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Introduction 

 

Aeronautics has made great strides since Wilbur and Orville Wright 

performed the first successful human flight with a means heavier than air, the 17th of 

December 1903. 

Aircraft are faster and faster; the speed of sound has been exceeded by man; 

intercontinental flights are in the ordinary run of things. 

The air freight has become both safe and reliable. For these reasons, 

nowadays, million of people prefer it to others means of transport either for pleasure 

or business. 

The achievement of high standard of quality and safety needs a continuous 

scientific and technological research. Above all the safety requires an economical 

effort, therefore methodologies more and more innovative are demanded in order to 

reduce maintenance costs preserving the safety. 

 

The purpose of the thesis is to present innovative applications within the 

Non Destructive Testing field based upon vibration measurements developed by the 

author at the Department of Aeronautical Engineering of the University of Naples 

“Federico II” (Italy). The aim of the research has been to develop Non Destructive 

Tests (NDT) which meet most of the mandatory requirements for effective health 

monitoring systems while, at the same time, reducing as much as possible the 

complexity of the data analysis algorithm and the experimental acquisition 

instrumentation. In fact, classics techniques, which make use, for example, of 

ultrasonic waves or X ray, have disadvantages like the need to disassembly the part 

we want to test, expensive equipment and highly qualified operators. With the 

innovative methods reported in this thesis it is not necessary to disassemble the part, 

and they can be used even if the part isn’t accessible. 
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The proposed new methods are based upon the acquisition and comparison 

of the Frequency Response Functions (FRFs) of the monitored structure before and 

after a damage occurs. Structural damage modifies the dynamic behaviour of a 

structure affecting its mass, stiffness and damping and consequently the FRFs of a 

damaged structure, when compared with the FRFs of a sound structure, makes the 

identification, localization and quantification of structural damage possible.  

The activities presented in this thesis focus mainly on a new FRFs 

processing technique based upon the determination of a representative “Damage 

Index” for identifying and analysing damage on real-scale aeronautical structural 

components, such as an MD-11 large-scale fuselage reinforced panel, on an 

aeronautical composite panel and on a real ATR-72 aircraft.  

Furthermore, a dedicated neural network algorithm has been elaborated 

aimed at obtaining a “recognition-based learning” method. This kind of learning 

methodology permits us to train the neural network in order to enable it to recognise 

only “positive” examples and consequently discarding “negative” ones. Within the 

structural NDT a “positive” example means a “healthy” state of the analysed 

structural component and, obviously, a “negative” example means a “damaged” or 

perturbed state. With this objective in mind the neural network has been trained to 

make use of the same FRFs of the healthy structure used in determining the Damage 

Index. 

Regarding damage, corrosion, failure of linking rivets, simple cracks, 

impacts on structure and other kind of damage have been induced on the test 

articles. 

From an architectural standpoint, magnetostrictive devices have been tested 

as actuators, and piezoceramic patches as actuators and sensors. Besides it has been 

used a laser-scanning vibrometer system to acquire the FRFs. These techniques 

promise to bring us a step forward in the implementation of an automatic “health 

monitoring” system which will be able to identify structural damage in real time 

thereby improving safety and reducing maintenance costs. 
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Chapter I 

State of the Art 

 

 In this chapter an overview of the main damage identification and health 

monitoring methods, based on changes in the measured dynamic properties of 

structures, and developed all around the world, is reported. 

 The expounded methods are categorized based on the type of measured data 

used and the technique used to identify the damage from the measured data: 

 

� Frequency changes; 

� Mode shape changes; 

� Mode shape curvature and Strain mode shape changes; 

� Methods based on dynamically measured flexibility; 

� Matrix update methods; 

� Nonlinear methods; 

� Neural network-based methods. 

 

 

I.1  Frequency changes 

 The amount of literature related to damage detection using shifts in natural 

frequencies is large. The observation that changes in structural properties cause 

changes in vibration frequencies was the impetus for using modal methods for 

damage identification and health monitoring. 

 It should be noted that frequency shifts have significant practical limitations 

for applications to the type of structures. The somewhat low sensitivity of frequency 

shifts to damage requires either very precise measurements or large levels of 

damage. Currently, using frequency shifts to detect damage appears to be more 

practical in applications where such shifts can be measured very precisely in a 

controlled environment, such as for quality control in manufacturing. 
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 Also, because modal frequencies are a global property of the structure, it is 

not clear that shifts in this parameter can be used to identify more than the mere 

existence of damage. In other words, the frequencies generally cannot provide 

spatial information about structural changes. An exception to this limitation occurs 

at higher modal frequencies, where the modes are associated with local responses. 

However, the practical limitations involved with the excitation and extraction of 

these local modes, caused in part by high modal density, can make them difficult to 

identify. Multiple frequency shifts can provide spatial information about structural 

damage because changes in the structure at different locations will cause different 

combinations of changes in the modal frequencies. However, there is often an 

insufficient number of frequencies with significant enough changes to determine the 

location of the damage uniquely. 

 A typical frequency changes method is the forward problem, which consists 

of calculating frequency shifts from a known type of damage. Typically, the damage 

is modelled mathematically, then the measured frequencies are compared to the 

predicted frequencies to determine the damage. 

For example, it can be examined the change in the frequencies associated with the 

first two bending modes and first torsional mode of a structure to identify damage; 

or it can be used changes in the resonant frequencies, mode shapes, and response 

spectra to identify damage. The mode shapes are necessary to ensure that the 

changes in modal frequencies are properly tracked. 

 Another frequency changes method is the inverse problem, which consists 

of calculating the damage parameters, e.g., crack length and/or location, from the 

frequency shifts. 

An example is a method whereby damage in a structure that can be 

represented as one-dimensional can be identified from changes in the resonant 

frequencies associated with two modes. If the axial vibration modes are looked, the 

method is based on the relationship between the receptance function on either side 

of the damage, β and γ, respectively, and the stiffness of a spring representing the 

damage, k.  
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The relationship is defined by: 

 

0
1 =++
k

γβ  

 

An important point is to correct frequency measurements for changes in 

temperature, which is another possible source of error when frequency changes are 

used to locate damage. 

An inverse problem can be the estimation of modal frequencies and cross-spectral 

densities to changes in the structural stiffness parameters. The hypothesis is that 

modal characteristics themselves are not sensitive to damage, but that certain 

frequency ranges in the structural frequency response are sensitive to damage. 

Another method for damage identification can relates changes in the resonant 

frequencies to changes in member stiffnesses using a sensitivity relation. The 

relation between the normalized changes in squared frequencies {z}, the fractional 

elemental stiffness reductions {α}, and the fractional elemental mass reductions {β}, 

is given by:  

{z} = [F]{ α} – [G]{ β} 

 

where [F] and [G] are the sensitivities of the frequency change to changes in 

elemental stiffness and mass magnitudes, respectively. 

Damage is defined as a reduction in the stiffness of one of the elements forming the 

structure. The stiffness reductions can be located by solving the general inverse 

problem: 

{α} = [F] +[{z} + [G]{ β}] 

 

assuming that {z} and {β} can be measured or assumed. In this equation, [F]+ 

represents the pseudoinverse of the stiffness sensitivity matrix. The use of the 

pseudoinverse operator will ensure that the equation holds when is not square, i.e., 

when the number of measured modes is not equal to the number of structural 

elements. 
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I.2  Mode shape changes 

 An example about a mode shape changes method has been developed to 

locate a crack and quantify its size from changes in the vibration frequency and 

mode shape. The crack is located by discretizing the structure and looking at the 

reduced stiffness in each element. The formulation is based on a first-order Taylor 

expansion of the modal parameters in terms of the elemental parameters. Once 

located, the crack length is determined by a formulation based on considering the 

change in strain energy resulting from the presence of a crack. The Newton-Raphson 

method is used to solve the resulting equations for the crack parameters. 

Another method compares the results of using mode shape relative change and mode 

shape curvature change to detect damage. The relative difference measure does not 

typically give a good indication of damage using experimental data. It can point out 

that the most important factor is the selection of the modes used in the analysis. It is 

possible to show that the modal assurance criteria (MAC) values can be used to 

indicate which modes are being affected most by the damage. 

Furthermore, it is possible to define a mode shape normalized by the change in 

natural frequency of another mode as a “damage signature.” The damage signature is 

a function of crack location but not of crack length. A set of possible signatures by 

considering all possible damage states can be computed. The measured signatures 

were matched to a damage state by selecting which of the analytical signatures gave 

the best match to the measurements using the MAC. 

Finally, in the past was proposed a global damage integrity index that is based on a 

weighted ratio of the damaged natural frequency to the undamaged natural 

frequency. The weights are used to reflect the relative sensitivity of each mode to the 

damage event. When damage is indicated, local integrity indices are calculated to 

locate the defective areas. The local integrity index is calculated from the global 

integrity index by further weighting the global index by the square of the ratio of 

damaged mode amplitude to the undamaged mode amplitude for a particular 

measurement point. 
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I.3  Mode shape curvature and Strain mode shape changes 

 An alternative to using mode shapes to obtain spatial information about 

vibration changes is using mode shape derivatives, such as curvature. It is first noted 

that for beams, curvature and bending strain are directly related as: 

 

y
R

y κε ==  

 

where ε is strain, R is radius of curvature, and κ is curvature or 1/R. 

It was demonstrated that absolute changes in mode shape curvature can be a 

good indicator of damage for the FEM beam structures they consider. The curvature 

values are computed from the displacement mode shape using the central difference 

approximation for mode i and DOF q: 

 

2

,1,,1"
,

2

h
iqiqiq

iq
+− +−

=
φφφ

φ  

 

where h is the length of each of the two elements between the DOF (q-1) and (q+1). 

Another method is based on the decrease in modal strain energy between two 

structural DOF, as defined by the curvature of the measured mode shapes. 

Furthermore, it was found that numerically calculating curvature from mode shapes 

resulted in unacceptable errors. It used measured strains instead to measure 

curvature directly, which dramatically improved results. Besides, it was found that 

strain mode shapes facilitated the location of a crack in a cantilever plate using FEM 

simulation. 

Finally, it was defined a method whose mode shape curvature measure was 

computed using a central difference approximation as defined in the equation" ,iqφ . It 

compares the performance of this relative difference method to a mode shape 

relative difference method. It can be demonstrated that the curvature change does 

not typically give a good indication of damage using experimental data. Moreover, 

the most important factor is the selection of which modes are used in the analysis. 
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I.4  Methods based on dynamically measured flexibility 

 Another class of damage identification methods uses the dynamically 

measured flexibility matrix to estimate changes in the static behaviour of the 

structure. Because the flexibility matrix is defined as the inverse of the static 

stiffness matrix, the flexibility matrix relates the applied static force and resulting 

structural displacement as: 

 

{u}=[G]{F} 

 

Thus, each column of the flexibility matrix represents the displacement pattern of 

the structure associated with a unit force applied at the associated DOF. 

The measured flexibility matrix is estimated from the mass-normalized measured 

mode shapes and frequencies as: 

 

[G]~[Φ][Λ]-1[Φ]T 

 

The formulation of the flexibility matrix in that equation is approximate due to the 

fact that only the first few modes of the structure (typically the lowest-frequency 

modes) are measured. The synthesis of the complete static flexibility matrix would 

require the measurement of all of the mode shapes and frequencies. 

Typically, damage is detected using flexibility matrices by comparing the flexibility 

matrix synthesized using the modes of the damaged structure to the flexibility matrix 

synthesized using the modes of the undamaged structure or the flexibility matrix 

from a FEM. Because of the inverse relationship to the square of the modal 

frequencies, the measured flexibility matrix is most sensitive to changes in the 

lower-frequency modes of the structure. 

Several methods are based on dynamically measured flexibility. One, for example, 

make use of decomposing the measured flexibility matrix into elemental stiffness 

parameters for an assumed structural connectivity. This decomposition is 

accomplished by projecting the flexibility matrix onto an assemblage of the element-

level static structural eigenvectors. Another method suggests that changes in 
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curvatures of the uniform load surface (deformed shape of the structure when 

subjected to a uniform load), calculated using the uniform load flexibilities, are a 

sensitive indicator of local damage. In fact the changes in the uniform load surface 

are appropriate to identify uniform deterioration. A uniform load flexibility matrix is 

constructed by summing the columns of the measured flexibility matrix. The 

curvature is then calculated from the uniform load flexibilities using a central 

difference operator " ,iqφ . 

 

I.5  Matrix update methods 

 Another class of damage identification methods is based on the 

modification of structural model matrices such as mass, stiffness, and damping to 

reproduce as closely as possible the measured static or dynamic response from the 

data. These methods solve for the updated matrices (or perturbations to the nominal 

model that produce the updated matrices) by forming a constrained optimization 

problem based on the structural equations of motion, the nominal model, and the 

measured data. Comparisons of the updated matrices to the original correlated 

matrices provide an indication of damage and can be used to quantify the location 

and extent of damage. 

Methods that use a closed-form, direct solution to compute the damaged 

model matrices or the perturbation matrices are commonly referred to as optimal 

matrix update methods. The problem is generally formulated as a Lagrange 

multiplier or penalty-based optimization, which can be written as: 

 

( ) ( ){ }KCMRKCMJ
KCM

∆∆∆+∆∆∆
∆∆∆

,,,,min
,,

λ  

 

where J is the objective function, R is the constraint function, and λ is the Lagrange 

multiplier or penalty constant. 

 Another class of matrix update methods is based on the solution of a first-

order Taylor series that minimizes an error function of the matrix perturbations. 



State of the Art________________           Bovio Igor 

 

 10

Such techniques are known as sensitivity-based update methods. The basic theory is 

the determination of a modified parameter vector: 

 

{p} (n+1) = {p} (n) + {δp} (n+1) 

 

where the parameter perturbation vector is computed from the Newton-Raphson 

iteration problem for minimizing an error function. 

Finally, another matrix update method, known as “eigen-structure 

assignment,” is based on the design of a fictitious controller which would minimize 

the modal force error. The controller gains are then interpreted as parameter matrix 

perturbations to the undamaged structural model. 

 

I.6  Nonlinear methods 

A large number of nonlinear methods have been developed. From among 

them, an interesting method is the one which simulates nonlinear systems using only 

linear techniques. The motivation for this research is strong because nonlinear 

elements such as cracks are notoriously difficult to model using finite element 

analysis. This technique is based on the Volterra series. This technique yields a 

perturbation series for nonlinear responses based on generalizations of FRFs. The 

proposed method works by adding auxiliary inputs to model the effects of the 

nonlinearities. The superposition of the linear response resulting from the actual and 

auxiliary inputs simulates the true nonlinear response. The strengths of the auxiliary 

inputs are determined by the form of the nonlinearity and the true input. One 

problem with this method is that the effective inputs are functions of the entire time 

histories and must be recomputed if the input changes so the method cannot be used 

in real time. A second problem is that a different series must be computed for each 

location where a measured response is desired. A final problem is that to exactly 

simulate the nonlinear response, one must compute an infinite number of terms. 
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I.7  Neural network-based methods 

In recent years there has been increasing interest in using neural networks 

to estimate and predict the extent and location of damage in complex structures. 

Neural networks have been promoted as universal function approximators for 

functions of arbitrary complexity. The most common neural network in use is the 

multilayer perceptron (MLP) trained by backpropagation. The commonly used 

terminology calls a MLP trained by backpropagation a “backpropagation neural 

network”. The backpropagation neural network is a system of cascaded sigmoid 

functions where the outputs of one layer, multiplied by weights, summed, then 

shifted by a bias are used as the inputs to the next layer. Once an architecture for the 

network is chosen, the actual function represented by the neural network is encoded 

by the weights and biases. The backpropagation learning algorithm is a way of 

adjusting the weights and biases by minimizing the error between the predicted and 

measured outputs. Typically, more adjustable weights than experiments are present 

in neural network-based methods, and the body of data was repeatedly run through 

the training algorithm until a criterion for the error between the data and the neural 

network was satisfied. Each error-generating run is called an epoch. 

The identification of damage using neural networks is still in its infancy. 

Backpropagation neural network are largely used, but in literature it is very difficult 

to find a paper which compares the performance of two different neural network 

types. The damage identification is often attempted from information related to 

modal frequencies. All damage are modelled by linear processes, and they are often 

used changing member shapes and/or cross-sectional areas. Besides, most of the 

papers assume detailed knowledge of the mechanical structure including mass and 

stiffness matrices. A few performed the identification of system parameters based on 

measured data so that no detailed knowledge of the structure was assumed. 
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Chapter II 

Damage Index Method 

 

 The proposed new method is based on the acquisition and comparison of 

Frequency Response Functions (FRFs) of the monitored structure before and after 

an occurred damage. Structural damage modify the dynamical behaviour of the 

structure such as mass, stiffened and damping, and consequently the FRFs of the 

damaged structure in comparison with the FRFs of the sound structure, making 

possible to identify, to localize and quantify a structural damage. 

 

In order to make use of those techniques, the system must satisfy the 

following hypotheses: 

 

� stability: in consequence of an excitation which is present in a definite 

frequency range, the response of the structure has to be defined into the 

same range; 

� causality: the response of the structure is the only consequence of the 

presence of the signal excitation; 

� stationariness: the dynamical characteristics of the structure do not change 

during the executions of the experimental tests. 
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II.1  Frequency Response Function (FRF) 

 The frequency response function represents the relationship between the 

input and output of electrical systems or structural vibration transmission systems, 

and is represented by the ratio of the Fourier spectrum of the input A(f) to the 

Fourier spectrum of the output B(f). 

 

 

 

Frequency response function H(f) can be represented by the following expression. 

 

( ) ( )
( )fA

fB
fH =  

 

Each of the denominator and numerator at the right side is multiplied by 

A*(f) (complex conjugate of A(f)), and H(f) can be represented by expression below. 

 

( ) ( ) ( )
( ) ( ) aa

ab

G

G

fAfA

fAfB
fH ==

*

*

*

*
1  

 

The denominator is the power spectrum of A(f) and the numerator is the 

cross spectrum of A(f) and B(f). Therefore, the frequency response function H(f) can 

be obtained by dividing the cross spectrum for input and output by the power 

spectrum for input. 

The frequency response function can also be obtained by expression below. 

 

( ) ( ) ( )
( ) ( ) Gab

G

fBfA

fBfB
fH bb==

*

*

*

*
2  
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Each function has the following characteristic: 

 

� H1 

If the output signal b(t) contains much external noise, random error can be 

minimized by averaging. Using a random signal as an input signal, a non-linear 

system can be linearized by averaging (approximation with method of least 

squares). 

 

� H2 

If output signal b(t) contains much external noise, random error can be 

minimized by averaging. If leakage error is assumed at the resonance point, bias 

error can be reduced. 

 

When the true frequency response function is Ht(f), if both input and output 

contain much noise, the following relationship results (when a linear system is 

assumed). 

 

( ) ( ) ( )fHfHtfH 21 ≤≤  

 

The phase of H1(f), H2(f) is equal to the phase of cross spectrum Gab. 

The relationship with the coherence function is represented by: 

 

( )
( )fH

fH

GG

G

bbaa

ab

2

1
2

2 ==γ  

 

which is the ratio of H1 to H2. 

When the ratio of the power spectrum for input and output (transfer 

characteristic) is |Ha (f)|2, 

( )
aa

bb

G

G
fH =2
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Therefore: 

( ) 2*1
2

HHfH =  

 

If you apply logarithm to both sides of expression: 

 

( ) ( )222
2log101log10

2

1
log10 HHfH +=  

 

the expression indicates that the average of logarithmic value of the gain of H1 and 

H2 is equal to the logarithmic value of the true frequency response function Ha. 

The frequency response function can be represented by the gain and phase 

characteristics. The gain characteristic indicates the amplitude variation when a 

signal passes through the system. The X-axis denotes the frequency and the Y-axis 

decibel based on 10log10|H(f)|2. 

The phase characteristic leading or lagging of the phase between the input 

and output signals. The X-axis denotes the frequency and the Y-axis the angle in 

degree or radian. 

 

All the calculations executed and reported in this thesis are related to the 

H1 Frequency Response Functions. 

Furthermore, the unit of measurement of the y-axis of all the FRF graphs is 

Volt/Volt when the piezoceramic patches are used as sensor, and it is 
V

s
m

 when the 

Laser Vibrometer is used as sensor system. 

 

The following graphs show an example of FRF drawing to both linear and 

logarithmic scale.  
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Frequency Response Function

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Hz

 

Fig. 2.1.1 – Frequency Response Function – linear 
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Fig. 2.1.2 – Frequency Response Function – logarithm 
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II.2  Coherence Function 

 The coherence function (coh) indicates the degree of the correlation 

between the input and output of a system. It gives a value from 0 to 1 for each 

frequency. This function, if evaluated between the response and the actuation patch 

signal presents values very close to 1 if the input and output signal are correlated; 

those values become much lower at frequencies where the sensor measurements are 

not correlated with the excitation, or, in other words, where the input mechanical 

energy does not reach anymore the sensors. 

 This function is very important to determine if the FRFs acquired are 

suffering  from environmental  disturbance as unwanted  vibrations,  since, when  

0< coh <1 , presence of noise occurred inside the system or non-linearity or time 

delay of the system can be assumed. 

 

The coherence function  is obtained by the following expression. 

 

( ) ( )
bbaa

ab

GG

fG
fcoh

*

2

2 =  

 

where Gab is the cross spectrum and Gaa  and Gbb are the power spectrum of a and b 

respectively. The coherence function coh is the square of the absolute value of the 

cross spectrum divided by each power spectrum of the input and output of the 

system. 

The inequality: 

 

( ) ( ) ( )fGfGfG bbaaab *
2 ≤  

 

indicates that if a cross spectrum includes a non-coherent noise, the square of the 

absolute value of the cross spectrum is lower than the product of the auto spectrum 

functions. 
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The coherence function, in its nature, is not meaningful unless averaging is 

performed. 

Practically the coherence function is a quality index of the FRF acquired. 

Coherence
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Fig. 2.2.1 – Coherence function 

 

 

II.3  Damage Indexes 

It is common knowledge that structural damages modify the dynamical 

behaviour of the structure such as mass, stiffened and damping. It has evaluated the 

variations occurred by means of FRF, which is the ratio between the Fourier 

transform of the signal used to excite the structure in a point and the Fourier 

transform of the signal response acquired by a sensor in another point. In fact the 

FRFs of the sound structure are different from FRFs of the damaged structure. They 

have determined two damage indexes to evaluate the variations of FRFs of the 

monitored structure owing to an occurred damage. The indexes give, directly, the 

measurements of the damage. 
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The indexes are shown by means of “1” and “2” symbols: 
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FIi and FDi are the amplitude of the FRFs of the sound and damaged structure at the 

“i” frequency. “n” is the number of the spectral lines we have acquired. 

The first index is the ratio between the absolute value of the arithmetic 

mean of the deviation between FRFs of the sound and damaged structure and the 

arithmetic mean of the FRFs of the sound structure. The second index is the ratio 

between the absolute value of the FRFs deviation of the sound and damaged 

structure and the FRFs of the sound one. 

The variable “n” is of use of making the second index order of magnitude 

the same as the first index, so it can be compared the first index with the second. 

It can be noted that only the FRF amplitude, and not its phase, is used to 

calculate the Damage Indexes. 

 

Furthermore, a particular Damage Index has to be mentioned: the 

sensitivity index, which is determined using FRFs of the healthy structure acquired 

at different times to measure the experimental error and the environmental noise and 

vibrations which can influence the FRFs. The following graphs show the possible 

difference between two FRFs acquired at different times by the same actuator-sensor 

couple, and referred at the same damaging configuration of a structure. 
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Fig. 2.3.1 – FRFs deviation – linear 
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Fig. 2.3.2 – FRFs deviation – logarithmic 
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Chapter III 

Neural Network 

 

The Department of Aeronautical Engineering has developed during the last 

ten years a damage analysis approach based on the comparison of the amplitudes of 

Frequency Response Functions (FRFs). Differences between healthy and damaged 

configuration’ FRFs represent the basis for the assessment of the health status of the 

selected structural component; obviously a critical point for the validation of the 

developed approach consists in a “statistical test” assessing the confidence level 

relatively to the mentioned amplitude differences in order to verify that FRFs 

variations were effectively due to structural perturbations instead of environmental 

influences (noise, temperature, humidity, vibrations, etc…) which excite not linear 

behaviour of the experimental set-up. That statistical test permits to identify the 

threshold dividing healthy configurations from damaged ones. Furthermore, to 

quantify the amplitudes of FRFs differences, it has been developed a dedicated 

Neural Network algorithm. 

 

III.1  Overview 

III.1.1  The Biological inspiration 

 Neural networks grew out of research in Artificial Intelligence; specifically, 

attempts to mimic the fault-tolerance and capacity to learn of biological neural 

systems by modeling the low-level structure of the brain (see Patterson, 1996). The 

main branch of Artificial Intelligence research in the 1960s -1980s produced Expert 

Systems. These are based upon a high-level model of reasoning processes 

(specifically, the concept that our reasoning processes are built upon manipulation of 

symbols). It became rapidly apparent that these systems, although very useful in 

some domains, failed to capture certain key aspects of human intelligence. 

According to one line of speculation, this was due to their failure to mimic the 
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underlying structure of the brain. In order to reproduce intelligence, it would be 

necessary to build systems with a similar architecture.  

The brain is principally composed of a very large number (circa 

10,000,000,000) of neurons, massively interconnected (with an average of several 

thousand interconnects per neuron, although this varies enormously). Each neuron is 

a specialized cell which can propagate an electrochemical signal. The neuron has a 

branching input structure (the dendrites), a cell body, and a branching output 

structure (the axon). The axons of one cell connect to the dendrites of another via a 

synapse. When a neuron is activated, it fires an electrochemical signal along the 

axon. This signal crosses the synapses to other neurons, which may in turn fire. A 

neuron fires only if the total signal received at the cell body from the dendrites 

exceeds a certain level (the firing threshold).  

The strength of the signal received by a neuron (and therefore its chances of 

firing) critically depends on the efficacy of the synapses. Each synapse actually 

contains a gap, with neurotransmitter chemicals poised to transmit a signal across 

the gap. One of the most influential researchers into neurological systems (Donald 

Hebb) postulated that learning consisted principally in altering the "strength" of 

synaptic connections. For example, in the classic Pavlovian conditioning experiment, 

where a bell is rung just before dinner is delivered to a dog, the dog rapidly learns to 

associate the ringing of a bell with the eating of food. The synaptic connections 

between the appropriate part of the auditory cortex and the salivation glands are 

strengthened, so that when the auditory cortex is stimulated by the sound of the bell 

the dog starts to salivate. Recent research in cognitive science, in particular in the 

area of nonconscious information processing, have further demonstrated the 

enormous capacity of the human mind to infer ("learn") simple input-output 

covariations from extremely complex stimuli (e.g., see Lewicki, Hill, and 

Czyzewska, 1992).  

Thus, from a very large number of extremely simple processing units (each 

performing a weighted sum of its inputs, and then firing a binary signal if the total 

input exceeds a certain level) the brain manages to perform extremely complex tasks. 

Of course, there is a great deal of complexity in the brain which has not been 
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discussed here, but it is interesting that artificial neural networks can achieve some 

remarkable results using a model not much more complex than this.  

 

III.1.2  History of the neural network analogy 

 The concept of neural networks started in the late-1800s as an effort to 

describe how the human mind performed. These ideas started being applied to 

computational models with the Perceptron. 

In early 1950s Friedrich Hayek was one of the first to posit the idea of 

spontaneous order in the brain arising out of decentralized networks of simple units 

(neurons). A design issue in cognitive modeling, also relating to neural networks, is 

additionally a decision between holistic and atomism, or (more concrete) modular in 

structure. 

The Perceptron learning algorithm incrementally refines the weight vector 

with training data to improve the decision space. The Perceptron's main problem is 

the requirement for the input vectors to be linearly independent for proper 

classification to occur. 

The Cognitron (1975) was the first multilayered neural network. The actual 

structure of the network and the methods used to set the interconnection weights 

change from one neural strategy to another, each with its advantages and 

disadvantages. Networks can propagate information in one direction only, or they 

can bounce back and forth until self-activation at a node occurs and the network 

settles on a final state. The ability for bi-directional flow of inputs between 

neurons/nodes was produced with the Hopfield's network (1982), and specialization 

of these node layers for specific purposes was introduced through the first hybrid 

network. 

The parallel distributed processing of the mid-1980s became popular under 

the name connectionism. 

The backpropagation network (1986) is a commonly used neural network. 

It often uses a sigmoid activation function and adjustments to the weight vector as a 

learning rate, depends upon error propagation in a backwards method. The problem 

with backpropagation is its susceptibility to over-determination of the decision space. 
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Cross-validation is one means of addressing this problem, but recent improvements 

address this problem with Bayesian neural networks. This combines the field of 

statistics with neural networks to lower the importance of redundant training sets. 

 

III.2  Neural Network application to Health Monitoring 

 The damage identification problem can be classified as a typical example of 

binary learning (“healthy” or “damaged”). A neural network able to implement 

binary learning can be modelled following two approaches: the “discrimination-

based learning” and the “recognition-based learning”. In the first approach the 

network is trained using both “positive” and “negative” samples in order to learn 

how to discriminate among them; in the second one the network is trained using 

only “positive” samples and it is able to recognise only these. 

 

  

Fig. 3.2.1 – Binary learning approaches 

 

Within this research has been implemented a system based on the latter 

approach; the damage analysis represents, actually, a typical engineering problem 

for which it is almost impossible to forecast all the “negative” events, since this 

would mean to be able to discover all the possible perturbations that a structural 

component would suffer as damage.  

The engine of the damage analysis system is represented by an 

“autoassociative” neural network (or “auto-encoder”) made of three layers: an input 

one, an hidden one and obviously the output one, fully connected one each other [3]. 
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Fig. 3.2.2 – Neural Network layers 

 

An auto-associative neural network is a feed forward type network trained 

only by positive samples in order to rebuild the input on the output layer. 

A typical feed-forward network has neurons arranged in a distinct layered 

topology. The input layer is not really neural at all: these units simply serve to 

introduce the values of the input variables. The hidden and output layer neurons are 

each connected to all of the units in the preceding layer. Again, it is possible to 

define networks that are partially-connected to only some units in the preceding 

layer; however, for most applications fully-connected networks are better. 

 
Fig. 3.2.3 – Feed-forward scheme 
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When the network is executed (used), the input variable values are placed 

in the input units, and then the hidden and output layer units are progressively 

executed. Each of them calculates its activation value by taking the weighted sum of 

the outputs of the units in the preceding layer, and subtracting the threshold. The 

activation value is passed through the activation function to produce the output of 

the neuron. When the entire network has been executed, the outputs of the output 

layer act as the output of the entire network. 

If the training phase is successful the network is able to find the common 

features that samples present in order to extract few general laws permitting to 

recognise positive unknown examples. This learning technique is therefore called 

“Redundancy Compression and Non-Redundancy Differentiation”. In that case the 

positive samples are represented by the “healthy” configuration’ FRFs. Following 

the training phase, the auto- encoder will be able to reconstruct more or less 

accurately on the output layer the positive samples, while it will always reconstruct 

wrongly the negative samples. That implies that a bad reconstruction of the input 

layer on the output one is a clear symptom of an anomalous dynamic behaviour of 

the monitored structure. 

Once the auto-encoder has been implemented and trained, in order to use it 

as a “classifier” for the health status of a structural component, it is necessary to 

complete the system by an other component permitting the determination of a 

threshold for dividing operatively the two samples classes (positive or “healthy” and 

negative or “damaged”). To do so it will be preliminary necessary to create an index 

quantifying the reconstruction level of the input layer on the output one; it is 

obviously directly related to the reconstruction error that the network presents when 

trying to recreate the input on its output layer. The error, on its side, will be bigger 

about negative samples then positive ones [4]. For the training technique we used an 

error back–propagation technique. Training algorithm make the error, which is 

present on the output layer, follow the opposite route across the links between output 

and hidden layers. In back propagation, the gradient vector of the error surface is 

calculated. This vector points along the line of steepest descent from the current 

point, so we know that if we move along it a "short" distance, we will decrease the 

error. A sequence of such moves (slowing as we near the bottom) will eventually 
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find a minimum of some sort. The difficult part is to decide how large the steps 

should be.  

Large steps may converge more quickly, but may also overstep the solution 

or (if the error surface is very eccentric) go off in the wrong direction. A classic 

example of this in neural network training is where the algorithm progresses very 

slowly along a steep, narrow, valley, bouncing from one side across to the other. In 

contrast, very small steps may go in the correct direction, but they also require a 

large number of iterations. In practice, the step size is proportional to the slope (so 

that the algorithms settles down in a minimum) and to a special constant: the 

learning rate. The correct setting for the learning rate is application-dependent, and 

is typically chosen by experiment; it may also be time-varying, getting smaller as the 

algorithm progresses.  

The algorithm is also usually modified by inclusion of a momentum term: 

this encourages movement in a fixed direction, so that if several steps are taken in 

the same direction, the algorithm "picks up speed", which gives it the ability to 

(sometimes) escape local minimum, and also to move rapidly over flat spots and 

plateaus.  

The algorithm therefore progresses iteratively, through a number of epochs. 

On each epoch, the training cases are each submitted in turn to the network, and 

target and actual outputs compared and the error calculated. This error, together with 

the error surface gradient, is used to adjust the weights, and then the process repeats. 

The initial network configuration is random, and training stops when a given 

number of epochs elapses, or when the error reaches an acceptable level, or when 

the error stops improving (you can select which of these stopping conditions to use).  

 

III.2.1  Implementation of the “auto-associative network” 

 If we have x actuators and y sensors on a generic monitored structure, after 

a test campaign, xy FRFs (x actuators * y sensors) are available. Note that we are 

interested in using only the FRFs amplitude and not theirs phase. 

It had avoided to implement a single neural network including all the FRFs 

due to the high number of neurones needed (if we have, for example, x = 10 and y = 
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10 and n (number of spectral lines) = 1600, we have xy * n = 160000 neurones). 

Also considering to implement a single network where neurones were associated 

with FRFs, some problems were forecasted: in such case in fact it could have been 

possible that for distinct experimental campaigns two FRFs related to different 

sensor-actuator couples resulted very similar; this would be a symptom of structural 

modifications but the network could deduce the opposite situation if the actuator-

sensor couple is not explicitly declared. In the end it has employed only one kind of 

network which is trained separately for each actuator-sensor couple. That has 

resulted in (x * y) neural networks equal from an architectural point of view but 

each one trained by FRFs referred to the healthy configuration and measured by a 

specific actuator-sensor couple. The neural net algorithm was implemented in 

MATLAB environment by using Neural Networks Toolbox. 

 

III.2.2  Reconstruction index 

 Once completed the training phase it raised up the problem on how to 

concretely employ the networks for identifying damage. The idea was to develop a 

“reconstruction” index representing the ability of the networks in rebuilding (and as 

a consequence, recognise) the input FRFs received. A good recognition level would 

have been connected with a “healthy” status of our structure. It has been defined for 

each network the individual reconstruction error between input I and output O: 

 

En = (On – In)
2  n=1,..,N 

 

where n represents the number of neurones (or acquired FRFs spectral lines). 

Following it has been defined an overall index of reconstruction of the input vector 

as: 

R = mean(En) + spread(En) 

 

where “mean” is the individual error mean and “spread” represents a measurement 

of their dispersion in a statistic sense. It is possible to plot a graph S(R) of the output 

of the neural network obtained. That graph shows, for each value of R, the ratio 
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between the FRFs (used for the post process), which have a reconstruction R value 

higher then the fixed one, and the total number of FRFs acquired during a single test 

campaign. The range of S is from 0 to 1. Practically, the curve S(R) is an estimator 

of the healthy status of the panel. 
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Fig. 3.2.4 – Reconstruction curve 

 

III.2.3  Choice of the dispersion measurement 

 In order to obtain the best statistical dispersion measurement index an 

evaluation of the probability distribution of En has been carried on: firstly, supposing 

the probability distribution of errors as a normal distribution the “standard 

deviation” was considered as “spread” index. To confirm this choice a simple test 

was considered: the FRFs acquired during a single campaign were perturbed using a 

“variable” normal distribution. After the reconstruction curve was evaluated 

considering as “spread” both the standard deviation (std) and the “interquartile 

range” (iqr).  
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Fig. 3.2.5 – Reconstruction. curves for perturbation normally distributed and for 

“real” perturbation distribution 

 
After this test the probability distribution of disturbances in experimental 

data was estimated and assigned to the same reference FRFs of the previous case. 

Figure 5 shows that estimating the dispersion measurement trough the standard 

deviation the curve’s shape becomes different from that obtained by experimental 

data. Employing the interquartile range the experimental curve shape is well fitted. 

For this reason interquartile range was chosen as dispersion measurement. 

 

III.2.4  “Threshold” evaluation 

This subparagraph reports how the threshold was evaluated by means of 

several acquisition campaigns of FRFs of the undamaged aeronautical composite 

panel. 

Even if no damage has occurred, FRFs, which have been acquired for each 

actuator-sensor couple on different times, could be not equal between them because 

of environmental disturbance. Once the FRFs of the sound structure are settled, the 

more different FRFs are the higher reconstruction error is, even if the damage is not 

present. For that reason is very important to consider the FRF maximum discrepancy 

of an actuator-sensor couple such that the neural network is able to reconstruct the 

input correctly. To do this the (x * y) FRFs of the sound structure have been 

perturbed by means of increasing disturbance so much that it has been possible to 

specify the limit. In order to perturb the reference FRFs it has summed to each FRF 

a vector having the same dimension. Random values, whose probability distribution 
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is normal with a variable mean and standard deviation, form the vector. Those 

random values have the same order of magnitude as FRF; to make the number of 

generated negative values negligible, since FRFs magnitudes are positive quantities, 

the mean has been restricted to be greater or, at least, equal to the standard deviation. 

The measurement noise modifies the probability distribution (as well the FRFs). 

Therefore the real probability distribution does not agree with the common normal 

distribution. 
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Fig. 3.2.6 – FRFs perturbation 

 

If we consider this difference acceptable, we can generate vectors with random 

values, which have a normal probability distribution, by means of the following 

MATLAB command: 

� Random numbers from the normal distribution 

R = normrnd(MU,SIGMA,m,n) 

That expression generates normal random numbers with parameters MU 

and SIGMA, where scalars m and n are the row and column dimensions of R. 

After estimating the order of magnitude of the reference FRFs, we have 

generated perturbing vectors whose values have a mean and a standard deviation, 
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whose range is, for example, from 0,005 to 0,4. Therefore, this kind of analytically 

perturbed vector is characterised by normal probability distribution values (mean 

plus standard deviation). 

Then, such vectors have been added to the reference FRFs so as to generate 

two various families of perturbed FRFs. First family (figure 3.2.7) has been 

determined assuming the same disturbance, having a mean greater or, at least, equal 

to the standard deviation, for all reference FRFs. The relevant curves are 

characterised by a quick descent of the parameter S from 1 to 0. 
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Fig. 3.2.7 – First family                               Fig. 3.2.8 – Second family 

 

Second family (figure 3.2.8) has arisen from considering that a real disturb 

modify the 36 FRFs acquired during a campaign, which represent the healthy status 

of the panel in a particular instant, with several quantities; with this object in view 

perturbations having several intensities (mean and standard deviation which vary 

from (0,005;0,001) to (0,4;0,4)) have been imposed randomly to the reference FRFs. 

If we take in account the output of the neural network whose input data are the 

gradually increasing perturbations of the second family FRFs, we note that the 

reconstruction error increase and the estimator curves shift coherently toward the 

right. 

After having trained a neural network it is possible to estimate the error 

which is in its output by means of the analysis of the linear regression between the 

network output and the corresponding target (during the training we assume that 
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target coincides with input data). In order to do this analysis, MATLAB places the 

postreg routine at our disposal. 

 

a = sim(net,p) 

[m,b,r] = postreg (a,t) 

 

That routine gives three parameter: m, b and r. The parameter m and b 

represent, respectively, the slope and the intercept (with ordinate axes) of the 

straight line, which is the best interpolation curve of the point which correspond to 

the output-target couple. It is obvious that the reconstruction curve of the neural 

network would be perfect if the best fit line coincided with the line A = T (output = 

target): in that case m = 1 and b = 0. The third parameter r represents the correlation 

coefficient between output and target; its optimal value is 1. That routine can be 

used to estimate the deviation of the correlation parameter r from its optimal value 

when it inputs into the network the reference 36 FRFs which are perturbed with the 

same increasing disturbance whose mean is equal to the standard deviation. 

On the base of experimental experiences a maximum 20% error of the correlation 

parameter r has been fixed (maximum acceptable disturbance having mean = 

standard deviation = 0,065). 

According to the above defined maximum error the correlation coefficient r 

can be evaluated with reference to the first family FRFs. These FRFs have been 

perturbed using disturbances whose mean value is different from the standard 

deviation. 

That FRFs can give rise to the maximum value of r with several mean-

standard deviation couple. Besides it can be evaluated the relevant estimating curves 

S(R). 

 

Then we can identify two boundary curves Rlim1 and Rlim2. 

� if there is an analytic disturbance whose mean is less or equal to 0,0099, 

independently from the standard deviation (whose value is equal to the mean, at 

most), the reconstruction curve of the perturbed FRFs is correct; 
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� if there is an analytic disturbance whose mean is less or equal to 0,1, 

independently from the standard deviation, the reconstruction curve is wrong 

and represents a damage; 

� if there is an analytic disturbance whose mean is included between 0,0099 and 

0,1, the reconstruction curve is correct or wrong depending on the standard 

deviation. 

 

Therefore all sound structure estimator curves are placed on the left of the 

Rlim1 curve, while all damaged structure estimator curves are placed on the right of 

the Rlim2 one. 

Between Rlim1 and Rlim2 there are all the other estimator curves whose 

position, with regard to the threshold, need to rate for estimating the state of health 

of the monitored panel. As regards the panel we have considered, the boundary 

curve Rlim1 is the estimator curve of the reference FRFs which have been perturbed 

using the disturbance (0,0099 ; 0,0099), while the boundary curve Rlim2 is the 

estimator curve of the reference FRFs which have been perturbed using the 

disturbance (0,1;0,1). Therefore it is possible to identify two bound values of the 

reconstruction index R which practically coincide with the values of R which are 

determined by the intersection between Rlim1, Rlim2 and the x axes. The lower value is 

equal to 0,0025. 
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Fig. 3.2.9 – Boundary curves of R index 

 

As subsequent step the estimator curves of the perturbed FRFs of the 

second family have been drawn, and their position with regard to the boundary 

curves has been estimated.  

To evaluate the threshold, first of all, it has identified the estimator curve of 

the second family which intercept the Rlim1 and the x axes. The interception between 

that curve of the second family and the vertical line, which starts from the 

intersection between the x axes and the Rlim1 curve, fixes the healthy status threshold. 

If an estimator curve of the healthy status of the panel passes under the 

threshold, the panel is considered to be sound. If that curve passes over the threshold, 

a damage has occurred. In that case the damage size is proportional to the gap 

between the threshold value and the value of S, which has been determined by the 

intersection between the estimator curve at issue and the vertical line going through 

the threshold value (threshold line). 

 



Neural Network____________________           Bovio Igor 
 

 38 

III.3  Neural Network algorithm 

III.3.1  Training 

 The list of the training algorithm is reported in this subparagraph. The 

training of all the test articles was carried out by means of the Matlab Neural 

Network Toolbox. Then, the algorithm has been adapted for each experimental 

configuration. 

 For meaning of the algorithm’ instructions please refer to a Matlab user’s 

manual. 

 

 

% Neural Network training; 

% firstly load the FRF of the sound structure; 

% the vectors used for the network training must be identified as 

% Pd=Atti-Senj, with d=1..30; 

% Pd is a matrix since there are more acquisition for each actuator-sensor couple; 

% each neural network is called FRFdnet, with d=1..30; 

 

P1=[Train02(:,1) Train03(:,1) ...... Train08(:,1)]; 

P2=[Train02(:,2) Train03(:,2) ...... Train08(:,2)]; 

... 

... 

... 

P30=[Train02(:,30) Train03(:,30) ...... Train08(:,30)]; 

for i=1:681 

   R(i,:)=[0 0.01]; 

end 

% the reduced frequency range is 90 (number of hidden neurones); 

for i=1:56 

   d=num2str(i) 

   istr=strcat(‘FRF’,d,’net=network;’); 

   eval(istr); 
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   istr=strcat(‘FRF’,d,’net.numInputs=1;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.inputs{1}.size=281;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.inputs{1}.range=R;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.numLayers=2;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layers{1}.size=40;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layers{2}.size=281;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.biasConnect=[1;1];’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.inputConnect=[1;0];’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layerConnect=[0 0;1 0];’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.outputConnect=[0 1];’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.targetConnect=[0 1];’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layers{1}.transferFcn=‘‘tansig’’;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layers{2}.transferFcn=‘‘purelin’’;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.initFcn=‘‘initlay’’;’ ); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.performFcn=‘‘mse’’;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainFcn=‘‘traingdx’’;’); 

   eval(istr); 
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   istr=strcat(‘FRF’,d,’net.layers{1}.initFcn=‘‘initnw’’;’ ); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layers{2}.initFcn=‘‘initwb’’;’ ); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.biases{2}.initFcn=‘‘initzero’’;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.biases{1}.learn=1;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.biases{2}.learn=1;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.inputWeights{1,1}.learn=1;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layerWeights{2,1}.initFcn=‘‘initzero’’;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.layerWeights{2,1}.learn=1;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.show=10;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.lr=0.05;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.lr_inc=1.05;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.lr_dec=0.7;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.mc=0.9;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.min_grad=1e-10;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.epochs=300;’); 

   eval(istr); 

   istr=strcat(‘FRF’,d,’net.trainParam.goal=1.0e-6;’); 

   eval(istr); 
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   istr=strcat(‘T=P’,d,’;’ ); 

   eval(istr); 

   % initialization; 

   istr=strcat(‘FRF’,d,’net=init(FRF’,d,’net)’); 

   eval(istr); 

   % training; 

   istr=strcat(‘[FRF’ ,d,’net,tr]=train(FRF’,d,’net,P’,d,’,T)’ ); 

   eval(istr); 

   % simulation; 

   istr=strcat(‘A’ ,d,’=sim(FRF’,d,’net,P’,d,’);’ ); 

   eval(istr); 

end 

 

The following curve represents a typical graphic output of the training phase. 

 

 

Fig. 3.3.1 – Training output curve 
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III.3.2  Post Process 

 Once the training phase has been executed, the post process phase serves to 

recognize the unknown samples, furnished by FRFs, as representatives of a sound or 

damaged configuration of the structure. In this subparagraph the list of the post 

process algorithm is reported. 

 

 

% Postprocessing to calculate the matrix reconstruction index R; 

% firstly load the workspace with all the training variables; 

% select the file with data to be post-processed (damage condition = FRFdam.dat); 

 

istrmat=strcat('Mathr=['); 

% acquisition; 

for i=1:30 

   d=num2str(i); 

   istr=strcat('v',d,'=[FRFdam(:,',d,')];'); 

   eval(istr); 

   istr=strcat('a',d,'=sim(FRF',d,'net,v',d,');'); 

   eval(istr); 

   istr=strcat('at',d,'=a',d,''';'); 

   eval(istr); 

   istr=strcat('pt',d,'=v',d,''';'); 

   eval(istr);   

   istr=strcat('med',d,'=mean(FRFdam(:,',d,')-P',d,'(:,1));'); 

   eval(istr); 

   istr=strcat('medabs',d,'=mean(abs(FRFdam(:,',d,')-P',d,'(:,1)));'); 

   eval(istr); 

   istr=strcat('diqr',d,'=iqr(FRFdam(:,',d,')-P',d,'(:,1));'); 

   eval(istr); 

   istr=strcat('devst',d,'=std(FRFdam(:,',d,')-P',d,'(:,1));'); 

   eval(istr); 
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   istr=strcat('Med',d,'=mean((at',d,'-pt',d,').^2);'); 

   eval(istr); 

   istr=strcat('Diqr',d,'=iqr((at',d,'-pt',d,').^2);'); 

   eval(istr); 

   istr=strcat('Devst',d,'=std((at',d,'-pt',d,').^2);'); 

   eval(istr); 

   istr=strcat('R1',d,'=Med',d,'+Diqr',d,';'); 

   eval(istr); 

   istr=strcat('R2',d,'=Med',d,'+Devst',d,';'); 

   eval(istr); 

   istrmat=strcat(istrmat,'med',d,',medabs',d,',diqr',d,',devst',d,',Med',d,',Diqr',d, 

   ',Devst',d,',R1',d,',R2',d,';'); 

end 

istrmat=strcat(istrmat,'];'); 

eval(istrmat); 

 

% S(R) curve; 

E=Mathr(:,9); 

istr=strcat('e=['); 

for n=1:2000 

   Th=n*0.00005; 

   nc=0; 

   for i=1:30 

      if  E(i)<=Th 

         nc=nc+1; 

      end 

   end 

   nc=30-nc; 

   pr=nc/30; 

   dt=num2str(Th); 

   dn=num2str(nc); 

   dp=num2str(pr); 
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   istr=strcat(istr,dt,',',dn,',',dp,';'); 

end 

istr=strcat(istr,dt,',',dn,',',dp,'];'); 

eval(istr); 

hold on 

plot(e(:,1),e(:,3)); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experimental Set-up________           Bovio Igor 

 

 45 

Chapter IV 

Experimental Set-up 

 

 In this chapter both the instruments and the test-articles, which have been 

used for the execution of the experimental tests itemized in the next chapter, are 

reported. About the first and the second test articles the place where the 

experimental tests have been executed is the Acoustics and Vibrations Laboratory of 

the Department of Aeronautical Engineering of the University of Naples “Federico 

II”, while the place where experimental tests on the ATR-72 aircraft have been 

executed is the Toulouse airport (France). 

 

IV.1  Instruments 

 Several signal generators and spectrum analysers have been used to execute 

the experimental tests. Moreover a piezoceramic amplifier and current amplifiers for 

magnetostrictive actuators and, of course, either piezoceramic patches, which can 

work both as actuators and sensors, or magnetostrictive actuators have been used. 

 

IV.1.1  Generators and spectrum analysers 

 Two generators and spectrum analyser made by the ONO SOKKI company 

have been used. The models are the CF-350 and the DS-2100. 
  

 

Fig. 4.1.1 – ONO SOKKI CF-350 
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Fig. 4.1.2 – ONO SOKKI DS-2100 

 

 The ONO SOKKI CF-350 has two input channels, one output channel and 

an input and output frequency range up to 40 kHz. 

 The ONO SOKKI DS-2100 has four input channels, one output channel, an 

input frequency range up to 40 kHz and an output frequency range up to 20 kHz. 

 

Furthermore the Scanning Laser Vibrometer PSV-400 by the Polytec 

company has been used as well. It has three input channels more an input channel 

reserved to the laser data output, three output channels, an input frequency range up 

to 1 MHz and an output frequency range up to 512 kHz. 

The Scanning Laser Vibrometer is a velocity sensor system. It is able to 

measure the distribution of vibration velocities of an object, on the basis of laser 

interferometry, orthogonally to the laser beam. It can quickly acquire from a large 

number of points of the object, since it is able to deflect the direction of the beam by 

means of two mirrors driven by fast piezoelectrical motors. 

 The light source of the vibrometer is a helium neon laser. It is a Class 2 

product. 
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Fig. 4.1.3 – Polytec PSV-400 

 

 

Fig. 4.1.4 – Laser head 
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A generator can furnish several kind of signals, as: 
 

� Sine; 

� Swept sine; 

� Impulse; 

� Random. 

 

From among all these signals, the swept sine has been chosen. The swept 

sine is a sinusoidal signal whose amplitude is constant in the selected frequency 

range. So it is possible to excite a structure with the same intensity at all frequencies. 

About the frequency range the experimental tests have been carried out 

from 0 Hz to 10 kHz. Sometimes from 0 Hz to 20 kHz. Moreover, the voltage output 

of generators can vary from 0 Volt to 2, 5 or 10 Volt depending on the device. In 

any test the maximum possible voltage for the used device has been chosen. 

All the generators devices are able to work as spectrum analyzer. 

The following graph represents a swept sine signal generated from 0 Hz to 

20 kHz. It can be observed that at the highest frequencies the spectrum shows an 

higher amplitude since it is feeling the impedance of a piezoceramic patch which 

was working, at that time, as actuator, and it was receiving the signal by the 

generator. 
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Fig. 4.1.5 – Swept sine signal 
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IV.1.2  Amplifiers 

 An amplifier is a device which amplifies the amplitude of the signal 

produced by the generator. 

Three different amplifiers have been used: 

 

� Audio amplifier UP2301; 

� LDS amplifier PA500; 

� TREK amplifier. 

 

The first one is a current amplifier which has been used to amplify the 

excitation signal for the magnetostrictive actuators. It has an adjustable gain. 

 

 

Fig. 4.1.6 – Audio amplifier 

 

 The second one is another current amplifier which has been used to amplify 

the excitation signal for the magnetostrictive actuators. It also has an adjustable gain. 
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Fig. 4.1.7 – LDS amplifier 

 

 The third one is a voltage amplifier which has been used to amplify the 

excitation signal for the piezoceramic patches. It has a fixed gain which multiplies 

the signal voltage amplitude 25 times. 

 

 

Fig. 4.1.8 – TREK amplifier 
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IV.1.3  Piezoceramic devices 

 Several piezoceramic patches Stetner PPK23 have been used as actuators 

and sensors, having a square and rectangular shape whose dimension is 30 x 30 mm 

or 20 x 30 mm and a thickness equal to mm.0,5 or mm.1. 

 The piezoceramic patches have been bonded on the structures by means of 

a bicomponent epoxy adhesive. 

 The piezoceramic patches are made of piezoelectric material. The 

piezoelectricity is the ability of certain crystals to generate a voltage in response to 

applied mechanical stress. The word is derived from the Greek “piezein”, which 

means to squeeze or press. The piezoelectric effect is reversible; piezoelectric 

crystals, subject to an externally applied voltage, can change shape by a small 

amount. The deformation, about 0.1% of the original dimension in PZT, is of the 

order of nanometers. The lead zirconium titanate (PZT, also Lead zirconate titanate) 

is a ceramic perovskite material that shows a marked piezoelectric effect - that is, it 

develops a voltage difference across two of its faces when compressed, and 

ferroelectric effect. It also features an extremely large dielectric constant. 

Of the thirty-two crystal classes, twenty-one are non-centrosymmetric (not 

having a centre of symmetry), and of these, twenty exhibit direct piezoelectricity the 

remaining one being the cubic class 432. Ten of these are polar (i.e. spontaneously 

polarize), having a dipole in their unit cell, and exhibit pyroelectricity. If this dipole 

can be reversed by the application of an electric field, the material is said to be 

ferroelectric. 

� Piezoelectric Crystal Classes: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 

32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m; 

� Pyroelectric: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm. 

In a piezoelectric crystal, the positive and negative electrical charges are 

separated, but symmetrically distributed, so that the crystal overall is electrically 

neutral. Each of these sites forms an electric dipole and dipoles near each other tend 

to be aligned in regions called Weiss domains. The domains are usually randomly 

oriented, but can be aligned during poling, a process by which a strong electric field 

is applied across the material, usually at elevated temperatures. 
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When a stress is applied, this symmetry is disturbed, and the charge asymmetry 

generates a voltage across the material. For example, a 1 cm cube of quartz with 500 

lbf (2 kN) of correctly applied force upon it, can produce 12.500 V of electricity. 

Piezoelectric materials also show the opposite effect, called converse 

piezoelectricity, where the application of an electrical field creates mechanical 

deformation in the crystal. 

Piezoelectricity is the combined effect of the electrical behavior of the material: 

 

� Charge Density, D = Permittivity x Electric Field, E  

and Hooke's Law: 

� Strain, S = Compliance, s x Stress, T 

 

This may be expressed as: 

{S} = [sE]{T} + [d]{E} 

{D} = [d] t + [εT]{E} 

 

The bending forces generated by converse piezoelectricity are extremely 

high, of the order of tens of millions of pounds (tens of meganewtons), and usually 

cannot be constrained. The only reason the force is usually not noticed is because it 

causes a displacement of the order of few nanometers. 

 

 

Fig. 4.1.9 – Piezoceramic patch 
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 During a test, in consequence of an irregular behaviour of a piezoceramic 

patch bonded on the aeronautical composite panel, it has been necessary to verify if 

that patch had been working properly or not. 

The use of the Laser Vibrometer has permitted 

to analyze the behaviour of the patch which 

had been used as sensor. The surface of two 

patches during a FRF acquisition have been 

scanned by the laser. The patch located in the 

centre of the panel had been working as 

actuator. 

The output of the vibrometer is reported in the next figure: 

 

Fig. 4.1.11 – Piezoceramic patch failure 

 

 It can be observed that the Vibrometer is able to identify a piezoceramic 

patch failure. The upper picture shows that the left patch presents a discontinuity 

line during the deformation motion resulting from the vibration of the panel. That 

motion is impossible if a piezoceramic patch has no crack, because of the high 

stiffness. In fact, the right patch, which was working properly, does not present that 

discontinuity line. 

Fig. 4.1.10 – Laser beam 
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IV.1.4  Magnetostrictive actuators 

 Two magnetostrictive actuators AMA50 have been used as actuators for the 

experimental tests executed on the MD-11 test article. 

 

Those actuators are made of magnetostrictive material TERFENOL-D, 

whose meaning is: 

 

� TER = Terbium; 

� FE = Iron; 

� NOL = Naval Ordinance Laboratory; 

� D = Dysprosium. 

 

Fig. 4.1.12 – Magnetostrictive actuators 

 

 

Magnetostriction is a property of ferromagnetic materials to undergo a 

change of their physical dimensions when subjected to a magnetic field. This effect 

was first identified in 1842 by James Joule when observing a sample of nickel. This 

property, which allow magnetostrictive materials to convert magnetic energy into 

kinetic energy and conversely, is used for the building of both actuation and sensing 

devices. It is often quantified by the magnetostrictive coefficient, L, which is the 

fractional change in length as the magnetization of the material increases from zero 

to the saturation value. The effect is responsible for the familiar "electric hum" 
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which can be heard near transformers and high power electrical devices (depending 

on country, either 100 or 120Hz, plus harmonics). 

The reciprocal effect, the change of the susceptibility of a material when 

subjected to a mechanical stress, is called the Villari effect. Two other effects are 

related to magnetostriction: the Matteucci effect is the creation of a helical 

anisotropy of the susceptibility of a magnetostrictive material when subjected to a 

torque and the Wiedemann effect is the twisting of these materials when an helical 

magnetic field is applied to them.  

The Villari Reversal is the change in sign of the magnetostriction of iron 

from positive to negative when exposed to magnetic fields of approximately 500 

oersteds. 

 

Most ferromagnetic materials exhibit some measurable magnetostriction. 

The highest room temperature magnetostriction of a pure element is that of Co 

which saturates at 60 microstrain. Fortunately, by alloying elements one can achieve 

"giant" magnetostriction under relatively small fields. The highest known 

magnetostriction are those of cubic laves phase iron alloys containing the rare earth 

elements Dysprosium, Dy, or Terbium, Tb; DyFe2, and TbFe2. However, these 

materials have tremendous magnetic anisotropy which necessitates a very large 

magnetic field to drive the magnetostriction. Noting that these materials have 

anisotropies in opposite directions, Clark and his co-workers at NSWC-Carderock, 

prepared alloys containing Fe, Dy, and Tb. These alloys are generally stochiometric, 

of the form TbxDy1-xFe2 and have been coined Terfenol-D. Terfenol-D, operated 

under a mechanical-bias, strains to about 2000 microstrain in a field of 2 kOe at 

room temperatures. For typical transducer and actuator applications, Terfenol-D is 

the most commonly used engineering magnetostrictive material. 
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Fig. 4.1.13 – Terfenol-D response around room temperature, from Clark 

 

 

The mechanism of magnetostriction at an atomic level is relatively complex 

subject matter but on a macroscopic level may be segregated into two distinct 

processes. The first process is dominated by the migration of domain walls within 

the material in response to external magnetic fields. Second, is the rotation of the 

domains. These two mechanisms allow the material to change the domain 

orientation which in turn causes a dimensional change. Since the deformation is 

isochoric there is an opposite dimensional change in the orthogonal direction. 

Although there may be many mechanism to the reorientation of the domains, the 

basic idea, represented in the figure, remains that the rotation and movement of 

magnetic domains causes a physical length change in the material. 
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Fig. 4.1.14 – Movement of magnetic domains 

 

Magnetostrictive materials are typically mechanically biased in normal 

operation. A compressive load is applied to the material, which, due to the magneto-

elastic coupling, forces the domain structure to orient perpendicular to the applied 

force. Then, as a magnetic field is introduced, the domain structure rotates 

producing the maximum possible strain in the material. A tensile preload should 

orient the domain structure parallel to the applied force though this has not yet been 

observed due to the brittleness of the material in tension 

 

 

Fig. 4.1.15 – Orientation of the domain structure
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IV.2  Test articles 

 Three different structures have been used in order to verify the capabilities 

of both Damage Index and Neural Network methods in identifying, localizing and 

quantifying a structural damage: 

 

� MD-11 fuselage; 

� Aeronautical composite panel; 

� ATR-72 aircraft. 

 

IV.2.1  MD-11 

 A typical fuselage stiffened panel available in the labs of the Department of 

Aeronautical Engineering has been chosen as first test-article. It is an MD11 

fuselage panel made of: 

 

� a 2024 aluminium alloy skin (1350mm x 1700mm); 

� a 7075 aluminium alloy for the remainder of the structure; 

� aluminium alloy rivets and titanium alloy hi-lock rivets; 

� an alodyne 1200 protective coating on both faces of the panel; 

� a primer protective coating on the inner surface (green colour). 

 

That panel is a part of the MD-11 aircraft, which has been removed from 

the forward left zone of the fuselage, during the conversion of the aircraft from 

passenger to freighter, where a larger cargo door replaces the smaller passenger 

door. 

The panel has been constraint to the wall by means of stiffeners. 

On the test-article eight piezoelectric patches have been bonded in order to 

create an array of actuators-sensors. Following several tests which have been carried 

out in order to set up the frequency range, only four piezoelectric patches have been 

used, since four are enough to demonstrate the capability of the techniques to 

identify and quantify the damage. 
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Fig. 4.2.1 – MD-11 fuselage panel 

 

Fig. 4.2.2 – MD-11 Constraint  
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IV.2.2  Aeronautical composite panel 

 A typical aeronautical composite panel made by means of RFI technology, 

available in the labs of the Department of Aeronautical Engineering, has been 

chosen as second test-article. 

The panel has been constrained to a frame by means of four iron springs. 

On the test-article 9 piezoelectric patches have been bonded in order to 

create an array of actuators-sensors. 

The main characteristics of the panel are: 

� 14 plies made of multi-axial HTA 3/6 K (520mm x 520mm x 2mm); 

�  panel lay-up: [(90/0/+/–)(+/0/–)]s; 

�  fibre: multiaxial HTA-6K; 

�  resin: epoxy film 977-2 by Cytec; 

�  technical data: 

�  E1 = 1.352e11 N/m2; 

�  E2 = 9.3e9 N/m2; 

�  υ12 = 0.34; 

�  G12 = 4.87e9 N/m2; 

�  ρ = 1600 Kg/m3. 

 

Fig. 4.2.4 – Composite panel set-up

Fig. 4.2.3 – Composite panel 
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IV.2.3  ATR–72 aircraft 

 Thanks to the ATR company it has been possible to 

execute experimental tests on a real ATR-72 aircraft. It is a 

prototype which serial number is MSN-098. 

 

 

Fig. 4.2.5 – ATR-72 

 

  On the aircraft five different area have been chosen in order to carried out 

the tests, and twenty-five piezoceramic patches have been bonded to create an array 

of actuators-sensors. For all the details it refers back to the chapter 5. 

 

The fuselage of ATR 72 aircraft is of semimonocoque construction, and it 

is manufactured in structural sections as follows : 

� Section 11 : Fuselage Nose Section; 

� Section 13 : Fuselage FWD Center Section; 

� Section 15 : Fuselage Center Section; 

� Section 16 : Fuselage Rear Center Section; 

� Section 18 : Fuselage Tail Section; 

� Aerodynamic fairings. 

The monocoque structure consists of frames and panels. The fuselage frames 

are generally built in 7075-T6 with a Z-profile. 

The load introduction frames (main frames at wing and MLG attachment) are 

made in 7050-T74 52. The main frames to support the vertical tail are made in 7075-

T6 ''Z'' shaped on the lateral and lower lobe. 
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The fuselage panels are made of 2024-T3 skin stiffened by 7076-T6 riveted 

stringers, except on some parts where they are hot bonded. 

The stringers are made mainly of 7075 material. 

A crease beam runs along the pressurized fuselage at the intersection of the two 

fuselage lobes to take the kink loads coming from pressurization and to transfer the 

floor shear loads to the fuselage skin. 

The skin panels of ATR 72 aircraft fuselage are made mainly of 2024 material. 

They are reinforced by a system of riveted or hot bonded stringers and bonded 

doublers. 

 

 

 

 

 

 

Fig. 4.2.6 – Piezoceramic patches installation examples 
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Chapter V 

Experimental tests and Results 

 

 The core of the research is formed by experimental tests, and the results 

obtained, executed on the test articles which are described in the chapter IV. The 

object of this chapter is to explain the analysis of the results which will be treated 

with regard to each test article, not in a chronological way. 

 

V.1  MD-11 fuselage 

V.1.1  First experimental campaign 

 On that structure either magnetostrictive or piezoelectric patches has been 

used as actuators, while seven piezoelectric patches have been used as sensors. 

 First, it has been used two magnetostrictive actuators, and two different 

amplifiers: the audio power amplifier and the LDS amplifier. First it has been used 

the audio one. In order to define their right position on the structure a perturbation 

has been simulated to not change for ever the structure characteristics, to test several 

position for the actuators. Firstly, the magnetostrictive actuators have been installed 

on the right frame of the structure, far from the structure constraints. 

 

 

Fig. 5.1.1 – Magnetostrictive actuators 
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The perturbation has been carried out by means of a mass of gr.500, rested 

on the structure without fasteners, so that it could be easily moved everyway, with 

no problem. That kind of perturbation, even if it leads to good damage 

identifications (see after), is not a real damage simulation, since it is a damage 

unfaithful to realities. In fact 500 grams added on a structure causes a redistribution 

of the mass of the structure. 

 

Fig. 5.1.2 – 500 grams mass 

 

To test how could change the behaviour of the system structure-

magnetostrictive actuators when these ones are installed on other places, the left 

frame of the structure was drilled before moving the actuators from the right frame 

to the left one. So, it was possible to check if the piezoceramic array sensors were 

able to identify the holes (two which diameter is equal to mm. 4) as a damage. 

 Both holes are out from the sensors array, on the left frame which is a very 

stiff element, so the identification of the holes was not so evident. 

 It can be noted that both the Damage Global Index, which is determined 

summing all sensitivity indexes and all damage indexes, and the damage indexes 

obtained for each sensor, are able to identify the damage, but all damage indexes are 

not so high with regard to the sensitivity indexes. 
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Fig. 5.1.3 – Global Damage Index 
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Fig. 5.1.4 – Damage Index “1” 
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Fig. 5.1.5 – Damage Index “2” 
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 Then both magnetostrictive actuators have been installed on the left frame, 

at the same height of the right frame actuators position. 

 

 

Fig. 5.1.6 – Magnetostrictive moving 

  

In the end it has been tested a configuration where one actuator is on the 

left frame and the other is on the right one. 

 The analysis of the Frequency Response Functions pertinent to the three 

actuators configurations shows the different dynamical behaviour of the structure, 

since the different location of the actuators gives rise a redistribution of the mass of 

the structure. In theory this is not a problem, if the three different excitation 

configurations are related to three different structure. 
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Fig. 5.1.7 – FRFs of sound structure – sens #5 – actuators left and right 
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Fig. 5.1.8 – FRFs of sound structure – sens #5 – actuators right 
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Fig. 5.1.9 – FRFs of sound structure – sens #5 – actuators left 

In the following figure it is shown a typical temporal cycle test to determine 

reference and damage indexes for each excitation scheme. 
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 It can be noted that the structure having both the magnetostrictive actuators 

on the left frame has given good results. In fact all sensors, especially #5 and #6 well 

identify and localize the presence of the mass. 
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Fig. 5.1.10 – Damage Index “1” – actuators left 

 

The other two actuators configurations (both on the right frame and each of 

them on a different frame) have not lead a good identification of the perturbation 

because of very high sensitivity indexes. The structure has not changed, and the 

environmental disturbance cannot be the cause why the reference indexes 

determined with regard to the second and third configurations are so high. When the 

magnetostrictive actuators are moved, the clamping of the bolts changes. Since the 

acquisition of the first configuration was the only one which has been executed 

without disassembling the actuators, probably, this fact is the cause of the different 

reference indexes calculated with regard to the second and third configuration. It can 

be noted that the FRFs definitely change. 
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Fig. 5.1.11 – Damage Index “1” – actuators left and right 
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Fig. 5.1.12 – Damage Index “1” – actuators right 
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Fig. 5.1.13 – FRFs sensor #6 
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 In the end only the configuration having an actuator on a frame and the 

second actuator on the other frame has been chosen, to avoid moving the actuators. 

Besides they have been used either together or one at a time. 

 

 

Fig. 5.1.14 – Magnetostrictive final configuration 

 

 In order to avoid that the excitation signal was cut by the amplifier, when 

both actuators have been used at the same time, each one was supplied by means of 

1,1 Ampere current (2,2 total Ampere current), while when one actuator only has 

been used, it was supplied by 1,5 Ampere current. So, to have the maximum 

vibration energy, both actuators have been used at the same time. Note that each 

magnetostrictive actuator can be supplied by 3,0 Ampere current. Anyway, damage 

indexes determined using one actuator only at a time have given good results about 

the identification of the presence of the mass close to the piezo patches #5 and #6. 
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Fig. 5.1.15 – Damage Index – one actuator right 
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Fig. 5.1.16 – Damage Index – one actuator left 

 

 



Experimental tests and Results_____           Bovio Igor 

 

 72 

Localization 

Once the actuators configuration has been fixed, the capability of the 

Damage Index method in localize the presence of a damage has been tested. So, the 

mass of gr.500 has been put on different positions on the structure. 

 

 

Fig. 5.1.17 – Masses locations 

 

Mass position A: 

all Damage Indexes are higher than the sensitivity ones, so the presence of 

the mass has been identified. About the localization it can be noted that the sensors 

#5, #6 and #7 have given the highest indexes. Because of the route of vibrations 

from the actuators to the sensors, it is obvious that sensors #5 and #6 have localized 

the presence of the mass, while, about the sensor #7, it has to take into account that 

the sensor #7 in on the frame, which has an high stiffness, so the vibration waves 

prefer to travel through it. 
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Fig. 5.1.18 – Damage Index “2” damage “A” 

 

Mass position B and C: 

 In those cases it is not possible to localize the presence of the mass because 

of all indexes have similar values. It is noted that the mass put on position C was 

equal to kg.1. Maybe the problem is the stiffness of the structure in that region. 

There, in fact, the skin has a thickness equal to cm.1, and there are a lot of hi-lock 

rivets. Furthermore, the sensor #4 is less sensitive than the other sensors. 

Fig. 5.1.19 – Damage Index “2” damage “B and C” 

Mass position D: 

 all sensors identify the presence of the mass, and the sensor #3 localize it. It 

can be noted that the position D is symmetric to the position B, but, evidently, the 

sensor #3 is more sensitive than the sensor #4. 
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Fig. 5.1.20 – Damage Index “2” damage “D” 

 

Mass position E: 

 also in that case the sensors identify the mass, and sensors #5 and #6 

localize it. Besides, it can be observed the sensor #5 has noted that the mass is far 

from the position A, in fact it has give a lower index. 
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Fig. 5.1.21 – Damage Index “2” damage “E and A” 

 

In all the cases the sensor #7, put on the frame, identify the presence of the mass 

independently from its position, because of the high stiffness of the frame with 

regard to the rest of the structure. 
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LDS amplifier 

 In order to use the magnetostrictive actuators at their peak the LDS power 

amplifier has been used. It can be observed how the increased energy level has 

modified the transfer function, especially at low frequencies. 
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Fig. 5.1.22 – FRFs comparison – LDS amplifier – sensor #3 

 

At the same time the coherence function which has been calculated using the new 

amplifier is worse than using the audio amplifier. Even if there are an higher energy 

level, the signal is noisy, and, consequently, the sensitivity indexes will be higher. 
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Fig. 5.1.23 – Coherence comparison between audio and LDS amplifiers – sens #3 
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To show the differences between the two amplifiers behaviour, the mass of 

gr. 500 has been put on the position A, B and D again, and they have been compared 

the results obtained by using the LDS amplifier with the results obtained by using 

the audio power amplifier. 

About the following graphs, each slice of pie chart represents the percentage of the 

difference between the damage index and the reference index calculated for each 

sensor, with regard to the global reference index: 
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while each bar represents the increment of a damage index with regard to the 

associate sensitivity index. 

 

The deviation between the indexes of the sensors placed close to the mass and the 

indexes of the sensors located far from it shows that the LDS amplifier improve the 

capability of the Damage Index method in identify and localize a structure 

perturbation. 
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Mass position A: 
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Fig. 5.1.24 – Pie charts comparison between audio and LDS amplifiers 
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Fig. 5.1.25 – Bar charts comparison between audio and LDS amplifiers 
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Mass position B: 
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Fig. 5.1.26 – Pie charts comparison between audio and LDS amplifiers 
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Fig. 5.1.27 – Bar charts comparison between audio and LDS amplifiers 

 

 

 

 

 

 

 

 

 

 



Experimental tests and Results_____           Bovio Igor 

 

 79 

Mass position D: 
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Fig. 5.1.28 – Pie charts comparison between audio and LDS amplifiers 
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Fig. 5.1.29 – Bar charts comparison between audio and LDS amplifiers 

 

 



Experimental tests and Results_____           Bovio Igor 

 

 80 

 A Neural Network was trained by means of five FRFs acquisition campaign 

of the sound structure to verify the capability in identifying the mass added. 

 

Fig. 5.1.30 – Neural Network output 

 

 The Neural Network output show that the presence of the mass has been 

identified, independently by the position. In fact the undamaged structure curve is 

very close to the x-axis, while the other are far from it. Moreover, it seems that the 

Neural Network is more sensitive about some locations. 

 Even if there is no threshold, the mass, located in the “E” position, has been 

clearly identified, while the mass put on the “A” position gives a bit doubt about its 

identification. 
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Real damage 

 After having perturbed the structure, as shown in the previous paragraph, 

some real damage have been carried out on the structure in order to test the Damage 

Index technique. Besides, either the amplifiers audio or LDS have been used, so it is 

possible to highlight the importance of the power of the energy used and the signal 

coherence (noise produced by the equipment). 

 

First experimental test 

 The first experimental test has consisted of a subsequent removal of two hi-

lock rivets, made of titanium alloy, connecting the window stiffening to the skin, to 

test the capability of the Damage Index method in identify a damage on very stiff 

region of structures. 

 

 

Fig. 5.1.31 – First Damage location 

 

Before removing the two rivets, the nuts which clamp the rivets have been 

removed, to verify if it is possible to identify a little damage, too. In next figures the 

obtained results are reported: 
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Fig. 5.1.32 – Global Damage Index – both amplifiers 

 

the figure above represents the global damage indexes which shows that the highest 

coherence is the better identification is, even if the energy power is low. In the 

following figures there are the details of the indexes for each sensors, obtained by 

means of the LDS amplifier and, then, by the audio amplifier. 
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Fig. 5.1.33 – Damage Index “1” LDS amplifier 
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Fig. 5.1.34 – Damage Index “2” LDS amplifier 
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Fig. 5.1.35 – Damage Index “1” audio amplifier 
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Fig. 5.1.36 – Damage Index “2” audio amplifier 

ref 
damage 

ref 
damage 



Experimental tests and Results_____           Bovio Igor 

 

 84 

The charts show that the audio power amplifier gives the best results. Using the LDS 

amplifier it is not possible to identify the damage clearly. The sensor #3 has localize 

the damage. Taking into account the route of the vibrations, it is possible to explain 

why other sensors localize the damage too, for example the sensor #5. It can be 

noted that the sensors #1 and #4, out of the vibration route, do not localize the 

damage. The following figures show the same results by means of pie charts and 

percentage bar graphs. 
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Fig. 5.1.37 – Pie charts Index “1” and Index “2” audio amplifier 

 

  

Fig. 5.1.38 – Pie charts Index “1” and Index “2” audio amplifier 

 

Since both Index “1” and “2” give good results in identification, to show the next 

results it will be used the first only, in order to make the treatment of the work 

lighter. 
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The removal of the first rivet is shown in the next figures: 

 

  

Fig. 5.1.39 – First rivet removal 

 

Also for the removal of the first rivet the results will be shown using the same charts 

which have been used to show the damage of the nuts: 
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Fig. 5.1.40 – Global Damage Index First rivet removal 

 

It can be observed that the removal of the rivet has been identified. 
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Fig. 5.1.41 – Damage Index “1” audio amplifier 
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Fig. 5.1.42 – Damage Index “1” LDS amplifier 
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Fig. 5.1.43 – Pie charts Index “1” comparison between audio and LDS amplifiers 
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Fig. 5.1.44 – Bar charts Index “1” comparison between audio and LDS amplifiers 

 

Also in that case the use of the audio power amplifier has given the best results in 

identification and localization of the damage. 
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Second rivet removed 

 The removal of another rivet, close to the first, has been the following step.  

  

Fig. 5.1.45 – Second rivet removal 

Next figures show all the results obtained by means of the Damage Index “1” only, 

and both the amplifiers. 
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Fig. 5.1.46 – Global Damage Index “1” both amplifiers 

 

It can be observed that the damage have been identified, but using a more clean 

signal, even if the level of the energy is low (using the audio amplifier), the 

identification is better. 

About the localization, the following charts report the indexes for each sensor. 
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Fig. 5.1.47 – Damage Index “1” audio amplifier 
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Fig. 5.1.48 – Damage Index “1” LDS amplifier 
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Fig. 5.1.49 – Damage Index “1” audio and LDS amplifiers 
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The following bar charts show the increments percentage of the indexes with regard 

to the reference ones, starting from the damage of the nut of the first rivet removed. 
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Fig. 5.1.50 – Damage Index “1” percentage increments – audio amplifiers 
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Fig. 5.1.51 – Damage Index “1” percentage increments – LDS amplifiers 
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Second experimental test 

 The next step has been the removal of another rivet, after having damaged 

its nut, using one magnetostrictive at a time, and the audio power amplifier only. 

The region of the structure which has been damaged is the one close to the sensor #4. 

 

Fig. 5.1.52 – Second Damage location 

 

Firstly the nut of the rivet has been damaged. That damage has been identified, even 

if one only actuator has been used at a time (less energy than before). 
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Fig. 5.1.53 – Global Damage Index – both actuators 
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Besides, the actuator put on the left frame, close to the damaged area, gives the 

highest indexes, because of the shortest run from the actuator to the damaged area. 

Furthermore, it can be observed from the increments percentage bar charts, that the 

Damage Index “2” localize the damage better the index “1”. 
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Fig. 5.1.54 – Damage Index “1” and “2” – left actuator 

 

Next figures show the results obtained from the Index “2”: 
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Fig. 5.1.55 – Damage Index “2” left and right actuators 
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Fig. 5.1.56 – Damage Index “2” left and right actuators 

 

It can be affirmed that the damage is between sensors #1 and #4, on the left side of 

the structure. 

After having removed the rivet, the method has quantified the damage, giving 

indexes higher than the indexes pertinent to the nut damaged. 
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Fig. 5.1.57 – Global Damage Index “2” left and right actuators 

 

About the localization the following charts show the Damage Index “2” determined 

using either the left or the right actuator. Also for the localization of the rivet 

removed the actuator installed on the left frame has given the best results. 
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Fig. 5.1.58 – Damage Index “2” left and right actuators 
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Fig. 5.1.59 – Damage Index “2” percentage increments – left actuator 
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Fig. 5.1.60 – Damage Index “2” percentage increments – right actuator
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V.1.2  Second experimental campaign 

 The second damage imposed on the test-article has consisted in a chemical 

corrosion. It was carried out by means of the hydrochloric acid with a 15% title, whose 

pH is -0,65. The corroded region measures 8,5 cm2. The corrosion was carried out two 

times on that region, removing about 0,67 grams at a time. 

On the test-article 8 piezoelectric patches have been bonded in order to create 

an array of actuators-sensors. Following several tests which have been carried out in 

order to set up the frequency range, only 4 piezoelectric patches have been used, 

since 4 are enough to demonstrate the capability of the techniques to identify and 

quantify the damage. 
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Fig. 5.1.61 – Second experimental test set-up 
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The FRFs of the monitored structure have been acquired from the points where 

piezoceramic patches have been glued. Employing alternately the piezoceramic 

patches as sensors and as actuators it was possible to acquire 12 Frequency 

Response Functions (4 actuators x 3 sensors). 

The operative frequency range was fixed at 1,0 and 19,0 kHz measured through 

1422 spectral lines. 

 

 

Fig. 5.1.62 – Damage location 

 

 

Fig. 5.1.63 – Corrosion detail 
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About the Damage Index method, it is possible to show a graph for each 

couple of actuator-sensor. To sum up the results, they have been gathered in a graph 

which contains four groups of bars. Every group represents the sum of indexes of 

the couple actuator-sensor, in which the actuator is fixed. Moreover each group 

consists of three bars: the first represent the sensitivity index, which is determined 

using FRFs of the healthy structure acquired at different times to measure the 

experimental error and the environmental noise and vibrations which can influence 

the FRFs; the second and third bars are the indexes obtained after the two corrosion 

steps. 

 

 

Fig. 5.1.64 – Corrosion Damage Index “2” 

 

It can be noted that the index has identified the damage. In fact DIs are 

higher than the sensitivity indexes. Besides, the piezoceramic patch #6, which is 

close to the damaged area, has given the highest index, so it is possible to assert that 

the damage has been localised. About the quantification it can be noted that the 

second corrosion step has increased all the indexes. 
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A Neural Network was trained by means of eight FRFs acquisition campaign of 

the sound structure. 

 

Fig. 5.1.65 – Neural Network output 

 

About the Neural Network technique, it is possible to notice that the healthy 

configuration do not exceed the threshold, determined using the procedure which has 

been explained in the chapter 3, while the corrosion curves exceed the value itself. 

It can be noted that the network was able to quantify the increasing of the 

corrosion. 
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V.1.3  Third experimental campaign 

 In order to execute the third experimental tests, the Vibrometer Scanning 

Laser and three only piezoceramic patches have been used. 

 The excitation signal was the swept sine, generated from 0 to 5 kHz. Taking 

into account the coherence function behaviour, the frequency range was fixed from 

1,0 to 5,0 kHz. The excitation voltage was equal to 125 Volt. 

 

 

Fig. 5.1.66 – Third experimental tests set-up 
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 The piezoceramic patch #1 was used as actuator, while the other two 

patches as sensors. Furthermore, by means of the Laser Vibrometer, twenty-two 

acquisition points on the structure have been defined. 

 

 

Fig. 5.1.67 – Laser Scanning Vibrometer scan points 

 

 Three experimental tests have been executed. One has regarded an addition 

of a mass of 50 grams only; the second regarded a hole made on the structure, 

having a diameter of mm.3, increased up to mm.4 to verify the capability of the 

method in quantifying the damage; the third regarded a crack whose length was 

equal to mm.6, enlarged up to perforate the structure. All those damage were 

execute in proximity of the patch #3. 

 The following pictures and graphs show the damage and the results 

obtained by means of the Damage Index “1” technique.  

 The bar charts show the results obtained using the piezoceramic patches #2 

and #3 as sensors. The first bar of each group of bars represents the sensitivity index, 

while the second one represents the damage index. 

 Next, graphs which represent the results obtained by means of the twenty-

two points acquired by the Laser Vibrometer are reported. 
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Fig. 5.1.68 – Mass addition 

 

The mass of 50 grams was located in two different positions, a little far and 

close to the piezoelectric patch #3. 

 

 

Fig. 5.1.69 – Drilling damage 

 

 

Fig. 5.1.70 – Crack damage 
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Fig. 5.1.71 – Mass Damage Index – piezoceramic patches 

 
Fig. 5.1.72 – Hole Damage Index – piezoceramic patches 

 
Fig. 5.1.73 – Crack Damage Index – piezoceramic patches 
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Fig. 5.1.74 – Mass Damage Index – Laser Vibrometer 

  

 

 

Fig. 5.1.75 – Hole Damage Index – Laser Vibrometer 

mass 
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Fig. 5.1.76 – Crack Damage Index – Laser Vibrometer 

 

 

It can be observed that: 

� the presence of the mass has been identified and localized. Observing 

the piezoceramic results, it can be noted that the piezo #3 was able to 

define with precision the position of the mass, which is close to that 

piezo more and more; 

� the hole has been also identified and localized. Furthermore, the 

Damage Index method was able to quantify its increase; 

� the increasing crack was identified and localized as well. Besides, the 

quantification of the crack propagation up to perforate the structure has 

been clearly shown. 
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V .2 Second Test Article 

 

 The second test article which was used in order to verify the capability of 

the Damage Index and the Neural Network methods in identifying an localizing a 

damage was an aeronautical composite panel. 

 

 

Fig. 5.2.1 – Composite panel 

 

 On that test article nine piezoelectrical patches have been bonded to create 

a symmetrical array of actuators and sensors. Several kind of signal generators, 

spectrum analyser, piezoceramic amplifiers have been used. Furthermore, as sensors 

system, a vibrometer scanning laser have been used. 

 

 
Fig. 5.2.2 – Composite panel set-up 
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Three experimental tests was executed on that panel. Before carrying out 

those experiments, a long time has been spent to define the right set-up. In fact, after 

an acquisition campaign of FRFs of the sound configuration of the panel, large 

variations of the sensitivity indexes were measured. Several kind of constraint, 

rubber or iron springs have been tested to discover why those variations are so large. 

 

        
Fig. 5.2.3 – Suspension springs 

 

 In the end the panel has been constraint by means of four iron springs, since 

no explanation was found. The next step was to verify the environmental behaviour 

of the system formed by the panel, the piezoceramic patches and the glue which has 

been used to bond the patches on the panel. 

 The environmental parameters have been modified by means of an air 

conditioner and a vaporiser. In such a way it was possible to monitor the parameters, 

measuring temperature and humidity, not to control them, since an environmental 

room was not available. 

 First, the temperature and the humidity were decreased, then increased. It 

can be observed in the figure 5.2.5, and table 5.2.1, that an equal temperature, but a 

different relative humidity gives different sensitivity indexes. 
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Fig. 5.2.4 – Environmental set-up 
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Fig. 5.2.5 – Sensitivity Index (Act #5 – central) 

          

T (°C)       p (mb)   rel hum %

1)  25.71        1013.3      54.7

2)  25.97        1013.3      55.9

3)  25.96        1013.2      56.4

4)  23.99        1013.1      48.8

5)  25.05        1013.1      54.0

6)  25.71        1013.1      57.1  

table 5.2.1 
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Fig. 5.2.6 – Sensitivity and Damage Index (Act #5 – central) 

 

 The figure 5.2.6 show then differences between the sensitivity indexes 

obtained modifying the environmental parameter, and the damage index determined 

adding a little mass close to the piezo patch #4. It can be noted that the damage can 

be identified, even if the sensitivity indexes show large variations (see the fourth 

cyan bar). 

 

 Three experimental tests have been carried out in order to test the “Damage 

Index” method, the neural network and the discrimination approach. 

 Employing alternately the piezoceramic patches as sensors and actuators it 

has been possible to acquire 72 Frequency Response Functions (9 actuators x 8 

sensors). Moreover the frequency range of the acquisitions was fixed by taking in 

account the “coherence function”. Following that analysis the operative frequency 

range was fixed from 0,5 to 9,0 kHz measured through 1361 spectral lines (this last 

number is related to the signal acquisition device). 

 In the following subparagraphs the experimental tests executed on that 

panel are reported. 
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V .2.1  First Experimental Test 

 The first experimental test has consisted of an addition of a mass of 4 grams 

close to the piezoceramic patch #1 and, then, close to the patch #6. Imposing that 

kind of simulated perturbation it has been possible to test the capability of the neural 

network in identifying structural changes independently by their location. Besides, at 

the end of the tests, it has been possible to restore the composite panel to the initial 

configuration. 

About the Damage Index method, it is possible to show a graph for each 

couple of actuator-sensor. To sum up the results, they have been gathered in two 

graphs. One about the first index and the other about the second index. Both graphs 

contain nine groups of bars. In the first graph every group represent the sum of 

indexes of the couple actuator-sensor, in which the sensor is fixed. In the second 

graph every group represent the sum of indexes of the couple actuator-sensor, in 

which the actuator is fixed. 

Each group consists of three bars: the first represents the sensitivity index, 

which is determined using FRFs of the healthy structure acquired at different times 

to measure the experimental error and the environmental noise and vibrations which 

can influence the FRFs; the second and third bar are the indexes obtained after the 

addition of the masses. 

 

 

Fig. 5.2.7 – Mass locations 
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Fig. 5.2.8 – Actuators Damage Index “2” 
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Fig. 5.2.9 – Sensors Damage Index “1” 

 

It can be noted that the index has recognized the reference structure and 

identified and localized the perturbation. All patches have given higher DIs than the 

sensitivity indexes and it can be noted that the piezoceramic patches which are close 

to the added mass have the highest indexes, so it is possible to assert that the damage 
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has been localised. There is not the quantification because of the masses were no 

added in the same time. 

Furthermore, to test the capability of the DI method in quantifying  an 

increasing damage, three masses of 3, 5 and 10 grams have been added close to the 

piezo patch #1. For that test the piezoceramic patch #1 was the only one which was 

used as actuator. 

 

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

sen 2 sen3 sen4 sen5 sen6 sen7 sen8 sen9

Index 1 (Act #1)

ref

3  gr.

5 gr.

10 gr.

 

Fig. 5.2.10 – Quantification DI 

 

 It can be observed that the increasing of the mass added to the panel has 

been clearly quantified. 

 

 Both to summarize the results and to verify its capabilities, the vibrometer 

scanning laser was used. It is able to furnish global FRFs of the panel, since it 

acquires the FRFs in x points, then it calculates the average. The following graphs 

show a global Sensitivity and Damage Indexes obtained by the global FRFs acquired 

(fig. 5.2.10), and the differences between the DIs detrmined by means of the 

piezoceramic patches, and the laser vibrometer set to acquire in the same points 

where the piezoceramic patches have been bonded (fig. 5.2.11 and 5.2.12). The 

patch #5 worked as actuator; the mass was put close to the patch #1. 
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Fig. 5.2.11 – Global Damage Index 

 

It is obvious that the damage has been identified by the laser system, since 

the Damage Index is much higher than the Sensitivity one. 

 

 

Fig. 5.2.12 – Piezo patches indexes 
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Fig. 5.2.13 – Laser Vibrometer indexes 

 

Both sensors system were able to identify and localize the presence of the 

mass which is close to the piezo patch #1. 

 

The last chart shows what happen when the frequency range is higher. In 

fact a Damage Index has been determined either from 0,5 to 9,0 kHz or from 10,5 to 

19 kHz. 

 

Fig. 5.2.14 – Laser Vibrometer indexes 

 

It can be noted, comparing the figures 5.2.11 and 5.2.13, that the highest 

frequency is the more evident the localization of the damage is. 
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About the neural network, once the threshold representing the health status 

of the structure was identified (see Chapter 3), thirteen campaigns of acquisition, 

each of them consists of 72 FRFs, have been acquired for the training. 

The neural network has been trained making use of the same FRFs of the 

healthy structure used for the determining of the Damage Index, as positive 

examples. Owing to reciprocity, since the system is linear, we have now used 36 

FRFs only, reducing the redundancy of the information, so the network was lighter. 

 

Fig. 5.2.15 – Neural Network output 

 

As for the experimental test, it is possible to assert that the neural network 

has recognized the reference structure and has identified the perturbation. It is 

possible to notice from the output graph reported in figure 5.2.13 that the reference 

structure curve, which has been obtained by means of the acquisition of FRFs of the 

sound structure, is very close the x-axis, while the addition masses curves are over 

the threshold. 

Furthermore the position of the mass is irrelevant for the identification, in 

fact the curves are practically super imposable. 
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V .2.2  Second Experimental Test 

 The second experimental test has consisted in three impact tests. A sphere 

made by steel, whose mass is 146,4 grams and the diameter is equal to 4 centimetres, 

has been used for the impact. The edges of the composite panel have been stiffened, 

and the panel has been placed horizontally. 

 

 
Fig. 5.2.16 – Impact set-up 

 

 

Fig. 5.2.17 – First Impact location 
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Fig. 5.2.18 – Impact tests locations 

For the first impact test that sphere has been dropped from a height of 2 

metres, so the impact energy has been equal to 2,87 Joule, close to the piezoceramic 

patch #4, outside of the patches array; for the second impact test the sphere has been 

dropped from a height of 2,80 metres, so the impact energy has been equal to 4,02 

Joule, close to the patch #2, and, for the third impact test, the height was equal to 

3,30 metres, and the impact energy has been equal to 4,74 Joule, internal to the array. 

The next chart represents the global index obtained by means of the Vibrometer. 
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Fig. 5.2.19 – Global impacts indexes 
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 It can be observed, from the chart 5.2.17, that all the impacts have been 

identified by the Laser Scanner. 

About the Damage Index method, it is possible to show a graph for each 

couple of actuator-sensor. To sum up the results, they have been gathered in two 

graphs. One about the first index and the other about the second index. Both graphs 

contain nine groups of bars. In the first graph every group represent the sum of 

indexes of the couple actuator-sensor, in which the sensor is fixed. In the second 

graph every group represent the sum of indexes of the couple actuator-sensor, in 

which the actuator is fixed. 
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Fig. 5.2.20 – Actuators DI “2” 
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Fig. 5.2.21 – Sensors DI “1” 
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The first, the third and the fifth bars represent the sensitivity indexes 

determined before each impact; the second, the fourth and the sixth bars are the 

indexes determined after the subsequent impacts. 

All the indexes have identified the damage, in fact all damage indexes are 

higher than the sensitivity ones, but only the second impact has been localized by 

the Index “1”. Probably the first impact had too low energy, while the third, induced 

internally to the patches array, leads to a sort of shadow effect since the patches are 

located in a narrow array. 

The last two charts show what happen when the frequency range is higher. 

A Damage Index has been determined either from 0,5 to 9,0 kHz or from 10,5 to 

19,0 kHz for the second impact test close to the piezoceramic patch #2. 

 

Fig. 5.2.22 – Damage Index (0,5 – 9,0kHz) 

 

Fig. 5.2.23 – Damage Index (10,5 – 19,0kHz) 

0

0.1

0.2

0.3

0.4

0.5

sen1 sen2 sen3 sen4 sen5 sen6 sen7 sen9

0

0.1

0.2

0.3

0.4

0.5

sen1 sen2 sen3 sen4 sen5 sen6 sen7 sen9



Experimental tests and Results_____           Bovio Igor 

 

 119 

 The previous charts show how the frequency can improve the localization 

of the damage, in fact at higher frequencies the localization is better. 

About the Neural Network, as for the second experimental tests, the 

impacts by means of the iron sphere, probably a damage has occurred. The neural 

network has confirmed it, in fact its output puts the impact curves far from the 

undamaged structure curve. 

 

Fig. 5.2.24 – Neural Network impacts output 

 

 The FRFs, which have been acquired after the impact test, are definitely 

changed. That damage could be a delamination. 

 

Next graph represents the neural Network output about the second impact, 

after that the threshold was determined as in Chapter 3. 
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Fig. 5.2.25 – Neural Network impact #2 output 

 

It is clear that the impact has been identified. The neural network has 

confirmed it, in fact its output puts the impact curve far from the threshold, and very 

far from the undamaged structure curve.  

The FRFs, which have been acquired after the impact tests, are definitely 

changed. That damage could be a delamination. 
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V .2.3  Third Experimental Test 

 About the third experimental test, the panel has been drilled. Two holes 

were made close to the patches #2 and #3, having a diameter equal to mm.5. Besides, 

the hole close to the patch #2 was increased up to mm.7. 

 

Fig. 5.2.26 – Hole mm.5 location #2 

 

 

Fig. 5.2.27 – Hole mm.7 location #2 
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Fig. 5.2.28 – Hole mm.5 location #3 

 

  As well as the previous experimental tests, a global Damage Index 

has been calculated by means of the Vibrometer Scanning Laser for the hole close to 

the patch #3. The following chart show that result. It can be noted that the hole has 

been identified. 

 

 

Fig. 5.2.29 – Global Damage Index “2” 

 

Moreover, the Damage Index results are shown for each couple of actuator-

sensor. They have been gathered in two graphs. One for each Damage Index. Both 

graphs contain nine groups of bars. In the first graph every group represent the sum 
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of indexes of the couple actuator-sensor, in which the sensor is fixed. In the second 

graph every group represent the sum of indexes of the couple actuator-sensor, in 

which the actuator is fixed. 

 
Fig. 5.2.30 – Actuator DI “2” 

 

Fig. 5.2.31 – Sensors DI ”1” 

 Both indexes have identified the damage, in fact the damage indexes all 

higher than the sensitivity ones, but they have not localized it, probably because the 

hole was realized internally at the patches array. Note that the same kind of problem 

has been discussed in the previous subparagraph. 
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About the hole close to the piezoceramic patch #2, the next charts show the results. 

 

Fig. 5.2.32 – Actuator DI “2” 

 

Fig. 5.2.33 – Sensors DI ”1” 

 In that case the damage has been identified, localized and quantified. All 

indexes are higher than the sensitivity ones, especially the index related to the patch 

#2. Furthermore, all the bars which represent the hole increased up to mm.7, have 

values higher than the bars which represent the hole equal to mm.5. 
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V.3  ATR-72 

 

 The last test article which has been used to execute experimental tests in 

order to verify the capabilities of both methods, the Damage Index and the Neural 

Network, has been an ATR-72 aircraft. 

 

 

Fig. 5.3.1 – ATR-72  MSN 098 

 

 

 

Fig. 5.3.2 – ATR-72  internal views 
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V.3.1  Overview 

 Five different areas of the aircraft have been monitored. Those areas have 

been defined in collaboration with engineers of the Department of Structural 

Engineering of the ATR Toulouse division. Three areas are internal to the fuselage, 

and two out of that: 

� A part where the frame 29 is linked to the stringer 13, on the right side of 

fuselage; 

� A floor support zee close to the passenger door; 

� A floor frame located in the rear of the fuselage, where the frame 42 is; 

� The Main Landing Gear (MLG) truss shear on the right side of the aircraft; 

� The frame 45 located in the tail cone. 

 

The used instrumentation has been formed by the Ono Sokki DS2100 

spectrum analyzer which has generated the excitation signal and acquired the FRFs; 

the TREK piezoceramic amplifier; a laptop and the interface device to connect the 

aircraft cables to the instrumentation. 

 

 

Fig. 5.3.3 – Instrumentation 
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Fig. 5.3.4 – Interface device 

 

The excitation signal used is the swept sine from 0 Hz to 20 kHz. The 

output voltage of the generator has been fixed to 2 Volt, amplified 25 times by the 

amplifier, up to 50 Volt only. 

About the Damage Index method they have been determined the indexes 

“1” and “2” with regard to two frequency ranges, from 1,5 kHz to 10 kHz and from 

10 kHz to 18,5 kHz, for each monitored part of the aircraft, taking into account both 

the coherence function, which has given bad values from 0 Hz to 1,5 kHz, and the 

Brigg effect which has influenced the frequencies close to 20 kHz. The number of 

spectral lines used is equal to 681 for each frequency range.  

 Furthermore, they have been trained Neural Networks for each part of the 

fuselage and for each frequency range. 

 About the identification of damage it has not been possible waiting for a 

natural damaging of the structure, since it would have need much more time we had. 

So, for example, rivets have been removed, simulating a typical aeronautical damage 

in those areas, changing the stiffness of the structure. 

 

In the following paragraphs all the results are explained for each monitored area. 
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V.3.2  Frame 29 

 The first area tested is an internal region of the fuselage, close to the 

interception point between the frame #29 and the stringer #13, on the right side of 

the aircraft. Six piezoceramic patches have been bonded on the structure: five, which 

have a square shape, on the fuselage skin, and one, which has a rectangular shape, 

on the stringer #13. the piezoceramic patches #1, #2, #3 and #4 have a thickness 

equal to mm.1, while the patches #5 and #6 have a thickness equal to mm.0,5. 

 

 

Fig. 5.3.5 – First monitored area scheme 
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Fig. 5.3.6 – First monitored area 

 

 

 

 

Fig. 5.3.7 – First monitored area 
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Fig. 5.3.8 – First monitored area (zoom) 

 

Firstly, an acquisition campaign of the sound structure has been executed 

both to define the right sensitivity index and to be able to train a dedicated Neural 

Network. They have been carried out eight FRF’ acquisitions at different times for 

each actuator-sensor couple, which are thirty. In the end there are seven sensitivity 

indexes, since an FRFs acquisition is for the reference, for each actuator-sensor 

couple, for each frequency range and for each Damage Index. Furthermore, two 

Neural Networks have been trained, one for each frequency range. 

In the following charts each group of bars show the indexes for a specific actuator-

sensor couple: act. #1 – sens. # 2 … act. #1 – sens. #3 … … … act. #6 sens. #5. 

 

 The following step has been a simulation of a damage, consisting of a 

removal of a rivet connecting the stringer #13 to the joint stringer, which have the 

Part Number 10S53070210, and it has made of 7075-T73511 aluminium alloy, 

derived by an extruded piece NTA 44256 (Alenia Technical Standard). 
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Fig. 5.3.9 – Sensitivity Index 
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Fig. 5.3.10 – Sensitivity Index 
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Fig. 5.3.11 – Sensitivity Index 
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Fig. 5.3.12 – Sensitivity Index 
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Fig. 5.3.13 – Rivet removal 

 

 

 

Fig. 5.3.14 – Area after the “damage” 

 

Lastly, an acquisition campaign of the damaged structure has been 

executed. They have been carried out six FRF’ acquisitions at different times for 

each actuator-sensor couple. In the end there are six damage indexes for each 

actuator-sensor couple, for each frequency range and for each Damage Index. 

 

The following charts show the damage indexes as same as the sensitivity 

ones. 
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Fig. 5.3.15 – Damage Index 
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Fig. 5.3.16 – Damage Index 
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Fig. 5.3.17 – Damage Index 
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Fig. 5.3.18 – Damage Index 
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It can be observed that the removal of the rivet has been identified and 

localized. In order to make all the results more evident, some data manipulations 

have been done. 

 

First, to sum up the results, they have been gathered in eight graphs. Four 

about the first index and the others about the second one; about each index, two 

about the low frequency range (1,5 – 10khz) and two about the high frequency range 

(10 – 18,5kHz); about each frequency range, one chart represents the sum of indexes 

of the actuator-sensor couples, in which the actuators are fixed, while the second one 

represents the sum of indexes of the actuator-sensor couples, in which the sensor are 

fixed. 

 

It can be observed that every index has identified the damage. In fact all 

DIs are higher than the sensitivity indexes. The localization is not so evident: maybe 

the point is that the system is very sensitive, in fact all the sensors have felt the 

presence of the damage, and, furthermore, that representation method is not the best. 

The piezoelectric patch #2, put on the stringer, does not give a good localization of 

the rivet failure. The Damage Index “2” works better than the Index “1”., and 

working at the highest range frequency gives the best localization. In fact, to localize 

the damage, it is necessary to calculate the Index “2” at the high frequency. In that 

case, the graphs show that the piezoceramic patch #3 localizes the rivet failure, 

helped by the piezoceramic patch #2. 
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Fig. 5.3.18 – Actuators DI 
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Fig. 5.3.19 – Actuators DI 
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Fig. 5.3.20 – Sensors DI 
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Fig. 5.3.21 – Sensors DI 
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Fig. 5.3.22 – Actuators DI 
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Fig. 5.3.23 – Actuators DI 
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Fig. 5.3.24 – Sensors DI 
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Fig. 5.3.24 – Sensors DI 
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 In order to better localize a damage, a Student t test has been used by means 

of the Matlab software. All t values obtained by the Matlab have been gathered in 

four bar charts, two for each index and for each frequency range. The degree of 

freedom (DOF) is equal to 11. 

 

 Bearing in mind that the damage is located close to the piezo patch #2, it 

can be observed that using the t test the localization is improved, but it is not good 

enough, in fact the piezoelectric patch #5 localizes the rivet failure too. 

 

 In the end, a recalculation of the indexes has been done. The last graphs 

represent the ratio between the absolute deviation of the damage indexes with regard 

to the sensitivity ones, and the sensitivity indexes. 

 

 Those charts show a good localization when the sensors are fixed. Besides, 

a little more clear result has been given by the index “2” calculated at the highest 

frequency range. 

 

 



Experimental tests and Results_____           Bovio Igor 

 

 142 

0

5

10

15

20

25

30

35

40

piezo #1 piezo #2 piezo #3 piezo #4 piezo #5 piezo #6

t test index 1 (1,5-10kHz)

 

Fig. 5.3.25 – T_test 
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Fig. 5.3.26 – T_test 
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Fig. 5.3.27 – T_test 
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Fig. 5.3.28 – T_test 
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Fig. 5.3.29 – Actuators new DI 
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Fig. 5.3.30 – Actuators new DI 
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Fig. 5.3.31 – Sensors new DI 
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Fig. 5.3.32 – Sensors new DI 
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Fig. 5.3.33 – Actuators new DI 
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Fig. 5.3.34 – Actuators new DI 
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Fig. 5.3.35 – Sensors new DI 
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Fig. 5.3.36 – Sensors new DI 
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The neural network has been trained making use of the same FRFs of the 

healthy structure used for the determining of the Damage Index, as positive 

examples. Training and post-processing algorithms are reported in the chapter 3. 

 
Fig. 5.3.37 – Neural Network output (range 1,5-10kHz) 

 

  It can be observed that all the curves obtained by the six 

acquisition of the FRFs of the damaged structure are located far from the x-axis, and 

far from the undamaged structure curve. The rivet failure has been identified. In that 

case the FRFs acquired do not give the same output curves, since the fifth and the 

sixth curves are located a bit farther. 
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Fig. 5.3.38 – Neural Network output (range 10-18,5kHz) 

 

 

 Considering one only FRFs acquisition of the damaged structure for the 

neural network, it can be observed that the network, trained with FRFs acquired 

from 10 to 18,5 kHz, is able to identify better than at the lowest frequency range, 

since the distance between the undamaged and damaged curves is greater than the 

respective curves obtained at the lowest frequency range. 
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V.3.3  Floor Support Zee 

 The second area tested is another internal region of the fuselage, a floor 

support zee located between the frame 39 and 40, close to the passenger door, on the 

left side of the aircraft. Its Part Number is 16S53678008. Three piezoceramic 

patches have been bonded on that support: one on the upper side, the piezo #7, 

which has a square shape, and two on the lowest side, #8 and #9 having a square and 

a rectangular shape. All patches have a thickness equal to mm.0,5. 

 

 

Fig. 5.3.39 – Second monitored element scheme detail 
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Fig. 5.3.40 – Second monitored area scheme 

 

 



Experimental tests and Results_____           Bovio Igor 

 

 152 

 

Fig. 5.3.41 – Second monitored area 

 

 

Fig. 5.3.42 – Second monitored area 
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Fig. 5.3.43 – Second monitored area (zoom) 

 

 Three only piezoceramic patches have been bonded on the floor support 

zee, so the actuator-sensor couples are only six. An acquisition campaign, similar to 

that executed for the first area, has been carried out to define the sensitivity 

threshold of the structure and to train a Neural Network, formed by six FRF’ 

acquisitions. 

 Also in this case a damage has been imposed on the structure. Since, on that 

support, there was a little corroded region just before the first acquisition campaign, 

which defines the “our” sound configuration (even if a damage is on), a mechanical 

cleaning of that region has been executed. 

 

The experimental tests executed on this area and the results obtained are 

similar to those carried out on the first area. Therefore, in order to make the 

exposition lighter, some graphs only and a brief description of the main results 

obtained for this area are reported in the next pages. About all the others charts it 

refers back to the appendix. 

 The progressive numbering of the figures is kept to make faster the 

searching of the chart wanted. 
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Fig. 5.3.44 – Damage simulated 

 

 

 

Fig. 5.3.45 – Area mechanical cleaned 

 

 The pictures show the damage imposed on the floor support zee. It is a light 

damage located between the piezoceramic patches #8 and #9. A campaign formed 

by four FRF’ acquisitions has been executed. The following charts show an example 

of both Sensitivity and Damage Indexes obtained. 
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Fig. 5.3.47 – Sensitivity Index 
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Fig. 5.3.51 – Damage Index 

 Most of the actuator-sensor couples have identified the damage, in fact the 

damage indexes are higher than the sensitivity ones. The damage has been also 

localized. In fact the fourth and the sixth group of bars represent the couples formed 

by actuator #8 – sensor #9 and actuator #9 – sensor #8 respectively. 
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 The next graphs summarize the results. The piezo patches #7, #8 and #9 are 

reported as actuators and sensors #1, #2 and #3 in order to make the explanation of 

the results clearer. Therefore, the damage is located between #2 and #3. 
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Fig. 5.3.55 – Actuators DI 

 

 It can be observed that the damage is clearly identified and localized. In 

fact, the index “1” (as well the index “2”) calculated at the highest frequency range, 

undoubtedly localize the damage. 

 

A T_test chart reported in the next page, unfortunately, shows that the 

Student T_test gives a not so clear localization of the damage, since the bars #2 and 

#3 have not the same value.  
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Fig. 5.3.63 – T_test 
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Fig. 5.3.71 – Actuators new DI 

 

 The new Indexes perfectly localize the damage (very similar #2 and #3 bars 

values), especially if they are calculated at the highest frequency range. 
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Fig. 5.3.74 – Neural Network output (range 1,5-10kHz) 

 

Fig. 5.3.75 – Neural Network output (range 10-18,5kHz) 

 

 Even if there is no threshold line, it is obvious that the damage has been 

identified by the neural network, since, in both graphs, the damaged curves are 

located far from the sensitivity ones. 
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V.3.4  Floor Frame 42 

 The third area is a floor support where the frame 42 is, on the station 19557, 

internal to the aircraft, close to the bulkhead. Its P/N is 16S53672412. On that part 

five piezoceramic patches have been symmetrically bonded. All patches have a 

square shape; the piezoelectrical patches #10, #12 and #14 have a thickness equal to 

mm.0,5, while the patches #11 and #13 have a thickness equal to mm.1. In that case 

the actuator-sensor couples are twenty. 

 

Fig. 5.3.76 – Floor frame 

 

Fig. 5.3.77 – Third monitored area 
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Fig. 5.3.78 – Third monitored area scheme 

 

In the following pages the results are reported as same as the previous 

monitored area. 
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Fig. 5.3.79 – Rivets removed 

 

 

Fig. 5.3.80 – Damaged area 

 

 In order to simulate a damage, two rivets connecting the floor frame to 

stiffener element have been removed, reducing the stiffness of the region between 

the piezoceramic patches #13 and #14. 

 Eight FRFs have been acquired for each actuator-sensor couple, obtaining 

seven sensitivity indexes for each couple, and six FRFs have been acquired to 

determine the damage indexes. It is possible to observe, by means of the comparison 

between the next graphs, that, also in this case, the damage has been identified and 

localized. In fact the groups #4, #8, #12 and #16 represent the couples formed by the 

actuators #10, #11, #12, #13 and the sensor #14 respectively; besides, the groups 
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from #17 to #20 represent the couples actuator-sensor in which the patch #14 is the 

actuator. The vibrations which go from an actuator to a sensor of each couple pass 

through the damaged zone. 
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Fig. 5.3.84 – Sensitivity Index 
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Fig. 5.3.88 – Damage Index 
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 In order to extend the discussion about the damage localization, the 

following summarizing charts are shown, where the patches from #10 to #14 are 

reported as #1, #2, #3, #4 and #5. Therefore the damage is now located between the 

patches #4 and #5. 
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Fig. 5.3.94 – Actuators DI 

 

 The Damage Indexes calculated at the highest frequency range have clearly 

identified and localized where the rivets have been removed. Evidently, the removal 

of two rivets represents a substantial damage. 

 

 The T_test chart reported in the next page, as well as the Damage Index 

one, shows a good localization of the damage, even if in a not so evident way. 
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Fig. 5.3.100 – T_test 
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Fig. 5.3.104 – Sensors new DI 

 

 Also about the new indexes the localization of the damage is more evident 

if it analyzes the results obtained at the highest frequency range. 



Experimental tests and Results_____           Bovio Igor 

 

 165 

 

 

Fig. 5.3.109 – Neural Network output (range 1,5-10kHz) 

 

Fig. 5.3.110 – Neural Network output (range 10-18,5kHz) 

 

 The Neural Network identifies the damage, and there is no particular 

differences between the low and high frequency range outputs. 
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V.3.5  Main Landing Gear 

 The fourth area is located out of the aircraft, under the fairing. The structure 

monitored is formed by the Main Landing Gear (MLG) truss shear and the MLG 

fairing support. On the truss shear four piezoceramic patches have been bonded. 

Those patches have a rectangular shape; the patch #15 has a thickness equal to 

mm.1, while the patches #16, #17 and #20 have a thickness equal to mm.0,5. 

Besides, two patches have been glued on the fairing support, whose P/N is 

14S53973301-201. One has a square shape, while the other has a rectangular shape; 

both of them have a thickness equal to mm.1. 

 

 

Fig. 5.3.111 – Fairing support scheme 
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Fig. 5.3.112 – Forth monitored area scheme 
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Fig. 5.3.113 – MLG without the fairing 

 

 

Fig. 5.3.114 – MLG without the fairing 
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Fig. 5.3.115 – MLG truss shear 

 

 The six piezoceramic patches have been able to monitor both the MLG 

truss shear and the fairing support. This area is critical because of the very high 

loads which are transmitted from the landing gear to the aircraft structure during the 

aircraft landing. 

 Besides, a problem reported by the ATR Structural Engineering 

Department regards the vibrations which are present during the flight on the fairing 

and cause cracks on the fairing support. It would be useful to have a system which 

indicates a possible crack on that support. Therefore a fairing support damaging has 

been simulated. 

 

A rivet has been removed to simulate a damage of the conjunction between 

the MLG truss shear and the fairing support, close to the patches #18 and #19. 

 Eight FRFs have been acquired for each actuator-sensor couple, obtaining 

seven sensitivity indexes for each actuator-sensor couple. Besides, six FRFs have 

been acquired to calculate six damage indexes. 
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Fig. 5.3.116 – Damaged area 

 

 

 

Fig. 5.3.117 – Rivet failure 
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Fig. 5.3.119 – Sensitivity Index 
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Fig. 5.3.123 – Damage Index 

 

It can be observed that all the indexes exceed the sensitivity ones: the 

damage has been identified. 
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As usual, to better define the localization capabilities of the technique, the 

following summarizing charts are shown, where the patches from #15 to #20 are 

reported as #1, #2, #3, #4, #5 and #6. Therefore the damage is located between the 

piezoceramic patches #4 and #5. 
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Fig. 5.3.127 – Actuators DI 
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Fig. 5.3.131 – Actuators DI 
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 From a point of view the indexes have identified the damage, even if the 

patch #2, identifies the rivet failure too. 
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Fig. 5.3.135 – T_test 

 

 The T_test indexes have been able to refine the capability of the DI method 

in localizing the damage, in fact it is clear that the damage is close to the patch #5, 

i.e. the piezo #19 put on the fairing support. 
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Fig. 5.3.143 – Actuators new DI 

 

 The new Damage Indexes do not give the localization of the rivet failure 

clearly, since the piezoceramic patch #6 gives an high index. Probably the problem 

is the high stiffness of the truss shear, and, consequently, the generated vibrational 

energy is too low. 
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Fig. 5.3.146 – Neural Network output (range 1,5-10kHz) 

 

Fig. 5.3.147 – Neural Network output (range 10-18,5kHz) 

 

 The identification of the rivets failure is evident, since all the damaged 

curve are very far from the undamaged ones. Moreover, the damaged structure FRFs 

curves are practically superimposables, in fact they represent the same damage 

configuration of the structure. 
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V.3.6  Frame 45 

 The fifth and last area which has been monitored is located into the tail 

cone, it is the lowest zone of the frame 45, whose P/N is 18S53871100. On that 

frame five piezoceramic patches have been glued, from piezo #21 to #25. They have 

a square shape; the patches #21, #23 and #25 have a thickness equal to mm.1, while 

the others have a thickness equal to mm.0,5. The patches have been bonded on the 

lowest part of the frame, therefore, only that region has been monitored. 

 

Fig. 5.3.148 – Tail cone 

 

Fig. 5.3.149 – Frame 45 
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Fig. 5.3.150 – Frame 45 scheme 
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Fig. 5.3.151 – Area damaged  

 

 

Fig. 5.3.152 – Rivets failure 

 

 On that area the damage has been executed by means of a removal of two 

rivets which connect the frame 45 with a stiffener, between the piezoceramic patches 

#23 and #24. 

Eight FRFs have been acquired for each actuator-sensor couple, obtaining 

seven sensitivity indexes for each actuator-sensor couple, and six FRFs to obtain six 

Damage Indexes. 
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Fig. 5.3.153 – Sensitivity Index 
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Fig. 5.3.157 – Damage Index 
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 Comparing the Damage Index chart and the Sensitivity ones it can be 

observed that the rivets failure has been identified as well as the previous monitored 

area, since all damage indexes are higher than the sensitivity ones. 

 

 About the following charts, where the indexes are gathered fixing either the 

actuators or the sensors, the patches from #1 to #5 represent the piezoceramic 

patches from #21 to #25. Therefore the damage is located between #3 and #4. 
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Fig. 5.3.161 – Actuators DI 

 

 All the piezoceramic patches have identified the rivets failure, but the 

localization is not so evident. 
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Fig. 5.3.169 – T_test 

 The T_test indexes localize the presence of the damage as well as in 

previous areas, since it is able to refine the data. 
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Fig. 5.3.176 – Sensors new DI 

 About the new Indexes representation the index “1” localizes undoubtedly 

where the rivets have been removed, especially considering the results determined at 

the highest frequency range. 



Experimental tests and Results_____           Bovio Igor 

 

 182 

 

Fig. 5.3.181 – Neural Network output (range 1,5-10kHz) 

 

Fig. 5.3.182 – Neural Network output (range 10-18,5kHz) 

 

 In that case the Neural Network output determined at the highest frequency 

range identifies the damage better than the output obtained at the lowest range. In 

fact the distance between the damaged and undamaged curves at the highest range is 

greater than the distance of the corresponding curves at the lowest range.
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V.3.7  Frame 45 

 
A resume of the main results which have been expounded in this paragraph 

is following reported. 

 Both the Damage Index and the Neural Network methods have identified 

all the damage which have been executed on the ATR-72 aircraft. 

� About the first monitored area, where the frame 29 is linked to the stringer 

13, on the right side of fuselage, the best damage localization has been furnished by 

the damage indexes “2” obtained at the highest frequency range, in which the 

sensors are fixed, and by the new indexes “1” and “2” if they are calculated fixing 

the sensors, independently by the frequency range; 

� About the second monitored area, the floor support zee close to the 

passenger door, the best damage localization has been furnished by the damage 

indexes “1” obtained at the highest frequency range, in which the actuators are fixed, 

by the T_test indexes “1” calculated at the highest frequency range, and by the new 

indexes “2” calculated fixing the actuators, at the highest frequency range; 

� About the third monitored area, the floor frame located in the rear of the 

fuselage, where the frame 42 is, the best damage localization has been furnished by 

the damage indexes “2” obtained at the highest frequency range, in which the 

actuators are fixed, by the T_test indexes “2” calculated at the highest frequency 

range, and by the new indexes “2” calculated fixing the sensors, at the highest 

frequency range; 

� About the fourth monitored area, the Main Landing Gear truss shear on the 

right side of the aircraft, the best damage localization has been furnished by the 

T_test indexes “1” calculated at the highest frequency range, and by the new indexes 

“2” calculated fixing the actuators, at the highest frequency range; 

� About the fifth monitored area, the frame 45 located in the tail cone, the 

best damage localization has been furnished by the T_test indexes “1” calculated at 

the lowest frequency range, and by the new indexes “1” calculated fixing the 

sensors, at the highest frequency range; 

In conclusion it appears that, generally, the higher frequency range is the 

better damage localization can be obtained. 
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Appendix 

  

All the figures which have been removed from the paragraph V.3 are 

following gathered and reported for each subparagraph. The progressive numbering 

of the figures is kept to make faster the searching of the chart wanted. 

 

A.1  Subparagraph V.3.3 
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Fig. 5.3.46 – Sensitivity Index 
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Fig. 5.3.48 – Sensitivity Index 
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Fig. 5.3.49 – Sensitivity Index 
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Fig. 5.3.50 – Damage Index 
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Fig. 5.3.52 – Damage Index 
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Fig. 5.3.53 – Damage Index 
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Fig. 5.3.54 – Actuators DI 
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Fig. 5.3.56 – Sensors DI 
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Fig. 5.3.57 – Sensors DI 
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Fig. 5.3.58 – Actuators DI 
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Fig. 5.3.59 – Actuators DI 
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Fig. 5.3.60 – Sensors DI 
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Fig. 5.3.61 – Sensors DI 
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Fig. 5.3.62 – T_test 
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Fig. 5.3.64 – T_test 
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Fig. 5.3.65 – T_test 
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Fig. 5.3.66 – Actuators new DI 
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Fig. 5.3.67 – Actuators new DI 
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Fig. 5.3.68 – Sensors new DI 
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Fig. 5.3.69 – Sensors new DI 
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Fig. 5.3.70 – Actuators new DI 
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Fig. 5.3.72 – Sensors new DI 
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Fig. 5.3.73 – Sensors new DI 
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A.2  Subparagraph V.3.4 
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Fig. 5.3.81 – Sensitivity Index 
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Fig. 5.3.82 – Sensitivity Index 
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Fig. 5.3.83 – Sensitivity Index 
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Fig. 5.3.85 – Damage Index 
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Fig. 5.3.86 – Damage Index 
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Fig. 5.3.87 – Damage Index 
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Fig. 5.3.89 – Actuators DI 
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Fig. 5.3.90 – Actuators DI 
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Fig. 5.3.91 – Sensors DI 
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Fig. 5.3.92 – Sensors DI 
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Fig. 5.3.93 – Actuators DI 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sens 1 sens 2 sens 3 sens 4 sens 5

Index 2 (1,5-10kHz)

ref

damage

 

Fig. 5.3.95 – Sensors DI 
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Fig. 5.3.96 – Sensors DI 
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Fig. 5.3.97 – T_test 
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Fig. 5.3.98 – T_test 
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Fig. 5.3.99 – T_test 
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Fig. 5.3.101 – Actuators new DI 
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Fig. 5.3.102 – Actuators new DI 
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Fig. 5.3.103 – Sensors new DI 
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Fig. 5.3.105 – Actuators new DI 
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Fig. 5.3.106 – Actuators new DI 
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Fig. 5.3.107 – Sensors new DI 
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Fig. 5.3.108 – Sensors new DI 
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A.3  Subparagraph V.3.5 
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Fig. 5.3.118 – Sensitivity Index 
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Fig. 5.3.120 – Sensitivity Index 
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Fig. 5.3.121 – Sensitivity Index 
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Fig. 5.3.122 – Damage Index 
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Fig. 5.3.124 – Damage Index 
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Fig. 5.3.125 – Damage Index 
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Fig. 5.3.126 – Actuators DI 
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Fig. 5.3.128 – Sensors DI 
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Fig. 5.3.129 – Sensors DI 
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Fig. 5.3.130 – Actuators DI 
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Fig. 5.3.132 – Sensors DI 
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Fig. 5.3.133 – Sensors DI 

 

 

 



Appendix____________________           Bovio Igor 

 

 215 

0

50

100

150

200

250

piezo #1 piezo #2 piezo #3 piezo #4 piezo #5 piezo #6

t test index 1 (1,5-10kHz)

 

Fig. 5.3.134 – T_test 
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Fig. 5.3.136 – T_test 
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Fig. 5.3.137 – T_test 
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Fig. 5.3.138 – Actuators new DI 
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Fig. 5.3.139 – Actuators new DI 
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Fig. 5.3.140 – Sensors new DI 
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Fig. 5.3.141 – Sensors new DI 
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Fig. 5.3.142 – Actuators new DI 
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Fig. 5.3.144 – Sensors new DI 
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Fig. 5.3.145 – Sensors new DI 
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A.4  Subparagraph V.3.6 
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Fig. 5.3.154 – Sensitivity Index 
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Fig. 5.3.155 – Sensitivity Index 
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Fig. 5.3.156 – Sensitivity Index 
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Fig. 5.3.158 – Damage Index 

 

 



Appendix____________________           Bovio Igor 

 

 222 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Damage Index 2 (1,5-10kHz)

 

Fig. 5.3.159 – Damage Index 
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Fig. 5.3.160 – Damage Index 
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Fig. 5.3.162 – Actuators DI 
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Fig. 5.3.163 – Sensors DI 

 

 

 



Appendix____________________           Bovio Igor 

 

 224 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sens 1 sens 2 sens 3 sens 4 sens 5

Index 1 (10-18,5kHz)

ref

damage

 

Fig. 5.3.164 – Sensors DI 
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Fig. 5.3.165 – Actuators DI 
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Fig. 5.3.166 – Actuators DI 
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Fig. 5.3.167 – Sensors DI 
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Fig. 5.3.168 – Sensors DI 
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Fig. 5.3.170 – T_test 
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Fig. 5.3.171 – T_test 
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Fig. 5.3.172 – T_test 
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Fig. 5.3.173 – Actuators new DI 
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Fig. 5.3.174 – Actuators new DI 
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Fig. 5.3.175 – Sensors new DI 
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Fig. 5.3.177 – Actuators new DI 
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Fig. 5.3.178 – Actuators new DI 
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Fig. 5.3.179 – Sensors new DI 
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Fig. 5.3.180 – Sensors new DI 
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Conclusions 

 

 Purpose of this thesis has been the exposition of the latest results obtained 

at the Department of Aeronautical Engineering of the University of Naples (Italy) 

during the last three years, in the Health Monitoring and Non Destructive Test 

research field. During last years aim of the author has been the development of a 

NDT strictly responding to most of the mandatory requirements for effective health 

monitoring systems, simultaneously reducing as much as possible the complexity of 

the data analysis algorithm and the experimental acquisition equipment; these 

peculiarities may, in fact, not be neglected for an operative implementation of such a 

system. 

 

From the algorithm’s point of view, the proposed method is based on the 

acquisition and comparison of Frequency Response Functions (FRFs) of the 

monitored structure before and after a damage occurred. Structural damage modify, 

in fact, the dynamical behaviour of the structure and consequently its FRFs making 

possible to calculate a representative "Damage Index" (DI) and train a Neural 

Network. These vibration measurements based methods have demonstrated a great 

ability in identifying a structural damage, localizing its position and quantifying its 

possible increasing. From an architectural point of view, many different systems 

have been, during the last years, tested; they mainly differed for the actuators and 

sensors peculiarities and for the FRF’s acquisition technique. On the actuators and 

sensor field, both piezoceramic patches and magnetostrictive actuators have been 

tested, as well a scanning laser vibrometer system. 

 

Three structures and several kind of damage have been deeply investigated 

during these years to assess and compare the approaches. An MD-11 large-scale 

fuselage reinforced panel, an aeronautical composite panel and a real ATR-72 

aircraft have been investigated referring to different typological damages as 

corrosion, failure of linking rivets, simple cracks, impacts on structure and so on. 
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All the executed experimental tests have validated both the methods and 

have permitted to understand the influence of environmental parameters on the 

Damage Index and Neural Network training capability. 

 

The target of the research presented in this thesis has been achieved. In fact 

both of the techniques have shown the capability in identifying, localizing and 

quantifying damage on aeronautical structures. Furthermore, to employ both Health 

Monitoring methods, a very important point is that: 

 

� it is not necessary to damage the monitored structure; 

� it is not necessary to use Finite Element Methods; 

� it is not necessary to determine structure’s modal free. 

 

Besides, both methods are independent of structure and damage. 

 

Thanks to these new techniques it is possible to carry out a smart Health 

Monitoring system which is going to lead to the reduction of time and maintenance 

cost and to the increase of the aeronautical structure safety and reliability. 
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