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Abstract 

 

The problem of the energy harvesting to face the more and more increasing 

energy demand is currently challenging. The higher part of our electrical energy 

(about 80%) is produced by thermoelectrical power plants, which exploit the so-

called Non-renewable energy resources (e.g. oil and gas), whose re-growth rate 

lasts millions of years and are so to be considered as in a fixed amount. 

On the other hand, the Renewable energy resources are not reduced by their 

exploitation. For instance, solar and wind energy are obviously both permanent 

renewable resources, because the energy flow is lower than the energy storage, 

contrary to the oil resource, where the flow exceeds its natural re-growth rate. 

Recalling that the renewable energy resources are not able to cover the 

energy needs (they are often used for the Peak Shaving and not to cover the basis 

energy demand), it is clear that a new energy resource is necessary to meet the 

increased energy demand. Moreover, it has to be non-polluting, renewable and 

continuously available with no interruptions (unlike solar and wind energy, 

which are affected by the presence of sunlight and wind). 

This new energy source can be the Nuclear Fusion Energy, a new kind of 

energy resource that exploits the energy released by the collision and the fusion 

of two light atoms (such as hydrogen or its isotopes), according to Einstein 

equation and the mass-energy balance. Although controlled fusion is extremely 

technologically challenging, a fusion power plant would offer significant 

advantages over the existing renewable and non-renewable energy sources, such 

as the practically infinite fuel supply, the absence or air pollution or greenhouses 

gas during normal operations and the absence of the risk of a nuclear meltdown. 
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The collision of two nuclei can occur if and only if their kinetic energy is 

high enough to overcome the energy barrier opposing the fusion reaction, due to 

the long-range Coulomb repulsion. Therefore, the hydrogen gas is heated up to 

very high temperatures (one hundred million degrees and even more), reaching 

the Plasma state. 

Because of this temperature range, the plasma must be confined and must 

not touch any structure, in order to avoid yielding heat loads as well as 

mechanical loads. The Tokamak is a fusion machine aimed at the plasma 

confinement by means of a magnetic field generated by a set of coils surrounding 

the plasma itself. In principle, the plasma is supposed to be toroidal shaped 

during normal operations, but this symmetrical condition is ideal, because of 

many effects which may lead to a non-axisymmetric perturbation of the plasma 

column. 

For these reasons, this PhD thesis is devoted to the analysis of some non-

axisymmetric plasma perturbations, their effects during the plasma operations 

and their modelling. The PhD thesis is divided as follows: 

1. The first chapter is a brief overview of the main principles the controlled 

thermonuclear fusion is based on, focusing on the plasma confinement 

inside a tokamak, the additional heating and the roadmap towards the 

fusion energy. 

2. The second chapter describes the diamagnetic flux evaluation in ITER 

tokamak for the estimation of the poloidal beta in the presence of non-

axisymmetric effects. In particular, the COMPFLUX procedure used for the 

analysis is presented, then the effects of the main three-dimensional 

effects are evaluated and the performance of the compensation system is 

assessed. 

3. The third chapter shows the electromechanical effects due to non-

axisymmetric halo currents in ITER tokamak. After discussing the 

mathematical model, the mechanical effects in terms of forces and 

torques on the structures surrounding the plasma are evaluated. 

4. The fourth chapter is devoted to the flux-density field lines tracing and to 

the identification of non-axisymmetric plasmas. The mathematical model 

and the procedures developed for the analysis are presented. Afterwards, 
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the standard and geometrical integrators are compared with reference to 

test cases for which analytical solutions based on the use of Clebsch 

potentials are available. Finally, the field line tracing technique is used for 

the non-axisymmetric plasma boundary reconstruction and a novel 

technique for the 3-D plasma identification is presented and validated. 

5. The fifth chapter reports the main conclusions regarding all the topics 

dealt with this PhD thesis. 

 

 



 9 

Chapter 1  

Introduction to the Thermonuclear Fusion 

This chapter illustrates a brief overview of the most important aspect of the 

Controlled Thermonuclear Fusion: the basic principles, the most important 

features and the evolution of the nuclear fusion technology are introduced to set 

a framework for what is described in the following chapters. 

 

1.1 Towards the energy of the future: Controlled 

Thermonuclear Fusion 

The estimations about the worldwide population growth show that by half 

of the present century it will double while the need for energy will be triple. 

Taking into account that the most part of energy sources come from the 

limited primary sources our planet produced in millions of years (for instance 

oil, carbon and gas), their overexploitation would cause such a pollution to upset 

the entire ecosystem, yielding the problem of finding a sure, green and plentiful 

enough resource. 

Renewable energy resources (e.g. hydroelectric energy) offer many 

advantages, are able to satisfy parts of our energy needs, but will never be able 

to replace all fossil fuels, as for Italy, where the energy production from these 

sources is around 10% of the national energy one. This percentage makes hard 

the achievement of any target foreseen in the Kyoto Protocol. 

The solution to the energy demand can only come by a portfolio of many 

options including improvements in the energy efficiency and renewable energy, 

nuclear fission and carbon extraction and use. 
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The Nuclear fusion can be a long-term solution to the energy-supplying 

problem. As the fusion fuel is the hydrogen (and its isotopes), there is a 

theoretically infinite storage in oceans, seas and lakes, providing so much high 

quantities to make millions of reactors work for millions of years. 

While deuterium is widely spread in nature, tritium is not. Moreover, 

because of its short decay time, tritium is an unstable atom, thus the decision to 

produce it by reactions between neutrons and lithium (widely present in nature). 

Among the many nuclear fusion advantages, we can list: 

1. fuel inexhaustibility; 

2. the fusion products (helium and neutrons) are not radioactive elements 

as the tritium is (however, radioactivity problems are present, first of all 

because tTritium is involved in the reaction and secondly because high 

speed neutrons hit the structures of the reactor, with the possibility of 

activated them); 

3. the fuel quantity needed to nuclear fusion is very low and there is no chain 

reaction. 

Like nuclear fission, nuclear fusion too is based on mass – energy 

transformation, as stated in the well-known Einstein Equation: 

𝐸 = 𝑚𝑐2 (I.1)  

Products’ atomic mass is not equal to that of the reagents and this mass 

defect is turned into products’ kinetic energy; therefore, the mass – energy 

balances can be verified if and only if both the reagents’ and products’ masses 

and kinetic energies are taken into account, as follows: 

𝐸𝑅 +𝑚𝑅𝑐
2 = 𝐸𝑃 +𝑚𝑃𝑐

2 (I.2)  

Considering that the mass converted in energy is about 1‰ – 1% of the 

reagents’, if 1 𝑘𝑔  of fuel is involved into the reaction, the energy produced is 

about 1014 𝐽: the result is a huge energy production to be converted in electrical 

energy, using just 1 litre of water. 

Another nuclear fusion important advantage is the safety, if compared with 

the nuclear fission, where the atomic bomb effect should be avoided. In fission 

reactors, uranium bars are put inside a liquid that slows the fission reactions in 

case of wrong control actions, which bring to dangerous situations, as the core 

fusion. On the other hand, fusion reactions use a very low fuel quantity, with a 
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very low release of energy and radioactivity in case a dangerous situation should 

occur. It is worth noticing that tritium is the unique radioactive material involved 

in the fusion reactions and is characterized by a half-life time lasting some days, 

differently from the materials activated by fast neutron, whose half-life time is 

comparable with that of the activated materials in nuclear fission. 

Among all the objectives the nuclear fusion achieved, the JET (Joint 

European Torus) in Great Britain, produced 16 MW Nuclear Fusion Power, even 

though using 25 MW, towards the end of the eighties, when the so called cold 

fusion was announced to the world. Nowadays the Break-Even Point (operational 

condition in which the nuclear fusion power is equal to the electrical power 

absorbed) is not achieved yet. Introducing the Energy Amplification Factor (Q), 

defined as the ratio between the nuclear fusion power and power need to sustain 

nuclear fusion reactions, we can say that the Break-Even Point is reached when 

𝑄 = 1. 

To better understand the meaning of the Energy Amplification Factor, let 

us consider the balance equation between deuterium and tritium involved in a 

nuclear fusion reaction: 

𝐷 + 𝑇 → 𝐻𝑒4 + 𝑛 + 17.6𝑀𝑒𝑣 (I.3)  

where: 

 D is the Deuterium; 

 T is the Tritium; 

 4He is the Helium 4; 

 N is the neutron; 

 𝑀𝑒𝑣 is the kinetic energy produced by the fusion reaction, measured in 

Megaelectronvolts ( 1𝑒𝑉 = 1.602 ⋅ 10−19𝐽 , since 𝑒  is the elementary 

charge of a proton). 

Having no electrical charge, the neutrons are shot against the walls, 

releasing the thermal energy to the surrounding structures, heating them; this 

thermal energy can be recovered by using coils and heat exchangers and then 

used to produce electrical energy. 

As regards the 4He atoms (in the following, they will be named alpha 

particles), they have their own electric charge, so they are confined inside the 

Vacuum Vessel, giving their energy to other particles and allowing other fusion 
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reactions. As consequence, once a certain energetic threshold is reached and 

exceeded, this process can continue with no interruptions; the only condition to 

satisfy is the insertion of new fuel, i.e. deuterium and tritium, and the extraction 

of the exhausted alpha particles that already gave their energy to the other 

particles. 

 

 

Fig. I.1: Nuclear Fusion Reaction 

 

When the alpha particles satisfy the total energy requirement for the 

sustainability of the fusion reactions, the fusion reaction reaches a condition 

named Ignition: the plasma is heated by the energy released by the alpha 

particles, no more electrical energy has to be absorbed by the electrical grid and 

the Energy Amplification factor tends to infinite. 

This was ITER’s first goal (International Tokamak Experimental Reactor), 

but a little way down the road, it was reduced to an Energy Amplification Factor 

ranging from 5 to10. 

 

1.2 Plasma confinement 

Differently from the nuclear fission reaction, where a high energy neutron 

is shot on an atom, splitting it in others lighter atoms and releasing energy, in 

nuclear fusion reactions two electrically charged particles must hit and fuse, 

overcoming the Coulomb repulsion. 

Recalling the expression of the energy of a particle moving into the 

electrostatic field generated by a still one, it is clear that the kinetic energy it 
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needs to have to approach the electrostatic source to a few Angstrom distance is 

huge, resulting in a speed being a non-negligible fraction of the speed of the light. 

To guarantee such a high kinetic energy, it is necessary to heat the D-T 

mixture up to 100 million of degrees (about 5-6 times the temperature of the 

sun), so to reach the Plasma state. 

This is not the unique condition to ensure for a correct fusion reaction: in 

fact, considering a high enough kinetic energy so to let them to collide, the 

particles must do it showing their entire cross section. It is clear that the 

probability that this condition is satisfied is very low, so as the probability that a 

collision generates a correct fusion reaction, because of the very small cross 

section of the particles. 

For this reason, it is necessary that a high number of particles per unit 

volume be involved in the fusion reactions, so that the starting fusion probability 

is proportional to the product of reagent densities. 

Finally, it is also necessary that the interaction time of the particles is long 

enough to allow the nuclear fusion reactions to start: it is worth noticing that if 

the plasma is heated up to 100 million of degrees, the particles will move with a 

speed about of 10000
𝑘𝑚

𝑠
, and the time they spend in a 31cm  volume is about 

1210 s . 

From these considerations, it is clear that the number density of the 

reagents is inversely proportional to their interaction time; therefore, a criterion 

linking the confinement time and particle densities is necessary and can be 

derived from some energetic considerations. 

First, let us consider that it is possible to heat a plasma up to a temperature 

of the order of 10 keV instead of 100 keV, thanks to the quantum tunnelling 

through the Coulomb barrier. For equal deuterium and tritium number densities, 

the thermonuclear power per unit volume generated by the fusion reactions is: 

𝑃 =
1

4
𝑛2 < 𝜎𝜈 > Δ𝐸 (I.4)  

where: 

 𝑛 is the particle density; 

 < 𝜎𝜈 > is the reaction rate, being 𝜎 the collisional cross section and 𝜈 the 

relative speed of the colliding particles; 
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 Δ𝐸 is the energy released after the collision. 

About the fifth part of this power is transferred to the alpha particles, which 

increase their kinetic energy, while the 80% is carried by the neutrons. Taking 

into account all the energy losses (e.g. due to radiation and transmission to the 

structures surrounding the plasma), in 1957 Lawson introduced a relation 

between the Thermonuclear Power Gain and the product of the Confinement 

Time and the numeric density of the particles. He also expressed the power 

available to heat the plasma as function of the total power leaving the plasma [1] 

as follows: 

𝑛 ⋅ 𝜏 ≥
3𝑘𝐵𝑇

𝜂
4(𝜂 − 1)

< 𝜎𝜈 > Δ𝐸 − 𝛼√𝑇
 (I.5)  

being: 

 𝑘𝐵 the Boltzmann constant; 

 𝑇 the plasma temperature; 

 𝜂 an efficiency factor. 

Choosing η=1/3, as Lawson did, we get the condition for magnetically 

confined plasmas known as Lawson Criterion: 

𝑁 ⋅ 𝜏𝐸 ≥ 10
20𝑚3𝑠−1 (I.6)  

After having introduced the criterion of fusion reactions for a plasma to 

burn, in the following, the main techniques to confine it inside the reactor are 

depicted. The magnetic confinement is based on the motion of a charged particle 

in a Flux Density Field; if it has an initial speed with both the perpendicular and 

parallel components to the field lines, the trajectory it covers is a helix around 

the flux density field lines, whose radius is the so named Larmor Radius: 

𝑟𝐿 =
𝑚𝑣⊥
𝑞𝐵

 (I.7)  

This consideration led to the first idea to design a fusion machine as a linear 

solenoid, as in Fig. I.2: 
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Fig. I.2: Straight solenoid and particles trajectories around the flux density field lines 

 

This design was quickly abandoned because of the edge losses in terms of 

non-contained particles, so as for the Magnetic Mirrors [1] (they were much more 

lower than those of the straight solenoid, because of the edge additional 

solenoids that increased the magnetic field). For these reasons, a Toroidal 

Solenoid named Tokamak (TOроидальная КАмера с МАгнитными 

Катушками) was proposed at the beginning of fifties [2], so that particles cannot 

get out of it, if the drift effects are neglected. 

 

 

Fig. I.3: Magnetic confinement in a toroidal solenoid 

 

Besides the magnetic confinement (the gravitational confinement used into 

the stars cannot be used on the earth because the gravity force is very low and 

vertically directed), the inertial confinement can be used to contain the plasma. 

This technique is based on the creation of the plasma by irradiating a frozen 

pellet consisting of a D-T mixture, by means of high power laser beams. The 

ionization reactions heat and compress the pellet, making it to overcome the 

threshold between solid matter and plasma (the state the pellet reaches is named 

Hot Dense Matter [3]), reaching thermonuclear temperatures and densities 1000 

times higher than that of the solid matter and finally blowing up. 
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Once heated the particles need some nanosecond to leave the pellet 

( 1110 s  ) because of their inertia, being able to interact with the other particles 

during this time interval. 

On the other side, typical magnetically confined plasma densities require a 

containment time of a few seconds. 

 

1.2.1 Drift Effects in Magnetically Confined Plasmas in 

Tokamaks 

It is well known that in a toroidally continuous solenoid there is no 

magnetic field anywhere except for the region inside the solenoid itself, where it 

is toroidally directed and decreases with the radial coordinate. 

Therefore, the charged particles move in an inhomogeneous magnetic field 

[1], and the Larmor radius (I.7) is linearly proportional to the radial position of 

the charged particle. As consequence of the study of the particles’ motion via 

integration of D’Alembert equation (the electrical and magnetic forces balance 

the inertial force), we note that the particles are affected by a Gradient Drift. For 

this reason, they do not return in their starting position after one turn along the 

circumference whose centre is on the flux density field line and whose radius is 

𝑟𝐿. 

 

 

Fig. I.4: Particles Gradient Drift 

 

Besides the gradient drift, another drift component is the Curvature Drift 

due to the Centrifugal Force acting on the charged particles and pushing them 

outside the torus. 
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At last, also the Electrical Drift affects the plasma particles and depends on 

the electrical charges separation generated by the previous effects (positive and 

negative charges have gradient drifts in different directions): the electrical 

charges displacement generates an electrical field whose force must be taken 

into account into the force balance equation. 

Since the magnetic flux density magnitude is about few Teslas and the 

particles’ speed is several thousand kilometres per second, the drift time is not 

compatible with the Lawson’s Criterion; therefore, the charged particles must 

not have drifts along a unique direction to face the drift effects. 

This condition can be achieved by changing the topology of the magnetic 

flux density field lines, by adding the field generated by an axisymmetric loop 

current placed inside the Vacuum Vessel to the toroidal field. It not possible to 

place a current inside the chamber because of plasma hot temperature, so the 

idea to induce a current in it via electromagnetic induction, thus exploiting the 

high plasma conductivity. 

Basing on these suppositions, a Tokamak has a Central Solenoid around the 

vacuum vessel, acting like the primary winding of a transformer that induce an 

electromotive force on the plasma; the following figure Fig. I.5 shows a sketch of 

the main coils inside a tokamak. 

 

 
Fig. I.5: Tokamak coils 

 

At last, to prevent the radial expansion of the plasma column, a vertical 

magnetic field has to be superposed: this need is due to the absence of a Stress 

Tensor in the plasma balancing the Lorentz expansion force. Additional magnetic 
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fields are needed for the plasma shaping and control; the vertical and shaping 

fields are produced by the Poloidal Field Coils (PFCs). 

 

1.3 Plasma Heating 

Plasma current in tokamaks is not good enough to heat the D-T mixture up 

to 100 million degrees required for the gas in the vacuum chamber to turn into 

plasma and for the fusion reactions to occur; moreover, the hot plasma must then 

be sustained at these temperatures in a controlled way in order to extract energy. 

Generally, Tokamaks can rely on some additional heating sources that 

work in concert to provide the input heating power required to bring the plasma 

to the temperature necessary for fusion [4]. 

Ultimately, in the hopeful hypothesis of ignition operative condition, the 

external heating can then be strongly reduced or switched off altogether; in fact, 

an ignited plasma is an essential step to reaching the goal of fusion power 

generation, because at least 50%  of the energy needed to drive the fusion 

reaction is generated internally  

Fig. I.6 shows the sketch of the additional heating systems detailed in the 

following. 

 

 

Fig. I.6: Plasma Additional Heating 
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1.3.1 Heating Transformer 

The heating transformer was already examined in Section 1.2.1: the 

magnetic flux time variation generated by the current flowing in its windings 

creates an electromotive force into the plasma; the plasma current starts flowing 

and heats it via Joule dissipation. 

 

1.3.2 RF Heating 

It is based on the radiation on the plasma of an electromagnetic wave with 

a frequency ranging in the Radio Frequencies. 

Being v the particles’ speed while moving on a spiral around magnetic field 

lines, it is possible to define the ratio between the velocity and the radial 

coordinate of the particles as Cyclotron Frequency. 

This is a very important parameter because it is related to the temperature 

of the particles and to the magnetic field value at their position; therefore, if an 

electromagnetic wave is radiated on the plasma, it possible to approximatively 

know the plasma region heated. 

Usually three frequencies are used, depending on the magnetic flux density 

field and the kind of particles the plasma consists of: 

 Electron Cyclotron: cyclotron frequency for electrons; 

 Ion Cyclotron: cyclotron frequency for ions; 

 Lower Hybrid: it is based on the presence of other particles with different 

speeds (temperatures). 

 

1.3.3 Heating by Neutron Beam Injection (NBI) 

This technique consists in accelerating neutrons outside the Vacuum Vessel 

and making them collide with the plasma particles; in this way, they yield kinetic 

energy to the plasma, heating it. 

Neutrons are used because they have no electric charge, and so are not 

deflected by the magnetic field barrier used for plasma containment; thus the 

problem of their acceleration by using no particles accelerators based on 
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magnetic fields. Actually, the charged particles are accelerated and then 

neutralized before entering into the vessel, even though this results in a decrease 

of their kinetic energy. 

Fig. I.7 shows a conceptual sketch of the Neutral Beam Injector: 

 
Fig. I.7: Neutral Beam Injector section 

 

NBI heating generates also a secondary effect. If the particle beam is 

directed in the poloidal plane, it does not affect the toroidal plasma current. 

Otherwise, the neutral beam would impact the plasma particles yielding them a 

toroidal component of the velocity and modifying the toroidal plasma current, 

resulting in an enhanced heating by Joule dissipation; this effect is named Current 

Drive. 

1.3.4 Heating by Adiabatic Compression 

It is based on Adiabatic Compression Principle: if a perfect gas is subjected 

to a very fast compression, the heat losses and the thermal exchanges are 

negligible; therefore, the pressure and the temperature increase. 
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1.4 The Fusion Roadmap: Towards the Fusion Power 

Plants 

Because of a combined effect of population growth and energy 

consumption pro capita of OECD parties increase, a long-term perspective on 

fusion is mandatory. 

For these reasons, a Fast Track approach [5] to the fusion energy was 

defined in 2001; on such basis, a program aimed at fusion electricity by 2050 was 

defined in the Fusion Roadmap developed in 2013 [6], based on the following 

three points: 

 ITER (International Tokamak Experiamental Reactor) tokamak: a 

fundamental step towards the fusion energy production; 

 DEMO (DEMOnstration power plant) tokamak: a prototype for a 

power-producing fusion reactor between ITER and the commercial 

fusion power plant; 

 IFMIF (International Fusion Materials Irradiation Facility): a step 

for material qualification under intense neutron irradiation. 

The roadmap foresees three periods having the following main objectives: 

1. Horizon 2020 (2014-2020): 

 Construct ITER within scope, schedule and cost; 

 Secure the success of future ITER operation; 

 Prepare the ITER generation of scientists, engineers and 

operators; 

 Lay the foundation of the fusion power plant; 

 Promote innovation and EU industry competitiveness. 

2. Second period (2021-2030): Exploit ITER up to its maximum 

performance and prepare DEMO construction. 

3. Third period (2031-2050): complete the ITER exploitation, 

construct, and operate DEMO. 

Being DEMO the only step between ITER and fusion power plants [7], it has 

to: 

 Produce few hundreds MWs of net electricity for the grid; 

 Breed the amount of tritium it needs; 
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 Demonstrate the feasibility of all the technologies for the 

construction of the future fusion power plants. 

For the same reason, DEMO’s operating scenarios will have to be as far as 

possible extrapolated from ITER, to meet its goals. 

 

 
Fig. I.8: Fusion Power Plant conceptual sketch 

 
However, the feasible realisation of fusion power plants energy aimed to 

the energy production has to face many challenges: 

1. Plasmas must be confined at temperatures many times higher than that 

of the sun, requiring a magnetic confinement of the plasma; the plasma 

operative conditions are developed ad hoc for ITER tokamak and will 

definitively require enhances to meet the requirements for DEMO. 

2. The power necessary to the plasmas sustainment at so high temperatures 

is exhausted in the region of the divertor, withstanding huge heat loads 

with new type of plasma-facing materials and exhausting systems; the 

born of a technically feasible solution for the heat exhaust is still 

challenging in DEMO. 

3. The research of new Neutron resistant materials is also challenging for 

DEMO, since they are asked to be able to withstand up to 14MeV neutron 

flux, preserving their structural and thermal properties, to ensure 

efficient electricity production and adequate plant availability. 

4. Tritium self-feeding is mandatory for DEMO, which will burn about 0.4kg 

of tritium per operational day.  
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5. The Operative Safety is also mandatory for DEMO, which must prevent 

any accident and guarantee a safe evacuation to all people involved in its 

operation in the worst case; thus, the development of solutions to reduce 

the tritium quantity involved into the process. 

6. The Integrated DEMO Design as consequence of the combination of all 

fusion technologies will guarantee a smoother path to its realization, 

especially thanks to the ITER construction, with a high level of reliability 

of the tokamak. 

7. In order to be competitive on the electrical energy market, fusion 

electricity must show low costs; even though this is not the primary goal 

for DEMO, its pursuing needs to be an important target for the fusion 

power plants in terms of economic aspects. 

For all the seven missions listed, appropriate risk mitigation strategies and 

technical solutions were defined and well assessed. 

There is also an eighth mission, specifically addressed to the Stellarators: 

despite of the tokamaks, they show an intrinsic plasma stability due to the 

magnetic field configuration, being a possible alternative solution to the tokamak. 

Because their physics is not mature enough to produce electricity by 2050, the 

mission id devoted to bring the stellarator line to maturity. 

 

 
Fig. I.9: Comparison between a tokamak (left) and a stellarator (right) 

It is clear that large theory and modelling effort for all the mission will be 

important to provide the capability of the results extrapolation for DEMO 

tokamak, also dedicating special previsions to the high-performance computing 

and related supporting activities 
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Chapter 2  

Diamagnetic flux measurements for poloidal beta 

estimation in the presence of non-axisymmetric 

effects in ITER Tokamak 

In this chapter, the computational model used for the simulated 

measurements performed by the magnetic field and flux sensors is shown [8]-

[9]; then, the problem of the measurement of the diamagnetic flux and the 

compensation of spurious signals and errors generated by the external magnetic 

pollution is tackled, highlighting their effects in terms of the poloidal beta 

estimation [10]. 

 

2.1 COMPFLUX: a numerical suite for the 

electromagnetic analysis of a Tokamak 

2.1.1 Why the COMPFLUX Procedure 

The measurement of many physical plasma parameters as the poloidal beta, 

the safety factor and the confinement time is necessary in tokamaks to enhance 

their performances. 

For these purposes, the diagnostic systems consisting of local sensors and 

coils are designed. They are deputed to measure the magnetic flux density field 

along prescribed directions and the magnetic fluxes linked with the coils 

respectively, in presence of several kinds of electromagnetic sources, as the 

currents flowing into the active coils and into the passive structures of the 

machine and/or ferromagnetic materials. 
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Of course, the actual measurements are different from the ideal ones, being 

they affected by errors due to a not perfect matching of the actual tokamak 

structures with respect to the nominal design. The measurements are also 

affected by imperfections of the sensor geometries like: 

 not perfect positioning or alignment of the field sensors (the actual 

measurement is performed at a different point and/or along a different 

direction with respect to the nominal one); 

 rotations, shifts or random deformations of the flux sensors with respect 

to the nominal geometry (the actual measurement depends on the actual 

shape of the sensor). 

These errors dynamically change during the operations because of the 

thermal and electromechanical loads acting on the tokamak structure; therefore, 

many sensitivity analyses are necessary to get the tolerance bounds of the 

deviations both of the sensors’ and other structures’ geometries with respect to 

the ideal design. 

The COMPFLUX peocedure was so designed, tested and validated with the 

aim to perform full and fast sensitivity analyses of the magnetic field and flux 

sensors. 

It consists of three main parts: 

1. Preprocessor: its main task is to define the field sensors, the axisymmetric 

flux sensors and the 3-D flux sensors; 

2. Processor: its main task is to calculate Magnetic Flux Density Field B and 

Magnetic Vector Potential A generated by the sources at the output points 

defined by the preprocessor; 

3. Postprocessor: its main task is to calculate the Magnetic Flux Density Field 

B and the Magnetic Vector Potential A via interpolation, in other points 

out of the original set provided in the preprocessor. 

The electromagnetic sources can be magnets, conductors of any geometry 

and massive axisymmetric coils of rectangular section, each of them treated by a 

set of filamentary currents located in optimal way by using the Gauss quadrature 

rule. 
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2.1.2 COMPFLUX processor 

The COMPFLUX processor [9] is aimed to the calculation of the magnetic 

flux density field and vector potentials at the sensors’ points; their computation 

is analytically performed by means of the Biot-Savart Law for both the massive 

axisymmetric coils and the non-axisymmetric coils. 

As regards the magnetic materials, if saturated, the COMPFLUX processor 

partitions them in spheres, in such a way that the total volume is kept (Fig. II.1), 

and calculates the magnetization vector for each sphere. The hypothesis of 

magnetic saturation allows to model a sphere of radius 𝑟𝑠𝑓  and uniform 

magnetization 𝑴𝒔𝒇  as a magnetic dipole whose magnetic moment is assigned 

and then to superpose all the contributions to obtain the total magnetic field and 

potential at the sensors’ positions. 

 

 
Fig. II.1: Magnetic material partitioned in spheres (left) and model of a single sphere as a magnetic 

dipole (right) 

 

The magnetic moment associated to each sphere can be easily calculated 

with the following formula: 

𝒎 =
4

3
𝜋𝑟𝑠𝑓

3 𝐌𝐬𝐟 (II.1)  

Thus, the value at each point of the space of the scalar potential, vector 

potential and magnetic field associated to the magnetic dipole are respectively: 

Φ(𝑟) =
𝜇0
4𝜋

𝒎 ⋅ 𝑟̂

|𝑟 − 𝑟̂𝑠𝑓|
2 (II.2)  
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𝐀(𝑟) =
𝜇0
4𝜋

𝒎 × 𝑟̂

|𝑟 − 𝑟̂𝑠𝑓|
2 (II.3)  

𝐇(𝑟) =
1

4𝜋|𝑟 − 𝑟̂𝑠𝑓|
3 (
3(𝒎 ⋅ 𝑟̂)𝑟̂

|𝑟 − 𝑟̂𝑠𝑓|
2 −𝒎) (II.4)  

If the magnetic material is not saturated, an iterative procedure based on 

Newton contractions is used [11]. 

At last, once the magnetic vector potential is known, the flux linked with a 

closed line  is computed via its circulation along the flux sensor’s geometry via 

Simpson's rule: the line  is divided in N evenly spaced arcs and the circulation 

of the vector potential is approximated for each of them by the sum of the 

following three contributions: 

Φγ = ∮𝐀 ⋅ 𝐭̂dl
γ

= 

=∑
𝐀(𝐱j,0) ⋅ d𝐱j,0

6
+
𝟐𝐀(𝐱j,0.5) ⋅ d𝐱j,0.5

3
+
𝐀(𝐱j,1) ⋅ d𝐱j,1

6

Nγ

j=1

 

(II.5)  

According to a parabolic approximation: 

d𝐱j,0.5 = 𝐱j+1 − 𝐱j                     

d𝐱j,0 = −𝐱j+1 + 4𝐱j+0.5 − 3𝐱j
d𝐱j,1 = 3𝐱j+1 − 4𝐱j+0.5 − 𝐱j   

 (II.6)  

where xj is the arc starting point, xj+1 the arc end point, and xj+0.5 the mid-point 

of the arc. 

The COMPFLUX built-in processor can also be replaced by other numerical 

procedures’ processors, if necessary; in the following, the main characteristics of 

the CARIDDI [11]-[12]-[13] and MISTIC [14] processors are summarized. 

 

2.1.3 The CARIDDI processor 

CARIDDI is a 3-D integral code well assessed to solve numerically the time-

domain Maxwell equations in the magneto-quasi-stationary limit. 

The electric vector potential 𝑻  (𝑱 = ∇ × 𝑻) is the unknown field of the 

numerical formulation so to automatically impose that the current density field 

J in the conductive domain ΩD is divergence-free and its normal component is 

continuous. 
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Moreover, using the edge elements for the numerical expansion of the 

electric vector potential, it is possible to use a numerical gauge based on the tree–

cotree decomposition of the edges of the mesh; the advantage is that the discrete 

unknowns are the only line integrals along the co-tree branches. 

The final discretized model to be solved resembles a high order LR 

network: 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅 𝐼 = 𝑉𝑐 (II.7)  

where: 

𝑅𝑖,𝑗 = ∫ 𝜂𝒘𝑖 ⋅ 𝒘𝑗𝑑Ω
ΩD

 (II.8)  

𝐿𝑖,𝑗 =
𝜇0
4𝜋
∫ ∫

𝒘𝑖(𝒓) ⋅ 𝒘𝑗(𝒓′)

|𝒓 − 𝒓′|
𝑑Ω𝑑Ω′

Ω𝐷Ω𝐷

 (II.9)  

 

𝑉𝑐,𝑖 = −∫
𝜕𝑨𝑐
𝜕𝑡

⋅
Ω𝑆

𝒘𝑖𝑑Ω;   𝑨𝑐 =
𝜇0
4𝜋
∫

𝑱𝑐(𝒓
′, 𝑡)

|𝒓 − 𝒓′|
𝑑Ω′

Ω𝑆

 (II.10)  

where 𝒘𝑖 is the shape function of the weak formulation and Jc is the impressed 

current density into the source domain ΩS. 

Note that the resistance matrix R is symmetric and sparse, whose elements 

𝑅𝑖,𝑗  do not vanish only if the i-th and j-th unknowns share the same mesh element. 

On the other hand, the inductance matrix L is symmetric and full because the 𝐿𝑖,𝑗  

coefficients keep into account the long-distance interactions between the 

unknowns. 

The CARIDDI and CARIDDI-MAG [15] codes are able to calculate the 

magnetic flux linked with a flux loop via time integration of the electromotive 

force, but paying a very high computational cost, due to the time integration itself 

and the need a solid model of the loop. On the other hand, the COMPFLUX 

procedure calculates the flux linked with the flux loop via circulation of the 

magnetic vector potential at the points of the sensor itself, thus implying a much 

lower computational load. 
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2.1.4 The MISTIC processor 

MISTIC is a Matlab-based code designed to compute the magnetic field 

maps at a generic set of field points, generated by coils of arbitrary shape. The 

code is based on the analytical expression of the flux density and the vector 

potential for “current sticks”; the massive coils of arbitrary shape are partitioned 

in a suitable number of sticks, then the superposition principle is used to 

compute the total field and vector potential. 

 

 
Fig. II.2: Magnetic flux density field generated by a current stick 

 

With reference to Fig. II.2, we have: 

𝑩𝒔𝒕𝒊𝒄𝒌 = μ0
𝐼

4𝜋

𝒄 × 𝒂

‖𝒄 × 𝒂‖
(
𝒂 ⋅ 𝒄

‖𝒄‖
−
𝒂 ⋅ 𝒄

‖𝒃‖
) (II.11)  

𝑨𝒔𝒕𝒊𝒄𝒌 = μ0
𝐼

4𝜋
𝒂̂ log (

‖𝒄‖ + ‖𝒃‖ + ‖𝒂‖

‖𝒄‖ + ‖𝒃‖ − ‖𝒂‖
) (II.12)  

 

2.1.5 COMPFLUX postprocessor 

The COMPFLUX procedure allows to carry out the sensitivity analyses in 

case of perturbations of the field sensors’ position or of the flux sensors’ 

geometry with respect to the nominal one. 

These analyses usually require the knowledge of the vector potential and 

magnetic field values at a huge number of points, being very expensive in terms 

of CPU load; thus the idea of computing B and A only at a limited set of field points 

and interpolating them in the remaining set. 

Essentially, the full map of the vector potential in the nearness of the 

nominal curve of each flux sensor is reconstructed by interpolating the values 

computed at the points of four auxiliary curves (see Fig. II.3) with a third order 

interpolation. 

B 

c 
b 

a 
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Fig. II.3: The four auxiliary curves (dotted) around the actual flux sensor (solid blue) for the 

reconstruction of the Vector Potential map 

 

The same procedure is adopted for the reconstruction of the magnetic flux 

density field in the proximity of the nominal field sensor; the interpolation is 

carried out by using the evaluation of the B field in the six points surrounding 

the nominal sensor, obtained by a fixed magnitude displacement along the 

coordinates axes (1 𝑚𝑚 in Fig. II.4). 

 

 
Fig. II.4: The six auxiliary points (crosses) around the actual field sensor (bubble) used for the 

reconstruction of the Flux Density Field 

 

In this way, sensitivity analyses for many set of perturbations of both flux 

and field sensors are executable with low computational cost, because only a 

single electromagnetic study (carried out by any processor among COMPFLUX, 

CARIDDI or MISTIC) is necessary. 
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2.1.6 Test cases and Validation & Assessment 

2.1.6.a Flux computation in 2-D axisymmetric geometry in presence 
of magnetic material 

We consider the axisymmetric configuration reported in Fig. II.5 consisting 

of one coil with a uniformly distributed 100 A current and of a linear magnetized 

(r=10) material ring. 

 

 
Fig. II.5: Test #1 - The 2D axisymmetric geometry 

 

The total flux is computed in three different points, both in absence and in 

presence of the magnetic material, using the following procedures: 

1. SOLENOID (an analytical code based on the elliptical integrals) [16]; 

2. the Finite Elements Method commercial code COMSOL Multiphysics [17]; 

3. COMPFLUX; 

4. MISTIC; 

5. CARIDDI. 

The magnetic ring is modelled by (𝑁𝑟 = 2) × (𝑁𝑧 = 8) × (𝑁𝜙 = 90) 

magnetic; the following Tab. II.1and Tab. II.2 report the obtained results: 
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Tab. II.1: Test #1 – Flux computation in absence of magnetic materials

r [m] 5.0e-3 1.5e-2 2.5e-3 
z [m] 5.0e-3 5.0e-3 0.0e+0 

SOLENOID [Vs] 3.5170e-7 1.1882e-6 4.3480e-8 
COMSOL [Vs] 3.5170e-7 1.1882e-6 4.3481e-8 

COMPFLUX [Vs] 3.5171e-7 1.1879e-6 4.3478e-8 
CARIDDI [Vs] 3.5173e-7 1.1860e-6 4.3432e-8 
MISTIC [Vs] 3.5170e-7 1.1879e-6 4.3477e-8 

Tab. II.2: Flux computation in presence of magnetic materials

r [m] 5.0e-3 1.5e-2 2.5e-3 
z [m] 5.0e-3 5.0e-3 0.0e+0 

COMSOL [Vs] 3.6685e-7 1.2114e-6 3.3654e-8 
COMPFLUX [Vs] 3.6657e-7 1.2111e-6 3.3706e-8 

CARIDDI [Vs] 3.6645e-7 1.2089e-6 3.3740e-8 

 

2.1.6.b Flux computation in 3-D geometry 

The second test case is the problem proposed in [18], whose geometry is 

illustrated in Fig. II.6; the aim is the evaluation of the flux linked with the central 

wire when the upper and lower wires are fed. 

 

 
Fig. II.6: Test #2 – Flux computation in 3-D geometry 
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The side of each hexagonal wire is 20 𝑐𝑚 long and the mutual distance is 

25 𝑐𝑚. Hereafter, the results obtained with the COMPFLUX, CARIDDI and MISTIC 

processor are listed and compared with the analytic result given in [18]: 

 

Tab. II.3: Flux linked with the hexagonal wire

COMPFLUX [Vs] 0.05366 
CARIDDI [Vs] 0.05366 
MISTIC [Vs] 0.05366 

ANALYTIC [Vs] 0.05367 

2.1.6.c Flux linked with the diamagnetic loop generated by poloidal 
and toroidal field coils and magnetic inserts 

In this test case a full 3-D electromagnetic problem is faced, where both the 

poloidal and toroidal field coils are fed, with the additional presence of 

ferromagnetic inserts (Fig. II.7). 

 

 
Fig. II.7: Test #3 – Solid model of the PF and TF coils and magnetic inserts 

 

The results obtained by using both CARIDDI-MAG and COMPFLUX 

processors are reported below: 

1. CARIDDI-MAG processor:   262.7309 Vs; 

2. COMPFLUX processor:   262.7295 Vs  
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The ferromagnetic inserts are modelled as a set of spheres, as described in 

Section 2.1.2 and the CARIDDI code is used for the computation of the 

magnetization vector field of the inserts. 

The total flux linked with the diamagnetic loop is the sum of the three 

contributions due to the TF Coils, the PF Coils and the Ferromagnetic Inserts; Tab. 

II.4 summarizes the single contributions for each processor. 

 

Tab. II.4: Test #3 - Contributions of the PF Coils, TF Coils and Ferromagnetic Inserts

 COMPFLUX CARIDDI 

TF Coils Flux [Vs] 262.1319 262.1359 

PF Coils Flux [Vs] 1.115e-16 0 
Ferromagnetic 

Inserts Flux [Vs] 
0.5975 Vs 0.5950 

2.2 Diamagnetic Flux Measurement 

Diamagnetic diagnostics are commonly used in tokamaks to measure the 

time variation of toroidal flux repelled by the plasma, as well as to estimate 

several plasma physical quantities, as the total diamagnetic energy content, 

plasma’s confinement time or the poloidal beta βp. In particular, a precise 

estimation of the mentioned parameters is relevant to improve the quality of the 

plasma discharges in terms of plasma current flatness and safety factor profiles 

[19]-[20]. 

The diamagnetic diagnostic system consists of a main diamagnetic loop for 

the diamagnetic flux measurement and a compensation coils system aimed to 

cancel the many polluting terms from the measure carried out by the main 

sensor. The measured value is the total toroidal flux Φ, which is the sum of the 

plasma diamagnetic (or paramagnetic) flux and several other quantities (see 

section 2.2.6) which are to be compensated by using both the compensation coils 

system [21]-[22], to meet the accuracy requirements. The compensation system, 

in fact, is aimed to extract the diamagnetic flux from the total toroidal flux linked 

with the main diamagnetic loop. 
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Fig. II.8: 3-D Rendering of ITER Tokamak (Courtesy of ITER organization) 

 

In the following, the design of the diamagnetic diagnostics system in ITER 

tokamak (Fig. II.8) will be described and its performances will be assessed. 

 

2.2.1 Sensors 

The diamagnetic diagnostic system in ITER tokamak consists of the five 

sets of sensors listed below: 

 main diamagnetic loops; 

 inner diamagnetic compensation coils; 

 outer diamagnetic compensation coils; 

 diamagnetic saddles; 

 TF coils (back-up). 

In the following, the nominal design of each kind of sensor will be 

illustrated. 

 

2.2.1.a Main diamagnetic loop 

This loop is installed on the inner shell of the Vacuum Vessel and is 

characterized by a total poloidal extension of 30 𝑚2; a set of three in-vessel main 

diamagnetic loops are present in ITER tokamak, placed in the poloidal sections 
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with  = 16 𝑑𝑒𝑔 ,  = 136 𝑑𝑒𝑔  and  = 256 𝑑𝑒𝑔 , to take into account the 

toroidal average of the measured quantities [23]. 

The presence of some obstacles in the poloidal section (e.g. ports and ribs) 

forces the sensor to bypass them, moving also in the toroidal direction (see Fig. 

II.9), then linking also the magnetic field perpendicular to the vacuum vessel. To 

compensate this effect, each sensor consists of the series of two loops, 

surrounding the obstacles on both sides. 

 

  

Fig. II.9: Main diamagnetic loop nominal geometry 

 

The main diamagnetic loops measure the total toroidal flux via time 

integration of the loop voltage measured at its terminals. 

 

2.2.1.b Inner Diamagnetic Compensation Coils 

Three pairs of toroidal pick-up coils [24], 120 degrees apart and located 

under the Outer Triangular Support are used in ITER tokamak as Inner 

Diamagnetic Compensation Coils, each of them measuring the toroidal field. 

The two pick-up coils of each set are placed at either sides of a port and 

each sensor is square shaped (see Fig. II.10) with each side 81 mm long (2 layers 

of 150 turns for an effective area of 1.97 m2 each). 

 



 37 

 

Fig. II.10: Isometric view of an Inner Diamagnetic Compensation Coil (courtesy of ITER and RFX 
organizations) 

 

2.2.1.c Outer Diamagnetic Compensation Coils 

They are used in combination with the inner coils in paragraph 2.2.1.b to 

compensate the effects of the poloidal currents induced into the vacuum vessel. 

 

  
Fig. II.11: Detail of a Lower Outer Diamagnetic Compensation Coil (courtesy of ITER and RFX 

organizations). 

 

In ITER there are two sets of pick-up coils measuring the toroidal field and 

having an overall effective area of 20 m2: the Upper Set consists of 8 square 

shaped sensors and the Lower Set which consists of 4 square shaped sensors. 

 

2.2.1.d Diamagnetic Saddles 

Three sets of two saddles are placed at the top and the bottom sides of the 

main diamagnetic loops. 
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They are called to compensate the effects of the vertical field, which might 

be significant whether the two parts of a main diamagnetic loop are not 

symmetric with respect to the poloidal plane. 

 

  
Fig. II.12: Diamagnetic saddles in ITER: locations with respect to the main diamagnetic loop (left) 

and detail of an upper diamagnetic saddle with its tail 

 

In the following, the tiles of each diamagnetic saddle were neglected and 

the flux sensors considered as closed; in this way, the measure it carries out, that 

is the flux linked with it, was simulated by calculating the circulation of the 

magnetic vector potential along its path and not by calculating the time integral 

of the voltage across its terminals. 

 

2.2.1.e Toroidal Field Coils 

Being magnetically coupled with the poloidal plasma current, the currents 

flowing into the Toroidal Field Coils or the voltages across their terminals can be 

used as back-up measurements of the diamagnetic flux [25]-[26]. 

 

2.2.2 General assumptions 

To carry out the diamagnetic flux estimation, the general assumption 

hereafter summarized [27] were adopted: 

 the ITER operative scenario is described in terms of the time history of 

the currents in the active coils (Poloidal & Toroidal Field Coils) and in the 

plasma; 

 the diamagnetic loops are considered as ideal sensors [28]-[29], i.e. 

measuring the linked magnetic flux with no errors nor delays; in practice, 
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they carry out the measure of the time integral of the magnetic flux time 

derivative, which differs from the actual flux by a constant (the time 

integration usually starts before plasma breakdown, when the TF coils 

are already energized); 

 the plasma is modelled with a suitable number of axisymmetric 

filamentary currents (carrying prescribed time-varying toroidal 

currents) and an axisymmetric poloidal current distribution placed on the 

shell of a toroidal surface located inside the vacuum vessel (it generates 

the same plasma diamagnetic flux as calculated by CREATE-NL or 

assigned in the scenario); 

 the symmetry module of the overall structure spans no more than 40 𝑑𝑒𝑔 

toroidally, with a specular (left-right) symmetry at the poloidal mid-plane 

of the symmetry module itself; 

The magnetic sources taken into account in the present study are the: 

 Active Coils (Poloidal Field Coils and Central Solenoid) and Toroidal Field 

Coils (both in nominal geometry and affected by the 

assembly/manufacturing errors and dynamic deformations [30]-[31]); 

 Plasma; 

 Non-axisymmetric coils, e.g. ELM coils; 

 Bus bars & feeders of conductors in main field coils winding packs; 

 Ferromagnetic inserts, Netural Beam Injector iron and other iron 

components in the blanket modules; 

 Eddy currents (mainly in Vacuum Vessel, blanket and divertor cassette) 

in various operating conditions. 

Some of these effects just produce an offset that can be automatically 

removed by the time integration of the diamagnetic loop voltage (as large part of 

the polluting terms due to the TF Coils and the Ferromagnetic Inserts). Some 

other can be compensated by a linear combination of the error sources (as the 

current in a PF coil that is not perfectly circular). The others can be compensated 

by using the whole set of diamagnetic measurements and suitable compensation 

formulas. 

The many components are considered with their nominal geometry at 

Operative Temperature (OT) and the affected by the following deviations: 
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 Static deviations at the flat-top, to characterize the assembly errors and 

thermal effects; 

 Dynamic deviation (including thermal expansion) in normal operation 

scenarios and during fast transients (e.g. ELMs). 

As regards the sensors located on the vacuum vessel, also the thermal 

expansion and the deformation of the vessel itself are to be considered among 

the possible deviations occurring [32]. 

The whole set of error sources and related operational conditions taken in 

account is here summarized: 

1. FERROMAGNETIC INSERTS: 

a. Only TF Coil; 

b. Nominal Flat Top Scenario; 

c. Radial Field without plasma and TF Coil; 

d. Vertical Field without plasma and TF Coil. 

2. TEST BLANKET MODULES IRON: 

a. Only TF Coil; 

b. Nominal Flat Top Scenario; 

c. Radial Field without plasma and TF Coil; 

d. Vertical Field without plasma and TF Coil. 

3. NBI IRON: 

a. Only TF Coil; 

b. Nominal Flat Top Scenario; 

c. Radial Field without plasma and TF Coil; 

d. Vertical Field without plasma and TF Coil. 

4. NON-AXISYMMETRIC COILS: 

a. ELM COILS (single currents,9 dofs in 3 sectors, f = 0 & f → ∞). 

5. EDDY CURRENTS: 

a. Disruptions (Major Disruptions, Vertical Displacement Events-

UPward, Vertical Displacement Events-DOWNward); 

b. Toroidal Field Discharge; 

c. Control Actions (ELM, L-H Transitions). 
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6. SINGLE PERTURBATION ON PF, CS & TF COILS: 

a. Tilting; 

b. Ellipticity; 

c. Horizontal Shifts. 

7. BUS BARS & FEEDERS: 

a. 𝑓 = 0. 

In Tab. II.5, we detail the plasma current and the related plasma flux, the 

total poloidal and toroidal components of the eddy currents induced into the 

Vacuum Vessel and the required accuracy for the diamagnetic flux measurement, 

in the most meaningful instants for each considered scenario: 

 

Tab. II.5: Main data about the Operative Conditions related to the considered transients

Case 
𝐈𝐩 

[MA] 

𝚽𝐩 

[Vs] 

Required 
accuracy 

[mVs] 

Total 
Eddy Currents 

[MA] 

BD + 
Rampup 

0 @ 0.783 s 
0 @ 0.900 s 

0.5 @ 1.296 s 
1.0 @ 1.835 s 

0 
0 
0 

0.01 

10 
10 
10 
10 

1.9 (tor) 
1.8 (tor) 
1.2 (tor) 

0.55 (tor) 

ELM 15 0.42 117 <0.1 (pol), <0.1 (tor) 

VDE up fast 
cat. II 

15 @ 0.6382 s 
<1 @ 0.6875 s 

2.3 
0 

690 
60 

-1.1 (pol), -12 (tor) 
0.49 (pol) , -11 (tor) 

VDE down 
slow cat. III 

15 @ 0.683 s 
<1 @ 1.100 s 

3.2 
0.3 

960 
90 

-1.6 (pol), 3.4 (tor) 
0.38 (pol), -4.9 (tor) 

MD UP 
15 @ 0.0101 s 
<1 @ 0.1000 s 

2.3 
0 

690 
60 

-1.0 (pol), 0.75 (tor) 
0.40 (pol), -13 (tor) 

TFD - - 117 9 (pol) 

The fast transients are simulated using the CARIDDI code under the main 

assumptions reported in [27]. 

 

2.2.3 Effects of error sources and geometrical imperfections on 

diamagnetic sensor measurements 

2.2.3.a Ideal sensors and electromagnetic sources 

We consider the nominal configuration depicted in Tab. II.6 and shown in 

Fig. II.9: 
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Tab. II.6: Nominal configuration of the Active Coils (geometry and current)

Coil R [m] Z [m] NI [MAt] R [m] Z [m] 

CS3U 1.696 5.435 4.0269 0.734 2.12 

CS2U 1.696 3.265 -1.2381e+001 0.734 2.12 

CS1U 1.696 1.095 -2.2304e+001 0.734 2.12 

CS1L 1.696 -1.075 -2.2304e+001 0.734 2.12 

CS2L 1.696 -3.245 -1.0468e+001 0.734 2.12 

CS3L 1.696 -5.415 5.5449 0.734 2.12 

PFC1 3.943 7.574 4.1181 0.959 0.984 

PFC2 8.285 6.540 -3.0219 0.580 0.715 

PFC3 11.992 3.275 -4.9790 0.696 0.954 

PFC4 11.963 -2.234 -4.3668 0.638 0.954 

PFC5 8.391 -6.727 -7.3434 0.812 0.954 

PFC6 4.334 -7.466 1.5220e+001 1.559 1.107 

TFC - - 18*9.112 - - 

 

 

 

Fig. II.13: Poloidal view of ITER Tokamak diagnostic system, active coils and Vacuum Vessel. 

The measurements carried out by the nominal sensors are simulated in Tab. 

II.7; it is worth noting that these signals can mostly be compensated. 

 

Tab. II.7: Diamagnetic Measurements in ideal configuration (toroidal average)

Sensor Signal 

diamagMainH 255.794 Vs 

diamagSadUpH -0.381 Vs 

diamagSadLoH -1.501 Vs 

diaCompInH 4.386 T 

diaCompOutUH 3.83 T 

diaCompOutLH 4.322 T 

 

 

 



43 
 

2.2.3.b Effects of non-ideal PF and CS coils 

The analysis described in this section is based on the following static 3-D 

deviations from the nominal geometry: 

 3 𝑚𝑚 shift along a coordinate axis; 

 5 𝑚𝑚 ellipticity for PF1, PF2, PF5, PF6, and 7mm ellipticity for PF3 and 

PF4 along x and y; 

 5 𝑚𝑚 warping for PF1, PF2, PF5, PF6, and 7mm warping for PF3 and PF4 

along z; 

 6 𝑚𝑚 shift along x and y axis and from 0.5 for linearly to 4mm for CS3U 

and CS3L along z axis; 

 6 𝑚𝑚 ellipticity along x and y; 

 4 𝑚𝑚 warping along z; 

In the following, the percentage errors on the estimated signals with 

respect to the nominal case in Tab. II.7 are reported; note that their toroidal 

averages are obviously not significant (the largest effects are shown in Tab. II.8), 

if compared with the local effects (Tab. II.9): 

 

Tab. II.8: Percentage error in sensors signals in the presence of deformed PFCs & CSCs (toroidal 
averages)

Sensor 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Main Diamagnetic Loop 7e-8% PF1 
5 mm warping 

along z axis 

Diamagnetic Saddles 0.05% CS2 
6 mm shift 
along x axis 

Inner Compensation Coils 8e-7% CS4 
6 mm shift 
along x axis 

Outer Compensation Coils 6e-7% PF1 
3 mm shift 
along y axis 
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Tab. II.9: Percentage error in sensors signals in the presence of deformed PFCs & CSCs (local 
effects)

Sensor Sensor # 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Main 
Diamagnetic Loop 

16 deg – Left 0.002% CS4 
6 mm shift 
along z axis 

Diamagnetic 
Saddles 

256 deg – Lower 0.1% PF6 
3mm shift 

along y axis 

Inner 
Compensation 

Coils 
30 deg – Right 0.004% PF5 

3mm shift 
along x axis 

Outer 
Compensation 

Coils 
30 deg – #4 0.005% PF5 

3mm shift 
along x axis 

2.2.3.c Effects of non-ideal TF coils 

As regards the Toroidal Field Coils, it is worth noticing that they are non-

axisymmetric conductors even in nominal geometry, because of the need of the 

some space along the toroidal direction (e.g. to install the ports necessary to the 

remote handling and other operations). This forces the TF Coils to be a not 

toroidally continuous solenoid (in ITER there will be 18 TFCs). 

Besides this consideration, the following 3-D deviations from nominal 

geometry are considered: 

 4 𝑚𝑚 shift along all coordinate axis; 

 0.3 𝑚𝑟𝑎𝑑 rotation around x axis, and 0.6 𝑚𝑟𝑎𝑑 rotations around y and z 

axis; 

 random deformation (obtained by a 5 𝑚𝑚 shift of one control point via 

spline interpolation). 

Apart from the Diamagnetic Saddles, the effect on the signals obtained by 

the toroidal averages of the diamagnetic measurements is not significant (Tab. 

II.10) if compared with the local effects (Tab. II.11): 
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Tab. II.10: Percentage error in sensors signals in the presence of deformed TFCs (toroidal 
averages)

Sensor 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Main 
Diamagnetic 

Loop 
0.14% TF1 

4 mm shift 
along y axis 

Diamagnetic 
Saddles 

33% TF2 
5mm shift along 

y axis of the 
2nd control point 

Inner 
Compensation 

Coils 
0.045% TF4 

4 mm shift 
along y axis 

Outer 
Compensation 

Coils 
0.06% TF2 

5 mm shift along 
z axis of the 

4th control point 

SM

Tab. II.11: Percentage error in sensors signals in the presence of deformed TFCs (local effects)

Sensor Sensor # 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Main 
Diamagnetic 

Loop 

16 deg – 
Right 

0.19% TF1 
4 mm shift 
along y axis 

Diamagnetic 
Saddles 

16 deg – 
Upper 

34% TF2 
5mm shift along y 

axis of the 2nd 
control point 

Inner 
Compensation 

Coils 

30 deg – 
Left 

0.5% TF2 
5mm shift along y 

axis of the 4th 
control point 

Outer 
Compensation 

Coils 

30 deg - 
#2 

2% TF2 
5mm shift along y 

axis of the 4th 
control point 

SM

2.2.3.d Effects of non-axisymmetric coils  

The effects of the ELM coils (Fig. II.14) on the set of diamagnetic diagnostics 

is here analysed. 
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Fig. II.14: ELM coils model for static analysis (left) and model of vessel and ELM coils for the 

analysis in the presence of eddy currents. 

 

We considered 27 coils (9 upper, 9 lower, and 9 middle ELM coils) and the 

analyses were carried out feeding one coil at a time with a 15 𝑘𝐴 current (this is 

the current limit per coil); the effects on the toroidal average of the signals 

coming from the three main diamagnetic loops are shown in Fig. II.15. 

 

 
Fig. II.15: Spurious signal of the main diamagnetic loop in presence of a 15 kA current in each ELM 

coil (toroidal averages) 

 

The worst effect is expected when the coils #2, 11 and 20 (middle ELM coils 

in the 1st, 4th and 7th sector respectively) are fed, yielding a spurious signal of 

−6.8 𝑚𝑉𝑠. 

This signal is caused by a large influence (about 20 𝑚𝑉𝑠) on the closest 

loop (at 16 𝑑𝑒𝑔) and negligible effects (two orders of magnitude smaller) on the 

other ones (at 136 𝑑𝑒𝑔 and 256 𝑑𝑒𝑔). When all the coils are fed, the mean value 

of the signal is 0.6 𝑚𝑉𝑠 and the standard deviation is 2.4 𝑚𝑉𝑠. 

Fig. II.16 shows the influence of the ELM coils on the diamagnetic saddle 

loops: 
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Fig. II.16: Spurious signal of the diamagnetic saddle loops in presence of a 15 kA current in each 

ELM coil (toroidal averages) 

 

The worst effects are estimated on the lower saddle loops and do not 

exceed 50 𝜇𝑉𝑠 when feeding the coils #3, 12 and 21 (lower ELM coil in the 1st, 4th 

and 7th sector respectively). 

The influence on the diamagnetic compensation coils (both inner and 

outer) is shown in Fig. II.17. 

 

 
Fig. II.17: Spurious signal of the diamagnetic compensation coils in presence of a 15 kA current in 

each ELM coil (toroidal averages) 

 

The worst effects are expected on the upper outer diamagnetic 

compensation coils and do not exceed 20 𝜇𝑇, when coils #6, 9, 15, 18, 24 and 27 

(lower coils in the 2nd, 3rd, 5th, 6th, 8th and 9th sectors) are fed. The effect on the 
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lower outer diamagnetic compensation coils is smaller (not exceeding less than 

10 𝜇𝑇), while the influence on the inner diamagnetic compensation coils (less 

than 5 𝜇𝑇) is even smaller. 

During the transient phases the spurious signals are reduced thanks to the 

effects of the eddy currents flowing into the passive structures, very close both 

to the sources (the ELM coils) and the sensors (the diamagnetic diagnostics). Fig. 

II.18 shows that the effects of the eddy currents on the spurious signal of the 

main diamagnetic loop is beneficial (about 70%), while Fig. II.19 shows the 

effects on the other diamagnetic diagnostics. 

 

  
Fig. II.18: Spurious signal of the main diamagnetic loop in the presence of 15 kA step in ELM coil 

#2 (middle model coil in the first sector): whole transient (left) and zoom in the initial phase (right). 

 

  
Fig. II.19: Spurious signal of the diamagnetic saddle loops and the diamagnetic compensation coils  in 

the presence of 15 kA step in ELM coil #2 (middle ELM coil in the first sector). 

SM

2.2.3.e Effects of feeders 

The bus bars and the feeders (Fig. II.20) are the connection between the 

electrical grid (after the many conversion stages) and the winding packs of the 

coils of the tokamak and are so aimed to feed them: 
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Fig. II.20: Overview of ITER coils feeders systems (Courtesy of ITER Organization) 

 

Their effects on the diamagnetic sensors measurements are very small and 

are here summarized (toroidal average and local effects): 

 

Tab. II.12: Effect of the feeders on the diamagnetic diagnostics (toroidal average & local effect)

Diamagnetic 
Sensor 

Measured Signal 
(Toroidal 
Average) 

Measured 
Signal 

(Local Effect) 

Main Diamagnetic Loops 3.5 mVs 5.8 mVs 
Upper Diamagnetic Saddles -85 μVs -90 μVs 

Lower Diamagnetic Saddles -1 mVs -1.1 mVs 

Inner Compensation Coils 49 μT 78 μT 

Outer Upper  
Compensation Coils 

42 μT 70 μT 

Outer Lower  
Compensation Coils 

40 μT 61 μT 

SM

2.2.3.f Effects of ferromagnetic inserts, NBI iron and test blanket 
modules 

Three kinds of ferromagnetic materials were considered in the following 

analysis to evaluate their effect on the diamagnetic diagnostics: ferromagnetic 

inserts (Fig. II.21a), test blanket modules (Fig. II.21b) and neutral beam injector 

(Fig. II.21c), operating in the following four configurations: 

 FLAT TOP CONFIGURATION: (Standard 15 𝑀𝐴 Scenario @296.1 𝑠: 𝐼𝑝 =

15 𝑀𝐴, 𝑅𝑝 = 6.19 𝑚, 𝑍𝑝 = 0.498 𝑚, 𝐼𝑇𝐹 = 68𝑘𝐴); 

 TF COILS ENERGIZED (68 𝑘𝐴 ) + RADIAL FIELD: (PF3-PF4 energized, 

yielding 𝐵𝑟 = −0.6 𝑇 @ 𝑅 = 6.2 𝑚); 
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 ONLY TF COILS ENERGIZED (68 𝑘𝐴): 

- NBI: 𝐷𝐿 = −93 ÷ 30 μ𝑉𝑠, 𝐵  = −44 ÷ 39 μ𝑇; 

- FI: 𝐷𝐿 = −0.25 𝑉𝑠, 𝐵  = −25 ÷ 26 𝑚𝑇; 

- BLK: 𝐷𝐿 =  5 ÷ 112 𝑚𝑉𝑠, 𝐵  = −950 ÷ 400 μ𝑇; 

 TF COILS ENERGIZED (68 𝑘𝐴) + VERTICAL FIELD: (PF3-PF4 energized, 

yielding𝐵𝑧 = −0.6 𝑇 @ 𝑅 = 6.2𝑚). 

The following figures show the ferromagnetic components listed above and 

their effect in terms of flux density field at the points of the diamagnetic 

diagnostics: 

 

  

 
 

 
Fig. II.21: Effects of the ferromagnetic inserts (FI, top-left), test blanket modules (BM, top right), 

Neutron Beam Injector (NBI, down-left) and spurious signal of the main diamagnetic loop in the 

following operative conditions: flat-top (FT), only TFCs energized (TF), TFCs energized & Radial 

Field (RF) and TFCs energized & Vertical Field (VF). 

SM

Fig. II.21 shows the effects of the ferromagnetic components on the 

diamagnetic measurements; the largest effect is due to the ferromagnetic inserts 

(about 250 𝑚𝑉𝑠), while those of NBI are negligible. 

However, taking into account that the time integration of the diamagnetic 

loop voltage starts at the beginning of the pulse, this effect is limited to about 
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50 𝑚𝑉𝑠, thanks to the effect of the rotation of the magnetization vector when the 

poloidal field changes. 

This effect can be experimentally estimated (with suitable test pulses for 

CSCs and PFCs pick up and plasma current pick-up at different values of the 

toroidal field) and then partially compensated for other pulses. 

 

2.2.4 Non-ideal sensors with ideal electromagnetic sources 

2.2.4.a Effects of PF/TF/CS coils 

Referring to the nominal configuration described in Section 2.2.3.a, the 

following variations deformations for the flux sensors (Main Diamagnetic Loops 

and Diamagnetic Saddles) are considered: 

 Var1: 0.1 𝑑𝑒𝑔 rotation around r axis (𝑧 = 0); 

 Var:2 0.1 𝑑𝑒𝑔 rotation around z axis (𝑟 = 0); 

 Var3: 0.1 𝑑𝑒𝑔 rotation around z axis (𝑟 = 𝑅0 = 6 𝑚); 

 Var4: 0 𝑑𝑒𝑔, 45 𝑑𝑒𝑔, 90 𝑑𝑒𝑔, 135 𝑑𝑒𝑔  random deformation and spline 

interpolation; 

 Var5: 0 𝑑𝑒𝑔, 45 𝑑𝑒𝑔, 90 𝑑𝑒𝑔, 135 𝑑𝑒𝑔  random deformation and spline 

interpolation. 

On the other hand, the nominal geometry of the field sensors (Inner 

Compensation Coils and Outer Lower & Upper Compensation Coils), is perturbed 

as follows: 

 Var1: 1 𝑑𝑒𝑔 rotation of the normal of the sensor around z axis; 

 Var2: 1 𝑑𝑒𝑔 rotation of the normal of the sensor around r axis; 

 Var3: 10 𝑚𝑚 variation in radial direction of the position of the sensor; 

 Var4: 10 𝑚𝑚 variation in vertical direction of the position of the sensor; 

 Var5: 1 𝑑𝑒𝑔 rotation around z axis. 

With these classes of deformation, we intend to group all the possible 

deformations occurring to the sensors because of manufacturing and installation 

errors, considering their maximum deviations. 
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The effects on the signals obtained by the toroidal averages of the 

diamagnetic measurements (Tab. II.13) are not significant if compared with the 

effects on the single sensors (Tab. II.14): 

 

Tab. II.13: Percentage error in deformed sensors signals (toroidal averages)

Sensor 
Maximum 

Percentage 
Error 

Sensors 
Deformation 

Main Diamagnetic Loop 0.27% Var. 5 

Diamagnetic Saddles 4.8% Var. 5 

Inner Compensation Coils 0.3% Var.2 

Outer Compensation Coils 1.5% Var. 5 

SM

Tab. II.14: Percentage error in deformed sensors signals (local effects)

Sensor Sensor # 
Maximum 

Percentage 
Error 

Sensors 
Deformation 

Main Diamagnetic Loop 136 deg – Left 0.63% Var. 5 

Diamagnetic Saddles 256 deg – Upper 7.8% Var. 4 

Inner Compensation Coils 150 deg – Left 0.55% Var. 5 

Outer Compensation Coils 30 deg - #1 2.69% Var. 5 

SM

2.2.4.b Effects of the toroidal plasma current 

In such analysis, the plasma is modelled as an axisymmetric filamentary 

current, located at the centroid (𝑅 = 6.2 𝑚, 𝑍 = 0.4 𝑚), and carrying a 15 𝑀𝐴 

current. 

The following Tab. II.15 shows that the largest effect on the main 

diamagnetic loop is about 26 𝑚𝑉𝑠 for a 0.1 𝑑𝑒𝑔 tilt of the loop around the z-axis; 

the measurement is slightly affected by the position of the plasma current 

centroid, as the main diamagnetic loop signal variation changes by 20 𝑚𝑉𝑠/𝑚 

along r and 2 𝑚𝑉𝑠/𝑚 along z. 
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Tab. II.15: Effects of a 𝟏𝟓 𝑴𝑨 filamentary plasma located at the plasma centroid with ideal and non-
ideal diamagnetic sensors

Case Ideal Var1 Var2 Var3 Var4 Var5 

Main 
Diamagnetic 

Loops [Vs] 
-9.8E-12 -0.02622 -3.8E-07 -3E-08 -0.00238 0.004039 

Upper 
Diamagnetic 
Saddles [Vs] 

0.209647 0.209647 0.209647 0.209111 0.210378 0.209661 

Lower 
Diamagnetic 
Saddles [Vs] 

0.630263 0.630602 0.630263 0.629523 0.627304 0.632257 

Inner 
Compensation 

Coils [T] 
-7.1E-12 0.00902 0.001804 -7E-12 -7.1E-12 -0.00902 

Outer Upper 
Compensation 

Coils [T] 
-5E-12 0.007057 -0.00088 -5E-12 -5E-12 -0.00706 

Outer Lower 
Compensation 

Coils [T] 
-4.5E-12 0.00676 0.000568 -4.5E-12 -4.6E-12 -0.00676 

SM
Tab. II.15 also shows that the largest effect on the inner diamagnetic 

compensation coils is about 9 𝑚𝑇 for a tilt of 1 𝑑𝑒𝑔 of the pick-up coil around the 

z axis (and slightly less, about 7 𝑚𝑇, for the outer compensation coils). Also this 

quantity also affected by the position of the plasma current centroid (the signal 

increases by 2.7 𝑚𝑇/𝑚 along R axis and decreases by the same quantity along Z 

axis). 

It is worth noticing that the toroidal plasma current pick up can be 

experimentally measured (and then at least partially compensated for the other 

pulses) with two similar plasmas with opposite helicity. 

 

2.2.4.c Thermal expansion of the main diamagnetic loop 

During the operations, the temperature in the Vacuum Vessel increases 

yielding a thermal expansion of the main components, as shown in Fig. II.22. 

When the assessment of the thermal transient occurs, the temperature of the 

diamagnetic sensors increases from 37 °𝐶 (Room Temperature - RT) to 103 °𝐶 

(Operating Temperature - OT). 
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Fig. II.22: Effect of the thermal expansion on the main diamagnetic loop (particular of the Outer 

Triangular Support) 

 

This phenomenon produces a linear expansion of 0.136% on the 

diamagnetic loop cross-section that yields a spurious signal of 360 𝑚𝑉𝑠  in 

nominal conditions. 

 

2.2.5 Combined effects of non-ideal sensors with non-ideal 

electromagnetic sources 

At last, a combined deformation effect of both the electromagnetic sources 

(see Sections 2.2.3.b and 2.2.3.c) and of the sensors (see Section 2.2.4) is 

considered, to take into account a more realistic situation where both the sources 

and the sensors are affected by manufacturing and installation errors. 

As expected, the effects on the signals obtained by the toroidal averages of 

the diamagnetic measurements are not significant with respect to the local 

effects on the single sensors. The following Tab. II.16 and Tab. II.17 show the 

largest effects due to CS and PF Coils deformations on the deformed diamagnetic 

sensors: 
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Tab. II.16: Percentage error in deformed sensors signals in the presence of deformed PFCs & CSCs 
(toroidal averages)

Sensor 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Sensors 
Deformation 

Main 
Diamagnetic 

Loop 
0.27% PF6 

6 mm ellipticity 
deformation 
along x axis 

Var. 5 

Diamagnetic 
Saddles 

4.88% CS1 
6 mm shift 

deformation 
along x axis 

Var. 5 

Inner 
Compensation 

Coils 
0.31% PF4 

7mm warping 
deformation 
along z axis 

Var. 2 

Outer 
Compensation 

Coils 
1.5% PF5 

3mm shift 
deformation 
along y axis 

Var. 5 

SM

Tab. II.17: Percentage error in deformed sensors signals in the presence of deformed PFCs & CSCs 
(local effects)

Sensor Sensor # 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Sensors 
Deformation 

Main 
Diamagnetic 

Loop 

136 deg – 
Left 

0.63% CS3 
6 mm shift 

deformation 
along y axis 

Var. 5 

Diamagnetic 
Saddles 

256 deg – 
Upper 

7.8% CS2 
6 mm shift 

deformation 
along x axis 

Var. 4 

Inner 
Compensation 

Coils 

150 deg – 
Left 

0.55% PF4 
7 mm warping 

deformation 
along z axis 

Var. 5 

Outer 
Compensation 

Coils 

30 deg - 
#1 

2.69% PF5 
5 mm ellipticity 

deformation 
along x axis 

Var. 5 

As for the ideal sensors case, the effect on the signals obtained by the 

toroidal averages of the diamagnetic measurements (main diamagnetic loops, 

inner compensation coils and outer compensation coils) is not significant when 

the TFCs deformations are considered. 

The largest effects on the toroidal averages (Tab. II.18) and local effects 

(Tab. II.19) of the signals are summarized hereafter: 
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Tab. II.18: Percentage error in deformed sensors signals in the presence of deformed TFCs (toroidal 
averages)

Sensor 
Maximum 

Percentage 
Error 

EM 
Source 

Deformed 

EM Sources 
Deformation 

Sensors 
Deformation 

Main 
Diamagnetic 

Loop 
0.43% TF1 

4 mm shift 
deformation 
along x axis 

Var. 5 

Diamagnetic 
Saddles 

39.76% TF2 

5 mm shift 
deformation along x 

axis of the 2nd 
control point 

Var. 5 

Inner 
Compensation 

Coils 
0.17% TF4 

4 mm shift 
deformation 
along x axis 

Var. 3 

Outer 
Compensation 

Coils 
0.14% TF2 

5 mm shift 
deformation along z 

axis of the 3rd 
control point 

Var. 5 

SM

Tab. II.19: Percentage error in deformed sensors signals in the presence of deformed TFCs (local 
effects)

Sensor Sensor # 
Maximum 

Percentage 
Error 

EM Source 
Deformed 

EM Sources 
Deformation 

Sensors 
Deformation 

Main 
Diamagnetic 

Loop 

136 deg – 
Right 

0.84% TF6 
4 mm shift 

deformation 
along x axis 

Var. 5 

Diamagnetic 
Saddles 

256 deg – 
Upper 

41.37% TF5 

5 mm shift 
deformation 

along x axis of 
the sixth control 

point 

Var. 5 

Inner 
Compensation 

Coils 

30 deg – 
Left 

0.64% TF5 

5 mm shift 
deformation 

along x axis of 
the sixth control 

point 

Var. 3 

Outer 
Compensation 

Coils 

30 deg - 
#1 

2.94% TF2 

5 mm shift 
deformation 

along x axis of 
the forth control 

point 

Var. 5 

2.2.6 Compensation formulas 

The flux linked with the main diamagnetic loop does not consist of the only 

toroidal flux of the plasma, but it is affected by many polluting terms as depicted 

in Sections 2.2.3, 2.2.4 and 2.2.5. For this reason, a compensation system is 

necessary to extract the only flux quantity related to plasma diamagnetism, so to 
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prevent a wrong measurement of the diamagnetic flux and a consequent wrong 

estimation of the poloidal beta. 

The flux linked with the mail diamagnetic loop is the sum of the following 

terms: 

Φ𝐷𝐿 = Φ𝑝 +Φ𝑇𝐹 +Φ𝑇𝐹𝑇𝑖𝑙𝑡
+Φ𝑇𝐹𝐸𝑥𝑝 +Φ𝐸𝐶 +Φ𝑃𝐹 +Φ𝑃𝐹𝑇𝑖𝑙𝑡

++Φ𝐼𝑝 

+Φ𝐼𝑟𝑜𝑛 +Φ𝑂𝑡ℎ𝑒𝑟 
(II.13)  

where: 

 𝛷𝐷𝐿 is the flux linked with the main diamagnetic loop; 

 𝛷𝑃 is the plasma diamagnetic flux; 

 𝛷𝑇𝐹 is the flux generated by the TFCs; 

 𝛷𝑇𝑖𝑙𝑡𝑇𝐹  is the flux generated by the tilt of the TFC; 

 𝛷𝐸𝑥𝑝𝑇𝐹  is the flux generated by the TFCs (Thermal & Electromagnetic) 

expansion; 

 𝛷𝐸𝐶  is the flux generated by the eddy currents flowing into the vacuum 

vessel; 

 𝛷𝑃𝐹 is the flux generated by the PFCs deformation; 

 𝛷𝐸𝑥𝑝𝑃𝐹  is the flux generated by the PFCs (Thermal & Electromagnetic) 

Expansion; 

 𝛷𝐼𝑝  is the flux generated by the plasma current pick-up; 

 𝛷𝐼𝑟𝑜𝑛 is the flux generated by the iron pick-up; 

 𝛷𝑂𝑡ℎ𝑒𝑟  is the flux generated by other coils pick-up (e.g. bus bars and 

feeders). 

The plasma diamagnetic flux can be derived from equation (II.13) while the 

other terms can be related to other physical quantities (e.g. the currents in the 

poloidal and toroidal field coils or the plasma current and the eddy currents in 

the passive structures) and to the measurements of the compensation sensors, 

as follows: 

 

Φ𝐷𝐿 = ∫𝑉𝐷𝐿𝑑𝑡 (II.14)  

Φ𝑇𝐹𝑇𝑖𝑙𝑡
= 𝑘𝑠𝑎𝑑𝑑𝑙𝑒

𝑇 Φsaddle (II.15)  

Φ𝑇𝐹 = 𝑀𝑝𝑜𝑙_𝑇𝐹𝐼𝑇𝐹 (II.16)  

Φ𝐸𝐶 = 𝑘0
𝑇Φ𝑂𝑢𝑡𝐶𝑜𝑚𝑝 − 𝑘𝐼

𝑇Φ𝐼𝑛𝐶𝑜𝑚𝑝 (II.17)  
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Φ𝑇𝐹𝐸𝑥𝑝 = 𝛼𝑇𝐹𝐼𝑇𝐹
3  (II.18)  

Φ𝐼𝑝 = 𝑘𝑝𝑜𝑙
𝑇 𝐵𝑝𝑜𝑙   (II.19)  

Φ𝑃𝐹𝐸𝑥𝑝 = 𝑘𝑃𝐹
𝑇 𝐼𝑇𝐹 (II.20)  

 

where: 

 𝑉𝐷𝐿 is the voltage measured at the diamagnetic loop terminals; 

 Φ𝑆𝑎𝑑𝑑𝑙𝑒 , Φ𝑂𝑢𝑡𝐶𝑜𝑚𝑝  and Φ𝐼𝑛𝐶𝑜𝑚𝑝 are the values of measurements carried 

out by the diamagnetic saddles, the outer compensation coils and the 

inner compensation coils, respectively; 

 𝐼𝑇𝐹 and 𝐼𝑃𝐹 are the flowing into the Toroidal Field Coils and the Poloidal 

Field Coils respectively; 

 𝑀𝑝𝑜𝑙_𝑇𝐹 is the mutual inductances between the Poloidal Field Coils and the 

main diamagnetic loops; 

 𝐼𝑝 is the plasma current; 

 𝐵𝑝𝑜𝑙 is the set of poloidal field measurements in the vicinity of the main 

diamagnetic loop; 

 𝑘𝑆𝑎𝑑𝑑𝑙𝑒
𝑇 , 𝑘𝑂

𝑇 , 𝑘𝐼
𝑇 , 𝑘𝑝𝑜𝑙

𝑇 , 𝑘𝑃𝐹
𝑇  are proportional coefficients, determined via 

pseudoinversion using models or experimental data. 

It is worth noticing that: 

 in (II.14) the integration drift and the pick-up of connection cables are not 

considered; 

 a similar treatment for other coils (e.g. bus bars, feeders, cables) could be 

adopted as for the Toroidal Field Coils in (II.16); 

 the expression (II.17) is preferred to Φ𝐸𝐶 = 𝜏𝑉𝑉
𝑑Φ𝐷𝐿

𝑑𝑡
, adopted in the JET 

reactor (see section 2.2.6.a), where 𝜏𝑉𝑉  the Vacuum Vessel 

electromagnetic time constant; 

 in (II.19) the value of the coefficient vector 𝑘𝑇𝑝𝑜𝑙 can be computed from 

correlations between the poloidal pick-up coil signals and the measure 

carried out by the main diamagnetic loop; 
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 the ferromagnetic materials pick-up can be approximated by an offset (it 

can be cancelled by time-integration of the diamagnetic loop voltage) and 

a time linear term (it can be treated using a similar expression to (II.19)); 

 In (II.20) the value of the coefficient vector 𝑘𝑇𝑃𝐹 can be computed from 

correlations with dry-runs. 

An alternative way to estimate the plasma diamagnetic flux is based on the 

use of the TF coils; being them magnetically coupled with the plasma, the voltage 

measured at their terminals consists of the following terms: 

𝑈𝑇𝐹 = 𝑅𝑇𝐹𝐼𝑇𝐹 + 𝐿𝑇𝐹
𝑑𝐼𝑇𝐹
𝑑𝑡

+ 𝑀𝑇𝐹_𝑉𝑉

𝑑𝐼𝐸𝑑𝑑𝑦

𝑑𝑡
+ 𝑁𝑇𝐹

𝑑𝛷𝑝

𝑑𝑡
 (II.21)  

where: 

 𝑈𝑇𝐹 is the applied voltage; 

 𝑅𝑇𝐹  is the TF Coils resistance (negligible, being them superconductive 

coils); 

 𝐿𝑇𝐹 is the TF Coils self-inductance; 

 𝐼𝑉𝑉  the vacuum vessel current; 

 𝑀𝑇𝐹_𝑉𝑉  the mutual inductance between the TF Coils and the Vacuum 

Vessel; 

 𝑁𝑇𝐹 is the number of turns. 

Therefore, the flux Φ𝑝 can be estimated by using the TF Coils like sensors, 

as follows: 

Φ𝑝 =
1

𝑁𝑇𝐹
∫(𝑈𝑇𝐹 − 𝐿𝑇𝐹

𝑑𝐼𝑇𝐹
𝑑𝑡

− 𝑀𝑇𝐹_𝑉𝑉

𝑑𝐼𝐸𝑑𝑑𝑦

𝑑𝑡
) 𝑑𝑡  (II.22)  

 

2.2.6.a Selection of the compensation formula for the study 

The reason of choosing the equation (II.17) instead of the one used for JET 

tokamak [33] is based on the non-compliance of the hypothesis of the Nyquist-

Shannon theorem as regards the poloidal beta sampling time and of the accuracy 

requirements [23]-[28]-[33]. 
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Fig. II.23: ITER mesh of a 𝟐𝟎 𝒅𝒆𝒈 sector 

 

Fig. II.23 shows the two vacuum vessel of ITER tokamak for a 20 deg 

section; it is possible to see that it consists of two shells, which are magnetically 

coupled with the plasma. Therefore, the flux measured by the main diamagnetic 

loop is affected also by the currents flowing into the two shells, as follows: 

{

𝐿𝑖𝑛𝐼𝑖̇𝑛 +𝑀𝑖𝑛−𝑜𝑢𝑡𝐼𝑜̇𝑢𝑡 + 𝑅𝑖𝑛𝐼𝑖𝑛 = −Φ̇𝑝      

𝑀𝑜𝑢𝑡−𝑖𝑛𝐼𝑖̇𝑛 + 𝐿𝑜𝑢𝑡𝐼𝑜̇𝑢𝑡 + 𝑅𝑜𝑢𝑡𝐼𝑜𝑢𝑡 = −Φ̇𝑝

Φ𝐷𝐿 = 𝑀𝐷𝐿(𝐼𝑖𝑛 + 𝐼𝑜𝑢𝑡) + Φ𝑝                      

  (II.23)  

where 

 𝐿𝑖𝑛 (𝐿𝑜𝑢𝑡) is the inner (outer) shell self-inductance 

 𝑀𝑖𝑛−𝑜𝑢𝑡 = 𝑀𝑜𝑢𝑡−𝑖𝑛 is the mutual inductance between the two shells; 

 𝑅𝑖𝑛 (𝑅𝑜𝑢𝑡) is the inner (outer) resistance; 

 𝐼𝑖𝑛 (𝐼𝑜𝑢𝑡) is the current flowing into the inner (outer) shell; 

 𝑀𝐷𝐿 is the mutual inductance between the Main Diamagnetic Loop and 

the shells; 

 Φ𝑝 is the plasma flux; 

 Φ𝐷𝐿 is the flux linked with the Main Diamagnetic Loop. 

Introducing the matrix notation, equation (II.23) can becomes: 
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{
𝐼𝑣̇𝑣 = −(𝐿𝑣𝑣

−1 ⋅ 𝑅𝑣𝑣) ⋅ 𝐼𝑣𝑣 − 𝐿𝑣𝑣
−1 ⋅ Φ̇𝑝

Φ𝐷𝐿 = 𝑀𝐷𝐿 ⋅ 𝐼𝑣𝑣 +Φ𝑝                        
 (II.24)  

with: 

𝐿𝑣𝑣 = [
𝐿𝑖𝑛 𝑀𝑖𝑛−𝑜𝑢𝑡

𝑀𝑜𝑢𝑡−𝑖𝑛 𝐿𝑜𝑢𝑡
]

𝑅𝑣𝑣 = [
𝑅𝑖𝑛 0
0 𝑅𝑜𝑢𝑡

]

𝑀𝐷𝐿 = [𝑀𝐷𝐿 𝑀𝐷𝐿]

𝐼𝑉𝑉 = [
𝐼𝑖𝑛
𝐼𝑜𝑢𝑡

]

Φ̇𝑝 = [
Φ̇𝑝

Φ̇𝑝

]

 (II.25)  

The evaluation of the entries of the matrices is carried out by considering 

that the shells thickness is 𝛿 = 60 𝑚𝑚 and the resistivity at 100 °𝐶 temperature 

is 0.8
m





 : 

𝐿𝑠ℎ𝑒𝑙𝑙 =
Φ𝑠ℎ𝑒𝑙𝑙

𝐼𝑇𝐹
=
𝐵𝜙 ⋅ 𝜋𝑎

2𝑘

𝐵𝜙 ⋅ 2𝜋𝑅0
𝜇0

   𝑅𝑠ℎ𝑒𝑙𝑙 = 𝜂
2𝜋𝑎√𝑘

2𝜋𝑅0 ⋅ 2𝛿
  (II.26)  

where: 

 𝑎 is the minor radius; 

 𝑅0 is the major radius; 

 𝑘 is the vertical elongation. 

Therefore, the time constant of the system is 𝜏 = 0.295𝑠, obtained from the 

dynamic matrix (𝐴 = −𝐿𝑣𝑣
−1 ⋅ 𝑅𝑣𝑣):  

This analytical model is hereafter validated, by comparing it with a 

simplified model with a Vacuum Vessel consisting only of one shell, whose 

inductance is the average value of the two shells self-inductance and whose 

resistance is equivalent to the two shells parallel-resistance: 

{
𝐼𝑣̇𝑣 = −

𝑅𝑣𝑣
𝐿𝑣𝑣

⋅ 𝐼𝑣𝑣 −
1

𝐿𝑣𝑣
⋅ Φ̇𝑝

Φ𝐷𝐿 = 𝑀𝐷𝐿 ⋅ 𝐼𝑣𝑣 +Φ𝑝          
 (II.27)  

The time constant is 𝜏 = 0.306𝑠, thus agreeing with that of the two shells 

model. 

At last, a further numerical experiment for the evaluation of the time 

constant was set up. As shown in the second equation of (II.24), the flux liked 
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with the main diamagnetic loop is the sum of the contribution of the flux 

generated by the currents flowing into the shells and the plasma flux, that is 

related to the current flowing into the TFCs (so controllable). 

Being the time constant about 300 𝑚𝑠, the current into the TFCs is driven 

with a triangular wave whose rise-time and fall-time are long enough to let the 

transient to end (about 5 𝑠  each) and whose peak-value is unitary. The 

evaluation of the flux linked with the main diamagnetic loop can be carried out 

by evaluating the voltage at its terminals both at half of the rise and fall time. 

The average value of the these values does not include that of the TFCs, 

being symmetrical with respect to the time instant when the Toroidal Field Coils 

current reverse its time derivative. Therefore, the only quantity related to the 

eddy currents flowing into the vacuum vessel can be estimated. 

The electromagnetic time constant of the system can be calculated as the 

ratio between the voltage at the sensor’s terminals and the flux linked with it. 

The value obtained from this procedure is 𝜏 = 0.304 𝑠, agreeing with the values 

calculated with the analytical models. 

Therefore, the vacuum vessel acts like a low-pass filter having the time 

constant about of 300 𝑚𝑠  and so cut-off frequency about of 5 𝐻𝑧 ; since the 

sampling time for the poloidal beta 𝛽𝑝𝑜𝑙  ranges from 100 𝜇𝑠  to 1 𝑚𝑠  (the 

sampling rate ranges from 1 𝑘𝐻𝑧  to 100 𝑘𝐻𝑧 ), the hypothesis required in 

Nyquist-Shannon Theorem are not fulfilled. 

For this reason, a new type of compensation formula; as the compensation 

system consists of coils located inside and outside the vacuum vessel, their 

measurements can be used to extract the flux linked with the main diamagnetic 

loop due to the eddy currents as follows: 

Φ𝐸𝐶 =
2𝜋

𝜇0
𝑀𝐷𝐿(𝑅𝑖𝑛𝐵𝑖𝑛 − 𝑅𝑜𝑢𝑡𝐵𝑜𝑢𝑡) = 𝑐𝑇 ⋅ [𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡𝑢𝑝 , 𝐵𝑜𝑢𝑡𝑙𝑜𝑤] (II.28)  

where: 

 
0

 is the vacuum magnetic permeability; 

 𝑀𝐷𝐿 is the mutual inductance between diamagnetic loop and the Vacuum 

Vessel; 

 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 are the radial coordinates of the compensation coils; 
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 𝐵𝑖𝑛, 𝐵𝑜𝑢𝑡𝑢𝑝  and 𝐵𝑜𝑢𝑡𝑙𝑜𝑤  are the pick-up coils measurements; 

 𝑐 is the set of coefficients. 

It is worth noticing that the centre side of equation (II.28) is based on the 

2-D axisymmetric assumption, whereas its right side is a generalization to the 3-

D case. 

Three sets of compensation coefficients were tested and listed below: 

 

Tab. II.20: Compensation Coefficients for Poloidal Eddy Currents Compensation

 Rin Rout_up Rout_low 

c1 [m2] -58.4 67.7 0 

c2 [m2] -58.4 0 64.3 

c3d [m2] -49.1 56.1 0 

SM

where: 𝑀𝐷𝐿 = 1.56 𝜇𝐻 , 𝑅𝑖𝑛 = 7.49 𝑚 , 𝑅𝑜𝑢𝑡𝑢𝑝 = 8.65 𝑚  and 𝑅𝑜𝑢𝑡𝑙𝑜𝑤 = 8.25 𝑚 . 

The first triple of coefficients exploits the outer upper compensation coils set 

(three sets of eight sensors each), the second one uses the outer lower 

compensation coils set (three sets of four sensors each) whilst the third set uses 

the outer upper compensation coils set, but takes into account the local 3-D 

effects (mainly ports) on the signal measured by the inner compensation coils 

and rescales the signals on the outer sensors. 

For this reason, the 𝑐1 and 𝑐2 vectors are calculated with the center side of 

equation (II.28) whereas the 𝑐3 vector is calculated via pseudo-inversion using 

both the model and the experimental data. 

The compensation formulas were tested and validated for many discharges 

and hereafter the results obtained on a Major Disruption Upward with Toroidal 

Field Variation (MD_UP_TFV) and a Vertical Displacement Event Downward with 

Toroidal Field Variation (VDE_DOWN_TFV) are reported: 
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Fig. II.24: Effects of the Compensation formulas with ideal sensors (top: reconstruction of plasma 

flux time evolution; bottom: maximum errors on plasma flux reconstruction) 

 

In case of ideal sensors there is a very good reconstruction of the plasma 

flux, but there are significant effects due to the Poloidal Field Variations on both 

the inner and outer compensation coils, if they are misaligned: 

 

 
Fig. II.25: Effects of the Compensation formulas with misaligned sensors (up: reconstruction of 

plasma flux time evolution; down: maximum errors on plasma flux reconstruction) 

 

As regards the fast TF coil discharge, Fig. II.26 shows that the formulas 

based on the outer upper compensation coils work better (more details are 
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visible in Fig. II.27). The eddy current contribution is about 13.5 𝑉𝑠 in the fast 

transient due to Toroidal Field Coils current quench (18 𝑉𝑠 due to the external 

TF source in 200 𝑚𝑠), and the compensation formulas based on the inner and 

upper outer compensation coils provide good estimations (within an error of 

220 𝑚𝑉𝑠). 

 

 

Fig. II.26: The flux linked with the Main Diamagnetic Loop during the Fast TF coil discharge, PhiDL, 
is compared to the TF coil flux PhiTFC, to the initial flux PhiDL0, and to the three compensated 

signals PhiDLc1, PhiDLc2 and PhiDLc3d.

 

  
Fig. II.27: The eddy current contribution PhiDL-PhiTFC during the Fast TF coil discharge is 

compared with the difference from the compensated signals and the flux directly linked to the TF 

coil currents (zoom into the right figure of the compensation formulas using the outer upper 

compensation coils). 

SM
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2.2.7 Application of the Compensation Formulas to mitigate the 

effects of error sources and geometrical imperfections on 

diamagnetic sensor measurements 

2.2.7.a Ideal sensors and electromagnetic sources in presence of 
eddy currents 

After the validation of the proposed compensation formulas (see Section 

2.2.6.a), they were used in many transients, in case of ideal sensors and ideal 

electromagnetic sources. Tab. II.21 shows the results for each of them: 

 

Tab. II.21: Application of the compensation formulas during the transients with ideal sensors

Case 
Ip 

[MA] 

p 

[Vs] 

Required 

accuracy 

[mVs] 

Max. error 

without/with 

compensation 

[mVs] 

BD + 

Rampup 

0 @ 0.783 s 

0
 
@ 0.900 s 

0.5 @ 1.296 s 

1.0 @ 1.835 s 

0 

0 

0 

0.01 

10 

10 

10 

10 

<1/<1 

<1/<1 

<1/<1 

<1/<1 

ELM 
15 

15 
420 

117 

117 
30/3 

VDEup 

fast 

cat. II 

15 @ 0.6382 s 

<1 @ 0.6875 s 

2.3 

0 

690 

60 

1600/21 

720/46 

VDEdown 

slow cat. 

III 

15 @ 0.683 s 

<1 @ 1.100 s 

3.2 

0.3 

960 

90 

2300/140 

600/80 

MD UP 
15 @ 0.0101 s 

<1 @ 0.1000 s 

2.3 

0 

690 

60 

1500/10 

700/70 

TFD - - - 13500/220 

SM

 

The effect of the compensation formulas is crucially beneficial in all the 

transients, apart from plasma breakdown and rump-up and ELM transients 

where the accuracy requirements are met also without compensation. In the 

other cases, they are met by compensating the largest part of the polluting signal, 

mostly due to the toroidal field variation, that is the poloidal currents. 
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2.2.7.b Non- ideal sensors with ideal EM sources 

Tab. II.22 reports the combined effects on the main diamagnetic loop due 

to the geometrical deviation from the nominal design (tilt, displacement, 

deformation -2σ-, being σ the standard deviation of the deformation) and to eddy 

currents: 

 

Tab. II.22: Combined main DL tilt/displacement/deformation (2) and eddy current effects

Case 
Ip 

[MA] 

p 

[Vs] 

Req. 

accuracy 

[mVs] 

𝟐 =

𝟎. 𝟏 𝒅𝒆𝒈 

horizontal 

tilt 

[mVs] 

𝟐 = 

𝟎. 𝟏 𝒅𝒆𝒈 

vertical 

tilt 

[mVs] 

𝟐 = 

𝟏 𝒄𝒎 

radial 

shift 

[mVs] 

𝟐 =

𝟏 𝒄𝒎 

random 

deform. 

[mVs] 

BD + 

Rampup 

0 @ 0.783 s 

0 @ 0.900 s 

0.5 @ 1.296 s 

1.0 @ 1.835 s 

0 

0 

0 

0.01 

10 

10 

10 

10 

0.26 

0.40 

0.99 

1.10 

0 

0 

0 

0.03 

0.01 

0.01 

0.01 

0.03 

0.44 

0.48 

0.33 

0.24 

ELM 15 420 117 2 2 2 2 

VDEup 

fast cat. II 

15 @ 0.6382 s 

<1 @ 0.6875 s 

2.3 

0 

690 

60 

2.79 

3.42 

0.25 

0.09 

1.41 

0.61 

8.5 

7.7 

VDEdown 

slow cat. 

III 

15 @ 0.683 s 

<1 @ 1.100 s 

3.2 

0.3 

960 

90 

1.12 

4.31 

0.37 

0.04 

2.01 

0.55 

10 

15 

MD UP 
15 @ 0.0101 s 

<1 @ 0.1000 s 

2.3 

0 

690 

60 

0.17 

2.20 

0.26 

0.04 

1.30 

0.56 

5.1 

4.5 

SM

This analysis clearly shows that: 

 the horizontal tilt is more sensitive to the poloidal field (toroidal 

currents), for instance during the breakdown, the rump-up and the 

current quench; 

 the vertical tilt and the radial shift are more sensitive to the toroidal 

field (poloidal currents), for instance during the ELM and the 

thermal quench. 

Moreover, the accuracy requirements are met without using the 

compensation system, during the phases when the significant component of the 

eddy currents is toroidal (e.g., breakdown & ramp-up). On the contrary, they are 

met by using the compensation formulas during the fast disruptions, supposing 

that the compensation coil misalignment is (or can be estimated) within 0.2 𝑑𝑒𝑔. 
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Finally, the same analysis is carried out for thermal expansion, noise and 

integration drift (Tab. II.23) and for various effects, as the combination of the tilt 

of the sensors with the eddy current effect (Tab. II.24 & Tab. II.25): 

 

Tab. II.23: Effects of thermal expansion, noise and integration drift on the Main Diamagnetic Loop

Case 
Ip 

[MA] 

p 

[Vs] 

Required 

accuracy 

[mVs] 

Thermal 

expansion 

RTOT 

[mVs] 

Noise 

2 

[mVs] 

Integratio

n 

drift 2 

[mVs] 

BD + 

Rampup 

0 @ 0.783 s 

0 @ 0.900 s 

0.5 @ 1.296 s 

1.0 @ 1.835 s 

0 

0 

0 

0.01 

10 

10 

10 

10 

360 

0 

0 

0.2 

0.4 

0 

VDEup 

fast 

cat. II 

15 @ 0.6382 s 

<1 @ 0.6875 s 

2.3 

0 

690 

60 
360 4.3 0.2 

VDEdow

n slow 

cat. III 

15 @ 0.683 s 

<1 @ 1.100 s 

3.2 

0.3 

960 

90 
360 4.8 0.2 

MD UP 
15 @ 0.0101 s 

<1 @ 0.1000 s 

2.3 

0 

690 

60 
360 4.1 0.2 

SM

Note that the thermal expansion additional flux can be compensated by 

monitoring the temperature at each pulse. 
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Tab. II.24: Various effects on the Main Diamagnetic Loop 1/2

Case 
Ip 

[MA] 

p 

[Vs] 

Required 

accururacy  

[mVs] 

Ideal 

sensors 

[mVs] 

Noise & 

integration 

drift 

[mVs] 

Main 

DL 

tilt + 

eddy 

[mVs] 

Inner 

coil 

tilt + 

eddy 

[mVs] 

BD + 

Rampup 

0 @ 0.783 s 

0 @ 0.900 s 

0.5 @ 1.296 s 

1.0 @ 1.835 s 

0 

0 

0 

0.01 

10 

10 

10 

10 

0 

0 

0 

0 

0 

0 

0.2 

0.4 

1 

1.1 

1.3 

1.3 

5 

5 

13 

22 

ELM 
15 

15 
420 

117 

117 
3 4 2 2 

VDEup fast 

cat. II 

15 @ 0.6382 s 

<1 @ 0.6875 s 

2.3 

0 

690 

60 

21 

46 

4.3 

4.3 

9 

8 

216 

233 

VDEdown 

slow cat. 

III 

15 @ 0.683 s 

<1 @ 1.100 s 

3.2 

0.3 

960 

90 

140 

80 

4.8 

4.8 

10 

16 

185 

191 

MD UP 
15 @ 0.0101 s 

<1 @ 0.1000 s 

2.3 

0 

690 

60 

10 

70 

4.1 

4.1 

5 

5 

2 

213 

SM

Tab. II.25: Various effects on the Main Diamagnetic Loop 2/2

Case 
Ip 

[MA] 

p 

[Vs] 

Required 

accuracy  

[mVs] 

Ideal 

sensors 

[mVs] 

OuterUp 

coil tilt + 

eddy 

[mVs] 

Inner 

coil 

noise 

[mVs] 

OuterUp 

coil 

noise 

[mVs] 

BD + 

Rampup 

0 @ 0.783 s 

0 @ 0.900 s 

0.5 @ 1.296 s 

1.0 @ 1.835 s 

0 

0 

0 

0.01 

10 

10 

10 

10 

0 

0 

0 

0 

8 

9 

11 

12 

29 

29 

29 

29 

16 

16 

16 

16 

ELM 
15 

15 
420 

117 

117 
3 2 29 16 

VDEup fast 

cat. II 

15 @ 0.6382 s 

<1 @ 0.6875 s 

2.3 

0 

690 

60 

21 

46 

63 

74 

29 

29 

16 

16 

VDEdown 

slow cat. III 

15 @ 0.683 s 

<1 @ 1.100 s 

3.2 

0.3 

960 

90 

140 

80 

15 

86 

29 

29 

16 

16 

MD UP 
15 @ 0.0101 s 

<1 @ 0.1000 s 

2.3 

0 

690 

60 

10 

70 

0.1 

42 

29 

29 

16 

16 

SM
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2.2.8 Estimation of the Poloidal beta via Diamagnetic 

Diagnostics 

For a given thermonuclear plasma, the Poloidal Beta is defined as the ratio 

between the average plasma’s kinetic pressure and the average poloidal 

magnetic pressure: 

2

02

p

p

V

p

pa

V

pdV

B
dV










 
(II.29)  

where: 

 𝑉𝑝 is the plasma volume; 

 𝐵𝑝𝑎  is the average value of the poloidal magnetic flux density field 

(different ways to calculate this parameters lead to different definitions 

of the poloidal beta). 

The average value considered for the following analysis is based on that 

used in 𝐸𝐹𝐼𝑇++ [34]-[35]-[36]: 

p

p

p

pa

B dl

B
dl











  (II.30)  

where Γ𝑝 is the plasma boundary, that is the intersection of Vp with the poloidal 

plane. 

In anisotropic plasmas it is possible to define two components of the 

poloidal beta associated to the perpendicular (𝛽𝑝⊥) and parallel (𝛽𝑝∥) pressure, 

respectively. The poloidal beta is then related to these two components as 

follows [37]: 

𝛽𝑝 =
2𝛽𝑝⊥ + 𝛽𝑝∥

3
 (II.31)  

Let us introduce the following quantities: 

𝑙𝑖 =
∭ 𝐵𝑝

2𝑑𝑉
𝑉𝑝

∭ 𝑑𝑉
𝑉𝑝

𝐵𝑝𝑎2

2𝜇0

 (II.32)  

Λ =
1

2
(𝛽𝑝⊥ + 𝛽𝑝∥) +𝑊𝑝𝑡 +

𝑙𝑖
2

 (II.33)  
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𝜇𝑖 =
1

𝐵𝑝𝑎2 ∭ 𝑑𝑉
𝑉𝑝

∭ (𝐵𝜑0
2 − 𝐵𝜑

2)𝑑𝑉
𝑉𝑝

 (II.34)  

where: 

 𝑙𝑖 is the plasma internal inductance (or inductance per unit length); 

 𝜇𝑖 is called diamagnetic parameter. 

 Λ is the coefficient of asymmetry of the poloidal field; 

 𝑊𝑝𝑡 is the energy density associated with the plasma mass motion in the 

toroidal direction; 

 𝐵𝜑 is the toroidal magnetic flux density field; 

 𝐵𝜑0  is the toroidal magnetic flux density field without the plasma 

contribution. 

Introducing the Shafranov integrals [38], defined as follows: 

𝑆1 =
1

𝐵𝑝𝑎2 ∫ 𝑑𝑉
𝑉𝑝

∯[𝐵𝑝
2((𝑟−𝑅0)𝒊𝒓 + 𝑧𝒊𝒛)] ∙ 𝒏𝑑𝑆

𝜕𝑉𝑝

 (II.35)  

𝑆2 =
𝑅0

𝐵𝑝𝑎2 ∫ 𝑑𝑉
𝑉𝑝

∯𝐵𝑝
2𝒊𝒓 ∙ 𝒏𝑑𝑆

𝜕𝑉𝑝

 (II.36)  

𝑆3 =
1

𝐵𝑝𝑎2 ∭ 𝑑𝑉
𝑉𝑝

∯[𝐵𝑝
2𝑧𝒊𝒛] ∙ 𝒏𝑑𝑆

𝜕𝑉𝑝

 (II.37)  

it is possible to rewrite the parameters in (II.32), (II.33) and (II.34), as follows: 

𝑙𝑖 =
1

𝛼 − 1
[0.5𝑆1 + 0.5𝑆2 (1 −

𝑅𝑡
𝑅0
) − 𝑆3] (II.38)  

Λ = 0.25𝑆1 + 0.25𝑆2 (1 −
𝑅𝑡
𝑅0
) (II.39)  

𝛽𝑝⊥ = 0.5𝑆1 + 0.5𝑆2 (1 +
𝑅𝑡
𝑅0
) + 𝜇𝑖 (II.40)  

where: 

𝑅𝑡 =
∭ (8𝜋𝑝 + 𝐵𝑝

2 + 𝐵𝑡0
2 − 𝐵𝑡

2)𝑑𝑉
𝑉𝑝

∭
1
𝑟 (8𝜋𝑝 + 𝐵𝑝

2 + 𝐵𝑡0
2 − 𝐵𝑡

2)𝑑𝑉
𝑉𝑝

 (II.41)  

𝛼 = 2
∭ (𝑩𝑝 ∙ 𝒊𝑧)

2
𝑑𝑉

𝑉𝑝

∭ 𝐵𝑝
2𝑑𝑉

𝑉𝑝

 (II.42)  

being 𝑅0 a characteristic radius (e.g. the vacuum vessel centre radius). It is worth 

noticing that the equation (II.41) assumes an isotropic plasma and a negligible 

rotational mass flow; the general expression for Rt can be found in [39][39]. 



 72 

Under the same hypothesis, it is possible to demonstrate that: 

𝛽𝑝 = 𝛽𝑝⊥ = 𝛽𝑝∥ (II.43)  

𝑊𝑝𝑡 = 0 (II.44)  

so rewriting the parameters in (II.38), (II.39) and (II.40), as follows: 

𝛽𝑝 +
𝑙𝑖
2
= 0.25𝑆1 + 0.25𝑆2 (1 +

𝑅𝑡
𝑅0
) (II.45)  

𝑙𝑖 =
1

𝛼 − 1
[0.5𝑆1 + 0.5𝑆2 (1 −

𝑅𝑡
𝑅0
) − 𝑆3] (II.46)  

𝛽𝑝 = 0.5𝑆1 + 0.5𝑆2 (1 −
𝑅𝑡
𝑅0
) + 𝜇𝑖 (II.47)  

Once the plasma diamagnetic flux is measured via the diagnostic system, it 

is possible to estimate the diamagnetic parameter as follows: 

μ𝑖 ≅ −
4𝜋𝐵𝑡0𝑅0
𝐵𝑝𝑎2 𝑉𝑝𝑙

ΔΦ (II.48)  

where ΔΦ is the diamagnetic flux. 

Assuming that the plasma has an elliptic cross-section, equation (II.47) can 

be simplified as follows: 

𝛽𝐷𝐼𝐴
(2) = 1 +

𝐸2 + 1

𝐸

𝐵𝑡0
20𝜋𝐼𝑝2

ΔΦ (II.49)  

where E is the plasma elongation. 

The range of validity for expressions (II.29) and (II.31) was tested on 

several static equilibria extracted from the database of the 𝐸𝐹𝐼𝑇++ code [40]. 

Assuming no noise affecting the sensors, the code was used for the 

reconstruction of all the plasma parameters, except for the diamagnetic flux. 

In Tab. II.26 we report the actual values of the poloidal beta 𝛽𝑝 , the 

diamagnetic flux ΔΦ, the required accuracy of the diamagnetic flux measurement 

(𝜀ΔΦ), the expected error without eddy current compensation (2𝜎ΔΦ), and the 

expected error with the eddy current compensation (2𝜎ΔΦ𝐶𝑂𝑀𝑃) in terms of the 2 

confidence interval ( is the standard deviation). 
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Tab. II.26: Equilibria and maximum values of expected diamagnetic flux errors (2σ interval)

Eq. # 
𝑰𝒑 

[MA] 

𝒑

  
[Vs] 

𝜺𝚫𝚽 
[mVs] 

𝟐𝝈𝚫𝚽 
[mVs] 

𝟐𝝈𝚫𝚽𝑪𝑶𝑴𝑷 

[mVs] 

30 3.00 0.0843 0.0878 5 0 33 

50 15.00 0.5937 1.1568 116 5 33 

182 15.00 0.6000 1.0346 119 5 33 

131 2.53 0.1881 0.0574 4 0 33 

230 9.36 2.4752 -1.0743 48 2 33 

184 15.00 0.5991 1.0890 119 5 33 

SM

In the following Tab. II.27 and Tab. II.28, the confidence intervals on 

diamagnetic flux shown in Tab. II.26 were mapped to the 2 confidence intervals 

on the poloidal beta estimation errors, by applying equations (II.29) and (II.31) 

respectively. The cases highlighted in red show that the required accuracy 

bounds are exceeded. 

 

Tab. II.27: Estimation results using equation (II.29)

Eq. # 𝚫
𝒑

 𝜷𝑫𝑰𝑨
(𝟏)

 𝜺
𝜷𝑫𝑰𝑨
(𝟏)  𝟐𝝈

𝜷𝑫𝑰𝑨
(𝟏)  𝟐𝝈

𝜷𝑫𝑰𝑨
(𝟏)

𝑪𝑶𝑴𝑷

 

30 0.030~0.138 0.086 0.034~0.138 0.086~0.086 -0.257~0.430 

50 0.514~0.674 0.617 0.562~0.671 0.614~0.619 0.601~0.632 

182 0.520~0.680 0.615 0.560~0.669 0.612~0.617 0.600~0.630 

131 0.129~0.247 0.196 0.138~0.255 0.196~0.196 -0.287~0.679 

230 2.301~2.649 2.559 2.501~2.617 2.556~2.561 2.519~2.599 

184 0.519~0.679 0.618 0.564~0.673 0.616~0.620 0.603~0.633 

SM

 

Tab. II.28: Estimation results using equation (II.31)

Eq. # 𝚫
𝒑
 𝜷𝑫𝑰𝑨

(𝟏)
 𝜺

𝜷𝑫𝑰𝑨
(𝟐)  𝟐𝝈

𝜷𝑫𝑰𝑨
(𝟐)  𝟐𝝈

𝜷𝑫𝑰𝑨
(𝟐)

𝑪𝑶𝑴𝑷

 

30 0.030~0.138 -0.426 -0.507~-0.345 -0.426~-0.426 -0.962~0.110 

50 0.514~0.674 0.553 0.508~0.598 0.551~0.555 0.540~0.566 

182 0.520~0.680 0.588 0.540~0.635 0.586~0.590 0.574~0.601 

131 0.129~0.247 -0.475 -0.578~-0.372 -0.475~-0.475 -1.323~0.373 

230 2.301~2.649 2.052 2.005~2.099 2.050~2.054 2.020~2.085 

184 0.519~0.679 0.566 0.519~0.614 0.564~0.568 0.553~0.580 

SM

From these analyses it is possible to note that formula (II.29) can be used 

without the compensation system and the compensation provides out-of-bound 

estimations, at low poloidal beta values. 

On the other hand, the approximated formula (II.31) should not be used at 

low poloidal beta values in any case. 
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Chapter 3  

Electromechanical effects of non-axisymmetric Halo 

Currents on ITER tokamak components 

In this chapter, the analysis of the electromechanical loads due to 

asymmetric halo currents on the structures of ITER Tokamak is carried out. After 

introduction of the mathematical model and the numerical formulation of the 

problem, it is firstly validated on an axisymmetric halo currents configuration. 

Finally, the asymmetric analysis is tackled, focusing on the inductive effects too 

and on the electromechanical loads on the TF Coils [41]. 

3.1 Introduction 

When a disruption occurs during the normal operations of a Tokamak, the 

loss of the plasma vertical position control generates a so-called Vertical 

Displacement Event (VDE) resulting in the halo current circulation from the 

plasma into the First Wall through the various in-vessel components, and then 

back into the plasma. 

The halo current interaction with the strong magnetic field inside the 

tokamak produces mechanical loads that usually are a mandatory design 

criterion for many of its components, such us the Vacuum Vessel, the divertor 

and the blanket modules. 

The experimental evidence [42] highlights that ITER load specifications 

should also take into account the occurrence of Asymmetric Vertical Displacement 

Events (AVDEs), which may generate additional concentrated loads in some 

regions of the tokamak [43]-[44]. 
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For these reasons, the evaluation both of the halo current distributions due 

to AVDEs and of the subsequent force distributions on the structures 

surrounding the plasma in ITER tokamak is the principal aim of the activity 

described hereafter. 

The chapter focuses on the simulation of electromagnetic transients, and in 

particular on the calculation of the electromagnetic loads generated by both the 

halo and the eddy currents (thus estimating the time-history of torques and net 

forces among the vacuum vessel and surrounding structures), the volumetric 

forces components at each time instant and the net forces on the Toroidal Field 

Coils. 

 

3.2 Numerical Model 

The numerical model for the halo currents analyses in presence of AVDEs 

can be formulated in terms of weak form of the Maxwell equations in magneto-

quasistatic limit [11]-[12]-[13] where the displacement current is neglected and 

by the linear constitutive equation 𝑱 = 𝜎𝑬 in the conducting region. 

The equation of the finite element method is derived by using the method 

of mean weighted residuals and therefore introducing the vector W of the 

weighting functions. In this case, the imposition of the electric constitutive 

equation in the weak form leads to: 

∫ 𝑾 ⋅
1

𝜎
𝑱𝑑𝑉

𝑉𝑐

+
𝑑

𝑑𝑡
∫ 𝑾 ⋅ 𝑨[𝑱]𝑑𝑉
𝑉𝑐

= −
𝑑

𝑑𝑡
∫ 𝑾 ⋅ 𝑨𝒔𝑑𝑉
𝑉𝑐

+ 

− ∑ ∫ 𝜙h𝑾 ⋅ 𝒏̂
𝑆ℎℎ=1:𝑁𝐸

𝑑𝑆 ∀𝑾, 𝑱 ∈ 𝑆 

(III.1)  

where S is the subspace of 𝑳𝑑𝑖𝑣
2 (𝑉𝑐) defined by: 

𝑆 = {𝑱 ∈ 𝑳𝑑𝑖𝑣
2 , ∇ ⋅ 𝑱 = 0 𝑖𝑛 𝑉𝑐, 𝑱 ⋅ 𝒏̂ = 𝟎 𝑜𝑛 𝜕𝑉𝑐/𝑆𝐸} (III.2)  

and: 

 𝑳𝑑𝑖𝑣
2 (𝑉𝑐) is the space where both 𝑱 and ∇ ⋅ 𝑱 belong to 𝑳2(𝑉𝑐); 

 𝑨𝑠 is the vector potential of the magnetic field generated by the external 

sources; 
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 𝐀  is the operator that returns the magnetic vector potential for a 

prescribed current density (it is based on the Biot-Savart law); 

 𝑁𝐸  is the number of electrodes (part of the boundary of the conducting 

domain), identified by the surface SE, characterized by the electric 

potential Φℎ and by an assigned current density distribution 𝐉H(𝐫, t). 

Expressing 𝐉  in terms of the electric vector potential (  𝐉 = ∇ × 𝐓 ), we 

choose to represent it as the linear combination of the basis functions

𝑱𝑗 = ∇ × 𝑻𝑗 ∈ 𝑆: 𝑱(𝒓, 𝑡) = ∑ 𝐼𝑗(𝑡)𝑱𝑗(𝒓)𝑗  in 𝑉𝑐 , and according to Galerkin’s 

method, the chosen 𝑱𝑖 ’s are the weighting functions. 

The condition ∇ × 𝑻𝑗 ∈ 𝑆  can be satisfied by using the edge elements as 

shape functions for 𝑻, imposing its uniqueness as [11].  

Using such assumptions, we get the following ordinary differential 

equation set: 

{
𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅 ⋅ 𝐼 + 𝑃𝑇 ⋅ Φ = 𝑉(𝑡)

𝑃 ⋅ 𝐼 = ℐℎ                                   
 (III.3)  

where: 

 𝐿 is the fully populated inductance matrix; 

 𝑅 is the sparse resistance matrix; 

 Φ is the vector of voltages feeding the electrodes; 

 V is the vector of the external voltages; 

 ℐℎ  is the vector of the fluxes through all the boundary facets elements; 

 𝑃 is the matrix of the fluxes through the mesh facets Sk belonging to 𝜕𝑉𝑐 

and generated by the ℐℎ  unknown currents (the entries 𝑃𝑖𝑗  are zeroes for 

those unknowns not belonging to the boundary). 

These considerations lead to a suitable partitioning of the unknowns as 

boundary (𝐼𝑏) and internal (𝐼𝑖) currents unknowns (the apices b and i stand for 

boundary and internal region of the conductor domain), thus rewriting the set 

(III.3) as follows: 
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{
  
 

  
 (𝐿

𝑏𝑏 + Δ𝑡𝑅𝑏𝑏) ⋅ 𝐼𝑛+1
𝑏 + (𝐿𝑏𝑖 + Δ𝑡𝑅𝑏𝑖) ⋅ 𝐼𝑛+1

𝑖 + Δ𝑡𝑃𝑇 ⋅ ϕ𝑛+1 =

= 𝐿𝑏𝑏 ⋅ 𝐼𝑛
𝑏 + 𝐿𝑏𝑖 ⋅ 𝐼𝑛

𝑖 + Δ𝑡 ⋅ 𝑉0,𝑛+1
𝑏                                                       

(𝐿𝑏𝑖 + Δ𝑡𝑅𝑏𝑖) ⋅ 𝐼𝑛+1
𝑖 + (𝐿𝑖𝑖 + Δ𝑡𝑅𝑖𝑖)

𝑇

⋅ 𝐼𝑛+1
𝑖 =                             

= 𝐿𝑖𝑏 ⋅ 𝐼𝑛
𝑏 + 𝐿𝑖𝑖 ⋅ 𝐼𝑛

𝑖 + Δ𝑡 ⋅ 𝑉0,𝑛+1
𝑖                                                        

 (III.4)  

where: 

 the quantity 𝐼𝑛𝑥  is the unknown current at generic time instant 𝑛𝑥; 

 Φ𝑛 is the set of voltages associated to the boundary facets at generic time 

instant 𝑛 (defined by the incidence matrix 𝑃); 

 𝑉0,𝑛𝑥  is the set of external voltages at generic time instant 𝑛𝑥; 

 𝐼0,𝑛𝑥  is the set of the plasma halo currents imposed at the boundary 

elements facing the plasma, at generic time instant 𝑛𝑥. 

The solution of the (III.4) can be gainfully calculated by changing the 

variables and defining a new unknown vector 𝑍 as follows: 

𝐼𝑏 = 𝐾 ⋅ 𝑍 + 𝐼0 (III.5)  

where: 

 𝐾 is the right null of P; 

 𝐼0 = 𝑃
†𝐼ℎ, where 𝑃† is the Moore-Penrose pseudo-inverse matrix of 𝑃. 

Taking into account that: 

𝐾 ⋅ 𝑃 ⋅ Φ = (Φ𝑇 ⋅ 𝑃 ⋅ 𝐾) = 0 (III.6)  

if the set of equations (III.4) is multiplied by 𝐾𝑇 , we get: 

{
𝐾𝑇 (𝐿𝑏𝑏 + Δ𝑡𝑅𝑏𝑏) ⋅ 𝐾 ⋅ 𝑍𝑛+1 +𝐾

𝑇 (𝐿𝑏𝑖 + Δ𝑡𝑅𝑏𝑖) ⋅ 𝐼𝑛+1
𝑖 = 𝑢𝑛

𝑏

(𝐿𝑏𝑖 + Δ𝑡𝑅𝑏𝑖) ⋅ 𝐾 ⋅ 𝑍𝑛+1 + 𝑅
𝑖𝑖 ⋅ 𝐼𝑛+1

𝑖 = 𝑢𝑛
𝑖                                    

 (III.7)  

for suitable right-hand sides 𝑢𝑛
𝑏 and 𝑢𝑛

𝑖 . 

The solution of the set of (III.7) is calculated in two different cases: 

 the resistive limit, where the inductive effects are neglected (the 𝐿𝑖𝑗  terms 

are not present); 

 the dynamic case, where the inductive effects related to the 𝐿𝑖𝑗  terms are 

taken into account. 
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The solver of the resistive limit is very important not only for the resistive 

solution itself, but for the inductive case too, because it can be used as a 

preconditioner in the iterative method. The procedure is based on the pseudo-

inversion of the matrix 𝐴𝑏𝑏 = 𝐾
𝑇 ⋅ 𝑅𝑏𝑏 ⋅ 𝐾 (related to the boundary DoFs) using 

a singular value decomposition [45]-[46]. 

 

3.3 Assumptions 

3.3.1 Reference case 

The reference load case considered is a Slow Downward Vertical 

Displacement Event belonging to the third category (in the following VDE DOWN 

SLOW lin CAT III, whose main parameters are shown in Fig. III.1), and an AVDE 

assuming an 𝑛 = 1 kink, (it may yield large horizontal forces and peaking factors 

[43]): 

 

 
Fig. III.1: Load case VDE DOWN SLOW lin CAT III: plasma current Ip, poloidal halo current Ihpol, 

toroidal flux Phip, radial (Rc) and vertical (Zc) position of the plasma current centroid. 

 

The axisymmetric analysis is self-consistent because it takes into account 

both the poloidal field variation due to the plasma current movement and quench 

and the toroidal field variation due to the diamagnetic flux time history. 
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As regards the non-axisymmetric analysis, we assume a simplified 𝑛 = 1, 

𝑚 = 1 kink mode given by a horizontal displacement 𝑑𝑥(𝑡) and a tilt around the 

x axis 𝑑𝑥(𝑡)  and that the asymmetric perturbation starts 10 𝑚𝑠  after the 

thermal quench (when the safety factor at the plasma boundary is about 1.5). 

Taking into account the data provided in [47], we consider a pulse for the 

two perturbation parameters, starting at 𝑡0 = 690 𝑚𝑠 and lasting 𝑑𝑡 = 338 𝑚𝑠, 

so that the maximum value of 𝑑𝐼𝑝 is 10%𝐼𝑝 = 1.5 𝑀𝐴. The quantity 𝑑𝐼𝑝 is given 

by the non-uniform value of the toroidal plasma current along the toroidal 

direction and is so defined as follows: 

dIp(𝑡) = Ip𝑚𝑎𝑥(𝜑, 𝑡) − Ip𝑚𝑖𝑛(𝜑, 𝑡) (III.8)  

The time waveform is bell shaped so that the time integral of 𝑑𝐼𝑝 is: 

∫dIp(𝑡)𝑑𝑡 = 0.6 ⋅ dIp𝑚𝑎𝑥 ⋅ dt (III.9)  

During the rectangular pulse, the ratio between 𝑑𝑥 and 𝑑𝑥 is taken so that 

the ratio between the maximum values of the asymmetric vertical and horizontal 

displacements is the equal to the elongation: 

|
dz

𝑑𝑥
| = |

𝑅0 ⋅ 𝑑𝜃𝑥
𝑑𝑥

| =
𝑏

𝑎
= 2  (III.10)  

 

3.3.2 Solid model of the ITER Tokamak 

Both the eddy and halo current analyses were carried out by means of the 

volumetric integral formulation described in [11]-[12] and implemented in the 

3-D code CARIDDI, well suited for the eddy currents induced both in massive 

structures and in thin shells. 

The computational domain consists of the only conducting region, 

including the passive structures of the tokamak facing the plasma region. 

Therefore, the solid model includes: 

 the two Vacuum Vessel shells; 

 the ribs; 

 the blanket modules below the equatorial plane; 
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 a simplified model of the divertor (with dome, baffles, targets, cassette 

body); 

 simplified models of the plugs; 

 triangular support and copper cladding; 

 the electrical connections of the blanket to the vessel; 

 an artificial shell which allows the closure of the halo current path inside 

the vessel. 

It is worthy noticing that these components shield the vessel, thus the 

electromagnetic loads acting on them are transferred to the vessel itself in the 

inductive phases. 

Basing on these assumptions, one mesh was used to assess the 

axisymmetric model (Fig. III.2) and two additional meshes were used 

respectively for the VDE analyses (the mesh covering a sector 20 𝑑𝑒𝑔 wide, 0 ≤

 ≤ 𝜋/9, shown in Fig. III.3 without the upper part of blanket modules) and for 

the AVDE analyses (the whole torus mesh shown in Fig. III.4): 

 

 
Fig. III.2: Mesh for the validation of the axisymmetric model 
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Fig. III.3: Mesh for the 20 deg sector 0≤≤π/9 (artificial shell in green). 

 

 

 
Fig. III.4: Mesh for the whole torus (the artificial shell not visible because inside the VV) 

 

At last, the following Tab. III.1 reports the list of components, with their 

own equivalent resistivity. 
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Tab. III.1: List of components and their equivalent resistivity

Component 
Resistivity 

[m] 

Vessel inner shell 0.825e-6 

Vessel outer shell 0.825e-6 
Copper cladding 0.027e-6 

Ribs 0.825e-6 
Hook 0.825e-6 

Connection upper port – vessel 0.825e-6 

Connection equatorial port – vessel 0.825e-6 

Connection lower port – vessel 0.825e-6 

Connection upper port – extension 0.825e-6 
Upper port extension 0.825e-6 

Upper port plug 0.825e-6 
Equatorial port extension 0.825e-6 

Equatorial port plug 0.825e-6 
Lower port extension (inner) 0.825e-6 

Lower port extension (outer) 0.825e-6 

Lower port closure 0.825e-6 
Rail 0.825e-6 

Connection rail – cassette 0.825e-6 
Connections cassette – IVT, OVT 0.825e-6 

Cassettes 0.825e-6 
Inner Vertical Targets (IVT) 0.825e-6 

Outer Vertical Targets (OVT) 0.825e-6 

Dome 0.825e-6 
Connections blankets – vessel 0.825e-6 

Blankets: shielding blocks 1.0403e-6 
Blankets: connections shielding 

blocks – front panels 
1.0403e-6 

Blankets: front panels 1.0403e-6 

Artificial shell 0.8e-7 or 0.8e-5 
SM

3.4 Eddy and halo current analyses: procedures, 

models, excitations 

Since CARIDDI is based on an integral formulation, the finite elements 

model used does not include the air and vacuum regions; moreover, the PFCs are 

supposed to be current driven, hence they are excluded by the finite elements 

model as well. 
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When the halo currents are present, the magnetic vector potential 𝑨𝑝𝑙 and 

the magnetic flux density field 𝑩𝑝𝑙 due to the plasma are given by the toroidal 

and poloidal current densities in the plasma core. The plasma motion and the 

current quench generate the driving term related to the plasma toroidal current 

density. In this case, the plasma is approximated as a set of equivalent filaments 

in fixed positions and driving a current time waveform so as to produce the same 

poloidal field of the actual plasma (within a prescribed accuracy). 

To describe the effects of the poloidal currents in presence of halo currents, 

a specific treatment is necessary: it is based on the computation of the plasma 

time evolution using a 2-D axisymmetric approximation, so that the halo current 

density (𝑱ℎ𝑎𝑙𝑜) injected in each elementary surface (2𝜋𝑟Δ𝑙) of the first wall is 

given by the following expression: 

2𝜋𝑟𝛥𝑙𝜇0𝑱ℎ𝑎𝑙𝑜 ⋅ 𝑛̂𝑤 = 2𝜋[𝐵𝜙(𝑟 + Δ𝑟) ⋅ (𝑟 + Δ𝑟) − 𝐵𝜙(𝑟) ⋅ (𝑟)]

=  2𝜋[𝑓(𝑟 + Δ𝑟) − 𝑓(𝑟)] 
(III.11)  

where: 

 𝑓 = 𝑟𝐵𝜙 is the toroidal flux per unit radian at each point of the plasma-

first wall interface; 

 𝑛̂𝑤 is the unit normal vector at the plasma-first wall interface, directed 

towards the first wall; 

 𝛥𝑙 is the incremental distance along the plasma-first wall interface and 

𝛥𝑟 = Δ𝑙(𝑖̂𝜙 × 𝑛̂𝑤 ⋅ 𝑖̂𝑟). 

In the limit where 𝛥𝑙 → 0, it results: 

𝑱ℎ𝑎𝑙𝑜 ⋅ 𝑛̂𝑤 =
1

𝜇0𝑟

𝜕𝑓

𝜕𝑙
 (III.12)  

Being the current density a divergence-free vector field, it is convenient to 

guarantee its closure with a surface current density sheet related to the normal 

component of the halo current density at the plasma-first wall interface, 𝑱ℎ𝑎𝑙𝑜 ⋅

𝑛̂𝑤, by means of the balance equation: 

𝑱ℎ𝑎𝑙𝑜 ⋅ 𝒏̂𝑤 = −∇ ⋅ 𝑱Σ = −
1

𝑟

𝜕𝑟𝐽Σ
𝜕𝑙

 (III.13)  

This fictitious surface current density is placed on the artificial shell that is 

in contact with the first wall and the divertor plates, in order to allow the closure 

of the halo current path outside the conducting structures placed inside the 
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vessel. In particular, the same currents injected in each element of the first wall 

are imposed on the artificial shell, but with opposite direction. 

The current distribution is now divergence-free, even though it does not 

reproduce the flow pattern associated to the plasma behaviour inside the plasma 

chamber. However, this behaviour can be recovered by computing the 

axisymmetric poloidal currents flowing inside the plasma when the same 

artificial shell is used in the 2-D axisymmetric domain. 

It is worth noticing that these modified poloidal plasma currents do not 

generate a magnetic flux density field in the passive structures placed outside 

the plasma, but only a contribution to the time derivative of the magnetic vector 

potential that is associated to the time derivative of the toroidal flux Φ𝑇(𝑡) linked 

with the plasma boundary. 

In the axisymmetric case, the imposition of the toroidal flux as a source is 

obtained by exploiting the analogy between (𝑯, 𝑱) and (𝑨, 𝑩): 

{

∇ × 𝑩/𝜇0 = 𝑱
∇ ⋅ 𝑩/𝜇0 = 0 
lim
𝑟→∞

𝐵 = 0      
⟺ {

∇ × 𝑨 = 𝑩
∇ ⋅ 𝑨 = 0   
lim
𝑟→∞

𝐴 = 0
 (III.14)  

The axisymmetric vector potential 𝑨 associated to a given Φ𝑇(𝑡) can be 

computed as the poloidal field 𝑯  generated by a filament that carries an 

equivalent current equal to the toroidal flux and placed inside the plasma region, 

e.g. the plasma centroid. 

The total field and the flux variation are due to the superposition of both 

axisymmetric and 3-D halo current sources. Notice that the contribution of the 

surface current circulating in the 3-D artificial shell is exactly canceled by the 

surface current flowing at the boundary of the axisymmetric plasma region. 

As regards the AVDEs analyses [48], a suitable decomposition of the driving 

terms is necessary if the mesh not covering the full torus is used. Therefore, the 

20 𝑑𝑒𝑔 mesh is used only for axisymmetric VDE analyses, which include: 

1. Poloidal Field Variation (PFV); 

2. Toroidal Field Variation (TFV); 

3. Halo Currents injected in each element of the first wall and in each 

element of the artificial shell, as given by (III.5) in the axisymmetric case 

[49]. 
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The resulting fields can be then superposed thanks to the linearity 

assumption, being careful to the different boundary conditions: 

 symmetry for halo and TFV analyses, i.e. 𝐽𝑛 = 0,@  = 0  and 

rotational symmetry, i.e. 𝑱(𝑟, + 2𝑘𝜋/9 , 𝑧) = 𝑱(𝑟,, 𝑧)  for any 

integer 𝑘; 

 antisymmetry for PFV analyses, i.e. 𝑱 × 𝒏 = 0,@  = 0  and 

rotational symmetry, i.e. 𝑱(𝑟, + 2𝑘𝜋/9, 𝑧) = 𝑱(𝑟,, 𝑧)  for any 

integer 𝑘. 

On the other hand, when the 360 𝑑𝑒𝑔 mesh is used, all the effects can be 

cumulated and analysed in a single simulation, considering simultaneously all 

the driving terms. 

As regards the only PFV analysis, the driving term is related to the plasma 

motion and current quench. The plasma is modelled with a set of fixed 

filamentary sources whose current time waveforms are calculated so as to 

produce the same poloidal field on the first wall within a reasonable accuracy; 

the PF coil current waveforms are prescribed. 

As regards the only TFV analysis, the PF coil are assumed to be not fed, and 

the driving term is related to the time dynamics of the magnetic vector potential 

associated with the toroidal flux in the plasma. 

Finally, as regard the only axisymmetric halo current effects, the PF coil are 

again assumed to be not fed and the driving term is related to the current injected 

from the plasma into the structure and whose path is closed through the artificial 

shell. 

Since the plasma is axisymmetric, the current is calculated via Ampere’s 

law considering the only toroidal component of the flux density field due to the 

plasma (that is, 𝐵 − 𝐵0 , where 𝐵0  is the vacuum field, which is assumed to be 

curl-free). 

In the following figures, some parameters of interest of the considered 

disruption are shown (the 2-D axisymmetric plasma evolution was computed by 

using the DINA numerical suite [43]-[50]-[51]): 

SM
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Fig. III.5: VDE_DW_slow_2010. The trajectory of the centroid of the plasma current during the 

disruption (left), the plasma current evolution as a function of time (top right) and the waveform 

of the toroidal flux due to the diamagnetic flux variation. 

 

 

 
Fig. III.6: VDE_DW_slow_2010. Waveforms of the fixed filamentary currents (up), waveforms of the 

CS (down left) and PF coils (down right) currents 

SM
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Fig. III.7: VDE_DW_slow_2010: TFV. Poloidal beta as a function of the time 

 

 
Fig. III.8: VDE_DW_slow_2010. Currents in the VS circuits, including the extrapolation after 2.1992s. The 

VS circuits are included in the model as current driven circuits. 

 

As regards the AVDEs, they are carried out using the 360 𝑑𝑒𝑔 mesh and 

assuming that: 

 the TFV and PFV driving terms are the same as the VDE; 

 the halo currents injected into the structure are calculated at each time 

instant t and: 

o the reference configuration is rescaled so as to have the toroidal 

plasma current at each time instant 𝐼𝑝(𝑡) and the total poloidal 

current equal to the poloidal halo current 𝐼ℎ𝑝𝑜𝑙(𝑡) multiplied by the 

factor 
𝐼𝑝(𝑡)

𝐼ℎ𝑡𝑜𝑟(𝑡)
, where 𝐼ℎ𝑡𝑜𝑟(𝑡) is the toroidal halo current flowing at 

time instant 𝑡; 

o the 2-D axisymmetric first wall is mapped inside the plasma; an 

image point 𝑃𝑖  inside the plasma is associated to each point on the 
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first wall so as to have the same (rescaled) value of the toroidal 

flux per radian 𝑓 = 𝑟𝐵 (the two extrema of the wetted area are 

mapped into the plasma boundary, whilst the other points of the 

wetted area are mapped inside). 

The following Fig. III.9 shows a comparison between the halo currents 

distribution both in the VDE and in the AVDE: 

 

 
Fig. III.9: Halo currents in the VDE and in the AVDE. Left: total poloidal halo current Ihpol (the 

same in both VDE and AVDE) and differential current dIp in the AVDE. Right: kink parameters in 

the AVDE (up to about 2.7 deg tilt and about 15 cm horizontal shift). 

 

The figure clearly shows that the total poloidal halo current distribution is 

the same both for the VDE and the AVDE until the kink occurrence. In that very 

moment, a differential current 𝑑𝐼𝑝  arises and is present until the kink’s 

termination. 

 

  
Fig. III.10: Halo currents in the AVDE at time=0.85 s (Ip=11.74MA, Ihpol=6.73 MA, dIp=1.50 MA). 

Left: variation of the total toroidal plasma current Ip (including halo region) along the toroidal angle. 

Right: halo currents interesting the various slices of the torus (20 deg wide each). 



 89 

  
Fig. III.11: Halo currents in the AVDE at time=1.05s (Ip=6.88 MA, Ihpol=6.87 MA, dIp=0). Left: 

variation of the total toroidal plasma current Ip (including halo region) along the toroidal angle. 

Right: halo currents interesting the various slices of the torus (20 deg wide each). 

 

In Fig. III.10 the kink perturbation is still acting on the plasma current, thus 

resulting in a very high variation of the total toroidal plasma current whose order 

of magnitude is comparable with that of the total plasma current. A halo current 

net distribution so arises, that is the difference between the current inside and 

outside the faces of the mesh per each slice. When the perturbation is terminated 

(Fig. III.11) there is no variation in the total toroidal plasma current and so the 

net halo current distribution is zero in the toroidal direction. 

The following figures show the plasma cross section at the same time 

instants: 
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Fig. III.12: Halo currents in the AVDE at time=0.85 s (Ip=11.74MA, Ihpol=6.73 MA, dIp=1.50 MA 

in the upper row) and at time=1.05 s (Ip=6.88 MA, Ihpol=6.87 MA, dIp=0 in the lower row) - cross 

section of plasma core (solid red) and halo (solid blue) at =10 deg (left) and =-170 deg (right); the 

dashed lines refer to the original axisymmetric plasma. 

 

The figures completely agree with the results in terms of differential 

current 𝑑𝐼𝑝  and toroidal halo current net distribution (Fig. III.11): the plasma 

cross section in two different poloidal sections is clearly different while the kink 

acts on the plasma whilst returns to be axisymmetric after the kink expires. 

 

3.5 Axisymmetric Halo Currents Analysis 

3.5.1 PFV effects 

The driving terms of the PFV analyses are the plasma filaments and the PF 

coil currents, whilst the vacuum field generated by the TF coils istaken into 

account as 𝐹0/𝑅  with 𝐹0 = 32.86 𝑇𝑚 for 𝑅 < 9𝑚. 

Fig. III.13 shows the vertical force on the vacuum vessel and on all the 

structures in one sector, as calculated with the 20 𝑑𝑒𝑔 mesh. 
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Fig. III.13: Vertical force on the vacuum vessel (up) and on all the structures (down) in one sector due 

to the eddy currents induced by the PFV. 

 

These results are in agreement with those obtained in [52] and the toroidal 

current agrees with the simulation of DINA (Fig. III.14), showing that the removal 

of the upper blanket modules does not affect the global results dramatically. 

 

 
Fig. III.14: VDE_DW_slow_2010. Eddy current induced on the vacuum vessel as a function of time, as 

computed by DINA and CARIDDI overall 3D structure 

 

At last, Fig. III.15 shows the eddy currents and the electromagnetic force 

distribution in the vacuum vessel due to the PFV at the final time of the 

simulation (𝑡 = 2.2 𝑠). 
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Fig. III.15: Eddy currents (left) and EM force distribution (right) in the VV due to the PFV at the final 

time of the simulation (t=2.2 s). 

 

3.5.2 TFV effects 

The driving term in the TFV analyses is the plasma diamagnetic flux time 

history, whilst the vacuum field generated by the TF coils is taken into account 

as 𝐹0/𝑅  with 𝐹0 = 32.86 𝑇𝑚 for 𝑅 < 9𝑚. 

Fig. III.16 shows the total poloidal current as computed by CARIDDI and 

compared with the result provided by a simple first order model lumped 

parameters: it results that the first peak given by CARIDDI is about 15% higher 

than that of the analytical model, whereas the agreement is better afterwards. 

 

 
Fig. III.16: Total poloidal current induced in the passive structure by the TFV as computed by 

CARIDDI (Ivvmax=1.64 MA, Ivvmin=0.40 MA) a simple 1st order model (Lvvpol=1.71 H, Rvvpol=5.80 ): 
Ivvmax=1.38 MA, Ivvmin=0.38 MA). 
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These results can be explained by considering that: 

 the value of the single turn inductance refers to an equivalent single shell 

having a slightly larger cross section; 

 the poloidal currents are allowed to flow partially in the blanket modules 

through the straps and the divertor structure (see Fig. III.17), which are 

not taken into account into the analytical model. 

 

 

 

Fig. III.17: Eddy current distribution in the VV (left) and in the FW/divertor structures (right) 

due to the TFV just after the thermal quench. 

 

Fig. III.17 shows that the currents flow in the inner shell, in the divertor 

structure, and partially in the blanket modules, thus reducing the effective value 

of the inductance with respect to the simple single vacuum vessel shell model. 

 

 
 

Fig. III.18: EM forces distribution in the VV (left) and in the FW/divertor structures (right) due 

to the TFV just after the thermal quench. 
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3.5.3 Axisymmetric halo current distribution and related 

electromagnetic loads 

This analysis considers as driving term the only halo current flowing from 

the plasma into the structures, whose closure is guaranteed by the artificial shell 

that replaces the plasma. The only external field considered for the calculation of 

the forces is that of the TF coils, assumed as 𝐹0/𝑅  with 𝐹0 = 32.86 𝑇𝑚 for 𝑅 <

9𝑚. 

The simplified model used for this analysis considers the halo current 

injected into the structure as driven by the 2-D axisymmetric plasma evolution, 

so that the dynamic behaviour of the total current is forced only by the external 

sources (just the distribution is slightly different because of the resistive and 

inductive parameters of the passive structure). Since this behaviour can be 

highlighted by analysing the total force in the passive structures, the effects of 

the axisymmetric halo currents were analysed using the following models and 

techniques: 

 approximate resistive model (where the inductance matrix is neglected): 

it is faster to simulate (there is no need to invert the full inductance 

matrix) but is be valid only on the slow time scale; 

 consistent model (taking account of the inductive effects) with an 

artificial shell having low resistivity (namely 𝜌 = 0.8 ⋅ 10−7 𝑚); 

 consistent model (taking account of the inductive effects) with an 

artificial shell having high resistivity (namely 𝜌 = 0.8 ⋅ 10−5 𝑚). 

Fig. III.19 and Fig. III.20 show that the current density distribution using 

the approximate resistive model differs from that of the consistent model, where 

the pattern is more concentrated near the plasma. 

SM
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Fig. III.19: Axisymmetric halo currents: time history of the vertical force on one sector of the 

divertor (-20 deg <  < 20 deg) computed with the consistent model (left) and the approximated 

resistive model (right) 

 

 

 

  
Fig. III.20: Axisymmetric halo currents: current density distribution when the maximum value of 

the vertical force is reached, computed with the consistent model (left, t = 1.09 s) and the 

approximated resistive model (right, t = 1.01 s) 

SM

The current density distribution is different also into the vacuum vessel, 

where the forces in the upper part of the structure are larger than those of the 

consistent model, (see Fig. III.21 and Fig. III.22). 

SM

 

 

 

 



 96 

  

  

  
Fig. III.21: Axisymmetric halo currents: time history of the vertical force on one sector of the vessel 

(top row), on its upper part (center row) and on its bottom (bottom part), as computed by the 

consistent model (left) and the approximated resistive model (right).  
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Fig. III.22: Axisymmetric halo currents: current density distribution on the vessel, at the time instant 

when the vertical force reaches its maximum value computed with the consistent model (left, t = 1.15 s) 

and the approximated resistive model (right, t = 1.09 s) 

SM

Basing on the results shown in Fig. III.19 to Fig. III.22, the upper part of the 

blanket modules was eliminated so that the mesh was coarser when using the 

full 360 𝑑𝑒𝑔 mesh. As consequence, they are marginally affected by the induced 

current density during the considered load case. 

Fig. III.23, Fig. III.24 and Fig. III.25 show the current density, the ohmic 

power and the force distribution respectively, obtained with the resistive model 

and the full 360 𝑑𝑒𝑔 mesh at the time instant 𝑡 = 0.900 𝑠. The results perfectly 

agree and the vertical force (−88.5 𝑀𝑁 , −78.3 𝑀𝑁  on the vessel) is in good 

agreement with the calculation provided by the simple model consisting of the 

interaction between sheet currents on the first wall and the divertor and the 

vacuum toroidal field. 

The results shown in Fig. III.25, Fig. III.26 and Fig. III.27 show that the 

artificial shell resistivity has no apparent effect. 

SM
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Fig. III.23: Axisymmetric halo currents: current density distribution obtained with the resistive 

model at the time instant t = 0.9 s: Vessel (up-left), Shielding blocks (up-right), Front panels 

(down-left) and Artificial shell (down-right) 

 

  

  
Fig. III.24: Axisymmetric halo currents: ohmic power distribution obtained with the resistive 

model at the time instant t = 0.9 s: Vessel (up-left), Shielding blocks (up-right), Front panels 

(down-left) and Artificial shell (down-right) 
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Fig. III.25: Axisymmetric halo currents: force distribution obtained with the resistive model at the 

time instant t = 0.9 s: Vessel (up-left), Shielding blocks (up-right), Front panels (down-left) and 

Artificial shell (down-right) 

SM

  

  
Fig. III.26: Axisymmetric halo currents: current density and force distribution obtained with the 

high resistivity artificial shell at the time instant t = 0.77 s (Front panels - up) and t = 1.13 s 

(Vacuum Vessel - down) 
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Fig. III.27: Axisymmetric halo currents: time history of the vertical and horizontal force on one sector 

as computed with the high (left) and low (right) resistivity artificial shell (the field generated by the 

halo currents is taken into account) 

SM

3.6 Asymmetric halo current effects and related loads 

on vacuum vessel and divertor structure 

The analysis of the AVDE was carried out considering the halo current 

flowing from the plasma to the structures as driving term, allowing the current 

density path to close via the artificial shell replacing the plasma. The total field 
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considered for the calculation of the electromagnetic loads is axisymmetric and 

consists of the superposition of that generated by the: 

 TF coils: assumed as 𝐹0/𝑅  with 𝐹0 = 32.86 𝑇𝑚 for 𝑅 < 9𝑚; 

 PF/CS coils: assumed to be current driven with the DINA waveforms; 

 Plasma: modelled as a set of equivalent filamentary conductors. 

In the following, the problem of the analysis of the asymmetric halo current 

effects with the full 360 𝑑𝑒𝑔 mesh and using the consistent model (thus taking 

account of the inductive effects) is tackled; the artificial shell is considered with 

an high resistivity (𝜌 = 0.8 ⋅ 10−5 𝑚). 

This kind of analysis requires a huge computational burden also because of 

the full inductance matrix that would need more than 1 𝑇𝐵  memory for the 

single precision computation. For this reason, suitable compression techniques 

and supercomputing resources were adopted, as: 

 the parallel architecture available at the Cassino University, with 78 

processors and a distributed 432 GB memory; 

 the parallel facility MareNostrum available in Barcelona, with 10000 

processors and a distributed 20 TB memory; 

 the parallel facility Helios available in Japan, with 70000 processors and a 

distributed 280 TB memory. 

The results here discussed were obtained with a CPU time higher than 7 

hours on the Helios facility, showing a speed up (not taking into account the 

waiting time while queuing) of: 

 about a factor of 1,33 vs MareNostrum; 

 about a factor of 10 vs the Cassino facilities. 

Fig. III.28 to Fig. III.31 show the current density, ohmic power and force 

distribution at various time instants (the effects generated by the asymmetric 

halo currents field are evaluated for sector #1, where the toroidal angle spans 

between −20 𝑑𝑒𝑔 < 𝜑 < 20𝑑𝑒𝑔). 
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Fig. III.28: Asymmetric halo currents: current density distribution in Sector #1 at various time 

instants: Vessel (up-left, t = 1.155 s), Shielding blocks (up-right, t = 0.93 s), Front panels (down-

left, t = 0.87 s) and Artificial shell (down-right, t = 1.1 s) 

 

  

  

Fig. III.29: Asymmetric halo currents: ohmic power density distribution in Sector #1 at various 

time instants: Vessel (up-left, t = 1.155 s), Shielding blocks (up-right, t = 0.93 s), Front panels 

(down-left, t = 0.87 s) and Artificial shell (down-right, t = 1.1 s) 
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Fig. III.30: Asymmetric halo currents: force distribution on Sector #1 at various time instants: 

Vessel (up-left, t = 1.155 s), Shielding blocks (up-right, t = 0.93 s), Front panels (down-left, t = 0.87 

s) and Artificial shell (down-right, t = 1.1 s) 

 

  
Fig. III.31: Asymmetric halo currents: current density distribution in the Front panels of Sector 

#1 (left, t = 0.87 s), and of the opposite part of the torus (right, t = 0.84 s) 

SM

 

Fig. III.32 and Fig. III.33 show the forces and the torques (the pivot point is 

the centre of the torus) on each sector, while Fig. III.34 shows the total force on 

the torus: 

SM
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Fig. III.32: Asymmetric halo currents: time history of the radial, toroidal and vertical forces on 

each of the 9 sectors (left) and on Sector #1 (right) 

 

  
Fig. III.33: Asymmetric halo currents: forces and moments ranges in each of the 9 sectors 

SM
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Fig. III.34: Asymmetric halo currents: time history of the total force on the passive structures 

 

Fig. III.35 shows the range of the forces and the torques (the pivot point is 

the centre of the torus) on the divertor in each sector. 

Fig. III.36 shows the total force on the divertor: 

SM

  
Fig. III.35: Asymmetric halo currents: forces and moments ranges on the divertor in each of the 

9 sectors 

SM

 
Fig. III.36: Asymmetric halo currents: time history of the total force on the divertor 
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At last, Fig. III.37 shows the approximation in the force calculation when 

neglecting the field generated by the halo currents: 

 

 

  
Fig. III.37: Asymmetric halo currents: time history of the forces on Sector #1 calculated 
including (solid) and neglecting (dashed) the magnetic field due to the halo currents. 

 

Fig. III.37 shows that the approximation introduced when neglecting the 

field generated by the halo currents is less than 0.5 𝑀𝑁 on Sector #1 (about 20% 

in this specific sector). 

 

3.7 Kink inductive effects and related loads on 

vacuum vessel and divertor structure 

Under the action of a kink, the plasma core starts moving thus making the 

mutual inductances between the plasma itself and the other surrounding 

conductors change. 

To estimate these inductive effects, the plasma is modelled by means of a 

filamentary current located at the position of the plasma centroid at the time 
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instant 𝑡 = 0.85 𝑠 (when 𝐼𝑝  =  11.7 𝑀𝐴 and 𝑑𝐼𝑝  =  1.5 𝑀𝐴). The plasma motion 

is modelled two filamentary conductors: 

1. one filament whose centre is located on the z-axis (i.e., not kinked) and 

whose poloidal coordinates are 𝑅 = 5.49𝑚, 𝑍 = −2.13𝑚; 

2. one filament tilted and shifted (i.e. kinked), with 𝑅 = 5.49𝑚, 𝑍 = −2.13𝑚, 

𝑑𝑥2 = −0.15 𝑚, 𝑑𝑥2 = 2.7 𝑑𝑒𝑔. 

Since the effects of an axisymmetric plasma current were already depicted 

when studying the action of the PFV, the time evolution of the two currents 𝐼1(𝑡) 

and 𝐼2(𝑡) is prescribed as follows: 

{
 
 

 
 𝐼1(𝑡) = 11.7 ⋅ 10

6
𝑑𝜃𝑥(𝑡)

𝑑𝜃𝑥2(𝑡)
    

𝐼2(𝑡) = −11.7 ⋅ 10
6
𝑑𝜃𝑥(𝑡)

𝑑𝜃𝑥2(𝑡)
 

 (III.15)  

where 𝑑𝑥(𝑡) is the same as in Fig. III.9. 

With such definition, there is no effect when 𝑑𝑥(𝑡) =  0 , whereas the 

filament carrying the current 𝐼1(𝑡)  partially compensates the effect of the 

axisymmetric plasma, when it attains its maximum value. In this way, the 

effective source is a kinked plasma when superposing the effects of these two 

filaments to the PFV effects. 

It is worth noticing that the tilt is not around the x-axis as in the asymmetric 

halo case but another axis that is parallel to x-axis and passing at the point in the 

(𝑦, 𝑧)  plane having coordinates 𝑦 = 0 𝑚  and 𝑧 = 2.13 𝑚 . However, the 

difference between the two assumptions is small, yielding a difference of about 

2 𝑐𝑚 whereas the filament displacement is more than 25 𝑐𝑚 (Fig. III.38). 

  
Fig. III.38: Location and currents of the two filaments for the computation of the inductive 

effects of the kink perturbation 
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As regards the electromagnetic loads, they were computed by considering 

the interaction of the axisymmetric magnetic field generated by the TF coils 

(static), the PF coils (dynamic) and the plasma (dynamic) with the induced 

currents. 

Fig. III.39 shows the time history of the forces on each of the 9 sectors, 

whereas Fig. III.40 reports the range of the total forces and torques acting on 

each sector (the pivot point is taken at 𝑥 = 𝑦 = 𝑧 = 0). Finally, Fig. III.41 shows 

the time behaviour of the total force. 

 

  

  

  
Fig. III.39: Kink inductive effect: time history of the radial, toroidal and vertical forces on each 

of the 9 sectors (left) and on Sector #1 (right) 
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Fig. III.40: Kink inductive effect: forces and moments ranges on the divertor in each of the 9 

sectors 

 

 
Fig. III.41: Kink inductive effect: forces: time history of the total force 

 

3.8 Loads on TF coils 

The calculation of the electromagnetic loads on the Toroidal Field Coils was 

carried out considering two different effects: 

 the effects produced by the tilt of the plasma core; 

 the asymmetric halo currents. 

For the analysis of the plasma tilt without considering the halo currents, 

the same model described in Section 3.7 is used. The TF Coils are modelled as a 

single filamentary current having the shape of the actual windings and carrying 

the overall current ITF = 9.112 MAturns. With such assumptions, a preliminary 

analysis by means of the COMPFLUX procedure (see Section 2.1) was performed 

to identify the most affected TF Coil in terms of electromagnetic loads. 
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The analysis was carried out firstly modelling the plasma as an 

axisymmetric filamentary current and evaluating the related electromagnetic 

loads on the coils, and then kinking it (the kink parameters are the maximum 

values attained by 𝑑𝑥 and 𝑑𝜃𝑥 in Fig. III.9). The evaluation of the electromagnetic 

loads in terms of total net force and torque on each coil is carried out, then 

evaluating the difference between the two configurations: 

SM

  
Fig. III.42: Load on TF Coils: Difference of forces and torques (the pivot point is the center 
of the torus) on each of the TF Coils between the axisymmetric and kinked configuration 

SM

Fig. III.42 shows that the most affected coils are in the poloidal sections 

with  = 0 and  = 𝜋. In Fig. III.43, the difference between the force distribution 

on the TF Coils in the axisymmetric and kinked configurations in the poloidal 

plane  = 0 is exploited: 

 

 
Fig. III.43: Force distribution on the TF Coil in the poloidal plane  = 𝟎; the axisymmetric 

filamentary plasma current (solid blue) and the kinked one (solid magent) are shown. 
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Basing on these results, the CARIDDI calculations were focused only on the 

TF Coil in Fig. III.43. 

Fig. III.45 shows the effects of the halo currents, whereas Fig. III.44 shows 

the effects due to the tilt of the filament and the 3-D eddy currents induced by 

the tilt.

 

  

  

  
Fig. III.44: Effects on the TF coils due to the plasma kink in terms of forces (left) and moments 

(right): loads due to the field generated by the moving coil (top), loads due to the field of the 
eddy currents induced in the passive structure and the halo currents (center) and sum of 

the two contributions (bottom) 

SM 
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Fig. III.45: Effects in terms of forces (left) and moments (right) on the TF coil at 𝝓 = 𝟎 due to the 

3-D halo currents distribution 
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Chapter 4  

Field Lines Tracing and Identification of non-

axisymmetric plasmas 

The chapter is divided into three parts: the first part is devoted to the 

description of the CFTT procedure, designed and validated to trace the magnetic 

flux density field lines inside the tokamaks. The second part is aimed to the 

assessment of the algorithms for the plasma boundary reconstruction based on 

the field lines tracing, both for the axisymmetric and non-axisymmetric plasmas. 

At last, the chapter illustrates a new technique for the identification of non-

axisymmetric plasmas and the study of their topology. 

 

4.1 CFTT: a Numerical Suite for the 3-D Flux Density 

Field Lines Tracing in Tokamaks 

The idea the Tokamak is based on, is the closure of the cylindrical solenoid 

to prevent the plasma particles to escape from the vacuum chamber. This 

particular geometry suggests a desirable condition for the operation of the 

plasma into tokamaks, that is the axisymmetry, very useful for many aspects of 

the tokamak engineering, e.g. the plasma modelling, the plasma stability and 

control or the mechanical and electromagnetic design. 

Unfortunately, this ideal condition is so far to be verified while the plasma 

is burning: first, the structures surrounding the plasma are intrinsically non-

axisymmetric (e.g., the Toroidal Field Coils are not a toroidally continuous 

solenoid, because of the need to have some space between two adjacent coils for 

the ports or other operations like remote handling). Then, the plasma itself is 
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often affected by many non-axisymmetric perturbations, e.g. a kink (as studied 

in Chapter III) or the ripple field generated by the TF Coils. 

When an axisymmetric plasma has to be studied, we can solve the Grad-

Shafranov equation, whose unknown is the poloidal flux per unit radian 𝜓. Using 

such formulation, this quantity is invariant on the flux density field lines, 

allowing to trace them by means of the isoflux lines in the poloidal plane. 

If a non-axisymmetric perturbation affects the plasma, it is not possible to 

solve the Grad-Shafranov equation and the poloidal flux per unit radian is not 

invariant along the flux density field lines anymore. For this reason, the CFTT 

(CREATE Field Tracing in Tokamaks) procedure was set up, tested and validated 

with the aim to trace the flux density field lines both in axisymmetric and non-

axisymmetric field configurations. 

It consists of two main parts:  

1. Pre-processor: its aim is to process the CREATE-NL or CREATE-L 

equilibria, performing an axisymmetric identification of the poloidal 

flux per unit radian, modelling the plasma by means of an equivalent 

set of axisymmetric filamentary currents. 

2. Processor: it is the core of the procedure, devoted to the tracing of 

the magnetic flux density field lines and to the graphical processing 

of the results. The field data can be taken by: 

a. the numerical data available into the CREATE-NL or 

CREATE-L equilibrium files; 

b. the analytical reconstruction performed by the pre-

processor; 

c. user-defined formulations.  

 

4.1.1 CFTT Pre-processor 

The pre-processor is aimed to the axisymmetric identification of the 

poloidal flux per unit radian, as known at the mesh points provided by the 

solution of the Grad-Shafranov equation. The following Fig. IV.1 shows a typical 

single-null equilibrium in DEMO tokamak, by means of the contour map of the 

magnetic flux per radian 𝜓: 
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Fig. IV.1: Example of plasma equilibrium in DEMO tokamak (the solid black lines are the edges of 

the solid structures) 

 

The plasma is modelled as a suitable set of equivalent axisymmetric 

filamentary conductor, whose positions and currents are calculated according to 

the best fit of 𝜓 in a given set of points in the poloidal plane. Once the number of 

equivalent filament 𝑁𝑓 is provided, their position is chosen in such a way that the 

convex hull of the polygon having the filamentary currents at its vertices has a 

similar shape to the plasma. 

The separatrix geometry is provided by the equilibrium file so as the 

coordinates of its nodes; then, 𝑁𝑓  nodes belonging to the plasma domain are 

chosen so to keep the ratio between the distance of two consecutive nodes of the 

plasma boundary and the distance of each filamentary current from the plasma 

boundary higher than a given value. 

In this way, all the admissible filamentary currents are individuated, as 

shown in the following Fig. IV.2: 
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Fig. IV.2: Example of axisymmetric plasma identification 

 

The choice of the filaments is based on the best fit of the values of the 

poloidal flux per unit radian at the plasma separatrix and at the first wall. 

Once the positions of the filaments are fixed, the unknown of the 

identification problem are the currents carried by the sources. Therefore, the 

problem is linear and the value of the magnitude of the sources can be calculated 

via pseudo-inversion of the following linear model: 

𝐼 = 𝑀 ⋅ 𝑏 (IV.1)  

where: 

 𝐼 is the vector of the unknown currents; 

 𝑀 is the Green Matrix, that is the matrix of the poloidal flux per unit radian 

values generated at the plasma separatrix and at the first wall by each 

unitary source; 

 𝑏 is the vector of the actual poloidal flux per unit radian values at the 

plasma separatrix and at the first wall. 

A singular value decomposition of the Green matrix is performed to choice 

the most influent 𝑁𝑓 currents, corresponding to highest 𝑁𝑓  singular values. 

The same procedure is then carried out to model the active coils 

surrounding the plasma: each coil consists of many mesh points, each carrying a 
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prescribed current, calculated from the specifications for the equilibrium. The 

active coil is thus modelled as a suitable set of equivalent filaments, carrying a 

current so to fit the actual values of poloidal flux per radian at the first wall point, 

generated by the actual sources. 

The equivalent set of axisymmetric filamentary currents is the output of 

the pre-processor. An example is shown in the following Fig. IV.3: 

 

 
Fig. IV.3: Equivalent filamentary currents on the actual flux map 

 

4.1.2 CFTT Processor 

The main task of the CFTT Processor is to trace the flux density field 

streamlines inside the Vacuum Vessel, that is to calculate the coordinates of the 

points of the field lines. 

The streamline of a given vector field is a family of curves defined into the 

3-D space that are everywhere tangent to the vector field itself; their 

computation can be numerically performed by solving the following set of partial 

differential equations: 
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{
 
 

 
 
𝜕𝑟

𝜕𝜑
= 𝑟

𝐵𝑟
𝐵𝜑

𝜕𝑧

𝜕𝜑
= 𝑟

𝐵𝑧
𝐵𝜑

 (IV.2)  

where 𝐵𝑟 , 𝐵𝜑 and 𝐵𝑧 are the radial, toroidal and vertical component of the flux 

density field respectively. The choice of using the cylindrical coordinate frame 

(𝑟, 𝜑, 𝑧) guarantees the toroidal angle 𝜑 to be a continuous function along the 

whole integration. 

The structure of the equation (IV.2) can be simplified if we note that the 

magnetic flux density field 𝑩 is divergence-free as well as the velocity vector field 

for incompressible fluids in stationary conditions (∇ ⋅ 𝑩 = 0 ↔ ∇ ⋅ 𝒗 = 0 ) . 

Therefore, the flux density field line tracing problem into the problem is 

analogous to that of tracing the trajectories of the particles of a Lagrangian fluid 

in stationary conditions. 

Therefore, the problem in equation (IV.2) can turned into the following 

autonomous Cauchy Problem: 

{
 
 
 

 
 
 
𝜕𝑟

𝜕𝜏
= 𝐵𝑟(𝑟, 𝜑, 𝑧)                

𝜕𝜑

𝜕𝜏
=
1

𝑟
𝐵𝜑(𝑟, 𝜑, 𝑧)            

𝜕𝑧

𝜕𝜏
= 𝐵𝑧(𝑟, 𝜑, 𝑧)                 

(𝑟, 𝜑, 𝑧)|𝜏=0 = (𝑟0, 𝜑0, 𝑧0)

 (IV.3)  

where 𝜏 is not a physical time (its unit is 
𝑚

𝑇
), but is the integration parameter. 

The CFTT processor is so devoted to the numerical solution of the Ordinary 

Differential Equation (ODE) in (IV.3), starting from a specified initial condition. 

It is worth noticing that the general form of the problem in (IV.3) is not 

dependent on any symmetry condition of the flux density field configuration, that 

is, the same problem is solved for both the axisymmetric and the non-

axisymmetric fields. 

The procedure allows to perform a very flexible integration because it is 

possible to set: 

1. the initial condition: the starting point can be chosen in several ways: 

a. manually, providing a given set of starting points; 

b. evenly spaced along a prescribed direction; 
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c. evenly spaced along the radial and angular directions over a 

circumference, whose centre is given; 

d. at the points of a rectangular grid inside the first wall on the 

poloidal plane; 

2. the type of integrator among: 

a. built-in MATLAB standard integrators (e.g. ODE23, ODE45, 

ODE113 and others); 

b. properly designed integrators by the user (e.g. geometric 

integrators); 

3. the vector field to integrate defined: 

a. numerically, as given by the values of 𝜓  on the mesh points 

provided by the CREATE-NL/CREATE-L equilibrium files; 

b. by calculating the flux density field generated by a set of 

axisymmetric filamentary currents; 

c. by user-defined expressions for the flux density field components. 

4. all the integration parameters (e.g. Integration Step, Integration Length 

and Accuracy). 

Once the integration is terminated, the data are processed to calculate 

many other quantities related to the integrated field lines, as the Connection 

Length: by definition, the Connection Length is the length of the trajectory 

covered by the plasma particles overall a magnetic field line up to its eventual 

intersection against the first wall, from a given starting point.. If the Larmor 

radius (see equation (I.7)) is neglected (about 10−4 𝑚 for the protons and about 

10−6 𝑚  for the electrons), the trajectory covered by the plasma particle is 

coincident with the flux density field line. Therefore, the connection length is the 

length of the traced field line from the initial condition (the starting point) up to 

its eventual intersection with the first wall. 

Another very important output for the study of the topological properties 

of the flux density field configuration is the Poincaré Map: by definition, a First 

Recurrence Map or Poincaré Map is the intersection of a periodic orbit in the state 

space of a continuous dynamical system with a given lower–dimensional 

subspace (namely Poincaré Section), transversal to its flow. More precisely, 

considering a periodic orbit having the initial condition within a section of the 
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space, the Poincaré Map consists of the collection of all the points, which the orbit 

returns to that given section at. The property of the Poincaré Section to be 

transversal means that the periodic orbits starting on a given subspace flow 

through it and not parallel to it. 

A Poincaré map can be interpreted as a discrete dynamical system with a 

state space that is one dimension smaller than the original one. It preserves many 

properties of periodic and quasi-periodic orbits of the original dynamical system 

and has a lower-dimensional state space; for this reason, it is often used to 

analyse it, as for the plasma shape in non-axisymmetric field configurations. 

In fact, if the flux density field configuration is 2-D axisymmetric, the 

plasma shape (that is the shape of the plasma boundary) is exactly the same in 

any poloidal section (0 ≤ 𝜑 ≤ 2𝜋). Therefore, if the plasma shape is known for 

one poloidal section, it is everywhere. If the flux density field configuration is 3-

D, in principle, the plasma shape is different in all the poloidal sections (except 

for periodic perturbations or other particular configurations), but it can be easily 

reconstructed if the field line tracing algorithm is exploited with the Poincaré 

Maps (see Section 4.3). 

At last, if the plasma equilibrium configuration is loaded, both from 

CREATE-NL/CREATE-L files, the processor performs a precision analysis too, 

basing on the concept that the poloidal flux per unit radian 𝜓 is invariant along 

the field lines. This analysis basically consists of the evaluation of 𝜓 overall the 

points of the traced field line and the subsequent calculation of the maximum 

absolute error on the flux values: obviously, the lower is the difference value, the 

more accurate is the integration. 

At this stage, the data are ready to be processed by the graphical processor, 

devoted to the graphical elaboration of all the main results provided by the pre-

processor and processor. In particular, after showing the flux map in the poloidal 

plane (as in Fig. IV.1 and in Fig. IV.3, for the axisymmetric field configurations 

only), the traced field line into the three-dimensional space and its projection on 

the poloidal plane is drawn. 
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Fig. IV.4: Field Line Traced: Projection on the Poloidal cross section of many traced lines (blue-

red transition), starting points (squares) and final points (stars) and 3-D view 

 

Fig. IV.4 shows many traced lines and their different topology: in particular 

it is possible to see that the blue to magenta drawn lines do not intersect the first 

wall, whilst the magenta to red drawn lines do. The same topology is evidenced 

in the 3-D view. 

In the following Fig. IV.5, an example of Poincaré map is shown: the 

integrated flux density field consists of the superposition of that of a toroidal 

solenoid surrounding the Vacuum Vessel and that of an axisymmetric 

filamentary current, located at (𝑟, 𝑧) = (9,0) and affected by a 0.5 𝑚 shift along 

the 𝑥 axis: 

 

 
Fig. IV.5: Example of Poincaré maps for a non-axisymmetric configuration 
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4.1.3 Test Cases and Assessment of the CFTT Procedure 

4.1.3.a Plasma Breakdown in JET Tokamak 

The following case refers to the plasma breakdown in JET Tokamak (pulse 

#78369) [53]. 

The breakdown is the initial phase when the plasma column starts creating 

inside the vacuum vessel. Therefore, the more the plasma particles interact each 

other, the more energy can yield to the plasma, letting it burn. This condition is 

turned into the need for the plasma particles to have high connection lengths, so 

to be contained into the plasma as much as possible. For these reasons, it is 

necessary to calculate the connection length of the plasma particles as well as 

their trajectory inside the vacuum vessel. 

Fig. IV.6 shows the projection of the traced field line on the poloidal plane 

and its 3-D view. 

SM

  
Fig. IV.6: Projection on the Poloidal cross section of a flux density field line in breakdown in 

JET Tokamak (pulse #78369) and its 3-D view 

SM

For the traced field line, the connection length is about 1000 𝑚 from the 

starting point at (𝑟0, 𝜑0, 𝑧0) = (3.54,0, −0.24). This parameter can be used as a 

design constraint for future breakdown configurations in the currently operative 

tokamaks (as the JET tokamak in this test case), as well as for the optimal design 

of the future ones (as for DEMO and DTT). 

In Fig. IV.7, the numerical null point and the analytic null point (given by 

the 𝜓 map generated by the axisymmetric filamentary currents) are compared: 
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Fig. IV.7: Null Point in Pulse #78369 both in the numerical and analytical reconstruction 

 

4.1.3.b Scrape-Off Layer analysis in DEMO Tokamak 

DEMO Tokamak will be a milestone in the nuclear fusion research because 

it will be the first nuclear fusion power plant. Moreover, one of its aims will be to 

exploit the advanced configuration of the plasma, as for many other tokamaks 

currently operated (e.g. TCV in Lusanne). 

Contrary to the previous test case, the presence of the plasma inside the 

vacuum vessel makes of crucial importance the calculation of the connection 

length of the flux density field lines along both the clockwise and 

counterclockwise directions. This need is due to the presence of a Stagnation 

Point (a point inside the vacuum vessel where the plasma parallel speed to the 

flux density field 𝑣∥ is zero) in the configurations with an X-point, located in the 

lower part of the chamber [54]. 

When the heat loads are to be evaluated (e.g. on the divertor tiles and on 

the other components of the vacuum vessel), it is crucially important to trace the 

flux density field lines outside the plasma, from the stagnation point in both the 

two directions, so to calculate the Strike Points (intersection point between the 

field line and the first wall) and the subsequent thermal flux per unit surface. 

Assuming the stagnation point lying on the equatorial plane, and the 

Scrape-Off Layer (SOL) depth at the same plane 𝜆𝑞 = 20 𝑚𝑚 [55], the following 

Fig. IV.8 shows the traced trajectories in both the directions. The starting point 

set is chosen using a logarithmic spacing along the SOL depth on the poloidal 

plane 𝜑 = 0: 
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SM

  

  
Fig. IV.8: Equilibrium “Equil_EOF_betapol0d8_li0d7_11coils_final2” - Field line tracing in a 

Scrape-Off Layer of 20 mm at the outer plasma boundary: Projection on the Poloidal cross 
section and 3-D view for the clockwise (upper row) and counterclockwise (lower row) field 
configuration with specification to the Scrape-Off Layer and to the Last Closed Flux Surface 

(LCFS). 

SM

The following Tab. IV.1 shows the results in terms of Connection Length for 

all the traced field lines in both the directions and the poloidal coordinates of 

their Strike Points: 

 

Tab. IV.1: Connection Lengths in clockwise and counterclockwise directions

Start Points 
Connection 

Length 
Clockwise 

[m] 

Connection Length 
Counterclockwise 

[m] 

Strike Point 
(clockwise) 

Strike Point 
(counterclockw

ise) 

R 
[m] 

Z 
[m] 

R 
[m] 

Z 
[m] 

R 
[m] 

Z 
[m] 

11.2247 0.061 108.1 179.7 8.572 -5.520 6.882 -4.851 

11.2253 0.061 107.6 176.8 8.574 -5.520 6.880 -4.848 

11.2261 0.061 106.7 176.1 8.576 -5.520 6.850 -4.848 

11.2270 0.061 103.9 171.6 8.579 -5.521 6.876 -4.843 

11.2283 0.061 102.4 165.2 8.580 -5.521 6.874 -4.840 

11.2299 0.061 85.8 155.4 8.587 -5.521 6.870 -4.835 

11.2320 0.061 85.3 154.9 8.592 -5.522 6.866 -4.830 

11.2347 0.061 84.2 154.1 8.599 -5.522 6.861 -4.823 

11.2382 0.061 79.8 149.4 8.612 -5.523 6.855 -4.812 

11.2427 0.061 74.9 143.6 8.625 -5.524 6.846 -4.797 
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4.1.3.c Three-Dimensional Non-Axisymmetric Field 

The chosen three-dimensional test cases refers to a Stellarator Plasma, 

where the field configuration is intrinsically non-axisymmetric even during 

normal operations, because of the non-axisymmetric coils surrounding the 

Vacuum Vessel. 

The aim of this kind of simulations is to exploit the Poincaré Maps to study 

the topological properties of the magnetic flux density field configuration. 

Hereafter, a typical field configuration is shown by means and the 3-D view of a 

field line of the Poincaré Maps:

 

 

  

  
Fig. IV.9: Example of a three dimensional plasma configuration: Three-dimensional view of 
the field line (red dots) inside the Vacuum Vessel (top) and four examples of Poincaré Plots 

(middle and bottom) 
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It is worth noticing that the Poincaré Plots are all different because of the 

non-axisymmetry of the field configuration, so as the geometry of the Stellarator 

first wall, that is also intrinsically non-axisymmetric. 

 

4.2 Geometric Integration of Flux Density Field Lines 

in Tokamaks 

The problem of the tracing of the flux density field lines has a crucial 

importance when realistic estimations of 3-D plasmas are to be carried out, in 

terms of plasma shape, plasma-wall gaps or heat loads on the structures. 

It is worth recalling that the hypothesis of axisymmetry is actually broken 

by many three dimensional effects present during normal operations too (e.g. 

ripple field generated by the Toroidal Field Coils, Eddy Currents into the Vacuum 

Vessel, ferromagnetic inserts, not to mention the non-axisymmetric control coils, 

as the ELM Coils). For this reason, the setup of a reliable numerical procedure 

able to trace very long flux density field lines is mandatory for the study of the 3-

D configuration [53]-[56]-[57]-[58]-[59]-[60]-[61]. 

The problem may be in principle trivial, if recognized as the solution of the 

ODE flow in (IV.3), but is actually challenging if considering the very long field 

lines to trace (up to 103 𝑚) at an affordable computational cost [62] and showing 

high performances (an error lower than 10−3 𝑚 overall the integration length), 

thus achieving a relative precision of 10−6. 

The problem of long-term integration of ODE sets is faced in several science 

areas, devoting many efforts to improve the performances and the properties of 

the numerical algorithms and mainly of the so-called Geometric Integrators [62]-

[63]-[64]-[65]-[66]-[67]. Their task is to integrate the given vector field while 

preserving in the numerical solution some average properties the analytical 

flows shows. 

Besides these considerations, a high accuracy of each single line traced is 

mandatory for a reliable estimation of the quantities under investigation. For this 

reason, it is very important to assess the performances of the integrators called 

to the task of tracing the flux density field lines in full 3-D field configurations. 



 127 

4.2.1 Volume-Preserving Integrators for divergence-free vector 

fields 

In section 4.1.2, the problem of tracing the flux density field lines was 

turned into the solution of a Cauchy Problem thanks to the property of the flux 

density field to be divergence-free. Therefore, an accurate solution of (IV.3) is 

needed, also for very long integration lengths, at an affordable computational 

burden, once the required spatial resolution for the plasma boundary 

reconstruction is assigned. 

Standard ODE integrators could be used to solve this problem, but a strict 

control and verification of the integration error is needed to ensure reliable 

results, as well as the preservation of intrinsic invariant properties in the 

numerical solution, as the divergence-free structure of the flux density field. The 

correct solution of equation (IV.3) is Volume Preserving, like for Lagrangian 

trajectories in incompressible fluids. Such similarity can be used to explain what 

Volume Preservation means: 

 

“Consider the fluid molecules which initially form a certain figure F0; when 

these molecules are displaced, their ensemble forms a new figure which will be 

deformed in a continuous manner, and at the instant t the envisaged ensemble of 

molecules will form a new figure F.” 

J.H. Poincaré, Celestial Mechanics, 1899 

 

If the transformation that moves the fluid molecules along the time line is 

volume preserving, the new figure F can be obtained via a similitude 

transformation acting on the initial figure F0 and is characterized by the same 

volume. 

The ODE set in equation (IV.3) is divergence-free (or source-free) if the 

divergence of the source term is zero everywhere. Let 𝑑𝐵 = {
𝜕𝐵𝑖

𝜕𝑥𝑗
}  be the 

derivative of the field and 𝐴 =
𝜕𝜑𝜏

𝜕𝑥
 the Jacobian of its flow, evolving accordingly 

the following equation: 
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{

𝑑𝐴

𝑑𝜏
= 𝑑𝐵𝐴

𝐴(0) = 𝐼  
 (IV.4)  

where 𝐼 is the identity matrix. 

It is possible to show that: 

𝑑

𝑑𝜏
𝑑𝑒𝑡(𝐴) = 𝑡𝑟(𝑑𝐵)𝑑𝑒𝑡 (𝐴) (IV.5)  

and so, if ∇ ⋅ 𝑩 = 0 , then: 𝑑𝑒𝑡(𝐴) = 1  overall the integration and the flow is 

volume preserving. Therefore, the numerical integrator is volume preserving 

(VP) if: 

𝑑𝑒𝑡 (
𝜕𝜓𝜏
𝜕𝑥𝑗

) = 1 (IV.6)  

where 𝜓𝜏 is the mapping of the numerical method. 

A way to implement volume preserving integration schemes, thus 

guaranteeing a priori the volume invariance is the Generating Function approach. 

It exploits some properties of the given source field, in order to generate many 

auxiliary vector fields to be integrated, and so to guarantee the invariance of the 

volume. In particular, a Vector Potential Splitting Method was set up: following 

its procedure, the 3-D flux density field is split as the sum of three 2-D 

divergence-free vector fields as properly obtained from a vector potential 𝑩 =

∇ × 𝑨 (with the Coulomb gauge), which are then integrated via any symplectic 

method. Since the property to be symplectic implies the algorithm to be volume 

preserving for 2-D flows (thus Area Preserving), the invariance of the volume 

overall the integration is guaranteed. 

The expression of both the flux density field and the vector potential in the 

Cartesian coordinates frame makes possible to consider the following splitting: 

{

𝑩1 = ∇𝐴𝑥 × 𝑥̂
𝑩2 = ∇𝐴𝑦 × 𝑦̂

𝑩3 = ∇𝐴𝑧 × 𝑧̂

⇒ 𝑩 = 𝑩1 + 𝑩2 + 𝑩3 (IV.7)  

Each 𝑩𝑖  component is 2-D because the stream function of the i-th ODE set 

has no component along one axis (𝑥̂ ⋅ 𝑩1 = 0, 𝑦̂ ⋅ 𝑩2 = 0 and 𝑧̂ ⋅ 𝑩3 = 0) and the 

corresponding ODE set is Hamiltonian (with 𝐴𝑥 , 𝐴𝑦  and 𝐴𝑧  the respective 

Hamiltonians). As consequence of the Liouville Theorem, the area is preserved 

in the phase space of each 2-D ODE set. Therefore, each 𝑩𝑖  field is divergence-
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free and so the ODE set can be integrated via any symplectic (area preserving) 

numerical integrator, thus assuring the preservation of the solenoidal structure 

of the initial ODE set. 

For such problem, the Midpoint Rule (MR) with step ℎ is symplectic (area 

preserving) [64]-[65]: 

𝒙𝑖,𝑘+1 = 𝒙𝑖,𝑘 + ℎ𝑩𝑖 (
𝒙𝑖,𝑘+1 + 𝒙𝑖,𝑘

2
) (IV.8)  

where 𝒙𝑖,𝑘  and 𝒙𝑖,𝑘+1  are the positions at the steps 𝑘  and 𝑘 + 1  for the 

integration of the i-th 𝑩𝑖component of the field. 

This can be easily verified by calculating the Jacobian Matrix associated to 

the vector transformation in equation (IV.8): 

𝑱𝑖 =
𝜕𝒙𝑖,𝑘+1
𝜕𝒙𝑖,𝑘

= (1 −
ℎ𝑭𝑖
2
)
−1

(1 +
ℎ𝑭𝑖
2
) , 𝑭𝑖 =

𝜕𝑩𝑖
𝜕𝒙𝑖,𝑘

 (IV.9)  

and verifying that it has unitary determinant (the subscript 𝑖  identifies the 

corresponding field component), being 𝑇𝑟(𝑭𝑖) = ∇ ⋅ 𝑩𝑖 = 0: 

 
   

   

 

 

2 2

2 2

1 det 1 det
2 4 4det 1

1 det 1 det
2 4 4

i i i

i

i i i

h h h
Tr

h h h
Tr

  

  

  

F F F
J

F F F

 (IV.10)  

The following composition of symplectic mappings for the solution of the 

given ODE set: 

𝒙𝑘+1 = 𝜑𝜏1,𝑘+1(𝒙𝑖,𝑘, ℎ) ∘ 𝜑𝜏2,𝑘+1(𝒙1,𝑘+1, ℎ) ∘ 𝜑𝜏3,𝑘+1(𝒙2,𝑘+1, ℎ) (IV.11)  

is a 3-D volume preserving mapping, since the total Jacobian determinant 

is the product of the unitary Jacobian determinants associated to each of the 

three integration sub-steps (IV.8). To improve the order of accuracy of such 

scheme, it is possible to formulate a second order accuracy multistep algorithm, 

by means of the following five 2-D mappings: 

𝒙𝑘+1 = 𝜑𝜏1,𝑘+1 (𝒙𝑖,𝑘,
ℎ

2
) ∘ 𝜑𝜏2,𝑘+1 (𝒙1,𝑘+1,

ℎ

2
) ∘ 𝜑𝜏3,𝑘+1(𝒙2,𝑘+1, ℎ)

∘ 𝜑𝜏2,𝑘+1 (𝒙3,𝑘+1,
ℎ

2
) ∘ 𝜑𝜏1,𝑘+1 (𝒙4,𝑘+1,

ℎ

2
) 

(IV.12)  

The need to use a Generating Function Approach and to set up a cascaded 

scheme as in (IV.12) is due to the Midpoint Rule that is area preserving for two-

dimensional flows but is not volume preserving. The Jacobian determinant of the 

mapping (IV.8) for three-dimensional flows:  
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   

   
 

2 3

3

2 3

1 det
4 8 1

1 det
4 8

h h
Q

O h
h h

Q

 

  

 

F F
J

F F

 

 
𝑄(𝑭) = 𝐹11𝐹22 + 𝐹22𝐹33 + 𝐹33𝐹11 − 𝐹12𝐹21 − 𝐹23𝐹32 − 𝐹31𝐹13 

(IV.13)  

is not unitary and constant as for 2-D ODEs, but approaches to 1 with the cube of 

the integration step. 

 

4.2.2 Assessment of the Geometric Integration of the Flux 

Density Field 

4.2.2.a Analytical Calculation of the Split Fields 

Because of the need to know the Magnetic Vector Potential inside the entire 

Vacuum Vessel, we choose to represent the flux density field by means of the 

superposition of the field generated by: 

 a set of axisymmetric filamentary currents (e.g., as calculated by CFTT’s 

Pre-processor), as regards the poloidal field modelling; 

 a toroidally continuous solenoid as regards the toroidal field modelling. 

In this way, an analytical expression of the magnetic vector potential is 

available for the generation of the auxiliary 2-D fields to be integrated. 

Let us consider a current density distribution directed along the toroidal 

direction: 𝑱(𝑟, 𝜑, 𝑧) = 𝑱(𝑟, 𝑧)𝜑̂; the Biot-Savart law gives: 

𝑩(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑑𝑟′∫ 𝑑𝑧′∫ (𝑱(𝑟′, 𝜑′, 𝑧′) ×

𝑹 − 𝑹′

‖𝑹 − 𝑹′‖3
) 𝑟′𝑑φ′

2𝜋

0

+∞

0

+∞

0

 (IV.14)  

where: 𝑹 = 𝑟𝑟̂ + 𝑧𝑧̂ and 𝑹′ = 𝑟′𝑟 ′̂ + 𝑧′𝑧′̂. 

The coordinate frame (𝑟′, 𝜑′, 𝑧′) can be obtained from the frame (𝑟, 𝜑, 𝑧) 

via a rigid rotation around the z axis: 
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{
𝑟′̂ = 𝑐𝑜𝑠(𝜑′ − 𝜑)𝑟̂ + 𝑠𝑖𝑛(𝜑′ − 𝜑)𝜑̂   

𝜑′̂ = −𝑠𝑖𝑛(𝜑′ − 𝜑)𝑟̂ + 𝑐𝑜𝑠(𝜑′ − 𝜑)𝜑̂

𝑧 ′̂ = 𝑧̂                                                           

 (IV.15)  

and so: 

𝑹 − 𝑹′ = [𝑟 − 𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑)]𝑟̂ − 𝑟′ sin(𝜑′ − 𝜑) 𝜑̂ + (𝑧 − 𝑧′)𝑧̂

‖𝑹 − 𝑹′‖ = √𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2
 (IV.16)  

Taking into account the relations between the unit vectors belonging to the 

same coordinate frame: 

{

𝑟̂ = 𝜑̂ × 𝑧̂
𝜑̂ = 𝑧̂ × 𝑟̂
𝑧̂ = 𝑟̂ × 𝜑̂

 (IV.17)  

the Biot-Savart Law can be re-written as follows: 

𝑩(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑑𝑟′∫ 𝑑𝑧′∫ 𝐽(𝑟′, 𝑧′)𝜑′̂ ×

2𝜋

0

+∞

0

+∞

0

 

 

×
[𝑟 − 𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑)]𝑟̂ − 𝑟′ sin(𝜑′ − 𝜑) 𝜑̂ + (𝑧 − 𝑧′)𝑧̂

(𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2)
3
2

𝑟′𝑑φ′ 

(IV.18)  

Taking into account the following relationships: 

{

𝜑′̂ × 𝑟̂ = − 𝑐𝑜𝑠(𝜑′ − 𝜑) 𝑧̂                            

𝜑′̂ × 𝜑̂ = −𝑠𝑖𝑛(𝜑′ − 𝜑) 𝑧̂                            

𝜑′̂ × 𝑧̂ = 𝑠𝑖𝑛(𝜑′ − 𝜑) 𝜑̂ + 𝑐𝑜𝑠(𝜑′ − 𝜑) 𝑟̂

 (IV.19)  

we get: 

𝜑′̂ × (𝑹 − 𝑹′) = (𝑧 − 𝑧′) 𝑐𝑜𝑠(𝜑′ − 𝜑) 𝑟̂ + (𝑧 − 𝑧′) 𝑠𝑖𝑛(𝜑′ − 𝜑) 𝜑̂
+ [𝑟′ − 𝑟 𝑐𝑜𝑠(𝜑′ − 𝜑)]𝑧̂ 

(IV.20)  

and so: 
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𝑩(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑑𝑟′∫ 𝑑𝑧′∫ 𝑟′𝑑𝜑′ ⋅ 𝐽(𝑟′, 𝑧′)

2𝜋

0

+∞

0

+∞

0

⋅ 

 

⋅ {
(𝑧 − 𝑧′) 𝑐𝑜𝑠(𝜑′ − 𝜑)

(𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2)
3
2

𝑟̂ + 

 

+
(𝑧 − 𝑧′) 𝑠𝑖𝑛(𝜑′ −𝜑)

(𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2)
3
2

𝜑̂ + 

 

+
[𝑟′ − 𝑟 𝑐𝑜𝑠(𝜑′ − 𝜑)]

(𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2)
3
2

𝑧̂} 

(IV.21)  

If we sort the integrals over the toroidal angle, we get: 

𝑩(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′) ⋅

+∞

0

+∞

0

 

 

⋅ {[∫
(𝑧 − 𝑧′) 𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

] 𝑟̂ + 

 

+[∫
(𝑧 − 𝑧′) 𝑠𝑖𝑛(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

] 𝜑̂ + 

 

+[∫
[𝑟′ − 𝑟 𝑐𝑜𝑠(𝜑′ − 𝜑)]

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

] 𝑧̂} 

(IV.22)  

It is clear that the integrand that generates the flux density field component 

along the toroidal direction is odd, hence the corresponding integral is zero. This 

implies that the flux density field generated by an axisymmetric current density 

consists only of the poloidal components whose analytical expressions are: 

𝑩(𝑟, 𝜑, 𝑧) = 𝐵𝑟(𝑟, 𝑧)𝑟̂ + 𝐵𝑧(𝑟, 𝑧)𝑧̂ (IV.23)  

𝐵𝑟 =
𝜇0
4𝜋
∫ 𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′)∫

(𝑧 − 𝑧′) 𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

+∞

0

+∞

0

 (IV.24)  

𝐵𝑧 =
𝜇0
4𝜋
∫ 𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′)∫

[𝑟′ − 𝑟 𝑐𝑜𝑠(𝜑′ − 𝜑)]

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

+∞

0

+∞

0

 (IV.25)  

As regards the magnetic vector potential: 

𝑨(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∭

𝑱(𝑟′, 𝑧′)

‖𝑹 − 𝑹′‖Ω𝑠

𝑑𝑉 (IV.26)  



 133 

where Ω𝑠 is the sources region, it can be re-written as follows: 

𝑨(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑑𝑟′∫ 𝑑𝑧′∫ 𝐽(𝑟′, 𝑧′) ⋅

2𝜋

0

+∞

0

+∞

0

 

 

⋅
− 𝑠𝑖𝑛(𝜑′ − 𝜑)𝑟̂ + 𝑐𝑜𝑠(𝜑′ − 𝜑)𝜑̂

√(𝑟2 + 𝑟′2 − 2𝑟𝑟′ 𝑐𝑜𝑠(𝜑′ − 𝜑) + (𝑧 − 𝑧′)2)
𝑟′𝑑φ′ 

(IV.27)  

If we sort the integrals over the toroidal angle into the expression of the 

magnetic vector potential, we get: 

𝑨(𝑟, 𝜑, 𝑧) =
𝜇0
4𝜋
∫ 𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′) ⋅

+∞

0

+∞

0

 

 

⋅ {[−∫
𝑠𝑖𝑛(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

] 𝑟̂ + [∫
𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

] 𝜑̂} 

(IV.28)  

The integrand that generates the radial component of the magnetic vector 

potential is an odd function, thus its integral over the set 𝜑 ∈ [0,2𝜋]  is zero. 

Consequently, the magnetic vector potential consists of the only toroidal 

component, whose analytical expression is: 

𝐴𝜑(𝑟, 𝑧) =
𝜇0
4𝜋
∫ 𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′)∫

𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

+∞

0

+∞

0

 (IV.29)  

At this stage it is possible to introduce the poloidal flux per unit radian 𝜓 in 

terms of the vector potential as follows: 𝜓(𝑟, 𝑧) = 𝑟 ⋅ 𝐴𝜑(𝑟, 𝑧), hence obtaining: 

𝜓(𝑟, 𝑧) =
𝜇0
4𝜋
∫ 𝑟𝑟′𝑑𝑟′∫ 𝑑𝑧′ ⋅ 𝐽(𝑟′, 𝑧′)∫

𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

+∞

0

+∞

0

 (IV.30)  

If we define the Kernel of the integral in (IV.30): 

𝐺(𝑟, 𝑟′, 𝑧, 𝑧′) =
𝜇0
2
∫

𝑟𝑟′𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

2𝜋

0

= 𝜇0∫
𝑟𝑟′𝑐𝑜𝑠(𝜑′ − 𝜑)

‖𝑹 − 𝑹′‖
𝑑𝜑′

𝜋

0

 (IV.31)  

we get: 

𝜓(𝑟, 𝑧) =
1

2𝜋
∫ 𝑑𝑟′∫ 𝐺(𝑟, 𝑟′, 𝑧, 𝑧′) ⋅ 𝐽(𝑟′, 𝑧′)𝑑𝑧′

+∞

0

+∞

0

 (IV.32)  

Finally, if we introduce the angle 𝜃 defined as: 𝜑′ − 𝜑 = 𝜋 − 2𝜃 and substitute 

the relation: 𝑐𝑜𝑠(𝜑′ − 𝜑) = 2 𝑠𝑖𝑛2 𝜃 − 1 in equation (IV.31), we get: 

𝐺(𝑟, 𝑟′, 𝑧, 𝑧′) = −2𝜇0𝑟𝑟′∫
1 − 2 𝑠𝑖𝑛2 𝜃

√(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2 − 4𝑟𝑟′ 𝑠𝑖𝑛2 𝜃
𝑑𝜃

𝜋
2

0

 (IV.33)  



 134 

The following parameter: 

𝑚 = 𝑘2 =
4𝑟𝑟′

(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2
 (IV.34)  

is called Elliptic Parameter and allows to rewrite the equation (IV.33) as follows: 

𝐺(𝑟, 𝑟′, 𝑧, 𝑧′) = −𝜇0𝑘√𝑟𝑟′∫
1 − 2 𝑠𝑖𝑛2 𝜃

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃
𝑑𝜃

𝜋
2

0

= 

 

= −𝜇0𝑘√𝑟𝑟′∫
(1 −

2
𝑘2
) +

2
𝑘2
(1 − 𝑘2 𝑠𝑖𝑛2 𝜃)

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃
𝑑𝜃

𝜋
2

0

= 

 

= −𝜇0√𝑟𝑟′ [(𝑘 −
2

𝑘
)∫

𝑑𝜃

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃

𝜋
2

0

+
2

𝑘
∫ (1 − 𝑘2 𝑠𝑖𝑛2 𝜃)𝑑𝜃

𝜋
2

0

] 

(IV.35)  

The following addends: 

𝐾 = ∫
𝑑𝜃

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃

𝜋
2

0

  (IV.36)  

𝐸 = ∫ (1 − 𝑘2 𝑠𝑖𝑛2 𝜃)𝑑𝜃

𝜋
2

0

 (IV.37)  

are the Complete Elliptic Integral of the First Kind (IV.36) and Complete 

Elliptic Integral of the Second Kind (IV.37). They are defined only if 𝑘 ∈ [0,1[ and 

can be calculated by means of an iterative procedure [68], obtaining the 

following diagrams: 

 

  
Fig. IV.10: Complete Elliptic Integrals of the First and Second Kinds in terms of the Elliptic 

Parameter “m” 
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Therefore, it is possible to rewrite the (IV.35) in terms of the Complete 

Elliptic Integral as follows: 

𝐺(𝑟, 𝑟′, 𝑧, 𝑧′) = −
2𝜇0
𝑘
√𝑟𝑟′ [(1 −

𝑘2

2
)𝐾(𝑘2) − 𝐸(𝑘2)] (IV.38)  

and the poloidal flux per unit radian can be rewritten as: 

𝜓(𝑟, 𝑧) =
𝜇0
𝜋
∫ 𝑑𝑟′∫

√𝑟𝑟′

𝑘
[(1 −

𝑘2

2
)𝐾(𝑘2) − 𝐸(𝑘2)] ⋅ 𝐽(𝑟′, 𝑧′)𝑑𝑧′

+∞

0

+∞

0

 (IV.39)  

Let us consider that the toroidal current consists of a set of axisymmetric 

conductors: 

𝑱(𝑟, 𝑧) = ∑ 𝐼𝑛𝛿(𝑟 − 𝑟𝑛
′, 𝑧 − 𝑧𝑛′)

𝑁𝑓𝑖𝑙

𝑛=1

 (IV.40)  

where 𝛿(𝑟 − 𝑟𝑘
′ , 𝑧 − 𝑧𝑘′) is the Dirac distribution shifted at the point 𝑃 ≡ (𝑟𝑛

′, 𝑧𝑛′). 

If the property of the measure 𝜇𝑃 generating the Dirac distribution is exploited, 

the integral (in the Stieltjes-Lebesgue sense) in (IV.39) gives the following results 

in terms of poloidal flux per unit radian and magnetic vector potential: 

𝜓(𝑟, 𝑧) =
𝜇0
𝜋
∑ 𝐼𝑛

√𝑟𝑟𝑛′

𝑘𝑛
[(1 −

𝑘𝑛
2

2
)𝐾(𝑘𝑛

2) − 𝐸(𝑘𝑛
2)]

𝑁𝑓𝑖𝑙

𝑛=1

 (IV.41)  

𝐴𝜑(𝑟, 𝑧) =
𝜇0
𝜋
∑

𝐼𝑛
𝑘𝑛
√
𝑟𝑛′

𝑟
[(1 −

𝑘𝑛
2

2
)𝐾(𝑘𝑛

2) − 𝐸(𝑘𝑛
2)]

𝑁𝑓𝑖𝑙

𝑛=1

 (IV.42)  

Once the magnetic vector potential is known, the construction of the three 

auxiliary fields shown in (IV.7) is finally possible. For this reason, let us recall 

that the derivatives of the complete elliptic integrals with respect to the square 

root of the integral parameter 𝑘 = √𝑚 are [69]: 

𝑑𝐾

𝑑𝑘
=

𝐸(𝑘2)

𝑘(1 − 𝑘2)
−
𝐾(𝑘2)

𝑘
 (IV.43)  

𝑑𝐸

𝑑𝑘
=
𝐸(𝑘2) − 𝐾(𝑘2)

𝑘
 (IV.44)  

and calculate the following derivatives: 

𝜕𝑘

𝜕𝑟
=
𝑟′[(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2] − 2𝑟𝑟′(𝑟 + 𝑟′)

[(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2]
3
2√𝑟𝑟′

 (IV.45)  
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𝜕𝑘

𝜕𝑧
= −

2(𝑧 − 𝑧′)√𝑟𝑟′

[(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2]
3
2

 (IV.46)  

At this stage it is possible to calculate the partial derivatives of the magnetic 

vector potential with respect of the geometrical coordinates in the Cartesian 

frame. For sake of simplicity, a single axisymmetric filamentary current is 

considered hereafter: 

 

𝜕𝐴𝜑

𝜕𝑥
=
𝜇0𝐼

𝜋𝑘
√
𝑟′

𝑟
{− [

1

𝑘′

𝜕𝑘

𝜕𝑟
+
1

2𝑟
] ⋅ [(1 −

(𝑘′)2

2
)𝐾 − 𝐸] + 

 

+[−𝑘
𝜕𝑘

𝜕𝑟
𝐾 + (1 −

(𝑘′)2

2
)
𝜕𝐾

𝜕𝑟
−
𝜕𝐸

𝜕𝑟
]}

𝑥

√𝑥2 + 𝑦2
 

(IV.47)  

𝜕𝐴𝜑

𝜕𝑦
=
𝜇0𝐼

𝜋
√𝑟′ {− [

1

(𝑘′)2√𝑟

𝜕𝑘

𝜕𝑟
+

1

2𝑘𝑟√𝑟
] ⋅ [(1 −

(𝑘′)2

2
)𝐾 − 𝐸] + 

 

+
1

𝑘√𝑟
[−𝑘

𝜕𝑘

𝜕𝑟
𝐾 + (1 −

(𝑘′)2

2
)
𝜕𝐾

𝜕𝑟
−
𝜕𝐸

𝜕𝑟
]}

𝑦

√𝑥2 + 𝑦2
 

(IV.48)  

𝜕𝐴𝜑

𝜕𝑧
= −

𝜇0𝐼

𝜋𝑘
√
𝑟′

𝑟
{
1

𝑘

𝜕𝑘

𝜕𝑧
[(1 −

𝑘2

2
)𝐾 − 𝐸] + 

 

+[(𝑘
𝜕𝑘

𝜕𝑧
)𝐾 − (1 −

𝑘2

2
)
𝜕𝐾

𝜕𝑧
+
𝜕𝐸

𝜕𝑧
]} 

(IV.49)  

Recalling that: 

{
 
 

 
 𝐴𝑥 = −𝐴𝜑 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝐴𝑦 = 𝐴𝜑 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (
𝑦

𝑥
))   

𝐴𝑧 = 0                                    

 (IV.50)  

the gradient of the components of the magnetic vector potential is: 

∇𝐴𝑥 =

[
 
 
 
 
 
 −
𝜕𝐴𝜑

𝜕𝑥
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) + 𝐴𝜑 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑦

𝑥2 + 𝑦2
 

−
𝜕𝐴𝜑

𝜕𝑦
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) − 𝐴𝜑 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑥

𝑥2 + 𝑦2
 

−
𝜕𝐴𝜑

𝜕𝑧
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) ]

 
 
 
 
 
 

 (IV.51)  
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∇𝐴𝑦 =

[
 
 
 
 
 
 
𝜕𝐴𝜑

𝜕𝑥
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) + 𝐴𝜑 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑦

𝑥2 + 𝑦2
 

𝜕𝐴𝜑

𝜕𝑦
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) − 𝐴𝜑 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑥

𝑥2 + 𝑦2
 

𝜕𝐴𝜑

𝜕𝑧
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) ]

 
 
 
 
 
 

 (IV.52)  

∇𝐴𝑧 = [
0
0
0
] (IV.53)  

Therefore, the three auxiliary fields for that of an axisymmetric filamentary 

conductor are: 

𝐁1 = ∇𝐴𝑥 × 𝑥̂ = 
 

=

[
 
 
 
 

0

−
𝜕𝐴𝜑

𝜕𝑧
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝜕𝐴𝜑

𝜕𝑦
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) + 𝐴𝜑 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑥

𝑥2 + 𝑦2
 
]
 
 
 
 

 
(IV.54)  

𝐁2 = ∇𝐴𝑦 × 𝑦̂ = 

 

=

[
 
 
 
 −

𝜕𝐴𝜑

𝜕𝑧
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

0
𝜕𝐴𝜑

𝜕𝑥
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
)) + 𝐴𝜑 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝑦

𝑥2 + 𝑦2
 
]
 
 
 
 

 
(IV.55)  

𝐁3 = ∇𝐴𝑧 × 𝑧̂ = [
0
0
0
] (IV.56)  

Thanks to the linearity of the relation between the magnetic vector 

potential and the current carried by its sources, the superposition principle can 

be exploited, whether many axisymmetric currents are present. 

The same procedure has to be carried out for the toroidal component of the 

flux density field, generated by the toroidal solenoid: 

 

𝐵𝜑 = {
𝜇0𝑁𝐼

2𝜋𝑟
             𝑖𝑛 Ω        

    0             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (IV.57)  
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𝐴𝑟 = {
𝜇0𝑁𝐼

2𝜋𝑟
𝑧             𝑖𝑛 Ω        

  0               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (IV.58)  

where 𝑁 in the number of turns of the toroidal winding and Ω is the region inside 

the solenoid. The expression of the magnetic vector potential in the Cartesian 

frame is: 

{
 
 

 
 𝐴𝑥 =

𝜇0𝑁𝐼

2𝜋√𝑥2 + 𝑦2
𝑧 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝐴𝑦 =
𝜇0𝑁𝐼

2𝜋√𝑥2 + 𝑦2
𝑧 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

𝐴𝑧 = 0                                                      

 (IV.59)  

Therefore, the three auxiliary fields for the toroidal component of the flux 

density field are: 

𝐁1 = ∇𝐴𝑥 × 𝑥̂ = 
 

=
𝜇0𝑁𝐼

2𝜋

[
 
 
 
 
 

0
1

√𝑥2 + 𝑦2
𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

−
𝑧

(𝑥2 + 𝑦2)
3
2

[𝑦 ⋅ 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (
𝑦

𝑥
)) + 𝑥 ⋅ 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))]
]
 
 
 
 
 

 
(IV.60)  

𝐁2 = ∇𝐴𝑦 × 𝑦̂ = 

 

=
𝜇0𝑁𝐼

2𝜋

[
 
 
 
 
 

1

√𝑥2 + 𝑦2
𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))

0

−
𝑧

(𝑥2 + 𝑦2)
3
2

[𝑥 ⋅ 𝑠𝑖𝑛 (𝑎𝑡𝑎𝑛 (
𝑦

𝑥
)) − 𝑦 ⋅ 𝑐𝑜𝑠 (𝑎𝑡𝑎𝑛 (

𝑦

𝑥
))]
]
 
 
 
 
 

 
(IV.61)  

𝐁3 = ∇𝐴𝑧 × 𝑧̂ = [
0
0
0
] (IV.62)  

Once these split fields are superposed to those of the axisymmetric 

filamentary conductors, it is possible to implement a proper cascade scheme, 

aimed to their integration. 
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4.2.2.b Integration Assessment in Axisymmetric Geometry 

After having discussed about the principles which the flux density field line 

tracing is based on, it is necessary to assess the performances of the ODE 

integrators, to be sure to get reliable results within a prescribed accuracy. 

Hereafter, a comparison of the performance of standard ODE integrators based 

on Runge-Kutta method [70] versus the Volume Preserving Midpoint Rule 

scheme (IV.8) is depicted. 

The error assessment for this class of problems is not trivial in tokamaks 

because: 

 the error has to be bounded after a long integration, in order to perform 

an accurate tracing; 

 analytical invariants for plasma equilibria, such as the poloidal magnetic 

flux per unit radian 𝜓, are usually available only for the axisymmetric field 

configurations; 

 the transverse (poloidal plane) components of the flux density field (and 

therefore the related error) are usually much smaller than the toroidal 

one. 

For axisymmetric plasmas, a way to provide an error estimation for these 

3-D integrators is based on the property of the poloidal magnetic flux per unit 

radian 𝜓 to be an invariant for the flux density field and so to be constant along 

its streamlines [71]-[72]. The more 𝜓  is kept constant, the higher are the 

performances of the integrator in terms of integration error. Moreover, the 

Jacobian determinant of the mapping is also an invariant (see Section 4.2.1) for 

such field configuration, even for non-axisymmetric plasmas. Therefore, its 

conservation in the 3-D integration can be also used as a figure of merit. 

The latter estimation is based on the conjecture that the combination of 

high flux accuracy (related to the poloidal component of the flux density field) 

and high volume preservation guarantees a good accuracy level for toroidal 

component too. 

On such bases, the following DEMO [73] configuration was taken as 

reference case to trace 1000 𝑚 long flux density field lines within the plasma: 
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 Plasma Current: 𝐼𝑝 =  16 𝑀𝐴; 

 Major Radius: 𝑅0 =  9 𝑚; 

 Minor Radius: a = 2.25 m; 

 Poloidal Beta: 𝛽𝑝  =  0.8; 

 Plasma Internal Inductance: 𝑙𝑖  =  0.7; 

 Toroidal Field at the Major Radius: 𝐵𝜑|𝑟=𝑅0
= 7 𝑇. 

On this reference case, the compared algorithms were tested in terms of 

accuracy and computational time as functions of the integration step-size. Fig. 

IV.11 shows the relative error on the poloidal flux per unit radian conservation 

Δ𝜓

𝜓
, in terms of the integration step-size: 

 

 
Fig. IV.11: Flux accuracy in terms of integration step-size for the considered algorithms: mid-point 

rule (MR), Runge-Kutta 2nd (RK-II) and 4th (RK-IV) order 

 

It is worth noting that the relative error 
Δ𝜓

𝜓
 scales with the integration step 

in perfect agreement with the algorithm order, proving that the considered 

integration step-sizes are large enough to neglect the round-off error with 

respect to truncation one. 

Fig. IV.12 shows the relative variation of Jacobian determinant in terms of 

the curvilinear abscissa along the traced field line: 
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Fig. IV.12: Volume preserving condition along the flux density field integration for the Runge-Kutta 

4th order (RK-IV) and the Midpoint Rule (MR) 

The local volume preserving condition 𝑑𝑒𝑡(𝑱) − 1 = 0  is verified at the 

round off error limit and is limited within the accuracy of 10−10  for both the 

compared integrators. Even though the latter is not volume-preserving, the good 

result in Fig. IV.12 is mainly due to the small integration step selected to meet 

the accuracy requirements. 

The evaluation of numerical accuracy in the volume preservation is 

affected by another error that is the numerical evaluation of the partial 

derivatives in the Jacobian matrix (IV.9) by means of central point derivation rule 

with a second order approximation. Therefore, a second order extrapolation can 

be used to get a more precise estimation of the volume preservation: 

det(𝐽(𝜏))

det(𝐽(0))
= 2

det (𝐽ℎ
2

(𝜏))

det (𝐽ℎ
2

(0))

−
det(𝐽ℎ(𝜏))

det(𝐽ℎ(0))
+ 𝑂(ℎ2) (IV.63)  

where ℎ is the step-size used for the numerical calculation of the entries of the 

Jacobian Matrix. Considering a step-size ℎ = 320 𝜇𝑚 , the extrapolated 

accuracies are 0.460 ⋅ 10−12 for MR and 3.302 ⋅ 10−12 for the RK-IV, respectively. 

Tab. IV.2 gives a general comparison of the tested algorithms in terms of 

flux accuracy and computing time. 

 



 142 

Tab. IV.2: Flux accuracy in terms of integration step-size for a field line 1000 m long, for the 
considered algorithms: mid-point rule (MR), Runge-Kutta 2nd (RK-II) and 4th (RK-IV) order

∆τ 
[mm/T] 

 MR RK-II RK-IV 

35.0 
ΔΨ [Vs] 0.911 1.382 5.986e-4 

CPU_time [s] 239 60 116 

17.5 
ΔΨ [Vs] 0.225 0.346 3.907e-5 

CPU_time [s] 480 118 241 

8.75 
ΔΨ [Vs] 0.057 0.087 2.492e-6 

CPU_time [s] 923 245 489 

4.37 
ΔΨ [Vs] 0.014 0.022 1.574e-7 

CPU_time [s] 1594 493 990 

2.19 
ΔΨ [Vs] 0.003 0.005 9.876e-9 

CPU_time [s] 2749 996 1992 
SM

4.2.2.c Clebsch Representation of a Divergence-Free Vector Field 
and Integration Assessment in Non-Axisymmetric 
Configurations 

Since the poloidal flux per unit radian is not an invariant for the non-

axisymmetric magnetic flux density fields, analytical invariants for a general 

three-dimensional flux density field can be found into the Clebsch Decomposition 

of a divergence-free vector field. 

Let us recall the Helmholtz theorem for vector fields: 

 

Let 𝑭 be any continuous vector field with continuous first partial derivatives. 

Then 𝑭 can be expressed in terms of the negative gradient of a scalar potential Φ 

and the curl of a vector potential 𝑨. 

 

This means that the vector field 𝑭 can be split as follows: 

𝑭 = −∇Φ+ ∇ × 𝑨 (IV.64)  

If the vector field is divergence-free as the flux density field is, the scalar 

potential Φ is everywhere zero. Moreover, if two additional scalar potentials 𝑈 

and 𝑉 are introduced and the vector potential is reformulated as follows: 

𝑨 = 𝑈∇V (IV.65)  

we get the following expression for the flux density field: 
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𝑩 = ∇𝑈 × ∇V (IV.66)  

Equation (IV.66) is called Clebsch Decomposition of the flux density field 

and the scalar potential 𝑈 and 𝑉 are named Clebsch Potentials. 

The lack of spreading of such representation is mainly due to the non-linear 

relation between the flux density field and the two Clebsch potentials [74]. For 

this reason, the only local uniqueness of such decomposition was demonstrated, 

but not the global one, because many other couples of Clebsch Potentials 𝑈̃ and 

𝑉̃ can be obtained by means of Volume-Preserving Transformations [75]. 

However, such representation is useful when describing the magnetic field 

lines as a Hamiltonian flow [76]. Thanks to the this particular decomposition, 

two analytical invariants are available also for 3-D flux density field 

configurations, i.e. the Clebsch Potentials, which are constant along the flux 

density field lines: 

{
𝑩 ⋅ ∇𝑈 = ∇𝑈 × ∇V ⋅ ∇𝑈 = 0
𝑩 ⋅ ∇𝑉 = ∇𝑈 × ∇V ⋅ ∇𝑉 = 0

 (IV.67)  

Therefore, a magnetic flux density field line is the intersection of the two 

𝑈 =  𝑐𝑜𝑛𝑠𝑡. and 𝑉 =  𝑐𝑜𝑛𝑠𝑡. surfaces. 

Using such fundamental properties, an accuracy estimation of the 

numerical tracing of 3-D magnetic field lines may be the evaluation of the relative 

error on the constancy of U and V potentials along the traced field lines, as well 

as for the magnetic poloidal flux per unit radian in the axisymmetric case. 

This information can be also turned into a geometrical error, that is the 

minimal distance ‖𝛿𝑃‖𝑚𝑖𝑛  between the exact field line 𝑈 = 𝑈0 ∩ 𝑉 = 𝑉0 and the 

traced line. The minimum distance between the two lines can be calculated by 

solving in the least square sense the following underdetermined set: 

{
𝛻𝑈 ⋅ 𝛿𝑃 = 𝑈 − 𝑈0
𝛻𝑉 ⋅ 𝛿𝑃 = 𝑉 − 𝑉0

 (IV.68)  

where: 

 𝑈 and 𝑉 are the actual values of the Clebsch potentials at each point of the 

traced field line; 

 ∇𝑈 and ∇𝑉 are the actual values of the gradient of the Clebsch potentials 

at each point of the traced field line; 
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 𝑈0 and 𝑉0 are the values of the Clebsch potentials on the analytical field 

line. 

To choose a couple of Clebsch potentials in such a way that the 

corresponding lines resemble those of a typical axisymmetric plasma, we refer 

to the parametric equations of the toroidal surface with elliptic cross section 

(IV.69) and to the helicoid (IV.70): 

{

𝑟 = 𝑅0 + 𝑎 ⋅ 𝑐𝑜𝑠(𝛼)

𝑧 = 𝑍0 + 𝑏 ⋅ 𝑠𝑖𝑛(𝛼)

𝜑 = 𝛽                          
   𝛼 ∈ [0,2𝜋], 𝛽 ∈ [0,2𝜋] (IV.69)  

{

𝑟 = 𝑅0 + 𝛼 ⋅ 𝑐𝑜𝑠(𝛽)

𝑧 = 𝑍0 + 𝛼 ⋅ 𝑠𝑖𝑛(𝛽)

𝜑 = 𝑞 ⋅ 𝛽                    
   𝛼 ∈ [0, +∞], 𝛽 ∈ [0,+∞] (IV.70)  

thus obtaining: 

{𝑈 = (
𝑟 − 𝑅0
𝑎

)
2

+ (
𝑧 − 𝑍0
𝑏

)
2

+ 𝑈0

𝑉 = 𝑞𝜃 − 𝜑 + 𝑉0                              

 (IV.71)  

where: 

 𝑅0 and 𝑍0 are the radial and vertical coordinates of the helix elliptic cross 

section; 

 𝑎 and 𝑏 are the radial and vertical axes of the helix elliptic cross section; 

 𝑞 is the safety factor; 

 𝜃 is the poloidal angle, calculated by: (𝑟 − 𝑅0) 𝑡𝑎𝑛(𝜃) = 𝑧 − 𝑍0 using the 

four quadrants inverse tangent; 

 𝑈0 and 𝑉0 are arbitrary constants. 

The two Clebsch surfaces with their intersection are shown in the following 

Fig. IV.13: 
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Fig. IV.13: Clebsch surfaces generating a toroidal helix (the solid line is their intersection) 

 

Such axisymmetric field configuration can be easily modified by adding 

perturbing non-axisymmetric terms in the expressions of 𝑈 and 𝑉. Two kinds of 

perturbation will be hereafter considered, namely a global perturbation (GP), 

and a local perturbation (LP). 

As regards the global perturbation, a toroidal mode resembling a 3-D 

Sausage Instability may be generated by: 

{𝑈 = (
𝑟 − 𝑅0
𝑎 + 𝛿𝑈

)
2

+ (
𝑧 − 𝑍0
𝑏 + 𝛿𝑈

)
2

+ 𝑈0

𝑉 = 𝑞𝜃 − 𝜑 + 𝑉0                              

 

 
𝛿𝑈 = 𝛿𝑟 ⋅ 𝑐𝑜𝑠(𝑛𝜑) 

(IV.72)  

where: 𝛿𝑟 is the amplitude of the perturbation and 𝑛 is the mode number of the 

perturbation. The following Fig. IV.14 shows this configuration when: 𝑅0  =  9 𝑚, 

𝑍0  =  0, 𝑎 =  0.75 𝑚, 𝑏 =  1.25 𝑚, 𝑞 =  2𝜋, 𝛿𝑟 = 0.25 𝑚 and 𝑛 = 18: 
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Fig. IV.14: Ergodic surface covered by a field line in a globally perturbed field configuration (𝑽 =

𝒄𝒐𝒏𝒔𝒕. surface is omitted) 

 

As regards the Jacobian conservation, the same extrapolation as for the 

axisymmetric test case was carried out, obtaining 𝑑𝑒𝑡(𝑱) − 1 = 0  of 0.4918 ⋅

10−11 for the MR and 0.3190 ⋅ 10−11 for the RK-IV algorithms. 

As regards the local perturbation, the perturbing term consists of a smooth 

function 𝛿𝑈 ⊂ Ω𝑝, defined as follows: 

{𝑈 = (
𝑟 − 𝑅0 + 𝛿𝑈

𝑎
)
2

+ (
𝑧 − 𝑍0
𝑏

)
2

+ 𝑈0

𝑉 = 𝑞𝜃 − 𝜑 + 𝑉0                              

 

 

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(IV.73)  

where 𝑢(𝑟 − 𝑅0) is the step function, and: 

Ω𝑝 = {
|𝑧| < 𝑧1             
|𝜑 − 𝜑1| < Δ𝜑

 (IV.74)  

Fig. IV.15 shows this field configuration when: 𝑅0  =  9 𝑚 , 𝑍0  =  0 , 𝑎 =

 0.75 𝑚 , 𝑏 =  1.25 𝑚 , 𝑎1 =  10 𝑚 , 𝛼 =  1 𝑟𝑎𝑑 , 𝑞 =  2𝜋 , δr = 1 𝑚 , Δ𝑧 = 0.5 𝑚 , 

𝑋1  =  1.56 𝑚, 𝑌1  =  8.86 𝑚, 𝑍1  =  𝑍0, Δ𝜑 = 10 𝑑𝑒𝑔 and 𝜑1 = −90 𝑑𝑒𝑔: 
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Fig. IV.15: Ergodic surface covered by a field line for a locally perturbed field configuration (𝑽 =

𝒄𝒐𝒏𝒔𝒕. surface is omitted) 

 

The following Tab. IV.3 summarizes the accuracy assessments results, 

carried out both in the axisymmetric and in the two full 3-D configurations 

mentioned above by means of Clebsch Decomposition, for the MR, RK-II and RK-

IV algorithms. 

 

Tab. IV.3: Tracing accuracy for MR, RK-II and RK-IV estimated using Clebsch potentials for an 
integration length of 1000 m and a step size of 2.18 mm/T

 |𝑼 − 𝑼𝟎|/𝑼𝟎 |𝑽 − 𝑽𝟎|/𝑽𝟎 𝜹𝑷 [𝒎] 

AXI GP LP AXI GP LP AXI GP LP 

MR 8.0e-3 4.4e-1 3e-3 7.0e-3 2.3e-1 2.0e-2 3.0e-4 1.5e-2 8.0e-4 

RK-II 2.3e-5 2.1e-3 8.0e-4 1.3e-5 2.0e-4 4.0e-4 8.9e-7 1.0e-4 4.6e-5 

RK-IV 2.1e-12 4.3e-8 1.0e-7 1.1e-11 2.0e-9 5.3e-9 6.9e-13 4.0e-9 5.5e-9 

SM

This analysis suggests that standard integrators, e.g. Runge-Kutta, are 

extremely accurate in terms both of integration precision and of volume 

preservation (basically at the round-off error limit), when appropriate accuracy 

requirements (step-size) are selected. Moreover, they are by far simpler and less 

expensive than volume preserving algorithms from a computational point of 

view. 

A final consideration about the Runge-Kutta algoritms: even if adaptive 

ODE solvers might be expected to show better performances than fixed-step 

integrators in terms of trade-off between accuracy and computation time, the use 

of step-adaptivity may not preserve spatial symmetries with drastic 

consequences [64]. For this reasons, fixed step Runge-Kutta algorithms were 

chosen for the comparison with the Volume Preserving integrator. 
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4.3 Plasma Boundary Reconstruction via Field Line 

Tracing 

After discussing about the assessment of the numerical integrators when 

called to trace very long flux density field lines, their use for the reconstruction 

of the plasma boundary is now depicted, both in axisymmetric and non-

axisymmetric configurations. 

The plasma boundary is defined as the outermost closed magnetic surface 

entirely contained in the vacuum vessel. This is justified by the consideration 

that a plasma particle follows the magnetic field lines in its motion. As a 

consequence, the plasma particles following a magnetic field line which is inside 

this surface will remain in the plasma interior, while a particle following a 

magnetic field line external to this surface will collide with the mechanical 

structures surrounding the plasma. 

The lack of analytical invariants for three-dimensional flux density fields 

(unfortunately, nowadays a Clebsch decomposition does not exist neither for 

axisymmetric and non-axisymmetric fields) can be circumvented if exploiting 

the Connection Length. 

The plasma particles characterized by an infinite value of the connection 

length lay on field lines do not intersecting the wall (periodic or ergodic), are by 

definition within the plasma core and cover a closed field line (𝑞 ∈ ℚ) or an 

ergodic surface (𝑞 ∈ ℝ − ℚ). On the contrary, plasma particles characterized by 

a finite value of the connection length lay on field lines that will definitively touch 

the first wall and are to be considered outside the plasma core [77]. 

Exploiting such properties, it is possible to reconstruct the plasma 

boundary by means of a grid of starting points, dense enough according to the 

prescribed precision which the plasma boundary is requested to be known with. 

The problem of tracing infinitely long lines can be practically circumvented by 

assuming that a line is closed when: 

 it comes back to the initial point within a given small distance, or 

 the length of the traced field line is greater than a defined threshold (i.e., 

the admissible length expected for lines to intersect the wall). 
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Following such connection length approach, an iterative procedure aimed 

to the calculation of the connection length for successive initial positions along a 

given direction was designed. Once a prescribed accuracy in the plasma 

boundary reconstruction is assigned and the scanning direction is given with the 

starting point on the first wall, the connection length is calculated in terms of the 

distance of the integration initial point from the wall, thus to calculate the 

plasma-wall gap [78]-[79]. 

In the following, several cases are discussed, both for axisymmetric and 

non-axisymmetric plasmas. 

 

4.3.1 Axisymmetric Plasma 

As regards the axisymmetric plasmas, the possibility to formulate the flux 

density field components in terms of the magnetic poloidal flux per unit radian 

provides the plasma boundary as a level line for 𝜓 : 𝜓 = 𝜓𝑏 . Therefore, the 

results obtained for this case can be used as a benchmark and as a proof of 

principle of the viability of 3-D plasma boundary reconstruction by means of 

accurate field lines tracing and connection length evaluation. 

The equilibrium here considered is the end of a flat-top in DEMO Tokamak: 

Equil_EOF_betapol0d8_li0d7_11coils_final2. The gap reconstructed is at the 

outboard on the equatorial plane and the distance between two consecutive 

starting points along the unit normal vector to the first wall is 10 𝑚𝑚. Fig. IV.16 

shows the results in terms of 3-D view of the traced field lines and their 

projection on the poloidal plane: 
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Fig. IV.16: Plasma-wall gap calculation in axisymmetric configuration: Projection on the 
Poloidal cross section of many traced lines (transition from red to blue) for the plasma-wall gap 

calculation, starting points (squares) and end points (stars) and 3-D view 

 

Fig. IV.17 shows the Connection Length in terms of the distance from the 

first wall: 

 

 
Fig. IV.17: Connection Length in terms of the distance from the First Wall 

 

The sharp change in the connection length diagram shown in Fig. IV.17 is 

typical of the transition from the outer to the inner plasma region. The plasma 

separatrix is conventionally located at the average distance between the starting 

point of the last field line touching the wall and that of the first field line inside 

the plasma core (namely, Last Closed Flux Surface - LCFS). Therefore, the plasma-

wall gap is: 𝐺𝑎𝑝 = 0.17 ± 0.05 𝑚 

There is no need to clarify that the higher accuracy in the plasma-wall gap 

calculation is required, the smaller is step-size the numerical integrator needs, 
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so to prevent that the truncation error pushes away from the plasma the 

confined particles or vice versa, pulls the non-confined particles inside the core. 

This implies a much higher computational burden because of the higher 

number of steps per each traced field line and the higher number of lines to be 

traced. For such problems, parallel computing is mandatory for a fast 

reconstruction of the plasma boundary, especially in non-axisymmetric 

configurations [80]. 

In Fig. IV.18 the quadrisection parallel computing algorithm is shown: 

 

 
Fig. IV.18: The Quadrisection parallel computing algorithm (magenta stars are the starting points 

at the first iteration and black crosses are at the second iteration) 

 

The parallel procedure in Fig. IV.18 is an enhanced version of the bisection 

algorithm, better suited for computers having four local workers. The procedure 

is based on the partition in five parts (i.e. positioning four evenly spaced points) 

of a segment having the two extrema in two points which are known to be 

outside and inside the plasma core respectively; then, each point is addressed to 

a different processor. Once the tracing is completed for the first step, two new 

extrema are individuated, so repeating the iterative procedure until the distance 

between the last internal and the last external points evaluated is lower than the 

prescribed tolerance in the plasma boundary reconstruction. 

This procedure provides a speed up in the plasma-wall gap calculation 

because the distance between the last internal point and the last external point 
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is reduced by a factor of (
1

5
)
𝑘

, instead of (
1

2
)
𝑘

 as for the bisection procedure (𝑘 is 

the iteration number). In principle, this procedure can be even enhanced if a 

higher number of parallel CPUs is available on the workstation, thus placing a 

higher number of evenly spaced points along the exploration direction. 

The application of this iterative procedure for the axisymmetric case in Fig. 

IV.16 gives the following results (the resolution in the plasma-wall gap 

calculation is 0.5 𝑚𝑚): 

 

 
Fig. IV.19: Plasma boundary reconstruction in axisymmetric configuration (solid line: actual 
boundary as from the solution of the Grad-Shafranov equation; magenta stars: reconstructed 

plasma boundary) 

 

The quadrisection parallel algorithm performs with a speed up that is 

about 2.67 with four local workers on a DUAL CORE workstation.  The speed-up 

is defined as the ratio between the time need to run the algorithm using one 

processor and the time need if using more than one processor. This implies that 

the calculations were carried out by virtual processors, thus showing a speed up 

lower than the ideal value. 

 

4.3.2 Non-Axisymmetric Plasma 

Differently from the axisymmetric plasma configuration, where the 

reconstructed plasma boundary is perfectly replicated at each poloidal section, 
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the non-axisymmetric configuration needs the calculation at many toroidal 

angles, thus resulting in a much higher computational burden. 

Therefore, a different technique for the plasma boundary reconstruction is 

presented: it is based on the calculation of just one plasma-wall gap within a 

prescribed accuracy, so to get one point of the Last Closed Magnetic Surface and 

then to carry out a very long integration (up to tens of kilometers), so to 

ergodically cover it. At last, the plasma-boundary is reconstructed in all the 

poloidal sections by exploiting the Poincaré Maps. 

Fig. IV.20 refers to the axisymmetric CREATE-NL equilibrium 

Equil_EOF4_betapol0d1_li1d0_11coils_nc. After its identification via a suitable 

number of axisymmetric filamentary conductors, the non-axisymmetric plasma 

configuration is obtained by perturbing them. In particular, each filamentary 

conductor is affected by a 100 𝑚𝑚 shift along the x-axis and a 5 𝑑𝑒𝑔 tilt around 

the same axis. Moreover, the toroidal field is referred to the new coordinate 

frame where the actual filamentary conductor are axisymmetric. 

 

  
Fig. IV.20: Plasma-wall gap calculation in non-axisymmetric configuration: Projection on the 
Poloidal cross section and 3-D view of the field line covering the Last Closed Magnetic Surface 

 

The field line in Fig. IV.20 covers the Last Closed Magnetic Surface for about 

25 𝑘𝑚. It is reconstructed within an accuracy of 5 𝑚𝑚 for the calculation of the 

gap in the poloidal plane at 𝜑 = 0 on the outboard at the poloidal plane. 

Fig. IV.21 shows the Poincaré Maps for the poloidal planes located at 𝜑 =

0 , 𝜑 =
𝜋

2
, 𝜑 = 𝜋  and 𝜑 =

3

2
 𝜋 , that are the sections where the highest 

perturbation is expected to affect the plasma: 
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Fig. IV.21: Poincaré Maps at 𝝋 = 𝟎, 𝝋 =

𝝅

𝟐
, 𝝋 = 𝝅 and 𝝋 =

𝟑

𝟐
𝝅 for a kinked plasma 

 

The Poincaré Maps in Fig. IV.21 show how the plasma boundary changes at 

each poloidal section, accordingly with the perturbation affecting the flux density 

field sources. This technique has the further advantage to calculate the Poincaré 

Maps at all the poloidal sections as a post-process of the field line tracing so 

taking few tens of milliseconds per each of them. 

Therefore, a 3-D surface enclosing the plasma core can be drawn inside the 

vacuum vessel, by merging the many Poincaré Maps: 
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Fig. IV.22: Kinked plasma shape 

 

Parallel computing is also suitable for this procedure, because: 

 the quadrisection algorithm can be exploited for the calculation of the 

plasma-wall gap, or  

 each processor is devoted to the calculation of one plasma-wall gap and 

then to the tracing of one field line for the ergodic covering of the plasma 

boundary, thus reducing the length of each traced field line. 

At last, the same procedure is applied for a non-axisymmetric configuration 

expressed by means of the Clebsch decomposition. In particular, the two Clebsch 

Potentials 𝑈 and 𝑉 are those expressed in (IV.73). 
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Thanks to the shape of the first wall and of the 𝑈 = 𝑐𝑜𝑛𝑠𝑡. Clebsch surface, 

it is possible to know the exact coordinates of one of the boundary points, that is 

the very point touching the first wall: (𝑟𝑡𝑐ℎ, 𝜑𝑡𝑐ℎ, 𝑧𝑡𝑐ℎ) = (10.395,
𝜋

2
, 0) . The 

Clebsch potentials get the following values: 𝑈𝑏 = −9.7226 𝑚𝑇
1

2 , 𝑉𝑏 = 5.25 𝑚𝑇
1

2 

at the contact point. 

Fig. IV.23 shows the Poincaré Maps for such field configuration: 

 

  
Fig. IV.23: Poincaré Maps for at 𝝋 = 𝟎 and 𝝋 =

𝝅

𝟐
 for a locally perturbed plasma 

 

4.4 Identification of Non-Axisymmetric Plasmas 

4.4.1 Introduction 

The need to have elongated plasmas inside the vacuum vessel with their 

intrinsic instability highlights the need to set up a feedback control system acting 

on the plasma position and shape. A very important component of this kind of 

control systems is the subsystem generating the values of the geometrical 

parameters related to the plasma boundary to control, on the basis of the 

magnetic measurements. Unfortunately, these parameters cannot be directly 

measured, but can only be estimated in real-time via a proper processing of the 

available magnetic measurements. 
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Fig. IV.24: Examples of Pick-up Coils for the flux density field measurement (Courtesy of JET-

EFDA Organization) 

 

As recalled, the problem of the Plasma Boundary Identification for 

axisymmetric plasmas can be solved by solving the Grad-Shafranov Equation for 

the axisymmetric plasmas, or by using other techniques [81]-[82] better suited 

for the real-time control issues, thanks to their high speed (some milliseconds, 

as well as the sampling time of the control system). 

Unfortunately, these techniques are not exploitable for full three-

dimensional plasma configurations, because of the lack of symmetry (as for the 

identification based on the axisymmetric filamentary currents, since it exploits 

the poloidal flux per unit radian that is intrinsically axisymmetric). Therefore, 

new techniques are to be developed and set up when dealing with 3-D plasmas. 

Once the plasma is identified, it is possible to study its topology by tracing 

the flux density field lines and reconstructing the boundary exploiting the 

techniques presented in Section 4.3. In fact, they require the knowledge of the 

flux density field at each point inside the Vacuum Vessel or at the nodes fine 

enough mesh, so to interpolate the B field values at the other points within a 

given accuracy. 

 

4.4.2 Methods 

The identification of a three dimensional plasma is based on the magnetic 

measurements provided by the diagnostic system. Conceptually, the sensors 

consist of an open coil; the voltage across its terminals is measured by means of 
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a differential amplifier and is proportional to the to the time derivative of the 

total magnetic flux linked with it, according with the Faraday-Neumann-Lenz law. 

A measure of the magnetic field can be obtained by using so called pick-up 

coils (see Fig. IV.24): this kind of sensors consists of multiple windings of small 

radius wires, located at a given point of the tokamak. The flux linked with this 

solenoid is proportional to the component of the magnetic field parallel to the 

sensor axis: 

𝑉 = −𝑁𝐴
𝜕

𝜕𝑡
𝐵𝑎(𝒓, 𝑡) 

𝐵𝑎(𝒓, 𝑡) = −
1

𝑁𝐴
∫ 𝑉(𝜏)𝑑𝜏
𝑡

𝑡0

+ 𝐵𝑎(𝒓, 𝑡0) 
(IV.75)  

where: 

 𝑁 is the number of turns of the pick-up coil; 

 𝐴 is the cross section area of the pick-up coil; 

 𝐵𝑎 is the flux density field component along the axis of the pick-up coil. 

For sake of simplicity, in the following, the pick-up coils will be considered 

as ideal local tri-axial sensors, able to measure all the radial, vertical and toroidal 

components of the magnetic flux density field at a point. Moreover, the 

measurement performed will not be affected by any integration drift or 

statistical errors. 

Additional magnetic measurements are given by full flux loops and saddle 

coils, which provide the total magnetic flux linked with a closed line. Although 

these measurements can also be considered in the 3-D identification procedure, 

for the sake of simplicity, here we just consider local pick-up coil measurements. 

In principle, this kind of identification of a 3-D plasma means to 

approximate the flux density field with an equivalent distribution obtained via 

best fit of the magnetic measurements. The equivalent flux density field 

distribution is obtained via a proper combination of a family of basis functions, 

which are the flux density fields generated by equivalent sets of electromagnetic 

sources, able to model both the axisymmetric field and the three-dimensional 

perturbation. 

The axisymmetric poloidal flux density field is generated by an equivalent 

set of axisymmetric conductors, whilst the perturbations breaking the 

axisymmetry of the configurations are modelled by superposing the fields 
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generated by a set of magnetic dipoles, characterized by a proper value of the 

magnetic moment. 

𝑩𝑎𝑥𝑖 = ∇(
𝜇0
𝜋
∑ 𝐼𝑛

√𝑟𝑟𝑛′

𝑘𝑛
[(1 −

𝑘𝑛
2

2
)𝐾(𝑘𝑛

2) − 𝐸(𝑘𝑛
2)]

𝑁𝑓𝑖𝑙

𝑛=1

) × ∇𝜑 (IV.76)  

𝑩𝑑𝑖𝑝 =
𝜇0

4𝜋|𝒓|3
(
3𝒓(𝒎 ⋅ 𝒓)

|𝒓|2
−𝒎) (IV.77)  

Fig. IV.25 shows a sketch of the two equivalent sources: 

 

 
 

Fig. IV.25: Equivalent sources for the three-dimensional identification (axisymmetric 
filamentary conductor on the left and magnetic dipole on the right) 

 

For each axisymmetric filamentary current, the parameters to calculate to 

get the best approximation of the axisymmetric flux density fields are the 

poloidal position in the poloidal plane, as well as the current it carries. On the 

other hand, the magnetic dipoles have to be characterized by their spatial 

position, the orientation of the magnetic moment and the magnetic moment 

amplitude. Therefore, the total number of degrees of freedom is 3 ⋅ 𝑁𝑓𝑖𝑙 + 7 ⋅ 𝑁𝑑𝑖𝑝. 

Being 𝒮 ⊆ ℝ3⋅𝑁𝑓𝑖𝑙+7⋅𝑁𝑑𝑖𝑝 the subspace of the vector space of the solutions, 

the mathematical model of the identification problem can be formulated as: 

min
𝑥∈𝒮

‖𝐵 − 𝐵𝑖𝑑‖ (IV.78)  

where 𝐵 is the vector of the actual flux density field measurements and 𝐵𝑖𝑑 is the 

identified flux density field measurements. 

The problem formulated as in (IV.78) is intrinsically non-linear, being so 

the relation between the flux density field and the geometry of the 

electromagnetic sources. A different linearized formulation can be implemented, 

where the poloidal position of the axisymmetric filamentary currents is fixed as 



 160 

well as the spatial position and the orientation of the magnetic moments of the 

magnetic dipoles. Moreover: 

 the magnetic dipoles are placed at the poloidal position of the 

axisymmetric filamentary currents, along the toroidal direction; 

 three distributions of magnetic dipoles are placed at each poloidal 

position, directed along the radial, vertical and toroidal direction 

respectively; 

 the magnetic moments of each distribution of dipoles having the same 

poloidal position is sinusoidal and the toroidal frequency depends on the 

kind of perturbation to identify. 

Therefore, the solution vector belongs to the following vector subspace  

𝒮̃ ⊆ 𝒮 ∩ ℝ7⋅𝑁𝑓𝑖𝑙 , where the degrees of freedom are: 

 the current of the axisymmetric filaments; 

 the amplitudes of the sine and cosine distributions of the 𝒎𝑟 sinusoidal 

distribution; 

 the amplitudes of the sine and cosine distributions of the 𝒎𝑧 sinusoidal 

distribution; 

 the amplitudes of the sine and cosine distributions of the 𝒎𝜑 sinusoidal 

distribution. 

Using such formulation, the unknown vector consists of the amplitudes of 

the magnetic sources. Their relation with the flux density field is now linear, 

allowing to rewrite the (IV.78) as follows: 

𝐺 ⋅ 𝑥 = 𝐵 (IV.79)  

where 𝐺 is the Green Matrix, and 𝐺𝑖𝑗  is the measure performed by the i-th 

sensor when the only j-th source is active is characterized by an unitary 

magnitude (an unitary current, for the axisymmetric filamentary currents or an 

unitary magnetic moment for the magnetic dipoles). 

Assuming that the Green matrix is left-invertible, that is equivalent to say 

that the available measurements are independent, it follows that a unique 

solution into the subspace 𝒮̃ can be found if the measurement vector is in the 

range of the matrix 𝐺. In practice, this is extremely improbable because nothing 

guarantees that the solution of the (IV.79) lies in 𝒮̃. Moreover, it is worth noticing 
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that the noise corrupting the measurements is another cause for the solution 

vector not to belong to the subspace 𝒮̃. 

For these reasons, the solution of (IV.79) is obtained by choosing the vector 

𝑥 as: 

𝑥 = ((𝐺𝑇 ⋅ 𝐺)
−1

⋅ 𝐺) ⋅ 𝐵 = 𝐺† ⋅ 𝐵 (IV.80)  

where 𝐺† states the Moore-Penrose Green Pseudoinverse Matrix [83], that is the 

solution of the following linear optimization problem: 

min
𝑥∈𝒮̃

‖(𝐵 − 𝐺 ⋅ 𝑥)
𝑇

⋅ (𝐵 − 𝐺 ⋅ 𝑥)‖ (IV.81)  

The solution of (IV.80) needs to take into account that the matrix 𝐺 may be 

ill-conditioned [84], making the evaluation of its pseudoinverse unreliable; this 

problem can be easily circumvented if a singular value regularization is 

performed [85]. 

Moreover, it is worth noticing that the different dimensions of the 

axisymmetric currents and the magnetic dipoles might also affect the Green 

matrix making it badly scaled or nearly singular. For this reason, the 

identification procedure is split in two sub-steps: 

1. an axisymmetric identification, considering the average value of the 

sensors placed at the same poloidal position; 

2. a non-axisymmetric identification, considering only the perturbing flux 

density field contribution on the pick-up coils measurements. 

 

4.4.3 Assessment and application to a kinked plasma 

Before applying the identification procedure depicted in Section 4.4.2 to a 

plasma configuration, it was validated and tested on several cases, each of them 

characterized by a different perturbation affecting the axisymmetric filamentary 

currents. Hereafter, the main results are reported. 

The sensors used for the cases illustrated below are specified in Fig. IV.26, 

where their poloidal positions are shown: 
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Fig. IV.26: Poloidal positions of the pick-up coils used for the identification 

 

The sensors in are then replicated in six poloidal cross sections evenly 

spaced (every sixty degrees along the toroidal direction). 

Moreover, taking into account the sinusoidal distribution along φ of the 

magnitude of the magnetic moments, the class of perturbations hereafter 

considered consists of harmonic deformations of the axisymmetric currents: 

{

𝑥 = (𝑟0 + 𝑎 ⋅ cos(𝑁𝜑)) cos(𝜑)

𝑦 = (𝑟0 + 𝑎 ⋅ cos(𝑁𝜑)) sin(𝜑)

𝑧 = 𝑧0 + 𝑏 ⋅ sin(𝑁𝜑)                  

 (IV.82)  

The following test case refers to a 𝑁 = 2  perturbation acting on a 

filamentary current, whose amplitude is 0.01 𝑚 ; the axisymmetric filament 

carries a 1 𝑀𝐴 current and is placed at (𝑟0, 𝑧0) = (9,0) in the poloidal plane, as 

shown in the following Fig. IV.27: 

 

 
Fig. IV.27: Deformed filamentary conductor (solid red) and equivalent axisymmetric filamentary 

conductor (solid blue) 
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As regards the axisymmetric identification sub-step, the equivalent source 

is the axisymmetric filament (solid blue line in Fig. IV.27). The goal of this sub-

step is to get the current circulating into the axisymmetric filament, that it is the 

same of the deformed wire, thanks to the geometry of the magnetic sources. 

The identification problem (IV.80) can be rewritten as follows: 

{

𝑚1 = 𝑔11𝐼𝑎𝑥𝑖             
𝑚1 = 𝑔12𝐼𝑎𝑥𝑖             

⋮
𝑚𝑁𝑠𝑒𝑛𝑠 = 𝑔1𝑁𝑠𝑒𝑛𝑠𝐼𝑎𝑥𝑖

 (IV.83)  

The solution of the set in (IV.83) in the least square sense gives the 

axisymmetric current value within a relative error less than 1 𝑝. 𝑝.𝑚., and a high 

accuracy is also obtained for the flux density field. The identification error on the 

flux density field components is defined as the average value of the absolute 

error on each sensors measurement, over the flux density field magnitude at the 

sensors location. 

Fig. IV.28 and Fig. IV.29 show the comparison between the actual and the 

identified axisymmetric field, related only to the set of sensors located at 𝜑 = 0, 

thanks to the axisymmetry: 

 

 

Fig. IV.28: Radial Field Identification 
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Fig. IV.29: Vertical Field Identification 

 

As regards the identification of the three-dimensional contribution, the 

three magnetic dipoles distributions are placed along the solid blue line in Fig. 

IV.27. The field the magnetic dipole are called to identify is the perturbation due 

to the deformation of the current, with respect to the axisymmetric geometry. 

Fig. IV.30, Fig. IV.31 and Fig. IV.32 show the results in terms of flux density field 

components identification: 

 

 

Fig. IV.30: Radial Field Identification 
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Fig. IV.31: Toroidal Field Identification 

 

 

Fig. IV.32: Vertical Field Identification 

 

Since the identification procedure generates the values of the axisymmetric 

currents and the magnetic moments in such a way to get the best fit of the 

magnetic measurements, it is necessary to check the value of the flux density 

field also in a validation set of points, outside the location of the sensors used for 

the identification. This additional check is necessary because it may occur that 

the identification procedure verifies the constraints at the sensors points, with 

however a high error on the field distribution elsewhere. 
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The validation set is chosen taking the points along several circumferences 

placed in various the poloidal planes, whose centre coincides with the poloidal 

coordinates of the equivalent sources. 

Fig. IV.33 shows the validation points set: 

 

 
Fig. IV.33: Validation Points set 

 

The radii of the circumferences are 1 𝑚, 0.5 𝑚, 0.1 𝑚, 0.05 𝑚respectively. 

The results obtained comparing the actual, and the identified components of the 

flux density field are hereafter shown: 

 

 

Fig. IV.34: Radial Field Identification 
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Fig. IV.35: Toroidal Field Identification 

 

 

Fig. IV.36: Vertical Field Identification 

 

It is worth noticing that the considered deformation acts like an 𝑀 = 1 

poloidal mode into the poloidal plane, even though the toroidal mode is 𝑁 = 2. 

Moreover, the flux density field components at the last points in Fig. IV. 34, Fig. 

IV.35 and Fig. IV.36 are affected by a ripple that makes unreliable the 

identification results. On the other hand, this phenomenon is shown only on the 

closest validation points to the equivalent sources and the closer they are, the 

higher the ripple is. For this reason, it is necessary to evaluate the flux density 

field at a high enough distance from the sources, not to be affected by this 

perturbation and so to get a reliable identification. This condition is not 
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restrictive when pursuing the goal to identify a three-dimensional plasma, 

because the equivalent sources are placed inside the plasma core and the flux 

density field is to be calculated into the vacuum vessel region bounded by the 

first wall and the plasma separatrix. 

After having assessed the identification procedure, it is then applied to a 

non-axisymmetric plasma configuration: the three-dimensional perturbation 

identified in the following is an 𝑁 = 1  kink mode affecting the plasma, as 

considered in Chapter III for the electromechanical analysis. 

The non-axisymmetric field is generated by kinking (i.e. shifting along a 

direction and rotating around an axis) the axisymmetric currents obtained by 

the identification of a plasma equilibrium configuration 

(Equil_SN_17condR3_SOF_betapol_1d2_li_0d7). Fig. IV.37 shows the unperturbed 

plasma equilibrium in terms of poloidal flux per unit radian distribution: 

 

 
Fig. IV.37: Axisymmetric plasma configuration in terms of Poloidal Flux per unit radian and 

axisymmetric filamentary currents 

 

Every axisymmetric filament is affected by a 5 𝑐𝑚 rigid displacement along 

the x axis and by a 0.5 𝑑𝑒𝑔 rotation around the same axis: 
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Fig. IV.38: Example of axisymmetric filamentary current affected by a kink 

 

As regards the poloidal position of the equivalent sources, they would be 

too much close to the axisymmetric plasma separatrix if the position of the 

axisymmetric filamentary currents were chosen, as in Fig. IV.37. For this reason, 

the latter was shrunk by a factor of 
1

3
 so to avoid the ripple effects observed in in 

Fig. IV. 34, Fig. IV.35 and Fig. IV.36. 

The radial, toroidal and vertical components of the flux density field were 

identified, applying the approach illustrated above: 

 

 

Fig. IV.39: Radial Field Identification 
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Fig. IV.40: Toroidal Field Identification 

 

 

Fig. IV.41: Vertical Field Identification 

 

On such identification, the errors on three components of the flux density 

field are: Δ𝐵𝑟% = 0.0211%, Δ𝐵𝜑% = 0.0076% and Δ𝐵𝑧% = 0.0214% respectively. 

An additional figure of merit to assess the performances of the 

identification procedure can be pursued by reconstructing the plasma boundary 

in both the actual and the identified configurations and then comparing them, 

exploiting the Poincaré Maps as shown in Section 4.3. Using such technique, the 

plasma boundary was reconstructed within an accuracy of 1 𝑚𝑚. 

In Fig. IV.42, the plasma boundary is shown by means of the field line 

covering it in ergodic way. Fig. IV.43 shows the comparison of the Poincaré Maps 

of the plasma boundary and of the last traced field line touching the first wall, in 

four poloidal sections for both the two configurations. 
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Fig. IV.42: Plasma Boundary Field Line in Actual (left) and Identified (right) Configurations 

 

  

 
 

Fig. IV.43: Plasma Boundary in Actual (left) and Identified (right) Configurations at 𝝋 = 𝟎, 𝝋 =
𝝅

𝟐
, 𝝋 = 𝝅 

and 𝝋 =
𝟑

𝟐
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Fig. IV.43 shows that the identified and the actual plasma boundaries are 

practically coincident, demonstrating that the proposed identification procedure 

is well suited for the considered class of plasma perturbations, as the plasma kink. 

At last, the comparison between the actual and the identified plasma 

boundaries is shown in the following Fig. IV.44: 

 

  

  

  
Fig. IV.44: Actual (left) vs Identified (right) Plasma Shape 

 

The assessment of the accuracy of such reconstruction can be pursued by 

calculating and comparing the plasma-wall gaps for the two configurations. 

Being available the plasma boundary by means of the Poincaré Maps, the plasma-

wall gap can be easily calculated as shown in the following Fig. IV.45: 
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Fig. IV.45: Plasma-Wall Gaps 

 

The following Tab. IV.4 shows the values of the plasma-wall gaps in Fig. 

IV.45 calculated at the four poloidal sections in Fig. IV.43: 

 

Tab. IV.4: Plasma-Wall Gaps in Actual (𝓐) and Identified (𝓘) Configuration

 
Plasma-Wall Gaps 

[m] 

 0 𝑑𝑒𝑔 90 𝑑𝑒𝑔 180 𝑑𝑒𝑔 270 𝑑𝑒𝑔 

 𝒜 ℐ 𝒜 ℐ 𝒜 ℐ 𝒜 ℐ 

g1 2.036 2.034 1.799 1.803 2.366 2.371 - - 

g2 0.883 0.888 1.015 1.019 1.313 1.310 1.142 1.141 
g3 0.660 0.662 0.983 0.977 1.073 1.074 0.865 0.865 

g4 2.667 2.666 2.761 2.761 2.544 2.548 2.229 2.231 

g5 1.274 1.274 1.164 1.165 0.867 0.870 1.077 1.074 

g6 1.385 1.381 1.146 1.150 0.962 0.960 1.313 1.310 

SM

The results in Tab. IV.4 show that it is possible to reconstruct the plasma 

boundary by means of an equivalent set of axisymmetric filamentary currents 

and magnetic dipoles with a geometrical error on the plasma-wall gaps up to few 

millimetres. 
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Conclusions 

 

Basic equilibria in tokamaks are mostly 2-D axisymmetric, but in principle 

the 3D perturbations may occur in any moment of the tokamak operations, 

breaking the symmetry of the field distribution and making the plasma stability 

and control more difficult.  

As well as for the 2-D axisymmetric equilibria, for these reasons, the study 

of the property of a 3-D plasma (field distribution, boundary, Scrape-Off Layer 

etc.) is mandatory for the stable and reliable long-term operation of the machine, 

as the principal part of a Fusion Power Plant. 

Therefore, several aspects related to the 3-D perturbations affecting the 

thermonuclear plasmas were dealt; hereafter the main conclusions are reported 

for each of them. 

 

Diamagnetic flux measurement for Poloidal Beta estimation in 

presence of non-axisymmetric effects in ITER tokamak: 

A new tool for the electromagnetic analysis in tokamak, COMPFLUX, is 

presented; it is designed for the analysis of the effects related to geometrical 

imperfection of both magnetic field sources and sensors and spurious sources in 

fusion devices. 

The main feature of this procedure is the interpolation procedure based on 

the computation of the magnetic field and magnetic vector potential for the 

nominal and auxiliary sensors, allowing to carry out extensive and fast 

sensitivity analyses in the presence of misalignments and manufacturing errors 

of sensors and sources. 
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The procedure was validated for several test cases, showing about 10 𝑝𝑝𝑚 

accuracy, fulfilling the usual requirements for fusion tokamaks. 

The procedure was used for the analysis of the diamagnetic measurements 

in ITER tokamak to estimate effects of various error sources. 

The effects due to thermal expansion and sensor/magnetic field sources 

deformation can mostly be compensated. In particular, the effects of Poloidal 

Field Coils, Central Solenoid and Toroidal Field coils can mostly be compensated 

because their deformation is caused by assembly and manufacturing deviations 

and so well-known once the actual geometry either is. 

The effect of the toroidal plasma current can also be known by means of 

the experimental measurement with two similar plasmas with opposite helicity; 

once it is known, it can be partially compensated for the other pulses. Its effect 

upon a 0.1 𝑑𝑒𝑔 tilted main diamagnetic loop is about 30 𝑚𝑉𝑠. 

The thermal expansion yields a 360 𝑚𝑉𝑠  perturbation upon the main 

diamagnetic loop measurement. 

As for the ferromagnetic components of the tokamak, the largest effect is 

generated by the ferromagnetic inserts (about 250 𝑚𝑉𝑠 ). This effect can 

experimentally be estimated, with suitable test pulses at different values of the 

toroidal field and then partially compensated. However, the time integration of 

the Diamagnetic Loop voltage starts at the beginning of the pulse and so this 

effect is limited to about 50 mVs due to the rotation of the magnetization vector 

when the poloidal field changes. 

As regards the non-axisymmetric coils, the effect of the bus bars and 

feeders on the diamagnetic flux is very low (about 5 𝑚𝑉𝑠), whilst the ELM coils 

have a larger effect. In fact, a 15 𝑘𝐴𝑡 current in a middle ELM coil yields about 

20 𝑚𝑉𝑠 spurious pick up on the closest diamagnetic loop and then 7 𝑚𝑉𝑠 on the 

toroidal average of the three sensors at steady state (frequency below 2 Hz). On 

the other hand, because of the eddy currents flowing in the proximity of the 

sources and the sensors, higher frequencies lead to a lower effects (about 2 𝑚𝑉𝑠 

at 500 𝐻𝑧). 

A TF coil discharge is the operational condition used to test the 

compensation formulas; during the fast transients, the eddy current contribution 

is about 13.5 𝑉𝑠  ( 18 𝑉𝑠  due to the external TF source in 200 𝑚𝑠 ). The 
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compensation formulas based on the inner and upper outer compensation coils 

provide estimations of the polluting contribution within an error of 220 𝑚𝑉𝑠, 

being so performant when the toroidal currents flowing into the Vacuum Vessel 

are significant (L-H and H-L transitions, ELMs, plasma heating, disruptions). 

During breakdown and ramp up the eddy currents affect the diamagnetic 

loop measurement in a very negligible way (about 2 𝑚𝑉𝑠); note that the use of 

the compensation formulas increases its effect on the signal (about 33 𝑚𝑉𝑠) 

because of the use of the compensation coils. 

The noise effect on the diamagnetic flux measurement at full plasma 

current is very small (2𝜎 = 5 𝑚𝑉𝑠) in static (no eddy) conditions, but also in this 

case its effects are larger if the compensation formulas are used (2𝜎 = 33 𝑚𝑉𝑠). 

During the disruption the spurious signal is high (1.6 𝑉𝑠, i.e. about 70% of 

the diamagnetic flux) with no compensation, but it can be decreased to 380 𝑚𝑉𝑠 

if the compensation formulas are adopted. The spurious signals during ELMs are 

about 30 𝑚𝑉𝑠 and could be reduced to 3 𝑚𝑉𝑠 in the absence of noise. 

Summarizing: 

 in static (no eddy) conditions, as during a flat top, the accuracy 

requirements are met without compensation; 

 during breakdowns, ramps-up and other phases with significant toroidal 

eddy currents, the accuracy requirements are also met without 

compensation; 

 during fast disruptions, the compensation formulas are needed to meet 

the accuracy requirements, estimating that the compensation coil 

misalignments and manufacturing errors are within 0.2 deg. 

 

Electromechanical effects of non-axisymmetric Halo Currents on ITER 

tokamak components 

To carry out the electromechanical analysis of ITER tokamak subjected to 

halo currents, two kind of analyses were carried out: a Vertical Displacement 

Event Analysis and an Asymmetric Vertical Displacement Event Analysis. 

As regards the effects of the asymmetric halo currents, the total vertical 

force on the structure is about 90 𝑀𝑁 downwards (about one third part on the 
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divertor), the horizontal net force is about 48 𝑀𝑁 in the direction of the axis of 

the kink (about one third part loading on the divertor). 

The radial loads on the various sectors are very different from each other 

(from −14 𝑀𝑁 to 11 𝑀𝑁), as well as the moments (from −89 𝑀𝑁𝑚 to 85 𝑀𝑁𝑚), 

whilst the distribution of the vertical force on the sectors is nearly uniform (from 

9.5 𝑀𝑁 to 11.5 𝑀𝑁). 

As regards the inductive effects of the kink of the plasma core, a net 

horizontal force of about 28 MN is generated in the direction of the axis of the 

kink, but with the sign opposite with respect to the one generated by the halo 

currents. The radial loads on the various sectors are very different from each 

other (from −5 𝑀𝑁 to 6 𝑀𝑁). 

Finally, the loads on the TF coils were analysed: the total force and the total 

moments loading on the TF coils generated by the halo currents are respectively 

about 0.5 𝑀𝑁 and 3 𝑀𝑁𝑚, respectively. 

On the other hand, the effects of the plasma kink generate about 1.2 𝑀𝑁 

and 5 𝑀𝑁𝑚; note that these values would be higher in absence of the shielding 

effect of the vacuum vessel, being about 3.5 𝑀𝑁 and 12 𝑀𝑁𝑚 respectively. 

 

Field Line Tracing and Identification of non-axisymmetric plasmas 

A new tool for the tracing of magnetic field lines in fusion tokamaks, was 

built up, assessed and validated for several test cases. It allows to pre-process a 

CREATE-NL equilibrium, performing an axisymmetric identification of the 

sources, generating a set of equivalent axisymmetric currents, to be used by the 

processor, as well to work on the flux map included in the equilibrium file. Then, 

a full 3-D field line tracing is performed by the processor, both on the 

axisymmetric configurations, mentioned above, treated as non-axisymmetric 

fields, as well on full 3-D configurations, generated via analytical perturbations 

of the flux density field components, or via Clebsch potentials. 

The procedure allows choosing the integrator among the built-in Matlab 

procedures as well to build new integrators, based on different integration rules, 

as Volume Preserving Geometric Integrators, setting the accuracy requirements 

for the analysis. 
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The error assessment was carried out by means of: 

 2-D axisymmetric configurations by evaluating the preservation of the 

flux per radian along the field line; 

 3-D configurations by using the Clebsch decomposition and evaluating 

both the preservation of the Clebsch potentials along the integrated field 

line and the spatial distance between the analytical field line and the 

actual one. 

The relative accuracy required for tokamaks is 10−6 (1 mm error after 1 

km long integration). The procedure provides a relative accuracy of 10−9 with a 

reasonable computational time. 

As for Geometrical Integration, a Volume Preserving Mid-Point Rule was 

built and compared with the standard Runge-Kutta routines for the ODE 

integration. Standard Runge-Kutta schemes are not geometrical integrators, thus 

not preserving the divergence-free structure of the ODE set. However, the 

accuracy with which the Jacobian determinant of the vector transformation is 

preserved during the integration is comparable with the Mid-Point Rule. Even if 

adaptive ODE solvers might be expected to show better performances than fixed-

step integrators in terms of trade-off between accuracy and computation time, 

the use of step-adaptivity may not preserve spatial symmetries with drastic 

consequences. The conclusions are remarkable; for very long integrations too, 

the fixed step Runge-Kutta schemes are: 

 extremely accurate; 

 not expensive in terms of computational time; 

 extremely accurate in volume preservation too. 

These features make this scheme feasible for plasma boundary 

reconstructions in 3-D configurations, as well for the plasma-wall gap 

calculations. The absence of analytical invariants as the poloidal flux in the 

axisymmetric configuration, can be easily circumvented by using the Connection 

Length technique, thus calculating each gap within a prescribed precision (even 

lower than the micrometre) and then exploiting the Poincaré maps. In this way, 

there is no need to calculate each plasma-wall gap by means of the field line 

tracing, since the plasma-boundary reconstruction can be obtained from the 
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Poincaré Maps as post-process results, taking no more than few tens of 

milliseconds. 

Parallel computing is strongly recommended for these analyses, especially 

when a high number of gaps are to be calculated or very long trajectories are to 

be integrated; in these cases, the computational burden scales linearly with the 

number of processors. 

As regards the identification of the non-axisymmetric plasmas, a new set of 

basis functions was proposed ad used for the kink perturbation. The results are 

extremely positive: the 𝑛 = 1 mode is well identified with an average error in the 

field identification of 1% on the toroidal field and 0.05% on the poloidal one, 

while the calculation of the plasma-wall gaps is affected by an error lower than 

1 𝑐𝑚. 

Future efforts will be devoted to the extension of the use of such basis 

functions to other kind of perturbations, e.g. higher toroidal modes or local 

perturbations. 
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