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Abstract

Mechanical characterization of a Tire Derived Material and its Application in Vibration
Reduction

by

Giuseppe Montella

Doctor of Philosophy in Construction Engineering

University of Naples, “Federico II”

Tire Derived Materials (TDMs) deserve special interest as the reuse of tires is one of
the most important topics in recycling and Environmental Engineering. This thesis de-
scribes the mechanical characterization of a new TDM based on appropriate experimental
tests. Moreover a novel strain energy function is presented, based on the Hencky-logarithmic
strain tensor, to model the response for moderately large deformations. TDM is a composite
made by cold forging a mix of rubber fibers and grains, obtained by grinding scrap tires,
and polyurethane binder. The mechanical properties are highly influenced by the presence of
voids associated to the granular composition and low tensile strength due to the weak connec-
tion at the grain-matrix interface. For these reasons, TDM use is restricted to applications
concerning a limited range of deformations.

Shear, compression and volumetric tests were performed on the material showing a stiff-
ening behavior under compression, hysteresis and strain rate sensitivity of the material. A
central feature of the response is connected to highly nonlinear behavior of the material
under volumetric deformation which conventional hyperelastic models fail in predicting.

To further investigate this behavior, during the compression tests optical measurement
techniques were used for the measurement of displacement fields allowing to evaluate the
Poisson’s coefficient in both the neighborhood of the undeformed state (linear Poisson’s
coefficient) and for large deformation (nonlinear Poisson’s coefficient). The strain energy
function presented here is a variant of the exponentiated Hencky strain energy proposed by
Neff et al. [63], which for moderate strains, is as good as the quadratic Hencky model and
in the large strain region it improves several important features from a mathematical point
of view. One of the advantages of using the proposed form of the exponentiated Hencky
energy is that it possesses a set of parameters uniquely determined in the infinitesimal strain
regime and an orthogonal set of parameters to determine the nonlinear response that do not
interfere with them.

The hyperelastic model is incorporated in a finite deformation viscoelasticty model based
on the multiplicative decomposition of the deformation gradient into elastic and inelastic
parts. It utilizes a nonlinear evolution equation as proposed by Reese and Govindjee [69].
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Most of the parameters have a clear physical meaning, we choose the ones suggested
by the experimental tests and allowed by the mathematical theory. The advantage is to
overcome the difficulties related to finding a unique set of optimal parameters that are
usually encountered fitting polynomial forms of strain energies. Moreover, by comparing the
predictions from the proposed constitutive model with experimental data we conclude that
the new constitutive model gives good prediction.

Finally a Finite element program is used to solve an optimization problem of railway
track mat for light-weight lines.
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Nomenclature

The notation used in this thesis is in agreement with the one used in Holzapfel [37] . The
reader may want to refer to the book for a more extensive introduction to the algebra of
Vectors and Tensors. Following the notations used throughout the thesis are explained.
Scalars are typeset in standard letters(e.g. κ, µ), vectors are printed bold (e.g. x, τ) , second
order tensors are set bold -face Latin (e.g. σ,F).

Higher order tensors are set in blackboard bold letters (e.g.C,P). The quantities in the
reference configuration are written in upper case letters, while the quantities in the actual
configuration are written in lower case letters.

Indices designate components of the tensor quantities (e.g. σi,j=ei · σej is the {i, j}
component of the Cauchy stress σ).

The Kroenecker delta δi,j designates the components of the second order identity tensor
1 ( δi,j = 1 if i = j and 0 elsewhere).

Parenthesis define function arguments (e.g. f(x) is a function f with argument x).
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Operators

〈•〉 Macaulay brackets

(•̄) Isochoric part

(•̇) Total time derivative

(•)′ Deviator

(•)T Transpose

(•)vol Volumetric part

(•) : (♣) Double contraction

(•) · (♣) Contraction

(•)⊗ (♣) Tensor product

(•)× (♣) Vector cross product

5(•) Gradient

abs(•) Absolute value

adj(•) Adjugate

D(•) Total derivative

det(•) Determinant

eig(•) Eigenvalues

grad(•) Gradient

ln(•) Natural logarithm

tr(•) Trace
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Chapter 1

Introduction

This thesis is part of the project Dottorato in Azienda funded by POR Campania 2007. The
aim of this thesis is to improve the understanding of Tire Derived Material including the
modeling of the mechanical behavior and the application of simulation tools to improve the
design.

This thesis provides a suitable model formulation based on appropriate experimental
tests for the material including the parameter determination of the viscoelastic constitutive
equations and finally the use of Finite Element theory to solve design problems.

Currently there is a lack of information on the behavior of Tire derived Material and no
constitutive models have been proposed for this kind of material yet. Tire Derived Materials
(TDMs) deserve special interest as the reuse of tires is one of the most important topics in
recycling and Environmental Engineering.

According to the European Tire and Rubber Manufacturers Association, in 2012, the
European Union generated approximately 3,418 million tons of scrap tires. However, 37% of
these scrap tires are used for energy recovery mainly as fuel in kilns to produce cement, 39%
are used as recycling materials for Civil Engineering work and product applications, almost
the 5% is disposed to landfill or is illegally dumped and the remaining quota is traded or
sold abroad [24] .

Also, the energy recovered from exhausted tires by waste-to-energy plants is a quarter
of the energy needed for their production and the process itself raises obvious pollution
concerns. Moreover, tires are not desired at landfills because of their large volume and 75%
void space, which quickly consume areas. Also the chemical released from scrap tires can
damage landfill liners that are generally installed to prevent the pollution of local surface
and ground water.

In response to these problems research on uses of scrap tires has created many new
markets and innovative applications [55] [32] [16]. The US Environmental Protection Agency
has conducted research projects on scrap tires including rubberized asphalts and protection
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systems against erosion of bridge piers [50]. The US Department of Energy has conducted
research on innovative scrap tire uses. They investigated the development of methods for
treating rubber from scrap tires in order to use it as automotive seals and gaskets, sealants,
adhesives. Recycled rubber is also used to make absorptive sound barriers, playground
surfaces, athletic and recreational applications [80].

Recently this kind of material has also been used to make low-cost devices for structural
isolation [14] [15] [47]. Despite the advantages, a main drawback is that the recycled rubber
is generally treated with procedures that require much more energy than the production of
the polymers it replaces.

Different kinds of materials can be obtained by recycling used tires. The aim of this
paper is to investigate the mechanical behavior of a TDM with a low cost and an easy to
implement production process. This material can be very appealing for the production of
low cost anti vibration-devices in replacement of the ones made of natural rubber especially
in massive applications like railway track systems [56].

1.1 Outline of the thesis

The first two chapters introduce the reader to the new material and its applications and the
mechanics of continuous deformable body that will be used throughout this thesis.

Chapter 2

This chapter gives an overview of the tire disposal issue and all the efforts of government
agencies in helping state and local governments reduce the economic burdens and environ-
mental risks associated with scrap tire piles on their landscapes.

New environmentally safe application for scrap tires have been introduced in the past
three decades are described, they can be organized in three markets: Tire-derived fuel, Civil
engineering application and Ground rubber application/rubberized asphalt. Despite of the
that there is a lot more to be done to solve the issue of reusing scrap tires.

The new Tire Derived Material (TDM) object of study is introduced including its appli-
cations in railway track and seismic protection of structures. This new TDM claims a simple
and easy to implement production process that can make the material very appealing from
the economic point of view.

Chapter 3

The basic aspects of nonlinear continuum mechanics are presented. It starts with the intro-
duction of kinematic quantities and continues with the stress measures. Thereafter consti-
tutive equation used throughout the thesis are explained and eventually the elasticity tensor
are defined.
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Chapter 4 describe the experimental tests campaign on TDM while in chapter 5 the
fitting on hyperelastic model is presented along with the new hyperelastic model based on
Hencky strain.

Chapter 4

This chapter shows the experimental campaign performed on the TDMs. For this particular
material there is a lack of information on the mechanical behavior. The need of explore the
potential of the material in order to find new application motivated the choice of extensive
testing.

The material due to its composition is suitable only for some of the testing procedure.
Experiments were carried out in compression, tension and shear underlining the benefits and
the limits of the new material. Furthermore, volumetric tests were performed in order to
evaluate the bulk modulus of the material.

Tests showed great nonlinearity in the volumetric deformation, for this reason compres-
sion tests were repeated using optical measurement to estimate the Poisson’s ratio in the
infinitesimal and large deformation regime.

Chapter 5

Four conventional hyperelastic constitutive models including slight compressibility have been
chosen to fit the experimental data from TDM in compression, shear and volumetric tests.
These models have been chosen because they are representative, but not exhaustive, of the
widely used hyperelastic models in Finite Element software.

Moreover not one of the chosen hyperelastic models was able to fit the three test data
together with a single set of parameters. A new model based on exponentiated logarithmic
strain allowed us to reach that goal. The new model is a modification of the Exponentiated
Hencky strain energy proposed by Neff [62] in which the volumetric part has been changed
to better describe the behavior of TDM.

The new model has been proven to have good mathematical properties beside all the
advantages deriving from the logarithmic measures.

Chapter 6 describe the viscoelastic framework used in this thesis while in chapter 8 there
is an optimization problem with TDM.

Chapter 6

The new model is inserted in a viscous framework. A new rheological model is proposed
which is modification to the classical Standard Linear Solid model where there is a non-linear
spring in series with two Maxwell element representing the two main process occurring in
the material subjected to load: grain interaction at the material scale and intermolecular
interplay at grains scale.
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In this thesis we use a finite deformation model that utilizes a nonlinear evolution equation
law as suggested by Reese and Govindjee [69]. The integration methodology for the nonlinear
evolution law is based on the operator split of the material time derivative in an elastic
predictor, in which only the elastic part of the model is used, and an inelastic corrector.

The parameter sets found give a good approximation of the material behavior in a certain
range of frequency when compared with cyclic shear tests and compression tests.

Chapter 7

Describe the use of a commercial finite software (Abaqus) to solve an optimization problem
regarding a railway mat made of TDM.

The problem concern finding a new shape different from the solid rectangular one in order
to reduce the vertical stiffness of the mat. Lower stiffness are required when dealing with
light rail system. The problem due to the high constrains degree imposed by the production
process has been solved with a trial and error approach testing the few option available.

Despite of that a good solution was found which allows to have the desired stiffness both
in the static and the dynamic regime. This allowed TDM to expand the range of application
to a section previously occupied only by elastomeric foams.

Chapter 8

Summarizes eventually the achievements of the present work and rises open question that
need future investigation.
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Chapter 2

Tire Derived Material

Tire Derived Materials (TDMs) deserve special interest as the reuse of tires is one of the
most important topics in recycling and Environmental Engineering. According to the Euro-
pean Tire and Rubber Manufacturers Association, in 2006, the European Union generated
approximately 3,213 million tons of scrap tires.

However, 37% of these scrap tires are used as Tire-Derived Fuel, the 39% are used as
recycling materials for Civil Engineering work, almost the 5% is disposed to landfill or is
illegally dumped and the remaining quota is traded or sold abroad [24] (Figure2.1).

Material recovery

Retreading

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

0 %
1996 1998 2000 2002 2004 2006 2008 2009 2010 2011 2012

49 %

20 %

11 %

12 %

5 %

37 %

39 %

9 %

8 % 10 %

Landfill/unknown

Energy recovery

Reuse/export

Figure 2.1: EU Treatment routes for used tires (1996-2012).

Also, the energy recovered from exhausted tires by waste-to-energy plants is a quarter
of the energy needed for their production and the process itself raises obvious pollution
concerns. Moreover, tires are not desired at landfills because of their large volume and 75%
void space, which quickly consume areas. Also the chemical released from scrap tires can
damage landfill liners that are generally installed to prevent the pollution of local surface
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and ground water. In response to these problems research on uses of scrap tires has created
many new markets and innovative applications [55] [32] [16].

The US Environmental Protection Agency has conducted research projects on scrap tires
including rubberized asphalts and protection systems against erosion of bridge piers [50]
(Figure 2.2). The US Department of Energy has conducted research on innovative scrap tire
uses. They investigated the development of methods for treating rubber from scrap tires
in order to use it as automotive seals and gaskets, sealants, adhesives. Recycled rubber is
also used to make absorptive sound barriers, playground surfaces, athletic and recreational
applications [80].

(a) (b)

Figure 2.2: Other application of scrap tires: (a) Rubberized asphalt, Modesto, Ca (b) Marsh-
land protection from wave action, Gaillard island, AL

New Tire Derived Material

The material investigated here is composed by recycled rubber and polyurethane binder.
The rubber is obtained from scrap tires and rubber factory leftovers, it can be in form of
granules or big fibers.

The production process of the proposed material consists of the following phases:

1. tires are shredded into chips, mostly 50 mm in size using a rotary shear shredder with
two counter-rotating shafts;

2. tire chips enter a granulator and are reduced to a size smaller than 10 mm while most
of the steel cords are liberated by a combination of shaking screens and wind shifters;

3. the rubber granules are selected according to their dimensions to fit the desired design
mix;
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4. polyurethane binder is added to the rubber granules mix until the mixture becomes
an homogenous compound;

5. pads of required size and shape are obtained by hot pressing or cold forging the com-
pound.

The compound is first leveled by a roller and then it is hot pressed together.

Figure 2.3: Tire Derived Material pad, Sample for lab testing.

For binding optimization, hot steam is used and pressure is applied until the polymer-
ization of the binder is complete. Cold forging requires the mixture to be pressured in a
mold. The industrial process previously described is particular feasible for the production
of low-cost devices: it requires low energy consumption and low labor demand. It is also
noted, that by changing rubber aggregates, binders, temperature and applied pressure, it is
possible to produce materials with different mechanical characteristics.

The elastomer used in the process is usually tire derived Styrene Butadiene Rubber
(SBR). A similar process can be applied to industrial leftovers made of Ethylene-Propylene
Diene Monomer (EPDM), a rubber used for the production of a wide variety of seals.

The physical properties of the TDMs are greatly influenced by the technologies used
in manufacturing. Tests have shown that the density and the mixture composition of the
material are the parameters that affect the most of its mechanical properties.

In this thesis, three different types of TDMs were considered, which were obtained by
using the same compositions (Figure 2.4) but three different densities. All the materials were
made by means of the cold forging process. A different density of the material was obtained
by pressing in the mold a different quantity of rubber, grains and fibers, and polyurethane
binder.
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Figure 2.4: Tire Derived Material pad, particular of composition 90% SBR fibers and 10%
grains.

Table 2.1 lists in details the different materials compositions and specifications.

Table 2.1: Tire Derived Material description

Material Density (kgm−3) Composition

500 500

90% SBR fibers 10% SBR grains600 600

800 800

2.1 Main applications of new Tire Derived Material

The vision of a new sustainable construction industry is motivating researchers and practi-
tioner in developing novel eco-friendly materials and utilizations. In this trend, the re-use of
rubber tires is gaining momentum, while the installation of low-cost TDM pads is spreading
to different construction engineering applications.

The main use of the TDMs is by far the application to railway engineering. In railway
engineering, the TDM is used instead of other elastomers to reduce the vibration transmitted
by the trains moving on the railway track [56]. Elastomers are included in railway track
with different configurations according to the transportation characteristics and surrounding
conditions. For instance, in traditional railway systems elastomers are placed underneath the
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ballast. The system successfully reduces the amount of ballast needed for the construction
of high performance tracks. In ballastless track system the material is placed under a thick
concrete slab. Thanks to a minimum maintenance requirement, the system is generally
adopted where there are exceptional maintenance difficulties, for example in tunnels. Also,
the life cost of this system can be lower than that of traditional railway tracks [23].

Figure 2.5: TDM antivibration mat for railway track application [43].

Successful applications of TDMs in railway track include a section of the Bologna-Firenze
and a section of the Roma-Napoli high speed railway in Italy. Also TDMs have been used in
many tramway track in Italy and metro railway track in Spain. In some application TDMs
are used in floor insulations to avoid transmission of either solid and acoustic vibration
in buildings (Figure 2.6). Few applications of TDMs consist of foundations insulation to
mitigate vibration from industrial buildings. In other applications TDMs are used for the
production of sound and noise barriers.
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Figure 2.6: TDM antivibration mat for floor insulation [43].

They are also considered for playground pavements and for other recreational facilities
such as race track or special sports applications [43]. Recently this kind of material has also
been used to make low-cost devices for structural isolation (Figure 2.7).

Figure 2.7: Prototypes of seismic Isolators made of TDM [14].
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Chapter 3

Nonlinear Continuum Mechanics

This chapter gives a brief overview into the theory of nonlinear continuum mechanics. The
necessary quantities and objects that will be used in the subsequent chapters are presented.
For a more complete introduction into this field the reader is referred to the classic text-books
of (nonlinear) continuum mechanics [66].

The notation used in the present work is inspired by the one used in Holzapfel [37], a
textbook which gives a good introduction into tensor analysis and solid mechanics.

3.1 Kinematics

Consider a body Ω0 in the (undeformed) reference configuration with material points P ∈ Ω0.
In a Cartesian coordinate system with basis vectors ei, i = 1; . . . ; 3, each point P is described
by its coordinates X (Figure 3.1).

Under an imposed load Ω0 experiences a deformation and maps into the deformed (cur-
rent) configuration Ω where the material points p are described by vectors x (X, t).
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φ (X,t)

Ω0

Ω
P.   . p

U (X,t)

e1 e2

e3

X
x(X,t)

Figure 3.1: Reference configuration of a body Ω0 and its mapping into a deformed configu-
ration Ω.

Displacement

The transition from the reference to the current configuration is described by the mapping
ϕ (X, t), called motion, such that x = ϕ (X, t); x is a function of X and the time t. The
displacement U (X, t) of a point X is therefore defined as U (X, t) = x (X, t) − X. In the
following the function arguments will be omitted if not necessary for clarity.

Deformation gradient

We now define the mapping of an infinitesimal line-element dX in the reference configuration
into an infinitesimal line-element dx in the deformed configuration.

dx =
∂ϕ

∂X
dX =

(
1 +

∂U

∂X

)
dX = FdX (3.1)

where 1 is the second order identity and F is called the deformation gradient. F can be
decomposed in

F = RU = vR (3.2)

where R is a proper orthogonal tensor describing a rotation and U and v are the right and left
stretch tensors, respectively. Thus, F describes the stretch and rotation of an infinitesimal
line element dX.
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Volume ratio

The determinant of the deformation gradient F is the volume ratio J, i.e. the ratio between
the volume of a deformed infinitesimal volume element and its volume in the reference
configuration:

J = det (F) = dV/dV0 (3.3)

Stretch measures

Since only stretches (but not pure rotations) contribute to the deformation energy a body
takes under a superimposed load, it is customary to define a right and left Cauchy-Green
deformation tensor C and b, respectively, that depend only on the stretches

C := FTF = UTU (3.4)

b := FFT = vvT (3.5)

Polar decomposition

A local motion can be decomposed into a pure stretch and a pure rotation. At each point
X ∈ Ω0 and each time t, we have the following unique polar decomposition of the deformation
gradient F:

F = RU = vR (3.6)

RTR = I (3.7)

U = UT (3.8)

v = vT (3.9)

In (3.7) U and v define unique, positive definite, symmetric tensors, which are called right
(or material) stretch tensor and left (or spatial) stretch tensor respectively. They measure
local stretching along their mutually orthogonal eigenvectors. The right stretch tensor U is
defined respect to the reference configuration while the left stretch tensor v is defined on the
current configuration.

We also have the following properties:

U2 = UU = C and v2= vv = b (3.10)

Principal stretches and directions

The deformation gradient F can be written in terms of its eigenvalues λi, the principal
stretches, and vectors ni and Ni, i = 1 . . . 3

F =
3∑
i=1

λini ⊗Ni (3.11)
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The Ni are vectors defined in the reference configuration while the ni are vectors defined in
the deformed configuration. It follows directly for the right and left Cauchy-Green deforma-
tion tensors

C =
3∑
i=1

λ2
iNi ⊗Ni (3.12)

b =
3∑
i=1

λ2
ini ⊗ ni (3.13)

from where can be seen that the eigenvalues of C and b are the squares of the eigenvalues
ni of the deformation gradient F.

Often materials tests, e.g. uniaxial tensile tests, result in strain/stress states where
the directions of the principal axes are knows. It is customary to describe such tests in
terms of the principal strain/stress values. The deformation gradient F, the right and left
Cauchy-Green deformation tensor C and b, respectively, might be split into an isochoric
(distortional) and a volumetric part, (•̄) and (•)vol, respectively [25]:

F = FvolF̄ = J1/3 1F̄ (3.14)

C = CvolC̄ = J2/3 1C̄ (3.15)

b = bvolb̄ = J2/3 1b̄ (3.16)

It can easily be demonstrated that the determinants of the deviators equal unity for all
deformations

det
(
F̄
)

= det
(
C̄
)

= det
(
b̄
)
≡ 1 (3.17)

3.2 Stress measures

If we imagine a body Ω in a (deformed) configuration where external loads F
(i)
ext ext are

applied. If one virtually cuts that body into two parts, Ω(1) and Ω(2) two cutting surfaces
∂Ω(1) and ∂Ω(2) can be defined. Internal forces F

(1)
int and F

(2)
int such that F

(1)
int = −F

(2)
int are

necessary to hold the two parts together (Figure 3.2).
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Figure 3.2: Virtual cut of a body Ω in two parts Ω(1) and Ω(2)

On the cutting surfaces ∂Ω(i) infinitesimal surface areas ds(i) with unit outward normals
ni can be defined. On each surface area a traction ti acts that has the physical dimension of
force per area. Here again holds n1 = −n(2) and t(1) = −t2 The integration of all traction
vectors over the cutting surface gives the internal forces:

Fi
int =

∫
∂Ω(i)

tidsi (3.18)

The tractions ti defined in the current configuration are called Cauchy traction vectors.
Pseudo traction vectors T, called first Piola-Kirchhof traction vectors, measure the current
force per unit area dS in the reference configuration. The tractions depend on the position,
outward normal and time

t = t (x,n, t) (3.19)

T = T (X,N, t) (3.20)

Cauchy’s stress theorem says that unique second-order tenors σ and P exist such that

t = σn (3.21)

T = PN (3.22)
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σ is called the Cauchy (or true) stress and P the first Piola- Kirchhhof(or nominal) stress.
By using the balance law of the angular momentum one can show that σ is symmetric (while
P is in general asymmetric but satisfies the condition PFT = FPT). Nanson’s formula,
ds = JF−TdS, which connects surface elements in different configurations (and especially
surface elements in the current and the reference configuration) yields a relation between the
two stress measures:

P = JσF−T (3.23)

The so called second Piola-Kirchhoff stress S has no direct interpretation but proves to be
very useful for many applications. Its relation to the previously introduced stress measures
is given by

S = JF−1σF−TS = F−1P (3.24)

3.3 Constitutive relations

Constitutive equations describe the relation between the strains undergone by a certain
material and the resulting stress.

Linear elasticity

The most simple and best known constitutive relation is the one for isotropic, linear elastic
materials. Hook’s law describes a linear relationship between the deformations (strains) ε
and the true stress σ:

σ = 2µε+ λtr(ε)1 (3.25)

The strain ε is defined as

ε =
1

2

(
5u+ (5u)T

)
(3.26)

The Lamé constants µ [MPa] and λ [MPa] are given in terms of the (more classic) Young’s
modulus E [MPa] and Poisson’s ratio ν [-]:

µ =
1

2

E

1 + ν
λ =

Eν

(1− 2ν) (1 + ν)
(3.27)

Green-elasticity for isotropic materials

Elastic materials that deform with negligible energy dissipation are called Green- or hy-
perelastic. For such materials the stress can be deduced from a strain energy density (the
Helmholtz free-energy per unit reference volume) by taking its derivative with respect to the
deformation (for notational ease, here and in the following, different strain energy functions
will be written with the same symbol Ψ):

P =
∂Ψ (F)

∂F
S = 2

∂Ψ (C)

∂C
(3.28)
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By the fact that Ψ should not depend on superimposed rigid body motions (material frame
indifference) it is possible to show that it must depend on the right stretch tensor U only.
Typically,Ψ is written as a function of the right Cauchy-Green deformation tensor C which
depends on U only:

Ψ = Ψ (U (F)) = Ψ (C (F)) (3.29)

The invariance of Ψ under transformations that respect the material symmetries (in case of
isotropic materials this are arbitrary rotations) leads to a representation that depends only
on the so called invariants of C or b:

Ψ = (I1 (C) , I2 (C) , I3 (C)) = (I1 (b) , I2 (b) , I3 (b)) (3.30)

with

I1 = tr (C) = λ2
1 + λ2

2 + λ2
3 (3.31)

I2 =
1

2

(
(C)2 − tr

(
C2
))

= λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 (3.32)

I3 = J2 = det (C) = λ2
1λ

2
2λ

2
3 (3.33)

From Ψ (I1, I2, I3) the first Piola-Kirchhoff stress P can be obtained by taking the derivative
with respect to the deformation gradient

P = 2Ψ,1 + 2Ψ,2 (I1F− 2FC) + JΨ,3F
−T (3.34)

where Ψ,i depicts the partial derivative of Ψ with respect to the i ’th invariant Ii. By the
multiplicative split of the right Cauchy-Green tensor C it is possible to write the strain
energy Ψ in an uncoupled form

Ψ = U (J) + Ψ̄
(
Ī1, Ī2

)
(3.35)

Here U is the response of the material to volume changes and Ψ depends only on the isochoric
part of the deformation. Ī1 and Ī2 are the invariants of the unimodular (isochoric) part C̄
of the right Cauchy-Green deformation tensor C:

Ī1 = tr
(
C̄
)

Ī2 =
1

2

((
tr
(
C̄
))2 − tr

(
C̄2
))

(3.36)

The first Piola-Kirchhoff stress reads in this uncoupled form 1

P = JU,JC
−1 + 2J−2/3Ψ̄,1

(
F− 1

3
I1F

−T
)

+ 2J−4/3Ψ̄,2

(
I1F−

2

3
I2F

−T − FC

)
(3.39)

1If the second Piola-Kirchhoff stress S is considered the extra terms reveal their nature:

S = JU,JC
−1 +

(
Ψ̄,1

∂Ī1
∂C̄

+ Ψ̄,2
∂Ī2
∂C̄

)
:
∂C̄

∂C
= (3.37)

= JU,JC
−1 + J−2/3P :

(
Ψ̄,1

∂Ī1
∂C̄

+ Ψ̄,2
∂Ī2
∂C̄

)
(3.38)

P is the projection tensor in the reference configuration which makes the respective stress components
deviatoric. This means that the stress components originating from a dependency on Ī1 or Ī2 are independent
on a volume change.
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For fully incompressible materials the constitutive pressure cannot be deduced from the
constitutive equations but has to be determined using the boundary conditions. In Equation
(3.39) the term including U,J has to be replaced by the unknown pressure p.

Polynomial models

The polynomial models are truncated Taylor-series of the isochoric strain energy density Ψ̄
around the initial state where I1 = 3[−] and I2 = 3[−] [58] [70]:

Ψ̄(Ī1, Ī2) =

=0︷ ︸︸ ︷
Ψ̄(Ī1 = 3, Ī2 = 3) +

∞∑
i+j=1

(
1

i!j!

∂i+jΨ̄

∂Ī i1∂Ī
j
2

)
Ī1=3,Ī2=3︸ ︷︷ ︸

=cij

·
(
Ī1 − 3

)i (
Ī2 = 3

)j
. (3.40)

The partial derivatives of Ψ̄ at the reference state together with the preceding constants are
treated as parameters cij [MPa]:

Ψ̄P =
N∑

i+j=1

cij
(
Ī1 − 3

)i (
Ī2 = 3

)j
+ U(J). (3.41)

Here again the volumetric energy U(J) was used. The small strain shear modulus µ equals
2(c10+c01) in this model. The expression for the first Piola-Kirchhoff stress of the polynomial
model PP is given in Table 3.1. As shown by Yeoh [85] the dependency on the second
invariant is generally much smaller than on the first, such that often only the latter is taken
into account, the reduced polynomial model:

Ψ̄RP =
N∑

i+j=1

cij
(
Ī1 − 3

)i
+ U(J). (3.42)

Some of the most often used models for isotropic materials are obtained by a limitation of
equation (3.42) to only the first terms. The Mooney-Rivlin model restricts N to one, such
that:

Ψ̄MR = c10

(
Ī1 − 3

)
+ c10

(
Ī2 − 3

)
+ U(J). (3.43)

An even simpler model is the Neo-Hookean where only the first term of the Reduced poly-
nomial model is considered:

Ψ̄NH = c1

(
Ī1 − 3

)
+ U(J). (3.44)

Remark Equations (3.43) and (3.44) are generalizations of the Mooney-Rivlin and Neo-
Hookean materials, respectively, for the compressible response. The original forms of these
materials were for the incompressible response.
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The Ogden model

Ogden proposed a different model that does not use the invariants I1 and I2 but the principal
stretches λi as arguments:

Ψ̄O =
2µi
α2
i

(
λ̄αi

1 + λ̄αi
2 + λ̄αi

3 − 3
)

+ U(J). (3.45)

The parameters µi [MPa] have the dimension of a pressure, the αi[−], i = 1,...,N, are di-

mensionless. The small strain shear modulus of this model is given by µ =
N∑
i=1

µi Note that

for the special case N = 1[−] and α1 = 2[−] the Neo-Hookean model (cf. Eq. (3.44)) is
regained. Table 3.6 shows the expression for the first Piola-Kirchhoff stress of the Ogden
model PO.

Michromechanical models

The most successful model based on michromechanical theory is the expression of a strain
energy function based on the non-Gaussian approach of the statistical molecular theory
proposed by Arruda and Boyce [3], which the fifth order approximation expression is:

Ψ̄A = µ
ci

λ2i−2
m

(
Ī1 − 3

)i
+ U(J). (3.46)

Where:

µ = µ0

(
1 +

3

5λ2
m

+
99

175λ4
m

+
513

875λ6
m

+
42039

67375λ8
m

)−1

(3.47)

c1 =
1

2
, c2 =

1

20
, c3 =

11

1050
, c4 =

19

7000
, c5 =

519

673750
(3.48)

In the formula µ0 is the initial shear modulus and λm is the locking stretch. This func-
tion, based on the non-Gaussian approach of the statistical molecular theory, was developed
starting out from a representative volume element where eight chains emanate from the cen-
ter of a cube to its corners for this reason it is also called the “8-chain” model. The Arruda
Boyce potential depends only on the first invariant I1, the physical interpretation is that the
eight chains, which undergo tensile stretching for all imposed deformations, are stretched
equally under the action of a general deformation state.

3.4 Elasticity tensors

The solution of finite (in-) elasticity problems requires often the use of numerical methods,
e.g. the finite element (FE) method. It achieves solutions that satisfy the weak form of
static or dynamic equilibrium by solving iteratively the nonlinear problem. Trial solutions
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are checked if they fulfill the equilibrium condition and if not a Newton-Raphson algorithm
is used to find a correction.

This strategy relies on the treatment of the linearized constitutive equations, which in-
volves the derivative of the stress with respect to the deformation measures, the so called
elasticity (or stiffness) tensors. The material elasticity tensor C, which is a fourth-order
tensor, is defined by

C = 2
∂S(C)

∂C
= 4

∂2Ψ(C)

∂C⊗ ∂C
(3.49)

The last equality in (3.49) holds only true for the case of a hyperelastic material. Numerical
methods often use the spatial elasticity tensor c which is obtained by applying a Piola
transformation on each slot of C:

cijkl = J−1FiIFjJFkKFlLCIJKL (3.50)

A user implementation of constitutive equations for use with a FE program needs good
knowledge on the required quantities. For the derivation of stiffness quantities for a cer-
tain material the reader is pointed to textbooks (e.g. Holzapfel [37] and others). Also for
experienced users it is advantageous to test an implementation with a benchmark program.

3.5 Elasticity tensor in terms of principal stretches

If we consider an isotropic hyperelastic material charcterized by the strain-energy function
Ψ = Ψ (λ1, λ2, λ3) with λ1, λ2, λ3 being the principal stretches. The spectral form of the
elasticity tensor C in this case, in the material description, is:

C =
3∑

i,j=1

1

λj

∂S

∂λj
Ni ⊗Ni ⊗Nj ⊗Nj+

+
3∑

i,j=1;i 6=j

Sj − Si
λ2
j − λ2

i

∂S

∂λj
(Ni ⊗Nj ⊗Ni ⊗Nj + Ni ⊗Nj ⊗Ni ⊗Nj) (3.51)

with the principal Piola-Kirchooff stresses:

Si = 2
∂Ψ

∂λ2
i

=
1

λi

∂Ψ

∂λi
i = 1, 2, 3 (3.52)

and the set Ni, i = 1, 2, 3 of orthonormal eigenvectors of the right Cauchy-Green tensor C.
They define principal referential directions at point X, with the conditions |Ni = 1| and
Ni ·Nj = δij. The proof of relation (3.51) can be found in Holzapfel [37]. In the same way
as (3.50) the spatial tensor of elasticities can be obtained as the push-forward operation of
C times a factor of J−1.
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3.6 Dissipative materials

Rubber-like materials and many others have inelastic behavior. In particular in this thesis
the viscoelastic behavior of TDM is studied based on the concept of internal variables. the
thermodynamic state of a thermoelastic material can be determined by the current value of
the deformation gradient F and the temperature T, these values that are directly measurable
are called external variable.

The current state of a dissipative material in addiction can be determined by a finite
number of internal variables. These variables, which we denote ξ, are not directly measurable
and are used to describe aspects of the internal structure of the materials associated with
irreversible dissipative effects. Inelastic strain or stress, dashpot displacement etc. can be
associated with an internal variable in viscoelasticity. The concept of internal variables
postulates that the current thermodynamic state of a dissipative materials is described by
the current values of the deformation gradient F the temperature T and the internal variables
ξ.

The concept of internal variable introduced here serve as a basis for the development of
the finite viscoelasticity theory that will be introduced in the following section.

Relaxation Creep and Hysteresis

For inelastic materials a non-equilibrium status that evolves with time is postulated to
describe their behavior. Two main irreversible process which govern the non-equilibrium
states are relaxation and creep.

Relaxation is the decrease of stress with time at fixed strain (Figure 3.3) while creep is
the phenomenon for which strain increases with time at fixed constant stress (Figure 3.4)
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Figure 3.4: Creep Process

The rate of decay of the stress and strain in a viscoelastic process is characterized by the
so-called relaxation time τr with dimension of a time while the parameter associated with
the creep is the so-called retardation time τc. A viscoelastic behavior of a material is also
characterized by hysteresis, in which the loading and the unloading path do not coincide. The
area in the center of a hysteresis loop (Figure 3.5) is the energy dissipated due to material
internal friction.
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Most of the models that are used to approximate the inelastic behavior or real nonlinear
inelastic materials are developed on the basis of internal variable.

In this work we do not consider the effects of temperature on the material. In chapter
6 it will be introduced a viscoelasticity thoery based on the multiplicative split of the free
energy into an equilibrium and a non-equilibrium part where the strain associated to the
non-equilibrium part represents the internal variable. Hence we postulate the Helmholtz
free-energy function as:

Ψ̄ = Ψ (F, ξ1, . . . , ξm) (3.53)

Evolution equation

Evolution equation is a relation which describes the evolution of the involved internal variable
ξi and the associated dissipation mechanism. The only restriction to the evolution equation
is the thermodynamic admissibility which is a statement concerning the irreversibility of
natural processes when energy dissipation is involved. It can be written in the form:

ξ̇i = χi (F, ξ1, . . . , ξm) , i = 1, . . . ,m (3.54)

The evolution of the system is described by χi, i = 1, . . . ,m which are tensor valued func-
tions of 1+m tensor variables. Every system tends towards the equilibrium state where the
external and internal variables reach equilibrium under constant stress or strain. Hence the
equilibrium is a limiting case and requires the introduction of an additional condition:

χi (F, ξ1, . . . , ξm) = 0, i = 1, . . . ,m (3.55)
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Table 3.1: 1st Piola-Kirchhoff stresses for the constitutive models

Polynomial Model
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Ī1 − 3

)i−1 (
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Chapter 4

Experiments on Tire derived
Materials

The physical properties of the TDMs are greatly influenced by the technologies used in
manufacturing. Tests have shown that the density and the mixture composition of the
material are the parameters that affect the most of its mechanical properties.

Due to the lack of information on this material, experiments are required to identify
an adequate form for a theoretical stress-strain curve. Here we study the rate-independent
behavior of the material using hyperelastic constitutive models.

The principal application of TDM is in railway track system where recycled rubber pads
are mainly subjected to compression loads. Therefore, for a first assessment of the material’s
mechanical characteristics, compression tests were performed. Under compression, as the
aspect ratio of the pads is large, the main quota of the deformation is due to an high
compressibility of the rubber. For this reason, volumetric tests were also conducted.

Moreover, as the pads work as antivibration material, the assessment of their overall
behavior is crucial. For this reason, and for the lack of information on the material perfor-
mances, an extensive experimental campaign was conducted.

Experiments were carried out in compression, tension and shear underlining the benefits
and the limits of the low-cost elastomeric material. Furthermore, volumetric tests were
performed in order to evaluate the bulk modulus of the material.

4.1 Uniaxial tension tests

A set of tensile tests were performed to determine the tensile strength of the TDM. ASTM
D412 [5] describes the procedures to evaluate the uniaxial properties of rubber.

According to the standard, since the experiment is intended to load the specimen up
to failure, dumbbell shaped samples should be used to prevent failure of the rubber in the
clamps. Therefore, specific size requirements are described in detail in order to compare the
mechanical behavior of the different materials.
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Due to the fact that it was exceptionally difficult to manufacture TDMs in a dumbbell
shape and also there was no need to make reference to any specific size requirements, tests
were performed on straight specimens. The length of all the tested specimens was Ltot=350
mm. The width and the thickness were 20 mm (Figure 4.1).

Figure 4.1: Specimen used in tension tests

The specimen clamps give an indeterminate state of stress and strain in the region sur-
rounding the clamps (due to gripping). Considering that, the tensile strain of the specimen
(∆L/L0) was measured by means of a non-contacting strain measuring device away from
the extremities, where a pure tension strain state occurred (L0=100mm). The force was
measured by a load cell.

The tests were carried out using displacement control at a constant rate of velocity until
failure, with the rate of displacement of 5 mm/min (strain rate of 8.3 · 10−4sec−1). Tests
were performed on a set of three specimens for every density.

Table 4.1: Mechanical properties of TDM in tension

Material Ultimate elongation Avg. ( %) Tensile failure stress Avg. (MPa)

500 0.75 0.18

600 0.87 0.46

800 0.95 0.8

Table 4.1 indicates that the tensile strength of the TDM is much lower when compared
to that of natural rubber and depends significantly on the density of the compound, being
higher for higher densities and also depending on function of the inert shapes. Also, the
ultimate deformation of TDMs is in the range from 0.4-1% (Figure 4.2).
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Figure 4.2: Tension tests TDMs

This is some orders of magnitude lower than that of natural rubber (100 − 600%). It
is evident to see that no devices subjected to tensile loads should be produced using this
low-cost material. A visual inspection of the tested samples clarified that the polyurethane
binder failed at the grains interface, without any failure surface dividing the grains. None of
the grains were broken and only few fibers were.

4.2 Compression tests

Gathering specimens with the same cylindrical shape, 15 mm height and 27 mm diameter,
were cut off from a TDM mat and were tested under homogeneous compression.

In order to obtain specimens of uniform diameter a cork borer was used. It had a thin
wall thickness of ≈ 0.5 mm and the cutting edge at the center of the cork borer wall. Also,
the cork borer was lubricated with detergent before cutting the sample in order reduce the
strains developing in the elastomer as the borer becomes embedded in the rubber, which
may produce tapered samples.

Tests were carried out using a computer controlled servo hydraulic testing machine with
a 15 kN load cell. The specimens were subjected to a three cycles of load and unload at 9
mm/min (strain rate of 0.01s−1) up to a strain of 50% prior to the actual test. This was
necessary as the TDMs showed a stiffening behavior that tended to stabilize after a few
cycles with most of the stiffening occurring during the first cycle.
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It is deemed that this phenomenon can be mainly accounted on the presence of voids, in
fact, TDMs tend to get compacted when they are loaded, in a measure strictly connected
to the material density and regardless of the inert shape. As matter of fact residual strains
occurred after the preloading cycles with height changes of the samples ranging from about
13% for the low densities to almost no height change for the high densities (Figure 4.3-4.5).
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Figure 4.3: Preload cycles on TDM 500 (N=cycle number)
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Figure 4.4: Preload cycles on TDM 600 (N=cycle number)
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Figure 4.5: Preload cycles on TDM 800 (N=cycle number)

The stroke rate of the actuator for the compression tests ranged from 9mm/min (strain
rate of 0.001s−1) to 90 mm/min (strain rate of 0.1s−1). Displacements up to a strain of
80% were applied in the vertical direction. The corresponding force in the specimens were
obtained from the load cell.

In order to get homogeneous compression the loaded ends of the specimen were required to
slide freely. For this reason, a frictionless contact between the plates and the sample surfaces
was needed. The frictionless constraints were obtained by placing Polytetrafluoroethylene
(PTFE) sheets with lubricant on the top and bottom of the sample.

During the tests from a visual inspection the unloaded surfaces seemed to not bulge under
the compression load.

However, a check on the stress field has been done by testing two specimens with different
shape factor S. The shape factor, S, is a dimensionless measure given by the ratio of the

loaded area over the unloaded area of the sample. For a cylindrical specimen S =
r

2t
where

r is the radius and t is the thickness of the specimen. The first specimen had the same
dimension as the one tested in compression, which was 27 mm in diameter and 15 mm in
height leading to a shape factor S = 0.45. The second specimen was cut from a mat of 25
mm in height keeping the diameter of 27 mm and leading to a shape factor S = 0.27.
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Figure 4.6: Comparison between two specimens of TDM 500 with different shape factors S
under compression.

The responses for the two specimens were very close to each other with a variation
about the mean of 3.2% (Figure 4.6). This example demonstrated that, since the stress
strain response is a strong function of the shape factor for bonded specimens [26] and it is
independent of the shape factor for homogeneous compression, samples were subjected with
good approximation to an homogeneous compression stress field [12].

Tests were performed on a set of three specimens for every density. Compression tests
showed that the compression strength of the TDM was lower when compared to the natural
rubber, depending on the density of the compound and it is higher for higher densities
(Figure 4.7-4.9).
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Figure 4.7: Compression tests at different strain rate TDM 500
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Figure 4.8: Compression tests at different strain rate TDM 600
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Figure 4.9: Compression tests at different strain rate TDM 800

Table 4.2: Mechanical properties of TDM in compression

Material Esec Avg. Esec Avg. Esec Avg. Esec Avg.

10% strain (MPa) 30% strain (MPa) 50% strain (MPa) 80% strain (MPa)

500 0.44 0.51 1.01 6.10

600 0.53 0.59 1.08 6.25

800 1.26 1.51 2.42 7.5

Table 3 shows the secant compression modulus Esec for the different materials at different
strain levels.

4.3 Relaxation tests and optical measurement

The need of evaluating the nonlinear behavior of TDM in compression suggested to perform
Relaxation test in compression. The tests were performed at UC Berkeley.

In rubbers, the presence of a significant, but unknown extent of material viscosity makes
it difficult to specify a loading rate that is slow enough for obtaining the rate-independent
response. To overcome this problem, a multi-step relaxation test was employed in this study.
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This approach eliminates the necessity of performing uniaxial test trials in specifying a slow
loading rate.

In the present study, TDMs with different densities were tested up to 70% of strain
levels. Figure 4.3 shows the applied stretch and the resultant stress histories of the tests.
It is observed that at the end of each relaxation interval of 600 sec duration, each stress
history converges to an almost constant state in all specimens. The corresponding force in
the specimens were obtained from the load cell. In order to get homogeneous compression
the loaded ends of the specimen were required to slide freely. For this reason, a frictionless
contact between the plates and the sample surfaces was needed. The frictionless constraints
were obtained by placing Polytetrafluoroethylene (PTFE) sheets with lubricant on the top
and bottom of the sample. Tests were performed on a set of three specimens for every
density.In every step the strain level is increased of 0.05 at strain rate ε = 0.001 s−1 up to
0.7 strain level. In between every step there is a 10 mins interval.
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Figure 4.10: Strain history relaxation test.

The digital images were processed using the image processing toolbox in MATLAB. By
using the MATLAB command im2bw, the original images were converted to gray scale,
which is an intensity image. The gray scale images were then converted into black and white
binary images by thresholding; the output binary image has values of 0 (black) for all pixels
image with intensity levels less than the threshold, and 1 (white) for all other pixels. Based
on visual inspection of the original and processed images, the threshold level was chosen to
be 0.87.

Figure 4.3 shows the images taken with the camera and the same images after processing.
The white area, measured in pixels, is the region occupied by the sample, and was determined
for each image. Pictures were taken at the end of every relaxation period with a digital
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camera mounted on a tripod. The digital images were processed using the image processing
toolbox in Matlab [53].

0%

35%

70%

Figure 4.11: Original image from the digital camera vs Image after processing for TDM 600.

The vertical strain in each image was specified in the experiment. TDM for their com-
position are very difficult to cut and usually the samples have not a straight edge. For these
reasons using the processed images we evaluate the average width of the sample as:

ŵ =
A

h
(4.1)

And the average lateral strain as:

ε̂22 = ε̂33 =
ŵ − ŵ0

ŵ0

(4.2)
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Figure 4.12: Relaxation tests TDM 500

Figure 4.13: Relaxation tests TDM 600
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Figure 4.14: Relaxation tests TDM 800

The results were compared with the ones obtained during the compression tests described
in the previous paragraph, we found that the fit of the relaxation points overlap the results
of the compression tests suggesting that the material in both cases is close to the relaxed
state.

4.4 Shear tests

Shear tests were carried out at Tun Abdul Razak Research Centre in Hertford (UK). The
samples were tested with the classical dual lap simple shear tests configuration commonly
used in the tire industry.

The test consisted of three steel plates with two pads bonded between them, in testing
the two external plates were clamped to the stationary part of the test fixture, and the single
central plate was displaced by the machine, Figure 4.15 shows the complete test setup.
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Figure 4.15: Simple shear tests setup

This test procedure does not allow the measurement of compressibility and it is not failure
oriented [16].

To avoid any bending effect, the samples used for shear tests were of rectangular shape
of 90 mm x 50 mm planar dimensions and 20 mm in thickness [17]. Samples were sheared
at shear strain amplitude of 100% of the initial rubber thickness at the deformation rate of
8 mm/min (strain rate of 6.7 · 10−3s−1). Tests were performed on a set of three specimens
for every density.
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Figure 4.16: Shear test results

As clear from Figure 4.16, tests showed that specimens with higher density have higher
shear stiffness with a secant shear modulus in the range from 0.4-1.1 MPa for a deformation
of 100% .

Table 4.3: Mechanical properties of TDM in shear

Material Gsec Avg. Gsec Avg. Gsec Avg. Gsec Avg.

10% strain (MPa) 33% strain (MPa) 66% strain (MPa) 100% strain (MPa)

500 0.38 0.38 0.30 0.24

600 0.42 0.40 0.40 0.38

800 1.00 0.95 0.80 0.40

Table 4 shows the values of the secant shear modulus Gsec for different values of strain.
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4.5 Volumetric tests

Volumetric tests involved the compression in the axial direction of lubricated cylinder spec-
imens within a rigid cylinder (Figure 4.17).

Figure 4.17: Volumetric test scheme

This test required an easy to implement testing apparatus, but has some disadvantages
which can make the results inaccurate.

The first problem is connected to the presence of friction at the cylinder-specimen inter-
face. This has to be negligible in order to consider the resulting deformation homogeneous.

The second problem is connected to the capacity of reproducing an hydrostatic stress
field. During the test, as the sample is loaded, its lateral surfaces tend to bulge. The
presence of the steel cylinder acting as a constrain generates a stress field on the contact
surfaces of the side as well as the top and bottom of the sample. As a result, the stress
field is quasi-hydrostatic as the stress on the lateral surfaces is lower than that at the top
and bottom. Even if both volumetric and deviatoric deformations are present, for natural
rubber, the deviatoric stress usually is much smaller than the hydrostatic stress. This is due
to a bulk modulus that is several orders of magnitude higher than the shear modulus [39].
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Figure 4.18: Volumetric test apparatus

Conversely, TDMs for low applied pressure, are more compressible than natural rubber. For
this reason the values of compressibility in this range of pressure might be inaccurate.

A cylinder of recycled rubber compound of nominal height equal to 25 mm and a diameter
of 27 mm was cut from a TDM mat with the same procedure as the sample used previously
for compression tests.



CHAPTER 4. EXPERIMENTS ON TIRE DERIVED MATERIALS 43

Figure 4.19: Volumetric tests samples

The sample was lubricated and fitted tightly into a thick–wall steel cylinder with a close
fitting piston (Figure 4.19). The specimens were subjected to a three cycles of load and
unload at 15 mm/min (volume ratio rate of 0.01s−1) up to a strain of 50% prior to the
actual test. During the test the force was applied on top of the piston using a MTS810 test
machine with a 500kN load cell at a rate of 10 mm/minute (volume ratio rate 6.7 · 10−3s−1).

Displacement was measured by an auxiliary Linear Variable Displacement Transducer
(LVDT) that was placed directly between the platens.

A smooth passage of the piston in the cylinder was ensured by using a spherical hinge
as a contact point between the piston and the loading plate. This procedure is suggested in
different references(e.g.,[29]).

Tests were performed on a set of three specimens for every density. The force deflection
plot for each of the tested materials is approximately linear up to a certain value of force,
then the stiffness increases holding it to an almost constant value (Figure 4.20).

Table 4.4: Bulk Modulus of TDM

Material Ksec1 Avg. Ksec2 Avg.

(MPa) (MPa)

500 6.7 297

600 9.0 315

800 7.9 281

The secant bulk modulus in the region below the sharp upturn Ksec1 was calculated at
about 0.8 of volume ratio J. The secant bulk modulus above the sharp upturn Ksec2 was
obtained from a tangent to the curve at a strain of about 0.7-0.75 of volume ratio J.
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Figure 4.20: Volumetric tests results TDM 500
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Figure 4.21: Volumetric tests results TDM 600
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Figure 4.22: Volumetric tests results TDM 800
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Chapter 5

Hyperelastic models

5.1 Conventional Hyperelastic models

Four conventional hyperelastic constitutive models including slight compressibility have been
chosen to fit the experimental data from TDM in compression, shear and volumetric tests.
These models have been chosen because they are representative, but not exhaustive, of the
widely used hyperelastic models in Finite Element software.

The constitutive model considered are: the one proposed by Arruda and Boyce (3.46),
Mooney-Rivlin (3.43), Ogden (3.45) and a particular forms of the polynomial model that
can be obtained setting some coefficient to zero (3.42). If all Cij with j = 0 are set to zero
we get the reduced polynomial form which depends only on the first strain invariant.

Uniaxial tension tests data were discarded due to the low strength and ultimate deforma-
tion of TDMs in this regime of stress. Moreover not one of the chosen hyperelastic models
was able to fit the three other test data together, therefore there is a necessity to find a new
model to describe the behavior of TDMs for both compression and shear deformation.

The values of the hyperelastic parameters were evaluate considering the compression tests
with strain rate of 6.7·10−3s−1 which is also the strain rate at which the volumetric tests were
performed. Following the four constitutive models are presented. Many different constitutive
models have been proposed to reflect deviations from incompressibility on assuming that the
material is homogeneous, isotropic and hyperelastic. The performance of each constitutive
model in representing the compression and volumetric response of the material is presented
in Figs. 5.1 and 5.4 respectively.
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Figure 5.1: Error Constitutive models compression TDM 500
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Figure 5.2: Error Constitutive models compression TDM 600
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Figure 5.3: Error Constitutive models compression TDM 800
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Figure 5.4: Error Constitutive models volumetric TDM 500
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Figure 5.5: Error Constitutive models volumetric TDM 600
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Figure 5.6: Error Constitutive models volumetric TDM 800

The error of a constitutive equation was defined as follows for each kind of homogeneous
loading as:

Error =
σexp − σmod

σexp

x100 (5.1)
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where σexp is the experimental stress and σmod is the simulated stress for the evaluated model.
Compression tests at high strain level are relatively well depicted by all constitutive

equations. The comparison shows the inadequacy of the hyperelastic models in representing
the stress strain response at low strain level (up to -0.1). Moreover the Arruda and Mooney
hyperelastic models describe better the behavior of TDM with higher densities because, due
to the lower presence of voids, they behave more like natural rubber in compression.

Indeed Ogden and Reduced Polynomial model have the same performance for all the
densities since polynomial of higher degree can fit better the behavior of lower densities
material for which there is a longer softening path on the strain stress curve at low strain.

On the other hand the comparison with volumetric test results clearly indicates that
none of the hyperelastic models are able to fit the data with good accuracy. For Arruda and
Mooney model this is due to the form of the volumetric term of the strain energy function
that can predict only a linear relation between pressure and volume change [39]. Ogden and
Reduced Polynomial give better performances with errors less than 50% for almost all the
volume ratio range.

5.2 Hencky strain

Logarithmic strain, typically referred as a ”true strain”, was proposed for the first time by
Ludvik [52] to measure the extension of a rod of length l and was defined via the integral:

εtrue

∫ l

l0

dl

l
= ln

(
l

l0

)
. (5.2)

Today is also named after Hencky [33] who extended the measure to a three dimensional
analysis by defining the logarithmic strains for the three principal directions.

The one dimensional nominal strain on the other hand is given by:

ε =

(
l − l0
l0

)
. (5.3)

The Hencky strain satisfied the additivity of strain even for large deformations, it also has
many interesting properties, one of the most important is that it allows to realize a fully
uncoupled split of the volumetric and the deviatoric deformation.

Moreover Hencky proposed a strain energy function which, as demostrated by Anand
[2], is in good agreement with experiment for a wide class of materials for moderately large
deformations:

Ψ(F)H := Ψ̂H(U) := µ || dev3 log U||2 +
κ

2
[tr(logU)]2 (5.4)

The introduction of the quadratic Hencky strain energy based on the logarithmic strain
tensor log V is a milestone in the development of nonlinear elasticity theory in the first half
of the 20th century. Since the original manuscripts are written in German, they are not easily
accessible today.
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5.3 New strain energy function

The most common hyperelastic material models used in Finite Element codes failed in de-
scribing TDMs in different deformation modes with a unique set of parameters [57].

Fitting experimental data of elastomeric solid to polynomial strain energy function is
not an easy question and can lead to high-orders polynomials with parameters that may not
have any physical meaning [67].

Here logarithmic measure are used to describe the mechanical behaviour of the TDMs.
In a series of articles [63, 64, 61, 62] it is investigate a family of isotropic volumetric-isochoric
decoupled strain energies

F 7→ ΨeH(F) := Ψ̂eH(U) :=


µ

k
ek ‖ devn logU‖2 +

κ

2 k̂
ek̂ [tr(logU)]2 if det F > 0,

+∞ if det F ≤ 0,

(5.5)

based on the Hencky-logarithmic (true, natural) strain tensor log U, where µ > 0 is the
infinitesimal shear modulus, k = 2µ+3λ

3
> 0 is the infinitesimal bulk modulus with λ the first

Lamé constant, k, k̂ are dimensionless parameters, F = ∇ϕ is the gradient of deformation,
U =

√
FTF is the right stretch tensor and devn log U = log U− 1

n
tr(log U)·11 is the deviatoric

part of the strain tensor log U.
In this paper a variation to the volumetric part of (5.5) is proposed to describe the

mechanical behavior of TDM:

F 7→ ΨeHm(F) := Ψ̂eHm(U) :=



µ

k
ek ‖ devn logU‖2 +

κ

2 k̂
ek̂ [tr(logU)]2+

+
κ1

mk̃
ek̃ ([tr|logU|2])

m
2

if det F > 0,

+∞ if det F ≤ 0,

(5.6)

where k1 is the value of the bulk modulus for large deformations and k̃ is a dimensionless
parameters.

The main advantage of using the exponentiated Hencky energy comes from the fact
that the shear and bulk modulus are already uniquely determined in the infinitesimal strain
regime, while k1 is dimensionless constants which determine the nonlinear response, without
interfering with µ and k.

Additionally to the well-known properties of the Henky strain energy function, the
exponentiated-Hencky strain energy has more attractive properties. Recently was found
that the Hencky energy (not the logarithmic strain itself) exhibits a fundamental property.
By purely differential geometric reasoning, in forthcoming papers [59, 60, 65] (see also [9, 49])
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it will be shown that

dist2
geod

(
(det F)1/n · 11, SO(n)

)
= dist2

geod,R+·11
(
(det F)1/n · 11, 11

)
= | log det F|2,

dist2
geod

(
F

(det F)1/n
, SO(n)

)
= dist2

geod,SL(n)

(
F

(det F)1/n
, SO(n)

)
= ‖ devn log U‖2, (5.7)

where distgeod is the canonical left invariant geodesic distance on the Lie group GL+(n)
and distgeod,SL(n), distgeod,R+·11 denote the corresponding geodesic distances on the Lie groups
SL(n) and R+ · 11, respectively (see [60, 65]). For small elastic strains, ΨeH approximates
the classical quadratic Hencky strain energy ΨH, which is not everywhere rank-one convex,
moreover in [63], we have also pointed out that the quadratic Hencky energy has some other
serious shortcomings.

These points being more or less well-known, it is clear that there cannot exist a general
mathematical well-posedness result for the quadratic Hencky model ΨH. Of course, in the
vicinity of the identity, an existence proof for small loads based on the implicit function
theorem will always be possible. All in all, the status of Hencky’s quadratic energy is put
into doubt. This state of affairs, on the one hand the preferred use of the quadratic Hencky
energy and its fundamental property (5.7), on the other hand its mathematical shortcomings,
motivated our search for a modification of Hencky’s energy.

The best candidate for now is ΨeH defined by (5.5). Up to moderate strains, for principal
stretches λi ∈ (0.7, 1.4), our new exponentiated Hencky formulation (5.5) is de facto as
good as the quadratic Hencky model ΨH and in the large strain region it improves several
important features from a mathematical point of view. The main features that have been
shown in [63] is that the exponentiated Hencky energy (5.5) satisfies the LH-condition (rank-
one convexity) in planar elasto-statics, i.e. for n = 2. In the second part of the series of
papers [64] it is aimed to complete this investigation by showing that the planar elasto-
static formulation is, in fact, polyconvex and satisfies a coercivity estimate which allows us
to show the existence of minimizers. Unfortunately, some aspects of the three-dimensional
description remain open, since the formulation is not globally rank-one convex.

However, in the three-dimensional case, results indicating the loss of ellipticity only
for extreme distortional strains suggest that the coupling with plasticity is most natural:
permanent deformation sets in, based on a criterion of distortional energy (Huber-Hencky-
von Mises-type) ‖ dev3 τeH‖2 ≤ 2

3
σ2
y with τeH the Kirchhoff stress tensor, and former results

suggest that ΨeH(Fe) never reaches the non-elliptic domain in any elasto-plastic process.
This is in sharp contrast to the loss of ellipticity of the quadratic Hencky energy ΨH, which
is not related to the distortional energy alone. As it turns out, for the overall non-elliptic
energy ΨeH (in three dimensions) plasticity provides a natural relaxation mechanism, which
prevents loss of ellipticity in the elastic domain.

Moreover, in the above defined elastic domain characterized by ‖ dev3 τeH‖2 ≤ 2
3
σ2
y , the

constitutive relation log Be 7→ σ(log Be) remains monotone (Be = FeF
T
e , i.e. the true-

stress-true-strain monotonicity condition (TSTS-M+) is also satisfied in this domain (see
[63, 81, 82, 44]), as observed in experiments.
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Beside the above mathematical properties, the exponentiated Hencky energy (5.5) have
also the following attractive constitutive properties [63] beyond those of the quadratic Hencky
energy: planar pure Cauchy shear stress produces biaxial pure shear strain and ν = 1

2

corresponds to exact incompressibility; there exists a special (k = 2
3
k̂ ) three parameter

subset of energies of our family ΨeH such that uniaxial tension leads to no lateral contraction
if and only if the Poisson’s ratio ν = 0, as in linear elasticity. Moreover, some other properties
(see [63]) such as uniqueness in the hydrostatic loading problem [66, 18] confirm the status
of the exponentiated Hencky formulation as a useful energy in plane elasto-statics and give
a new perspective in three dimensions.

For the exponentiated-Hencky strain energy proposed, the Kirchhof stress tensor is given
by:

τ = DlogUΨeHm(logU) = 2µ ek ‖ dev3 logU‖2 · dev3 logU + κ ek̂ [tr(logU)]2tr(logU)+ (5.8)

+ κ1 e
k̃ [tr|logU|2]

m
2 |tr(logU)|m

tr(logU)
· 1 (5.9)

while the Cauchy stress tensor is:

σ = e−tr(logU)τ = 2µ ek ||dev3logU||2−tr(logU) · dev3 logU + κ ek̂ [tr(logU)]2−tr(logU)tr(logU)+

κ1 e
k̃ [tr(logU)2]

m
2 −tr(logU) |tr(logU)|m

tr(logU)
· 1 (5.10)

Following we consider three deformation modes in which the TDM has been tested.

5.4 Comparison with experimental data

Simple shear

Shear tests were carried out at Tun Abdul Razak Research Centre in Hertford (UK). The
samples were tested with the classical dual lap simple shear tests configuration commonly
used in the tire industry. Samples were sheared at shear strain amplitude of 100% of the
initial rubber thickness at the strain rate of 6.7 · 10−3s−1. Tests were performed on a set of
three specimens for every density.

In simple shear the direction of applied displacements does not coincide with the direction
of the principal stretches; rather it involves a rotation of axes. The polar decomposition of
F = R · U gives the right Biot stretch tensor U =

√
FTF of the deformation and the

orthogonal polar factor R:

U =
1√
γ2 + 4


2 γ 0

γ γ2 + 2 0

0 0
√
γ2 + 4

 (5.11)
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R =
1√
γ2 + 4


2 γ 0

−γ 2 0

0 0
√
γ2 + 4

 (5.12)

U can be orthogonally diagonalized to find:

logU =
1√
γ2 + 4


−γlogλ1 2logλ1 0

2logλ1 γlogλ1 0

0 0 0

 (5.13)

Where λ1 =
1

2

(√
γ2 + 4 + γ

)
is the first eigenvalue of U.

Simple shear does not imply change in volume for this reason det F = 1 and tr(logU) = 0
then the Kirchhoff stress τ from equation (5.8) is given by:

τ (logU) = 4µ e
2 k log2

1

2

(√
γ2+4+γ

)
·

log

[
1

2

(√
γ2 + 4 + γ

)]
√
γ2 + 4

(5.14)

TDMs behave like a granular material in which particle rotation determinates the response.
For this reason, the shear modulus for infinitesimal deformation is high due to the initial
interparticle rolling resistance. This phenomenon is more marked as the density increases.

Here the value of µ is evaluated when the effect of the initial resistance vanishes Figure 5.7.
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Figure 5.7: Comparison between shear stress corresponding to exponentiated Hencky energy
Ψ

eHm
, equation (5.14), and experimental tests for TDM 500.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Shear strain γ

S
he

ar
 s

tr
es

s 
σ 12

 (
M

P
a)

 

 
test

WeHm

Figure 5.8: Comparison between shear stress corresponding to exponentiated Hencky energy
Ψ

eHm
, equation (5.14), and experimental tests for TDM 600.
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Figure 5.9: Comparison between shear stress corresponding to exponentiated Hencky energy
ΨeHm, equation (5.14), and experimental tests for TDM 800.

We have also compared [63] the simple shear stress σ12 corresponding to the amount of
shear for the energies ΨeHm,ΨeH, for the Mooney-Rivlin energy and for Neo-Hooke energy
and we have obtained that our results are more closely related to the experimental data for
the simple shear deformation of vulcanized rubber, measured in 1944 by L.R.G. Treloar [76]
and in 1975 by L.R.G. Treloar and D.F. Jones [45] (see also [77, 78]).

Compression

From equation (5.10), if we consider s the value of the Cauchy stress, by projection on the
Lie-algebras sl(n) and 1 · R,we have:

2µ ek || dev3 logU||2−tr(logU) dev3 logU = dev3 σ =


2

3
s 0 0

0 −1

3
s 0

0 0 −1

3
s

 (5.15)
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If we consider the folllowing ansatz for U:

U =


ea+ 1

3
x 0 0

0 e−
1
2
a+ 1

3
x 0

0 0 e−
1
2
a+ 1

3
x

 = e
1
3
x


ea 0 0

0 e−
1
2
a 0

0 0 e−
1
2
a

 (5.16)

equation (5.15) becomes:

3µ ek
3
2
a2−xa = s, (5.17)

Which in terms of Poisson’s coefficient ν and Young’s Modulus E > 0 gives:

3

2

E

1 + ν
ek

3
2
a2−xa = s, (5.18)

where the linear Poisson’s coefficient is ν = − ε̂22

ε11

with ε11 and ε̂22 evaluated for infinitesimal

deformation.

Table 5.1: Linear Poisson’s coefficient and Young’s Modulus

Material ν E (MPa)

500 0.031 1.10

600 0.033 1.05

800 0.041 2.49

We define the non linear Poisson’s coefficient as negative ratio of the lateral extension
and axial contraction measured in the logarithmic strain we have:

ν̂(s) = −(logU)22

(logU)11

=

1

2
a− 1

3
x

a+
1

3
x

(5.19)

The linear Poisson’s ratio for many materials is positive and not strain sensitive until nonelas-

tic effects intervene [74, 46]. The graphic of the map
s

E
7→ ν̂(

s

E
) is tangent to the line

ν̂(0) = ν, decreases for positive (linear) Poisson’s ration, while for negative (linear) Poisson’s
ratio the map increases.

Moreover, the nonlinear Poisson’s ratio ν̂ remains positive whenever ν = ν̂(0) is positive
and it remains negative whenever ν is negative.
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Figure 5.10: Non linear Poisson’s coefficient ν̂ evaluated during compression tests. Fit of
experimental data (scattered line).

In view of these definition we have:

a =
2

3

1 + ν̂

1− 2ν̂
x (5.20)

s =
1 + ν̂

1− 2ν̂

E

1 + ν
e
k

2

3

 1 + ν̂

1− 2ν̂

2

x2−x

x (5.21)
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Figure 5.11: Comparison between compression stress corresponding to exponentiated Hencky
energy ΨeHm, equation (5.21), and experimental tests for TDM 500.
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Figure 5.12: Comparison between compression stress corresponding to exponentiated Hencky
energy ΨeHm, equation (5.21), and experimental tests for TDM 600.
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Figure 5.13: Comparison between compression stress corresponding to exponentiated Hencky
energy ΨeHm, equation (5.21), and experimental tests for TDM 800.

Hydrostatic compression

Volumetric tests involved the compression in the axial direction of lubricated cylinder spec-
imens within a rigid cylinder.

Even if both volumetric and deviatoric deformations are present, for natural rubber, the
deviatoric stress usually is much smaller than the hydrostatic stress. This is due to a bulk
modulus that is several orders of magnitude higher than the shear modulus.

Conversely, TDMs for low applied pressure, are more compressible than natural rubber.
For this reason the values of compressibility in this range of pressure might be inaccurate.
During the test the force was applied on top of the piston using a MTS810 test machine
with a 500 kN load cell at a volume ratio rate 6.7 · 10−3s−1. Tests were performed on a set
of three specimens for every density.

For rubber materials, the volumetric part of the strain energy function most commonly is
assumed to be quadratic, which gives a linear relation between pressure and volume change.
This is in good agreement with experimental data in the neighborhood of the identity F = 1.
However, rubber under large pressure allows for an appreciable volume change [8]. This can
be seen by experimentally determined equations of states (EOS), relating the mean stress

(the pressure)
1

3
tr(σ) to the relative volume change det F.

Considering the exponentiated Hencky energy(5.5), the analytical expression of the pres-

sure
1

3
tr(σ) is in concordance with the classical Bridgman’s compression data for natural

rubber as reported in [8, page 497, Fig. 4.47] with k = 2.5 · 109 Pa = 2.5 GPa.
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Tabor [75] showed that the bulk modulus of rubber is of the order 1 GPa and found the
value of the bulk modulus k to be about 2 GPa. Recently, Zimmermann and Stommel [84]
found determined experimentally that k is of the order k = 2.5 GPa, which can be found in
the literature as well (see e.g. [40]).

On the first view, certain threshold values seem unreachable by compression, unless an
infinite amount of energy is spent. However, this impression is misleading: stresses and
energy remain finite for any stretch V ∈ PSym(3). Therefore, in our model the assumption
of limited chain extensibility is not needed.

In the neighbourhood of the identity F = 11, the quadratic Hencky energy gives also good
results, while in large compression the values obtained using the quadratic Hencky energy
are not in agreement with the experimental data. Moreover, the EOS relation corresponding
to the quadratic Hencky is not invertible for det F > e and it is not able to predict the

response for
1

3
tr(σ) >

1

e
[81].

TDMs show an important volume change up to a certain value of the pressure then there
is a sharp increasing in stiffness. The value of the bulk modulus k before the stiffening is very
small due to the presence of voids in the material then it increases reaching values similar to
the rubber (Table III). For this reason a different form of the volumetric part of the strain
energy is proposed (5.6) to take into account of the large non-linear response.

Using the experimentally determined equation of states, relating the pressure
1

3
tr(σ) to

the relative volume change det F we have:

1

3
tr(σ) =

d

dt

[
κ

2 k̂
ek̂ [(logt)]2 +

κ1

mk̃
ek̃ (|log t|2)

m
2

]
t=detF

(5.22)

1

3
tr(σ) =

[
κ ek̂(logdetF)2 ·

(
log detF

detF

)]
+

[
κ1 e

k̃[|logdetF|2]
m
2 ·

(
|logdetF|m−2 · logdetF

detF

)]
(5.23)
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The force deflection plot for each of the tested materials is approximately linear up to a
certain value of force, then the stiffness increases holding it to an almost constant value.

5.5 Parameter identification hyperelastic model

The parameter estimation was performed using the non-linear least square (NLS) optimiza-
tion method to minimize the residuals. The difficulties in a NLS problem is to find a unique
set of optimal parameters.

Several numerical algorithms have been used in literature to solve NLS problems [10, 4],
they are usually a modification of the Newton method and require an initial guess for the
solution. Therefore, when some stopping criteria are met, the iterative technique furnishes
an optimal solution.

In this paper we use the function lsqcurvefit in the optimization Toolbox of Matlab [54]
(See Appendix B). To be able to fit several different sets of data together we use the same
modification used by Ogdena et al [67] in which the classical minimization problem is given
by:

minp

(
||Pcomp (p)− τcomp||22 + ||Pshear (p)− τshear||22

)
(5.24)

Where Pcomp is the vector of the model stress values which depends on the model parameters
p and τcomp being the experimental values of the compression stress while ||•|| is the standard
l2 − norm. The same for Pshear and τshear except that the number of data may be different.

We choose as initial guess the value of the parameters obtained by previous experiment
on the TDM (Table III). We imposed positive values as lower bound on the parameters,
moreover we choose the one allowed by the mathematical theory.

Table 5.2: Initial guess for parameter identification procedure

Ψ̂eHm(U) :=
µ

k
ek || dev3 logU||2 +

κ

2 k̂
ek̂ [tr(logU)]2 +

κ1

mk̃
ek̃ ([tr|logU|2])

m
2

Material µ k κ k̂ κ1 k̃ m

500 0.38 − 6.70 − 297 − −

600 0.42 − 9.00 − 315 − −

800 1.00 − 7.90 − 281 − −

*Parameters obtained from [57]



CHAPTER 5. HYPERELASTIC MODELS 64

Table 5.3: Parameters exponentiated-Hencky energy function

Ψ̂eHm(U) :=
µ

k
ek || dev3 logU||2 +

κ

2 k̂
ek̂ [tr(logU)]2 +

κ1

mk̃
ek̃ ([tr|logU|2])

m
2

Material µ k κ k̂ κ1 k̃ m

500 0.29 0.20 1.40 0.13 116 231 4

600 0.46 0.20 2.80 0.13 647 1879 6

800 1.48 0.20 4.40 0.13 404 1313 6
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Chapter 6

Viscoelasticity

6.1 Theory of finite viscoelasticity

Many materials simultaneously exhibit elastic and viscous material behavior. Indeed TDM
when loaded with time dependent external forces reach a state which is a superposition of two
different response: a time independent, long term, behavior opposed to a time dependent,
short term, behavior.

A general approach, introduced by equation in terms of thermodynamic state-variables:
the internal energy is expressed as function of both the current values of strain (stress) and
the so-called internal state variables [20] .

Rate effects are introduced through evolution equations, which usually relate time rates-
of-change of internal variables to thermodynamic forces, which are the derivatives of the
internal energy with respect to each internal variable. Simo proposed a costitutive equation
based on internal variable formulation which ha provided a staring point for many successive
works ([27],[36],[86]).

In Simo’s approach, the internal energy is split according to the multiplicative decompo-
sition of the deformation gradient into dilatational and volume preseving parts.

An advantage of the state-variable formulations is that, in contrast to the other ap-
proaches, it is not restricted to isotropic responses. Anisotropic effects could be easily taken
into account, e.g., by introducing state variables depending upon fiber orientations as in
Holzapfel and Grasser [38].

Based on Green and Tobolsky [31], Lubliner [51] split the free energy of a viscoelastic
solid in two parts : the first part describing the rate-independent material behaviour and the
second incorporating time-dependent effects. He further assumed a multiplicative decompo-
sition of the deformation gradient into elastic and inelastic parts and interpreted Green and
Tobolsky’s internal strain as inelastic strain. Although in the framework of elastoplasticity
the decomposition of the deformation gradient, into elastic and plastic terms, relies on clear
physical assumptions, there is a lack of evidence in the context of viscoelasticity. However,
it has been successfully applied in many nonlinear constitutive equations.
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An important point in developing models of this form is the choice of the evolution
equation for the internal variables.

In the theory of linear viscoelasticity, which is only valid for small deformations and
small perturbations away from thermodynamic equilibrium, one can take either the ”over-
stress” or the inelastic strain as an internal variable. Due to the fact that the relationship
between these two is linear and additionally all stress and strain measures coincide for small
deformations, the structure of the evolution equation is evident [28].

In the case of large deformations, however,the choice of internal variables and evolution
equations is not so evident and not unique. One of the first finite element implementations
for such a theory was given by Simo [73]. In contrast to most works, however, he chose the
over-stress as the internal variable.

We postulate the existence of a non-equilibrium free energy leads to a non-equilibrium
stress which can be derived from a potential.

The advantage of the presented formulation is that it can be easily implemented in a finite
element code. This is due to the fact that the evolution equation of finite viscoelasticity has
the same structure as the one used in finite deformation associative elastoplasticity and
viscoplasticity. Thus, the time integration can be carried out by the exponential mapping
algorithm, which has been used in computational elastoplasticity and viscoplasticity. In this
context, it is assumed that the deformation gradient can be decomposed as

F = FeFi (6.1)

The inelastic term Fi introduces an intermediate configuration. However, the decomposition
(6.1) is a conceptual one and cannot be determined experimentally since neither Fe nor Fi

are observable quantities.
The decomposition (6.1) is generally followed by the ansatz on the internal energy for

which Ψ is split as the sum of an equilibrium part and an overstress term, i.e.,

Ψ = ΨEQ(C) + ΨNEQ(Ce) (6.2)

Here C is the right-Cauchy-Green strain tensor and Ce = FT
e Fe is the elastic strain in

the intermediate configuration. By applying the Coleman and Noll procedure [19] i.e., by
restricting the form of the stress tensor in such a way that the Clausius-Plank inequality is
verified for every admissible process , the Piola symmetric stress tensor is:

T = Te + Ti (6.3)

where Te is the equilibrium stress and Ti is the overstress. In particular, for an internal of
the form (6.2), the following relations between ΨEQ,ΨNEQ,Te and Ti are valid:

Te =
∂ΨEQ

∂C
, Ti =

∂ΨNEQ

∂Ci

(6.4)

Equation (3.7) is not sufficient to determine the behavior of the material. In order to
complete the description, the evolution equations (or flow rules) of the internal variables Fe
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Ω0

Ω

ΩNEQ

F=FeFi

Fi Fe

Figure 6.1: The intermediate configuration ΩNEQ is obtained from the deformed configura-
tion Ω by destressing to zero stress. The viscoelastic deformation gradient is decomposed
into its elastic and inelastic part, such that F = FeFi .

and/or Fi, which determine the way viscoelastic processes evolve, must be defined. Often
the evolution equations are suitably defined to be efficient with respect to time integration
algorithms

6.2 Rheological model for TDM

Here we assume the existence of two viscous mechanism associated to the material: inter-
molecular resistance and grain interactions.

The first is associated with a Maxwell element including a non-linear spring (A) while
the second is associated to a Maxwell element in which a linear spring is included (B).

The choice of modeling the interaction between the rubber particle inside the TDM with
a linear law is due to the presence of the binder at the grain interface. The binder acts as an
internal constrain allowing only normal contact interaction in between the grains. For this
reason no relative rotation neither sliding is allowed in between the grains. A one dimensional
rheological model is presented in Figure 6.2.
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NEQ

EQ

A

B

Figure 6.2: One dimensional rheological model for rate-dependent behavior of TDM

If we consider for each viscous mechanism a set of internal variable Fk
i (k = A,B) that

can be viewed as the deformation gradient associated with each the dashpot. we can write
the total free energy as:

ΨeHm = ΨEQ(C) + ΨA
NEQ(CA

e ) + ΨB
NEQ(CB

e ) (6.5)

Where ΨEQ represents the strain energy in the ”time infinity” spring and Ψk
NEQ the strain

energy in each Maxwell element associated to the ”elastic” right Cauchy strain tensor Ck
e =

[Fk
e ]
T · Fk

e .
For most of metals and polymer based materials, the volumetric deformation is purely

elastic and the viscous effects are restricted to the isochoric component of the deformation.
Hence the strain energy for the Maxwell elements can be written as:

ΨA
NEQ(CA

e ) =
µA
kA

ekA || dev3 logCA
e ||2 (6.6)

ΨB
NEQ(CB

e ) = µB || dev3 log CB
e ||2 (6.7)

The fundamental thermodynamic requirement, also called the internal dissipation inequality,
can be expressed as:

− Ψ̇ +
1

2
S : Ċ ≥ 0. (6.8)

If we substitute the assumed functional form (6.5) for the free energy into equation (6.8)
and apply the standard Coleman and Noll argument we obtain:

S = 2
∂ΨEQ

∂C
+ 2 [Fk

i ]
−1 ·

∂Ψk
NEQ

∂Ck
e

· [Fk
i ]
−T (6.9)
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In which the stress is additively decomposed into an equilibrium and a nonequilibrium con-
tribution. From the Coleman and Noll argument we have that the evolution equations for
the internal viscous part of the deformation must satisfy the dissipation inequality:

2
∂Ψk

EQ

∂Ck
e

:
(
Ck
e · lki

)
≥ 0, (6.10)

Where lki = Ḟk
i · [Fk

i ]
−1 is the inelastic part of the velocity gradient lk = Ḟk · [Fk]−1.

According to (6.10) is possible to have an evolution equation that will always satisfy the
2nd Law of Thermodynamics. This is done choosing an expression for lki such that (6.10)
becomes a positive definite quadratic form.

If we assume isotropy the expressions above can be rearranged and expressed entirely
in the spatial configuration of the body which is convenient from a computational point of
view. If we consider ΨEQ and Ψk

NEQ isotropic tensor functions of C and Ck
e , then the residual

inequality can be written as:

− τ kNEQ :
1

2
(Lv bke) · [bke ]−1 ≥ 0 (6.11)

Where bke = Fk
e · [Fk

e ]
T is elastic relaxing left Cauchy-Green tensor and Lv bke is its Lie

derivative along the velocity field of the material motion.
Finally the evolution equation chosen is:

1

2
Lv bke · [bke ]−1 = [Vk]−1 : τ kNEQ (6.12)

where [Vk]−1 = V̂−1(bke) is an isotropic rank four tensor which has to be positive definite to
satisfy (6.12).

In this case [Vk]−1 takes the form:

[Vk]−1 =
1

2 ηkD

(
14 − 1

3
1⊗ 1

)
. (6.13)

Here 14 is the fourth order symmetric identity tensor, while ηkD represents the deviatoric
viscosity. It is possibly deformation dependent and has the following properties:

ηkD = η̂kD (bke) > 0, η̂kD (1) = ηkDEQ (6.14)

Inserting (6.13) in the evolution equation (6.12), we obtain:

Lv bke · [bke ]−1 =
1

ηkD
dev[τ kNEQ]. (6.15)

To solve the nonlinear evolution law Reese and Govindjee [69] used an integration algorithm,
previously proposed by different authors (insert reference), in which the material derivative
of bke is split into an elastic predictor E and an inelastic corrector I.

bke =
˙(

F · [Ck
i ]
−1 · FT

)
= l · bke + bke · lT︸ ︷︷ ︸

E

+ F · ˙(
[Ck

i ]
−1
)
· FT︸ ︷︷ ︸

I

. (6.16)



CHAPTER 6. VISCOELASTICITY 70

The operator split, which can be also interpreted as a total motion predictor and a viscous
corrector algorithm, first assumes the material time derivative of Ci equal to zero and the
elastic part evolves.

(be)trial = (F)t=tn ·
(
[Ck

i ]
−1
)
t=tn−1

· (F)Tt=tn (6.17)

In the inelastic corrector step, the spatial gradient velocity is set to zero, which leads to
Lvbke = ḃke (see [69]).

ḃke = −
(
2[Vk]−1 : τ kNEQ

)
· bke . (6.18)

Equation (6.18) subjected to the initial conditions of
(
bke
)
trial

from the predictor phase, can
be integrated to first order using the exponential map and an Euler method to give:

(be)t=tn = exp

(
−∆ t

ηkD
dev[τ kNEQ]

)(
bke
)
trial

(6.19)

This expression gives an implicit relation for (bke)t=tn . It can be solved easily using standard
iterative methods (see Appendix C).

Note that by the isotropy assumption bke and (bke)trial share the same set of eigenvectors.

6.3 Simple Shear Test

To study the rate-dependence, TDM specimens were subjected to cyclic processes with
constant strain rates. The strain rates applied in these tests have been calculated in terms
of the initial dimension of the specimen measured just before the respective test.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Strain γ

S
tr

es
s 

σ 1 (
M

P
a)

 

 
0.1 Hz

1 Hz

Figure 6.3: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for different frequencies for TDM 500.
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Figure 6.4: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for different frequencies for TDM 600.
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Figure 6.5: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for TDM 800.



CHAPTER 6. VISCOELASTICITY 72

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Strain γ

S
tr

es
s 

σ 1 (
M

P
a)

 

 
0.1 Hz

1 Hz

Figure 6.6: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for different frequencies for TDM 500.
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Figure 6.7: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for different frequencies for TDM 600.
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Figure 6.8: Comparison between cyclic shear tests (dot line) and exponentiated Hencky
energy ΨeHm (solid line), equation (5.21), for TDM 800.

Figure 6.6 and Figure 6.4 present the stress–strain responses as obtained from TDM
under cyclic shear deformations.

Two tests were conducted in shear, each with a different frequency rate. A comparison
of the stress responses indicates a strongly pronounced amplitude-dependent behavior. In
addition, the presence of hysteresis along with permanent set is visible.

Moreover the material shows a weak dependence of the response on the strain rates.

6.4 Parameter identification viscoelastic model

For modeling purposes, a common choice is to assume for ΨNEQ an hyperelastic constitutive
equation, here we follow the same idea also because of the good mathematical properties of
the exponentiated-Hencky energy we work with.

The fit is done only on shear test which is sufficient to find all the parameters since
we assume that volumetric stress does not play a role in the viscous behavior of the ma-
terial. Following the same procedure used for the hyperelastic function in section 5.5 the
minimization problem arising in this section is:

minpA,pB
|| (PA (pA) + PB (pB))− τNEQ||22 (6.20)

Where PA and PB are the stresses in the two Maxwell elements 6.2 and τNEQ is the values
of the stress for the dynamic tests.
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The material showed both frequency and amplitude dependency. In the following Tables
the values of the parameters for different amplitude are shown. The frequency dependency
in the range of frequencies tested can be neglected.

Table 6.1: Parameters for the non equilibrium part of the exponentiated-Hencky energy
function for deformation up to 30%

Material µA kA µB ηAD ηBD

500 0.2 2.2 0.35 12 2

600 0.45 2.2 0.5 12 2

800 0.6 2.2 0.6 15 1

Table 6.2: Parameters for the non equilibrium part of the exponentiated-Hencky energy
function for large deformations

Material µA kA µB ηAD ηBD

500 0.08 2.2 0.35 12 2

600 0.08 2.2 0.5 12 2

800 0.15 2.2 0.6 15 1
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Chapter 7

The problem of vibration induced by
railway track

Trains moving along railway tracks are sources of ground-borne vibrations propagated into
the surrounding ground. The propagating path of the vibration depends on the ground
composition it affects the amplitude and velocity of the propagating vibration. Once the
vibrations reach the nearby building they can cause structural damage or disturb sensitive
equipment.

Source

Propagation 

path

Receiver

Figure 7.1: Solid shaped mat

Moreover, noise and vibration emission remains a relevant impact factor and they produce
complaints from people living above underground lines. Propagation of vibrations generated
from moving trains in tunnels into the surrounding ground and to nearby buildings is complex
and depends on several factors.

It is common to divide the generation and propagation of train-induced vibrations into
three parts (Figure 7.1):
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• The source;

• The propagation path;

• The receiver;

During the propagation from the source to the receiver the waves are attenuated in various
ways, but amplification may also occur. This aspect is of great interest when dealing with
train-induced vibrations and its effects on the surrounding (humans or buildings).

Vibrations are generated at wheel-rail interface. Trains weight is transmitted from wheel
to rail and redistributed by the rail, track structure and ground, this load can be defined
as static load. When the train moves on the track this force moves along with the train.
The static load become a dynamic load due to differences at various parts of the train-track
structure system, such as:

• irregularities on the surface of the rail and wheel;

• variations in the support structure beneath the rail

Dynamic loads generate vibrations that are propagated from the track into the surrounding
ground. There are many parameters influencing the level and characteristics of train-induced
vibrations [23] such as:

• Vibrations induced by the track structure response:

axle load (weight of train and spacing of wheel axles),

geometry and composition of the train (type, cargo, length),

speed of train,

• Wheel-rail interface:

wheel defects (eccentricity, imbalance, flats, unevenness),

unsteady riding (bouncing, rolling, pitching, properties of bogie and motor),

acceleration and deceleration of the train,

• Irregularities on the rail:

quality of the rail (corrugations, corrosion, unevenness, waviness, joints),

curves and tiling track (centrifugal forces),

• Variations in support structure:

geometry and stiffness of the support structure ,

frost.
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As mentioned above, the load generated by trains is due to the sum of a static load,
which is the weight of the train, and a dynamic load, generated by irregularities on wheel-
rail interface. The dynamic and static forces cause stress waves propagating into the ground
below the track. The generated stress waves all have different characteristics depending on
where they are generated, i.e. vehicle, wheel, rail, or substructure.

The typical frequency spectra of the vibrations generated by trains in tunnels are from 4
Hz up to a few thousands Hz [30]. Typically, there is one or two vibration peaks at different
frequencies where the acceleration levels can reach about 80 to 90 dB.

The amount of vibrations that is transmitted into the building depends on the coupling
between the ground and the foundation. Usually there is a reduction (coupling loss) of the
vibrations at the transmission from the ground to the building. Slabs-on-grade are in contact
with the underlying soil and will be subjected to similar vibrations as the ground, and the
coupling loss is therefore determined to be 0 dB for frequencies lower than the resonance
frequency of the slab. The coupling loss for lightweight buildings is also determined to be 0.
For the other foundations types, the coupling loss varies between 2 and 15 dB depending on
frequency and foundation type. For a building supported directly on rock the coupling loss
is 0 [48].

The reduction of transmitted vibrations between the ground and building is larger for
vertical oscillations than horizontal oscillations since the building is weaker in the horizontal
direction. The natural frequency in ordinary dwellings is normally lower than 10 Hz, which
is in the same range as for loose soils.

Train-induced vibrations are within that range and thus resonance effects are prominent.
Once the vibration has reached the foundation they propagate through the building where
the different parts of the building will damp or magnify the vibrations.

Train-induced vibrations can cause damage to buildings in the form of:

• strain

• natural vibrations

• settlements

Strain can be caused by deflection from the train if the track is close to the building. It can
also be caused by the stress wave propagating along the ground surface.

As mentioned above, if the train-induced vibrations have a frequency that is near the
natural frequency of the building, resonance of the building may arise. The vibrations have
to have a reasonable duration for resonance to occur and can generally only be caused by
freight trains that are uniformly loaded.

For certain soils train induced vibrations can cause and/or accelerate settlements. Since
there are many factors that can contribute to settlements it is usually difficult to determine
what part the vibrations is responsible for. Train-induced vibrations can in extreme cases
trigger slides, but is never the sole cause.
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For old buildings modifications made, e.g. creating opening in walls, together with de-
terioration of the strength can cause damage. Failure in newer buildings is often caused by
unauthorized modification or faults. Consequently, it is not likely that train-induced vibra-
tions cause damage to buildings. If a building is damaged from train-induced vibrations it
is usually caused in combination with other factors, e.g. alteration of ground water level,
which would have caused damage to the building regardless of the presence of vibrations.
The vibrations merely accelerate the process. The damage potential of buildings depends
on the age, size, fatigue properties, structural resonance, and type of construction.

The vibration levels required to cause damage to buildings are generally much higher
than what humans consider tolerable. Nevertheless, people commonly accuse vibrations to
cause cracks within their dwellings although the vibration levels are rarely high enough to
be the cause. Many people associate noise with vibrations, and when hearing loud noises
this makes them inspect their properties.

There are several measures to reduce vibration generated by trains moving in tunnels.
The different measures can be applied at any position along the propagating path, i.e. either
at the source, along the path, or at the receiver. The most common measures that can be
applied at the source in order to reduce emissions from train traffic on open tracks as well
as in tunnels are [23]:

Rail surface

The quality of the surface of the rail is very important with regard to train induced vibration,
but also for the comfort of the passengers. Various irregularities, such as short and long pitch
corrugations, insulating joints, turnouts, etc. will appear along the rail from the numerous
passing of trains.

Kazamaki and Watanabe observed that there was a difference of 10 dB between new
rails and wheels compared to corrugated rails and wheels with flats from normal service
wear [6]. In order to reduce the vibrations it is therefore important to maintain the rail in
good condition, or even use high-strength steel instead. Thus, having a good maintenance
program for the rail can be seen as an important and a good measure to reduce vibrations
[22].

Rail pads

Rail pads, sometimes also known as “sole” plates or pads, are placed between the rail and
the (concrete) sleeper. They are usually made of rubber and their main function is to reduce
fatigue cracking of the sleepers, but they are also believed to have a damping effect on
vibrations.

The measure here is either to install the pads or to use pads with a different stiffness.
For ballasted tracks this measure has been determined to be ineffective in the reduction of
vibrations [34].
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Rail fastenings

Rail fasteners are used to keep the rail at its designated position on the sleeper. There are
various variants that are optimal for different conditions.

Using highly elastic (flexible) rail fastenings will permit larger deflections of the rail
beneath the wheel which reduces the mechanical impedance of the superstructure and hence
the vibrations [22].

Using flexible fastenings reduces the vibrations between 30 to 50 Hz, where a higher
reduction is observed at 50 Hz (about 6 to 10 dB).

Ballast thickness

The main purpose of the ballast is to distribute the pressure from the track. It also provides
a foundation for the sleepers holding them in position. Moreover, it has a draining purpose.

The normal height for the ballast is about 0.3 m. An increase of the thickness has no
measurable effect [34], while a decrease in thickness leads to deterioration of the attenuation
[22].

The Norwegian Geotechnical Institute observed that an increase of the ballast thickness
(1 m) increased the attenuation; however, it was believed that the thicker structure gave
a greater load distribution and the reduction was concluded not to be caused by damping
solely. It has also been observed that newly tampered ballast generates greater attenuation
than ballast not tampered for a long time.

This, along with the importance of a smooth rail surface, implies that maintenance is an
important aspect of reduction of train-induced vibrations.

Ballast mats

Ballast mats, or sub-ballast mats, are, as the name implies, elastic layers that are placed
beneath or inside the ballast bed.

Ballast mats (thickness up to 80 mm) are considered to have high efficiency to attenuate
vibrations within the range 16 to 50 Hz where a reduction as high as 20 dB can be reached
at 50 Hz [22]. Kazamaki and Watanabe [6] reported a reduction of 5 to 8 dB due to the use
of ballast mats. One type of ballast mat applied on concrete base generated reduction of
about 10 dB for frequencies above 40 Hz.

Placing the ballast mat higher up within the ballast results in higher attenuation. If the
thickness of the ballast is increased from 0.3 to 0.6 m in combination with sub-ballast mat,
a reduction of 4 dB can be added. It should be noted that the increase in ballast only have
an effect if there is a sub-ballast mat installed [22].
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Mass-spring system

Floating-slab-system, is the most effective measure for train-induced vibrations in tunnels
[34].

The principle idea is to have a linear harmonic oscillator that has a very low natural fre-
quency. Usually the oscillator is a heavy concrete slab that is isolated from the tunnel invert
by rubber bearings or steel springs. A floating slab should have as low natural frequency as
possible in order to attenuate the vibrations to as large extent as possible.

It is not practically possible to have a natural frequency lower than 5 Hz; neither should
it exceed 14 Hz [22]. Normally the natural frequency is between 8 to 12 Hz.

Hemsworth [34] reported 10 dB attenuation at 16 Hz and 25 dB at 125 Hz, while Kaza-
maki and Watanabe (1975) reported attenuation levels between 15 to 21 dB. However, Hunt
[42] showed, with the aid of numerical analysis, that if the natural frequency of the floating-
slab system is not low enough, the attenuation effect would be diminishing. Since most
tunnels are unique the required attenuation varies and the slabs are designed to fit with the
cross-section of the tunnel. The slabs require a height of 0.8 to 1.4 m and can weigh between
4000 and 9000 kg/m.

Floating slabs can be used for tracks both with and without ballast. A negative aspect
with floating-slab-systems is that the system is more expensive than the other systems used
to reduce vibrations. It is important that the bearings (or springs) can handle the load
efficiently.

7.1 Case of study optimization of railway mat for

light-weight line

The goal of this study is to find an optimal solution to reduce the axial stiffness of the TDM
rubber mat produced by Isolgomma srl.

The need to expand the application of TDM to light rail systems where the loads are
lower than traditional railway system has pushed the need to find a solution where the
stiffness of the materials used is lower.

In this section the new material model is not used since is not already implemented in any
Finite Element software. Optimization procedure regarding TDMs is very much influenced
by the production technology, this makes the problem over-constrained. For these reasons a
trial and error procedure is used.

Starting from a simple and easy to produce shape changes are made in order to improve
the performance, at every step the analysis are run and solution to implement the perfor-
mance in the next step are implemented. The procedure converged to a good solution in few
steps. The new shape are first tested with static load and then the simulation are run with
dynamic ones.
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7.2 Mechanical test on elastomeric mats for railway

track

UNI 11059 [79] is applied for elastic mats in new railway tracks or as an underballast element
or as an under concrete slab element.

The elastomeric mat is designed to reduce vibration induced by railway traffic, it has
constant thickness and it has the following characteristics:

• One dimension (the thickness h ) is significantly smaller than the other two dimensions
(the longitudinal one dl and the transversal one dt):√

dl · dt
π
h

≥ 10 (7.1)

• During the useful life of the railway line loads are orthogonally applied on the mat
surface. Two categories of tests are considered.

• Characterization tests that include:

Static tests;

Simulation tests (as a function of train speed);

Forced dynamic tests;

Dynamic tests of free oscillations

• Performance tests that include:

Permanent load tests;

fatigue tests;

frost strength tests with water;

atmospheric conditions strength tests;

adequacy of mats to be put along lines;

geometric stability of mats.

In the standards the following test loads are considered:

• Nominal initial load (σ0) it always constantly acts on the railway line and it is produced
by the weight of the rack on the elastomeric mat. It approximately assumes values in
the range of 0.07− 0.1MPa

• Nominal railway load (σf ) it consists of the accidental load and corresponds to the
weight of the train that runs on the line. The standard gives this component as a
function of the railway track and of the vehicle.
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• Nominal dynamic railway factor (γd) it is an amplification factor of the nominal railway
load and depends on the railway track type and conditions, on the railway track type
and conditions, on train and on dynamic interaction track-train. It varies from 20%
to 50%.

Static tests are performed with the application of a slow load. It starts to zero value and
increases with linear pattern until its maximum value: three cycles are considered.

Each cycle last two minutes: the first cycle and the second one help to set the specimen,
while the mechanical parameters are derived by the third one. The maximum test load is
given:

σmax = σ0 + (1 + γd) · σf (7.2)

The specimen dimensions for thickness smaller than 50 mm the dimensions of specimens must
to be greater than 30 cm x 30 cm and for thickness greater than 50 mm their dimensions
depend on the thickness and they must to be greater than (6h) x (6h) in which h is the
nominal thickness. The evaluation of the static stiffness is obtained by the following relation:

Kqs =
σ1 − σ0

δ1 − δ0

=
σf

δ1 − δ0

(7.3)

In which σ1 = σ0 + σf and δ1 is the displacement for the nominal initial load δ0 is the
correspondent displacement and σ0.

Regarding forced dynamic tests they involve the application of a load σ(t) that consists
of a static component σs and of a dynamic component σd that varies sinusoidally with the
time:

σ(t) = σs + σd · sin[(2πf) · t] (7.4)

Tests have to be performed with two different static and dynamic test load components, in
particular the static component is:

σs1 = σ0 + (1 + γd) · σf (7.5)

σs2 = 0.6 · σ0 + (1 + γd) · σf (7.6)

the dynamic one is:

σd1 = (0.05− 0.1) · σs1 (7.7)

σd2 = (0.05− 0.1) · σs2 (7.8)

In the standard the elastic-viscous-hysteretic model is assumed as the ideal behaviour of the
material to evaluate elastic and damping dynamic parameters Figure 7.2.

The elaboration starts from the displacement analysis for each test frequency, it is eval-
uated considering the mean value of the four transducers and it will be sinusoidal form:

δ(t) = δs + δd · sin[(2πf) ṫ+ ψ] + δ0(t) (7.9)
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Figure 7.2: Mechanical model UNI 11059

In which δs and δd are obtained from static and dynamic load respectively while δ0(t) is the
signal distortion that must be negligible. The spectral transfer functions of the specimen for
pads and mats are given by:

h(f)−1 =
σd(f)

δd(f)
· ejψ(f) (7.10)

Considering the model in Figure 7.2 they can be written in the form:

h(f)−1 = [Kd] + jx[gd + bx(2xπxf)] (7.11)

The analytical expressions for the calculation of dynamic parameters are given :

Kd '

N∑
i=1

[H(fn)−1]Re

N
(7.12)

7.3 Numerical Simulations

The numerical simulations of the above experiments were performed with the finite element
code ABAQUS [30], eight node 3D solid elements with reduced integration (1 integration
point) were used to model the TDM pads.

Mesh sensitivity analysis showed negligible change in accuracy keeping equal to one the
side ratio and varying the number of elements. The material model used in this section is the
compressible Mooney-Rivlin since the new material model presented in the previous sections
is not yet implemented in a Finite Element software. Parameters are those given in Tables
5.3. The boundary conditions were defined in conformity with the condition prescribed in
Section 7.2.
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When modeling a nonlinear hyperelastic material in ABAQUS, the program makes the
following assumptions:

• the material behavior is elastic,

• the material behavior is isotropic,

• the simulation includes nonlinear geometrical effects.

The use of hybrid-type elements is highly recommended when dealing with near-incompressible
materials. Such elements are based on mixed-type formulations, where independent interpo-
lations for displacement and stress fields are assumed and two sets of governing equations,
both equilibrium and compatibility are enforced in weak form.

In ABAQUS, the identification of the hyperelastic material properties can be performed
on the basis of experimental stress-strain curves. Four different tests can be used to get an
accurate evaluation of the material parameters. These are uniaxial, planar (pure shear test),
equibiaxial and volumetric tests.

Clearly, when already known, material parameters can be directly specified in ABAQUS
to describe hyperelastic material models. Since the problem of the identification of material
parameters has been already addressed in Chap. 4, the second task will be used in this
chapter.

7.4 Implicit vs Explicit procedure

Finite Element Analysis (FEA) involving short-time dynamical problems with large deforma-
tion, quasi-static problems with large deformations and multiple nonlinearities, or complex
contact/impact problems requires the use of either implicit or explicit solution techniques.

Examples of these types of simulations are crashworthiness analysis, drop testing, deep
drawing, rolling, extruding, pipe whip, bird strike, fan containment and many more.

The ABAQUS FEA program includes the ability to address both implicit as well as
explicit solutions. Both the solution procedures are based on a numerical time integration
scheme to solve the discrete dynamical equilibrium equations in terms of displacements,
velocities and accelerations, then strains and stresses [35].

Implicit integration schemes (ABAQUS/Standard uses a Hilber-Hughes-Taylor algorithm
for implicit integration) assume a constant average acceleration over each step ∆t = tn+1−tn
where tn and tn+1 are the starting and ending points of the time interval ∆t. The governing
equations are solved and the resulting accelerations and velocities at tn+1 are calculated.
Then the unknown displacements at tn and tn+1 are determined.

Explicit integration schemes (ABAQUS/Explicit uses a Central Difference method) as-
sume a linear change of the displacement in each time step. The governing equations are
evaluated and the resulting accelerations and velocities at tn are calculated. Then, the un-
known displacements at t are determined. There is one major difference between the two
techniques in the equations that are used to solve for displacements at tn+1.
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The implicit solution method requires matrix inversion of the structural stiffness matrix,
the explicit solution does not.

However, unlike the implicit solution scheme, which is unconditionally stable indepen-
dently on the time step size, the explicit scheme is stable only for time step size smaller
than a critical size evaluated for the analyzed structure. The undamped critical time step
size is 2/ωn (where ωn is the largest natural circular frequency), which is usually a very
small value. This very small time step size requirement for stability thereby makes explicit
solutions useful only for very short transient analyses.

But, even though the number of time steps in an explicit solution may be orders of
magnitude greater than in an implicit solution, it is significantly more effcient than an
implicit solution since no matrix inversion is required. Therefore the choice of the integration
scheme strongly relies on the problem under investigation.

7.5 Static tests

The material used in the first part of this study is the TDM 800, for which the parameters
for Mooney-Rivlin model are reported in Table 7.2. First we run static tests. The defor-
mation under static load (load of infrastructure with the train not moving) is a limit to our
optimization problem.

The loads suggested by the regulations are reported in Table 7.1:

Table 7.1: Static loads UNI 11059

σ0 (MPa) σf (MPa)

0.4 0.7

The optimal solution needs to be in the best compromise in between static and dynamic
properties, moreover the static displacement is a constrain condition to the problem since it
has to be in a certain range in order to allow safe and correct functionality of the railway
track.

Table 7.2: Parameters for Mooney-Rivlin model used for dynamic simulations

Material C10 C01 D1

800 0.186 0.001 0.25
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Step 1

The material is very difficult to manufacture in different shapes, the new shape needs to be
very regular and keep square angles. Moreover for design limit the height has to be 25 mm
and the upper surface, the one in contact with ballast or the slab, needs to be flat. Given all
this limit the only parameter that can be changed is the bottom surface of the mat keeping
the design simple and admissible for TDM.

In the first variant a simple shape was studied in which the solid shape of the mat (Figure
7.3) is modified introducing three discrete supports (Figure 7.4).

350 mm

2
5
 m

m

Figure 7.3: Solid shaped mat
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b

1
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 m
m

Figure 7.4: First variant

The value of the stiffnessKqs, according to the formula (7.3), for the solid mat is 40N/cm3.
The analysis are run changing the value of the width b of the supports Figure 7.4 in order
to find the best solution.

Table 7.3 shows the static stiffness of the variants.

Table 7.3: Static stiffness first variant

Material b (mm) Kqs (N/cm3)

800

20 6.75

30 10.0

40 13.5
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Figure 7.5: Output analysis first variant

Figure 7.5 shows the displacement field of the first variant with b=20 mm subjected to
the maximum load Table 7.1.

Step 2

The first variant shows an important vertical displacement in the region in between the two
supports, for this reason a second variant was tested in which the number of supports is 4
reducing the distance in between each support Figure 7.6.
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Figure 7.6: Second variant

Also in this variant the width b of the supports varies in between the values of 20 mm
to 40 mm.

Table 7.4 shows the results of the static tests for the second variant.
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Table 7.4: Static stiffness second variant

Material b (mm) Kqs (N/cm3)

800

20 8.75

30 12.0

40 18.7

Figure 7.7 shows the displacement field of the second variant with b=30 mm subjected
to the maximum load Table 7.1.

Figure 7.7: Output analysis second variant

Step 3

To further reduce the vertical displacement in between the supports a third variant is con-
sidered in which the suopports are staggered in the length of the mat Figure 7.8.
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Figure 7.8: Third variant
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Also in this variant the width b of the supports varies in between the values of 20 mm
to 40 mm.

Table 7.5 shows the results of the static tests for the second variant.

Table 7.5: Static stiffness third variant

Material b (mm) Kqs (N/cm3)3

800

20 8.0

30 10.0

40 11.7

Figure 7.9 shows the displacement field of the second variant with b=30 mm subjected
to the maximum load Table 7.1.

Figure 7.9: Output analysis third variant

Step 4

The third gave good performances and was the best option to move forward for dynamic
analysis, but due to difficulties in manufacturing it had to be changed. The foruth variant
keeps the same area of the supports but they have different geometry in order to facilitate
the production (Figure 7.10-7.11). To reduce the stiffness the TDM 600 was used in this
variant.
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Figure 7.10: Fourth variant
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Figure 7.11: Fourth variant different view

The value of the stiffnes for this varinat in the only configuration studied, the one with
supports 40 mmx 40 mm is 7.5N/mm3.
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Figure 7.12 shows the displacement field of the fourth variant subjected to the maximum
load Table 7.1.

Figure 7.12: Output analysis fourth variant

7.6 Dynamic tests

In this section we study the dynamical behavior of the railway mat, simulating dynamic
compression tests as described in section 7.1.

With this aim we introduce the ABAQUS FEA finite viscoelasticity constitutive relation
and we investigate the resulting material behavior by means dynamic experiments. Sec-
tion 4.8.2 of the ABAQUS Theory Manual (Hibbit et al., relation for modeling nonlinear
viscoelastic effects in the form:

σ(t) = σe + SYM

{
F(t)

[∫ t

0

J(s)

J(t)
k̇ (t− s)F−1(s)σe(s)F(s)ds

]
F−1(t)

}
(7.13)

where σe is the instantaneous elastic Cauchy stress response, k is the so called viscoelastic
kernel, which characterizes the stress relaxation. Also SYM represents the symmetric part
of the bracketed term. The relation (7.13) is valid both for compressible and incompressible
material only the form of σe changes.

Since TDM showed weak frequency dependence, the time relaxation of the solid is as-
sumed to be governed by a one-term Prony series expansion given by:

k(t) =
µinf

µ0

+

(
1− µinf

µ0

)
e−t/τ (7.14)

where µinf is the asymptotic value to which the shear modulus settles after an infinite time
Table 4.4 and τ is a characteristic time constant which we consider equal to 0.037s.
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The mat in the fourth variant is subjected to dynamic load as explained in section 7.2.
In a range of frequencies up to 60 Hz.

Table 7.6: Static stiffness third variant

Material Kd (N/cm3)

600 17.2
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Chapter 8

Conclusions and Outlook

This thesis aimed at providing information about a new Tire Derived Material with a simple
and low cost production cycle.

Experimental tests, mechanical characterization and a new hyperelastic model have been
proposed. It was not the objective to provide a full mechanical description, but rather to
explore this new material properties and the potential in civil application.

In Chapter 2, the problem of scrap tires is introduced along with the main application
of Tire Derived Materials. Moreover, in this chapter, the new material is presented with its
production process and its main application are described.

In Chapter 4, an extensive experimental campaign on TDM is described. The tests
performed were the only ones allowed by the material composition. Tests revealed lack in
tensile strength of the material along with low tensile deformation. This is one of the main
limits of TDM which in the current composition can be used in application where subjected
to moderate large deformation in stress and compression.

Shear test using the classical dual lap test along with homogeneous compression tests
and volumetric tests were performed on the material.

The main outcome of the experimental tests was that the material showed high nonlinear-
ity during hydrostatic compression. This is not usual for rubber and rubber-like materials.
This behavior is deemed to be connected to the presence of voids in the TDM which makes
it very compressible up to certain value of the volumetric deformation.

To further investigate this behavior another set of compression tests were performed,
with the help of optical measurement, the lateral displacement of the sample was measured
in order to estimate the Poisson’s ratio both in the neighborhood of the undeformed state
and for large deformations.

Chapter 5, describes the problem of finding a good hyperelastic model for TDM. Different
conventional models are used to model the new material but all failed in describing the
behavior for the different deformation state with a unique set of parameters. Moreover the
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conventional hyperelastic models in their compressible version are able to describe linear
variation of volume with pressure which is in some cases enough accurate to describe rubber
or rubber-like materials but not in the case of TDM.

For all these reasons a new hyperelastic model has been introduced. The strain energy
function presented here is a variant of the exponentiated Hencky strain energy proposed by
Neff et al. [63], which for moderate strains, is as good as the quadratic Hencky model and
in the large strain region it improves several important features from a mathematical point
of view. One of the advantages of using the proposed form of the exponentiated Hencky
energy is that it possesses a set of parameters uniquely determined in the infinitesimal strain
regime and an orthogonal set of parameters to determine the nonlinear response that do not
interfere with them.

Most of the parameters have a clear physical meaning, we choose the ones suggested
by the experimental tests and allowed by the mathematical theory. The advantage is to
overcome the difficulties related to finding a unique set of optimal parameters that are
usually encountered fitting polynomial forms of strain energies. Moreover, by comparing the
predictions from the proposed constitutive model with experimental data we concluded that
the new constitutive model gives good prediction.

Chapter 6, covers the viscoelastic problem, a theory of finite viscoelasticity based on
multiplicative split of the deformation tensor in an elastic and inelastic part is applied.

The rheological model used to describe the rate dependent material behavior takes into
account of the two main dissipative mechanism that happen in the material when loaded
with an external force with a finite velocity. The first connected to the grain interaction at
the material level and the second connected to the polymer chain resistance at the microme-
chanical level.

The model is fitted on experimental tests performed on TDM in cyclic simple shear with
good results.

Chapter 7 describe a case study in which the problem is to find an optimal solution
to reduce the axial stiffness of the TDM rubber mat for railway application produced by
Isolgomma srl.

In this section, the new material model is not used since its not already implemented
in any Finite Element software. Optimization procedure regarding TDMs is very much
influenced by the production technology, this makes the problem over-constrained. For
these reasons a trial and error procedure is used.

Starting from a simple and easy to produce shape, changes are made in order to improve
the performance, for every change the analysis are run and improvement are implemented
in the next step. The procedure converged to a good solution in few steps. The new shape
are first tested with static load and then the simulation are run with dynamic ones.

This successful application allowed the company Isolgomma srl. to introduce in its prod-
uct offers a new one dedicated to light rail.
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Final Remarks

The experience gained from studying TDM has lead to important considerations that are
summarized here:

• A new material is described with a set of experimental tests. The material can be
used for some applications according to its properties. The production process is very
easy to implement and requires very low energy consumption and labor making the
material very cost efficient.

• A new hyperelastic model is proposed which can describe the behavior of TDM in
moderately large deformations. The new strain energy has good mathematical prop-
erties and is able to capture the high nonlinear behaviour of TDM when subjected to
hydrostatic compression.

• A new shape for TDM is found that allowed us to use it in light weight rail where
elastomeric foam have been used.

Outlook

This study leaves some aspect of TDM mechanical characterization still open.
In the future it will be useful to have a micromechanical model of the material which

takes into account of the random distribution of the rubber grains and fiber.
The need of such a model is due to the fact that TDMs have potential to improve their

performances.
The phenomenological model described in this work allows to design a device with the

material we have a michromechanical model would allow to design the material according to
specific needs.

Another interesting aspect would be to implement the new model proposed here in a
Finite Element software. Many materials have compressible behavior and the mathematical
properties of the model makes it very interesting to use in large deformations.

This aspect may be object of future works of the author.

More material testing needs to be done on the TDM, in particular dynamic tests, in order
to have a characterization in a wider range of frequencies.

The material is mainly used in railway application where the range of frequencies goes
from few Hz to few thousands of Hz.

The dependence of the material response to the amplitude and the frequency of the load
is also an aspect that needs to be further investigate. This is still an open problem for
rubbers and rubber-like material. As far as the author knows there is no available model
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that can describe amplitude and frequency dependency in such a wide range of frequency
suitable for Finite Element applications.
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Appendix A

Polyconvexity

The mechanical problem (A.1) for a hyperelastic material is to find a displacement field u
out of the set of all admissible displacement fields u* that fulfills the boundary conditions
on ∂Ω and that minimizes the total energy Π of the system.

u = argν∈u∗minΠ(ν) (A.1)

Π (u) =

∫
Ω0

Ψ (grad (u)) dΩ0 −
∫

Ω0

ρb · udΩ0 −
∫

Ω0

ρt · ud∂Ω0 (A.2)

Here Ω0 and ∂Ω0 are a body and its boundary, respectively, Ψ is the Helmholz free energy,
ρ the initial density of the body, b and t are volume and surface tractions, respectively and
u is the displacement.

The existence and uniqueness of solutions for the minimization problem (A.1) depends
on the functional form of the strain energy density Ψ(grad(u)).

Several concepts, dealing with the functional dependence of Ψ on the deformation gradi-
ent F = grad(u), exist that guarantee the existence and uniqueness of a solution of problem
(A.1):

convexity → polyconvexity → quasiconvexity → rank − one− convexity

Each concept from left to right implicates the consecutive, while the inverse is shown not to
be true in full generality [21].

The requirement of convexity with respect to F can be shown to violate fundamental
principles of solid continuum mechanics [7], such that this concept cannot be used.

Quasiconvexity is an integral inequality and therefore rather complicated to handle and
is only conditional appropriate for the analysis of function.

A more practical notion is the one of polyconvexity, Schroeder and Neff say that [71].

Definition A.1 (Polyconvexity)

“F → Ψ(F) is polyconvex if and only if there exists a function P : M3x3xM3x3xR ← R
(in general non-unique) such that Ψ(F) = P (F; adj(F); det(F)) and the function R19 →
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R,
(
X̃, Ỹ , Z̃

)
→ P (X̃, Ỹ , Z̃) is convex for all points X ∈ R3” As a consequence of the above

definition we get the additive property of the polyconvex functions for a more restrictive
class of energy densities.

Corollary A.1 (Additive polyconvex functions)

” Let Ψ(F) = Ψ1(F) + Ψ2(adj(F)) + Ψ(det(F)). If Ψ,i = 1, 2 are convex in the associated
variable respectively and Ψ3 : R+ → R is convex in the associated variable as well, then Ψ is
altogether polyconvex.”

It can be proven that the following Lemma holds [71]:

Lemma A.1 (Convexity and monotone composition)

“Let P : Rn → R be convex and let m : R → R be convex and monotone increasing. Then
the function Rn → R, X → m(P (X)) is convex.”

This corollary is one of the main tools in constructing polyconvex strain energies.

A.1 Convexity of the volumetric response of WeHm

In this section we will show the convexity of the second term of the volumetric response

F → ek̃(|log detF|2)
m/2

. For the first term the reader can refer to Neff et al. [63]. We first
examine the condition under which the more general form detF→ h (|logdetF|) is convex in
det F (Appendix A.2). Hence, we ask for the second derivative of detF → h (|logdetF|) to
be positive:

d2

dt2
h (|logt|) =

d2

dt2

(
h′ (|logt|) logt

t|logt|

)
= h′′ (|logt|) logt2

t2|logt|2
− h′ (|logt|) logt

t2|logt|
≥ 0 (A.3)

Obviously, this is the case if and only if h′′ (|logt|) ≥ h′ (|logt|) for all t > 0 and hence, if and
only if for all ξ ∈ Rh′′(ξ) ≥ h′(ξ) Thus, t→ h(logt) is convex if and only if h grows at least
exponentially (see also Appendix A.1).

Fix n ∈ N We want to find k̃ such that h(ξ) = ek̃ξ
n

matches the criterion.

k̃2n2ξ2n−2ek̃ξ
n

+ k̃n(n− 1)ξn−2ek̃ξ
n ≥ k̃nξn−1ek̃ξ

n

(A.4)

which is equivalent to k̃nξn− ξ + (n− 1) ≥ 0. We compute the minimum of this expression.

To this aim we solve the equation k̃nξn−ξ+(n−1) = 0 and we obtain ξ = k̃
−

1

n− 1n
−

2

n− 1
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Therefore

min
ξ∈R

{
k̃nξn − ξ + (n− 1)

}
= k̃nk̃

−
n

n− 1n
−

2n

n− 1 − k̃
−

1

n− 1n
−

2

n− 1 + (n− 1) (A.5)

= k̃
−

1

n− 1n
−
n+ 1

n− 1 (1− n) + (n− 1). (A.6)

This minimum is nonnegative if and only if k̃
−

1

n− 1n
−
m+ 1

m− 1 + 1 ≥ 0. Thus k̃ has to be
chosen such that k̃ ≥ n−(n+1).

In conclusion the function t→ ek̃ξ
n

is convex if and only if k̃ ≥ 1

n(n+1)
which for n = m/2

means k̃ ≥ 1
m
2

(m
2

+1)
.

A.2 Rank-one-convexity for functions of the type

t→ ξ
(
|logt|2

)
We consider a generic function ξ : R+ → R+ and we find a characterization of the convexity
for the function t→ ξ (|logt|2). In the following let ζ denote the function ζ : R+ → R+, ζ(t) =
(|logt|2) . We deduce:

d

dt
ξ
(
|logt|2

)
= ξ′

(
|logt|2

)
2

1

t
logt, (A.7)

d2

dt2
ξ
(
|logt|2

)
= 4ξ′′

(
|logt|2

)
2

1

t2
(logt)2 − 2ξ′

(
|logt|2

)
2

1

t2
logt+ 2ξ′

(
|logt|2

) 1

t2

= 2
1

t2
(
2ξ′′
(
|logt|2

)
(logt)2 + ξ′

(
|logt|2

)
(1− logt)

)
(A.8)

where ξ′ =
dξ

dζ
. Hence the function t→ ξ (|logt|2) is convex

• on (1,∞) as a function of t if and only if:

2
d2ξ(ζ)

dζ2
(logt)2 +

dξ(ζ)

dζ
(1− logt) ≥ 0 ∀ζ ∈ R+

• on (0, 1) as a function of t if and only if:

2
d2ξ(ζ)

dζ2
(logt)2 +

dξ(ζ)

dζ
(1 + logt) ≥ 0 ∀ζ ∈ R+
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Appendix B

Matlab code for parameters
optimization

The Matlab file compression.mat, simpleshear.mat and volumetric.mat contains experimen-
tal data concerning uniaxial compression (UC) simple shear (SS) and hydrostatic compres-
sion (UV). The first and second columns contain, respectively, the vectors of principal stretch
(volumetric deformation for hydrostatic compression)and the corresponding stress as read.
The following variables are defined:

• L UC, L SS, L UV: stretch values during UC, SS, UV respectively.

• L max UC, L max SS, L max UV: maximum imposed stretch value for UC, SS, UV
respectively.

• C=(mu k ... hat k m): Optimal material parameters.

• P UC, P SS, P UV:Piola-Kirchoof stress values.

• Pol UC, Pol SS, Pol UV: coefficients of the nth order polynomial functions approxi-
mating approximating the experimental data.

• PKF UT, PKF UC, PKF PS: Piola-Kirchoof stress values corresponding to L UC,
L SS, L UV and calculated by means of the nth order polynomial functions whose
coefficients are given by Pol UC, Pol SS, Pol UV.

• r,s,t: number of experimental points. If any of these values is set to 0, the corresponding
test is discarded.

The following Matlab script is used to find the optimal parameters following the procedure
in Saccomandi and Ogden [67].



%Read test data 

load('compression.mat') 

load('simpleshear.mat') 

 

L_UC=compression(:,1); % Principal stretch load direction 

P_UC=compression(:,2); % Stress MPa 

ni1=compression(:,3); % Non-linear Poisson's coefficient 

L_USS=simpleshear(:,1); % Principal stretch load direction 

P_USS=simpleshear(:,2); % Stress MPa 

%Uniaxial 

Pol_UC=polyfit(L_UC,P_UC,3); 

r=length(L_UC); 

Lmin_UC=min(L_UC); 

L_UC=linspace(1,Lmin_UC,r); 

    if r==0 

        L_UC=[]; 

    end 

       PKF_UC=polyval(Pol_UC,L_UC); 

 %Simple Shear 

Pol_US=polyfit(L_SS,P_SS,3); 

s=length(L_SS); 

Lmax_US=max(L_SS); 

L_US=linspace(0,Lmax_US,s); 

    if s==0 

        L_US=[]; 

    end 

 PKF_US=polyval(Pol_US,L_US); 

% Calculation of optimal material parameters deviatoric part 

STRETCH=[L_UC L_US]; %overall stretch vector 

STRESS=[PKF_UC PKF_US]; %overall stress vector 

C0=[0,0]; %Initial guess 

lb = [0.1,0.2]; %Lower bound of the optimal ...solution vector 

ub = [inf,inf]; %Upper bound of the optimal ...solution vector 

optnew=optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-15,... 

 'TolFun',1e-15, 'TolX',1e-15,'MaxFunEvals',3000,'MaxIter',3000); %Curve 

fit oprtions 

[C] = lsqcurvefit(@expHencky_M,C0,STRETCH,STRESS,lb,ub,optnew); %optimal 

...solution 

 
Published with MATLAB® 7.13 



function S=expHencky_M(C,STRETCH) 

global r s ni1 

 

%material constants 

mu=C(1); 

k=C(2); 

Pol_ni1=polyfit(STRETCH(1:r),ni1',2); 

Pol_ni1=Pol_ni1'; 

ni11=Pol_ni1(1).*STRETCH(1:r).^2+Pol_ni1(2).*STRETCH(1:r)+Pol_ni1(3); 

if s==0 %uniaxial 

     alpha=2; 

     beta=2/3.*((1+ni11)./(1-

2.*ni11)).^2.*(log(STRETCH+(2.*STRETCH.*ni11))).^2-

(log(STRETCH+(2.*STRETCH.*ni11))); 

     gamma=(log(STRETCH+(2.*STRETCH.*ni11))).*((1+ni11)./(1-2.*ni11)); 

 elseif r==0 

     alpha=4; 

     beta=2.*log(0.5.*sqrt(STRETCH.^2+4)+STRETCH).^2; 

     gamma=log(0.5.*sqrt(STRETCH.^2+4)+STRETCH)./sqrt(1./2.*STRETCH.^2+4); 

 

 else 

    alpha=[2*ones(r,1)' 4*ones(s,1)']; 

    beta=[3/2.*((1+ni11)./(1-

2.*ni11)).^2.*(log(STRETCH(1:r)+2.*STRETCH(1:r).*ni11)).^2-

(log(STRETCH(1:r)+2.*STRETCH(1:r).*ni11)) 

2.*log(0.5.*sqrt(STRETCH(1:s).^2+4)+STRETCH(1:s)).^2;]; 

    gamma=[(log(STRETCH(1:r)+2.*STRETCH(1:r).*ni11)).*((1+ni11)./(1-

2.*ni11)) 

log(0.5.*sqrt(STRETCH(1:s).^2+4)+STRETCH(1:s))./sqrt(1./2.*STRETCH(1:s).^2+

4);]; 

 end 

S=alpha.*mu.*exp(k.*beta).*gamma; 
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% Calculation of optimal material parameters deviatoric part 

load('volumetric.mat') 

L_UV=volumetric(:,1); % volume change J 

P_UV=volumetric(:,2); % Pressure MPa 

%Volumetric 

Pol_UV=polyfit(L_UV,P_UV,5); 

t=length(L_UV); 

Lmin_UV=min(L_UV); 

L_UV=linspace(1,Lmin_UV,r); 

    if t==0 

        L_UV=[]; 

    end 

PKF_UV=polyval(Pol_UV,L_UV); 

C0v=[0,0,0,0,0]; %Initial guess 

lb=[0.2,0.2,0.2,0.2,2]; %Lower bound 

ub=[inf,inf,inf,inf,inf];%upper bound 

optnew=optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-15,... 

 'TolFun',1e-15, 'TolX',1e-15,'MaxFunEvals',3000,'MaxIter',3000); %Curve 

fit oprtions 

[C1] = lsqcurvefit(@expHencky_M_vol,C0v,L_UV,PKF_UV,lb,ub,optnew); %optimal 

...solution 
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function P=expHencky_M_vol(C1,L_UV) 

 

%material constants 

kappa=C1(1); 

hat_k=C1(2); 

kappa1=C1(3); 

tilde_k=C1(4); 

m=C1(5); 

 

 

 

P=(C1(1).*(exp(C1(2).*(log(L_UV).^2))).*(log(L_UV)./L_UV))+(C1(3).*(exp(C1(

4).*((log(L_UV).^2).^(C1(5)/2)))).*(((abs(log(L_UV)).^C1(5)-

2).*log(L_UV))./(L_UV))); 
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The fitting procedure has been implemented in a .mex file and can be requested to the
author (giuseppe.montella@unina.it). The program requires Matlab Compiler to be installed
on the computer. It can run the fitting using either the exponentiated Hencky energy
proposed by Neff et al [63] or the modification with an extra volumetric term presented
in this thesis.

Figure B.1: Standalone program for fitting experimental data with Exponentiated Hencky
functions
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Appendix C

Matlab code for single Maxwell
element

This Matlab code allows to evaluate the response of a single Maxwell element according to
the framewrok proposed by Reese and Govindjee [28] and that has been used in this thesis.

• a defines the number of cycles;

• gamma is the amplitude of the imposed displacement;

• mu and k are material parameters;

• nd is the deviatoric viscosity (only deviatoric deformations are considered no contri-
bution to the viscosity from the volumetric deformations);

• Ci is the inelastic right Cauchy-Green tensor;

• ebe is be = FeF
T
e ;

• ff is the deformation tensor F;

• ebetr is betrial. The problem is solved using a numerical tangent.



close all 

clear all 

format long 

 

a=(0:0.2:8*pi); 

gamma=(0.33.*sin(a))';  %imposed displacemenet 

 

mu=0.2;   % material parameter 

k=2.2;    % material parameter 

dt=0.1;   % time interval 

nd=13;    %deviatoric viscosity 

 

nstep=length(gamma); 

 

Ci=ones(3,1); 

ebe=ones(3,1); 

 

 

for n=1:nstep 

ff=[sqrt(1+(gamma(n)^2/2)+gamma(n)*sqrt(1+(gamma(n)^2/4))) %Deformation 

Tensor 

    sqrt(1+(gamma(n)^2/2)-gamma(n)*sqrt(1+(gamma(n)^2/4))) 

    1]; 

 

ebetr=ff./(Ci);  %be trial 

 

c = 0; 

res=1; 

 

while res>1e-5 & c<100 

 

ra=ebe-exp(-dt.*((4.*mu.*exp(2.*k.*log(ebe).^2)).*log(ebe))./(nd)).*ebetr;  

%residual 

i=sqrt(-1); 

h=eps; 

f= @(ebe) ebe-exp(-

dt.*((4.*mu.*exp(2.*k.*log(ebe).^2)).*log(ebe))./(nd)).*ebetr; 

K1=(1./h).*imag(f(ebe+i*h*[1;0;0])); 

K2=(1./h).*imag(f(ebe+i*h*[0;1;0])); 

K3=(1./h).*imag(f(ebe+i*h*[0;0;1])); 

KK=[K1,K2,K3]; %numerical tangent 

de=-KK\ra; 

res=norm(-ra); 

ebe=ebe+de; 

c=c+1; 

 

mat1(n,:)= ebe(1); %store first eigenvalue 

 

fprintf('Load Step: %d/%d\n',n,nstep) 

fprintf('Newton iteration: %d\n',c) 

fprintf('Norm of Residual: %2.4e\n',res) 

end 

if c==99; 

    error('Newton not converging') 

end 

Ci=ff./(ebe); 



 

end 

 

figure('Units', 'centimeters','Position',[7 4 14 8]) 

plot (mat1,'g-'); 

xlabel('number of steps'); 

ylabel('be'); 

set(gca,'Fontsize',7); 
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