
On-chip Communication in the
Many-core Era

DIETI - Department of Electrical Engineering and Information Technology

University of Naples Federico II

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Author:
Edoardo Fusella

PhD Supervisor:
Prof. Antonino Mazzeo

PhD Co-Supervisor:
Prof. Alessandro Cilardo

PhD Coordinator:
Prof. Francesco Garofalo

March 2015

This dissertation is dedicated to my future daughter, with a hope that she would one day
realise that education is a weapon to fight ignorance and poverty and a key to open doors

for turning dreams into reality.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Edoardo Fusella
March 2015

Acknowledgements

First of all, I would like to acknowledge my supervisor, Prof. Antonino Mazzeo, who made
my PhD possible. He trusted me and gave me the opportunity to be involved in his teaching
activity.

Then, I really thank Prof. Alessandro Cilardo, my co-supervisor, for his understanding,
support and help, which it has been decisive for me to accomplish this thesis. I still remem-
ber how I felt at the beginning of my PhD. During the first months I was completely lost.
I didn’t know what to do or what I was going to do. He helped me to step forward in a
moment of disorientation, he offered me ideas and a lot of work. His kindness and profes-
sionalism are unique, and I will never end to thank him for the opportunity that he gave me
and for everything he taught to me. Since we met, he has made the effort to get the best out
of me.

Ing. Luca Gallo and I have worked side by side during the beginning of my PhD. To-
gether we solved many problems, we published some papers and we attended several con-
ferences. His support has been invaluable in a time when it all seems to be difficult.

Then, I would like to gratefully and sincerely thank Prof. José Flich for giving me the
chance to come to the Universitat Politècnica de València. I have been extremely lucky to
have a supervisor who cared so much about my work, and who responded to my questions
and queries so promptly. I really enjoyed working with him and I hope to go on collaborating
with him.

Finally, I wish also to acknowledge all the members of the Department of Electrical
Engineering and Information Technologies of the University of Naples Federico II and of
the Parallel Arquitectures Group of the Universitat Politècnica de València for creating a
pleasant and cheerful work atmosphere.

Abstract

Electronic system design is being revolutionized by the widespread adoption of the multi-
and many-core paradigms. As the number of elements on a single chip and their perfor-
mance continue to increase, the communication architecture is gradually becoming the key
ingredient determining various trade-offs between costs and performance: on-chip inter-
connects provide a vital facility for highly parallel systems, particularly in data intensive
applications, where the choice of the underlying communication architecture, tailored on
the particular application requirements, is critical to the whole architecture.

In that respect, the first part of this thesis goes through the main options available for
building different on-chip communication architectures, focusing on the design automation
of structured communication architectures based on crossbars and shared buses connected
through bridges. An automated methodology for optimizing many-core interconnect archi-
tectures, based on the application communication requirements, is presented. The proposed
methodology turns the description of the application communication requirements into an
on-chip synthesizable interconnection structure satisfying given area constraints. In addi-
tion, it could take into account possible dependencies between tasks in order to co-optimize
the communication scheduling and interconnect synthesis.

However, it is increasingly challenging for an electrical interconnect to meet power con-
straints since the power dissipation of electrical on-chip networks poorly scales with perfor-
mance leading to a growing energy cost. Silicon Photonics seems to be able to empower
ultra-high bandwidth with low power consumption: nanophotonic waveguides (the photonic
equivalent of a wire) can achieve bandwidths in the Tb/s range, while photonic signaling
consumes less power than electrical interconnects since the energy consumption necessary
to send a message optically is independent of the bitrate and the distance between the two
end-points with no need for power consuming repeaters, regenerators or buffers. However,
designing an optical on-chip network requires addressing several challenges that have no
equivalent in the electronic domain.

The photonics inability to perform inflight buffering and logic suggests the use of hybrid
architectures made up of a photonic circuit-switched and an electronic packet-switched net-
works. In this regard, in the second part of this thesis, we first propose a new power-aware

x

path-setup protocol able to put allocated circuits on a stand-by state, rapidly recovering
them when needed. Then, a novel hybrid Optical-Electronic NoC named H2ONoC is pre-
sented. Thanks to a hybrid optical topology, it is possible to achieve higher bandwidth
values and constant energy dissipation regardless of the network and traffic size. Compared
to previously proposed architectures, H2ONoC exhibits higher throughput, lower latency,
and improved energy efficiency with heavy traffic.

Therefore the main contribution of the thesis is twofold: engineering as the integration of
the proposed design methods into tools to automate the interconnect design steps has direct
applicability for designing multi- and many-core systems, and scientific since advanced and
original communication architectures exploiting silicon photonics are presented.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1
1.1 Trends in electronic system design . 1
1.2 On-chip communication . 2
1.3 Thesis contribution . 4
1.4 Thesis overview . 4

2 Design Methodologies for Bus-based Interconnects: Background 7
2.1 Topologies for on-chip bus-based interconnects 9

2.1.1 Hierarchical buses . 9
2.1.2 Crossbar-based architectures . 10
2.1.3 Clustered heterogeneous bus and crossbar architecture 13

2.2 Applications and Architectures Description 14
2.3 Quantitative analysis of an interconnect 17

2.3.1 Design metrics . 17
2.3.2 Evaluation approaches . 24

2.4 Synthesizing an Interconnect . 28
2.4.1 Co-synthesis of memory and interconnect architectures 31
2.4.2 Task scheduling and interconnect synthesis 32
2.4.3 Floorplanning and interconnect synthesis 34
2.4.4 Exploiting multi-path communication 35
2.4.5 An FPGA-specific feature: dynamic configuration 37

2.5 Summary . 38

3 Automated Synthesis of Heterogeneous Interconnect Topologies 39
3.1 Problem definition and methodology overview 39

xii Table of contents

3.1.1 Assumptions . 42
3.2 Communication elements clustering . 42
3.3 Inter- and intra-cluster topology definition 44
3.4 Experiments and Case Studies . 46

3.4.1 Experimental Setup . 46
3.4.2 Results . 47

3.5 Summary . 50

4 Joint Communication Scheduling and Interconnect Synthesis 53
4.1 Problem Definition . 53

4.1.1 Objectives . 55
4.1.2 Assumptions . 56
4.1.3 Overview of the proposed method 56

4.2 Inter-cluster Topology Definition . 58
4.3 Scheduling and intra-cluster topology definition 58
4.4 Experiments and Case Studies . 64

4.4.1 Experimental Setup . 64
4.4.2 Overview of the experiments . 66
4.4.3 Exploring area/latency trade-offs 67
4.4.4 Comparisons with existing methods for various scheduling algorithms 69

4.5 Summary . 73

5 Photonic Network-on-Chip Design 75
5.1 Photonic technology . 75
5.2 Wavelength selectivity . 78
5.3 Dealing with physical constraints . 80
5.4 Routing domains . 83
5.5 A cross-cutting view of the different design challenges 86
5.6 Summary . 87

6 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs 89
6.1 Architecture overview . 90

6.1.1 Optical loss and bandwidth model 91
6.1.2 Energy model . 92

6.2 Path-setup protocol for hybrid NoCs . 94
6.2.1 Routing . 96
6.2.2 Path-setup protocol with standby 96

Table of contents xiii

6.3 Comparison and analysis . 98
6.4 Summary . 102

7 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology 105
7.1 H2ONoC Architecture . 106

7.1.1 Overview . 106
7.1.2 ONoC based on a hybrid topology 106
7.1.3 Routing . 108
7.1.4 Path-setup . 110
7.1.5 Flow Control and Deadlock Management Policy 113

7.2 Performance and Energy and Models . 114
7.2.1 Optical Loss and Bandwidth Model 114
7.2.2 Energy Model . 120

7.3 Experimental Evaluation . 121
7.3.1 Simulation Setup . 121
7.3.2 Analyzing the Path-setup overhead 122
7.3.3 Comparisons with Electronic Mesh 122
7.3.4 Comparisons with Hybrid Optical-Electronic Mesh and Torus NoC 123

7.4 Summary . 128

8 Conclusion 131

References 133

List of figures

Chapter 2 Design Methodologies for Bus-based Interconnects: Background

2.1 A few examples of topologies. (a) A hierarchical bus. (b) A single crossbar.
(c) A crossbar-based architecture with slaves and masters grouped in shared
buses. (d) A cascaded crossbar. (e) A clustered crossbar architecture. (f) A
clustered heterogeneous bus and crossbar architecture. (M: master, S: slave,
B: bridge) . 9

2.2 The internal architecture of the partial crossbar in Figure 2.1(b). 11

2.3 A few examples (M: master, S: slave, t: task.) (a) A Communication Graph
(CG). (b) A Dependency Graph (DG). 14

2.4 The latency for varying message sizes and crossed domains. 20

2.5 The area cost for bus and crossbar interconnect of varying port numbers. . . 24

2.6 The impact of joint scheduling and interconnect synthesis. (a) The ASAP
schedule of the DG in Figure 2.3(b). (b) A different schedule with less
concurrency for the same application. (c) The derived topology 34

2.7 The impact of multiple paths. (M: master, S: slave, B: bridge.) (a) Some
communication requirements of an example application. (b) Schedule with
no multiple paths. (c) The communication architecture implementation. (d)
Schedule with multiple paths. 37

Chapter 3 Automated Synthesis of Heterogeneous Interconnect Topologies

3.1 A few examples (a) A Communication Graph (CG). (b) A Communica-
tion Architecture Arch(T (Sb,C,B),Ω(V)). (c) A Euclidean Distance Ma-
trix (EDM). 41

3.2 An example of agglomerative hierarchical clustering of slave nodes. Slaves
are on the x-axis, while the Euclidean distance is on the y-axis. 43

xvi List of figures

3.3 An example of master assignment. Values are expressed in MB. 44

3.4 The communication architecture description for the second case-study ap-
plication (AppII). (M: master, S: slave, B: bridge.) 49

3.5 Energy consumption comparison vs. [68] (denoted as Jun08 in the charts)
and a full crossbar solution. (a) Static energy (b) Dynamic energy. 51

Chapter 4 Joint Communication Scheduling and Interconnect Synthesis

4.1 A few examples ("M" : master, "S" : slave, "B" : bridge.) (a) A Task List
(TL). (b) A Dependency Graph (DG). (c) A Communication Schedule (CS).
(d) A Communication Architecture Description (OCA). 54

4.2 Proposed interconnect synthesis flow . 57

4.3 Example of temporal bound relaxing . 60

4.4 Behaviour of the randomized list scheduling algorithm 62

4.5 Deriving a topology from a given schedule. (a) Compatibility graphs for the
schedule in Figure 4.1. (b) An enhanced schedule, with less concurrency, for
the same application. (c) Its compatibility graphs. (d) The derived topology. 63

4.6 An example of slave clustering. Slave nodes are on the x-axis, while the
Euclidean Distance is on the y-axis. 68

4.7 Communication architecture descriptions and their schedule found for Bench-
III with the Randomized Priority-based List Scheduling and two different
Area constraints. (a) The on-chip communication architecture (OCA) de-
scription obtained with an area constraint of 4000 LUTs. (b) The OCA
obtained with an area constraint of 2700 LUTs. (c) The Communication
Scheduling (CS) obtained with an area constraint of 4000 LUTs. (d) The
CS obtained with an area constraint of 2700 LUTs. 69

4.8 Latency comparison. The proposed approach and [30] are used under the
same area constraints . 71

4.9 Dynamic energy consumption comparison. 73

4.10 Area comparison of interconnects yielding the the same latency 73

Chapter 5 Photonic Network-on-Chip Design

5.1 A basic on-chip optical interconnect data path. 76

5.2 (a) Parallel PSE in OFF state. (b) Parallel PSE in ON state. (c) Crossing
PSE in OFF state. (d) Crossing PSE in ON state 77

List of figures xvii

5.3 (a) The 4×4 blocking PSE with straight default paths [136]. (b) The 4×4
non-blocking PSE [Wang et al.]. (c) The 4×4 non-blocking PSE optimized
for insertion loss [27]. (d) The 4×4 non-blocking PSE with straight default
paths [27]. (e) The non-blocking crossbar PSE. (f) The 5×5 blocking PSE
optimized for insertion loss [64]. 78

5.4 Two basic architectures exploiting wavelength selectivity to implement: a)
Bandwidth aggregation b) Routing facilities. The arrow is a waveguide,
while the triangles are respectively drivers and receivers. The circles are
microring resonators and each color identifies a different resonance frequency. 80

5.5 Architectures supporting spatial routing: a) MWSR b) SWMR c) hybrid
electronic-photonic circuit-switched network. Architectures supporting wave-
length routing: d) source-routed bus e) destination-routed bus 84

Chapter 6 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

6.1 The two building blocks of the Hybrid NoC (a) The electronic router (b)The
Crux photonic switching element. 91

6.2 The data structures located inside the Path-Setup Unit for the basic path-
setup protocol. (a) The PSE Connectivity Table. (b) The Counter Array. (c)
The finite-state transition diagram for the state of a output port in the PSE. . 95

6.3 The data structures located inside the Path-Setup Unit for the path-setup
protocol with standby. (a) The PSE Connectivity Table (b) The finite-state
transition diagram for the state of a output port in the PSE 98

6.4 Average burst message latency . 100
6.5 Average burst message energy per bit consumption 101
6.6 Percentage of messages sent via the ENoC 102

Chapter 7 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

7.1 The H2ONoC architecture. The black and white circles are respectively
processing and memory elements. The dark squares are photonic switch
elements while the light squares are electronic routers. The dark rectangles
are high-radix PSEs. The thick lines are bidirectional optical channels made
up of two waveguides, while the thin lines are electronic links. The inner
architecture of a PSE and a high-radix PSE are shaded and enlarged. 107

7.2 The worst case number of waveguide crossings between two tiles with min-
imal path routing and ILAR . 109

xviii List of figures

7.3 The electronic router architecture and its path-setup unit 111
7.4 An example of a path-setup execution. The two black circles are the source

PE and the destination ME. The thin lines and the light squares are respec-
tively the electronic links and routers used during the path-setup procedure.
The thick lines, the black squares, and the black rectangles are respectively
the photonic links, 4×4 switches, and high-radix switches used during the
optical communication. The data structures of the path-setup unit used dur-
ing the path-setup procedure are shaded and enlarged. 113

7.5 The waveguides crossings hops for the hybrid topology in Figure 7.1 116
7.6 The message sizes distributions for the three benchmarks. 122
7.7 The path-setup overhead for sending optically a message in term of (a) la-

tency and (b) power consumption for varying message sizes. 123
7.8 A comparison with an electronic mesh-based NoC in term of (a) latency and

(b) energy per message consumption. 124
7.9 The worst case network-level insertion loss. (a) Mesh Topology. (b) Torus

Topology. (c) Hybrid Topology. 125
7.10 Latency comparison between H2ONoC, the Hybrid Torus NoC [136], and

the Hybrid Mesh NoC [100] for two different CMP sizes 8× 8 (a) (b) (c)
and 12×12(d) (e) (f) for the three benchmarks (a) (d) Bench I (b) (e) Bench
II (c) (f) Bench III. 126

7.11 Throughput comparison between H2ONoC, the Hybrid Torus NoC [136],
and the Hybrid Mesh NoC [100] for two different CMP sizes 8× 8 (a) (b)
(c) and 12× 12(d) (e) (f) for the three benchmarks (a) (d) Bench I (b) (e)
Bench II (c) (f) Bench III. 127

7.12 Average energy efficiency comparison for two different CMP sizes 8×8 (a)
and 12× 12 (b) for the three benchmarks. The breakdown of the energy
consumption for the electronic and optical components is shown. 128

List of tables

Chapter 2 Design Methodologies for Bus-based Interconnects: Background

2.1 Review of design methodologies for bus-based on-chip interconnect. 8
2.2 Examples of design metrics. The comparisons refer to the topologies in

Figure 2.1 and the CG in the Figure 2.3(a) 17

Chapter 3 Automated Synthesis of Heterogeneous Interconnect Topologies

3.1 Characteristics of the case-study applications 47

Chapter 4 Joint Communication Scheduling and Interconnect Synthesis

4.1 Scheduling Algorithms . 60
4.2 Benchmarks Characteristics . 67
4.3 Utilization of communication channels . 72
4.4 The runtime (ms) of the proposed scheduling algorithms 72

Chapter 6 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

6.1 Optical parameters . 93
6.2 Energy consumpion for an electronic hop crossing 93
6.3 Simulation parameters . 99
6.4 Characteristics of the architectures analyzed 99

Chapter 7 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

7.1 Insertion loss parameters . 115
7.2 Energy consumpion for an electronic hop crossing 120

xx List of tables

7.3 Simulation parameters . 121

Chapter 1

Introduction

1.1 Trends in electronic system design

The continued scaling of CMOS technology has led to double the number of on-chip com-
ponents (i.e. transistors) every two years. Until the early 2000s, this growing chip capacity
has been used to build larger microprocessor cores operating at higher frequencies. How-
ever, the traditional single processor frequency scaling paradigm introduces a power issue:
increases in frequency thus increase the amount of power dissipated. On these grounds, the
semiconductor industry has moved from the single processor frequency scaling entering the
era of parallelization. Electronic system design is being revolutionized by the widespread
adoption of the many-core paradigm. As an example, an NVIDIA GK110 GPU has more
than 7 billion transistors enabling the integration of 2880 single- and 960 double-precision
CUDA cores in a single chip [4]. In a few years, we will be able to build many-core systems
with thousands of small cores as well as large memory elements (MEs) such as shared and
local caches [22].

According to its inner architecture, a many-core system can be classified into two cate-
gories: Chip MultiProcessor (CMP) and MultiProcessor System-on-Chip (MPSoC). CMPs
are usually symmetric systems made up of several homogeneous cores each with its own
private memory/cache. A task could be assigned to any core and may also be moved around
from a core to another at will. This CMP architecture seems reasonable for general purpose
processing to run different applications that prevent from customizing the architecture at
design time. Differently, MPSoCs consist of general purpose cores coupled with processing
elements with specific functionalities reflecting the need of the expected application domain,
e.g. graphics engines, as well as some memory and I/O elements. MPSoCs are well suited
for the embedded domain where the system architecture is tailored on the needs of a specific
application.

2 Introduction

The main advantage of many-core systems is that they exhibit better performance and
energy efficiency compared to traditional systems as well as they ensure linear performance
improvement with complexity and power [22]. In addition there are some other benefits
such as: 1) energy can be saved by turning off the unused cores or by using different volt-
ages and frequencies for each core; 2) the processing load can be split across different cores
in order to distribute and lower the die temperatures. However, highly parallel computing
systems have to face serious communication challenges. In a many-core system, the on-
chip communication architecture (OCA) provides a vital facility, enabling the computation
to be distributed among the different PEs and data to be scattered across the MEs. In par-
ticular, the choice of the underlying OCA in such systems is a critical design step since it
affects the entire inter-component data traffic and impacts the overall system performance
and cost [112]: the inter-core communication could easily become a bottleneck leading to
the saturation of performance increase with the number of processing elements. Not sur-
prisingly, the industry and the academia are continuously introducing new architectures and
components dictating the evolution of on-chip communication. Furthermore, to meet the
tight time-to-market constraints and efficiently handle the design complexity, we also need
suitable computer-aided design (CAD) tools supporting the automation of these tasks.

1.2 On-chip communication

Shared buses are the traditional and simplest on-chip communication architecture, consist-
ing of a set of shared parallel wires connected to all components in the system. At any
given time, only one PE can drive the bus. This limits the achievable concurrency of the
system, which makes shared buses non-scalable and unsuitable for highly parallel applica-
tions. Advanced shared buses appeared during the last years have introduced several specific
features, such as separation of address/control and data phases, pipelined operations, burst-
based, split and out-of-order transactions, etc. [120]. A few examples include AMBA™

(AHB/APB) [1] by ARM® and CoreConnect™ (PLB/OPB) [61] by IBM®. In addition, sev-
eral research works have focused on improving some features of the shared bus architecture
itself, such as the arbitration schemes [66, 79, 86, 127, 129]. However, single shared buses
remain a major performance bottleneck for the majority of highly concurrent applications
due to their inherent lack of parallelism.

To overcome the limits of shared-buses, hierarchical architectures consisting of several
buses interconnected through bridge components were introduced [120]. In addition to
improving the potential bandwidth, this approach introduces a new dimension in the design
space, the definition of the topology of the interconnect, which becomes the main parameter

1.2 On-chip communication 3

affecting the overall performance of the communication architecture. In fact, based on the
positions of the bridges, we can essentially build any topology. As an example, a ring can
be built as a group of consecutive bus segments, which can operate in parallel, connected
through bridges, which may be mono- or bi-directional. To take this new design dimension
into account, several newly introduced design methodologies include automated topology
synthesis as a central step for improving performance.

Crossbars, also called bus matrices, are another major design alternative. They consist
of a multi-layered communication architecture with multiple buses operating in parallel con-
necting multiple inputs to multiple outputs in a matrix-like scheme. A crossbar can be full
or partial depending on the required connectivity between inputs and outputs. If a crossbar
with M inputs and N outputs is full, it is essentially made of a matrix with M×N cross-points
or places where the buses intersect. Partial crossbars require of course less buses. The adop-
tion of crossbar interconnects in MPSoC communication architectures has recently been
accelerated by the support for crossbar solutions introduced by many commercial technolo-
gies, such as AMBA™ AXI™ [8] by ARM® and the STbus™ [2] by STMicroelectronics®.
A crossbar overcomes most of the limitations of the buses, although this benefit usually
comes at non-negligible area and power costs [89, 131]. As a consequence, several de-
sign methods to reduce area [58, 68, 69, 105, 122, 123, 163], power [63, 103, 107], or
both [57, 65, 67, 164] were proposed. These approaches mainly optimize the interconnect
for the communication patterns of a given application. Unfortunately, as the number of IP
cores connected to a crossbar grows, the increased complexity of the interconnect circuit
may easily result in lower clock frequencies, especially for ASIC implementations. To ad-
dress this issue, the cascaded crossbar paradigm, consisting of crossbars connected with
each other in a cascaded manner, was proposed by some of the above works [63, 65, 67–
69, 107, 163, 164].

Shared buses, crossbars, and any combination of them, such as hierarchical buses and
cascaded crossbars, possibly connected to each other in a heterogeneous scheme, are col-
lectively referred to here as bus-based on-chip interconnect architectures. The major alter-
native to bus-based interconnects is provided by networks-on-chip (NoCs) [14, 34, 51]. In
a NoC, packet switched network fabrics are used to transfer data between on-chip compo-
nents. Bringing the packet-based communication paradigm to the on-chip domain, NoCs
require the fundamental building blocks used in traditional multi-computer systems, i.e.,
switches, also called routers in this context, Network Interfaces (NIs), also called network
adapters, and links [36]. NoC can be customized by placing these components according to
a specific topology and configuring their features in terms of buffer depth, arbitration policy,
flow control mechanism, etc. A large body of research works deal with NoC customization

4 Introduction

and design space exploration. Refers to [10, 132, 133] for an overview of the current state
of the art on NoCs.

1.3 Thesis contribution

This thesis focuses on two different aspects of the on-chip communication architecture.
First, methods for the automatic design space exploration of bus-based interconnects, satis-
fying given performance and cost constraints, are investigated. Then, new hybrid photonic-
electronic NoCs are designed in order to propose alternative and innovative solution able to
overcome the physical limitations of electronic interconnects. Note that computation and
communication are decoupled from each other: this work completely neglects the design
of the computation side while deeply explores the communication architecture. On one
hand, this thesis brings a strong engineering contribution as the proposed design methods
are oriented to solve real problems related to MPSoC design. In particular, the integration
of the presented algorithms into tools to automate the interconnect design steps has direct
applicability for designing MPSoCs. On the other hand, the thesis has made a scientific
contribution since advanced and original communication architectures exploiting silicon
photonics are presented. Designing photonic communication architectures requires to face
several challenges and to deal with metrics that have no electronic equivalent. In this thesis
these aspects are extensively discussed and handled bring new contributions to the research
community.

1.4 Thesis overview

This thesis is organized in four main parts. First, an introductory section illustrates the state
of the art of the on-chip communication design addressing both the analysis and synthesis as-
pects. After that, the second section of the thesis contains the main contributions in the area
of the design automation of the communication architecture. The third section introduces
the photonic communication and the chip-scale photonic interconnects with their distinctive
properties. Finally, the fourth section addresses the design of hybrid photonic-electronic
NoCs and introduces new architecture exploiting silicon photonics.

Section I (Chapter 2) The essential aim of this chapter is to fill this gap by presenting
an extensive review of state-of-the-art design automation techniques for application-
specific on-chip interconnects. The chapter goes through the main options available

1.4 Thesis overview 5

for building different on-chip interconnect topologies, discussing the details of hier-
archical buses, crossbars, and cascaded crossbars as well as the approaches that can
be adopted to formalize the description of such topologies and the related parame-
ters of interest. Then, the chapter surveys the most relevant techniques proposed in
the literature to analyze a given interconnect solution, i.e. quantify parameters such
as latency, bandwidth, area cost, power consumption, operating frequency, followed
by an in-depth review of the main approaches for interconnect synthesis, including
several advanced aspects such as co-synthesis of memory and communication archi-
tectures, joint scheduling and interconnect synthesis, floorplanning, dynamic configu-
ration, multi-path communication.

Section II (Chapters 3, 4) These chapters propose automated methodologies to search the
interconnect design space, avoiding a manual and time consuming try-and-error pro-
cesses. The methodology presented in Chapter 3 turns the description of the applica-
tion communication requirements into an on-chip synthesizable interconnection struc-
ture satisfying given area constraints. Chapter 4 improves the approach proposed
in Chapter 3 by taking into account possible dependencies between communication
tasks, which further constrains the design space making the identification of a fea-
sible solution more challenging. Targeted at FPGA technologies, these approaches
combine crossbars and shared buses, connected through bridges, yielding a scalable,
efficient structure. The resulting architecture improves the level of communication
parallelism that can be exploited, while keeping area requirements low. The chapters
thoroughly describe the formalisms and the methodologies used to derive such opti-
mized heterogeneous topologies. They also discuss some case-studies emphasizing
the impact of the proposed approaches and highlighting the essential differences with
a few other solutions presented in the technical literature.

Section III (Chapter 5) This chapter first explains the unique and distinctive properties of
the silicon optics technology and then provides a broadband overview of the opportu-
nities and challenges posed at the architecture level by this new interconnect paradigm.
In fact, silicon Photonics introduces many new design tradeoffs, having no electronic
equivalent, involving aspects such as wavelength selectivity, physical constraints, and
spectral parallelism. The text analyses a number of such tradeoffs involving relevant
photonic features and compares different design choices. For instance, nanophotonic
waveguides can achieve ultra-high bandwidths by exploiting wavelength division mul-
tiplexing (WDM), but the use of wavelength selectivity to implement bandwidth ag-
gregation prevents the exploitation of wavelength arbitration and routing, introducing

6 Introduction

non-trivial design dilemmas. As highlighted throughout the paper, getting a cross-
cutting understanding of these trade-offs is essential for harnessing the full potential
of on-chip Photonics.

Section IV (Chapters 6, 7) These chapters propose some novel hybrid photonic-electronic
NoC architectures aiming to improve the performance and to reduce the cost com-
pared with previous approaches proposed in the literature. In particular, Chapter 6
presents a new power-aware path-setup protocol able to put allocated circuits on a
stand-by state, rapidly recovering them when needed. Then it compares in terms of
performance and energy consumption some path-setup architectural solutions that dif-
fer from each other in the routing algorithm, the path-setup protocol and the deadlock
avoidance technique. This comparison could help manycore system designers to se-
lect the most appropriate path-setup architecture according to traffic characteristics
and network size. Differently, Chapter 7 proposes a novel hybrid Optical-Electronic
NoC named H2ONoC. H2ONoC exploits hybrid topologies in the photonic layer en-
abling reduced insertion loss and hence improving the actual bandwidth offered by
the interconnect. An analytical model describing the performance of the hybrid topol-
ogy, used to characterized the worst-case insertion loss is presented. In addition the
chapter addresses all the relevant aspects of the H2 ONoC architecture, including
the routing algorithm, the flow control mechanism, the deadlock management policy,
the path-setup protocol, the electronic router and the photonic switches microarchi-
tectures. Finally, the experimental setup and some comparisons with a few purely
electronic and hybrid reference NoCs are shown.

Chapter 2

Design Methodologies for Bus-based
Interconnects: Background

To exploit the MPSoC potential benefits to the fullest, suitable design methodologies are
required for addressing two different facets of system design [72]. First, it is essential to
properly map the application’s computation requirements to a set of PEs like CPUs, DSPs,
application specific cores, etc. Second, it is equally necessary to map the system’s communi-
cation requirements onto an optimized communication architecture possibly tailored on the
specific application. The separation between communication and computation is key [72].
This feature enables the system designer to explore the communication architecture indepen-
dent of processing element selection and mapping. In particular, the choice of the underlying
communication architecture in data-intensive applications, tailored on the particular appli-
cation requirements, is a critical design step since the amount of communication among
functional blocks critically determines the global performance [153]. This chapter focuses
on the design automation of a broad class of communication architectures, here referred to
as bus-based on-chip interconnects. While this class includes usual shared buses and full
crossbars, suffering from either limited performance or poor scalability, it also embraces
complex scalable high-performance interconnects with customizable topologies such as hi-
erarchical architectures, rings, cascaded crossbars as well as ad-hoc heterogeneous networks
made up of a combination of shared buses and crossbars. The essential aim of this chapter
is to fill this gap by presenting an extensive review of state-of-the-art design automation
techniques for application-specific on-chip interconnects. The chapter will go through the
main options available for building different on-chip interconnect topologies, discussing the
details of hierarchical buses, crossbars, and cascaded crossbars (Section 2.1). The treatment
will first focus on the approaches that can be adopted to formalize the description of such
topologies and the related parameters of interest (Section 2.2). Then, the chapter will sur-

8 Design Methodologies for Bus-based Interconnects: Background

vey the most relevant techniques proposed in the literature to analyze a given interconnect
solution, i.e. quantify physical parameters such as latency, bandwidth, area cost, power
consumption, operating frequency, for a fixed interconnect, by either analytical methods,
simulation, or hybrid approaches (Section 2.3). Subsequently, the chapter will present and
in-depth review of the main approaches available for interconnect synthesis, where the inter-
connect topology is the outcome of an automated design process aimed at a given objective
function under a set of constraints, involving a certain combination of the above physical pa-
rameters (Section 2.4). Table 2.1 contains a synoptic overview of the approaches surveyed
in the chapter, listing for each the topologies, the type of evaluation adopted, the combina-
tion of physical parameters chosen as objective functions and constraints, as well as other
relevant features.

Table 2.1 Review of design methodologies for bus-based on-chip interconnect.

Reference Topologies(1) Evaluation Objective Constraints(2) Other features
type function(2)

[11] P2P Analytical L ∧ Pw ∧ A L ∧ A ∧ Fanout Joint Scheduling
[30] Heter. Arch Analytical L A
[31] Heter. Arch Analytical L A Joint Scheduling
[41] Hier. bus Analytical T L Floorplanning
[49] Casc. cross n/a n/a n/a
[58] Crossbar n/a A L Dynamic Configuration
[57] Crossbar n/a Pw ∧ A L Dynamic Configuration
[62] Hier. bus Analytical E L Mem-Comm Cosynthesis
[63] Casc. cross Simulation Pw L ∧ Bw ∧ f ∧ A
[65] Casc. cross Hybrid E ∧ A L
[68] Casc. cross Analytical f ∨ A L ∧ Bw ∧ (A ∨ f)
[69] Casc. cross Analytical f ∨ A L ∧ Bw ∧ (A ∨ f)
[67] Casc. cross Analytical Pw ∨ A L ∧ Bw Floorplanning
[73] Hier. bus Hybrid L
[78] Hier. bus Hybrid L
[81] Hier. bus Hybrid L
[98] Hier. bus Simulation L ∧ A Floorplanning
[105] Crossbar Simulation A L ∧ Bw
[103] Crossbar Simulation Pw L ∧ Bw Floorplanning
[107] Casc. cross Analytical Pw T
[118] Hier. bus Analytical E ∧ A
[119] Hier. bus Analytical E Bw Mem-Comm Cosynthesis
[124] Hier. bus Simulation f ∧ A T ∧ Wire Delay Floorplanning
[123] Crossbar Hybrid A T
[122] Crossbar Hybrid A T ∧ Amemory Mem-Comm Cosynthesis
[125] Crossbar Hybrid E ∧ A T ∧ Wire Length Floorplanning
[130] Hier. bus Simulation L
[134] Hier. bus n/a L Dynamic Configuration
[140] Hier. bus Analytical Pw Mem-Comm Cosynthesis
[144] Hier. bus Analytical Custom Metrics Physical Layout
[159] Hier. bus Analytical E L Joint Scheduling
[163] Casc. cross Analytical A L ∧ Bw
[164] Casc. cross Analytical Pw ∧ A L ∧ Bw ∧ f Floorplanning

(1) Hier. Bus=hierarchical bus, Casc. Cross.=cascaded crossbar, Arch=heterogeneous bus and crossbar architecture
(2) L=Latency, Bw=Bandwidth, T=Throughput, Pw=Power, E=Energy, A=Area, f=frequency

2.1 Topologies for on-chip bus-based interconnects 9

2.1 Topologies for on-chip bus-based interconnects

B
10

M
1

M
0

S
1

S
0

B
01 M

3
M

2

S
3

S
2

M
1

M
0

M
3

M
2

S
1

S
0

S
3

S
2

M
1

M
0

M
3

M
2

S
1

S
0

S
3

S
2

M
1

M
0

S
1

S
0

M
3

M
2

S
3

S
2

M
1

M
0

M
3

M
2

S
1

S
0

S
3

S
2

B
10

B
01

M
3

M
2

S
3

S
2

B
10

M
1

M
0

S
1

S
0

B
01

(a) (b) (c)

(d) (e) (f)

Fig. 2.1 A few examples of topologies. (a) A hierarchical bus. (b) A single crossbar. (c)
A crossbar-based architecture with slaves and masters grouped in shared buses. (d) A cas-
caded crossbar. (e) A clustered crossbar architecture. (f) A clustered heterogeneous bus and
crossbar architecture. (M: master, S: slave, B: bridge)

2.1.1 Hierarchical buses

As shown in Figure 2.1(a), the traditional single bus can be extended to a hierarchical bus
scheme by bus partitioning (also called bus splitting). In essence, by scattering commu-
nication traffic over multiple buses, it is possible to reduce bus contention and improve
concurrency [73]. PEs and MEs connected to the same buses form domains. Communi-
cation interactions in different domains can take place concurrently as long as they do not
refer resources residing outside the domain (hereafter we call this kind of parallelism global
parallelism). Unfortunately, in addition to increasing the available global parallelism, using
more buses also causes power and performance penalties because of the hardware overhead
caused by the additional bridges, which should be taken into account while solving the par-
titioning problem [140]. Furthermore, transactions across bridges involve additional time
overhead, i.e. longer communication latencies, and make buses inaccessible for other com-
munication interactions during the transfer. Bus splitting algorithms thus usually cluster the
IP cores based on the communication profile [78, 140, 141]. Grouping frequently communi-
cating elements in the same local domains is in fact necessary to minimize the communica-

10 Design Methodologies for Bus-based Interconnects: Background

tion through the bridges across different buses (global or inter-domain traffic). In addition,
cores attached to different domains should communicate through as few bridges as possible
and congestion of individual buses should be taken into account and minimized [41]. The
problems of selecting an optimal mapping of PEs to buses and the problem of choosing
the best topology are deeply interrelated: a poor mapping leads to degraded performance
even on a good topology, while, likewise, a judicious mapping on a bad topology is useless.
Bus segments can operate with different protocols and frequencies as well as have different
properties, e.g. bus width. This allows IP cores to be placed at the appropriate level in
the hierarchy according to the performance level they require: low-performance cores can
be placed on low-performance buses so that they do not interfere with higher performance
components. Of course, bridges need to support the necessary logic to accurately handle
the inter-domain communication between different bus types. According to the positions of
bridges, any arbitrary topology can be built. Often, interconnects are based on a chain of
bus segments [41, 73, 78], possibly wrapped around to form a ring topology [85], although
tree like structures [62, 124] are also frequently adopted.

One of the main differences between a shared bus and a hierarchy of buses is the total
bandwidth they provide: since a single bus can be used by only one PE at any time, the
bandwidth available to each PE decreases significantly as the bus size increases. Hierarchi-
cal bus architectures overcome this restriction only if local domains can work concurrently.
As a consequence, these topologies are well suited for applications where clusters of PEs
exhibit highly localized communication patterns with a small topological degree of commu-
nication. In other words, hierarchical buses target applications where it is easy to find small
clusters of highly communicating cores. Figure 2.1(a) shows a hierarchical bus structure
made of two buses. In order to make the inter-domain communication feasible, two bridges
are placed, leading to a ring topology.

2.1.2 Crossbar-based architectures

The crossbar topology (also called bus matrix) is a multi-layered communication architec-
ture with multiple buses connecting multiple inputs to multiple outputs in a matrix scheme.
Figure 2.2 shows the internal architecture of the crossbar in Figure 2.1(b). The input stage
is equipped with buffers in order to handle interrupted bursts as well as register and store in-
coming transfers if receiving slaves cannot accept them immediately. The decode stage gen-
erates select signals for the appropriate slaves. Unlike traditional shared bus architectures,
arbitration is not centralized, but rather it is distributed, with every slave having its own
arbiter. Buses can operate concurrently as long as they do not refer the same resources (we
will call this type of parallelism local parallelism). A crossbar connecting every input with

2.1 Topologies for on-chip bus-based interconnects 11

M
1

M
0

M
3

M
2

S
1

S
0

S
3

S
2

Input

stage

Decode

Input

stage

Decode

Input

stage

Decode

Input

stage

Decode

Arbiter

Arbiter

Arbiter

Arbiter

connectivity matrix

Fig. 2.2 The internal architecture of the partial crossbar in Figure 2.1(b).

every output is called a full crossbar. However, based on the actual connectivity required
by the application, we can specify a connectivity matrix z(c) indicating only a subset of
actually connected input/output pairs. The resulting architecture is called a partial crossbar.
Since on-chip interconnects are not constrained by a limited off-chip pin count, commercial
solutions such as AMBA™ AXI™ by ARM® [8], introduced separated address/data chan-
nels in order to increase performance. In such architectures, different topologies may be
specified for the two channels: a Multiple-Address Multiple-Data (MAMD) consists of sep-
arate data and address crossbars, while a Shared-Address Multiple-Data (SAMD) combines
crossbars for the data channels and shared buses for write and read address channels. In fact,
in most systems, the address channel bandwidth requirement is significantly less than the
data channel. Such systems can achieve a good balance between system performance and
interconnect complexity by using a shared address bus with multiple data buses enabling
parallel data transfer.

The main advantage of a crossbar is that any parallel application can be mapped to a
physical interconnect exhibiting the necessary parallelism. In addition a crossbar is inher-
ently a single-hop latency interconnect. These benefits come at non-negligible area and
power costs [89, 131]: the area cost grows quadratically with the number of ports [30] and,
consequently, the power consumption has a similar trend [57]. Consequently, single cross-
bars do not scale well with the number of IP cores. To mitigate this drawback, it is possible
to group slaves on shared buses as long as performance constraints are met [122, 123]. In
addition, transactions that involve slaves accessed exclusively by a single master do not

12 Design Methodologies for Bus-based Interconnects: Background

necessarily have to go through the crossbar: a shared bus can be placed on a input port
of the crossbar in order to group these slaves and the corresponding master. Since these
shared buses connect at most one master, they do not require additional arbitration com-
ponents. Such a structure has fewer channels, which reduces the crossbar area in terms
of wires and arbiter components and simplifies the design of decoders, reducing in turn
the resulting power consumption. A further improvement can be achieved by also group-
ing masters [103, 105]. Obviously, the resulting structure should closely match the traffic
characteristics and performance requirements of the application. By relying on this simplifi-
cation, the crossbar size can be further reduced. Both approaches need efficient algorithms
able to cluster master and slave cores and reduce congestion. They are motivated by the ob-
servation that communication patterns of different applications can be effectively handled
by different logical topologies as in most cases applications require only a small portion of
all-to-all communication [57, 70, 148]. Figure 2.1(c) displays a crossbar-based architecture
enhanced as described above in order to reduce the interconnect size. Note that slave S2 is
placed on the same bus of master M2 since M2 is the only master involved in the communi-
cation with S2. Using two shared buses to group slaves and masters allows reducing the size
of the crossbar from 4×4 to 3×2.

When designing the topology, it is critical to consider the effect of the physical param-
eters, such as the wire delays. To achieve timing closure of the design, the inherent wiring
complexity of alternative topologies should be considered during the synthesis phase. Tak-
ing the wiring complexity into account in the early stages of the design cycle will lead to
a better and more scalable communication architecture. As the system size grows, shared
bus size cannot increase indefinitely and, hence, the central bus matrix may become pro-
hibitively large. As a consequence, the logic depth of the crossbar increases and so do the
wires. Since the delay of a wire grows quadratically with its length [54], the added delay
will inevitably lower the clock frequency of the bus matrix. Partitioning the wires in seg-
ments with repeaters in between [137] leads the total wire delay to become linear with the
total wire length. Unfortunately, inserting repeaters increase the cost of the communication
architecture in terms of area and power consumption [75]. In order to design high frequency,
power efficient crossbar-based architectures under stringent area constraints, the cascaded
crossbar paradigm was introduced [63, 65, 67–69, 107, 163, 164]. As exemplified by Fig-
ure 2.1(d), a cascaded crossbar topology consists of multiple small crossbars connected to
each other without bridges in a cascaded scheme such that each master can access each
connected slave through a multi-hop path. A bus pipeline stage, called register slice, can be
inserted either between the masters and the crossbar or between the crossbar and the slaves
as well as between crossbar pairs for pipelining the interconnect where the critical path is

2.1 Topologies for on-chip bus-based interconnects 13

too long, so that the timing can meet the given requirements. Of course, this reduced logic
delay comes at the cost of additional latency cycles.

In addition, during the design space exploration of crossbar-based interconnects, it is nec-
essary to determine the connectivity matrix of each crossbar. Using fully connected cross-
bars limits the area efficiency and the achievable performance due to many unused paths.
On the other hand, eliminating the unnecessary connections after the synthesis step only
marginally improves the resulting architecture, and does not enlarge the design space [69].
Improved solutions can be reached by considering the partial connection of crossbars simul-
taneously when determining the topology [67].

2.1.3 Clustered heterogeneous bus and crossbar architecture

The above topologies only consist of either buses or only crossbars. Using shared buses
to group slaves or masters at the boundaries of a cascaded crossbar is the only case where
buses and crossbars coexist in the same topology. Likewise, different crossbars are used
in the same topology only in a cascaded fashion. Clustered heterogeneous topologies (Fig-
ure 2.1(e) and Figure 2.1(f)) overcome this limit allowing different components, such as
shared buses and crossbars, to coexist in a network [30, 31]. As in hierarchical bus topolo-
gies, PEs and MEs connected to the same bus or crossbar form local domains. Communi-
cation interactions in different domains can take place concurrently, while local domains
may be implemented by inherently concurrent architectures. This enables heterogeneous
networks to take advantage of both inter-domain and the local parallelism. Communica-
tion across different domains is made possible by means of bridge components involving
additional overhead. Usually a single domain is implemented by a single bus or crossbar,
but in principle any of the above topologies can be used. Choosing the size of the local
domains, in terms of how many IP cores are connected, involves a tradeoff between the
two types of parallelism: a few large local domains lead to more local parallelism, while
smaller local domains result in increased global parallelism. Each local domain must be
connected to the external interconnect via at least one bridge. Each unidirectional bridge
requires an additional master port and a slave port, and hence increases the size and cost of
the interconnect. However, this may be balanced by the reduced costs enabled by decom-
posing the interconnect. Clustering IPs according to their communication requirements is
critical in order to have a balanced interconnect. The capability of exploiting spatial locality
in the communication patterns is key: placing the nodes that communicate more frequently
closer to each other allows minimizing the traffic between different domains and matching
the localized traffic patterns induced by a given application [116]. This allows an efficient
use of the interconnect leading to a higher potential bandwidth as well as a lower energy

14 Design Methodologies for Bus-based Interconnects: Background

consumption [115]. Figure 2.1(e) shows a two-domain architecture where each domain is
implemented with a crossbar. Local parallelism is enabled by the two crossbars being able to
operate concurrently, while different transactions are allowed to take place simultaneously
in each crossbar (domain parallelism). Figure 2.1(f) depicts a similar architecture exhibit-
ing less concurrency. The local domain C1, previously implemented with a crossbar, is now
realized as a shared bus.

2.2 Applications and Architectures Description

In this section we introduce some concepts and terminology related to the formal description
of the target application and the communication architecture, which is necessary for the
analysis and the automated design of optimized interconnects. We assume that the target
application is decomposed into a set of computation tasks, via static analysis or simulation,
that are already mapped to a set of processing elements (PEs). We refer to a memory mapped
communication scenario, where the MEs and I/O devices are mapped to slave nodes, while
the PEs, such as CPUs and DMAs, are mapped to master nodes, sharing the same address
space within the system. A master can initiate a communication transaction, whereas slaves
merely respond to the transactions initiated by masters.

M
0

M
1

M
2

M
3

S
0

S
1

S
2

S
3

V(1,3)=60

40

100

60
40

80

40

6080

(a) (b)

t
0

t
1

t
3

t
2

M
2
 S

2

c(t
0
)=20

M
2
 S

2

c(t
1
)=40

M
3
 S

3

c(t
2
)=40

M
2
 S

2

c(t
3
)=40

Fig. 2.3 A few examples (M: master, S: slave, t: task.) (a) A Communication Graph (CG).
(b) A Dependency Graph (DG).

Definition 2.2.1. A Communication Graph CG = G(Vm,Vs,E) is a directed graph, where
vm ∈ Vm and vs ∈ Vs are, respectively, a master node and a slave node, and em,s ∈ E is the
edge between tasks vm and vs characterizing the communication between them.

Each edge em,s can have several attributes expressing application-specific information
(e.g., communication volume V (em,s) between vertices vm and vs) and design constraints
(e.g., latency requirements L(em,s) or communication bandwidth B(em,s)). Figure 2.3(a)

2.2 Applications and Architectures Description 15

contains a CG with four masters and four slaves, where the communication volume, here
expressed in MB, is specified for each master/slave pair. Concepts similar to the CG are
defined in most papers addressing the design space exploration for on-chip bus-based in-
terconnects. For instance, solutions based on labeling the edges with the communication
volume are adopted in [30, 32, 41, 140, 144], although the graph is called with different
names, e.g. Communication-Connectivity Graph (CCG), Core Graph (CG), and Communi-
cation Graph (CG). [59] introduces the required bandwidth constraint on each edge. Simi-
larly, [78] presents a Communication Analysis Graph (CAG) where the information on an
edge includes several statistical properties of the communication transactions involving the
two connected cores, such as the number of transactions, the distribution of their sizes (in
terms of mean, variance etc.), the critical path information, the number of transactions with
zero slack (critical transactions), etc. [123–125] uses a Communication Throughput Graph
(CTG) where each edge is weighted with a throughput constraint. Last, [67, 68, 163, 164] in-
troduces the communication trace graph (CTG), where both the bandwidth requirement and
latency constraint are included on each edge. Later on, [69] also includes the required fre-
quency lower bound.

Since we refer to an application-driven design, the CG is the main data structure neces-
sary to guide the whole design process. We assume that the communication traffic between
a master and a slave is made up of tasks, which are non-preemptive atomic entities with an
arbitrary load, i.e. the amount of transmitted bytes, although two different tasks can have
the same master/slave pair. This allows modeling any traffic pattern. Traffic within the same
interconnect is called local, while traffic between master-slave pair mapped to different in-
terconnects is called global.

Definition 2.2.2. A Dependency Graph DG = G(Vt ,E) (sometimes called task graph) is a
directed acyclic graph, where vi ∈ Vt is a communication task and evi,v j ∈ E is the edge
between vi ∈ Vt and v j ∈ Vt , representing the dependencies, i.e. precedence relationships,
between the two tasks.

Since the graph is acyclic, it establishes a partial order relationship (≤) on its vertices,
where the relationship vi ≤ v j occurs when there exists a directed path from vi to v j. Notice
that the inputs and outputs of a node do not convey data, but they only express communi-
cation dependency constraints. A node with no parents is called source, while a node with
no children is called sink. Here, the communication cost (e.g. the communication volume
of a task) is represented by the weight of a node, denoted c(vi), while the weight on an
edge is representative of the computation cost, denoted w(vi,v j). This cost represents the
delay, due to the computation, taking place between two consecutive communication tasks.
Figure 2.3(b) shows a part of a DG with four tasks where, for each task, the master/slave

16 Design Methodologies for Bus-based Interconnects: Background

pair and the amount of traffic they exchange are specified. Notice that the communication
volumes between master M2 and slave S2 and between master M3 and slave S3 are respec-
tively made up of three and one tasks. Concepts equivalent to the above definition of DG
are present in [11, 31, 159] and are often adopted when scheduling problems are addressed.

While the above concepts are essential in that they formalize the input of the design
space exploration methodology, it is equally necessary to describe formally the output com-
munication architecture. We chose the following formalism as it is general enough to de-
scribe the full spectrum of bus-based on-chip interconnect architectures.

Definition 2.2.3. A bus-based on-chip communication architecture (OCA) can be uniquely
described by a pair Arch(T (Sb,C,B),Ω(V)), where

1. the labeled graph T (Sb,C,B) represents the network topology. The shared buses,
crossbars, and bridges are given by the sets Sb, C, and B respectively;

2. Ω : Vm∪Vs → Sb∪C is a function mapping each vertex v ∈Vm∪Vs in the CG to a bus
in Sb or a crossbar in C.

Taking as example the topology of Figure 2.1(a), the Sb set contains two 3×3 buses, the
C set is empty, while the B set contains the two unidirectional bridges between the two buses.
The Ω function is responsible for the assignment of the masters and slaves in the topology. In
this example, it maps masters M0, M1, and slaves S0, S1 to the first bus while the remaining
PEs and MEs are mapped to the second bus. For each crossbar c ∈ C, z(c) specifies the
inner cross-points connectivity. As an example, considering the 4×4 crossbar in Figure 2.2,

we have z(c) =

1 1 0 0
1 1 0 1
0 1 1 1
0 0 0 1

, which means that master M0 is connected to slaves S0, S1,

master M1 is connected to slaves S0, S1, S2, and so on. Notice that different portions of the
interconnect may be connected via bridges or just wires. While wires directly connect all
master interface signals of an interconnect portion to all slave interface signals of another
portion without logic or storage capabilities, a bridge provides decoupling facilities, letting
the two interconnect portions operate concurrently. Wires can connect only interconnect
portions with the same properties such as protocol or frequency. On the contrary, bridges
usually have the required logic to provide protocol or frequency conversion, adaptability to
different data widths as well as some advanced features such as burst or split transaction
support.

2.3 Quantitative analysis of an interconnect 17

2.3 Quantitative analysis of an interconnect

This section will first recapitulate the issues related to the quantification of the most rele-
vant design metrics, i.e. parameters like latency, bandwidth, area cost, power consumption,
operating frequency, for a given interconnect solution, followed by a review of the main
evaluation approaches, including analytical methods, simulation, and hybrid methods.

2.3.1 Design metrics

An optimal architecture is defined under a set of constraints while minimizing/maximizing
one or more objective functions. In order for such a process to take place it is essential to
define significant quantitative design metrics and rely on suitable techniques to evaluate or
estimate them. Table 2.2 provides a few examples of design metrics, thoroughly illustrated
in the following.

Table 2.2 Examples of design metrics. The comparisons refer to the topologies in Figure 2.1
and the CG in the Figure 2.3(a)

Topology Latency Bandwidth Dynamic Area
(Mcycles) Utilization Energy (kJ) (LUT s)

Fig. 2.1(a) 306.70 0.92 336.12 784
Fig. 2.1(b) 170.39 0.70 806.66 2406
Fig. 2.1(c) 262.14 0.60 747.30 1621
Fig. 2.1(d) 222.82 0.70 519.49 5600
Fig. 2.1(e) 176.94 0.53 588.71 3686
Fig. 2.1(f) 271.97 0.76 618.52 2234

Notes: the comparison was done using AXI-based
interconnects on a Xilinx Zynq™-7000 [7] FPGA.

2.3.1.1 Transport latency

Transport latency is defined as the time (in clock cycles) between the occurrence of a trans-
action request from a master to a slave and the moment when the response is received. In
the remainder of this chapter, we will simply refer to this time interval as latency. When a
transaction occurs from a master node vm to a slave node vs, it goes through a path p ∈ pm,s,
consisting of a set of bridges B and local domains D. The latency, denoted by L(p), is given
by

L(p) = ∑
b∈B

Wb + ∑
d∈D

(
Warbit +

⌈
v(em,s)

Bw

⌉)
(2.1)

where Wb is the latency necessary to go through bridge b, Warbit is the arbitration latency
needed to grant a request, v(em,s) and Bw are respectively the communication volume be-
tween vertices vm and vs and the channel bandwidth of domain d. Pipelined interconnects

18 Design Methodologies for Bus-based Interconnects: Background

incur, furthermore, additional delay cycles. Their use must thus be limited when we aim at
minimizing the latency cost [164]. In case of intra-domain communication, since B = /0 and
D contains only a single bus or crossbar, Equation 2.1 can be simplified. In many cases, the
interconnect contains a single centralized arbiter that sequentially grants a request at a time,
while data transmission can be parallelized. Consequently, the arbitration latency Warbit

grows as the number of crossbar ports is increased [59]. In addition, the arbitration latency
includes the time overhead caused by congestion. The impact of congestion depends on: 1)
the total amount of pending requests, 2) the priorities of these requests, 3) the volume of
the requests, and 4) the arbitration policy. This additional overhead W c

arbit , sometimes called
congestion-incurred latency [63], can indeed be modeled by an exponential dependence on
the total amount of data traffic through the interconnect, as follows [60, 63, 143]:

W c
arbit ∝ eαm,s+βm,s (2.2)

where αm,s denotes the base traffic utilization from master port m to slave port s and βm,s

denotes the interfering traffic utilization from the other master ports to slave port s. αm,s and
βm,s are defined as follows:

αm,s =
vm,s

f ×width
βm,s =

n
∑

l=1,l ̸=m
vl,s

f ×width
(2.3)

where vm,s is the communication volume between master port m and slave port s, f is the
clock frequency, width is the data bus width, and n is the total number of master ports of
the interconnect. In order to reduce Warbit , some architectures can perform bus transactions
without waiting for the bus access to be granted by the arbiter [90].

According to the transaction type, we can distinguish write and read latencies. In case
of read latency, a master needs to wait for the read data to be received from a slave after
generating the read address. Therefore, read latency is defined as the time from the gener-
ation of the address to the arrival of the data. Instead, write latency does not consider the
time necessary for a slave to complete the transaction, as it only refers to the time between
the generation of the address to the acknowledgement. Frequently, the latency L is defined
as the average of read and write transaction latencies:

L =
∑ lr +∑ lw

nr +nw
(2.4)

where ∑ lr and ∑ lw are respectively the sums of all read and write transaction latencies,
while nr and nw are respectively the total number of read and write transactions.

2.3 Quantitative analysis of an interconnect 19

Since evaluating accurately the latency during the design space exploration is a non-
trivial task, the hop count is commonly used to approximate the latency, as it is deemed
proportional to the number of bridges in a path or to the cascading depth [41, 67, 68]. Ob-
viously, this metric ignores the arbitration delays and network contention. Reducing the
amount of overlap of traffic is the main approach to minimizing the latency [63, 103, 105].
As an example, in [30, 32], the general Equation 2.1 is evaluated for a design implemented
on a Xilinx Zynq™-7000 [7] chip in case of burst traffic with no congestion, using custom
AXI-based masters, slaves, and domains with dw = 32 bits, bl = 16 beats1 and Bw = 32
bits/clock cycle, where dw, bl , and Bw are respectively the channel data width, the burst
length, and the channel bandwidth. Results show that Warbit = 4

(
v(em,s)
dw·bl

)
, Wslave = 3, and

Wb = 10
(

v(em,s)
dw·bl

)
, where the burst length refers to the number of transactions in a single

burst. As a consequence

L(p) =
(

52+10hp

64

)
v(em,s) (2.5)

where hp is the hop count of the path p∈ pm,s. Based on this equation, Table 2.2 provides the
total latency for the CG in Figure 2.3(a) and the different topologies presented in Figure 2.1.
As expected, the hierarchical bus exhibits the worst latency while the single crossbar is the
best solution since it is intrinsically a zero-hop architecture. The crossbar-based architecture
with slaves and masters grouped in shared buses is highly constrained by the shared buses,
leading to a 35% overhead. On the contrary, the cascaded crossbar introduces some latency
cycles proportional to the cascaded depth. Since the cascaded crossbar does not use bridges,
this additional latency (23%) is due to register slice crossing. Finally, the two clustered bus
and crossbar architectures exhibit respectively a 4% and a 37% overhead compared to the
single crossbar. The difference depends on the different implementation of the local domain
C1.

2.3.1.2 Bandwidth

The bandwidth of an interconnect represents the amount of data transfer per unit time, while
the Bandwidth Utilization (BwU) is defined as the percentage of available ideal bandwidth
being used to actually transfer data, given by

BwU =
Bwused

Bwideal
(2.6)

where Bwused and Bwideal are, respectively, the actually used bandwidth and the available
ideal bandwidth. A higher value means that more data are transferred within a period of

1A beat is an individual data transfer within an AXI burst [8].

20 Design Methodologies for Bus-based Interconnects: Background

0 256 512 768 1024 1280 1536 1792 2048
0

500

1000

1500

2000

2500

3000

L
a

te
n

c
y

 (
c

yc
le

s)

communication volume (Bytes)

1 hop

2 hops

3 hops

4 hops

Fig. 2.4 The latency for varying message sizes and crossed domains.

time implying a shorter transaction latency as well as more efficient utilization of the in-
terconnect. On the contrary, a waste of bandwidth means that the communication load on
the interconnect is not balanced, which suggests reducing communication overlapping to
obtain better performance. Notice that the Bandwidth Utilization is strictly dependent on
the arbitration scheme. As an example, TDMA-based architectures can provide bandwidth
guarantees for each component by appropriately assigning slots in the timing wheel as well
as proportional bandwidth allocation. The total bandwidth of a domain d, e.g. a bus or a
crossbar within an interconnect is given by the sum of the single bandwidths provided by
each channel. The channel bandwidth in turn is closely related to its operating frequency
f (d) and data width dw(d). The ideal bandwidth of an interconnect d ∈ Sb∪C is given by
Bwideal(d) = dw(d) · f (d). As an example, a shared bus with Dw(d) = 32 bits operating at
100 MHz provides an ideal total bandwidth of 800 MB/s with the read and write bandwidths
being 400 MB/s each. Table 2.2 provides the Bandwidth Utilization of the AXI-based im-
plementation of the topologies in Figure 2.1 with dw = 32 bits.

2.3.1.3 Power and energy consumption

As technology feature sizes are increasingly reduced, energy efficiency of devices is not
scaling with the integration capacity [50]. In the context of MPSoC design, future devices
are likely to be seriously power limited. For instance, at 22 nm, 21% of a fixed-size chip
must be powered off, while at 8 nm, this rate grows to more than 50% [44]. The energy

2.3 Quantitative analysis of an interconnect 21

consumption due to the communication facilities has been often ignored in the past due to
the limited contribution of the wires compared to the logic. Instead, in current and future
devices, the communication architecture is gradually becoming one of the primary energy
bottlenecks, contributing up to 50% of the total energy consumption in an integrated circuit.

When a transaction t occurs from a master node vm to a slave node vs, it goes through
a path p ∈ pm,s, consisting of a set of bridges B and domains D. The power (denoted by
Pw(t)) is given by

Pw(t) = ∑
b∈B

Pw(b)+ ∑
d∈D

Pw(d) (2.7)

where Pw(d) is the energy consumed in domain d, and Pw(b) is the energy consumed in
bridge b. The total power consumption of an interconnect is the sum of different contri-
butions due to dynamic effects and leakage. The former are caused by the charging and
discharging of wire capacitances. The latter is caused by the subthreshold leakage current
and reverse-biased diode junction leakage current. To quantify the dynamic power consump-
tion we can rely on the following relationship [160]

Pwdyn(t) =
1
2

ntransC fV 2
dd (2.8)

where ntrans, C, f , Vdd are respectively the average toggle rate (switching activity), the total
capacitance of the interconnect, the frequency of the interconnect, the supply voltage. The
frequency f can be expressed as

f =
(Vdd −Vth)

α

kVdd
(2.9)

where Vth is the threshold voltage, k is a constant for a given technology process, and
1 < α ≤ 2. [164] and [67] rely on a more detailed model describing the dynamic power
consumption as two components. The first is proportional to the signal switching activity
while the second is non-proportional (e.g. the power consumption of the clock tree). On the
other hand, the leakage power consumption can be expressed as [160]

Pwleak(t) =VddIsub + |Vbs|(I j + Ib) (2.10)

where Isub, I j, Ib,Vbs are respectively the subthreshold leakage current, the drain-body junc-
tion leakage current, the source-body junction leakage current, the body bias voltage. Isub is
given by

Isub = Is

(w
l

)
e
−Vth
nVT (2.11)

22 Design Methodologies for Bus-based Interconnects: Background

where Is and n are technology parameters, w and l are device geometries, and VT is the
thermal voltage. Similar models can be found in [62, 63, 67, 118, 164]. Table 2.2 provides
the dynamic energy consumption of the CG in Figure 2.3(a) on a AXI based implementation
of the communication architectures presented in Figure 2.1. The data were collected using
the XPower [6] tool from Xilinx and refer to the Zynq-7000 family [7]. In terms of power
consumption there is a big gap between shared buses and crossbars: as an example, a 4×4
crossbar consumes about 4.2× more power than a shared bus of the same size. However,
when evaluating the energy dissipation this difference is mitigated by the worst performance
of shared buses. Moreover, according to Equation (2.8), dynamic energy depends on the
total capacitance of the interconnect. Since this value is strictly dependent on the size of the
interconnect, larger crossbars and buses consume more power than smaller interconnects:
as an example a 4×4 crossbar consumes about twice the dynamic power of a 4×4 bus.

Because of the importance of the energetic aspects, a large part of the available design
methodologies aim to minimize the energy consumption of the communication architecture.
One way of achieving low power consumption consists in providing different frequencies to
the various interconnect domains. This creates an opportunity of sharply cutting down on the
power consumption of low bandwidth modules clustered together, by reducing the frequency
of the bus they are connected to [141]. [57, 103] address the observation that custom
crossbars reduce the power consumption when compared with general-purpose crossbars.
[63] tries to reduce the power consumption of cascaded crossbar interconnects by exploiting
the locality principle in order to transmit data traffic with high bandwidth requirements
through as few crossbar switches as possible. [164] and [67] propose a model for the power
consumed by a single port of an interconnect. Then, the area/power trade-off of crossbars
with a different amount of ports is analyzed by means of the power consumed by its ports. In
addition, [67] tries to avoid the pipeline insertions since they are responsible for a significant
portion of the whole energy consumed. Some works deal with the concurrent minimization
of both the energy consumption due to the communication and the memory [62, 119, 140].
These approaches explore the trade-off between using an increasing amount of memory
blocks and the resulting communication complexity. Refers to Section 2.4.1 for a detailed
analysis. A further optimization consists in adding switches on each channel so that the
activity propagates only to the necessary channels, thus decreasing the capacitive load of
the interconnect [119]. In addition, the energy consumption can be reduced by shutting
down the unused channels via switches [159]. Differently, it is possible to use the dynamic
supply voltage scaling (DVS) technique to save energy [118]. This technique requires a
driver, which initiates the data transfer, capable to scale the voltage of each communication
task dynamically. Each voltage conversion from Vi to Vj comes at an energy and latency

2.3 Quantitative analysis of an interconnect 23

cost, which are respectively Econv =Cr(Vi −Vj)
2, where Cr is the capacitance of the power

rail and Lconv = α
∣∣Vi −Vj

∣∣ where α is a constant [95]. Clearly, the saving in terms of energy
reduction must overcome the switching overhead.

2.3.1.4 Area cost

To evaluate the feasibility of an interconnect architecture, its silicon area requirements must
be carefully taken into account. It is thus of paramount importance to determine the amount
of relative area a potential interconnect solution consumes. The area cost of a shared bus
grows linearly with the number of its ports, while in case of a crossbar the cost grows
quadratically. While the area of an ASIC interconnect is normally evaluated in terms of
mm2, in case of FPGAs, interconnect components are usually dominated by the number
of Look-Up Tables (LUTs). When considering storage elements such as queues or regis-
ter slices, it is also necessary to take into account the number of Flip-Flops (FFs). As an
example, the area cost of a 4× 4 crossbar for ASICs and FPGAs is 0.28mm2 and 2406
LUTs, respectively, for a 65nm ASIC process and a Xilinx Zynq 7020 FPGA technology.
In [30, 32] the following equations were obtained for calculating the area cost in terms of
LUTs for n×m AXI interconnect IP cores by Xilinx on the Zynq™-7000 [7] FPGA chip.

Acrossbar n×m = 101n+60nm+42m+874 (2.12)

Abus n×m = 80n+18.75m+95.5 (2.13)

Notice that the above equations provide only a baseline cost, because the cost may grow
in case of use of advanced features. As an example, a register slice for a single channel
requires around 50 LUTs.

Table 2.2 provides the area requirements of the AXI-based implementation of the topolo-
gies in Figure 2.1 with dw = 32 bits based on the above equations.

2.3.1.5 Wire delay and frequency

Wire delay is defined as the amount of time (in seconds) it takes for the head of the signal to
travel from the sender to the receiver. Note that, unlike latency, the wire delay depends only
on physical parameters, i.e. the wire length and the wave propagation speed. The impor-
tance of the wire delay is related to its linear dependence on the operating clock frequency:
large delays reduce the frequency and hence the achievable performance. Obviously, in
case of interconnect components, the wire delay depends on the total number of ports of

24 Design Methodologies for Bus-based Interconnects: Background

2

4

6

8

10

12

14

16 2

4

6

8

10

12

14

16

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

slave

ports
master

ports

A
re

a
 c

o
st

 (
LU

Ts
)

Crossbar

Bus

Fig. 2.5 The area cost for bus and crossbar interconnect of varying port numbers.

the interconnect, which is one of the reasons motivating the adoption of cascaded crossbar
topologies. As an example, in a Samsung 90nm low-voltage ASIC process, the maximum
wire delay in the 4× 4 full crossbar of Figure 2.1(a) is 4 ns, while each of the small 2× 2
crossbars of Figure 2.1(d) incurs a delay of 3.3 ns.

2.3.2 Evaluation approaches

Any design exploration methodology must rely on a suitable evaluation procedure to be in-
voked whenever we consider a potential interconnect solution and need to estimate its costs
and performance levels. This is typically performed at the electronic system level (ESL)
before the implementation (or register transfer level, RTL) model is created. The RTL mod-
eling abstraction has two main drawbacks: it is prohibitively time consuming for a large
design space and a considerable effort is required for making changes due to the amount
and complexity of the design details [120]. Raising the modeling abstraction level is crucial
to overcome the RTL limitations. In this way it is possible to efficiently face an extremely
large design space allowing the evaluation of each design point in a much shorter span of
time. Obviously, speed and accuracy are key to an efficient evaluation methodology. Since

2.3 Quantitative analysis of an interconnect 25

communication is dynamic and unpredictable, simulation-based methods are able to provide
an accurate estimation at a non-negligible computational cost. Simulation requires models
of the components and their communication at different levels of abstraction. Different com-
munication abstractions provide a further trade-off between simulation time and accuracy.
However, these techniques still require the simulation of the whole system. As a result,
simulative methods explore only a few design options and cannot be used for exploring
large design spaces. On the other hand, analytic approaches take advantage of static models
that capture the system performance and cost as a function of certain parameters. They are
usually overly pessimistic or ignore dynamic effects such as bus contention, but are several
order of magnitude faster than simulative approaches. A third class of estimation techniques
take advantage of both the above approaches to speed up communication architecture perfor-
mance estimation while generating accurate results. A review of analytical and simulative
evaluation methods is presented respectively in Section 2.3.2.1 and Section 2.3.2.2, while
Section 2.3.2.3 discusses hybrid models that jointly use static estimation and dynamic sim-
ulation.

2.3.2.1 Analytical models

A number of methodologies look at the exact quantitative evaluation of the interconnect
cost and performance. Several works [30, 31, 63, 65, 67–69, 103, 163] use a characteriza-
tion technique that involves the RTL code generation and synthesis of different components
(crossbars, buses, bridges, etc.). Then, area/timing/power information are obtained from the
RTL synthesis results. This is computationally feasible for the characterization of a small set
of components, since hundreds of synthesis can still be parallelized and carried out in a rea-
sonable amount of time with a high-performance machine. As the evaluation space grows,
however, this approach becomes impractical and it is necessary to limit the synthesis to a
subset of the whole exploration space. Based on the achieved values, analytical models can
be built using regression analysis techniques [103]. Different levels of accuracy are reached
by exploring the trade-off between accuracy and number of synthesis. Since any config-
uration of an interconnect can be assembled with a set of input and output ports and the
corresponding connections, most of these models provide area or power costs as a function
of the number of the input/output interconnect ports. Likewise, memory-aware methodolo-
gies also require performance and cost estimation of the memory architecture. The majority
of the approaches relies on well-known models such as the CACTI model [83, 106] that
include information on integrated cache and memory access time, cycle time, and area as
well as leakage and dynamic power.

26 Design Methodologies for Bus-based Interconnects: Background

Since communication patterns are dynamic, it is challenging to statically estimate the
performance in an accurate way. Latency is often evaluated using the hop-count concept [41,
67–69], which often turns out to be far from a precise estimate. In order to obtain more
precise data, [30, 31] analyze the time necessary to go through each communication com-
ponents and derive a cycle-accurate model for crossing each path in an interconnect archi-
tecture. Obviously, these models are dependent both on the used IP cores and arbitration
policies and still ignore contention. On the other hand, a time-division multiple-access
(TDMA) communication system makes the interconnect subsystem fully predictable and,
hence, it simplifies the performance estimation since it provides channel throughput guaran-
tees [62].

[41, 118] add statistical methods to improve the estimation accuracy. [41] estimates
contention making a few simplifying assumptions: a communication task is scheduled ac-
cording to a uniform distribution between its as soon as possible (ASAP) and as late as
possible (ALAP) schedule times. Then, contention between two tasks depends on their
schedule overlapping. [118] assumes that the volume can be modeled for each communica-
tion task as a random variable with a known probability distribution, and the arrival rate and
inter-task arrival time as a Poisson distribution. Furthermore, the statistical parameters of
voltage are estimated using an analytical method and the above probability distribution func-
tion. Unlike the previous works, [74] proposes a static performance-estimation technique
based on a queuing analysis assuming that the memory traces and the schedule information
are given. In this model there are N processing elements PEi, 0 ≤ i < N, that are regarded
as customers, competing for the use of a single bus that is regarded as a server. The model
aims at estimating the congestion-incurred latency for each processing element by building
a steady-state transition diagram. Each processing element issues memory requests with
a given request rate λi, computed as the ratio between the memory access count and the
scheduled latency in absence of contention. On the contrary, the bus access rate, consider-
ing contention, is denoted by θi. The mean service rate of a server for the request from PEi

is denoted by µi and its mean service time is the inverse of the service rate, i.e., 1/µi. Then

θi = (1− ki −ui)λi (2.14)

where ki is the expected number of requests waiting for the bus and ui = θi/µi is the bus uti-
lization factor. Finally, the congestion-incurred latency of the stalled request r is calculated
as

W c
arbit(r) = ki/θi (2.15)

2.3 Quantitative analysis of an interconnect 27

This model assumes that the arrival process of the communication tasks can be described as a
Poisson process. This assumption is actually common in network performance analysis [90,
111, 117]. However, while this may be realistic in case of non-bursty traffic, typical real-
world scenarios are characterized by bursty traffic which is better described by self-similar
processes [146].

2.3.2.2 Simulation-based approaches

Simulation-based methodologies capture the communication architecture behavior at differ-
ent levels of abstraction. Typically, if a model considers more properties, it is more accurate
in estimating the performance, but also slower to simulate. Usually an ESL simulation uses
high-level languages, such as SystemC [84], that are at least an order of magnitude faster
than the hardware description language (i.e. Verilog or VHDL) used during RTL simula-
tions.

[124] uses a technique proposed in [121] consisting in simulating the whole system using
a SystemC description of the components with a fast transaction-based, bus cycle-accurate
modeling abstraction. [105] and [103] simulate the traffic patterns in windows: the entire
simulation period is divided into a number of fixed-sized windows; within each window, the
application is simulated in order to verify the communication requirements. Unlike the pre-
vious works, [98] first generates a dependency graph using the partially ordered sequences of
all memory accesses derived from the memory access traces. Then, latency information are
calculated by performing discrete event simulation2. In order to simulate the whole system
on both its hardware and software levels, hardware-software co-simulation was introduced
supporting the SystemC simulation in combination with instruction set simulators (ISSs) or
software emulators [154]. [130] includes in the solution space exploration such a technique.
To improve the speed of the co-simulation with multiple ISS instances, [162] proposes trace-
driven virtual synchronization, which greatly reduces the synchronization overhead between
ISS instances. This technique is used in some hybrid approaches. Another category of per-
formance analysis techniques that accounts for on-chip communication includes trace-based
techniques.

Concerning power consumption, since dynamic power depends on the switching activity,
several works [32, 57, 63, 107, 125] rely on gate-level simulation using ad-hoc tools such
as XPower [6] by Xilinx® or PrimeTime [5] by Synopsys®.

2A discrete-event simulation models the operation of a system as a discrete sequence of events. Each event
takes place in a certain time instant and causes a change of state in the system. Between consecutive events,
no change in the system is assumed to occur and hence the simulation can directly jump from one event to the
next [12].

28 Design Methodologies for Bus-based Interconnects: Background

2.3.2.3 Hybrid methodologies

In order to exploit the strengths of both analytical and simulative techniques, heterogeneous
approaches, that jointly perform static and dynamic analysis, have been proposed. The
design methodologies presented in [73, 81] break down the estimation procedure in two
steps. In the first step, the static performance estimation technique based on the queuing
model [74] is used to quickly perform an exhaustive evaluation and prune the evaluation
space drastically. The second step then uses the trace-driven simulation presented in [162]
to accurately evaluate each design point in the reduced design space. On the other hand,
[78] uses the approach proposed in [77] where some static analysis is used to group the
traces and a trace-driven simulation is applied with the trace groups. The aim is to reduce
the time complexity of trace-driven simulation via an early static analysis. Similar to [74],
the methodology in [65] consists in pruning the design space efficiently by two static analy-
sis techniques reducing the use of simulation. The two analytical techniques are bandwidth
analysis and memory contention analysis. The purpose of bandwidth analysis is to com-
pute the lower bound of memory bandwidth requirements considering the task scheduling
information, while memory contention analysis aims to estimate the average latency of the
memory accesses while considering resource contention. Any architecture candidates that
fail to meet the bandwidth and latency requirements are excluded from the subsequent time-
consuming cycle-level simulation. Finally, several works [122, 123, 125] perform static
analysis and rank the results from the best case solution to the worst. Then, starting from
the best case solution, the simulative technique proposed in [121] is applied to each design
point until a solution that meets all the constraints is found.

2.4 Synthesizing an Interconnect

The synthesis flow aims to generate an optimal communication architecture, formally de-
scribed by Arch(T (Sb,C,B),Ω(V)), for a certain application, while satisfying given design
constraints. It is necessary to define both the topology T (Sb,C,B) and the mapping Ω(V)

of the cores it contains. In that respect, every interconnect core must be characterized, the
position of each bridge must be defined, and the PEs and MEs must be connected to the
associated interconnect domains. To generate the optimal architecture configuration, the
synthesis flow takes the application requirements and constraints given in the input CG as
well as an analysis methodology necessary to evaluate the costs and performance levels of
the resulting communication architecture. The synthesis process becomes more challenging
in case of multi-dimensional design constraints such as performance, power, and area cost.
These constraints are often conflicting. For instance, large data widths and high frequencies

2.4 Synthesizing an Interconnect 29

increase the bandwidth and hence the performance, but also the power consumption and
area cost. It is therefore essential to optimize the interconnect while balancing different and
contrasting goals.

Since the manual exploration of a potentially huge design space is infeasible even for
small systems, there is a number of algorithmic approaches that can be used to automate
the design space exploration. Many types of heuristics, iterative improvement, probabilistic,
integer linear and nonlinear programming approaches, and other types of algorithms can
be adopted for this task. Mathematical programming is widely used in the area of opera-
tion research, electrical engineering, control engineering, etc. Its main goal is to reach the
globally optimal solution for an objective function f (x0,x1, ...,xn−1) under a set of m con-
straints c j(x0,x1, ...,xn−1) ≤ k j with 0 ≤ j ≤ m− 1 and variable bounds ai ≤ xi ≤ bi with
0 ≤ i ≤ n−1. As an example, xi can be a decision variable indicating whether a master or a
slave is connected to an interconnect domain or indicating whether an interconnect is a bus
or a crossbar. The objective function can be a design metric such as the power consump-
tion of the whole communication architecture or a combination of different metrics such
as a linear and weighted combination of power and frequency. The constraints can belong
to different classes: some are related to the design metrics such as a latency constraint or a
bandwidth constraint; some are related to the architecture definition, for instance a master or
a slave must be connected to one and only one crossbar or the number of masters connected
to a crossbar must be greater than two; some are optional constraints determining additional
features such as the maximum number of paths between a master-slave pair.

When the objective function and the constraints are linear functions of the variables,
then the problem is called linear programming (LP) as opposed to nonlinear programming
(NLP). In case all xi are binary integer variables, a LP problem is called integer linear
programming (ILP). If only a subset of them are binary integer variables, the problem is
called mixed integer linear programming (MILP). Due to the availability of various solution
methods, many approaches [62, 63, 68, 105] employ MILP to deal with the problem of com-
munication architecture synthesis. However, the MILP approach can be applied to relatively
small problems since it does not scale well. Indeed, its complexity grows exponentially with
the problem size, i.e., the number of masters and slaves in the interconnect [69]. In addition,
when the objective function or some constraints are defined according to some probabilis-
tic statement, the problem is called stochastic linear/nonlinear programming. [118] model
the synthesis problem as stochastic NLP. In particular, two variables indicating respectively
the number of data bits to transfer and the duration of the transaction are handled as nor-
mally distributed variables, while the voltage is statistically estimated based on the above
variables. Solving a stochastic NLP problem is known to be an NP-complete problem. How-

30 Design Methodologies for Bus-based Interconnects: Background

ever, [118] relies on an efficient convex nonlinear optimization algorithm, proposed in [108],
able to solve the problem with a polynomial time complexity.

Unlike the contributions above, several works in the literature adopt fast and efficient
heuristics, that normally scale better for larger problems. Numerous heuristic approaches
are based on simulated annealing (SA) [41, 98, 144, 163], genetic algorithms (GAs) [11,
140, 164], quantum-inspired evolutionary algorithms (QEAs) [65], first-fit heuristics for
bin packing [103], greedy-based approaches [62, 78], or custom methodologies [69, 119].
SA and GA techniques are capable of both broad search (exploration) and local search
(exploitation) of a search space. They are often preferred over gradient search methods
because they avoid local minima, and do not require a smooth search space. The main
problem of implementing either the simulated annealing or the genetic algorithm flows lies
in defining a suitable encoding of the states and implementing a valid transition function.
In fact, since an arbitrarily chosen interconnect is not necessarily a feasible point in the
design space, applying random transformations may not work. In [163, 164] the problem
is addressed using a representation technique called traffic group encoding (TGE). Starting
from a CG, a Traffic Group (TG) is defined as an unordered set of edges from the CG, TG
⊂ E, while a TGE is defined as an ordered set of traffic groups.

T GE = {T Gi|T Gi ⊂ E,1 ≤ i ≤ n} (2.16)

Traffic groups correspond to interconnect elements, such as shared buses or crossbars, while
their order represents the direction of traffic flow, and hence the position of bridges and wires.
For example, the topology of Figure 2.1(d) is generated by the following TGE:

T GE = {(M0 → S0),(M0 → S1),(M1 → S0),(M1 → S1),(M1 → S3)} ,

{(M2 → S1),(M2 → S2),(M2 → S3),(M3 → S3)} ,

{(M0 → S0),(M0 → S1),(M1 → S0),(M1 → S1),(M2 → S1)} ,

{(M2 → S2),(M1 → S3),(M2 → S3),(M3 → S3)}

The main property of this encoding method is that a TGE always leads to an

Arch(T (Sb,C,B,L),Ω(V)) that satisfies the CG.

QEA [52] inherits the main features of evolutionary algorithms but uses quantum bits
(Q-bits) to stochastically represent individuals instead of using the binary representation
of genes as in a genetic algorithm. In addition, a few approaches use branch-and-bound
techniques to break down the complexity of the problem [107, 122, 123, 125].

2.4 Synthesizing an Interconnect 31

Although communication interconnect synthesis is a stand-alone process, additional op-
portunities lie in combining it with different design steps. Co-synthesizing the memory
and the communication architecture, embodying the communication task scheduling in the
problem, and jointly floorplanning and synthesizing the interconnect may lead to improved
customized solutions.

2.4.1 Co-synthesis of memory and interconnect architectures

The memory architecture dictates most of the traffic in a MPSoC, which in turn influences
the performance of the interconnect architecture. Designing a highly parallel architecture
without taking care of the on-chip memory architecture can in fact easily result in degraded
performance. The task of synthesizing a memory architecture consists in memory parti-
tioning, configuration of memory modules, and mapping of data to modules. Often, the
memory architecture and the communication subsystem are defined sequentially as sepa-
rate steps [35, 155]. While greatly reducing the complexity of the design space exploration,
such an approach can lead to suboptimal solutions and miss good design points [76]. There
are, however, a few methodologies that simultaneously consider the communication archi-
tecture and the on-chip memory architecture. Notice that both the power efficiency and the
area cost of a design are deeply affected by the selection of the memory architecture and
the interconnect infrastructure [71, 96, 114]. The solutions for the co-synthesis of memory
and interconnect architectures target one of these two aspects. In particular, in order to gen-
erate a power-efficient configuration, it is necessary to implement the memory architecture
via small distributed memory modules since the distributed memory paradigm ensures less
energy consumption than a centralized structure [15, 26]. Confining the majority of the ac-
cesses to smaller size memory blocks reduces the energy per access of each data element. At
the same time, the integration of a large number of memory modules on a SoC increments
the logic for communication handling and bank address decoding. This tradeoff limits the
amount of the memory partitions and their sizes. Some approaches merge the topology
selection with the partitioning and mapping of memory to the interconnect during synthe-
sis [119, 140]: the required parallelism in memory accesses is translated into a minimum
number of memory modules that the architecture must have along with a minimum number
of buses needed to access the memory blocks. In addition, the memory blocks are mapped in
the topology by taking advantage of spatial locality, i.e. mapping memory blocks to physical
locations on the chip that are close to the cores that access them, while reducing the access
conflicts. Communication locality reduces the average distance traveled by communication
tasks, which minimizes power and increases performance [18]. A further optimization con-
sists in replacing on-chip caches with scratch pad memories (SPMs) [62]. SPMs are more

32 Design Methodologies for Bus-based Interconnects: Background

power efficient than caches because of the absence of tag memory, tag comparators, and
hardware that enforce cache coherence. It is only necessary to add DMA engines so as to
prefetch the data on these SPMs. The above approaches rely on exploiting the finer grain
control due to the mapping of smaller memory chunks to different bus trunks at the bus par-
titioning stage in order to cluster frequently accessed data onto a smaller memory. On the
contrary, the methodology presented in [122] relies on minimizing the area cost by apply-
ing a few operations such as merging several memory blocks into one, changing a memory
from shared to private, or adding out-of-order (OO) buffers in order to reduce the number of
ports of the memory modules. In addition, reducing the amount of memory blocks leads to
a smaller communication architecture, which saves further area resources. Clearly, all the
above techniques require the application to have regular memory access patterns that can be
statically analyzed and predicted at compile time.

2.4.2 Task scheduling and interconnect synthesis

The scheduling of a dependency graph determines for each communication task vi ∈ Vt its
precise start time s(vi). The latency of the schedule is the time required to execute the
whole schedule or, equivalently, the difference between the completion time of the sink
vertex and the start time of the source. If two or more sources/sinks are available, the
source/sink with the smallest/largest start time is considered. Since a feasible solution must
satisfy dependency constraints, the start time of a communication task is at least as large
as the start time of each of its predecessors plus their execution delays d(vi). An execution
delay represents the time required to execute a communication task in a given architecture.
Therefore a schedule must satisfy the following relations:

s(vi)≥ s(v j)+d(v j) ∀vi,v j : evi,v j ∈ E (2.17)

Two noticeable scheduling policies are the as soon as possible, or ASAP, and the as late
as possible, or ALAP, policies enforcing respectively the least and the maximum start time
allowed by the dependencies. The difference between the ALAP and ASAP times of the
same communication task is called slack. It measures the degree of freedom available for
scheduling communication tasks. The problem of communication scheduling and intercon-
nect synthesis are deeply interrelated. The schedule determines the precise start time of
each communication task. The start times must satisfy the DG dependencies, which limits
the amount of parallelism of the communication, because any pair of communication tasks
involved in a direct dependency, or a chain of dependencies, may not execute concurrently.
Scheduling determines the concurrency of the resulting interconnect implementation, and

2.4 Synthesizing an Interconnect 33

therefore it affects its performance and its cost. Similarly, the maximum number of con-
current communication tasks at any step of the schedule is bounded by the interconnection
topology. The final architecture must be able of handling the parallelism owned by a cer-
tain schedule. The traditional scheduling problem is known to be NP-complete [47]. The
problem of scheduling communication tasks onto a communication architecture is more
complicated because the task execution delays are dependent on the topology in terms of
number of hops.

Based on these observations some works [65, 73, 81, 119] make use of the schedule
information known a priori in order to better tailor the interconnect on the application
characteristics. [119] extracts the interconnect access pattern from the schedule and uses
this information to determine several conflict free-communication paths. On the contrary,
[65, 73, 81] take advantage of a schedule-aware performance estimation technique presented
in [74] in order to improve the accuracy of the performance estimation. This approach con-
sists in splitting the schedule into several constant time slots according to the access pattern.
Then, for each time slot, a queueing analysis is performed. In addition, in [65] a lower
bandwidth bound for each communication channel is obtained via a bandwidth analysis that
uses the static scheduling information. Differently, [118] exploits the slack to reduce energy
by simultaneously scaling the voltage during communication tasks with a non-zero slack.
The basic idea is to introduce a bus driver that is capable to scale the voltage in order to
reduce the energy consumption while spreading the task in more time slots. Notice that the
execution delay of a task t depends on the supply voltage V according to [95]

d(t) = k
V

(V −Vth)α (2.18)

where Vth is the threshold voltage, k is a technology dependent constant, and 1.4 < α ≤ 2 is
the saturation velocity.

Although the above approaches are schedule-aware, they do not implement joint schedul-
ing and interconnect synthesis. On the contrary, [11, 31, 159] concurrently perform a
scheduling phase during the interconnect synthesis in order to achieve different goals. [11]
tries to reduce the hop count resulting in a lower latency and lower power. [159] explores
the scheduling solution space to find a schedule that avoids bus contention and maximizes
the amount of buses that can be switched off when unused in order to minimize the energy
consumption. Finally, [31] uses a deterministic control flow in order to schedule all commu-
nication tasks in advance avoiding access conflicts, enabling the application of techniques
for temporal merging [33] since communication tasks that do not happen at the same time
can share the same resources. In addition, considering a static schedule may lead to further

34 Design Methodologies for Bus-based Interconnects: Background

optimizations: less expensive communication architectures can be achieved by using buses
without any arbitration scheme and statically avoiding access conflicts [48]. This technique
can be extended to handle non-deterministic control flows with a hardware overhead to han-
dle the required synchronization mechanisms.

M
1

M
0

M
3

M
2

S
1

S
0

S
3

S
2

B
10

B
01

M
3

M
2

k 3k 5k

S
2

S
3

M
3

M
2

k 3k 5k

S
2

S
3

7k

(a)

(b)

(c)

t

t

Fig. 2.6 The impact of joint scheduling and interconnect synthesis. (a) The ASAP schedule
of the DG in Figure 2.3(b). (b) A different schedule with less concurrency for the same
application. (c) The derived topology

The example in Figure 2.6 demonstrates some benefits enabled by joint scheduling and
interconnect synthesis. Figure 2.6(a) depicts an ASAP schedule that is compatible with
the topology in Figure 2.1(e). On the contrary, Figure 2.6(b) shows a different schedule
that is compatible with the topology in Figure 2.6(c) without producing congestion, while
the schedule (a) is incompatible with that topology. The advantage lies in the possibility
of reducing the size of the crossbar, since tasks involving masters M2 and M3, and tasks
involving slaves S2 and S3 will never overlap and hence they are compatible and can share
the same crossbar port. Of course, this advantage comes at a latency cost since the schedule
latency is increased by 2 time units.

2.4.3 Floorplanning and interconnect synthesis

Floorplanning is an essential step in electronic design. The usual floorplanning problem can
be stated as follows [152]. Let R = {r1,r2, ...,rn} be a set of rectangular modules whose
respective width and height are denoted by wi and hi, 1 ≤ i ≤ n. The position of each mod-
ule is identified by (xi,yi). A floorplan F is an assignment of (xi,yi) for each ri, 1 ≤ i ≤ n,
such that there is no overlapping between any two different modules. The floorplan give
us information about the area cost and wire length: the area is the bounding box of the
design while the wire length can be calculated by using the half-perimeter of the minimum

2.4 Synthesizing an Interconnect 35

bounding box containing all terminals of a wire [24]. The goal of floorplanning in MPSoC
design is to determine the physical location of the cores and communication components
while optimizing predefined architecture features such as the total area cost (i.e., the mini-
mum bounding rectangle of F) or wire length (i.e., the sum of all interconnection lengths).
A detailed study of general floorplanning methods is of course beyond the scope of this
survey. Refers to [138] for a review of floorplanning techniques. Concerning the commu-
nication architecture, the problem can be reduced to the following formulation: Given a
communication architecture Arch(T (Sb,C,B,L), Ω(V)) and the sizes of the cores mapped
on it, find a set of physical locations which minimizes an objective function under a set of
design/application constraints.

Traditional floorplanning tools, such as Parquet [9], are usually employed after the com-
munication architecture is synthesized at the system level. A drawback of this approach
consists in detecting timing violations on the wires only at floorplanning time. This can
be mitigated by inserting register slices on the interconnect to meet cycle time constraints.
However, such interconnect pipelining may not always be compatible with performance
constraints (e.g. a latency). Including the floorplanning in an earlier step of the design
methodology allows detecting and eliminating such violations as early as possible in the
design flow at the system level [125]. It is even possible to drive the synthesis through a
more accurate estimation of the performance and costs such as area, latency, and power [94].
Some approaches [41, 67, 98, 103, 124, 125, 164] address these observations by supporting
the floorplanning step within the synthesis phase: the floorplanner is invoked whenever the
communication architecture is updated in order to measure the feasibility of the resulting
layout and its performance.

2.4.4 Exploiting multi-path communication

Some of the topologies that can be built with bus-based on-chip interconnects introduce
the possibility of multiple concurrent paths across different local domains. In hierarchical
bus topologies or cascaded crossbars as well as heterogeneous architectures, by statically
setting bridge addresses, it is possible to split the traffic across two end-domains along dif-
ferent paths. Multiple paths introduce flexibility in the network topology, as they create a
further opportunity for balancing the load across the interconnect, as well as concurrency
in the inter-domain communications (inter-domain parallelism). As an example, Figure 2.7
demonstrates the benefits of exploiting multiple paths. Figure 2.7(a) shows some commu-
nication requirements of an example application, while Figure 2.7(c) depicts a possible
topology. Depending on the bridge address ranges, two different paths can be used between
clusters 0 and 2. For instance, the communication between M00 and S20 can go through B02

36 Design Methodologies for Bus-based Interconnects: Background

and the communication between M01 and S21 can follow a multi-hop path through B01 and
B12. Figure 2.7(b) and Figure 2.7(d) contain two possible schedules obtained without and
with exploiting multipaths. Bridge configurations enabling parallel communications lead
here to an improvement in terms of communication overhead roughly equal to 33%.

In general, multiple paths can improve the performance of the communication between:
1) One master and one slave in different domains (one-to-one), 2) One master and two or
more slaves in different domains (one-to-many), 3) Two or more masters and one slave
in different domains (many-to-one), and 4) Two or more masters and two or more slaves
in different domains (many-to-many). The problem of deriving suitable multipaths given
certain communication requirements can be formulated as a multi-commodity flow (MCF)
problem [17, 55, 104]. In case of one-to-one communication, the traffic between a master
vm ∈Vm and a slave vs ∈Vs (i.e., the edge em,s ∈ E) is treated as a flow of multi-commodity.
Assuming there are n paths between vm and vs, it is possible to apply techniques of traffic
splitting in order to split traffic across n paths and handle the traffic on each path as a single
commodity flow with a given demand di

m,s > 0, i= 1,2, ...,n. Regarding one-to-many, many-
to-one, and many-to-many interactions, the communication between each master-slave pair
(i.e., each edge em,s ∈ E) is also treated as a flow of single commodity with a given demand
dm,s > 0. Let pm,s be the set of all paths between vm and vs and let p := ∪m,s pm,s, f (p) de-
notes the amount of flow sent along path p for every p∈ p. Assume there are k commodities,
the MCF formulation is then:

Min :
k

∑
i=1

∑
p∈pm,si

c(p) · f (p) (2.19)

∀1 ≤ i ≤ k : ∑
p∈pm,si

f (p)≥ dm,s (2.20)

∀p ∈ p : f (p)≥ 0 (2.21)

c(p) is the cost for communicating across a path p (e.g., in terms of latency, power consump-
tion, et cetera). The objective is to minimize the whole cost for inter-domain communica-
tion, which is the sum of all the communication flows times the corresponding cost over all
the paths (Equation (2.19)). Through constraint (2.20), we make sure that communication
demand for each master-slave pair is satisfied. Additional application- or design-specific
constraints (e.g. bandwidth, latency etc.) may be included too. Notice that two paths cannot
share the same resources, such as a shared bus or a crossbar port, in order to be concurrent.

2.4 Synthesizing an Interconnect 37

Fig. 2.7 The impact of multiple paths. (M: master, S: slave, B: bridge.) (a) Some commu-
nication requirements of an example application. (b) Schedule with no multiple paths. (c)
The communication architecture implementation. (d) Schedule with multiple paths.

2.4.5 An FPGA-specific feature: dynamic configuration

Since the communication requirements between PEs can considerably change over time,
performance can be enhanced and costs can be reduced by resorting to interconnects that
dynamically fulfill the communication needs. Current FPGAs fully support partial recon-
figuration, which enables them to reconfigure only a portion of their resources [93]. This
operation is allowed at run-time: several modules are compiled and stored as bitstreams at
synthesis time and are loaded at run-time. The latency overhead for the reconfiguration de-
pends on the target technology and on the corresponding partial bitstream size. Techniques
and methodologies to handle the partial reconfiguration are outside the scope of this chapter.
We refer the reader to [87] for pointers to recent research and developments.

When dynamic reconfiguration is exploited, the reconfiguration overhead may be a bot-
tleneck: the performance gain introduced by a communication architecture loaded at run-
time must be greater than the reconfiguration overhead. Even for small bitstreams this over-
head cannot be neglected. Moreover, dynamic reconfiguration requires additional hardware
resources resulting in a trade-off between area cost and performance. [58] and [57] propose
an FPGA-based design technique for a communication architecture based on the general
concept of on-demand reconfigurable interconnect [147]. The aim of these approaches is
to provide, for each given application, an interconnect that exhibits a physical topology per-
fectly matching the logical topology, instantly and dynamically switching to other topolo-
gies to adaptively meet the communication traffic changes.

38 Design Methodologies for Bus-based Interconnects: Background

Interestingly, there are a few approaches to interconnect reconfiguration targeting ASICs.
FlexBus [134] introduces two hardware mechanisms for ASICs to dynamically control both
the communication architecture topology and the mapping of IP cores to domains: bridge
by-pass temporarily merges two or more bus segments into a single shared bus, while com-
ponent remapping dynamically switches the mapping of some slaves between two buses at
specific times.

In spite of the above approaches, either based on FPGAs or just relying on interconnect
configuration mechanisms, effectively deciding at runtime how to reconfigure the intercon-
nect, based on dynamic application requirements, is a challenging issue that leaves room for
further investigation.

2.5 Summary

On-chip interconnects are essential to the performance of highly parallel MultiProcessor
Systems-on-Chip. In particular, this chapter presented an extensive review of design au-
tomation techniques for on-chip bus-based interconnects. The large body of research in this
area confirmed the fundamental importance of such application-driven design methodolo-
gies, particularly in data-intensive applications where the choice of the underlying commu-
nication architecture, tailored on specific requirements, is critical to the global performance.
The work went through the main options available for building different on-chip intercon-
nect topologies, i.e. hierarchical buses, crossbars, cascaded crossbars etc. Then it surveyed
the most relevant techniques in the literature to analyze a given interconnect solution and re-
viewed the main approaches available for interconnect synthesis, including several advanced
aspects such as co-synthesis of memory and communication architectures, joint scheduling
and interconnect synthesis, floorplanning, dynamic configuration, multi-path communica-
tion.

Chapter 3

Automated Synthesis of Heterogeneous
Interconnect Topologies

A methodology to automatically generate an on-chip synthesizable interconnection struc-
ture in a memory-mapped communication environment, satisfying given area constraints, is
proposed in this chapter. Specifically, the approach combines crossbars and shared buses,
connected through bridges, in a hierarchical topology inherently supporting multiple com-
munication paths, yielding a scalable structure and enabling efficient communication pat-
terns. The resulting architecture improves the level of communication parallelism that can
be exploited, while keeping area requirements low, as proven by a couple of case-studies
presented at the end of the chapter.

3.1 Problem definition and methodology overview

This chapter presents a novel approach to automatically building hierarchical interconnec-
tion structures, minimizing the communication overhead and maximizing the degree of par-
allelism that can be achieved by concurrent communication interactions. In that respect, two
key aspects are the capability of exploiting spatial locality in the communication patterns
and the support for heterogeneous, hierarchical topologies enabling concurrent communica-
tion. The first aspect essentially consists in attempting to place the nodes that communicate
more frequently closer to each other, minimizing the traffic between communicating ele-
ments and matching the localized traffic patterns induced by a given application. The com-
munication parallelism is made possible by defining local domains, i.e. subsets of nodes
in the interconnect that can directly communicate with each other, independent of other
domains where different communication interactions can take place concurrently. Local

40 Automated Synthesis of Heterogeneous Interconnect Topologies

domains are implemented as either crossbars or buses. By appropriately controlling the
mapping of the address spaces in each bridge, furthermore, multiple physical paths can be
realized between pairs of communicating elements in different domains. Multiple paths in-
troduce flexibility in the network topology as they create a further opportunity for balancing
the load across different channels.

A fundamental performance/cost trade-off addressed by the proposed methodology is
the choice of the actual implementation for local domains. These can be built as either
shared buses or crossbars. The envisioned approach chooses buses for those situations
where we do not strictly need a full-crossbar network. The methodology defines the lo-
cal domain and builds the actual technology mapping in an iterative fashion, minimizing the
communication overhead and maximizing the communication parallelism under given area
constraints.

Precisely, the interconnect synthesis problem is stated as follows. Given

• a communication graph CG=G(Vm,Vs,E), as defined in chapter 2.2, where each edge
em,s has an attribute, V (em,s), representing the communication volume in terms of the
amount of bytes to be transferred between master vm and slave vs;

• area constraints;

find:

• a bus-based on-chip communication architecture Arch(T (Sb,C,B),Ω(V)) specifica-
tion based on a heterogeneous bus/crossbar architecture, as defined in chapter 2.2,
minimizing the target cost function.

As an example, consider Figure 3.1. Part (a) contains an example of a Communication
Graph with 9 masters and 3 slaves. The numbers on the arcs are representative of the V (em,s)

attribute, here expressed in MB. When describing a computing architecture, an element of
the Vm set corresponds to a microprocessor or a DMA controller or, more generally, to any
master port of a unit in the system. The elements of Vs, on the other hand, are representative
of the slave ports on the interconnect. They can be either ordinary peripherals or manually
optimized hardware components used for application-specific purposes. Given a CG, a
communication architecture description can be generated, expressing a specification directly
synthesizable to an interconnect. A Arch(T (Sb,C,B),Ω(V)) is made up of local domains
interconnected by means of bridges. A local domain can be either a bus or a crossbar where
some masters and slaves are involved in communication tasks. Communication on a global
scale between different local domains can be done via a proper configuration of bridge
address ranges. In the crossbar case, the output will include a connection matrix that fully

3.1 Problem definition and methodology overview 41

specifies the connections between every master port and every slave port, possibly defining
sparse crossbars. Figure 3.1.(b) gives an example of a Arch(T (Sb,C,B),Ω(V)) derived from
the CG in Figure 3.1.(a).

A Arch(T (Sb,C,B),Ω(V)) implementation must meet interconnect area constraints. For-
mally, call: Nn×m

c the number of n×m crossbars, An×m
c their on-chip area, Nn×m

sb the number
of n×m shared buses, An×m

sb their area, Nbr the number of unidirectional bridges, and Abr

their area:

∑
m

∑
n

[
Nn×m

c ·An×m
c +Nn×m

sb ·An×m
sb

]
+Nbr ·Abr ≤ AREA

where AREA denotes the constraint on the used hardware resources. Figure 1.(c) shows an
example of an Euclidean Distance Matrix (EDM), a symmetric square matrix showing in
each position (i, j) the affinity between slaves si and s j. If si and s j exhibit a similar behavior
according to the quantity of exchanged traffic with masters, their affinity tends to be high.
This data structure is critical for the selection of local domains. Refers to Section 3.2 for
more details.

Fig. 3.1 A few examples (a) A Communication Graph (CG). (b) A Communication Archi-
tecture Arch(T (Sb,C,B),Ω(V)). (c) A Euclidean Distance Matrix (EDM).

The proposed topology synthesis flow consists of two phases:

1. Communication elements clustering;

2. Inter- and intra-cluster topology definition;

The first phase generates local domains, i.e. subsets of nodes in the interconnect that
can directly communicate with each other. This step is performed by clustering the masters
and slaves so as to exploit spatial locality maximizing the local traffic inside each domain in
order to match the localized traffic patterns induced by a given application. Local domains
will be implemented as either crossbars or buses. In the second phase, the clusters are con-
nected in order to make all inter-cluster communications feasible by means of bridges. By

42 Automated Synthesis of Heterogeneous Interconnect Topologies

properly setting the mapping of the address spaces in each bridge, furthermore, multiple
physical paths between different domains can be realized. Multiple paths introduce flexibil-
ity in the network topology as they create a further opportunity for balancing the load across
the interconnect. In addition, we need to figure out how a single cluster will be implemented.
This phase also covers the definition of the topology for each cluster. The identification of
the final implementation for the local domains is driven by the area constraints.

3.1.1 Assumptions

This chapter first specifies the assumptions we made for this interconnection design prob-
lem and then offers an overview on the proposed methodology. First, we target a memory
mapped communication architecture with all interconnect channels sharing the same prop-
erties (protocol, channel width, clock frequency, etc.). The routing is deterministic and
defined by statically setting bridge addresses. Next, we assume that the communication traf-
fic is made up of communication tasks, i.e. non-preemptive atomic entities with an arbitrary
load (amount of transmitted bytes) transferred in a burst mode. We do not take into account
data dependencies, i.e. we assume that all nodes are always ready to transmit their remain-
ing amount of data. This is true for pipelined data-flow shared-memory systems, where
each node always reads data from memories and writes them back after elaboration. When
relaxing this assumptions our approach still works fine leading to a softly over-provisioned
communication infrastructure.

3.2 Communication elements clustering

The clustering is one of the main steps involved in the interconnect architecture definition.
In fact, the quality of the clusters heavily affects both the area occupation and the degree of
communication parallelism that the final interconnect can exploit. This phase takes place in
two steps: 1) hierarchical slave clustering, and 2) master assignment to the slave clusters.

The first step performs an agglomerative hierarchical clustering in order to fix the num-
ber of local domains and determine the partitioning of the slave nodes. To cope with this
problem, slaves are represented in a Euclidean n-space. For each slave vs, we build an
array containing Nm elements, the total number of masters, where each array element i rep-
resents the fraction of the total traffic from/to slave vs involving master i. Then, in order
to decide which clusters should be combined, the Euclidean distance is used as a measure
of dissimilarity between slaves. The Euclidean Distance Matrix (EDM), containing the
Euclidean distance for each pair of slaves, is built. Notice that EDM(h,k) ≤

√
|Vm| ∀h,k.

3.2 Communication elements clustering 43

Figure 3.1.(c) shows the EDM matrix for the CG in Figure 3.1.(a). The EDM is the input of
the clustering algorithm, described below, which returns a number of clusters based on the
given area constraints.

Fig. 3.2 An example of agglomerative hierarchical clustering of slave nodes. Slaves are on
the x-axis, while the Euclidean distance is on the y-axis.

Figure 3.2 shows an example of agglomerative hierarchical clustering of slave nodes
based on the EDM. The dotted line, corresponding to a particular value of the Euclidean
distance ∆, determines the groups of slaves that will be part of the same cluster. The algo-
rithm starts from an initial value ∆0 for ∆, reaching a final value ∆n. At the beginning, the
algorithm verifies if the clustering has reached an intra-cluster Euclidean distance ∆0. Once
this is reached, the algorithm verifies if that clustering would be feasible under the given
area constraints in the worst-case conditions (i.e. assuming all possible bridges between
clusters and intra-cluster communication based on full crossbar). If the cluster is feasible,
the algorithm goes on using 2∆0 as the limiting value. There are two possible outcomes: the
algorithm either finishes without saturating the area, in which case only one local domain
will be used maximizing communication concurrency in the case of a full crossbar, or two
values i∗∆0 and j ∗∆0 (i < j) are found where the latter is infeasible and the former is fea-
sible. The above steps are then repeated once more using ∆ = ∆0/2. The algorithm always
stops if the condition ∆ = ∆n/2 is reached. Acceptable values for ∆0 and ∆n are 0.2 ·

√
|Vm|

and 0.02 ·
√
|Vm|. Notice that the working frequency of a crossbar/bus is not heavily depen-

dent on the number of its ports, while the area overhead tends to grow rapidly when adding
ports. As a consequence, without area constraints, the clustering iterations leads to a single
crossbar, which is consistent with our goals because a single large crossbar guarantees the
lowest possible communication overhead. With increasingly stringent area constraints, we
obtain a growing number of smaller clusters.

44 Automated Synthesis of Heterogeneous Interconnect Topologies

The second step assigns the masters to the clusters with which they exchange most data
in order to keep as much communication as possible within single clusters (intra-cluster
communication) and minimize the communication through bridges. Figure 3.3 shows an
example. Masters M1, M6, M8, M9 are assigned to the first cluster, M3 to the second, and so
on.

Fig. 3.3 An example of master assignment. Values are expressed in MB.

At the end of this phase, all masters and slaves are divided in local domains whose
internal and external topologies are however still to be defined.

3.3 Inter- and intra-cluster topology definition

The aim of this phase is to determine both the inter- and the intra-cluster topology. It is not
possible to address the two problems separately because they are deeply inter-related due
to area occupation constraints. In order to increase communication parallelism we have to
maximize intra-cluster communication while keeping inter-cluster communication as low as
possible and satisfying the given area constraints. Hence, we resort to an approach that is
optimum for the definition of the intra-cluster topology and best-effort for the inter-cluster
topology, under given area constraints. We proceed as follows:

1. Define a basic inter-cluster topology, making all inter-cluster communications feasible

2. Define the topology of each cluster

3. As long as area constraints are met, add bridge components in order to exploit Inter-
cluster parallelism

For step 1), we define the number and the position of the bridges by solving an optimum
branching problem. We rely on a well-known algorithm (i.e. Edmonds’ algorithm), setting
the weights on the arcs to the inverse of the communication requirements between clusters.
In other words, we prioritize the arcs having higher communication requirements, i.e. we
place bridges between clusters that exchange more data.

3.3 Inter- and intra-cluster topology definition 45

Concerning step 2), for each local domain we need to define its topology. We use a
greedy heuristic approach: we order the clusters in a descending order according to the total
traffic that they have to deal with. Starting from the first one in this ordered list (i.e., a list of
clusters) we try to associate a crossbar to that cluster; that crossbar can be sparse depending
on the required connectivity between inputs and outputs. The possibility of considering
sparse crossbars during the topology determination process, rather than at a later step, can
greatly benefit area requirements. The cluster list is then evaluated. The available area is the
one expressed by the area constraint minus the area required by the bridges created during
the previous step. The criteria for assigning a crossbar or a bus are as follows:

1. Compute the area of the necessary sparse crossbars.

2. If the area of the necessary crossbars is less than the available area minus the area of
a shared bus multiplied by the number of clusters for which the topology has not been
defined yet, then assign the crossbar; otherwise assign a shared bus.

3. Go to the next cluster in the list and start from step a).

The idea behind this heuristic is that we want to maximize communication parallelism in
the clusters where the demand for traffic is higher while still meeting area constraints.

Step 3) deals with the enhancement of the inter-cluster topology. Keeping in mind that
Step 2) has decreased the overall available area, the greedy heuristic for this step proceeds
as follows:

1. Build the set (call it S) of all the possible bridges between all clusters that were not
added during Step 1).

2. Sort the list in descending order according to the traffic demand (i.e., the amount of
bytes to be transferred between each pair of clusters).

3. For each element in S:

(a) Increment the available area with the cost of two crossbars (or buses, depending
on the chosen topology).

(b) Subtract from the available area the cost of a bridge and the cost of two crossbars
(or buses), where the size of the crossbars/buses to be connected also takes into
account the port for the new bridge. If the area constraint is still met, add this
bridge to the inter-cluster topology.

46 Automated Synthesis of Heterogeneous Interconnect Topologies

Each local domain can have more than one bridge connected to it, and each bridge can for-
ward data to other bridges in the network. This enables traffic from the same cluster (and,
in principle, from the same communicating element) to reach another cluster (or another
communicating element) following different and, possibly, multi-hop paths. In order to cor-
rectly exploit inter-cluster path parallelism, the definition of the slave and bridge address
windows is key, as it determines the actual routing of data through the network, possibly
letting the same slave exchange data through different paths depending on the addresses of
the transferred data. In that respect, the bridge address ranges are defined by solving a path
balancing problem [37]. This approach allows us to configure bridge address ranges in such
a way as to balance the traffic over different links, effectively exploiting parallel communi-
cation paths available in the topology. Section 2.4.4 exemplifies the benefits obtained from
inter-cluster multi-path communication.

3.4 Experiments and Case Studies

3.4.1 Experimental Setup

We carried out the experiments on a prototyping FPGA board, namely a ZedBoard by Avnet
Design Services for the Xilinx Zynq™-7000 [7]. The communication architecture synthesis
flow uses the Xilinx AXI components compliant with the AMBA® AXI version 4 specifi-
cation from ARM [8]. We built accurate analytical models for the evaluation of the area
cost, the latency and the power consumption, obtained by interpolating extensive RTL syn-
thesis results. From the data collected, we extrapolated the following equations, valid for
the Zynq-7000 family, used to calculate the area information of AXI-based interconnects:

An×m
c = 101n+60nm+42m+874 (3.1)

An×m
sb = 80n+18.75m+95.5 (3.2)

We considered burst-based transactions with only the start address issued and the payload
transferred in a single burst that can comprise multiple beats1. Concerning the bandwidth es-
timation, we considered the bandwidth of a channel as the maximum rate at which a master
can receive/send data from/to a slave. Due to the burst-based communication, we considered
that address arbitration does not impact that rate significantly2. To compute the execution

1A beat is an individual data transfer within an AXI burst.
2According to the component documentation, arbitration latencies typically do not impact data throughput

when transactions average at least three data beats.

3.4 Experiments and Case Studies 47

time of a communication task, we proceeded as follows: intra-cluster communication tasks
require 52 clock cycles every 64 bytes of data. In case of inter-cluster communication 10
additional clock cycles are required for each traversed bridge. Obviously, these numbers
are dependent both on the architecture and the actual IP cores used. Concerning the static
power consumption, we considered the power from transistor leakage on all connected volt-
age rails and the circuits required for the FPGA to operate normally. Obviously this power
is independent of the user design and, consequently, it is affected only by voltage and tem-
perature. Unlike static power, dynamic power is the power of the user design, i.e. it depends
on the input data pattern and the design internal activity. We calculated this power by means
of simulation results based on the average switching rate of every signal in the interconnect.

3.4.2 Results

We tested the method for a real-world application and a synthetic one. The real-world
application (AppI) is an MPEG4 decoder with 9 masters and 3 slaves derived from [139],
while the synthetic one (AppII) consists of 12 masters and 16 slaves and is representative
of an application with a medium/high communication workload. The characteristics of the
benchmarks are summarized in Table 3.1.

Table 3.1 Characteristics of the case-study applications

For each application, we applied our method and synthesized the resulting architecture
in a MPSoC. AppI is a small size application with only 3 slaves. Its CG is shown in Fig-
ure 3.1.(a). In the graph, the circles denote the processing or memory cores and are anno-
tated by their respective types. The edges denote the communication between cores, and

48 Automated Synthesis of Heterogeneous Interconnect Topologies

are annotated by the global amount of data in MB for aggregate read/write operations. Fig-
ure 3.1.(c) shows the AppI Euclidean Distance Matrix (EDM). As previously mentioned, the
Euclidean Distance between two slaves is bounded by

√
|Vm|, where |Vm| is the cardinality

of Vm. In this application |Vm|= 9, so the Euclidean Distance ranges here between 0 and 3.
The suggested value of ∆0 = 0.6 is never reached, so our approach finds 3 clusters, one for
each slave. This is justified by the limited affinity between the slaves. Notice that the limited
scale of the problem does not create any significant opportunity for optimizing the commu-
nication in this case. The area available for the interconnection architecture was less than
4000 LUTs. The topology obtained consists of a 7×3 crossbar, a 2×2 bus, and a 4×2 bus
for cluster 1, 2, and 3, respectively, with a total area of 3713 LUTs. Figure 3.1.(b) shows the
Arch(T (Sb,C,B),Ω(V)) graph and its corresponding topology implementation. The circles
denote the clusters while the edges denote the inter-cluster communication. To evaluate the
overall impact of our method, we compared it with a previous method based on MILP [68].
The MILP approach can operate with two different objectives: maximize the operating fre-
quency (Objective 1) or minimize the total crossbar area (Objective 2). To perform a timing
and area comparison, we applied the MILP approach and we implemented on FPGA the
interconnect architectures obtained. We used the Xilinx LogiCORE IP AXI Timer (v1.03.a)
to have timing information. Notice that the time to execute a memory transfer depends on
the hop-count in terms of number of bridges to traverse. The goal of our methodology is to
minimize the inter-cluster traffic with the aim of maximizing the parallelism of the commu-
nication while minimizing the multi-hop communication. In that respect, a useful metric for
quantifying this behavior was introduced in [116]: the localization factor L f , i.e. the ratio of
the local traffic to the total traffic. For example, if L f = 0.6, then 60% of the traffic generated
by an IP occurs within its cluster while the rest of the traffic involves the remaining parts
of the SoC. For the AppI application, we calculated the localization factor for the topology
obtained with our approach and with the MILP approach. We found L f = 0.80 with our
approach, while L f = 0.39 with MILP. As a result, we have measured a 17% reduction in
the total communication time compared with the communication architecture obtained by
optimizing the first objective, while a reduction of 10% in the total area occupied compared
with the topology obtained by optimizing the second objective.

AppII, on the other hand, is a medium/large-size application with a significant number
of masters and slaves. Our approach found 6 clusters. Figure 3.2 shows the hierarchical
clustering tree for this application. The dotted line represents the stop value where the al-
gorithm converges. A larger value means having larger crossbars/buses with a considerable
growth in the area occupation and a higher communication efficiency. The extreme solution
is an unbounded clustering leading to a single crossbar. This solution is very expensive in

3.4 Experiments and Case Studies 49

terms of area occupation but offers the best parallelism achievable with only intra-cluster
traffic and L f = 1. At the opposite end, the extreme solution is the one with one cluster for
every slave. This solution is reached with a ∆0 < min(EDM(h,k)) and expresses the high-
est level of inter-cluster traffic. Figure 3.3 shows how masters are assigned to clusters for
AppII. The procedure maximizes the intra-cluster communications by assigning a master
to the cluster with which it communicates most. Due to the area constraints, the topology
obtained consists of three crossbars, one 6× 8, one 4× 3, and one 2× 4, as well as three
shared buses, one 5×5, one 2×4, and one 2×1 bus.

Fig. 3.4 The communication architecture description for the second case-study application
(AppII). (M: master, S: slave, B: bridge.)

Figure 3.4 shows the Arch(T (Sb,C,B),Ω(V)), where each region enclosed by a dotted
line represents a cluster. The figure also emphasizes a few multiple paths between some
clusters. Communication between clusters 5 and 6 can go through bridge B56 or follow the
multi-hop path going through B53 and B36. Similarly, communication between clusters 6
and 3 can go through bridges B62 B23 or B65 B53. For this application the total area of the
interconnection architecture is 9720 LUTs, while a 12× 16 full crossbar occupies around
14200 LUTs, 46% more than our solution. Concerning traffic locality, our topology has a
L f = 0.7, causing our solution behave slightly worse in terms of total communication time,

50 Automated Synthesis of Heterogeneous Interconnect Topologies

although it needs only 10% more time to complete compared to a full crossbar solution,
which of course reach the best possible L f .

We also evaluated the overall energy consumption for each case-study application, tak-
ing into account the power consumption and the overall execution time incurred by the
communication tasks. Figure 3.5 shows the main results in terms of both static and dynamic
energy (based on the Xilinx XPower power estimation tool), referring to a full crossbar im-
plementation, a previous literature solution [68], and the presented approach. Static energy
consumption, as expected, is directly proportional to the execution time. Notice that the re-
sults provided by XPower in terms of static power refer to the whole chip and may vary for
other devices. Nevertheless, they are indicative of the energy saving enabled by improved
overall execution times. The dynamic energy consumption, on the other hand, does depend
on the specific structure of the implemented design. The proposed method generates in-
terconnect architectures consuming on average 5% less dynamic energy than full crossbar
implementations and respectively 10% and 30% less dynamic energy than [68] for Objec-
tive 1 and Objective 2. To interpret these results, recall that dynamic power can be modelled
as Pdynamic = VDD

2 · ∑
n∈nets

(Cn × fn) where VDD is the supply voltage, while Cn and fn are,

respectively, the capacitance and the average toggle rate (switching activity) of a net n. The
number of nets, in the case of crossbar solutions, grows quadratically with the number of
ports. As a consequence, a large crossbar tends to consume more dynamic power per port
than an interconnect made up of small crossbars or buses. This explains the advantage in
terms of energy consumption of our approach over the full crossbar implementation, in spite
the fact that the full-crossbar implementation has an overall execution time 10% lower than
our approach. The improvement over [68], on the other hand, is due to the advantage in
terms of either area or execution time for both objectives. In fact, compared to [68], Objec-
tive 1, our solution leads to architectures with similar dynamic power but better execution
time, while, compared to [68], Objective 2, it leads to architectures with similar execution
time but better dynamic power.

3.5 Summary

This chapter presents an automated design methodology for the synthesis of complex het-
erogeneous on-chip interconnects made of crossbars, buses, and bridges starting from the
specification of the application requirements. This solution is based on a greedy algorithm to
cluster communicating elements in local domains and a method to balance the load across
the bridges. The algorithm aims at maximizing both intra- and inter-cluster communica-
tion parallelism, respectively by concentrating traffic within local domains and by creating

3.5 Summary 51

Fig. 3.5 Energy consumption comparison vs. [68] (denoted as Jun08 in the charts) and a full
crossbar solution. (a) Static energy (b) Dynamic energy.

parallel, multi-hop inter-cluster communication paths. Experimental results show that this
approach can synthesize designs made of dozens of IP cores with a small communication
overhead and low area and power requirements, exhibiting encouraging improvements over
previous proposals in the literature.

Chapter 4

Joint Communication Scheduling and
Interconnect Synthesis

Based on the observation in Chapter 2.4.2, in this chapter, we propose a complete methodol-
ogy supporting a joint communication scheduling/interconnect synthesis optimization. By
jointly solving a scheduling and interconnect synthesis problem, the methodology turns
the description of the application communication requirements, including data dependen-
cies, into an on-chip synthesizable interconnection structure along with a communication
schedule satisfying given area constraints. As in the previous chapter, the interconnect ar-
chitecture description generated by the methodology is based on a combination of cascaded
crossbars and shared buses, connected through bridges. This chapter thoroughly describes
the formalisms and the methodology used to derive such optimized heterogeneous topolo-
gies. It also discusses some case-studies emphasizing the impact of the proposed approach
and highlighting the essential differences with a few other solutions presented in the techni-
cal literature.

4.1 Problem Definition

This chapter proposes an application-specific on-chip network topology synthesis and com-
munication scheduling method. It takes as input the information on the communication
tasks and their dependency relationships, and generates the specification of an on-chip inter-
connect along with the communication task schedule. In the following we give some useful
definitions as well as a simple example.

Definition 4.1.1. A Task List (TL) is a list, made up of ntask communication tasks, indexed
by a unique taskID where each entry ti contains the master and the slave involved in the

54 Joint Communication Scheduling and Interconnect Synthesis

Fig. 4.1 A few examples ("M" : master, "S" : slave, "B" : bridge.) (a) A Task List (TL). (b)
A Dependency Graph (DG). (c) A Communication Schedule (CS). (d) A Communication
Architecture Description (OCA).

communication and a cost ci (i.e. the data traffic) in terms of number of bytes to be trans-
ferred.

The communication traffic between a master and a slave is made up of communication
tasks which are non-preemptive atomic entities with an arbitrary load, i.e. the amount of
transmitted bytes, transferred in a burst mode. Notice that two different tasks can have the
same master/slave pair. This allows modeling any traffic pattern.

Definition 4.1.2. A Communication Schedule (CS) is defined as a vector indexed by a task
identifier containing in each entry si the start time of communication task ti in clock cycles.
The latency of the CS is the number of cycles to execute the entire schedule, or equivalently,
the difference in start time of the sink and source vertices. If two or more sources/sinks
are available, the source/sink with the smallest/biggest start time is used. Since a feasible
solution must satisfy data dependency constraints, the start time of a communication task is
at least as large as the start time of each of its predecessors plus their execution delay di. An
execution delay is an integer representing the amount of clock cycles required to execute a
communication task in a given architecture. Therefore a schedule must satisfy the following
relations:

si ≥ s j +d j ∀i, j : (v j,vi) ∈ E (4.1)

It is of course desirable to find the minimum latency schedule that can be run on a physical
topology under given area constraints.

As an example, consider Figure 4.1. Part a) contains a TL with five tasks where, for
each task, the master/slave pair and the amount of traffic they exchange are specified. The
DG (Figure 4.1.b) expresses the existing dependency relationships between the tasks. In
this case, there are dependency constraints between t0 and t1 and between t2 and t3. In Fig-
ure 4.1.c, a possible scheduling solution is depicted. It is the as-soon-as-possible (ASAP)
schedule for the given DAG and TL. Notice that although t3 and t4 do not have any data
dependency, their execution is serialized due to a slave incompatibility: two different tasks

4.1 Problem Definition 55

can not simultaneously access the same slave. In the same way, accessing simultaneously
the same bridge in a multi-hop communication would lead to a tasks incompatibility. Fig-
ure 4.1.d depicts the OCA made of two clusters (C0 and C1) and one bridge allowing task
t1 to be performed. C0 is implemented by a shared bus and C1 by a crossbar. This topology
exhibits the required parallelism to run the above schedule. This is obtained by taking ad-
vantage of both global parallelism, because there are two clusters running concurrently, and
local parallelism, because cluster C1 is implemented as a 2×2 crossbar.

4.1.1 Objectives

The interconnect synthesis problem is stated as follows. Given

• a communication Task List (TL) containing, for each task, the master and the slave
involved and the amount of bytes to be transferred;

• a Dependency Graph (DG) describing the possible inter-task precedence relationships,
i.e. data dependency constraints;

• area constraints;

find:

• a On-chip Communication Architecture (OCA) specification based on a heteroge-
neous bus/crossbar architecture minimizing the target cost function;

• a minimum-latency communication task schedule (CS) compatible with the identified
architecture.

The problem of communication scheduling and synthesizable topology definition are
deeply interrelated. The schedule identifies the precise start time of each communication
task. The start times must satisfy the DG dependencies, which limits the amount of paral-
lelism of the communication, because any pair of communication tasks involved in a direct
dependency, or a chain of dependencies, may not execute concurrently. Determining the
concurrency of the topology implementation, scheduling affects the resulting performance
and cost. Similarly, the maximum number of concurrent communication tasks at any step
of the schedule is bounded by the interconnection topology. The final architecture must be
able of handling the parallelism offered by a certain schedule.

The cost of the interconnect in terms of area can be upper bounded to satisfy some
design requirements. When resource constraints are imposed, the number of concurrent
communication tasks whose execution can overlap in time is limited by the parallelism of

56 Joint Communication Scheduling and Interconnect Synthesis

the topology. Tight bounds on the interconnect area cause serialized communication. As a
limiting case, a scheduled sequencing graph may be such that all communication tasks are
executed in a linear sequence. This is indeed the case when only a single bus is available
to execute all communication tasks. On the contrary, the unconstrained solution is a cross-
bar with a suitable number of connections enabling the maximum number of concurrent
communication tasks according to DG dependencies. Area/latency trade-off points can be
derived as the solutions to different constrained scheduling problems. This methodology
jointly considers them to derive a heterogeneous interconnection topology satisfying both
area and dependency constraints.

4.1.2 Assumptions

Following are the main assumptions we made for the interconnection design problem:

• First, we target a memory mapped communication scenario where the memory blocks
and I/O devices are mapped to slave nodes while the initiators, such as CPUs and
DMAs, are mapped to master nodes sharing the same address space in the system. IP
cores that have both roles, i.e. initiator and target, are mapped to both a master node
and a slave node, handled like the other nodes.

• All the interconnect channels use the same protocol and channel width.

• The routing is deterministic and defined by statically setting bridge addresses.

• We neglect the overhead due to bus contention when computing latencies.

• A pre-characterized library of crossbars and buses is ready for various configurations
(e.g., different numbers of masters and slaves). We built an accurate area cost model,
obtained through interpolation of extensive area characterizations using RTL synthe-
sis. We will explain the proposed method and show the experimental results for AXI-
based interconnects. However, the proposed method can also be applied to crossbar-
based interconnects implementing other protocols.

4.1.3 Overview of the proposed method

This section presents a novel approach to automatically building highly parallel intercon-
nection structures, minimizing the communication overhead and maximizing the degree of
parallelism that can be achieved by concurrent communication interactions. The approach
also deals with dependency constraints expressed using the DG. The proposed topology
synthesis flow, shown in Figure 4.2, consists of three phases:

4.1 Problem Definition 57

Fig. 4.2 Proposed interconnect synthesis flow

1. Communication elements clustering

2. Inter-cluster topology definition

3. Scheduling and intra-cluster topology definition

The first step performed (Phase 1) is the clustering of communicating elements in local
domains. The capability of exploiting spatial locality in the communication patterns is here
key, as we attempt to place the nodes that communicate more frequently closer to each other,
minimizing the traffic between communicating elements and matching the localized traffic
patterns induced by a given application.

In Phase 2 the clusters are connected in order to make all inter-cluster communications
feasible by means of bridges. By properly setting the mapping of the address spaces in
each bridge, furthermore, multiple physical paths between different domains can be real-
ized. Multiple paths introduce flexibility in the network topology, as they create a further
opportunity for balancing the load across the interconnect, as well as concurrency in inter-
cluster communication (inter-cluster parallelism).

Finally, we need to figure out how single clusters will be implemented (Phase 3). This
step is performed jointly with the communication scheduling: an iterative procedure finds
an optimal communication tasks schedule (in terms of latency) and a global topology con-
taining enough resources to execute the found schedule. The identification of the final im-
plementation for the local domains is driven by the area constraints. The chosen imple-
mentation must ensure a degree of intra-cluster parallelism compatible with the identified
schedule. The definition of an effective method generating the intra-cluster architecture
given a global scheduling solution is essential.

Notice that the above approach targets a single application. In case different applica-
tions are anticipated to share the same interconnect architecture, the methodology can still

58 Joint Communication Scheduling and Interconnect Synthesis

be adopted by identifying a clustering that averages the characteristics of all applications,
similar to cluster ensemble techniques [142]. While the first step of this approach is pre-
sented in Chapter 3.2, the second and third steps covered by this methodology are explained
in the following sections.

4.2 Inter-cluster Topology Definition

As already mentioned, both inter-cluster (i.e. the O set of the ST) and intra-cluster topolo-
gies (i.e. the I function of the ST) need to be defined. The aim of this phase is to determine
the global inter-cluster architecture: the O set defines the actual links between the clus-
ters (from an implementation viewpoint, it determines the number and the positions of the
bridges between crossbars and buses). The intuition behind the proposed algorithm is that,
in order to have low-latency communication, we have to maximize intra-cluster communi-
cation while keeping inter-cluster communication as low as possible satisfying given area
constraints. Hence, we resort to an approach that is biased towards optimizing the I function
more than the O set. As shown in Figure 4.2, this is achieved in two steps.

1) Populate the O set, making all inter-cluster communications feasible.

2) Define bridge addresses by solving a path balancing problem.

For step 1), we solve an optimum branching problem taking as nodes the C set. We rely on
a well-known algorithm (i.e. Edmonds’ algorithm [42]). The important clue is that we set
the weights on the arcs to the inverse of the communication requirements between clusters.
In other words, we prioritize arcs having higher communication requirements.

Concerning step 2), we resorted to the approach in [37] that is capable of solving a path
balancing problem with a complexity of O(n logn). This approach allows us to configure
bridge addresses in a balanced way without overloading a reduced number of links. Fur-
thermore, this possibly enables the use of parallel communication paths between masters
and slaves in different clusters, enabling the exploitation of inter-cluster parallelism. Sec-
tion 2.4.4 shows the benefits obtained from inter-cluster multi-path communication.

4.3 Scheduling and intra-cluster topology definition

This section presents the approach to the concurrent definition of the intra-cluster architec-
ture and the scheduling solution. This is the most complex phase of the methodology since

4.3 Scheduling and intra-cluster topology definition 59

it concurrently involves the design of the intra-cluster interconnections and the communica-
tion scheduling. The whole procedure, consisting of several steps, is depicted in Figure 4.2,
Phase 3.

At the beginning, the DG is fixed in order to take into account and preemptively solve any
potential structural conflict due to slave and bridge accesses. This is because the original DG,
taken as input by the methodology, only expresses dependency relationships. The resulting
DG will comply with the following rule: all tasks using the same slave or bridge must be
connected by a single path. This means that there will be a partial order relation for slave
and bridge accesses. This is achieved by prioritizing tasks that, in an ASAP schedule, start
first. This must be computed only once by the methodology and is represented by the first
step. In addition, in this step the execution delay di of each communication task ti is derived
in order to solve equations (4.1). Notice that di does not only depend on the cost of the
task but also on the interconnect topology: inter-cluster communications require additional
clock cycles due to bridge crossing. These values are strictly dependent on the technology
and can be computed only after the definition of the global topology.

After fixing the DG, the second step computes the ASAP and ALAP schedules and the
mobility values. Then, the iterative phase takes place. First, a temporal bound, subsequently
relaxed at each iteration of the outer loop, is fixed (third step). Since we are optimizing the
global execution time, we start with the minimum temporal bound, i.e. the latency of the
ASAP schedule. In fact, the ASAP schedule finds the optimum execution time in an uncon-
strained problem [99]. At each iteration of the inner loop we calculate the optimal schedule,
in terms of area occupied by an interconnection architecture able to run that communication
schedule, under that temporal bound (fourth, fifth, and sixth steps). The temporal bound
is relaxed until a solution, satisfying the area constraints, is found. A key decision here is
how much the temporal bound should be relaxed. These steps rely on an algorithm to find
the synthesizable architecture with the minimum degree of parallelism allowing a certain
schedule to be run (fifth step). Then, the cost of the whole architecture is quantified by
using a suitable area model. The last step checks if the area of the architecture found meets
the given constraints. If this is not the case, we go back to the third step where, in addi-
tion to relaxing the temporal bound, the mobility values are recomputed accordingly. In the
following, several essential aspects related to the above flow are described in more detail.

4.3.0.1 Relaxing the temporal bound

The granularity of the temporal bound, relaxed at each repetition of the third step above,
is critical to guaranteeing a comprehensive exploration of the available design choices. Of
course, relaxing the bound by a single clock cycle at each step would be infeasible. We

60 Joint Communication Scheduling and Interconnect Synthesis

chose to relax the bound by the minimum time allowing a task to eliminate at least one
overlap in the schedule. The intuition behind this choice is that less overlapping leads to less
concurrency, and hence the architecture will take less area. As an example, in Figure 4.3 the
temporal bound is relaxed by two time units. Had the temporal bound been shifted by only
one time unit, task t1 would have still overlapped with task t2.

Fig. 4.3 Example of temporal bound relaxing

4.3.0.2 Scheduling Algorithms

The scheduling algorithm is responsible for determining a schedule compatible with the
lowest-area synthesizable communication architecture satisfying a given temporal bound
and all the constraints expressed by the modified DG (including slaves and bridges conflicts).
Table 4.1 summarizes the characteristics of the different scheduling algorithms evaluated.

Table 4.1 Scheduling Algorithms

Name Abbreviation Solution Type
Genetic Algorithm GA Approximate Evolutionary
Priority-based List Scheduling PBLS PBLS Approximate Greedy
Randomized Priority-based List Scheduling R-PBLS Approximate Greedy
Random search Rand Approximate Random Search
Exhaustive Exploration EX Exact Exhaustive Search
Smart-Exhaustive Exploration Smart-EX Exact Exhaustive Search

Genetic Algorithm (GA) The scheduling problem can be solved by general iterative
methods, like genetic algorithms [23] that starts from a random initial population and then
mutate and combine individuals in an iterative fashion. For implementing a scheduling algo-
rithm relying on a genetic approach, we used the Opt4J Java-based modular framework [92].
In order to obtain only acceptable solutions at each step, we created a new genotype to en-
code the solutions. The scheduling genotype is a class containing a vector corresponding to
the scheduling vector itself, indexed by the task identifier and containing in each entry the

4.3 Scheduling and intra-cluster topology definition 61

starting clock cycle of the corresponding task. The phenotype is simply the scheduling vec-
tor contained in the corresponding genotype. The evaluator of the phenotype is described in
the subsequent paragraph and is the same for all other algorithms. The fitness function re-
turns the minimum area required by a communication architecture exhibiting enough paral-
lelism to run the identified scheduling. Due to the custom implementation of a personalized
genotype, phenotype, and evaluator, a custom optimizator operator was also implemented
to drive the generation of the new population. The initial population is generated starting
with the ASAP solution by moving a random number of tasks by a random quantity not
larger than the mobility. This guarantees a good diversity at the chromosome level with a
relatively small population size. During the movements, all data and structural dependency
relationships must be preserved. When generating the new population, we do not perform
crossover but we only rely on mutation. Specifically, we substitute the worst L elements
with L new individuals mutating the remaining ones with probability p. Mutation takes
place in the same way as random generation but starting from the parent’s schedule and not
from the ASAP schedule. After the last iteration, the best individual is chosen. L, p, the
initial population size, and the number of iterations are configurable.

Priority-based List Scheduling This implementation of the priority-based list approach
(PBLS) tries, at each step, to make the best move as possible within a list of admitted moves,
i.e. the moves satisfying the data-dependency constraints. The list is ordered according to
the area cost incurred by the topologies associated with any potential move. The proce-
dure to derive a topology, given a schedule, is explained in Section 4.3.0.3. Its behavior is
radically different than the genetic approach. It does not admit uphill moves (causing a tem-
porary cost increase), hence the probability of sticking at a local minimum solution tends to
be high. The starting point must be a valid solution. At each step, the algorithm evaluates
all neighboring solutions by analyzing what happens by moving each task by the minimum
quantity to eliminate an overlap. The list is comprised of all neighboring solutions, then
sorted according to the benefits achieved by taking that move. Only the best solution is
chosen. When, at a certain step, there are no moves improving the solution, the algorithm
takes randomly one of the possible moves leading to an equivalent cost solution and goes
on. The number of consecutive random moves is bounded by a value configurable by the
user. This value must be accurately tuned, keeping in mind that the solution space may be
very smooth and have several equivalent neighboring solutions. When this condition per-
sists, the identified solution is likely to be a local minimum. The search process exits when
the maximum number of iterations is reached or when there are only uphill moves available.
The algorithm does not perform well, in general, when the design space is irregular. Since

62 Joint Communication Scheduling and Interconnect Synthesis

it does not admit uphill moves, this approach is likely to yield the optimal solution only if
we can take an initial scheduling that is already quite close to the optimum, otherwise it gets
stuck at a local minimum (a point not having better neighboring solutions).

Randomized Priority-based List Scheduling This is, essentially an optimized version of
the previous algorithm that tries to avoid getting stuck at a local minimum. This algorithm
tries to explore a certain number of regions of attraction according to how many iterations
are performed. The algorithm is very similar to its conventional counterpart, but when it
arrives to a local minimum (a point not having better neighboring solutions) it records the
solution and generates another random starting point in the hope of falling in a different
region of attraction. The procedure exits as soon as a maximum number of iterations (or
a maximum number of local minima) is found. Figure 4.4 shows the behaviour of the
algorithm when finding local minima. The initial solution is represented by point 0. Then,
the algorithm goes through the solution space until it finds the local optimum represented
by point 2. Unlike the non-randomized version, it does not get stuck at this point. As an
example, it may jump to point 3 with a random movement.

Fig. 4.4 Behaviour of the randomized list scheduling algorithm

Random search, Exhaustive exploration, and Smart-Exhaustive Exploration In order
to extend the comparisons, some general problem-solving techniques were implemented: a
random search and two different exhaustive search approaches.

The Smart-Exhaustive exploration is an optimized version of the standard exhaustive
approach. The optimization consists in relying on an adaptive granularity when moving
tasks. Specifically, the quantity by which a task must be moved is automatically computed
in order to eliminate at least an overlapping in the current schedule configuration. Obviously,
whenever a task is moved, all tasks dependent on it must be moved as well to preserve
dependency and structural constraints. Albeit this optimization largely reduces complexity,
exhaustive approaches are still too complex and can only be used for small-sized problems.

4.3 Scheduling and intra-cluster topology definition 63

4.3.0.3 Evaluation of scheduling solutions

All the evaluated algorithms rely on a procedure to evaluate a communication task schedule.
In that respect, we need to find the lowest cost architecture that exhibits enough parallelism
to accommodate the identified scheduling. This process is responsible for the quality of
the local parallelism. Concerning the derivation of valid intra-cluster topologies, we rely
on compatibility graphs [99]. Compatibility graphs are usually adopted in binding prob-
lems, to figure out whether two scheduled operations can share a hardware resource. In this
methodology, compatibility graphs are used to determine the number of master and slave
ports needed by local interconnects.

Definition 4.3.1. Given a Communication Scheduling, two tasks ti and t j are compatible if
and only if they do not overlap in time.

Definition 4.3.2. Two masters (slaves), including bridge master (slave) ports, are compati-
ble if and only if all the tasks in which they are involved are compatible and they belong to
the same cluster.

Fig. 4.5 Deriving a topology from a given schedule. (a) Compatibility graphs for the sched-
ule in Figure 4.1. (b) An enhanced schedule, with less concurrency, for the same application.
(c) Its compatibility graphs. (d) The derived topology.

From the definitions given above, the construction of compatibility graphs for commu-
nication tasks and then for masters and slaves is straightforward. First, a communication
task compatibility graph CGt(V,Et) is built. The vertex set V = {vi : i = 0,1, ...,ntask − 1}
is in one-to-one correspondence with the set of communication tasks, while the edge set
Et = {(vi,v j) : i, j = 0,1, ...,ntask − 1} denotes compatibility between the above tasks: if

64 Joint Communication Scheduling and Interconnect Synthesis

two tasks do not overlap, then an arc between their two vertices is placed. Then, a mas-
ter CGm(Vm,Em) and a slave CGs(Vs,Es) compatibility graph are built. The vertex sets
Vm = {vi : i = 0,1, ...,nmaster − 1} and Vs = {vi : i = 0,1, ...,nslave − 1} are in one-to-one
correspondence with the set of masters and slaves, while the edge sets Emaster = {(vi,v j) :
i, j = 0,1, ...,nmaster − 1} and Eslave = {(vi,v j) : i, j = 0,1, ...,nslave − 1} denote compati-
bility between the masters and slaves. In order to build the master (slave) compatibility
graph, we start from a completely connected graph and we delete arcs progressively as fol-
lows. For each pair of non-compatible tasks, we delete the arc between the corresponding
master (slave) vertices. Starting from those compatibility graphs, for each connected com-
ponent we solve a clique-partitioning problem [102] that identifies the minimum number of
cliques1. Then, we assign a master (slave) port to each clique in its cluster. If for a cluster
a single clique is identified, both in the master and the slave compatibility graphs, then a
single shared bus is enough because all tasks are compatible, hence sequential. Otherwise
a crossbar is necessary. If there are no clique in a cluster, then a full crossbar will be used,
otherwise the number of concurrent channels will be dependent on the number of cliques.
Figure 4.5 shows the differences between compatibility graphs for two distinct schedules.
Figure 4.5a depicts the compatibility graphs for the schedule in Figure 4.1c. Masters M1

and M2 and slaves S1 and S2 are incompatible with each other. The derived topology, con-
sisting of a crossbar for the cluster C1 and a shared bus for C0, is shown in Figure 4.1d.
Notice that masters M2 and B01 are compatible and, hence, they share the same crossbar
port. Figure 4.5b shows a different schedule that removes the above incompatibility (Fig-
ure 4.5c). The solution of the clique-partitioning problem is highlighted by the circles. This
leads to a less parallel and less expensive architecture, shown in Figure 4.5d.

4.4 Experiments and Case Studies

4.4.1 Experimental Setup

For the experiments, we used a prototyping FPGA board, namely a ZedBoard by Avnet
Design Services for the Xilinx Zynq™-7000 [7]. The communication architecture synthesis
flow uses the Xilinx AXI components compliant with the AMBA® AXI version 4 specifica-
tion from ARM. The components we used for generating the system architecture include:

• Xilinx LogiCORE IP AXI Interconnect (v1.06.a)

• Custom AXI to AXI bridge
1In graph theory, a clique in an undirected graph is a subset of its vertices such that every two vertices in

the subset are connected by an edge [91].

4.4 Experiments and Case Studies 65

• Xilinx LogiCORE IP AXI to AXI Connector (v1.00.a)

The Xilinx AXI Interconnect may be configured as a bus or a crossbar. All data channels
have the same bus width of 32 bits. Albeit the number of total crossbars, buses, and bridges
provides an indication of the cost of the overall communication architecture, in order to
target physical devices, such as FPGAs, we need a measure related to the technology. Syn-
thesized FPGA designs are normally evaluated in terms of Look-Up Tables (LUTs) and
Flip-Flops (FFs). Interconnect components, in particular, are usually dominated by the
number of LUTs. Hence, to explore the design space efficiently, we need a technique to
estimate how many LUTs are taken by a topology (without resorting to an actual synthesis).
This measure clearly depends on the technology, because the internal architectures of FPGA
chips can vary considerably from one family to the other.

We built accurate analytical models for the evaluation of the area cost, the latency, and
the power consumption, obtained by interpolating extensive RTL synthesis results. The
area model of the AXI Interconnect was obtained by synthesizing the AXI Interconnect IP
core for a subset of all the possible configurations with 1 to 16 master ports and 1 to 16
slave ports with a step of 3, a data bus width of 32 bits, and the two available address bus
modes (shared bus or SAMD2) using the Xilinx PlanAhead Design Tool. From the data
collected, we extrapolated the following equations, valid for the Zynq-7000 family [7], used
to calculate the area information of any interconnects with 1 to 16 master ports or 1 to
16 slave ports (16 masters/slaves is the maximum value supported by AXI Interconnect IP
core).

Acrossbar n×m = 101n+60nm+42m+874 (4.2)

Abus n×m = 80n+18.75m+95.5 (4.3)

We considered burst-based transactions with only the start address issued and the payload
transferred in a single burst that can comprise multiple beats3 Concerning the bandwidth
estimation, we considered the bandwidth of a channel as the maximum rate at which a
master can receive/send (r/w) data from/to a slave. Due to the burst-based communication,
we considered that address arbitration does not impact that rate4. To compute the execution

2Shared Address buses and Multiple Data buses: in most systems, the address channel bandwidth require-
ment is significantly less than the data channel bandwidth requirement. Such systems can achieve a good
balance between system performance and interconnect complexity by using a shared address bus with multi-
ple data buses to enable parallel data transfer [8]

3A beat is an individual data transfer within an AXI burst [8].
4Arbitration latencies typically do not impact data throughput when transactions average at least three data

beats [3]

66 Joint Communication Scheduling and Interconnect Synthesis

delay di of each communication task ti , we used the following equation:

di = (
52+10hi

64
)∗ ci (4.4)

where hi is the hop count defined as the number of bridges crossed by a communication
task ti and ci is the computation cost defined in Section 4.1. Intra-cluster communication
tasks require 52 clock cycles every 64 bytes of data sent: 4 clock cycles for the initial access
latency due to the phases of arbitration and handshaking on the address channels, and 3
clock cycles for each transfer of a single beat on the data channel. In case of inter-cluster
communication 10 additional clock cycles are required for each traversed bridge. Obviously,
these numbers are dependent both on the architecture and the used IP cores. Concerning the
static power consumption, we considered the power from transistor leakage on all connected
voltage rails and the circuits required for the FPGA to operate normally. Obviously this
power is independent of the user design and, consequently, is affected only by voltage and
temperature. Unlike static power, dynamic power is the power of the user design, i.e. it
depends on the input data pattern and the design internal activity. We calculated this power
by means of simulation results based on the average switching rate of every signal in the
interconnect. Concerning the software framework, including the implementation of all the
above scheduling algorithms, the optimization tool is implemented in Java 7. For the genetic
algorithm we rely on the modular framework Opt4J [92].

4.4.2 Overview of the experiments

In order to validate the clustering choices and the cost of the corresponding communication
architecture, and to demonstrate the impact of scheduling on the resulting topology, we
tested the method for six synthetic benchmarks as well as a real-world application. The
benchmarks were obtained using the TGFF package [38], removing possible concurrent
tasks with the same master, while the application is a Canny edge detection algorithm [25]
whose TL and DG are taken from [128]. Their characteristics are summarized in Table 4.2.
The number of tasks in the experiments ranges from 13 to 88, while the number of masters
and slaves ranges, respectively, from 5 to 16 and from 5 to 20. We chose benchmarks with
a various number of masters and slaves to evaluate the effectiveness and the scalability of
the proposed method for larger systems. Table 4.2 also gives the number of clusters ncluster

found after the Communication Element Clustering phase. In addition, the table contains an
index representing the completeness of the DG. It summarizes how much the design space
exploration is constrained by data dependencies. The index has been derived as the ratio
between the number of arcs in the DG and (n2

task +ntask)/2, the maximum possible number

4.4 Experiments and Case Studies 67

of arcs with no cycles. The last column of the table contains the localization factor5. Notice
that the localization factor depends only on the mapping of communication elements within
local domains and hence is schedule-independent.

Table 4.2 Benchmarks Characteristics

ntask nmaster nslave ncluster
DG Localization

completeness factor
App-I 36 9 6 3 0.0570 0.9460

Bench-I 13 5 5 2 0.2200 0.9697
Bench-II 25 7 8 3 0.1267 0.9178
Bench-III 31 8 10 4 0.1275 0.9267
Bench-IV 43 11 14 5 0.0731 0.8261
Bench-V 62 12 16 6 0.1100 0.7087
Bench-VI 88 16 20 8 0.1350 0.7935

We first carried out a set of experiments to evaluate the benefits of using the exploration
techniques presented in this chapter and to analyze the area/latency trade-off. Area/latency
trade-off points can be derived as the solutions to different constrained scheduling problems.
The methodology was applied to each benchmark and application with different area con-
straints. The results obtained on Bench-III are discussed in Subsection 4.4.3. Here we will
also give some general remarks.

In a second set of experiments, a stringent area constraint, ranging between 30% and
70% of the area of a full crossbar implementation, was fixed. Then, we compared this ap-
proach to a previously adopted method [30], used under the same area constraints, as well
as to a Full Crossbar, a Hierarchical Bus, a single Shared Bus and a Network-on-Chip. Fur-
thermore, in order to appreciate the overall impact of the scheduling algorithm on the whole
methodology, we also analyzed and compared the different scheduling algorithms and the
resulting solutions. In addition, we give some general remarks about power consumption. Fi-
nally, we focused on the area saving by applying the proposed methodology and the method
in [30] under different area constraints able to obtain the same latency. Notice that [30]
does not perform the scheduling step but only relies on aggregated parameters (i.e. the total
amount of traffic exchanged between master/slave pairs) to automate the interconnection
design. These results are presented in Subsection 4.4.4.

4.4.3 Exploring area/latency trade-offs

As shown by Table 4.2, the number of clusters generated depends on the complexity of the
application as well as on the area constraint. For the most complex benchmark (Bench-VI),
8 clusters are derived by this procedure, while only two are required for the most simple

5The localization factor is a metric introduced in [115], expressing the ratio between the local traffic and
the total traffic

68 Joint Communication Scheduling and Interconnect Synthesis

benchmark (Bench-I). Figure 4.6 shows an example of clustering algorithm applied to

Fig. 4.6 An example of slave clustering. Slave nodes are on the x-axis, while the Euclidean
Distance is on the y-axis.

Bench-III (of medium complexity) where, due to the imposed area constraints, the max-
imum possible value of inter-cluster Euclidean distance is 0.75, giving an outcome of 4
clusters. This result is obtained with an area constraint of 4000 LUTs. Above this value, the
number of clusters starts decreasing. Furthermore, Figure 4.7 shows the schedules and the
corresponding topologies obtained from the same benchmark with area constraints of 2700
LUTs and 4000 LUTs using the randomized priority-based list scheduling.

Communication tasks involving the same bridges or slaves, or exhibiting dependency
relationships, never overlap. Concerning unrelated tasks, if they do not overlap, their com-
munication interactions are serialized, so that they can share the same resources and a single
communication link can be synthesized. On the other hand, when two tasks do overlap, mul-
tiple resources must be synthesized. Four clusters are connected by means of bridges that
allow the traffic to be exchanged according to the requirements expressed by the Task List.
The location of the bridges depends on the solution of the optimum branching problem that
tries to place the clusters that exchange more data as near as possible to each other (deter-
mining less hops to go through). Notice that there are two parallel communication paths
between masters inside cluster C1 and slaves inside cluster C0: the first goes through bridge
B10, while the second goes through the multi-hop path consisting of bridges B13 and B30.
The difference between the two architectures lies in the intra-cluster architectures. With
4000 LUTs we have a more parallel intra-cluster architecture achieving a gain of roughly
32% in execution time (around 11.75 Mega Clock-cycles against 8.10) due to the presence
of the crossbar in cluster C1. Instead, with an area constraint of 2700 LUT, all tasks involv-
ing M2, M3 and M4 as well as S2, S3, S4 are executed in a linear sequence, leading to a single
bus executing all communication tasks in cluster C1. It is important to highlight that, in this

4.4 Experiments and Case Studies 69

Fig. 4.7 Communication architecture descriptions and their schedule found for Bench-III
with the Randomized Priority-based List Scheduling and two different Area constraints. (a)
The on-chip communication architecture (OCA) description obtained with an area constraint
of 4000 LUTs. (b) The OCA obtained with an area constraint of 2700 LUTs. (c) The
Communication Scheduling (CS) obtained with an area constraint of 4000 LUTs. (d) The
CS obtained with an area constraint of 2700 LUTs.

case, the two area constraints lead to a difference only on the intra-cluster parallelism, while
the global and the inter-cluster parallelism does not change. For Bench-III we achieved a
localization factor of approximately 0.92. It indicates a highly localized traffic and hence
improved opportunities for global parallelism, resulting in a lower overall execution latency.
Localization factors for each benchmark and application are shown in the last column of
Table 4.2.

4.4.4 Comparisons with existing methods for various scheduling algo-
rithms

To illustrate the benefits of this approach, a comparison with a previously adopted method [30]
is presented. Figure 4.8 summarizes the results obtained by applying the two methodolo-
gies to all the case-studies under a fixed area constraint. We compared them also with a
full crossbar, a hierarchical bus, a shared bus, and a NoC implementation. Concerning the

70 Joint Communication Scheduling and Interconnect Synthesis

hierarchical bus, we implemented each local domain found after the clustering step with a
single shared bus and we keep the inter-cluster topology unchanged. On the other hand, a
NoC implementation is more customizable than a bus-based interconnect. We considered
a basic NoC implementation with a 2-D mesh topology, an oblivious minimum-path rout-
ing, and a wormhole flow control. The network channel width and flit size was set to 8
bits. Each packet in the network contains 64 body flits and 1 header flit which carries the
address information. The FIFO buffers at the output ports of the router have a depth of 32
flits. The router takes 4 cycles to process the header flit [82]. After the virtual channel is
acquired by the header flit, the remaining flits follow the header flit in a pipelined fashion.
Furthermore, the network interface overhead due to packetization/depacketization was set
to 2 cycles [19]. Then, the mapping of cores to their cross-points was done at a high level
of abstraction (based on the traffic between cores) exploiting the traffic locality such as to
reduce the number of router in a path. Refers to [104] for more details. Concerning the pro-
posed approach, all the scheduling algorithms discussed in Subsection 4.3.0.2 were used,
except the too slow exhaustive searches.

For each experiment, the full crossbar implementation is the unconstrained solution and,
hence, it exhibits the minimum possible latency at the price of a highly oversized area, while
the other points are Pareto-optimal points. For Bench-VII we were not able to synthesize a
single Full Crossbar and a single Shared Bus due to the size of the benchmark6. Obviously,
this approach shows different behaviors according to the scheduling algorithm used. The
R-PBLS algorithm is able to obtain a latency that on average is only 11% larger compared
to the latency obtained with a full crossbar implementation, while, due to the imposed con-
straints, the area ranges between 30% and 70% of the area of a full crossbar implementation.
The communication architectures found with the PBLS and GA show a similar trend with
an average latency overhead of respectively 16% and 15% compared with the full-crossbar
implementation. This happens mainly because of the adopted clustering technique. For the
small fraction of inter-cluster communication, the small degradations due to the extra clock
cycles taken by bridge crossing (10 cycles every 64 bytes for each bridge) are not apprecia-
ble in the figure (scheduling involves millions of clock cycles). This means that our iterative
method is capable of achieving roughly the same latency as a full crossbar despite stricter
area constraints. Using the approach in [30] we have a performance degradation instead:
our approach with R-PBLS scheduling found solutions that on the average lead to a latency
reduction of about 33%. In fact, ignoring dependency relationships may result in a crossbar
even when it is not strictly necessary as well as buses in cases where some communication

6The AXI IP Core can be configured to comprise maximum 16 Slave Interfaces (SI) and 16 Master Inter-
faces (MI) [3].

4.4 Experiments and Case Studies 71

tasks can be parallelized. In other words, it may cause the serialization of tasks on the criti-
cal path, increasing the execution time. The solution points corresponding to Shared Buses,
as expected, are associated with the minimum area and the largest latency (on the average
6.5× less area than a Full Crossbar with a latency overhead of about 2.6×) followed by the
Hierarchical buses (on the average 4.4× less area than a Full Crossbar with a latency over-
head of about 36%). The NoC implementation exhibits a different behavior. In order to keep
the router cost down, the channel width was set to only 8 bits. This leads to a performance
degradation. In addition we considered a 4 cycle overhead to process the header flit and a 2
cycle overhead to handle the Packetization/Depacketization. As a consequence, the NoC so-
lutions show on the average a latency that is about 14% bigger than our approach solutions.
Furthermore, there is a considerable gap between the areas of the two approaches: the NoC
implementations occupy about twice the area of our approach implementations for a quarter
of the channel width (32 bits against 8 bits). This is a well-known drawback of soft overlay
NoCs compared to the hard implementations [56]. As an example, a 4× 4 Hermes [101]
NoC implementation with 1, 2 and 4 virtual channels occupies respectively 11511, 22036
and 50962 LUTs on a Xilinx XC2V6000 FPGA device [97].

Fig. 4.8 Latency comparison. The proposed approach and [30] are used under the same area
constraints

To better explain these results, we provide Table 4.3. Element (i, j) in the table repre-
sents the average percentage of time in which the communication links are used by applica-
tion i using the approach j. A low value means wasted area due to low channel usage. A
value equal to 1 means a communication architecture always working as in a single shared
bus. Notice that the approach in [30] (as well as the use of a single crossbar architecture)
may lead to an underutilized network because it does not consider dependency relationships,
which of course are very likely to be found in any real application.

In addition, Table 4.4 shows the runtime of the scheduling algorithms to reach the above
solutions. Obviously, the results show a dependence on the application size in terms of
number of tasks. The Smart-Ex is computationally infeasible while the PBLS and hence the
R-PBLS scale poorly due to their inherent complexity. On the other hand, the GA scales
more smoothly as the number of tasks increases.

72 Joint Communication Scheduling and Interconnect Synthesis

Table 4.3 Utilization of communication channels

Full Hier. Shared [Cilardo et al. Proposed Proposed Proposed Proposed
Crossbar Bus Bus 2013] (R-PBLS) (PBLS) (GA) (Rand)

App-I 0.2072 0.3896 1 0.2737 0.3410 0.3410 0.3361 0.3361
Bench-I 0.5500 0.8657 1 0.5771 0.7877 0.7747 0.7716 0.7157
Bench-II 0.4383 0.7282 1 0.4484 0.5546 0.5240 0.5320 0.4754
Bench-III 0.5053 0.6452 1 0.4760 0.5496 0.4925 0.5119 0.4214
Bench-IV 0.3913 0.4500 1 0.3214 0.4872 0.4699 0.4587 0.3688
Bench-V 0.4013 0.4925 1 0.3075 0.4782 0.4399 0.4885 0.3470
Bench-VI 0.4501 0.5952 1 0.4120 0.5218 0.5062 0.5061 0.4440

Table 4.4 The runtime (ms) of the proposed scheduling algorithms

Proposed Proposed Proposed Proposed Proposed
(R-PBLS) (PBLS) (GA) (Rand) (Smart-Ex)

App-I 8550 250 2190 520
Bench-I 1500 80 1610 310 523200
Bench-II 8770 240 2020 450
Bench-III 22750 300 2110 680
Bench-IV 87149 720 2430 1030
Bench-V 300401 2000 3450 2060
Bench-VI 685030 2550 3760 2300

We also evaluated the overall energy consumption for each case-study, taking into ac-
count the power consumption (based on the Xilinx XPower power estimation tool) and the
overall execution time incurred by the communication tasks. Static energy consumption,
as expected, is directly proportional to the schedule latency since the results provided by
XPower in terms of static power refer to the whole chip and, hence, are design-indipendent.
The dynamic energy consumption, on the other hand, does depend on the specific structure
of the implemented design. Figure 4.9 shows the main results in terms of dynamic energy,
referring to a full crossbar, a hierarchical bus and a single bus implementations as well as a
previous literature solution [30] and the presented approach. As regards our approach, there
are no significant differences between the architectures found with different scheduling al-
gorithms. The proposed method generates interconnect architectures consuming on average
28% less dynamic energy than full crossbar implementations and 36% less dynamic energy
than [30]. Compared with a hierarchical bus and a single shared bus there is an higher en-
ergy consumption of respectively 15% and 77%. To understand these results, recall that
dynamic power can be modelled as Pdynamic = VDD

2 · ∑
n∈nets

(Cn × fn) where VDD is the sup-

ply voltage, while Cn and fn are, respectively, the capacitance and the average toggle rate
(switching activity) of a net n. The number of nets, in the case of crossbar solutions, grows
quadratically with the number of ports. As a consequence, a large crossbar tends to con-
sume more dynamic power per port than an interconnect made up of small crossbars. This
explains the advantage of both our approach and [30] over full crossbar implementations in
terms of energy consumption. The improvement over [30], on the other hand, is due to lower
latencies achieved by the communication scheduling step, as shown in Figure 4.8. In one

4.5 Summary 73

specific case (Bench-V) [30] is worse than the full crossbar implementation, whereas our
approach still performs better because of reduced-size components and improved latency.

Fig. 4.9 Dynamic energy consumption comparison.

Finally, we explored the design space by varying the area constraints in the two method-
ologies until two architectures yielding the same latency were found. As shown in Fig-
ure 4.10, our methodology obtains an average area reduction of 43% compared to [30]
under the same latency.

Fig. 4.10 Area comparison of interconnects yielding the the same latency

4.5 Summary

In this chapter, we presented an automated design methodology for the synthesis of complex
on-chip interconnects. This approach is based on a heterogeneous topology made of cross-
bars, buses, and bridges. The methodology can generate a synthesizable interconnection
network starting from the specification of the application requirements, including depen-
dency relationships. The approach is based on heuristic iterative optimization algorithms.
The algorithms aim at getting low-cost concurrent communication architectures by maxi-
mizing both intra- and inter-cluster communication parallelism as well as global parallelism,
respectively by concentrating traffic within different local domains and by creating parallel,
multi-hop inter-cluster communication paths. In particular, a greedy algorithm for cluster-
ing processing elements was introduced, capable of exploiting traffic spatial locality and
creating several parallel paths among clusters. The algorithm is used in conjunction with a
method for balancing the load across the bridges that connect the local domains. In addition,

74 Joint Communication Scheduling and Interconnect Synthesis

a novel approach to combined communication scheduling and interconnect generation is de-
fined. Several scheduling algorithms, required for the definition of intra-cluster topologies,
were analyzed and compared. Finally, a framework for the experimental evaluation of ar-
chitectural solutions in terms of area/latency trade-offs is introduced. Experimental results
show that this approach can synthesize designs made of dozens of cores exploiting different
level of parallelisms, exhibiting encouraging improvements over previous proposals in the
literature.

Chapter 5

Photonic Network-on-Chip Design

Moore’s Law has enabled a restless grow in transistor integration for decades, pushing the
semiconductor industry to a shift from the single-core era to a multicore paradigm. In-
deed, large-scale multicore –possibly, manycore– architectures are the only solution that
can stand the end of Dennard scaling and effectively face the power wall, today seriously
limiting further technology scaling. In a large-scale multicore scenario, an energy-efficient
on-chip communication fabric is the key ingredient ensuring performance scalability. While
traditional electronic interconnects are constrained by physical limitations in terms of power
dissipation, latency, and bandwidth [113], silicon Photonics [16] appears a promising path to
energy-efficient ultra-high bandwidth on-chip communication. Nanophotonic waveguides,
the photonic counterpart of a wire, can in fact achieve bandwidths in the order of terabits per
second by exploiting wavelength division multiplexing (WDM), while photonic signaling
consumes less power than electrical interconnects. In particular, Photonics ensures bit-rate
transparency and low loss in optical waveguides, meaning that the energy consumption nec-
essary to send a message optically is independent of the bitrate and the distance between
the two end-points. Turning these potential benefits into an energy-efficient communication
architecture is the main challenge faced by photonic networks on chip (NoCs) design.

5.1 Photonic technology

Figure 5.1 shows a high-level diagram of a basic photonic interconnect system. The lack
of photonic processing and memory elements combined with the impracticality of imple-
menting traditional store-and-forward NoCs without performing an electronic-optical (E-O)
and optical-electronic (O-E) conversion in each node, inherently require an electronic layer
driving the optical communication. The photonic layer is made up of four components: a
laser source, a waveguide, a modulator, and a photodetector. Basically, a laser generates

76 Photonic Network-on-Chip Design

To destination

network interface

Photonic layer

Electronic layer

From source

network interface

Ampli!er

Photo-

detector

Driver

Modulator
Multi-Wavelength

Laser Source
Waveguide

Fig. 5.1 A basic on-chip optical interconnect data path.

light at specific target wavelengths, which is then encoded with electronic data and transmit-
ted through the waveguide to the photodetector, that translates the incoming optical signal
into the electrical domain. Different photonic NoC configurations can be implemented as
extensions of this basic system. Below we briefly analyze the building blocks of photonic
architectures.

Laser source The laser source can be integrated as an on-chip device or, alternatively, it
can be located outside and coupled to the chip through optical fibers. On-chip laser sources
are affected by lower light emission efficiency, whereas bringing the light to the chip from
the outside may incur a considerable power loss. Traditionally, light at each required wave-
length is emitted by a different single-frequency laser matching a WDM channel. Recent
advances have enabled broadband lasers to generate multi-wavelength light.

Silicon waveguide Waveguides are the photonic counterpart of electronic wires. Unlike
wires, a single waveguide is able to carry multiple data by exploiting WDM. Optical signals
are affected by power attenuation as they propagate along the waveguide.

Microring resonator A microring resonator is a waveguide forming a closed loop and
having an own resonance frequency that depends on the material and the design choices.
Usually, it is placed near a waveguide. When an optical signal injected into the waveg-
uide match the wavelength of the resonance frequency, then it is coupled into the ring and
steered to the drop port. Otherwise, the signal propagates to the through port. Being able
to selectively add/drop a single wavelength to/from a multi-wavelength optical signal, mi-
croring resonators are used to implement filters, multiplexers, and demultiplexers. In addi-
tion, a microring can be powered on by injecting an electrical current into the p/n active
regions surrounding it or by changing its temperature. It is thus possible to dynamically pro-
vide switching or modulating facilities. Figure 5.2 shows two implementations of a 2× 2

5.1 Photonic technology 77

photonic switching element (PSE). In a PSE, microring resonators are added at waveguide
crossings to provide switching facilities.

MR

MR

MR

MR

Add Add

AddAdd

Input Input

InputInput

Through

Through Through

Through

Drop

Drop

Drop

Drop

(a) (b)

(c) (d)

Waveguide

Optical

signal

Crosstalk

Fig. 5.2 (a) Parallel PSE in OFF state. (b) Parallel PSE in ON state. (c) Crossing PSE in
OFF state. (d) Crossing PSE in ON state

Based on the basic 2× 2 PSEs, complex photonic switches can be implemented. The
inner architecture of photonic switches impact the performance and determines the feasi-
bility of a photonic NoC. A photonic switch should exhibit a non-blocking behaviour and
should be optimized to reduce both crosstalk and insertion loss being aware of the routing
protocol. In that respect its physical layout could be optimized to reduce the number of
waveguide crossings, bends, and the waveguide length. In addition it is possible to take
advantage of the routing strategy. For instance, dimension-order routing results in at most a
single turn between a source and a destination. Consequently, using straight default paths1

leads to cross just a single microring resonator in ON resonance. Finally, a further optimiza-
tion consists in prohibiting certain paths, such as the U turns or the turns from the Y to the
X dimension in case of XY routing. As a consequence, researchers have proposed several
switch architectures, shown in Figure 5.3.

Coupler Couplers enable the physical interfacing between off- and on-chip devices. An
optical fiber and a silicon waveguide are connected to each other by means of a coupler.
Off-chip laser sources are a representative example. Couplers can be classified in vertical
and lateral. Lateral couplers have the capability of multiwavelength coupling, while vertical
couplers have a reduced size and hence there are no restrictions in placing them.

1A default path is the path that the signal takes when all the rings are placed in a off resonance state.

78 Photonic Network-on-Chip Design

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR MR

MR

MR

MR

MR

MR

MR

MR

MRMR

MR MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MRMR

MR

MR

MR

MR

MR

MR MR

MR

(a) (c)

(e)

(b)

(d) (f)

MRMRMRMR

MRMR

MRMR

MRMR

MRMR

MR MR

MR MR

MR

MRMRMR

MR

MR

MR MRMR

Fig. 5.3 (a) The 4 × 4 blocking PSE with straight default paths [136]. (b) The 4 × 4
non-blocking PSE [Wang et al.]. (c) The 4× 4 non-blocking PSE optimized for insertion
loss [27]. (d) The 4× 4 non-blocking PSE with straight default paths [27]. (e) The non-
blocking crossbar PSE. (f) The 5×5 blocking PSE optimized for insertion loss [64].

Photodetector A photodetector is necessary in order to ensure the proper conversion be-
tween the optical and electronic domains. It absorbs a single wavelength-light and generates
an electronic data signal.

5.2 Wavelength selectivity

On-chip optical communication can exploit an extremely large spectral bandwidth of hun-
dreds of nanometers. Spectrally multiplexing different optical signals into a single waveg-
uide results in parallel wavelength channels: optical data streams are allowed to coexist on
the same waveguide allocated at mutually exclusive frequencies to avoid interference. This
technique is referred as Wavelength-Division Multiplexing (WDM). The resulting wave-
length selectivity can be used with a twofold purpose: bandwidth aggregation is achieved
by concurrently routing all the wavelength channels from a source node to a destination
node, while routing facilities can be obtained by statically or dynamically assigning a wave-
length to a node or to a couple of nodes. This opens up the first design dilemma:

exploit wavelength selectivity for bandwidth

5.2 Wavelength selectivity 79

aggregation or as a routing facility?

Current approaches Figure 5.4 shows two basic photonic network configurations. In Fig-
ure 5.4.a, the wavelength selectivity is used with a bandwidth aggregation purpose: nodes
are allowed to send and receive optical data streams using all the wavelength channels avail-
able. Concerning the implementation requirements, for each node, Nλ photonic microring
resonators are required for both modulating and filtering purposes, where Nλ is the total
number of wavelengths available. In addition, we need to take into account the microring
resonators required for providing the switching facilities. In principle, a switch operating
on a WDM signal requires a single ring resonator for each wavelength channel. However,
microrings may support multiwavelength routing when designed with a small free spectral
range2 (FSR). However, the minimum achievable FSR is bounded by physical constraints
such as the maximum ring diameter. Silicon broadband comb switches were demonstrated
that can simultaneously switch up to 20 wavelength channels [20].

On the contrary, Figure 5.4.b shows a possible implementation of a wavelength routed
network. A different wavelength is assigned to each node. A source node is able to send
data on all the other wavelength channels: when it needs to send data to a destination, it
uses the destination wavelength channel. Here a network with Nnodes nodes requires, for
each node, Nnodes −1 microring resonators as modulators and a single microring as filter.

Key insights Exploiting wavelength selectivity for bandwidth aggregation purposes pro-
vides the easiest solution for reaching ultra-high bandwidth levels, but side aspects like
physical constraints and routing choices, discussed later in this chapter, must be carefully
taken into account. On the contrary, wavelength routing can enable extremely short laten-
cies since, with no conflicts, the propagation delay is simply the time of flight at the speed
of light. The downside is that scaling the network size is limited by the maximum number
of wavelengths available: at least N wavelengths are required for a network with N nodes.
Choosing between these two possibilities is a non-trivial task. In principle, wavelength-
routed networks suit the needs of QoS-sensitive applications due to their low latency and
good predictability. Differently, networks with a high bandwidth aggregation are more suit-
able for data-intensive applications requiring large memory capacities. Usually, wavelength
selectivity is used only for one of the two purposes, resulting in a lack of spectral parallelism
or routing. However, in case of small-size networks, one can also exploit a subset of the to-

2The free spectral range of a ring resonator is the spacing between different wavelengths that resonate with
the ring and is inversely proportional to the circumference of the ring.

80 Photonic Network-on-Chip Design

To NI
0

(b)

(a)

From NI
0

To NI
1

From NI
1

To NI
0

From NI
0

To NI
1

From NI
1

To NI
2

From NI
2

Fig. 5.4 Two basic architectures exploiting wavelength selectivity to implement: a) Band-
width aggregation b) Routing facilities. The arrow is a waveguide, while the triangles are
respectively drivers and receivers. The circles are microring resonators and each color iden-
tifies a different resonance frequency.

tal number of wavelengths for bandwidth aggregation, while the remaining wavelengths
provide routing diversity.

5.3 Dealing with physical constraints

In a typical electronic design flow, the architectural level can be mostly addressed indepen-
dently of the physical level relying on well-established abstraction techniques which isolate
the different layers. On the other hand, Photonics introduces new electro-magnetic effects,
having no electronic equivalent, that potentially impact the optical NoC architecture to a
large extent. This leads to the following design dilemma:

how to abstract away physical constraints
in architecture-level design?

Below we analyze the impact of two major electro-magnetic effects, power loss and
crosstalk, involved in the photonic architecture design.

Power loss

Photonic signals are subject to power attenuation: in addition to the propagation loss due
to the waveguide, every other device inserted along the path introduces an additional loss
usually referred to as insertion loss.

5.3 Dealing with physical constraints 81

• Propagation loss: Propagation loss depends on several aspects including waveguide
dimensions and material properties. Crystalline silicon waveguides with a thickness
and a width of respectively 200-250 and 450-500 nm generate at least a propagation
loss of 1-2 dB/cm [149, 157]. More exotic materials could be employed to reduce this
loss up to an order of magnitude [40]. However these waveguides are not suitable for
photonic NoC architectures due to the wider dimension and higher bending loss [110].

• Bend loss: A bend of the waveguide introduces an insertion loss proportional to the
bending radius that has been measured to be 0.005 dB/90o [157]. Generally, the
insertion loss caused by waveguide bends is negligible compared to the other sources
of loss.

• Crossing loss: A crossing happens whenever two waveguides intersect each others
leading to an insertion loss between 0.05 dB and 0.15 dB [21]. Waveguide crossings
are necessary due to the planar nature of the topologies achievable on silicon.

• Drop and through losses: A microring resonator produces a power loss that depends
on its state: usually in the ON state the insertion loss (drop loss) ranges between 0.5
dB and 1.5 dB while in the OFF state (through loss) it is negligible [80]. Recently,
a tradeoff between the drop and through losses was demonstrated [110]: the micror-
ing resonator can be re-engineered in order to reduce the drop loss and increase the
through loss.

• Coupler losses: The loss due to the coupler is the attenuation that an optical signal is
subject to when it is injected into the chip. Both vertical and lateral couplers generate
at least a loss of 1-1.5 dB [39].

Power loss is one of the major limitations when designing a photonic NoC. First of all, the
power of an optical signal must be above a certain threshold when arriving at the photode-
tectors in order to ensure a proper detection. As a consequence, the power injected into
the chip must be higher than the photodetector sensitivity plus the worst case power loss.
However, the total power cannot exceed a certain threshold due to the nonlinearities of the
silicon material. In case of multiwavelength signals, this problem is exacerbated since these
considerations must apply to each individual wavelength channel. In case of equal power
for each wavelength channel, the above constraints yield the following inequality [28]:

PdB
Budget ≥ ILdB

wc +10log10 Nλ (5.1)

where PdB
Budget is the optical power budget, representing the difference between the upper

limit in transmission power and the photodetector sensitivity, ILwc is the worst case insertion

82 Photonic Network-on-Chip Design

loss, and Nλ is the total number of wavelength channels. Since the power loss is highly
dependent on the routing technique and the network topology, the above inequality points
out the deep interplay between an electro-magnetic effect and the system-level network
design.

Crosstalk

Crosstalk is caused by an unfavorable coupling between optical signals and can be generally
classified in inter-message and intra-message crosstalk.

• In multihop photonic NoCs, two different optical signals can induce crosstalk noise to
each other when reaching simultaneously a waveguide crossing or a photonic switch.
In case of perfect coupling between two waveguides, optical signals propagate en-
tirely with no reflection and with no crosstalk. However, ideal crossing is unfeasible
and hence a small amount of optical power switches into the coupled waveguide. Fig-
ure 5.2 shows how crosstalk propagates for both the parallel and the crossing PSE in
ON or OFF resonance. We refer to this crosstalk as inter-message crosstalk.

• In WDM photonic NoCs, different optical signals are allowed to concurrently travel
on the same waveguide. To handle the wavelength selectivity appropriately, filtering
actions are required. In case of perfect filtering, a single wavelength channel is totally
separated from the entire multi-wavelength signal. However, ideal filtering is unfeasi-
ble and hence a small amount of optical power is added to other wavelength channels.
We refer to this crosstalk as intra-message crosstalk.

Current approaches To contain power loss, many approaches presented in the literature
introduce insertion-loss aware design techniques. Previous works proposed switches (in a
multi-hop communication the whole power loss depends on the power loss of each single
switch) and topologies (how the nodes are arranged impacts the lengths and insertion loss
of the paths) exhibiting reduced insertion loss [29] as well as techniques optimizing the
physical layouts [45] (the physical layout is responsible for the occurrence of waveguide
crossings). Straight waveguides are preferred over bends and waveguide crossings are im-
plemented only if essential. In addition, the worst case number of waveguide crossings is
commonly minimized in order to reduce both power loss and inter-message crosstalk at the
network level. Notice that, although some approaches aiming to reduce the crosstalk were
proposed, only a few deal with architecture-level optimizations.

5.4 Routing domains 83

Key insights Unlike traditional electronic design, silicon photonic design is highly af-
fected by physical constraints that must be exposed at the system level. Consequently, a
holistic perspective that takes into account each aspects of the design is mandatory for pho-
tonic networks.

While a large body of works aim to reduce the power loss, most of them do not perform
a crosstalk noise analysis. Crosstalk noise should be the main target when designing a
photonic NoC architecture, since a high crosstalk noise may easily result in an inoperable
architecture. A good crosstalk analysis points out the critical behavior of crosstalk noise
when scaling the network size: for instance, in both a 8×8 mesh-based ONoC and a 12×12
torus-based ONoC the noise power is bigger than the signal power [109, 158]. Waveguide
crossings and microring resonators are the main source of both power loss and inter-message
crosstalk. A common mistake consists in believing that reducing the worst case number of
waveguide crossings and microring resonators results in less power loss and crosstalk. This
is not always the case since the power loss depends only on the path where the optical
signal propagates, while the inter-message crosstalk depends on the other signals and the
paths they take at a given time. As a result, reducing the worst case power loss is not the
right design strategy if it simultaneously increases the inter-message crosstalk. In addition,
a tradeoff arises when considering both power loss and crosstalk: lower power loss values
lead to higher wavelength parallelism, which results in higher intra-message crosstalk. As
a consequence, reducing the power loss for exploiting more spectral parallelism could be
useless if simultaneously the crosstalk noise increases.

5.4 Routing domains

The routing technique should be carefully designed as it impacts all the electronic tradi-
tional metrics, i.e. latency (crossing a hop involves a latency overhead), throughput (balanc-
ing the traffic across the network reduces the congestion), power (crossing a hop involves
an energy overhead) as well as on the photonic electro-magnetic metrics, i.e. power loss
(crossing a hop involves a power attenuation) and crosstalk (different paths are subject to
different crosstalk noises). Unlike traditional electronics that just rely on the spatial diver-
sity, photonics can exploit both the space and wavelength domains to achieve concurrency
in communication, opening up the following design dilemma:

routing in the space domain
or the wavelength domain?

84 Photonic Network-on-Chip Design

(e)

(d)

(a)

To NI
0

From NI
0

To NI
1

From NI
1

To NI
2

From NI
2

To NI
0

From NI
0

To NI
1

From NI
1

To NI
2

From NI
2

To NI
0

From NI
0

To NI
1

From NI
1

To NI
2

From NI
2

(b)

To NI
0

From NI
0

To NI
1

From NI
1

To NI
2

From NI
2

(c)

4x4 photonic

switch

electronic

switch

Fig. 5.5 Architectures supporting spatial routing: a) MWSR b) SWMR c) hybrid electronic-
photonic circuit-switched network. Architectures supporting wavelength routing: d) source-
routed bus e) destination-routed bus

Current approaches Routing in the space domain is achieved by means of different
waveguides. Based on this spatial diversity, two possible architectures can be used: multi-
write single-read (MWSR) (Figure 5.5.a) and dual single-write multi-read (SWMR) buses
(Figure 5.5.b) or circuit-switched networks (Figure 5.5.c). Circuit-switching requires com-
bining electronic and photonic technologies to build a hybrid network made up of two sub-
networks: an electronic packet-switched network for handling control messages and a pho-
tonic circuit-switched network for data messages [136]. Topologically, circuit-switched op-
tical NoCs are often based on standard direct topologies, such as torus schemes, because of
their inherent simplicity and regularity [100, 135, 136, 161]. The implementation require-
ments are highly dependent from the topology and the inner architecture of the photonic
switches used. Differently, in a MWSR bus, a waveguide is assigned to each destination
node [145]. Waveguides usually are wrapped around in a ring-based fashion. A source node
is able to send data on all the waveguides, while a destination can read data only on its own
waveguide: when a source needs to send data to a destination, it uses the destination waveg-
uide. In the same way, in a SWMR bus (Fig. 5.5b), a waveguide is assigned to each source
node: a source can send data only on its own waveguide while all the destination nodes can

5.4 Routing domains 85

read data on all the waveguides. In order to implement a network with Nnodes nodes and Nλ
wavelengths, Nnodes waveguides and Nnodes ×Nλ microring resonators are required.

On the contrary, routing in the wavelength domain is achieved by means of different
wavelengths: in a network with Nnodes nodes, at least Nnodes wavelengths are required. Fig-
ure 5.5.d and Figure 5.5.e show two implementations of a wavelength routed network: the
source-routed bus and its dual called destination-routed bus. In the source-routed bus, a
different wavelength is assigned to each node. A source node is able to send data on all the
other wavelength channels: when it needs to send data to a destination, it uses the destination
wavelength channel. The destination-routed bus is the dual architecture. As in the source-
routed bus, a different wavelength is assigned to each node but when a source needs to send
data to a destination it uses its own wavelength channel. A source-routed bus with Nnodes

nodes requires, for each node, Nnodes − 1 microring resonators as modulators and a single
microring as filter, while the destination-routed bus requires a single microring resonator
as modulator and Nnodes −1 microrings as filters. In addition, by combining source-routed
and destination-routed buses, one can assign a dedicated wavelength to each couple source-
destination. This leads to wavelength crossbar architectures. Obviously, Nnodes ×Nnodes −1
wavelengths and Nnodes−1 microring resonators are required as both modulators and filters.

Key insights Optical circuit switching has many benefits. Once an optical path is es-
tablished, the communication latency and the power consumption are independent of the
distance between the two end points. This method requires a path-setup mechanism to allo-
cate on-demand the necessary resources, i.e. the ring resonators along the path, to establish
the end-to-end optical path. Obviously, the main drawback is the path-setup overhead that
could lead to high latencies and power consumptions in case of small size messages. This
issue could be partially solved via a selective transmission policy that sends electronically
messages smaller than a certain threshold [46].

Concerning the wavelength domain, MWSR and SWMR buses can ideally achieve low
latency, high bandwidth, and small power consumption. However, scaling the network size
is limited by the number of waveguides (one for each node) and microring resonators. In
addition the MWSR bus requires an arbitration step when more nodes try to communicate
with the same destination, since the destination waveguide is shared between all the source
nodes. In the SWMR bus the situation is worse because every destination must be arbitrated
in order to proper access to the right source bus for every communication transaction.

Likewise, the two wavelength routed architectures introduce a design tradeoff: the source-
routed bus takes advantage of a simplified arbitration mechanism required to avoid multiple
sources to concurrently send data to a common destination, while the destination-routed bus

86 Photonic Network-on-Chip Design

requires an arbitration step to define the destination node of each communication interaction.
At the same time, the destination-routed bus can be implemented with microring resonators
having the ability to be in two states, while the microring resonators used for implementing
the filters in a source-routed bus require three states: disabled, ’0’ and ’1’ bit transmissions.
Consequently, the network complexity shifts from the arbitration circuit to the filter archi-
tecture. In addition, the network size is highly constrained by the maximum number of
wavelength available.

Choosing between the two routing domains is a critical task. As discussed earlier, us-
ing a routing on the wavelength domain prevents exploiting the wavelengths selectivity for
bandwidth aggregation purpose but with no conflicts the propagation delay is simply the
time of flight at the speed of light. At the same time, the implementation requirements
are usually lower compared to the alternative architectures, although scaling the network
size is limited by the maximum number of wavelengths available. Small-size networks
where small messages with random communication patterns are exchanged could take ad-
vantage of wavelength-routed architectures. Differently, routing in the space domain allows
higher bandwidth aggregation. MWSR and SWMR buses have lower latency compared
to wavelength-routed networks since the higher bandwidth results in less serialization la-
tency. However, these architectures exhibit worst scalability issues and higher implementa-
tion costs. Circuit-switched networks are ideally more scalable, but we need to contain the
crosstalk and insertion loss. The high latency and power consumption due to the path-setup
overhead may be neglected in case of large data streams with static communication patterns.

5.5 A cross-cutting view of the different design challenges

As pointed in the above sections, the photonic NoC design requires to face three main "de-
sign dilemmas". First, the wavelength selectivity provided by WDM can be exploit either for
bandwidth aggregation or as a routing facility, opening up a non-trivial design trade-off for
the definition of the interconnect architecture. Second, physical constraints become a first-
class issue for the design of photonic interconnects. Unlike the well-isolated abstraction
levels available for traditional electronic design, which clearly separate the physical layer
from the logic domain, silicon Photonics depends to a large extent on physical constraints
that deeply impact the architectural level. Third, spectral parallelism –a distinctive property
of Photonics– introduces a new domain in the routing design space inherently affecting the
definition of the architecture. Getting a cross-cutting understanding of these trade-offs is
essential for harnessing the full potential of on-chip Photonics.

5.6 Summary 87

Photonics allows wavelength selectivity that could be used for either bandwidth aggrega-
tion or routing facilities, while exploiting an increased spectral parallelism results in higher
intra-message crosstalk, regardless of how wavelength selectivity is used. Bandwidth ag-
gregation prevents wavelength routing, thereby forcing the space domain choice. At the
same time, both intra-message crosstalk and power loss limit the spectral parallelism, since
the maximum number of wavelength channels is bound by the worst case power loss and
the usability of the architecture depends on the noise power. In addition, the inter-message
crosstalk and power loss are prohibitive for multi-hop topologies with spatial routing.

In particular, the choice of the routing technique is so critical that the whole NoC ar-
chitecture needs to change according to the routing domain. In case of space domain, one
can exploit wavelength selectivity for bandwidth aggregation. Circuit switching is one of
the most prominent approaches and the scalability of circuit-switched architectures essen-
tially depends on the worst case power loss and inter-message crosstalk. Likewise, for
wavelength routing the maximum number of nodes in the network is constrained by the
maximum number of wavelengths and hence it ultimately depends on physical effects, i.e.
the intra-message crosstalk.

5.6 Summary

Photonic on-chip networks are essential to the overcome the physical limitations of elec-
tronic interconnects. In particular, this chapter introduces the basics of silicon photonics
and shows its theoretical benefits. However, although photonic interconnects are a promis-
ing answer to the requirements of low-power on-chip communication, the deep interplay
of wavelength selectivity, physical constraints, and routing domain issues is very likely to
impact their design and affect their practical applicability because of a number of non trivial
design trade-offs. As highlighted by this chapter, getting a cross-cutting understanding of
these trade-offs is an essential step for harnessing the full potential of on-chip Photonics in
future computing scenarios.

Chapter 6

A Path-Setup Architecture for Exploiting
Hybrid Photonic-Electronic NoCs

As previously seen, photonics is not suitable for implementing traditional store-and-forward
NoCs due to its inability to store and process data without an optical-electronic-optical con-
version. A promising solution consists in combining electronic and photonic technologies
in order to build a hybrid network made up of two subnetworks: an electronic packet-
switched network (ENoC) for handling control and short size messages and an optical
circuit-switched network (ONoC) for burst messages [136]. Circuit switching requires a
path-setup protocol to allocate the required resources to send a message optically. Obvi-
ously, the path-setup implies an overhead in terms of performance and costs that could be
amortized sending large data messages: the setup latency is much longer than the transmis-
sion latency and the setup power consumption is extremely higher than the transmission
power consumption. In addition, when two or more transmissions try to allocate the same
resource, a conflict arises. Conflicts could be handled in two different ways: messages
are sent using the ENoC or it is possible to try again to setup the path. Sending a large
message electronically instead of optically may lead to a latency and power degradation of
several orders of magnitude. As a consequence, reducing the number of large messages sent
electronically is a must. Note that, once a path is setup, there are no additional costs or con-
sumption in the electronic network. In the meanwhile, keeping an unutilized optical path set
results in keeping consuming power in the optical layer and incrementing the possibility to
have conflicts on the electronic network. This tradeoff raises the question of when allocate
the resources and for how long for the purpose of power saving. In order to achieve photon-
ics benefits, it is necessary to design the control network as well as the path-setup protocol
so as to minimize the path-setup overhead while maximizing the number of concurrent op-
tical paths and reducing the possibility of having conflicts. In this chapter, we propose and

90 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

compare, in terms of performance and energy consumption, some path-setup architectural
solutions that differ from each other in the routing algorithm, the path-setup protocol, the
deadlock avoidance technique, and some implementation choices such as the number of vir-
tual channels used. Based on this study, we propose a new power-aware path-setup protocol
that is able to reduce the path-setup latency and the power consumption due to its ability to
put allocated circuit on a stand-by state.

6.1 Architecture overview

The communication architecture is made up of two different layers: an electronic packet-
switched network (ENoC) where short and control messages are transmitted, and a optical
circuit-switched network (ONoC) for large messages or bursty traffic. Each core is con-
nected to a smart network interface (NI) owning the necessary logic to perform selective
transmission. Basically, when the head flit of a message is injected in the NI, it is buffered
according to the message size: messages shorter than a predefined value are stored in a
buffer and then directly send via ENoC while larger or bursty messages use a different
buffer. Buffers are implemented as FIFO queues. When a burst message arrives to the head
of the queue, the path-setup phase begins and, if successful, the message is sent via the
ONoC. On the contrary, the electronic network is used, causing not negligible performance
and power degradation. As in traditional NoCs, the basic building block of the ENoC is the
electronic router. Figure 6.1(a) shows the router block diagram. Since this router is designed
to handle just short and control messages, it does not require the support for large messages
and, hence, it is optimized for latency and not for throughput. As a consequence, we im-
plemented a non-pipelined router able to route in a single clock cycle a flit1 from an input
port to an output port as well as to make the necessary path-setup decisions. The network is
non-interfering, meaning that two virtual networks are used in order to prevent data packets
from blocking control packets. This is essential since the setup procedure must be as fast as
possible in order to prevent sending large messages through the ENoC. The two networks
are identical from a topological point of view, meaning that each electronic router is cou-
pled with a photonic switching element (PSE) that is the basic building block of the ONoC.
Figure 6.1(b) shows the five ports PSE considered in our study, called Crux, that was first
presented by [161]. As for the electronic router, there are five bidirectional ports: the four
ports corresponding to the cardinal directions and the local port connected to the O/E and
E/O conversion modules. This is a blocking switch, meaning that under certain conditions

1A flit is the smallest unit of information recognized by the flow control method that is equal to the link
width.

6.1 Architecture overview 91

VC 0

VN 1

VN 0

VC 0

VC 1

Path-Setup

Unit

Switch

Allocator

VC

Allocator

VC 0

VN 1

VN 0

VC 0

VC 1

Input

Port 1

Input

Port n

Output

Port 1

Output

Port n

Routing

Electronic Router

PSE

North

South

W
e
s
t

E
a
s
t

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

MR

L
o
c
a
l

(a)

(b)

Fig. 6.1 The two building blocks of the Hybrid NoC (a) The electronic router (b)The Crux
photonic switching element.

it is not possible to use simultaneously the same port as input and output (as an example the
two paths west → north and south → west are mutually exclusive). Each PSE is controlled
by a Path-Setup Unit (PSU) located in the corresponding electronic router whose role is to
ensure that all the ring resonators are always set properly for a data transmission. A detailed
description of the path-setup protocols and of the PSU is given in Section 6.2.

6.1.1 Optical loss and bandwidth model

Traditionally, electronic networks make use of several distinct wires in order to enhance
the parallelism of a communication. Differently, by exploiting Wavelength-Division Multi-
plexing (WDM) each wavelength can carry different data in a single waveguide. However,
in order to achieve this benefit, it is necessary to deal with the insertion loss (IL), which
affects photonic signals when they are propagated through a waveguide. The worst case
insertion loss limits the total number of wavelengths Nλ , and hence the available bandwidth,
according to the inequality (5.1). In this chapter, the worst case insertion loss is evaluated
according to

ILdB
wc = ILdB

prop + ILdB
cross + ILdB

bend + ILdB
drop + ILdB

pass (6.1)

where

• ILdB
prop = Pprop × dmax is the loss that a signal is affected by when it propagates in a

straight waveguide with a length equal to dmax

• ILdB
cross = Pcross ×ncross is the loss due to crossing other waveguides

92 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

• ILdB
bend = Pbend ×nbend is the loss due to waveguide bends

• ILdB
drop = Pdrop ×ndrop is the loss due to dropping into a ring

• ILdB
pass = Ppass ×npass is the loss due to passing by a ring

with Pprop, Pcross, Pbend , Pdrop, Ppass the loss occurring in a single operation and ncross, nbend ,
ndrop, npass the number of occurrences in the worst case scenario. Concerning the Crux
PSE, the maximum number of waveguide crossings and passings by a ring are all equal to
four, while the maximum number of bends is three. Differently, the maximum number of
droppings depends on the routing strategy. Note that the switch was designed in order to
take advantage of dimension-order routing (DOR) where there is at most a single turn along
the path between a source and a destination. As a consequence, straight default paths2 are
implemented and hence, using DOR, there are three droppings in the worst case scenario
regardless of the network size: one for injection, one for ejection, and one for the turn.
Differently, in case of other routing strategies, this value grows proportionally with the
maximum number of turns and hence with the network size. Table 6.1 shows the insertion
loss for single operations used for the experimental evaluation.

Once the maximum number of exploitable wavelengths is defined, it is possible to eval-
uate the maximum achievable bandwidth as

Bw = clk×Nλ (6.2)

where clk is the optical clock speed that is conservatively assumed to be 10 Ghz. Note
that, as explained in Section 5.3, the maximum number of wavelength channels could be
limited by electro-magnetic effects such as the inter-channel crosstalk. In addition, it is
necessary to equip the microrings with the capability of multiwavlength routing and hence
they must be designed with a small free spectral range. In this chapter we neglected both
such electro-magnetic effects and physical constraints since the main focus is the design
of the electronic path-setup architecture. For instance, in case of a 4× 4 mesh using DOR
routing, it is possible to exploit up to 221 wavelengths providing a theoretical bandwidth of
240 GB/s.

6.1.2 Energy model

In order to evaluate the energy consumption of the whole network it is necessary to consider
the consumption of both the ENoC and the ONoC. Regarding the electronic power consump-
tion, we rely on the method presented in [43] previously used in a similar work [136]. The

2A default path is the path that the signal takes when all the rings are placed in a off resonance state.

6.1 Architecture overview 93

Table 6.1 Optical parameters

Parameter Value Ref.
Clock Frequency 10 Ghz [13]
Power Budget 30 dB [16]
Propagation Loss in Silicon 1.5 dB/cm [157]
Waveguide Crossing 0.05 dB [21]
Waveguide Bend 0.005 dB/90◦ [157]
Dropping into a Ring 0.5 dB [80]
Passing by a Ring 0.005 dB [80]
Power PSEON 10 mW [156]

method is based on the assumption that at each hop it is necessary to perform the following
operations: 1) reading from the buffer; 2) taking routing and arbitration decisions; 3) cross-
ing the inner switch; 4) going through the link, and 5) writing to a buffer. As a consequence
the energy consumed by sending a message end-to-end is equal to the sum of these energy
values times the number of hops.

Emessage = Ehop ×Nhops (6.3)

where Nhops is the number of hops taken by a message and Ehop is the energy necessary to
cross a single hop.

Ehop = (Elink ×dlink)+Ebu f f er +Ecrossbar +Estatic (6.4)

where dlink is the link length between two adjacent routers. Table 6.2 reports the values of
the energy consumed in these operations (Ebu f f er is the sum of the two components due to
the reading and the writing, while the energy due to routing and arbitration is neglected)
as evaluated in [136] using the ORION simulator [151]. Note that ORION may overstate
the buffer power consumption of a 40% [53]. However, the impact on the results is limited
to a maximum of 4% of the total power consumption, since the buffer power consumption
consists of the 10% of the whole electronic consumption.

Table 6.2 Energy consumpion for an electronic hop crossing

Parameter Value
Elink 0.34 pJ/mm/bit
Ebu f f er 0.12 pJ/bit
Ecrossbar 0.36 pJ/bit
Estatic 0.35 pJ/bit

On the contrary, photonic signaling benefits from the two proprieties of bit-rate trans-
parency and low loss in optical waveguides, meaning that the energy consumption necessary
to transmit a message in the ONoC is independent of the bit-rate and the distance between
the two end points. The power consumption of a PSE depends on its state: in the OFF state

94 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

the power is negligible, while in the ON state it consumes about 10 mW [156]. This means
that the energy that a message consumes depends on how long the PSEs are in the ON state
regardless of whether they are used or not. As a consequence it is necessary to avoid leaving
some PSEs in the ON state. As we shall see in Section 6.2, this is one of the tasks of the
path setup unit.

6.2 Path-setup protocol for hybrid NoCs

The path-setup protocol is responsible for allocating all the required resources in order to
guarantee that the optical communication is feasible. A basic protocol requires four types
of control messages: path-setup, path-ack, path-nack, and path-teardown. When a long
message or a burst arrives to the head of the buffer queue in the NI, a path-setup message
is injected into the first router. The aim of this type of message is to reach the destination
node. In case of success, a path-ack message is generated and sent back to the source of
the communication. On the contrary, when a path-setup message reaches a router and it is
unable to take a output port due to conflicts with other optical paths, a path-nack is sent
back to the source. When a path-ack reaches its destination, the end-to-end optical path
is ready for the communication and hence the data message is optically sent. When the
optical communication ends, the resources previously allocated are released by sending a
path-teardown message through the ENoC. When a path-nack arrives to a NI, it is possible
either to try again the setup process or to send the message via the ENoC. In our case, we
adopted a mixed policy: we try to setup the optical path for a certain amount of time after
which the message is sent electronically. In this way, the time that a message can stay in
the queue is bounded, avoiding blocking the subsequent messages but, at the same time,
messages are not sent via the ENoC when there is a sporadic conflict. In order to implement
a distributed protocol, we added in each router a Path-Setup Unit (PSU) whose functions
are: 1) configure the switching functions of the corresponding PSE; 2) keep track of the PSE
state; 3) manage path-setup conflicts; 4) implement a routing policy for control messages.
Each PSU owns an internal PSE Connectivity Table (PCT) and a Counter Array (CA) whose
structures are shown respectively in Figure 6.2(a) and (b). Note that the size of these data
structures is constant for the NoC design, regardless the network size, ensuring scalability.
The PCT contains for each output port the fields state and input port. In the basic path-setup
protocol, there are three states: Unused, Reserved, and Allocated. Figure 6.2(c) shows the
finite-state transition diagram for the basic path-setup protocol. At the beginning, the state
is set to unused meaning that the path is free for further reservations. When a path-setup
message arrives, the state changes to reserved and the input port from which the message

6.2 Path-setup protocol for hybrid NoCs 95

(b)

Local
in
North

in
East

in
South

in
West

in

Counter

(a)

Local
out
North

out
East

out
South

out
West

out

Status

Input

Port

Unused

Reserved

Allocated

pa
th
-a
ck

path-teardown

path-setup

path-nack

(c)

Fig. 6.2 The data structures located inside the Path-Setup Unit for the basic path-setup pro-
tocol. (a) The PSE Connectivity Table. (b) The Counter Array. (c) The finite-state transition
diagram for the state of a output port in the PSE.

arrived is stored in the associated entry. In the reserved state, when a path-nack message
arrives, the state comes back to unused, otherwise, in case of path-ack, the state changes to
allocated. An output port in the allocated state implies that the necessary ring resonators
are set in order to establish an optical path between the input and output ports. Hence, the
PSE is ready to be used and as a consequence it begins to consume energy. When the optical
communication ends, the source sends a path-teardown message in order to set the state to
unused. A conflict arises when a message cannot be routed since all the required output
ports are reserved or allocated. In that case, a path-nack message is generated and sent back
to the previous router. Depending on the routing algorithm, it is possible that a path-setup
message needs to be routed to more than a single output port. Assuming that the path-setup
message is sent through k output ports with k > 1, two resulting scenarios are possible: the
router will receive k path-nack messages or one path-ack and k−1 path-nack messages. In
both cases, we need a synchronization mechanism in order to avoid leaving junk messages in
the network: for each input port, a counter keeps track of how many messages coming from
that input port were sent. When a path-ack or path-nack message arrives, the corresponding
counter is decremented. Only when the counter is equal to 0, the path-ack or path-nack
message is sent back to the previous router on the path. In this way, only one message
arrives to the source NI and there are no junk messages left in the network.

96 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

6.2.1 Routing

Data messages in the ENoC are routed using XY dimension-order routing. Of course, dif-
ferent routing algorithms can be used, but, as our goal is to investigate on the control and
photonic networks, this choice provides a simple electronic infrastructure that is enough to
guarantee basic connectivity. Using the same algorithm for data and control messages could
lead to poor performance: the four turns allowed by XY routing do not permit any adap-
tiveness in routing. In this chapter we analyzed three different routing algorithms to route
path-setup messages: dimension order routing, minimal path flooding, and non-minimal
path flooding. With the minimal path flooding, each router checks if it is the target router.
If not, the path-setup message is sent to the neighbors that are closer to the target router.
Each router repeats the process or, in case of a conflict, generates a path-nack message.
Non-minimal path flooding removes the closeness restriction by allowing for each path a
fixed number of non-minimal hops. Flooding requires message replication while using non-
minimal routing leads to explore paths otherwise inaccessible. Both these features have the
drawback of potentially increasing the power consumption as well as the network conges-
tion perturbing the ENoC performance. At the same time, there are more possibilities to
find a free path, thus avoiding multiple floodings. These choices introduce the possibility of
a tradeoff between the breadth and depth of the path exploration process and the number of
times the exploration is performed. On the contrary, in the photonic layer, the latency is in-
dependent of the distance between the two end-points, while using PSE with straight default
paths the energy consumption depends only on the number of turns. As a consequence paths
with more hops than others not necessarily lead to higher power consumption. Switching
from DOR to flooding routing algorithm introduces the deadlock issue. As a consequence,
the routing algorithm must be designed so as to prohibit just enough turns to break all of the
cycles in the network. The drawback is that prohibiting some turns reduces the adaptiveness
of the algorithm. In order to overcome this limitation, virtual channels could be used. When
there is an invalid turn, the routing algorithm forces the packet to change the virtual channel,
breaking the dependency cycle. If a message cannot cross a router due to a forbidden turn
and the lack of available virtual channels, then a path-nack message is generated and sent
back.

6.2.2 Path-setup protocol with standby

As previously described, using flooding routing algorithms not only increases the chances of
finding free paths but also the number of messages in the network and hence the possibility
of congestion. Our path-setup protocol with standby allows using flooding for routing path-

6.2 Path-setup protocol for hybrid NoCs 97

setup messages, and in the meanwhile it reduces the number of messages in the network
in order to overcome the above issues as well as to reduce the probability of conflicts in
the routers. Implementing this protocol requires two new messages, i.e. path-standby and
path-wakeup as well as two new states, i.e. standby and woken up. In addition, the PCT
is extended by adding for each output port the field Source Node and k fields Destination,
where k is the maximum number of paths, crossing this port, which can be simultaneously
in the standby state. Note that, the maximum number of standby paths in all the network
is equal to the number of destination nodes. Assuming standby paths uniformly distributed
over the source nodes, k may be evaluated as ⌈Ndst/Nsrc⌉. Figure 6.3(a) shows the modified
PCT. Basically, the idea is to exploit the deterministic nature of burst communication, where
a source node communicates with a destination node for a while before switching to a new
destination. When a path-ack message reaches a router, in addition to the usual steps, the ID
of the source and destination nodes are stored in the corresponding fields. Destination node
fields are managed with a Least Recently Used policy in order to keep track of the recently
used optical connection. When the optical communication finishes, the path is put in standby
state by sending a path-standby message instead of tearing it down. A standby state means
that the ring resonators are in OFF mode but the path is reserved for a further use without
the necessity to perform again costly flooding operations. The source node that plans to use
a path on standby must send a path-wakeup message and wait for a path-ack message. In
case of receiving a path-nack message it has to try again sending a new path-wakeup. Path-
nack messages are generated in case of conflicts. A new flooding is performed only after
a path-teardown message is received or in case it is necessary to communicate with a new
destination. Paths in idle state can be used only by the source node that allocated it for the
first time. At the same time, in order to avoid source nodes keeping unutilized or standby
paths, which prevent other sources in establishing optical circuits, a path-setup, not able to
reach its destination, is allowed to tear down standby circuits allocated by other sources.
The path-teardown crosses the network up to the source node of the standby circuit freeing
in the PCT the entry related to that path. Since the tear-down message could be sent from
any node along the path and not from the destination node, it is possible that a remaining
piece of circuit keeps being in the standby state. In this case, this junk piece of circuit will
never be used again and will teared down when necessary. Conflicts arise only when all the
required output ports are reserved, allocated or woken up and hence are waiting for path-
ack and path-nack messages. As a consequence, path-teardown messages will release the
resources related to all the paths that are in the standby status and cross the output port where
the conflict arises. In case of concurrent path-wakeup and path-teardown messages related
to the same circuit, the path-wakeup will reach a router where the circuit has already been

98 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

(b)

Dest 1

Dest k

(a)

Local
out

North
out

East
out

South
out

West
out

Status

Source

Node

Input

Port

Unused

Reserved

Allocated

pa
th

-a
ck

path-setup

path-nack

Woken up

Standby

path-ack

pa
th

-n
ac

k
pa

th
-s

et
up

pa
th

-w
ak

e-
up

path-standby

path-teardown

Fig. 6.3 The data structures located inside the Path-Setup Unit for the path-setup protocol
with standby. (a) The PSE Connectivity Table (b) The finite-state transition diagram for the
state of a output port in the PSE

teared down. At this time, a path-nack message is generated and sent to the source node.
Then a new flooding will occur, since, in the meanwhile, the path-teardown message will
have reached the source node. This protocol allows the network to reach a steady state where
there are only a few floodings passing through a transitional state with a higher number of
floodings. Figure 6.3(b) shows the finite-state transition diagram considering the new two
states.

6.3 Comparison and analysis

The simulation environment is obtained by extensively modifying gMemNoCsim that is an
in-house event-driven cycle-accurate NoC simulator. The optical bandwidth, the number
of usable wavelengths as well as the energy consumption are evaluated by integrating the
models in Section 6.1.1 and 6.1.2 into the simulator. The main simulation parameters are
summarized in Table 6.3.

Non-bursty traffic is injected at a rate of 0.2 flits/cycle/NI in order to keep the ENoC
busy. All the considerations in this section concern burst and control traffic. Bursty traffic
is described by means of three parameters: the burst message size, the burst injection rate
and the percentage of nodes that are involved in a burst transfer as sources or destinations.
These nodes are randomly selected and during the simulation are changed in order to provide
a fair scenario independent of the possible mapping choices. Each one is characterized
by a low, medium, or high value. This traffic characterization is suitable for describing
scientific or multimedia applications where communication patterns are far away from the

6.3 Comparison and analysis 99

Table 6.3 Simulation parameters

Parameter Value
Clock Frequency (Ghz) 1
Message Size (Bytes) 8

Injection Rate 0.2

Burst Message Size (Bytes)
Small 256

Medium 1024
Large 4096

mesh Low 1/80

Burst 4×4 Medium 1/60

Injection High 1/40

Rate mesh Low 1/300

8×8 Medium 1/250
High 1/200

Percentage of source Low 20% src 20% dst
and destination nodes Medium 40% src 40% dst

of burst traffic High 40% src 60% dst
Flit Size (Bytes) 4

Buffer Size (Flits) 6

full connectivity [70]: applications that scale most efficiently to large numbers of IP Cores
tend to depend on point-to-point communication patterns where the average topological
degree of communication3 ranges between three and seven distinct destinations [148]. In
addition, this kind of applications may have to face challenging heavy traffic with large size
messages. For instance, the H.264 video decoder and the sparse matrix solver applications,
included in the realistic NoC traffic benchmark suite presented in [88], are respectively
characterized by an average message size of 1280 and 820 bytes. Simulations are performed
for 4×4 and 8×8 meshes as well as for each combination of the three values characterizing
the bursty traffic. Note that 8×8 meshes, that are subject to a higher power loss than 4×4
meshes, have a smaller bandwidth. As a consequence the injection rate values for 8× 8
meshes are smaller.

Table 6.4 Characteristics of the architectures analyzed

Architecture Path-setup msg #VNs #VCs Stand-by
Routing optical paths

Baseline XY 2 1 NO
Arch - A Flooding (minimal) 2 1 NO
Arch - B Flooding (minimal) 2 2 NO
Arch - C Flooding (non-minimal) 2 2 NO
Arch - D Flooding (minimal) 2 2 YES

Table 6.4 shows the characteristics of the five architectural solutions analyzed. The basic
path-setup protocol is used in all the architectures excluding Arch-D, where the path-setup
protocol with standby is implemented. In the baseline architecture, XY dimension-order
routing is used. In order to provide a growing level of adaptiveness in routing, Arch-A and

3The Topological Degree of Communication is defined as the number of destinations that a given process-
ing element must reach

100 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

0

50

100

150

200

250

>300

0

5

10

15

20

25

30

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

0

100

200

300

400

500

>600

L
at

en
cy

 (
cy

cl
es

)

L
at

en
cy

 (
cy

cl
es

)

L
at

en
cy

 (
cy

cl
es

)

L
at

en
cy

 (
cy

cl
es

)

L
at

en
cy

 (
cy

cl
es

)

L
at

en
cy

 (
cy

cl
es

)

Burst Injection Rate

1/80

(a) 4×4 mesh, Burst Size 256 Bytes

(d) 8×8 mesh, Burst Size 256 Bytes

(b) 4×4 mesh, Burst Size 1024 Bytes

(e) 8×8 mesh, Burst Size 1024 Bytes

(c) 4×4 mesh, Burst Size 4096 Bytes

(f) 8×8 mesh, Burst Size 4096Bytes

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst InjectionRate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/80

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/80

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

 B
aseline

A
rch-A

A
rch-B

A
rch-C

A
rch-D

electronic data transfer

optical data transfer

path-setup overhead

Fig. 6.4 Average burst message latency

Arch-B are equipped with minimal flooding and in Arch-B a single forbidden turn is allowed
by exploiting two virtual channels. Even Arch-C is fitted with two virtual channels and in
addition can take advantage of non minimal paths with a single non minimal hop in each
path. Arch-D improves Arch-B by adding the standby version of the path-setup protocol.

Figure 6.4 shows the average latency for each architecture when varying the simulation
parameters values. The latency is divided into three parts: the latency due to electronic
and optical data transfers and the latency due to the path-setup overhead. It is evaluated
as the average of the latencies of all the burst messages that reach their destination via
the ENoC as well as the ONoC. The ONoC latency includes the path-setup latency. The
baseline architecture and Arch-C perform adequately for low values of the burst parameters,
but when the burst size, injection rate, and percentage of nodes are increased, the latency
grows faster compared to the other architectures. In the worst case, when the burst size and
injection rate are very high, the network gets congested. This is definitely true for the 4×4
mesh where Arch-C cannot take advantage of the non-minimal flooding, since routing the
messages to all the output ports of a router has the drawback of reserving a huge amount
of resources for a small network. As a consequence, the number of path setups that can be
carried out simultaneously drastically decreases. However, in the 8× 8 mesh with higher
values of the burst parameters, Arch-C performs better than the baseline due to the higher
possibility of finding free paths. In the 4× 4 mesh, Arch-A and Arch-B are performing

6.3 Comparison and analysis 101

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n
er

g
y
 (

p
J/

b
it

)

E
n
er

g
y
 (

p
J/

b
it

)

E
n
er

g
y
 (

p
J/

b
it

)

E
n
er

g
y
 (

p
J/

b
it

)

E
n
er

g
y
 (

p
J/

b
it

)

E
n
er

g
y
 (

p
J/

b
it

)

Burst Injection Rate

1/80

(a) 4×4 mesh, Burst Size 256 Bytes

(d) 8×8 mesh, Burst Size 256 Bytes

(b) 4×4 mesh, Burst Size 1024 Bytes

(e) 8×8 mesh, Burst Size 1024 Bytes

(c) 4×4 mesh, Burst Size 4096 Bytes

(f) 8×8 mesh, Burst Size 4096Bytes

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst InjectionRate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/80

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/80

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

 B
aseline

A
rch-A

A
rch-B

A
rch-C

A
rch-D

electronic data transfer

optical data transfer

path-setup overhead

Fig. 6.5 Average burst message energy per bit consumption

between 30% and 60% better than the baseline, depending on the size of the messages and
the injection rate. Basically, when these two parameters grow, the gap increases. Differently,
by implementing Arch-B in an 8× 8 mesh, the ability of safely crossing forbidden turns
leads to an average reduction of latency of about 27% with a maximum of 60% for the high
burst size. All these architectures perform poorly in case of a high number of nodes sending
large-sized messages with a high injection rate. When these values are high, the network
gets congested. On the contrary, Arch-D performs better than all the other architectures by
exploiting the path-setup protocol with standby state: the network is never congested and
only in case of the 8× 8 mesh and all the burst values high, the latency begin slightly too
high. In other cases, when Arch-B suffers high latencies, Arch-D is able to reach a reduction
of about 50%.

Figure 6.5 shows the average energy per bit consumption of the burst messages. The
energy is divided into three parts: the energy for sending via ENoC, via ONoC, and the
energy due to the path-setup overhead. The energy due to the path-setup is the main com-
ponent in case of small and medium sized messages: more than 95% of the whole energy
in case of small size messages and more than 80% for medium size messages using the
baseline architecture. When the burst size is large and the injection rate high, a number of
messages are sent via the ENoC due to the congestion on the control network. This causes
the increment of the ENoC energy that can become the main component even in case of a

102 A Path-Setup Architecture for Exploiting Hybrid Photonic-Electronic NoCs

few messages. The general behavior is that Arch-C performs very poorly due to the huge
amount of flooding messages sent, followed by Arch-B and Arch-A. The more messages
are sent during the path-setup phase, the more power is consumed. The baseline consumes
least energy since no message replication is performed. This trend does not occur in case
of large messages. The path-setup overhead is independent of the size of the message and
hence it is not relevant. Concerning the baseline and the Arch-C architecture, a high injec-
tion rate leads to a congestion on the control network and hence to a huge increase of the
energy consumed in the ENoC. This is true for each architecture but Arch-B is able to route
less messages in the ENoC. Different considerations apply to Arch-D. Its ability to put an
optical circuit in a standby state allows reducing the number of floodings and hence power
consumption. Compared to the baseline architecture, which does not perform floodings,
it reaches the same values for small-sized messages, while for larger messages it achieves
more than 30% reduction in case of a 4× 4 mesh and 50% in case of a 8× 8 mesh. To
better explain these results, the percentage of failures in establishing the optical circuit and
hence the percentage of burst messages sent via the ENoC is shown in Fig. 6.6. The graphs
concern only messages with a size of 4096 bytes since, for lower sizes, the percentage is
close to zero. As expected, an high percentage of failures is strictly related to high latency
and power consumption.

0

5%

10%

15%

20%

0

5%

10%

15%

20%

25%

30%

P
er

ce
n
ta

g
e

o
f

m
es

sa
g
es

 s
en

t
v
ia

 E
N

o
C

P
er

ce
n
ta

g
e

o
f

m
es

sa
g
es

 s
en

t
v
ia

 E
N

o
C

Baseline

Arch-A

Arch-B

Arch-C

Arch-D

(a) 4×4 mesh, Burst Size 4096 Bytes (b) 8×8 mesh, Burst Size 4096Bytes

Burst Injection Rate

1/80

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/60

Burst Injection Rate

1/40

Burst Injection Rate

1/300

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

20% src

20% dst

40% src

40% dst

40% src

60% dst

Burst Injection Rate

1/250

Burst Injection Rate

1/200

Fig. 6.6 Percentage of messages sent via the ENoC

6.4 Summary

In this chapter we have shown the importance of using an adequate path-setup protocol,
routing strategy as well as control network to enable efficient use of the photonic resources

6.4 Summary 103

in a hybrid photonic-electronic network. We have analyzed the performance and energy
consumption of five different path-setup architectures. The results show that, in case of non-
challenging traffic, a standard architecture with XY routing performs reasonably well. When
the message sizes and the injection rates increase, the number of conflicts in establishing
the circuit grows leading to performance/power degradations. In such a case, the latency
could be reduced up to 60% by properly flooding the path-setup messages instead of using
dimension order routing. However sending a higher number of control messages leads to
increase the power consumption. In order to address this issue, we propose an energy-aware
path-setup protocol able to put an optical circuit in a standby state. Exploiting this feature,
it is possible to reduce the power consumption up to a 50%.

Chapter 7

H2ONoC: a Hybrid Optical-Electronic
NoC based on Hybrid Topology

Photonic networks proposed in the literature can be mainly divided into two classes, passive
or active according to the type of the Microring Resonator (MR) used. Usually passive net-
works are wavelength-routed networks, while active networks are circuit-switched networks
indicating the use of wavelength selectivity in order to implement respectively routing facil-
ities or bandwidth aggregation. As seen in Chapter 5, the characteristics of these two classes
induce various tradeoffs: wavelength-routed networks lead to low-latency efficient networks
that do not require any arbitration while circuit-switched networks lead to scalable networks
where high-bandwidth channels are obtained by multiplexing data onto many parallel wave-
lengths. Despite their benefits, active networks are affected by a high insertion loss, i.e.
the power loss an element induces when it is inserted in an optical path, which limits the
total number of wavelengths and hence the available bandwidth. By taking into account the
impact of the topological choices on the insertion loss, it is possible to carefully design the
communication architecture fully exploiting the extremely high bandwidth density offered
by WDM. From the topological point of view, hybrid photonic-electronic active NoCs usu-
ally employ a 2D regular topology such as meshes and tori [29, 100, 135, 136, 161]. Due to
their internal structure, direct topologies suffer from a high number of waveguide crossings.

In this chapter, we propose a novel hybrid optical-electronic NoC, called H2ONoC. The
hybrid topology used by H2ONoC for the photonic layer relies on both direct and indirect
schemes at different levels of the interconnect, as a solution enabling reduced insertion loss,
hence maximizing the number of available wavelengths and the resulting actual bandwidth.
This chapter addresses all the relevant aspects of the H2ONoC architecture, including the
routing algorithm, the flow control mechanism, the path-setup protocol, the electronic router
and the photonic switches microarchitectures.

106 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

7.1 H2ONoC Architecture

7.1.1 Overview

This chapter introduces a novel solution for active networks. Unlike existing solutions de-
scribed in the previous chapters, the definition of the architecture is driven by the minimiza-
tion of the insertion loss, leading to a twofold advantage: maximizing the number of usable
wavelengths, and hence the bandwidth, and reducing the optical power injected into the chip.
The proposed communication infrastructure relies on a hybrid architecture made up of two
different layers: an electronic packet-switched network (ENoC) where small-size and con-
trol messages are transmitted, and an optical circuit-switched network (ONoC) for large
size messages. H2ONoC targets CMPs with a regular structure. The chip is divided in tiles
and each tile consists of a processing element (PE), a memory element (ME), an electronic
router (ER), and a photonic switch element (PSE). The ER and the PSE provide switching
facilities respectively in the ENoC and ONoC and are coupled to each other. Inside each
electronic router there is the required logic to drive the PSE facilities. From a topological
point of view the two networks are different. The ENoC is based on a concentrated mesh
where each router services a PE and a ME. Differently, the ONoC rely on a hybrid topology
that requires 4× 4 PSEs as well as high radix PSEs. Fig. 7.1 illustrates an example of the
H2ONoC architecture. The tiles are arranged in a 2D 8×6 grid. In each tile, an electronic
router connects the adjacent tiles as well as a single PE and ME. At the same time, each
photonic switch connects a PE and a ME as well as two high-radix switches. The high-radix
switches provide connectivity between photonic switches in the same row or column.

Each core is connected to a smart network interface (NI) owning the necessary logic to
perform selective transmission. Basically, when the head flit of a message is injected in the
NI, it is buffered according to the size of the message: messages smaller than a certain value
are stored in a buffer and then directly sent via ENoC, while larger messages use a different
buffer. Buffers are implemented with FIFO queues. When a large-size message arrives to
the head of the queue, the path-setup phase begins and, when it ends, the message is sent
via the ONoC. The ENoC is non-interfering, meaning that two virtual networks are used in
order to prevent data packets from blocking control packets. This is essential since the setup
procedure must be as fast as possible in order to reduce the latency of large-size messages.

7.1.2 ONoC based on a hybrid topology

Hybrid topologies [126] combine features of both direct and indirect topologies in order
to take benefits from both: in a n−dimensional hybrid topology, the nodes are organized

7.1 H2ONoC Architecture 107

4×4 PSE

1

2

3

4

5

6

7

81

2

3

4

5

6

7

8

High-radix PSE

ER
ME

PE

MR

MR

MR

MR

MR

MR

MR

MR

Fig. 7.1 The H2ONoC architecture. The black and white circles are respectively process-
ing and memory elements. The dark squares are photonic switch elements while the light
squares are electronic routers. The dark rectangles are high-radix PSEs. The thick lines are
bidirectional optical channels made up of two waveguides, while the thin lines are electronic
links. The inner architecture of a PSE and a high-radix PSE are shaded and enlarged.

in a n−dimensional space as in direct topologies but, instead of using exclusive links be-
tween adjacent nodes, the connectivity in each dimension is achieved by small indirect
networks. Bringing the hybrid topology to the on-chip photonic domain is a nontrivial
task since photonics introduces new design challenges that have no electronic equivalent.
H2ONoC implements the optical network by means of a 2D planar hybrid topology with a
gateway concentration of 2 cores. If ki is the number of switches in the ith dimension, the
number of tiles, consisting of PE/ME pairs, is given by k0 × k1. The basic building block
of the optical interconnect is the four ports photonic switch (see the scheme highlighted in
Fig. 7.1), first presented in [Wang et al.]. In particular, the photonic switch is designed using
only eight 1×2 PSEs which are made up of a single waveguide crossing and ring resonator.
This switch has a twofold advantage compared to the other switches proposed in the litera-
ture: it is a non-blocking switch with a reasonable cost and insertion loss and it implements
non-straight default paths1. Section 7.1.3 explains why this is essential in hybrid topologies
for ONoCs. On the contrary, the indirect subnetworks are implemented by means of single
high-radix switches that are based on the basic switch proposed in [135]. The basic switch
consists of four 2× 2 PSEs, each containing a waveguide crossing and two microring res-

1A default path is the path that the signal takes when all the rings are placed in a off resonance state.

108 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

onators enabling switching facilities. Each high-radix switch requires a number of basic
switches equals to n

8 (n−2), where n is the number of bidirectional ports required. Com-
pared to a multi-stage implementation, the high-radix switch has a higher system cost but
leads to better performance, since multi-stage networks need to take switching decisions
at each stage. Notice that the basic photonic switch and, hence, the high-radix switch are
blocking in the sense that it is not always possible to use simultaneously the same port as
input and output (as an example, the two paths south→east and east→north in the basic
switch are mutually exclusive). Even if using blocking switches is potentially a drawback,
the design complexity and, hence, the switch internal insertion loss grow exponentially with
the switch size. This is the reason why we neglected this possibility.

Fig. 7.1 highlights the internal architecture of an eight-ports high-radix switch. The high-
radix switches connect every switch in the same row or column. There are k0 high-radix
switches with k1 input/output ports providing connectivity in the y dimension and k1 radix
switches with k0 input/output ports providing connectivity in the x dimension. The high-
radix switches and the gateway switches are labeled in the following way. The topology
is divided in four quadrants such as in a Cartesian coordinate system where the high-radix
switches act as axes. The high-radix switches are labeled by two values: the first indicates
the dimension in which they provide the connectivity while the second the position in that
dimension. The switches are labeled by a pair where each element gives the position in i−th
dimension. In the following we will use (x,y) with |x| ≤ k1/2 and |y| ≤ k0/2 to indicate a
switch and [dim, posdim] with dim = x,y, |posx| ≤ k1/2 and

∣∣posy
∣∣ ≤ k0/2 to indicate an

indirect network. Since each photonic switch is included within a tile along with a PE, a
ME, and an ER, we use the same labelling system for any element of the tile.

7.1.3 Routing

When a message is transmitted between two tiles, we need to decide which route to take.
Small-size data messages sent via the ENoC make use of XY dimension order routing since
its logic is easy to implement and requires little area cost. Differently, large-size messages
are sent via a hybrid-topology ONoC. Unlike direct networks, in a hybrid topology the hop
count is independent of the nodes distance. Considering a hypothetical communication be-
tween two cores that are connected respectively to switches swi and sw j whose coordinates
are (xi,yi) and (x j,y j). A minimal path consists of crossing two switches and one indi-
rect network in case that swi and sw j share a dimension (xi = x j ∨ yi = y j): the packet is
first sent to the indirect network [x,xi] ([y,yi]), and then directly to the destination switch.
Otherwise, in case of xi ̸= x j ∧ yi ̸= y j, a path is made of three switches and two indirect
networks: the packet is first sent to indirect network [x,xi] ([y,yi]) along the Y axis (X axis),

7.1 H2ONoC Architecture 109

4
8

12
16

20
24

28
32 4

8
12

16
20

24
28

32
0

50

100

150

200

250

300

350

400

450

k
1

k
0

#
 w

a
v

e
g

u
id

e
 c

ro
ss

in
g

s

min path routing
ILAR

Fig. 7.2 The worst case number of waveguide crossings between two tiles with minimal path
routing and ILAR

then to switch (xi,y j) ((x j,yi)), then to indirect network [y,y j] ([x,x j]), and finally to the
switch connected to the destination. In the electronic domain minimal paths are preferred
since the performance and power consumption grow with the hop count. Differently, in
photonics, latency and power consumption are independent of the distance traveled by a
message. A key feature of a routing algorithm for hybrid topology consists of reducing the
worst case insertion loss by avoiding using paths that cross a high number of waveguides,
one of the main source of power loss. Here, we propose a routing strategy, called Insertion
Loss Aware Routing (ILAR), that relaxes the minimal-path constraint and allows a path to
cross up to three indirect networks. ILAR avoids worst case minimal paths with a large
number of waveguide crossings and chooses paths that, although not minimal, cross a lower
number of waveguides. Basically, in a communication between (xi,yi) and (x j,y j), if the
minimal-paths cross a number of waveguides higher than a certain threshold, a packet is first
sent from (xi,yi) to an intermediate node (xtmp,ytmp) and then from (xtmp,ytmp) to (x j,y j)

using a minimal path. The intermediate node is the one between (x0,ytmp) and (xtmp,y0)

with |x0| <
∣∣xtmp

∣∣ ≤ k1
2 and |y0| <

∣∣ytmp
∣∣ ≤ k0

2 that crosses the least number of waveguides.
Figure 7.2 shows that the worst case number of waveguide crossings is effectively reduced
through Insertion Loss-Aware Routing. The reduction consists of about a 50% regardless
of the size of the network. Details of the insertion loss and the impact of the waveguide
crossing loss on the total loss are given in Section 7.2. Notice that, regardless of the
routing algorithms for data messages in the ENoC and ONoC, the control messages must

110 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

be routed so that they can reach every tile where a photonic switch must be set. For the in-
ner nature of hybrid topologies, communications between switches located in different rows
and columns are not allowed without going through a switch in the same row or column.
As a consequence, every photonic switch that must be set can be reached via straight paths.
Once the photonic switch is reached and the required resources allocated, if the message is
located in the destination tile, it is sent to a local port, otherwise a single turn is necessary
to reach the next switch.

7.1.4 Path-setup

In order to use the optical network it is first necessary to establish a photonic path. The
path-setup protocol is responsible for allocating all the required resources in order to guar-
antee that the optical communication is feasible. The protocol requires four types of control
messages: path-setup, path-ack, path-nack, and path-teardown. When a large-size message
arrives to the head of the buffer queue in the NI, a path-setup message is created and sent to
the first router. The message is made up of a single flit and contains only control informa-
tion, i.e. the destination address and some additional routing details such as the address of a
possible intermediate node. The aim of this kind of message is to reach the destination node.
In case of success, a path-ack is generated and sent back to the source of the communica-
tion. On the contrary, when a path-setup message is blocked due to a conflict, a path-nack
is sent back to the source. When a path-ack reaches its destination, the end-to-end optical
path is ready for the communication and hence the data message is optically sent. When the
optical communication ends, the resources previously allocated are released by sending a
path-teardown message. When a path-nack arrives to a NI, we need to try again to establish
an optical path.

H2ONoC implements a distributed path-setup protocol by means of a Path-Setup Unit
(PSU) that is embedded in each electronic router. The PSU functions are:

• to configure the switching functions of the PSE located in the same tile

• to configure the switching functions of the high-radix switches connected to the PSE
located in the same tile

• to keep track of the PSE state

• to manage path-setup conflicts

• to implement a routing policy for control messages.

7.1 H2ONoC Architecture 111

VC

allocator
Routing

Switch

allocator

Input Ports

Hemisphere

Output Ports

Hemisphere

Control

Unit
Path-Setup Unit

Input Stage

Output

Stage

N

W

S

E

PE

ME

N

W

S

E

PE

ME

Photonic

Switch

Electronic

Router

To Photonic

High-radix

SwitchesVN0

VN1 VC0

VN1 VC1

S
S
S
S

T
T
T
T

R
R

S
S
S
S

T
T
T
T

R
R

Fig. 7.3 The electronic router architecture and its path-setup unit

The PSU consists of two hemispheres necessary respectively for allocating the input and
output ports of the 4×4 photonic switches as well as the output and input ports of the high-
radix switch connected with it. Each hemisphere contains, for each of the four ports, a FIFO
queue and a status array. The status array is made up of three fields: S, T, and R. The field S
indicates the status of the port. There are three states: Unused, Reserved, and Allocated. The
field T is a timer used to keep trace of the number of cycle a path-setup message stay at the
head of the queue. In addition the status array of the ports connected to a high-radix switch
contains a field R, used to allocate the ports of the high-radix switch. Note that the size of
these data structures is constant for the NoC design, regardless the network size, preserving
scalability. Fig. 7.3 shows the microarchitecture of an electronic router including its PSU.

At the beginning, the FIFO queues are empty and the states are set to unused meaning
that the paths are free for further reservations. When a path-setup message arrives at the

112 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

input stage of the router, it is necessary to check if the photonic resources must be allocated
or not. A path-setup message must be processed by the path-setup unit only in the tiles
where path turns take place. This is a direct consequence of using a hybrid topology. As an
example, considering a communication between a PE and a ME in the two tiles (xi,yi) and
(x j,y j) with xi ̸= x j ∧ yi ̸= y j. Assuming that the optical circuit to allocate is the following:
(xi,yi) → [x,xi] → (xi,y j) → [y,y j] → (x j,y j). As a consequence, the path-setup message
must reach the three electronic routers (xi,yi), (xi,y j), and (x j,y j) where it is necessary to
allocate the resources. In all these routers a single turn takes place. In such routers, the
path-setup message is not allowed to follow the standard data path and is routed in the Input
Ports Hemisphere of the PSU. The message is buffered according to the required input port
of the photonic switch. Notice that the photonic and electronic ports are different. When the
message reach the first position of the buffer the relative field of the status array are filled:
the status changes to Reserved, the timer is initialized, and information necessary to allocate
the high radix switch are stored in the R field. A message is routed to the Output Ports
Hemisphere only when it arrives at the head of the queue. In the same way, the messages
are buffered according to the photonic output port required. When a message reaches the
head of this buffer all the fields of the status array are filled as in the other hemisphere. At
this time the resources necessary to allocate the optical circuit are reserved and the message
can be routed to the next hop. When a port is in the reserved state and a path-nack message
arrives, the state goes back to unused, otherwise, in case of path-ack, the state changes to
allocated. An output port in the allocated state implies that the necessary ring resonators
are set in order to establish an optical path between the input and output port. Hence, the
PSE is ready to be used and as a consequence it begins consuming energy due to the ring
resonators in the ON resonance state. When the optical communication ends, the source
sends a path-teardown in order to set the state to Unused and release the head of the buffers.

Fig. 7.4 shows an easy example. The source PE and the destination ME are located
respectively in the tiles (3,2) and (1,4). The path-setup message goes trough the path
(3,2)→ (3,3)→ (3,4)→ (2,4)→ (1,4). Along this path only in three routers (3,2), (3,4),
and (1,4) the setup procedure takes place. When the message arrives to the path setup
unit of router (3,2), it is buffered first in the input buffer of the West port and then in the
output buffer of the North port since these are the two photonic ports required in the optical
circuit. The timers are initialized in order to be able to generate a path-nack message after
an appropriate period of time without receiving a path-ack message. In addition the R entry
corresponding to the output north port is filled with the requested output of the high radix
photonic switch. The same steps are performed in routers (3,4) and (1,4). When the path-

7.1 H2ONoC Architecture 113

Source

Tile

Destination

Tile

S T
W

in

N
out

R

Res

Res T
0

T
1 5

S T
N

in

E
out

R

Res

Res T
2

T
3 3

7

S T
E
in

S
out

R

Res

Res T
4

T
5

1

1

7

5

3

(3,3)(3,3) (3,4)

(2,4)

[x,3]

[y,4]

(1,4)

(3,2)

Fig. 7.4 An example of a path-setup execution. The two black circles are the source PE
and the destination ME. The thin lines and the light squares are respectively the electronic
links and routers used during the path-setup procedure. The thick lines, the black squares,
and the black rectangles are respectively the photonic links, 4×4 switches, and high-radix
switches used during the optical communication. The data structures of the path-setup unit
used during the path-setup procedure are shaded and enlarged.

setup message arrives at the destination routers, a path-ack message is generated and sent
back to the source router via the same route. This message will update all the entries in the
path-setup units changing the status to allocated.

7.1.5 Flow Control and Deadlock Management Policy

H2ONoC rely on a credit-based flow control: a counter is used to keep track of the amount
of free buffer space and dedicated feedback wires are used to notify every sent message.
Thanks to this inexpensive mechanism, buffer overflows are avoided. At the same time the
ILAR routing is no deadlock free and therefore the routing algorithm is designed so as to
prohibit just enough turns to break all of the cycles in the network. Fortunately, due to its
nature, ILAR routing allows at most two turns in every path. As a consequence prohibiting
just a single turn is enough to guarantee a deadlock-free algorithm. H2ONoC uses two
virtual channels in order to overcome this limitation. When there is an invalid turn, the
routing algorithm forces the packet to change the virtual channel, breaking the dependency
cycle.

114 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

7.2 Performance and Energy and Models

7.2.1 Optical Loss and Bandwidth Model

The worst case insertion loss is given by

ILdB
wc = ILdB

mod + ILdB
detect + ILdB

coup + ILdB
top (7.1)

where

• ILdB
mod is the loss due to the electro-optic modulator

• ILdB
detect is the loss due to the photodetector

• ILdB
coup is the loss due to the couplers used to interface with the off-chip components

such as off-chip laser sources.

• ILdB
top = ILdB

prop + ILdB
mod + ILdB

bend + ILdB
drop + ILdB

pass is the sum of all the losses affecting
a signal due to topological choices:

• ILdB
prop = Pprop × dmax is the loss affecting a signal when it propagates in a straight

waveguide with a length equal to dmax

• ILdB
cross = Pcross ×ncross is the loss due to crossing other waveguides

• ILdB
bend = Pbend ×nbend is the loss due to waveguide bends

• ILdB
drop = Pdrop ×ndrop is the loss due to dropping into a ring

• ILdB
pass = Ppass ×npass is the loss due to passing by a ring

with Pprop, Pcross, Pbend , Pdrop, Ppass being the loss occurring in a single operation and
ncross, nbend , ndrop, npass the number of occurrences in the worst case scenario. H2ONoC
is designed in an insertion-loss aware fashion ensuring reduced insertion loss for mini-
mum/medium size CMPs. ILAR routing guarantees that an optical circuit crosses at most
four 4×4 photonic switches and three high-radix switches. The number of ring dropping oc-
currences in the worst case is equal to five: two in the source and destination 4×4 switches
and one in each high-radix switch. The other two 4×4 switches are dropping-free since all
the photonic switches are designed in order to ensure default paths between the two ports
connected to the high-radix switches. This value does not depend on the network size, en-
suring scalability. Differently, the number of waveguide crossings inside the 4× 4 switch

7.2 Performance and Energy and Models 115

is equal to five in case of default paths and four in case of non-default paths, while inside
an n×n high-radix switch it is equal to n−2. By adding all the components, including the
number of crossings in the waveguides outside the switches, it is possible to evaluate the
total worst case number of waveguide crossings that is equal to k0k1

2 + 10, with k0 and k1

equal to the number of tiles along the x and y dimension. The analytical computations be-
hind these equations are shown in the following subsection. Since the insertion losses due
to bending waveguides and passing by off-resonance rings are some orders of magnitude
smaller, these components are neglected. Table 7.1 shows some insertion loss parameters
for single operations that are close to currently realizable values.

Once the maximum number of exploitable wavelengths is defined, it is possible to eval-
uate the maximum achievable bandwidth as

Bw = clk×Nλ (7.2)

where clk is the optical clock speed.

Table 7.1 Insertion loss parameters

Parameter Value Ref.
Modulator 0.5 dB [13]
Photodetector 0.1 dB [13]
Coupler 1 dB [13]
Propagation Loss in Silicon 1.5 dB/cm [157]
Waveguide Crossing 0.05 dB [21]
Waveguide Bend 0.005 dB/90◦ [157]
Dropping into a Ring 0.5 dB [80]
Passing by a Ring 0.005 dB [80]

7.2.1.1 A formal study on the waveguide crossings of hybrid topologies

This section provides a formal study on the worst case insertion loss in terms of number
of ring drops and waveguide crossings since these are the most significant components of
power attenuation. Ring drops may happen in the gateway switches (their number is referred
to as Dsw here) or in the switches within the indirect subnetworks (Din). On the contrary,
the waveguide crossings may occur within the switches (Csw) or outside them. Concerning
the crossings outside the switches, they are located inside the indirect subnetworks (Cin) and
between a switch and an indirect subnetwork (Csw−in).

In each 4× 4 photonic switch, there are 8 microring resonators allowing each pair of
ports to be connected and 10 waveguide crossings. The default paths do not require a drop
into a ring and need to go through five waveguide crossings. On the contrary, the other
paths require a single drop into a ring and 1 or 4 waveguide crossings. As a consequence,

116 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

0,3

0,2

0,1

1,1 1,2 1,3 1,4

3,1 3,2 3,3 3,4

2,1 2,2 2,3 2,4

1,1 1,2 1,3 1,4

(1,1)(1,2)(1,3)

(2,1)(2,2)(2,3)

Fig. 7.5 The waveguides crossings hops for the hybrid topology in Figure 7.1

the worst case insertion loss for a single switch is 1 drop and 4 crossings.

Dwc
sw = 1 Cwc

sw = 4 (7.3)

Concerning indirect subnetworks, they exhibit a different behavior according to the radix of
the switch used. Here, we will consider only a single-stage implementation of the indirect
subnetworks with a single high-radix switch. In a single high radix switch, the number
of ring resonators is ki (ki −2). The worst case number of drops into a ring is directly
proportional to the number of stages of the networks since at each stage a switching decision
is taken. As a consequence

Dwc
in = 1 (7.4)

Concerning the crossings, using high radix switches tends to concentrate the crossings
within the switches rather than in the waveguides between them. As a result, the worst
case number of waveguide crossings depends on the number of ports according to

Cwc
in = ki −2 (7.5)

Concerning the waveguide crossings between gateway switches and indirect subnet-
works, we introduce a new concept called waveguide crossings hop (Hcross). Usually, in
the networking terminology, a hop is defined as an intermediate device through which data

7.2 Performance and Energy and Models 117

pass when moving from a source to a destination. A waveguide crossings hop, instead, is
made of a certain number of waveguide crossings located at the intersection between two in-
direct subnetworks, one running along the x-dimension and the other along the y-dimension.
Figure 7.5 shows the six waveguide crossings hops present in the positive quadrant of the
hybrid topology in Figure 7.1. Each waveguide crossing hop may be uniquely identified by
its axis coordinates. In addition, it is associated with two weights (w0,w1) corresponding
to the number of waveguides that a signal needs to cross when moving along the x- and y-
dimension. The total number of waveguides crossings of a single waveguide crossings hop
is w0 ·w1. The weights of a hop can be calculated based on its position (x0,y0) as follows:
w0 = k1/2− |x0| and w1 = k0/2− |y0|. Since there are (k0/2− 1)(k1/2− 1) waveguide
crossing hops in each of the four quadrants, the total number of waveguide crossings over
all the hops is

4
k0/2

∑
x=1

k1/2

∑
y=1

(
k1

2
− x

)(
k0

2
− y

)
=

k0k1

4

(
k0

2
−1

)(
k1

2
−1

)
(7.6)

The number of waveguide crossing hops between a gateway switch (xsw,ysw) and an indirect
network [dim, pos] along the x and y dimension are respectively (|ysw|−1) and (|xsw|−1).
As a result, the number of waveguide crossings between an indirect network and a gateway
switch is

Csw−in =

(|ysw|−1)
(

k1
2 −|xsw|

)
if dim = 0,

(|xsw|−1)
(

k0
2 −|ysw|

)
if dim = 1.

(7.7)

The worst case number of waveguide crossings between a gateway switch and an indirect
subnetwork is calculated by finding the maximum value of the function in Equation 7.7.
Since |xsw|max = k1/2, |ysw|max = k0/2 and |xsw|min = |ysw|min = 1, then

Cwc
sw−in =

(
k0

2
−1

)(
k1

2
−1

)
(7.8)

In a path between two switches (x0,y0) and (x1,y1) with x0 ̸= x1 ∧ y0 ̸= y1 using XY
routing it is necessary to sum the four components (x0,y0) → [0,x0], [0,x0] → (x0,y1),
(x0,y1) → [1,y1] and [1,y1] → (x1,y1). As a result, the number of waveguide crossings

118 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

in all the waveguide crossings hops between two gateway switches is

CXY
sw−sw = (|y0|−1)

(
k1

2
−|x0|

)
+(|y1|−1)

(
k1

2
−|x0|

)
+(|x0|−1)

(
k0

2
−|y1|

)
+(|x1|−1)

(
k0

2
−|y1|

)
= (|y0|+ |y1|−2)

(
k1

2
−|x0|

)
+(|x0|+ |x1|−2)

(
k0

2
−|y1|

)
(7.9)

In the same way, in case of YX routing

CY X
sw−sw = (|y0|+ |y1|−2)

(
k1

2
−|x1|

)
+(|x0|+ |x1|−2)

(
k0

2
−|y0|

) (7.10)

In Equation 7.9 and Equation 7.10 the first addend provides the number of waveguide cross-
ings when moving in the x-dimension while the second in the y-dimension. In case of x0 = x1

(y0 = y1) the equation is reduced by removing the respective addend as follows.

Csw−sw =

(|y0|+ |y1|−2)
(

k1
2 −|x0|

)
if x0 = x1,

(|x0|+ |x1|−2)
(

k0
2 −|y0|

)
if y0 = y1.

(7.11)

The worst case number of waveguide crossings between two endpoint gateway switches is
calculated by finding the maximum value of the functions in Equation 7.9, Equation 7.10,
or Equation 7.11.

Cwc
sw−sw =

k0k1

2
− k0 − k1 +2 (7.12)

7.2 Performance and Energy and Models 119

The worst case paths are the following:

XY routing:

(
±xi,±k0

2

)
→

(
±k1

2 ,±1
)

∀xi ̸= k1
2 ,(

±1,±k0
2

)
→

(
±k1

2 ,±yi

)
∀yi ̸= k0

2 .

YX routing:

(
±k1

2 ,±yi

)
→

(
±1,±k0

2

)
∀yi ̸= k0

2 ,(
±k1

2 ,±1
)
→

(
±xi,±k0

2

)
∀xi ̸= k1

2 .

X routing:
(
±1,±k0

2

)
→

(
±1,∓k0

2

)
Y routing:

(
±k1

2
,±1

)
→

(
∓k1

2
,±1

)

By summing up all the partial waveguide crossings, we can obtain the worst case number
of waveguide crossings between two cores

Cwc =Cwc
sw−sw +∑

dim
Cwc

in +∑
sw

Cwc
sw =

k0k1

2
+10 (7.13)

Since Cwc is a sum of several terms and the one with the largest growth rate is Cwc
sw−sw,

which depends on the path, the routing algorithm directly impacts the total insertion loss.
As an example, consider the two possible paths between switches (1,4), (3,1) in Fig. 7.5(a).
By using XY routing Csw−sw = 12, while in case of YX routing Csw−sw = 0. More generally,
when CXY

sw−sw > CY X
sw−sw the YX routing provides less insertion loss than XY routing. This

happens when
(x0y1 − x1y0)+(x1 − x0)+(y0 − y1)< 0 (7.14)

Switching between XY and YX will reduce the Cwc
sw−sw between two switches (x0,y0) and

(x1,y1) with x0 ̸= x1 ∧ y0 ̸= y1 as follows

Cwc
sw−sw

x0 ̸=x1∧y0 ̸=y1

=
k0k1

2
− 3

2
max(k0,ki)−2min(k0,k1)+7 (7.15)

The worst case paths are
(
±1,±min(k0,k1)

2 −1
)
↔

(
±2,±min(k0,k1)

2

)
if k0 ≤ k1(

±min(k0,k1)
2 −1,±1

)
↔

(
±min(k0,k1)

2 ,±2
)

if k0 ≥ k1

This reduction does not apply to the case x0 = x1 ∨ y0 = y1, and hence the worst case is still
unchanged.

120 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

In order to reduce Cwc
sw−sw for every possible case, it is necessary to use a non-minimal

routing. This is the reason why we propose the Insertion Loss Aware Routing (ILAR) rout-
ing strategy that, allowing path crossing up to three indirect subnetworks, reduce Cwc

sw−sw of
around 50% regardless of the size of the network.

7.2.2 Energy Model

In order to evaluate the energy consumption of the whole network it is necessary to consider
the consumption of both the ENoC and the ONoC. Regarding the electronic power consump-
tion, we rely on the method presented in [43] previously used in a similar work [136]. The
method is based on the assumption that at each hop it is necessary to perform the following
operations: 1) reading from the buffer; 2) taking routing and arbitration decisions; 3) cross-
ing the inner switch; 4) going through the link; and 5) writing to a buffer. As a consequence
the energy consumed by sending a message end-to-end is equal to the sum of these energies
times the number of hops.

Emessage = Ehop ×Nhops (7.16)

where Nhops is the number of hops passed through by a message and Ehop is the energy
necessary to cross a single hop.

Ehop = (Elink ×dlink)+Ebu f f er +Ecrossbar +Estatic (7.17)

Table 7.2 reports the values of the energy consumed in these operations (Ebu f f er is the sum
of the two components due to reading and writing, while the energy due to routing and
arbitration is neglected) as evaluated in [136].

Table 7.2 Energy consumpion for an electronic hop crossing

Parameter Value
Elink 0.34 pJ/mm/bit
Ebu f f er 0.12 pJ/bit
Ecrossbar 0.36 pJ/bit
Estatic 0.35 pJ/bit

On the contrary, photonic signaling benefits from the two proprieties of bit-rate trans-
parency and low loss in optical waveguides, meaning that the energy consumption necessary
to transmit a message in the ONoC is independent of the bit-rate and the distance between
the two end points. The power consumption of a PSE depends on its state: in the OFF state
the power is negligible, while in the ON state it consumes about 10 mW [156]. This means
that the energy that a message consumes depends on how long the PSEs are in the ON state

7.3 Experimental Evaluation 121

regardless of whether they are used or not. As a consequence, one should avoid leaving
PSEs in their ON state.

7.3 Experimental Evaluation

7.3.1 Simulation Setup

The simulation environment is obtained by extending and modifying an in-house event-
driven cycle-accurate NoC simulator. The optical bandwidth, the number of usable wave-
lengths as well as the energy consumption are evaluated by integrating the models in Sec-
tion 7.2 into the simulator. The main simulation parameters are summarized in Table 7.3.
We targeted a 32 nm process technology, and we assumed a 400mm2 CMP die area. Regard-
ing the ENoC, all the data channels have the same bus width of 32 bits, equal to a single
flit. The routers are configured to have a buffer depth of 6 flits. The electronic components
in the network are clocked at 1.0 GHz, while the optical clock speed is conservatively set
to 10 Ghz as in [13]. According to [16], a 30 dB optical power budget and a 10 Gb/s fixed
modulation rate per wavelength are assumed. In addition the laser sources are assumed to
be off-chip and, as a consequence, their power consumption is neglected.

Table 7.3 Simulation parameters

Parameter Value
Chip size (mm2) 20×20
Flit Size (Bytes) 4
Buffer Size (Flits) 6
Electronic Clock Frequency (Ghz) 1
Optical Clock Frequency (Ghz) 10
Optical Power Budget (dB) 30
Modulation rate (Gb/s) 10

In order to test our architecture and the achievable performance/power consumption
gains, we first compared H2ONoC first with an electronic mesh-based NoC and then with
two previously proposed hybrid photonic-electronic active NoCs. The comparison was done
by means of three synthetic benchmarks where messages are generated according to a uni-
form distribution. The three benchmarks differ in the message size distributions, as shown
in Fig. 7.6. The distributions were chosen in order to represent different realistic traffic
workloads. Bench I is characterized by a communication pattern with a large number of
small-size messages normally distributed around 8 bytes with a small variance and a few
large-size messages normally distributed around 2 kB with a high variance. Differently, in
Bench II, the messages have an average medium size of 256 Bytes and smaller size mes-
sages are generated with a higher probability. Bench III is the opposite of Bench II since the

122 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

P
ro

b
a

b
il

it
y

Message Size (bytes)
1024 2048 3072 4096

0

1 Bench I

Bench III

Bench II

Fig. 7.6 The message sizes distributions for the three benchmarks.

average size is around 1 kB and large-size messages are generated with a higher probability
compared to small-size messages.

7.3.2 Analyzing the Path-setup overhead

Optical circuit switching has many benefits. Once an optical path is established, the com-
munication latency and the power consumption are independent of the distance between
the two end points. In addition the wavelengths selectivity can be used with a bandwidth
aggregation purpose. However, the path-setup protocol introduces an overhead in terms of
both latency and power consumption that must be carefully evaluated when deciding to send
a message optically: using the ONoC to send messages with a size smaller than a certain
threshold leads to a power waste and a latency increase. Fig. 7.7 shows the path-setup con-
tribution to the latency and power consumption for sending optically a message for various
message sizes. The path-setup overhead is constant, independently of the message size,
while the latency and power consumption due to the optical signaling increase with the mes-
sage size. As an example, the latency and power overhead for sending a 256 bytes message
optically are respectively more than 90% and 85%, while in case of 64 kB message size the
overhead drops to respectively 18% and 9%.

7.3.3 Comparisons with Electronic Mesh

We first carried out a set of experiments to evaluate the benefits of using the H2ONoC
architecture compared to a traditional electronic mesh-based network-on-chip (ENoC). For
the comparison we rely on a state-of-the-art ENoC with a link width of a single flit, a
buffer depth of six flits, and a three-stage pipelined router. The results in terms of latency
and energy consumption for an 8× 8 CMP in absence of congestion are summarized in
Fig. 7.8. As expected, the latency of the ENoC is extremely dependent on the message

7.3 Experimental Evaluation 123

P
e

rc
e

n
ta

g
e

(b)(a)
P

e
rc

e
n

ta
g

e

Path-setup Optical Data Transfer

0,0

0,2

0,4

0,6

0,8

1,0

655361638440961024256
0,0

0,2

0,4

0,6

0,8

1,0

655361638440961024256

Message Size (bytes) Message Size (bytes)

Fig. 7.7 The path-setup overhead for sending optically a message in term of (a) latency and
(b) power consumption for varying message sizes.

size and hence sending large-size messages on the ENoC will eventually lead to congesting
the network. Differently, the latency of H2ONoC is almost message size insensitive. The
main source of latency depends on the path-setup overhead that is constant regardless of
the message size. Similar considerations can be made for the energy consumption: optical
signaling provides a large bandwidth, enabling a considerable performance per watt. The
power consumption is made up of two components, the first due to the path-setup overhead
while the second depends on the number of ring resonators in the ON state. In H2ONoC,
both the two components are not affected by the message size and the distance between the
two end points. Obviously, this is not true for the ENoC leading to extremely high energy
consumption for large-size messages.

7.3.4 Comparisons with Hybrid Optical-Electronic Mesh and Torus
NoC

In this section, a comparison with two previously proposed hybrid photonic-electronic ac-
tive architectures is performed. The two NoCs are the torus-based hybrid NoC presented
in [161] and the mesh-based hybrid NoC presented in [100]. In order to provide a fair
comparison, the two architectures were implemented in our simulator according to the de-
scription provided in the respective papers. Fig. 7.9 shows for each topology the maximum
possible network-level insertion loss for varying the CMP size. The insertion loss is rep-
resented as the breakdown of the three main components due to the propagation on the

124 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

L
a

te
n

c
y

 (
c

yc
le

s)

(b)

(a)

E
n

e
rg

y
 (

n
J)

H2ONoC Electronic Mesh NoC

0

101

102

103

104

655361638440961024256

0

10

102

103

104

655361638440961024256

Message Size (bytes)

Message Size (bytes)

Fig. 7.8 A comparison with an electronic mesh-based NoC in term of (a) latency and (b)
energy per message consumption.

waveguide, the waveguide crossing, and the ring dropping. These graphs are evaluated us-
ing the values in Table 7.1. The main component is the propagation loss that depends on the
length of the longest optical circuit. Both [136] and [100] rely on dimension order routing
while H2ONoC uses ILAR. For these topologies with these routing strategies, the longest
path is equal to the semiperimeter of the chip size. As a consequence, the insertion loss is the
same for the three topologies. The number of occurrences of dropping into a ring is equal
to three for the mesh and torus topologies considering an implementation of the photonic
switches with straight default paths. This leads to a loss of 1.5 dB. Differently, as explained
in Section 7.2, the worst case number of droppings into a ring with H2ONoC is five and
hence the loss is 2.5 dB. Concerning the insertion loss due to the waveguide crossings, the
torus topology outperform the mesh topology of an average 15%, while H2ONoC has an
average of 90% less loss compared to the torus. This difference results in a bandwidth gain.

Fig. 7.10 shows a latency comparison for the 8× 8 and 12× 12 CMPs for the dif-

7.3 Experimental Evaluation 125

In
se

rt
io

n
 L

o
ss

 (
d

B
)

In
se

rt
io

n
 L

o
ss

 (
d

B
)

In
se

rt
io

n
 L

o
ss

 (
d

B
)

Topology Size (routers)

Topology Size (routers)

Topology Size (routers)

(b)

(c)

(a)

0

1

2

3

4

5

6

7

8

PropagationCrossingDropping into a ring

18x1816x1614x1412x1210x108x86x64x4

0

1

2

3

4

5

6

7

8

18x1816x1614x1412x1210x108x86x64x4

0

1

2

3

4

5

6

7

8

18x1816x1614x1412x1210x108x86x64x4

Fig. 7.9 The worst case network-level insertion loss. (a) Mesh Topology. (b) Torus Topology.
(c) Hybrid Topology.

ferent benchmarks. For the first benchmark, H2ONoC achieves better results compared to
the other architectures thanks to the hybrid topology that helps when sending the large-size

126 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology
L

a
te

n
cy

 (
C

yc
le

s)
L

a
te

n
cy

 (
C

yc
le

s)
L

a
te

n
cy

 (
C

yc
le

s)

Injection rate

(b)

(c)

(a)

0

100

200

300

400

500

0.40.350.30.250.20.150.10.05

0

50

100

150

200

250

300

0.40.350.30.250.20.150.10.05

0

20

40

60

80

100

Hybrid Mesh NoC

Hybrid Torus NoC

H2ONoC

0.40.350.30.250.20.150.10.05

L
a

te
n

cy
 (

C
yc

le
s)

L
a

te
n

cy
 (

C
yc

le
s)

L
a

te
n

cy
 (

C
yc

le
s)

Injection rate

(e)

(f)

(d)

0

100

200

300

400

500

0.40.350.30.250.20.150.10.05

0

100

200

300

400

500

0.40.350.30.250.20.150.10.05

0

30

60

90

120

150

0.40.350.30.250.20.150.10.05

Injection rate Injection rate

Injection rate Injection rate

Fig. 7.10 Latency comparison between H2ONoC, the Hybrid Torus NoC [136], and the
Hybrid Mesh NoC [100] for two different CMP sizes 8×8 (a) (b) (c) and 12×12(d) (e) (f)
for the three benchmarks (a) (d) Bench I (b) (e) Bench II (c) (f) Bench III.

messages. The difference with the torus and mesh NoCs in case of a 8×8 CMP are on the
average respectively 18% and 27%. These values increase for the 12×12 CMP. Concerning
the second benchmark, which has smaller size messages, H2ONoC performs similar to the
torus NoC but both H2ONoC and the torus NoC exhibit a 20% advantage over the mesh
NoC. For some injection rates the torus NoC outperforms H2ONoC. This is because with
this benchmark the average size of the messages is quite small and hence the reduced di-
ameter of the torus topology may be beneficial in order to reduce the path-setup overhead
that is the main components of the latency for messages of this size. Concerning the third
benchmark, H2ONoC performs better than both of the alternative architectures thanks to the
hybrid topology. Obviously, as the injection rate increases, the network begins saturating
and the latency grows rapidly. In case of bigger message sizes, such as in Bench III, this
happens with a smaller value of the injection rate. In general, H2ONoC is able to keep
the latency under acceptable values for every benchmark providing better results in case of
traffic workloads with large size messages. Fig. 7.11 shows a throughput comparison. The
throughput and latency trends are similar to each other. Under a specific threshold of the
injection rates, i.e. about 0.15, the three architectures provide the same throughput, while
for high values of the injection rate, H2ONoC performs better than the alternative architec-

7.3 Experimental Evaluation 127

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

Injection rate

(b)

(c)

(a)

0,5

1,0

1,5

2,0

2,5

0.40.350.30.250.20.150.10.05

0,1

0,2

0,3

0,4

0,5

0,6

0.40.350.30.250.20.150.10.05

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Hybrid Mesh NoC

Hybrid Torus NoC

H2ONoC

0.40.350.30.250.20.150.10.05

Injection rate

(e)

(f)

(d)

0,0

0,5

1,0

1,5

2,0

0.40.350.30.250.20.150.10.05

0,1

0,2

0,3

0,4

0,5

0.40.350.30.250.20.150.10.05

0,1

0,2

0,3

0,4

0,5

0,6

0.40.350.30.250.20.150.10.05

Injection rate Injection rate

Injection rate Injection rate

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

T
h

ro
u

g
h

p
u

t

(F
lit

s/
C

yc
le

s/
#

R
o

u
te

rs
)

Fig. 7.11 Throughput comparison between H2ONoC, the Hybrid Torus NoC [136], and the
Hybrid Mesh NoC [100] for two different CMP sizes 8×8 (a) (b) (c) and 12×12(d) (e) (f)
for the three benchmarks (a) (d) Bench I (b) (e) Bench II (c) (f) Bench III.

tures. The throughput of the mesh architecture begins saturating very early while the torus
architecture performs similar to H2ONoC. For very high injection rates (more than 0.35)
H2ONoC has a slight advantage thanks to the higher bandwidth of the photonic path. As
with the latency, the throughput begins saturating for high injection rates leading to conges-
tion. Finally, Fig. 7.12 evaluates the energy consumption for sending a single bit optically.
The consumption is divided in two components: the path-setup electronic consumption and
the energy consumed by the photonic elements along the optical path. The photonic power
consumption is quite constant regardless of the message size, while the path-setup power
overhead is higher in the second benchmark due to the low average message sizes. For the
first benchmark, the values are the same for the three architectures. When using the second
benchmark, the torus have an advantage caused by its wrap-around links that reduce the
network diameter, useful in case of small messages since the path-setup overhead has a ma-
jor impact. Differently, using Bench III, H2ONoC outperforms the other two architectures
since it performs better in case of large-size messages.

128 H2ONoC: a Hybrid Optical-Electronic NoC based on Hybrid Topology

E
n

e
rg

y
 (

p
J/

b
it

)

Bench II

(b)

(a)

0,0

0,3

0,6

0,9

1,2

1,5

1,8

0,0

0,1

0,2

0,3

0,4

0,5

0,6

Bench III

E
n

e
rg

y
 (

p
J/

b
it

)

Bench I

Bench II Bench IIIBench I

H 2O
NoC

H
ybrid Torus

H
ybrid M

esh

E
control

E
ONoC

Fig. 7.12 Average energy efficiency comparison for two different CMP sizes 8× 8 (a) and
12× 12 (b) for the three benchmarks. The breakdown of the energy consumption for the
electronic and optical components is shown.

7.4 Summary

In this chapter, we proposed H2ONoC, a hybrid network-on-chip architecture that exploits
a combination of electrical and optical signaling to face future CMP needs in terms of per-
formance and energy efficiency. An electronic packet-switched NoC is used for handling
control and short size messages and an optical circuit-switched network for large-size mes-
sages. Hybrid topologies are used in the photonic layer as a solution enabling reduced power
loss. H2ONoC exploits the high wavelength selectivity provided by photonic signaling in
order to implement ultra-high bandwidth aggregation. The integration of classical electron-
ics with silicon photonics introduces new design challenges. All the main features of the
architecture are analyzed and presented in this chapter.

7.4 Summary 129

Compared to an all-electrical concentrated mesh topology, H2ONoC improves by sev-
eral orders of magnitude the performance as well as the energy efficiency of large-message
communication. Compared to previously proposed architectures, H2ONoC demonstrates
higher throughput, lower latency, and improved energy efficiency with heavy traffic.

Chapter 8

Conclusion

First of all, this thesis has presented an extensive review of state-of-the-art design automa-
tion techniques for application-specific electronic on-chip interconnects: Chapter 2 sur-
veyed the most relevant techniques in the literature to analyze a given interconnect solu-
tion and reviewed the main approaches available for interconnect synthesis, including sev-
eral advanced aspects such as co-synthesis of memory and communication architectures,
joint scheduling and interconnect synthesis, floorplanning, dynamic configuration, multi-
path communication.

Then, an automated design methodology, for the synthesis of complex electronic on-
chip communication architectures, is presented. The approach combines crossbars and
shared buses, connected through bridges, in a hierarchical topology inherently supporting
multiple communication paths, yielding a scalable structure and enabling efficient commu-
nication patterns. In addition, the above design methodology, presented in Chapter 3, is
improved in Chapter 4 by taking into account possible dependencies between tasks. The
enhanced approach concurrently defines the structure of the interconnect and the commu-
nication task scheduling in order to better exploit the achievable parallelism. Experimental
results show that these approaches can synthesize designs made of dozens of IP cores with
a small communication overhead and low area and power requirements, exhibiting encour-
aging improvements over previous proposals in the literature.

While the first half of this thesis targets electronic interconnects, the second half ad-
dresses silicon photonics, one of the most prominent emerging technologies for on-chip
communication. In that respect, this thesis, first, introduces the basics of silicon photonics
and shows its theoretical benefits and then explores a number of non trivial design dilem-
mas affecting its practical applicability. Chapter 5 provides a cross-cutting understanding of
these design challenges, that is an essential step for harnessing the full potential of on-chip
Photonics in future computing scenarios.

132 Conclusion

Then, Chapter 6 proposes and compares, in terms of performance and energy consump-
tion, some path-setup architectural solutions for hybrid photonic-electronic on-chip network
that differ from each other in the routing algorithm, the path-setup protocol, the deadlock
avoidance technique, and some implementation choices such as the number of virtual chan-
nels used. Based on this study, a new power-aware path-setup protocol, that is able to reduce
the path-setup latency and the power consumption due to its ability to put allocated circuit
on a stand-by state, is proposed.

Finally, Chapter 7 presents H2ONoC, a hybrid network-on-chip architecture that ex-
ploits a combination of electrical and optical signaling to face future CMP needs in terms
of performance and energy efficiency. An electronic packet-switched NoC is used for han-
dling control and short size messages and an optical circuit-switched network for large-size
messages. Hybrid topologies are used in the photonic layer as a solution enabling reduced
power loss. H2ONoC exploits the high wavelength selectivity provided by photonic signal-
ing in order to implement ultra-high bandwidth aggregation. Compared to an all-electrical
concentrated mesh topology, H2ONoC improves by several orders of magnitude the per-
formance as well as the energy efficiency of large-message communication. Compared to
previously proposed architectures, H2ONoC demonstrates higher throughput, lower latency,
and improved energy efficiency with heavy traffic.

References

[1] (1999). AMBA Specification (Rev 2.0). ARM.

[2] (2007). STBus Communication System: Concepts And Definitions. STMicroelectronics.

[3] (2012a). LogiCORE IP AXI Interconnect (v1.06.a). Xilinx.

[4] (2012). Nvidia’s next generation cuda™ compute architecture: Kepler™ gk110. White
Paper.

[5] (2012). PrimeTime Golden Timing Signoff Solution and Environment. Synopsys.

[6] (2012b). XPower Estimator User Guide. Xilinx.

[7] (2012). Zynq-7000 All Programmable SoC Overview. Xilinx.

[8] (2013). AMBA AXI and ACE Protocol Specification. ARM.

[9] Adya, S. N. and Markov, I. L. (2003). Fixed-outline floorplanning: Enabling hier-
archical design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
11(6):1120–1135.

[10] Atienza, D., Angiolini, F., Murali, S., Pullini, A., Benini, L., and De Micheli, G.
(2008). Network-on-chip design and synthesis outlook. INTEGRATION, the VLSI jour-
nal, 41(3):340–359.

[11] Bambha, N. K. and Bhattacharyya, S. S. (2005). Joint application map-
ping/interconnect synthesis techniques for embedded chip-scale multiprocessors. Par-
allel and Distributed Systems, IEEE Transactions on, 16(2):99–112.

[12] Banks, J., Carson, J., and Nelson, B. (2000). DM Nicol, Discrete-Event System Simu-
lation. Prentice Hall.

[13] Batten, C., Joshi, A., Orcutt, J., Khilo, A., Moss, B., Holzwarth, C., Popovic, M., Li,
H., Smith, H. I., Hoyt, J., et al. (2008). Building manycore processor-to-dram networks
with monolithic silicon photonics. In High Performance Interconnects, 2008. HOTI’08.
16th IEEE Symposium on, pages 21–30. IEEE.

[14] Benini, L. and De Micheli, G. (2002). Networks on chips: A new soc paradigm.
Computer, 35(1):70–78.

[15] Benini, L., Macchiarulo, L., Macii, A., and Poncino, M. (2002). Layout-driven mem-
ory synthesis for embedded systems-on-chip. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 10(2):96–105.

134 References

[16] Bergman, K., Carloni, L. P., Biberman, A., Chan, J., and Hendry, G. (2013). Photonic
Network-on-Chip Design. Springer.

[17] Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., and
De Micheli, G. (2005). Noc synthesis flow for customized domain specific multiproces-
sor systems-on-chip. Parallel and Distributed Systems, IEEE Transactions on, 16(2):113–
129.

[18] Bezerra, G. B., Forrest, S., and Zarkesh-Ha, P. (2011). Reducing energy and increas-
ing performance with traffic optimization in many-core systems. In Proceedings of the
System Level Interconnect Prediction Workshop, page 3. IEEE Press.

[19] Bhojwani, P. and Mahapatra, R. (2003). Interfacing cores with on-chip packet-
switched networks. In VLSI Design, 2003. Proceedings. 16th International Conference
on, pages 382–387. IEEE.

[20] Biberman, A., Lee, B. G., Bergman, K., Dong, P., and Lipson, M. (2008). Demonstra-
tion of all-optical multi-wavelength message routing for silicon photonic networks. In
Optical Fiber Communication Conference, page OTuF6. Optical Society of America.

[21] Bogaerts, W., Dumon, P., Thourhout, D. V., and Baets, R. (2007). Low-loss, low-
cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Optics letters,
32(19):2801–2803.

[22] Borkar, S. (2007). Thousand core chips: a technology perspective. In Proceedings of
the 44th annual Design Automation Conference, pages 746–749. ACM.

[23] Burjorjee, K. M. (2013). Explaining optimization in genetic algorithms with uniform
crossover. In Proceedings of the twelfth workshop on Foundations of genetic algorithms
XII, FOGA XII ’13, pages 37–50, New York, NY, USA. ACM.

[24] Caldwell, A. E., Kahng, A. B., Mantik, S., Markov, I. L., and Zelikovsky, A. (1999).
On wirelength estimations for row-based placement. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 18(9):1265–1278.

[25] Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (6):679–698.

[26] Catthoor, F., Greef, E. d., and Suytack, S. (1998). Custom memory management
methodology: Exploration of memory organisation for embedded multimedia system de-
sign. Kluwer Academic Publishers.

[27] Chan, J., Biberman, A., Lee, B. G., and Bergman, K. (2008). Insertion loss analysis
in a photonic interconnection network for on-chip and off-chip communications. IEEE
Lasers and Electro-Optics Society (LEOS).

[28] Chan, J., Hendry, G., Bergman, K., and Carloni, L. P. (2011). Physical-layer modeling
and system-level design of chip-scale photonic interconnection networks. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 30(10):1507–
1520.

References 135

[29] Chan, J., Hendry, G., Biberman, A., and Bergman, K. (2010). Architectural explo-
ration of chip-scale photonic interconnection network designs using physical-layer anal-
ysis. Journal of Lightwave Technology, 28(9):1305–1315.

[30] Cilardo, A., Fusella, E., Gallo, L., and Mazzeo, A. (2013). Automated synthesis of
fpga-based heterogeneous interconnect topologies. In Field Programmable Logic and
Applications (FPL), 2013 23rd International Conference on, pages 1–8. IEEE.

[31] Cilardo, A., Fusella, E., Gallo, L., and Mazzeo, A. (2014a). Joint communication
scheduling and interconnect synthesis for fpga-based many-core systems. In Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014, pages 1–4.
IEEE.

[32] Cilardo, A., Fusella, E., Gallo, L., Mazzeo, A., and Mazzocca, N. (2014b). Automated
design space exploration for fpga-based heterogeneous interconnects. Design Automa-
tion for Embedded Systems, pages 1–14.

[33] Cong, J., Huang, Y., and Yuan, B. (2011). Atree-based topology synthesis for on-chip
network. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Confer-
ence on, pages 651–658. IEEE.

[34] Dally, W. J. and Towles, B. (2001). Route packets, not wires: On-chip interconnection
networks. In Design Automation Conference, 2001. Proceedings, pages 684–689. IEEE.

[35] Daveau, J.-M., Ismail, T. B., and Jerraya, A. A. (1995). Synthesis of system-level
communication by an allocation-based approach. In Proceedings of the 8th international
symposium on System synthesis, pages 150–155. ACM.

[36] De Micheli, G. and Benini, L. (2006). Networks on chips: technology and tools. Aca-
demic Press.

[37] Devanur, N. R. and Feige, U. (2011). An o (n log n) algorithm for a load balancing
problem on paths. In Algorithms and Data Structures, pages 326–337. Springer.

[38] Dick, R. P., Rhodes, D. L., and Wolf, W. (1998). Tgff: task graphs for free. In
Proceedings of the 6th international workshop on Hardware/software codesign, pages
97–101. IEEE Computer Society.

[39] Doany, F. E., Lee, B. G., Assefa, S., Green, W. M., Yang, M., Schow, C. L., Jahnes,
C. V., Zhang, S., Singer, J., Kopp, V. I., et al. (2011). Multichannel high-bandwidth
coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array.
Lightwave Technology, Journal of, 29(4):475–482.

[40] Dong, P., Qian, W., Liao, S., Liang, H., Kung, C.-C., Feng, N.-N., Shafiiha, R., Fong,
J., Feng, D., Krishnamoorthy, A. V., et al. (2010). Low loss silicon waveguides for
application of optical interconnects. In Proc. IEEE Photon. Soc. Summer Topical Meeting
Ser, pages 191–192.

[41] Drinic, M., Kirovski, D., Megerian, S., and Potkonjak, M. (2006). Latency-guided
on-chip bus-network design. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 25(12):2663–2673.

136 References

[42] Edmonds, J. (1968). Optimum branchings. National Bureau of standards.

[43] Eisley, N. and Peh, L.-S. (2004). High-level power analysis for on-chip networks.
In Proceedings of the 2004 international conference on Compilers, architecture, and
synthesis for embedded systems, pages 104–115. ACM.

[44] Esmaeilzadeh, H., Blem, E., St Amant, R., Sankaralingam, K., and Burger, D. (2011).
Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA), 2011
38th Annual International Symposium on, pages 365–376. IEEE.

[45] Feng, K., Ye, Y., and Xu, J. (2013). A formal study on topology and floorplan char-
acteristics of mesh and torus-based optical networks-on-chip. Microprocessors and Mi-
crosystems, 37(8):941–952.

[46] Fusella, E., Flich, J., Cilardo, A., and Mazzeo, A. (2015). On the design of a path-setup
architecture for exploiting hybrid photonic-electronic nocs. In Exploiting Silicon Photon-
ics for Energy-Efficient High Performance Computing (SiPhotonics), 2015 Workshop on,
pages 9–16. IEEE.

[47] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

[48] GASTEIER, M. and GLESNER, M. (1999). Bus-based communication synthesis on
system level. ACM Transactions on Design Automation of Electronic Systems, 4(1):1–11.

[49] Goren, O. and Netanel, Y. (2006). High performance on-chip interconnect system
supporting fast soc generation. In VLSI Design, Automation and Test, 2006 International
Symposium on, pages 1–4. IEEE.

[50] Groups, T. I. T. W. (2005). International technology roadmap for semiconductors (itrs).

[51] Guerrier, P. and Greiner, A. (2000). A generic architecture for on-chip packet-switched
interconnections. In Proceedings of the conference on Design, automation and test in
Europe, pages 250–256. ACM.

[52] Han, K.-H. and Kim, J.-H. (2002). Quantum-inspired evolutionary algorithm for a
class of combinatorial optimization. Evolutionary Computation, IEEE Transactions on,
6(6):580–593.

[53] Hayenga, M., Johnson, D. R., and Lipasti, M. (2010). Pitfalls of orion-based simula-
tion. ORION, 35:40–000.

[54] Ho, R., Mai, K. W., and Horowitz, M. A. (2001). The future of wires. Proceedings of
the IEEE, 89(4):490–504.

[55] Hu, Y., Zhu, Y., Chen, H., Graham, R., and Cheng, C.-K. (2006). Communication
latency aware low power noc synthesis. In Proceedings of the 43rd annual Design Au-
tomation Conference, pages 574–579. ACM.

[56] Hur, J. Y. (2011). Customizing and hardwiring on-chip interconnects in FPGAs. PhD
dissertation, TU Delft.

References 137

[57] Hur, J. Y., Stefanov, T., Wong, S., and Goossens, K. (2012). Customisation of on-chip
network interconnects and experiments in field-programmable gate arrays. IET comput-
ers & digital techniques, 6(1):59–68.

[58] Hur, J. Y., Stefanov, T., Wong, S., and Vassiliadis, S. (2007). Systematic customization
of on-chip crossbar interconnects. In Reconfigurable computing: architectures, tools and
applications, pages 61–72. Springer.

[59] Hur, J. Y., Wong, S., and Stefanov, T. (2010). Design trade-offs in customized on-chip
crossbar schedulers. Journal of Signal Processing Systems, 58(1):69–85.

[60] Iancu, C. C. and Strohmaier, E. (2007). Optimizing communication overlap for high-
speed networks. In Proceedings of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 35–45. ACM.

[61] IBM (2012). Coreconnect interconnect standard.

[62] Issenin, I., Brockmeyer, E., Durinck, B., and Dutt, N. D. (2008). Data-reuse-driven
energy-aware cosynthesis of scratch pad memory and hierarchical bus-based communi-
cation architecture for multiprocessor streaming applications. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 27(8):1439–1452.

[63] Jang, Y., Kim, J., and Kyung, C.-M. (2010). Topology synthesis for low power cas-
caded crossbar switches. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(12):2041–2045.

[64] Ji, R., Xu, J., Yang, L., et al. (2013). Five-port optical router based on microring
switches for photonic networks-on-chip. IEEE Photon. Technol. Lett, 25(5):492–495.

[65] Joo, Y.-P., Kim, S., and Ha, S. (2012). Efficient hierarchical bus-matrix architecture
exploration of processor pool-based mpsoc. Design Automation for Embedded Systems,
16(4):293–317.

[66] Jun, M., Bang, K., Lee, H.-J., Chang, N., and Chung, E.-Y. (2007). Slack-based bus ar-
bitration scheme for soft real-time constrained embedded systems. In Design Automation
Conference, 2007. ASP-DAC’07. Asia and South Pacific, pages 159–164. IEEE.

[67] Jun, M., Woo, D., and Chung, E.-Y. (2012). Partial connection-aware topology synthe-
sis for on-chip cascaded crossbar network. Computers, IEEE Transactions on, 61(1):73–
86.

[68] Jun, M., Yoo, S., and Chung, E.-Y. (2008). Mixed integer linear programming-based
optimal topology synthesis of cascaded crossbar switches. In Design Automation Confer-
ence, 2008. ASPDAC 2008. Asia and South Pacific, pages 583–588. IEEE.

[69] Jun, M., Yoo, S., and Chung, E.-Y. (2009). Topology synthesis of cascaded crossbar
switches. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 28(6):926–930.

[70] Kamil, S., Oliker, L., Pinar, A., and Shalf, J. (2010). Communication requirements and
interconnect optimization for high-end scientific applications. Parallel and Distributed
Systems, IEEE Transactions on, 21(2):188–202.

138 References

[71] Keitel-Schulz, D. and Wehn, N. (2001). Embedded dram development: Technology,
physical design, and application issues. IEEE Design & Test, 18(3):7–15.

[72] Keutzer, K., Newton, A. R., Rabaey, J. M., and Sangiovanni-Vincentelli, A.
(2000). System-level design: Orthogonalization of concerns and platform-based de-
sign. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 19(12):1523–1543.

[73] Kim, S. and Ha, S. (2006). Efficient exploration of bus-based system-on-chip architec-
tures. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(7):681–
692.

[74] Kim, S., Im, C., and Ha, S. (2005). Schedule-aware performance estimation of commu-
nication architecture for efficient design space exploration. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 13(5):539–552.

[75] Kırman, N., Kırman, M., Dokania, R. K., Martinez, J. F., Apsel, A. B., Watkins, M. A.,
and Albonesi, D. H. (2007). On-chip optical technology in future bus-based multicore
designs. IEEE micro, 27(1):56–66.

[76] Knudsen, P. V. and Madsen, J. (1999). Integrating communication protocol selection
with hardware/software codesign. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 18(8):1077–1095.

[77] Lahiri, K., Raghunathan, A., and Dey, S. (2001). System-level performance analysis
for designing on-chip communication architectures. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 20(6):768–783.

[78] Lahiri, K., Raghunathan, A., and Dey, S. (2004). Design space exploration for optimiz-
ing on-chip communication architectures. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 23(6):952–961.

[79] Lahiri, K., Raghunathan, A., and Lakshminarayana, G. (2006). The lotterybus on-
chip communication architecture. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 14(6):596–608.

[80] Lee, B. G., Biberman, A., Dong, P., Lipson, M., and Bergman, K. (2008). All-optical
comb switch for multiwavelength message routing in silicon photonic networks. Photon-
ics Technology Letters, IEEE, 20(10):767–769.

[81] Lee, C., Kim, S., and Ha, S. (2010). A systematic design space exploration of mpsoc
based on synchronous data flow specification. Journal of Signal Processing Systems,
58(2):193–213.

[82] Lee, H. G., Chang, N., Ogras, U. Y., and Marculescu, R. (2007). On-chip commu-
nication architecture exploration: A quantitative evaluation of point-to-point, bus, and
network-on-chip approaches. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 12(3):23.

References 139

[83] Li, S., Chen, K., Ahn, J. H., Brockman, J. B., and Jouppi, N. P. (2011). Cacti-p:
Architecture-level modeling for sram-based structures with advanced leakage reduction
techniques. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Con-
ference on, pages 694–701. IEEE.

[84] Liao, T. G. S., Martin, G., Swan, S., and Grötker, T. (2002). System design with
SystemC. Springer.

[85] Liljeberg, P., Plosila, J., and Isoaho, J. (2003). Self-timed ring architecture for soc
applications. In SOC Conference, 2003. Proceedings. IEEE International [Systems-on-
Chip], pages 359–362. IEEE.

[86] Lin, B.-C., Lee, G.-W., Huang, J.-D., and Jou, J.-Y. (2007). A precise bandwidth con-
trol arbitration algorithm for hard real-time soc buses. In Design Automation Conference,
2007. ASP-DAC’07. Asia and South Pacific, pages 165–170. IEEE.

[87] Liu, M., Lu, Z., Kuehn, W., and Jantsch, A. (2012). A survey of fpga dynamic recon-
figuration design methodology and applications. International Journal of Embedded and
Real-Time Communication Systems (IJERTCS), 3(2):23–39.

[88] Liu, W., Xu, J., Wu, X., Ye, Y., Wang, X., Zhang, W., Nikdast, M., and Wang, Z.
(2011). A noc traffic suite based on real applications. In VLSI (ISVLSI), 2011 IEEE
Computer Society Annual Symposium on, pages 66–71. IEEE.

[89] Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., and Zafalon, R. (2004). Analyzing
on-chip communication in a mpsoc environment. In Proceedings of the conference on
Design, automation and test in Europe-Volume 2, page 20752. IEEE Computer Society.

[90] Lu, R., Cao, A., and Koh, C.-K. (2007). Samba-bus: a high performance bus architec-
ture for system-on-chips. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 15(1):69–79.

[91] Luce, R. D. and Perry, A. D. (1949). A method of matrix analysis of group structure.
Psychometrika, 14(2):95–116.

[92] Lukasiewycz, M., Glaß, M., Reimann, F., and Teich, J. (2011). Opt4j: a modular
framework for meta-heuristic optimization. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation, GECCO ’11, pages 1723–1730, New York,
NY, USA. ACM.

[93] Lysaght, P., Blodget, B., Mason, J., Young, J., and Bridgford, B. (2006). Invited paper:
Enhanced architectures, design methodologies and cad tools for dynamic reconfiguration
of xilinx fpgas. In Field Programmable Logic and Applications, 2006. FPL’06. Interna-
tional Conference on, pages 1–6. IEEE.

[94] Marculescu, R., Ogras, U. Y., Peh, L.-S., Jerger, N. E., and Hoskote, Y. (2009). Out-
standing research problems in noc design: system, microarchitecture, and circuit perspec-
tives. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(1):3–21.

140 References

[95] Martin, S. M., Flautner, K., Mudge, T., and Blaauw, D. (2002). Combined dynamic
voltage scaling and adaptive body biasing for lower power microprocessors under dy-
namic workloads. In Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, pages 721–725. ACM.

[96] Meftali, S., Gharsalli, F., Rousseau, F., and Jerraya, A. A. (2001). An optimal memory
allocation for application-specific multiprocessor system-on-chip. In Proceedings of the
14th international symposium on Systems synthesis, pages 19–24. ACM.

[97] Mello, A., Tedesco, L., Calazans, N., and Moraes, F. (2005). Virtual channels in
networks on chip: implementation and evaluation on hermes noc. In Proceedings of the
18th annual symposium on Integrated circuits and system design, pages 178–183. ACM.

[98] Meyer, B. H. and Thomas, D. E. (2007). Simultaneous synthesis of buses, data map-
ping and memory allocation for mpsoc. In Proceedings of the 5th IEEE/ACM inter-
national conference on Hardware/software codesign and system synthesis, pages 3–8.
ACM.

[99] Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1st edition.

[100] Mo, K. H., Ye, Y., Wu, X., Zhang, W., Liu, W., and Xu, J. (2010). A hierarchical hy-
brid optical-electronic network-on-chip. In VLSI (ISVLSI), 2010 IEEE Computer Society
Annual Symposium on, pages 327–332. IEEE.

[101] Moraes, F., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004). Hermes: an
infrastructure for low area overhead packet-switching networks on chip. INTEGRATION,
the VLSI journal, 38(1):69–93.

[102] Mujuni, E. and Rosamond, F. (2008). Parameterized complexity of the clique par-
tition problem. In Proceedings of the fourteenth symposium on Computing: the Aus-
tralasian theory - Volume 77, CATS ’08, pages 75–78, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc.

[103] Murali, S., Benini, L., and De Micheli, G. (2007). An application-specific design
methodology for on-chip crossbar generation. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 26(7):1283–1296.

[104] Murali, S. and De Micheli, G. (2004). Bandwidth-constrained mapping of cores onto
noc architectures. In Proceedings of the conference on Design, automation and test in
Europe-Volume 2, page 20896. IEEE Computer Society.

[105] Murali, S. and De Micheli, G. (2005). An application-specific design methodology
for stbus crossbar generation. In Design, Automation and Test in Europe, 2005. Proceed-
ings, pages 1176–1181. IEEE.

[106] Muralimanohar, N., Balasubramonian, R., and Jouppi, N. P. (2009). Cacti 6.0: A tool
to model large caches. HP Laboratories.

[107] Na, S., Yang, S., and Kyung, C.-M. (2009). Low-power bus architecture composition
for amba axi. Journal of Semiconductor Technology and Science, 9(2):1.

References 141

[108] Nesterov, Y., Nemirovskii, A., and Ye, Y. (1994). Interior-point polynomial algo-
rithms in convex programming, volume 13. SIAM.

[109] Nikdast, M., Xu, J., Wu, X., Zhang, W., Ye, Y., Wang, X., Wang, Z., and Wang, Z.
(2014). Systematic analysis of crosstalk noise in folded-torus-based optical networks-on-
chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 33(3):437–450.

[110] Nikolova, D., Rumley, S., Calhoun, D., Li, Q., Hendry, R., Samadi, P., and Bergman,
K. (2015). Scaling silicon photonic switch fabrics for data center interconnection net-
works. Optics Express, 23(2):1159–1175.

[111] Ogras, U. Y., Bogdan, P., and Marculescu, R. (2010). An analytical approach for
network-on-chip performance analysis. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 29(12):2001–2013.

[112] Ogras, U. Y., Hu, J., and Marculescu, R. (2005). Key research problems in noc
design: a holistic perspective. In Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 69–74. ACM.

[113] Owens, J. D., Dally, W. J., Ho, R., Jayasimha, D., Keckler, S. W., and Peh, L.-
S. (2007). Research challenges for on-chip interconnection networks. IEEE micro,
27(5):96.

[114] Panda, P. R., Dutt, N. D., and Nicolau, A. (1999). Memory issues in embedded
systems-on-chip: optimizations and exploration. Springer.

[115] Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. (2005a). Effect of traffic
localization on energy dissipation in noc-based interconnect. In Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on, pages 1774–1777. IEEE.

[116] Pande, P. P., Grecu, C., Jones, M., Ivanov, A., and Saleh, R. (2005b). Performance
evaluation and design trade-offs for network-on-chip interconnect architectures. Comput-
ers, IEEE Transactions on, 54(8):1025–1040.

[117] Pandey, S. and Drechsler, R. (2008). Robust on-chip bus architecture synthesis for
mpsocs under random tasks arrival. In Proceedings of the 2008 Asia and South Pacific
Design Automation Conference, pages 601–606. IEEE Computer Society Press.

[118] Pandey, S. and Glesner, M. (2007). Simultaneous on-chip bus synthesis and voltage
scaling under random on-chip data traffic. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 15(10):1111–1124.

[119] Papanikolaou, A., Koppenberger, K., Miranda, M., and Catthoor, F. (2004). Memory
communication network exploration for low-power distributed memory organisations. In
Signal Processing Systems, 2004. SIPS 2004. IEEE Workshop on, pages 176–181. IEEE.

[120] Pasricha, S. and Dutt, N. (2010). On-chip communication architectures: system on
chip interconnect. Morgan Kaufmann.

[121] Pasricha, S., Dutt, N., and Ben-Romdhane, M. (2004). Fast exploration of bus-based
on-chip communication architectures. In Proceedings of the 2nd IEEE/ACM/IFIP inter-
national conference on Hardware/software codesign and system synthesis, pages 242–
247. ACM.

142 References

[122] Pasricha, S. and Dutt, N. D. (2007). A framework for cosynthesis of memory and
communication architectures for mpsoc. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 26(3):408–420.

[123] Pasricha, S., Dutt, N. D., and Ben-Romdhane, M. (2007). Bmsyn: bus matrix commu-
nication architecture synthesis for mpsoc. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 26(8):1454–1464.

[124] Pasricha, S., Dutt, N. D., Bozorgzadeh, E., and Ben-Romdhane, M. (2006). Fabsyn:
Floorplan-aware bus architecture synthesis. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 14(3):241–253.

[125] Pasricha, S., Park, Y.-H., Kurdahi, F. J., and Dutt, N. (2010). Capps: A framework
for power–performance tradeoffs in bus-matrix-based on-chip communication architec-
ture synthesis. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
18(2):209–221.

[126] Penaranda, R., Gomez, C., Gomez, M. E., Lopez, P., and Duato, J. (2012). A new fam-
ily of hybrid topologies for large-scale interconnection networks. In Network Computing
and Applications (NCA), 2012 11th IEEE International Symposium on, pages 220–227.
IEEE.

[127] Peng, H.-K. and Lin, Y.-L. (2010). An optimal warning-zone-length assignment al-
gorithm for real-time and multiple-qos on-chip bus arbitration. ACM Transactions on
Embedded Computing Systems (TECS), 9(4):35.

[128] Pham-Quoc, C., Al-Ars, Z., and Bertels, K. (2012). A heuristic-based
communication-aware hardware optimization approach in heterogeneous multicore sys-
tems. In Reconfigurable Computing and FPGAs (ReConFig), 2012 International Confer-
ence on, pages 1–6. IEEE.

[129] Pyoun, C. H., Lin, C. H., Kim, H. S., and Chong, J. W. (2003). The efficient bus
arbitration scheme in soc environment. In System-on-Chip for Real-Time Applications,
2003. Proceedings. The 3rd IEEE International Workshop on, pages 311–315. IEEE.

[130] Ryu, K. K. and Mooney, V. J. (2004). Automated bus generation for multiprocessor
soc design. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 23(11):1531–1549.

[131] Ryu, K. K., Shin, E., and Mooney, V. J. (2001). A comparison of five different
multiprocessor soc bus architectures. In Digital Systems Design, 2001. Proceedings. Eu-
romicro Symposium on, pages 202–209. IEEE.

[132] Salminen, E., Kulmala, A., and Hamalainen, T. D. (2007). On network-on-chip com-
parison. In Digital System Design Architectures, Methods and Tools, 2007. DSD 2007.
10th Euromicro Conference on, pages 503–510. IEEE.

[133] Salminen, E., Kulmala, A., and Hamalainen, T. D. (2008). Survey of network-on-chip
proposals. white paper, OCP-IP, pages 1–13.

References 143

[134] Sekar, K., Lahiri, K., Raghunathan, A., and Dey, S. (2008). Dynamically config-
urable bus topologies for high-performance on-chip communication. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 16(10):1413–1426.

[135] Shacham, A., Bergman, K., and Carloni, L. P. (2007). On the design of a photonic
network-on-chip. In Proceedings of the First International Symposium on Networks-on-
Chip, pages 53–64. IEEE Computer Society.

[136] Shacham, A., Bergman, K., and Carloni, L. P. (2008). Photonic networks-on-chip
for future generations of chip multiprocessors. Computers, IEEE Transactions on,
57(9):1246–1260.

[137] Shah, H., Shiu, P., Bell, B., Aldredge, M., Sopory, N., and Davis, J. (2002). Repeater
insertion and wire sizing optimization for throughput-centric vlsi global interconnects. In
Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design,
pages 280–284. ACM.

[138] Sherwani, N. A. (1995). Algorithms for VLSI physical design automation. Kluwer
academic publishers.

[139] Srinivasan, K. and Chatha, K. S. (2006). A low complexity heuristic for design of cus-
tom network-on-chip architectures. In Proceedings of the conference on Design, automa-
tion and test in Europe: Proceedings, pages 130–135. European Design and Automation
Association.

[140] Srinivasan, S., Angiolini, F., Ruggiero, M., Benini, L., and Vijaykrishnan, N. (2005a).
Simultaneous memory and bus partitioning for soc architectures. In SOC Conference,
2005. Proceedings. IEEE International, pages 125–128. IEEE.

[141] Srinivasan, S., Li, L., and Vijaykrishnan, N. (2005b). Simultaneous partitioning and
frequency assignment for on-chip bus architectures. In Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1, DATE ’05, pages 218–223, Washing-
ton, DC, USA. IEEE Computer Society.

[142] Strehl, A. and Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. The Journal of Machine Learning Research, 3:583–
617.

[143] Suh, J. and Yoo, H.-J. (2004). Arbitration latency analysis of the shared channel archi-
tecture for high performance multi-master soc. In Advanced System Integrated Circuits
2004. Proceedings of 2004 IEEE Asia-Pacific Conference on, pages 388–391. IEEE.

[144] Thepayasuwan, N. and Doboli, A. (2004). Layout conscious bus architecture syn-
thesis for deep submicron systems on chip. In Design, Automation and Test in Europe
Conference and Exhibition, 2004. Proceedings, volume 1, pages 108–113. IEEE.

[145] Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N. P., Fiorentino,
M., Davis, A., Binkert, N., Beausoleil, R. G., and Ahn, J. H. (2008). Corona: System
implications of emerging nanophotonic technology. In ACM SIGARCH Computer Archi-
tecture News, volume 36, pages 153–164. IEEE Computer Society.

144 References

[146] Varatkar, G. and Marculescu, R. (2002). Traffic analysis for on-chip networks design
of multimedia applications. In Design Automation Conference, 2002. Proceedings. 39th,
pages 795–800. IEEE.

[147] Vassiliadis, S. and Sourdis, I. (2007). {FLUX} interconnection networks on demand.
Journal of Systems Architecture, 53(10):777 – 793. Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation.

[148] Vetter, J. S. and Mueller, F. (2003). Communication characteristics of large-scale
scientific applications for contemporary cluster architectures. Journal of Parallel and
Distributed Computing, 63(9):853–865.

[149] Vlasov, Y. and McNab, S. (2004). Losses in single-mode silicon-on-insulator strip
waveguides and bends. Optics express, 12(8):1622–1631.

[Wang et al.] Wang, H., Lee, B. G., Shacham, A., and Bergman, K. On the design of a 4×
4 nonblocking nanophotonic switch for photonic networks on chip.

[151] Wang, H.-S., Zhu, X., Peh, L.-S., and Malik, S. (2002). Orion: a power-performance
simulator for interconnection networks. In Microarchitecture, 2002.(MICRO-35). Pro-
ceedings. 35th Annual IEEE/ACM International Symposium on, pages 294–305. IEEE.

[152] Wang, L.-T., Chang, Y.-W., and Cheng, K.-T. T. (2009). Electronic design automa-
tion: synthesis, verification, and test. Morgan Kaufmann.

[153] Wolf, W. (2004). The future of multiprocessor systems-on-chips. In Proceedings of
the 41st annual Design Automation Conference, pages 681–685. ACM.

[154] Wolf, W. H. (1994). Hardware-software co-design of embedded systems [and prolog].
Proceedings of the IEEE, 82(7):967–989.

[155] Wuytack, S., Catthoor, F., De Jong, G., and De Man, H. J. (1999). Minimizing the
required memory bandwidth in vlsi system realizations. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 7(4):433–441.

[156] Xia, F., Rooks, M., Sekaric, L., and Vlasov, Y. (2007a). Ultra-compact high order ring
resonator filters using submicron silicon photonic wires for on-chip optical interconnects.
Optics express, 15(19):11934–11941.

[157] Xia, F., Sekaric, L., and Vlasov, Y. (2007b). Ultracompact optical buffers on a silicon
chip. Nature Photonics, 1:65–71.

[158] Xie, Y., Nikdast, M., Xu, J., Wu, X., Zhang, W., Ye, Y., Wang, X., Wang, Z., and
Liu, W. (2013). Formal worst-case analysis of crosstalk noise in mesh-based optical
networks-on-chip. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
21(10):1823–1836.

[159] Xu, C. Q., Xue, C. J., He, Y., and Sha, E. H. (2010). Energy efficient joint scheduling
and multi-core interconnect design. In Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, pages 879–884. IEEE Press.

References 145

[160] Yan, L., Luo, J., and Jha, N. K. (2005). Joint dynamic voltage scaling and adap-
tive body biasing for heterogeneous distributed real-time embedded systems. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 24(7):1030–
1041.

[161] Ye, Y., Xu, J., Wu, X., Zhang, W., Liu, W., and Nikdast, M. (2012). A torus-based
hierarchical optical-electronic network-on-chip for multiprocessor system-on-chip. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 8(1):5.

[162] Yi, Y., Kim, D., and Ha, S. (2007). Fast and accurate cosimulation of mpsoc using
trace-driven virtual synchronization. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 26(12):2186–2200.

[163] Yoo, J., Lee, D., Yoo, S., and Choi, K. (2007). Communication architecture synthesis
of cascaded bus matrix. In Design Automation Conference, 2007. ASP-DAC’07. Asia and
South Pacific, pages 171–177. IEEE.

[164] Yoo, J., Yoo, S., and Choi, K. (2009). Topology/floorplan/pipeline co-design of cas-
caded crossbar bus. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
17(8):1034–1047.

