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Chapter 1 

Cell dynamics, state of the art 

1. Abstract 

A wide range of physiological and pathological processes, such as inflammation, tissue 

regeneration, angiogenesis, tumour growth and invasion, are strongly linked to cell 

proliferation and migration mechanisms that govern the dynamic evolution of both individual 

cells and cell aggregates. The complex mechanisms governing cell dynamic behavior have yet 

to be completely clarified. A detailed analysis of these processes requires a rigorous approach 

to quantitatively analyze cell dynamics and measure cell movement and proliferation indices.  

This work is addressed to investigate the dynamic evolution of cells, from single to collective 

cell dynamic behavior, in a quantitative way. Our methodological approach is based on live 

cell imaging in vitro, coupled to several cell migration assays, and image analysis techniques. 

Live cell imaging based on in vitro time-lapse microscopy is a powerful analytical tool that 

allows direct visualization of biological systems during their dynamic evolution. In order to 

maintain cell viability, the sample is kept in a controlled air, constant temperature 

environment. The experimental data are used to model cell dynamic evolution using 

mathematical equations based on the transport phenomena approach.  

 

2.  Motivation 

A wide range of biological processes are strongly dependent on cell proliferation and 

migration mechanisms [1] that govern the dynamic evolution of individual cells and cell 

aggregates [2-4]. Cell proliferation and migration play a key role in both physiological and 

pathological processes, including embryogenesis, tissue repair, immune responses, and 

tumour growth and invasion. For example, during embryogenesis large groups of cells 

migrate collectively as sheets to form the three layers of the resulting embryo and then grow 

and differentiate to form various tissues and organs [5]. Subsequently, cells migrate from 

various epithelial layers to target locations throughout the developing embryo where they 

differentiate and form various tissues and organs. Analogous migration mechanisms occur in 

the adult where, skin and intestine are renewal continuously from precursors that migrate up 

from the basal layer and the crypts, respectively. 
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Migration and proliferation also play a pivotal role in physiological as well as pathological 

processes occurring in the adult organism. In the inflammatory response (Figure 1.1.A) 

leukocytes migrate out of the blood vessels into the tissues, reaching the area of insult, where 

they mediate phagocytic and immune functions [6]. Cell growth and migration are also 

relevant in tissue repair (Figure 1.1.B), where two cell sheets dynamically evolve to close the 

wound space [7]. Tumour development is accompanied by the formation of blood vessels 

(angiogenesis) (Figure 1.1.C) which arise from proliferation and migration of their endothelial 

cells [8, 9]. In metastatic cancer (Figure 1.1.D), some tumour cells showing a malignant 

phenotype escape from the primary tumour and invade adjacent tissues where they proliferate 

forming secondary tumours [10]. Finally, the dynamic evolution of cells is essential in 

technological applications such as tissue engineering [11]. 

 

 

Figure 1.1: (A) Inflammation; (B) tissue repair; (C) angiogenesis; (D) tumour progression. 

Most of these biological phenomena are governed by chemotaxis mechanism [12, 13], i.e., the 

directional movement of cells along a chemical concentration gradient [14, 15]. 

The complex mechanisms governing cell dynamic behavior are still far from full 

comprehension [16, 17]. A detailed analysis of these processes requires a rigorous approach to 

quantitatively measure cell movement and proliferation indices. For this reason, the 

development of such analyses is nowadays within the core business of Chemical Engineering 

[18], which can contribute to the building of mathematical models, based on the transport 

phenomena approach, useful to describe and predict the mechanisms driving cell dynamics 

[19].  
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3. Background 

3.1. Single cell migration 

Single cell migration has been studied extensively over many decades, leading to a well-

established model of cell motility at the individual cell level.  

Many types of cells, including amoebae, leucocytes, epithelial cells and neurite growth cells, 

migrate by crawling across a solid substrates [20]. Cell migration occurs following the so 

called cell motility cycle, which is characterized by a well-known sequence of steps [21], 

based on polarized intracellular signaling which leads to protrusion of the plasma membrane 

at the leading edge of the cell, integrin-mediated adhesion to the substrate of cell migration, 

actomyosin contraction of the cell body and detachment of the trailing edge, which moves the 

cell forward [16, 22] (Figure 1.2). This process requires a complex signaling pathways and 

regulatory network [23]. In fact, cell movement involves the spatio-temporal control and 

integration of a number of processes, including the transduction of chemical (growth factors 

and other chemotactic cues) and mechanical signals from the environment, intracellular 

biochemical responses, and translation of the intra- and extracellular signals into a mechanical 

response [24, 25]. Individual cells detect extracellular chemical and mechanical signals via 

membrane receptors, and this initiates signal transduction cascades that produce intracellular 

signals. These signals control the motile machinery of the cell and thereby determine the 

spatial localization of contact sites with the substrate and the sites of force generation needed 

to produce directed motion.  

Extension of the leading edge: This process is regulated by the actin and microtubule 

cytoskeleton and by the formation of cell protrusions in the direction of migration. As a 

consequence, the cell acquires a front and a backside. Protrusive structures at the leading edge 

of motile cells are highly dynamic and contain dense arrays of actin filaments [26]. Protrusive 

structures are lamellipodia and filopodia, both containing filamentous actin, as well as 

structural and signalling proteins (Rho family of GTPases, ERK/MAP kinases and other 

regulatory molecules); they lead to dynamic interactions with the extracellular matrix [23, 27-

29]. However, they have strikingly different designs of the actin polymerization machinery 

and are regulated by different signaling pathways [30]. Lamellipodia are thin sheets of 

cytoplasm containing networks of actin filaments forming a branched network. They are 

composed of diagonal networks of actin filaments [31], and withdrawal terminates with the 

formation of actin bundles parallel to the cell edge.  
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Figure 1.2: Steps of cell migration [21]. 

 

The current model for lamellipodial dynamics [32] suggests that treadmilling of the branched 

actin filament array consists of repeated cycles of dendritic nucleation, elongation, capping, 

and depolymerization of filaments. Dendritic nucleation is mediated by the Arp2/3 complex, 

which is activated by members of WASP family [33]. In filopodia, which are thin cellular 

processes, actin filaments are long, parallel, and organized into tight bundles [33, 34]. The 

actin filaments are held together in the bundle by cross-linking proteins such as fimbrin [24]. 

Analysis of cellular localization of known actin cross-linking proteins in mouse melanoma 

B16F1 cells showed that fascin was specifically localized along the entire length of all 

filopodia, whereas other actin cross-linkers were not [35]. Moreover, a kinetic and structural 
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investigation of filopodial initiation in the same cells revealed that filopodial bundles doesn’t 

arise by a specific nucleation event, but are formed by gradual reorganization of the 

lamellipodial dendritic network in a process that involves elongation of a subset of 

lamellipodial filaments, self-segregation of these filaments into filopodial precursors, and 

initiation of bundling at the tips of the precursors [36].  

Adhesion to the matrix: Within newly formed protrusions, novel cell adhesions have to be 

established to attach the cell to the underlying ECM. These adhesions are transient and 

depending on the cell type, substratum and migration profile; their turnover can be very high. 

Adhesions initiate as small so-called focal complexes, which are mainly localized at the cell 

leading edge. These newly formed adhesions stabilize the lamellipodium and attach the 

protrusion to the ECM. In tightly adhering and non-motile or slowly migrating cells these 

focal complexes mature into focal adhesions. Depending from the cell type and ECM 

substrate, focal contact assembly and migration can be regulated by different integrins. These 

are a family of heterodimeric transmembrane adhesion receptors that support adhesion to the 

ECM (or other cells) by linking matrix components outside the cell to actin filaments inside 

the cell. Next to this adhering function, integrins are known for their ‘inside-out signalling’ 

via activation by cytoplasmic signals [1, 23]. 

Focalized proteolysis: The engagement of integrins and other adhesion receptors leads to the 

recruitment of surface proteolytic enzymes, that become concentrated near substrate binding 

sites. Matrix metalloproteinases (MMPs) anchored to plasma membrane, called membrane-

type MMPs (MT-MMPs), play pivotal roles for ECM remodeling [37]. In close proximity to 

the cell surface proteases degrade ECM structural proteins, such as collagen, fibronectin and 

laminins, mediating the chemical and physical modification of the extracellular 

microenvironment to provide the space required for cell expansion and migration [38]. 

Pericellular proteolysis is spatio-temporally regulated through enzyme processing, enzyme 

internalization and the inactivation of the catalytic site by protease-specific inhibitors, 

including the tissue inhibitor of metalloproteinases (TIMPs) [39]. In close proximity to the 

cell surface proteases degrade ECM components and cleave pre-matrix metalloproteinases 

(MMPs) to create active soluble MMPs, known for their protein cleavage activities. Soluble 

proteases can directly bind to integrins and similarly, membrane-type matrix 

metalloproteinase-1 (MT1-MMP) and MMP2 adhere to collagen fibres. MMP1 and other 

collagenases cleave native collagens, along with other ECM macromolecules, into smaller 

fragments, which, in turn, are accessible to subsequent degradation by gelatinases (MMP2 and 

MMP9) or serine proteases. ECM degradation occurs while the advancing cell body gains 
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volume towards the ECM scaffold and is likely to provide the space required for cell 

expansion and migration, leaving behind tube-like matrix defects along the migration track 

[38]. This step is dependent on the cell type and the surrounding environment. Proteolytic 

strategies are indispensable for cells that cannot transmigrate narrow ECM gaps just by 

changing cell morphology and squeezing of their nuclei [40]. 

Actomyosin contraction: The contractile force, needed to move the cell body forward, is 

generated by the interactions of actin filaments with Myosin II, which controls the 

organization of actin filaments into stress fibers [21]. Powered by ATP hydrolysis, the 

actomyosin crossbridges inside these structures generate tension that contracts the cell body 

[41]. The tension generated by actomyosin contractile machinery is then transmitted to the 

ECM through focal adhesions (FAs) (Figure 1.3), which are located at both ends of the stress 

fiber and on the substrate or the ECM and hence physically connect the actin cytoskeleton to 

the ECM [42, 43]. The traction force at FA is in the range of tens of nano-Newtons [44]. FA 

is an assembly of ECM proteins, transmembrane receptors, and cytoplasmic structural and 

signaling proteins, including αvβ3 and α5β1 integrins, vinculin, paxillin, talin, zyxin, tensin, 

protein tyrosine kinases, and phosphatases [45]. Among these FA proteins, integrins are 

primary mediators that provide a physical linkage between the actin cytoskeleton and ECM 

and thus play a key role in cellular mechanotransduction [46, 47].  

 

 
 

Figure 1.3: Force transmission within an adherent cell [42]. 
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Detachment of the trailing edge: At the cell rear, adhesions need to be released, whereas at 

the front the formation of adhesion has to be controlled. Phosphatases play important roles in 

rear release, by limiting the assembly of cytoskeletal proteins. Focal contacts are further 

weakened through the proteolytic cleavage of adhesion receptors and the accumulation of 

collagen fragments that are generated while the cell moves forward. Moreover, in order to 

maintain a continuous retrograde flow of integrins on the cell surface, migrating cells must 

reload receptor at the leading edge. The recycling of these proteins takes place through 

endocytic vesicles [1].  

Although fundamental cell migration mechanisms are shared between different migrating 

cells, the cell type and its environment are crucial for the migration response. Some cells, like 

fibroblasts, are known as slow-moving, while other cell types, like T-cells, are fast-moving 

[48]. In addition, different tumour cells can differ strongly in their intrinsic migratory 

capacity. Next to cell type, the nature of the surrounding matrix determines to great extent the 

migration response of cells. The composition of the ECM, availability of growth factors and 

cytokines, physiological circumstances like pH and pO2 and, of course, intracellular 

constituents, all together regulate cell polarity and migration. 

Besides this well-established mode of single cell migration, detailed knowledge obtained over 

the past 30 years suggests that at least one additional mechanism is involved in cell 

translocation within tissues. In fact, some cell types are able, under physiological conditions, 

to move in a collective mode in tightly or loosely associated groups, such as clusters, sheets or 

strands [49]. Cell movement in groups can be referred to as collective cell migration [2]. 

3.2. Cell proliferation 

The cell cycle is the complex sequence of events by which the cells grow and divide. The 

time it takes for a cell to complete one cell cycle varies depending on the type of cell. Some 

cells, such as blood cells in bone marrow, skin cells, and cells lining the stomach and 

intestines, divide rapidly and constantly. Other cells divide when needed, to replace damaged 

or dead cells. These cell types include cells of the kidneys, liver and lungs. Still other cell 

types, including nerve cells, stop dividing once mature. In eukaryotic cells, this process occurs 

through a series of four distinct stages (Figure 1.4): mitosis phase (M), Gap 1 phase (G1), 

Synthesis phase (S), and Gap 2 phase (G2) [50]. The G 1, S, and G 2 phases of the cell cycle 

are collectively referred to as interphase. 
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Figure 1.4: Cell cycle. 

 

Interphase: The dividing cell spends most of its time in interphase, as it grows in preparation 

for cell division. In fact, during this stage the cell doubles its cytoplasm and synthesizes DNA. 

It is estimated that a dividing cell spends about 90-95 % of its time in this phase. The G1 

phase is the period prior to the synthesis of DNA. In this phase, the cell increases in mass and 

organelle number in preparation for cell division. The S phase is the period during which 

DNA is synthesized. In most cells, there is a narrow window of time during which DNA is 

synthesized. The chromosome content is doubled in this phase. During the G2 phase, 

occurring after DNA synthesis but prior to the start of mitosis, the cell synthesizes 

additional proteins and continues to increase in size. 

Mitosis: The mitosis phase of the cell division process involves the separation of 

nuclear chromosomes, followed by cytokinesis (division of the cytoplasm forming two 

distinct cells). At the end of the mitotic cell cycle, two distinct daughter cells are produced. 

Each cell contains identical genetic material. The mitosis includes four phases: prophase, 

metaphase, anaphase and telophase. During the prophase, the chromatin condenses into 

discrete chromosomes which migrate toward the cell center. The nuclear envelope breaks 

down and spindle fibers form at opposite poles of the cell. In the metaphase the nuclear 

membrane disappears completely, the spindle fully develops and the chromosomes align at 

the metaphase plate (a plane that is equally distant from the two poles). During the anaphase 

paired chromosomes separate and begin moving to opposite ends of the cell. Spindle fibers 

not connected to chromatids lengthen and elongate the cell. In the telophase the chromosomes 

are cordoned off into distinct new nuclei and the genetic content of the cell is divided equally 
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into two parts. Cytokinesis begins prior to the end of mitosis and completes shortly after 

telophase. 

Once a cell has completed the cell cycle, it goes back into the G 1 phase and repeats the cycle 

again. Cells in the body can also be placed in a non-dividing state called the Gap 0 phase (G 

0) at any point in their life. Cells may remain in this stage for very long periods of time until 

they are signaled to progress through the cell cycle as initiated by the presence of certain 

growth factors or other signals. In fact, normal animal cells have alternative modes of 

existence: either proliferative or quiescent. They survive well in either state. Several 

suboptimal nutritional conditions can bring about quiescence, including high cell density, 

nutrient or serum insufficiency, or high cAMP [51].  

Progression through the eukaryotic cell cycle is known to be both regulated and accompanied 

by periodic fluctuation in the expression levels of numerous genes [52]. In particular, cyclin-

dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. 

Various CDKs activate the different stages of the cell cycle from G1 to mitosis. Each 

CDK/cyclin complex is responsible for transition or progression of a given phase within the 

cell cycle [53]. Loss of appropriate cell cycle regulation leads to genomic instability [54]  and 

is believed to play a role in the etiology of both hereditary and spontaneous cancers [55]. In 

fact, uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and 

abnormal cell cycle regulation is, therefore, common in these diseases. 

3.3. Collective cell dynamics 

Collective cell migration can be described as “collections of cells moving together and 

affecting one another while doing so” [56]. In fact, collective cell movement occurs when two 

or more cells retain their cell-cell junctions, coordinate their actin dynamics and intracellular 

signaling and thereby form a structural and functional unit that move across a two-

dimensional layer of extracellular matrix (ECM) or through a three-dimensional scaffold [57, 

58]. 

Like individual cell migration, the collective movement of cells plays a key role in several 

biological processes, including embryonic development, immune response, angiogenesis and 

tissue repair [59-61]. In addition, collective cell dynamics contribute to pathological situations 

such as metastasis formation, allowing malignant tumour cells to invade surrounding tissues 

[2, 3]. Specifically, invading cell groups may range from strands of only one or two cells in 

diameter, to broad masses that can include cells that do not contact the ECM [3].  
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However, despite the importance of collective cell migration, far less is known about exactly 

how cells migrate in a collective and coordinate way [62]. A better understanding of the 

underlying behaviors during collective cell movement will provide insight into 

morphogenesis and tissue reorganization during regeneration and disease. Furthermore, the 

ability to control collective migration will provide novel tools for tissue engineering [63]. 

The main question is why cells move collectively if they can move as individual units. 

Collective migration can actually keep a tissue or structure intact and continuous while 

remodeling it, allow mobile cells to carry immobile cell types along, allow migrating cells to 

influence each other, thereby ensuring appropriate cell distribution and shaping of a tissue, 

allow collective decisions that may be more robust for the system. In this scenario, collective 

migration can be considered the best  example of how multicellular organisms are not just a 

collection of independent cells but interdependent cells that act together to make a whole [2]. 

Several examples of collective behavior involve epithelial tissues. Although epithelia are 

generally considered as a constrained environment where cells are fixed in position, it has 

been appreciated that morphogenesis in early embryos, for example, can involve cell 

movements within a tissue sheet [64]. Dramatic net tissue morphogenesis can occur when 

many cells in a tissue rearrange in a highly coordinated way, thus highlighting the ability of 

cells within an epithelium to move relative to one another while retaining tissue integrity [2]. 

Collective migration retains the principles of single cell migration. In fact, similarly to single-

cell migration, collective cell movement results from actomyosin polymerization and 

contractility coupled to cell polarity [57]. On top of this, further additional constraints are 

relevant in collective movements, including direct cell-cell chemical signaling, physical 

interactions leading to mechanical integrity of clusters, the organization of follower cells 

guided by leader cells located on cluster edges, the coordinated polarization of leader cells, 

the coherent and cohesive movement, the secondary remodeling of the extracellular matrix 

along the migration track [2, 57]. The main features of collective cell migration will be 

described in more detail below. 

Cell-cell coupling: In collective cell migration, the cells within the groups are held together 

by cell-cell junctions at the leading edge as well as in lateral regions and inside the moving 

cell group [49, 57, 65, 66], while migration of individual cells is often associated with the loss 

of cell–cell adhesion [67]. Cell-cell coupling is mediated by adherens-junction proteins, 

including cadherins and transmembrane proteins of the immunoglobulin superfamily, 

desmosomal proteins, integrins, tight junctions and gap junctions [68]. These cell-cell 

junctions determine chemical (signaling) as well as physical (mechanics) interactions, as they 
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mediate direct cell-cell signaling, cell-cell cohesion, mechanical integrity, and cell polarity 

[57]. 

The mechanical and chemical interactions are essential for cell movement but may also 

restrict and guide movement. When migration is performed by a group of cells that also affect 

one another mechanically and via signaling, new constraints and regulatory opportunities 

emerge. Thus, for collective migration the relevant cell biology is that of independently 

migrating cells plus the features added by the community effects [57].  

Direct cell-cell signaling: One of the key aspects of collective migration is the direct 

chemical crosstalk among the cells; physical cell-cell contacts enable specific and efficient 

signaling interactions, as the cells in a group communicate with one another directly and 

compare signaling levels in a direct way [56].  

Simultaneous coordinated polarization: The mechanisms that govern cell polarization and 

actin polymerization and lead to protrusion of a collective leading edge (i.e. a defined tip of 

cells that guides migrating cell groups and generates force) are most probably homologous to 

the polarity mechanisms of single cells. Several mechanisms polarize the cell cohort into 

“leader” or “pioneer” cells that guide “followers” at their rear. The polarized topology of a 

cohort is important for effective movement [56] and is a feature of all migrating groups [57]. 

The differences between leaders and followers are associated with clear differences in cell 

morphology and gene expression. Whereas cells at the leading edge are often less ordered and 

mesenchyme-like, cells at the rear tend to form more tightly packaged assemblies, such as 

rosettes or tubular networks [61]. Moreover, the presence of tight contacts in the aggregates 

mediates the simultaneous coordinated polarization of cells at the leading edge of the 

collective structure. In fact, front cells display a polarized morphology with their protrusions 

preferentially oriented outwards, into the free space; additionally, they detect extracellular 

guidance cues and generate greater cytoskeletal dynamics than follower cells in the cohort 

[61]. It is not completely clear how front cells become internally polarized; interaction with 

the substrate at the free edge might direct front cell polarization, as ECM anisotropy can 

produce intracellular polarization [69]. However, leader and follower cells should be 

considered as different cell states and not different cell types. In fact, live imaging of 

collective cell migration shows that leader and follower cells can interconvert and change 

roles [56].  

Mechanical integrity and coordinated movement: Cell-cell coupling determines cell-cell 

cohesion, mediating the mechanical integrity of the cell aggregate during its movement [70]. 

Consequently, cells at different locations retain their position within the group; the movement 
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of the group, hence, occurs without disturbing its inner architecture [49]. The cells of the 

clusters are able to move in a collective and highly coordinate way via chemical signals and 

strong cadherin contacts [71]. If two cells adhere strongly to one another, the expectation is 

that they will be mechanically coupled and that their behavior will be highly coordinated. 

Thus, if both cells are motile, they should tend to move in the same direction with the same 

speed and so on. Conversely, adhesion to cells that are immotile can be a mechanical 

impediment to migration. The strength of a cell-cell adhesion bond depends on both the 

adhesion molecules themselves and on the associated cytoskeleton. It appears that most or all 

cells of the collective contribute directly to overall movement, as each cell gives an individual 

migratory contribution [2]. 

Secondary remodeling of 3D substrates: As single cell migration, collective cell migration 

through three-dimensional substrates depends upon cell-matrix interactions, but collective cell 

movement is characterized by the secondary remodelling of the extracellular matrix along the 

migration track. Thus, collective cell migration in 3D tissues is more space-consuming than 

single-cell migration [72]. To generate sufficient space to accommodate the volume of several 

cell diameters, collective cell migration through a 3D matrix involves local matrix 

degradation as well as the generation of paths of least mechanical resistance. Specifically, 

whereas single cancer cells generate small microtracks, collective structures form macrotracks 

of varying width (up to several hundreds of micrometers, or more) [39]. In migrating cell 

groups several proteases are preferentially localized to the leading edge of the cluster [57].  

Cross-talk among cell groups: For the initiation or maintenance of collective migration, the 

migrating cell groups chemically interact with the neighboring ones through the release of 

soluble factors [57, 59]. These external guidance cues control group locomotion through the 

chemotaxis process, that is the directional movement of individual cells or cell aggregate 

according to chemicals in their environment. Each cell aggregate releases chemical molecules 

and, at the same time, senses the amount of chemoattractants released by the adjacent cell 

groups [2, 13]. As a consequence, there is an extensive communication among cell 

aggregates. 

Long-range force transmission: Cell traction force is essential for cell migration, cell shape 

maintenance, mechanical signal generation and other cellular functions. In single cell 

migration, large traction forces are localized at the leading edge and at the trailing edge, 

acting in opposite directions [73]. When thinking about cells moving as a cohesive tissue, an 

important issue is the extent to which mechanical stress propagates within multicellular 

cohorts to control migration. It remains an open question whether the global motion is 
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coordinated by leader cells pulling on cells behind or by internal pressure due to cell division 

and proliferation that would expand cell sheets outwards. In fact different mechanical 

processes can promote the growth of cell sheets. In particular, proliferation of cells inside the 

sheet far from the leading edge can induce the build-up of an internal pressure that pushes 

neighboring cells outwards. In contrast, peripheral leader cells can generate mechanical 

tension in such a way as to drive the movement of passive followers [74]. Traction force 

microscopy was used to investigate how physical forces regulate the motion of epithelial cell 

sheets. By culturing epithelial cells on flexible gels, the traction forces exerted at the cell–

substratum interface was analyzed by looking at the deformation pattern of embedded 

particles that act as markers (Figure 1.5) [75].  

 

 

 

Figure 1.5: Experiment to measure traction forces during collective cell migration [75]. 

 

To determine the transmission of forces within an advancing cell sheet, the radial expansion 

of cell colonies was investigated as a function of time [75]. Traction force mapping shows 

long-range force transmission within sheets or clusters in a cooperative way; in fact, large 

traction forces are observed many cell rows behind the leading edge, suggesting a mechanical 

cooperation from cell to cell over large distances within the cell sheet. In summary, the 

collective motion in an advancing epithelial cell sheet results neither from leader cells 

dragging those behind, nor from cells that are individually self-propelled. These mechanisms 

are not sufficient to explain this complex mechanical process. Instead, each individual cell, 

both at the leading edge and inside the sheet, takes part in a global “tug-of-war” that maintains 

the collective into a global state of tensile stress [73-75]. Physical signals from the substrates 

tend to induce a migration of cells away from each other, whereas a stronger mechanical input 

from cell–cell interactions would drive them towards each other (Figure 1.6). Thus the 

importance of cell–cell junctions in the force transmission requires a cell sheet to transmit 

physical forces in a cooperative way [21, 73].  
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Figure 1.6: Force distributions during cell migration. (A) Schematic representation of the traction 

forces exerted by a single cell on the substrate; (B) Different mechanical processes promoting the 

growth of cell sheets; (C) Cell sheet are under mechanical tensile stress [73]. 

 

Depending on the context, collective movement can occur by two-dimensional sheet 

migration across a tissue surface or by multicellular strands or groups moving on a two-

dimensional substrate or through a three-dimensional tissue scaffold [61]. 

 

3.4. Collective dynamics in cell sheets 

Cell sheet migration is a form of collective cell behavior, especially characteristic of epithelial 

cells both in vivo and in vitro. In cell sheet migration, the cells maintain close contact and 

continuity while the sheet moves forward [2]. Cell sheet movement is characterized by the 

distinction between leader cells, which are located at the wound edge, and follower cells, 

located in the cell layer [61]. There is a clear front of the moving structure and a seemingly 

simple directionality of movement provided by where the free space is. Cell proliferation is 

involved in the dynamic evolution of a cell sheet as well. 

One of the main features of epithelial monolayers is the contact inhibition of cell movement, 

that is a dramatic decrease of cell motility and growth with increasing cell density; this lead to 

the establishment of a stationary post-confluent state which is insensitive to nutrient renewal. 

It is widely believed that cell-cell contacts represent a necessary but not sufficient condition 

for growth inhibition. It has been suggested that mechanical compression may provide an 

inhibitory signal for mitosis. However, the nature of the signaling pathway leading to 

suppression of mitosis and the inhibition of cell movement remains still unclear [76]. 
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Several analogies between confluent cell layer motion and classical glass-forming particulate 

systems were found. During collective migration within confluent cell layers, cell sheets flow 

like a fluid yet remain fixed and solid-like at short time scales, with the motion of each cell 

constrained by the crowding due to its neighbors [77]. This solid-like character over short 

times and collective flow over longer times is reminiscent of many crowded particulate 

systems, which undergo a transition from a supercooled fluid-like state to a glass-like state. 

By analogy, the collective motion of cells might be described by a similar transition: as cell 

density rises, neighboring cells restrict the motion of each cell, forcing cells to move in 

groups [78].  

Experiments performed on Madin–Darby canine kidney (MDCK) cells, which are a model 

system to study collective cell dynamics, revealed that there are flows of cells within the 

epithelium. Specifically, complex displacement fields that exhibited remarkable long-range 

correlations can be found. Moreover, the velocity fields within the monolayer involve many 

cells in a coordinated way [79]. These flows are not necessarily directed toward the free 

surface; in fact, vortices of cells can be observed [79, 80]. Geometrical confinement of cells 

into well-defined circles also induces a coordinated, synchronized and persistent rotation of 

cells, which depends on cell density. In fact, the speed of such rotating large-scale movements 

slows down as the density increases. The rotating cells move as a solid body, with a uniform 

angular velocity. Interestingly, this upper limit leads to length scales that are similar to the 

natural correlation length observed for unconfined epithelial cell sheets [81].  

 

3.5. Dynamic evolution of cell clusters 

Free aggregates are characterized by tightly connected cells that migrate as cohesive 

structures. The dynamic evolution of cell clusters in space and time is mainly linked to three 

mechanisms: collective locomotion, cell proliferation within the clusters and aggregation of 

adjacent clusters. 

As might be expected for such a free group, directional migration is controlled by localized 

external guidance cues. Recent results indicate that two different modes of guidance signaling 

operate in border cells. One mode is dependent on localized signaling within each cell, 

comparable to the situation in single cell chemotaxis. The other mode is described as 

collective guidance. Collective guidance relies on the fact that the moving cells are a group: 

each cell senses the amount of chemoattractant, and the cell with the highest level of signal 

migrates most effectively at each point in time. Cells at the edge of a group have a discreet 
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outer surface and internal contact surfaces; this provides an intrinsic cell polarity and thus 

potentially a vector along which each cell will attempt to pull the cluster. Whether such a 

collective guidance mechanism is sufficient to guide a migrating group has yet to be clarified 

[2]. 

One of the main feature of cell groups evolution is the expansion of the clusters driven by cell 

proliferation mechanism within the collective structures [82]. Daughter cells seem to occupy, 

on average, twice the area of their mother cell and the rate of colony growth should match 

exactly the rate of cell mitosis. Some articles support that cell colonies grow following a 

simple exponential law (Figure 1.7) [76, 83], as the cells within the collective structures grow 

exponentially through the following law: 

n�t� = n� ∗ 2�	 	
� �                                                                                                                                                          (1.1) 

where t is a certain time interval, n(t) the number of cells at time t, n0  the number of cells at 

time 0 and td the duplication time of the cells [84]. 

 

Figure 1.7: Schematic representation of epithelial colony growth, with superimposed snapshots of a 

single colony at different times, coded by different shades of gray [76]. 

 

Moreover, cell aggregation events may occur in collective behavior, as cell clusters can 

diffuse and spread until they meet to form new larger aggregates. Cell aggregation is the 

result of the attractive interaction between individual cells [85, 86] as well as cell groups that 

migrate in response to signals released and detected by themselves, through chemotactic 

mechanisms. Consequently, chemotaxis plays a key role in the aggregation process: the cells 

within a cluster secrete soluble chemokines that are detected by the cells of neighboring 

which carry specific receptors for these chemokines. Cell aggregates are able to sense the 
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clusters in their neighborhood and to communicate through chemokines release and detection. 

Following chemotactic signals, multicellular aggregates encounter and attach to each other. 

The cross-talk among cell aggregates plays an essential role, e.g. in tissue formation and 

function [87]. M. Eyiyurekli et al. have considered that chemoattractants are secreted from the 

cell’s surface symmetrically and diffuse within a fixed radius of influence. They have assumed 

that once the chemoattractant concentration falls below a certain value, cells in the 

environment can no longer detect its gradient. This assumption creates a circular field around 

each cell with a radius Rmax, corresponding to about two cell diameters. Any cell within a 

distance of Rmax to another cell is influenced by the other cell’s chemoattractants. A cell that is 

further away than Rmax from an emitting does not detect its chemoattractant and the detecting 

cell’s motion is not affected by the emitting cell. In summary, a cell senses the chemicals 

emitted from other cells when it enters their influence fields. The extent of the field is defined 

by a chemical concentration threshold. For example, the three cells on the left in Figure 1.8 

are affected by each other’s chemoattractant, because they are within each other’s field of 

influence; therefore they move toward each other. The fourth cell is outside their influence 

fields, and therefore is unaffected by the other three and moves randomly [88]. 

 

Figure 1.8: Four cells and their fields of influence. 

 
Several papers support the idea that cell clustering and cluster aggregation can be seen as the 

coalescence of coagulating objects [89, 90]. In fact, the fusion of two contiguous cell 

aggregates may be described in terms of an effective interfacial tension [90] that promotes the 

formations of clusters with minimum external surface for a given number of cells; 

analogously cluster coalescence can be inhibited by an effective viscous friction of the 

surrounding matrix. Kosztin et al. observed that during the fusion of identical spherical soft 
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tissue aggregates the shape of the system is that of two contiguous spherical caps (Figure 1.9). 

This observation suggests that soft tissues behave like complex viscous liquids whose 

description requires an a priori unknown hydrodynamic constitutive model. However, the 

simplicity of the geometry allows to describe analytically the dynamics of the considered 

fusion process by employing conservation of mass and energy as proposed for the coalescence 

of highly viscous molten drops (Kosztin et al., 2012). 

 

 

Figure 1.9: Fusion of two cell aggregates [89]. 

 

After aggregation, the fusing clusters are observed to become spherical, because they compact 

due to interfacial tension. In fact, the fusion of two contiguous cell aggregates may be 

described in terms of an effective interfacial tension that promotes the formation of clusters 

with minimum external surface, in analogy with the coalescence of droplets (Figure 1.10). 

The characteristic time for cluster retraction τ can be seen as the equivalent of the emulsion 

time for the case of a retracting droplet [89, 90], i.e. the time for an irregular liquid drop to 

take a spherical shape. Thus, it can be written 

 = �		������
�                                                                                                                             (1.2) 

where dfinal is the diameter of the final cluster, γ is the interfacial tension and η is the material 

viscosity. Despite several theories and mathematical models have been proposed, the 

mechanisms of cellular aggregation have yet to be clarified. 
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Figure 1.10: Sequence of images showing a collision of drops with coalescence [91]. 

 

3.6. Live cell imaging 

Cell dynamics, led by proliferation and migration mechanisms [1], are crucial for many key 

biological processes, including morphogenesis, tissue repair, immune responses and cancer 

cell invasion [92]. Thus, a full comprehension of these mechanisms could lead to novel 

therapeutic approaches. 

Cell motility as well as cell proliferation are the product of several complex, integrated, finely 

regulated and highly coordinated processes [16, 17]. Due to the tricky nature of these 

fashinating processes, reaching a better understanding of cell dynamic behavior represents a 

formidable intellectual challenge, which require a multidisciplinary approach (Horwitz and 

Webb, 2003).  

Live cell imaging is becoming an increasingly popular tool for elucidation of biological 

mechanisms and is instrumental in unravelling the dynamics and functions of many cellular 

processes. The imaging of live cells poses many challenges, such as cell viability, complex 

microscope settings and the use of appropriate fluorescent components that vary in nature. 

The successful imaging of biological events in cells is largely dependent on the environmental 

conditions provided. Ideally, the conditions should be as close to physiological cellular 

environment as possible, in order to avoid the induction of cellular stress responses and 

artefactual cell behavior. Hence, the medium, pH and temperature must be maintained at a 

physiological level that does not alter biological processes of interest. The medium of choice 

is usually limited by the cell type of interest. In general, the medium should meet all the 

nutritional requirements for cell growth and this usually involves the addition of serum. 
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Live cell imaging can be efficiently performed by using time-lapse microscopy (TLM), which 

allows a powerful analytical tool that allows direct visualization of biological systems in vitro 

during their dynamic evolution [93]. TLM involves repeated capture of images in specific 

positions, i.e. of the same objects (e.g., cells in movement), at regular time intervals, within 

periods of time ranging from few minutes to several days. The duration of the intervals 

determines the temporal resolution, and the resulting video sequence shows cells or organisms 

in action, revealing the dynamic nature of cellular behavior and giving scientists a first look at 

some important biological processes. Briefly, the time-lapse station consists of a microscope 

equipped with motorized stage and focus for automated sample positioning, with the entire 

system sitting on a vibration-free table. The images are captured by a video camera. All the 

equipment are driven by a software that iteratively acquires images of selected regions at 

regular time intervals over several hours. In order to create the proper environmental 

conditions around the biological sample, video microscope are equipped with a cell incubator 

providing the appropriate temperature (around 37°C) and the atmosphere (5% CO2 and 

humidity) necessary to keep cells alive and healthy throughout a TLM experiment [94]. 

TLM is coupled to a wide variety of in vitro assays to allow the quantitative characterization 

of the dynamical aspects of biological systems [95], such as random migration assays, wound 

healing assays and chemotaxis assays. Each method has its own advantages, limitations, and 

drawbacks [95, 96]. 

3.7. Random migration assays 

Cell random motility assay is a well-established method to characterize cell migration [93]. It 

is based on the observation of individual cell motion in isotropic condition and provides 

intrinsic parameters of cell motility. In this  assay, the cells are plated out at a low density on 

the surface of a culture dish, and cell position is typically tracked as a function of time. Cell 

trajectories are then reconstructed either manually or automatically by a cell matching 

algorithm [97] which allows a quantitative determination of cell motion parameters, including 

cell total travel length, net displacement and velocity [59]. Cell random motility can be also 

described by a persistent random walk model [98-100], which is associated with the 

persistence time between significant directional changes and the cell motility coefficient 

analogous to molecular diffusivity [101].  

Cell random motility assays are probably the most widespread and have contributed to the 

fundamental understanding of cell migration processes at the molecular level [102]. The 

major advantage of the single cell migration assay is that it provides valuable insights into the 
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dynamical behavior of individual cells. The assay also allows the tracking of cell motions in 

two- or three-dimensional substrata, in which the cells are embedded within a matrix typically 

made of type I collagen.  

The quantitative analysis of single cell migration, however, requires the tracking of large 

number of cells for long periods of time to obtain statistically robust results [96]. From this 

perspective, the single cell motility assay is sophisticated and the quantitative analysis is very 

time-consuming. The large amount of data acquired from this detailed analysis need to be 

further processed to extract simple parameters that can be considered representative for the 

entire population.  

3.8. Chemotaxis assays 

The ability of cells to migrate, adhere, and change shape, which is central for all eukaryotes, 

is primarily regulated by external signals, although there are instances when cells respond to 

internal cues as well. One of the most interesting and relevant cases of cell migration in 

response to external stimuli is chemotaxis, i.e., the directional movement of cells along a 

towards a concentration gradient of a soluble molecule. 

This mechanism is implicated in a range of physiologically relevant processes, such as 

inflammatory response [103], homeostatic circulation, and development [104]. It also 

concerns a number of disorders and pathological processes including infectious and allergic 

diseases, wound healing [105], angiogenesis, atherosclerosis, and tumour dynamics [13, 106, 

107]. In the latter case, it is well known that cancer cells can migrate both individually and in 

a collective manner [108]. Moreover, it has been recently shown that a diffusional instability 

mechanism [8] can induce the separation of single or clustered cells from the main tumour 

body, which can then migrate toward the source of nutrients, e.g. a blood vessel, thus 

invading wider areas and tissues.  

A still open issue is how soluble gradients might be continuously maintained in vivo, where it 

is known that several physical events such as muscular contraction, convection of 

extravascular fluid, and lymphatic flow might perturb the graded diffusion of soluble 

substances.  

Despite its ubiquity and importance, chemotaxis remains a difficult process to investigate in a 

quantitative way, partly because it occurs in complex 3D environments not easily 

reproducible in vitro and not readily compatible with live cell imaging. The development of 

physiologically relevant in vitro assays to study chemotaxis in a quantitative way is a topic of 
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growing interest. Early efforts to generate spatially linear and temporally stable chemical 

gradients led to the development of diffusion-based chambers.  

Several experimental approaches have been proposed in the literature to investigate cell 

chemotaxis both qualitatively and quantitatively. In these assays, a gradient is established by 

diffusion inside a porous medium or through a small gap between two large reservoirs 

containing chemoattractant solutions of different concentrations. The most popular 

chemotaxis assay is based on the Boyden chamber [109]. It consists of  two compartments, 

placed one into the other, which are separated by a porous membrane through which cells 

migrate. The pore size has to be chosen small enough in relation to the size of the investigated 

cells so that the cells actively migrate through the pores and cannot passively pass the 

membrane by just dropping through them. The cells are seeded on a porous membrane in the 

upper well, which is placed in a well containing a chemoattractant solution. It diffuses into the 

upper one creating a concentration gradient across the membrane. This stimulates the 

movement of the cells from the upper side to the bottom side of the membrane (Figure 1.11). 

The cells on the bottom side are then fixed, stained, and counted. 

 

 

Figure 1.11: Boyden chamber. 

 

This assay is widely used because it’s unexpansive and easy to set up. In addition, the filter 

inserts with different pore sizes are commercially available and that the assay can be used to 

quickly screen chemotactic effect of many compounds. However, the Boyden assay shows 

many limitations due to the fact that it does not provide well defined concentration gradients. 

In fact, the chemokine becomes homogeneously diffused in the upper chamber and the cells 

will no longer migrate through the pores. Moreover, it is an end-point assays and cannot be 

used for live cell imaging. Consequently, the Boyden assay does not allow cell migration to 

be monitored as a function of time; therefore dynamic parameters of cell migration cannot be 

evaluated. Furthermore, chemotaxis and chemokinesis (undirected increase of cell speed) 
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cannot be discriminated in this assay because an equilibrium of the chemotactic factor to be 

investigated is quickly reached [110].  

The under agarose assay [111] is also widely used to investigate cell chemotaxis, but as the 

Boyden assay, it suffers from several drawbacks, including that the cells are incubated in 

static conditions and dynamic parameter of cell migration cannot be evaluated. However, the 

in vivo environment is far more complex in comparison to conventional cell assay chambers. 

Microfluidic devices, usually fabricated in PDMS (PolyDiMethylSiloxane) by soft 

lithography [112-115], have also been recently proposed as a tool to observe cell behaviour 

and migration under chemotaxis or interstitial flow conditions [116]. Convective and diffusive 

transport can be decoupled by using microfluidic agarose membranes; the effect of shear 

stress can be also investigated by exposing the cells to static or pulsating flows [117, 118]. 

Bridge chambers provide a visualization platform for observing the behavior of cells between 

the two wells. The cells are plated onto cover slips, which are then inverted leaving a small 

gap between the bridge and the cover slip, too small for fluid flow to occur, but large enough 

to allow diffusion of the chemoattractant. Cells can then be observed using an inverted time-

lapse microscope, which allows to capture the dynamic behavior of the cells. Commercially 

available chemotaxis bridge assays include the Zigmond and Dunn chambers (Figure 1.12). 

The Zigmond chamber [110] was designed for studying polymorphonuclear leukocytes 

capable of rapidly migrating at speeds of up to 30 µm/min [119]. In this chamber, two 

compartments containing the chemoattractant and the cells, respectively, are connected side 

by side horizontally. This chamber allows the generation of shallow gradients and represent  a 

great improvement on under agarose assays, due to its improved optical properties and near 

steady state linear gradient stable for 30–90 minutes. The Dunn chamber [120, 121] was 

introduced in 1991 for the investigation of chemotaxis in fibroblasts, which migrate much 

more slowly at 0.42-1.25 µm/min. Gradient characterization experiments for this chamber 

highlighted that it was able to generate a linear gradient within 1 h of setting up the chamber, 

with a gradient half-life of 10 to 30 h, due to the stable gap between the cover slip and bridge. 

A recent modification of this technique is the Insall chamber, shown in Figure 1.12 [122], 

whose advantages include easy handling, gradients with defined directions and two different 

gradient steepnesses in the same assay, compatibility with thin cover slips for optimal optical 

properties. As with the Dunn chamber, gradients are maintained for at least 24 hours, allowing 

slowly-moving cancer cells to be tracked. These assays are typically used to evaluate cell 

migration on 2D substrata. Direct observation chambers where the chemoattractant solution is 

in contact with a 3D gel containing cells have also been reported [123, 124], but quantitative 
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control of the concentration gradient was difficult to achieve. 2D assays are easy to handle 

and provide important tools for understanding the migratory activity in response to natural or 

pharmacological modulators, but there could be different mechanisms in 2D vs 3D cell 

migration [125-127], the latter being in principle more adequate to mimic the in vivo 

environment. 

 

 

 

 

 

 

 

Figure 1.12: (A) Schematic representation of the Insall, Dunn and Zigmond chambers [122].  

 

An ideal in vitro chemotaxis assay should be carried out in a tissue-like collagen or fibrin gel, 

allowing direct cell tracking [128] and imaging of the concentration gradient of the 

chemotactic factor (CF) within the (optically transparent) gel, and be relatively easy to set up 

with significant reproducibility [129]. Since cells are able to sense a spatial increase in 

chemokine concentration to direct their motion, chemotaxis studies require a way to deliver 

chemicals to cells in a controlled way. These criteria have been fulfilled in the in vitro assay 

of leukocyte chemotaxis reported by Moghe et al. [130], in which the cells are initially 

dispersed throughout the gel rather than concentrated on the filter surface as in the Boyden 

chamber, thus minimizing cell-cell interactions and cell alteration of the CF gradient. A 

simple modification of this leukocyte chemotaxis assay reported by Knapp et al. [131] allows 

a gradient of similar steepness to be realized for sufficiently long periods to investigate the 

chemotaxis of slow moving cells, such as fibroblasts. It involves the placement of a barrier 

between the two halves of a chamber (one-half initially containing CF at uniform 

concentration, the other initially containing none), leaving a small gap at one end of the 

barrier that serves to geometrically (or dimensionally) constrain the free diffusion; this small 

gap hinders the passage of the diffusing molecules, thereby slowing the decay rate of the 

spatial gradient, which emanates radially outward. 
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Recently, a novel chemotaxis assay in 3D collagen gels based on a direct-viewing chamber 

has been developed to overcome some of the limitations of the existing assays. The chamber, 

shown in Figure 1.13, consists in two steel blocks glued on top of a microscope slide by using 

a silicone adhesive. The blocks, separated by a porous membrane (0.22 µm pore size), are 

assembled together by two mounting screws. Part 1 in Figure 1.13 has two independent 

compartments; the first one (A) is used as control well while the second one (B) is the 

reservoir of the chemoattractant solution. In part 2 there is only one compartment (C) which is 

used for the cell seeded collagen gel. Once assembled, the membrane separating the 

chemoattractant (B) and the collagen gel (C) compartment is sandwiched between the two 

rectangular open frames in part 1 and 2, and the chemoattractant can diffuse through the 

membrane first and then into the cell-seeded collagen gel [132]. 

 

 

Figure 1.13: 3D rendering of a recently developed chemotaxis chamber [132]. 

 

This methodology provides an integration of features, which are not found altogether in other 

assays from the literature: an autoclavable chamber simple to operate and including a control 

well, live cell imaging with both low and high-resolution optics, a 3-D extracellular matrix, a 

well characterized concentration gradient lasting for extended time periods, quantitative data 

analysis based on cell tracking. 
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3.9. Wound healing assays 

The wound healing (WH) assay is considered one of the most popular methods to evaluate 

cell dynamic behavior in vitro [96, 133], because of its low coast and simplicity to set up 

[134].  

In the classical WH assay, also known as scratch assay, the cells are grown on a two-

dimensional surface until they cover the entire available surface (100% confluence). An 

artificial scratch is than created on the confluent cell monolayer by mechanically removing 

the cells from a  defined area with a pipette tip, a blade, a needle or similar [135]. Than the 

cells are washed with a desired medium to remove not attached damaged cells and cell debris. 

In response to the stimulus arising from the creation of the empty space in a previously intact 

tissue, the cells on the wound margins, which are no longer contact-inhibited, proliferate and 

move toward the center of the denuded region to fill the wound [136] until new cell–cell 

contacts are established again. It is not quite clear what triggers the wound closure process. 

The scratch process destroys the removed cells, which release their intracellular content into 

the medium; this process is also quite traumatic for the cells on the newly formed edges. 

Indeed these border cells may become partially permeable as a result of the brutal tearing off 

of the adhesive junctions they maintain with their neighbors. A sudden influx of the 

extracellular medium in these cells may potentially trigger their migration. It is also possible 

that a free edge is sufficient by itself to induce cell motility and proliferation to redensify the 

monolayer [79]. 

The process of wound healing is regulated by numerous growth factors, such as epidermal 

growth factor (EGF), transforming growth factor-b (TGF), vascular endothelial growth factor 

(VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). In 

particular, bFGF is a member of a large FGF family of structurally related proteins that bind 

heparin or heparan sulfate, known to promote both proliferation and motility of a wide variety 

of cell types [137]. FGF binds to the different isoforms encoded by the four receptor tyrosine 

kinases designated FGFR1-4, and also binds to heparin or heparan sulfate proteoglycans. 

FGF-stimulation leads to the activation of the Ras/MAPK signaling pathway [138], which 

plays an important role in bFGF-induced cell proliferation [139]. 

Epithelial and fibroblast-like cell behavior in the WH assay 

Two main mechanisms of wound healing, have been identified [2, 135, 140], depending on 

the type of cells involved. The first one is typical of fibroblast-like cells, which cover the 
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wound space as individual cells; the second mechanism is a typical feature of epithelial or 

endothelial cells, which close the wound in a collective mode [140]. 

Concerning the first wound healing mechanisms, fibroblasts migrate toward the wound area 

primarily as individual cells [140]. The availability of free space after the scratch is the 

initiating event for the induction of cell movement. bFGF seems to promote fibroblast 

migration through the PI3-kinase-Rac1-JNK pathway, which is a novel pathway of bFGF-

induced cell migration Overall, the cells can move with the same probability in any direction, 

due to the lack of cell-cell interactions. In addition, cell proliferation may also contribute to 

the wound closure [139], as it increases in response to the “sensation of free space” after 

wounding [134]. 

Concerning the second wound healing mechanism, epithelial-like cells maintain close 

contacts and continuity with each other while each sheet of cells moves forward as a coherent 

cluster, whose mechanical integrity is led by physical cell-cell interactions [79, 141]. The loss 

of spatial constraints in the epithelial layer stimulates cell migration [79, 142] and 

proliferation [143] within the cohort, thus enabling the wound closure through the spreading 

of one sheet of cells towards the other in a collective and coordinate manner [144, 145].  

WH experiments performed on epithelial monolayers of Madin-Darby canine kidney 

(MDCK) cells showed that wounding in this model system is accompanied by two traveling 

waves of MAPK activation that propagate from the wound edge into the bulk of the 

monolayer. These dynamic signaling patterns were found to be essential for coordinated cell 

migration during the wound healing process, which involves the spreading of the monolayer, 

with essentially no cell proliferation. Furthermore, it has been proposed that MAPK 

participates in a positive feedback loop which is characterized by cell spreading, MAPK 

activation and cell motion, which drives the spreading of a wounded MDCK monolayer 

[146]. 

There is still some controversy regarding the triggering event for the induction of epithelial 

cell sheet movement. Cell damage was suggested to be a prerequisite for the initiation of cell 

movement [147]. To test whether cellular injury is required to trigger the healing response, 

Block et al. used agarose strips to create gaps in rabbit corneal epithelial monolayers 

minimizing the perturbation of the cells. Following strip removal, cellular sheets migrated at 

the same rates as sheets created in scraped monolayers. The findings support the idea that the 

triggering event for the induction of cell sheet movement seems to be the availability of empty 

space [148].  
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The injury seems to be not strictly necessary; in fact, injury-free WH assays performed on 

MDCK epithelial cells showed that the free surface is sufficient to induce cell migration. 

Complex and coordinated long-range motions within the epithelium were observed, 

supporting the hypothesis of a mechanical communication between the cells in response to the 

creation of free space [79]. However, Nikolic´ et al. showed that the injury is essential for 

coordinated behavior of MDCK cells in the epithelial sheet. MDCK sheet migration was 

investigated under three different conditions: the classic scratch assay; empty space induction, 

where a confluent monolayer is grown adjacent to a slab of polydimethylsiloxane and the 

monolayer allowed to spread upon removal of the slab, without damage; injury via 

polydimethylsiloxane membrane peel-off, where an injured monolayer migrates onto plain 

tissue culture surface. It was observed that the damage in the confluent cell monolayer 

induces a the first wave of MAPK activation and that unconstraining of the sheet without 

injury induces only a second, slower wave of MAPK activation. It was also shown that the 

injury induces the generation of reactive oxygen species (ROS) at the wound interface, and 

that ROS are essential for the activation of the first wave of MAPK signaling pathway. 

Furthermore, in the absence of an external damage, cell motility within the sheet appears 

greatly attenuated in terms of speed, travelled distance and cell path persistency compared 

with the classical wound healing [149].  

Mathematical modelling of the wound closure process 

The wound closure dynamic process can be mathematically described using the Fisher-

Kolmorgoroff equation [150], which describes cell density evolution in space and time in 

terms of cell motility and proliferation [151]. Both these mechanisms are involved in the 

spatial spreading of the cells invading the wound area, strongly affecting the evolution of cell 

density [152]. According to the Fisher-Kolmorgoroff equation, cell motility is modeled by 

Fickian diffusion, while cell proliferation is described by a logistic growth [153]: 
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��� + ��  1 − �
�#$                                                                                                (1.3) 

where � is cell density at time t at a given distance x from the wound edge, D is the constant 

diffusivity (random motility coefficient), analogous to the diffusion term in Fick's law, k is the 

proliferation rate and �%  is the carrying capacity of the surface, corresponding to the cell 

density at confluence, in which the cells cover the whole available surface. Consequently, 

according to the Fisher-Kolmorgoroff equation the rate of change of cell density at position x 
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at time t depends on both the change in cell density due to the migration process and the 

change in cell density due to cell proliferation [154]. The diffusion term of the Fisher-

Kolmorgoroff equation is linear, with the diffusivity assumed to be constant. The logistic 

growth model is related to the cell doubling time &�  �	 = 	 '()&* $	and includes crowding 

effects by reducing the growth rate as the density approaches the confluence density, or 

threshold value, �	# [155]. The Fisher-Kolmorgoroff equation exhibits constant shape travelling 

wave solutions; in fact, the model predicts that after a short transient the movement of the 

invading cell front can be observed in terms of a traveling wave, which propagates with 

constant speed s = √4	�%�� in the direction perpendicular to the wound [136, 152, 154-156].  

If the cells do not move, which means that D=0, cell proliferation is the only mechanism 

driving cell density evolution. Under these conditions, the Fisher’s equation can be simplified 

to the logistic equation (Eq. (1.4)): 
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�� = ��  1 − �

�#$                                                                                                                (1.4) 

In particular when u<< �% , cell proliferation follows an exponential growth model.  

When cell proliferation is suppressed, meaning that k=0, it can be written: 

��
�� = � ���

���                                                                                                                             (1.5) 

In this case (Eq. (1.5)), cell density evolution is only related to cell diffusion and the Fisher-

Kolmorgoroff equation is similar to the Fick’s law. Several drugs working as cell division 

inhibitors, such as mitomycin-c, can be used to inhibit the proliferation process [139, 157].  

Maini et al. experimentally measured the position of the invading cell front as a function of 

time and found that it moved at approximately a constant speed. They also determined the 

wave speed for wounds generated in cell monolayers grown on different substrates. Analytical 

results from the Fisher-Kolmorgoroff equation then provided a relationship between the rate 

of cell proliferation and the diffusion coefficient. However, the details of the cell density 

behind the wound edge were not investigated [154].  

Other approaches to identify parameters are based on the measurements of the cell density 

profile. For example, Sengers et al. fitted the solution of a reaction–diffusion equation to 

density profiles obtained from experiments, in order to match the experimental data [158, 

159]. Similarly, Sherratt and Murray studied a WH assay and chose the parameters in two 
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different reaction–diffusion equations so that both models predicted the observed closure rates 

[160]. Takamizawa et al. calculated numerical solutions of the Fisher-Kolmorgoroff equation 

using different values of the diffusivity and proliferation rate parameters and compared the 

numerical results with the experimental data of cell density within the wound. A trial and 

error method was used to estimate the two parameters that gave the best fit to the 

experimental data [161]. Savla et al. proposed a modification in the Fisher-Kolmorgoroff 

equation to include a term that describes cell spreading and account for a time delay into the 

mitotic term. The contributions of spreading, migration, and mitosis were investigated both 

numerically and experimentally. The best fit parameter values between the numerical 

solutions and experimental data were obtained with a nonlinear least-squares algorithm [162]. 

Dale et al. used a cell diffusivity that was a function of an external chemical factor; they 

determined an analytic approximation for the speed of traveling wave solutions in terms of the 

parameters and verify the results numerically and compared the predicted speed with 

experimentally measured closure rates in corneal epithelial wound healing [163]. Simpson et 

al. used a combination of experimental and modelling techniques to isolate the role of cell 

motility and proliferation in a two-dimensional circular barrier assay. They obtained 

independent estimates of D and k and make independent modelling predictions about the 

position and shape of the leading edge as well as the evolution of the cell density profiles. 

Their results highlighted that continuum models, based on the Fisher–Kolmogorov equation, 

are a reliable platform upon which they can interpret and predict their experimental 

observations [164]. 

However, the previous models do not include the effects of contact inhibition of migration in 

the wound closure process. This effect is significant and should be included when modeling 

wound closure dynamics. As cell motility has been observed to decrease with increasing local 

density [155], an extension of the Fisher’s equation, incorporating non-linear diffusion, is 

available: 

��
�� = �� �

�� .� ��
��/ + ��  1− �

�#$                                                                                           (1.6) 

Here, the constant parameter D0 is the diffusivity coefficient for isolated cells, while �is a 

dimensionless diffusivity and is function of 
�
�# with the properties D(0)=1 and dD/du<0 [136], 

meaning that the diffusivity is a decreasing function of cell density. A function that fits these 

requirements is 
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where A is a critical value of cell density and represents a measure of contact inhibition 

phenomenon. It depends on the cell line; for example A=0.02 cells/µm2 for neurons migrating 

from a dense cluster [165]. Eq. (1.7) captures the contact inhibition effect of cell movement, 

whereby cells slow down, stop or change direction when they encounter another cell in their 

path [136], therefore hindering and inhibiting cell movement. It is natural to consider the cell 

diffusivity decreasing with density, since the presence of other cells leads to more collisions 

[155]. 

Wound closure investigation 

Two methodological approaches are typically used to capture the output of the WH assay, in 

order to gain quantitative information about cell spreading within the wound region. The most 

popular approach is related to the manual acquisition of images within the sample along the 

wound at the beginning and at fixed time intervals (for example every 6 h) until the wound is 

closed [139]. In this approach cell movement is typically quantified counting the number of 

cells which repopulate the wound region for each time step, or measuring the distance 

between the two wound edges or the wound area [166] in order to determine the percentage of 

wound closure at fixed time points [167]. However, this classical approach results to be 

approximate, as it doesn’t allow to highlight the dynamic aspects of cell behavior. For 

example, Andújar et al. quantify the wound closure process by counting the migrated cells 

after 24 h from the beginning of the assay, in order to investigate the role of shikonin in the 

migration of intestinal epithelial cells [168]. Tsai et al. also determined the number of CCD-

966SK cells migrating in the denuded zone after 12 and 36 h [169]. Zhang t al. measured the 

distance between the two edges of the scraped area at the beginning and after 24 h, in order to 

estimate the migratory distance of the cells within the wound region [170]. Yue at al. quantify 

cell migration toward the denuded area at 16 and 24 h and determined the percentage of 

wound closure  [171]. In order to assess the role of Protein kinase C on the spreading and 

migration of intestinal epithelial cell during WH assays, Sumagin et al. also determined the 

rate of cell migration into scratch wounds by measuring the surface area devoid of epithelial 

cells immediately after wounding (t =0) and at subsequent time points (12, 24 ad 48 h) [172]. 

An alternative, more reliable approach to quantify cell dynamics in a WH assay is based on 

live cell imaging performed by using time-lapse microscopy (TLM) which allows to 

iteratively acquire sample images with a defined time frequency [93], while controlling the 
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environmental parameters to ensure cell viability throughout the experiment, which can last 

up to a few weeks [94, 173]. This methodological approach allows to obtain the 

abovementioned measurements, i.e., the number of cells in the wound region or the 

percentage of wound closure, in a more accurate way. Moreover, the possibility to regularly 

observe over time exactly the same wound region, rather than roughly comparing randomly 

taken images, enables to estimate precise quantitative parameters, such as wound closure 

velocity, measuring the reduction of wound area over time, or the cell front propagation 

speed, quantifying the position of the wound front over time.  

Overall, the wound healing process is typically investigated on the scale of the entire cell 

population, neglecting individual cell behavior. More precise information can be obtained 

coupling TLM approach with cell tracking, in order to quantify intrinsic cell motility from 

individual cell trajectories  (Rosello et al., 2004). In fact, the possibility to regularly image 

over time exactly the same wound region allows to track the path of individual cells on the 

wound edges, in order to investigate the dynamics of wound healing also on the scale of the 

single cells. This approach enables to reconstruct cell trajectories and quantify cell motility 

parameters, such as the total length travelled by the cells, the net displacement and cell 

velocity [174, 175]. 

Advantages and disadvantages of the wound heling assay 

One of the major advantages of the wound healing assay that it mimics to some extent 

migration of cells in vivo. In comparison with other popular in vitro methods, such as the 

Boyden assay, the wound healing assay is particularly suitable to study the regulation of cell 

migration by cell interaction with extracellular matrix (ECM) and cell–cell interactions. In 

other popular methods such as Boyden chamber assays, preparation of cells in suspension 

before the assays disrupts cell–cell and cell–ECM interactions [135]. Moreover, the WH assay 

is also compatible with advanced microscopy techniques including live cell imaging, allowing 

analysis of intracellular signaling events (e.g., by visualization of green fluorescent protein 

(GFP)-tagged proteins for subcellular localization or fluorescent resonance energy transfer for 

protein–protein interactions) during cell migration. The wound healing assay is also probably 

the simplest method to study cell migration in vitro and only uses the common and 

inexpensive supplies found in most laboratories capable of cell culturing [140]. 

Although very powerful to investigate cell dynamics, the wound healing assay suffers from 

several disadvantages and limitations. For example it cannot be used to investigate the 

chemotactic behavior of the cells, and consequently, it does not replace other well-established 
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methods for chemotaxis such as the Boyden chamber assay, as no chemical gradient is 

established. In addition, it takes a relatively longer time to perform than some other methods, 

considering that a couple of days are needed for the formation of the cell monolayer before 

making the scratch and starting the experiment. Relatively large amount of cells and 

chemicals are required for the assay as it is usually performed in a tissue culture dish. 

Therefore, it is not the best method to choose if the availability of cells (e.g., specialized 

primary cells that are hard to get in sufficient amount) or chemicals (e.g., expensive reagents) 

is limited [140].  

Furthermore, the outcomes of the WH assay are somewhat confounded by several factors, 

which may represent a limit in accomplishing reproducible and reliable quantitative results. 

First, the wound width can vary along its length and among different experiments [176]; it 

depends on the dimension of the tool used in making the wound as well as the scraping force 

and velocity [177]. The geometry of the initial wound is particularly relevant, since the 

complex force field that develops at the free edge of the monolayer depends on the size and 

shape of the cell-free region [178]. Second, the scratching process involves mechanical 

injures to the cells located on the wound edges [149], which may potentially lose their 

original morphology and function; this may result in the transient contraction of the cell wave 

front [179]. Some damaged cells and cell debris can also keep attached to the wound margin, 

perturbing the motility of other cells moving around the obstacle to access the cell-free area 

[180], or they often reattach to the plate and move into the wounded area [133] or can cause 

leaking of the intracellular contents towards the wound region, leading to adulterated results. 

Additionally, the migrating surface, often coated with extracellular proteins prior to cell 

growth, can be damaged by the sharp objects typically used in the scraping process; 

alterations in surface topography may lead to preferential paths in cell movements (contact 

guidance) [181]. It is well established in the literature that substrate microtopography can 

influence cell adhesive and migratory properties, since substrate topography can alter the 

establishment and organization of cell membrane based focal adhesion complexes and can 

thereby invoke specific signaling pathways which may regulate cellular phenotype and 

function [182]. Furthermore, the relative cell confluence in the region where the scratch is 

made, is challenging to control and reproduce within the same culture dish and among 

different cell samples [183]. This makes it difficult to compare between experiments. The 

difficulty to obtain the same cell density in the samples primarily arises from anisotropies in 

the spatial spreading of the cells, mainly due to uneven cell attachment in the culture dish 

after plating. Moreover, it is arduous for the operator to plate exactly the same number of cells 
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in different culture dishes. Above all, several cell treatments, such as gene silencing, involve 

the use of invasive techniques, which may result in unwanted cell detachment from the 

bottom of the plates or cell death.  

Overall, these factors might potentially influence the outcome of the WH assay, strongly 

limiting the reproducibility of the experiments.  In order to implement the WH assay in a 

more controllable way, novel approaches have been developed. 

Alternative approaches to the classical WH assay 

Recent advancements in micromachining, optics, chemistry, and electronics in the past 

decades, have led to the development of novel techniques  which can be used to overcome the 

limits of the classical wound healing assay. Specifically, wounding techniques based on non-

mechanical methods such as chemical, electrical, and optical approaches have been recently 

developed (Figure 1.14). 

 

 

Figure 1.14: WH assays based on (A) scratching, (B) stamping, (C) solid barrier, (D) liquid barrier, 

(E) droplet chemical assay, (F) microfluidic chemical assay, (G) electrical assay, and (H) laser 

ablation [177]. 

 

The most common method for investigating cell dynamics by wound healing experiments is 

the mechanical approach because of its simplicity and cost-effectiveness. In a mechanical 

wounding assay, cells are disrupted physically. Mechanical wounding assays can be 

categorized into mechanical scratching and stamping assays. In a typical scratch assay, the 

cells are allowed to grow until they reach 100% confluence, and a mechanical wound is then 

created by physical scraping (Figure 1.14.A) with a pipette tip, needle, bladder, razor, rubber 

policeman, cotton bud, or Teflon spatula [184, 185]. The scratch assay can be achieved by 

using a robotic system, in order standardize the process and increase the throughput [186]. To 
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improve the reproducibility and minimize the surface damage, a drill press assay has also 

been developed [187]. In this method, a stabilized, rotating, silicone-tipped drill press is used 

to create uniform circular lesions in an intact cell monolayer. Another reproducible scratching 

method is the hydrophilic polydimethylsiloxane (PDMS) slab assay [149, 188] in which a 

short hydrophilic PDMS slab is embedded onto the substrate pre-coated with the material of 

interest, allowing the cells to grow on top of the substrate as well as the PDMS. After a 

confluent cell monolayer is formed, the PDMS is removed, wounding reproducibly the cells 

near the boundary. This method allows to minimize cell debris and surface damage in the free 

region of the substrate. Mechanical wounding can also be performed using the stamping assay 

(Figure 1.14.B). In this method, a confluent cell monolayer is punched by a stamp, such as a  

PDMS mold, to create a reproducible and uniform pattern. Advantages of stamping assays 

include creation of wounds with arbitrary shapes and study of cell migration in the presence 

of cell debris. For example, a stamping assay has been reported to study phagocytosis of cell 

debris in the wound site during wound healing [189]. Another stamping assay for studying 

cell regeneration is the stamp-sliding assay [190], in which the cell monolayer is stamped by a 

Neoprene pattern under pressure control, followed by rotary or lateral movement of the stamp 

to create desired uniform cell patterns, such as circles and islands. 

The cell monolayer can also be wounded using physical methods, in which a physical barrier 

is applied prior to cell seeding to block cell attachment; the removal of the physical barrier 

triggers the wound closure process. The repeatability and standardization of the physical 

barrier assay are more achievable compared with the scratch assay and ensure a good survival 

rate. The use of a physical barrier also minimizes cell damage and keeps the cell-free region 

intact for ECM deposition. The physical barrier assay can include the use of solid barriers, 

typically composed of biocompatible materials, (Figure 1.14.C) and liquid barriers. One of the 

early solid barriers for cell migration studies is the Teflon fence [191] in which a Teflon fence 

is placed in a culture dish, where the cells are plated at high density. After forming a confluent 

cell monolayer, the wound closure dynamics is studied after the release of the Teflon fence. 

Other solid stoppers are made of silicone or PDMS with desired shapes. These materials can 

adhere to smooth surfaces without glue and are able to create multiple wounding sites. In 

addition, they are biocompatible, ease of use, and show high adhesiveness. The barrier can 

have a closed or open shape [192]. The open-shape barriers, such as circular rings, consist of 

inner and outer compartments in which cells can be seated either inside or outside of the 

barrier [193, 194]. Another physical barrier assay for collective cell migration studies is called 

“detachable substrate” [195]. This method consists of two complementary parts composed of 
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PDMS and polystyrene and fabricated by replica molding. After seeding cells and forming a 

cell monolayer on one substrate, the intact complementary substrate is attached and allows 

cells to migrate onto the untouched surface for cell migration studies. Liquid stoppers are 

another barrier assay enrolling liquid or gel barriers in outward cell dynamics studies in which 

less substrate and cellular damages are required near the boundary (Figure 1.14.D). One of the 

most popular liquid stoppers is the agarose gel [196], in which the cells are embedded into a 

droplet of agarose gel. Another method to study cell sheet migration is the oil droplet 

migration assay, in which an aqueous drop of medium–cell suspension is pipetted into a light 

mineral oil, and the drop falls on the matrix surface due to the density difference. After a 

confluent monolayer is formed, cells are released from the liquid stopper by aspirating the oil 

out of the dish. To study cell migration on the various surface coatings without cellular 

damage, a multichannel migration device, which takes advantage of surface tension, can also 

serve as a liquid stopper in microchannels [183].   

Alternatively, wounding can be achieved by using chemical method (Figure 1.14.E), in which 

a droplet of sodium hydroxide is pipetted onto the cell monolayer to selectively remove cells 

in contact with the droplet [197]. The size of the wound is controlled by the volume of the 

chemical applied. The chemical wounding method can also be implemented using 

microfluidics in order to selectively remove cells in a microchannel in an enzymatical way 

[144, 198]. The flow in a microchannel is generally laminar due to the low Reynolds number 

of fluid flows in the microscale (Figure 1.14.F) [198].  

Wound healing assays can also be accomplished electrically. Electrical wounding methods 

(Figure 1.14.G) are based on the electrical cell–substrate impedance sensing (ECSI) technique 

[199], which allows to create wounds with different geometries. The electrical wound healing 

device is typically composed of a small gold film electrodes on which the cells are grown and 

a much larger counter electrode [200]. By applying a relatively large voltage between the 

electrodes, the cells of the monolayer are electropermeabilized permanently with subsequent 

death of the cells in a defined area. This enables to generate a wound in the cell monolayer on 

the surface of the electrode. The movement of the cells which repopulate the empty space can 

be characterized by measuring the electric variation of impedance of the cell monolayer on 

the cell–adhesion electrode [201]. 

Wounding of cell monolayers can also be performed using optical methods [202]. A laser can 

mediate photothermal, photochemical, and photomechanical effects on the cells determining 
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the removal of the cells from a defined area of the confluent cell monolayer (Figure 1.14.H) 

[203]. This method allows to create repeatable wounds or wounds with arbitrary shapes. 

 

4. Aim of the work 

Although the framework of cell dynamics has gained impetus in recent years, the current 

understanding of many mechanisms is still limited and cell dynamic behavior remains a 

challenging process to study under physiopathologically-relevant conditions in vitro.  

This work is addressed to: 

• investigate in vitro the dynamic evolution of cells, from single to collective cell 

dynamic behavior, by using an experimental approach based on direct visualization 

(time-lapse microscopy) of cell samples and image analysis techniques, in order to 

reach a better understanding of many physiological and pathological processes; 

• compare several methodologies widely used in the literature to investigate cell 

dynamics in vitro; 

• model the mechanisms governing single and collective cell dynamic evolution, i.e., 

migration and proliferation, by using mathematical equations based on the transport 

phenomena approach.  

The main goal of this project is to improve the current understanding of the mechanisms 

governing cell dynamics by using an interdisciplinary approach, based on chemical 

engineering core disciplines combined with biological, biotechnological and biomedical 

sciences. A rigorous investigation, based on the application of transport phenomena concepts, 

is essential to measure cell movement and proliferation indices that describe cell dynamics in  

precise quantitative way. For this reason, the development of such analyses is nowadays 

within the core business of Chemical Engineering [18], which can contribute to the building 

of mathematical models, based on the transport phenomena approach, useful to describe and 

predict the mechanisms driving cell dynamics [19]. 
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Chapter 2 

Investigation of Cell Dynamics in vitro by Time Lapse  

Microscopy and Image Analysis 

 

Abstract 

Pharmacological research is continuously working on the development of new drugs. This 

research typically starts from the formulation of new molecules that are first investigated at 

the cell scale, finally is completed with clinical trials. Investigation on the cell scale requires 

simple, reproducible and reliable assays, able to simulate physiological conditions in the lab. 

A wide range of biological processes, such as angiogenesis, inflammation, tissue regeneration, 

tumour growth and invasion, are strongly linked to cell proliferation and migration 

mechanisms that govern the dynamic evolution of both individual cells and cell aggregates. 

In this work we present an experimental methodology for the quantitative investigation of cell 

dynamics in vitro by live imaging of biological soft matter. Cell motility is observed by 

means of a Time Lapse Microscopy workstation, consisting of a motorized video-microscope 

equipped with an incubating system, and quantified by image analysis techniques. We report 

some preliminary experimental results relative to the migration of a tumour cell line both in 

random condition and in presence of an external stimulus, such as a chemical concentration 

gradient. The ultimate goal of this research is the development of a standard assay to be used 

as a test for drug efficiency, suitable for routine application in the pharmaceutical research. 

 

1. Introduction 

The pharmacological industry is strongly addressed to discovering and testing of novel 

therapeutic drugs for the treatment of a wide range of diseases, including cancer, 

inflammations and cardio-vascular dysfunctions. In particular, the identification of novel 

chemotherapeutic molecules is a topic of growing interest, because of the limitations of the 

therapy approaches to the treatment of cancer, due to tumour invasion and metastasis 

formation. 

The research process of novel drugs is complex, time-consuming, and expensive. A wide 

variety of in vitro assays are used to identify novel therapeutic molecules and assesses their 



41 

 

efficiency on the industrial scale. Among these, the Boyden chamber assay [204] is widely 

used to investigate cell motility and invasion capacity, due to its simplicity. However, it 

presents a number of limitations; it does not allow cell dynamics to be monitored as a function 

of time and does not provide well defined concentration gradients of the drug under 

evaluation. 

The detection of novel drugs and the evaluation of their activity require the development of a 

standard assay aimed at the investigation of single cells and cell tissue dynamics in response 

to drug treatment, while mimicking physiological condition on the lab scale. An ideal assay 

should be economic, relatively simple to set up with significant reproducibility and reliability, 

and useful for high-throughput screening. 

A large number of physiological and pathological processes, including embryonic 

development, immune response, inflammation and tumour metastasis, are intimately related to 

the dynamic evolution of individual cells and cell clusters [61]. Cell migration, proliferation 

and aggregation mechanisms, driven by mechanical and chemotactic cues [13], play also key 

roles in the growth of healthy as well as pathological tissues. 

The above mentioned mechanisms of cell dynamic evolution can be described by using 

mathematical models based on transport phenomena concepts [205]. It is possible to describe 

cell motility in terms of a motility coefficient, analogue of the Fickian diffusion coefficient, 

while cell proliferation can be described by models of logistic growth [136]. The fusion of 

two contiguous cell aggregates may be described in terms of an effective interfacial tension 

that promotes the formation of clusters with minimum external surface. An interesting 

approach of this phenomenon can be hence based on the analogy with the case of drops of 

fluid surrounded by an immiscible matrix [206], that deform, break-up [207], retract to the 

spherical unperturbed shape, coalesce, or form complex structures [208]. 

A detailed analysis of the mechanisms leading cell dynamics requires a rigorous approach, 

based on the measurement of quantitative cell movement indices. Cell dynamics can be 

efficiently investigated experimentally in vitro by using live cell imaging by Time Lapse 

Microscopy (TLM), that allows the direct visualization of biological systems during their 

dynamic evolution [93]. This microscopy technique is based on automated sample 

repositioning by motorized x-y stage and focus control and iterative image acquisition of 

selected fields of view while controlling the environmental parameter to ensure cell viability 

throughout the experiment, which can last up to a few weeks. The application of image 

analysis techniques allows the reconstruction of cell trajectories and the calculation of the 
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relevant cell migration parameters [175], or the quantification of the growth dynamic of 

tissues [173].  

TLM is coupled to a large variety of in vitro assays, ranging from single cell random motility 

assays to chemotaxis assays, that allow a quantitative characterization of cell dynamics [133]. 

In single cell random motility assays, the cells are plated at low density, in order to 

reconstruct cell trajectories in 2-D or 3-D substrata. The trajectories are further analyzed 

according to mathematical model, such as the persistent random walk model [100], in order to 

measure motility parameters, i.e. cell velocity, the persistence time between significant 

changes in the direction of motion, and the cell motility coefficient, that is an analogous of the 

random walk diffusivity. 

Chemotaxis assays allow to quantitatively analyze the directional cell response to chemical 

gradients. The investigation of chemotaxis in vitro presents several challenging experimental 

difficulties, mainly due to the problem of creating a stable gradient on a time scale long 

enough to elicit a significant cell migration response [132]. Chemotactic movement of the 

cells can be described in terms of a directionality index, defined as the ratio between the net 

movement in the direction of the gradient and the total curvilinear length of cell trajectories 

[129]. 

In this work, we propose an experimental methodology for the quantitative investigation of 

cell dynamics in vitro by live imaging of biological soft matter. Cell motility was observed by 

means of time lapse imaging and quantified by image analysis techniques. We report some 

preliminary experimental results relative to a case study aimed at the investigation of tumour 

invasion. In particular, we performed 2D single cell migration assays in order to quantitatively 

investigate the dynamic behavior of two populations of tumour cells, i.e. HT1080 NG2- and 

HT1080 NG2+ fibroblasts. The latter are characterized by high expression of the NG2 

transmembrane proteoglycan. It is thought to be involved in tumour progression (Cattaruzza 

et al., 2013) because it accentuates growth responses, mediates the tumour cell-host 

microenvironment interaction and promotes neoangiogenesis [209]. 

In order to investigate the chemotactic response of the cells to several molecules, we applied a 

novel chemotaxis assay in 3-D collagen gels based on a direct-viewing chamber [129, 132] 

that is reusable, and can be coupled to a Time Lapse Microscopy and image analysis 

workstation. In the chamber a chemoattractant concentration gradient in the collagen gel 

sample seeded with cells is generated by diffusion through a porous membrane. We analyzed 

the migration of HT1080 tumour fibroblasts under a concentration gradient of FGF2 growth 

factor, that is known to be implicated in the progression of human cancer [210]. 
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2. Materials and methods 

2.1. Cell culture 

HT1080 is a cell line of fibrosarcoma from connective tissue. This cell line presents good cell 

motility and a significant morphological polarization. HT1080 fibroblasts and two 

subpopulations of this cell line (HT1080 NG2+ and NG2-) were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10 % (v/v) Fetal Bovine Serum (FBS), 

sodium pyruvate 1 % and antibiotics (50 units/mL penicillin and 50 µg/mL streptomycin) and 

maintained in a humidified incubator at 37 °C under an atmosphere of 5 % CO2 in air. 

2.2.  Chemotaxis chamber 

Chemotaxis assays were performed by using a chamber [129] consisting of a single 

aluminium block glued on top of a microscope slide by using a silicone adhesive. A porous 

membrane (0.22 µm pores), sandwiched between two rectangular metal frames, separates two 

compartments, one for the cell seeded collagen gel (sample well), and the other as a reservoir 

of the chemoattractant solution (chemoattractant reservoir). During the experiment the 

chemoattractant, loaded in the reservoir, diffuses through the membrane, and thereby 

generates a concentration gradient in the cell seeded collagen gel. In Figure 2.1, a 3D 

rendering shows the chamber in an assembled view, where the membrane supporting frames 

are housed in the chamber. 

During the experiment the chemoattractant, loaded in the reservoir, diffuses through the 

membrane, thereby generates a concentration gradient in the cell seeded collagen gel. The 

chemoattractant concentration profile in the collagen gel can be described according to the 

model of Fickian diffusion in a semi-infinite slab [132]: 
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where C(x,t) is the chemoattractant concentration as function of the space x and time t, C0 is 

the initial concentration in the chemoattractant reservoir, D is the diffusion coefficient of the 

molecule in the gel. 
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Figure 2.1: View rendering of the chemotaxis chamber. 

2.3. Time Lapse Microscopy workstation 

Time Lapse Microscopy experiments were performed using an automated workstation based 

on an inverted optical microscope with a long working distance 10x objective in phase 

contrast. A scheme of the workstation is reported in Figure 2.2. The microscope, placed on an 

anti-vibrating table, is equipped with motorized stage and focus, that allow to automatically 

position the field of view within the sample under observation. In order to mimic 

environmental conditions, the microscope is enclosed in a homemade incubator that keeps the 

sample temperature at 37 ± 0.1 °C in a saturate moisture atmosphere with 5 % CO2. Images 

are acquired using a high-resolution high-sensitivity monochromatic CCD video camera. The 

whole workstation is driven by homemade control software in Labview. Images were stored 

on hard drive for off line analysis. 

 

 

Figure 2.2: Scheme of the Time Lapse Microscopy workstation. 
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2.4.  Experimental methods 

In 2D random motility experiments, HT1080 NG2+ and NG2- fibroblasts were plated on an 

uncoated twelve-well culture dish at a density of 9x104 cells per well and allowed to attach 

overnight, incubating under standard conditions at 37 °C in a 5 % CO2/Air atmosphere before 

starting the experiments. 

Collagen gel was prepared with the following composition (volume basis): DMEM medium, 

0.1 M NaOH (5 %), 10x MEM medium (5 %), FBS (0.5 %), antibiotics (50 units/mL 

penicillin and 50 µg/mL streptomycin) (1 %) and collagen solution (2 mg/mL). All 

components were kept on ice during the preparation, except for the cell suspension that was 

added at the end. The solution was placed in the sample well of the chamber. The chamber 

was then incubated at 37 °C and 5 % CO2 for 20 min to induce collagen polymerization.  

2.5.  Image analysis 

Image analysis of random motility assays and chemotaxis experiments was performed using a 

semi-automated Cell Tracking software. For each time step, all the cells were individually 

followed to determine cell contour and the coordinates of the center of mass. The trajectory of 

each cell was reconstructed for the whole experiment starting from the center of mass 

coordinates. Furthermore, average motility parameters of the cell population were calculated 

as a function of time using a Matlab script.    

3. Results and discussion 

We performed 2D single cell migration assays, in order to quantitatively investigate the 

dynamic behavior of two populations of cancer cells, i.e. HT1080 NG2- and HT1080 NG2+ 

fibroblasts. 

A detailed analysis of the motility of the two fibroblast populations on a planar surface is 

reported in the following. In Figure 2.3.A and 2.3.B we report the trajectories described by 

HT1080 NG2- and HT1080 NG2+ fibroblasts respectively; cell paths are plotted starting from 

the same initial position. In both fibroblast populations, the trajectories showed a random 

orientation being uniformly distributed on the XY plane (i.e., no preferential direction in cell 

motion can be distinguished). However, more extended trajectories were detected in NG2+ 

compared to NG2- fibroblasts. 
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Figure 2.3: Fibroblast trajectory analysis and mean square displacements. A direct analysis of cell 

trajectories is used to characterize the motion of NG2- (A) and NG2+ fibroblasts (B). To 

quantitatively assess cell movement, the mean square displacements are calculated (C). 

Cell motility was quantified by measuring quantitative motility indices, according to the 

persistent random walk theory [100], where it is assumed that cell motion is characterized by 

a diffusion coefficient (also referred to as the random motility coefficient) µ (µm2/min) and a 

persistence time P (min), that is, the characteristic time in which cell movement persists in the 

same direction. The value of µ is related both to the average speed of the cells and to the 

persistence time. According to the theory, the mean square displacements are given by the 

equation Eq. (2.3):  

( ) 



 





 −−−=〉〈 Pt

ePttd
/142 µ              (2.3) 

where <d2(t)> (µm2) is the mean squared displacement of the tracked cell sample at time t. 

The trend predicted by Eq. (2.3) is linear for t ≫ P, with a slope proportional to the diffusion 

coefficient (i.e., <d2(t)> ≈ 4µt). The squared displacement was measured for every interval by 

calculating the Euclidean distance between the two positions occupied by the cell at the 

beginning and at the end of the interval. The mean squared displacements <d2(t)> (µm2) were 

then calculated as an average over the number of measurements done for each cell over the 

entire trajectory, and then over the entire cell population. In Figure 2.3.C we report the mean 

squared displacements as a function of time, for HT1080 NG2- and NG2+ fibroblasts. Eq. 

(2.3) was fit to the experimental data of mean squared displacements as a function of time, 

with µ and P as the only adjustable parameters. The velocity of the cells V was also calculated 
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as the ratio between the curvilinear trajectory described and the elapsed time, averaged over 

the entire cell population. 

The statistical significance of the results was verified by repeating the analysis on another 

identical cell population, for each sample. 

In Table 2.1 we report the estimate of the motility parameters (µ, P and V) for the two 

fibroblast populations; the standard deviation is reported as uncertainty. 

 

Cell sample 
µ 

(µm
2
/min) 

P (min) V (µm/min) 

HT1080 NG2- 5.50±0.15 32.19±0.10 0.59±0.01 

HT1080 NG2+ 7.11±0.31 39.58±1.85 0.61±0.03 

Table 2.1:  Motility parameters for HT1080 NG2+ and HT1080 NG2- fibroblasts. 

HT1080 NG2+ fibroblasts show higher motility compared to NG2- fibroblasts, as evident by 

the higher value of all the parameters examined, especially the random diffusion coefficient µ 

and the persistence time P. 

Our preliminary results support the hypothesis that the NG2 proteoglycan is involved in the 

regulation of cell motility. Further experimental investigation is in progress to confirm this 

result. 

We also analyzed the chemotactic response of HT1080 cancer fibroblasts under a 

concentration gradient of FGF2. This growth factor is known to be implicated in the 

progression of human cancer. 

The directionality of cell movement during chemotaxis assays was quantified by defining a 

directionality index I, that is the ratio between the net movement in the direction of the 

gradient and the total curvilinear length of the cell trajectory. It ranges from +1 (trajectory 

fully oriented towards the source of chemoattractant) to −1 (negative chemotaxis). I = 0 

corresponds to a random motion where no preferential direction is observed. 

In Figure 2.4.A we report the quantitative measure of the y component of the chemotaxis 

index (Iy), i.e., the ratio between the net displacement in the direction (y) of the gradient and 

the total curvilinear trajectory of the cells, as a function of time. Iy fluctuates around 0, 

meaning that the fibroblasts seem to move in a random fashion. The average cell velocity on 

the other hand shows a progressive increases in the first 7 hours, as shown in Figure 2.4.B. 
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This result suggests a chemokinetic, rather than chemotactic, effect of FGF2 growth factor on 

HT1080 fibroblasts.  

 

 

 

 

 

 

 

Figure 2.4: Analysis of motility for HT1080 fibroblasts under FGF2 chemotactic gradient: 

the y component of the chemotactic index (A) and average cell velocity modulus (B) as a 

function of time. 

 

4. Conclusions 

The development of physiologically relevant in vitro assays to identify novel therapeutic 

molecules and test drug efficiency is a topic of growing interest in the pharmacological 

industry, mostly due to the wide application in the treatment of cancer. 

Due to the complexity of the cell response, a detailed quantitative assay requires an 

interdisciplinary approach based on chemical engineering core disciplines combined with 

biological and biomedical sciences [205]. A rigorous investigation, based on the application 

of transport phenomena concepts, is essential to measure cell movement indices that describe 

the dynamic response of cells to drug treatments.  

In this work we present an experimental methodology to investigate the dynamics of 

biological soft matter in a quantitative way, while mimicking physiological condition on the 

lab scale. In particular, we used Time Lapse Microscopy in order to analyze the motility of a 

tumour cell line both in random condition and in presence of an external stimulus, such as a 

chemical concentration gradient. We applied a novel methodology for the experimental 

investigation of drug efficiency in vitro by time-lapse live cell imaging of cell movement 

under a controlled gradient of a soluble molecule. In this assay, a concentration gradient in a 

collagen gel sample seeded with cells was generated by diffusion through a porous 

membrane. Preliminary results are reported to validate the technique. 
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The aim of this work is the development of a standard assay to be used as a test for drug 

efficiency. The technique proposed provides highly reproducible results [129, 132] and is 

promising for routine application in the pharmaceutical industry. 
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Chapter 3  

Comparison between fibroblast wound healing and cell 

random migration assays in vitro 

 

Abstract 

Cell proliferation and migration play a key role in many biological mechanisms involved in 

the dynamic evolution of individual cells or tissues, including cancer growth and invasion, 

embryogenesis, angiogenesis, inflammatory response, and tissue repair. In this work, we 

compare two established experimental approaches for the investigation of cell motility in 

vitro: the cell random migration (CRM) and the wound healing (WH) assay. In the former, 

extensive tracking of live cells in time-lapse microscopy images and elaborate data processing 

are used to calculate two intrinsic motility parameters of the cell population under 

investigation, i.e., the diffusion coefficient and the persistence time. In the WH assay, a 

wound is made in a confluent cell monolayer and the temporal reduction of wound area is 

taken as an empirical measure of cell migration ability, provided that cell proliferation is 

accounted for. To compare WH and CRM we applied the two assays to investigate the 

motility of skin fibroblasts isolated from wild type and transgenic mice for PED/PEA-15 

(TgPED), a protein known to be overexpressed in patients with type 2 diabetes. Overall, we 

found a substantial agreement between independent measurements of cell migration based on 

the two techniques, both of which showed a slower migration ability of TgPED cells. In 

particular, our results highlight that the cell motility parameters derived from CRM analysis 

can be also estimated from a WH assay, thus suggesting it as an easier and faster approach for 

the quantitative characterization of cell migration. To our knowledge this is the first, 

quantitative comparison of these two widely used techniques. 

 

1. Introduction 

The dynamic evolution of cells, governed by proliferation and migration mechanisms [1], 

plays a key role in a wide range of physiological as well as pathological processes, including 

morphogenesis, immune responses, angiogenesis, tissue repair and tumour progression [92, 
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211]. Nevertheless the complex mechanisms governing cell dynamic behavior are still far 

from full comprehension [16, 17]. A detailed analysis of these processes requires a rigorous 

approach to quantitatively measure well-defined cell movement and proliferation indices. The 

wound healing (WH), or scratch assay, and the cell random motility (CRM) assay are among 

the most commonly used methods to investigate cell dynamic behavior [96, 133]. 

Specifically, WH assay is a well-known, low-cost, and relatively easy assay which is widely 

used for the characterization and quantification of cell migration in vitro [134]. In this assay, 

an artificial scratch is created mechanically on confluent cell monolayers by scraping off an 

area of cells [135]; In alternative, more recent versions are based on removable inserts that 

limit the area initially covered by cells [212]. In response to the injury, the cells on the edges 

of the newly created gap proliferate and move toward the center of the denuded area until the 

wound is closed [136]. The time required for wound closure is taken as a measure of the 

migration ability of the cell population under investigation, although the results can be 

influenced by cell proliferation as well [79]. 

The WH kinetics can be also assessed by monitoring wound area as a function of time [200], 

which is best carried out by using a time-lapse microscopy (TLM) workstation [213]. By 

TLM, sample images at given positions can be iteratively acquired with a defined frequency 

over periods of time ranging from few minutes to several days [93]. Such possibility of 

regularly observing over time exactly the same area of the sample, i.e., the same wound 

region (rather than comparing randomly taken images), enables stable and consistent 

measurement of the reduction of wound area over time. To maintain cell viability during TLM 

experiments, video microscopes can be equipped with an incubator to control environmental 

conditions [94, 173, 214]. 

In all these experiments, the WH process is usually investigated in a “macroscopic” sense, 

i.e., on the scale of the entire wound. At the cell level, two main modes of wound healing 

have been identified [2, 133, 135, 140]. The first mode is typical of cell lines of epithelial or 

endothelial origin, which are able to create cellular sheets or monolayers at confluence. Once 

a wound is made by scratching the monolayer, the cells on either side tend to maintain close 

contacts and continuity with each other while moving forward in a collective mode as a 

coherent cluster, whose mechanical integrity is ensured by cell-cell interactions [79, 141, 

215]. The triggering event for the induction of cell sheet movement is the availability of 

empty space [148] rather than the injury itself, which is not strictly necessary [79], although in 

absence of an external damage the migration appears predominant in the cells at the leading 

edges [144] and attenuated in the rear or sub marginal cells in terms of speed and cell path 
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persistency [142]. In other words, the loss of spatial constraints itself in the monolayer 

stimulates cell migration [79, 142, 144] and proliferation [143, 145], thus enabling the wound 

closure, but in the presence of an external damage, sub-marginal cells following the ones at 

the leading edge have a stronger contribution to the movement of the cell sheets and therefore 

to the wound closure. 

The second wound healing mechanism, more relevant to this article, is a typical feature of 

fibroblast-like cells, which migrate toward the wound area primarily as individual cells [140], 

rather than as cohorts [146]. Also in this case, the availability of free space upon the scratch is 

the initiating event for the induction of cell movement. Overall, the cells can move with the 

same probability in any direction, due to the lack of strong cell-cell interactions. In addition, 

cell proliferation may also contribute to wound closure [139], as it increases in response to the 

“sensation of free space” after wounding [134]. 

The different mechanisms underlying the two above described WH modes are not clearly 

distinguished in the output of the test, which is just wound closure as a function of time. So, 

the WH assay, though simple and straightforward, provides limited information at the single 

cell level [187]. In addition, the question arises whether WH can provide an intrinsic measure 

of cell motility due to a possible dependence of the results on the manual operation of the 

assay (e.g., in terms of size and extent of the wound) [177]. On the contrary, the cell random 

motility (CRM) assay, which is another well-established method to characterize cell migration 

[93], is based on the observation of individual cell motion and provides intrinsic parameters 

of cell motility. In the CRM assay, cells are plated out at a low density on the surface of a 

culture well, and cell position is tracked as a function of time. The cell trajectories are then 

reconstructed either manually or automatically by a cell matching algorithm which allows a 

quantitative determination of cell motion parameters, including cell total travel length, net 

displacement and velocity [59]. Cell random motility can be also described by a persistent 

random walk model [98-100], which is based on two fitting parameters: the persistence time 

between significant directional changes and the cell motility coefficient (analogous to 

molecular diffusivity). 

Major advantages of the CRM assay are that it provides insight into the dynamical behavior 

of individual cells, and allows the tracking of cell motion in two but also in three-dimensional 

substrata, where the cells are embedded in an extracellular matrix (e.g., a collagen gel). In 

addition, the assay can be used to study directional migration in anisotropic substrata where 

cell movement is biased towards a concentration gradient of a soluble or substrate-bond factor 

(e.g. chemotaxis and haptotaxis) [132]. All these features (single cell level of the 



53 

 

investigation, 3D migration and directional migration) are not supported by the WH assay and 

necessitate a more laborious assay. In fact, quantitative analysis of single cell migration 

requires the tracking of large number of cells for extended periods of time in order to obtain 

statistically robust results [96]. Moreover, the large amount of tracking data needs to be 

further processed to extract model parameters representative of the entire cell population. 

From this perspective, the CRM assay is more laborious and time-consuming compared to the 

WH assay. The CRM assay should be considered as a gold standard to investigate cell 

migration, because it allows a comprehensive and multi-scale analysis of cell motility at the 

level of both the entire population and the individual cells. 

Although the abovementioned experimental techniques are valuable in assessing cell motility 

parameters, a quantitative comparison between the WH and CRM assays is however lacking 

in the literature. In this work, we aim to compare the motility behavior of two different 

fibroblast-like cell populations obtained by WH and CRM tests simultaneously carried out in 

the same experiment. The results provided by the two assays are quantitatively analyzed to 

assess whether they yield comparable information on cell motility. The comparison between 

the two assays is based on the persistent random walk model combined with a solution of the 

diffusion equation for cell density including cell proliferation [154]. 

As a case study to illustrate the comparison between the two assays, we used two cultured 

primary fibroblast populations, with known differences in migratory ability [175], isolated 

from wild-type (Wt) control mice and genetically modified TgPED mice, overexpressing the 

protein PED/PEA-15, which is highly expressed in several tissues and cell types, including 

fibroblasts, from type 2 diabetic patients [216, 217]. Transgenic mice overexpressing 

PED/PEA-15 (TgPED) have also been shown to display glucose tolerance abnormalities 

[218], accompanied by wound healing defects typical of diabetes mellitus [175].  

It was previously reported [175] that fibroblasts isolated from TgPED mice showed a 

significant reduction in the migratory ability compared to Wt fibroblasts. It was also observed 

that cytoplasmic spreading was significantly reduced in TgPED fibroblasts; this was 

paralleled by a decreased cellular content of focal adhesion plaques and actin stress fibers. 

We performed WH experiments on both, Wt and TgPED fibroblasts. We did not limit our 

investigation at the cell population level, i.e. measuring the wound closure kinetics, but we 

also applied the tracking method, typically used for CRM assay, to quantify the movement of 

the cells during the wound closure process, and we further investigated the directionality of 

cell motions. We finally estimated migration parameters by CRM assay as well on the two 
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cell populations. These independent quantifications of cell motility parameters based on either 

cell population dynamic analysis or individual cell behavior are here compared and discussed. 

 

2. Materials and Methods 

2.1. Cell cultures 

Skin fibroblasts were obtained by punch biopsy from TgPED and Wt mice that were 

generated and characterized as described previously [218]. Mice were housed in the animal 

facilities in a temperature-controlled (22°C) room with a 12 h light/dark cycle and were killed 

by cervical dislocation.  

Cultures were established and grown at 37°C in Dulbecco’s Modified Eagle Medium (Lonza, 

Switzerland) supplemented with 10% fetal calf serum (Lonza, Switzerland) in a 5% CO2-95% 

air humidified atmosphere, as described elsewhere [175]. Cultures between passages 8 and 15 

were used in this study. For all experiments, cells were maintained in culture for an equal 

number of generations.  

The duplication time of both TgPED and Wt fibroblasts was measured to be about 16 h, no 

significant differences was observed between the two populations, as also proved by 

thymidine incorporation experiments [175]. 

2.2. Time-lapse microscopy 

Time-lapse microscopy experiments were performed using an automated workstation with an 

inverted microscope (Zeiss Axiovert 200; Carl Zeiss, Jena, Germany) and a long working 

distance 10× objective in phase contrast (CP Achromat Ph1). The microscope was equipped 

with a motorized stage and a motorized focus (Prior, Cambridge, UK) for automated sample 

positioning and was enclosed in a homemade incubator consisting of a plexiglass cage kept at 

37°C ± 0.1°C by warm air flux from a heater tuned by a PID controller. To surround samples 

with a controlled atmosphere and prevent water evaporation and pH changes in cell culture 

medium, air premixed with 5% CO2 was blown through a bubbling column for humidity 

saturation and fed to a microenvironmental chamber placed on the stage. Live-cell imaging 

was performed using a high-resolution, high-sensitivity monochromatic CCD video camera 

(Orca AG; Hamamatsu, Japan). The whole workstation was driven by homemade control 

software in LabView. The image acquisition frequency was set to 10 min, and the overall 

experimental duration was 24 h. Images were stored on a hard drive for subsequent offline 

analysis. 
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2.3. Experimental methods 

In this study, two different types of experiments, CRM and WH, were carried out to 

investigate cell behavior.  

In CRM experiments, Wt and TgPED fibroblasts plated on uncoated 6-well culture dishes at a 

density of 2 × 105 cells/well were allowed to attach overnight and incubated under standard 

conditions at 37°C in a 5% CO2/air atmosphere prior to experiments. Figure 3.1.A shows a 

typical image of random migration experiments. 

To perform WH assays, Wt and TgPED fibroblasts plated on uncoated 6-well culture dishes at 

a density of 5 × 105 cells/well were incubated until 100% confluence. Cell monolayers were 

wounded manually by scratching with a p200 pipette tip, and in each well, cells in an area 

with a width ranging between 380 and 580 µm were removed. Fibroblasts were then washed 

twice with phosphate-buffered saline (PBS) to remove cellular debris. Prior to experiments, 

culture medium was replaced with fresh medium. Figure 3.1.B shows a typical image of WH 

experiments. 

 

Figure 3.1: Typical images acquired during CRM experiments (B) and WH experiments (C). Scale bar 

= 100 µm. 

 

2.4. Image analysis 

At each time point, individual cells were identified by means of a semi-automated image 

analysis macro based on standard software libraries (Image Pro Plus). The cell contour, 

orientation, and coordinates of the centroid (center of mass) were determined and stored. The 

centroid coordinates were used to reconstruct the trajectory of each cell throughout the 

experiment. 

In WH assays, the cell-free area representing the wound was measured by segmenting images 

for each time point by an homemade automated image analysis software. 

2.5. Data analysis  

To estimate cell motility parameters, cell position arrays were processed by a Matlab script. 
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Average values of cell population parameters, such as velocity and orientation angles of the 

cell major axis, were calculated as a function of time. For each cell trajectory, several non-

overlapping intervals [100, 219] of size t were identified, and squared displacement was 

measured for every interval by calculating the Euclidean distance between two positions 

occupied by the cell at the beginning and the end of the interval. The mean squared 

displacement relative to an interval of size t, <d2(t)> (µm2), was then calculated as the average 

of all the measurements taken for each cell over its entire trajectory, and then further averaged 

over the entire cell population. The calculation was iterated for different values of t, the 

smallest size of the investigated time intervals corresponding to the delay time between 

consecutive TLM image acquisitions, the largest size corresponding to the entire experiment 

length. It is worth mentioning that low values of t correspond to higher numbers of 

independent measurements, whereas approaching the maximum available value of t, i.e. the 

entire experiment length, it is possible to average only few measurements. For this reason low 

values of t are associated with higher statistical significance. The analysis of cell motility was 

based on the persistent random walk theory [99, 220], where it is assumed that cell motion is 

characterized by a diffusion coefficient (also referred to as the random motility coefficient) D 

(µm2/min) and a persistence time P (min), the characteristic time during which cell movement 

persists in the same direction. The value of D is a quantitative measurement of cell migration 

and is related to both the average speed of cells and the persistence time. According to the 

theory [100], the mean squared displacements are given by the following equation (Eq. (3.1)): 

( ) [ ( ) ]Pt
ePtDtd

/2 14 −−−=〉〈                                                                                                 (3.1) 

The trend predicted by Eq. (3.1) is linear at t>>P (i.e., <d2(t)>≈4Dt), with a slope proportional 

to the diffusion coefficient. Eq. (3.1) was fit to the experimental data of mean squared 

displacements as a function of time, with D and P as the only adjustable parameters. 

Cell velocity V (µm/min) was also calculated as the ratio between the curvilinear trajectory 

described and the elapsed time, and it was averaged over the entire cell population. As another 

parameter of cell movement, the fraction of motile cells was defined as the proportion of cells 

showing a total trajectory length over the entire experiment length (25 h) greater than about 

180 µm, calculated as 3 times the average cell diameter (about 60 µm). 

2.6. Statistical analysis 

To find possible differences in cell velocity between the two fibroblast genotypes analyzed, 

statistical significance was assessed by the t-test analysis. 
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The parameters D and P were calculated out of the trajectories measured for 68 TgPED and 

78 Wt for CRM assays, and 46 TgPED and 48 Wt fibroblasts for WH assays. This sample 

size can be considered as statistically relevant [221]; however, in order to estimate the 

statistical error, the overall number of cells tracked for each sample was divided in two 

subpopulations, and the calculation repeated twice. 

 

3. Results and Discussion 

The effects of PED/PEA-15 on fibroblast motility have been recently described [175]. Here, 

we confirmed the differences in terms of cell migration between Wt and TgPED fibroblasts 

by using WH and CRM assays, and used this result to compare the two experimental 

techniques. 

In the WH experiments, the kinetics of wound closure was determined for both the Wt and 

TgPED fibroblast populations. In Figure 3.2, the wound area (A), as measured by image 

analysis at each time point and normalized to the initial value (A0), is shown as a function of 

time. Each data point in Figure 3.2 represents the average of three measurements taken from 

three different positions of the same well, standard deviation is reported as error bar. For each 

data set, a linear fit is also plotted, whose slope can be considered a quantitative measurement 

of the wound closure velocity. These velocities were 0.021 h–1 and 0.015 h–1 for Wt and 

TgPED fibroblasts, respectively, meaning that TgPED was 1.4 times slower than Wt. The 

images shown in the lower panel of Figure 3.2 correspond to the data points A, B, and C, 

respectively, and represent one of the three fields of view analyzed for the Wt sample. The top 

row corresponds to the raw images, while the bottom row shows the result of image 

processing with the cell-free area highlighted in black. 

According to the Fisher’s model [150], the wound healing process depends on both cell 

proliferation and motility [136]. In our case study, the contribution of the proliferation 

mechanism to the wound healing process can be considered identical for Wt and TgPED 

fibroblasts. In fact, no difference between the two cell populations was detected in terms of 

proliferation rate in thymidine incorporation experiments, as reported in previous work [175]. 

The motility of the two fibroblast populations was analyzed in details, in order to compare the 

different samples. Figure 3.3 shows cell trajectories, as determined by image analysis of  

CRM experiments, in random, non-confluent conditions. The paths of 68 TgPED and 78 Wt 

fibroblasts are plotted starting from the same initial position in Figure 3.3.A and 3.3.B, 

respectively. The trajectories are uniformly distributed on the XY plane and show random 
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orientations, as a consequence of the absence of any preferential direction in cell motion. At a 

visual inspection of the two charts, the trajectories in the Wt sample appear somewhat more 

spread out; this observation was later analyzed in detail through the measurement of motility 

indices, quantitative results are reported in Figure 3.7 and Table 3.1, and are discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Dynamic evolution of wound closure. The wound area A was normalized with respect to 

the initial value A0 and plotted as a function of time for the two fibroblast populations (Wt and 

TgPED). Images of the Wt sample are shown (top and bottom, raw and processed images, 

respectively), with the wound area shown in black. Scale bar = 100 µm. Error bars represent the 

standard deviation. 
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Figure 3.3: Trajectories of 68 TgPED (A) and 78 Wt (B) fibroblasts under random conditions. 

 

We compared cell motion in the WH experiments to cell motility under unstimulated random 

conditions as in the CRM assays. The comparison was done by applying the tracking method, 

typically used for the CRM assay, to quantify the movement of the cells invading the cell-free 

area in the wound closure process. In order to analyze the data in more detail, the trajectories 

described by 46 TgPED and 48 Wt fibroblasts are reported in Figure 3.4 using a color code: 

the cells on the right edge of each wound are labeled in red, cells on the left edge are labeled 

in black, the trajectory in blue is relative to one of the cells on the left edge (see below). 

Figure 3.4.A and 3.4.B show the trajectories described during the wound closure by TgPED 

and Wt fibroblasts, respectively, referred to the same initial positions, in analogy to what we 

reported in Figure 3.3 for CRM assays. The trajectories in Figure 3.4.A and 3.4.B are 

uniformly distributed in the XY plane, hence the migration of Wt and TgPED fibroblasts 

toward the wound area can be considered as random. This enables a direct comparison 

between the results obtained using the CRM and the WH assay. As expected, most of the cell 

paths were preferentially directed toward the center of the cell-free area to close the wound. 

Indeed, the trajectories reported in black, corresponding to cells on the left edge of the wound, 

were oriented toward the right (i.e., positive X abscissa values), whereas the trajectories in 

red, corresponding to cells on the right edge, showed a preferential orientation toward the left 

(i.e., negative X abscissa values). Figure 3.4.C and 4.D show the X component of the 

trajectories as a function of time for the TgPED and Wt samples, respectively. It is evident 

that the black trajectories developed mostly over the positive semi-plane, whereas the cells 

from the right edge (in red) moved toward the negative direction. For comparison, the 
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dynamic evolution of the Y component of TgPED and Wt cell trajectories is shown in Figure 

3.4.E and 3.4.F, respectively. For both samples, the red and black data series merge with each 

other, showing that the trajectories developed randomly toward either the positive or the 

negative Y direction. It is worth noting that some of the cells in the Wt sample show a folding 

trajectory. In particular, some cells from the left edge initially moved toward the left direction 

and then at later times reverted to the right direction, i.e., the positive X abscissa (for example, 

see the trajectory in blue in Figure 3.4.B, 3.4.D and 3.4.F, that refers to a cell laying on the 

left edge of the wound). This behavior may be related to the presence of local damages to the 

cell monolayer. For instance, cell debris removed during the scratch was not properly washed 

off, or the cells that were partially damaged by the scratch and did not move altered the 

motility of other cells, that were forced to move around the obstacle to access the cell-free 

area. In general cell trajectories can be also influenced by damages on the dish surface, due to 

the scratching [222], which may lead to preferential paths in cell movements (contact 

guidance). 

The directionality of cell movement during wound closure was quantified by defining the 

directionality index I, which is analogous to the chemotactic index [130]. For every single 

cell, the ratio between the net displacement (S) along the X or Y direction and the overall 

curvilinear trajectory (CT) over the same time interval was calculated. The directionality index 

I in a given time interval was then calculated as a weighted average over the entire cell 

population, with the trajectory length being the weight [129]. Figure 3.5 shows two images of 

a WH experiment corresponding to 0 and 25 h, with the trajectories described by some of the 

cells superimposed in white. The net displacements (S) along both the X and Y axes were also 

shown. We measured the average values of the directionality indices Ix and Iy for both 

TgPED and Wt cell genotypes, calculated over the subpopulations of cells moving from the 

left and right edges of the wound (indicated as L and R, respectively). As expected, due to the 

orientation of the X axis, Ix was systematically positive for the cells from the left edge that 

moved preferentially from the left to the right (i.e., following the positive orientation of the X 

axis) and was always negative for the cells from the right edge. For direct comparisons among 

different populations, the absolute values of Ix and Iy is shown in Figure 3.6. |Iy| seems to 

fluctuate around 0, proving that cell movement along the Y direction was random, whereas 

|Ix| was significantly higher for both edges. The Wt cells exhibit a less pronounced difference 

between |Ix| and |Iy| for the subpopulation along the left edge, compared to the TgPED 

sample, due to the presence of some cells that showed folding trajectories, as reported in 

Figure 3.4 and discussed above. 
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Figure 3.4: (A, B) Trajectories of 46 TgPED (A) and 48 Wt (B) fibroblasts during WH experiments. 

(C, D) Real-time evolution of the X coordinate for TgPED (C) and Wt (D). (E, F) Real-time evolution 

of the Y coordinate for TgPED (E) and Wt (F). The cells on the left and right edges of the wound are 

shown in black and red, respectively. The trajectory in blue is relative to a cell on the left edge that 

shows a folding trajectory to move around an obstacle and reach the cell-free area. 
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Figure 3.5: Trajectories described for some of the cells were superimposed on the initial (A) and final 

(B, 25 h) images of a WH experiment. The curvilinear trajectory (CT) and the net displacements (Sx 

and Sy) over the two directions are also indicated. Scale bar = 100 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Directionality indices along the X and Y directions for the TgPED and Wt samples in the 

WH experiments. Bars indicate the absolute value of the average indices calculated over the cells 

moving from the left (L) and right (R) edges. Error bars represent the standard deviation. 
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The image analysis used for cell tracking also provides the orientation angle of the major axis 

of each cell [132] at any time point, which is related to the direction of cell movement at that 

specific instant. The distribution of the cell orientation angles at several time points was also 

calculated. Despite the clear presence of a preferential movement along the X direction, no 

defined preferential orientation was observed over the cell population (data not shown for the 

sake of brevity). A possible cause of this random orientation is the presence of two competing 

effects, one being that the cells prefer to move along the X direction to close the wound and 

the other being that the scratch induced initial stress over the cell monolayer along the Y 

direction, thereby orienting some of the cells orthogonally to the wound closure direction. The 

scratch may also accidentally induce micro abrasions on the dish surface that can contribute to 

drive the cells along the Y direction (i.e. the direction of the scratch). The effect of the scratch 

was also observed in terms of folding trajectories suggesting that, on average, the cell 

polarization was random. In other words, at any given time, different cells were oriented 

along different directions, even if the overall movement of the cell population remained 

directed toward the X direction, as measured by the directionality index. 

Cell motility was quantified by means of specific parameters, as described in the Material and 

Methods section. Figure 3.7 reports the values of the mean squared displacement as a function 

of time for the Wt and TgPED samples under random motility conditions (Figure 3.7.A) and 

during wound closure (Figure 3.7.B). For any given value of time, the <d2(t)> value was 

higher in the Wt fibroblasts under both conditions, indicating higher motility. The difference 

in mean squared displacement between the two cell populations was reduced in the WH 

experiments, suggesting that the wound may act to somehow depress cell motility in Wt cells, 

while no significant differences were measured for TgPED. For instance, for a value t of 700 

min, <d2(t)> for the Wt cells was 2-fold higher than that for the TgPED cells under random 

conditions, whereas the difference was only 1.4-fold for the WH assay. Cell-cell interactions 

or stress-induced mechanisms might account for such apparent discrepancy. By fitting the 

experimental measurements of the mean squared displacement according to Eq. (3.1), the 

random motility coefficient D and the persistence time P were estimated for both CRM and 

WH experiments. The resulting fitting curves are shown in Figure 3.7. 
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Figure 3.7: Mean squared displacement for the TgPED and Wt samples measured during CRM (A) 

and WH (B) experiments. 

 

Table 3.1 summarizes the estimated motility parameters for the two cell populations under 

random and WH conditions. Compared to Wt, the TgPED fibroblasts showed limited motility, 

as evident by the lower values of all the parameters examined, including the random motility 

coefficient (D), the persistence time (P), the mean velocity (V), and the fraction of motile 

cells. This observation is in agreement with the detected difference in the wound closure rate 

reported in Figure 3.2 and also confirms that PED/PEA-15 indeed inhibits cell motility. The 

results provided by WH and CRM assays are in agreement. Consistent with the results shown 

in Figure 3.7, the increment in the motility parameters for the Wt cells was higher, compared 
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to the TgPED cells, under random conditions, in contrast to WH. In particular, the random 

motility coefficient D for Wt was 3.6 higher than that for TgPED in the CRM assay, whereas 

the increment was limited to 2.2 in the WH assay.  

Experiment Genotype 
Fraction of 

mobile cells 
D [µm

2
/min] P [min] V [µm/min] 

Random 

motility 

Wt 71 % ± 0.09 11.4 ± 3.5 370.0 ± 70 0.6 ± 0.05 

TgPED 54 % ± 0.02 3.2 ± 1.0 68.2 ± 15.0 0.47 ± 0.01 

Wound 

healing 

Wt 85 % ± 0.05 6.7 ± 2.1 343.8 ± 100 0.83 ± 0.1 

TgPED 54 % ± 0.03 3.1 ± 1.1 74.8 ± 16.0 0.54 ± 0.15 

 

Table 3.1: Motility parameters determined for the two cell populations under random motility 

conditions and during wound healing experiments. For each sample the calculation was repeated on 

two cell subpopulations, randomly selected; we reported the average of the two measures of each 

motility parameter, and the standard deviation as uncertainty. 

 

Concerning the persistence time, the increments were 5.4 and 4.6 for CRM and WH, 

respectively. The differences in the fraction of motile cells and the mean velocity (V) were 

less significant. Statistical significance of the differences in the V for the two genotypes was 

also assessed (p < 0.0001) for both random and WH conditions. Figure 3.8 shows the mean 

velocity module calculated over the entire experimental length for each cell analyzed in the 

CRM and WH experiments. 

The comparison of motility parameters of the two cell populations under WH and random 

conditions, showed that random motility coefficient for Wt cells is reduced under WH, while 

the fraction of motile cells and velocity are both increased. In particular the differences in the 

mean velocity can be considered as statistically relevant (p<0.0001, see Figure 3.8). However, 

for TgPED cells no significant differences were observed comparing the WH and CRM 

assays, in terms of fraction of motile cells, D and P, while only limited differences are 

measured for the mean cell velocity V, that are less relevant than the previous case 

(p=0.0047).  
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Figure 3.8: Average velocity module (µm/min) calculated over the entire experimental length for each 

cell analyzed. Four data sets are relative to the two genotypes (TgPED and Wt) as analyzed during 

random motility and WH experiments. The continuous line and error bars represent the average value 

and the standard deviation, respectively. The differences in the average velocity for the two genotypes 

can be considered as significant (p < 0.0001) for both random and WH conditions. The differences in 

the average velocity for Wt cells under random and WH conditions is also significant (p<0.0001), 

while only limited differences are measured for TgPED comparing WH and CRM assays (p=0.0047). 

 

We can speculate that this difference in the behavior of the two cell populations can be 

attributed to the decrease in focal adhesion plaques of the TgPED fibroblasts compared to Wt. 

Due to the reduced adhesion to the support, it is likely that TgPED cells are less affected by 

the mechanical stress the scratch induces along the Y direction; furthermore any contact 

guidance due to the possible presence of micro abrasions on the culture dish is also less 

relevant. For this reason the two experimental conditions (WH and CRM) can be considered 

equivalent for TgPED cells, whose motility, limited compared to Wt, due to the limited 

adhesion, is not further depleted by the secondary damages induced during the scratch. Wt 

cells, on the contrary, show higher adhesion on the substratum and suffer more from the stress 

induced during the scratch. In our scenario we speculate that for Wt cells the wound closure 

process stimulates cell velocity, that is in fact incremented in the WH compared to CRM 

assay, but this increment does not correspond to an increment in the random motility 

coefficient, due to the contrasting effect on the cell orientation along the two directions, as 

discussed above. It is worth mentioning that the substratum micro-topography can influence 
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cell adhesion and migration [182]; in all our experiments cells have been plated on multiwell 

uncoated culture dishes. 

Cell migration and invasion models, based on the Fisher’s equation [150], can be used to 

describe the WH process. This approach predicts that the invading cell front moves as a 

traveling wave at constant speed s = 67	8	9:�)�
τ

  [152, 155], where D is the random motility 

coefficient and τ is the cell doubling time (in our case study τ is about 16 h for both cell 

populations). The measured values of the cell front speed during the WH assay were 5.1 and 

4.3 µm/h for Wt and TgPED, respectively; these values are of the same order of magnitude of 

the typical cell velocity, as calculated according to the persistent random walk model (Table 

3.1). The random motility coefficients D, estimated according to the Fischer’s approach 

 D = <�=
79:	�)�$, were 2.6 and 1.8 µm2/min for Wt and TgPED respectively, i.e., Wt motility was 

about 1.4-fold higher than that of TgPED. These estimates are comparable to the data of Table 

3.1 for CRM and WH assays. 

It’s worth mentioning that a rough approximation of the order of magnitude of the random 

motility coefficient D can be also obtained by dividing the squared distance covered by the 

cell front by the elapsed time; the values so estimated were about 10 and 8 µm2/min for Wt 

and TgPED fibroblasts, respectively. This last approach assumes that the cell front movement 

is driven by simple diffusion [132], neglecting the contribution of the proliferation; for this 

reason, this calculation can lead to an overestimation of the random motility coefficient. 

However, also in this case the order of magnitude of the estimated random motility coefficient 

is in agreement with the reference measurement obtained by cell tracking, reported in Table 

3.1. 

Overall, we can state that the differences in the WH rate between the two considered samples 

is mainly due to differences in the cell motility, and that the contribution of the proliferation is 

limited and identical for the two cell types. 

 

4. Conclusions 

In this study, we performed a direct comparison of two different experimental methods for the 

investigation of cell motility using in vitro live-cell imaging by time-lapse microscopy. Single 

Cell Random Migration assays and Wound Healing assays were performed to analyze cell 

behavior under random conditions and in presence of an external stimulus, such as a 

mechanical damage on a cell monolayer. Both these experimental approaches are widely used 
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in the literature for the quantification of cell motion through the determination of several cell 

motility parameters. The first assay requires more elaborate data processing, and allows the 

determination of specific quantitative parameters, such as the random motility coefficient and 

the persistence time, and can be considered as a golden standard. The WH assay requires an 

easier analysis, and is more widely used in the literature; typically a wound closure velocity is 

measured, but sometimes the investigation is only limited to obtain a qualitative visualization 

of the cell motility. The aim of this study is to perform a detailed analysis of cell motility in 

the two experimental conditions and to make a direct comparison of the abovementioned 

methodologies, still lacking in the literature. 

In order to compare WH and CRM, we applied the two assays to a case study in which the 

motility of two skin fibroblast populations, isolated from Wt control mice and TgPED mice, 

overexpressing the protein PED/PEA-15, was investigated. In addition to its involvement in 

cell motility, PED/PEA-15 is known to be overexpressed in patients with type 2 diabetes, 

which represents a relevant issue since wound repair abnormalities are common features of 

type 2 diabetes. In a previous report [175], it was shown that PED/PEA-15 controls fibroblast 

motility and wound closure by ERK 1/2-dependent mechanisms. In fact, a reduced migratory 

ability was observed in TgPED fibroblasts compared to Wt control fibroblasts. In this work, 

we used the known difference in terms of migration ability between Wt and TgPED cells to 

compare the two experimental techniques, i.e., WH and CRM assays. 

In the WH assays, we analyzed the wound closure dynamics by quantifying the wound 

closure velocity based on real-time measurement of the reduction of the denuded area. We 

found that the TgPED fibroblasts healed the wound more slowly than the Wt cells. Cell 

spreading and proliferation are the dominant biological mechanisms governing the wound 

healing process [150, 154]. We focused on the analysis of cell motility, as the contribution of 

the proliferation mechanism to the wound closure process can be considered identical for Wt 

and TgPED fibroblasts. 

We reported a detailed phenomenological and quantitative description of Wt and TgPED cell 

motility under different experimental conditions, i.e., in random conditions and during WH 

assays. The results show that WH assays are characterized by directionality in cell movement, 

induced by the presence of a gap; this directionality is relevant for the wound closure process. 

We referred to the persistent random walk model, in which cell division was not taken into 

account, and calculated typical parameters, including the persistence time, the random 

motility coefficient, the percentage of motile cells, and the cell velocity for both WH and 

CRM experiments. All the estimated motility parameters were lower in the TgPED fibroblasts 
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compared to Wt in both assays, supporting the hypothesis that the PED/PEA-15 protein plays 

a significant role in the regulation of cell motility, as shown in a previous work. However, the 

differences were less pronounced in the WH assays, resulting in a reduced decrement of the 

random motility coefficient and the persistence time. This result may be interpreted by 

postulating a direct involvement of cell-cell interaction-driven mechanisms or a modification 

of cell motility induced by the wounding itself, which may represent a significant cellular 

stressing event. Nevertheless, TgPED cell motility remained significantly reduced, compared 

to the Wt control fibroblasts, also during WH assays. 

We made a cross comparison between the WH and CRM measurements, proving that the 

result of one assay can be estimated, at least as order of magnitude, given the result of the 

other. In particular the random motility coefficient, or the cell velocity, usually measured by 

CRM assays, can be estimated from the measurement of the wound closure velocity, obtained 

by WH assay. On the other hand, the time required for the wound closure can be estimated, 

given the random motility coefficient as determined from a CRM assay. This proves that the 

two assays are intimately linked with each other for the fibroblast populations here 

considered. 

Overall, we found a substantial agreement between independent quantifications of cell 

migration based on the cell population dynamic analysis, WH assays, and the reconstruction 

of individual cell trajectories in both WH and CRM assays. In conclusion, the experimental 

techniques used in this study allow the acquisition of analogous information in terms of cell 

motility. In other words, we proved that the same conclusions can be drawn from the complex 

and time consuming single cell motility analysis, and from the simpler Wound Healing assay. 

To our knowledge this is the first, quantitative comparison of these two widely used 

techniques, based on the analysis of two different cell genotypes. Nevertheless, the CRM and 

WH assays are not equivalent from a biological point of view, because of the presence of 

damage in the cell monolayer in the WH assay. Cell migration in the WH assay may be 

qualitatively predicted from a detailed analysis of random motility, and vice versa, despite 

different quantitative terms. These findings could be applied to express the results of the WH 

assay, which is quite used in the literature due to its simple operation, in terms of intrinsic cell 

motility parameters. We believe our result can be relevant for future experimental and 

modelling works.  
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Chapter 4 

The wound healing assay revisited:  

a transport phenomena approach 

1. Introduction 

The dynamic behavior of the cells, driven by proliferation and migration mechanisms [1], is 

essential for a wide spectrum of physiological as well as pathological processes, including 

morphogenesis, immune responses, angiogenesis, tissue repair, tumor growth and invasion 

[92, 211]. The complex mechanisms that lead cell dynamic behavior are still poorly 

understood [16, 17]. In order to achieve a better comprehension of such mechanisms, a 

detailed analysis of these processes requires a rigorous approach to quantitatively measure 

well-defined cell movement and proliferation indices. For this reason, the development of 

such analyses is nowadays within the core business of Chemical Engineering [18], which can 

contribute to the building of mathematical models, based on a transport phenomena approach, 

useful to describe and predict the mechanisms driving cell dynamics [19].  

Biological processes can be investigated in vitro by using several conventional assays, which 

allow to quantitatively characterize the dynamical aspects of cell behavior. These assays range 

from simple and inexpensive ones, like the Boyden assay [204], to technically laborious, 

time-consuming and expensive experimental solutions, such as the cell random motility assay 

[214]. The latter one should be considered as a gold standard to investigate cell migration, 

because it enables a comprehensive and multi-scale analysis of cell migration at the level of 

both the entire population and the individual cells.  

Nevertheless, one of the most popular methods to evaluate cell dynamic behavior in vitro is 

the wound healing (WH) assay [133, 223], because of its low coast and simplicity to set up 

[134]. In the classical WH assay, also referred as scratch test, the cells are grown on a two-

dimensional surface up to a condition defined as confluence, corresponding to the carrying 

capacity of the surface, where all the available space is completely covered by the cells, which 

have the tendency to form continuous monolayers. An artificial scratch is than created on the 

confluent cell monolayer by mechanically scraping off an area of cells with a pipette tip, a 

blade, a needle or similar [135]. Than the cells are washed with a desired medium to remove 

cell debris and suspended cells. Novel approaches have been developed to implement the WH 

assay in a more controllable way [177]. For example, more recent versions are based on 

removable inserts that limit the area initially covered by the cells [212]. Alternatively, 
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wounding can be achieved by laser [202, 203] or electric [200] removal of the cells from a 

defined area. A number of circular WH assays have also been established; many of them 

involve the creation of a circular exclusion zone using a stopper positioned prior to cell 

adhesion and spreading [192, 224]. Furthermore, novel microfluidics-based WH assays use 

laminar flows in microfluidic channels to selectively detach the cells from a portion of 

confluent cell monolayers in an enzymatical way [144, 198]. 

In response to the stimulus arising from the creation of the empty space in a previously intact 

tissue, the cells on the wound margins, which are no longer contact-inhibited, proliferate and 

move toward the center of the denuded region to cover the wound area [136].   

Depending on the cell types involved, two main mechanisms of wound healing have been 

identified [2, 133, 135, 140]. Specifically, the first mode is typical of epithelial-like cells, 

which repopulate the wound area in a collective mode, ensured by strong cell-cell 

interactions, moving as two coherent sheets [79, 141]. The second wound healing mechanism, 

more relevant to this article, is typical of fibroblastic cells, which fill the wound region 

moving primarily as dispersing individual units [140], rather than as cohorts [146]. Due to the 

lack of strict cell-cell interactions, overall the cells can move omnidirectionally, i.e. with the 

same probability in any direction.  

The driving force for the spreading of the two cell sheets one toward the other in the wound 

healing process is the availability of free space, corresponding to the loss of spatial constraints 

[148]; the injury in the monolayer is not strictly necessary [79], even if in the presence of an 

external damage the movement is extended to the cells behind the wound margin. In addition, 

the sensation of available space by the cells also induces cell proliferation [134], which may 

contribute to the wound closure process [139]. 

The wound closure process can be mathematically described using the Fisher-Kolmorgoroff 

equation, which includes terms for modeling cell motility and proliferation. Both these 

mechanisms are involved in the spatial spreading of the invading cells in the wound area, 

strongly affecting the evolution of cell density in time. According to the Fisher-Kolmorgoroff 

equation, cell motility is modeled by Fickian diffusion, while cell proliferation is described by 

a logistic growth: 

��
�� = � ���

��� + ��  1 − �
�#$                                                                                                (4.1) 

where � is cell density at time t at a given distance x from the wound edge, D is the constant 

diffusivity (random motility coefficient), k is the proliferation rate and �%  is cell density at 
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confluence [154]. The model predicts that after a short transient, the movement of the 

invading cell front can be observed in terms of a traveling wave, which propagates with 

constant speed s = √4	�%�� in the direction perpendicular to the wound [136, 152, 154].  

An extension of the Fisher-Kolmorgoroff equation, incorporating non-linear diffusion, also 

exhibits travelling wave solutions: 

��
�� = �� �

�� .� ��
��/ + ��  1 − �

�#$                                                                                                             (4.2) 

Here,  the constant parameter D0 is the diffusivity for isolated cells, while � is a 

dimensionless diffusivity, function of 
�
�# with the property � → 1	as �% → 0. In this form of the 

Fisher-Kolmorgoroff equation, cell diffusivity is not constant, in analogy with the basic 

diffusive model in which the diffusion coefficient depends on the concentration of the 

molecule [225]. In Eq. (4.2), cell diffusivity is considered as a decreasing function of cell 

density:  

� = 0 1
12	33#

4                                                                                                                                        (4.3) 

where A is a critical value of cell density corresponding to a measure of contact inhibition and 

depends on the cell line. Hence, this functional form captures the phenomenon of contact 

inhibition of cell movement, whereby the collisions of the cells can cause cell reorientation 

and lead to a change in the direction of cell path, therefore hindering and inhibiting cell 

movement [155, 165]. 

The measurement of cell density is a challenging task from an experimental point of view; for 

this reason, the analysis of the wound closure process is simplified quantifying the 

phenomenon in terms of change in the wound size over time. In order to gain this quantitative 

information over long periods of time, it is necessary to observe dynamically the cells while 

covering the wound space. As the wound healing process can last up to a few days, the cells 

must be taken in culture to ensure their viability during the experiment.  

Two methodological approaches are typically used to capture the output of the WH assay, in 

order to gain information about cell dynamics. The most popular approach is related to the 

manual acquisition of images within the sample along the wound at the beginning and at fixed 

time intervals (for example every 6 h) until the gap is closed [139]. In this approach cell 

movement is typically quantified counting the number of cells that repopulate the wound 

region for each time step [168, 169], or measuring the percentage of wound closure at fixed 
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time points [167, 171, 172]. However, this classical approach results to be approximate, as it 

doesn’t allow to investigate the dynamic aspects of cell behavior. 

An alternative and more reliable approach is based on direct visualization by time-lapse 

microscopy (TLM) which enables to dynamically monitor the free surface are, iteratively 

acquiring sample images with a defined time frequency [93], while controlling the 

environmental parameter to ensure cell viability [94, 173]. This methodological approach, 

allows to obtain the abovementioned measurements, i.e., the number of cells in the wound 

region or the percentage of wound closure, in a more accurate way. Furthermore, the 

possibility to regularly observe over time exactly the same wound region, rather than roughly 

comparing randomly taken images, enables to estimate precise quantitative parameters, such 

as wound closure velocity, measuring the reduction of wound area over time, or the cell front 

propagation speed, quantifying the position of the wound front over time [79, 134].  

Although the WH assay provides a valuable experimental approach for studying cell 

dynamics in vitro, it suffers from several drawbacks [180]. In fact, the outcomes of the WH 

assay are somewhat confounded by several factors, which may represent a limit in 

accomplishing reproducible and reliable quantitative results. For example, the wound width 

can vary along its length and among different experiments [176]; it depends on the dimension 

of the tool used in making the wound as well as the scraping force and velocity [177]. 

Moreover, the scratching process involves mechanical injures to the cells located on the 

wound edges, which may potentially lose their original morphology and function [179]; this 

may result in the transient contraction of the cell wave front. Some cells and cell debris can 

also keep attached to the wound margin, perturbing the motility of other cells moving around 

the obstacle to access the cell-free area [180]. Additionally, the migrating surface, often 

coated with extracellular proteins prior to cell growth, can be damaged by the sharp objects 

typically used in the scraping process; alterations in surface topography may lead to 

preferential paths in cell movements (contact guidance) [181].  

Furthermore, the relative cell confluence in the region where the scratch is made, is 

challenging to control and reproduce within the same culture dish and among different cell 

samples [183]. This makes it difficult to compare independent experiments. The difficulty to 

obtain the same cell density in the samples primarily arises from anisotropies in the spatial 

spreading of the cells, mainly due to uneven cell attachment in the culture dish after plating. 

Moreover, it is arduous for the operator to plate exactly the same number of cells in different 

culture dishes. Above all, several cell treatments, including cell staining and gene silencing, 

involve the use of invasive techniques, which may result in unpredictable efficiency of cell 
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adhesion, undesired cell detachment from the bottom of the plates or cell death. Overall, these 

factors might potentially influence the outcome of the WH assay, strongly limiting the 

reproducibility of the experiments.   

In this work, we revisited the methodological approach typically used to quantify the wound 

closure dynamic in a WH assay, by using a novel approach based on transport phenomena 

concepts. In particular, we focused on the difficulty to achieve reproducible and reliable 

quantitative results in the WH assay, strongly linked to several bias. In order to investigate the 

potential effect of cell density on the wound healing process, we performed WH experiments 

on a population of fibroblasts by using in vitro TLM image acquisition. Overall, our work is 

addressed to overcome, at least in part, the limitations related to the conventional quantitative 

analysis of the WH assay. In particular, in this work we propose a phenomenological scaling 

of the experimental data, in order to overcome the effect of cell density on wound closure 

velocity in WH assays. 

 

2. Materials and Methods 

2.1. Cell cultures 

HT1080 human fibrosarcoma cells were grown at 37°C in Dulbecco’s Modified Eagle 

Medium (Lonza, Switzerland) supplemented with 10% fetal bovine serum (Lonza, 

Switzerland) and antibiotics (50 units/mL penicillin and 50 µg/mL streptomycin) (Lonza, 

Switzerland) in a  humidified atmosphere containing 5% CO2 in air. Cultures between 

passages 18 and 22 were used for WH experiments.  

2.2. Time Lapse Microscopy 

Time-lapse Microscopy (TLM) experiments were carried out using an automated workstation 

based on an inverted microscope (Zeiss Axiovert 200; Carl Zeiss, Jena, Germany) and a long 

working distance 10× objective in phase contrast (CP Achromat Ph1), described elsewhere 

[129]. The microscope was enclosed in a homemade incubator that allows to keep the sample 

at constant temperature (37 ± 0.1 °C) and under 5% CO2, 100% humidified atmosphere. 

Live-cell imaging was performed by a high-resolution, high-sensitivity monochromatic CCD 

video camera (Orca AG; Hamamatsu, Japan). The whole workstation was driven by a 

homemade control software in Labview. The images were iteratively acquired at several 

locations within the sample using a motorized x–y stage and focus control. The delay between 
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two successive images of the same field of view was set to 10 min; the overall experiment 

duration was about 60 h. 

2.3. WH assays 

To perform WH assays, HT1080 fibrosarcoma cells were plated on uncoated 24-well culture 

dishes at different initial densities: 6 × 105, 3 × 105,  1.5 × 105, 0.75 × 105, 0.3 × 105 cells/well, 

corresponding to 34 x 10-4, 17 x 10-4, 8.5 x 10-4, 4.3 x 10-4 and 1.7 x 10-4 and 	@A99<BC	� 

respectively. The cells were incubated at 37°C for about 24 h, until 100 % confluence was 

reached. Cell monolayers were scratched manually with a p200 pipette tip to scrape away an 

area of cells, in order to mimic a wound. Cell debris were then removed washing the 

fibroblasts twice with phosphate-buffered saline (PBS). Before starting the experiments, the 

wounded cell monolayer was rinsed with fresh culture medium.  

The experiments were performed in the absence and in the presence of 5 µg/ml of mitomycin-

C (Sigma-Aldrich, Australia), an inhibitor of cell proliferation [226]. 

2.4. Image analysis 

The size of the cell-free area (A), representing the wound, was measured by segmenting 

images for each time step using an homemade automated image analysis algorithm. 

The wound width (b) was calculated for each time point as the ratio between the area of an 

equivalent rectangle with size A and the height of the image (h). Then, the position of the 

invading cell front x = EFGE
) , where b� is the wound width at time 0, was calculated. A 

schematic representation of the measured parameters is reported in Figure 4.1, which shows 

two images of a WH experiment, corresponding to 0 h and t>0 h. The dotted lines indicate the 

wound edge on the right and left side of the scratch, whereas the double arrowed line shows 

the wound width.  

Cell density was measured using the image analysis software Image ProPlus, which allowed 

to manually count the cells in a selected region, whose size was determined drawing manually 

its contour. 
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Figure 4.1: Images acquired during a WH experiment at the initial time (t=0) and t>0. The area of the 

wound at time 0 (A0) and at t>0 (A) is shown in black. The height of the image (h) and the wound 

width (b0 and b for t=0 and t>0, respectively) are also indicated. x(t) is the position of the invading 

cell front, which changes along the x axis as a function of time. 

 

 

3. Results and Discussion 

In order to investigate the potential effect of cell density on the wound healing process, we 

performed WH experiments on HT1080 human fibrosarcoma cells by using in vitro TLM 

image acquisition.  

The cells were plated for three times at different initial densities Dp: 34 x 10-4, 17 x 10-4, 8.5 x 

10-4, 4.3 x 10-4 and 1.7 x 10-4 and 	@A99<BC	� (Figure 4.1). The cell density Dm on the wound edges 

at the initial time step was measured by image analysis. As shown in Figure 4.2, the same 

value of Dp corresponds to different real values of cell density Dm, suggesting that the cell 

density in the region where the scratch is made, is challenging to control and reproduce.  

In Figure 4.3, the cell density Dm is reported as a function of the theoretical cell density Dp. 

The data suggest that the higher the value of the theoretical cell density is, the higher the 

probability to make error in plating the cells. For example, for Dp = 34 x 10-4 	@A99<BC	�	we 

obtained three different values of Dm: 27 x 10-4, 29 x 10-4, 44 x 10-4 	@A99<BC	�, 33 ± 9 	@A99<BC	�			being 

the mean value with the standard deviation, as shown in Figure 4.2. 
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The cell densities at various distances behind the cell front during the wound closure process 

was measured at several time points for three samples. Cell density evolution over time and 

location (along the direction of wound closure x) is shown in Figure 4.4. Specifically, in 

Figure 4.4.A, 4.4.B and 4.4.C we report the evolution in space of the cell density for 

increasing time steps, for samples corresponding to different initial cell densities Dm: 27 x 10-

4 @A99<
BC	�, 12 x 10-4 @A99<

BC	�	  and 3 x 10-4  @A99<
BC	�	,	respectively. In the first and second time step, a 

gradient of cell density can be observed; in fact, cell density decreases moving from the edges 

to the wound area. The curve describing cell density evolution in space exhibits the form of a 

travelling wave, according to the Fisher-Kolmorgoroff equation. Figure 4.4.A and 4.4.B show 

that cell density on the edges of the wound do not change significantly over time, whereas in 

Figure 4.4.C cell density on wound edges increases over time.  

The kinetics of wound closure was determined for all samples with different initial cell 

density. The process was quantified by measuring the reduction of the cell-free area (A/A0) or 

the position of the invading cell front (x) over time. In Figure 4.5.A, the wound area (A), as 

measured by image analysis at each time point and normalized to the initial value (A0), is 

shown as a function of time for each sample under investigation. In the inset, the mean value 

of the wound area (A) normalized to the initial value (A0) is shown as a function of time. Each 

data point in the inset represents the average of all the measurements taken for each sample 

and the standard deviation is reported as error bar. In Figure 4.5.B the position of the invading 

cell front (x), measured as described in 2.4 paragraph, is reported as a function of time for 

each cell sample. Each data point in the inset represents the average of all the measurements x 

taken for each sample; the standard deviation is reported as error bar. It’s worth mentoning 

that in Figure 4.5.B the curves reach different final values of x, corresponding to 
EF
) , because 

no normalization was done in this case. The graphs in Figure 4.5 suggest that the cell samples 

require different time to complete the wound healing process. This can be related to the 

differences in the local cell density at time 0.  
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Figure 4.2:  Images of cell samples acquired at t = 0, corresponding to different initial cell densities. 

Dp is the theoretical value of the cell density, Dm is the real value of cell density according to 

the measure obtained by image analysis, and �JKKKK  is the average value of cell density for 

samples corresponding to the same Dp. Scale bar = 100 µm. 
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Figure 4.3:  Cell density (Dm) measured by image analysis, reported as a function of the theoretical 

cell density  (Dp). 

 

 

 

 

Moreover, the curves describing the evolution of A and x in time show a linear trend, 

suggesting that the wound clusure process occurs at constant speed. This result is in 

agreement with the Fisher-Kolmorgoroff equation, which predicts that the progression of the 

invading cell front can be observed in terms of a traveling wave, which propagates with 

constant speed. We fit a linear equation to each data set reported in the graphs describing the 

evolution in time of A/A0 (Figure 4.5.A) and x (Figure 4.5.B); the slope can be considered a 

quantitative measurement of the wound closure velocity (α) and the velocity of cell front 

progression (v), respectively. 

In Figure 4.6, the wound closure velocity (α) and the velocity of cell front progression (v) are 

shown as a function of the cell density Dm measured at time 0. We found a linear relationship 

between the α or v and the cell density.  
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ogression (v), respectively. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4:  Cell density profile in space (along the x direction) and time, for samples corresponding 

to different initial cell densities: 27 x 10
-4

 
@A99<
BC	� (A), 12 x 10

-4  @A99<
BC	� (B) and 3 x 10

-4 @A99<
BC	�	 (C). 
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Figure 4.5: Dynamic evolution of wound closure. Evolution with time of the wound area A, normalized 

with respect to the initial value A0 (A), and of the position of the invading cell front (B) for cell 

samples with different densities at time 0. 
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Figure 4.6: The wound closure velocity (α) and the velocity of cell front progression (v) are plotted as 

a function of the cell density at time 0.  
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We proposed a phenomenological scaling of the experimental data in order to overcome the 

effect of cell density on wound closure velocity. Our scaling on the time axis is based on the 

linear relationship between A/A0 (or x) and the time, and between the wound closure velocity 

α (or the velocity of cell front progression v) and the cell density Dm. The scale factor (F) is 

the ratio between the cell density at time 0 of each sample (DCY�	and the cell density at time 0 

of a representative sample (DCZ�: 

F = 8\]
8\^

                                                                                                      (4.4) 

The scaled time tc can be calculated with the following equation:  

t@ = t	F                                                                                                       (4.5) 

We report the evolution in time of the cell-free area reduction (A/A0) (Figure 4.7.A) and the 

position of the invading cell front (x) (Figure 4.7.B) after data scaling. In the inset, the 

average values of A/A0 and x are shown as a function of time; the standard deviation is 

reported as error bar. Comparing Figure 4.5 and Figure 4.7, we found that after the scaling the 

curves are really close to each other, as suggested by the shorter error bars in the insets in 

Figure 4.7. 

The same approach was used in a WH experiment performed in the presence of mitomycin-C, 

used to inhibit cell proliferation mechanism. Figure 4.8 shows the evolution in time of the 

cell-free area reduction (A/A0) before (Figure 4.8.A) and after (Figure 4.8.B) data scaling. In 

the inset, the average values of A/A0 are shown as a function of time and the standard 

deviation is reported as error bar. In Figure 4.9, the wound closure velocity (α) and the 

velocity of cell front progression (v) are shown as a function of the cell density at time 0. We 

found a linear relationship between the α or v and the cell density. Also in this case, after the 

scaling the curves are closer to each other, as suggested by the shorter error bars in the insets 

in Figure 4.8.B. 
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Figure 4.7: Dynamic evolution of wound closure after data scaling. Evolution with time of the wound 

area A, normalized with respect to the initial value A0 (A), and of the position of the invading cell front 

(B) for cell samples with different densities at time 0. 
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Figure 4.8: Dynamic evolution of wound closure before (A) and after (B) data scaling for samples 

(with different initial cell densities) in the WH experiment performed in presence of mitomycin-C. 
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Figure 4.9: The wound closure velocity (α) and the velocity of cell front progression (v) are plotted as 

a function of the cell density at time 0, for the WH experiment performed in presence of mitomycin-C. 
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4. Conclusion 

We revisited the methodological approach typically used to quantify the wound closure 

dynamic in a WH assay, by using a novel approach based on transport phenomena concepts. 

In order to investigate the potential effect of cell density on the wound healing process, we 

performed WH experiments on a population of HT1080 fibrosarcoma cells by using in vitro 

time-lapse microscopy technique.  

We assessed that the relative cell confluence in the region where the scratch is made, is 

challenging to control and reproduce within the same culture dish and among different cell 

samples. This factor may influence the outcome of the WH assay, strongly limiting the 

reproducibility of the experiments and making the comparison between different cell samples 

very difficult.  

In order to overcome the effect of cell density on wound closure velocity, we proposed a 

phenomenological scaling of the experimental data. This approach can be useful to avoid to 

trash the experiments when the samples under investigation exhibit different cell densities. 

The difficulty to obtain the same cell density in the samples can be due to anisotropies in the 

spatial spreading of the cells, led by uneven cell attachment in the culture dish after plating. In 

addition, it is arduous for the operator to plate exactly the same number of cells in different 

culture dishes. Several cell treatments, involving the use of invasive techniques such as gene 

silencing, may also determine unwanted cell detachment from the bottom of the plates or cell 

death.  

Our future work will be addressed to rationalize the analysis and description of the wound 

healing process, taking into account the parameters involved in the wound closure kinetic. We 

will model the healing process of a wound using mathematical equations, which describe the 

main mechanisms involved, i.e., cell movement and proliferation. Mathematical descriptions 

of the wound healing assay are typically based on the Fisher-Kolmorgoroff equation, which 

describes the cell density evolution in time as a function of cell motility, described by a 

diffusive flux, and cell proliferation, modeled by a logistic growth [155]. We will test the 

sensitivity of the parameters involved in the model by using a simulative approach and 

compare the numerical solutions obtained by the simulations with the experimental data. 
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Chapter 5 

Dynamics of monolayer formation in T84 epithelial cells 

 

1. Introduction 

The movement of cell groups, sheets or strands, also known as Collective Cell Migration [56], 

plays a key role in several physiological as well as pathological processes including 

morphogenesis, tissue repair, immune response, and cancer progression [59-61]. In tumour 

invasion, collective cell movement allows malignant tumour cells to escape the primary 

tumour and invade surrounding tissues [2, 3]. 

Similarly to single-cell migration, collective cell movement results from actomyosin 

polymerization and contractility coupled to cell polarity [57]. However, collective movement 

occurs under additional constrains, determined by cell-cell junctions [57, 58]. The main 

features of collective cell dynamics are direct cell-cell chemical signaling, physical 

interactions leading to mechanical integrity of clusters, the organization of follower cells 

guided by leader cells located on cluster edges, the coordinated polarization of leader cells, 

the secondary remodeling of the extracellular matrix along the migration track (Rorth, 2009). 

Traction force mapping shows long-range force transmission within sheets or clusters in a 

cooperative way; each cell, at the leading edge as well as inside, takes part in a global “tug-of-

war” that maintains the collective into a global state of tensile stress (X. Trepat, 2009; B. 

Ladoux, 2009). Physical signals from the substrates tend to induce a migration of cells away 

from each other, whereas a stronger mechanical input from cell–cell interactions would drive 

them towards each other. Thus the importance of cell–cell junctions in the force transmission 

requires a cell sheet to transmit physical forces in a cooperative way [21, 73].  

Collective cell dynamics are also characterized by the expansion of cell clusters driven by the 

proliferation process within the collective structures. Daughter cells seem to occupy, on 

average, twice the area of their mother cell and the rate of colony growth should match 

exactly the rate of cell mitosis. Some articles support that cell groups grow follow a simple 

exponential growth law [76, 83].  

Moreover, cell aggregation events may occur in collective behavior, as cell clusters may 

diffuse and grow until they meet to form new larger aggregates. Cell aggregation is the result 

of the attractive interaction between individual cells [85] as well as cell groups that migrate in 

response to chemical signals released and detected by themselves, through chemotactic 
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mechanisms. As the coalescence of coagulating objects, the fusion of two contiguous cell 

aggregates may be driven by interfacial tension and inhibited by viscosity [89, 90]. An 

interesting approach of this phenomenon is based on the analogy with case of drops of fluid 

surrounded by an immiscible matrix, that deform [208], retract to the spherical unperturbed 

shape, or coalesce [91, 227]. 

Collective cell dynamics can be observed in epithelial tissues. Although epithelia are 

generally considered as a constrained environment where cells are fixed in position, it has 

been appreciated that morphogenesis in early embryos, for example, can involve cell 

movements within a tissue sheet [64]. Dramatic net tissue morphogenesis can occur when 

many cells in a tissue rearrange in a highly coordinated way, thus highlighting the ability of 

cells within an epithelium to move relative to one another while retaining tissue integrity [2]. 

Despite the importance of collective cell migration, far less is known about exactly how cells 

migrate in a collective and coordinate way [62]. A better understanding of the underlying 

behaviors during collective cell movement will provide insight into morphogenesis and tissue 

reorganization during regeneration and disease. Furthermore, the ability to control collective 

migration will provide novel tools for engineering [63]. 

In order to reach a better understanding of collective cell behaviors, we used T84 intestinal 

epithelial cells as a model system. The epithelial lining of the intestinal lumen provides an 

essential barrier to diffusion of noxious agents [228]. Effective repair of injuries in such 

barrier is a process of strong physiopathological relevance. In addition, T84 epithelial cells 

show the characteristics of collective cell dynamics.  

In order to dynamically investigate in vitro the collective behavior of T84 epithelial cells on a 

2D substrate, we performed time lapse microscopy experiments. We analyzed the growth of 

isolated clusters of T84 cells, the spreading of cell aggregates to form a monolayer and the 

dynamic behavior of the single cells within the aggregates. 

 

2. Materials and Methods 

2.1. Cell cultures 

Human colon adenocarcinoma T84 cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) F12 supplemented with 10 % (v/v) Fetal Bovine Serum (FBS) and 

antibiotics (50 units/mL penicillin and 50 µg/mL streptomycin) and maintained in a 

humidified incubator at 37 °C under an atmosphere of 5 % CO2 in air. 
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2.2. Experimental methods 

T84 cells were plated on multi-well culture dishes at varying initial cell density. The multi-

well plate was placed on the stage of an inverted microscope equipped with motorized sample 

positioning and focusing. The microscope was enclosed in a plastic cage to control 

environmental conditions (temperature: 37°C, CO2 concentration: 5%, humidity level: close 

to saturation). Live cell imaging was performed in phase contrast by a high resolution 

monochromatic CCD video camera. Microscope operations were controlled by a time-lapse 

software allowing to select multiple fields of view and the time interval between consecutive 

image acquisitions during the experiment. To follow T84 collective behavior, images were 

iteratively acquired using a 5x objective at several locations within the culture dish, with an 

image acquisition frequency of 2 h; the overall experimental duration was 14 days. The cells 

were rinsed with fresh culture medium every two days, while the culture dish was under the 

microscope. 

In order to capture the dynamic behavior of individual cells within the aggregates, images 

were iteratively acquired using a 20x objective. The time delay between the acquisition of 

consecutive images was 10 min, for a total of 70 h. Images were stored on a hard drive for 

subsequent offline analysis. 

2.3. Image analysis 

The number of cells within the clusters was determined using the image analysis software 

Image ProPlus, which allowed to manually count the cells in a selected region. The same 

software was used to measure the size of individual cells or colonies, by manually drawing 

their contour. 

The trajectories of individual cells within the clusters were reconstructed using a cell tracking 

software (ImageJ). For each time step, individual cells were individually followed to 

determine the X and Y coordinates of the center of mass. The trajectory of each cell was 

reconstructed for the whole experiment starting from the center of mass coordinates. In order 

to quantify the movement of the cells in the clusters, the radial (Vρ�	and angular (Vθ�	velocity 

of the cells were calculated for 12 h. Vρ	and Vθ were calculated in intervals of 2 h, as the ratio 

between the displacement along the radial and the angular direction, respectively, and the time 

interval. 
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3. Results and discussion 

In vitro time-lapse microscopy experiments were performed to investigate the dynamics of 

monolayer formation in T84 epithelial cells, which show the features of collective cell 

migration.  

Preliminary observations show that at early times T84 cells are arranged in 2D clusters or 

islands of different area depending on the initial cell density. As time goes on, the clusters 

tend to grow by cell proliferation and to fuse together leading to the formation of larger 

clusters or eventually of a single cell monolayer spanning the entire available surface. We 

analyzed the growth of isolated clusters of T84 cells, the spreading of cell aggregates to form 

a monolayer and the dynamic behavior of the single cells within the aggregates.  

In Figure 5.1 the number of T84 cells (n) within several clusters is shown as a function of 

time. Some articles support that the cells within collective structures grow exponentially 

through the following law: 

n�t� = n� ∗ 2�	 	
� �                                                                                                                                                          (5.1) 

where t is the time, n(t) the number of cells at time t, n0  the number of cells at time 0 and td 

the duplication time of the cells [84]. Eq. (5.1) was fit to the experimental data of the number 

of cells as a function of time, with td as the only adjustable parameter. The exponential fitting 

curve is also plotted in the graph in Figure 5.1. The duplication time of the cells within the 

clusters was 71 h. 

 

 

 

 

 

 

 

 

Figure 5.1: Dynamic evolution of the number of cells within the clusters. The number of cells (n) is 

reported as a function of time. An exponential fit is also plotted. 
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We also investigated the dynamic ev olution of the cell size within the clusters. In Figure 5.2 

the cell area (Acell) is reported as a function of time. We fit the following exponential equation 

to the experimental data, in analogy with Eq. (5.1):  

A@A99�t� = A@A99,� ∗ 2�	 a� �                                                                                                                (5.2) 

 

Here, t is the time, Acell (t) is the size of the cell at time t, Acell,0  is the size of the cell at time 0 

and λ is the doubling time of the cell size. λ is the only adjustable parameter in the equation. 

The doubling time of the cell size was 120 h. The lower panel in Figure 5.2 shows two images 

of a representative cluster corresponding to 0 (A) and 10 h (B), with the contour of the same 

cell, taken as an example, superimposed in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Dynamic evolution of the cell size. The area of the cells (Acell) is reported as a function of 

time. An exponential fit is also shown. Two images of a representative cluster, corresponding to t = 0 

(A) and t = 10 h (B) are shown. The contour of the same cell is superimposed in red in both the 

images. 
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Then, we investigated the relationship between the size of the whole clusters and the number 

of cells contained. In Figure 5.3 the number of cells (n) within the aggregates is reported as a 

function of the cluster size (Acluster). We found that the number of cells linearly increases with 

the colony size. However, this linear relationship is not valid for higher values of cluster size.  

 

Figure 5.3: The number of cells (n) within the cluster is reported as a function of the cluster area 

(Acluster). A linear fit is also reported.  

 

In order to study the growth of the aggregates, we measured the area of the clusters as a 

function of time (Figure 5.4). Similarly to the number of cells and the cell area, cell cluster 

growth follows a simple exponential law, in agreement with cell population balances. 

Assessed the linear relationship between the number of cells and the aggregate size, we fit the 

following equation to our experimental data, in analogy with Eq. (5.1):  

	A@9b<	Ac�t� = A@9b<	Ac,� ∗ 2�	 d� �
                                                                                                       (5.3) 

Here, t is the time, Acluster (t) is the size of the aggregate at time t, Acluster,0  is the size of the 

aggregate at time 0 and β is the doubling time of the aggregate size, with β as the only 

adjustable parameter. The lower panel in Figure 5.4 shows two images corresponding to 0 (A) 

and 24 h (B), with the contour of the same representative cell aggregate superimposed in red. 

The doubling time of the colony size was 46 h. 
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Figure 5.4: Cell cluster evolution in time. The area of the aggregates (Acluster) is reported as a function 

of time (t). An exponential fit is also plotted. Two images of the clusters, corresponding to 0 (A) and 24 

h (B) are shown. The contour of the same cell aggregate is superimposed in red in both images. Scale 

bar = 200 µm. 
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area occupied by the cells is superimposed in red. The doubling time of the colony size was 

46 h. 

In Figure 5.6 all curves are reported as a unique data series; we fit the following equation to 

our experimental data, in analogy with Eq. (5.3):  

As	�t� = As� ∗ 2e
f                                                                                                                                    (5.4) 

where t is the time, As (t) is the confluence at time t, As� is the confluence at time 0, and τ is 

the doubling time of cell confluence, with τ as the only adjustable parameter. The 

characteristic growth time of the cell line (τ) was 50.8 h. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: Dynamics of monolayer formation for different initial cell densities. Cell confluence (As) 

is reported as a function of time for each sample under investigation. Images of monolayer spreading 

at 0 (A), 80 (B) and 160 h (C) are shown, with the area occupied by the cells reported in red. Scale 

bar = 200 µm.  
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Figure 5.6: Dynamics of monolayer formation. Cell confluence (As) is reported as a function of time. 

All curves in Figure 5.5 are reported as a unique data series. An exponential fit is also shown. 

 

Our data show that T84 cells monolayer formation is determined by cell proliferation 

mechanism, led by the exponential growth of the number of cells, as well as of the cell area. 

The characteristic growth time (τ) of the cell line under investigation can be estimated using 

the duplication time of the cells (td) and the doubling time of the cell size (λ), according to the 

following mathematical approach: 

As	�t� = 	n�t� ∗ A@A99�t�                                                                                                        (5.5) 

Considering Eq. (5.1) and Eq. (5.2), we obtained 

As� ∗ 2�	 g� �  = n� ∗ 2�t td� � ∗ A@A99,� ∗ 2�	 a� �                                                                                              (5.6) 

Moreover 

As� =	n� ∗ A@A99,�                                                                                                                 (5.7) 

As a consequence, we obtained the following equation: 
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	2	a                                                                                                                                              (5.8) 
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The characteristic growth time of the cell line (τ), estimated according to Eq. (5.8) was about 

40 h. This estimate is comparable to the characteristic growth time estimated by the 

experimental data using Eq. (5.4). 

Overall, our results suggest that the growth of the cell line under investigation is not 

dependent on the aggregation events between adjacent clusters; in fact, the growth of 

individual colonies as well as the spreading of the monolayer follows the same exponential 

law. Cell clusters aggregation seems to be due only to cluster growth, that lead close clusters 

accidentally to merge, and not to clusters active interactions, since clusters’ motility is 

limited. However, it’s worth mentioning that the extension of lamellipodia and filopodia-like 

structures exploring the surrounding environment can be observed; such membrane 

protrusions are preferentially directed towards nearby cell clusters. 

We also investigated in details the dynamic behavior of individual T84 cells within aggregates 

with varying morphology and size. The aggregates were typically divided into concentric 

regions, in order to identify differences in the movement of the cells in the inner and outer 

region of the same colony. We tracked the positions of the cells moving in an almost circular 

aggregate with an average radius of 84 µm and an aspect ratio (minor axis/major axis ratio) 

about 0.83. The cluster was divided into 2 regions, the inner one containing all the cells 

within 46 µm from the cluster center, the external one containing the peripheral cells. In 

Figure 5.7, the paths of the cells moving in the outer (A and B) and inner (C and D) region are 

plotted starting from the same initial position (Figure 5.7.A and 5.7.C) or from their real 

position (Figure 5.7.B and 5.7.D). The trajectories described by the cells in both regions show 

a circular shape, suggesting that the cells generate a coordinate collective rotation within the 

aggregate.  
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Figure 5.7: Trajectories of the cells  moving in the outer (A, B) and inner (C, D) region of a cluster 

with an average radius of 84 µm and an aspect ratio around 0.83.  

 

 

 

In order to quantify the movement of the cells in the cluster, we calculated the radial (Vρ�	and 

angular (Vθ�	velocity of the cells moving in the two regions for 12 h. The radial and angular 

velocity of the cells moving in the outer region are plotted as a function of time in Figure 

5.8.A and 5.8.B, respectively. The radial and angular velocity of the cells moving in the core 

region of the aggregate are reported as a function of time in Figure 5.8.C and 5.8.D, 

respectively. 
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Figure 5.8: Evolution in time of the radial (jk�	and angular (jl�	velocity of the cells moving in the 

outer (A, B) and inner (C, D) region of a cluster with an average radius of 84 µm and an aspect ratio 

around 0.83. Error bars represent the standard deviation. 

 

Our data suggest that the movement along the radial direction of the cells in the outer as well 

as in the inner region of the colony is negligible, since the radial velocity is around 0. This 

means that the cells move within the cluster in a defined circular region. In other words, the 

cells migrating along the edge of the aggregate do not invade the core region, and vice versa.  

The cells moving in the outer region of the colony show higher angular velocity compared to 

the cells in the aggregate core; moreover, they show a higher coordination in the rotatory 

movement as suggested by the lower amplitude of the error bars. Anyway, the time evolution 

of the angular velocity of the cells on the margin and in the core region of the colony exhibit 

the same trend, suggesting that probably the outer cells tug the inner ones and coordinate their 

rotatory movement. 

Furthermore, we tracked the positions of the cells moving in a colony with an aspect ratio of 

0.65, meaning that this cluster show a less circular shape. Also in this case, the cluster was 

divided into 2 regions, the inner one with an average radius of 38 µm. In Figure 5.9, the paths 
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of the cells moving in the outer (A and B) and inner (C and D) region are plotted starting from 

the same initial position (Figure 5.9.A and 5.9.C) or from their real position (Figure 5.9.B and 

5.9.D). In this case, the trajectories described by the cells seem to show a random orientation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Trajectories of the cells  moving in the outer (A, B) and inner (C, D) region of a cluster 

with aspect ratio around 0.65.  

 

The (Vρ�	and angular (Vθ�	velocity of the cells moving in the outer region are plotted as a 

function of time in Figure 5.10.A and 5.10.B, respectively. The radial and angular velocity of 

the cells moving in the core region of the aggregate are reported as a function of time in 

Figure 5.10.C and 5.10.D, respectively. 

 

 

 

 

 

-120

-60

0

60

120

-120 -60 0 60 120

Y
 (
µ

m
)

X (µm)

0

100

200

300

0 100 200 300 400

Y
 (
µ

m
)

X (µm)

-120

-60

0

60

120

-120 -60 0 60 120

Y
 (
µ

m
)

X (µm)

0

100

200

300

0 100 200 300 400

Y
 (
µ

m
)

X (µm)

A B 

C D 



101 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Evolution in time of the radial (jk�	and angular (jl�	velocity of the cells moving in the 

outer (A, B) and inner (C, D) region of a cluster with aspect ratio around 0.65. Error bars represent 

the standard deviation. 

 

The graphs in Figure 5.10 suggest that there is no synchronized rotation of cells in a cluster 

which doesn’t show a round morphology. This may be probably related to the fact that the 

aggregate does not have a circular morphology, or cell positions must be tracked for longer 

time. However, the movement of the cells in both outer and inner region of the colony along 

the radial direction is negligible, since the radial velocity fluctuates around 0, meaning that 

the cells move in a confined region within the cluster. 

 

4. Conclusions 

In this study, we performed in vitro time-lapse microscopy experiments to investigate the 

dynamics of monolayer formation in T84 intestinal epithelial cells, which show the features of 

collective cell migration. We analyzed the growth of isolated clusters of T84 cells, the 

spreading of cell aggregates to form a monolayer and the dynamic behavior of the single cells 

within the aggregates.  
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Preliminary observations show that at early times T84 cells are arranged in 2D clusters or 

islands with different size, depending on the initial cell density. As time goes on, the clusters 

tend to grow because of cell proliferation mechanism and to fuse together, leading to the 

formation of larger clusters or eventually of a single cell monolayer spanning the entire 

available surface.  

Our results suggest that the growth of the cell line under investigation is driven by cell 

proliferation as well as by the expansion of cell area. As a consequence, aggregation events 

between adjacent clusters seems to not play a central role in monolayer formation, since the 

growth of individual cell colonies and the spreading of the monolayer follow the same 

exponential law. Cell cluster aggregation seems to be driven by the cluster growth, whose 

fusion is due to accidental contact once the free space is reduced. In fact, the clusters show 

very low motion. However, it’s worth mentioning that the extension of lamellipodia and 

filopodia-like structures exploring the surrounding environment can be observed; such 

membrane protrusions are preferentially directed towards nearby cell clusters. Further 

investigations are necessary to elucidate this aspect. 

In addition, we analyzed in details the migration of individual T84 cells within aggregates 

with varying morphology and size. We observed that in colonies showing a round 

morphology, the cells move in a defined circular region. In fact, the cells migrating along the 

edge of the aggregate do not invade the core region, and vice versa. We also found a 

synchronized rotation of cells within the aggregate. The coordination in the rotatory 

movement seems to be higher for the cells located in the outer regions of the clusters; we can 

speculate that the outer cells drive and coordinate the movement of the cells located in the 

core of the aggregates along circular paths. The coordinated rotational movement of the cells 

in colonies with a round shape has been already shown in previous works [81, 229]. 

Conversely, we observed a random orientation of cell trajectories in aggregates that do not 

show a circular morphology. In this case, we didn’t find a coordinated and collective 

rotational movement of the cells. However, the movement of the cells was confined in a 

defined region within the cluster, as well. 

Further investigations will be necessary to confirm these findings and reach a better 

understanding of the collective dynamic behavior of T84 epithelial cells. 
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Chapter 6 

From single cells to cell aggregates chemotaxis 

The experiments described in this chapter were performed at the Institut Curie in Paris, in the 
framework of the research project “Cell migration and invasion” in the Cell Biology 
Department directed by Dr. Bruno Goud, under the supervision of Danijela Matic Vignjevic. 
The experiments were carried out using a chemotaxis chamber projected by Prof. Stefano 
Guido and Prof. Sergio Caserta, at the University “Federico II” of Naples.  
 

1. Introduction 

The ability of the cells to migrate as single units or as multicellular structures (Collective cell 

migration), is central to tumour invasion and dissemination. In metastatic cancer, tumour cells 

showing a malignant phenotype escape the primary tumour, and invade adjacent or distant 

tissues where proliferate forming secondary tumours [10]. In order to reach the blood vessels, 

cancer cells encounter different ECMs during their course of invasive migration. First, they 

breach the basement membrane, a thin and dense sheet-like structure composed of a network 

of collagen IV and laminin [230]. Then, they migrate through the stroma composed of fibrillar 

collagens, proteoglycans and various glycoproteins [231]. 

Chemotaxis, i.e. the directional movement of cells along a chemical concentration gradient 

[14, 15], is crucial in tumour dissemination during progression and metastasis, since it 

determines that cancer cells explore the surrounding microenvironment in response to external 

cues. In fact, to successfully metastasize, tumour cells must invade, intravasate, extravasate 

and grow at a distant site. Chemotaxis is thought to be involved in each of these crucial steps 

of tumour cell dissemination [13]. The chemotactic behavior of cancer cells and tumour-

associated inflammatory and stromal cells is mediated by a complex network of chemokines 

and growth factors [232].  

The chemotactic mechanisms by which invasive tumour cells respond to tissue-derived 

guidance cues is poorly understood and complicated by the fact that, in order to disseminate, 

tumour cells can utilize a flexible set of migration modes, frequently referred to as migration 

plasticity [65, 233]. For such reason, the development of physiologically relevant in vitro 

assays to study chemotaxis in a quantitative way is a topic of growing interest.  

Even though the vast majority of in vitro studies on cell movement are performed on cells 

cultured on flat substrates, there is growing evidence that 2D cell cultures fail to reproduce the 
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architecture of living tissues, and may thus bias the cellular response to external cues or cell-

integrated signals [234]. In order to overcome the limitations of 2D cell cultures and avoid 

systematic animal testing, multicellular spheroids (MCSs), i.e. small spherical clusters of 

cancer cells, have been proposed as 3D in vitro models of avascular solid microtumours 

[235]. Additionally, MCSs embedded in ECM-like gels have been further used to investigate 

the mechanisms of cell invasion [236]. These MCS-based assays represent a promising 

approach in the biomedical research for studying tumour development, given the diffusion 

limited geometry associated with many solid tumour growths. The formation of a MCS is 

generally performed using conventional methods, such as the hanging drop method, gyratory 

rotation, or liquid overlay cultures [237]; the main drawbacks of these techniques are their 

low yield as well as the difficulty in controlling the size of the cell aggregates. The advent of 

microscale photolithography has led to automate MCS production using microwells [238], 

microarrays [239], or microfluidic devices [240]. Recently, a simple and reproducible 

microfluidic method has been developed to prepare size-controlled spheroids. This technique 

is based on the encapsulation and growth of cells inside permeable, elastic, hollow 

microspheres [241].  

Here, we tested the chemotactic potential of a tumour cell line, comparing the chemotactic 

behavior of single cells and spheroids of these cells, in response to concentration gradients of 

serum and Hepatocyte growth factor (HGF). We used wild-type CT26 mouse colon 

carcinoma cells as a model system. In vitro 3D chemotaxis assays were performed by using a 

recently developed direct-viewing chamber [129], coupled to a time-lapse video microscopy 

workstation. In this chamber a chemoattractant concentration gradient in 3D collagen gel 

samples seeded with cells or cell clusters is generated by diffusion through a porous 

membrane. 

2. Materials and Methods 

2.1. Cell cultures and cell spheroids preparation 

CT26 mouse colon carcinoma cells (ATCC CRL-2638; American Tissue Culture Collection) 

were maintained in DMEM (Invitrogen) supplemented with 10% (vol/vol) FBS (Invitrogen) 

and antibiotics (100 µg/mL streptomycin and 100 U/mL penicillin; Gibco BRL) in a 

humidified atmosphere containing 5% CO2 at 37 °C, with medium changed every 2 days.  

CT26 spheroids (1.5 x 105 cells for each spheroid) were prepared according to the classical 

agarose cushion technique [242]. 
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2.2. Chemotaxis chamber 

Chemotaxis assays were performed by using a chamber [129, 132] consisting of a single 

aluminium or steel block glued on top of a microscope slide by using a silicone adhesive. A 

porous membrane (0.22 µm pore size), sandwiched between two rectangular metal frames, 

separates two compartments, one for the cell seeded collagen gel (sample well), and the other 

as a reservoir of the chemoattractant solution (chemoattractant reservoir). During the assay the 

chemoattractant, loaded in the reservoir, diffuses through the membrane and generates a 

concentration gradient in the cell seeded collagen gel.  

The chemoattractant concentration profile in the collagen gel can be described according to 

the model of Fickian diffusion in a semi-infinite slab [132]: 
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where C(x,t) is the chemoattractant concentration as function of the space x and time t, C0 is 

the initial concentration in the chemoattractant reservoir, D is the diffusion coefficient of the 

molecule in the collagen gel. 

2.3.  Sample preparation 

Chemotaxis assays were performed in a three-dimensional gel of 2 mg/mL collagen I solution 

(BD Biosciences) in 10x PBS and DMEM; 1 M NaOH was added to adjust the pH of the 

solution (around 7). 

For single cells chemotaxis assays, 0.5 % FBS was added to the collagen gel solution; all 

components were kept on ice during the preparation, except for the cell suspension that was 

added at the end (1.5 x 105 cells/mL). The solution was placed in the sample well of the 

chamber and the chamber was incubated at room temperature for 40 min to induce collagen 

polymerization. 

For chemotaxis assays on CT26 spheroids, 170 µL of collagen gel solution not containing 

spheroids were placed in the sample well of the chamber. After half polymerization of the 

collagen solution at room temperature for 20 min, 200 µL of collagen gel solution containing 

about 10 spheroids were added on top. The collagen solution was allowed to polymerize at 

room temperature for 40 min. At the end of the polymerization process, the spheroids, which 

fell down, were located at the interface between the two layers of collagen gel. 

We added in the chemoattractant reservoir FBS at different concentrations (10% and 100%) 

or Hepatocyte growth factor (HGF) 10 or 100 ng/mL.  
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2.4.  Imaging by time-lapse microscopy 

Time-lapse imaging was performed by using an inverted microscope (Nikon Eclipse Ti, 

10×/0.3-N.A. dry objective; Nikon Instruments) equipped with a motorized stage 

(Märzhäuser) and climate control system (The Brick; Life Imaging Systems). The microscope 

and the video-camera (CoolSNAP HQ2; Photometrics) were driven by Metamorph software 

(Molecular Devices). The frequency of acquisition was set to 1 frame every 30 min and the 

total experiment length was 48. 

For single cells experiments, images in the sample well of the chemotaxis chamber were 

acquired at  approximately 2, 4 and 6 mm from the membrane along the y direction and at the 

center along the x direction. The collagen gel was periodically scanned by optically imaging 

15 layers separated by a 16.7 µm distance along the focus (z) direction within the collagen 

gel. The lowest z layer of the image stack was chosen to be approximately 1 mm from the 

bottom glass to avoid possible wall effects (such as surface-induced local orientation of 

collagen fibers).  

For experiments on CT26 spheroids, all the aggregates in the sample well of the chemotaxis 

chamber were imaged periodically scanning 5 layers separated by a 50 µm distance along the 

focus (z) direction within the collagen gel.  

 

3. Results and Discussion 

We investigated the chemotactic potential of CT26 mouse colon carcinoma cells, comparing 

the chemotactic behavior of single cells and spheroids of these cells in a three-dimensional 

collagen gel, in response to concentration gradients of serum and Hepatocyte growth factor 

(HGF) in different concentration. In vitro 3D chemotaxis assays were performed by using a 

recently developed direct-viewing chamber coupled to time-lapse video microscopy 

technique. Here, some preliminary qualitative results are shown.  

In Figure 6.1, we report images acquired within the collagen gel seeded with single cells, 

corresponding to the last time step (t = 48 h). Specifically, Figure 6.1.A and 6.1.B show CT26 

cells at 2 mm from the membrane, in the assay in which FBS 100 % and 10 %, respectively, 

were used as chemoattractant. Figure 6.1.C shows CT26 cells at 2 mm from the membrane, in 

a control sample, i.e. in absence of chemotactic gradient. For comparison, we also analyzed 

the movement of the cells in isotropic condition, i.e. in the presence of a uniform 

concentration of  serum (10 %) in the collagen gel (Figure 6.1.D). Visual inspection of time-

lapse movies shows that in the control experiments (i.e., in absence of chemoattractant) the 
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cells exhibit a round morphology and do not move, as expected. In isotropic conditions, as 

well as in the assays with serum 100 % and 10 % as chemoattractant, the cells show an 

elongated morphology and are highly motile. Compared to isotropic condition, where there is 

no preferential directionality in cell movement, in chemotaxis assays most of the cells seem to 

move with a preferential orientation in the direction of the concentration gradient. 

In Figure 6.2, images acquired within the collagen gel seeded with CT26 spheroids, 

corresponding to 48 h, are shown. Figure 6.2.A and 6.2.B report CT26 spheroids in the 

chemotaxis assays in which FBS 100 % and 10 %, respectively, were used as chemoattractant. 

Figure 6.2.C shows CT26 spheroids in a control sample, i.e. in absence of chemoattractant. 

For comparison, we also analyzed the movement of the cells in isotropic conditions, i.e. in the 

presence of a uniform concentration of  serum (10 %) in the collagen gel (Figure 6.2.D). A 

visual inspection of time-lapse movies shows that in presence of serum, the spheroids grow 

becoming bigger, driven by cell proliferation mechanism. In chemotaxis assays in which 

serum 100 % and 10 % were used as chemoattractant, the cells migrate from the spheroids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Images of CT26 cells acquired at 2 mm from the membrane, at t=48 h, in chemotaxis 

assays in which FBS 100 % (A), 10 % (B) and only culture medium (C) were used in the 

chemoattractant reservoir, and in isotropic conditions (D). Scale bar = 100 µm.  

 

However, in the experiments with 10 % serum in the chemoattractant reservoir, the cells 

appear more elongated and spread out. In addition, in these assays the spheroids seem to grow 

more compared to the chemotaxis assays with 100 % serum. In both cases, the behavior of the 
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cells seems to be not chemotactic, since the cells coming out from the spheroids appear 

uniformly distributed in space and seem to move in a random orientation (i.e., no preferential 

direction of motion can be distinguished), as in the experiments carried out in isotropic 

conditions (10% serum), which can be used as a control. Unexpectedly, also in the 

experiments where no chemoattractant was added, there are few cells showing the tendency to 

escape the spheroids; however, they do not exhibit significant movement, as they experience 

no appreciable change in their position in the entire experiment, and show a round 

morphology (Figure 6.2.C), in comparison with the assays in which the cells sense the serum. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Images of CT26 spheroids within the collagen gel, at t=48 h, in chemotaxis assays in 

which FBS 100 % (A), 10 % (B) and only culture medium (C) were used in the chemoattractant 

reservoir, and in isotropic conditions (D). Scale bar = 100 µm.  

 

Overall, single cells seem to be sensitive to chemotaxis, whereas the stimulus provided by 

chemotaxis seem to be a minor effect for cell spheroids. In fact, in the experiments performed 

on CT26 spheroids, the major effect to serum sensation is the tendency of the cells to migrate 

from the spheroids  in a random orientation, which overcomes their chemotactic behavior. 

Probably, the cells escape the spheroids because of the stimulus arising from the presence of 

collagen fibers around the spheroids. Moreover, it is possible that the steepness of the 

chemoattractant gradient is not strong enough to stimulate cell directional movement. 
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Image analysis of time-lapse sequences will be performed in order to obtain quantitative 

information, allowing a direct comparison between the different assays. Cell trajectories will 

be reconstructed by means of a semi-automated image analysis algorithm and the effect of 

chemotaxis will be quantitatively characterized in terms of changes in motility parameters, 

such as the velocity of migration and the cell orientation bias as quantified by the chemotactic 

index, defined as the ratio between the net movement in the direction of the gradient and the 

total curvilinear length of cell trajectory [214]. 
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Chapter 7 

Conclusions 

 

A wide range of physiological and pathological phenomena, including embryogenesis, tissue 

repair, immune responses, tumour growth and invasion, are strongly dependent on cell 

proliferation and migration mechanisms. These processes govern the dynamic evolution of 

both individual cells and cell aggregates. The framework of cell dynamics has gained impetus 

in recent years and numerous ongoing research directions have been performed to develop 

novel in vitro assays for studying cell dynamic behavior. However, the current understanding 

of many mechanisms is still limited and cell dynamic behavior remains a challenging process 

to study under physiopathologically-relevant conditions in vitro.  

This thesis work is based on the quantitative investigation of active bio-soft matter dynamics, 

ranging from single to collective cell dynamic behavior, by using an in vitro experimental 

approach based on live cell imaging, performed by time-lapse microscopy, and image analysis 

techniques, in order to provide a better understanding of many physiological and pathological 

processes. Live cell imaging based on in vitro time-lapse microscopy is a powerful 

methodological approach to gain insight into cell dynamics from a quantitative point of view. 

In fact, time-lapse microscopy allows direct visualization of biological systems during their 

dynamic evolution. Experiments lasting up to few weeks were performed, while controlling 

environmental parameters to ensure cell viability throughout the experiments. 

Time-lapse microscopy was coupled to several in vitro assays, such as single cell random 

motility assays to gain quantitative information about the movement of individual cells on a 

planar surface or in a three-dimensional matrix, and wound healing assays to study the 

spreading of two cell sheets which dynamically evolve one toward the other. Additionally, 

collective dynamics of cell aggregates in 2D and 3D environment were investigated. We also 

analyzed the movement of single cells and three-dimensional cell spheroids in presence of a 

chemotactic stimulus; we performed chemotaxis assays by using a novel methodology for the 

experimental investigation of drug efficiency in vitro based on a chemotaxis chamber in 

which a concentration gradient in a collagen gel sample seeded with cells was generated by 

diffusion through a porous membrane.  

Furthermore, we performed a direct comparison of two different experimental methods 

widely used in the literature for the quantification of cell motion: single cell random migration 

assays and wound healing assays. We found a substantial agreement between independent 
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quantifications of cell migration based on these assays. Our experimental observations show 

that the result of one assay can be estimated, at least as order of magnitude, given the result of 

the other, proving that the two assays are intimately linked with each other for the fibroblast 

populations we considered. To our knowledge this is the first, quantitative comparison of 

these two widely used techniques, which are not equivalent from a biological point of view. 

Although cell migration assays are a valuable tool to gain insight into cell dynamic behavior, 

it’s really complicated to obtain precise quantitative information on the dynamics of cell 

systems. We modeled the mechanisms governing single and collective cell dynamic evolution 

by using mathematical equations based on the transport phenomena approach. In fact, the use 

of mathematical models based on transport phenomena concepts can simplify the 

investigation of the dynamic evolution of active bio-soft matter. For example, a 

phenomenological description of cell migration is given by the Persistent Random Walk 

model, inspired by Brownian motion, which is associated with two parameters, i.e., the 

persistence time between significant changes in direction and the cell motility coefficient, 

analogous of a random walk diffusivity. The spreading of cell sheets in wound healing assays 

can be mathematically modeled using the Fisher-Kolmorgoroff equation [150], which 

describes cell density evolution in space and time in terms of cell motility, modeled by 

Fickian diffusion, and proliferation, described by a logistic growth. 

Overall, the main goal of this thesis work is to improve the current understanding of the 

mechanisms driving cell dynamics by using an interdisciplinary approach, based on chemical 

engineering core disciplines combined with biological, biotechnological and biomedical 

sciences. This is because understanding cell dynamics as an integrated process requires an 

appreciation of the chemical and physical mechanisms which almost certainly act in concert 

to regulate cell dynamic evolution. A rigorous investigation, based on the application of 

transport phenomena concepts, is essential to measure cell movement and proliferation 

indices that describe cell dynamics. For this reason, the development of such analyses is 

nowadays within the core business of Chemical Engineering, which can contribute to the 

building of mathematical models, based on the transport phenomena approach, useful to 

describe and predict the mechanisms driving cell dynamics. We believe that our result can be 

relevant for future experimental and modelling works. 
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