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ABSTRACT 

Efficient and facile transfection of nucleic acids is a good tool for biological 

research and diagnostic applications. The crescent develop of gene transfer 

techniques for genomic studies, in particular has involved an increase of the 

investigations on gene transfer mediated by the substrate. This strategy is suitable 

for the manufacturing of screening platforms, such as microarrays, to in vivo and in 

vitro assays. Substrate-mediated transfection methods were described for delivering 

DNA in a slow release manner, but there is a critical need to modulate gene transfer 

process. In other words, a good gene delivery platform have to stably retain the 

gene vectors for prolonged periods and at same time mediate a efficient gene 

transfer when cells come in contact with it. To this address, we have investigated 

on different approaches of substrate-meditated delivery. In particular, have studied 

three kinds of interaction between gene vectors and substrate with the aim to find a 

compromise between the interaction strength and the effective gene transfer from 

substrate.  

In the first instance, the process through which DNA-vectors were stably tethered 

to a glass substrate result inefficient to mediate the transfection, despite PEI/DNA 

complexes were internalized by the cells seeded on this functionalized substrates. 

We hypothesize that a low surface density of complexes, therefore an ineffective 

immobilization capability affect the subsequent gene transfer. Another factor be 

taken into account is the high co-localization of the internalized complexes with 

lysosomal compartments which suggests the likely involvement of a wrong 

mechanism of internalization by the cells placed on modified substrate. 
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Starting from this results, we have subsequently designed a substrate-mediate 

delivery with PEI/DNA complexes aspecifically adsorbed to glass slides. As 

expected, the successful transfection was probably affected by substrate release of 

the gene particles, as the quantification of the DNA/PEI complexes internalized by 

cells seeded on substrates in time indicates. In this case, in fact, there is not high 

lysosomal co-localization of the complexes inside cells on substrates.  

At least, we have conduct a preliminary study with the aim to test a specific 

adsorption of gene particles to the substrate. To address this purpose we have 

investigated the binding affinity of a linker peptide to fibronectin coated substrate. 

Preliminary results confirm the specificity of selected peptide for the protein, in 

this way it will be possible adsorbed PEI/DNA complexes in specific way to a 

coated substrate, that simultaneously promotes cellular adhesion. This strategy to 

built a substrate-mediate gene delivery platform can be implement with the spatial 

protein patterning such as adhesive/transfective islands on substrate  
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1.1 Introduction 

Gene expression within a cell population can be directly altered through gene 

delivery approaches, which have tremendous potential for therapeutically uses, 

such as gene therapy and tissue engineering, or in research and diagnostic 

applications, such as functional genomics. However a critical factor limiting the 

development of these applications is the inefficiency of gene transfer. The 

introduction of correctly functioning DNA into cells is a non-trivial matter, and 

cells must be coaxed to internalize, and then use, the DNA in the desired manner 

[1]. Direct injection of mg quantities of ‘naked’ DNA is usually well tolerated but 

still only yields very low levels of transfection. Since degradation of naked DNA 

by serum nucleases limits systemic administration, a number of polymer-based 

synthetic systems, or gene delivery vectors, have been developed in order to entice 

cells to use exogenous DNA and to enhance the stability of the delivered nucleic 

acids. Synthetic gene-delivery platforms have the intent to enhance the efficiency 

of gene transfer to the target cells and typically encompass three length scales - 

nano, micro and macro - depending on what is the desired cell type, anatomical site 

or diagnostic application [2]. Nanoscale delivery relates to vectors, which consist 

of nucleic acids packaged by proteins, lipids, or polymers. This complexation 

between nucleic acids and vectors produces small particles less negatively charged 

relative to the nucleic acid, protects against degradation and facilitates the 

intracellular trafficking. Most research efforts are focus on enhancing the efficacy 

of synthetic vectors to overcome one or more of the barriers to delivery. Microscale 

delivery vectors focus on the potential to deliver genes at a controlled rate for 

systemic uses. Delivery of the nucleic acid, indeed, requires to target a site of 

action, promote internalization by specific cell, escape from the endosome into the 

cytoplasm, transport into the nucleus for transcription, and ultimately protein 

production. Macroscale systems are two-dimensional (2D) or 3D scaffolds 

designed to deliver DNA to a population of cells proximal to the scaffold surface, 
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for tissue engineering and other applications [3, 4]. Biodegradable polymer 

scaffolds act as mechanical supports for initial growth of the cell seeded onto, and 

biomaterials can enhance gene transfer by maintaining consistent levels of the 

vector in the microenvironment of the cell [5]. However, cells in culture are 

generally grown on flat, 2D surfaces and represent an useful tool for cell-biology 

studies. Traditional delivery of vectors known as systemic or bolus delivery, leads 

to the presence of vector in the target cell population for a short time prior to 

clearance, aggregation, or degradation [6]. However DNA transfer to cells in 

culture can also be improved by DNA delivery from the cell growth substrate. 

These systems, termed substrate-mediated delivery, involve immobilization of 

either vectors to a surface that supports cell adhesion and control the rate at which 

plasmid DNA is delivered to the underside of cells grown at a solid or semi-solid 

interface. Substrate immobilization places the vector directly in the cellular 

microenvironment to reduce the amount of DNA required, preventing aggregation 

and distributing the DNA homogeneously among the cell population; it can 

potentially be used to spatially regulate gene transfer [7]. The immobilization of 

DNA to the surface can be through non-specifically adsorption, a receptor–ligand 

interaction, or by encapsulation within a matrix. One of the original reports focused 

on the development of microarrays to analyze the functions of specific gene-

expression products [8]. On the other hand, a new strategy that uses the layer-by-

layer approach to form multilayered polyelectrolyte thin films has been developed 

to incorporate and subsequently release DNA from a surface [9]. Other 

investigators have reported hybrid approaches where plasmid DNA, associated 

with gene vectors, was tethered to a surface to affect DNA delivery to the basal 

side of cells seeded to the surface
 
[10, 11]. However, the success of research 

activity for gene delivery from 2D and 3D surfaces can be evaluated on a case-by-

case basis.  
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1.2 Vectors for gene delivery 

Although plasmid DNA provides transfection in vivo, packaging of nucleic acids 

with cationic lipids or polymers can facilitate uptake and increase expression of 

therapeutic gene or knockdown expression of a specific gene (i.e. RNAi) [12]. 

Complexation can support the uptake by enhancing interactions between positively 

charged DNA complexes and the negatively charged cellular membrane, in 

addition to providing stability against degradation. The success of gene delivery 

strongly depends on the use of vectors that could efficiently deliver the 

therapeutically active genes into the cells. Currently, vectors can be divided into 

two major groups, namely viral vectors derived from natural viruses and non-viral, 

synthetically manufactured vectors. 

 

1.2.1 Viral vectors 

Viral vectors are composed of either DNA or RNA surrounded by a capsid, since it 

is the nature of viruses to deliver their genes into host cells, they present good 

candidates for the development of effective gene delivery [13]. Natural evolution, 

however, optimized them for infecting and replicating their genome in host cells, 

but not necessarily for survival of the transduced cells or maintenance of the 

expressed genes. Nevertheless, replication-defective viruses, in which viral genes 

were partly replaced by therapeutic genes, were historically the first generation of 

‘viral vectors’ applied in gene therapy. The common types of viruses used for gene 

delivery include retroviruses (which deliver RNA), adenoviruses (which deliver 

transiently expressing double-stranded DNA), and adeno-associated viruses 

(AAVs, which deliver single stranded stably expressing DNA). Viral particles 

range in size from 25 nm (AAVs) to 60–100 nm (adenoviruses and retroviruses) 

[2]. Other viruses that were used to develop viral vectors include herpes virus, pox 

virus, and more recently lentivirus. Viruses in general are highly efficient regarding 
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cellular uptake and intracellular delivery of therapeutic genes to the nucleus. To 

facilitate internalization, the virus surface can mediate binding to specific cell–

surface receptors or to extra-cellular matrix molecules, which provides a natural 

corollary for substrate-mediated delivery [2]. Although, viral vectors provide the 

most efficient gene transfer among gene delivery vehicles, some viral vectors suffer 

from limitations on the gene size (36–38 kb) [14], others raise safety concerns [12, 

15] as they have the potential to mutate or recombine with wild-type viruses or 

cause cellular damage, provoking an immune response that can lead to clearance of 

the vector or infected cells [16]. These potential issues have led to the exploration 

of non-viral delivery methods, which provide control over the chemical and 

physical properties of the vehicle. 

 

1.2.2 Non-viral vectors 

Non-viral vectors are attractive for their safety profiles and their synthetic design 

that allows high flexibility of the formulation that can be easily modified by diverse 

chemical reactions and physical interactions. However non-viral vectors yet yield 

lower efficiencies of gene transfer relative to viral vectors [2]. Non-viral vectors 

are more flexible in terms of type and size of the delivered nucleic acids. A broad 

range of nucleic acids from small double-stranded RNA for interfering with gene 

expression up to large artificial chromosomes can be used for transfection. The 

great advantage of non-viral vectors is their low immunogenicity, since synthetic 

vectors present far less or no immunogenic proteins or peptides in comparison to 

viral vectors. An obvious weakness of non-viral vectors is their low efficiency in 

intracellular nucleic acid delivery which currently is partly compensated by 

administration of large amounts of the vectors. DNA complexes are typically 

formulated by the self-assembly of plasmid, which are circular DNA molecules, 

with cationic lipids (to form lipoplexes) or polymers (to form polyplexes). Such 

compaction has been shown to protect the nucleic acids by providing a barrier 
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against nucleases, serum factors, and liver scavengers, thus limiting certain paths of 

DNA elimination from the body [17, 18]. The cationic agents bind to DNA or RNA 

due to electrostatic interactions and form particles of nanometer range. Indeed, 

complexes of cationic polymers, such as polyethylenimine (PEI) have mean 

diameters ranging from 100 nm to 1 μm, and zeta-potentials ranging from −14 mV 

to 21 mV. While, complexes formed with cationic lipids typically have mean 

diameters ranging from 200 nm to 1100 nm, with zeta-potentials that depend upon 

the cationic lipid [5]. The quantity of cationic lipid or polymer determines the 

properties of the complex; however, increasing the amount of lipid or polymer 

leads to cytotoxicity.  

Mixing of DNA and cationic lipid results in the collapse of DNA to form a 

condensed structure—termed lipoplex—in which nucleic acids are buried within 

the lipid. The thermodynamic driving force for association of the DNA and lipid is 

the entropy increase from the release of counter ions and bound water associated 

with DNA and the lipid surface [19, 20]. The colloidal properties of lipoplexes are 

principally determined by the cationic lipid/DNA charge ratio, typically defined as 

the number of amines on the cationic lipid relative to the number of phosphate 

groups on the DNA [21]. The net charge on the lipoplex affects its interactions with 

other components present in vivo and in vitro (e.g. media, serum, extracellular 

matrix glycoproteins, mucosal secretions), which can limit the transfection 

efficiency. The main components of a cationic lipid are a hydrophilic lipid anchor, 

a linker group, and a positively charged headgroup. The lipid anchor is typically 

either a fatty chain or a cholesterol group, which determines the physical properties 

of the lipid bilayer, such as flexibility and the rate of lipid exchange [22]. The 

linker group is an important determinant of the chemical stability, biodegradability, 

and transfection efficiency of the cationic lipid. The positively charged headgroup 

on the cationic lipid is responsible for interacting with the negatively charged DNA 

and is a critical determinant of the transfection and cytotoxicity of liposome 

formulations, this cytotoxicity is believed to be attributable to lipid disruption of 
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the cellular and endosomal membranes. Lipoplexes have been formed from a 

variety of liposomal formulations, which often consist of a polyamine conjugated 

to a hydrophobic lipid tail [22]. The most used cationic lipids for gene delivery are 

DOTMA, DOTAP, and DOPE. 

Cationic polymers, instead, contain high density of primary amines, which are 

protonable at neutral pH. This high density of positive charges allows the cationic 

polymers to form stable complexes with nucleic acids. In addition to proving 

positive charges for DNA complexation, the primary amines also serve as 

functional groups with which to chemical modify the polymers with ligand and 

peptides [23]. DNA polyplexes have been created with various cationic polymers 

including PLL [24], poly-L-histidine [25], poly-L-ornithine [25], and chitosan [26]. 

The most used cationic polymers for gene delivery are Poly-L-lysine (PLL) and 

Poly(ethylenimine) (PEI). In particular, complexation with polyethylenimine (PEI) 

has been considered the gold standard in polyplex-mediated gene transfer due to 

the ability of PEI–DNA complexes to transfect many cell types with high 

efficiency in vitro [27]. PEI is the organic macromolecule with the highest density 

of protonable amine functions and is therefore ideal to condense nucleic acids into 

particles of nanometer range [28]. The condensation process of DNA with the 

polycation PEI has been studied extensively. The particle size of DNA/PEI 

complexes depends on the molar ratio of PEI nitrogen to DNA phosphate (N/P 

ratio) and on the present salt concentration. Small individual particles are formed at 

low salt concentration (< 50 mM NaCl) and/or N/P ratios above 5, whereas 

formation of large aggregated particles is observed in the presence of salt (> 50 

mM NaCl) at lower N/P ratios [29]. The net positive surface charge and an excess 

of free PEI during complex formation can prevent aggregation by repulsion of 

positive charges, whereas an increase in salt concentration reduces the hydration 

layer around the particles and promotes particle aggregation. However, PEI–DNA 

complexes have shown a limited ability to transfect certain types of cells, 
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furthermore PEI exhibits significant cytotoxicity both in vivo and in vitro [30, 31] 

and its non-biodegradability precludes repeated administration [32]. 

 

 

1.3 Intra- and extracellular barriers to gene transfer  

For successful gene delivery, gene vectors must evade the immune system and be 

transported to the cell microenvironment for internalization. In particular, gene 

vectors have to overcome a series of barriers to gain access to the membrane 

surface, cytoplasmatic compartment, and nucleus of a target cell, and translate 

transgenes into protein. As particles encounter each of these barriers, they are 

subject to a certain probability of success or failure in overcoming each [33]. The 

in vivo delivery of viral vectors is strongly hampered by extracellular barriers, 

however, they are very efficient in overcoming intracellular barriers such as 

internalization into the host cell and delivery of the therapeutic gene towards the 

nucleus. In contrast, poor intracellular delivery of the carried nucleic acid remains 

the major barrier to effective gene transfer with non-viral vectors. In particular, the 

positive charge of lipoplexes and polyplexes enables interaction with the negatively 

charged cell-surface glycosaminoglycans and promotes passive cellular 

internalization [18, 23, 34]. Although positively charged vectors like PEI 

polyplexes expose high gene transfer activity in vitro systemic administration of 

such particles is rather restricted. In addition, gene transfer at effective DNA doses 

was associated with acute toxicity. Ex vivo experiments revealed that positively 

charged polyplexes induced aggregation of erythrocytes. These adverse effects can 

be overcome by ‘shielding’ of the positive surface charge of the vectors with 

hydrophilic polymers like polyethylene glycol (PEG). PEGylation of PEI 

polyplexes prevented erythrocyte aggregation, enhanced systemic circulation time 

and reduced toxicity of polyplexes [35]. Shielding with PEG, however, also 
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reduces the overall transfection efficiency because of reduced interaction with cell 

membranes of all cells including the target cells. After cellular association to the 

target cells, vectors particles are internalized by receptor-mediated endocytosis, 

macropinocytosis, phagocytosis or related processes [36]. The steps following 

internalization of DNA complexes, endosomal escape and nuclear localization, are 

thought to be rate limiting for the transfection of many cell types. Indeed, 

internalization of the plasmid does not necessarily correlate to transfection [37]. 

Internalized gene transfer complexes are mostly found in intracellular vesicles such 

as endosomes.[23] Entrapment in endosomes is thought to be associated with 

degradation of the complexes upon endosomal acidification. Therefore, subsequent 

release of particles into the cytoplasm represents a major bottleneck to gene 

delivery [38]. However, in many cases, the complexes are able to escape the 

endosome to be released to the cytosol [27, 34], where must subsequently avoid 

degradation and be transported to the nucleus for successful gene transfer. 

For lipoplex-mediated delivery, the interaction of the lipids with the endosomal 

membrane is thought to facilitate escape of the DNA to the cytoplasm prior to its 

degradation in the lysosome. It is generally theorized that lipoplexes escape the 

endosome by destabilizing the membrane through structural changes and 

interactions of the liposomal amphiphiles with the endosomal membrane, thus 

enabling the DNA release to the cytosol [39]. Instead, it is hypothesized that 

polyplexes are able to escape the endosome via the “proton sponge effect,” in 

which the buffering capacity of the cationic polymer leads to an osmotic pressure 

increase when the endosomal pH drops, ultimately causing the endosome to rupture 

and release the polyplexes to the cytosol [40]. PEI polyplexes and free PEI have 

considerable buffering capacity, because PEI is only partially protonated at 

physiological pH. Upon intracellular delivery of the DNA particle, the natural 

acidification within the endosome triggers protonation of complex-bound and free 

PEI, inducing chloride ion influx, osmotic swelling and destabilization of the 

vesicle which finally leads to release of the polyplexes into the cytoplasm [41]. 
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However, this proton sponge effect is apparently not sufficient to release the 

majority of PEI particles from the vesicles. In particular, endosomal escape 

represents a major hurdle to efficient gene transfer with small PEI polyplexes at 

low concentrations [29]. After endosomal release DNA complexes or free DNA 

have to traffic through the cytoplasm towards the nucleus, enter the nucleus and 

expose the DNA to the cell's transcription machinery. This process is not clearly 

elucidated yet. Passive diffusion of DNA within the cytoplasm is restricted 

especially for larger plasmids [42], and free DNA can be degraded by nucleases 

within the cytoplasm. Therefore, the delivery of DNA towards the nucleus is 

supposed to depend mainly on the transport of intact complexes by microtubule or 

actin filaments [43]. The transport of DNA from the cytoplasm to the nucleus may 

be the most significant limitation to successful gene transfer. In addition to 

cytoplasmic transport limitations, the size of DNA is problematic for crossing into 

the nucleus. The nuclear pores allow free diffusion entry of only small particles ~ 

70 kDa [44]. Nuclear import of DNA or DNA complexes is another big hurdle, it 

can be facilitated by the breakdown of the nuclear membrane, which is currently 

only easily during cell division [45]. Indeed, transfection of non-dividing cells with 

PEI polyplexes was several log units less effective compared to transfection of 

mitotic cells where the nuclear envelope was broken down [43].  

 

 

1.4 Gene delivery systems 

Success of gene delivery applications is supported by gene vectors that offer 

numerous advantages into overcome the intra-extracellular barriers. However, the 

transfection procedure itself can be a critical factor dictating the transfection 

efficiency. Currently most non viral gene delivery is conducted as a bolus delivery, 

which is the conventional transfection procedure that involves preplating cells, i.e., 

the cells are allowed to attach, recover, and grow for 24 h before transfection [46]. 
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Systemic or bolus delivery, leads to the presence of vector in the target cell 

population for a short time prior clearance, aggregation, or degradation, which 

involve inefficient transfection due to mass transport issues and deactivation 

process [11]. Biomaterial-based delivery addresses extracellular barriers to enhance 

gene transfer, this delivery system can enhance gene transfer by maintaining 

consistent levels of the vector in the microenvironment of the cell and reducing the 

amount of DNA required, which can decrease cell toxicity. Numerous methods 

have been developed to provide controlled, localized, sustained, and triggered 

release of genes from biomaterials, overcoming these mass transport limitations 

[47-50]. These systems may be segregated into categories of gene activated 

matrices (GAMs), substrate-mediated delivery materials, and multilayered thin 

films. 

 

1.4.1 Polymeric gene delivery 

Incorporation of plasmids or particles within a polymeric scaffold or 

immobilization of these particles onto a surface can significantly limit the 

extracellular barriers to gene delivery [51]. In particular, polymeric gene delivery 

or GAMs has ability to provide control over the location and release profile of 

delivered genes. DNA encapsulation provides several advantages in comparison 

with bolus methods for gene delivery, such as protection of the DNA from 

extracellular barriers and degradation by serum nucleases and proteases [3]. This 

process thereby maintaining the bioactivity of the plasmid and the effective levels 

of the vector for prolonged times, extends the opportunity for cellular 

internalization and increases the likelihood of gene transfer [52]. The matrix also 

promotes the interactions between cells and plasmids , while simultaneously 

providing a 3D scaffold to maintain space [53, 54] and support the migration, 

proliferation, and differentiation of infiltrating cells. A critical aspect associated 

with the encapsulation of gene therapy vectors is that the matrix fabrication method 



14 
 

must be compatible with the vector integrity, indeed they can involve high 

temperatures, organic solvents, and the generation of free radicals or shear stresses 

that may damage the vector. Even if the vector is stably encapsulated, it can still be 

damaged by the degradation products. In these systems, where DNA was 

encapsulated, release may be accomplished by diffusion out of the scaffold and/or 

degradation of the matrix. As a result, the release profile can be tailored by varying 

the material such that the DNA is delivered rapidly as in bolus delivery or in a 

prolonged fashion over a period of months [54]. Sustained release formulations can 

compensate for vectors lost due to clearance or degradation. Delivery from most 

biomaterial systems likely occurs through a combination of vector interactions with 

the matrix and subsequent release, with the vector and material designed to regulate 

these interactions. Vector release from hydrophobic polymer scaffolds, for 

example, occurs by a sequence of polymer degradation, dissolution of the vector 

and subsequent diffusion from the polymer. While, the release from hydrophilic 

polymer scaffolds, hydrogels, has been modulated through modifying the hydrogel 

or vector chemistry. The mechanism of release can be, also, tuned to control 

whether the cells in the surrounding tissue or cells migrating into the matrix are 

targeted [53, 54]. In general, matrices that deliver via scaffold degradation limit 

gene transfer to cells that infiltrate the matrix [55], whereas diffusion-controlled 

methods maintain the ability to target cells in the vicinity of the matrix [56] due to 

the limited transport of DNA through tissue [57].  

 

1.4.2 Substrate-mediated gene delivery  

For many applications, the delivery inefficiencies may be overcome by surface 

immobilization of the vehicles. This delivery strategy, termed substrate-mediated 

delivery, solid phase delivery, or reverse transfection, mimics the natural process of 

virus binding to extracellular matrix proteins [56], immobilizing DNA-complexes 

to substrates and cells are then seeded onto these particles [51]. Placing the gene 
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vector directly within the cell's microenvironment, therefore overcoming diffusion 

and mass transport limitations associated with trafficking of nonviral complexes to 

cells [5]. In addition, surface immobilization of DNA–complexes has the ability to 

preserve complexes size observed in solution and inhibit complex aggregation, 

demonstrating that immobilization maintains vehicle activity [11] and reduces 

systemic removal, while cytotoxicity is reduced because less DNA is required to 

achieve gene transfer [10]. The preservation of vector activity and increased pDNA 

concentration in the cellular microenvironment elevates the efficiency of gene 

transfer, facilitating transgene expression levels comparable to or better than those 

achieved with bolus delivery, while delivering lower quantities of surface-

immobilized pDNA [58]. Reverse transfection involves simultaneously transfecting 

and plating cells, almost similar to procedures used for transfecting suspension 

cells. Ziauddin and Sabatini were the first to report a method for reverse 

transfection16, this process as compared with conventional transfection allows 

rapid parallel analysis of large number of genes simultaneously. Finally, substrate-

mediated delivery offers the ability to pattern the immobilization of nonviral 

complexes on surfaces, which can lead to patterned transgene expression, which is 

particularly pertinent to tissue engineering applications [51]. For substrate-

mediated delivery, the properties of the surface are critical to both immobilization 

strategies and transfection (gene transfer) efficiencies. Different strategies have 

been proposed for reverse transfection methods. Surface immobilization typically 

employs either sequential deposition of DNA or cationic lipids and polymers, or 

the adsorption of preformed DNA complexes. Initial approaches immobilized DNA 

at the surface by entrapment within gelatin, followed by the addition of the 

transfection reagent.10 Subsequently, the transfection reagent has been initially 

adsorbed to the surface, followed by addition of the DNA. 11 This latter approach 

can be extended to the adsorption of multilayer films that gradually erode to expose 

the DNA for transfection[9]. Alternatively, the vectors can be formed in solution 
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and subsequently immobilized to the substrate, it can potentially be used to 

spatially regulate gene transfer.  

 

1.4.3 Multilayered thin films 

Multilayered thin films can both provide localized delivery of plasmids in vivo [59-

65] and significantly sustain the release of a plasmid. These films have been 

created using many polyelectrolytes including PLL, PGA, chitosan, hyaluronan 

(HA), poly-(allylamine hydrochloride) (PAH), poly-(sodium-4-styrenesulfonate) 

(PSS) [66], and b-cyclodextrin [67], by alternately immersing a surface in a 

solution of a cationic molecule and in a solution of an anionic molecule in a 

process known as layer-by-layer (LbL) assembly [68-71]. The use of aqueous-

based fabrication techniques in LbL assembly prevents the need for arduous wash 

steps to remove organic solvents [68]. Methods for the alternating, layer-by-layer 

adsorption of oppositely charged polymers on surfaces provide a practical approach 

to fabricate films using a broad range of naturally occurring and biologically 

important polyelectrolytes, including DNA, often without loss of biological 

function [72]. This general approach offers precise control over the compositions 

and thicknesses of thin polyelectrolyte-based films. Gene delivery from thin films 

containing plasmids has been engineered through the use of materials that degrade 

or disassemble under physiological conditions [73]. These nanometer-scale films 

were able to spatially and temporally control the gene delivery of multiple DNA 

constructs to promote transgene expression in vitro with various cell lines [68]. A 

recent and interesting approach toward thin film disassembly and plasmid release 

involves the alteration of the charge of the assembled cationic polymers. Thus, 

multilayered thin films are capable of promoting sustained release of plasmids from 

a substrate via multiple types of degradative processes.  
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1.5 Surface interactions 

 

1.5.1 Non specific interactions 

Vector immobilization to the biomaterial surface occurs through a combination of 

nonspecific and specific interactions that can be regulated through the design of the 

material and the vector. Molecular interactions between the vector and the polymer 

dictate whether the vector will be bound or released. Non specific immobilization 

approaches typically utilize the interaction of pDNA with cationic agents, which 

have shown the ability to promote localized gene delivery and sustained release. 

Viral and non-viral vectors, which contain negatively charged DNA or RNA 

potentially complexed with proteins, cationic polymers, or cationic lipids, interact 

with polymeric biomaterials through non-specific mechanisms, including 

hydrophobic, electrostatic, and van der Waals interactions that have been well 

characterized for adsorption and release of proteins from polymeric systems [74]. 

Many materials support the adsorption of proteins to the surface, and delivery 

vectors can adsorb directly to the substrate or to the proteins that are coating the 

surface. Complexes adsorbed to the substrate were homogeneously distributed 

across the surface. Based on protein adsorption,9 vector adsorption to biomaterials 

may be characterized by (1) changes in the hydration of the surface and vector, (2) 

charge interactions between the vector and the surface, (3) structural rearrangement 

of the adsorbing vector, and (4) the solution properties from which the complexes 

adsorb. Conformational changes in the vector may contribute to irreversible 

binding that limits cellular uptake, while hydrophilic substrates, which generally 

result in reversible interactions for proteins, may facilitate cellular internalization.2 

Transgene expression by nonspecific immobilization of preformed complexes is 

dependent on the molecular composition of the vector, and the relative quantity of 

each vector component (e.g. of amines on the polymer to phosphate in DNA (N/P). 
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The quantity of immobilized complexes depended upon the charge and size of the 

DNA complexes. Transgene expression was observed on all substrates; however, 

the extent of transgene expression and the number of transfected cells were 

enhanced by precoating the substrate with serum proteins. This surface coating 

enabled homogeneously distributed complexes to redistribute to the cell surface.  

 

1.5.2 Specific interaction 

Strategies for specific immobilization include the use of complementary functional 

groups on the vector and surface, such as antigen-antibody interactions or biotin-

avidin interactions [10], to control vector binding to the substrate. Upon 

complexation, a fraction of these functional groups will be available on the exterior 

of the particle for immobilization. Similarly, viral particles can be genetically 

engineered with specific sequences for binding or chemically modified after 

formation [75]. Indeed, viral vectors have been designed that specifically interact 

with natural and synthetic biomaterials through the use of antibodies or covalent 

coupling to allow for site-specific gene delivery. Although the functional groups 

provide specific interactions between the biomaterial and vector, nonspecific 

interactions contribute to vector immobilization [76]. The effective affinity of the 

vector for the biomaterial is determined by the strength of these molecular 

interactions, which may also be influenced by environmental conditions (e.g., ionic 

strength, pH), binding-induced conformational changes, or vector unpacking. 

Biotinylated-PEI has been used to complex pDNA and sequester the complexes on 

avidin-functionalized surfaces. While these systems provide many delivery 

advantages, efficient transfection using these immobilized vehicles requires careful 

control to balance the binding of the vehicle to the substrate with the ability to 

release the vehicle for cellular uptake. The specific binding of avidin-modified 

materials to biotinylated vectors has allowed researchers to identify several key 
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design parameters for specific immobilization strategies. It was shown that 

increasing the number of biotin groups in the complex, either through increasing 

the number of biotin residues per polymer or increasing the percentage of 

biotinylated polymers in the complex, increased the binding of the complexes to 

the substrate; however, maximal transfection in vitro was achieved when only a 

small fraction of the polymer forming the complex contained biotin. Maximal 

binding occurs when there is a high affinity of the complex for the substrate, but 

this high affinity reduces transfection.18 Manipulation of the rate of vehicle release 

thus inherently requires alteration of the properties of the vehicle and/or substrate. 

Furthermore, release is not cell-specific, and will occur for any cell that comes into 

contact with the vehicle. Cellular internalization can occur through breaking of the 

linkage between the complex and substrate, degradation of the substrate, or 

disruption of the complex to allow for release.   

 

 

1.7 Aim of work 

Aim of the research object of this PhD thesis is designing a transfection platform 

for substrate-mediated delivery able to stably retain gene vectors and at same time 

mediate a efficient gene transfer. To do so the role of the interaction, in terms of 

strength and specificity, between PEI-DNA complexes and the substrate in 

substrate-mediated gene transfer has been investigated. The results of the research 

carried out have provided the feasibility of preparing substrate-mediated gene 

delivery platforms using different approaches. In particular they have highlighted 

the suitability of assemble, organize and present the DNA to the surface, promoting 

the internalization of DNA by cells in way that provide opportunities to enhance 

levels of surface-mediated cell transfection. 

The first part of the research was devoted to realization of a platform for reverse 

transfection immobilizating DNA complexes on substrate through a covalent bond. 
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The occurrence of PEI/DNA complexes on substrate and cellular uptake were 

evaluated.  

In the second part, based upon the results of the performed experiments, gene 

complexes were weakly tethered to obtain a compromise between a good efficiency 

of reverse transfection and the stability of gene vector on substrate. Indeed, DNA 

complexes have been electrostatically adsorbed at surface of the substrate for 

reverse transfection. In this case cellular uptake and transfection results indicate 

that the success of this system is due to a release of gene complexes from the 

substrate.  

The last part of the research, has been focused on the realization of a specific 

adsorption of gene particles to a protein-coated substrate. To this aim, a select 

peptide with effective affinity for fibronectin was evaluated as linker between 

coated substrate and PEI/DNA complexes. The efficiency of this system relate to 

the specificity with which PEI/DNA complexes interact with fibronectin coated 

substrate through this linker peptide is under evaluation. Furthermore, this strategy 

was implemented though the spatial protein patterning to create 

adhesive/transfective islands on substrate, for future application purposes. 
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Chapter 2 

 

Platform for gene delivery: covalent interaction 

between PEI/DNA complexes and cell-culturing 

glass substrate. 
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2.1 Introduction 

 

In recent years, the development of systems capable of controlled and efficient 

gene transfer has concerned many in vitro research and diagnostic applications. In 

particular, gene delivery from surfaces is the basis of many screening systems to 

examine the cellular response to altered gene expression within a more 

representative biological context [1, 2]. Transfected cell arrays for studies in 

functional genomics [3-5] or patterned gene delivery for models of tissue growth 

[6, 7] are examples of applications of gene delivery studies to basic research. 

Substrate-mediated gene transfer, also known as reverse transfection, has the 

potential to retain for a long period of time effective DNA levels in a constrained 

area, avoiding the possibility of dispersion, extending the opportunity for cellular 

internalization and increasing the likelihood of gene transfer [8]. This delivery 

method involves the immobilization of DNA to a substrate that supports cell 

adhesion placing the vector directly in the cell microenvironment, reducing mass 

transport limitations and localizes delivery [9]. However, if the association of gene 

particles with a substrate is too tight, endocytic uptake and transfection can suffer 

[10]. In order to obtain a successful reverse transfection system, the interaction 

between substrate and gene vector must be sufficiently strong to immobilize and 

maintain the vector at the surface, while allowing for cellular internalization. 

Substrate and vector properties mediate the vector-surface interactions that are 

determinants of binding and gene transfer [11, 12]. The context wherein 

immobilized DNA-vector complexes are presented to cells can be modified with 

surface chemistry. A bioactive compound can be immobilize to a polymeric surface 

through various methods such as (i) adsorption via electrostatic interactions, in 

which complexes physically adsorbed onto the substrate were spontaneously and 

gradually desorbed from the surface during cell cultivation [13], (ii) ligand–

receptor pairing, such as biotin–avidin, the strongest reported non-covalent bond 

[14] and (iii) covalent attachment. The latter offer several advantages by providing 
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the most stable bond between the compound and the functionalized polymer 

surface. The covalent immobilization of bioactive compounds has seen rapid grown 

in the past decade with applications in various fields [14, 15]. In the biomedical 

field, a covalent immobilization can be used to extend the half-life of a biomolecule 

or prevent its metabolism, as in compounds which provide anti-tumor activity 

when used locally, but may be toxic if metabolized [16]. Several polymers have 

been selected as substrates for biomolecule immobilization but, because of their 

inert nature, they must undergo surface functionalization, by introducing reactive 

functional groups, prior to attachment of a bioactive compound. Different surface 

modification strategies have been developed to improve wetting, adhesion, and 

printing of polymer surfaces by introducing a variety of polar groups, with little 

attention to functional group specificity. However, when surface modification is a 

precursor to attaching a bioactive compound, these techniques must be tailored to 

introduce a specific functional group [17]. Tethering a bioactive compound to a 

solid substrate via a spacer molecule, can also improve bioactivity by reducing 

steric constraints and shielding the compound from hydrophobic surface induced 

denaturation. In the same way, also binding of gene complexes to glass substrates 

for culturing cells requires surface modification. In particular, the covalent 

attachment of a bioactive compound to a glass surface involve glass pre-treatment 

and surface activation, commonly using silane [18]. Normally, vinyl silane or 

methacrylate silane was used as a coupling agent, because it contains at least one 

functional group with double bond, which can readily react with organic polymer, 

and functional groups that react with silanol groups on the glass surface [19]. It acts 

as a compound that provide at the interface of dissimilar materials in a composite, a 

stable bond resulting in improved composite properties and preservation of these 

properties. 

In this chapter was investigated the stability and bioactivity of PEI/DNA 

complexes covalently bound to a glass substrates. In order to tether DNA 

complexes to glass slides, functional groups were introduced both on gene vector 
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and substrate. In particular, glass surface was activated with a methacrylate silane 

monolayer and PEI/DNA complexes were functionalized through modification of 

PEI molecules with acrylated PEG The changes of substrate and complexes 

properties were characterized and the occurrence of complexes on substrates after 

binding photoreaction was been investigated. Furthermore the efficiency of this 

system was evaluated respect to the cellular response to interaction with bound 

complexes. 

 

 

2.2 Materials and Methods 

2.2.1 Materials  

 

Linear Polyethylenimine (L-PEI) with an average molecular weight of 25 kDa was 

purchased from Polysciences (Warrington, PA). Tetramethylrhodamine-conjugated 

linear PEI (JetPEI-fluoR) was purchased from Polyplus-transfection SA (7mM 

ammine content, Illkirch, France). Acryloyl-PEG-N-hydroxysuccinimmide (Ac-

PEG-NHS, 3.4kDa) was purchased from Creative PEG Works (Winston-Salem, 

NC, USA). 3-aminopropyl triethoxysilane (APTES) and 3-(Trimethoxysilyl)propyl 

methacrylate (TMSPMA) were purchased from Sigma Aldrich (St. Louis, MO, 

USA). The reporter plasmid encoding for enhanced green fluorescent protein 

(p
CMV

EGFP) driven by a cytomegalovirus (CMV) promoter was amplified in DH5α 

competent Escherichia coli strain, extracted and purified from bacterial culture 

using Qiagen plasmid kit (Santa Clara, CA) and stored in Tris-EDTA buffer 

solution. Transfection studies were performed with NIH/3T3 mouse fibroblasts 

cultured in a humidified 5 % CO2 atmosphere at 37 °C in Dulbecco’s modified 

Eagle medium with 4.5 g L
-1

 glucose (DMEM) (Gibco) supplemented with 10 % 

Bovine Calf Serum (BCS) (Gibco), 4 mM glutamine, 100 U mL
-1

 penicillin and 0.1 

mg mL
-1

 streptomycin in a 100 mm diameter cell culture dish (Corning, NY, USA). 
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Plasmid DNA (p
CMV

EGFP) was labeled with the cyanine dye Cy5 using Label IT® 

Tracker™ Intracellular Nucleic Acid Localization Kit purchased from Mirus Bio 

(Madison, WI, USA). 

 

2.2.2 Plasmid DNA labeling  

Plasmid DNA, p
CMV

EGFP, was labeled with cyanine dye Cy5 using Label IT® 

Tracker™ Intracellular Nucleic Acid Localization Kit (Mirus Bio, Madison, WI, 

USA). Briefly, 20 μg of plasmid DNA was mixed with 10 μl of reagent in a total 

volume of 300 μl, followed by incubation for 1 h at 37 °C according to the 

recommendation by the supplier [20]. After 0.1 volumes of 5 M NaCl were added 

and Label IT reagent was removed by overnight precipitation with 2 volumes of 

ice-cold absolute ethanol at – 20 °C. The labeled DNA was recovered by 

centrifugation at 13,000 rpm for 15 minutes. The pellet was washed with 70% 

ethanol and resuspended in molecular biology grade water. The purity was 

monitored by measuring the ratio of absorbance at 260 nm and 280nm 

(A260nm/A280nm) at NanoDrop 2000 UV-Vis Spectrophotometer. 

 

2.2.3 Synthesis of acryloyl-PEG-PEI conjugate 

Ac-PEG-PEI copolymer was synthesized by combining 0.7 μmol of linear PEI (25 

kDa, Polyscience) dissolved in 1 ml of 0.25 M NaCl with 0.8 ml of H2O containing 

2 μmol of acryloyl-PEG-N-hydroxysuccinimide (3.4 kDa, Creative PEG Works). 

The solution was magnetically stirred at room temperature overnight and 

subsequently loaded on a Macro-prep (Macro-prep High S; HR 10/10, BioRad, 

München, Germany) and fractionated with a salt gradient from 0.5 to 3.0 M NaCl 

in 20 mM HEPES at pH 7.1. The product was eluted between 2.4 and 2.9 ml M 

NaCl. The PEG-PEI conjugate was dialyzed against 2 l HBS (20 mM HEPES pH 
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7.3, containing 150 mM NaCl). The conjugate was diluted to 10 μg ml
–1

 by the 

addition of HEPES buffer at pH 7.3, and then stored at - 20 °C. The modification of 

PEI with PEG in the reaction product was determined from proton nuclear 

magnetic resonance spectrometry (
1
H-NMR) (400 MHz, Varian) using deuterated 

water (D2O) as solvent. The degree of PEG substitution was determined by 

comparing the integral values obtained from the number of CH2CH2O protons of 

PEG and CH2CH2NH protons of PEI [21-23]. 

 

2.2.4 PEGylated complexes formation  

DNA complexes were formed by addition of cationic polymer (PEI) to plasmid 

resulting in self-assembled colloidal particles [24]. For PEG-PEIpDNA complexes 

formation, tetramethylrhodamine-conjugated linear PEI (jetPEI-fluoR 7 mM amine 

content, Polyplus-Transfection, Illkirch, France) and Ac–PEG-PEI copolymer were 

added dropwise to plasmid DNA solution. Both polymer and plasmid solutions 

were diluted in 150 mM NaCl, mixed and incubated for 20 minutes at room 

temperature to allow complex formation between the positively charged PEI 

(amine groups) and the negatively charged pDNA (phosphate groups) [25, 26]. 

Complexes generated using different N (nitrogen) to P (phosphate) ratios (N/P), 

molar ratio of amine groups of PEI to phosphate groups in pDNA backbone and 

amounts of PEG molecules, were tested.  

 

2.2.5 Characterization of DNA complexes: size, zeta-potential and bioactivity  

 

In order to optimize the complexes formulation, in terms of best transfection 

efficiency and lower cytotocixity, PEI/DNA and PEGylated complexes were 

characterized. The particle size and zeta-potential of the complexes were carried 

out by dynamic laser light scattering using a Zetasizer Nano-ZS (Malvern 
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Instruments, Worcestershire, UK). To formed PEI/DNA complexes at different N/P 

ratios (5, 6 and 10), stock PEI and DNA solutions were prepared and complexes 

generated by varying the PEI amounts and maintaining constant the pDNA 

concentration. Then PEGylated complexes were prepared, fixing the N/P ratio at 5 

and varying Ac-PEG-PEI copolymer amounts. All measurements were done in 

triplicate, the mean value was recorded as the average of three different 

measurements. 

Transfection efficiency and cellular cytotoxicity of the DNA complexes, generated 

according to the different formulations, were tested performing 2D transfection 

analysis. For transfection experiments, NIH3T3 cells were seeded in 35 mm 

polystyrene Petri dishes (Corning, Corning, NY, USA) at density of 100,000 

cells/dish and incubated at 37 °C and 5 % CO2, prior to ~80 % confluence, when 

polymer/DNA complexes containing 3 μg plasmid DNA were added to each well. 

After 48h, samples were fixed with 4% paraformaldehyde (Sigma Aldrich) for 15 

min at RT and stained using 40,6-diamidino-2-phenylindole (DAPI) (Sigma-

Aldrich) (maximum excitation at 358 nm; maximum emission at 461 nm) for 

nuclei detection. The 40,6-diamidino-2-phenylindole stock solution (10 mg ml
-1

 in 

dimethyl sulfoxide) was diluted in PBS (110
-4

 v/ v), incubated for 10 min at 37 °C, 

and then rinsed three times with PBS. Analyses of the transfection were carried out 

using a confocal laser scanning microscope CLSM (Leica TCS SP5 II) equipped 

with a 25 X objective and a 2P (two-photon)-mode, 700nm laser line emitted by a 

Coherent Chameleon Ultra Laserand and argon laser lines at wavelengths 488 nm. 

Image resolution was fixed to 1024 X 1024 pixels. The emitted fluorescence was 

detected between 420 and 480 nm and between 500 and 530 nm, through different 

detector channels. Transfection efficiency (number of transfected cells (GFP-

expressing cells)/number of cells (DAPI-stained cells)) were quantified through 

analysis of images using Image J software. Each estimation was repeated in 

triplicate on different samples. Results were compared by analysis of variance 

(ANOVA), and a significance level of 95% (P = 0.05) was chosen in all cases. 
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The biocompatibility of DNA complexes generated according to different 

formulations was evaluated by colorimetric Alamar blue assay (Life Technologies, 

Grand Island, NY) according to the manufacturer’s procedure [27, 28]. After 24 h 

of incubation in a humidified atmosphere at 37 °C and 5 % CO2, NIH3T3 cells 

seeded onto 24-well plates at an initial density of 25,000 cells/well, were treated 

with complexes suspensions with different formulations, N/P ratios and Ac-PEG-

PEI amounts. The experiments were performed in triplicates and non-trasfected 

cells were used as a negative control. The metabolic activity of all cell cultures was 

determined after 1 and 2 days of exposure by using standard Alamar Blue assay. 

Absorbance of Alamar Blue reagent solution was read at 570 nm and 600 nm by a 

plate reader (Enspire 2300, Perkin-Elmer). Data represent the cell viability 

percentage of treated cells normalized to non-treated cells. All experiments were 

performed in triplicate.  

 

2.2.6 Modification of glass substrates  

 

Glass coverslips of 12 mm Ø (Knittel glass, Germany) were used to covalently 

bind PEGylated complexes. In order to provide bonding sites (double bonds) for 

the polyplexes onto the glass surface, 12 mm diameter glass coverslips were treated 

with two silane solutions. 3-(trimethoxysilyl) propyl methacrylate (TMSPMA, 

Sigma Aldrich, St. Louis, MO) and 3-aminopropyl triethoxy silane (APTES, Sigma 

Aldrich, St. Louis, MO) were co-immobilized to the glass coverslips by silane 

condensation. Prior to modification, the glass coverslips were cleaned carefully by 

washes with detergent and deionized water, in addition, to remove any surface 

impurities the slides were immersed in ethanol and ultrasonicated for 10 min and 

then dried in a nitrogen flow. Next, the substrates were exposed to oxygen plasma 

excitation for 3 min in a cleaning chamber Plasma Femto (Diener, Bӧblingen, 
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Germany) equipped with a 13.56 MHz 100W generator and then treated by 

immersing with a 0.5 % v/v solution of TMSPMA and APTES in 95% ethanol for 

5 minutes. After the silane treatment glass coverslips were extensively rinsed with 

ethanol to remove residual reagent and dried under a vacuum for 2 h.  

 

2.2.7 Water contact angle  

 

Surface modification of glass slides by silane immobilization was analyzed by 

water contact angles measurements of water in air at room temperature under static 

conditions. An Attension Theta optical tensiometer (Biolin Scientific, Stockholm, 

Sweden) was used to analyze the different wettability of modified substrates in 

order to verify to the occurrence of chemical modification. An amount of 4 μL 

droplets of MilliQ water were applied on chemically modified glass surfaces and 

the pictures was taken with a digital camera. Contact angle was recorded as the 

angle between the point of contact of the droplet with the solid surface and a 

tangent with the droplet profile. The contact angle measurement was estimated 

from a picture and calculated as the mean value of 3 separate measurements, the 

standard deviation of measurements was < 3°. 

 

2.2.8 Binding of PEGylated complexes to modified glass substrate 

 

Through the activation of glass slides with TMSPMA and APTES silane, 

methacrylate groups were exposed at surface to allow the photocrosslinking of Ac-

PEG-PEIpDNA complexes. In order to induce a covalently bind PEGylated 

complexes to activated glass slides, modified complexes mixture and 1.5 % (v/v) of 

a photoinitiator (Irgacure 2959 Ciba, Switzerland) was rapidly exposed to long-

wavelength UV light (365 nm, 10mW cm
-2

, 1 min). After photoreaction between 
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exposed acryloyl groups, unbound complexes were removed and the substrates 

were washed twice with 1 X phosphate buffered saline (PBS). The occurrence and 

distribution of Ac-PEG-PEIpDNA complexes on activated glass substrates were 

analyzed initially by fluorescence microscopy, through the detection of Cy5 labeled 

plasmid DNA and rhodamine labeled PEI. Leica TCS SP5 MP, equipped with a 

25X water immersion objective was used to acquire images with a resolution of 

512 x 512 pixels. Emitted light was detected with two photomultipliers through 

selected band pass filters. Excitation of rhodamine-labeled PEI, was achieved using 

the 543 nm excitation line, with the resulting fluorescent wavelengths observed 

using a 560 - 610 nm band pass filter and excitation of pDNA-Cy5 was achieved 

with the 633 nm excitation line, with the resulting fluorescence observed using a 

650 - 750 nm band pass filter.  

 

2.2.9 Characterization of substrates 

 

To examine the surface modifications and bound complexes morphology atomic 

force microscopy (AFM) was used. The PEGylated polyplexes was prepared and 

bind on activated glass slides by photoreaction, as described above. After 

complexes binding process, surfaces were rinsed with 1 X PBS and with two 

additional washes in Milli-Q water, to remove any traces of salt on the surface then 

the samples were allowed to dry in air before imaging. AFM experiments were 

carried out in “dry” conditions with a BioAFM NanoWizard II (JPK Instruments, 

Berlin, Germany). Images at 1024 x 1024 pixel resolution were collected at a scan 

rate of 1 Hz in air at room temperature in contact mode using a silicon nitride tip 

with a nominal spring constant of 0.01 N m
-1

 (MLCT, Bruker, Billerica, MA, 

USA). At least three independent imaging scans were obtained for each sample to 

obtain a representation for each surface.  
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Substrates and bound complexes morphology was investigated by scanning 

electron microscopy (SEM), too. Prior to imaging, dried samples were mounted to 

microscope stub and sputter coated with 5 nm of platinum-palladium under an 

argon atmosphere using a SEM coating system (Cressingthon, 208 HR, UK). 

Samples surface morphology was then observed and images were taken using 

scanning electron microscope (Zeiss, FEG Ultraplus, Germany) with an 

accelerating voltage of 8 kV and variable magnifications. 

 

2.2.10 Binding efficiency  

 

In order to monitoring the amount of DNA complexes immobilized to the surface 

after binding reaction, Cy5 labeled plasmid was used. DNA concentration in 

solution before and following binding reaction was estimated through measures of 

fluorescence at 633 nm in a multi-well plate spectrofluorometer (Enspire 2300, 

Perkin Elmer), via a standard curve. Complexes binding efficiency was calculated 

as the difference between the DNA complexes concentrations, before [Ci] and after 

[Cf] photoreaction, normalized to initial concentration, in percentage  

 

     

  
     

 

The density of the complexes bound to each activated glass slides was established 

by normalizing the amount of the covalently bound complexes to total area of the 

substrate.  

To evaluate the complexes release from substrates, after efficiency binding tests 

400 μl of conditioned medium (cDMEM) were added at the samples and incubated 

at 37 °C and 5 % CO2. At scheduled time intervals (24, 48 and 72 h) cDMEM was 

removed and PEG-PEIpDNA-Cy5 complexes concentration was detected via a 

standard curve, by measuring the fluorescence at 633 nm, as described above. The 
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percentage of PEG-PEIpDNA complexes released was calculated with respect to 

the immobilized amount. Binding and release efficiency results were compared by 

analysis of variance (ANOVA) with a significance level of 95% (P = 0.05). 

 

2.2.11 Quantification of internalized complexes  

To investigate cellular interaction with covalently bound complexes, the amount of 

DNA complexes internalized by the cells after incubation on modified substrates 

was evaluated. To this aim, PEGylated complexes, generated using Cy5-labeled 

plasmid DNA, were covalently bound at activated glass slides, as described above. 

Immediately following complexes binding, NIH3T3 cells were plated on these 

modified glass substrates at a density of 7000 cells cm
-2

, and incubated in culture 

medium at 37 °C and 5 % CO2. After scheduled times, cells were roughly rinsed 

with 1 X PBS, collected via trypsinization, and reseeded on glass dishes 

(Fluorodish, World Precision Instruments Ltd). After 24h, cells were fixed using 4 

% paraformaldehyde (PFA, Sigma Aldrich) for 15 min at RT and observed with a 

laser scanning confocal microscope (CLSM). An inverted confocal microscope 

(Leica TCS SP5 II), equipped with a 63X 1.2 NA oil immersion objective was used 

for the optical sectioning of cells. Excitation of rhodamine-labeled PEI and pDNA-

Cy5 was achieved using, respectively, the 543 nm and 633 nm excitation line, 

while the emitted fluorescence was detected between 550 and 610 nm for 

Rhodamine-PEI detection and 650 and 750 nm for DNA-Cy5 detection, through 

different detector channels. Image resolution was fixed to 1024 x 1024 pixels. The 

intracellular fluorescence of the internalized complexes at different time point was 

quantified using ImageJ software. Data were reported as the percentage area of the 

internalized complexes divided by total cellular area. In particular, cell area was 

evaluated by using plug in Analyze Particles of ImageJ software. At least 15 cells 

were collected and analyzed for each time point and each substrate. 
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2.2.12 Complexes intracellular fate_Lysosome co-localization 

 

In order to investigate the intracellular fate of internalized complexes, in particular 

to localize the polyplexes inside cellular lysosomes, Lysotracker Red DND-99 

(Molecular Probes, Invitrogen) was used on non fixed cells following 

manufacturer’s procedure. Briefly, lysosomal compartments were visualized by 

incubating cells with 0.5 mL Lysotracker Red for 30 min at room temperature prior 

to confocal microscope acquisition. Co-localization experiments were performed 

both on cells on complexes modified substrates and on cells detached from 

substrates and reseeded on fluorodish. The co-localization with PEG-PEIpDNA 

complexes labeled with Cy5 and subcellular compartments marked with 

Rhodamine, was assisted by an inverted Leica SP5 confocal microscope. Live cells 

were imaged through a 63X oil-immersion objective, the resulting image resolution 

was 1024 X 1024 pixels. Cy5-labeled plasmid DNA was excited by a HeNe laser at 

633 nm and fluorescence was observed at 650–750 nm. Lysosomal compartments 

were visualized through excitation by a HeNe laser at 543 nm and fluorescence was 

observed at 550–610 nm. Cy5-DNA complexes and lysosomes-Rhod were imaged 

by confocal microscopy and the colocalization of DNA plasmid in lysosomes was 

quantified using NIH ImageJ JACoP plugin. By this procedure Pearson’s 

coefficient was calculated in order  to estimate a correlation index [29]. At least 17 

cells were captured and analyzed per condition.  

 

2.3 Results and Discussions 

2.3.1 PEG-PEI conjugate: NMR characterization  

 

The modification of PEI with PEG was assessed by 
1
H-NMR spectroscopy in D2O. 

The degree of PEG substitution of linear PEI (25 kDa) with PEG (3.4 kDa) was 
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determined by comparing the peaks of CH2CH2O protons of PEG ( 3.58 ppm) and 

CH2CH2NH protons of PEI (2.5 – 3.1 ppm). Results of spectra integration (Figure 

1) indicate that the molecular ratio between PEG and PEI in the copolymer is about 

60 : 40, therefore, considering the respective molecular weights, in the PEG-PEI 

conjugate produced each PEI macromolecule was modified with 5 blocks of PEG 

[30].  

 

Figure 1 1HMNR spectrum of PEG-PEI copolymer in D2O. The peaks at 3.6 ppm was assigned to 

protons of PEG and the peaks between 2.7 – 2.9 was assigned to protons of PEI. The ratio of PEG/PEI 

molecules in the copolymer was estimated using integral values 
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2.3.2 Complexes characterization  

 

To compare different formulations of PEG-PEIpDNA complexes, in terms of N/P 

ratio and amount of PEG molecules, size, charge, transfection and cellular 

cytotoxicity of complexes were initially characterized. Particles size and surface 

charge dictates the interaction of complexes with the cells thereby leading to uptake 

and efficient transfection [31]. DLS measurements indicate that the complexes 

diameter, formed at N/P ratio of 5, 6 and 10, ranging from 110 to 150 nm, while 

zeta potential was about 27 ± 1.3 mV (Table 1). The polydispersity index (PDI) 

was approximately 0.1, thus indicating narrow size distribution, high uniformity in 

particle size distribution and overall general homogeneity of the sample. The size 

and surface charge of the complexes are both important parameters for their 

interaction and entry into cells [32, 33].  

 

Table 1 Size and zeta potential of polyplexes formulated at N/P ratio of 5, 6, 10. 

 

 

With particular regards to the surface charge, a balance between the maximal 

transfection efficiency and the amount of cell death associated with transfection is 

required [34]. Transfection efficiency and citotoxicity of complexes was evaluated 

performing 2D transfection analysis on NIH3T3 cells with complexes at N/P ratio 

of 5, 6 and 10. As shown in fig. 2a, the complexes formed at three different N/P 

ratios have almost the same transfection efficiency (40%), but the cytotoxicity of 

N/P ratio Size (d.nm) Z-potential
(mV)

5 114 ± 6.3 27 ± 2

6 145 ± 7 28 ± 0,5

10 108 ± 1 25 ± 1
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the complexes increase with the N/P ratio (fig. 2b). Taking in account these results, 

subsequent substrate-mediate delivery experiments were conducted using 

complexes formed at N/P ratio of 5, that have shown not much affect the cellular 

viability.  

 

 

 

Figure 2 Bioactivity of PEI/DNA complexes generated at N/P ratio of 5, 6 and 10. a) Transfection 

efficiency, by NIH3T3 cells treated with free polyplexes formed at various N/P ratios and b) cytotoxicity 

of complexes as function of N/P ratio. 

 

 

In order to bind gene complexes at a substrates, PEIpDNA complexes were 

functionalized through the introduction of acryloyl-PEG molecules. Clamme J. P. 

et al., found that at the molar ratios of PEI nitrogen atoms to DNA phosphate 

usually used for transfection, ~ 86% of the PEI molecules were in a free form and 

the PEI/DNA complexes are composed on the average by 3.5 (± 1) DNA plasmids 

and ~ 30 PEI molecules [35]. Therefore, we have formulated the PEGylated 

complexes varying the ratio between the amount of linear PEI (jetPEI-fluoR) and 

Ac-PEG-PEI copolymer, containing about 5 PEG molecules for each PEI 

macromolecule (NMR results), and, based on a theoretical estimation, calculate the 

number of PEG molecules for complex. Results of DLS measurements indicate that 

PEGylation appeared to prevent the size increase (Table 2), rather the diameter of 

the PEGylated complexes decreases with the increase of the PEG molecules, as 
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previously reported by most research groups [21]. In general, no remarkable 

differences in zeta-potential were noted between particles, except for complexes 

formed with the highest PEG substitution, which demonstrates that PEG molecules 

mask the positive charge of the PEI molecules, reducing the positive charge 

exposed at the surface. As expected, the PEGylation leads to a decrease of 

complexes toxicity [36-38]. The cytotoxicity, calculated as cell viability percentage 

of treated cells normalized to non-treated cells, has been found to be dependent on 

the interaction of the PEI/DNA complexes with cell membranes which increases 

with positive charges exposed on the surface.[39] In particular, the polycationic 

polymers (like PEI) undergo strong electrostatic interaction with plasma membrane 

proteins, which can lead to destabilization and ultimately rupture of the cell 

membrane. Fischer et al. demonstrated that the cytotoxicity of different types of 

polycationic polymers depend on the number and arrangement of the cationic 

charges which determines the degree of interaction with the cell membranes and 

the cells exposed to cationic polymers first show membrane leakage followed by a 

decrease in the metabolic activity [39]. In our case, the addition of PEG molecules, 

hiding the positive charge at surface of the PEGylated complexes, cause an 

increase of the cellular viability and, at same time, a decrease of the cellular uptake 

and consequently of transfection efficiency (Table 2). Transfection, calculated as 

the number of transfected cells (GFP-expressing) normalized on total number of 

cell (DAPI-stained), evaluated through by confocal images was higher with 

complexes generated with low amount of PEG molecules. 
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Table 2 Characterization of PEGylated complexes formed at N/P 5 varying the number of PEG molecules. 
Results of DLS measurements, transfection efficiency as percentage of NIH3T3 cells expressing GFP and 
cytotoxicity of PEGylated complexes generated with different amounts of PEG-PEI copolymer. 

 

 

2.3.3 Characterization of complexes activated substrates  

 

Surface modifications were widely characterized by contact angle, AFM, SEM and 

confocal microscopy. Fig. 3 depicts a synthesis scheme for preparing the activated 

substrate. First, the surface of glass slides were activated by oxygen plasma 

treatment and chemically modified with a silane condensation of 

Trimethoxysilylpropyl methacrylate (TMSPMA), having a acryloyl group and 3-

aminopropyl triethoxysilane (APTES) having an amino group (Fig. 3b). Finally, 

PEGylated complexes, formed as described in materials and methods section (Fig. 

3a), were bound to modified glass substrates via a specific photocrosslink reaction 

between the respective acryloyl groups (Fig. 3c). To achieve practically sufficient 

complexes binding (spatial group) APTES silane was co-immobilized with 

TMSPMA on glass surface [13]. 

 

 

PEG molecules for
PEGylated complex

Size (d. nm) Z-potential
(mV)

Transfection
efficiency (%)

Cellular
viability (%)

5 105 ± 4 23 ± 8 24 ± 3 16 ± 3

10 113 ± 14 27 ± 8 23 ± 5 16 ± 5 

30 87 ± 6 27 ± 8 17 ± 4 25 ± 11

75 98 ± 24 25 ±8 18 ± 6 25 ± 7

150 96 ± 5 23 ± 2 2 ± 1 29 ± 10
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Figure 3 Synthetic scheme of preparation of complexes modified substrates. a) PEGylated complexes 

formation, b) Chemical activation of glass slides c) Covalent binding of PEGylated complexes with 

activated glass substrates through a photo-reaction  

. 

 

 

Chemical modification of the glass surface was confirmed by water contact angle 

measurements. The quality of the surface treatment was checked by the difference 

in contact angle of water on silanized and unsilanized glass surface, used as a 

reference and prepared in exactly the same manner, using equal type of glass, same 

washing, drying protocol and same type of pre-treatment. Results are shown in 

Table 3, the TMSPMA and APTES silane coupling treatment decrease the 

TMSPMA, 
APTES

PLASMA 
TREATMENT

OH
OH

OHOH

OH
OH

a)

b)

c)

1,5% Photoinitiator
1’ UV Light

PEG-PEI-DNA 
complexes
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wettability of the surfaces of glass slides, giving rise to increase in contact angle 

from 63° ± 1 of the unsilanized glass slides to 76° ± 3 for the glass slides activated 

with functional groups [40]. Higher the contact angle, higher the hydrophobicity, 

higher the amount of the present double bonds and consequently higher strength of 

attachment is expected.  

 

 

 

Table 3 Water contact angle measurements on silanized and unsilanized glass slides 

 

 

Occurrence and persistence of the complexes on the substrates was analyzed, to 

begin with confocal microscopy due to the presence in the complex of both labeled 

DNA and PEI. Confocal images show both signals of PEI-Rhod and DNA-Cy5 on 

substrates, in particular, fig. 4c shown the merge of a and b images and highlight 

the correspondence of both signals on substrate after binding process. 

 

 

 

Figure 4 CLSM images of PEGylated complexes tethered to activated glass substrate. (A) PEI-Rhod, (B) 

DNA-Cy5, (C) merge of A and B images. 

Glass slides Silanized glass slides

Contact angle 63° ± 1 76° ± 3

100 μm

a) b) c) 
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Complexes modified glass substrates was characterized, also using atomic force 

microscopy. AFM has proven to be an excellent tool to image soft biological 

structures and can be performed after complex deposition on a surface, with high 

resolution [9]. AFM images were obtained by scanning glass slides with 

immobilized complexes and representative images (Figure 5) revealed the 

representative globular morphology of PEGylated complexes on activated 

substrates [36, 41, 42]. Moreover, the feature height of the bound complexes was 

similar at the typical diameter of PEGylated complexes, this observation highlight 

the absence of aggregation of complexes on substrates during the binding process. 

Previous studies examining complexes using AFM, typically on mica substrates, 

reported a range of complex morphologies similar to the results presented here. 

PEGylated PEI–DNA complexes analyzed by AFM had defined, spherical 

complexes [30–32], with less aggregation and smaller diameters than similar 

complexes without PEG, but were also demonstrated to be less uniform.  

 

 

 

Figure 5 Atomic force microscopy images at different magnifications of PEGylated complexes bound to 
activated glass substrates  

 

 

 



50 
 

Morphological features of complexes modified substrates by scanning electron 

microscopy (SEM) clarified the distribution of the complexes on substrates and, in 

particular, highlighted the circular morphology of the bound complexes (Figure 6). 

 

Figure 6 SEM image of PEGylated complexes bound to activated glass substrate 

 

 

2.3.4 Binding efficiency  

 

Complexes binding efficiency was performed by fluorescence measurements of 

DNA-Cy5 complexes solutions before and after binding process. For each 

experimental concentrations tested the percentage of PEGylated complexes bound 

at activated substrates was about 30 – 40 % concerning the initial amount of DNA 

complexes put in contact with substrate before photoreaction. Initial DNA 

concentration and the concentration of the unbound complexes after binding 

process were showed in the Table 4. Increasing the initial complexes concentration, 

the efficiency of process decreases, maybe due to aggregation effects between 

complexes which prevent the surface binding. Therefore, density of DNA 



51 
 

complexes immobilized to the surface ranged from 0.09 μg cm
-2

 to 0.5 μg cm
-2

, but 

depends on the concentration with which have prepared the complexes.  

 

 

Table 4 Binding efficiency of PEGylated complexes to activated glass substrates. Ci complexes 

concentration initially measured, Cf complexes concentration of unbound complexes after binding 

process 

 

The quantity of surface associated DNA and the stability of the interaction between 

the complexes and surface was subsequently measured using CLSM. Analysis of 

fluorescent images, taken after the initial incubation of labeled complexes on the 

surface and after each scheduled incubation times, not shown reduction of the 

fluorescence (Figure 7). These release tests indicate that during the trial time (0 up 

to 48h), the quantity of surface-associated DNA not change.  

Ci (ng/μL) μg DNA Cf (ng/μL) Binding Efficiency (%) Surface Density
(μg/cm2)

3 0.24 2 34 0.09

6 0.5 4 36 0.18

10 0.84 6 36 0.3

12 1 8 38 0.4

17 1.5 12 30 0.5
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Figure 7 Analysis of fluorescence intensity of DNA-Cy5 complexes immobilized on substrates 

 

 

2.3.5 Internalized complexes and subcellular distribution  

 

To investigate the cell-substrate interaction, the amount of DNA complexes 

internalized by the cells after incubation on this complexes modified substrates was 

evaluated. Quantification of the internalized complexes from cells seeded on 

modified substrates was assessed using Cy5-labeled plasmid DNA to formed 

PEGylated complexes. To distinguish easily DNA-Cy5 complexes inside or outside 

the cells present on substrate, after 24h culture on bound complexes, NIH3T3 cells 

were detached from this functionalized substrates and reseeded on inert dish. 

Fluorescence of intracellular complexes was monitored the in time by confocal 

microscope acquisition and the percentage area of the cells occupy by internalized 

complexes was calculate through the images elaboration using Image J software. 

Results are shown in figure 8, comparing samples and controls, the complexes 

percentage internalized from surface are much lower than bolus delivery. Nearly all 
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cells on surfaces with immobilized complexes had internalized DNA, but not 

statistical difference of the number of complexes internalized in time was detected. 

In particular, the percentage area of transfected cells occupied by complexes, 

obtained only with bolus delivery, was approximately twenty time higher of 

complexes internalized with substrate-mediated delivery. Maybe, there is an 

hypothetical minimum threshold of internalized complexes that provides the 

transfection. Monitoring the internalization process, the percentage of the 

internalized complexes from substrates not change over time, likewise for the 

complexes internalized with bolus delivery. These results indicate a low 

internalization efficiency probably due to a low density of complexes immobilized 

to the substrate for reverse transfection.  

 

  

Figure 8 Quantification of internalized complexes by the cells seeded on modified substrates. Percentage 
cellular area occupied by internalized complexes during time. Blue bar for bolus delivered complexes, red 
bar for cells expressing GFP and green bar for substrate-mediated delivered complexes  

 

 

To investigate the intracellular fate of the internalized complexes, subcellular 

distribution was subsequently characterized. In particular the co-localization of 

DNA complexes with lysosomes compartments was analyzed by confocal 
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microscopy, and quantified using NIH ImageJ software. For substrate-mediated 

delivery, the mean percentages of lysosomal DNA is more relevant than bolus 

delivery. In the table 5 were reported Pearson’s coefficients obtained by ImageJ 

JACoP plugin for the different delivery systems in order to evaluate a correlation 

index (< 0.5 low correlation index, >0.5 high correlation index) . The values of 

Pearson’s coefficients highlight the difference between complexes delivered 

through bolus and substrate-mediated delivery, and suggests that the internalization 

pathway or cellular trafficking can differ for polyplexes delivered from the surface 

relative to bolus.  

 

Table 5 Pearson’s coefficient values. 

 

 

Pearson’s 
coefficient

Sample: cells on substrate 0,57 ± 0,11

Detached & reseeded cells 0,66 ± 0,1

Ctrl_free complexes 0,37 ± 0,1
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Figure 9 CLSM images of co-localization of Cy5 labeled plasmid with lysosome a) cells on dishes with 

free complexes b)cells on bounded complexes c) cells detached from modified substrate  and reseeded on 

inert dish. blue spots indicate Cy5-plasmid, red spots indicate lysosome 

  

a) b) c) 

20 μm
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Chapter 3 

 

Reverse transfection by PEGylated complexes adsorbed to 

a solid substrate: role of surface density  
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3.1 Introduction 

 

The potential applications of gene transfer cover both basic and applied sciences 

and relate to functional genomics, gene therapy, and tissue engineering. In vivo 

gene delivery of naked DNA requires that the plasmid must overcome several intra 

and extracellular barriers that limit the efficiency of gene transfer. The 

complexation of plasmid DNA with viral or non viral vectors, supports the cellular 

internalization and transfection, but are not always assures the correct efficiency 

and duration of gene expression. Gene vectors, can facilitate intracellular 

trafficking, which includes endosomal escape, cytoplasmic transport, and nuclear 

entry, while also dissociating from the DNA to allow expression [1, 2]. Non-viral 

vectors, in particular, are safer and easier to prepare than viral vectors, but typically 

have lower efficiency and shorter duration of gene expression [3]. Relative to more 

traditional delivery methods, controlled delivery systems have the potential to 

overcome extracellular barriers, as well as enhance gene delivery [4]. These 

different approaches deliver vectors according to two main mechanisms: (i) 

polymeric release, in which the DNA is released from the polymer, or (ii) 

substrate-mediated delivery, in which DNA is retained at the surface. While 

forward transfection adds gene particles to previously seeded cells, substrate-

mediated delivery, also termed reverse transfection or solid-phase tranfection, 

immobilizes the DNA to a substrate that supports cell adhesion, placing the vector 

directly in the cellular microenvironment, which has been shown to enhance gene 

delivery [5]. Cells cultured on the substrate can internalize the DNA either directly 

from the surface, or after release from the surface. The retention or release of DNA 

from surface can be dictated by the strength and specificity of the molecular 

interactions between the vector and substrate. Specific interactions can be 

introduced through complementary functional groups on the vector and surface, 

such as antigen–antibody or biotin–avidin [6, 7]. Viral vectors have been designed 
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to specifically interact with biomaterials through the use of antibodies or covalent 

coupling to allow for site-specific gene delivery [8]. While poly(L-lysine) (PLL) 

and polyethylenimine (PEI), modified with biotin residues, have been complexed 

with DNA and bound to a neutravidin substrate [9]. The increase in the number of 

biotin groups per complex leads to increased binding, however, if the association of 

complexes with a substrate is too tight, endocytic uptake and transfection can suffer 

[10]. Alternatively, nonspecific mechanisms, including hydrophobic, electrostatic, 

and van der Waals interactions, can be used to bind viral and nonviral vectors to a 

substrate. These interactions, mainly, occur by adsorption of gene vectors to a 

polymeric systems, which have been shown to enhance the gene expression and 

cellular viability [4]. However nonspecific binding depends upon the molecular 

composition of the vector (e.g., lipid, polymer, protein) and the relative quantity of 

each (e.g., N/P) [4]. Although the immobilization of vectors provides many 

advantages concern to transfection efficiency, a correct balance between the 

binding of the vector to the substrate and the ability to release the vehicle for 

cellular uptake is required. The effective affinity of the vector for the substrate may 

also be influenced by environmental conditions (e.g., ionic strength, pH), binding-

induced conformational changes, or vector unpacking. Another limiting factor in 

nonviral gene delivery is the concentration of DNA at the cell surface [5]. 

Inefficient transfection of conventional bolus delivery systems is due to mass 

transport issues, indeed, the delivery process of the complexes to the cell surface is 

typically a diffusion-limited process, whereas reverse transfection can pre-load 

complexes at high levels onto the cell—substrate interface [10]. Increasing the 

amount of DNA immobilized at surface during reverse transfection increases 

expression levels [11]. On the other hand, aggregation effects due to high density 

of the complexes on substrate, may lead to weaker binding and consequent release 

from substrate. The chemistry of substrate also can affect the immobilization and 

expression of non viral vectors. Inclusion of PEG-like moieties, for instance, can 

increase the transfection efficiency of PEI polyplexes adsorbed to monolayers of 



64 
 

carboxylic endgroups [12]. Nevertheless, this increase cannot be attributed to an 

increase in complex binding or release, but the size and shape of adsorbed 

complexes is markedly affected.  

In this study PEG molecules were added to PEI/DNA complexes then adsorbed to a 

glass substrates. Morphology of PEGylated complexes modified substrate, cellular 

uptake profile and reverse transfection were characterized. In particular, substrate 

adsorption and transfection efficiency have been tested varying the amount of DNA 

complexes aspecifically immobilized at surface. To maximize cellular transfection, 

the density of the DNA complexes on substrate has to be sufficient to support gene 

expression yet not so excessive as to compromise cellular viability. Manipulating 

the concentration of the complexes on substrate has been possible to modulate the 

transfection efficiency, on the other hand the cellular uptake profile indicates that 

substrate release probably affect cellular transfection. 

 

 

3.2 Materials and Methods 

 

3.2.1 Materials 

 

The reporter plasmid encoding for enhanced green fluorescent protein (EGFP) 

driven by a cytomegalovirus (CMV) promoter was amplified in Escherichia coli, 

extracted and purified from bacteria culture using Qiagen plasmid kit (Santa Clara, 

CA). Tetramethylrhodamine-conjugated linear PEI (JetPEI-Rhod) was purchased 

from Polyplus-transfection SA (7mM ammine content, Illkirch, France). Linear 

PEI 25 kDa purchased from Polysciences (Warrington, PA) was conjugated to 

acryloyl-PEG-N-hydroxysuccinimmide (Ac-PEG-NHS, 3.4 kDa, Creative PEG 

Works, Winston-Salem, NC). Label IT® Tracker™ Intracellular Nucleic Acid 
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Localization Kit was purchased from Mirus Bio (Madison, WI, USA). LysoTracker 

Red DND-99 was purchased from Molecular Probes (Invitrogen, Oregon, USA). 

 

3.2.2 Cell culture 

Transfection studies were performed with NIH/3T3 mouse fibroblasts cultured in 

humidified 5 % CO2 atmosphere at 37 °C in Dulbecco’s modified Eagle’s medium 

with 4.5 g L
-1

 glucose (DMEM) (Gibco) supplemented with 10 % (v/v) bovine calf 

serum (BCS) (Gibco), 4 mM glutamine, 100 U mL
-1

 penicillin and 0.1 mg mL
-1

 

streptomycin in 100 mm diameter cell culture dish (Corning Incorporated, Corning, 

NY). The cells were routinely splitted using 0.25% trypsin (Trypsin-EDTA, 

Invitrogen) following standard protocols.  

 

3.2.3 Amplification and purification of plasmid DNA  

Plasmid DNA, p
CMV

EGFP, containing a reporter gene encoding for enhanced green 

fluorescent protein (EGFP) was used for transfection studies. The chemically 

competent DH5α
TM

 bacterial strain (Escherichia coli species) was transformed with 

p
CMV

EGFP using heat shock method. The pDNA in the transformed culture was 

then expanded in E. coli in Lennox L Broth (LB Broth) supplemented with 100 mg 

L
-1

 ampicillin overnight at 37 °C in an incubator shaker at 300 rpm. Plasmid DNA 

was extracted and purified from bacterial culture using a Qiagen kit (Santa Clara, 

CA) according to the manufacturer’s specifications. The purity was confirmed by 

1% agarose gel electrophoresis follows by ethidium bromide staining and the 

concentration of pDNA solution was determined using a NanoDrop 2000 UV-Vis 

Spectrophotometer (Thermo Scientific, Wilmington, DE) by measuring the 

absorbance at 260nm.  
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3.2.4 Covalent labeling of plasmid DNA 

Plasmid DNA was covalently labeled with the cyanine dye Cy5 using Label IT
®

 

Tracker™ Intracellular Nucleic Acid Localization Kit (Mirus Bio, Madison, WI, 

USA). The labeling reaction was carried out at a ratio of 0.5 μl of Label IT® 

Tracker™ reagent to 1 μg of plasmid DNA for 1 h at 37 °C followed by an ethanol 

precipitation step to remove unbound Label IT reagent as recommended by the 

manufacturer’s instructors [13]. The labeled DNA was recovered by centrifugation 

at 13,000 rpm for 10 minutes. The pellet was washed with 70% ethanol and 

resuspended in H2O.  (3.6ppm) with  (The purity of labeled plasmid was confirmed 

by measuring the ratio of absorbance at 260 nm and 280nm  (A260nm/A280nm) at 

NanoDrop 2000 UV-Vis Spectrophotometer. 

 

3.2.5 Synthesis of PEG-PEI copolymer  

 

Linear Polyethylenimine (L-PEI) 25kDa (Polysciences, Warrington, PA) was 

conjugated to acryloyl-PEG-N-hydroxysuccinimmide (Ac-PEG-NHS, 3400 Da, 

Creative PEG Works, Wiston-Salem, NC, USA). Conjugation was carried out in 

solution by mixing a solution of PEI HCl 0.7 μmol dissolved in 1 mL of 20 mM 

HEPES, at pH 7.1, with 50 equiv of acryloyl-PEG-NHS dissolved in 0.7 mL of 

DMSO for 1h. After the incubation, Ac-PEG-PEI copolymer was dialyzed and 

lyophilized before use. The modification of PEI with PEG in the reaction product 

was determined by proton nuclear magnetic resonance spectrometry (
1
H-NMR) 

(400 MHz, Varian) using deuterated water (D2O) as solvent, the degree of PEG 

substitution was calculated by comparing the peaks of CH2CH2O (3.58 ppm) of 

PEG with CH2CH2NH (~ 2.5 – 3.1 ppm) of PEI [14, 15].  
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3.2.6 Complexes formation and characterization 

 

Plasmid DNA (p
CMV

EGFP) encoding for enhanced green fluorescent protein 

(EGFP), purified from bacteria culture using Qiagen exaction kit (Santa Clara, CA) 

was complexed with tetramethylrhodamine-conjugated linear PEI (JetPEI-fluoR 

7mM amine content, Polyplus-transfection, Illkirch, France) (maximum excitation 

at 555 nm; maximum emission at 580 nm) and PEG-PEI copolymer (0.01 mg mL
-1

 

in HEPES 100 mM) at final N/P ratio of 5. Both plasmid DNA (3μg) and PEI (6 μl 

jetPEI-R and 3 μl Ac-PEG-PEI) were diluted in 100 μl of 150 mM NaCl, rapidly 

mixed by pipetting up and down and adding PEI solution to DNA solution [16]. 

Polyplexes were allowed to stand for 20 min at RT before use.  

Measurements of size and ƺ-potential of DNA complexes were performed using a 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). PEG-PEIpDNA 

complexes at N/P ratio of 5 were generated in deionized water to a DNA 

concentration of 27 μg mL
-1

 and subsequently diluted to a final concentration of 6 

μg mL
-1

, before the measurement. Zeta-potential was measured electrophoretically 

by the laser scattering technique using folded capillary cells. All measurements 

were done in triplicate, the mean value was recorded as the average of three 

different runs.  

 

3.2.7 Complexes adsorption on glass substrates 

 

After preparation PEGylated complexes were adsorbed by 2 h incubation on glass 

substrates. In order to evaluate the adsorption efficiency by fluorescence measures, 

plasmid DNA was labeled with Cy5 dye using Label IT® Kit (Mirus Bio) and 

DNA concentration of PEG-PEIpDNA complexes solutions was monitored before 

and after adsorption. Different polyplexes solutions at known DNA-Cy5 

concentration (6 – 12 – 19 – 24 μg mL
-1

) were adsorbed on Φ 12 mm glass slides 
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(Knittel glass, Germany) for 2 h at room temperature. After this incubation time, 

DNA-Cy5 concentration of the unbound complexes was detected via a standard 

curve, by measuring the fluorescence of DNA-Cy5 at 633 nm in a multi-well plate 

spectrofluorometer (Enspire 2300, Perkin Elmer, USA). The complexes adsorption 

efficiency was expressed as the difference between the complexes concentration 

initially incubated on the substrate and the concentration of unbound complexes 

after the incubation time, normalized on initial concentration, in percentage  

          

    
     

Where [Ci] and [Cf] are the initial and final concentrations of complexes solutions 

measured before and after adsorption process, respectively. The experiments were 

repeated in triplicate with different samples, for each DNA concentration tested. 

The density of DNA complexes immobilized to each sample was determined by 

normalizing the amount bound to area of substrate.  

 

3.2.8 Characterization of complexes modified substrates: AFM – SEM. 

 

Morphology and surface distribution of adsorbed complexes were scanned by 

atomic force and electron microscopy (AFM - SEM). Polyplexes was prepared and 

immobilized on glass substrates as described above. Two kind of samples were 

prepared with different amount of PEGylated complexes immobilized (1 – 2 μg 

DNA), after adsorption process, complexes modified substrates were rinsed with 

Milli-Q water to remove any traces of salt on surface, then the samples were 

allowed to dry in air. AFM experiments were carried out in “dry” conditions with a 

BioAFM NanoWizard II (JPK Instruments, Berlin, Germany) with a MLCT 

(Bruker, Billerica, MA, USA) silicon tip in contact mode at a scan rate of 1 Hz 

with a spring constant around 0.01 N m
-1

. Multiple measurements at different 

magnifications were taken in air, at room temperature, at 1240 x 1240 pixels 

resolution to obtain a good representation of the whole surface. Complexes 
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modified substrates were processed for visualization also by scanning electron 

microscopy (SEM). After complexes immobilization, samples were mounted on 

SEM stubs and coated using a SEM coating system (Cressingthon, 208 HR, UK) 

with 5 nm of platinum-palladium under an argon atmosphere, and analyzed by 

SEM (Zeiss, FEG Ultraplus, Germany) at an accelerating voltage of 8.7 kV, and at 

variable magnifications.  

 

3.2.9 Substrate-mediated transfection studies  

 

For substrate-mediated transfection studies, PEG-PEIpDNA complexes (1ug - 2ug 

DNA) generated at N/P ratio of 5 were adsorbed at the surface of glass substrates 

(Φ 12 mm Fluorodish, World Precision Instruments Ltd). Immediately following 

complexes immobilization, NIH3T3 cells were plated on complexes modified 

substrates at a density of 7000 cells cm
-2 

and incubated in culture medium at 37 °C 

and 5% CO2 until transfection was analyzed. The efficiency of gene transfer was 

monitored by expression of reporter transgene encoding for green fluorescent 

protein. Control studies were performed through bolus delivery of PEGylated 

complexes with NIH3T3 cells plated on Φ 12 mm fluorodish at density of 7000 

cells cm
-2

. Day after, the same the amount of DNA immobilized to the substrates 

was added free to the previously seeded cells for bolus delivery. Usually, the 

complexes deliver by bolus method were generated according to the same quantity 

of immobilized DNA on substrate for reverse transfection but in 10% of the 

volume [16]. Transfection was characterized through confocal laser scanning 

microscopy (CLSM). After scheduled incubation times, samples were fixed with 

4% paraformaldehyde (Sigma Aldrich, USA) for 20 min and stained with 40,6-

diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) (maximum excitation at 358 

nm; maximum emission at 461 nm) for nucleus detection. Transfection analyses 

were carried out using a laser scanning confocal microscope (Leica TCS SP5) 
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equipped with a 25 X objective. Image resolution was fixed to 1024 X 1024 pixels. 

Samples were detect by 2P (two-photon)-mode, 700nm laser line emitted by a 

Coherent Chameleon Ultra Laser and an argon laser, at wavelengths of 488 nm. 

The emitted fluorescence was detected between 420 and 480 nm and between 500 

and 530 nm, through different detector channels. The percentage of transfected 

cells was calculated as the ratio of the transfected cells, GFP-expressing cells, and 

total cell number, DAPI-stained cells, quantified by analysis of images using Image 

J software. All experimental conditions were performed in triplicate. 

 

3.2.10 Cellular internalization of DNA complexes 

To evaluated the amount of DNA complexes internalized by the cells after 

incubation on modified substrates, fluorescence of intracellular complexes was 

monitored by confocal laser scanning microscopy (CLSM). Samples were prepared 

as described above, immobilizing Cy5 labeled polyplexes at glass substrates and 

seeding NIH3T3 cells after adsorption process. Cells were harvested 24, 48, 72 h 

after exposure to complexes modified substrates and reseeded on cell culture dishes 

(Fluorodish), after 24 h culture samples were fixed using 4% paraformaldehyde 

(Sigma Aldrich) for 20 min at RT. To detect fluorescence intracellular, an inverted 

confocal microscope Leica TCS SP5 II equipped with a 63X/1.4 NA oil objective 

was used. Excitation of rhodamine-labeled PEI and Cy5-labeled pDNA was 

achieved using, respectively, the 543 nm and 633 nm excitation line, while the 

emitted fluorescence was detected, between 550 and 610 nm for rhodamine 

detection and between 650 and 750 nm for Cy5 detection. Image resolution was 

fixed to 1024 x 1024 pixels. The fluorescence of the PEGylated complexes 

internalized by the cells at different time points was quantified using Image J 

software. Data were reported as the percentage of cellular area (Acell)occupied by 

the internalized fluorescent complexes (Acomp) 
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    . 

 At least 15 cells were collected and analysed for each time point and each 

substrate. 

 

3.2.11 Lysosome co-localization 

 

To monitoring the amount of the internalized complexes co-localized with 

lysosomal compartments, cells on substrates and harvested from complexes 

modified substrates were incubated with 0.5 mL Lysotracker Red DND-99 

(Molecular Probes, Invitrogen) for 30 min at room temperature prior to confocal 

acquisition. Image were acquired with inverted SP5 Leica microscope equipped 

with a 63X oil immersion objective a resolution of 1024 x 1024 pixels. Sequential 

scanning was used to control for spectral overlap between fluorophores, with 8 line 

averaging to improve signal-to-noise ratios. Intracellular DNA-Cy5 complexes 

were visualized by excitation by a HeNe laser at 633 nm and fluorescence was 

observed at 650–750 nm, while lysosome were visualized by excitation by a HeNe 

laser at 543 nm and fluorescence was observed at 550–610 nm. Quantification of 

DNA complex localization within lysosomal compartments was estimated by 

calculation of Pearson’s coefficient using NIH ImageJ software JACoP plug-in 

[17]. 

 

3.2.12 Statistical analysis 

 

All quantitative date were reported as means ± standard deviation (SD). Statistical 

analyses were performed using a one-way analysis of variance (ANOVA). Results 
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were compared by analysis of variance (ANOVA) and a p-value < 0.05 was 

considered statistically significant. 

 

3.3 Results and Discussions 

 

3.3.1 PEG-PEI conjugate characterization  

PEG-PEI conjugation was characterized by 
1
H-NMR spectroscopy in D2O. 

1
H-

NMR spectra integration (Fig. 1) indicates that in the PEG-PEI copolymer there are 

about 1.5 PEG molecules for each PEI macromolecule [18] 

 

 

Figure 1 1HNMR spectrum of PEG-PEI copolymer in D2O. PEG substitution was determined by 

comparing the peaks of CH2CH2O (3.6 ppm) with CH2CH2N (2.7 – 2.9 ppm). 
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3.3.2 Size and Z-potential of PEGylated complexes 

Size and zeta potential of PEG-PEIpDNA complexes formed in water at N/P ratio 

of 5 were investigated by Zetasizer Nano-ZS. Results of DLS measurements 

indicate that PEGylated complexes were 133 ± 20 nm in size with a net charge of 

27 ± 7 mV (Figure 2). The polydispersity index (PDI) was approximately 0.1, thus 

indicating narrow size distribution, high uniformity in particle size distribution and 

overall general homogeneity of the sample. The size and surface charge of the 

complexes are both important parameters for their interaction and entry into cells 

[19, 20]. Adding PEG molecules on PEI/DNA complexes led a decrease of size and 

a change in shape of the adsorbed polyplexes which affect their transfection 

capability [12].  

 

 

Figure 2 Representative dynamic light scattering (DLS) spectra. a) Hydrodinamic size distribution b) 

zeta-potential of PEG-PEI-DNA complexes at N/P ratio of 5 measured in double distilled water. 

 

 

a)

b)
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3.3.3 Characterization of complexes modified substrates  

Morphology and distribution of PEG/PEIpDNA complexes adsorbed at glass 

substrates were assessed by atomic force and electron microscopy (AFM - SEM). 

SEM analysis of substrate surface have shown the circular morphology of the 

immobilized complexes and their surface distribution on glass substrates. In 

particular the figure 3, show an high density of complexes on substrate but indicate 

also a likely complexes aggregation, also as shown by the dimensions of 

fluorescent spots present on substrates in the cofocal images (Figure 4) 

 

 

Figure 3 SEM images of PEGylated complexes adsorbed to a glass substrate. 
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Figure 4 CLSM images of PEGylated complexes adsorbed to a glass substrate. (A) DNA-Cy5, (B) PEI-

Rhod, (C) merge of A and B images. 

 

 

Scanning of the substrates with different amounts of adsorbed complexes by atomic 

force microscopy (AFM), has displayed the different distribution of adsorbed 

complexes on the two kind of samples (1 – 2 μg DNA), but also the presence of 

larger aggregates on substrates with greater amount of immobilized complexes 

(Fig. 5).
 
The 3D projections of the AFM images highlight the feature heights of the 

complexes adsorbed on substrates, in particular, the adsorption of 1 μg or 2 μg 

DNA complexes produce surface protrusions with average heights of 110 nm and 

240 nm, respectively. The latter height values of adsorbed complexes are bigger 

than the characteristic diameter of PEGylated complexes (ca. 100-150 nm) [21, 22], 

the differences are most likely due to the formation of aggregates caused by the 

method of DNA complexes immobilization [23, 24].  

 

24 μm

A CB
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Figure 5 AFM images of complexes modified substrates. a) and c) 1 μg DNA complexes immobilized to 

glass substrate images at 50 μm and 100 μm magnification, respectively. b) and d) 2 μg DNA complexes 

adsorbed to substrate images at 50 and 100 μm  of magnification, respectively 

 

3.3.4 Complexes adsorption efficiency  

Complexes adsorption efficiency was calculated monitoring DNA complexes 

concentration, before and after immobilization process, by fluorescence measures 

of the DNA-Cy5 complexes present in solution. Results in table 1 indicate that 

varying the experimental DNA concentrations, the percentage of the PEGylated 

complexes immobilized at the surface of the glass substrates is on average 67 ± 3 

% concerning the amount of DNA complexes initially measured and incubated on 

substrates. Therefore, the surface density that complexes can cover changes with 

the DNA concentration at which the complexes are formed. Probably, high 

a) b)

d)
c)
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concentrations of complexes in solution involve their aggregation that prevents the 

interaction with substrate, resulting in lower adsorption efficiency.  

 

 

Table 1 Adsorption efficiency of PEGylated complexes to glass substrates. Ci initial concentration of 
complexes before adsorption process, μgi DNA quantities applied to the substrates before immobilization, 
Cf concentration of unbound complexes solution, % adsorption calculating as different percentage between 
the two concentration values 

 

 

3.3.5 Transfection efficiency  

Substrate-mediated transfection by PEGylated complexes adsorbed at glass 

substrates is influenced by DNA density immobilized on substrate. The percentage 

of transfected NIH3T3 cells by surface-adsorbed complexes increased with the 

amount of immobilized DNA-complexes ( 1 – 2 μg DNA) [Fig. 6 a]. Transfection 

efficiency was depends upon an appropriate balance between the time of exposure 

of the cells to complexes modified substrates and the amount of immobilized DNA. 

At 24 h transfection not occur for the samples with lower amount of DNA 

complexes adsorbed (1ug). Maximal number of transfected cells (26%) were 

observed with the highest quantity of surface-bound complexes (2 μg) in 48 h. For 

bolus delivery (Fig.6 b), addition of 0.7 μg of DNA complexes, which correspond 

to the effective amount of complexes adsorbed on substrate with lower DNA 

concentration, assure a transfection of 20% of the cell population in 48 h. This 

Ci

(ng/uL)
μgi

DNA
Cf

(ng/uL)
% Adsorption Surface 

Density
(μg/cm2)

6 0.5 0.75 87 0.43

12 1 3 70 0.7

19 1.5 6 68 1.02

24 2 8.5 65 1.22
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value of transfection efficiency is reached in 24 h with 1.4 μg of DNA complexes, 

which correspond to higher complexes functionalization of the substrate, added 

free in the control samples.  

 

 

Figure 6 Comparison of transfection efficiency by a) bolus and b) substrate-mediated delivery. blue bar for 
lower amount of complexes immobilized (1μg) or added free (0.7μg) in solution. red bar for higher amount 
of complexes immobilized (2μg) or free (1.4 μg) added free in solution 

 

3.3.6 Quantification and localization of internalized complexes  

To estimate the fraction of DNA complexes internalized by cells plated on 

modified substrates, NIH3T3 cells was detached from substrates at different time 

points, reseeded on inert dishes and fixed after 24 h. Fluorescence of intracellular 

complexes was monitored in time by CLSM analysis, and the amount of the DNA-

Cy5 complexes internalized, calculated by images elaboration, was expressed as 

the percentage area of the cells occupied by internalized complexes. Nearly all cells 

on surfaces with immobilized complexes had internalized DNA, at the same time, 

for substrate-mediated delivery, the majority of DNA complexes remained 

immobilized to the surface. Moreover, intracellular fluorescence of the internalized 

complexes was monitored at different time points (figure 7) . Results indicate that 

intracellular fluorescence increase until 48 h culture on complexes modified 
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substrates, no statistical variations were detect after this time point. This 

observation suggest a possible substrate release of complexes before cellular 

uptake. 

 

 

Figure 7 Quantification of internalized complexes by the cells seeded on modified substrates. Percentage 

cellular area occupied by internalized complexes during time 

 

 

We subsequently characterized the quantity of intracellular complexes co-localized 

with lysosomes. DNA complexes and lysosomes were imaged by confocal 

microscopy. The co-localization of DNA into lysosomal compartments was 

estimated by Pearson’s coefficient which describe how well are the DNA-Cy5 and 

lysosome-Rhod relate by a linear equation, if it will be equal to 1 all Cy5 voxels are 

exactly double in intensity than the Rhod ones. Taking in account this definition, 

we can conclude that for both samples and controls Pearson’s coefficient values 

indicate a lower percentage of internalized complexes co-localized with lysosomes 

(table 2) 
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Table 2 Pearson’s coefficient values 
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Chapter 4 

 

Specific adsorption of PEI/DNA complexes to 

fibronectin coated substrate through a peptide 

linker. 
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4.1 Introduction  

 

The opportunity to enhance gene transfer, characteristic of controlled delivery 

systems, is due to retention of elevated DNA concentration within the cellular 

microenvironment. The continued presence of the exogenous DNA during cell 

division, indeed, may also facilitate entry into the nucleus, during which the 

nuclear membrane is compromised [1]. Substrate-mediated delivery, in particular, 

involve the immobilization of gene vectors to a substrate that support cell adhesion, 

allowing for cellular internalization and reducing aggregation and mass transport 

limits [2]. Several strategies have been employed to associate DNA complexes 

with the substrate, including entrapment in gelatin followed by addition of the 

transfection reagent [3], poly-electrolyte layering of DNA [4], specific tethers 

through the biotin-avidin interaction [5-7] or non specific adsorption [8]. When 

delivered from a surface, the ability of nonviral particles to induce gene expression 

depends not only on their local concentration, but also on the tightness of their 

adsorption, on substrate surface chemistry, and on the presence of extracellular 

matrix (ECM) proteins [9]. DNA complexes can be adsorbed on uncoated substrate 

[10-14] or substrates coated with serum or extracellular matrix proteins to mediate 

cell adhesion and complex immobilization [15]. Gene transfer using collagen, for 

instance, is hypothesized to function by maintaining the DNA in situ, possibly due 

to limited transport through the collagen, until internalization by cells present 

locally [16, 17]. A similar strategy has been used by some viruses, which associate 

with extracellular matrix molecules (e.g., fibronectin) for enhanced uptake [18, 19]. 

More recently, synthetic systems that specifically bind viruses [20, 21] or nonviral 

DNA complexes [5] to a polymeric substrate are being developed. Manipulating 

the surface properties of a material through the adsorption of proteins, such as 

serum, mediates both DNA complex binding and cellular adhesion. Serum 

exposure on tissue-culture polystyrene substrates (TCPS) results in adsorption of 

fibronectin that supports cell adhesion [22], and immobilization of non-viral 
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vectors to the adsorbed proteins enhances gene transfer from the surface relative to 

no coating substrate [15]. Individual proteins or protein mixtures, such as serum, 

fibronectin, collagen, or laminin, are routinely deposited onto biomaterials to 

support cell adhesion [23-26]. In addition to mediating cell attachment and the 

immobilization of vectors, protein pre-adsorbed to surfaces, also used in reverse 

transfection, can improve transgene expression. The protein coating can potentially 

interface with cellular processes to direct internalization and intracellular 

trafficking [27-29]. Complexes delivered with protein may maintain conformations 

favorable for cellular uptake, or may be differentially trafficked. Several studies 

demonstrate that fibronectin deposited onto solid support dramatically increase the 

reverse transfection efficiency of polyplexes [8] and mediate the greatest levels of 

transgene expression compared to other extracellular matrix (ECM) proteins [15], 

which suggests an active role of fibronectin in the internalization and intracellular 

trafficking of gene complexes. Fibronectin is internalized by a caveolin-dependent 

pathway [29], and thus vectors associated with fibronectin may similarly be 

internalized via caveolae-mediated endocytosis [30]. Thus, the ECM protein targets 

the vector toward a specific internalization pathway that can influence the ultimate 

fate of the vector, as internalization via caveolae-mediated endocytosis may avoid 

the lysosome and subsequent degradation relative to internalization via clathrin 

mediated endocytosis [27, 28].  

Taking advantage of the adhesive properties and increased transfection efficiency 

induced by fibronectin coating, in this preliminary study we have specifically 

adsorbed DNA complexes to a solid substrate. In order to obtain a specific 

interaction between DNA complexes and fibronectin coated substrates, we have 

used a peptide linker with specific affinity for this protein. Several studies have 

shown fibronectin binding activity of synthetic peptides containing motifs, sites or 

some amino acids with particular affinity for a specific domain of the adhesion 

protein [31]. In particular, human plasma fibronectin was found to bind 

unexpectedly avidly to a 17 amino acid peptide (KRFKQDGGWSHWSPWSS) 
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from the second type I repeat of thrombospondin, an extracellular matrix 

glycoprotein. Roberts et al. have identified a hexapeptide (GGWSHW) within this 

sequence that accounts for this interaction. Furthermore, the peptide is a potent 

inhibitor of fibronectin binding to gelatin and of fibronectin-mediated cell adhesion 

to a gelatin or collagen matrix [31], which suggest the primarily interaction with 

the gelatin-binding domain of fibronectin. In this work, we have specifically 

immobilize PEI/DNA complexes to fibronectin coated substrates through the 

hexapetide GGWSHW, evaluating the effective affinity to fibronectin compared to 

a control peptide. Moreover, peptide has been conjugated with polyethylenimine 

(PEI), the product of this conjugation was adsorbed to fibronectin layer to allow the 

specific adsorption of PEI/DNA complexes. Finally, we have proposed a simple 

way to pattern the surface with fibronectin spots to create adhesive/transfective 

islands on solid substrate.  

 

 

4.2 Materials and Methods 

  

4.2.1 Materials 

 

Linear Polyethylenimine (L-PEI) with an average molecular weight of 25 kDa was 

purchased from Polysciences (Warrington, PA). Tetramethylrhodamine-conjugated 

linear PEI (JetPEI-fluoR) were purchased from Polyplus-transfection SA (7mM 

ammine content, Illkirch, France). The reporter plasmid encoding for enhanced 

green fluorescent protein (EGFP) driven by a cytomegalovirus (CMV) promoter 

was amplified in E. coli, extracted and purified from bacteria culture using Qiagen 

plasmid kit (Santa Clara, CA). Preliminary cellular adhesion studies were 
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performed with mouse embryo fibroblasts (NIH3T3), cultured at 37 °C and 5% 

CO2 in Dulbecco’s modified Eagle medium with 4,5 g L
-1

 glucose (DMEM, Gibco) 

supplemented with 10% Bovine Calf Serum (BCS, Gibco), 4 mM glutamine, 100 U 

mL
-1

 penicillin and 0.1 mg mL
-1

 streptomycin. For imaging, plasmid DNA 

(p
CMV

EGFP) was labeled with the cyanine dye Cy5 using Label IT® Tracker™ 

Intracellular Nucleic Acid Localization Kit purchased from Mirus Bio (Madison, 

WI, USA). Fibronectin from bovine plasma was purchased from Sigma Aldrich 

(St. Louis, MO, USA). Reagents for peptides synthesis (Fmoc-protected amino 

acids, resins, activation, and deprotection reagents) were obtained from Iris Biotech 

GmbH (Waldershofer Str. 49-51 95615 Marktredwitz, Deutschland) and InBios 

(Naples, Italy). Solvents for peptides synthesis and HPLC analyses were purchased 

from Sigma-Aldrich; reversed phase columns for peptide analysis and the LC–MS 

system were supplied respectively from Agilent Technologies and Waters (Milan, 

Italy). All chemicals were used as received.  

 

4.2.2 Peptides synthesis  

 

Solid phase peptide synthesis of fibronectin-adhesive peptide (6 aa) and control 

peptide (13 aa) was performed on a fully automated multichannel peptide 

synthesizer Biotage® Syro Wave™. The 6-mer and 13-mer peptides were 

synthesized in the amidate version, employing the solid phase method on a 50 μmol 

scale following standard Fmoc strategies. Rink-amide resin (substitution 0.45 

mmol/g) was used as solid support. Activation of amino acids was achieved using 

HBTU/HOBt/DIPEA (1:1:2). All couplings and deprotections were performed for 

15 and 10 min, respectivetly. Peptides were then removed from the resin, by 

treatment with a TFA/TIS/H2O (95:2.5:2.5, v/v/v) mixture for 90 min at room 

temperature; then, crude peptides were precipitated in cold ether, dissolved in a 

water/acetonitrile (1:1, v/v) mixture, and lyophilized. Product were purified by 
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preparative RP-HPLC on a Waters 2535 Quaternary Gradient Module, equipped 

with a 2489 UV/Visible detector and with an X-Bridge
TM

 BEH300 preparative 10 

× 100 mm C8, 5μm column, applying a linear gradient of 0.1% TFA CH3CN in 

0.1% TFA water from 5% to 70% over 30 min at a flow rate of 5 mL/min. Peptides 

purity (97%) and identity was confirmed by LC–MS analyses carried out on an 

Agilent 6530 Accurate-Mass Q-TOF LC/MS spectrometer with Zorbax RRHD 

Eclipse Plus C18 2.1 x 50 mm, 1.8 µm columns. Purified peptide were lyophilized 

and stored at −20 °C until use. 

 

4.2.3 Surface Plasmon Resonance  

 

The interactions between fibronectin with 6-mer peptide and 13-mer peptide were 

measured using the SPR technique with SensiQ Pioneer from AlfaTest (Rome, 

Italy). In order to measure the affinity of the peptides (analyte) with the protein 

(ligand), fibronectin was immobilized at a concentration of 10 µg/mL in a 10 mM 

acetate buffer pH 4.5 (flow 10 µL/min, injection time 20 min) on a COOH1 SensiQ 

sensor chip, using EDC/NHS chemistry (0.4 M EDC - 0.1 M NHS, flow 25µl/min, 

injection time 4 min), achieving a 1900 RU signal. Groups reactive residues were 

deactivated by treatment with ethanolamine hydrochloride 1 M, pH 8.5. The 

reference channel was prepared by activation with EDC/NHS and deactivation with 

ethanolamine. The binding assays were performed at 25 μL/min, with a contact 

time of 4 min, the 6-mer and 13-mer peptides were diluted in the buffer stroke, 

HBS (10 mM Hepes, 150 mM NaCl, 3 mM EDTA, pH 7.4).The injection of 

analytes (100 μL) was performed at the indicated concentrations. The association 

phase (kon) was followed for 180 s, whereas the dissociation phase (koff) was 

followed for 300 s. The complete dissociation of formed active complex was 

achieved by addition of 10 mM NaOH, for 60 s before each new cycle start. To 
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subtract the signal of the reference channel and evaluate the kinetic and 

thermodynamic parameters of the complex, the software QDAT analysis package 

(SensiQ Pioneer, AlfaTest) was used. For 6-mer peptide same experiment was 

conducted by One step injection as well. In this case an analyte concentration of 

826 µM was used with a flow rate of 25 µL min
-1

 and a 600 sec of dissociation 

time. In this experiment the volume of sample was configured as a percentage of 

the dispersion loop volume, so in order to have a longer plateau at full 

concentration the largest percentage (100%) was used. As to bulk standard cycles, a 

3% of sucrose was used. For all experiments, kinetic parameters for both peptides 

(hexa- and control peptide) were estimated assuming a 1:1 binding model and 

using QDAT software (SensiQ Technologies). 

 

 

4.2.4 Specific adsorption of hexapeptide to fibronectin  

In order to demonstrate the specific adsorption of 6-mer peptide to a fibronectin 

layer, a fixed peptide concentration solution (70 μM) was analyzed before and after 

adsorption process by RP-HPLC, following tryptophan signal at 280nm. The 

indicated amounts of protein were diluted in phosphate buffered saline (PBS), 

added to glass slides of 12 mm diameter (Knittel glass, Germany) and incubated for 

2 hours. In particular, the adsorption of the same concentration of the 6-mer peptide 

(70 μM) was tested on three different fibronectin coating concentrations (10 – 30 – 

50 μg mL
-1

) and on uncoated glass substrate, as control. 

 

4.2.5 PEI-peptide conjugation 

In order to synthesize a peptide–polymer hybrid a solid phase chemical synthesis 

method was used. Immediately after peptide synthesis, the amine group of the last 
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glycine residue of the hexapeptide (GGWSHW) was activated for 1 h by 

disuccimidyl carbonate (DSC, Sigma Aldrich) on the resin support in a synthesis 

column, while the side chains of other peptide residues were still protected. After 

washing the column to remove excess DSC, the activated peptide was mixed with a 

small excess of PEI 25 kDa (Polyscience, SA) and the two compounds were 

allowed to react for overnight. The column was washed again to remove free PEI. 

The peptides were then deprotected, cleaved from the resin, and precipitated with 

ether. The crude complex was purified by RP-HPLC as previously described for 

peptide purification. Since PEI is not detected by ESI-QTOF, HPLC most relevant 

peaks were tested by proton nuclear magnetic resonance spectrometry
 
(
1
H-NMR). 

HPLC fractions were lyophilized and resuspended in H2O/D2O mixture for NMR 

analysis. 
1
H-NMR spectra were recorded on an Agilent 600 MHz spectrometer 

equipped with a DD2 console and a OneNMRprobe. The formed complex (Figure 

1)  was tested by RP-HPLC, monitoring peptide and PEI UV signal, using a linear 

gradient as previously described. The same procedures were performed for the 

conjugation of PEI to peptide control. 

 

 

 

Figure 1 Chemical structure of PEI 25 kDa conjugated to 6-mer peptide through the formation of an 

amide bond  

 

PEI 25 kDa Hexapeptide (GGWSHW)



91 
 

 

 

4.2.6 Substrate coating, PEI/DNA complexes formation and immobilization  

 

To preliminary test the co-immobilization of PEI-peptide and PEI/DNA 

complexes, a fibronectin layer was immobilized to glass coverslips (Φ 12 mm) by 2 

h incubation. After protein adsorption, substrates were washed with 1 X PBS and 

further incubated for 2 h with PEI-peptide conjugate dissolved in water at final 

concentration of 16 μM. PEI/DNA complexes were formed in 150 mM NaCl at an 

N/P ratio of 5, adding PEI solution dropwise to a solution containing DNA, 

vortexed for 10 s and incubated for 15 min at room temperature [32]. Complexes, 1 

μg DNA for substrate, were immobilized by incubation on fibronectin coated glass 

slides modified with PEI-hexapeptide for 2 h and were then washed twice with 1 X 

PBS. In order to imaged cell on this substrates, 5000 cells were seeded on 

specifically adsorbed complexes to fibronectin coated glass substrates. After 24 h, 

samples were fixed with 4 % paraformaldehyde (Sigma Aldrich), and actin staining 

was performed by incubating samples with TRITC-phalloidin (Sigma) in PBS for 

30 min at room temperature.  

 

 

4.2.7 Indirect immunofluorescence 

 

Indirect immunofluorescence was performed on samples after cells plated on 

PEI/DNA complexes adsorbed specifically to through linker hexapeptide to detect 

fibronectin coat. The samples, prepared as described above, were incubated with 

0.5 % (w/v) bovine serum albumin (BSA, Sigma Aldrich) dissolved in phosphate 

buffer saline solution (PBS) for 30 min at RT to prevent non specific staining. 
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Then, they were stained by incubation for 1 h at RT with a specific mouse 

monoclonal antibody (Sigma Aldrich) with affinity for the fibronectin cell binding 

domain diluted at 1:200 in PBS 0.5 % BSA. Bound antibodies were revealed by 

incubation for 1 h with 1:500 Alexa-fluor 488 anti-mouse secondary antibodies 

(Invitrogen, Life Technologies) diluted in PBS 0.5 % BSA. After rinsing in 1 X 

PBS, the samples were investigated with a Leica TCS SP5 II confocal laser 

microscope, equipped with an argon laser, at a wavelength of 488 nm, and a HeNe 

laser, at a wavelength of 543 nm and 633 nm. Images were acquired with 25x 

objective at resolution of 1024 x 1024 pixel. 

 

4.2.8 Generation of adhesive/transfective islands  

In order to built adhesive/transfective islands, 500 μm diameter spots of protein 

was obtained through the stamp of fibronectin on glass slides. For the stamp 

fabrication, the negative of micropillars array (stamp) was tooled from a PMMA 

substrate by using the micro-milling technique (Mini-Mill/GX, Minitech 

Machinery Corporation), to form a cylindrical cavity with a diameter of 500 μm 

and a depth of 200 μm. Then, a flexible layer with micropillars was obtained by 

pouring poly(dimethylsiloxane) (PDMS, Dow Corning 184 Sylgard), mixed in ratio 

10:1 with curing agent on the above described master and under vacuum until 

complete disappearance of the air bubbles. Finally, PDMS was cured at 80 °C for 

30 min and peeled off from PMMA master. The quality of the stamps obtained was 

investigated under a microscope. The desired stamps were then placed in an 

ultrasonic bath containing 70% ethanol for 5 min for sterilization and then dried 

under a flow of nitrogen gas [33]. After drying, a plasma cleaner (Femto, Diener, 

Bӧblingen, Germany) was used to remove the surface layer of organic compounds 

and oxidize the surface of PDMS stamps. To print of the protein of glass surface, 

stamps were inked with 20 μl of fibronectin 50 μg ml
-1

, the solution was left at 
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room temperature for 10 min in order to bind protein to the surface of the stamp. 

Once the incubation was complete, the stamps were then immediately placed into 

contact with a glass coverslips for 10 s, then peeled off and the printed coverslip 

was dried for 2 h [34].  

 

 

 

Figure 2 Scheme of protein patterning strategy use to generate adhesion island cultures. The stamp was 

inked with fibronectin solution, before printing the protein onto a glass slide. 

 

 

4.3 Results and Discussions 

 

4.3.1 Peptide synthesis 

 

6-mer and 13-mer peptides used to test fibronectin affinity were chemically 

synthesized with good yields by SPPS, using Fmoc methodologies as C-terminal 

amidated derivatives and purified by RP-HPLC. Their identity and purity (averaged 

purity > 97%) were assessed by LC–MS. The table 1 show the amino acid 

sequences of two peptides, with expected and experimental molecular weight. The 

figures 3a and 3b display the LC–MS spectra of crude and pure hexapeptide, 
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respectively. Whereas, figures 4a and 4b show LC–MS spectra of crude and pure 

control peptide, respectively. 

 

 

Table 1 Amino acid composition of fibronectin binding peptides with theoretical (th) and experimental 

(exp) molecular weights (MW)  

 

 

 

Figure 3 LC-MS analysis of 6-mer peptide. (A) LC-MS spectrum of crude peptide, (B) LC-MS spectrum 

of pure peptide 

 

Amino Acid Sequence Theoretical MW (g mol-1) Experimental MW (g mol-1)

6-mer peptide GGWSHW 727.78 728.32

13-mer peptide WKVDFEEDTLPKD 1620.78 1621.79

A B
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Figure 4 LC-MS analysis of 13-mer peptide. (A) LC-MS spectrum of crude peptide and (B) LC-MS 

spectrum of pure peptide 

 

 

4.3.2. Hexapeptide-fibronectin binding affinity_SPR 

 

Several synthetic peptides from fibronectin have been shown to inhibit interactions 

of fibronectin with cell surface integrin receptors [35] Previous investigations have 

shown that both hexapeptide (GGWSHW) and 13-mer peptide binds specifically 

fibronectin, in particular, the latter is part of a 38 amino acid long motif contained 

into membrane receptors of Staphylococcus aureus [36]. 6-mer and 13-mer peptide 

ability to bind fibronectin was evaluated by surface plasmon resonance (SPR) 

experiments. Fibronectin (ligand) was immobilized on COOH1 chip, achieving 

1900 RU immobilization level, according to reported conditions (see Materials and 

Method section for details). Direct binding between fibronectin and 6-mer and 13-

mer peptides were performed by injecting peptides solutions at increasing 

concentrations from 3µM to 826µM for shorter peptide and from 4.7 µM to 1.2 

mM for the longer one. Only for 6-mer sequence a clear association to fibronectin 

A B
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protein was shown by SPR technique as demonstrated by the dose-response overlay 

of sensorgrams reported in figure 5a.  

 

 

Figure 10 Binding of 6-mer peptide and fibronectin protein. a) Conventional SPR experiment, analyte 

concentration ranging from 3 μM to 826 μM. b) One Step injection, analyte concentration of 826 μM. 

 

Employing a 1:1 interaction model, a low micromolar dissociation value for 6-mer 

peptide/fibronectin complex was shown. A good fitting was obtained using a 1:2 

interaction model, suggesting the presence on fibronectin sequence of two different 

a)

b)
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binding sites for 6-mer peptides. First site shows a higher and more specific affinity 

than the second one. (Table 2). 

 

 

Table 2 Kynetic parameters for both peptides (hexa- and control peptide) for Conventional and One 

Step experiments 

 

Using the same condition a One Step experiment was conducted as well. This kind 

of experiment is based on Taylor dispersion theory [37], so a unique concentration 

of peptide (826µM) was dispersed into running buffer directly in the flow cell in 

order to have a final sigmoidal profile.(Figure 5b). Employing a 1:1 interaction 

model, a low micromolar dissociation value for 6-mer peptide/fibronectin complex 

was shown, that was in according to conventional SPR experiment. Even with One 

Step injection, the presence of two binding sites (the first one  with a higher affinity 

and the second with a weak affinity) was confirmed. While for 13-mer peptide 

6-mer peptide

Conventional method

KD Rmax

1 site 490 ± 0.1 μM 256 ± 1

2 site 20 ± 0.2 μM 10 ± 2

One step

KD Rmax

1 site 3.96 ± 0.09 mM 700 ± 0.1

2 site 32.6 ± 0.05 μM 36.8 ± 0.3

13-mer peptide

Conventional method

KD Rmax

1 site 900 ± 0.2 mM 69.7 ± 0.9
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there is no a clear association to the protein, the figure 6 shows a typical aspecific 

sensorgram with a low millimolar dissociation value. This result probably suggest 

the importance of whole sequence, 38-mer peptide, for fibronectin binding. 

 

 

 

Figure 6 Binding of 13-mer peptide and fibronectin protein 

 

4.3.3 Binding specificity 

 

Adsorption specificity of peptide GGWSHW toward fibronectin was evaluated by 

RP-HPLC technique, measuring peptide concentration of unbound fraction after 

binding process. Three distintic layers of fibronectin at different concentrations (10 

– 30 – 50 μg ml
-1

) were used to test the specific adsorption of the 6-mer peptide at 

initial concentration of 70 μM. Figure 7 show three release profiles of the unbound 

peptide at different fibronectin layers. Higher peak reveal higher release from 

substrate with lower fibronectin concentration coat. While, lower peak show higher 
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adsorption to fibronectin coated substrate with higher concentration, therefore 

lower peptide concentration released.  

 

 

 

Figure 7 Reverse-phase-HPLC of 6-mer peptide specific binding on fibronectin coated glass. The 

chromatograms performed at 280 nm shows un bound peptide fractions at three different fibronectin 

layers. Black peak shows the 6-mer peptide release after incubation on 10 μg/mL fibronectin layer. 

unlike blue and green peaks show unbound peptide after binding with 30 and 50 μg/mL protein layers, 

respectively. 

 

4.3.4 PEI-peptide conjugate characterization 

The conjugation of the hexapeptide (GGWSHW) to linear PEI 25 kDa was 

confirmed by 
1
H-NMR spectroscopy. Wang et al. reported that PEI metylen peak 

shifts from 2.5 to 3 ppm when it forms an amidic bond with the activated amino 

terminal group of the peptide. NMR spectrum of peptide-PEI is shown in fig. 8. A 

very intense peak is found at 3 ppm confirming the covalent binding of PEI to the 

peptide. Signals at around 10 ppm are typical of Trp indolic protons where signals 

in the region from 8 to6 ppm become to peptide backbond amide and side chains 

aromatic protons.  
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Figure 8 NMR spectra of PEI-6-mer and PEI-peptide complex. The shift of PEI peak (B) from 2.7 to 3.2 

ppm confirms the correct covalent bond between peptides and polymer, the signals at 10 ppm and at 8-6 

ppm typical of Trp residues and peptide backbone amide and side chains are visible in the spectrum (A). 

A

B
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The correct PEI-Peptide conjugation was confirmed by RP-HPLC, as well. In the 

figure 9 PEI-peptide crude complex chromatogram was reported. The presence of a 

non sharp peak at 230 nm that covers tryptophan peak at 280nm indicates the 

correct complex formation for both peptides. 

 

Figure 9 RP-HPLC analysis of PEI-peptide complex. a) 6-mer complex at 280 nm in blue and at 220 nm 

in black. The presence of a non sharpe peak at 220 nm confirms the correct formation of the complex 

that is not visible at 280 nm.  

 

4.3.5 Imaging of PEI/DNA complexes specifically adsorbed to fibronectin 

coated substrates and adhesive/transfective islands 

 

Results of immunofluorescence on samples with cells seeded on PEI/DNA 

complexes specifically adsorbed to fibronectin coated substrates and fibronectin 

stamps to glass slides such as adhesive islands were shown in the figure 10 and 11. 

Figures show blue spots of PEI/DNA complexes adsorbed to green layer/spots of 

fibronectin and cell seeded on this system with red cytoskeleton.  
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Figure 10 CLSM image of cell on complexes specifically adsorbed to fibronectin coated substrate 

through linker 6-mer peptide  

 

 

Figure 11 CLSM image of array of printed fibronectin spots.  3×3 array of 500 um diameter islands of 

fluorescently labeled IgG generated by contact printing 

 

250 μm
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