonant 

phenomenon. When the electronic switch component S of the quasi-resonant 

branch conducts, the dynamic of resonant capacitor voltage 0v  can be 

expressed as: 

2

0
0 1 32

forr r dc

d v
L C v V t t t

dt
          (3.35) 

with the following initial conditions: 
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         (3.36) 

The expression of resonant capacitor voltage and DC-link current are: 
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       (3.37) 

where 0

1

r rL C
   , 0

r

r

L
Z

C
  and 0I is coincident with the average load 

current value.  

After the time interval 1 2t t , the diode D1 turn on and the component S can be 

switch off with current practically equal to zero due to the DC-link current 

became negative. Therefore the switching losses of quasi-resonant branch are 

very low because the component S can be turned-off with zero current value 

(ZCS) and it will be characterized only diode voltage that is very low in direct 

conduction.  
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The expression of current on the DC-Link (3.37) shows that the following 

inequality must be satisfied so that the current Linki  becomes negative: 

0 0 dcZ I V          (3.38) 

Equation (3.38) is the starting point for quasi-resonant branch design that will 

be discussed in the later sections. 

According to (3.38) the DC-link current reaches the zero value at instant time: 

0 0
1 2

0 0

1
arcsen

dc

Z I
t t

V



 

 
    

 
      (3.39) 

At the time interval 1 2 3t t t 
 
the DC-link current reaches the zero value again: 

   1 2 3 3 1 2

0

0Linki t t t t t t



            (3.40) 

   0 1 2 3 0 3 31 cosdcv t t t V t V          (3.41) 

Therefore the resonant capacitor discharges linearly during the interval time 4t  

according to the following equation: 

  0
0 3

r

I
v t V t

C
          (3.42) 

and the last time interval 4t  is given by: 

   3
0 1 2 3 4 4 1 2 3

0

0 rV C
v t t t t t t t t

I
             (3.43) 

The resonant period rT  is expressed as: 

4

1

r iT t          (3.44) 

After the resonant period rT  the resonant capacitor voltage 0v  shows down to 

zero until the turn-on of the switch S. Thus the switches of the VSI can be 

switched with zero voltage value (ZVS) after the resonant period rT . 

As a result the soft-switched VSI is a zero voltage and zero current switching 

converter if the switching frequency of the soft-switched VSI is chosen as 

integer multiple of resonant frequency defined as inverse of the resonant period

rT . 
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3.2.2 Control Strategy of Stage 2 

The control strategy of Stage 2 is formulated in a rotating reference frame 

synchronous with the electrical angular velocity   of the grid utility vector 

voltages, as shown in Fig. 3.1, in order to achieve the following targets 

depending on the balancing grid utility conditions: 

 control instantaneous active and reactive power values on the grid 

utility, in the case of balanced conditions of the grid utility; 

 current harmonic rejection, in the case of unbalanced conditions the 

grid utility. 

The Stage 2 is consists of a Phase Locked Loop (PLL) for the synchronization 

on d-q reference rotating frame having the same angular frequency as the grid 

voltages and two Park’s transformation blocks for the estimation of the d-q axis 

components of the grid voltages ( ,g du , ,g qu ) and currents ( Ldi , Lqi ), the three-

phase soft-switched Voltage Source Inverter and a grid-connected three-phase 

step-up transformer as shown in Fig. 3.1.  

The proposed control of the Stage 2 is a High-Order Super-Twisting Integral 

Sliding Mode Control (ST-ISMC2), expressed in a rotating reference frame 

synchronous with the electrical angular velocity of the utility grid.  

The control strategy is formulated in a rotating reference frame synchronous 

with the electrical angular velocity of the utility grid as it has been mentioned 

above. 

The d-q axis reference components of grid currents *

Ldi  and *

qLi  are computed 

according to the apparent power given by the PMSG and their values depend 

on the following two grid utility conditions: 
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 in the balanced grid utility condition *

Ldi  and *

qLi  are computed from 

the desired values of the instantaneous active and reactive power, 

respectively; 

 in the unbalanced grid utility condition *

Ldi  and *

qLi  are computed 

from the desired value of the grid currents vector. 

These reference currents are compared with the respective actual values and 

the related errors *

d Ld Ldx i i   and *

q Lq Lqx i i   are used to define the sliding 

surfaces in the Super-Twisting Integral Sliding Mode Controller (ST-ISMC2) 

as more explained in the following subsection 3.2.2.2. 

 

3.2.2.1 Calculation of d-q axis reference components of grid-utility currents  

Under balanced grid utility condition the d-q axis reference components of the 

grid utility currents *

Ldi  and *

qLi  are computed from the desired values of the 

instantaneous active and reactive power, respectively. In this subsection a 

demonstration of this result will be given. 

Considering the grid utility a three-phase sinusoidal system, the voltages space 

vector and the currents space vector can be defined as follows: 
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 

u

i

    (3.45) 

where ,g au , ,g bu , ,g cu  are the phase voltages instantaneous values of the grid 

utility, ,L ai , ,L bi , ,L ci  are the phase currents instantaneous values of the grid 

utility and  t  is the displacement phase between gu  and Li  as shown in 

Fig.3.7. 
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Fig. 3.7. Grid voltages and currents space vectors in the   frame 

Under balanced grid utility conditions the amplitude of the space vectors (3.45) 

and the displacement phase  t  remain constants with respect to time. 

The space vectors (3.45) can be reformulated by multiplying (3.45) for 
 j t

e


 

as follows: 

 

   

g g

j t

L L

u t

i t e






u

i
        (3.46) 

So the space vectors defined by (3.46) are referred to rotating reference frame 

synchronous with the constant electrical angular velocity 
 d t

dt


   of the 

grid utility voltages space vector as shown in Fig. 3.8. This change of reference 

frame is equivalent to Park’s transformation applied to space vectors (3.45) for 

the estimation of the d-q axis components of the grid voltages ( ,g du , ,g qu ) and 

currents ( Ldi , Lqi ).  
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Fig. 3.8. Grid voltages and currents space vectors in the d-q frame synchronous with the 

constant electrical angular velocity   of the grid voltages 

Therefore the currents space vector Li  into (3.46) can be defined as sum of two 

terms: 

L Ld Lqi ji i          (3.47) 

where   cosLd Li i t  is called “instantaneous active current” and 

  sinLq Li j i t   is called “instantaneous reactive current”, while the 

voltages space vector under balanced grid-utility conditions can be defined as 

follows: 

,g g g du u u         (3.48) 

as it can be noted by Fig 3.8. 

According to equations (3.47) and (3.48) the Park’s instantaneous complex 

power of the three-phase system is defined as follows: 
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   (3.49) 

where  P t  and  Q t  are the instantaneous active and reactive power, 

respectively. 
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Therefore in the case of balanced grid utility condition, the d-q reference grid 

currents 
*

,L di  and *

,qLi  are computed according to (3.49), in order to generate the 

desired instantaneous active *P  and reactive power 
*Q  values on the grid 

utility: 

* *

, ,

* *

, ,q

3

2

3

2

g d L d

g d L

P u i

Q u i





 
         

(3.50) 

where * *

pS P jQ   is set equal to apparent power in output from PMSG. 

Conversely in the case of unbalanced grid utility conditions, the d-q reference 

grid currents 
*

,L di  and *

,qLi  are computed from the desired value of the grid 

currents vector; in this case the proposed soft-switched VSI can be used as a 

system of current harmonic rejection. 

 

3.2.2.2 Super-Twisting Integral Sliding Mode Controller 2 

Similar to control strategy of Stage 1, the main component of the current 

control loop of Stage 2 is Second-Order Super-Twisting Integral Sliding Mode 

Controller (ST-ISMC2) as shown in Fig. 3.1 in order to achieve the following 

two targets: 

1) control of instantaneous active and reactive power values on the 

grid utility, in the case of balanced conditions of the grid utility; 

2) current harmonic rejection, in the case of unbalanced conditions the 

grid utility. 

The control strategy of Stage 2 is formulated in a rotating reference frame 

synchronous with the electrical angular velocity   of the grid utility vector 

voltages by means of a suitable PLL. 

According to two targets mentioned above the inputs reference of the control 

loop are computed as follows: 
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 for achieve the target (1) *

Ldi  and *

qLi  are computed from the desired 

values of the instantaneous active and reactive power, respectively, 

according to the apparent power given by PMSG (in the balanced 

grid utility condition); 

 for achieve the target (2) *

Ldi  and *

qLi  are computed from the desired 

value of the grid currents vector (in the unbalanced grid utility 

condition). 

On the basis of the electrical angle   of grid utility voltages vector given in 

output by PLL, the Park’s transformations block of the Stage 2 computes the d-

q axis components Ldi  and Lqi of grid utility phase currents which are compared 

with the respective reference values *

,L di  and *

,L qi  in order to obtain the d-q axis 

components current errors *

d Ld Ldx i i   and *

q qq L Lx i i  . These current errors 

are treated by ST-ISMC2 in order to achieve the goals 1) or 2) depending on 

the balancing grid utility conditions. 

Starting to dynamic model of the soft-switched VSI (3.32), this can be 

reformulated in terms of current errors as follows: 
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     (3.51) 

that in matrix form becomes: 

  x Ax Bv C         (3.52) 

with: 
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where 0

T T

d q d qv v v s s       v  is soft-switched VSI output voltages 

vector that is treated as control vector, ,g du  and ,g qu  are the d-q axis 

components of the grid voltages. 

The equivalent discrete-time representation of (3.52) is defined as follows: 

1k d k d k d   x A x B v C   (3.54) 

with (Euler approximation): 

d s d s d sT ; T ;   T     A I A B B C C       (3.55) 

where sT  is the sampling period and for generic vector a is: 

 k skTa a          (3.56) 

Similar to ST-ISMC1, the sliding surfaces of ST-ISMC2 are defined as the sum 

of a proportional and an integral action on the current errors: 
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where 2 2 2

T

d qs s   s  is the switching function of the ST-ISMC2, the 2d , 

2q , 2d , 2q  are positive gains of sliding surface. 
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According to Super-Twisting algorithm discussed in sub-section 2.6.1.2., the 

same reaching law of ST-SMC1 can be chosen: 
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where  2 ,sgn d ks  and  2 ,sgn q ks  represent the sign function of 2 ,d ks  and 2 ,q ks  

respectively, 11k , 12k , 21k , 22k  represent control parameters determined by 

Lyapunov stability analysis for the convergence velocity and steady-state error 

as similar to it has been discussed for ST-ISMC1 and the control actions *

,d kv  

and *

,q kv  become weaker and weaker as 2s  approach to 0 making the control 

enough smooth. 

The corresponding continuous-time representation of (3.58): 
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The same positive definite Lyapunov function of subsection 3.1.3.3. can be 

considered: 
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Thus the time-derivative of the Lyapunov function V  is definitely negative as 

follows: 
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As a result the switching function 2s  and its first time-derivative 2s tend to zero 

according to that has been discussed in sub-section 2.1.1., so the control system 

is asymptotically stable as the case of ST-ISMC1.  
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3.3 Analysis and Design of Electrical Subsystem 

The main innovative components of the considered electrical subsystem are the 

PMSG and Quasi Resonant branch. In the following the principal design 

equations and parameters for these components will be discussed. 

 

3.3.1 Permanent Magnet Synchronous Generator design 

The PMSG design is performed according to the following assumptions: 

 the considered machine is three-phase; 

 the iron saturation and the effect of the stator gaps in the air gap 

flux density calculation have been neglected. 

 

Geometrical parameters of the machine  

The Fig. 3.9 shows the main geometrical parameters of the generator. 

 

Fig. 3.9. Geometrical parameters of the generator. 
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The geometrical parametric equations of PMSG are given by: 

2 2rc mD D l      (3.62)   
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where sQ  is the number of the stator slots, openk  is defined as ratio between the 

opening of stator slot sob  and the width of stator slot 1ssb  under consideration 

that the width of stator tooth 1sb  to be constant. Into equations (3.65) and (3.66) 

the arcs 1ssb , 2ssb  and 1sb  can be approximated by segments because the 

internal stator diameter D  is much longer than the step of stator slot s . 

The area of a stator slot is defined by the next equation: 

  1 2

1

2
sl ss ss ss swA b b h h         (3.68) 

where the height of the stator tooth has been fixed to  10,18sw ss soh b b  . 

 

Magnetic flux density in the air-gap under open circuit condition 

According to models that are discussed into [33]-[34] the magnetic flux density 

can be estimated as follows.  

The reference frame is chosen coincident with PM magnetic axis in order to 

compute the angular position of magnetic flux of the phase winding as shown 

in Fig. 3.10 in the case of the number of stator slot for pole and for phase is 

2q  . 
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Fig. 3.10. Flux magnetic density in air-gap under open circuit condition of a PMSG with 2q    

 

Therefore the displacement phase between the axis of the magnetic flux of the 

phase winding A and the reference frame is A  at initial instant 0t  . 

Thus the magnetic flux density in the air-gap under open circuit condition of 

PMASG is given by: 

   
 1 3 5

cosm mh
h , , ...

B B h h t   


        (3.69) 

where   is the electrical angular velocity of the rotor, mhB  is the amplitude of 

the h-th harmonic component of the magnetic flux density mB  according to 

[33]-[34]. 

 

Winding factor 

The winding factor is calculated according to [35] in order to estimate the 

distribution of winding in the stator slots. Assuming note the disposition of the 

coils in the slots a auxiliary vector S  is introduced for describe the scheme of 

the phase A. this vector consist of the slot numbers with sign +/- depending on 

the current flow is incoming or outgoing from the slot respectively. So the 

vector  1 2 7 8  S  is corresponding to the scheme of the distributed 

phase winding A, as shown in Fig. 3.10. 
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For the i-th lateral coil of the phase A, the h-th harmonic component of the 

corresponding back-EMF is given by: 

  
  1

sign s

h p
j i

Q

ihE i e





S

S        (3.70) 

The amplitude of the h-th harmonic component of the winding factor is defined 

as follows: 

3

1
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where ln  is the number of layers of the winding. 

The angular phase of the h-th harmonic component of the winding factor is 

given by: 

3
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l s

wh

n Q /

k ih
i

E
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Fig. 3.11. Back-EMF phasors for the phase A winding  

The winding factor values of Fig. 3.11 can be compared to those obtained via 

closed form expression. In this case the winding factor is coincident to the 

distribution factor that is given by: 

dist
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6
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6

h

h

k
h

q
q
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
         (3.73) 
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For 1h  , 1 0,966distk  ; for 5h  , 5 0,259distk  ; for 9h  , 9 0,707distk    in 

according with the winding factor values calculated by means of the above 

phasorial method (Fig. 3.11). 

 

Machine inductances  

Regarding the electrical parameters of PMSG, the self-inductance aL is defined 

as sum of the leakage inductance of slot leakL , the magnetization inductance 

magnL  and the end winding inductance ewL .  

The leakage inductance of slot leakL  is calculated according to [36].  

In order to calculate the magnetizing inductance, it necessary to estimate the 

magnetic flux density of armature reaction due to the current ai  of the phase A 

that is given by [37]: 

 
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
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where sohk  is the slot opening factor defined by [37] and hF  is a function for 

the curvature effect defined by [37] that is calculated for a radius equal to half 

of the air gap. After calculating the linkage flux due to armature reaction, the 

magnetizing inductance is calculated starting from its value as follows: 

22
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 
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The end winding inductance ewL  is calculated according to [38]. 
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Machine resistances  

The machine resistance is defined as follows: 

 
3s

s ss coil

n cu

s sl

Q L D h k
R p

f A

 
       (3.76) 

where L  is the active length of the machine, cu  is the resistivity of the copper 

depending on the operating temperature ( 1,72 8cu e m     at 20 °C, 

temperature coefficient 
10.0039 K  ), sf  is the filling factor of the slot. The 

operating temperature for calculate the copper resistivity and the value of sf  

are fixed as design input date. The introduction of the parameter coilk  is 

necessary to tacking in account the type of winding as shown the next table 

[39]: 

TABLE 3.1: WINDING PARAMETER  

  
 

 

Load current 

The fundamental harmonic component of the load current is defined as 

follows: 

 
1 2

1 1

4

m w

T
Î

ˆD LB k sin  



      (3.77) 

where T  is the torque, 1mB̂  is the estimated value of the fundamental 

harmonic component of the magnetic flux density of PM in the air-gap,   is 

the angle between magnetic flux and the current that depends of the  machine 

saliency (for isotropic machine is 2  ). 

Thus the total current for stator slot is defined: 

1s
ˆI n I          (3.78) 
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Starting from (3.78) the current density is given by: 

s

sl s

n I
J

A f
          (3.79) 

where sn  is the number of the conductors for slot. 

 

The back-EMF 

The back-EMF of the phase A is defined as: 

 
1 3 5

2 sin
sa,n kh mh s k h

h , , ...

E k B RLn q h t   




      (3.80) 

 

The number of conductors for slot 

The number of conductors for slot is defined by next expression: 

   
2 2

s s s

s

a,n n a,n

V
n

E R I L I



 

      (3.81) 

where the phase resistance, inductance and back-EMF due to the number of 

conductors sn  are given by: 

2 2

, ,s s sa s a n s n a s a nL n L R n R E n E        (3.82) 

 

Torque calculation 

The torque calcT  can be calculated starting from back-EMFs aE , bE , cE  

defined by (3.80) and assuming that the currents ai , bi , ci  to be sinusoidal time 

function: 

 calc p a a b b c cT p E i E i E i /          (3.83) 
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Machine losses 

The stator iron losses ironP  under open circuit condition are calculated 

according to model discussed into [36]. 

 

Machine weights 

The weight of each part of the machine is calculated by multiplying the 

volumes for the value of the density of the material. 

 

 

Results of design calculations 

The main dimensional features of PMSG were calculated by Maxwell 3D 

environment with use of the finite element method as shown in Fig. 3.12. 

 

Fig. 3.12. A quarter PMSG section (symmetrical element) 
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Table 3.2 and Table 3.3 show main characteristics and design parameters of 

PMSG respectively. 

TABLE 3.2: MAIN CHARACTERISTICS OF PMSG 

MATERIALS 

STATOR: Iron 

Material density [kg/m3] 7750 

Stator iron stacking factor 1 

Lamination thickness [mm] 0.65 

Conductivity [(Ωm)-1] 3.33e6 

ROTOR: Iron 

Material density [kg/m3] 7750 

Rotor iron stacking factor 1 

Lamination thickness [mm] 0.65 

Conductivity [(Ωm)-1] 3.33e6 

PERMANENT MAGNETS: NdFeB 

Material density [kg/m3] 7500 

Remanence flux density [T] 1.06 

Relative permeability 1.04 

CONDUCTORS: COPPER 

Material density [kg/m3] 8920 

WINDINGS 

Number of poles: 4 

Number of stator slots/pole/phase: 4 

Fractional slot pitch number: 1 

Copper temperature [°C]: 25 

Stator slot fill factor [p.u.] 0.5 

 

TABLE 3.3: DESIGN PARAMETERS 

PMSG SPECIFICATIONS 

Rated speed [rpm] 4500 

Rated torque [Nm] 22 

GEOMETRICAL INPUT PARAMETERS 

Shaft diameter [mm] 18 

Rotor core diameter [mm] 103 

Airgap length [mm] 0.9 

Magnet thickness [mm] 2.45 

Magnets angle [electrical degrees] 120 

Outer motor diameter [mm] 188 

Machine length [mm] 165 

Stator tooth width [mm] 4.8 

Stator slot height [mm] 20.5 

Stator slot opening / slot width [p.u.] 0.55 

Slot wedge height [mm] 1.4 
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THE DESIGN RESULTS 

 
 

FLUX DENSITIES  

bdelta=0.8189056256401; % Fundamental open-circuit airgap flux density [T]  
fluxts=1.1006515621202; % Max. no-load flux density in stator teeth [T]  
fluxrs=1.1422978374437; % Max. no-load flux density in stator yoke [T]  
fluxrr=0.49548675246677; % Max. no-load flux density in rotor yoke [T]  

 

BACK-EMF  
emf=313.98459379115; % Fundamental phase EMF (peak) [V]  

 
TORQUE  
ripple=8.3561642622461; % Torque ripple [%] 

 
CURRENT  
ia=22.010740777482; % Phase current [A] 
jcurrent=2.5512172199999; % Current density [A/mm^2] 

s1=18.343600734636; % Stator current loading [A/mm] 
nsi=132.06444466489; % Total stator current per slot [A] 
f=150; % Electrical frequency [Hz] 
 
WINDINGS  
ns=6; % Number of conductors per slot 
kw1=0.94946926409064; % Fundamental winding factor 

conddiam=2.7870269684142; % Conductors diameter [mm] 
r=0.12377315295465; % Phase resistance [Ohms]  
 
INDUCTANCES  

Ltot=0.0049411074799258; % Self-inductance [H] 
Miabtot=0.00049386492812212; % Mutual inductance [H] 

Lmagn=0.0043557481730636; % Magnetizing inductance [H] 
Lleak=0.00055457924860947; % Slot leakage inductance [H] 
Lew=3.0780058252717E-05; % End-windings inductance [H] 
Ld=0.0044472425518036; % d-axis inductance [H] 
Lq=0.0044472425518036; % q-axis inductance [H] 
 
WEIGHTS  

m_tot=35.070330247305; % Total active weight [kg] 
m_cu=5.1560101472974; % Conductor mass [kg] 
m_magnet=0.67150659397548; % PM mass [kg] 
m_iron=29.242813506032; % Iron mass [kg] 
m_stator=24.007153333153; % Stator's active mass [kg] 

m_rotor=11.063176914152; % Rotor's active mass [kg] 
 

LOSSES  
eff=95.032893654282; % Efficiency [%]  
prated=10367.255756846; % Rated power P [W] 
cosphi=0.96009529734739; % Power factor cos(phi) 
p_copper=89.947072176597; % Copper losses [W] 
p_iron=451.92069462892; % Stator iron losses [W] 

 

 

 



103 
 

The following figures report the air gap flux density, the phase back-EMF and 

the torque of PMSG. 

   
Fig. 3.13. Air-gap flux density as rotor angular position function 

 

Fig. 3.14. Air-gap flux density spectrum 

 
Fig. 3.15. Phase back-EMF 
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Fig. 3.16. Phase back-EMF spectrum 

Fig. 3.17. Torque of PMSG 

Fig. 3.18. Torque spectrum 
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3.3.2 Quasi-Resonant branch design 

From equation of DC-link current (3.37), the design condition for the Quasi-

Resonant branch corresponding to satisfying inequality (3.38) so that the 

current of DC-link becomes negative after the time interval 1 2t t . 

For the design of components of quasi-resonant branch the following design 

condition has been imposed: 

0 0 0.8 dcZ I V          (3.84) 

where the values of quantities 0I and dcV are known. 

Therefore fixing the resonant pulsation 0  such that the SVPVM period to be 

is integer multiple of resonant period, the values of quantities rL and rC  can be 

calculated by the expression of 0 and the equation (3.84). 

Table 3.4 shows the parameters of the quasi-resonant branch for a fixed 

resonant frequency 80kHzrf  .   

 

TABLE 3.4: DESIGN PARAMETERS OF THE QUASI-RESONANT BRANCH 

QUASI-RESONANT BRANCH SPECIFICATIONS 

Switch component  IGBT 

IGBT’s ESR [Ω] 0.01 

Resonant inductance [μH] 14 

Resonant capacitor [nF] 284 

Resonant frequency [kHz] 80 
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3.3.3 Discrete-time Space Vector PWM 

A discrete-time Space Vector PWM was adopted for generating the pulse 

switch signals of the VSI’s switches; each time interval of the VSI’s switches 

is an integer multiples number of the resonant period rT  so to drive the inverter 

as a ZVS converter (soft-switched VSI).  

In the following, the flow chart of the proposed space vector PWM is presented 

when the voltage vectors 1 2 0, andv v v are applied for the time intervals 

1 2 0T ,T andT respectively. 

 

Fig. 3.19. Inputs and outputs of the proposed discrete-time Space Vector PWM   

 



107 
 

 

Fig. 3.20. Flow chart of proposed discrete-time Space Vector PWM   
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Chapter 4 

NUMERICAL AND EXPERIMENTAL RESULTS  

Simulations of the proposed electrical sub-system were carried out under 

Simulink and Matlab environment in order to prove its high efficiency and high 

performance. 

The behavior of the controlled system during the steady state and transient is 

highlighted by the proposed simulations. 

As mentioned in the Chapter 3, the targets of the control strategy of the Double 

Stage AC-AC Power Converter (DSACPC) are defined as follows: 

for the Stage 1 

1.a) keeping the DC-link voltage at a desired value; 

1.b) tracking of the maximum power point draw from the 

thermodynamic sub-system. 

for the Stage 2 

2.a) generation of desired values of instantaneous active and reactive 

power on the grid utility, in the case of balanced conditions of the 

grid utility; 

2.b) current harmonic rejection, in the case of unbalanced conditions of 

the grid utility. 
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Fig. 4.1. Targets of the proposed Full Sliding Mode control of DSACPC. 
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Discrete models were used with a simulation step time of 1 s . 

The parameters of simulated system are given in Table 4.1. 

 

TABLE 4.1: PARAMETERS OF THE SIMULATED SYSTEM 

PMSG 

Parameters Values 

Rated speed 4500 rpm 

Phase stator resistance R  0.124 Ω 

Phase stator inductance sL  5 mH 

Maximum mechanical Power 10 kW 

PWM Rectifier 

Components Mosfet 

Mosfet’s ESR 0.01 Ω 

Switching frequency 20 kHz 

DC-link DC Capacitor bank 1100 mF 

Quasi-resonant 

branch 

Components IGBT 

IGBT’s ESR 0.01 Ω 

Resonant inductance rL  14 mH 

Resonant capacitor rC  284 nF 

Resonant  frequency 80 kHz 

Voltage Source 

Inverter 

Components IGBT 

IGBT’s ESR 0.01 Ω 

Filter inductance fL  0.4 mH 

Filter resistance LR  0.01 Ω 

Switching frequency 16 kHz 

 

The behavior of the controlled system during the steady-state and transient is 

highlighted by the proposed simulations: 

under balanced conditions of the grid-utility:  

 Simulation 1: 
* *6kW; 0kVArP Q   ( * 600Vdcv  ); 

 Simulation 2: 
* *6 3kW; 0kVArP Q    ( * 600Vdcv  ); 

 Simulation 3: 
* *3kW; 0 3kVArP Q    ( * 600Vdcv  ); 

under unbalanced conditions of the grid-utility:  

 Simulation 4: 
* *

, ,6.15A; 0AL d L qi i   ( * 600 500Vdcv   ); 

 

In the following the simulations results are depicted and an experimental 

prototype is tested in order to validate the performance of the proposed control 

strategy. 
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4.1. Numerical Results 

4.1.1. Simulation 1: 
* *6kW; 0kVArP Q   ( * 600V

dc
v  ) 

For the first simulation let us assume balanced condition of the grid utility and 

the reference values of the DSACPC control strategy are given in Table 4.2: 

 

TABLE 4.2: REFERENCE VALUES OF SIMULATION 1 
DSACPC Stage Parameters Values 

Stage 1 
Rated speed 4500 rpm 

DC-link voltage *
dcv  600 V 

Stage 2 
Instantaneous active power 

*P  6 kW 

Instantaneous reactive power *Q  0 VAr 

 

STAGE 1 

The Fig. 4.2 shows the observed electrical rotor angle of PMSG with respect to 

its actual value: 

 
Fig. 4.2. Actual and estimated electrical rotor angle of PMSG at 4500 rpm.  

 

In the Fig. 4.3 the observed back-EMFs of PMSG are shown and then the back-

EMF phase is compared with its actual value in Fig. 4.4 in order to prove the 

performance of the proposed sliding mode observer. 
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Fig. 4.3. (a) 

 
Fig. 4.3. (b) 

Fig. 4.3. (a) Observed back-EMFs of PMSG; (b) details of the time interval 0.1÷0.2 s. 

 

 
Fig. 4.4. (a) 
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Fig. 4.4. (b) 

Fig. 4.4. (a) Actual and observed back-EMF phase of PMSG; (b) details of the time interval 

0.1÷0.2 s. 
 

Fig. 4.5 shows the errors of d-q axis components of PMSG stator currents in 

order to test the response of the control of the Stage 1.  

 
Fig. 4.5. (a) 

 
Fig. 4.5. (b) 

Fig. 4.5. (a) the errors of d-q axis components of PMSG stator currents;                                                         

(b) details of the time interval 0.1÷0.2 s. 



114 
 

The actual DC-link voltage follows its reference values as shown in the next 

figure. 

 
Fig. 4.6. (a) 

 
Fig . 4.6. (b) 

Fig. 4.6. (a) The actual and reference value of the DC-link voltage;                                                   

(b) details of the time interval 0.1÷0.2 s. 
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STAGE 2 

Fig. 4.7 shows the grid-utility voltages under balanced condition of the grid. 

 

 
Fig. 4.7. The grid-utility voltages. 

 

The grid-side inverter currents are shown in Fig. 4.8; the actual d-q axis 

components of the grid-utility currents and the errors of d-q axis components of 

the grid currents are shown in Fig. 4.9 and 4.10 respectively, in order to prove 

the performance of the adopted control strategy for the Stage 2. 

 
Fig. 4.8. The grid-side inverter currents. 
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Fig. 4.9. (a) 

 
Fig. 4.9. (b) 

Fig. 4.9. (a) The actual and reference values of d-q axis components of grid-utility currents;                     

(b) details of the time interval 0.1÷0.2 s. 

 

 
Fig. 4.10. (a) 
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Fig. 4.10 (b) 

Fig. 4.10. (a) The errors of d-q axis components of grid-utility currents;                                                             

(b) details of the time interval 0.1÷0.2 s. 
 

The proposed control strategy of the Stage 2 is able to follows the reference 

value of instantaneous active and reactive power as shown in Fig. 4.11. 

 
Fig. 4.11. (a) 

 
Fig. 4.11. (b) 

Fig. 4.11.: (a) The actual and reference values of the active and reactive power;                               

(b) details of the time interval 0.1÷0.2 s. 
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Since the active power reference is set to zero, the phase displacement between 

the phase voltages and currents on the grid-utility is always equal to zero as 

shown in Fig. 4.12., where the zero of the d-q axis components of the grid 

currents has been translated to the value of -20 A on the ordinate axis to 

represent these on the same figure. 

 

 
Fig. 4.12. (a) 

 
Fig. 4.12. (b) 

Fig. 4.12. (a) The phase voltage and current of the grid, actual d-q axis components of the grid 

currents; (b) details of the time interval 0.16÷0.2 s. 

 

The presence of the quasi-resonant branch allow to achieve a ZVS if the 

switching frequency of the VSI’s switches is an integer multiple of the resonant 

frequency.  
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The resonant frequency has been fixed equal to 80 kHz as the next figure 

proves. 

 
Fig. 4.13. The DC-link current and the resonant capacitor voltage as time functions. 

 

The errors of the d-q axis components of the grid-utility currents can be treated 

as output of the ST-ISMC of the Stage 2 and the latter tend to sliding manifold   

with a reducer chattering as shown in Fig. 4.14. 

 

 
Fig. 4.14. The errors of d-q axis components of the grid currents in the phase space. 

 

In particular, the mean values of the errors of the d-q axis components of the 

grid-utility currents are: 
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Fig. 4.15. The mean values of the errors of d-q axis components of the grid currents. 

 

 

 

 

 

 

4.1.2. Simulation 2: 
* *6 3kW; 0kVArP Q    ( * 600V

dc
v  ) 

The second simulation is carried out in order to test the dynamic response of 

the control strategy of the DSACPC under balanced condition of the grid-

utility. The reference values of the control strategy are given in Table 4.3: 

 

TABLE 4.3: REFERENCE VALUES OF SIMULATION 2 
DSACPC Stage Parameters Values 

Stage 1 
Rated speed 4500 rpm 

DC-link voltage *
dcv  600 V 

Stage 2 
Instantaneous active power 

*P  6÷3 kW 

Instantaneous reactive power *Q  0 VAr 

 

The reference active power *P is step-changed at 0.02 s from 6 kW 

(corresponding to a reference d-axis current component *

,L di  of 12.3 A) to 3 kW 

(corresponding to a reference d-axis current component *

,L di  of 6.15 A) during 

a time of 300 μs and then backed to 6 kW at 0.06 s during the same time of 300 

μs, while the reference reactive power is contextually fixed to zero 

(corresponding to a reference q-axis current component *

,L qi  of 0 A).  
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STAGE 1 

The observed electrical rotor angle of PMSG follows its actual value as shown 

in Fig. 4.15. 

 
Fig. 4.15. Actual and estimated electrical rotor angle of PMSG at 4500 rpm.  

 

The following two figure show the observed back-EMFs of PMSG and the 

back-EMF phase with respect to its actual value: 

 
Fig. 4.16. (a) 
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Fig. 4.16. (b) 

Fig. 4.16. (a) Observed back-EMFs of PMSG; (b) details of the steady-state. 

  

 
Fig. 4.17. (a) 

 
Fig. 4.17. (b) 

Fig. 4.17. (a) Actual and observed PMSG back-EMF phase;(b) zoom around the actual value. 
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The control of Stage 1 is able to guarantee small values of errors of d-q axis 

components of PMSG stator currents and to keep the reference value of the 

DC-link voltage as depicted in Fig. 4.18 and Fig. 4.19. 

 

 
Fig. 4.18. (a) 

 
Fig. 4.18. (b) 

Fig. 4.18.: (a) The errors of d-q axis components of PMSG stator currents;                        

(b) details of the steady-state. 
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Fig. 4.19. (a) 

 
Fig. 4.19. (b) 

Fig. 4.19.: (a) The actual and reference value of the DC-link voltage;                        

(b) zoom around the reference value 
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STAGE 2 

The grid-utility voltages are supposed balanced as show Fig. 4.20. 

 
Fig. 4.20. The grid-utility voltages. 

 

Fig. 4.21. shows the grid currents, while Fig. 4.22. and Fig. 4.23. show the 

actual d-q axis components of the grid-utility currents and the errors of d-q axis 

components of the grid currents respectively, in order to prove the goodness of 

the adopted control strategy for the Stage 2. 

 
Fig. 4.21. The grid-side inverter currents. 
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Fig. 4.22. (a) 

 
Fig. 4.22. (b) 

Fig. 4.22. (a) The actual and reference values of d-q axis components of grid-utility 

currents; (b) zoom around the reference value 
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Fig. 4.23. (a) 

 
Fig. 4.23. (b) 

Fig. 4.23. (a) The errors of d-q axis components of grid-utility currents;                                            

(b) details of the steady-state 
 

The proposed control strategy of the Stage 2 is able to follows the step-change 

of the reference instantaneous active value providing the reference reactive 

power at same time as depicted in Fig. 4.24. 

 
Fig. 4.24. (a) 
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Fig. 4.24. (b) 

Fig. 4.24. (a) The actual and reference values of the active and reactive power; (b) 

zoom around the reference values 

 

Since the reactive power reference is set to zero, the phase displacement 

between the phase voltages and currents on the grid-utility is always equal to 

zero as shown in Fig. 4.25., where the zero of the d-q axis components of the 

grid currents has been translated to the value of -20 A on the ordinate axis to 

represent these on the same figure. 

 

 
Fig. 4.25. The phase voltage and current of the grid. 
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The resonant frequency of quasi-resonant branch has been fixed equal to 80 

kHz as shown in Fig. 4.26. 

 
Fig. 4.26. The Dc-link current and the resonant capacitor voltage as time functions. 

 

Fig. 4.27 proves that the errors of the d-q axis components of the grid-utility 

currents tend to sliding manifold with a small mean values that is shown in Fig. 

4.28. 

 
Fig. 4.27. The errors of d-q axis components of the grid currents in the phase space. 
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Fig. 4.28. The mean values of the errors of d-q axis components of the grid currents. 

 

 

 

 

 

 

4.1.3. Simulation 3: 
* *3kW; 0 3kVArP Q    ( * 600V

dc
v  ) 

Under balanced condition of the grid utility may be possible to generate a 

desired instantaneous reactive power in order to provide ancillary services to 

grid operator. For this reason a simulation with variable reference value of 

reactive power was carried out.  

So the reference reactive power 
*Q is step-changed at 0.02 s from 0 kVAr to 3 

kVAr (corresponding to a reference q-axis current component *

,L qi  of -6.15 A) 

during a time of 300 μs and then backed to 0 kVAr (corresponding to a 

reference q-axis current component *

,L qi  of 0 A) at 0.06 s during the same time 

of 300 μs, while the reference active power is contextually fixed to 3 kW 

(corresponding to a reference d-axis current component *

,L di  of 6.15 A). 

The reference values of the DSACPC control strategy are given in Table 4.4: 

 

TABLE 4.4: REFERENCE VALUES OF SIMULATION 3 
DSACPC Stage Parameters Values 

Stage 1 
Rated speed 4500 rpm 

DC-link voltage *
dcv  600 V 

Stage 2 
Instantaneous active power 

*P  3 kW 

Instantaneous reactive power *Q  0÷3 VAr 
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STAGE 1 

The actual and observed electrical rotor angle of PMSG with respect to its 

actual value as show in Fig. 4.29. 

 
Fig. 4.29. Actual and estimated electrical rotor angle of PMSG at 4500 rpm.  

 

The observed back-EMFs of PMSG are shown in the Fig. 4.30, while the back-

EMF phase is compared with its actual value in the Fig. 4.31. 

 
Fig. 4.30. (a) 
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Fig. 4.30. (b) 

Fig. 4.30. (a) Observed back-EMFs of PMSG; (b) details of the steady-state. 

 

 

 
Fig. 4.31. (a) 

 
Fig. 4.31. (b) 

Fig. 4.31. (a) Actual and observed back-EMF phase of PMSG;                                              

(b) zoom around the actual value. 
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Fig. 4.32 and 4.33 show the errors of d-q axis components of PMSG stator 

currents and the actual and reference value of the DC-link voltage in order to 

prove the performance of the control of the Stage 1. VS 

 
Fig. 4.32. (a) 

 
Fig. 4.32. (b) 

Fig. 4.32. (a) the errors of d-q axis components of PMSG stator currents;                                   

(b) details of the steady-ste. 
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Fig. 4.33. (a) 

 
Fig. 4.33. (b) 

Fig. 4.33. (a) The actual and reference value of the DC-link voltage;                                       

(b) zoom around the reference value. 
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STAGE 2 

The grid-utility voltages are shown in Fig. 4.34 under balanced condition of the 

grid. 

 
Fig. 4.34. The grid-utility voltages. 

 

The grid-side inverter currents are shown in Fig. 4.35 when the actual d-q axis 

components of the grid-utility currents follows their reference value with small 

errors as shown in Fig. 4.36 and 4.37 respectively. 

 
Fig. 4.35. The grid-side inverter currents. 
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Fig. 4.36. (a) 

 
Fig. 4.36. (b) 

Fig. 4.36. (a) The actual and reference values of d-q axis components of grid-utility currents; 

(b) zoom around the reference values. 
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Fig. 4.37. (a) 

 
Fig. 4.37. (b) 

Fig. 4.37. (a) The errors of d-q axis components of grid-utility currents;                                   

(b) details of the steady-state. 

 

The proposed control strategy of the Stage 2 is able to guarantee the reaching 

of the fixed reference reactive power value without to influence the active 

power generation also during the time interval of its variation as depicted in 

Fig. 4.38. 
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Fig. 4.38. (a) 

 
Fig. 4.38. (b) 

Fig. 4.38. (a) The actual and reference values of the active and reactive power;                

(b) zoom around the references values. 

 

The phase displacement between the phase voltages and currents on the grid-

utility is not equal to zero during the reactive power generation as shown in 

Fig. 4.39., where the zero of the d-q axis components of the grid currents has 

been translated to the value of -20 A on the ordinate axis to represent these on 

the same figure. 
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Fig. 4.39. The phase voltage and current of the grid. 

    

The next figure shows the DC-link current and the resonant capacitor voltage 

for a fixed resonant frequency of 80 kHz. 

 
Fig. 4.40. The Dc-link current and the resonant capacitor voltage as time functions. 

 

The reaching of the sliding manifold is guaranteed with reduced mean values 

of the errors of the d-q axis components of the grid-utility currents as shown in 

Fig. 4.41 and Fig.4.42. 
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Fig. 4.41. The errors of d-q axis components of the grid currents in the phase space. 

 

 
Fig. 4.42. The mean values of the errors of d-q axis components of the grid currents. 

 

 

 

 

 

4.1.4. Simulation 4: 
* *

, ,
6.15A; 0A

L d L q
i i   ( * 600 500V

dc
v   ) 

The last simulation was carried out in order to prove the robustness of the 

proposed control strategy under unbalanced grid-utility conditions. So a 5-th 

and 7-th harmonic voltages have been added to the three-phase sinusoidal grid-

voltage and the reference values of d-q axis current component of Stage 2 have 

been fixed to 6.15 A and 0 A respectively; moreover the reference value of the 

DC-Link voltage is step-changed at 0.02 s from 600 V to 500 V during an 
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interval time of 300 μs and then backed to 600 V at 0.06 s during the same 

interval time of 300 μs. 

The reference values of the DSACPC control strategy are given in Table 4.5: 

 

TABLE 4.5: REFERENCE VALUES OF SIMULATION 4 
DSACPC Stage Parameters Values 

Stage 1 
Rated speed 4500 rpm 

DC-link voltage *
dcv  600÷500 V 

Stage 2 
reference d-axis current component 

*
,L di  6.15 A 

reference q-axis current component 
*

,L qi  0 A 

 

STAGE 1 

The observed electrical rotor angle of PMSG follows its actual values as shown 

in Fig. 4.43. 

 
Fig. 4.43. Actual and estimated electrical rotor angle of PMSG at 4500 rpm.  

 

The same tracking occurs for the observed back-EMFs of PMSG with respect 

to their actual values are shown in the Fig. 4.44 and Fig. 4.45. 
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Fig. 4.44. (a) 

 
Fig. 4.44. (b) 

Fig. 4.44. (a) Observed back-EMFs of PMSG; (b) details of the steady-state. 

 

 
Fig. 4.45. (a) 
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Fig. 4.45. (b) 

Fig. 4.45. (a) Actual and observed back-EMF phase of PMSG;                                                       

(b) zoom around the actual value. 

 

The proposed control strategy of Stage 1 is able to guarantee small errors of d-

q axis components of PMSG stator currents and the reaching of the reference 

value of the DC-link voltage also under unbalanced condition of the grid-utility 

as shown in Fig. 4.46. and Fig. 4.47. 

 
Fig. 4.46. (a) 
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Fig. 4.46. (b) 

Fig. 4.46. (a) The errors of d-q axis components of PMSG stator currents;                                               

(b) details of the steady-state. 

 

 
Fig. 4.47. (a) 

 
Fig. 4.47. (b) 

Fig. 4.47. (a) The actual and reference value of the DC-link voltage;                                         

(b) zoom around the reference value. 
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STAGE 2 

The grid-utility voltages under unbalanced conditions are shown in Fig. 4.48. 

 
Fig. 4.48. The grid-utility voltages. 

 

In this case the proposed control strategy of Stage 2 is able to achieve a current 

harmonic rejection of the grid phase currents as depicted in Fig. 4.49. 

 
Fig. 4.49. The grid-side inverter currents. 

 

The actual d-q axis components of the grid-utility currents follows their 

reference values as shown in Fig. 4.50 and small steady-state errors  as shown 

in Fig. 4.51. 
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Fig. 4.50. (a) 

 
Fig. 4.50. (b) 

Fig. 4.50. (a) The actual and reference values of d-q axis components of grid-utility 

currents; (b) zoom around the reference values. 

 

 

 
Fig. 4.51. (a) 
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Fig. 4.51. (b) 

Fig. 4.51. (a) The errors of d-q axis components of grid-utility currents;                                        

(b) details of the steady-state. 

 

Under unbalanced conditions of the grid utility, the power is deformed as 

demonstrated in the next figure. 

 
Fig. 4.52. The actual values of the instantaneous active and reactive power. 

 

Since the reference value of the d-axis current component is fixed to zero 

( *

, 0AL di  ), the phase displacement between the phase voltages and currents 

on the grid-utility is always equal to zero as shown in Fig. 4.53., where the zero 

of the d-q axis components of the grid currents has been translated to the value 

of -20 A on the ordinate axis to represent these on the same figure. 
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Fig. 4.53. The phase voltage and current of the grid. 

 

The resonant frequency has been fixed equal to 80 kHz and the trend of the 

DC-link current and the resonant capacitor voltage are insensible with respect 

to unbalanced conditions of grid-utility as shown in Fig. 4.54. 

 
Fig. 4.54. The Dc-link current and the resonant capacitor voltage as time functions. 

 

Also under unbalanced conditions of the grid-utility the sliding mode occurs 

with small mean values of the errors of the d-q axis components of the grid-

utility currents as shown in Fig. 4.55 and Fig.4.56. 
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Fig. 4.55. The errors of d-q axis components of the grid currents in the phase space. 

 

 
Fig. 4.56. The mean values of the errors of d-q axis components of the grid currents. 

 

Discussion of numerical results 

 

The simulations results prove the goodness of the proposed control strategy 

since the control strategy guarantees a fast response of the proposed electrical 

subsystem and the actual values of controlled variables have the ability of 

tracking their references with small errors. So the starting targets of the control 

strategy of both Stage 1 and Stage 2 of DSACPC are achieved under balanced 

and unbalanced conditions of the grid-utility. 
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4.2. Experimental Results 

An experimental prototype has been arranged in order to validate the 

simulations results and thus the performance of the proposed control strategy. 

This prototype consists of a Permanent Magnet Synchronous Generator 

(PMSG) coupled with the grid-connected Double-Stage AC-AC Power 

Converter (DSACPC) that is composed by three-phase PWM rectifier, a DC-

link capacitor filter, a three-phase soft-switched Voltage Source Inverter (VSI) 

and a three-phase step-up transformer connected to grid utility. 

Fig. 4.57. shows the experimental prototype: 

 

 

Fig. 4.57. Experimental prototype 
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The control strategy has been developed in Matlab/Simulink and implemented 

on DSP dSpace1103 Motorola PowerPC 60K 333 MHz. 

The main specifications of the experimental prototype are listed in Table 4.6. 

TABLE 4.6: SPECIFICATIONS OF THE EXPERIMENTAL PROTOTYPE 

PMSG 

Siemens 3-phase 

1FT6-084-8SH7 

Rated speed 4500 rpm 

Rated torque 20 Nm 

Rated power 9.42 kW 

Rated current 24.5 A 

PWM 

Rectifier 

HIPERFET Power Mosfet Q-Class 

IXYS IXFB50N80Q2 

800 V – 50 A 

(25°C) 

DC-link 
DC Capacitor bank 

Electrolityc 2x2200mF/400V in series 
1100mF/800V 

Quasi-

resonant 

branch 

Components IGBT 

IGBT’s ESR 0.01 Ω 

Resonant inductance rL  14 mH 

Resonant capacitor rC  284 nF 

Resonant  frequency 80 kHz 

Voltage 

Source 

Inverter 

SEMIKRON 

3xSKM 50 GB 123D 

1200 V – 50 A 

(25°C) 

Grid Power 

Transformer 

Rated Power 10kVA 

Rated voltage 80V/400V 

 

The same operative conditions of the simulations 1, 2, 3 and 4 have been fixed 

for the experimental prototype and the experimental response of the controlled 

system is shown in Figs 4.58, 4.59., 4.60 and 4.61. respectively, where the zero 

of the d-q axis components of the grid currents has been translated to the value 

of -20 A on the ordinate axis to represent these on the same figures. 
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Fig. 4.58. The phase grid voltage and current and the DC-link voltage under the same operative 

conditions of Simulation 1.  

 

 

Fig. 4.59. Grid-voltage and grid-current, actual d-axis component ,L di  of the grid current 

for a step change of 
*

,L di  (the same operative conditions of Simulation 2). 
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Fig. 4.60. Grid-voltage and grid-current, actual q-axis component ,L qi  of the grid current 

for a step change of *
,L qi  (the same operative conditions of Simulation 3). 

 

 

Fig. 4.61. Grid-voltage and grid-current under unbalanced conditions of grid-utility (the same 

operative conditions of Simulation 4) 

 

In all the considered experimental tests the errors of d-q axis components of the 

grid-utility currents has been within ± 0.1 A. 
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Fig. 4.62. shows the DC-link voltage and current, the resonant capacitor 

voltage and the switch pulse signal of the IGBT of the quasi-resonant branch 

required to obtain a resonant frequency of 80 kHz under the same operative 

conditions of Simulation 1. 

 

Fig. 4.62. Dc-link voltage and current, resonant capacitor voltage and switch pulse signal of 

IGBT of quasi-resonant branch under the same operative conditions of Simulation 1. 
 

The Total Harmonic Distortion (THD) of the grid-current has been estimated 

by means of a FFT analysis of the steady-state grid-current harmonic spectra. 

Fig 4.63 shows the grid-current harmonic spectra where each harmonic 

amplitude is expressed in percentage of the amplitude of the fundamental. THD 

is about 4%. 

 

Fig. 4.63. Steady-state grid-current harmonic spectra. 
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Discussion of experimental results 

As can be seen from the previous figures compared with the numerical results 

of subsection 4.1, the experimental results as in well accordance with the 

simulated ones in all the considered operative conditions  

Thus the proposed control strategy is able to achieve the targets of the both 

stages of DSACPC under both balanced and unbalanced grid-utility conditions 

guaranteeing at same time a fast dynamic response of the controlled system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 
 

CONCLUSIONS 
 

In this Ph.D. thesis the design of a new Grid-connected Double-Stage AC-

DC/DC-AC Power Converter (DSACPC) for a Concentrating Solar plant for 

Combined generation of Heat and Power (CS-CHP) is presented. 

Thanks to Concentrating Solar Plant and the thermodynamic sub-system, the 

high-temperature heat, achieved using mirrors to concentrate the sun rays to a 

receiver tube crossed by thermal fluid, is converted into mechanical energy by 

means of a coupled Organic Rankine Cycle (ORC). So the mechanical energy 

outlet by turbine is input to electrical sub-system that uses it to generate 

electric power on the grid supply. 

Since the stream cycle has a low efficiency, caused by low operating 

temperature (400°C for synthetic oil), and the CS-CHP has high cost of 

installing (i.e. the Concentrating Solar Plants are much larger than 

photovoltaic plant), a new Grid-connected Double-Stage AC-DC/DC-AC 

Power Converter (DSACPC) with Second-Order Super-Twisting Integral 

Sliding Mode Control for electrical sub-system is proposed, in order to 

maximize efficiency of the electrical sub-system so to maximize the global 

efficiency of proposed plan and to make competitive the grid-connected CS-

CHP in small scale application. 

The proposed Double Stage AC-AC Power Converter (DSACPC) consists of 

two fundamental parts: 

 the Stage 1 consists of a PMSG coupled in axis with turbine, a 

boost-type PWM rectifier and a DC-link capacitors bank; these 

components are controlled by means of full sliding mode control that 

is constituted by the Back-EMF and rotor angle sliding mode 
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observer, an Integral Sliding Mode Control (ISMC) for the DC-link 

voltage control, a Super-Twisting Integral Sliding Mode Control 

(ST-ISMC1) in order to achieve a sliding mode current control of the 

Stage 1; 

 

 the Stage 2 consists of a three-phase Voltage Source Inverter (VSI) 

and a three-phase step-up transformer connected to the grid utility; 

the VSI is controlled by means of a Super-Twisting Integral Sliding 

Mode Control (ST-ISMC2) in order to achieve a sliding mode 

current control of the Stage 2. 

The proposed control strategy applied both two stages of DSACPC is able to 

maximize the extracted energy from the thermodynamic subsystems, while to 

regulate the DC-link voltage and to achieve unity power factor and low 

distortions current. 

In particular the targets of the proposed control strategy are different for the 

two stages of DSACPC and can be defined as follows: 

for the Stage 1 

1.a) keeping the DC-link voltage at a desired value; 

1.b) tracking of the maximum power point draw from the 

thermodynamic sub-system. 

for the Stage 2 

2.a) generation of desired values of instantaneous active and reactive 

power on the grid utility, in the case of balanced conditions of the 

grid utility; 

2.b) current harmonic rejection, in the case of unbalanced conditions of 

the grid utility. 

For the formulation of the proposed control strategy the following means 

components were designed: the “Sliding Mode Observer” to estimate the 

electrical rotor angle and the back-EMFs of PMSG, the “Integral Sling Mode 

Controller” the DC-Link voltage control, the “Second-Order Super-Twisting 



158 
 

Sliding Mode Controller” to realize a current control of both stages in order to 

achieve the fixed targets of the proposed control strategy. Each of the latter 

components has been designed and tested by means of simulations and an 

experimental prototype was carried out in order to validate the performance of 

the proposed control strategy. 

The numerical and experimental results are explained in Section 4 and these 

prove the high efficiency and high performance of the full proposed control 

system; in fact, thanks to the proposed control law the controlled system 

exhibits fast dynamic response, strong robustness and good current harmonic 

rejection.   

Moreover since the employed control strategy can regulate both the reactive 

and active instantaneous power given to the grid-utility under balanced 

conditions of the grid, the proposed system may be enclosed in a smart-grid 

contest thanks to its performance.     

In conclusion in this Ph.D. thesis a small scale CS-CHP plant has been 

developed for urban area installation, using buildings roofs or factory sheds 

although the global efficiency is still low, but comparable with other renewable 

energy systems (i.e. Photovoltaic systems) for the spread in residential 

application. 
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