
UNIVERSITÀ DEGLI STUDI DI NAPOLI 
  

“FEDERICO II” 

  
Scuola Politecnica e delle Scienze di Base 

  
  

Dottorato di ricerca in Biologia Applicata 
  

XXVII Ciclo 
  
  

Tesi di Dottorato  
 
 

Regulation of photosynthetic activity of crop species subjected to 
abiotic environmental stresses  

  
Coordinatore             Candidato                        Tutor 
Ch.mo Prof.                         Dott.                              Prof. 
Ezio Ricca     Gianpiero Guida                       Carmen Arena 
 
                       Co-tutor 
                     Dott Pasquale Giorio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 2!

Table of contents 
 
List of figures                    3 
List of tables                    4 
Abbreviations                    5 
Acknowledgments                   6 
 
Chapter 1 – General introduction           7 
 
1.1 Effects of abiotic stresses on plants          8 
1.2 Photosynthesis            9 

1.2.1 Light Harvesting           9 
1.2.2 Photosynthetic electron transport chain       9 
1.2.3 The Calvin cycle         12 
1.2.4 Rubisco          13 

1.3 Plant responses to water Stress        15 
1.4 Plant responses to salt stress        17 
1.5 General Aim           19 
 
Chapter 2 – Photosynthetic and biochemical responses to soil water deficit and 
 re-watering of two long storage tomato landraces (Solanum lycopersicum, L.) 22 
 
2.1 Abstract           23 
2.2 Introduction           23 
2.3 Materials and methods         24 
2.4 Results            29 
2.5 Discussion            36 
2.6 Conclusions            42 
  
Chapter 3 – Physiological responses to different levels of salinity of two 
 sweet pepper genotypes grown in a soilless system (Capsicum annuum, L.)              43 
 
3.1 Abstract           44 
3.2 Introduction           45 
3.3 Materials and methods         46 
3.4 Results            50 
3.5 Discussion            60 
3.6 Conclusions            66 
 
Chapter 4 – “Aglianico” grapevines grown in two nearby soils with distinct        
capability of water retention experienced different water stress intensities  
affecting vine water status and photosynthetic performances.(Vitis vinifera L.)        68 
 
4.1 Abstract           69 
4.2 Introduction           70 
4.3 Materials & methods         72 
4.4 Results            76 
4.5 Discussion           85 
4.6 Conclusions           92 
 
 



! 3!

General conclusions          
Bibliography           94 
 
List of Figures 
 
Chapter 1- Introduction  

Fig. 1. Schematic model of the major protein complexes implicated in electron                               10  
transport chain of photosynthesis. 

Fig. 2. Three stages of Calvin Cycle        13 

Fig. 3. Molecular graphic of Rubisco the most abundant protein on Earth. 14 

Fig. 4. Potted Tomato grown in glasshouse. (EXP chapter 2) 20 

Fig. 5. Pepper grown in soilless system in a glasshouse (EXP chapter 3) 20 

Fig. 6. Aglianico rain-fed vineyard grown in Mirabella Eclano (AV) (EXP Chapter 4) 20 

Fig. 7. Locale di Salina berries (EXP chapter 2) 20 

Fig. 8. Pizzutello di Sciacca berries (EXP chapter 2) 20 

Fig. 9. Cazzone giallo berry (EXP chapter 3) 20 

Fig. 10. Quadrato d’Asti berries (EXP chapter 3) 20 

Fig. 11. Aglianico grapes (EXP chapter 4) 20 

 

Chapter 2 

Fig. 1. Gas exchanges parameters  in Stress and Control treatments of the two  
pepper  genotypes during the 2012 and 2013 trials.      31 

  
Fig. 2. Chlorophyll a fluorescence parameters in Control and Stress treatments of the 

two genotypes, during the experiments in 2012 and 2013.      33 
!
Fig. 3. Abscisic acid and and proline concentrations, in control and treated leaves,  

at different stages of the two stress cycle and re-watering.     35 
!
Fig. 4. Trend of poly(ADP-ribose) polymerase activity measured in control and  

stressed leaves of the two examined tomato genotypes in 2012, a) and 2013, b).         36 
 

Chapter 3 

Fig. 1. Leaf water potential in 0, 30, 90 and 120 mM NaCl treatments of     50 
the two genotypes Cazzone Giallo (A) and Quadrato D’Asti (B) 

Fig. 2. Gas exchanges parameters in 0, 30, 90 and 120 mM NaCl treatments  
of the two genotypes Cazzone Giallo (A) and Quadrato D’Asti (B)    53 

Fig. 3. Maximal quantum efficiency of PSII (Fv/Fm,) in 0, 30, 90 and 120 mM  
NaCl treatments of the two genotypes Cazzone Giallo (CG) and  
Quadrato D’Asti (QA)    55 

Fig. 4. PSII maximal quantum efficiency under light conditions (Fv’/Fm’ A, B), actual  
quantum efficiency of PSII (ΦPSII, C, D) in 0, 30, 90 and 120 mM NaCl 
 treatments of the two genotypes “Cazzone Giallo” (CG) and  
“Quadrato D’Asti” (QA)    57 

Fig.!5.!Leaf!water!potential!(Ψl, red bars) and!osmotic!potential!(Ψπ, yellow bars) 



! 4!

 measured!on!DOE!158!in!Cazzone'Giallo'(CG)!and!Quadrato'd’Asti!(QA)!!!!!!!!!!!!!!!!!!!!57!
Fig 6 Gas exchanges parameters measured on DOE 148 in 0, 30, 90 and 120  

mM NaCl treatments of the two genotypes Cazzone Giallo  and 
 Quadrato D’Asti  58 

Fig 7 Chlorophyll a fluorescence parameters measured on DOE 109 148 in 0, 30, 90  
and 120 mM NaCl treatments of the two genotypes Cazzone Giallo  and  
Quadrato D’Asti 59 

Fig. 8 Plant leaf area of the two genotypes “Cazzone Giallo” (CG) and 
 “Quadrato D’Asti” (QA) measured on DOE 107. 60 

Fig. 9. Marketable yield of of the two genotypes “Cazzone Giallo” (CG) and  
“Quadrato D’Asti” (QA) measured at the end of experiment (DOE 158) 60 

 

Chapter 4 

Fig. 1. Soil and plant water status, in the two theses Calcisol (CAL) and  
Cambisol (CAM) during the two years of trial. 78 

 
Fig. 2. Gas exchanges parameters, in the two theses Calcisol (CAL) and  

Cambisol (CAM) during the two years of trial. 81 

Fig. 3. Chlorophyll a fluorescence parameters  in the two theses Calcisol (CAL) and  
Cambisol (CAM) during first and second year of experiment.  83 

Fig. 4. Optical chlorophyll content index (CCI) in the two theses Calcisol (CAL)  
and Cambisol (CAM) during first and second year of experiment. 84 

Fig. 5. Leaf area index measured on early, middle and late summer in first (A) and  
second (B) year in both Calcisol and Cambisol vines.  84 

Fig. 6. Relationships of intrinsic water-use efficiency (A/gs) and assimilation (A)  
with stomatal conductance (gs) in grapevines (V. vinifera L.) in first and  
second year of trials. 90 

 

 

List of Tables 

Chapter 1  

Table 1. Synopsis of the experimental activities.        21 

Chapter 2 

Table 1. Plant leaf area (PLA) and total dry weight (DW) measured at the end of  

trials in the two treatments of the two genotypes.       34 

Chapter 4 

Table 1. Must analysis from the vineyards in each year.                   92 

 
 



! 5!

Abbreviations 
A Assimilation 
ABA Abscissic acid 
ATP Adenosine triphosphate 
CET Cyclic electron transport 
Chl Chlorophyll 
3Chl*  Triplet excited state of chlorophyll 
Ci Intercellular CO2 concentration 
Cyt b6f  Cytochrome b6f complex 
DOE days of experiment  
E Transpiration 
EDTA Ethylenediaminetetraacetic acid 
Fd Ferredoxin 
FNR Ferredoxin NADP reductase 
Fv/Fm Maximal efficiency of photosystem PSII  
Fv’/Fm’ Maximal efficiency of photosystem PSII under light conditions 
gs Stomatal conductance 
LAI Leaf area index 
LHC  Light harvesting complex 
NADP Nicotinamide adenine dinucleotide phosphate  
NADPH Reduced nicotinamide  
1O2* Singlet oxygen 
3O2  Ground state oxygen  
ФPSII  Actual quantum efficiency of photosystem PSII 
PARP Poly(ADP-ribose) polymerase 
PC Plastocyanin 
PC-DF Principal component discriminant function 
Pheo Pheophytin 
PLA Plant leaf area 
PPFD Photosynthetic Photon Flux Density 
PQ Plastoquinone 
PSI Photosystem I 
PSII Photosystem II 
PSII ETR Primary electron donor of PSII 
P680 Oxidised P680 
P700 Primary electron donor of PSI 
QA Primary quinine electron acceptor of PSII 
QB Secondary quinine acceptor of PSII 
ROS Reactive oxygen species 
RUBISCO Ribulose 1,5 bisphosphate carboxylase oxygenase  
RuBP Ribulose bisphosphate  
SWC Soil water content 
θ Soil water content 
Ψπ Osmotic potential 
Ψl Leaf water potential  
TBS-T Tris-buffered saline tween-20 
WUE  Water use efficiency  



! 6!

!
!
Acknowledgment  

I am sincerely grateful to everyone who contributed in different ways to my research 
activity. In particular, I am deeply grateful to my main supervisor Prof. Carmen 
Arena, for her kind helpfulness and for giving me the opportunity to complete this 
program of study. I would also like to thank my external examiner Dr. Pasquale 
Giorio for his supervision: this thesis was made possible due to the masterly, 
guidance of him. I express my warmest thanks to Dr. Rossella Albrizio for her 
constant supportiveness, and her skillful help. A special thank goes to Dr. Riccardo 
d’Andria director of CNR-ISAFoM. Furthermore I would like to express my deepest 
gratitude to my kind colleagues at CNR-ISAFoM: Dr. Mohammed Houssemeddine 
Sellami, Dr. Roberta Buonomo, Dr. Marco Oliva, Dr. Angelo Basile, Dr. Antonello 
Bonfante, Dr. Roberto De Mascellis, Dr. Luca Vitale and Mrs. Angela Balsamo for 
their help, with a special mention to Dr. Carmela Mistretta for her endless patience.  

My special thanks also go to all the research groups who greatly contributed to carry 
out this research project:  
Dr. Stefania Grillo, Dr. Paolo Iovieno, Dr. Roberta Nurcato and to the whole research 
group of  “Institute of Biosciences and Bio-resources IBBR-CNR of Portici (NA)” 
Dr Accursio Venezia, Dr. Martina Caramante and the whole research group of 
“Agricultural Research Council Research Center for Vegetable Crops CRA of 
Pontecagnano (SA). 
Prof. Luigi Moio and to all the staff of  “Azienda Quintodecimo” in Mirabella 
Eclano;  
Prof. Anna De Maio of Laboratory of Biochemistry of University of Naples Federico II 
 
Finally I would like to thank my parents and my whole family who have always 
encouraged and supported my choices. 
 



! 7!

 

 

 

 

 

 

 

 

 

 

Chapter 1 
General introduction 

 

 

 

 

 

 

 

 

 

 

 

 



! 8!

 

1.1 Effects of Abiotic stresses on plants 
Abiotic stresses are able to affect, at a quantitative and qualitative level, crop yield in 

all cultivated land in the world (Boyer, 1982), because of causing changes in 

chemical and physical environmental conditions. Drought, salinity, extreme radiation 

and temperatures are the main factors limiting plant growth and productivity 

worldwide (Doupis et al., 2011). Although in most of cases different abiotic stresses 

have been deeply studied separately, crops are nearly always subjected to different 

combinations of them under field conditions (Mittler, 2006). 

Plants responses to abiotic stresses consist of morphological, physiological and 

biochemical changes that reduce stress exposure and/or limit damages, supporting 

recovery of impaired systems (Potters et al 2007). Understanding mechanisms that 

underlie plant responses to stress is very difficult due to the complexity of processes 

and molecules involved, in addition plants responses to combinations of stress are 

often different from those observed when each stress is applied separately. (Mittler, 

2006; Cramer et al., 2011).  

Photosynthesis is the most important physiological process in plants, which has direct 

effects on plants growth and crops productivity, and is deeply affected by 

environmental stresses (Chaves et al., 2003; Flexas et al., 2004; Chaves et al., 2009; 

Lawlor and Tezara, 2009; Pinheiro and Chaves, 2011). Abiotic stresses reduce 

photosynthesis damaging photosynthetic pigments, thylakoid’s membranes, the 

electron transport chain and CO2 fixation. On the other hand, according to their 

tolerance level, plants show several kinds of responses to abiotic stresses. Thus, it is 

important to study the effect of these stresses in order to understand the mechanism 

of resistance and tolerance observed in many species, to develop agricultural 

practices designed to increase plants productivity.  

In this thesis the effects on photosynthesis of two of the main abiotic stresses that 

threaten crop productivity and food supply around the world namely water stress and 

salt stress have been investigated.  
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1.2 Photosynthesis 
Photosynthesis is the process by which light energy is captured and converted into 

chemical energy in the bonds of sugars and other compounds. Carbohydrates are 

synthesized from water and carbon dioxide and the oxygen is the waste product. In 

plants this fundamental process is carried out in organelles called chloroplasts, which 

contain the photosynthetic apparatus. Photosynthesis consists of two phases: the 

light-dependent phase and the light-independent phase. 
 

1.2.1 Light Harvesting  
Light is captured by light harvesting pigments, leading to the formation of an excited 

state. The absorbed energy, named excitation energy, can be relocated by resonance 

transfer to the RCs to drive charge separation. This process is named light harvesting. 

It is realized in green plants by the use of antennae, which ensure efficient energy 

transfer to the RCs. The antennae of higher plants are divided into a proximal 

antenna, which is part of the RC, and the light harvesting complexes LHCI and 

LHCII, which differ in dimension and composition (Dang et al., 2008; Keren et al., 

2005; Picorel et al., 2004; Picorel et al., 2011). The pigments enclosed in the 

antennae are chlorophylls (chl a and chl b), xanthophylls and carotenoids (Li et al., 

2004; Lince and Vermaas 1998). The LHCs act like a bottleneck in trapping the right 

wavelength of light needed to get the charge separation in the RCs (Demmig-Adams 

and Adams 1996, Zhu et al., 2010). The absorbed energy is moved from one 

molecule to another by resonance (Cheng 2006). The LHCs include chlorophylls a 

and b and xanthophylls, whereas the proximal antennae bind only chlorophyll a and 

carotene.  
 

1.2.2 Photosynthetic electron transport chain  
The photosynthetic electron transport chain drives the movement of electrons from 

water to NADP accompanied by the net transfer of protons (H+) through the 

thylakoid membrane from the chloroplast stroma to the thylakoid lumen. The proton 
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electrochemical gradient achieved drives adenosine triphosphate (ATP) production 

by the chloroplast F0F1 ATP synthase (Andersson and Barber 1996, Barber and Tran 

2013, Genty and Harbinson 1996, Kramer and Crofts 1996, Owens 1996, Takahashi 

and Badger 2011). The electron transport chain (ETC) in the chloroplast implicates 2 

reaction centers: Photosystems PSII and PSI and a cytochrome b6f (cyt b6f) complex. 

These are linked via the mobile carriers plastoquinone and plastocyanin (Fig. 1). PSII 

is the first complex in the ETC. It contains the primary electron donor chlorophyll 

P680 in the RC and moves energy from water to plastoquinone. The PSII core is built 

by a dimer of homologous peptides: D1 (PsbA) and D2 (PsbD) and co-factors like 

pheophytin and plastoquinone. PSI has chlorophyll P700 as primary electron donor in 

the RC and transfers light energy from plastocyanin to ferredoxin (Fd). Electron 

transfer in PSI includes chlorophylls (Ao, A1) and FeS clusters FA, FB, Fx , Fd 

(Fromme and Mathis 2004; Vassiliev et al., 2001). The two photosystems have 

similar structures: they both have a core, which contains chlorophyll a and β-

carotene, surrounded by LHCs (LHCII in PSII and LHCI in PSI) (Amerongen and 

Croce 2013; Blankenship 2002; Croce and Amerongen 2013; Demmig-Adams and 

Adams 1996; Gilmore and Govindjee 1999; Owens 1996; Romero et al., 2010; 

Rutherford and Faller 2003). When charge separation begins, P680+ is formed, a 

Fig. 1 Schematic model of the major protein complexes implicated in electron transport chain of photosynthesis. 
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strong oxidant that takes electrons from water, making oxygen, and transfers them to 

pheophytin. The electrons are then moved to plastoquinone, with the charge on P680 

returning to a neutral state as a consequence of electrons obtained from a manganese 

center (Mn4OxCa). This is included in the oxygen-evolving center (OEC) on the 

lumenal side of the PSII RC (Kulik et al., 2007). The synthesis of oxygen from H2O, 

catalyzed by Mn4OxCa, also outcomes in the increase of protons concentration (H+) 

into the thylakoid lumen (Fig. 1). H+ release generates a pH gradient throughout the 

thylakoid membrane, which is used in the production of ATP (Barber and Tran 2013, 

Renger and Renger 2008, Takahashi and Badger 2011). Water oxidation releases four 

electrons and that is the only known biological reaction where water is split into its 

component parts (Romero et al., 2010; Scott 2008).  

The electrons accepted by plastoquinone are then transferred to the cyt b6f complex. 

This complex receives electrons from plastoquinol. The accepted electrons can be 

moved either throughout a linear or a cyclic (Q-cycle) electron transfer route. In the 

linear route, the electrons are transferred to the plastocyanin in the thylakoid lumen, 

through the rieske Fe-S protein and cyt f (Fig. 1). In the Q-cycle, instead, electrons 

from plastoquinol (PQH2) are used to reduce a second plastoquinone (PQ) moved via 

two b cytochromes (cyt b563). For each PQH2 oxidized, one electron is driven 

through each of these two route, so that, on average, each electron passes two times 

through the cyt b6f complex. For each oxidation of PQH2, two protons are released 

into the thylakoid lumen. The Reduction of PQ to PQH2 in the Q-cycle uptakes 2 

protons from the chloroplast stroma. Thus, the cyt b6f is responsible for a net 

movement of protons to the lumenal side of the membrane (Andersson and Barber 

1996, Barber and Tran 2013, Genty and Harbinson 1996a, Kramer and Crofts 1996, 

Owens 1996, Takahashi and Badger 2011). PSI gets light activated electrons from 

plastocyanin and moves them to Fd which is then oxidized by FNR to generate 

NADPH. NADPH synthesized is then used in the Calvin cycle (Foyer et al., 2012; 

Fromme and Mathis 2004). Reduced Fd can also reduce molecular oxygen to produce 

superoxide (O2
-) instead of NADPH. While a small fraction of electrons moved to 
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PSI is used in the production of O2
-, most is used to drive NADPH production (Foyer 

et al., 1994; Foyer et al., 2012).  
 

1.2.3 The Calvin cycle 
The Calvin cycle is a metabolic pathway that takes place in the stroma of the 

chloroplast. Carbon is incorporated in the cycle as CO2 and exits as Glyceraldehyde-

3-phosphate. The cycle can be divided into three phases: carbon fixation, reduction 

and regeneration (Fig. 2) (Klekowski, 1997). The ATP and NADPH needed for cycle 

reactions come from the light-dependent phase of the ETC.  

During phase 1 (carbon fixation), CO2 binds to a 5-carbon acceptor molecule, 

ribulose 1,5 bisphosphate (RuBP) to obtain an unstable six-carbon compound, 3-keto-

2- carboxyarabinitol-1,5-bisphosphate (3-Keto-CABP). This reaction is catalyzed by 

ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) with the unstable product 

splitting immediately into two molecules of 3-phosphoglyceric acid (PGA) (Araújo et 

al., 2014, Bowyer and Leegood 1997).  

CO2+RuBP!2PGA 

Through phase 2 (reduction), ATP and NADPH from the ETC are used to transform 

PGA in glycerate-3- phosphate (G3P) (Bowyer and Leegood 1997, Klekowski 1997). 

The latter is a precursor for sugar production. The third phase (regeneration), in 

which G3P is converted back to RuBP using ATP, completes the cycle. For every 

molecule of G3P obtained, three molecules of CO2 enter the cycle and the latter 

completes six times to generate 0.5 molecule of six-carbon glucose (C6H12O6). 

Consequently the cycle needs nine molecules of ATP and six molecules of NADPH 

for the net synthesis of one G3P and 0.5 molecule of C6H12O6 (Fig. 2) (Klekowski 

1997).  
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Fig. 2 Calvin Cycle. Stage 1 of the cycle: 3-phosphoglyceric acid (PGA) is formed. Stage 2: ATP and NADPH convert 

PGA to glycerate-3-phosphate (G3P). G3P must be produced six times to make 0.5 molecule of six-carbon glucose 

Stage 3: G3P is transformed back to RuBP using ATP for the completion of the cycle.  

 

1.2.4 Rubisco  
Rubisco is the most abundant protein on earth and is located in the chloroplast stroma 

(Feller 1998). Rubisco includes two subunits, the large (RbcL) and small (RbcS) 

subunits. In plants, these subunits form a holoenzyme consisting of 8 large and 8 

small subunits (Saschenbrecker et al., 2007; Spreitzer et al., 2005). The RbcL gene is 

contained in the chloroplast of plants and the resultant polypeptide has a molecular 

weight of 55-kDa. RbcL lead to the formation of the active site used for CO2 fixation 

and has both catalytic and regulatory sites. On the contrary, the RbcS gene is present 

in the nucleus of plants and the protein produced has a molecular weight of 13-kDa 

(Berg et al., 2002). RbcS improves the catalytic activity and CO2/O2 specificity of the 

RbcL subunits (Berg et al., 2002).  

Rubisco is an enzyme that catalyzes both the fixation of CO2 (carboxylation) and O2 
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(oxygenation) (Feller 1998). During carboxylation, from the reaction of RuBP and 

CO2, PGA formed is used for either sugar production or renewal of RuBP for the 

continuation of the Calvin cycle (Berg et al., 2002). However, during O2 fixation, 

Rubisco reacts with molecular oxygen instead of CO2, generating one molecule of 

PGA and one of phosphoglycolate (PG). PGA re-enters the Calvin cycle while the 

carbon in PG is involved through a series of reactions termed photorespiration (Berg 

et al. 2002; Bowyer and Leegood 1997). !
Rubisco is supposed to have evolved about 2.5 billion years ago in cyanobacteria 

when the atmosphere had a high concentration of CO2 and limited O2. Atmospheric 

CO2 dropped in the late Miocene and into Pleistocene – (23-2 Mya) as a consequence 

of hot or warm climates often deficient in inorganic CO2. This led to difficulty to 

discriminate between CO2 and O2 and adjustments in photosynthetic pathways as 

compensation. This resulted in the development of the photorespiration, CAM 

metabolism and C4 photosynthesis (Barsanti and Gualtieri 2006, Christin and 

Osborne 2013). These mechanisms increase CO2 concentration in cells where 

Rubisco is contained.  
 

Fig. 3 Molecular graphic of Rubisco, the most abundant protein on earth. 
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1.3 Plant responses to water stress. 
On a global scale, drought limits plant growth and productivity more than any other 

environmental abiotic stress and it is well known to have detrimental effects on them 

(Boyer, 1982).  

Water is one of the most important resources for the survival of plants and animals. 

Plants need it for photosynthesis, for nutrient supply and for cooling (Farooq et al, 

2009). Plants are sessile organisms and, unlike the animal they cannot move when 

environmental conditions become adverse. Consequently they must be able to 

respond and adapt to environmental conditions changes. Since water is a key 

resource, the ability to tolerate water stress is crucial.  

Water stress can be seen either as reduced water availability, or osmotic stress (high 

salt concentration). It can affect photosynthesis, respiration, growth and several other 

metabolic processes, and in more severe cases can lead plants to death (Jaleel et al., 

2009). In nature, depending on the local climate, plants can be subjected either to 

long or short period of water stress and thus many species have developed several 

kind of response or adaptation to enhance growth and survival rates (Keeley and 

Rundel, 2003). Water stress effects can be studied at morphological, physiological or 

biochemical levels in plants (Ghannoum 2009, Medrano et al., 2002). At a 

morphological level plants show changes in root, xylem and leaf anatomy (Ahmad 

2011) Generally plants exposed to drought condition exhibit an inhibition of root 

growth (Westgate and Boyer 1985). Xylem modification are reflected in reduction of 

vessel diameter, and with the onset of embolism (Lo Gullo et al., 1995; Tyree 2002), 

but the first evident effect the decrease of leaf water potential (Ψl), which expresses 

the free energy of Gibbs on molar volume basis. Ψl is compounded by osmotic 

potential and turgor pressure Ψl=Ψπ+Ψp (Taiz and Zeiger, 2002). Under intense 

water stress the accumulation of inorganic or organic solutes in cell, which decreases 

Ψπ, may non be sufficient to compensate the reduction of Ψl so Ψp approaches the 

point of no turgor (wilting point). Turgor pressure pushes the plasma membrane 

against the cell wall of plant. This pressure is caused by the osmotic flow of water 
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from an area of low solute concentration outside of the cell into the cell's vacuole, 

which has a higher solute concentration (Campbell et al., 2008). Under water 

shortage, turgor pressure is reduced and the plant cell is called plasmolysed 

(Campbell et al., 2008).  

It is well-known that water stress leads to inhibition of photosynthesis (Blum 2011, 

Chaves et al., 2003). However, the exact mechanism of this inhibition is still 

controversial (Chaves et al., 2009). In order to survive plants need to perform 

photosynthesis by absorbing water from the soil and CO2 from the atmosphere. Both 

CO2 uptake and water transpiration, are carried out in leaves through stomatal pores. 

Water transpiration in leaves drives water from the roots through the xylem. When 

stomata are open, at the same time, CO2 is adsorbed in and water vapour is diffused 

out of leaf. When stomata are closed, both transpiration and CO2 uptake are strongly 

reduced. In order to cope with water shortage and to prevent itself from dehydration, 

plants can regulate the amount of water lost by opening and closing stomata. 

There has been debate as to whether the inhibition of photosynthesis induced by 

water scarcity is due to stomatal or non-stomatal limitation (Chaves et al., 2009).  

 

Stomatal limitation causes a decline in photosynthesis as a result of stomatal closure, 

induced by the accumulation of high concentrations of abscisic acid (ABA), thus 

precluding CO2 entry. This is often considered as the earliest response of plants 

exposed to drought (Ghannoum 2009; Medrano et al., 2002). In the chloroplast, the 

thylakoid and stroma are more exposed to damages. It is well known that severe 

drought causes damages to photosystem II (PSII) (Cornic et al., 2004; Cousins et al., 

2002, Golding and Johnson 2003) but not to PSI (Golding and Johnson 2003, 

Shikanai 2007, Takahashi et al., 2009). Cornic et al. (2004) ascribed severe damage 

to PSII during water stress to a direct effect of the drop in the CO2 uptake of the 

chloroplast following the closure of stomata. In the stroma, CO2 shortage causes a 

decline in the activities of the Calvin cycle enzymes (Cornic et al., 2004; Cousins et 

al., 2002). Drought realizes this reduction by lowering intracellular CO2 
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concentration (Ci) and so reducing CO2 assimilation (Cousins et al., 2002). This 

causes the accumulation of ATP and NADPH and in turn to accumulation of reduced 

plastoquinol, which stimulates the formation of the reactive oxygen species singlet 

excited oxygen (1O2*) in PSII.  

 

1.4 Plant responses salt stress 
Soil salinization is one of the most serious factors affecting the productivity of 

agricultural crops (Munns 2008). Salinity interests more than 800 millions hectares of 

lands all over the world representing about the 6% of the total world’s lands (FAO 

2008). Soils are classified as saline when the electrical conductivity of a saturated 

paste (ECe) is 4 dS m‒1 (40 mM NaCl) or more (Brown, 2008).  

Salt stresses plants in two different ways: high concentration of salt in soil make it 

harder for root to adsorb water, and high concentration of salt in plants can be toxic 

(Munns 2008). As a consequence of these two leading effects, many others can be 

observed: nutritional disorders, oxidative stress, alteration of metabolic processes, 

reduction of cell division and expansion (Hasegawa et al., 2000; R. Munns, 2002; 

Zhu, 2007). All these factors affect seeds germination, plant growth and crop yield 

(Munns 2008).  

During the beginning and development of salt stress the main plant processes such as 

photosynthesis and protein synthesis are affected (Parida & Das, 2005). Plants 

respond to salinity stress in two phases: a rapid response to the increase in external 

osmotic pressure (starts immediately after the salt concentration around the roots 

increases to threshold levels, which decrease the new shoot growth) and a slower 

response due to the accumulation of Na+ and Cl- in leaves (salt accumulates to toxic 

concentrations and increase senescence of older leaves) (Munns and Tester, 2008).  

The effect of osmotic stress can be observed soon after the beginning of salt stress 

imposition and it lasts for the whole time in which it is applied, manifesting itself in 

inhibited cell expansion and division, as well as stomatal closure (Flowers, 2004; 

Munns, 2002). During the long-term exposure to stress, plants are affected by ionic 
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stress that can result in a premature senescence of adult leaves, and consequently in 

the reduction of photosynthetic area available (Cramer & Nowak, 1992). Moreover 

the excess of chloride compromises the function of several plant enzymes, causing 

cell swelling, resulting in the reduction of energy production and in the occurrence of 

other several physiological damages (Larcher 1980). Ionic stress is revealed in 

premature senescence of older leaves and in several other symptoms of toxicity, such 

as chlorosis and necrosis in mature leaves.  

Plant adaptations to salinity can follow three pathways: (I) osmotic stress tolerance, 

(II) Na+ exclusion and (III) tissue tolerance. Osmotic stress tolerance implicates a 

reduction in both root and leaf cells expansion causing stomatal closure (rapid 

response); Na+ exclusion by roots ensures that Na+ does not accumulate to toxic 

concentrations within leaves; in tissue tolerance, plants compartmentalize Na+ and 

Cl‒ at the cellular and intercellular level, to avoid the toxic concentrations within the 

cytoplasm (Munns and Tester, 2008).  

Photosynthesis is deeply affected by salt stress. Salinity in soil either causes short-

term or long-term effects on this process (Parida and Das, 2005). Salinity in soil 

prevents water uptake by plants, leading to stomatal closure and reduction of water 

release from transpiration (Hsiao, 1973; Fricke et al., 2004; Munns and Tester, 2008; 

Negi et al., 2014). Stomatal closure under salinity occurs because of loss in leaf 

turgor (Munns and Tester, 2008; Chaves et al., 2009). As a consequence, 

photosynthesis is inhibited, due to CO2 shortage. Although low photosynthetic rates 

initially occur due to the stomatal closure, as salt stress becomes more intense, 

photosynthesis is inhibited due to metabolic damages (Cornic et al., 1989; Sharkey, 

1990; Cornic and Briantais, 1991; Panković et al., 1999). In addition salt seems to 

limit CO2 diffusion through the leaf mesophyll (Flexas et al., 2004; Flexas et al., 

2007). This could be caused by physical alterations in the structure of intercellular 

spaces caused by leaf shrinkage (Lawlor and Cornic, 2002) or changes in the 

biochemistry or membrane permeability (Gillon and Yakir, 2000; Flexas et al., 2008).  
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1.5 General Aim 
This thesis aimed to study regulations of photosynthetic activity of plants under two 
of the most important abiotic stresses: water stress and salt stress. We mainly focused 
on the physiological and biochemical mechanisms that regulate growth and 
productivity under limiting conditions, in order to acquire a better understanding of 
the complex defense responses of plants to environmental abiotic stresses, which 
represent the greatest global constraints for agriculture.  
In order to tackle such broad aim, an integrated approach was necessary. This study 
was carried out on some specific crops with the peculiar purpose to test cultivars that 
are tolerant to drought or salinity used under harsh environments. Although abiotic 
stresses have been largely studied for tomato, pepper and grape species, the specific 
behavior of many local and typical cultivars and landraces to cope with drought and 
salinity problems is still new. Hence, the general aim of this work was pursued 
through three main experimental activities, illustrated in chapters 2-4. Chapter 2 
focuses on two typical long-storage tomato landraces grown in greenhouse under 
extreme (gs< 0.01mol m-2 s-1) water stress conditions (Fig. 4); chapter 3 focuses on 
two pepper cultivars - grown in a soilless system differently behaving under severe 
(15.6 dS m-1) long-term salt stress conditions (Fig. 5); chapter 4 focuses on a wine 
grape cultivar, typical in Southern Italy, grown in two soils with contrasting 
hydrological properties for retaining water (Fig. 6). 
The three experiments have been part of multidisciplinary complex research projects, 
founded under umbrella of national and regional programs, as follow: 
“Conoscenze Integrate per Sostenibilità ed Innovazione del Made in Italy 
Agroalimentare”, (CISIA) Legge 19/2009 
“Valorizzazione di produzioni ortive campane di eccellenza con strumenti di 
genomica avanzata” (GenHort), Programma Operativo Nazionale Ricerca e 
Competitività 2007-2013. 
“Zonazione Viticola alla Scala Aziendale” (ZOViSA), Misura 124 “Cooperazione per 
lo sviluppo di nuovi prodotti, processi e tecnologie nei settori agricolo e alimentare e 
settore forestale”, PSR Campania 2007/2013. 
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Fig. 5 Pepper grown in soilless system in a glasshouse in 
Pontecagnano (SA)(EXP chapter 3) 

Fig. 6 Aglianico rain-fed vineyard grown on two different soils 
with different hydrological properties, in Mirabella Eclano (AV) 
(EXP Chapter 4)  

Fig. 4 Potted Tomato grown in glasshouse in Portici (NA). (EXP 
chapter 2) 

Fig. 7 Locale di Salina 
berries (EXP chapter 2) 

Fig. 8 Pizzutello di Sciacca 
berries (EXP chapter 2) 

Fig. 11 Aglianico grapes 
(EXP chapter 4) 

Fig. 9 Cazzone giallo berry 
(EXP chapter 3) 

Fig. 10 Quadrato D’Asti 
berries (EXP chapter 3) 
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Chapter 2 
“Photosynthetic and biochemical responses to soil water deficit and re-

watering of two long storage tomato landraces” 

(Solanum lycopersicum L.) 
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2.1 Abstract 

Long-storage tomato landraces are niche crops traditionally cultivated in southern 

Italy for drought tolerance, high nutritional and organoleptic quality of fruits. 

Nowadays, there is a growing interest in these crops as for exploiting biodiversity and 

the “Made in Italy” food production. In this study physiological and biochemical 

performances of two landraces has been studied in response to soil water deficit and 

re-watering. Potted-plant experiments were carried out in a greenhouse during 2012 

and 2013.  

During the first year, an intense water stress determined a decrease of both stomatal 

conductance (gs) and net CO2 assimilation (A) along with an increase in proline and 

ABA content, without any effect on photochemistry. In the second year, a more 

severe water stress leaded to a greater decline of both gs and A, and to a reduction in 

photochemistry. During the re-watering, the full recover of gas exchanges and 

photochemistry, indicated the occurrence of efficient stomatal control and 

photochemical regulation, rather than impairment of photosynthetic apparatus.  

The activity of poly ADP-ribose polymerase (PARP), a key regulator of the energy 

homeostasis during stress conditions, showed during the first cycle of stress an 

evident increase, followed by a decrease. Re-watering, instead, produced a new non-

expected increase of activity, which returned to control values during the second 

cycle of water stress.  

The two tomato landraces succeeded to cope with water stress by a useful synergy of 

biochemical and physiological regulatory mechanisms. 

 

2.2 Introduction 

Sustainable agriculture is a primary global goal to provide food for the increasing 

human population (Somerville, 2001). Typical losses of crop yields due to biotic and 

abiotic stresses may be, in a near future, magnified by impacts of global warming. 

For this reason, providing adequate food supplies for humankind may become 
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progressively hard (Bray et al., 2000, Takeda 2008). Drought is the main abiotic 

factor that limits the global productivity of major crops and, thus, it has become a 

major target of plant research (Boyer 2010). The expression “more crop per drop” 

has diffused among scientific communities during last years as future target for 

research (http://www.fao.org/english/newsroom/focus/2003/water.htm).    

The horticultural production in southern Italy plays an important role in the 

Mediterranean agriculture for the great number of vegetables, representing a precious 

source of biodiversity. In South of Italy long storage tomatoes are typical crops, 

which need to be preserved from genetic erosion. Recently, there is an increasing 

interest in them because of their beneficial nutritional properties and their low-inputs 

agronomic properties (e.g. the opportunity to cultivate them without irrigation) (Riggi 

et al., 2006; Siracusa et al., 2012).  

Long storage tomatoes are traditionally cultivated in warm and dry climate under rain 

fed conditions, as in southern Italy and Spain (Galmes et al., 2011; 2013). 

The C.N.R. CISIA project initiated a wide activity of research dedicated to the 

characterization and evaluation of these ecotypes. In this work a study of 

physiological and biochemical responses of two tomato landraces “Locale di Salina” 

and “Pizzutello di Sciacca” has been carried out, in order to study mechanisms of 

adaptation to preserve physiological activity of the plant under conditions of intense 

soil water deficit. This work could be used in genetic programs to improve the tomato 

resistance to water stress and, at the same time, to identify useful relationships 

between these mechanisms and crop productivity. 

 
 
2.3 Material and methods 

2.3.1 Plant material and growth conditions  

Two Sicilian long-term storage landraces, Locale di Salina (Lc) and Pizzutello di 

Sciacca (Pz), of tomato (Solanum lycopersicum, L.) were grown in a greenhouse of 

the Institute of Biosciences and Bioresources CNR–IBBR in Portici (Italy) and 

subjected to water stress and re-hydration, during spring season in 2012 and 2013.  
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Seeds were germinated in a sandy soil mixture, and when seedlings developed 2 true 

leaves (25 days after sowing) they were transplanted into 22 cm diameter (10 liter) 

plastic pots (one plant per pot), which were filled with soil. Dr. Cristina Patanè from 

IVALSA-CNR in Catania (Italy) kindly provided the seeds. 

 

2.3.2 Drought Irrigation treatments: water stress and re-hydration 

For each genotype, 12 plants were watered every other day to field capacity (Control 

treatment, Ctrl) during all the trial, while in other 12 plants irrigation was interrupted 

when they were thirty-five days old (first inflorescence visible, growth stage code 51 

in BBCH scale for solaneous fruit), and until stomatal conductance (gs) dropped to 

less than 0.020 mol m-2 s-1 (Stress treatment, St). Afterward, Stress treatment plants 

were re-irrigated for some days before a second period of no irrigation was imposed. 

Pots were arranged in a completely randomized block design, (24 blocks with 2 

plants per block, 1 per genotype). 

 

2.3.3 Soil water content 

The volumetric soil water content (θ, m3 m-3) was estimated from dielectric 

measurements performed by a Time Domain Reflectometer TDR100 (Campbell 

Scientific Inc. Logan, UT) through a 14.2 cm three-steel-wire probe installed in 3 

pots for each irrigation treatment and genotype, and applying the Topp’s equation 

(1980). The measurements were carried out on the same days of leaf gas-exchange 

measurement (see below). 

 

2.3.4 Leaf water status 

On 3 days in both years, leaf water potential (Ψw, MPa) was assessed at daytime (10-

12 h) by a Scholander pressure chamber (SAPS II, 3115, Soilmoisture Equipment 

Corp., Santa Barbara CA, USA) on the first fully-expanded and well-exposed leaf in 

three plants per treatment. Following cutting, the leaf was inserted into the pressure 

bomb within 30 s, and pressure was increased at a rate of 0.2 MPa min–1.  
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2.3.5 Leaf gas exchanges and modulated Chlorophyll a fluorescence emission 

 Net photosynthetic CO2 assimilation rate (A, µmol m-2 s-1) at saturating light, 

stomatal conductance to water vapour (gs, mol m-2 s-1) and leaf temperature were 

determined using a portable open-system gas-exchange and modulated fluorometer 

analyzer Li-6400XT (Li-Cor Biosciences, Lincoln, NE, USA,), with CO2 inside leaf 

chamber set to 400 µmol mol-1 air. A LED light source with emission peaks centered 

at 630 nm in the red and at 460 nm in the blue provided a PPFD equal to 1500 µmol 

(photons) m-2 s-1 (90% red, 10% blue). The instrument was also used to measure the 

fluorescence parameters. The measuring beam was set at intensity 5 (according to the 

instrument manual) with a modulation of 20 kHz.  After the measurement of Chl a 

fluorescence emission at steady-state under light conditions, F’, the maximum 

fluorescence emission, Fm’, was assessed upon induction by a 0.8 s super-saturating 

light pulse at 6000 µmol (photons) m-2 s-1, with a modulation of 20 kHz; then actinic 

light was briefly switched off while a far-red light of 8 µmol (photons) m-2 s-1 for 6 s 

was used to discharge the PSI photosystem to allow measurement of the minimum 

fluorescence emission under light conditions, F0’. The software of the instrument (Li-

Cor, 2011) calculated the gas-exchange parameters on the basis of von Caemmerer 

and Farquhar (1981) model, and the actual quantum efficiency (ϕPSII) or ΔF/Fm’= 

(Fm’– F’)/ Fm’ (Genty et al., 1989) and the maximal quantum yield under light 

conditions Fv’/Fm’ (Baker, 2008). Measurements were taken on 6-10 replicate plants 

per treatment. Leaf gas-exchange and fluorescence data were taken between 10:00 

and 13:00 on 11 days in 2012 and 8 days in 2013. 

 

2.3.6 Transient Chl a fluorescence emission:  

A continuous excitation Handy PEA fluorometer (Hansatech, Instruments Ltd., 

King’s Lynn, Norfolk, England) was used. The excitation red light pulse for 

fluorescence induction (FI) was emitted by a (red) 650 nm light diode source, and 

applied for 1 s at the maximal available photosynthetic photon flux density (PPFD) of 
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3,500 µmol (photon) m-2 s-1. Leaves were dark adapted for 30 min by means of the 

equipped white leaf-clips, prior to the assessment of the basal, Fo, and the peak Fp as 

a viable approximation of the maximum Chl a fluorescence emission, Fm (Giorio 

2011), from which the dark-adapted maximal quantum yield of PSII photochemistry 

was calculated as Fv/Fm = (Fm – Fo)/Fm (Baker, 2008). Measurements were taken on 6 

plants per treatment on 2 leaves per plant, chosen as above. 

 

2.3.7 Biomass determinations  

Plant leaf area (PLA, cm2) was measured at the end of experiment on the excised 

leaves of three plants per treatment using a scanning planimeter (Li-3100, LiCor, 

Lincoln, NE, U.S.A.). The instrument was equipped with a fluorescent source and a 

solid-state scanning camera to measure the area of leaves as they moved on a 

transparent conveyor. Leaves, stems, fruits and roots were oven‐dried at 70 °C for a 

few days until a stable weight was reached to assess dry biomass weight (D.W.). 

 

2.3.8 Weather station 

Air temperature (Ta, °C), relative humidity (RH, %) and solar radiation (Rs, W m-2) 

were acquired every 15 min by a data logger from related sensors (Watchdog data 

logger, Spectrum Technologies, Plainfield, IL, U.S.A.). 

 

2.3.9 Biochemical and molecular analysis 

During the experiment, leaf samples of three replicate plants for each treatment were 

collected by excising the leaf at the petiole, and quickly freezing it in liquid nitrogen. 

The tissue was ground to a powder in a pre-cooled mortar with liquid nitrogen and 

stored at -80 °C. 

 

2.3.10 Extraction and determination of leaf ABA content 

For ABA extraction, 150 mg of fine powder were added to 1.8 ml of distilled and 

autoclaved water in 2 ml tube, shaken at 4 °C overnight in darkness, and then 
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centrifuged at 10000 g for 10 min. Supernatant was diluted 50-fold with TBS buffer 

(50 mM TRIS, 1mM MgCl2, 150mM NaCl, pH 7.8). ABA content was analyzed by 

indirect enzyme-linked assay (ELISA) using the Phytodetek ABA test kit (Agdia, 

Elkhart, IN, USA) following the manufacturer’s instructions. Colour absorbance due 

from the reaction with substrate was read at 405 nm using a plate autoreader (1420 

Multilabel Counter Victor3
TM, PerkinElmer). The ABA concentration was determined 

following established procedures by the protocol included in the kit. 

 

2.3.11 Free-proline content 

Free-proline content was estimated according to the methods of Claussen et al. 

(2005). 250 mg of tissue powders were suspended in 3% sulphosalicylic acid 3% and 

filtered through a layer of glass-fiber filter (GF6 Macherey-Nagel). 1 ml of sample 

was mixed with 1 ml of glacial acetic acid and 1 ml of ninhydrin reagent (2,5 g 

ninhydrin/100 mL of a solution containing glacial acetic acid, distilled water and 

ortho-phosphoric acid 85% at a ratio of 6:3:1). The reaction mixture was incubated in 

a water bath at 100 °C for 1 h and after it was cooled for 5 minutes at room 

temperature. Absorbance of the samples was measured at 546 nm using a UV–

Visible spectrophotometer. The amount of proline in the samples was calculated 

using a standard curve and was reported in µmol proline g-1 of fresh weight. 

 

2.3.12 Preparation of homogenate for protein determination 

For samples preparation, 1 g of fine powder was suspended and homogenized by 

Ultra Turrax T8 (IKA WERKE, Staufen, Germany) in a buffer containing 10 Mm 

Tris HCl pH 7.0, 1 mM EDTA, 1mM, EGTA, 1 mM PhMeSO2F, 10 mM MgCl2, 5 

mM 2-mercaptoethanol, protease inhibitor cocktail (1%) and 0.5% NP-40 (1:4, w/v). 

After filtering through two layers of cheesecloth the homogenate was centrifuged at 

1500 g for 30 min at 4 °C, This procedure was repeated four times. Finally, the pellet 

was suspended in a small volume of the same buffer without NP40. Protein 

concentration was determined according to the method of Bradford et al. (1976). 
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2.3.13 Poly-ADP-ribose polymerase standard assay 

The enzymatic activity was assayed in�0.5 M Tris HCl pH 8.0, 50 mM MgCl2, 10 

mM DTT, and a defined amount (20 µg protein) of sample in the presence of 0.4 mM 

[32P]NAD (10.000 cpm/nmol) in a final volume of 50"µl as described in Faraone 

Mennella et al. (2009). After incubation for 20 min at 25 °C, the reaction was stopped 

by transferring it onto ice and by the addition of 20% (w/v) trichloroacetic acid (final 

concentration). The mixture was filtered through Millipore filters (HAWPP0001, 

0.45 mm) and washed with 7% trichloroacetic acid. The activity was measured as 

acid-insoluble radioactivity by liquid scintillation in a Beckman counter (model LS 

1701). One enzymatic milliunit catalyses the synthesis of 1nmol ADPribose/ min 

under standard conditions. 

 

2.3.14 Statistical analysis 

For soil water content, gas-exchange and fluorescence parameters, two factors 

(genotype and water regime) were analyzed together, according to a randomized 

complete block experimental design by Two Way ANOVA. Duncan test at 0.05 

probability level was used as mean separation test. For ABA and proline, the 

statistical significance was assessed by the Student’s t-test (p<0.05). 

 

2.4 Results 

2.4.1 Soil water content  

In both 2012 and 2013, volumetric soil water content (θ) before stress imposition 

(DOE 0) was 0.36 m3 m-3 for both Pz and Lc (Fig. 1 a, b), a value quite proximal to 

the maximum soil water capacity. Afterwards, as irrigation was interrupted in the 

Stress treatments, θ decreased to lower than 0.1 m3 m-3 within 10 days in the 2012 

and within 6 days in the 2013. In the latter case, θ further decreased to a value as low 

as 0.02 m3m-3 five days later (DOE 11). In both years, the restoration of irrigation 
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quickly re-increased θ, up to the values of the Wet treatments. Such a re-watering 

was continued for a week, after which a second withdrawal of irrigation was 

imposed. During this second period of no irrigation in 2012, θ decreased within about 

a week, to a similar minimum value observed in the previous stress period. As regard 

2013, measurements were stopped after 3 days of the second stress period, when θ in 

stress treatments was about 0.15 m3 m-3. 

2.4.2 Leaf gas exchanges  

Stomatal conductance (gs) followed similar patterns of soil water content (Fig. 1 c, d). 

In the first year, after about ten days of no irrigation in the Stress treatments, this 

parameter dropped to the quite low value of 0.021 mol m-2 s-1. However, in the 

second year, stomatal closure resulted in such a low gs value, within 6 days only. 

Subsequently, stomatal conductance continued to decrease reaching 0.006 mol m-2 s-1 

five days later (DOE 11) when θ reached the lowest observed value. Restoration of 

irrigation re-increased gs, up to the control value in 2012, and slightly higher in 2013. 

Since the start of second stress imposition, stomatal conductance dropped down to 

0.030 mol m-2 s-1 within 3 days in 2012 and in the same period to 0.140 mol m-2s-1 in 

2013 at a rate clearly lower than that observed for θ. However, most of gs recovering 

occurred within a couple of days in 2012 (65% in Pz and 75% in Lc), while it was 

less than 50% in 2013. As occurred for θ, about a week after the second withdrawal 

of irrigation in 2012 and 2013, gs dropped down to about same low values observed 

at the end of previous stress period. 

Patterns of net assimilation (A) for each treatment reflected stomatal conductance 

(Fig. 1 e, f). As for gs, average A was quite low, 2.3 µmol m-2 s-1 after ten days of 

interrupted irrigation in 2012, and as low as -0.5 µmol m-2 s-1 after only six days in 

2013, as compared with the control values of 15.8 µmol m-2 s-1 in 2012 and 8.95 µmol 

m-2s-1 in 2013. Interestingly, mainly in 2013 at the end of re-watering period, the 

Stress treatments showed gas-exchange parameters recovered at higher values than 
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control treatments. As for stomatal conductance, the second irrigation withdrawal 

induced a quite strong reduction in assimilation rate. 

 Fig. 1. Volumetric soil water content (θ, m3 m-3) a) and b), stomatal conductance to water vapour (gs, mol m2 s-1) c) and 
d), photosynthetic CO2 assimilation (A, µmol m2 s-1) e) and f), intercellular CO2 concentration (Ci, µmol mol air-1) g) and 
h) of Stress and Control treatments of the two genotypes during the 2012 and 2013 trials. Each point is the mean of six 
replicates. Vertical bars indicate the standard error of the mean. Downward and upward arrows indicate the start of 
withholding and restoration of irrigation respectively; grey area indicates the re-watering period.  
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2.4.3 Chlorophyll a fluorescence 

The (dark adapted) maximal quantum yield of PSII (Fv/Fm) showed a modest effect of 

irrigation in 2012 (Fig. 2, a), though with some variation throughout the experiment, 

but a clear effect in 2013 (Fig. 2 b). In the latter case, in the stress treatments of both 

genotypes Fv/Fm started to decrease on day 6 since interruption of irrigation. Such a 

decrease becomes more pronounced after 11 days (end of first period of no 

irrigation), when Fv/Fm in the Stress treatments was 0.596 in Lc and 0.652 in Pz, 

though a decrease was also observed in the control of Lc. The re-watering phase 

involved a full recovery of this parameter within a day, and after a week of 

rehydration it ranged 0.776-0.813 in all treatments and genotypes, with Stress 

treatments showing values slightly higher than Control treatments. After about a 

week of a second interruption of irrigation, Fv/Fm decreased to values comparable to 

those observed in the first stress period, as occurred for gas exchange parameters. 

The effective quantum efficiency of PSII (ΦPSII) in 2012 showed no appreciable 

difference between the Stress and Ctrl in both genotypes (Fig. 2 c), as occurred for 

Fv/Fm. In 2013, during first stress cycle ΦPSII declined in both the two genotypes to 

0.055 after 11 days of stress, as compared with an average of 0.130 in the Ctrl 

treatments (Fig. 2 d). After only 3 days of re-watering, the stressed plants rapidly 

recovered, and showed ΦPSII higher than control plants as occurred for gas-exchange 

and Fv/Fm. During the second interruption of irrigation, ΦPSII again decreased to about 

the minimum value observed in the previous stress period, similarly to both gas-

exchanges and Fv/Fm patterns. 
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 !
Fig. 2. Maximal quantum efficiency of PSII (Fv/Fm) a) and b), effective quantum efficiency of PSII (�PSII) c) and d) for 
control and stress treatments of the two genotypes, during the experiments in 2012 and 2013. Each point is the mean of 
40 measures for Fv/Fm and 6 measures for �PSII . Vertical bars indicate the standard error of the mean. Downward and 
upward arrows indicate the start of withholding and restoration of irrigation, respectively. Grey area indicates the whole 
re-watering period. 

 

2.4.4 Biomass determinations - Plant Leaf Area and Dry Weight 

The biometric measurements were carried out at the end of the trials (DOE=25) when 

plants had developed fruits. Plant size was quite higher in 2012 than 2013. This was 

due to the environmental conditions in the glasshouse, which were quite different in 

the two years of experiment. In 2013, the low temperature since transplantation had a 

further detrimental effects on plant growth as compared with the previous year. In 

both years, there were no genotype effects on both PLA and total DW, whereas 

irrigation effect was statistically significant in both years for both Pz and Lc. As an 

average for the two genotypes in 2012, the Wet treatments had PLA and total DW, 
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respectively, 1.2 and 1.3 fold higher than Stress treatments, whereas in 2013 they 

were 2.1 for PLA and 1.6 for total DW (Table 1). 

 
Year 

Treatments 

Lc St Lc Ctrl Pz St Pz Ctrl 

PLA (cm2) 2012 4123 6001 4437 5336 

2013 664 1242 724 1533 

DW (g) 2012 34.7 59.3 34.1 43.9 

2013 15.2 19.2 16.1 24.8 
 

Table 1 Plant leaf area (PLA) and total dry weight (DW) measured at the end of trials in the two treatments of 
the two genotypes. Each value is the mean of three replicates. 

 

2.4.5 Biochemical and molecular analyzes 

2.4.5.1 Foliar ABA and proline content  

At the end of the first period of interrupted irrigation in 2012, ABA spiked 6160 pmol 

g-1 in Pz St and 14440 pmol g-1 in Lc St (Fig. 3 a). After that, in response to the 

restored irrigation in both genotypes, ABA decreased to the basal level of 800 pmol 

g-1 observed for the Ctrl treatments throughout the experiment, and then at the end of 

the second period of no irrigation ABA re-increased to about previous peak values. In 

2013, the peaks in the first stress period and the recovering during the re-watering 

were pretty comparable with the previous year (Fig. 3 b). As regard the second stress 

imposition, ABA response was almost absent in St of Pz and halved in St of Lc, as 

compared with the previous peaks.  

As regard proline, in 2012 no response was observed after 10 days of stress in the 

first period of no irrigation, whereas peaks of about 5 µmol g-1 (FW) in St of Lc and 9 

µmol g-1 (FW) in St of Pz were observed after 8 days in the second period of 

interrupted irrigation (Fig. 3 c). In 2013, proline leaf content in the stress treatment of 

both genotypes spiked to about 3µmol g-1 (FW) after 11 days of no irrigation, 

whereas in the second stress period there was almost no response in St of Pz after 7 

days of stress while they both peaked around 5 µmol g-1 (FW) 3 days later (Fig. 3 d). 
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Likewise ABA, proline content in the stress treatments decreased to basal level of the 

control treatments in response to the restored irrigation.  

 

 

 

 

 

 

 

Fig. 3 Abscisic acid a) and b) and proline c) and d) concentration, in control and treated leaves, at different stages of the 
two stress cycle and re-watering. Values are the means of three biological replicates. Vertical bars indicate the standard 
error of the mean. Downward and upward arrows indicate the start of withholding and restoration of irrigation, 
respectively. Grey area indicates the whole re-watering period. 
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2.4.5.2 Poly(ADP-ribose) polymerase (PARP) activity 

PARP activity was measured in few occasions during the two experiments. In 2012, 

there was neither genotype nor stress effects on enzyme activity (Fig. 4 a). During the 

second year (2013), on sixth day after stress, the enzyme activity resulted about 8- 

and 2-fold higher than the control in Lc and in Pz leaves, respectively (Fig. 4 b). A 

more prolonged stress (DOE 11) induced a recovery of PARP activity to control 

levels. As seen for 2012, these values remained almost unchanged when leaves were 

subjected to the second cycle of water stress.  

 

 
2.5 Discussion 
 
2.5.1 Physiological responses 
In this study during the two years of experiment we monitored the soil volumetric 

water content (θ) of potted plants of Lc and Pz, and found that there was no 

significant difference in θ between the two cultivars under control, drought, or re-

watering conditions (Fig. 1 a, b). Therefore, this would indicate that in each year, 

water consumption did not differ between the two genotypes. However, in the second 

year experiment, the interruption of irrigation resulted in a more rapid decrease of θ if 

Fig. 4 Trend of poly(ADP-ribose) polymerase activity measured in control and stressed leaves of the two tomato genotypes in 
2012, a) and 2013, b). Vertical bars indicate the standard error of the mean. Downward and upward arrows indicate the start of 
withholding and restoration of irrigation, respectively. Grey area indicates the whole re-watering period. 
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compared to 2012. In fact, from Fig. 1 a) and b) it results that the slope of θ vs. DOE 

relationship in the first week of soil water deficit imposition was 3.43 and 5.22 m3 m-

3 day-1 in 2012 and in 2013, respectively. Moreover, the minimum θ value measured 

on DOE 10 in 2012 was reached in 2013 already 5 days earlier. Therefore, the second 

year experiment was characterized by a stronger soil water deficit than 2012. It 

should also be highlighted that the exponential relationship between soil moisture and 

soil matrical potential (Whalley, 2013) does imply that the water stress sensed by 

roots was even much stronger for plants in 2013 than 2012, as it can be deduced from 

data in Fig. 1 a) and b). As regard the re-watering, there were no significant 

differences in the patterns of soil moisture between the two years, whereas for the 

subsequent second water deficit imposition, a more rapid decreased of θ was 

observed for 2012 as compared to 2013. Those dynamics of soil moisture (the 

stressor) led to the occurrence of more stressful conditions sensed by plants in 2013 

as regard the first period of no irrigation and vice versa in 2012. Such different stress 

conditions were reflected in the physiological responses of plants. A strong stomatal 

closure was induced by soil water deficit in both years with stomatal conductance 

following the decrease in soil water content availability (Fig. 1 c, d). As for soil water 

content, in 2013, gs was quite low after 6 days of no irrigation, whereas in 2012 it 

required four more days to occur, confirming that plants were subjected to a higher 

degree of water stress in the first period of withdrawn irrigation as compared to the 

next year. Conversely, in the second period of irrigation withholding, gs decreased 

faster in the first year than in 2013, reflecting a similar behavior as for θ. Similar 

relationships between θ and gs were also evident during restoration of irrigation. Our 

data of stomatal behavior, reflecting patterns of soil moisture, are consistent with the 

well known mechanisms of roots sensing soil moisture, resulting in ABA produced in 

the root tissue, moving into the xylem and acting as a root to shoot signal to trig 

stomatal closure (Liu and Carns, 1961; Ohkuma et al., 1963; Cornforth et al., 1965; 

Patterson, 2001). Net photosynthetic rate (A) of control, and stress treatments as 
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shown in Fig. 1 e) and f) are comparable to the values reported for tomato grown 

under similar growth conditions (Liu et al., 2012; Rahman et al., 1999).  

In the present study net photosynthetic CO2 assimilation rate was strictly related to 

stomatal behavior. In fact similarly to gs, this parameter showed a stronger decrease 

during the first stress period of 2013, as compared with 2012. At that time the stress 

was so intense that a negative value for net assimilation rate was observed. As a 

result CO2 evolution was higher than gross CO2 assimilation, resulting in substomatal 

CO2 concentration (Ci) higher than ambient concentration (Ca) (Fig. 1, h) confirming 

that our un-irrigated plants suffered very stressful conditions. Interestingly, re-

watering induced a recovering of gas exchange parameters above the values observed 

in the control plants (Fig. 1 c, d, e, f). Such a behavior was also reported by de 

Carvalho (2010) on maize. The decrease in stomatal conductance in response to soil 

water deficit evidently caused a restriction of CO2 diffusion to the mesophyll, 

therefore limiting photosynthetic assimilation. However, a contribution of non-

stomatal limitation may have occurred. Souza et al. (2003) in potted Cowpea 

submitted to water deficit, found a rapid complete recovery of assimilation, within 3 

days of re-watering. This led the authors to argue that photosynthetic assimilation 

was not affected by either biochemistry or photochemistry impairments but only by 

stomatal closure. Similar plant responses to re-watering and same conclusions were 

reported by Rahman et al. (2007) in potted tomato cultivars submitted to soil water 

deficit in a greenhouse experiment. Our stressed plants also showed a rapid 

recovering in photosynthetic assimilation during re-watering. In fact, A of St plants 

rose to Ctrl values within just two days of re-watering both in 2012 and 2013 

experiments. Such a rapid recovery would imply also in our case that most of 

photosynthetic limitations should be ascribed to stomata rather than to non-stomatal 

effects (Souza et al., 2003; Cornic, 2000). However, non-stomatal component of 

photosynthetic limitations should not be completely excluded. Souza et al. (2003) 

assumed that transient non-stomatal limitations occurred because of the complete 

recovering of Ci during the first day of re-watering, not associated to a similar 
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recovery in assimilation, which occurred few days later. In fact, a non-damaged 

photosynthetic machinery would lead to a clear reduction in Ci in response to 

stomatal closure caused by soil water deficit. On the contrary, in both two years of 

experiment (except for the first stress period of 2013 already mentioned above with 

Ci in St plants higher than Ctrl plants) we found no difference in Ci between the two 

treatments, in spite of much lower values of both A and gs in Stress than Control 

plants (Fig. 1 g, h); this behavior suggests the occurrence of non stomatal 

photosynthetic limitations, implying that St plants had lower capacity to fix available 

CO2 than Ctrl plants. However, similarly to Souza et al. (2003), such limitations were 

rapidly removed upon re-watering as confirmed by data of gas exchange parameters 

in the subsequent days.  

As regard photochemistry, actual photosynthetic efficiency (ΦPSII) in the first stress 

period of 2013 was clearly depressed by water deficit (Fig. 2 d). The impairments of 

PSII functioning (under-light-conditions), resulting in a proportionally reduction in 

electronic transport rate (ETR, data not shown) could not be recovered by dark 

adaptation, indicating a permanent damage to photosystems. In fact, Fv/Fm in St was 

quite low and lower than Ctrl plants at the end of first stress period. The maximal 

(dark adapted) photosynthetic efficiency (Fv/Fm) is about 0.83 in non-stressed plants 

(Bjorkman and Demmig, 1987), whereas a sustained decrease indicates the 

occurrence of photo-inhibitory damage, in response to many environmental stresses 

(Maxwell and Johnson, 2000). However Fv/Fm is a parameter quite resistant to abiotic 

stress, while impairments can be observed under very stressful conditions, e.g. as 

found for water stress in maize (de Carvalho et al., 2011) and in Setaria sphacelata 

(Da Silva and Arrabaca, 2004). We found that during the very strong water stress 

conditions in 2013, Fv/Fm clearly decreased in St as compared to Ctrl plants, whereas 

no stress effect was found in the previous year (cf. Fig. 2 a, and Fig. 2 b). Therefore, 

the intensity of stress in 2012 was sufficient to impair photosynthetic assimilation 

(due to both stomatal and non stomatal limitations), whereas, under the less stressful 

conditions of 2012 photochemistry was not affected. 
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2.5.2 Biochemical responses 

 

The aminoacid Proline is considered a good indicator for water stress tolerance 

(Ahmed et al., 2009; Liu et al., 2011). Accumulation of proline in leaves under stress 

conditions permits osmotic adjustment, which results in water retention and 

avoidance of cell dehydration (Blum et al., 2005) without damaging enzymatic 

activity because of its osmoprotectant properties (Kishor, 2014). Moreover proline 

also acts like a scavenger of radicals (Szabados & Savoure, 2010) and it’s known, 

that ABA is able to up-regulate their production (Abraham et al, 2003). In our study a 

peak in proline leaf content in St treatments was actually found under stressful 

conditions experienced by plants at the end of no irrigation periods (Fig. 3 c, d). 

However, this did not occur during first stress period in 2012 (Fig. 3 c) even if in a 

subsample of more stressed plants (data not shown) it was measured a clear increase 

in concentration of this aminoacid. Claussen (2004) studied the dynamics of proline 

as a measure of water stress in tomato plants submitted, in a long-term experiment, to 

a wide range of concentration of the nutrient solution, and therefore osmotic stress. 

The author found that leaf proline accumulation peaked after about a week of stress 

imposition, and that it ranged from about 0.5 to 5.5 µmol g-1 (F.W.) in the most 

stressed tomato. Both time of occurrence and peak intensity found in that study are 

comparable with our results, especially for the second year experiment (Fig. 3 d). 

However, the author concluded that less than 3 µmol g-1 (F.W.) is considered a 

threshold value above which tomato experienced a degree of water stress capable to 

impair productivity and fruit quality. Our tomato genotypes experienced peaks of 

proline accumulation behind such a threshold, indicating a high capacity of 

responding to intense water stress by biochemical mechanisms. Interestingly, 

Claussen (2004) reported that a sudden drop in proline content occurred even for the 

most stressed plants in response to a drop in the variable solar radiation. Therefore, it 
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could be possible that the low proline content in St plants during first stress period of 

2012 could be caused by the effect of solar radiation or other unknown variable. 

However, as said before, in a subsample of plants we maintained the stress conditions 

for 4 days more, and found that in both genotypes there was an increase in proline 

content.  

Abscisic acid (ABA) is a hormone discovered during the early 1960s. It was shown 

to have a role in many physiological processes such as seed dormancy, organ 

abscission and fruits maturation, but its most important function is the regulation of 

stomata opening. (Liu and Carns, 1961; Ohkuma et al., 1963; Cornforth et al., 1965 

Patterson, 2001). In split-root experiments, the partial-root drying avoided the 

impairment of leaf water potential. In spite of this, growth and stomatal conductance 

(Gowing et al., 1990, 1993; Davies and Zhang, 1991) were impaired because of a 

(chemical) signal moved from the dried roots to the leaves. In fact, ABA content in 

roots is well correlated with both soil moisture and the relative water content of roots 

in many plant species (Dry, 1999). Moreover, ABA is synthesized in both roots and 

leaves (Thompson et al., 2007) in response to water stress. We actually found a quite 

significant increase in ABA content of leaves when plants were approaching the most 

stressful conditions imposed at the end of stress period (Fig. 3 a, b), when both soil 

water content and stomatal conductance were at their minimum values. Interestingly, 

in all four stress periods of the two-year experiment, Locale di Salina showed ABA 

increases higher than Pizzutello di Sciacca in spite of no appreciable differences were 

found between the two genotypes in soil moisture, stomatal conductance, net 

assimilation, actual and maximal quantum efficiency of PSII (Fig. 1 and Fig. 2).  

Numerous studies suggest that in plants alike in animals, the poly(ADP-ribosyl)ation 

is linked to important physiological processes such as DNA repair and cell cycle 

(Doucet, 2001; Pellny 2009.), and it also plays an important role in abiotic stress 

responses (De Block 2005). In our experiment, during stressful conditions occurred 

in the first stress cycle (2013) there was a strong increase of PARP activity after 4-6 

days from the interruption of irrigation (Fig. 4 b) with a spike of activity of about 0.4 
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mUg-1 F.W. in LC. However, in response to more powerful stress conditions, PARP 

reduced its activity. This behavior is in agreement with several studies in which it 

was demonstrated that the reduction of PARP activity preserves cells from NAD+ and 

ATP depletion, and it enhances the energy use efficiency during stress (De Block, 

2005, Arena et al., 2011). Another mechanism that could explain the reduction of 

PARP activity in our experiment, is its implication with ABA signalling pathway, 

(Vanderauwera, 2007) in fact NAD+ pool was used for cADPR synthesis which 

promotes the increase of Ca++ responsible for ABA production (Xiong, 2003). Such a 

mechanism can explain PARP activity in the first stress cycle in 2012 and in the 

second stress cycle because changes in PARP activity, namely a decrease of PARP 

values, are accompanied by an increase of ABA content.  

 
2.6 Conclusions 

In conclusion, both genotypes showed a clear response to the imposed soil water 

deficit by regulation of stomatal closure and photosynthetic activity, and recovering 

upon re-watering. Physiological responses were strictly linked to biochemical 

mechanisms of response to water stress as both ABA and proline increased 

concomitantly with severe stress conditions. The activity of PARP was influenced by 

both stress imposition and ABA response. Although future confirmation is needed at 

the field level, the data revealed that the two landraces showed a wide physiological 

and biochemical plasticity to deal with water stress. Then combined investigation into 

the physiological and biochemical properties represents an essential approach for 

further studies, where many genotypes could be compared in terms of their tolerance 

to water stress. 
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Chapter 3 
“Physiological responses to different levels of salinity of two sweet pepper 

genotypes grown in a soilless system” 

(Capsicum annuum L.) 
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3.1 Abstract 
Salinity is one of the most important environmental stress factors limiting plant 

productivity. Pepper (Capsicum annuum L.) is a widespread horticultural crop grown 

in the Mediterranean area where saline water is frequently used for irrigation. It is 

classified as moderately sensitive to salt stress, but limited information is available on 

salt tolerance mechanisms, due to the genetic and physiological complexity of the 

involved traits; moreover most of the available data are limited to a short period of 

exposure salinity. 

In this experiment, two sweet pepper genotypes (Quadrato D'Asti, the most famous 

Italian pepper cultivar and Cazzone Giallo, a typical genotype of Campania Region) 

were grown in a closed soilless system and exposed from moderate to high salt levels 

(0-30-90-120 mM NaCl in nutrient solution) during the whole crop cycle. Data were 

collected at different stages of plant growth (vegetative and reproductive) on different 

organs including leaves and fruits. Plant phenotypic (biomass and yield) and 

physiological characterization (gas exchanges, total water potential and osmotic 

potential) were monitored. During the whole crop cycle (‘shoot development’, 

‘flowering’ and ‘maturity of fruit’ growth stages) all the biometric and agronomic 

traits (leaf area, marketable yield, fruits size and weight) decreased with saline levels 

(significantly at 90-120 mM NaCl). Photosynthetic assimilation and photochemistry 

at high levels of salinity were dramatically impaired throughout two distinct phases. 

Stomatal closure caused photosynthetic limitations during first 30-40 days of salt 

stress imposition. Conversely, afterwards non-stomatal limitations had a relevant role 

with the high probable significant contribution of specific ion toxic effects. Cazzone 

Giallo resulted more salt sensitive for almost all performed analyses than Quadrato 

d’Asti.  
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3.2 Introduction 

Bell Pepper or sweet Pepper, Capsicum annuum, L. alike other species of Solanaceae 

family is one of the most important vegetable crops in the world. It is cultivated 

worldwide in temperate and tropical areas although most of the cultivars are thought 

to have originated from South America (Wien, 1997). It is only recently that peppers 

have been grown in greenhouses. As regard salt stress, in terms of yield, pepper is 

considered a moderate sensitive species with a threshold of 1.5 dS m-1 for the 

extractable saturated soil solution (Maas and Hoffman, 1977, Pasternak and Malach, 

1994). However, several pepper genotypes with higher tolerance have been reported 

in more recent studies (Chartzoulakis and Klapaki, 2000; Aktas et al., 2006; Niu et 

al., 2010). 

Munns (2002) highlighted that there are some common mechanisms of plant response 

between water and salt stress. Na+ and Cl- (as well as other ions) in the root zone 

decrease the free energy of water, and therefore through osmotic effect, its water 

availability for plant uptaking. This mechanism is common to what occurs to plants 

under water deficit (Fricke et al., 2004; Munns and Tester, 2008). Moreover, salts 

enter root tissue and then further move through the transpiration stream to stems and 

leaves. As a result, finally sodium and chloride accumulate either on cell wall or 

vacuole where specific salt effects occur, not in common with water stress (Cramer 

and Nowak, 1992). Therefore, plants facing salinity in the root zone must face a 

Scylla and Charybdis dilemma, whereby uptaking water for transpiration, in order to 

overcome osmotic stress, will also imply that salts enter plant tissues, where they can 

cause toxic effects (Greenway and Munn, 1980). Moreover, these two aspects of salt 

stress are characterized by different plant response over time, as the osmotic phase is 

rapid while the ionic phase is slower (Munns and Tester, 2008). 

Most of the available data on effects of salinity on pepper (and other vegetable crops) 

are limited to growth in hydroponic systems or commercial substrates that have been 

exposed to salinity for a short period of time. In a long-term experiment, potted plants 
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of two sweet pepper genotypes Cazzone Giallo (CG) and Quadrato D’Asti (QA) were 

tested at moderate (0, 30 mM NaCl) and high (90, 120 mM NaCl) salinity. The 

Cazzone Giallo (CG) in the 50th was one of the most common genotype in Campania 

Region, in the 60th, however, it was replaced by modern hybrids. Quadrato d’Asti 

(QA) is the most famous and widespread Italian sweet pepper (Barbagallo et al., 

2012). 
   

3.3 Materials and methods 
3.3.1 Plant material, growth conditions and salt treatments 

The experiment was carried out in a greenhouse of CRA-ORT (Pontecagnano, SA, 

Italy) equipped with an automatic, computer-controlled soilless system with drip 

irrigation system. The nutrient solution was pumped from independent tanks and 

delivered by means of two emitters per pot. The emitter flow rate was 2 litres h-1. 

After application, solution returned to its tank for later recirculation (closed system). 

The two sweet pepper genotypes were 'Quadrato D'Asti' a widely diffused cultivar 

and “Cazzone Giallo” which is typical of Campania region. Transplantation occurred 

on 18th September 2013, one plant per pot (27 cm diameter, 10 L of capacity) 

adopting coconut coir dust as substrate. The averages height and weight of seedlings 

were 15 cm and 4 g, respectively. 

The basic nutrient solutions used for irrigation (pH 5.6) had the following 

composition (meq/l): Na+, 0.25; NH4
+, 0.537; K+, 5.002; Mg++, 3.998; Cl-, 0.505; 

NO3
-, 14.643; H2PO4

-, 1.252; S-SO4--, 3.543; HCO3
-, 0.502. The experimental design 

consisted of four saline (NaCl) levels: the control (0 mM), that was the basic nutrient 

solution, 30 mM, 90 mM and 120 mM NaCl (EC 2.6-5.7-12.0-15.6 dS/m, 

respectively; pH 5.6) obtained by adding proper amount of sodium chloride to the 

basic solution. Sixty plants were distributed in the saline treatments (15 plants per 

treatment). Salt treatment started after 13 days from transplanting ('vegetative' stage) 

and continued until the end of the experiment ('yellow fruit' stage). The pH and the 

electrical conductivity of the nutrient solution were daily controlled. The EC of the 
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nutrient solution for each treatment was kept constant through the culture cycle; the 

pH was kept within the range of 5.5 to 6.0 by adding HNO3. During the experiment, 

the greenhouse temperature ranged from 18 to 30°C, and relative humidity from 60 to 

85%. Plants were harvested on 6th  mar 2013, DOE 158.  

 

3.3.2 Physiological measurements 

Leaf physiological parameters were assessed from 10:00 to 13:00 in well-expanded 

sunlit leaves in the middle of the plant, every seven days during the entire growing 

cycle ('vegetative', 'reproductive', 'fruiting' stages). 

 

3.3.2.1 Plant water status 

Total leaf water potential (Ψl, MPa) was assessed on three leaves of three plants per 

treatment using a Scholander type pressure bomb (SAPS II, 3115, Soilmoisture 

Equipment Corp., Santa Barbara CA, U.S.A). After cutting, the leaf was inserted into 

the pressure bomb within a maximum of 30 s, and the pressure was increased at a rate 

of 0.2 MPa min-1. 

Osmotic potential (Ψπ, MPa) was estimated on the basis of the osmolality of 

expressed leaf-sap. The entire leaf was frozen in liquid nitrogen to break cell walls 

and squeezed at fixed pressure to extract the cellular sap. The osmo-moles of 100 µl 

of this extracted sap was then measured by using a freezing-point micro-osmometer 

(13/13 DR-Autocal-Hermann Roebling Messtechnik, Berlin, Germany), and then 

converted to osmotic potential through the Morse equation (Morse, 1914): Ψπ= - (RT 

ns/Vw), where: R = universal gas constant (m3 MPa mol-1 °K-1); Ts = solution 

temperature (°K); ns= solute osmo-moles (mol); Vw= solvent volume (m3). Since no 

distinction between symplast and apoplast was possible, there is no way to identify 

the exact compartmentalization of the salt in the cells. 
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3.3.2.2 Gas exchanges  

Net photosynthetic CO2 assimilation rate (A, µmol m-2 s-1) at saturating light, 

stomatal conductance to water vapour (gs, mol m-2 s-1) and leaf temperature were 

determined using a portable open-system gas-exchange and modulated fluorometer 

analyzer Li-6400XT (Li-Cor Biosciences, Lincoln, NE, USA,), with CO2 inside leaf 

chamber set to 400 µmol mol-1 air. A LED light source with emission peaks centered 

at 630 nm in the red and at 460 nm in the blue provided a PPFD equal to 1500 µmol 

(photons) m-2 s-1 (90% red, 10% blue). The instrument was also used to measure the 

fluorescence parameters. The measuring beam was set at intensity 5 (according to the 

instrument manual) with a modulation of 20 kHz.  After the measurement of Chl a 

fluorescence emission at steady-state under light conditions, F’, the maximum 

fluorescence emission, Fm’, was assessed upon induction by a 0.8 s super-saturating 

light pulse at 6000 µmol (photons) m-2 s-1, with a modulation of 20 kHz; then actinic 

light was briefly switched off while a far-red light of 8 µmol (photons) m-2 s-1 for 6 s 

was used to discharge the PSI photosystem to allow measurement of the minimum 

fluorescence emission under light conditions, F0’. The software of the instrument (Li-

Cor, 2011) calculated the gas-exchange parameters on the basis of von Caemmerer 

and Farquhar (1981) model, and the actual quantum efficiency (ϕPSII) or ΔF/Fm’= 

(Fm’– F’)/ Fm’ (Genty et al., 1989) and the maximal quantum yield under light 

conditions Fv’/Fm’ (Baker, 2008). Measurements were taken on 6-10 replicate plants 

per treatment. 

 

3.3.2.3 Transient Chl a fluorescence emission 

A continuous excitation Handy PEA fluorometer (Hansatech, Instruments Ltd., 

King’s Lynn, Norfolk, England) was used. Leaves were dark adapted for 30 min by 

means of the equipped white leaf-clips, prior to the assessment of the minimum 

fluorescence emission F0 [relative units, r.u.]. Then an excitation red light pulse for 

fluorescence induction (FI) was emitted by a (red) 650 nm light diode source, and 

applied for 1 s at the maximal available photosynthetic photon flux density (PPFD) of 
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3500 µmol (photon) m-2 s-1 to measure the inducted fluorescence emission. The 

instrument software calculated F0, the peak emission Fp [r.u.] as a viable 

approximation of Fm [r.u.] (Giorio, 2011), and therefore Fv/ Fm = ( Fm – F0)/Fm. Data 

were taken on the adaxial lamina of 30-60 leaves of 10 plants per treatment in five 

occasions between DOE 71 and 156.  

 

3.3.3 Agronomic measurements 

Total leaf area of three plant replicates for saline treatment was measured at the end 

of experiment (yellow fruit stage) with an electronic area meter (Li-3100, LICOR 

Lincoln Nebraska USA). The plant samples (leaves, stems, mature green and yellow 

fruits) were then oven dried at 65 °C until constant weight was reached for biomass 

determination and subsequently ground for mineral composition (Na+ and Cl-) 

determination by ion chromatography (DionexIonPac CS12A and AS22 RFIC 

4x250mm Analytical Columns for cations and anions determination, respectively).  

Before final harvest, the number of fruits, mean fruit weight and total marketable 

yields were determined on three plants per treatments. Marketable fruit yield was 

determined according to the color and the normal shape; fruits with blossom-end rot 

or fruits lighter than 100 g were not taken into account for marketable yield.  

 

3.3.4 Statistical analyses 

Data were subjected to analysis of variance (Two-way ANOVA) with the null 

hypothesis rejected at P < 0.05 significance level, mean separations were done using 

Duncan’s multiple range test using GraphPad Prism version 5.0 for Mac, (GraphPad 

Software, La Jolla California USA)  
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3.4 Results 

 

3.4.1 Physiological parameters 3.4.1.1 Leaf water potential 

Leaf water potential of control plants of the two genotypes showed a slight increase 

up to about -0.34 MPa during the first 17 days, whereas afterwards it slowly 

decreased, at a rate as low as 0.0031 MPa per day, reaching an average value of -0.62 

MPa, 85 days later (DOE 102: end of Ψl monitoring) (Fig. 1 A, B). The Ψl in the salt 

treated plants was moderately affected in T30, which showed an average decrease of 

about 1 MPa. Conversely, a strong decrease was observed in both T90 and T120, 

which reached, as average of the two genotypes, a minimum of -1.03 in T90 and -

1.25 in T120 at DOE 102 (Fig. 1 A, B). 

!
Fig. 1. Leaf water potential in 0, 30, 90 and 120 mM NaCl treatments of the two genotypes Cazzone Giallo (A) and 

Quadrato D’Asti (B). Each point is the mean of 5 measurements; vertical bars indicate the standard error of the mean.  

 

3.4.1.2 Gas exchanges and fluorescence 

In both genotypes, treatment T30 was not clearly affected by salinity resulting quite 

similar to the Control. In both these two treatments, as an average for the two 

genotypes, gs showed a progressive decrease during the experiment from 0.63 mol m2 

s-1 at the beginning of the experiment to the minimum 0.22 mol m-2 s-1 observed at 

DOE 85 (Fig. 2 C, D). Conversely, during the first ten days of the experiment a rapid 

linear decrease was showed by the most saline treatment, T120, in both genotypes, 
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passing from the maximum value comparable to the control, to 0.25 in GC and 0.152 

mol m-2 s-1 in QA. Afterwards, a smoother decrease leaded to minimum gs of 0.04 in 

CG and 0.07 mol m-2 s-1 in QA, at the end of measurements. T90 plants showed 

stomatal conductance values ranging between Control and T120. (Fig. 2 C, D). 

As regard photosynthetic CO2 assimilation (A) in the genotype QA, all treatments, 

except of T120, which maintained a quite stable value around 15 µmol m-2 s-1, 

showed a clear increase of A during the first ten days from 15.0 to 21.7 µmol m-2 s-1 

as an average among the three treatments (Fig. 2, B). Afterwards, as for stomatal 

conductance, a gradual decrease during the experiment was observed even for the 

Control plants, which showed a minimum of 13.5 µmol m-2 s-1 on DOE 102. Until 

DOE 52 no clear difference in A was evident among T0, T30 and T90. Conversely, 

since DOE 73, T90 showed assimilation rate lower than the other two treatments, 

which continued to maintain similar values. Salinity reduced assimilation rate in 

plants of T120 quite earlier than T90 (since DOE 25), reaching 5.5 µmol m-2 s-1 at the 

end of experiment when A was 8.4 µmol m-2 s-1 in T90 and about 11.4 µmol m-2 s-1 in 

both T0 and T30.The patterns of assimilation for the two genotypes were quite 

similar, with the only exception of T120 which was more affected in CG (Fig. 2 B) 

and started to decrease in this genotype earlier (since DOE 10) than in QA (Fig. 2 A). 

Conversely to QA, which showed no effect on T30 plants, this treatment in CG 

showed assimilation lower than the Control since DOE 85. At the end of gas 

exchange measurements (DOE 102), the three saline treatments of CG genotype 

showed A values lower than the control 15.4 µmol m-2 s-1 by 3.1 in T30, 7.1 in T90 

and 12.7 in T120. During most of the trial, in both genotypes the intrinsic water use 

efficiency (A/gs) of the Control was quite stable (around 34 µmol mol-1) and did not 

statistically differ from T30 (Fig. 2 G, H). T120 showed a strong increase in A/gs, 

reaching a maximum of 117 µmol mol-1 after 32 days in CG, and 108 µmol mol-1 

after 10 days in QA. Afterwards, there was a significant decrease within 20 days, 

after which the values remained almost stable in both genotypes. Intermediate values 

were observed in T90 plants.In both genotypes, during the whole trial, the 



! 52!

substomatal CO2 concentration (Ci) was quite stable in both Control and T30 (about 

340 µmol mol-1), without significant differences between them (Fig. 2 E, F). Within 

ten days of salt stress imposition, Ci in T120 plants showed a sudden drop to 264 in 

CG and to 234 µmol mol-1 in QA, while no further comparable variations were 

observed afterwards.  
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!
Fig. 2. Photosynthetic CO2 assimilation (A, µmol m2 s-1) A) and B), stomatal conductance to water vapour (gs, mol m2 s-

1) C) and D), intercellular CO2 concentration (Ci, µmol mol air-1) E) and F), water use efficiency (A/gs , µmol mol -1) G) 

and H) in 0, 30, 90 and 120 mM NaCl treatments of the two genotypes Cazzone Giallo (CG) and Quadrato D’Asti 

(QA). Each point is the mean of 10 measurements; vertical bars indicate the standard error of the mean.  
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3.4.1.3 Fluorescence parameters 

The maximal (dark adapted) quantum efficiency of photosystem PSII (Fv/Fm) in T0, 

T30 and T90 of QA genotype remained quite constant during all cycle near to the 

maximum value typical for healthy plants under no abiotic stress (Bjorkman and 

Demmig, 1995) (Fig 3 B). Conversely, the most saline treatment T120 showed Fv/Fm 

significantly lower than other treatments since DOE 122, decreasing to a value as low 

as 0.536 on DOE 156. Similar patterns were observed in CG genotype as compared 

with QA; however, T120 showed a stronger decrease since DOE 108, dropping to the 

quite low value of 0.427 on DOE 156 (Fig 3 A).  

The PSII maximal efficiency under light conditions (Fv’/Fm’) (the operating 

efficiency with all reaction centers open), as expected, was lower than Fv/Fm and 

higher than effective efficiency of PSII under light conditions (ΦPSII) in all treatments 

and genotypes (cf. Fig 4 A, B, C, D). Especially for CG as compared with QA, the 

most salt treated plants had lower Fv’/Fm’ than other treatments along the cultural 

cycle. On DOE 85 this parameter for T120 was 0.277 in CG and 0.331 in QA, 

whereas the average of other three treatments was 0.397 and 0.453 in the two 

genotypes, respectively (Fig 4 C, D). ΦPSII was lower than 0.2 in all saline treatments 

and genotypes during all cultural cycle, with an average minimum of 0.057 in CG 

and 0.063 in QA (Fig 4 C, D). 



! 55!

Fig. 3. Maximal quantum efficiency of PSII (Fv/Fm,) in 0, 30, 90 and 120 mM NaCl treatments of the two genotypes 

Cazzone Giallo (CG) and Quadrato D’Asti (QA). Each point is the mean of 10 measurements; vertical bars indicate the 

standard error of the mean.  

Fig. 4. PSII maximal quantum efficiency under light conditions (Fv’/Fm’ A, B), actual quantum efficiency of PSII (ΦPSII, 

C, D) in 0, 30, 90 and 120 mM NaCl treatments of the two genotypes “Cazzone Giallo” (CG) and “Quadrato D’Asti” 

(QA). Each point is the mean of 10 measurements; vertical bars indicate the standard error of the mean.  
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3.4.2 Long%term*response*

!
At the end of the plant cycle, further measurements of leaf water potential and 

osmotic potential on DOE 158, and gas-exchange and fluorescence parameters on 

DOE 148, were carried out to assess the very long term response to of plants to 

salinity. 

In all treatments, as expected, Ψπ was lower than Ψl (Fig 5 A, B), the latter showing 

quite comparable values with those observed on DOE 109 in all salt treatments and 

genotypes (cf Fig 5 and Fig 1). As for Ψl, in both the two genotypes, Ψπ resulted 

significantly lower in T120 as compared to both T30 and Control, with values of 

about -1.97 and -1.32 MPa, respectively (Fig 5). 

Similarly to Ψl, treatments T0, T30 and T90 showed gas-exchange parameters 

comparable or slightly higher than those measured on DOE 102. However, the most 

saline treatment T120 showed a further decrease, especially in CG, as compared with 

values observed in the earlier dates (cf. Fig 6, Fig 2).  

Treatment T120, as said above, showed a strong decrease in Fv/Fm from DOE 102 to 

156 (cf. Fig. 4 and Fig 7). As regard Fv’/Fm’ a decrease was observed in all 

treatments, whereas it was less evident for ΦPSII. 
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Fig.! 5.! Leaf! water! potential! (Ψl, red bars) and! osmotic! potential! (Ψπ, yellow bars) measured! on! DOE! 158! in!
Cazzone'Giallo'(CG)! and!Quadrato'd’Asti! (QA).! Each! point! is! the!mean! of! 5!measurements;! vertical! black! bars!
indicate!standard!error!of!the!mean. 
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!
Fig. 6. Photosynthetic CO2 assimilation (A, µmol m2 s-1, A, B), stomatal conductance to water vapour (gs, mol m2 s-1, C, 

D), water use efficiency (A/gs µmol mol -1, G, H) and intercellular CO2 concentration (Ci µmol mol air-1, I, H) measured 

on DOE 148 in 0, 30, 90 and 120 mM NaCl treatments of the two genotypes Cazzone Giallo (CG) and Quadrato D’Asti 

(QA). Each point is the mean of 10 measurements; vertical bars indicate the standard error of the mean.*
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!
Fig. 7. Maximal quantum efficiency of PSII in dark adapted leaves (Fv/Fm, A, B), PSII maximal quantum efficiency 

under light conditions (Fv’/Fm’ C, D) and actual quantum efficiency on PSII (ΦPSII E, F) measured on DOE 148 in 0, 30, 

90 and 120 mM NaCl treatments of the two genotypes “Cazzone Giallo” (CG) and “Quadrato D’Asti” (QA). Each point 

is the mean of 10 measurements; vertical bars indicate the standard error of the mean. 

 

3.4.3 Growth and productivity 

Plant leaf area (PLA) measured at starting of veraison (DOE 107) indicates for 

control plants a slightly higher size for QA if compared with CG: 0.71 vs. 0.52 m2. 

Salinity induced a gradual decrease in both the two genotypes. However, T120 was 

decreased to 33% in CG and to 19% in QA (Fig 8). A clear reduction in marketable 
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yield of T30 (fresh weight of not discarded fruits, measured at the end of experiment 

on DOE 158) was observed in CG but not in QA. Such a yield in T90 and T120 was 

reduced to 40 and 18% in CG and to 80 and 48% in QA as compared to the 

respective Controls (Fig 9). 

!
Fig. 8 Plant leaf area of the two genotypes “Cazzone Giallo” (CG) and “Quadrato D’Asti” (QA) measured on DOE 107. 

Each point is the mean of 3 measures; vertical black bars indicate standard error of the mean. 

!
 Fig. 9. Marketable yield of of the two genotypes “Cazzone Giallo” (CG) and “Quadrato D’Asti” (QA) measured at the 

end of experiment (DOE 158). Each point represents the normalized mean of 3 measures.  

 

3.5 Discussion  

Salinity affects plant growth, yield and photosynthesis (Maas and Hoffman, 1973; 

Greenway and Munns, 1980; Parida and Das, 2005).  
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Our data indicate that the treatment T30 (EC=5.7 dS m-1) in both CG and QA was 

actually slightly or not affected as compared with the Control T0 for almost all 

measured parameters. A clear separation of T0 and T30 from T90 and T120 was 

observed for leaf water potential already after 5-10 days since salt stress imposition 

(Fig. 1). As plants at that time were in a fast growing vegetative phase such an effect 

was related to the (rapid) osmotic phase of salinity (Munn and Tester, 2008) while it 

is unlikely that ion accumulation in leaves may have significantly contributed to 

water relations. However, during the entire experiment, salts certainly accumulated 

into leaf cells, significantly contributing to water relations. In fact, osmotic potential 

(Ψπ) measured after more than five months of stress imposition, significantly 

decreased in response to salt treatment, and it was lower than total water potential 

(Ψl). (Fig. 5 A, B). Such a decrease in osmotic potential could be due to increased 

leaf concentration of either inorganic ions or organic solutes (Taiz and Zeiger, 2006). 

Navarro et al. (2003) reported a reduction in Ψl of about 0.5 MPa in pepper plants 

grown at 12 dS m-1 as compared with the control, not associated to a reduction in Ψπ 

enough for turgor maintenance. Conversely, De Pascale et al. (2003) in field grown 

salt stressed pepper reported a better capacity for turgor maintenance by osmotic 

adjustment, however still with a turgor lower in stressed than control plants. In our 

case, as Ψπ and Ψl were measured with two different methodologies (osmometer and 

pressure chamber) and not on the same leaves, calculation of turgor component 

Ψp=Ψl - Ψπ would be biased, for example by dilution of leaf sap by apoplastic water. 

However, this latter source of bias would have induced an underestimation of leaf 

turgor. On the contrary, calculated Ψp from data of Fig. 6 indicates that this 

parameter even increased in the most salt treated plants. Bethke and Drew (1992) also 

found that in pepper plants grown in 100 or 150 mM NaCl nutrient solution, after 12 

days, leaf turgor increased or remained constant in the two treatments, respectively. 

Moreover, in our plants both Na+ and Cl- accumulated in the leaves during the trial 

(data not shown; Venezia A., personal communication). At veraison (DOE 106) Na+ 

strongly increased in the most saline treatments in QA (8.0 in T90 and 12.4 g kg-1 
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D.W. in T120), whereas in CG a comparable increase was observed only in T120 

(11.0 g kg-1 D.W.), as compared with the control plants (4.4 g kg-1 D.W. as an 

average). Conversely to sodium, quite high Cl- leaf content was observed in the two 

genotypes of both T90 and T120. Cl- leaf content in CG was 89.8 in T90 and 140.6 g 

kg-1 D.W. in T120, whereas QA showed values about 20% in T90 and 30% in T120 

lower than CG (Venezia A., personal communication). Such chloride leaf content 

was quite high as compared with data reported in several studies on pepper under 

salinity (De Pascale et al., 2003: Niu et al., 2010; Bethke and Drew, 1992) and 

certainly strongly contributed to osmotic adjustment for leaf turgor maintenance. 

Moreover, the aminoacid proline strongly accumulated into the leaves as organic 

compatible osmolyte with increasing salinity (data not shown). Therefore the two 

pepper genotypes showed in our long-term experiment a good capacity to maintain 

water relations even at higher level of salinity in the nutrient solution, comparably to 

what reported elsewhere by Navarro et al. (2003) and De Pascale et al. (2002). The 

much higher chloride content in the leaves as compared with sodium can be 

explained by the better capacity for compartmentalization in the different plant 

tissues. In fact, in Na+ content in stems of CG doubled as compared with leaves in 

both T90 and T120, whereas in QA such stem accumulation occurred at a lesser 

degree. In contrast to sodium, the content of Cl- was lower in stems than leaves. 

Accordingly to the biphasic model of plant responses to salinity (Munns, 2002; 

Munns and Tester, 2008), accumulation of salt in the leaves pepper caused specific 

ion toxic effects, leading to a significant leaf senescence and abscission of basal 

leaves, quite evident in both T90 and T120 (visual inspection).  

 

Similarly to leaf ionic and water relations, gas exchange parameters were not 

appreciably affected by the salinity imposed to treatment T30 (Fig. 2). In fact, both 

stomatal conductance and assimilation rate of T30 did not differ from the control. 

Chartzoulakis and Klapaki (2000) on pepper under soilless salinity treatment also 

reported no effect on both these two parameters for the two less saline treatments (25 
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and 50 mM NaCl), as compared with the Control. In the same experiment, after 5 

weeks of 100 mM NaCl treatment, these authors found in two genotypes an average 

reduction in assimilation rate of 40%, quite comparable with the 50% reduction we 

found in T120 of CG after 25 days. As compared with CG, the genotype QA showed 

only a moderate reduction of A in T120 after 38 days, indicating a moderately less 

sensitivity to salt stress. Bethke and Drew (1992) also found that pepper exposed to 

50 mM NaCl showed no decline in the photosynthetic capacity assessed through A/Ci 

response curves, whereas 150 mM NaCl strongly depressed such curve after 12 days. 

It is worth to highlight that the quick decrease we observed in gs during first week 

was not followed by a decrease in A, which conversely increased in both genotypes 

(Fig. 2). It is known that the relationship between A vs. gs in well-watered 

(unstressed) healthy plants saturates at high stomatal conductance (Farquhar and 

Sharkey, 1982). Therefore, a moderate gs reduction actually would not imply a 

proportional reduction in A (but an increase in A/ gs). However, in our case there was 

a significant increase in air temperature (about 5 °C) in the glasshouse during first 

week, which may have increased A independently from gs (i.e. changing A vs. gs 

relationship). 

Subsequently to DOE 38, despite there was no appreciable change in stomatal 

conductance, which continued to slowly decrease to very low values, a gradual re-

increase in Ci was observed, meanwhile assimilation continued to decrease, and it 

remained almost stable in the late measurement carried out on DOE 102 (Fig. 2 E, 

H). Lycoskoufis (2005) also found in pepper grown in a soilless system and exposed 

to 60 mM NaCl (8 dS m-1) quite low gs and A during a long period (from 50 to about 

85 days since starting of salinization), similarly to our data. Moreover, a further 

measurement of gas exchanges carried out on DOE 148 (Fig. 6 G) showed that Ci in 

T120 of CG was even higher than the control. Therefore, the damage of salinity to 

the photosynthetic metabolism was enhanced as Ci continued to increase toward the 

external CO2 concentration (Ca). Further than the dynamics of A/ gs in T120, it is 

worth to note that also T90 showed higher A/gs than both Control and T30. It is know 
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that the increase of A/gs can be considered an adaptive response of plants to salinity 

(Brugnoli, 1992), as it reduces water consumption per unit of fixed carbon, and it 

limits salt accumulation into the plant (Munns, 2002). All the above-discussed gas 

exchange response to salinity regarded essentially the CG genotype. However, 

although with some minor differences, the behavior of QA was quite similar to CG.  

Photochemistry was also clearly affected by salinity. Maximum efficiency of 

photosystem PSII (Fv/Fm) was monitored in the late part of the experiment, from 

DOE 71 to 156. In the latter DOE this parameter was clearly depressed as it was 

almost halved in the most saline treatment of CG as compared with other treatments 

(Fig. 3 A). The effective PSII efficiency (ΦPSII) was low in all treatments, and 

similarly to Fv/Fm it was the double in the control as compared with T120 (Fig. 4 C, 

D). Our results for Fv/Fm are comparable with data reported by Zhani et al. (2012) on 

potted chilly pepper irrigated with saline water up to 12 g/L NaCl. These authors 

found that the most saline treatments showed Fv/Fm around 0.5 whereas the much 

higher 0.79 was observed in the control plants, quite similar to our data (Fig. 3 A, B). 

Consequently, as compared with the control, the capacity of most saline treatment to 

generate electronic transport for ATP and NADPH production was impaired, 

reducing RuBP regeneration, and therefore contributing to the limitation of CO2 

fixation. Therefore, analyses of photochemical activity are in agreement with what 

discussed for gas-exchange. 

Moreover, Cifre et al. (2005) elaborated for grapevine under water stress, a model to 

describe stomatal and non-stomatal limitations to photosynthesis, based on the 

relationships among gas-exchange parameters. It is well known, as above said, that 

conversely to water stress, salinity can induce ion specific toxic effects that impair 

photosynthetic performances through metabolic damages (Cornic et al., 1989; 

Sharkey, 1990; Cornic and Briantais, 1991). However, the analyses of Cifre et al. 

(2005) can be applied also to plants under salt stress.  

 As regard the most saline treatment (T120), during the first two weeks, a steep linear 

decrease in stomatal conductance was observed (Fig. 2), which probably was mainly 
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due to the osmotic stress induced by the nutrient solution. The concomitant reduction 

in assimilation was associated to a decrease in Ci. These relationships among gs, A 

and Ci continued until DOE 38, when gs was as low as 0.092 mol m-2 s-1. During the 

same period, we also observed a gradual increase in intrinsic water use efficiency 

(A/gs) (Fig. 2) and an almost stable electronic transport rate (ETR) (data not shown). 

The latter, under our experimental conditions, was linearly proportional to ΦPSII 

(ETR=ΦPSII 0.5 x PPFD x leaf absorbance), which was actually stable (Fig. 4). Such a 

down-regulation of photosynthesis characterized by a decrease in both gs and Ci and 

an increase in A/gs with stable ETR can be ascribed exclusively to a reduced CO2 

availability in the mesophyll caused by stomatal closure, and not to non-stomatal 

limitations (Cornic, 2000; Cifre et al., 2005). The stable ETR associated with a 

decreased assimilation could be explained by an increase in photorespiration as an 

alternative pathway for utilization of the captured light energy, induced by the 

shortage of CO2 at carboxylation sites. With the exacerbation of stress conditions, 

stomatal conductance continued to decrease, reaching very low values (<0.05 mol m-2 

s-1) while assimilation also continued to decrease (Fig. 2). At same time, A/gs started 

to decrease while Ci increased, despite the reduced assimilation rate, while Fv/Fm was 

reduced as well (Fig. 3). These relationships indicate that the role of non-stomatal 

limitations became highly relevant (Cifre, 2005). It is quite probable that the above-

discussed salt accumulation into the leaves had a relevant contribution to the 

impairment of photosynthetic machinery, as indicated by the visual observed leaf 

damages. However, the transition between these two conditions described above 

(mild and severe stress) can be gradual with an intermediate condition where stomatal 

limitations are still prevailing but non-stomatal limitations are emerging.  

 

Alike to water stress, the first effect of salinity on plants is the reduction of leaf 

expansion, which occurs within minutes (Passiuora and Munns, 2000). It is known in 

fact that leaf growth is the earliest salt stress response in glycophytes (Munns and 

Termaat, 1986). Photosynthesis can be then reduced because of a negative feedback 
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caused by the reduced utilization of photosynthates resulting from the impaired 

growth. However, over long term, it is the reduced photosynthetic activity that 

becomes a limiting factor for growth and yield. 

The genotype CG showed a higher sensitivity to salinity than QA as regard gas-

exchange and photochemistry. In fact, A in T120 started to clearly decrease earlier in 

CG than QA (Fig. 2 A, B). As discussed above, there is a lot of evidences in literature 

that photosynthetic assimilation is not affected in pepper by moderate salinity, up to 

25-50 mM NaCl (e.g. Beethke and Drew, 1992; Chartzoulakis and Klapaki, 2000; 

Lycoskoufis, 2005). On the contrary, we found that plant leaf area was significantly 

reduced even in T30 in both the two genotypes as compared with the control (Fig. 8). 

Similarly, also Chartzoulakis and Klapaki (2000) found an effect on leaf area at low 

salinity (25 mM NaCl). In addition to what monitored by the above-mentioned 

authors, we measured leaf water potential during the entire experiment. This 

parameter of water status resulted significantly lower (higher stress) even in T30 as 

compared to the Control (Fig. 1). Such a decrease in Ψl inhibited leaf expansion in 

the T30, leading to the reduction in PLA as compared with the control plants (Hsiao, 

1973). As regard the yield response to salinity, T30 was the sole treatment in QA that 

had no response as compared to the Control in terms of marketable yield (Fig. 9), 

resembling what normally occurs to moderate salt-sensitive field-grown pepper 

submitted to ECe values lower than 1.5 dS m-1 (Maas and Hoffman, 1977). 

Conversely to QA, CG showed a gradual yield decrease with increasing salinity, 

which indicates that this genotype has a threshold for soilless salinity experiment 

below 30 mM NaCl. 

 

3.6 Conclusions 

In conclusion, the two tested pepper genotypes grown in a greenhouse on a soilless 

nutrition system in a long-term experiment showed great impairment of water status, 

and accumulated significant amount of both Na+ and Cl- in stems and leaves. 

Photosynthetic assimilation and photochemistry at high levels of salinity were 
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dramatically impaired throughout two distinct phases. Stomatal closure dominated 

photosynthetic limitations during first 30-40 days of salt stress imposition. 

Conversely, afterwards non-stomatal limitations had a relevant role with the probable 

significant contribution of specific ion toxic effects. Moderate salinity did not affect 

physiological parameters in both genotypes. In several physiological aspects and in 

marketable yield response the genotype Cazzone Giallo resulted more salt sensitive 

than Quadrato d’Asti. 
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Chapter 4 
“Aglianico grapevines grown in two nearby soils with distinct capability of 
water retention experienced different water stress intensities affecting vine 

water status and photosynthetic performances.” 

(Vitis vinifera L.) 
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4.1 Abstract 

 
Grapevine (Vitis vinifera, L.) is an important crop in the Mediterranean area for grape 

and wine production. This species is adapted to the Mediterranean climate, with hot 

and dry summers. Soil type is among the most important environmental factors 

affecting physiological and morphological performances and productivity of 

vineyards. Soil water content determines the dynamics and intensity of stress to 

which vineyards are submitted. A moderate water stress affects photosynthesis, yet it 

can be beneficial for grape yield and wine quality whereas intense water stress is 

deleterious. An Aglianico vineyard was grown under rain-fed conditions (with no 

irrigation) in two nearby soils with distinct capability of water retention and, 

therefore, soil moisture available to the vines, higher for the Cambisol (CAM) and 

lower for the Calcisol (CAL). In a two-year trail we monitored the effect of this soil 

characteristic on leaf water status, gas-exchange and Chl a fluorescence in order to 

highlight the mechanisms underlying physiological responses of grapevine under 

long-term water stress conditions under open field conditions. 

Soil moisture showed a gradual reduction due to the depletion caused by vine 

transpiration and soil evaporation. Leaf water potential (Ψl) decreased to -1.64 MPa 

in CAL and -1.40 in CAM in late summer, typical values for the Mediterranean 

climate. Especially in the more stressed CAL vines, impaired leaf water status 

triggered a control of transpirative water loss, through marked stomatal closure. 

Stomatal conductance (gs) in fact decreased to the minimum of 0.030 mol m-2 s-1 as a 

two-year average in CAL, whereas in CAM the average minimum gs was 

significantly higher (0.173 mol m-2 s-1), indicating for Aglianico a water saving 

(“pessimistic”) behavior. Nevertheless, the moderate differences in Ψl between CAL 

and CAM vines also indicate a certain degree of near isohydric behavior, more 

evident in the second as compared with the first year.  
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Trends of assimilation rates (A) resembled those of gs. The maximal difference 

between vines of the two sites occurred when was 16.1 in CAM and 5.7 µmol m-2 s-1 

in CAL in the first year, and 13.9 and 2.2 µmol m-2 s-1 in the second year for the two 

sites, respectively. Soil moisture, leaf water potential and gas-exchange recovered 

with the occurrence of some rainfalls.  

Analyses of the dynamic of intracellular CO2 concentration, and the relationship 

between intrinsic water use efficiency (A/gs) and gs, which is an integrative parameter 

of water stress, revealed information leading to relevant conclusions. The long-term 

gradual imposition of soil water deficit under field conditions resulted in a mild to 

moderate intensity of water stress imposed to the vines. Grapevines succeeded to bear 

water stress conditions by controlling water loss through stomatal closure. This 

markedly reduced photosynthetic assimilation, yet without significant impairments of 

photosynthetic machinery. Nevertheless, in the second year a severe water stress was 

imposed to CAL vines in a short-term period. A/gs vs. gs relationship and the dynamic 

of Ci indicate the occurrence of non-stomatal limitations to photosynthesis. Moderate 

water deficit reduced yield by improved berries quality especially in the first year.  

4.2 Introduction 

Grapevine (Vitis vinifera, L.) is one of the most important fruit crop in the world, 

with 7.8 million hectares cultivated in 2011, and a annual production of 67.5 million 

tons of berries with a production of about 29 millions of wine, two thirds of them in 

the Mediterranean area (http://www.oiv.int/). 

Grapevine is a typical species of the Mediterranean area, which has a temperate 

climate with hot summers and mild winters (Williams et al., 1994). Environmental 

factors, namely climate and soil, cultivar and human practises, and their interactions 

affect yield and quality of grape and wine. 

The concept of Terroir is adopted in viticulture to relate sensory attribute of wine to 

such a complexity of factors (van Leeuwen and Seguin, 2006; Wilson 1999).  
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Specifically, soil type is considered a crucial factor in the yield and quality 

performances of vineyards, as it affects among other factors the amount of water that 

plants can capture from soil. 

During the grapevine growing season in the Mediterranean area, precipitations are 

really limited, increasing the risk of drought stress (Robinson 2006) in particular in 

soils characterized by a low water retain (Tramontini et al., 2013).  

Intense water stress imposes excessive constraints to growth and photosynthesis, with 

negative effects on grape yield and wine quality (Griesser, 2015), especially if water 

deficit occurs before veraison (Smart, 1974; Hardie and Considine, 1976; Matthews 

and Anderson, 1988), yet negative effects in post veraison have been also reported 

(Poni et al., 1993). Wine grapevine cultivars are traditionally (or obliged by law) 

cultivated under rain-fed conditions where a moderate soil water deficit, e.g. imposed 

by deficit irrigation (DI) practices, can be beneficial for grape and wine quality 

(Hardie and Considine, 1976; Smart et al., 1990; Lovisolo et al., 2010). Chaves et al. 

(2010) reviewed “the rationale for deficit irrigation, (by asking) why mild to 

moderate water deficit may be favourable to grape berry quality”. Essentially, a 

moderate water deficit (regulated deficit irrigatil.on, RDI) can be a favourable 

condition at specific phenological phases, normally late in the season after veraison, 

when fruit development is less sensitive. The effect of water deficit on fruit growth is 

higher and much irreversible during Stage I (ending at veraison) of the double-

sigmoid growth curve than during the next Stages II and III (Williams et al., 1994, 

and references therein). Moreover, accumulation of sugar is less sensitive to water 

deficit than fruit growth, unless the stress is quite severe (Williams et al., 1994 and 

references therein). As a consequence of a moderate water deficit, yield is not much 

reduced while quality in some cases may be even improved (Chaves et al., 2010). 

Plant secondary metabolites are produced as a cellular response to abiotic stress and 

are involved in several mechanism of defense by ROS scavenging (Cramer et al., 

2011). On the other hand, increase of their concentration of secondary metabolites 
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enhances grape quality, as they contribute to color, taste and aroma of fresh and dried 

grapes and they are crucially involved in wine stabilization and aging processes. 

 

Zsófi et al. (2009, 2011) studied the effect of soil water deficit on water status, gas 

exchange, vegetative growth and berry sugar concentration on”Kèfrankos” 

grapevines grown on two soils, having different retention of soil moisture. The 

authors concluded that water deficit had a preeminent role on the different 

physiological responses, yield and quality showed by the vineyard in the two soil 

sites. However, those two vineyards were as far apart as 7 km. 

We carried out a two-year similar experiment on a rain-fed (non-irrigated) 

“Aglianico” commercial red-wine vineyard. The peculiarity of the experimental 

conditions was that at the very short distance of 100 m, hydrological characteristics 

of the soil were quite different. This resulted in two soil sites having high and low 

availability of soil water content during the growing season, whereas, the short 

distance assured that all other environmental conditions were identical. The aim of 

the work was to assess how the different soil water availability induced plant water 

stress, affecting physiological responses and grape yield and quality.  

 

4.3 Materials and methods 

 

4.3.1 Study Area  

The experimental site was located in Southern Italy (Mirabella Eclano-AV, 

Campania region: 41°02'48.3"N 14°59'26.1"E, elev. 368 a.s.l.), in a farm oriented to 

high quality wines production, named Quintodecimo. The trial was carried out in 

2011 and 2012 in a rain-fed (not irrigated) Vitis vinifera L. cv “Aglianico” vineyard 

planted in the year 2000, grafted on V. berlandieri Planch. xV. rupestris Scheele 

(1103 P). Rows were oriented NW-SE (43° NW) and vines were spaced 2 m between 

rows by 1 m along the rows (5000 plants per hectare, espalier system, cordon spur 

pruning). A pedological characterization carried out by Bonfante et al., (submitted) 
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found two functional homogeneous zones, 100 m apart, with two soil types: Cambic 

Calcisol (Clayic, Aric) and Eutric Cambisol (Clayic, Aric, 357 Colluvic) (IUSS, 

2014). The texture is quite similar and both soils can be classified as clay loam. 

Despite the similar texture, hydraulic properties measured in lab showed some 

important differences as the available water content (AWC) in the first 80 cm of soil 

depth resulted 80 mm in Calcisol (CAL) and 145 mm in Cambisol (CAM).  

All the measurements were carried out in the two different sites of the vineyard, 

characterized by large different soil water retention under the same climatic 

conditions.  

The long-term (2003-2013) mean daily temperature at the study area was 14.7 (±0.9) 

°C, while the mean annual rainfall was 802 (±129) mm (data from the Regional 

weather station of Mirabella Eclano – AV- at 1 km of study area). 

The climate monitoring within the farm in the two years showed that during the 

cropping season (April-early October) the mean daily temperature was of 20.9 (±1.2) 

°C while the precipitation was very variable during ranging from 200 to 285 mm. 

 

4.3.2 Soil measurements 

In both the two sites, volumetric soil water content (θ, m3 m-3) was assessed by Time 

Domain Reflectometry (TDR) technique using two programmed automated systems, 

each one equipped with a solar panel and battery, a CR1000 data-logger for storage 

of data taken by a TDR 100 instrument and AM multiplexers (Campbell Scientific 

Inc., Logan, UT, USA) to which self-built three-steel wire TDR probes were 

connected. Probes were horizontally installed at 0.1, 0.3, 07 and 0.9 m depth along 

the soil profile. 

 
4.3.3 Leaf water status 
 
Leaf water potential (Ψl, MPa) was assessed on a leaf of 10 plants per site using a 

Scholander type pressure bomb (SAPS II, 3115, Soil moisture Equipment Corp., 

Santa Barbara CA, U.S.A). Well-expanded sunlit leaves were chosen at breast. 
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Following cutting, the leaf was inserted into the pressure bomb within 30 s, and 

pressure was increased at a rate of 0.2 MPa min–1. 

 

 

4.3.4 Leaf gas exchange 
 
Photosynthetic CO2 assimilation (A, µmol m−2 s−1), stomatal conductance to water 

vapour (gs, mol m−2 s−1), intercellular CO2 molar ratio (Ci, µmol mol-1) and effective 

quantum efficiency of PSII photochemistry (ΦPSII also known as ΔF’/Fm’) in light-

adapted leaves, were measured by means of a portable photosynthesis and modulated 

fluorescence system (model either Li-6400-40 or Li-6400XT, Li-Cor Biosciences, 

Lincoln, NE, U.S.A.). Actinic light was provided by an artificial red and blue LED 

source with 630 and 470 nm peak emissions, respectively. The light source was set at 

a saturating photosynthetic photon flux density (PPFD, 10% blue light) of 1500 µmol 

m−2 s−1. An external bottled CO2 source was used to maintain the leaf chamber CO2 

molar ratio at 400 µmol mol−1. The built-in modulated fluorometer was used to 

measure the fluorescence parameters on the adaxial side of leaves. After the 

measurement of Chl a fluorescence emission at steady-state under light conditions, 

F’, the maximum fluorescence emission, Fm’, was assessed upon induction by a 0.8 s 

super-saturating light pulse; then actinic light was briefly switched off while a far-red 

light was used to discharge the PSI photosystem to allow measurement of the 

minimum fluorescence emission under light conditions, F0’. The software of the 

instrument (Li-Cor, 2011) calculated the gas-exchange parameters on the basis of von 

Caemmerer and Farquhar (1981) model, and the actual quantum efficiency ΦPSII or 

ΔF/Fm’= (Fm’– F’)/ Fm’ (Genty et al., 1989) and the maximum quantum yield under 

light conditions Fv’/Fm’, where Fv’= Fm’- F0’ (Baker, 2008). 

 
4.3.5 Transient chlorophyll a fluorescence emission and chlorophylls content  

Transient fluorescence induction (FI) (Kautsky effect) was assessed according to 

Strasser et al. (2000, 2004) and Lazár (2006) by a continuous–excitation Pocket PEA 
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or, alternatively, by a Handy PEA fluorometer (Hansatech, Instruments Ltd, King’s 

Lynn, Norfolk, England) equipped with leaf-clips. The excitation red light pulse for 

FI was emitted by a red light diode source, and applied for 1s at the maximal 

available intensity for PFFD of 3500 µmol m–2 s–1. The basal (Fo [relative units, r.u.]) 

and peak (Fp, [r.u.]) fluorescence emissions were assessed in the adaxial lamina of 

leaves after 40-60 min of dark adaptation. Fp was assumed as a viable maximum 

fluorescence emission (Fm [r.u.]) approximation according to Giorio (2011) in order 

to calculate Fv/Fm. Before initiating dark adaptation, the same protocol was used to 

obtain steady-state (F’ [r.u.]) and maximum (Fm’ [r.u.]) fluorescence emissions in 

light adapted leaves, and consequently ΦPSII =ΔF’/Fm’. See Giorio (2011) for detailed 

methodology. Measurements were carried out on 15 young fully expanded sun–

exposed leaves, chosen as for gas exchange from the middle region of 15 vines. 

Chlorophyll content of leaves was optically estimated as CCI, an optical index of the 

actual chlorophyll content, by a handheld meter (CCM200, Chlorophyll content 

meter Apogee Instruments, Inc., Logan, UT), which is the ratio of the fractional leaf 

transmittances at 653 and 931 nm.  

 
4.3.6 Canopy light interception and LAI estimation 

A linear Accupar LP-80 PAR-LAI ceptometer (Decagon Device Inc., Pullman, WA, 

USA) was used to measure incoming light intercepted by the vineyard to estimate 

leaf area index (LAI, m2m-2). The ceptometer had 80 photosynthetic photon flux 

density (PPFD) sensors spaced at 1 cm interval, and it was programmed to average 

readings of every 10 sensors before logging data. The PPFD transmitted through the 

canopy (PPFDT) was measured at 0.25 cm above soil surface over a grid of 0.1 x 0.1 

cm2 across an area of 2 m along and 2 m between the rows. The measurements were 

carried out in 3-4 replicates in both CAL and CAM sites, while the measurements 

taken in a clear area near the two sites were taken as the PPFD incident over the 

canopy (PPFDI). Intercepted light (PPFDInt) was calculated as the difference between 

incident and transmitted PPFD, whereas the fractional light interception (fi) was 

calculated as the ratio between PPFDInt and PPFDI. 



 76 

The instrument software calculated LAI (one-side green leaf area (m2) in a canopy 

per unit ground area.) by following the Norman/Jarvis/Campbell-Norman model 

(Campbell and Norman, 1989) which requires the measurement of both incident and 

below-canopy radiation. Assuming a random distribution of leaves within the canopy, 

the software adopts a simplified version of the complete model of Norman and Jarvis 

(1974) for transmission and scattering of light in a canopy. It assumes a spherical leaf 

angle distribution (x=1), which implies the extinction coefficient K = 1/(cos Θ), 

where Θ is the zenith angle of the sun. On this basis, it can be shown that LAI = [(1-

1/2K) fb -1] ln τ / (A (1-0.47 fb)) (Decagon Devices, 2006), where fb is the ratio 

between direct radiation coming from sun and total radiation coming from all 

ambient sources and τ = PPFDT/PFFDI, whereas A depends on leaf absorptivity 

which was assumed to be 0.9 in the photosynthetic radiation band. 

 
4.3.6 Statistical analysis 

For each data, differences between two sites were evaluated performing Student’s t-

test, with the null hypothesis rejected at p≤ 0.05 by using the software package 

GraphPad Prism ver. 5.0 for Mac (GraphPad Software Inc., San Diego, CA, U.S.A.). 

 

4.4 Results 
 
4.4.1 Soil moisture 

Volumetric soil water content gradually decreased during the growing season in both 

the two soil sites. Interestingly, at starting of measurements in spring,  θ in CAM site 

(0.43 in the first and 0.35 m3 m-3 in the second year) was 0.1 m3 m-3 higher than CAL 

in both years (Fig. 1 A, B). The abundant rainfall of 61 mm occurring on 23 July of 

second year (day of year, DOY 205) significantly increased soil moisture to about 

0.34 m3 m-3 in both two sites. A very low value of soil moisture (0.15 m3 m-3) was 

reached on 9th September (DOY 252) in first year and on 1th October (DOY 275) in 

the second year. 
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4.4.2 Leaf water potential 

In the two-year trial, leaf water potential (Ψl) was about -0.7 MPa in spring and then 

it decreased afterwards with the occurrence of more stressful conditions. The average 

minimum in both years was reached in late summer, -1.64 in CAL and -1.40 MPa in 

CAM vines. During both seasons, drops in Ψl were followed by a re-increase with the 

occurrences of rainfalls. In the first year, no differences were found between sites 

until the middle of July (DOY 196). Afterwards, the worsening of vine water status 

was more pronounced in CAL than in CAM site, with a maximum significant 

difference of 0.58 MPa occurring at the end of Aug (DOY 242) (Fig. 1C). In the 

second year, Ψl was lower in CAL than CAM from DOY 177 to 202 (mid July, Fig. 

1D). The abundant rainfall of 61 mm then recovered water status in both sites. 

Afterwards, Ψl decreased again until DOY 242 (end of August), with a following 

partial recovering. As an average during the season Ψl was -0.86 in CAM and -1.06 

MPa in CAL in the first year, whereas in the second year it averaged -1.01 in CAM 

and -1.19 MPa in CAL.  
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Fig. 1 Volumetric soil water content (θ, m2 m-2) (A, B), leaf water potential (Ψl, MPa) (C, D), in the two theses Calcisol 
(CAL) and Cambisol (CAM) during the first (left) and second (right) year of trials. Each point is the mean of 15 
measurements. Vertical bars indicate the standard error of the mean. Downward arrows indicate rainfalls.  

 
4.4.3 Gas exchanges 

Stomatal conductance during the two years agreed with Ψl, with the CAL plants 

experiencing lower values than those of CAM. During first year, in both two sites gs 

increased from May to early July up to about 0.350 mol m-2 s-1 (DOY 138 to 182, 

Fig. 2 A). Afterwards, there was a gradual decrease to quite low values of 0.042 mol 

m-2 s-1 in CAL on DOY 242 (end of August), when in CAM vines gs was as high as 

0.206 mol m-2 s-1. 

Subsequently, a partial recovery was observed especially in CAL vines, leading to a 

difference in gs between the two sites of 0.050 mol m-2 s-1 (Fig. 2 A).  

In the second year, in both sites gs raised during June reaching an average of 0.250 

mol m-2 s-1 on DOY 177 (Fig. 2 B), then a steep drop occurred and it continued until 

DOY 202 (mid July) when the very low value of 0.038 mol m-2 s-1 in CAL was 

significantly different from 0.157 mol m-2 s-1 measured in CAM vines. At the end of 
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July (when an abundant rain occurred) stomatal conductance recovered to about 

previous higher values, before a decreasing started again on DOY 209. The minimum 

gs observed a month later (DOE 242, end of August) was 0.018 in CAL and 0.140 

mol m-2 s-1, significantly higher in CAM vines (Fig. 2 B). In the late summer, a 

moderate re-increase followed by another drop of gs was observed in both sites. 

Assimilation rates (A) showed trends quite similar to those observed for stomatal 

conductance in both years (Fig. 2 C, D). In fact, in the first year, the increase 

observed during June was followed by a period of progressive reduction until late 

summer, before the occurrence of a recovering (DOY 242). The maximal difference 

between vines of the two sites occurred in the first decade of September (DOY 252) 

when A was 16.1 in CAM and 5.7 µmol m-2 s-1 in CAL. Subsequently a moderate re-

increase was observed in CAL. 

In the second year, alike stomatal conductance, in both the two sites assimilation 

rates increased during June, then it decreased until DOY 202 (mid July), and re-

increased during next 13 days (Fig. 2 D). Afterwards, it decreased again during 

August, until DOY 242, when the minimum assimilation in CAL, 2.2 µmol m-2 s-1 

was significantly lower than 13.9 µmol m-2 s-1 found in CAM. Finally, assimilation 

moderately recovered again.  

As regard water use efficiency (A/gs) in both years this parameter remained almost 

constant and without significant differences between the two sites since spring until 

the end of June. During the first year, from DOY 182 to DOY 242 a clear increase to 

150 µmolmol-1 was observed in CAL plants. Afterward this parameter quickly 

decreased to previous values of 50 µmolmol-1. During the second year, differences 

between the two theses were lower, with the exception of two periods, in July, and 

late August in which CAL plants showed slightly higher values than CAM plants. 
Intercellular CO2 concentration Ci, during the first year was almost constant in CAM 

plants for the whole cultural season to a value of 250 µmol mol air-1, conversely a 

steep decrease to 120 µmol mol air-1 was observed in CAL plants from DOY 182 to 

DOY 242. Afterward in late summer a significant increase was observed to the same 
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value of CAM plants 290 µmol mol air-1. In the second year the only differences 

between the two theses occurred on DOY 220 when CAM plants were 50 

µmolmolair-1 higher than CAL, and on DOY 271 (end of September) when CAL 

plants reached the minimum value of 126 µmol mol air-1. 
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Fig. 2. Stomatal conductance to water vapour (gs, mol m2s-1) A) and B) Photosynthetic CO2 assimilation (A, µmol m2s-1, 
C, D), water use efficiency (A/gs µmol mol -1, E, F) intercellular CO2 concentration (Ci µmol mol air-1, G, H), in the two 
theses Calcisol (CAL) and Cambisol (CAM) during first and second year of experiment. Each point is the mean of 15 
measurements. Vertical bars indicate the standard error of the mean. Downward arrows indicate rainfalls. 
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4.4.4 Fluorescence parameters 

The maximal quantum efficiency of photosystem PSII (Fv/Fm) in the first year did not 

show appreciable differences between CAL and CAM leaves with the exception of 

DOY 159 (early June) and 182 (start of July). Fv/Fm showed a moderate increase 

since spring until early July in both years. Afterwards, it remained pretty constant in 

both the two years and the two sites. With the exception DOY above mentioned, 

Fv/Fm ranged from 0.750 to 0.790 in the first year and from 0.683 to 0.816 in the 

second year, in which the difference was statistically significant in several occasions. 

The effective quantum efficiency of photosystem PSII (ΦPSII) decreased during most 

of the two growing seasons (Fig. 3), with higher values in CAM than CAL, and with 

more oscillations in the second year as found for gas exchange parameters. In the first 

year, a minimum of 0.069 occurred in CAL leaves on DOY 252 (late August), with a 

doubled value as compared to CAM. In the second year, ΦPSII in CAL gradually 

decreased to about 0.082 in late summer. CAM maintained pretty stable values until 

the end of July when it was significantly higher than CAL. Afterwards, an increase 

from 0.143 to 0.220 was observed within 10 days, reaching a doubled value as 

compared with CAL leaves, and then followed again by a progressive decrease. 
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Fig. 3 Maximal quantum efficiency of PSII (Fv/Fm, A) and B), actual quantum efficiency on PSII (ΦPSII ) C) and D) in 
the two theses Calcisol (CAL) and Cambisol (CAM) during first and second year of experiment. Each point is the mean 
of 50 measurements for Fv/Fm and 15 measurements for ΦPSII . Vertical bars indicate the standard error of the mean. 
Downward arrows indicate rainfalls. 
 

4.4.5 Chlorophyll content index. 

Chlorophyll content was estimated by the optical index CCI. From June to 

September, this parameter nearly doubled in both years in CAM, and in the second 

year in CAL years, whereas in the first year CAM showed an increase of just 50% 

(Fig. 4). After June, as an average, CCI in CAM was higher than CAL leaves by 57% 

in first year and 25% in the second year.  
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Fig. 4 Optical chlorophyll content index (CCI) in the two theses Calcisol (CAL) and Cambisol (CAM) during first and 
second year of experiment. Each point is the mean of 60 measurements. Vertical bars indicate the standard error of the 
mean. Downward arrows indicate rainfalls. 

4.4.6 Leaf area index. 

Vines of CAM site showed higher leaf area index (LAI, m2 m-2) than CAL in both the 

two years. These differences occurred essentially in mid and late summer. During this 

period in the first year the average LAI was 1.23 in CAL and 1.50 m2 m-2 in CAM 

(Fig. 5, A). Comparable values were found in the second year. However, in mid 

summer LAI in CAM was 0.98m2 m-2 higher than CAM (Fig. 5,B)  

 

Fig. 5 Leaf area index measured on early, middle and late summer in first (A) and second (B) year in both Calcisol and 
Cambisol vines. Each point is the mean of 10 measures. Vertical bars indicate the standard error of the mean. 
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4.5 Discussion 

Drought is the most deleterious abiotic stress that plants must cope in their 

environments (Boyer, 1982). Crop growth and photosynthesis are among the primary 

processes affected by a reduced availability of water in the soil (Kriedemann and 

Smart, 1971; Liu et al., 1978; Matthews et al., 1978; Chavez and Rodriguez, 1987; 

Schultz and Matthews, 1988; Chaves, 1991, Schultz, 1996; Flexas et al., 1999; 

Maroco et al., 2002; Chaves et al., 2003; Cifre, 2005; Blum 2011), with deleterious 

effects on yield and grape quality (Kliewer et al., 1983, Bravdo et al., 1985; 

Matthews and Anderson, 1989), in relation to short-term and long-term water deficit 

(Winkel and Rambal, 1993; de Souza et al., 2003; dos Santos et al., 2003). 

The relationship between soil water content, leaf water status and gas-exchanges can 

be useful tools to improve water use efficiency in vineyard to optimize yield and 

grape quality (Cifre et al., 2005; Flexas et al., 2004). Intensity, duration and rate of 

occurrence of water stress, which strictly depend on how soil water content is 

depleted during the growing season, are crucial aspects influencing plant responses 

(Chaves et al., 2009). 

The soil water content (θ) and the atmospheric conditions (i.e. the evapotranspirative 

demand) determine the plant water status during the day, as assessed by the leaf 

water potential (Williams et al., 1994). In our two-year experiment, an “Aglianico” 

vineyard was grown in two clay-loam soils, which were characterized by different 

structure. As a consequence, water availability (the capacity to retain water) was 

higher in the Eutric Cambisol (CAM) soil than Cambic Calcisol (CAL). Soil water 

was consumed by the vines through transpiration, and by (the negligible) amount of 

water, which evaporated directly from the soil surface. θ gradually decreased along 

the growing seasons but more in CAL than in CAM site, and the occurrence of few 

significant rainfalls recovered the soil water availability (Fig.1). Leaf water status 

was strictly affected by soil moisture. This resulted in both a gradual worsening of 

vine water status, as assessed by Ψl decreasing during the season, more in CAL than 
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CAM, and by a recovering as an effect of rainfalls (cf. Fig.1 A, B and Fig.1 C,D). 

Williams et al. (1994) reported in “Thompson Seedless” grapevine that early morning 

leaf water potential measured in mid-summer was about -1.2 and -0.5 MPa in soil 

provided with very low or with high soil water content respectively. In our case, we 

measured in late summer (early morning) Ψl values of –1.67 MPa in the first year and 

-1.61 MPa in the second year in CAL, and -1.36 and -1.43 MPa in CAM leaves. On 

the other hand, in late spring of both years, leaf water potential in CAL and CAM 

vines was as high as about -0.7 MPa (Fig. 1, C, D), similarly to the slightly stressed 

vines reported by the authors above mentioned. Moreover, our data are quite identical 

to those reported for two years by Centeno et al. (2010) in a 13-year old 

“Tempranillo” vineyard grown under rain-fed conditions in Spain. In fact, they found 

that Ψl gradually decreased from about -0.8 MPa in late spring to about -1.7 MPa in 

late summer. Therefore, in both the two soil sites vines gradually reached a condition 

of water stress typical for the stressful summers of the Mediterranean area. 

As reviewed by Chaves (2010), most grapevine genotypes can be classified as 

“drought avoiding”, because under soil water deficit conditions – or in stressful 

atmosphere – a strong control is exerted on stomatal closure in order to limit water 

loss through transpiration. In other words, these genotypes show a “pessimistic” 

comportment as regard the expectance for future rainfalls and soil water availability 

and therefore show a (near) isohydric behavior because their responses to water 

deficit results in leaf water potential tending to remain high. On the other hand, other 

cultivars have been reported to have an “optimistic” behavior as they exert less 

control on stomatal conductance, which tends to remain high, whereas leaf water 

potentially drops more, resulting in an anisohydric condition. Giorio et al. (2007) 

reported for the cv “Falanghina” grown in two soils with different water availability 

in the “Telesina” Valley (BN, Italy) a near isohydric behavior. In fact, midday leaf 

water potential during the dry and hot stressful summer conditions (July and August), 

ranged from about -1.4 to -1.5 MPa (in both the two soil sites) while stomatal 

conductance decreased from about 0.6 to a value as low as 0.1 mol m-2 s-1. Similarly, 



 87 

Schultz (2003) reported for vineyards grown in France, near isohydric behavior for 

the cv “Grenache” and anisohydric behavior for the cv “Syrah”. Grenache showed 

midday leaf water potential decreasing during spring and summer with no differences 

between the irrigated control and the (rain-fed) water stressed treatment, whereas 

stomatal conductance was significantly lower in the stressed than control vines. 

Conversely, Syrah maintained significant differences between the two treatments for 

both Ψl and gs. It is worth to note that both the general trends and the minima reached 

in late summer reported in Shultz (2003) are pretty comparable with our 

measurements of Ψl and gs. In our case, Aglianico showed large differences between 

the two soil sites as regard stomatal conductance, indicating water saving 

(pessimistic) behavior. However, the moderate differences in leaf water potential 

between CAL and CAM, indicating a certain degree of isohydric behavior, were 

more evident in the second as compared to the first year (cf. Fig.1 C and Fig.2A, cf 

Fig. 1 D and Fig. 2 B).  

The relative importance of stomatal and non stomatal limitations to photosynthesis of 

plant under water stress have been widely studied, and debated as regard the 

occurrence of the numerous components in relation to intensity of water deficit 

(Flexas et al., 2004). Physiological responses of grapevine to water stress and the 

effects on the photosynthetic performances have been detailed discussed as a means 

for irrigation scheduling, aimed to improve vineyards water use efficiency (Cifre et 

al., 2005). The approach of these authors was to adopt light saturated maximal 

stomatal conductance as an integrative parameter for assessing intensity of water 

deficit in order to predict and improve vineyards water use efficiency. The authors 

indicated specifically for grapevines, three phases of water stress on the basis of three 

gs ranges: from 0.6 to 0.15, from 0.15 to 0.05 and lower than 0.05 mol m-2s-2 for mild, 

moderate and severe water stress, respectively. The hyperbolic relationship between 

A and gs (Farquhar and Sharkey, 1982) imposes the relationship of intrinsic water use 

efficiency (A/gs) vs. gs. Such a model implies that in the first phase A/gs slightly 

increases (as A decreases less than gs) and Ci decreases because stomatal closure 
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induces CO2 shortage in the mesophyll where no effects are yet occurring on the 

photosynthetic machinery. In the second phase A/gs increases more steeply, 

meanwhile Ci still decreases. Electronic transport rate (ETR) is still sustained by 

photorespiration, despite decreased CO2 fixation, while increased thermal dissipation 

of excitation energy (non photochemical quenching, NPQ) is observed. Moreover, 

also the mesophyll conductance can be affected under moderate water stress. During 

the third phase, when water stress is severe (gs < 0.05 mol m-2 s-1), A/gs starts a steep 

decrease, as A is being reduced much more than gs. The severe water deficit 

conditions also induce a further decrease in NPQ and a reduction of ETR (both A and 

photorespiration are impaired). At metabolic level, reductions in both CO2 

carboxylation of Rubisco and RuBP regeneration are observed, the latter due to 

impairments of photochemistry efficiency. Under these conditions a steep increase in 

Ci is observed. In fact, the reduced diffusion of atmospheric CO2 through stomata as 

well as the mesophyllic diffusion are overridden by the impairments of 

photosynthetic machinery, with increased ratio between photorespiration and 

carboxylation, resulting in an increased intracellular CO2 concentration. Under these 

conditions, photosynthesis may not quickly recover upon irrigation or rainfalls. 

Therefore, under mild water stress, limitations to photosynthesis are due to the 

regulation of stomatal closure. Conversely, non-stomatal limitations are dominant 

under severe stress conditions. However it is also known that under field conditions 

characterized normally by long-term gradual imposition of water stress the 

probability of non-stomatal limitations is not much high (Chaves 2012). 

As regard the environmental conditions experienced by our Aglianico vines in the 

first year, the variations in stomatal conductance during the season were reflected by 

a similar behavior of assimilation (Fig. 2 A, B, C, D). It is worth to note the 

amelioration of stomatal conductance and assimilation during spring. One reason of 

this could be the ontogenetic effect on gas exchange during leaf development (Gucci, 

1997; Xien and Luo, 2003). However, since DOY 182 (starting of July) gs in CAL 

vines showed a reduction higher than A, leading to an increase of intrinsic water use 
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efficiency until end of August (Fig. 2 E). With the occurrence of a rainfall, gs 

recovered more than A, and as a consequence A/gs steeply decreased. Conversely, 

CAM vines showed a much stable pattern of A/gs along the season with a moderate 

increase quite late in the season (DOY 252, early September). However, this increase 

was caused by a substantial recovering for A, and not for gs, in response to a rainfall. 

As regard the second year, a rainfall of 61 mm occurred in July, and it was heavy 

enough to induce the recovering of soil moisture as well as of plant water status in 

both CAL and CAM. In fact, θ and Ψl rose to same values in both CAL and CAM 

sites (cf. Fig. 1 B and D). The plant response to water deficit followed what expected 

by the Cifre model but with some differences. Until late July (around DOY 200), 

both A/gs and Ci remained almost stable in the two theses as like the previous year 

(Cf. Fig. 2 F and Fig. 2 E, Cf Fig. 2 G and Fig. 2 H). Interestingly, during this period 

for both years, Ψl never dropped below -1.5 MPa (Fig. 1 D), therefore inducing 

similar responses of gas exchange (Fig. B). Afterwards, conversely to the first year, 

mitigation of soil water deficit occurred in mid-summer due to the heavy rainfall 

(DOY 205, Fig. 1 B). During next 10 days, in contrast to the previous year, high 

stressful atmospheric conditions (highly evaporative-demanding atmosphere) were 

imposed to vines when soil water deficit was strongly recovered (Fig. 1, B). 

Therefore, the rate of gs reduction was quite enhanced (Fig. 2 B) resembling the 

effect of a short-time intense water stress experiment. Those conditions may have 

partially modified stomatal response to drought in the second year as compared with 

this first year. Actually, in the second year the differences in both A/gs and Ci 

between the two soil-site vines resulted mitigated (from late July to late August, from 

DOY 205 to 242, Fig. 2, F) as compared with the previous year. The relationships of 

both assimilation and water use efficiency versus gs for the two years (Fig. 6, A, B) 

summarize the dynamic of gas exchange response with the occurrence of water 

stress, which is indicated by variation of the integrative parameter of stomatal 

conductance (Cifre, 2005). It is quite interesting to note that, during first year, vines 

of both CAL and CAM soils did not get into the above-described third phase, because 
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there were no drops in A/gs at low gs values. Moreover, the more stressed CAL vines, 

showed higher A/gs at low gs than CAM, therefore approaching the end of the second 

phase more than CAM vines (Fig. 6 A). As regard the second year (Fig. 6 B), vines in 

both sites reached lower gs at pretty high A/ gs. However, CAL vines were the sole to 

enter the third phase characterized by severe water deficit, as showed by A/gs 

decreasing to low values at low gs around DOY 251 (Fig. 6 B, Fig. 2 F).  

 
Fig. 6 Relationships of intrinsic water-use efficiency (A/gs) and assimilation (A) with stomatal conductance (gs) in 
grapevines (V. vinifera L.) in first and second year of trials. All data are single values, taken from 10 to 13 h at 
saturating light intensity. Arrows indicate the dynamics of temporal occurrence during the experiment.  

Zsófi et al. (2009) on the basis of the Cifre approach analyzed the response of the 

grape variety “Kèfrankos” in two sites with higher and lower soil water availability in 

the continental environment in Hungary. Their grapevines also showed a clear 

separation between the two theses, but never entered the third water stress phase. 

However, the authors indicated the thresholds of stomatal conductance of 0.23 and 

0.06 mol m-2 s-1 for the passage into the second and third phase, respectively. In our 

case, it was quite difficult to clearly select the threshold for entering in the second 
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phase, without additional information. However, CAL vines entered the third phase 

in the second year when stomatal conductance was about 0.04 mol m-2 s-1. 

Our data of photochemistry efficiency confirmed that CAL vines in late summer of 

second year were submitted to severe water stress implying the occurrence of non-

stomatal limitations to photosynthesis. In fact, in that period we observed a clear 

difference in both Fv/Fm and ΦPSII (Fig. 3 B, D) at gs in CAL of about 0.04 mol m-2 s-

1. Flexas et al. (2004) actually reviewed that Fv/Fm is decreased at stomatal 

conductance below a value of about 0.1 mol m-2 s-1, fairly similar to what occurred in 

our case. Fanizza et al. (1991) submitted several grapevine cultivars to one month 

water stress, resulting in Ψl of about -1.55 MPa, compared with –0.8 MPa of the 

Control. These authors found that total chlorophyll content of about 45 µg cm-2 in the 

control decreased to about 35 µg cm-2 in the stress vines. They also found (un-

usually) a linear relationship between the optical chlorophyll index and the actual leaf 

Chl content. Therefore, their data are comparable with our results (Fig. 4 A, B), 

which confirm the damaging effects on the photosystems, affecting the 

photosynthetic performances (e.g. Scotti et al. 2015). 

The capacity of vineyards to accumulate dry matter depends on the whole-canopy net 

photosynthesis, which in turns is determined by the canopy leaf area and its spatial 

distribution, which affects light interception, and on the ability to use it and to 

assimilate CO2 through leaf photosynthetic performances (Kliewer and Dokoozlian, 

2005). The Aglianico vineyards here studied were submitted to both green pruning 

and fruit thinning in order to achieve the best equilibrium between vegetative and 

reproductive growth, aiming to obtain grape and then wine of best quality. In fact, 

LAI measured in spring, mid- and late-summer was quite stable in both the two sites 

and in both the two years, with the exception of CAM vines in mid summer of second 

year (Fig. 5 A, B). These data confirm the strong control exerted by the grower on the 

vegetative growth, and the same occurred for grape load left on the vines (data not 

shown). The grape yield (data not shown) and quality of grape and wines were better 
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in vines of CAL than CAM site. This occurred to several parameters of grape and 

wine quality as reported in Tab. 1 (data from A. Gambuti, unpublished data). It is 

worth to note that such difference were stronger in the first as compared with second 

year, in which CAL vines encountered severe water stress during mid summer. 

Table 1 Results of the experimental must and wine analyses from the vineyards in each year.  

 

4.6 Conclusions 

The different hydrological properties of the two soils significantly affected the 

dynamics of the soil moisture available to the vines from spring to late summer in a 

two-year experiment. A gradual water stress was imposed to vines as soil moisture 

was consumed through evapotranspiration by the vineyards. However, vine water 

status was more affected in CAL site, as showed by the more sustained decrease in 

leaf water potential as compared with CAM vines. Recovering in both soil water 

content and leaf water status occurred as an effect of rainfalls. Stomatal conductance 

and photosynthetic CO2 assimilation followed the trends showed by leaf water status. 

Analyses of the dynamic of intracellular CO2 concentration, and the relationship 

between intrinsic water use efficiency (A/gs) and gs, the latter being an integrative 

parameter of water stress, reveal information leading to relevant conclusions. The 

long-term gradual imposition of soil water deficit under field condition resulted in a 

mild to moderate intensity of water stress imposed to the vines. Grapevines 

succeeded to bear water stress conditions by controlling water loss through stomatal 

closure. This significantly reduced photosynthetic assimilation, yet without 

significant impairments of photosynthetic machinery. Nevertheless, in the second 

year a severe water stress was imposed to CAL vines in a short-term period. In this 
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case, A/gs vs. gs and the dynamic of Ci indicate the occurrence of non-stomatal 

limitations to photosynthesis. Moderate water deficit reduced yield but improved 

berries quality especially in the first year.  
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General Conclusions 

Plant responses to water and salt stress were investigated in five experiments along 

three years. Plants were grown in pots on soil (tomato) or on a soilless system 

(pepper) in glasshouse, or under open-field conditions (grapevine).  

Two Italian long-term storage tomato landraces, Locale di Salina and Pizzutello di 

Sciacca were submitted to rapid, intense water stress by withdrawal of irrigation and 

recovering by re-watering. Two genotypes of sweet pepper, Cazzone Giallo and 

Quadrato d’Asti, were submitted to long-term stress at several level of salinity.  

Aglianico grapevines experienced long-term water deficit in soils with high or low 

capability of water retention.     

Morphological, physiological and biochemical responses to those different types, 

intensities and dynamics of abiotic stress were analysed to investigate the underlying 

plant response mechanisms. 

The two tomato landraces both showed a clear response to the imposed intense soil 

water deficit by regulation of stomatal closure and photosynthetic activity, and 

recovering upon re-watering. Physiological responses were strictly linked to 

biochemical mechanisms of response to water stress as both ABA and proline 

increased concomitantly with severe stress conditions. The activity of PARP was 

influenced by both stress imposition and ABA response. Although future 

confirmation is needed at the field level, the data revealed that the two landraces 

showed a wide physiological and biochemical plasticity to deal with water stress. 

Pepper genotypes under long-term salt stress showed great impairment of water 

status, and accumulated significant amount of both Na+ and Cl- in stems and leaves. 

Photosynthetic assimilation and photochemistry at high levels of salinity were 

dramatically impaired throughout two distinct phases. Stomatal closure dominated 
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photosynthetic limitations during first 30-40 days of salt stress imposition. 

Conversely, afterwards non-stomatal limitations had a relevant role with the probable 

significant contribution of specific ion toxic effects. Moderate salinity did not affect 

physiological parameters in both genotypes. In several physiological aspects and in 

marketable yield response the genotype Cazzone Giallo resulted more salt sensitive 

than Quadrato d’Asti. 

 

The different hydrological properties of the two soils significantly affected the 

dynamics of the soil moisture available to the vines of Aglianico from spring to late 

summer. A gradual water stress was imposed to vines as soil moisture was consumed 

through evapotranspiration by the vineyards. However, vine water status was more 

affected in the soil site with lower capability of water retention, as showed by the 

more sustained decrease in leaf water potential as compared with the vines grown in 

the soil site with high water retention. Recovering in both soil water content and leaf 

water status occurred as an effect of rainfalls. Stomatal conductance and 

photosynthetic CO2 assimilation followed the trends showed by leaf water status. 

Analyses of the dynamic of intracellular CO2 concentration, and the relationship 

between intrinsic water use efficiency (A/gs) and gs, the latter being an integrative 

parameter of water stress, reveal information leading to relevant conclusions. The 

long-term gradual imposition of soil water deficit under field condition resulted in a 

mild to moderate intensity of water stress imposed to the vines. Grapevines 

succeeded to bear water stress conditions by controlling water loss through stomatal 

closure. This significantly reduced photosynthetic assimilation, yet without 

significant impairments of photosynthetic machinery. Nevertheless, when a severe 

water stress was imposed in a short-term period to vines grown on soil with low 

water retention, A/gs vs. gs and the dynamic of Ci indicated the occurrence of non-

stomatal limitations to photosynthesis. Moderate water deficit reduced yield but 

improved berries quality especially in the first year.  
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