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Chapter 1

Summary

Turbulent flames (premixed, partially premixed and non-premixed) are widely

employed in the majority of practical combustion systems such as internal com-

bustion engines, ramjet, turbine engines, boilers, furnaces, etc. Understanding the

phenomena underlying turbulent combustion is essential in order to improve the

performance of the combustion systems.

Both experiments and numerical simulations are used to study turbulent flames.

Nowadays, optical diagnostic is surely one of the most common techniques em-

ployed to study the turbulent combustion processes that occur in various com-

bustion systems. Besides, the development of faster and faster optical diagnostic

techniques during the last years has allowed to investigate better and better the

flames of various combustion systems. Consequently, these techniques, as so the

advanced numerical simulations (DNS, LES), generate a huge amount of data that

cannot be processed with classical numerical techniques of analysis. Despite hav-

ing more data is certainly better than having less, the huge amount of data poses

new challenges. Particularly, processing of such data to extract any useful infor-

mation requires the development of new numerical techniques for the data analysis.

1
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This thesis is focused on the development and application of advanced numer-

ical techniques for the analysis of images from turbulent flames. Particularly,

the main techniques developed are based on Proper Orthogonal Decomposition

(POD), Independent Component Analysis (ICA), Dynamic Mode Decomposition

(DMD) and Optical Flow (OF). These techniques were applied to flame images

from optically accessible engines (ICE), Spark Ignition and Diesel engines, and

from bluff-body swirl spray burners.

The main scope of this thesis is the application of new advanced numerical tech-

niques for the analysis of images from turbulent flames. With regards to the ap-

plications to images from optically accessible engines, the specific objectives are:

(i) to apply POD and ICA in order to extract the dominant features of the flames;

(ii) to examine the cycle-to-cycle variations in terms of both global measures and

dominant features (ICA and/or POD modes) of the flames; (iii) to estimate and

analyse the apparent motion field of the flame during the propagation in a port

fuel injection spark-ignition engine. With regards to the applications to 2D images

from bluff-body swirl spray burner, the instability condition known as blow-off is

investigated by means of POD analysis. Blow-off occurs when the local supply

velocity of the reactant is greater than the flame speed. This phenomenon is the

main cause for which turbine generators, which operate in a fuel-lean burning mode

(low NOx emission), trip offline. The specific objectives are: (i) to examine dif-

ferences in the flame behaviour far from and close to extinction conditions; (ii) to

reveal the dominant flame structures just before blow-off; (iii) to reveal differences

and similarities among the different liquid fuels used; (iv) to study the statistical

behaviour of the POD Modes, in terms of coherent and incoherent components,

when the condition of blow-off is approached.
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1.0.1 Organization and contributions

Chapter 2 consists of a literature review, followed by brief mathematical descrip-

tions of Proper Orthogonal Decomposition, Independent Component Analysis, Dy-

namic Mode Decomposition and Optical Flow.

Chapter 3 deals with the description of the experimental tests and numerical anal-

ysis of images of combustion from optically accessible engines. Specifically, Section

3.1.1 reports the description of the experimental apparatus and tests concerning

a port-fuel injection spark-ignition engine operating under two different fuel injec-

tion strategies. Section 3.1.2 reports the analysis of the cycle-to-cycle variations in

terms of global quantities (in-cylinder pressure, integral luminosity and centroid

of luminosity). Sections 3.1.3 and 3.1.4 report respectively on the application of

POD and ICA for the analysis of cycle-to-cycle variations in terms of dominant

features (POD modes and independent components). Section 3.2.3 reports on the

application of ICA to images of combustion that occurs in an optically accessible

diesel engine. It is shown how ICA is able to extract the independent combustion

phenomena that occur in an engine combustion chamber.

Chapter 4 is focused on the POD analysis of images of OH*(chemiluminescence)

and OH-PLIF of swirling spray flames far from and at extinction. The analysis

permits to extract the dominant features of the flames and information on their

dynamics. To this aim, the dynamics of the dominant modes of the flames is anal-

ysed through the Fourier analysis of the POD coefficients. Section 4.2.3 reports

the description of the experimental apparatus and the operating conditions inves-

tigated. Section 4.4 reports on the formulation of POD and on two methods for

the analysis of the coherent and incoherent components. Moreover, the definition

of two new energy spectra based on the coherent and incoherent analysis is pro-

posed.

Section 4.5 reports on the POD analysis for flames of n-dodecane, n-decane, n-
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hepthane and ethanol, for operating conditions far and close to blow-off. In this

section, the dominant features of the flames are shown and their dynamics are

studied through the Fourier analysis of the POD coefficients. Section 4.6 reports

on the analysis of the statistical behaviour of the flame, in terms of its coherent

(non-Gaussian) and incoherent (Gaussian) component, for flames far and close to

blow-off. This analysis has suggested a criterion to identify the blow-off condition

from the stable conditions.

Chapter 5 reports an application of Dynamic Mode Decomposition to PIV mea-

surements of high Reynolds and high swirl number flow, in order to extract the

dominant dynamics - in terms of frequency and growth rate - of the turbulent flow

investigated. The conclusions of this work are reported in Chapter 6.

The work reported in this thesis has already produced the following publica-

tions:

1. Bizon, K., Lombardi, S., Continillo, G., Mancaruso,E. and Vaglieco, B.M.

(2012). Analysis of Diesel engine combustion using imaging and independent

component analysis. Proceedings of the Combustion Institute, Available

online 26 August 2012, ISSN 1540-7489.

2. Bizon, K., Lombardi, S., Continillo, G. & Vaglieco, B.M. (2012). Analy-

sis of the independent components from images of transient reactive flows.

Proceedings of the XXXV Meeting of the Italian Section of the Combustion

Institute, 10-12 October 2012, Milano, Italy

3. Bizon, K., Continillo, G., Lombardi, S. & Vaglieco, B. M. (2013). Indepen-

dent Component Analysis of transient reactive flows in optically accessible

SI and Diesel engines. The 24th ICDERS (International Colloquium on the

Dynamics of Explosions and Reactive Systems), 28 July - 2 August 2013,
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Taipei, Taiwan.

4. Lombardi, S., Bizon, K., Continillo, G., Mancaruso, E. & Vaglieco, B. M.

(2013). Dynamics of spectral emissions in HCCI combustion. International

Conference on Engines & Vehicles, 15-19 September 2013, Capri, Napoli

(Italy).

5. Bizon, K., Continillo, G., Lombardi, S., Mancaruso, E., Sementa, P. &

Vaglieco, B. M. (2013). Independent Component Analysis if combustion im-

ages in optically accessible SI and Diesel engines. International Conference

on Engines & Vehicles, 15-19 September 2013, Capri, Napoli (Italy).

6. K. Bizon, G. Continillo, S. Lombardi, E. Mancaruso, P. Sementa, B.M.

Vaglieco, Independent Component Analysis applied to combustion images

in transparent engines, Ingineria Automobilului 8:7-11, 2014.

7. K. Bizon, G. Continillo, S. Lombardi, E. Mancaruso, P. Sementa, B.M.

Vaglieco, Decomposition methods in engine research, Joint Meeting of French

and Italian Section IFRF and the Combustion Institute, Pisa, Italia, 23-24

April 2014.

8. K. Bizon, G. Continillo, S. Lombardi, P. Sementa, B.M. Vaglieco, Indepen-

dent Component Analysis of combustion images from a Spark Ignition optical

engine, submitted to Combustion and Flame.

9. K. Bizon, G. Continillo, S. Lombardi, P. Sementa, B.M. Vaglieco, Applica-

tion of Independent Component Analysis for the study of flame dynamics and

cyclic variation in spark ignition engines, accepted to the 9th Mediterranean

Combustion Symposium, Rhodes, Greece, 7-11 June 2015.

10. S. Lombardi, K. Bizon, A. Coghe, F. Cozzi, G. Continillo, DMD analysis

of experimental PIV data of a swirled jet, submitted to The 25th ICDERS
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(International Colloquium on the Dynamics of Explosions and Reactive Sys-

tems), Leeds, UK, 2-7 August 2015.

11. S. Lombardi, R. Yuan, G. Continillo, E. Mastorakos, Proper Orthogonal

Decomposition analysis of an n-decane swirling spray flame at extinction,

accepted to Ninth Mediterranean Combustion Symposium, Rhodes, Greece,

7-11 June 2015.



Chapter 2

Numerical techniques for the

analysis of optical data obtained

from turbulent flames

This chapter is focused on the numerical techniques for the analysis of optical

data obtained from turbulent (premixed and non-premixed) flame. Specifically,

the techniques reported in this chapter are: Proper Orthogonal Decomposition

(POD), Independent Component Analysis (ICA), Dynamic Mode Decomposition

(DMD) and Optical Flow (OF) method.

POD, ICA and DMD are modal decomposition techniques. A modal decomposi-

tion technique takes a set of data and it computes from set of modes, or character-

istic features. The meaning of the modes, on the particular type of decomposition

used. POD extracts the set of modes so that they capture the most amount of

energy. ICA determines the set of modes so that all modes (features) are mutu-

ally statistically independent from each other. DMD extracts the modes (dynamic

modes) that describes the dominant dynamics of the set of data. Differently, Op-

tical Flow is a technique that allows to estimate the apparent motion field starting

7
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from two or more consecutive images.

2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a powerful technique presented by

Lumley (1967) for data analysis and model reduction (ROM). POD has the pur-

pose to extract the dominant features contained in a given set of data, which

represent in some way the state of the system under study. Particularly, POD

provides optimal set of basis functions starting from a ensemble of data (called

snapshots) originated by experiments or numerical simulations, so that they rep-

resent as better as possible the dominant (coherent) features (or information) cap-

tured by the entire set of data. The basis functions are called in various ways such

as modes, empirical eigenfunctions, empirical basis functions, proper orthogonal

modes (POD modes), or basis functions; in this dissertation, the basis functions

shall be called POD modes. Basically, POD allows to express the entire ensemble

of data, which was employed to estimate POD modes, as linear combination of such

basis functions and proper coefficients, that are properly called POD coefficients.

It has been used in many application of various scientific fields, as a result it has

assumed different forms such as Principal Component Analysis (PCA), Karhunen-

Loéve (KL) transform, and singular value decomposition (SVD).The connections

and the equivalence of these methods have been discussed in paper presented by

Wu et al. (2003).

PCA is a statistical technique which purposes to identify the most important un-

correlated components (principal components, PCs) present within an ensemble

of data obtained by multivariate observations. The underlying idea of PCA is to

find a compact and uncorrelated representation of the data that captures the most
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amount of variance present into the observations. KL decomposition has taken the

name of the two scientists, Karhunen and Loéve, which independently developed a

theory regarding the optimal series expansions of continuous-time stochastic pro-

cess (Webb, 2002). In other words, KL decomposition can be considered as the

extension of PCA to the case of infinite dimensional spaces, such as the space of

the continuous-time functions. In the last, SVD can be seen as the extension of the

eigenvalues decomposition to non-square matrices. Since that SVD is much more

general than the eigenvalue decomposition and intimately relates to the matrix

rank and reduced-rank least-squares approximation, it is a very important and

fundamental working tool in many areas such as matrix theory, linear systems,

statistics, and signal analysis (Scharf, 1991; Trefethen, 1997).

There are many applications of POD in the context of reduction of models of re-

acting flow system (Bizon and Continillo, 2009, 2012). Other applications concern

the data (or image) compression in order to over come issues connected with data

storage and transmission.

Nowadays, POD is one of the most famous techniques in the research fields of the

fluid mechanics and combustion. In fact, it is employed both to carry out the

data analysis and model order reduction in contexts of combustion and fluid me-

chanics. Since the aims of this dissertation are focused on the study of turbulent

flames, an overview on the state of the art about the POD applications in tur-

bulence and combustion, will be presented in the next subsection. Subsequently,

the mathematical formulation shall be discussed for both continuous and discrete

cases.

2.1.1 POD Review

POD is becoming more and more, a popular tool for the study of turbulent flows

and turbulent flames. Lumley (1967) was the first to introduce this technique to
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study the coherent features in inhomogeneous turbulence. Berkooz et al. (1993)

presented a review on the role of POD for the analysis of turbulent flows; wherein

the POD strengths, about the data analysis and reduction of models in fluid me-

chanics, are highlighted. Although, this review was made more than twenty years

ago, its contents are still of interest for the researcher in the field of turbulence

and combustion. In fact, Berkooz et al. (1993) have underlined the issues about

the understanding of the underlying processes of the turbulence. In the context

of the analysis of experimental data, Liu (1988) was one of first researchers to

observe coherent features into flows at high Reynolds number. The term coherent

structure denotes the organized spatial features that systematically appear with

a given temporal coherence. Usually, the coherent structures of a turbulent field

correspond to phenomena of large scale, instead incoherent structures correspond

to those of small scale. Moreover, Berkooz et al. (1993) highlight that POD offers

a rational method for the extraction of coherent structures. During the last twenty

years, many researchers have observed coherent features during experiments car-

ried out at high Reynolds number.

Glauser and George (1992) have employed various techniques to resolve issues con-

nected to the application of multipoint measurements of turbulent flows. Particu-

larly, they proposed a method based on POD to determine the criteria of spatial

sampling, that is the criteria to choose the number of probes and their spatial lo-

cations without information losses, to investigate inhomogeneous turbulent flows.

These flows are of great importance because most engineering flows are strongly

inhomogeneous in one or more directions. Indeed, it is sufficient to think of flows

that occur into many modern devices such as engines, burners, chemical-process

devices, and so on, that require a complex geometry to make flows homogeneous.

Besides, the authors highlight that, in case of homogeneous and periodic flows,

spatial sampling criteria based on Fourier decomposition can be employed as well.
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Indeed, if the flow fields are homogeneous and periodic, POD and Fourier decom-

position will be equivalent along the direction of homogeneity and stationary.

Bonnet et al. (1994) has proposed a complementary technique based on POD and

Linear Stochastic Estimation (LSE) to reconstruct turbulent velocity fields and

to identify large-scale structures. This method was shown to be very useful be-

cause it requires only two simultaneous measurements of the velocity in order to

reconstruct the entire turbulent velocity field. Bonnet and Delville (2001) have

also written a review dedicated to methods for the analysis of coherent structures

(conditional averages, filtering techniques, wavelets, LSE, POD, etc.) in various

turbulent flows (such as jets, mixing layers and boundary layers), and the links

between these methods and mathematical models employed in turbulence (RANS,

LES, SDM, etc.).

Gordeyev and Thomas (2000) employed POD to extract and investigate the large-

scale coherent structures in the similarity region of a planar turbulent jet. More-

over, the self-similarities of POD eigenfunctions were analysed and scaling laws

were found for both POD eigenvalues and eigenvectors. This analysis was obvi-

ously carried out in the region of the flow where the flow field is guaranteed to have

self-similarity. Moreover, POD has also permitted to individuate two POD modes

(spatial features), a symmetric mode with respect to the jet profile centreline and

an antisymmetric mode, that may be the cause of instability of the flow.

Citriniti and Greorge (2000) employed POD to extract the coherent, or large-scale,

structures in a high Reynolds fully developed, turbulent axisymmetric shear layer

generated by a round jet. Particularly, it was shown that meaningful physical struc-

tures (large ring vortices) were captured by the first POD modes. Subsequently,

POD coefficients were used to analyse the dynamic behaviours (time scales) of the

most meaningful modes in order to understand the underlying mixing mechanisms

induced by the interaction between round jet nozzle and air jet. In addition, the
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ability of POD to filter out the small-scale turbulent fluctuations, which obscure

the view of the large structures, was shown as well.

Ito et al. (2001) investigated the vortex shedding behind a cylinder in a fully de-

veloped pipe flow by means of anemometric measurements. Velocity field data

were analysed by using POD coupled to wavelets analysis. Therefore, wavelets

analysis was carried out on POD coefficients to analyse the dynamic behaviour

of the investigated phenomena, focusing on the periodic phenomena connected to

vortex shedding process. Additionally, the POD modes were classified according

to the entropy of the corresponding POD coefficients.

During the last decade, POD was widely employed to analyse data provided

from advanced measurement techniques, such as particle image velocimetry (PIV),

which provides high-resolution spatial-temporal information, and large-eddy sim-

ulations. Consequently, various extensions of POD have been developed in order

to extract information of interest. One of these extensions is known as extended

POD, which was firstly used to study a jet-interaction in an internal combustion

engines. Subsequently, an accurate description of extended POD was presented

by Borèe (2003), wherein this method is proposed as a tool for the analysis of

correlated events in turbulent flows. Basically, extended POD allows to estimate

POD modes in the entire domain starting from POD modes obtained from data

relative to only one subdomain. Moreover, it is also possible to use it to study the

correlation of any physical quantity (e.g., pressure) with any scalar or vector field

(e.g., velocity field). An accurate description about extended POD will presented

in a subsequent section.

The flow around bluff body, a device employed in engineering flows to produce

vortexes, was analysed by means of PIV measurements and POD (Oudheusden

et al., 2005). Particularly, an appropriate version of POD was proposed and used

in order to extract the vortex-shedding phase of velocity fields, which were acquired



Chapter 2. Numerical techniques – 2.1. POD 13

at asynchronous low frequency respect to the vortex cycles. The authors were fo-

cused on understanding the underlying physics of vortex formation and shedding

processes. Everson and Sirovich (1995) presented an iterative-algorithm based on

POD for the recovery and reconstruction of spatio-temporal missing data. This

method is known as Gappy POD. During the last years, gappy POD was widely

employed to recover and reconstruct the missing data obtained from PIV mea-

surements. Therefore, Murray and Ukeiley (2007) applied gappy POD in order

to recover and reconstruct the spatio-temporal missing data obtained from PIV

measurements of a subsonic cavity flow. This application is very useful because

data missing is a phenomenon that occurs frequently, above all for high-speed

measurements of optical data.

Farge et al. (1999) used POD to decompose a turbulent flow, obtained by direct

numerical simulation (DNS), in two orthogonal components: an organized coher-

ent flow (non-Gaussian) and a random incoherent flow (Gaussian). He found that

the small scale flow contained still coherent structures, since the velocity PDF was

stretched exponential, while the incoherent flow was structureless, and its velocity

PDF was Gaussian. Bizon et al. (2009b) proposed a method based on POD for

the reconstruction of information in between consecutive measurements of flame

images taken from an optically accessible internal combustion engine. A filtering

approach, based on POD and statistical moments, was proposed and used to ex-

tract the mean, coherent (non Gaussian) and incoherent (Gaussian) components

of the fluctuation of the luminosity from combustion processes in engines (Bizon

et al., 2009a). Furthermore, Bizon et al. (2010b) proposed a Coefficient of Vari-

ation defined on the POD coefficients as measure of the cyclic variability of the

morphologic features of the flames. For systems having a dominant periodicity,

as in thermoacoustically-excited flames, POD has also been used to reveal typical

flame shapes and their connection with the acoustics (Davis et al., 2013) and the
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flow (Stöhr et al., 2012). POD has also been applied to chemiluminescence images

to study the blow-off dynamics of stratified premixed flames (Kopp-Vaughan et al.,

2013) and vortex shedding (Kostka et al., 2012). In simulations, POD has been

used to represent DNS data (Frouzakis et al., 2000; Danby and Echekki, 2006) and

for analysis of LES data (Duwig and Fureby, 2007).

In the next section, the mathematical description of POD will be discussed.

2.1.2 POD: mathematical description

In this section, the formulation proposed by Holmes (1996) will be followed. Sup-

pose an ensemble of M snapshots of scalar fields {uk}Mk=1, each being a function

u = u(x) defined on the domain 0 ≤ x ≤ 1. Furthermore, it is assumed that the

u’s belong to an inner product space: the linear, infinite-dimensional Hilbert space

L2 ([0, 1]), of square integrable functions with inner product:

(f, g) =

∫ 1

0

f(x)g(x)dx (2.1)

and the induced norm

‖f‖ = (f, f)2 (2.2)

POD permits to obtain an optimal basis {φ(x)}∞j=1 for the data set in the sense

that the finite-dimensional representations of the form

uN(x) =
N∑
j=1

cjφj(x) (2.3)

describes the members of the ensemble better than a representation of the same

dimension in any other basis. In mathematical words, this statement of optimality

means that the basis function φ should be chosen such that the mean square error

between the data u and the its projection onto φ is minimized, that is:

min
φ∈L2([0,1])

〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉

(2.4)
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where 〈·〉 denotes averaging operation commutative with the spatial integral.

This optimization problem is equivalent to maximizing the averaged projection of

u onto φ, namely:

max
φ∈L2([0,1])

〈
|(u, φ)|2

〉
‖φ‖2

(2.5)

where |·| denotes the absolute value. Since that it is desirable to have the basis

φj(x) orthonormal, the problem (2.5) is subject to the constraint ‖φ‖2 = 1. The

corresponding function for this constrained variation problem is

J [φ] = 〈|(u, φ)|2〉 − λ(‖φ‖2 − 1) (2.6)

The extremum is reached when the functional derivative vanish for all variations

φ + δψ ∈ L2([0, 1]), δ ∈ R. After few mathematical manipulation (Holmes, 1996)

such condition of optimality reduces the problem to the following integral eigen-

value problem: ∫ 1

0

〈u(x)u(x′)〉φ(x′)dx′ = λφ(x) (2.7)

Let R denote the linear operator of the autocorrelation function defined by

R ≡ 〈u(x)u(x′)〉 (2.8)

Consequently, problem (2.7) can be written as

Rφ = λφ (2.9)

Thus, the optimal basis is given by the eigenfunctions {φj} of the autocorrelation

function that is only defined from the empirical data u. The basis functions are

called empirical eigenfunctions, or POD modes.

The modal coefficients cj that appear in Eq. (2.3) are determined by the projection

of the empirical data onto POD modes:

cj = (u, φj) (2.10)
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Moreover, each eigenfunction φj is associated with the corresponding eigenvalues

λj, and since the autocorrelation function is defined non-negative, this implies that

eigenvalues λj are strictly positive, namely λj ≥ 0 for all j. Therefore, we may

order the eigenvalues λj ≥ λj+1 and define the energy fraction captured by the

k -th eigenfunction as

ek =
λk∑
j λj

(2.11)

and the cumulative energy of the first K eigenfunctions as

EK,POD =

∑K
j=1 λj∑
j λj

(2.12)

The function of the cumulative energy on K is called cumulative energy spectrum

based on POD. Usually, in many practical applications the fields depend on four

variables, three spatial and one temporal. Therefore, it is necessary to generalize

the integral equation (2.7) to functions of more than one variable and to vector-

valued functions u(x, t) by using a appropriate Hilbert spaces and inner products.

Following the example proposed by (Holmes, 1996), for experiments performed in

a one-dimensional spatial domain 0 ≤ x ≤ 1 over times of duration T , one simply

considers the problem in the space L2([0, 1] × [0, T ]) with inner product defined

as double integral over x and t. As a consequence, the POD representation of the

field u(x, t) assumes the following form:

u(x, t) =
∑
j

cj(t)φj(x) (2.13)

It is interesting to observe that the POD representation allows to separate the

temporal and spatial features: POD modes depend only on the space variable x,

whereas POD coefficients depends only on the time variable t. This last property is

widely used in this thesis in order to extract useful information on the investigated

phenomena
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2.1.3 POD: discrete formulation and the method of Sirovich

In practical applications, numerical or experimental observations {uk(x)}Mk=1 are

discretized both in space and time. Let x = (x1, . . . , xN) be the discretization of

the spatial domain, and t = (t1, . . . , tM) the discretization of the temporal domain;

where the subscripts N ad M are respectively the size of the discretized spatial

and temporal domains.

The entire set of observations can be represented by the matrix of snapshots U

defined by

U ≡


u(x1, t1) . . . u(x1, tM)

... . . . ...

u(xN , t1) . . . u(xN , tM)

 (2.14)

hence, in the discrete case, the autocorrelation function of Eq. (2.8) is replaced by

the spatial autocorrelation matrix

R =
1

M
UUT (2.15)

of dimension N ×N . Therefore, the POD modes φj having the same dimension N

as the discretization of the spatial domain can be found by solving the eigenvalue

problem

Rφ = λφ (2.16)

In the cases when the dimension of the discretized spatial domain is high, the

matrix R can become too large for the machine capacity and/or too expensive

in terms of computational cost for solving the eigenvalue problem (2.16). For

example, in the case of POD application to a set of images having resolution

400 × 400 pixels, the dimension of the discretized spatial domain is 160000, the

spatial correlation matrix dimension is 160000 × 160000. Hence, it is impossible

to solve the eigenvalues problem (2.16) due to the high dimensionality of R.
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Fortunately, Sirovich (1987) proposed a method that allows, in case of N �M ,

to reduce an N × N eigenvalue problem to an M ×M eigenvalue problem. This

method, called method of snapshots, is based on the assumption that the POD

modes φj can be written as a linear combination of the snapshots:

φj =
M∑
i=1

bj(ti)u(x, ti) (2.17)

the coefficients bj being given by solution of the new eigenvalue problem

Cb = λb (2.18)

where C is the temporal correlation matrix defined as:

C =
1

M
UTU (2.19)

It is clear that the dimension of the eigenvalue problem (2.18) depends on the

number of snapshots. From a statistical point of view, Eqs (2.15) and (2.19)

are equivalent to the biased estimators of the corresponding correlation matrix.

Usually, in case of experimental data, the unbiased estimator of the correlation

matrix is used

C =
1

M − 1
UTU (2.20)

because it provides a more accurate estimate.

In the analysis of turbulent flows and flames, POD is usually carried on data

centred around the mean component, namely on the fluctuation of the field of

interest. Hence, the POD representation of the field is given by

ũ(x, t) = u(x, t)− u(x) =
M∑
i=1

ci(t)φi(x) (2.21)

Hence, the correlation matrix of the data centred on the mean component is given

by

C =
1

M − 1
(U−U)T (U−U) =

1

M − 1
ŨT Ũ (2.22)
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which is well-known as covariance matrix. This formulation should be used when

the investigated phenomenon can be considered statistically stationary.

2.2 Independent component analysis

Independent component analysis (ICA) is a statistical and computational tech-

nique to extract the hidden factors that underlie sets of random variables, mea-

surements, or signals. In ICA model is assumed that the observed multivariate

data are generated by linear or non-linear mixtures of some unknown latent vari-

ables, so called sources, and the mixing system unknown as well. Under particular

hypotheses, ICA methods aim to extract the signal sources starting from the multi-

variate data acquired (observations), namely without prior knowledge the physical

system (mixing system). These latent variables are often called independent com-

ponents (ICs) or factors.

ICA was introduced for the first time in early 1980s in the context of neural net-

work modeling. Later, the development of much more efficient algorithms and

the growth of computing power have allowed to extend ICA to various fields of

research such as signal processing, image processing and analysis, information the-

ory, probability theory, etc. The first applications of ICA dealt with the so-called

cocktail party problem (Hyvärinen and Oja, 2000), in which ICA was employed

to determine individual speech waveforms from their mixtures. Therefore, ICA

methods are of great interest in blind source separation (BSS) problems, where

the main aim is the extraction of signal sources (input signal) of a system starting

from multivariate data time-series of the output signals. Particularly in the engine

context, ICA has been used to identify the source signals related to independent

mechanical events from acoustic measurements (Albarbar et al., 2010) and vibra-

tion signals (Liu et al., 2008). Another example of ICA application in combustion
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can be found in the paper by Tan et al. (2012), where the method was applied

to identify the fuel type in power plants from flame oscillation signals. Recently,

Bizon et al. (2013) introduced application of ICA to flame images of the combus-

tion process that occurs inside the combustion chamber of an optically-accessible

diesel engine.

Next sections, ICA and BSS concepts will be firstly introduced through the

description of the “cocktail party” problem. Subsequently, ICA will be rigorously

presented.

2.2.1 Cocktail party problem

Consider three people are speaking (source signals) in the same room, where three

microphones are placed in different locations. Each microphone will record a mix-

ture (observed signals) of the three voices with different weights.

For sake of simplicity of exposition, denote by x1(t), x2(t) and x3(t) the observed

signals, which are the amplitudes of the recorded signals at time t, and by s1(t),

s2(t) and s3(t) the source signals. The observed signals, xi(t), are also called mix-

tures because they are the weighted sums of the sources, si(t), where the weight

coefficients, or mixing weights, depend on the distances between the sources (peo-

ple) and the sensors (microphones):

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)

x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

(2.23)

The mixing weights aij are assumed constant and unknown, since their knowledge

would require all the properties of the physical mixing system, that could be ex-

tremely difficult in general. Furthermore, the source signals si(t) are unknown as

well, since the actual problem is that the signal sources si(t) cannot be directly
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recorded.

Suppose that number of sensors equals the number of sources, and that the coeffi-

cients aij form an invertible matrix. Thus, there exists a matrix W with coefficients

wij, such that the source signals can be separated as:

s1(t) = w11x1(t) + a12x2(t) + a13x3(t)

s2(t) = w21x1(t) + a22x2(t) + a23x3(t)

s3(t) = w31x1(t) + a32x2(t) + a33x3(t)

(2.24)

Thus, the cocktail party problem regards the estimation of elements wij of W

only from observations xi(t). A surprisingly solution to this problem is provided

by considering the source signals to be statistically independent and not gaussian.

These assumptions are enough to estimate the coefficients wij, so that the signals

y1(t) = w11x1(t) + a12x2(t) + a13x3(t)

y2(t) = w21x1(t) + a22x2(t) + a23x3(t)

y3(t) = w31x1(t) + a32x2(t) + a33x3(t)

(2.25)

are statistically independent and correspond to the sources si(t), apart from an

arbitrary multiplicative scalar constant. Therefore, the estimates yi(t) are known

as independent components of the observations xi(t).

In order to clarify the ICA concept, a numerical example is reported here.

Consider the waveforms in Fig. 2.1 of the observations xi(t) generated by linear

combination of source signals si(t) previously generated (Fig. 2.2), and random

coefficients aij, which form a mixing matrix A with full-rank. Subsequently, the

independent components yi(t) were directly estimated from the observations xi(t)

by using the FastICA algorithm. It is possible to see as the estimated independent

components correspond to the source signals that were used in generating the
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Figure 2.1: The observed signals that are assumed to be mixtures of some under-

lying source signals.

mixtures xi(t).

2.2.2 ICA: generative model

Given a set ofm temporal signal mixtures x1(t), . . . , xn(t) measured over t = 1, . . . , T

and generated by linear combination of n random variables s1(t), . . . , sn(t):

xi = ai1s1(t) + ai2s2(t) + · · ·+ ainsin(t), for all i = 1, . . . , n (2.26)

where aij are the mixing coefficients. By definition, the si are statistically mutually

independent. Hence, it is clear that ICA is based on a generative model, since the

observed data are generated by a process of mixing of the source components si.
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Figure 2.2: Comparison between the estimates of the independent components yi

and actual signal sources si.

Recall that in this model, both the independent components, si, and the mixing

coefficients aij are unknown. Moreover, the time index t that was used in the

previous section has been eliminated, because in the rigorous definition of the ICA

model the mixtures xi as well as the ICs si are assumed to be random variables,

instead of time signals or time series.

Usually, the matrix-vector notation is used to express the sums of Eq. 2.26.

Thus, let x denote the random vector of mixtures x1, . . . , xn , let s denote the

random vector of the signal, and let A denote the mixing matrix with elements

aij, that is

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

an1 an2 . . . ann

 (2.27)

Using this vector-matrix notation, the generative model can be written as

x = As (2.28)
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It is sometimes useful to write Eq. 2.28 as

x =
n∑
i=1

aisi (2.29)

where ai denotes the i -th column of A.

The solution of the ICA problem consists of estimating both A and s when only

x is observed, provided that the observers collecting the mixtures are independent.

In the basic model defined by Eq. (2.28), the number of observed mixtures is

assumed to be equal to the number of the underlying independent sources, hence

the mixing matrix A is invertible, and the model can be rewritten as:

s = Wx (2.30)

The problem, as stated, poses a number of interesting theoretical issues, related to

concepts as identifiability, separability, and uniqueness (Eriksson and Koivunen,

2004). Indeed, it makes sense to search for both an unknown matrix W and set of

sources if there is some warranty of existence and uniqueness of the inverse formu-

lation (2.30) related to problem (2.28), and Ref. [30] indicates conditions for such

warranty. Assuming existence and uniqueness of the solution of Eq. (2.28), we can

approach the problem by an estimation procedure, searching a linear transforma-

tion W = A−1 in such a way that the linear combination y

y = Wx (2.31)

is the optimal estimation of the independent source signals s.

2.2.3 Assumptions and ambiguities of ICA

In order to extract the independent components, we here make the following as-

sumptions:

1. the independent components are assumed statistically independent;
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2. the independent components must have non gaussian distributions;

3. for simplicity, the mixing matrix is square and invertible.

The first assumption is the basis principle of ICA. Given n random variables

y1, y2, . . . , yn, they are independent if information in yi does not give information on

yj for i 6= j. Formally, the concept of independence can be defined by means of the

probability density functions (pdf ). Denote by p (y1, y2 . . . , yn) the joint probability

density function of the n random variables yi, and by pi(yi) the marginal pdf of

yi. Then, the n random variables y1, y2, . . . , yn are said statistically independent if

and only if the joint pdf is factorizable in the product of the n marginal pdfs, that

is:

p (y1, y2, . . . , yn) = p1(y1)p2(y2) . . . pn(yn) (2.32)

In relation to the second assumption, if the observed variables have gaussian distri-

butions, ICA cannot to separate the independent Gaussian components (Hyvärinen

and Oja, 2000). As a consequence, many applications of ICA consider a rejection

component, wherein the effects of all the gaussian sources are rejected. This can

also be seen as a filtering of the gaussian components.

In relation to the third assumption, it is assumed that the number of independent

components is equal to the number of observable mixtures. In some cases, this

assumptions can be relaxed, as it will be explained later.

The ICA generative model (Eq. 2.28) contains the following ambiguities:

• ICA cannot determine the variance (energies) of the independent compo-

nents. This is due to the unknowing of both the mixing matrix A and the

vector of the source signal s. Therefore, any scalar multiplier, αi, in one

of the sources si could always be eliminated by dividing the corresponding

column of ai of A by the same scalar, that is

x =
∑
i

(
1

αi
ai

)
(siαi) (2.33)
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As a result, it may be useful to fix the magnitudes of the independent com-

ponents so that they assume unit variance E {s2i } = 1 (the operator E{·}

denotes the statistical mean). Then, in the ICA methods the mixing matrix

will be adapted to take into account this constraint. It it possible to note

that this still leaves the ambiguity of sign. Indeed, each independent compo-

nent could be multiplied by -1 without influencing the model. Fortunately,

this ambiguity is insignificant in most applications.

• ICA does not provide a natural order of independent components. This is

again due to the unknowing of both A and s. Indeed, it is possible to change

the order of the terms in the sum Eq. (2.29) without loosing information on

the sources.

2.2.4 Preprocessing for ICA: centering and whitening

In order to obtain good estimates of the independent components from ICA algo-

rithms, the observable data (mixtures) should be preprocessed by centering and

whitening.

Centering is used to have both observable data and independent components with

zero mean, since such preprocessing simplifies theory and algorithms a lot. This

is made by subtracting the sample mean from the observable mixtures. Formally,

this means that the original mixtures, x′, are preprocessed by

x = x′ − E{x′} (2.34)

As a result, the independent components s have zero mean as well, since E{·} is a

linear operator, hence the mixing matrix remains the same after the centering of

the mixture variables, that is:

E{s} = A−1E{x} (2.35)
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After estimation of the mixing matrix and of the independent components for the

zero-mean data, the subtracted mean can be reconstructed by adding A−1E{x′}

to the centred independent components.

The second step of the preprocessing procedure is given by whitening the ob-

servable data. Whitening consists of applying a linear transform to observable

data (mixtures) so that its components are uncorrelated and have unit variance.

This is suggested by the fact that uncorrelatedness is a weak form of indepen-

dence. In other words, independence implies uncorrelatedness, but the reverse is

not true. Let y1 and y2 be two random variables: they are said uncorrelated if

their covariance are zero, namely

cov{y1, y2} = E{y1y2} − E{y1}E{y2} = 0 (2.36)

Let y be a random vector: it is said to be white, if its covariance matrix equals

the identity matrix, that is

E{yyT} = I (2.37)

Consequently, an observed data vector x can be transformed into a white zero.mean

z, by multiplying it by some matrix V

z = Vx (2.38)

One of the most popular methods for whitening is based on the eigenvalue decom-

position of the covariance matrix

C = E{xxT} = EΛET (2.39)

where E = (e1, e2, . . . , en) is the matrix of the eigenvectors of the covariance

matrix, whereas Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of the eigenvalues

of C. Now, whitening can be done by the whitening matrix:

V = Λ−1/2ET (2.40)
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Now, applying the whitening transform V to the mixture variables x of the ICA

model (Eq. (2.28))

z = Λ−1/2ETx = Vx = VAs = Ãs (2.41)

It is easy to see as the new mixing matrix Ã coming out from whitening x, is

orthogonal, that is

E{zzT} = ÃÃT = I (2.42)

This means that whitening the observable data before applying ICA, restricts the

search for the mixing matrix to the space of orthogonal matrices. Instead, having

to estimate n2 parameters, which are the elements of the original matrix A, it is

sufficient to estimate the orthogonal mixing matrix Ã, which contains (n− 1)n/2

degrees of freedom. Since whitening is a simple procedure and allows to reduce

the complexity of the problem, it is strongly recommended to make it before doing

ICA.

2.2.5 Non-Gaussianity as guideline for the independence

As previously mentioned, the assumption of non-Gaussianity of the sources is

essential for solving the ICA problem. Therefore, Hyvarinen (1999) proposed an

ICA algorithm based on maximizing non-Gaussianity as a measure of statistical

independence. Indeed, the central limit theorem (CLT) establishes that the sum

of independent and identically distributed (i.i.d.) random variables tends to a

Gaussian distribution. Thus, the sum of even two independent random variables

is usually more Gausssian than each of the original variables.

Observing CLT and ICA assumptions, the independent components could be

found by searching an unmixing matrix W that maximizes the non-Gaussianity

of the independent components. Therefore, one quantitative measure of non-

Gaussianity is necessary. There are various ways to measure the non-Gaussianity
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of a random variable. One of the most common ways to is excess kurtosis, kurt:

kurt(y) = E{y4} − 3
(
E{y2}2

)
(2.43)

Remember that all of the random variables here are normalized to zero mean

(centering) and unit variance (whitening). Recall that for a Gaussian random

variable, kurtosis is 3. Therefore, it is possible to use, as a measure of non-

Gaussianity, the excess kurtosis. Specifically, the excess kurtosis is zero for a

Gaussian random variable, and for most non-Gaussian random variables, excess

kurtosis is nonzero.

In this work, the independent components are estimated by using the FastICA

algorithm. FastICA is a fixed-point algorithm that estimates the unmixing matrix

by maximizing the absolute value of the kurtosis.

2.2.6 Number of independent components

In some cases, the number of underlying structures n to be determined is known

beforehand to be much smaller than the number m of mixtures available, thus

making A a non-square matrix, whose inverse cannot be defined. One solution is

to reduce the rank of the data during the whitening phase, by applying SVD (or

POD) (Wu et al., 2003) and using only the leading n eigenvectors and eigenvalues

(where n � m). When performing the transformation described by Eq. (2.40),

this results in taking, from matrix Λ, only the submatrix consisting of the first n

rows and columns, and from matrix E only the first n columns, respectively.

Usually, however, the number of independent sources is unknown. In this case

it is still advisable to seek a chosen, relatively low number of sources, that are

mathematically identifiable and interpretable from the physical point of view. Al-

ternatively, one can determine the independent components directly from a high

dimensional data set and then identify dominant components that can well rep-
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resent the data. The weak point of this second approach is that, unlike with the

POD method, there exists no natural ordering of the independent components,

thus dominant components cannot be identified unless an order relation is de-

fined, which is somewhat arbitrary. This can be readily done (Wu et al., 2006),

for example by calculating the norms of the columns of the mixing matrix A and

then ordering the si according to the norm of the corresponding columns, or use

a measure of the non-gaussianity of the components. Here we employ one of the

ordering criteria presented by Wu et al. (2006), i.e. the one based on the mean

square error (MSE) of the low-dimensional representation of the original data in

terms of components. In particular, it can be shown that a set of components

s(t) = (s1, ...sn)T can be ordered as follows:

T∑
t=1

m∑
i=1

a2i1V ar(s1(t)) ≥
T∑
t=1

m∑
i=1

a2i2V ar(s2(t)) ≥ · · · ≥
T∑
t=1

m∑
i=1

a2inV ar(sn(t))

(2.44)

Eq.(2.44) implies that, when increasing the number of components considered,

larger optimal sets of components are always supersets of the smaller optimal sets,

that is:

Spopt ⊂ Sp+1
opt p = 1, . . . , n− 1 (2.45)

where Spopt is the set of p dominant components in according to the order estab-

lished by Eq. (2.44).

2.2.7 ICA: image applications

As previously mentioned, in the classical application of ICA, each of n temporal

signal mixtures is measured over T time steps, and n temporal source signals are

recovered as y = Wx, where each source signal is independent over time from ev-

ery other source signal.

When we consider a sequence of images (Stone, 2004), each image consists of a
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Figure 2.3: Independent source images, artificial mixtures of images, and images

mixtures.

set of pixels, and ICA can be used in one of the two complementary to extract

either temporal source signals using temporal ICA (tICA), or spatial source signals

using spatial ICA (sICA). tICA produces a set of mutually independent tempo-

ral sequences and a corresponding set of unconstrained images, i.e. no restriction
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is imposed on the mutual properties of the images: they simply characterize the

contribution of each independent source signal to the observed one. Instead, sICA

determines mutually independent images and a corresponding set of unconstrained

temporal sequences.

Regarding the images, the concepts of mixing and separation are illustrated

with an artificial example in Figure 2.3. In other words, this example shows the

extension of the cocktail-party problem to images. A set of three independent

source images is chosen and multiplied by the mixing matrix A (with randomly

generated elements) in order to generate mixture images. Then, ICA is applied

by maximizing the independence over space as a function of the matrix W, so

that signals y can be determined, being an estimation of the source signals s. The

separation performance of ICA, starting from the mixtures, is striking. On the

contrary, POD is unable to identify the three independent components. Source

images in the example are: a stunning smile of Grethe Gerda Kornstädt, stage

name Dita Parlo, from the motion picture “L’Atalante” (1932), by J. Vigo; a

popular photograph of a trampled-on flower; and an alphabet written with Palace

Script MT font.

2.3 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) is a recent analysis technique presented at

a 2008 conference by Schmid and Sesterhenn, readily received and employed by

many researchers in the fields of both fluid dynamics and combustion. The first

article accepted was published by Rowley et al. (2009) only a year later. Schimd

et al. published their first article on DMD in 2010 (Schmid, 2010). The articles

by Rowley and Schimd are the most important works on this topic, and represent
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the starting points for the study of this analysis technique. However, it must be

noted that the theoretical approaches followed by Rowely and Schimd, differ quite

a bit in the way they consider DMD.

The work presented by Rowley et al. (2009) is based on the theory of Koopman

spectral analysis, which is based on an infinite-dimensional linear operator, called

Koopman operator, associated with the full nonlinear system. In particular, the

technique proposed by Rowley is based on the spectral decomposition of complex

nonlinear flows into modes, called Koopman modes, determined from the spectral

decomposition of the Koopman operator of the system. Koopman modes are asso-

ciated with a particular state of the system, and may be estimated directly from

a set of snapshots (either numerical or experimental) by means of a particular

version of the standard Arnoldi algorithm. Each Koopman mode is associated

with a particular Koopman eigenvalue. These eigenvalues provide information on

the dynamic of the system in terms of frequency and growth rate connected to

a particular feature relative to corresponding Koopman mode. Since the Arnoldi

method proposed by Rowley et al. (2009) for the computations of the Koopman

modes, is identical to DMD proposed by Schmid and Sesterhenn, Rowley et al.

(2009) regard DMD as a particular algorithm that provides an approximation of

the spectral decomposition of the Koopman operator.

On the contrary, the paper by (Schmid, 2010) focuses directly on DMD. In this

paper, DMD is thought as a generalization of global stability analysis; further-

more, in this paper is shown that DMD is also valid for the analysis of nonlinear

systems (nonlinear flows). Specifically, in the case of linearized systems (or lin-

earized flow), DMD analysis and global stability analysis provide the same results;

for a nonlinear system (or nonlinear flow), DMD provides the features of the linear

tangent approximation to the underlying flow and the corresponding information

on the dynamic behaviour (frequency and growth rate) captured by the set of data
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(snapshots).

The differing interpretations found in these two articles could make confusion re-

garding the difference between Koopman modes and DMD modes. Indeed, the two

terms can be interchanged. In fact, both Koopman and DMD analysis are based on

the same algorithms, and the differences depend only on the theoretical framework

in which the results are interpreted. A nice review on spectral Koopman spectral

analysis (or DMD) was written by Mezić (2013). In the rest of this dissertation,

we shall follow the same discussion and terminology proposed by Schmid (2010).

In this section, a brief review is presented about the recent DMD applications in

the field of turbulence and combustion, followed by a mathematical description of

DMD.

2.3.1 Applications of DMD analysis

Dynamic Mode Decomposition is a powerful technique in order to extract useful

information about the dynamics of a system starting from experimental or sim-

ulation data. Specifically, it permits to extract spatial modes (spatial features)

from a given data set (snapshots), and to associate to each mode a unique fre-

quency and growth rate (temporal feature). In the last years, many researchers

have employed DMD to extract and describe the underlying phenomena from sets

of data obtained by particle image velocimetry (PIV) experiments and large eddy

simulations (LES). Schmid et al. (2011) applied DMD to Schlieren snapshots of a

helium (passive scalar) jet and to time-resolved PIV-measurements of an unforced

and harmonically forced jet, to analyse the physical mechanisms of the fluid flow

in terms of spatial features and corresponding frequencies. Seena and Sung (2011)

used DMD to carry out global stability analysis on cavity flow at high Reynolds

numbers, in order to extract the features of the flow field that may be related to

flow instability. Tirunagari et al. (2012) applied DMD to analyse LES data of sub-
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sonic jets in order to understand better the mixing of fuel and oxidiser. Sakowitz

et al. (2013) analysed the flow field in an internal combustion (IC) engine manifold

by processing the data obtained by large eddy simulations to extract the spatial

features associated to characteristic frequencies of the engine.

Aoki et al. (2015) analysed the acoustic instabilities and the dynamics of a hydrogen-

air turbulent swirling flame in a cuboid combustor by applying DMD on DNS data.

Particularly, the interaction between the pressure and heat release fields was in-

vestigated in terms of dynamic modes.

2.3.2 DMD: mathematical description

In this section, we follow the same mathematical description made by Schmid

(2010) on the DMD. Given a snapshot sequence obtained by experiments or sim-

ulations, vi, it is possible to organize the data into following matrix VN
j

VN
j = {vj,vj+1,vj+2, ...,vN} (2.46)

where the subscript denotes the first snapshot of the sequence, while the superscript

denotes the last snapshots of the sequence. Only two sequence shall be used for

the mathematical description of DMD, that is:

VN−1
1 = {v1,v2,v3, ...,vN−1} (2.47a)

VN
2 = {v2,v3,v4, ...,vN} (2.47b)

Besides, an ordered sequence of snapshots is considered separated by a constant

sampling time ∆t. In the case of experimental data, a preprocessing could be

necessary in order to increase the signal-to-noise ratio (SNR), or equivalently to

reduce the amount of noise present in the set of data.

The main idea of the DMD is to assume the existence of a constant linear mapping

A that connects the snapshot vi to the subsequent snapshot vi+1, that is,

vi+1 = Avi (2.48)
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and that this mapping is (approximately) the same over the entire observation

time [0, (N − 1)∆t]. If the set of data are generated by a nonlinear process, this

assumption is equivalent to a linear tangent approximation of the system. In the

particular case that the data are generated by a linear system, no assumption is

made by assuming a constant linear mapping. In any case, the assumption of

a constant linear mapping between the snapshots will permit to write the i -th

snapshot, vi, as

vi = Avi−1 = A2vi−2 = A3vi−3 = ... = Ai−1v1 (2.49)

As a result, the entire sequence of the snapshots VN
1 can be formulated as a Krylov

sequence (Greenbaum, 1997),

VN
1 =

{
v1,Av1,A

2v1, ...,A
N−1v1

}
(2.50)

Hence, the main objective of DMD is to extract the dynamic characteristic (eigen-

values, eigenvectors, pseudoeigenvalues, energy amplification, resonance behaviour)

of the dynamic process described by the linear mapping matrix A based on the

sequence VN
1 . About the influence of the number of snapshots on the dynamic

features of the underlying physical process investigated, it is logical to think that

the number of snapshots increases, the data sequence better captures the main

dominant features of the dynamical system (underlying physical process). There-

fore, it is reasonable to assume that there exists a critical number of snapshots,

say N, beyond which the vector components of VN
1 become linearly dependent. In

other words, adding further snapshots vi to the data sequence will not contribute

further information about the dynamic dominant features of the system investi-

gated. In mathematical words, when this limit is approached, the N -th snapshots

can be thought as linear combination of the N -1 previous linearly independent

snapshots, that is

vN = a1v1 + a2v2 + ...+ aN−1vN−1 + r (2.51)
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or equivalently, in matrix form:

vN = VN−1
1 a + r (2.52)

where aT = {a1, a2, ..., aN−1} and r are respectively the vector of the coefficients

and the of residuals. Following the approach proposed by Ruhe (1984), it is possible

to write:

AVN−1
N = VN

2 = VN−1
1 S + reTN−1 (2.53)

where eN−1 ∈ RN−1 is the unit vector.

Looking at the elements of the matrix S,

S =



0 a1

1 0 a2
. . . . . . ...

1 0 aN−2

1 aN−1


(2.54)

it can be seen as this matrix is of companion type to the linear representation in

Eq.2.51. Moreover, the only unknowns in S are the coefficients {a1, a2, ..., aN−1}

of the linear combination of Eq. (2.51); namely, the coefficients of the representa-

tion of the last snapshot vN as linear combination of the previous N -1 snapshots

{v1,v2, ...,vN−1}. Since the eigenvalues of S, also known as the Ritz values, ap-

proximate some eigenvalues of A, various DMD algorithm have been developed

to estimate the matrix S in a way that the norm (usually L2-norm) of the resid-

ual vector is minimized. In other words, as the residual r becomes smaller and

smaller, the eigenvalues of S approximate better and better the eigenvalues of A.

Thus, DMD can also be considered as an optimization problem with the following

objective function:

S = arg min
M

∥∥VN
2 −VN−1

1 M
∥∥ (2.55)
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with M ∈ R(N−1)×(N−1).

2.3.3 DMD Algorithms

In this section will be presented the main DMD algorithms employed for the anal-

ysis of experimental data. Few algorithms are grouped in the work by Richecoeur

et al. (2012). Particularly, in this subsection two main algorithms will be presented:

1. DMD algorithm based on QR-decomposition;

2. DMD algorithm based on singular value decomposition (SVD).

DMD algorithm based on QR-decomposition. The matrix S is computed

as follows: the last snapshot of a given sequence is expressed as a linear combina-

tion of the N previous snapshots (see Eq. 2.51). Under the assumption that the

matrix VN−1
1 has full rank, the solution vector of the coefficients ai that minimize

the L2-norm of the residual vector (Eq. 2.51), namely the least-squares solution,

is given by:

a = R−1QHvN (2.56)

where the matrices Q and R are given by QR-decomposition of the snapshot

sequence VN−1
1 = QR, and QH is the complex conjugate transpose of Q. Hence,

the companion matrix S can be obtained as

S = R−1QHVN
2 (2.57)

and its spectral decomposition

Syi = µiyi (2.58)

where y1 and µi are respectively the i -th eigenvector and eigenvalue (they are

typically complex and conjugate) of S. Each dynamic mode (DMi), φi, is obtained
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by projection of VN−1
1 onto the eigenvector yi, namely:

φi = VN−1
1 yi i = {1, 2, ..., N − 1} (2.59)

The information about the dynamic of each mode, in terms of frequency fi and

growth rate σi , are provided by the eigenvalues µi of the companion matrix S

through the following relationships:

σi = log (Re(µi))/∆t (2.60a)

fi = log (Im(µi))/2π∆t (2.60b)

whereas the amplitude of the i -th dynamic mode is given by its L2-norm, ‖φi‖L2
.

In addition, the ensemble of all Ritz values of S takes the name of dynamic mode

spectrum. The DMD method based on QR-decomposition is summarised in Algo-

rithm 1, where D is the diagonal matrix of the eigenvalues µi of S. In accordance

with standard convention reported in Algorithm 1, the dynamic mode spectrum

is often logarithmically mapped onto plane complex as:

λi = log(µi)/∆t (2.61)

Besides, it is important to highlight that at no step in Algorithm 1 the explicit

form of the system matrix A (Eq. 2.48) appears. As a result, the dynamic modes

and the dynamic mode spectrum are both computed by using only the ensemble

of data (snapshots) collected. The most important property of this method is the

ability to extract the underlying dynamics of a system using only few snapshots of

the system, i.e. without assuming any model of the underlying physical system. In

mathematical words, this means that A is assumed to be a free-matrix (Schmid,

2010).

DMD algorithm based on SVD. Even though the method based on QR-

decomposition is mathematically correct and it is often employed to prove the
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Algorithm 1: DMD algorithm based on QR-decomposition (Schmid et al.,

2011)

Data: a sequence of n snapshots {v1,v2, . . . ,vN} sampled with fixed

sampling time ∆t;

Output: dynamic mode spectrum λi and associated dynamic modes φi

with {i =, 2, . . . , N − 1}

VN−1
1 = {v1,v2, . . . ,vN−1}

VN
2 = {v2,v3, . . . ,vN}

[Q,R] = qr(VN−1
1 , 0)

S = R−1QHVN
2

[Y,D] = eig(S)

λi = log (Dii)/∆t

φi = VN−1
1 yi

properties of convergence of a full Arnoldi method, in practical applications Al-

gorithm 1 yields an ill-conditioned companion matrix and is not able to extract

more than one or two dynamic modes. This is particularly true in the case of

experimental data, which are corrupted by noise and other uncertainties. There-

fore, Schmid (2010) has proposed a more robust algorithm based on singular value

decomposition (SVD), which can also be employed for the analysis of experimental

data. The robustness is achieved by carrying out a singular value decomposition

of the sequence data snapshot matrix VN−1
1 ,

VN−1
1 = UΣWH (2.62)

where matrix U contains the spatial structures, matrix W contains the temporal

features , matrix S contains the singular values and superscript H denotes the
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Hermitian transpose. Since SVD and POD are equivalent, it is possible to show

that matrix U corresponds to the POD modes, matrix W corresponds to the POD

coefficients, and the singular values correspond to the energies of the POD modes.

Substituting Eq. (2.62) into Eq. (2.53) and rearranging the resulting expression,

the full matrix S̃ is obtained as

UHAU = UHV2
NWΣ−1 = S̃ (2.63)

Besides, it is clear that matrix S̃ is obtained via a similarity transform of S, hence

S and S̃ have the same eigenvalues. Since matrix U contains the POD modes of

the matrix of snapshots VN−1
1 , it is interesting to note as the matrix S̃ represents

the projection of the POD modes U onto with structured shifted over one time step

∆t, expressed as AU. The computation of matrix S̃ as UHAU is only possible

by numerical simulation where, given the initial conditions, the system matrix

A is known over the first time-step; in the case of experiments, such expression

cannot be employed. Therefore, matrix S̃ has to be computed from the sequence

of snapshots.

A further advantage of this method regards the potentiality to extract the

dynamic modes when the matrix of snapshots VN−1
1 is rank-deficient (or nearly

so), due to the occurrence of linearly dependent snapshots within the sequence,

that causes an ill-conditioned companion matrix S. Specifically, this problem is

overcome by employing a truncated SVD representation of VN−1
1 obtained by the

parts of U , W and Σ corresponding to singular values smaller than threshold (or

the first M largest singular values that capture a fixed amount of energy). Let

Ũ, W̃ and Σ̃ be the matrices of the truncated SVD representation of VN−1
1 , the

companion matrix based on truncated SVD is given by

S̃ = ŨHV2
NW̃Σ̃−1 (2.64)

Similar to Algorithm 1, frequency and growth rate of each dynamic mode are
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Algorithm 2: SVD-based DMD algorithm (Schmid, 2010)

Data: a sequence of n snapshots {v1,v2, . . . ,vN} sampled with fixed

sampling time ∆t;

Output: dynamic mode spectrum λi and associated dynamic modes φi

with {i =, 2, . . . , N − 1}

VN−1
1 = {v1,v2, . . . ,vN−1}

VN
2 = {v2,v3, . . . ,vN}

UΣWH = VN−1
1 (Singular Value Decomposition)

S̃ = UHV2
NWΣ−1

[Y,D] = eig(S̃)

λi = log (Dii)/∆t

φi = Uyi

provided from Eqs. (2.60). Finally, this method is summarised in Algorithm 2.

2.4 Optical flow

In the last decades, the study of techniques for the estimation of the motion field

from a sequence of images has been of great interest to fluid mechanics and com-

puter vision communities. This topic of research is also of great interest for scien-

tists in the fields of meteorology and oceanography, where satellite images provide

information for the estimation of cloud motion and ocean currents. One of the

numerical techniques, which allow to extract information on the motion field from

a sequence of images, is based on the concept of Optical Flow.

Optical flow was introduced in the context of computer vision, and regards appar-

ent visual motion between the observer (e.g. camera, eyes, etc.) and the objects
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of the scene. Specifically, optical flow is defined as the apparent motion of the

brightness patterns (Horn and Schunck, 1981). In the ideal case, where the bright-

ness of the object does not change, the optical flow will correspond to the relative

motion field between the objects and the observer.

Similarly to the intrusive PIV, in applications of fluid mechanics, the non-intrusive

optical flow technique aims at estimating the velocity field from an image sequence.

Therefore, it is worth discussing the main dissimilarities between these two tech-

niques.

PIV is the most common and used technique in laboratories to extract the velocity

field of a fluid from image sequences. It requires the use of a tracer particles suf-

ficiently small, so that it may be presumed that the particles faithfully follow the

flow, and laser pulses that illuminate the particles inside the flow. The images of

the tracer particles are acquired in two consecutive instances by a camera. Then,

the motion field can be retrieved by searching the local displacement that maxi-

mizes the cross correlation between two interrogation windows collocated in each

of the two images. Nevertheless, several limiting factors influence this method. It

has proved to be efficient when satisfying various criteria related to tracer particle

density or to the local gradient of the studied flow. The first limiting factor is

related to size of the interrogation window. Indeed, if such window is chosen too

small, cross-correlation peaks might not occur; if it is chosen too large, particles

in the window might have different motions due to local inhomogeneities of the

flow; because PIV method estimates a single velocity vector representing the mo-

tion majority of the particles present in the interrogation window. In both cases,

due to the size of the interrogation window, the estimation of the velocity field

might be either too noisy (interrogation window size is too small), or too smooth

(interrogation window size is too big), or even incorrect. Another limiting factor

is connected to the use of tracer particles. Consequently, PIV method cannot be
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used in all those applications where tracer particles cannot be employed (e.g. me-

teorology, oceanography, high temperature, reacting flows).

Despite that the optical flow methods are less popular than PIV in applications of

fluid mechanics, because they are more sensitive to noise and imaging conditions

they are becoming more and more interesting during the last years. Optical flow

methods perform more efficiently in dense estimation of velocity field from image

sequence, because they do not use interrogation windows. Besides, unlike PIV

methods, optical flow methods have the potentiality to include various physical

constraints (Barron et al., 1994). Indeed, Chen et al. (2015) have proposed a new

formulation of optical flow for the 2D incompressible turbulent flows, based on the

coupling of the equation of optical flow and the continuity equation of 2D incom-

pressible flow.

In this dissertation, the optical flow method will be employed in order to estimate

the motion field associated to the propagation of the flame front during the kernel

period of the combustion process that occurs within the combustion chamber of a

spark-ignition engine.

In the next section, the optical flow constraint equation will be reported.

2.4.1 Optical flow estimation

The usual assumption behind optical flow is the well-known brightness conserva-

tion (Horn and Schunck, 1981), namely the changes of the brightness in the image

sequence are due only to motion. Let I(x, y, t) be the brightness intensity at the

point (x, y) at time t; the balance equation for the brightness, commonly called

optical-flow constraint equation, is given by:

d

dt
I(x, y, t) =

∂

∂t
I(x, y, t) +∇I(x, y, t) · u(x, y, t) = 0 (2.65)
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where u(x, y, t) = [ux(t), uy(t)]
T ≡ [dx/dt, dy/dt]T is the optical flow field, I(x, y, t)

is the intensity of the image as a function of time and space, and ∇I(x, y, t) =

[∂I/∂x, ∂I/∂y]T is the gradient of the intensity of the image.

Let Ix, Iy and It be respectively the abbreviations for the partial derivatives of the

intensity of the image respect with x, y and t, the optical flow constraint equation

(Eq. (2.65)) can be written as:

It + Ixux + Iyuy = 0 (2.66)

This equation describes the constraint on the local flow velocity, which is illustrated

in Fig. 2.4. Writing Eq. (2.66) in another way,

(Ix, Iy) · (ux, uy) = −It (2.67)

it can be noted as the component of the movement in the direction of the image

intensity gradient (Ix, Iy) is equal to

−It√
I2x + I2y

(2.68)

Since the unknowns of Eq. (2.66) are the components ux and uy of the vector

u, namely the flow field; this balance equation provides only one linear constraint.

As a result, it is clear that Eq. (2.66) is not sufficient to specify completely the flow

field u. This is usually known as the “aperture problem” of optical flow algorithms.

In order to obtain a uniqueness of the solution, it is necessary to regularize by

imposing an additional smoothness constraint. One first way to express the addi-

tional constraint is to minimize the square of the magnitude of the gradient of the

optical flow velocity, that is

(∂ux/∂x)2 + (∂ux/∂y)2 and (∂uy/∂x)2 + (∂uy/∂y)2 (2.69)
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Figure 2.4: Representation of the image brightness equation constraint the optical

flow (adapted from Horn and Schunck (1981)).

Another additional smoothness constraint employed in order to regularize the op-

tical flow problem is the sum of the square of the Laplacians of the components

ux and uy of the optical flow field,

∇2ux =
∂2ux
∂x2

+
∂2ux
∂y2

and ∇2uy =
∂2uy
∂x2

+
∂2uy
∂y2

(2.70)

In this thesis, the regularization form based on Eq. (2.69) is employed to carry

out the analysis. Therefore, the optical flow is estimated via minimization of the

sum of the errors in the equation of balance of image brightness,

εa = Ixux + Iyuy + It (2.71)

and of the regularization term of Eq. (2.69),

εb =

(
∂ux
∂x

)2

+

(
∂ux
∂y

)2

+

(
∂uy
∂x

)2

+

(
∂uy
∂y

)2

(2.72)
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Hence, the optical flow estimation can be found by minimizing the total error εtot

εtot =

∫∫ (
α2ε2a + ε2b

)
dxdy (2.73)

Now, it is possible to formulate the following optimization problem for the estima-

tion of the optical flow,

û(x, y, t) = arg min
u(x,y,t)

∫∫ (
α2ε2a + ε2b

)
dxdy (2.74)

where û(x, y, t) denotes the estimation of the optical flow. Besides, during the

numerical implementation of the optimization problem, all differential operators

(partial derivative and gradient) are approximated by finite differences.



Chapter 3

Analysis of flame images in ICEs

This chapter illustrates the analysis conducted on flame images by employing the

numerical techniques presented in the previous chapter. Particularly, the analysis

were done in order to study and to characterize the cycle-to-cycle variations of

a port-fuel injection spark ignition engine and a diesel engine. The numerical

techniques used in this chapter are POD, ICA and optical flow.

3.1 Spark ignition engine

This section reports the analysis of 2D cycle-resolved images of combustion-related

luminosity collected in a port-fuel injection spark ignition (PFI SI) optically ac-

cessible engine for two injection strategies (closed valve, open valve). The de-

scription of the experimental apparatus and the investigated operating conditions

are reported in section 3.1.1. Particularly, for both injection strategies, the cyclic

variations phenomena are firstly studied via a standard statical approach on the

global quantities (in-cylinder pressure, global luminosity and centroid of luminos-

ity) (Section 3.1.2). Section 3.1.3 reports the results of the application of Proper

Orthogonal Decomposition (POD) to acquired images for the extraction of the

48
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dominant features of the luminosity field emitted by the flames. Indeed, the POD

modes have permitted to identify the zones of the combustion chamber wherein

the higher variations of the flames occur. In addition, the coefficient of variation

based on the POD coefficients, proposed by Bizon et al. (2010b), was employed

in order to quantify the cyclic variations in terms of both luminous intensity and

morphology of the flames. Section 3.1.4 discusses the application of Independent

Component Analysis (ICA) to the set of images acquired.

The method of ICA is employed for the identification of the independent compo-

nents which describe underlying patterns of the combustion process. The deter-

mined components together with the corresponding time dependent coefficients are

employed to investigate the spatio-temporal evolution of the luminous combustion

during a single cycle and over a number of cycles. It is demonstrated that ICA

applied to single cycle permits to extract independent structures, clearly separated

in time, and related to the spatial distribution in the high luminosity zone. The

corresponding coefficients are clearly correlated with the integral flame luminosity

and characterize time evolution of the combustion pattern in the chamber. The

analysis over several cycles shows that independent components carry information

about the dominant morphology of the cyclic variations. Finally, Section 3.1.5

reports the application of optical flow technique to determine the motion field of

the flame front during propagation. Such technique allows to obtain information

on the flame front motion without the use of intrusive technique as PIV. All of

proposed procedures are promising in terms of new insight in the non-intrusive the

analysis of combustion processes.

3.1.1 SI Engine: Experimental apparatus

The optically accessible single cylinder spark ignition (SI) engine is equipped with

the cylinder head of a small Port Fuel Injection (PFI) gasoline engine, having four
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Figure 3.1: Scheme of optical engine and field of view of the combustion chamber.

valves and a centrally located spark plug. The specifications of the engine are

reported in Table 3.1. Figure 3.1 reports a sketch of the optical apparatus and

the bottom field view of the combustion chamber. A commercial 3-holes injector

is used, with the injection pressure set at 3.5 bar. A quartz pressure transducer is

flush-installed in the region between intake and exhaust valves. Combustion pres-

sure measurements are performed for all operating conditions. The engine piston

is flat and made transparent by means of a sapphire window. An elongated piston

arrangement is used, together with unlubricated Teflon-bronze composite piston

rings in the optical section, to avoid contamination of the window by lubricating

oil. Combustion is detected through the wide sapphire window located in the pis-

ton. Images are reflected by a 45◦ inclined UV-visible mirror located at bottom

of the engine, and conveyed towards the optical detection assembly. The latter is
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made of a 78 mm focal length, f/3.8 UV Nikon objective, followed by a fast CMOS

camera characterized by a sensor of 20 µm pixel size, 12-bit ADC. The spectral

range spans from 400 to 900 nm. A camera region of interest is selected (360×360

pixel) to obtain the best match between spatial and temporal resolution, allowing

for a spatial resolution around 0.127 mm/pixel and a frame rate of 7200 fps. The

exposure time is fixed at 100 µs. AVL Indimodul records the TTL signal from the

camera along with the signal acquired by the pressure transducer. It is possible in

this way to record the crank angles at which the optical data are collected.

Table 3.1: Specifications of the single cylinder SI engine.

Displacement [cm3] 250

Bore [mm] 72

Stroke [mm] 60

Connecting rod [mm] 130

Compression ratio 10.5:1

All of the tests are performed at steady state, 3000 rpm and wide open throt-

tle. The intake air pressure and the temperature are set at 1000 mbar and 298 K,

respectively. Fuel injection always takes place in the intake manifold. Two differ-

ent fuel injection timings are adopted (Table 3.2), i.e. injection when the intake

valves are closed (CV, 0 CAD) and injection when the intake valves are open

(OV, 300 CAD). The engine is fuelled with commercial gasoline at a stoichiomet-

ric equivalence ratio as measured by an exhaust lambda sensor. To operate at

maximum brake torque conditions, the spark timing is set at -22 CAD. The engine

is stabilized for about 10 seconds before starting data acquisition.



Chapter 3. Analysis of flame images in ICEs – 3.1. Spark ignition engine 52

Table 3.2: Engine operating conditions.

Case Intake valves Speed SOS DOI EOI

[rpm] [CAD] [CAD] [CAD]

CV closed 3000 -22 135 0

OV open 3000 -22 135 -300

3.1.2 Cycle-to-cycle variations analysis via global indexes

A selection of flame images detected at different crank-angles for the both CV and

OV operating conditions are reported in Figure 3.2 and 3.3.It can be noted strong

differences in the morphology of the flame front during the stage of propagation

of flame (-2 CAD and 0.5 CAD). Moreover, the combustion of fuel drops appears

as high luminosity spots. Besides, it can be also noted a strong difference in the

luminosity and morphology of the flames between the closed valve and open valve

conditions due to the different amount of the fuel film deposited on the intake

ports during the intake stroke. In the closed-valve condition the deposits flow

onto the surfaces of the cylinder head and valves in the chamber during intake

causing higher flame intensity. These diffusion controlled flames persist well after

the normal combustion event, because the oxygen is not completely consumed

after the flame front propagation. The cycle variation of the luminosity field of

the flames is well visible by observing the captured flames. In this section, the

cycle variation analysis is carried out through the study of the following global

parameters: integral luminosity, pressure, and luminosity centroid. The study was

carried out on 22 consecutive cycles at 80 values of the crank angle.

Denote by Ig the integral luminosity computed as space integral of the acquired

luminosity field (image), the analysis is focused on computing of the coefficient of
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Figure 3.2: A selection of flame images detected at different crank-angles for 5

consecutive cycles (closed valve injection).

variation (CoV) for the global indexes, defined as:

CoV =
σ

µ
(3.1)

where µ is the mean and σ is the standard deviation considered at each value of

the crank angle.

Figure 3.4 reports the CoV of the in cylinder pressure for both operating con-

ditions investigated. It can be noted as open valve injection produces both higher

mean and standard deviation values as compared to closed valve injection strategy.

It can be noted that the open valve injection strategy produces higher cyclic vari-

ation in terms of pressure CoV , over the entire range of crank angle, as compared

to closed valve injection. Since the highest values of both µpressure and σpressure

occur in presence of knocking, it is possible to say that the OV operating condition

has higher knock than CV operating condition.

Figure 3.5 reports the scatter plots and average cycle of the integral luminosity for
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Figure 3.3: A selection of flame images detected at different crank-angles for 5

consecutive cycles (open valve injection)

all detected cycles. It can be observed that the dispersion of the integral luminos-

ity is higher during after the normal combustion, namely during the combustion of

the fuel film deposited on the intake valves. Focusing on the average cycle of the

integral luminosity (solid line), it can be observed that the OV condition si char-

acterized by higher luminosity as compared to CV condition. For CV operating

conditions, after 50 CAD the average integral luminosity is roughly constant due

to the diffusive combustion of the fuel film deposited on the intake valves. Con-

versely, for the OV operating condition, the average integral luminosity (solid line)

follows the pressure cycle. Figure 3.6 reports the CoVs of the integral luminosity

for both CV and OV operating conditions. It can be noted that both operating

conditions show a CoV peak close to the top dead center. Precisely, they occur in

correspondence of the same crank angles of the CoV peaks regarding the pressure

cycles.
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Figure 3.4: Mean (µpressure), standard variation (σpressure) and CoV of the pressure

in cylinder for the CV(solid line) and OV(dash line) operating conditions.

Besides, the CoV of Ig shows an increase during the diffusive combustion of

the fuel film deposited on the intake valves. Conversely, the CoV of the pressure

during the stage of the diffusion-controlled combustion is very small. This means

that the combustion of the film fuel deposited on the intake valve has a little in-

fluence over the pressure cycle. Nevertheless, this combustion stage is important

in terms of pollution emissions. For both operating conditions, during the flame

front propagation (normal combustion), the CoV of the integral luminosity in-

creases over the crank angle due to the influence of turbulence on the front flame.

After the normal combustion (premixed combustion), at the beginning of the ex-

pansion stroke, the CoV tends to follow the CoV of the pressure cycle (Fig. 3.4)
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Figure 3.5: Scatter plot of the instantaneous integral luminosity (dots) and corre-

sponding average cycle (solid line).

until 50.5 CAD and 20.5 CAD respectively for CV and OV operating conditions.

Subsequently, we observe the increase of CoV for both operating conditions due

to diffusion-controlled combustion of the fuel film deposited on the intake valves.

In this stage, it can be noted that the CV operating condition is characterized by

CoV values of Ig higher than that of the OV operating condition. Thus, in terms

of integral luminosity, the CV operating condition is characterized by more intense

cycle variations as compared to that of the OV operating condition. Observing

average integral luminosity cycles (Fig. 3.5) and the corresponding CoVs (3.6), it

is possible to say that the higher value of the CoV occurs in correspondence of

high values of the integral luminosity connected to the diffusion flames close to the

intake valves.

The distribution of flame light through the chamber is investigated via the

luminosity centroid, C , proposed by Bizon et al. (2010a):

C =

∫
I(r)rdr∫
I(r)dr

(3.2)
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where C = [XC , YC ] is the coordinate vector of the luminosity centroid; r is the

vector position, with origin in the geometric centre of the combustion chamber, of

the pixel of luminous intensity I(r). Then, for each frame the luminosity centroid

can be determined and then plotted for the entire cycle. It also possible to define

the eccentricity of the luminosity centroid as the modulus of the vector C:

EC = ‖C‖ (3.3)

Figure 3.7 shows the luminosity centroid during a combustion cycle for CV and

OV operating conditions. It can be noted as the luminosity centroid moves to

intake valves in both operating conditions. Figures 3.8 and 3.9 report the scatter

plots and the average values of the coordinates XC and YC of C respectively for CV

and OV conditions. For both operating conditions, it can be noted that the lumi-

nosity centroid shows relevant displacements from the combustion chamber center

after 50 CAD, namely when the diffusion flames occur inside of the combustion
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Figure 3.6: CoV of the integral luminosity for CV(solid line) and OV(dash line)

operating conditions.
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cycle. The dispersion of the luminosity centroid (scatter plots) is maximum during

the diffusion-controlled combustion.

Focusing on average values of XC and YC (solid line), a non-symmetrical be-

haviour of the luminosity centroid is noted for both operating conditions. Indeed,

for the CV operating condition, the displacement of the luminosity centroid from

the centre of the combustion chamber occurs along the y-axis; more precisely, the

centroid moves towards the intake valves due to the persistent high luminous in-

tensity diffusion flames. Instead, for OV operating condition, the displacement of

the luminosity centroid occurs along the x -axis: this is due to luminosity spots

that present a non symmetrical distribution in combustion chamber.

Figure 3.10 reports the standard variations for the coordinates of C. It can be

noted that the cycle variations of the luminosity centroid are more intense for the

OV operating condition than CV operating condition. This can be connected to

the strong randomness of the amount of fuel deposited on the intake valves during

the intake stroke. It is interesting to study the cycle variations in terms of eccen-

tricity of the luminosity centroid. Therefore, Figure 3.11 reports the scatter plot

Open ValveClosed Valve

Figure 3.7: CoV of the integral luminosity for CV(solid line) and OV(dash line)

operating conditions.
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Figure 3.8: CV operating condition. Scatter plots of luminosity centroid coordi-

nates (dots) and mean coordinates (solid line) at each crank angle.
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Figure 3.9: OV operating condition. Scatter plots of luminosity centroid coordi-

nates (dots) and mean coordinates (solid line) at each crank angle.

of EC at each crank angle investigated during the cycle-resolved acquisitions. For

both operating conditions, the highest values of eccentricity occur after 50 CAD,
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namely in presence of diffusion-controlled flames. Besides, observing the scatter

plots of the eccentricity, more once it can be noted that the highest cycle variations

of EC occur roughly after 50 CAD as well.

Now, focusing on the mean of EC calculated over the cycles (Figure 3.11 (solid

line)), it is possible to highlight the differences and similarities between the CV

and OV operating conditions. For both operating conditions, it is possible to note

a similar trend between the operating conditions before 8 CAD due to similar

behaviours of the flame front propagation, in terms of EC . Indeed, for both op-

erating conditions, the positive peaks of the mean eccentricity at top dead center

are roughly of 2 mm. The two operating conditions show relevant differences of

mean eccentricities after 50 CAD, where the diffusive flame appear. Here, for the

CV operating conditions, the mean eccentricity increases until to stabilize around

5 mm. On the contrary, for the OV operating conditions, the mean eccentricity

assumes a monotonically increasing trend (after 50 CAD) due to the diffusive com-
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Figure 3.10: Standard variations of the luminosity centroid coordinates for CV

(left side) and OV (right side) operating conditions.
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Figure 3.11: Scatter plots of luminosity centroid coordinates (dots) and mean

coordinates (solid line) at each crank angle for the CV (left side) and OV (right

side) operating conditions.
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Figure 3.12: Standard variation of the eccentricity of the luminosity centroid for

CV (solid line) and OV (dash line).

bustion of fuel pockets localized close to cylinder wall.

The cycle variations can be studied in terms of eccentricity of the luminosity
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centroid at each crank angle. As a consequence, Figure 3.12 reports the standard

variations of Ec at each crank angle for both the operating conditions. Recalling

that EC is a global index of the location in combustion chamber of the flames,

it can be seen as the two operating conditions have similar behaviour in terms

of standard variation of EC . Precisely, for both the operating conditions, the

standard variation of EC is about 0.5 mm around the top dead center. Next, it

increases until it stabilizes around 2 mm. Once more, the increase of the standard

variation of a global index is due to the diffusion-controlled flames due to both fuel

film deposited on the intake valves, and fuel liquid pockets localized near chamber

walls.

In conclusion, the study of the statistics (µ,σ and CoV) of the global indexes has

provided useful information on the cycle-to-cycle variations in a port-fuel injection

spark ignition engines. Particularly, the study has allowed to characterize the

cycle-cycle variations at each crank angle in terms of pressure, luminous intensity

and luminosity centroid. As a result, the CV operating conditions is characterized

by higher cycle-to-cycle variations than OV operating. The analysis does not

provide any information on the cycle-to-cycle variations of the flames in terms of

morphology. As a consequence, in the next subsection, the cycle-to-cycle variations

are analysed using Proper Orthogonal Decomposition.

3.1.3 POD application to cycle-to-cycle variations analysis

In this section, the cycle-to-cycle variations analysis is carried out by employing

the method based on POD proposed by Bizon et al. (2009b). This method is

based on the definition of the coefficient of variation of the POD coefficients.

Subsequently, Bizon et al. (2010b) proposed an numerical example to clarify the

ability of such CoV to detect the cycle-to-cycle variations of the morphology of

the flame investigated. More details of POD method are reported in Section 2.1.
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Figure 3.13: Matrix of snapshots made up by images.

Since the POD algorithm requires a 2D matrix of snapshots, it is necessary to

convert each collected image. In order to carry out POD analysis, it is necessary

to transform each collected image, which is a 2D matrix, from matrix form to

vector form via lexicographic ordering of the pixels (Figure 3.13). For the cycle-

to-cycle variations analysis, at each crank angle the matrix of the snapshots is

made up by images of consecutive cycles.

In this section, the application of POD to optical data is illustrated before

showing the results of the cycle-to-cycle variations analysis. Precisely, the cycle-

to-cycle variations is provided via POD analysis of the ensemble of images collected

at same crank angle for various consecutive cycles. Thus, let M be the number of

consecutive cycles, and N the number of pixels of the images acquired, the matrix

of the snapshots (Eq. 3.1.3) N ×M is given by

U =


u1,1 . . . u1,M
... . . . ...

uN,1 . . . uN,M

 = [u1,u2, . . .uM ]

where the element ui,j is the pixel value at the location of the i-th pixel at the j-th

cycle, and uj is the column vector obtained by lexicographic ordering of the image
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acquired at j-th cycle. Since the set of data is made up by images (360×360 pixels)

collected at 80 different crank angles for 20 consecutive cycles, the dimension of

U is 129600× 22. Thus, the dimension of the spatial discretization is much higher

than number of snapshots (N � M), hence it is possible to apply the method of

Sirovich (see Section 2.1.3) in order to come over the computational complexity

due to eigenvalue computing.

Now, at each crack angle,the images are centred by subtracting the mean compo-

nent, and POD is subsequently performed. Therefore, the image acquired at the

j-th cycle can be expressed by sum of the mean component u, sometimes called

mode 0, a linear combination of POD coefficients, c, and POD modes φ,

uj = u +
M∑
i=1

cijφi = c0φ0 +
M∑
i=1

cijφi (3.4)

where c0 = ‖u‖L2 is the L2-norm of the mean component, φ0 is the normalized

mean component. Besides, in the case of data, the POD coefficients have all null

mean over cycles, namely

ci =
1

M

M∑
j=1

cij = 0 i = 1, 2, . . . ,M (3.5)

Figures 3.14 and 3.15 show the mean component and the first four most energetic

(or informative) POD modes, in absolute value, at various crank angles for the CV

and OV operating conditions, respectively. POD modes are reported in absolute

value in order to highlight the relevant morphological features. At -2 CAD and 5

CAD, for both operating conditions, it can be noted that the mean components

and the first POD modes show morphological features that can be associated to

the flame front propagation and the diffusive combustion; whereas, the other POD

modes show morphological features that can be associated to diffusion combustion

around scattered fuel pockets. At 18 CAD, for CV operating condition, the first

3 POD modes show dominant features that can be associated to the beginning of
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the diffusion-controlled combustion of the fuel film deposited on the intake valve.

Later, at 43 and 88 CAD, the first POD mode highlights well the dominant fea-

ture of the combustion localized near the intake valves, which are localized at the

bottom of all figures reported in this section. For OV operating condition, both

mode 1 at 43 CAD and modes 1-3 at 88 CAD show features of flames localized near

cylinder wall, precisely on the right side of the images reported in Fig. 3.15. This

suggests that, far from top dead center, the diffusion flames are localized near the

cylinder wall. All considerations done here about the collocation of the diffusion

flames far from the top dead center for the CV and OV injection strategies, seem

in good agreement with what done in the previous section. Now, recalling the

definition of energy captured by a single POD mode and the cumulative energy

spectrum (see Section 2.1), it may be interesting to study the dissimilarities be-

tween the two operating condition in terms of energies (or amount of information)

captured by POD modes. Therefore, Figures 3.16 reports the energy spectra and

energy cumulative spectra based on POD (see Section 2.1). Since the decompo-

sition has been carried out on centred data, these spectra do not take in account

the contribution associated with the mean component. As a result, these spectra

provide information about the percentage of total information associated, and cap-

tured by the k-th mode (ek) and the first k modes. At -2 CAD, the CV operating

condition is characterized by the fact that the first POD modes capture a higher

amount of energy. Given that the first POD modes are associated to the large

scale features and the energy ek represents also the percentage of total variance

captured by k-th mode (Lumley, 2007), this suggests that, around the top dead

center, the CV operating condition is characterized by fluctuations of large scale

more intense than the OV operating condition. Once more, this may prove an

increasing of the cycle-to-cycle variations.

Since POD allows to extract the dominant features from a set of data, in our case
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Figure 3.14: The first 5 most energetic POD modes (absolute value) at various

crank angles (CV operating condition).
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Figure 3.15: The first 5 most energetic POD modes (absolute value) in value

absolute at various crank angles (OV operating condition).
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Figure 3.16: Energy POD spectra (left side) and cumulative energy spectra (right

side) for both CV and OV operating conditions at -2 CAD.

the dominant morphological features of the flames, Bizon et al. (2010b) proposed

a new definition of the Coefficient of Variation based on POD, which expresses not

just the cycle variation of the global luminosity signal, but also contains informa-

tion about the spatial distribution of the luminosity field. Therefore, in the case

of POD carried out on centred data, CoV based on POD proposed by Bizon et al.

(2010b) can be simplified in the following form,

CoVPOD =

√∑M
i=1(c

2
i − ci2)
c20

=

√∑M
i=1 c

2
i

c20
(3.6)

where c2i is given by

c2i =
1

M

M∑
j=1

c2ij (3.7)
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Figure 3.17: CoVPOD for CV operating condition (dot line) and OV operating

condition (dash line).

It can be noted how such CoV depends only on the POD coefficients, which capture

the temporal information contained in the ensemble of the data analysed. Here,

expression in Eq. (3.6) has been applied to each of the groups of images obtained

at each crack angle for both the operating conditions. Consequently, such analysis

provides a single value for CoV at each crank angle.

Figure 3.17 reports the CoVPOD for both CV and OV operating conditions in-

vestigated. For both operating conditions, during the period of the flame front

propagation it is possible to observe a linearly increasing trend of CoVPOD un-

til it attains a peak around the top dead center. Once more, that is due to the

kinematic interaction between turbulent eddies and the flame front (corrugated

flamelets). At the top dead center, it is possible to note that the CV operating

condition has a CoVPOD higher than that of the OV operating condition. This
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means that the closed valve injection shows higher cycle-to-cycle variations at top

dead center. At about 15 CAD, for both operating conditions, CoVPODs show a

minimum. Indeed, at this crank angle, the flame front is very close to the cylinder

wall, then the minimum of CoVPOD suggest that the extinction of the flame front

occurs in a rather abrupt manner for both operating conditions.

For the CV operating condition, after 15 CAD, CoVPOD increases until it reaches a

value of about 0.4 at 60 CAD, as a result of the beginning of the diffusion-controlled

combustion due to fuel film deposited on the intake valves. Subsequently, it as-

sumes an approximately constant high values until about 110 CAD at its maximum

value. This behaviour is due to the strong irregularities of the diffusion-controlled

combustion, where both morphology and luminous intensity of the flame assume

a strongly irregular behaviour.

For the OV operating condition, after 15 CAD, CoVPOD increases until it reaches

about 0.35 at 60 CAD. In this case, the increase of CoV is due to occurrence of the

diffusion flames localized near the cylinder wall, as it was previously shown. Then,

until about 130 CAD, the CoVPOD assumes an approximately constant trend as a

result of the strong irregularities of the diffusion flames, in terms of both luminous

intensity and morphology. It can be noted that the CV operating condition is

characterized by higher CoVPOD. Therefore, closed valve injection strategy ex-

hibits higher cycle variations.

Moreover, CoVPOD has shown higher values than that reported by CoV for the

global indexes (Figures 3.6 and 3.4). This is explained by the fact that CoVPOD

takes in account the morphological variations as well. Finally, POD has allowed to

extract the dominant features of the luminosity field emitted by flames. Besides,

it has allowed to study the cycle-to-cycle variations in terms of morphology and

luminous intensity. The dominant features, in terms of flame patterns (mean and

first 4 POD modes), have allowed to highlight the zones of combustion chamber
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where the flames that cause the cyclic variability phenomena take place.

3.1.4 ICA application to flame images from SI engine

This is section is organized in three parts. Firstly, a numerical example of ICA

application is provided in order to clarify and show the capability of ICA for

the identification and separation of independent events for an observed transient

phenomenon. The second part regards the employ of ICA methods for the analysis

of transient phenomena that occur during the combustion phase of the SI engine

described in the previous section. We shall call this analysis "single-cycle". The

third part will be focused on the application of ICA methods for the analysis of

the cycle-to-cycle variations.

ICA: artificial example. Two independent images were created and multiplied

by two time courses (Figure 3.18, top) to create temporal sequences of images, then

mixed to generate the image mixtures (Figure 3.18, center). Then, ICA is applied

to the created mixture, to estimate independent images and corresponding time

courses (Figure 3.18, bottom). The separation performance of ICA is impressive:

the values of 2D correlation coefficients for the first pair i.e. image source s1 and

its estimate y1 is high as 0.9999, while for the second pair - s2 and y2 - it is equal

to 0.9994. Similarly high correlation values characterize the corresponding pairs

of the time courses and their estimates.

Experimental result. A number of images sequences from consecutive fired

cycles were collected using a high speed camera. Figures 3.19 and 3.20 show a

selection of the images collected, at 2.5 CAD increment, during the combustion

phase, for two cycles employing CV and OV injection strategy, respectively. In

both cases, the premixed flame front, ignited at 22 CAD, spreads quickly through-
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Figure 3.18: Scheme of optical engine and field of view of the combustion chamber.

out the combustion chamber with radial progression. During the spread and after-

wards, diffusion flames establish around and between intake valve seats. Intense

diffusion flames are also visible later elsewhere in the chamber, due to the igni-

tion of the fuel film deposited on the cylinder walls, and to the gas motion from

intake to exhaust. Such flames produce soot (rich zones), whereas chamber re-

gions containing a lean mixture cannot sustain flame propagation and, hence, are

responsible for unburned hydrocarbon emissions.

Figure 3.21 compares the in-cylinder pressure and integral luminosity for the

same two cycles. In both cases, it can be observed that the angular location

of luminosity and pressure peaks is found at around 20 CAD. The Open Valve

injection strategy produces slightly higher pressure and luminosity peaks.
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Figure 3.19: Typical sequence of crank-angle resolved images: closed valve (CV)

injection strategy.

Figure 3.20: Typical sequence of crank-angle resolved images: open valve (OV)

injection strategy.

ICA: Single cycle analysis. ICA is applied separately to each sequences con-

sisting of M = 80 consecutive images. Each image is represented as a vector

by concatenating its rows, and treated as a mixture xi. Then, the dimension of



Chapter 3. Analysis of flame images in ICEs – 3.1. Spark ignition engine 74

0

10

20

30

40

p 
[b

ar
]

 

 

CAD0 50 100 150
0.5

1

1.5

2

2.5
x 10

7

In
t. 

lu
m

. [
a.

u.
]

p, closed valves
p, open valves
Int. lum., closed valves
Int. lum., open valves

Figure 3.21: Typical in-cylinder pressure and integral luminosity for CV and OV

injection strategy.

the original data is reduced, via discrete POD (equivalently SVD), to the number

k � n of components to be estimated. Both for the CV and OV injection strategy,

we choose k = 3 modes, leading in terms of the so-called cumulative energy:

EPOD,3 =

∑3
i=1 λi∑M
i=1 λi

≈ 0.80

The leading three modes are found to retain about 80% of the total energy. The

results of ICA performed on the cycles presented in Figure 3.19 and Figure 3.20 are

presented in Figure 3.22a-c and Figure 3.22d-f, respectively. Due to the ambiguities

of the ICA mixing model, there exists no intrinsic order in the components: in fact,

as both A and s are unknown in Eq. (2.26), any source si can be always multiplied

by an arbitrary scalar, αi, and the corresponding column ai of A divided by the

same scalar.

In view of the dynamical analysis of the combustion process, the components

are here displayed in order of appearance, while the time-dependent coefficients

are normalized using maximum norm. More precisely, a time centroid is defined
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Figure 3.22: Independent components for CV (a-c) and OV injection strategy

(d-f).

for each component, based on the time-dependent coefficient, as follows:

tci =

∫ 2π

0
t|ai(t)|dt∫ 2π

0
|ai(t)|dt

(3.8)

and then the components are ordered according to increasing tci. For both condi-

tions, components s1 (Figures 3.21a and 3.21d) represent predominantly the lumi-

nosity distribution related to ignition and propagation of the premixed flame front.

The relevant coefficients (Figure 3.23), a1, peak at 18 CAD, in correspondence of

the integral luminosity peak. Components s2 and s3 represent the subsequent evo-

lution of the luminosity field mostly due to the diffusion flames visible after the

ignition of the fuel film deposited on the cylinder walls. Again, non-monotonic

behaviour of the relevant coefficients, a2 and a3 (Figure 3.23), can be observed,

which again peak at maximum luminosity of the burning fuel pockets, and tend
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Figure 3.23: Coefficients and integral luminosity for CV (a) and OV injection

strategy (b).

to decrease as they burn out. The thermal energy released at these times cannot

be exploited in terms of mechanical work, and the inhomogeneities in the mixture

fraction produce unburned hydrocarbons. In conclusion, in the analysis of a sin-

gle cycle, ICA discriminates the most independent components, which are clearly

separate in time, and reflect the spatial distribution of the high luminosity zones,

whereas the corresponding coefficients characterize their time evolution.

ICA: cycle variability analysis. It is interesting to see how the components

and their coefficients correlate among the cycles. The commonly used procedure

is to cluster components sufficiently similar over the cycles, for example in terms

of spatial correlation (Calhoun et al., 2009). Such an approach makes sense when
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ICA is expected to determine spacewise similar components and their (different)

time courses. Our case is perhaps opposite, aiming at characterizing the different

space patterns of cyclic variations observed for timewise similar evolutions. In-

deed, relatively high values of the 2D correlation coefficient are only found among

components s1 (varying from 0.89 to 0.97) for 10 successive cycles.

In fact, the first components describe the rather regular pattern of the flame

front evolution. On the contrary, as expected, mean values of the 2D correlation

coefficient of s2 and s3 are lower than 0.5. On the other hand, as well illustrated

in Figure 3.24, the correlation of the corresponding time dependent coefficients is

very high: the mean value of the coefficient of correlation is as high as 0.93 for a2

and 0.91 for a3. Hence, it is convenient to group the components according to the
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Figure 3.24: Coefficients of second (a) and third (b) components for five cycles

(CV injection strategy).
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Figure 3.25: Second (a-e) and third (f-j) components for five cycles (CV injection

strategy).

best correlated time-dependent coefficients, and then characterize cyclic variations

by comparing spatial patterns in each group.

Figure 3.25 (five cycles, CV injection strategy) shows the erratic spatial pat-

terns of s2 and s3 due to the strong spatial variability of the diffusion flames among

the cycles. This is confirmed also by the centroid of the luminosity of the com-

ponents (for 10 successive cycles, 3.26a): for component s1, its position does not

vary significantly over the cycles, whereas it scatters for s2 and s3, although with a

general preference of the flame to evolve towards the intake valves. A similar trend

is observed for OV injection strategy, with a consistent right shift compared to CV

injection strategy (Fig. 3.26b). A much higher variability of the s2 luminosity

can be observed, whereas the centroid of s3 is again rather regular, but not as

centered as s1. This means that, as the flame reaches the chamber wall, luminous

combustion is more unstable for the OV injection strategy but gets more regular,

with respect to the CV injection strategy, during the final phase.
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Figure 3.26: Centroid of the luminosity of the components for CV (a) and OV

injection strategy (b).

Full ICA. When ICA is applied on the original data characterized by a large

number of observations (degrees of freedom), it gives as many components as the

number of observations, most of which may be just random spurious source signals,

physically inconsistent with the data set. On the other hand, data preprocessing

by POD can be controversial: the number of sources to be determined, in many

cases unknown, is arbitrarily set a priori. Furthermore, since POD is a lossy

reduction technique, important information, though characterized by low energy,

are lost. In order to evaluate the effects of POD lossy data preprocessing, we now

assume that the mixing model is identifiable for n = m (= 80 for each cycle)

and thus ICA is applied to the whole original data set (Full ICA). The computed

components are then ordered using Eq. (2.44). The leading components describe

dominant spatio-temporal evolution of the luminosity in the combustion chamber,

whereas the remainder are related to rather insignificant fluctuations and noise.

The outcome of Full ICA is presented, for the CV case, in Figures 3.27 and 3.28.

The first dominant component (Fig. 3.27a) is clearly correlated with the s1

obtained performing ICA on POD-reduced data (Fig. 3.22d), and so are the cor-

responding coefficients a1 - solid line in Fig. 3.28 and Fig. 3.22b respectively. The

value of the correlation coefficient for the latter is as high as 0.9728; in case of the
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Figure 3.27: Full ICA: Dominant independent components (open valve injection).
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Figure 3.28: Full ICA: Dominant independent components (open valve injection).

components its lower but still relatively high, i.e. 0.7663. Similar affinity can be

observed also when comparing successive ICs and corresponding coefficients ob-

tained from reduced and original data. Interestingly, when employing the ordering

established by Eq. (6) the third IC, in terms of temporal succession, is indexed as

s2 and the IC corresponding to the intermediate combustion as s3.
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3.1.5 Optical Flow application to analysis of the flame front

propagation

This section shall be focused on the first attempt of application of optical flow tech-

nique to 2D images of turbulent flames. More details about optical flow estimations

are reported in Section 2.4. Usually, velocity measurements of the flame front are

provided by coupling PIV measurements, for the velocity field, and optical mea-

surements of the flames. Thus, the complexity of performing these experimental

measurements is rather high and requires the use of invasive diagnostic techniques,

i.e. PIV needs the use of tracer particles. Therefore, the main scope of this section

aims to introduce the application of the optical flow technique for the estimation

of the relative motion of the flame front, like front of the burning gases. This is

done by using only the luminosity emitted by combustion process, that is without

the use of invasive diagnostic techniques, i.e. particle image velocimetry (PIV).

In this section, all of the experimental tests are performed at 2000 rpm with spark

timing at -34 CAD. The intake air pressure and temperature are 1600 mbar and

298 K, respectively. The optical acquisitions were obtained by using a CMOS

16-bit high speed camera with spatial resolution of 1024 × 1024. To obtain the

best match between spatial and temporal resolution, the image collection process

clips a region of 895 × 496 pixels, allowing for a spatial resolution of around 0.11

mm/pixel, and employs a frame rate of 30000 fps which, for the engine operating at

2000 rpm, correspond to 0.4 CAD increments from frame to frame. The exposure

time is 30 µs. During the experimental test, 500 images form 50 consecutive fired

cycles were collected. Since the analysis was only focused on the flame kernel and

its propagation, only the first 80 images of each cycle were considered. Besides,

to avoid spurious results influenced by the reflection of the combustion light, a

circular mask (centered x=452 and y=248 with radius r=224) frames the region

of interest.
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Recall that the optical flow constraint equation (see Section 2.4) is based on the

assumption that the changes in the brightness of the image are only due to motion.

Therefore, it is rather evident that the optical flow methods cannot be directly ap-

plied to flame images because the change of brightness in the image are due to

both kinematic motion of the flame (flame front propagation) and the heat release

rate. Since we are only interested in the motion of the flame front, it is possible

to overcome this problem by means of binarization of the images. More precisely,

in the case of binary images, the change of brightness are due only to the motion

field.

The binarization of the images is performed by applying a proper threshold for the

pixel value. Since, for the images acquired, typical pixel values (bit) of the flame

front are rather close to those associated with thermal noise of the camera, the

choice of such threshold is not easy. Therefore, after an analysis of the thermal

noise of the camera, the threshold value of 5 bit. Figure 3.29 shows the binariza-

tion image for few snapshots. It can be noted as the binarization of the images by

using a threshold value of 5 is able to show the flame front.

Now, the set of binarized images can be elaborated by optical flow algorithm. In

this dissertation, the estimate of optical flow is carried out by using the algorithm

proposed by Horn (1986), which minimizes the objective function of Eq. 2.73. The

parameter α, which penalizes the regularization term, is fixed at 0.05.

Figure 3.30 shows the optical flow estimation at -18.4 CAD. It is possible to note

as optical flow provides information about the local motion of the flame front.

Additionally, the corrugated feature of the flame front, due to interaction between

the turbulent eddies and flame front, determines a random distribution of the op-

tical flow close to the flame front. For correctness, the local flame speed that will

be estimated via optical flow method will have values between the laminar flame

speed and turbulent flame speed because the spatial resolution of the camera is
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Figure 3.29: Images detected at various crack angles (top row) and the binary

images (bottom row).

much higher than the flame front thickness. The velocity vectors non-null inside

of the flame are not due to physical phenomena, but they are caused by the use

of the regularization term employed in Eq. 2.73 in order to guarantee the unique-

ness of the solution of the optimization problem. Furthermore, it is possible to

note how the binarization of the images has allowed to avoid the problem due to

the combustion of the fuel droplets, which would have been associated with high

values of optical flow. To reduce the effects of the terms of regularization, it can

be considered only the velocity vectors corresponding to the edge of the binary

image, which can be considered a good approximation of the flame front.

Figure 3.31 reports the local flame front speed at various crack angle. At -30.4

CAD, close to spark timing, the local flame speeds of the flame kernel are rather

constant, at about 5 m/s. Later, during the propagation of the flame kernel, the

local flame speeds increase and assume a rather irregular distribution along the

flame front. A statistical analysis of the flame front speed should be carried out

in order to study the behaviour of the flame kernel during its propagation. For

each crank angle, the spatial mean, µS, and the spatial standard variation, σS,
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Figure 3.30: Optical flow field estimated at -18.4 CAD.
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Figure 3.31: Optical flow field (absolute value) estimated at -18.4 CAD.
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of the magnitude of the optical flow are estimated along the front flame for 50

consecutive fired cycles (Figure 3.32). Looking at Figure 3.32, it can be noted that

the µS shows a rapid increase during the first 8 CAD after the spark timing. That

is due to rapid corrugation of the flame front due to the interaction between the

turbulent eddies and the flame front propagation. Spatial standard variation is

calculated in order to provide information about the irregular distribution of the

local flame speed along the flame front. Indeed, as it can be observed in Figure

3.32 (righ side), the mean value of σS increases rapidly during the first 8 CAD

after the start of ignition until it stabilizes to about 3.5 m/s. Besides, the spatial

dispersion of the local flame speeds along the flame front becomes stable after

about the 8 CAD after SOI, whereas the spatial mean of local flame speed.

Finally, the application of optical flow techniques has provided useful information

about the propagation of the flame front determining the local flame speeds at

various crank angles.
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Figure 3.32: Scatter plots (dots) of the instantaneous spatial mean (left) and spa-

tial standard variation (right) of the local flame speed and corresponding averages

(solid line) over 50 consecutive fired cycles.
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3.2 Diesel engine

This section reports the application of independent component analysis (ICA) to

2D images of combustion-related luminosity. The images are acquired from an

optically accessible Diesel engine equipped with the common rail injection system

and cylinder head of a most recent generation Euro 5 engine. The original data,

from a sequence of crank-angle resolved images, are treated by ICA in order to

identify leading independent structures. Two main independent components (IC)

are extracted from sets of luminosity images, and the coefficients of the ICs are

then used for further analysis, to study the transient during a single cycle, and for

the assessment of cycle variability, along with data of dynamic in-cylinder pressure,

rate of heat release and integral luminosity. In the analysis of a single cycle, the two

independent components appear to be clearly separated and related to combustion

events near the fuel jets and near the bowl walls respectively. The analysis over the

cycles separates the mean combustion luminosity field at each crank angle from

the random, erratic flame structures related to cycle variability. Quantitative

analysis of the statistics of the two independent components confirms the lower

variability of the jet flames and the high variability of combustion near the chamber

walls. This is in agreement with the idea that the extensive impingement of the

fuel sprays on to the piston bowl walls in modern, high-speed, direct injection

Diesel engines is responsible for increase of unburned hydrocarbons and smoke

emissions. The developed procedure, including the ICA, is fast and reliable and

can be prospectively applied to many different optical engine configurations.
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Table 3.3: Engine and injection system specifications.

Engine type 4-stroke single cylinder

Bore 8.5 cm

Stroke 9.2 cm

Swept volume 522 cm3

Combustion bowl 21 cm3

Vol. compression ratio 17.7:1

Injection system Common Rail

Injector type Solenoid driven

Number of holes 6

Cone angle of fuel jet axis 148◦

Hole diameter 0.145 mm

Rated flow @ 100bar 40 cm3/30s

3.2.1 Diesel engine: Experimental apparatus

The measurements were conducted in an optical Common Rail (CR) Diesel engine,

consisting of a single-cylinder equipped with an injection system operating at a

maximum pressure of 2000 bar. The injector is positioned along the cylinder axis,

and features a single guide microsac nozzle. The injector is controlled by a fully

flexible Electronic Control Unit (ECU) for combustion optimization. In order to

obtain the same in-cylinder conditions of the real multi-cylinder engine, and to

compensate lower compression ratio, typical of optical engines, an external air

compressor has been used to supply pressurized intake air. On its way to the

intake manifold, the air is filtered, dehumidified, and preheated.

A variable swirl actuator (VSA) system manages the air swirl in the intake

manifold. Table reports engine and injection system specifications. All tests were
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conducted at an engine speed of 1000 rpm, continuous-mode operation, using

commercial Diesel fuel with a typical CR injection strategy of pre, main and post

injections (PMP) in every cycle. The pre, main and post injections started at

9 CAD, 4 CAD and 11 CAD with duration of 400, 625 and 340 µs respectively,

with injection pressure fixed at 600 bar and no EGR. Several images per cycle

were acquired with a high-speed digital complementary metal oxide semiconductor

(CMOS) camera, controlled by a trigger signal generated by a delay unit linked to

the engine encoder, with a frame rate of 4 kHz and exposure time of 166 µs.

3.2.2 Experimental results

The experimental data set contains 888 images of the in-cylinder luminosity field,

collected in sets of 24 from -4 CAD to 30.5 CAD over M= 37 consecutive fired

cycles. The original spatial mesh of 529 × 147 is clipped to 120 × 120 pixels

by framing the combustion chamber, and the original color pixels are grayscaled

employing Bayer filter (Russ, 2011). Figure 3.33 shows images of combustion

luminosity for the multiple injections in a cycle. First, luminous spots are observed

around the injector nozzle at -2.5 CAD, due to ignition of the pre-injected fuel.

The small amount of fuel mixes with a large quantity of air, burns in the cylinder

and produces bright spots, due to pockets of fuel segregating in the chamber.

At 0.5 CAD, visible flames are mainly due to the main injection combustion.

From 2 CAD to 5 CAD, combustion is present on all jets and in the vicinity

of the chamber wall. As fuel along the jet axes is consumed, the combustion

zone moves towards the bowl wall, burning the impinged fuel. At the end of

combustion, (12.5 CAD) flames are mainly distributed near the walls. At 14

CAD, post injection jets are observed, autoigniting with a different behaviour: as

it can be noted at 15.5 CAD, it occurs simultaneously along the whole jets, up

to their tips, due to the high temperature near the chamber walls. The highest
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Figure 3.33: Sequence of crank-angle resolved combustion images.

post combustion luminosity is reached at 18.5 CAD. Figure 3.34a-j presents some

images of combustion, acquired at several crank angles and for different combustion

cycles, demonstrating the phenomenon of cycle-to-cycle variations. Not all jets

burn with the same flame behaviour (Fig. 3.34a-c and 3.34g-j). During combustion

development, flames are unevenly distributed along the jets axes. Figure 3.34d-f

illustrate the start of post injection in a partly burning environment, where the

irregular peripheral combustion influences the subsequent development of post-

injection ignition.

3.2.3 ICA of crank angle resolved measurements

ICA is applied separately to each of the crank-angle resolved sequences of the 24

consecutive images of each cycle. In the procedure we assume that no geometric

deformation affects our images over the crank angle, since photographs are taken

from the bottom of the cylinder through a transparent piston. Figure 3.35 shows

ICs y1 and y2 , extracted from the cycle presented in Figure 3.33 and recognized as

being related to the combustion along the fuel jets (Fig. 3.35a) and near the cham-
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Figure 3.34: Sequence of crank-angle resolved combustion images.

ber walls (Fig. 3.35b) respectively. The swirl motion of the burning jets can be

identified in the curved shape of the components jets in (Fig. 3.35a). For compari-

Figure 3.35: Two leading POD modes (a-b) and independent components (c-d) for

the single cycle.
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Figure 3.36: Negentropy computed for ICA and POD modes as a function of cycle

number.

son, Fig. 3.35c and 3.35d report the POD spatial modes, which apparently do not

separate completely the independent physical phenomena. A quantitative evalua-

tion of the amount of information is provided by the negentropy, approximated as

(Hyvärinen and Oja, 2000):

J(y) ≈ 1

12
E{y3}2 +

1

48
kurt(y)2 (3.9)

where

JICA = J(y1) + J(y2); JPOD = J(φ1) + J(φ2) (3.10)

is a normalized random variable. We now define Figure 3.36 shows that the

negentropy is consistently higher for ICA than for POD, thus showing that ICA

modes always carry a higher amount of information. It is interesting to see how

time-dependent coefficients of the ICs correlate with combustion events. Figure

3.37a-b reports in-cylinder pressure, drive injector current, rate of heat release

(ROHR) and integral rate of heat release for the analyzed combustion cycle. From

the ROHR curve (Fig. 3.37b) start of combustion (SOC) of the various injections

in the combustion chamber corresponds to those crank angles where the ROHR
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Figure 3.37: In-cylinder pressure and drive injector current (a), rate of heat release

(ROHR) and integral ROHR (b), and ICs coefficients a1 and a2 , and integral

luminosity (c) as a function of crank angle.
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becomes positive or changes its slope, i.e. -4 CAD, 1 CAD, and 14 CAD re-

spectively. Figure 3.37c shows the time-dependent coefficients of the components

together with the integral flame luminosity. As it could be expected, the peaks of

the coefficient a1, of the component y1, emerge at 3.5 CAD and 17 CAD, i.e. at

the maximum luminosity of the regular combustion process near the fuel jets of

the main and post injection. In conclusion, in the analysis of a single cycle, the

most independent pair of components extracted by the ICA algorithm are clearly

separated in time and clearly relate to combustion events near the fuel jets and

near the bowl walls, respectively.

3.2.4 Cycle-to-cycle variation analysis

The same ICA procedure is applied separately for each data set collected at a

specified crank angle in order to study the cycle-to-cycle variations. Figure 3.38

shows how ICA, applied over the cycles, permits to separate the mean combus-

tion luminosity at each particular crank angle from the irregular flame structure

related to cycle variability. The effectiveness of the extraction (Fig. 3.38a b and

Fig. 3.38e f) is much better when the cycle-to-cycle variability is lower, i.e. for

the crank angle values characterized by regular combustion process typical of the

burning of the main and post injections along the jets. The separation is much

worse when the cyclic variability is higher, i.e. at the end of main combustion when

the flames move randomly near the bowl wall (Fig. 3.38c d) or towards the end of

combustion, when several flames, which extinguish with irregular behaviour, are

detected. This might indicate that there be more than two leading independent

components in the process.

When looking at the cycle-dependent coefficients of the components presented in

Figure 3.39 we can observe that the variation of coefficient for the ICs extracted

at 3.5 CAD and 18.5 CAD (Fig. 3.39a and 3.39c, respectively) is substantially
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Figure 3.38: Independent components for the single crank angle positions: 3.5

CAD (a-b), 14 CAD (c-d) and 18.5 CAD (e-f).

lower than the variation of the coefficient a1 of the first IC extracted at 14 CAD

(Fig. 3.39b), i.e. the crank angle value for which both the integral luminosity and

the morphology of the flame varies significantly over the cycles. The decreasing

trend in the integral luminosity, specially seen for the crank angles at which the

intensity is higher, is due to quartz window fouling over the cycles. To quantify

the phenomenon of cycle to cycle variations observed in Fig. 3.34, we analyze now

the coefficient of variation (CV), evaluated for the in-cylinder pressure and for

the integral luminosity of the flame. Figures 3.40a-b show the average in-cylinder

pressure, the drive injection current signal, the rate of heat release (ROHR), and

its time integral, respectively. Two peaks, at 1 CAD and 5 CAD respectively,
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Figure 3.39: Coefficients y1 and y2 of the two independent components, and integral

luminosity as a function of cycle number, for 3.5 CAD (a), 14 CAD (b) and 18.5

CAD (c).

emerge in the pressure CV (Fig. 3.40c), with the second one corresponding to

the end of the injection, and to the minimum value of the CV. Then, the CV of

the combustion pressure remains low and quite constant, since combustion of post

injection fuel affects the pressure in the same way for all the cycles investigated.

On the other hand, the CV of the luminosity field presents three distinct peaks,

at 2.5, CAD, 14 CAD and 27.5 CAD, respectively (Fig. 3.39c). The first peak

corresponds to the luminosity caused by the burning of the pilot injection fuel in
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the centre of the bowl, under the nozzle tip. Subsequently, the burning of the

main injection along the jet directions develops with a repeatable position of the

flames and, thus, a minimum of the CV curve is detected. At the end of com-

bustion of the main injection, flames move randomly near the bowl wall and the

CV increases again and reaches its second peak at -14 CAD. The burning of the

third injection again results in a regular combustion process and thus a second

minimum value is found at -17 CAD. Lastly, several flames which extinguish with

irregular behaviour are detected towards the end of combustion (27.5 CAD). A

similar trend can be observed when looking at the CV evaluated for the coefficient

of the first IC (Fig. 3.39d), a1 , which peaks at -2.5 CAD and 14 CAD, where

a rather irregular combustion process takes place and the separation between the

repeatable and cycle-variable parts is less effective. Then, when the burning along

the jets dominates, both for the main and post injection, the CV of a1 achieves

very low values since at these crank angles cycle-to-cycle variability is relatively

low and the separation between the two independent components is much better:

here again the first component represents in essence the average luminosity distri-

bution whereas the second component represents the fluctuation and, of course,

the coefficient of the average is almost constant over the cycles. Most interesting

is the finding that the CV of a2, related to combustion near the bowl walls, is at

least one order of magnitude higher than the CV of a1 . This is a quantitative con-

firmation of the fact that strong deviations from the ideal combustion process are

located near the bowl walls. Variations in the mean ROHR are mainly associated

with combustion variations near the walls of the bowl, also in accordance with the

early correlation of the peak CV of a2 (3.5 CAD) with the CV of pressure.

In summary, the main result of the analysis conducted over the cycles is the quan-

titative assessment of the statistics of the two independent components found,

which confirms that the variability of combustion is low along the jets and high
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Figure 3.40: Average in-cylinder pressure and drive injector current (a), average

rate of heat release (ROHR) and average integral ROHR (b), CV of the integral

luminosity and of the in-cylinder pressure (c), and coefficient of variation of the

ICs coefficients a1 and a2 (d) as a function of the crank angle.

near the chamber walls. It is important to note that sICA is spatially-distributed

and thus the CV analysis describes the morphology of the flame structure.



Chapter 4

Analysis of OH* and OH-PLIF

imaging of swirling spray flames far

from and at extinction

4.1 Introduction

For systems having a dominant periodicity, as in thermoacoustically-excited flames,

POD has also been used to reveal typical flame shapes and their connection with

the acoustics (Davis et al., 2013) and the flow (Stöhr et al., 2012). POD has also

been applied to chemiluminescence images to study the blow-off dynamics of strat-

ified premixed flames (Kopp-Vaughan et al., 2013) and vortex shedding (Kostka

et al., 2012). In simulations, POD has been used to represent DNS data (Danby

and Echekki, 2006; Frouzakis et al., 2000) and for analysis of LES (Duwig and

Fureby, 2007; Ayache and Mastorakos, 2013) . The above references contain lit-

erature reviews on POD applications in flames and fluid mechanics and could be

consulted for further background information.

Assuming that POD can be used to reveal structural changes in the flames as

98
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operating conditions are altered, it is interesting to explore flame shapes at differ-

ent degrees of extinction. Local extinction and global blow-off are very important

topics in combustion. Cavaliere et al. (2013) used a swirl burner and compared the

blow-off behaviour of methane premixed, methane non-premixed, and n-heptane

spray flames. For all types of flame, the blow-off event (i.e. the slow reduction

of flame area to zero) lasts a significant time (i.e. tens of ms) compared to the

residence time in the burner, and before this process begins the flame seems stable.

However, significant changes in flame shape are evident when one compares flames

at operating conditions far from extinction and at the blow-off condition before

the blow-off event (Cavaliere et al., 2013; Kariuki et al., 2012).

In this chapter, new experiments in the swirl burner of Cavaliere et al. (2013) are

performed with a range of fuels including more volatile (ethanol) and less volatile

(n-decane, n-dodecane), to represent with greater fidelity gas turbine combustors

and to understand the effect of fuel volatility on flame blow-off behaviour. In par-

ticular, fast OH* chemiluminescence and OH-PLIF are used and the sequences of

images are analysed with POD. Although OH* images have been analysed with

POD before (Stöhr et al., 2012; Kostka et al., 2012; Davis et al., 2013; Kopp-

Vaughan et al., 2013), POD’s use on PLIF data is not available, with Ref. (Kariuki

et al., 2012) being one of the first but applied to a laminar flame. The authors

are not aware of POD analysis of OH* from spray swirl flames at blow-off, nor of

POD analysis of OH-PLIF.

The specific objectives of work presented in this are: (i) to examine the perfor-

mance of the POD technique for swirling, turbulent spray flames close to extinc-

tion; (ii) to examine differences in flame behaviour far from and close to extinction

conditions; (iii) to reveal the dominant flame structures just before blow-off; and

(iv) to reveal the differences and similarities among the different liquid fuels used.

To study the statistical behaviour of the POD Modes, in terms of coherent and in-
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coherent components, when the condition of the blow-off is approached, a method

was adopted, proposed earlier by Bizon et al. (2009a) and based on a gaussian-

ity index to classify the POD Mode as coherent or incoherent. This analysis was

suggested since the blow-off condition can be considered as a qualitative change

of the system state, hence also the statistical proprieties of the flame pattern are

expected to change radically, so as the energy captured by coherent and incoher-

ent components. In order to assess the POD Modes as coherent or incoherent, the

Normality Test proposed by Shapiro-Wilk (Royston, 1982) is introduced, along

with two new energy spectra based on statistical indexes are also introduced and

employed to describe the statistical behaviour of the POD Modes when the blow-

off condition is approached. Based on these spectra, parameters can be defined to

capture the transition to blowoff and envisage the possibility of a safe near-blowoff

operation.

4.2 Apparatus and image acquisition

A bluff-body swirl spray burner (Fig. 4.1) was used to stabilise liquid fuel flames

far from and close to blow-off. The details of the burner can be found in Cavaliere

et al. (2013); the same burner with a new atomizer that produces a spray for a range

of liquid fuels has been used here. The fuels used were: ethanol, n-heptane, n-

decane, and n-dodecane. The motivation is to examine the effects of fuel volatility

on blow-off behaviour. N-decane and n-dodecane have very low volatility and this

makes them relevant to aviation gas turbines that burn kerosene.

The flame conditions are summarized in Table 4.1.

For reaching the blow-off limit of the spray flame, the fuel flow rate is kept

fixed, while gradually increasing the air flow rate in steps of approximately 2%

(0.258 m/s) every 40 seconds until blow-off occurred, at which event the blow-off
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Figure 4.1: Burner schematic and a photograph of flame D1S1 (Upper) and OH-

PLIF. Optical diagnostic system schematic (Lower).

velocity, UBO, was recorded. An average blow-off velocity of at least 5 individual

UBO measurements under the same conditions was calculated and included in the

table for each fuel flow rate. OH* chemiluminescence was line of sight measured,

as an indicator of heat release of the flame, both at the stable case and at blow-

off. OH-PLIF was captured separately to visualise the flame sheet structure. A

similar diagnostic system was used in premixed flames by Kariuki et al. (2012)

and non-premixed flames and heptane spray flames by Cavaliere et al. (2013) for

flames close to blow-off. The OH-PLIF system consists of a high-repetition rate

diode solid state laser (532 nm, Model JDSU Q201-HD), with a power of 14 W

at 5 kHz and a pulse length of around 18 ns, and a SIRAH Credo high speed dye
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Table 4.1: Test cases evaluated for various stable and blow-off conditions.Fuel mass

flow rate is 0.27 g/s.

Fuel type Name Case Ubulk[m/s] φoverall

Ethanol E1S1 Stable 17.1 0.19

E1S2 Stable 20 0.16

E1B1 Blow-off 21.6 0.15

n-Heptane H1S1 Stable 17.1 0.32

H1S2 Stable 20 0.27

H1B1 Blow-off 22.8 0.24

n-Decane D1S1 Stable 17.1 0.31

D1S2 Stable 20 0.27

D1B1 Blow-off 20.3 0.27

n-Dodecane DD1S1 Stable 14.3 0.38

DD1S2 Stable 17.1 0.32

DD1B1 Blow-off 20.1 0.27

laser (Model 2400), with the output beam at 566 nm doubled by a BBO crystal.

The output beam was tuned near 283 nm to excite the Q1 (6) line in the A1Σ -

X2Π(1,0) band. The output power was 300 mW at 5 kHz (60 µ J/pulse). The

laser beam was expanded into a sheet of around 0.23 mm thickness and 35 mm

height using sheet optics. An IRO intensifier (LaVision, spectral range of 190-800

nm) was fitted with a UV filter (270-370 nm) for OH* and with a narrower filter

(300-325 nm) for OH-PLIF. The intensifier was coupled with a Photron SA1.1

monochrome high speed CMOS camera with 1024 × 1024 pixel resolution up to

5.4 kHz. OH* chemiluminescence and OH-PLIF movies were captured at 5 kHz.

1000 images (0.2 s) were recorded per run. The OH* and OH-PLIF movies referred
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to as E1B1, H1B1, D1B1, DD1B1 comprise only the part of the signal before the

blow-off event, i.e. before the beginning of the disappearance of the flame; see

Cavaliere et al. (2013) and Kariuki et al. (2012) for typical evolutions of the blow-

off event.

4.3 Proper Orthogonal Decomposition

Given a data set uk(x), where x is the spatial variable and k is the snapshot (or

temporal) index, the POD provides an optimal orthonormal basis function set,

called the POD Modes, Φ = {φ1, . . . , φN}, such that the ensemble of the data

can be expressed as a linear combination of these POD Modes. The data can be

organized in the matrix of snapshots U, that is:

U =


u(x1, t1) . . . u(x1, tN)

... . . . ...

u(xM , t1) . . . u(xM , tN)

 (4.1)

where M is the dimension of the discretized spatial domain, and N is the

number of snapshots. When the number of the snapshots is much smaller than

the dimension of the spatial discretization, M � N , it is useful to adopt the

method of snapshots proposed by Sirovich (1987) that permits to express the POD

basis functions (POD Modes) as linear combination of the snapshots.

φi =
N∑
i=1

ψikuk(x) (4.2)

where Ψ = {ψ1, . . . , ψN} is obtained by solving the eigenvalue problem CΨ = λΨ

where

C =
1

M − 1
(U−U)T (U−U) =

1

M − 1
ŨT Ũ (4.3)

is the space correlation matrix centred on the mean component, which is also called

covariance matrix. Then, u(x, t) can be approximated by a linear combination of
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the first K Modes

u(x, t) ≈ c0φo(x) +
K∑
i=1

ci(t)φ(x) (4.4)

where ci(t) are the POD coefficients that can be calculated by projection of the data

set onto the Modes. Mode 0, φ0(x), multiplied by its coefficient c0, is the mean

field of the snapshots (u = c0φ0). The i-th eigenvalue,λi, represents the energy

captured by the i-th POD Mode about the data set. Usually, the POD Modes

are ordered according to decreasing magnitude of their corresponding eigenvalues

(real, positive).

We define the relative energy captured by the k -th Mode, ek, and the cumulative

energy spectrum of the POD Modes, EKPOD, respectively as

ek =
λk∑N
i=1 λi

EK,POD =

∑K≤N
i=1 λi∑N
i=1 λi

(4.5)

The resulting eigenvalue problem can be solved by using the Matlab routine "eigs",

based on ARPACK, a collection of Fortran77 subroutines designed to solve large

scale eigenvalue problems. Since the temporal variable appears only in the POD

coefficients, and the spatial variable appears only in the POD Modes, it can be said

that the Modes carry information on the spatial features, whereas the coefficients

describe the temporal features. In this work, POD has been used to extract and

analyze the dominant structures from the ensemble of collected images, both OH*

chemiluminescence and OH-PLIF, during the experiments described previously.

The originally acquired frames were 1024x1024 pixels but, to reduce the computa-

tional cost they were cropped to the region of interest (831x365). The time series

of the POD coefficients were normalized to have unit energy (or standard deviation

one), that is

ςi(t) = ci(t)/
√
λi (4.6)

Subsequently, Power Spectral Density (PSD) and Cumulative Spectral Power (CSP)

of the normalized POD coefficients were estimated. Welch’s method with a Bartlett-
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Hanning window (Welch, 1967) was employed to estimate the PSD. Since the POD

coefficients were normalized to have unit energy and the data set was centred to

have null mean,
∫ + inf

0
PSDi(f)df = 1 for all normalized POD coefficients, where

f is the frequency. The analysis of the PSD of the POD coefficients can reveal any

periodic features and the frequency content of the associated POD Mode.

4.4 Methods for the coherent-incoherent analysis

4.4.1 Analysis based on kurtosis and skewness

Bizon et al. (2009b) proposed a method to extract the coherent and incoherent

components of the fluctuation of the luminosity field of the combustion process in

an optically accessible internal combustion engines. Such method is built accord-

ing to the Karhunen-Loève theorem (Loève, 1978), in that the fluctuations can be

considered as realizations of a centred stochastic process in some compact set Ω

satisfying generic regularity proprieties; hence, it admits an orthogonal decompo-

sition wherein the coefficients are pairwise uncorrelated random variables. In fact,

POD is the empirical version of the KL transform. Particularly, this method starts

from computing skewness, γ1, and kurtosis, β2, for each POD coefficient, namely

γ1,i =
(ci)3

σ3
i

; β2,i =
(ci)4

σ4
i

(4.7)

where σi is the standard deviation of ci. . It is well known that the values of

skewness and kurtosis for a Gaussian distribution are respectively 0 (because the

Gaussian pdf is symmetric) and 3, as a measure of Gaussianity, Bizon et al. (2009a).

proposed the quantity ρi defined as:

ρi =
√

(γ1,i)2 + (β2,i − 3)2 =
√

(γ1,i)2 + (β∗2,i)
2 (4.8)

where β2,i = (β2,i− 3) is the excess of kurtosis. Subsequently, the POD Modes are

reordered according to decreasing values of rho.
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After that, it is possible to choose a threshold value, ρth, for ρ, and to identify S

Gaussian (incoherent) coefficients, that is the subset, Coh , of the POD coefficients

with ρi ≤ ρth,

Coh = {i = 1, 2, . . . , N : ρi ≤ ρth} (4.9)

and S-N non-Gaussian (coherent) coefficients, that is the subset, Incoh , of the

POD coefficients with ρi > ρth,

Incoh = {i = 1, 2, . . . , N : ρi > ρth} (4.10)

Then, the incoherent component, w, will be obtained as linear combination between

the S Gaussian coefficients and the corresponding POD Modes, that is:

w =
∑

i∈Incoh

ci(t)φi(x) (4.11)

Similarly, the coherent component, z, will be given as linear combination of the

S-N non-Gaussian coefficients and corresponding POD Modes, that is:

z =
∑
i∈Coh

ci(t)φi(x) (4.12)

As a result, considering the reordering based on ρ , the ensemble of the snapshots

can be also written as

u(x, t) = u+ ũ = u+ (w + z) (4.13)

In this paper the distribution of energies captured by the POD Modes versus ρ,

namely, the distribution of the POD Modes in the ρ − eK plane, , will be called

energy spectrum based on ρ.Moreover, the cumulative energy spectrum based on ρ

is given by

Eρ(ρ) =

∑
i∈P λi∑N
i=1 λi

P = {i = 1, 2, . . . , N : ρi ≤ ρ} (4.14)

Finally, by choosing ρ = ρth in Eq. (4.14), it is evident that Eρ(ρ) can be inter-

preted as the amount of coherent energy captured by POD Modes as function of

ρth.
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4.4.2 Analysis based on the Shapiro-Wilk test

Another way to discriminate the Gaussian and non-Gaussian POD coefficients is

given by using a class of methods of statistical inference, known as hypothesis

tests. A hypothesis test is a method that verifies if the null hypothesis (example,

the sample is extracted from a Gaussian population) can be accepted (or rejected),

with a given level of significance (α). In our case, the normality tests are interesting

because they allow to classify the POD coefficients as Gaussian or non-Gaussian

by testing the following two hypotheses:

1. null hypothesis (H0), the data sample is extracted from a Gaussian popula-

tion;

2. alternative hypothesis (H1), the data sample is not extracted from a Gaussian

population.

An approach commonly adopted for the testing process of a hypothesis test is

based on computing the p-value (Learning, 2011) The p-value is defined as the

probability, calculated assuming that the null hypothesis is true, of obtaining a

value of the test statistic at least as contradictory to H0 as the value calculated

from the available sample .

Briefly, the hypothesis tests are conducted via three steps, i.e:

1. Estimate the value of the test statistic for each POD coefficient.

2. Compute of the p-value associated to the test statistic.

3. Compare the p-value with the chosen significance level. Then, if the p-value

is lower than the significance level, the null hypothesis (H0) is rejected in

favour of H1; otherwise it is accepted.

Usually, when the null hypothesis is accepted, it is also said that the test statistic is

significant. Besides, an interpretation about the p-value of a hypothesis test is the



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.4. Methods for the coherent-incoherent analysis 108

following: the p-value can be considered as a measure of the amount of statistical

evidence that supports the null hypothesis (Learning, 2011). Thus, in the case

of normality test, wherein the null hypothesis (H0) assumes that the sample is

extracted from a Gaussian population, it is possible to interpret the p-value as a

measure of the statistical evidence that the sample is extracted from a Gaussian

population. Particularly, in case of a normality test, the higher the p-value, the

greater the statistical evidence that the sample belongs to a Gaussian population.

Finally, the coherent and incoherent components are provided by the following

equations:

w =
∑

i∈Incoh

ci(t)φi(x) Incoh = {i = 1, 2, . . . , N : (pvalue)i ≥ α} (4.15)

z =
∑
i∈Coh

ci(t)φi(x) Coh = {i = 1, 2, . . . , N : (pvalue)i < α} (4.16)

Bizon et al. (2010a) were the first authors to use a Normality hypothesis test

(D’Agostino-Pearson Normality test (D’Agostino and Pearson, 1973)) to discrim-

inate the Gaussian component from the non-Gaussian component of the fluctu-

ations of the luminosity field of the combustion process occurring in an internal

combustion engine. In this work, the Shapiro-Wilk normality test is used instead.

In order to obtain a better understanding of the underlying phenomena in terms

of coherent and incoherent features, we introduce two new spectra based on p-

value. Particularly, Ep−value will denote the cumulative energy spectrum of the

POD Modes based on p-value and is given by:

Ep−value(p
∗
value) =

∑
i∈P λi∑N
i=1 λi

P = {i = 1, 2, . . . , N : (pvalue)i ≤ p∗value} (4.17)

This spectrum can also be viewed as the amount of energy captured by the co-

herent POD Modes obtained by employing the Shapiro-Wilk Normality Test with
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a level of significance α = p∗value . It should be noted that the method based on

Shapiro-Wilk normality test can also be extended to other hypothesis tests known

in literature.

4.5 POD Analysis: results and discussion

In this Section, the POD results are discussed. Flames far from extinction and the

flames immediately before the extinction transient are chosen. First, the results

for n-decane are shown, as representative of all flames and in order to emphasize

the behaviour of a low-volatility fuel due to its relevance to gas turbines. The

following discussion focuses on: (i) the basic structure of the flame; (ii) its temporal

evolution; (iii) the difference between the flames, which reveals the “footprint” of

blow-off in this geometry. The presentation follows with a sample of similar results

from the other fuels (ethanol, n-heptane, n-dodecane) to examine how the fuel

volatility affects the flame behaviour, as revealed in the POD analysis. Finally,

POD analysis using the Gaussian/non-Gaussian component separation and the

corresponding reconstructions are discussed.

4.5.1 n-Decane

OH* results. Figure 4.2 shows the mean image (Mode 0) and the first five POD

Modes from the OH* for D1S1. Mode 1 highlights a roughly antisymmetric pair

of heat release fluctuations about the flame axis. Since the POD reconstruction is

given by a linear combination of the POD Modes with the modal coefficients, and

given that the POD coefficients have mean value 0, it is possible to say that the first

Mode reveals a transverse oscillating motion of the flame. A similar conclusion can

be drawn by looking at Modes 1 of D1S2 (Fig. 4.3) and D1B1 (Fig. 4.4). These

dominant structures cannot be seen as easily in the raw OH* images (Figs. 4.5-4.7,
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upper row) due to the underlying small-scale fluctuations, but are shown in the

reconstructed movie (Figs. 5-7; middle row) with mean image (Mode 0; constant in

time) and the first Mode, which represents the principal left/right oscillation. The

reconstructed movies for the blow-off condition (Fig. 7, middle and lower rows), in

particular, show that almost half of the flame may be completely quenched during

this transverse motion.

Looking at Modes for D1S1 (Fig. 4.2). Mode 2 can be associated to the turnover

of the flame from a central zone, which is related to a compact flame, to lateral

regions, which are related to flames localized along the spray. This Mode therefore

can be thought of as a standing oscillation, where the central region reacts less

intensely when the outer region reacts more intensely. Modes 3 and 4 can be

associated to axial oscillation. Mode 5 presents spatial features more complex

than the previous Modes. Similar comments can to be made for the Modes of

flames D1S2 (Fig. 4.3) and D1B1 (Fig. 4.4). Figures 4.5-4.7 (lower row) show

snapshots obtained by reconstruction of the data with the mean image and the

first 5 Modes. It is evident that the reconstruction of the data with the first few

POD Modes has allowed the filtering of the spatial features of small scale, so that

it has been possible to visualise better the dominant shapes. Looking at Modes 1

to 3 for D1B1 (Fig 4.4) together and the reconstructed movie suggests that at the

blow-off condition, the flame seems to have a wedge-like shape that rotates. The

clarity of this motion from the reconstructed POD snapshots, and the difference

between the stable flame and the one at extinction, demonstrates the power of

POD to extract the dominant features of the OH* movies.

Figure 4.8 reports the spectra of cumulative energy. It appears that when the

blow-off condition is approached, the energy of the Modes of low order increases.

Therefore, the first 50 POD Modes for the operating conditions D1S1, D1S2 and

D1B1 have cumulative energy respectively of 77.47%, 79.89% and 82.88%, while
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Figure 4.2: Mean image and the first 5 POD Modes from OH*, Flame D1S1.

Figure 4.3: Mean image and the first 5 POD Modes from OH*, Flame D1S2.

Figure 4.4: Mean image and the first 5 POD Modes from OH*, Flame D1B1.
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Figure 4.5: Flame D1S1. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.

Figure 4.6: Flame D1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.
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Figure 4.7: Flame D1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.

Figure 4.8: Cumulative energy spectrum of the POD Modes of OH* chemilumi-

nescence and OH-PLIF for flames of n-decane.
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Figure 4.9: Flames of n-decane. PSD of POD coefficients from Modes 1 to 10 of

OH*.

the first 5 Modes contain about 41.45 % of the energy for D1S1 and about 50.36 %

for D1B1; this is probably related to the more pronounced Mode 1 for the blow-off

condition that contains 28.69% for D1B1 and 17.88% for D1S1.

Figure 4.9 shows the PSD of the first 10 normalized POD coefficients (the PSDs

were shifted along the y-axis for clarity) for flames D1S1, D1S2 and D1B1. Many

POD Modes contain a broad peak between about 30 and 60 Hz and occasionally its

harmonics. This result reveals the dynamics, in terms of frequency, of the flame.

For flame D1S1, the transverse Mode (Mode 1) does not show a strong peak in its

PSD, although a clear motion is seen (e.g. Figs. 4.2, 4.3), while the coefficients of
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Figure 4.10: Flames of n-decane. CSP of POD coefficients of Modes 1 and 10 of

OH*.

the higher Modes tend to have such broad peaks: 24.4 Hz for Modes 2 (turn-over

motion) and 5 and the harmonic at 48.8 Hz for Modes 3 and 4. For flame D1S2,

Mode 1 (transverse fluctuation) and Mode 3 (axial fluctuation) show a strong peak

in at 24.4 Hz. For the flame at blow-off (D1B1), where a significant part of the

flame has been quenched (Fig. 4.4), the absence of a peak in the PSD of the

coefficients of Mode 1 suggests that there is no strong periodicity associated with

this flame motion, this can be associated to the unstable dynamic of the flame.

The axial and standing Modes (Modes 2-3), however, have broad spectral peaks

at 48.8 Hz. It is interesting that these spectral peaks depend little on the flow

velocity. In the absence of detailed velocity information the origin of these heat

release fluctuations cannot be inferred further. LES of swirling flames (see, for

instance (Frouzakis et al., 2000; Duwig and Fureby, 2007) and references therein)

often show similar peaks in the POD coefficients attributed to precessing vortex

cores (PVC) or other vortical motions; the Strouhal numbers of the present peaks

though are too low compared to the o(1) Strouhal number usually reported for
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Figure 4.11: Flames of n-decane. PSD of the integral luminosity OH*.

PVC (Duwig and Fureby, 2007).

All PSDs include a portion with a -5/3 decay, typical of the energy spectrum of

turbulence, and the OH* shows a sharper drop-off after about 1 kHz (Fig. 4.9).

Figure 4.10 shows the CSPs (cumulative spectral power) of the POD coefficients

of the Modes 1 and 10 for all operating conditions. It is evident that the higher

the Mode order, the higher the contribution of energy at the high frequencies.

Furthermore, it is interesting to see as the CSP of the first Mode, which captures
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Figure 4.12: Flames of n-decane. CSP of the integral luminosity OH*.

the highest energy, changes when the blow-off condition is approached. Particu-

larly, it is possible to note that, when the blow-off condition is approached, the

energy captured by Mode 1, at low frequencies, increases. In addition, the higher

the POD Mode order, the higher the contribution of the high frequency motions

to the POD coefficients fluctuations (Figs. 4.9 and 4.10). For D1B1, the coeffi-

cients of Mode 1 do not have any significant content above 100 Hz, due to the

pronounced slow transverse motion, while the flame far from extinction (D1S1)

has higher frequency content.

Figures 4.11 and 4.12 show the PSD and CSP of the spatial integral of OH*

for the flames D1S1, D1S2 and D1B1. The PSD of the spatial integral OH* for

flame D1S1 shows two peaks at 24.41 Hz and 83 Hz; for flame D1S2, the PSD of

spatial integral OH* signal shows only a peak at 19.53 Hz. Instead, there is no

peak in the PSD of the integral OH* when the blow-off condition is approached.

Therefore, it can be thought that such change is due to a qualitative change of the

operating condition. Also all PSDs of the spatial integral OH* include a portion

with a -5/3 decay, typical of the energy spectrum of turbulence. Furthermore, it
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is possible to see that the CSP of the integral OH* follows the same trend of the

CSP of the first POD Mode as the blow-off condition is approached. Hence, it is

possible to say that at blow-off the flame is characterized from slower dynamics

than at stable conditions.

OH-PLIF results. The instantaneous OH-PLIF images reveal the following

(Figs. 4.14-4.15, upper row). First, there are two branches of the flame, the inner

one roughly aligned with the spray, and the outer one roughly aligned with the

annular air jet. The outer flame is lifted more often than the inner one, even for the

flame condition far from blow-off. Second, the blow-off condition (D1B1) shows a

severely fragmented flame with only small flame elements visible. Third, the stable

flames D1S1 (Fig. 4.13, upper row) and D1S2 (Fig. 4.14, upper row) also shows

a discontinuous OH zone, but the number of holes in the OH sheet seems smaller.

Finally, at blow-off there are often flame fragments residing along the bluff body

surface. Similar observations were made for the heptane flame (Cavaliere et al.,

2013), although the present n-decane flame shows a more pronounced signal along

the spray, which could partly be due to greater interference by fuel fluorescence.

Figs. 4.16-4.18 show the mean and first 5 PODModes respectively for flames D1S1,

D1S2 and D1B1. It is possible to note as the mean component changes severely the

morphology as the blow-off is approached. Specifically, for flame D1S1 (Fig. 4.16),

the mean component show that the flame is localized mainly along the jet axis,

drawing a wedge-shaped reaction zone close to bluff-body. The mean component

of flame D1S2 (Fig. 4.17), show a wide reaction zone far from bluff-body due to

the higher bulk air velocity. Finally, for the flame at the blow-off D1B1 (Fig. 4.18),

the mean component shows a feature more compacted and closer to bluff-body,

this is in agreement with that obtained from OH* data.
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Figure 4.13: Flame D1S1. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and Mode 1 only and (lower) the mean and Modes 1 to 20.

Figure 4.14: Flame D1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 20.
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Figure 4.15: Flame D1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 20.

Figure 4.16: Mean image and the first 5 POD Modes from OH-PLIF, Flame D1S1.
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Figure 4.17: Mean image and the first 5 POD Modes from OH-PLIF, Flame D1S2.

Figure 4.18: Mean image and the first 5 POD Modes from OH-PLIF, Flame D1B1.
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Figure 4.19: Cumulative energy spectrum of the POD Modes of OH* chemilumi-

nescence and OH-PLIF for flames of n-decane.

The POD energy spectrum for the PLIF images (Fig. 4.19) shows that a

larger number of Modes is needed to represent the same percentage of energy than

for OH* and that the differences between the flames are smaller. So, to reach

50% of the energy, in OH-PLIF we require more than 20 Modes, which is to be

contrasted to the 5 Modes needed in OH*. Besides, there is no clear trend between

the cumulative energy spectra and the operating conditions. This result suggests

that such spectrum should not be employed to build a detection algorithm for the

operating condition.

In addition, the PSD of the POD coefficients (Fig. 4.20) shows broad peaks

at the same frequency range than the OH*, but there is significantly more high-

frequency content, with the -5/3 slope extending now to the Nyquist frequency

of the present acquisition system (2.5 kHz). The spectra show no evidence of the

sharper drop-off at 1 kHz observed in the OH*. This may be associated with the

intrinsic averaging performed in the line-of-sight chemiluminescence imaging that
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Figure 4.20: Flames of n-decane. PSD of the integral luminosity OH-PLIF.

would tend to smear the small scale motion.

For flame D1S1, Mode 1 (Fig. 4.16) suggests that when there is significant OH

at the fuel injector (the apex of the inner conical flame), the rest of the flame

shows less OH and vice versa. An alternative interpretation is that when the

flame is attached at the corner of the bluff body, it tends to lift from the nozzle.

There is a mild peak at 29.3 Hz associated with this motion. Mode 2 shows that

when one side lifts-off the corner of the bluff body, the other side tends to remain

attached. Mode 3 - 5 show flame features close to the corner; furthermore, Mode

4 shows that the left-right oscillation of the flame near the corner presents no

peak in the PSD coefficient. This suggests that the dynamics of the flame pattern

presents no stable left-right oscillations. Mode 5 shows the flame pattern regarding
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the up-down oscillations with a middle frequency peak at 43.95 Hz. Coming to

Flame D1S2, if we compare it to flame D1S1, the mean suggests that the flame is

localized farther from the bluff-body; furthermore, the spatial distribution of the

OH radical is wider. Modes 1-5 show few component of the fluctuation of the flame.

Particularly, Modes 1 and 2 can be associated with the transverse fluctuation of

the flame, and Modes 3 and 4 show a anti-symmetric fluctuation along the jet. A

strong peak at 43.95 Hz occurs for Mode 1, which is associated with the transverse

fluctuation of the flame. Since Mode 1 captures the most amount of energy, this

result reveals that the flame D1S2 has a dominant dynamic at 43.95 Hz.

The D1B1 flame remains more attached to the corners of the bluff body (Fig.

4.18). Mode 1 seems similar to the corresponding OH* Mode (Fig. 4.5), showing

an increase of OH on one side when the other side has a reduction in OH. A strong

peak at 29.3 Hz, similar to D1S1, is associated with this structure. Mode 2 shows

an axial movement so that when the flame tends to be lifted from the corners, it

remains attached to the nozzle at r=0. Higher Modes (not shown here) show a

behaviour characterised by anti-symmetric lift-off (one side remains attached while

the other lifts-off) and flame breaks (when the left outer flame has extinction, the

right outer flame does not). Mode 2 and 4 show respectively the axial movement of

the flame regarding the right and left side of the combustor; since that the Mode

3 is characterized by a frequency peak at 43.95 Hz, this helps to highlight the

anti-symmetric behaviour of the flame when the blow-off condition is approached.

The reconstructed snapshots using the mean and Mode 1 only (Figs. 4.13-4.15,

middle row) do not reveal the lift-off of the outer flame. However, the reconstructed

snapshots using the mean and Modes 1 to 20 (Figs. 4.13-4.15, lower row) reproduce

the lift-off. For flame D1B1 in particular, the fragmentation and lift-off seen in

the original (Fig. 4.15, upper) is also seen in the reproduction using Modes 1-20
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Figure 4.21: Flames of n-decane. PSD of the integral luminosity OH-PLIF.

(Fig. 4.15, lower). Note that it was necessary to include many Modes to achieve

a representative reconstruction, due to the broader energy content distribution of

the POD Modes in OH-PLIF compared to the OH*. Exploring how many (or

which) Modes are needed to reproduce particular features of the OH-PLIF movie

can help identify the underlying mechanisms.

Figures 4.21 and 4.22 show respectively the PSD and CSP of the spatial integral

of OH-PLIF for the flames D1S1, D1S2 and D1B1. For the flame D1S1, the PSD

of the spatial integral OH-PLIF show a strong peak at 58.59 Hz; for flame D1S2,

the PSD of spatial integral OH-PLIF signal shows a peak at 24.41 Hz and 117.2

Hz. Conversely, there is no peak in the PSD of the integral OH-PLIF when the

blow-off condition is approached. In addition, when the blow-off is approached,
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Figure 4.22: Flames of n-decane. CSP of the integral luminosity OH-PLIF.

all PSDs tend to include a portion with -5/3 decay, typical of the spectrum of

turbulent energy. Looking at CSP (Fig. 4.22) it is possible to note a clear trend

on the operating condition; in particular, the amount of energy captured at low-

frequencies increases as blow-off is approached. This result suggests that the blow-

off is characterized by slower dynamics. Finally, the analysis suggests that the

footprint of extinction in the present n-decane swirl flame, as seen from line-of-

sight OH* images, is the emergence of a wedge-shaped reaction zone, with about

one half of the flame quenched, that slowly rotates. From the perspective of planar

OH-PLIF, global blow-off is manifested by anti-symmetric lift-off from the corners

of the bluff-body, and with severe fragmentation of the inner and outer parts of

the flame. For OH*, only Mode 1 is sufficient to recover the flame motion before

blow-off, whereas OH-PLIF needs about 20 Modes to be properly represented.
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4.5.2 n-Dodecane

OH* results. Figure 4.23 shows the mean image (Mode 0) and first five POD

Modes from the OH* for DD1S1. Mode 1 highlights roughly flame features on the

left-side, whereas Mode 2 shows roughly the same structure on right-left. Looking

at Modes 1 and 2, and considering the POD coefficients and the POD Mode pro-

prieties, it is possible to think that the first two POD Modes represent respectively

the main heat release fluctuations along the jet axes. This behaviour is completely

different from what observed with D1S1 (n-decane). Looking at Modes 1 and 2

for flames DD1S1 (Fig. 4.23) and DD1S2 (Fig. 4.24), it can be observed strong

morphological changes for the two stable operating conditions. Particularly, Mode

1 of flame DD1S2 (Fig. 4.24) shows a rough antisymmetry of the heat release

fluctuations about the axis; furthermore, it is possible to say that Mode 1 repre-

sents the transverse fluctuations of the flame, whereas Modes 1 and 2 of DD1S1

can be associated to the fluctuations of the flame along the jet axes. Mode 2

of flame DD1S2 (Fig. 4.24) shows features of the flame concerning the up-down

fluctuation, which do not appear in the first POD Modes of flame DD1S1. Mode

3 of flame DD1S1 (Fig. 4.24) shows a more complicated feature than first and

second Mode. Particularly, Mode 3 shows an asymmetry of the flame turn-over

motion from lateral zones to central zone. Modes 4 and 5 (Fig. 4.24) show more

complex features than previous Modes. Instead, for flame DD1S2, Mode 3 (Fig.

4.24) shows a clear feature that can be associated with the flame turn-over motion

from lateral zones to central zone.

Figure 4.25 shows the mean and the first 5 POD Modes for the operating

condition close to blow-off (DD1B1). Particularly, Modes 1 and 2 show both flame

pattern that can be associated with the transverse fluctuation of the heat release.

Mode 3 shows a flame pattern that can be associated with the turn-over motion

of the flame from lateral zones to central zone. Modes 4-5 show more complex
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Figure 4.23: Mean image and the first 5 POD Modes from OH*, Flame DD1S1.

Figure 4.24: Mean image and the first 5 POD Modes from OH*, Flame DD1S2.

Figure 4.25: Mean image and the first 5 POD Modes from OH*, Flame DD1B1.
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Figure 4.26: Flame DD1S1. (Upper) Snapshots from raw OH* movie. Snapshots

at the same times from reconstructed OH* movie using (middle) the mean and

Mode 1 only and (lower) the mean and Modes 1 to 5.

Figure 4.27: Flame DD1S2. (Upper) Snapshots from raw OH* movie. Snapshots

at the same times from reconstructed OH* movie using (middle) the mean and

Mode 1 only and (lower) the mean and Modes 1 to 5.
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Figure 4.28: Flame DD1B1. (Upper) Snapshots from raw OH* movie. Snapshots

at the same times from reconstructed OH* movie using (middle) the mean and

Mode 1 only and (lower) the mean and Modes 1 to 5.

Figure 4.29: Cumulative energy spectrum of the POD Modes of OH* chemilumi-

nescence and OH* for flames of n-dodecane.
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Figure 4.30: Flames of n-dodecane. PSD of POD coefficients from Modes 1 to 10

of OH*.

features. By comparing the first 5 Modes of all operating conditions (Fig 4.23

- 4.25), it is possible to note that Modes 1 and 2 show strong changes of their

morphologies as the blow-off is approached. This result indicates the occurrence

of a qualitative change in the state of the system (from stable flame to unstable

flame).

It is evident that the snapshots reconstructed using the mean and the first POD

Mode (Figs 4.26-4.28) allow the filtering of the small scale features, highlighting

the zone where the combustion reactions are more present. Focusing on the recon-

structed data by using the mean and the first POD Mode (Fig 4.26-4.28, middle

rows) for the three flames DD1S1, DD1S2 and DD1B1, it is possible to observe as



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.5. POD Analysis: results and discussion 132

Figure 4.31: Flames of n-decane. CSP of POD coefficients of Modes 1 and 10 of

OH*.

the right/left fluctuations are always captured from first Mode. The reconstruc-

tions of the same flames made by using the mean and first 20 POD Modes (Fig.

4.26-4.28, bottom rows) show a good description of the morphological features of

the flames. Moreover, looking at the mean and the first Mode for each n-dodecane

flame, it is possible to observe that the flame becomes more and more compact as

the blow-off condition is approached. Identical considerations were obtained for

the n-decane flame.

For flame DD1S1, the mean and the fluctuation captured respectively 47% and

53% energy of the overall data-set. Figure 4.29 reports the cumulative energy

spectra. It appears that, when the blow-off condition is approached, the energy

of the Modes of low order increases. Therefore, the first 50 POD Modes for the

operating conditions DD1S1, DD1S2 and DD1B1 have cumulative energy respec-

tively of 76.67%, 79.68% and 85.27%, while the energy captured by first 5 Modes

for DD1S1, DD2S2 and DD1B1 are respectively of 36.27%, 42.61% and 56.88%.

It is possible to say that there is a trend of the spectrum of cumulative energy
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Figure 4.32: Flames of n-dodecane. PSD of the integral luminosity OH*.

when the blow-off condition is approached. This result is in good agreement with

that obtained for the n-decane flames. As in the previous case (n-decane flames),

Figure 4.30 shows the PSDs for the first 10 normalized POD coefficients (the PSDs

were shifted along the y-axis). It can be observed that all PSDs include a portion

with a -5/3 decay, typical of the energy spectrum of turbulence. For flame DD1S2,

Mode 1 (transverse fluctuation) has a broad peak at 19.53 Hz, Mode 3 (turn-over

motion) has a peak at 24.41 Hz; whereas, Mode 2 (axial fluctuation) does not

show any relevant peak in the PSD of the coefficient. For flame DD1B1, where

a significant part of the flame is quenched (Fig. 4.25), the absence of a peak in

the PSD of the coefficient of Mode 1 suggests that there is no strong periodicity

associated with this flame motion.
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Figure 4.33: Flames of n-dodecane. CSP of the integral luminosity OH*.

Figure 4.31 shows the CSPs (cumulative spectral power) of the POD coefficients

of Modes 1 and 10 for all operating conditions. It is evident that the higher the

Mode order, the higher the contribution of energy at the high frequencies. Fur-

thermore, it is interesting to see as the CSP of the first Mode, which captures the

highest energy, changes when the blow-off condition is approached. Particularly, it

is possible to note when the blow-off condition is approached, the energy captured

by Mode 1 at low frequencies, increases (Fig. 4.30). This result also suggests that

the flame during the blow-off condition is characterized by slower dynamics.

PSDs of the spatial integral OH* for the flames DD1S1 and DD1S2 (Fig. 4.32)

show respectively frequency peaks at 48.83 Hz and 83.01 Hz; instead, there is no

peak in the PSD of the integral OH* when the blow-off condition is approached.

Therefore, it can be thought that such change is due to a qualitative change in

the state of the system. Furthermore, it is possible to highlight as the CSP of the

integral OH* (Fig. 4.33) shows a trend on the operating condition similar to that

reported from the CSP of the first POD Mode (Fig. 4.31). Once more, this result

confirms that the operating condition close to blow-off is characterized by slower
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dynamics.

OH-PLIF results. Figure 4.34 shows the mean image (Mode 0) and first five

POD Modes from the OH-PLIF for DD1S2. Mode 1 suggests that when the flame

is attached to the corner of the bluff body, it tends to lift from the nozzle. Besides,

Mode 1 suggests also the component in phase between up/down and left right

oscillations. Mode 2 can be associated to transverse oscillations of the flame. In

addition, Mode 2 shows that when one side lifts-off the corner of the bluff body,

the other side tends to remain attached. Mode 3 may be interpreted as the com-

ponent of the flame motion from the lateral zones to the central zone. Modes 4

and 5 show a pattern more complex than previous, but it is possible to see that

they still include some information about the transverse oscillation of the flame.

Figure 4.35 shows the mean component (Mode 0, constant in time) and the first 5

POD Modes for the flame DD1B1. Comparing the mean component of the flames

DD1S2 and DD1B1, it is possible to say that when the blow-off condition is ap-

proached, the reactive zone is closer to the bluff-body. This component provides

no information about the dynamics of the flame and its own possible character-

istic patterns. Modes 1 and 2 can be associated with the transverse (left/right)

oscillation of the flame, respectively far and close to the bluff-body. Mode 4 can

be associated with the turnover of the flame from a central zone to lateral zones.

Modes 3 and 5 show more complex features.

The POD energy spectrum for the PLIF images (Fig. 4.38) shows that a larger

number of Modes is needed to capture the same percentage of energy than for

OH*, and that the flames are smaller. Moreover, it is important to note that

it is needed to include many Modes to achieve a representative reconstruction

due to the broader energy content distribution of the POD Modes in OH-PLIF
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Figure 4.34: Mean image and the first 5 POD Modes from OH-PLIF, Flame

DD1S2.

Figure 4.35: Mean image and the first 5 POD Modes from OH-PLIF, Flame

DD1B1.



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.5. POD Analysis: results and discussion 137

Figure 4.36: Flame DD1S2. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and Mode 1 only and (lower) the mean and Modes 1 to 20.

Figure 4.37: Flame DD1S2. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and Mode 1 only and (lower) the mean and Modes 1 to 20.
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Figure 4.38: Cumulative energy spectrum of the POD Modes of OH-PLIF chemi-

luminescence.

compared to the OH*. Exploring how many (or which) Modes are needed to repro-

duce particular features of the OH-PLIF movie can help identify the underlying

mechanisms. Figures 4.36 and 4.58 show, respectively for the flames DD1S2 and

DD1B1, few snapshots of the OH-PLIF signal of the detected images (upper row),

reconstructed images using the mean and the first POD Mode (middle row) and

reconstructed images using the mean and the first 50 Modes POD (bottom row).

It is possible to see as the first POD Modes capture the features of the large scales.

It is possible to note that the energy spectrum of the POD Modes has a clear trend

when the blow-off condition is approached; namely, the percentage of energy cap-

tured by first POD Modes for the operating condition close to blow-off condition

(DD1B1) is higher than for the operating condition far from blow-off. This result

suggests that POD can be used to develop a detector of the occurrence of blow-off

conditions.

Figure 4.39 shows the PSD of the normalized first 10 POD coefficients (the PSDs

were shifted along the y-axis) include a portion with a -5/3 decay, typical of the
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Figure 4.39: Flames of n-dodecane. PSD of POD coefficients from Modes 1 to 10

of OH-PLIF.

energy spectrum of turbulence, and the OH-PLIF shows a sharper drop-off after

about 1 kHz (Fig. 4.39). For flame DD1S1, Mode 1 shows no dominant peak,
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Figure 4.40: Flames of n-dodecane. CSP of POD coefficients of Modes 1 and 10

of OH-PLIF.

whereas Mode 2 shows a strong peak at 19.53 Hz. Recalling that the second POD

Mode was associated with the left/right fluctuation of the flame, it is possible to

say that such fluctuation is characterized by a dominant frequency around 19.53

Hz. For flame DD1B1, Mode 1 presents a strong peak at 24.41 Hz, and Mode 2

shows strong peaks at 19.53 Hz and 63.48 Hz. Since the morphology of Modes

1 and 2 can be associated with transverse oscillations respectively far and close

to bluff-body, it is possible to say that the dynamics of the transverse motion

“far” from the bluff-body presents a dominant frequency at 24.41 Hz. Instead,

the transverse motion of the flame “close” to bluff-body presents two characteristic

frequencies at 19.53 Hz and 63.48 Hz. As previously mentioned, Mode 4 can be as-

sociated with the turnover of the flame from a central zone to lateral zones. Figure

4.40 shows the CSP of the normalized POD coefficients regarding Modes 1 and 10

for flames DD1S2 (far from blow-off) and DD1B1 (close to blow-off). As for the

OH* signal, there is a clear trend of both Modes 1 and 10 when the condition of

blow-off is approached; in particular, when the blow-off condition is approached,
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the percentage of energy captured by the low frequencies increases. Moreover, the

same considerations made for the OH* data can be made here: namely, the con-

dition close to blow-off is characterized by a slower dynamics than it is far from

blow-off.

4.5.3 Ethanol

OH* results Figures 4.41-4.43 show respectively the mean component and the

first 5 POD Modes from the OH* of E1S1, E1S2 and E1B1. Observing the mean

components of the three flames (E1S1, E1S2 and E1B1), it can be noted that the

flame is closer and closer to bluff-body when the operating condition is closer and

closer to blow-off condition. This result is in good agreement with that obtained

byCavaliere et al. (2013). Looking at Modes 1 for the flames E1S1 and E1S2 re-

spectively in the Figs. 4.41 and 4.42, it is possible to say that they draw flame

patterns that can be associated with the transverse fluctuation of the heat release.

Instead, Mode 1 of the flame E1B1 (Fig. 4.43), which represents the operating

condition close to blow-off, can be associated to the axial fluctuation (up-down

fluctuation) of the heat release. Thus, when the operating condition approaches

to blow-off condition, the morphology described by the first POD Mode changes

strongly; namely, the first POD Mode can be associated to transverse fluctua-

tions of the flame during the operating conditions far from the blow-off condition;

whereas, when the blow-off condition is approached, Mode 1 is associated to the

axial fluctuation. Since the first POD Mode captures the biggest energy, it is pos-

sible to think that the operating conditions far from blow-off are dominated by

transverse fluctuations of the heat release, whereas the operating conditions close

to blow-off are dominated by axial (up-down) fluctuation of the heat release.

Modes 2 of E1S1 (Fig. 4.41) and E1S2 (Fig. 4.42) both represent a flame pattern

that can be associated to the axial fluctuation of the heat release; whereas, Mode 2
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Figure 4.41: Mean image and the first 5 POD Modes from OH*, Flame E1S1.

Figure 4.42: Mean image and the first 5 POD Modes from OH*, Flame E1S2.

of E1B1 (Fig. 4.44) represents a flame pattern which identifies the transverse fluc-

tuation of the heat release. Therefore, when the operating condition approaches to

blow-off, the morphological features of the fluctuation of the heat release changes

from a pattern describing the axial fluctuation to another describing the transverse

fluctuation of the heat release.

Looking at the POD modes of S1 (Fig. 4.41), it can be possible to say that

Mode 3 shows a flame pattern that can be associated to the turnover of the flame

from a central zone, which is related to a compact flame, to lateral zones, which

are related to flames localized along the spray. Mode 4 shows another pattern that
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Figure 4.43: Mean image and the first 5 POD modes from OH*, Flame E1B1.

Figure 4.44: Flame E1S1. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and mode

1 only and (lower) the mean and modes 1 to 5.
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Figure 4.45: Flame E1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and mode

1 only and (lower) the mean and modes 1 to 5.

Figure 4.46: Flame E1B1. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and mode

1 only and (lower) the mean and modes 1 to 5.
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Figure 4.47: Cumulative energy spectrum of the POD modes of OH* chemilumi-

nescence and OH-PLIF for flames of ethanol.

can be associated to the up/down fluctuation of the heat release. Mode 5 shows a

feature that can be associated to effect of the convective flux on the flame pattern.

In addition, Mode 5 is characterized by length scale smaller than in the previous

modes: this is due to fact that the energies captured by the large scales is higher

than the corresponding for small scales. Looking at Mode 3 of E1S2 (Fig. 4.42),

it is possible to make the same considerations made for Mode 4 of E1S2; namely,

it is possible to associate this mode to the axial (up-down) fluctuation of the heat

release. Mode 4 of E1S2 can be associated with the turnover of the flame from a

central zone to lateral zones, similarly to Mode 3 of E1S1. Mode 5 represents a

more complex feature with respect to the previous modes, and by a a lower amount

of energy captured. Looking at Modes 3-5 of E1B1 (Fig. 4.43), it is possible to

highlight no feature that can be associated to any particular physical phenomena,

because that modes are characterized by features that are morphologically too

complex.

Similarly to the previous fuels analysed, it is possible to note as the dominant
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structures cannot be easily seen from the raw OH* images (Figs 4.44-4.46), due to

the overlying of the small-scale fluctuations. Nevertheless, they are shown in re-

constructed snapshots with image mean (Mode 0; constant in time) and first POD

mode (middle row), and with the first 5 POD Modes (lower row). Once more,

it is noted as the reconstruction of the snapshots by using the first POD modes

allows the filtering of the small scale features, highlighting the zones where the

combustion reactions are more present. Looking at the reconstructed data using

the mean and first POD mode for three flames E1S1, E1S2 and E1B1, it is possi-

ble to note as the more reactive zones are captured by the mean component and

first 5 Modes. Moreover, it is possible to observe as the reconstructed snapshots

with the mean component and only first POD Mode highlight the reactive zone

that becomes more and more compact, while the operating condition is closer and

closer to blow-off.

Figure 4.47 reports the cumulative energy spectra. It appears that, when the

blow-off condition is approached, the energy captured by the low order Modes

increases. In fact, the first 50 most energetic POD modes for the operating con-

ditions E1S1, E1S2 and E1B1 capture 81.92%, 80.72% and 80.11% respectively of

the total energy. Although the cumulative energy captured by the first 50 POD

modes are roughly similar, it can observed a clear trend between the cumulative

energy spectrum, EK,POD , and the operating condition; in particular, when the

blow-off is approached, the energy captured by the first modes increases. It is

remarked that this trend is opposite to that shown for the flames of n-decane and

n-dodecane.

Figure 4.48 reports the PSDs of the first 10 POD coefficients for the flames E1S1,

E1S2 and E1B12. It is possible to see once more that the PSDs of the POD

coefficients include a portion with a -5/3 decay, typical of the inertial range of

the energy turbulence spectrum. For flame E1S1 (stable operating condition), the
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Figure 4.48: Flames of ethanol. PSD of POD coefficients from modes 1 to 10 of

OH*.

first 3 modes show dominant peaks respectively at 14.65 Hz, 34.18 Hz and 24.41

Hz. Since that the first and second Modes can be associated respectively with

the left/right and up/down oscillations of the flame, it is possible to say that the

up/down (axial) and left/right (transverse) oscillations are characterized by dom-

inant frequencies respectively at 14.65 Hz and 34.18 Hz. For flame E1S2, the first

Mode shows no dominant peaks in its PSD. The cut-off frequency is about 100 Hz.

Since the first Mode of E1S2 can be associated with the transverse fluctuation of

the flame, it is possible to conclude that the transverse fluctuation is characterized

by frequencies lower than 100 Hz. The PSDs concerning modes 2 and 4 (of E1S2)

both show a dominant peak at 29.3 Hz. Since modes 2 and 4 can be associated
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Figure 4.49: Flames of ethanol. CSP of POD coefficients of modes 1 and 10 of

OH*.

respectively with the axial fluctuation and the turn-over of the flame, we may say

that both dynamic behaviours have the same characteristic frequency at 29.3 Hz.

For flame E1B1 (close to blow-off), Mode 1 shows no dominant peak and a cut-off

frequency of about 29.3 Hz, which is associated with the axial fluctuation of the

heat release rate. Mode 2, which was associated with the transverse fluctuation,

shows a peak at 19.53 Hz with a broad band. Hence, the transverse and axial fluc-

tuations become respectively slower and faster when the blow-off is approached.

Besides, for flame E1S1 and E1S2, the turn-over feature is characterized by fre-

quency peaks respectively at 24.41 Hz and 29.3 Hz. Instead, for flame E1B1 (close

to blow-off), no feature was found to be connected to the flame turn-over motion

from central zone to lateral zones. This can suggest that, during blow-off, the

flame is fragmented into small reactive zones close to the bluff-body.

Figure 4.49 shows the normalized CSPs (cumulative spectral power) of the POD

coefficients of the Modes 1 and 10 for all types of flames. Once more, it is evident

that the higher the Mode order, the higher the contribution of energy at the high
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Figure 4.50: Flames of ethanol. PSDs of the integral luminosity OH*.

frequencies. Besides, it is interesting to note that the energy captured at the low

frequencies by Mode 1 (which captures the largest overall energy) decreases (Fig-

ure 4.49) as the blow-off condition is approached. Hence, it can be thought that

the flame approaching blow-off is characterized by faster dynamics.

Figures 4.50 and 4.51 report the PSDs and CSPs respectively for the spatial inte-

gral OH* signal for flames E1S1, E1S2 and E1B1. PSDs of integral OH* show one

peak at 43.95 Hz for E1S1, two peaks at 29.3 Hz and 58.6 Hz (second harmonic)

for E1S2, and no peak for the operating condition close to blow-off. Therefore,

blowoff is announced by a distinct qualitative change in the combustion process.

In contrast with the CSP of Mode 1, no trend between the CSP of the spatial

integral OH* and the operating condition is observed.
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Figure 4.51: Flames of ethanol. CSPs of the integral luminosity OH*.

Finally, it is worth noting that all trends found for the ethanol flame are opposite

to those found for n-decane and n-dodecane flames. This result might be due to

the lower volatility of the ethanol that influences the mixing and the dynamics of

the combustion, but further studies are necessary to better elucidate the relevant

mechanism.

OH-PLIF results. Figures 4.52-4.54 show the mean component and the first 5

POD Modes from the OH-PLIF of E1S1, E1S2 and E1B1 respectively. Focusing

on the mean components of the three flames (E1S1, E1S2 and E1B1), it can be

noted that, when the operating condition is approaching blow-off condition, the

flame is closer and closer to the bluff-body. Furthermore, the flame size decreases

when the flow condition is approaching blow-off. This result is in agreement with

that obtained previously, although less marked.

For flame E1S1 (Fig. 4.52), Mode 1 shows a pattern that can be associated with the

transversal oscillation of the flame. Modes 2 - 5 shows pattern more complicated
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Figure 4.52: Mean image and the first 5 POD modes from OH-PLIF, Flame E1S1.

that cannot be associated with any clearly identifiable phenomena. Regarding

flame E1S2 (Fig. 4.53), Mode 1 highlights a feature that can be associated with

the lateral reactive zone localized on left-side; Mode 2 shows the dominant compo-

nent of the transversal oscillation. Modes 3-5 shows more complex features than

previous Modes, but it can be possible to see some feature along the jet axis. Fi-

nally for flame E1B1 (Fig. 4.54), Modes 1 and 2 can be associated respectively with

transverse and axial oscillations of the fluctuation of the OH-PLIF field. Modes

3-5 show patterns more complex than previous, hard to identify. Once more, by

comparing the mean components of E1S1, E1S2 and E1B1, it can be possible to

note that the mean component becomes more and more symmetric when the op-

erating condition is closer and closer to blow-off.

Figures 4.55-4.57 show, respectively for flames E1S1, E1S2 and E1B1, few snap-

shots from the raw PLIF-OH movie (top row) and the corresponding POD re-

constructions obtained using the mean and first 5 POD Modes (middle row), and

the mean and first 20 POD Modes (bottom row). As in the previous cases, POD

is able to extract the dominant features. Obviously, the reconstruction obtained

using the mean component and first 20 POD Modes provides more details on the

morphology of the flame than the reconstruction obtained using the mean and first
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Figure 4.53: Mean image and the first 5 POD modes from OH-PLIF, Flame E1S2.

Figure 4.54: Mean image and the first 5 POD modes from OH-PLIF, Flame E1B1.



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.5. POD Analysis: results and discussion 153

Figure 4.55: Flame E1S1. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and mode 1 only and (lower) the mean and modes 1 to 20.

Figure 4.56: Flame E1S2. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and mode 1 only and (lower) the mean and modes 1 to 20.
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Figure 4.57: Flame E1B1. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and mode 1 only and (lower) the mean and modes 1 to 20.

Figure 4.58: Cumulative energy spectrum of the POD modes of OH-PLIF. Flames

of ethanol.
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Figure 4.59: Flames of ethanol. PSD of POD coefficients from modes 1 to 10 of

OH-PLIF.
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Figure 4.60: Flames of ethanol. CSP of POD coefficients of modes 1 and 10 of

OH-PLIF.

Figure 4.61: Flames of ethanol. PSD of the integral luminosity OH-PLIF.
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Figure 4.62: Flames of ethanol. CSP of the integral luminosity OH-PLIF.

5 POD Modes.

Figure 4.58 reports the cumulative energy spectra (Eq. (4.5)) for all operating

conditions. It is interesting to highlight that no clear trend can be observed be-

tween the cumulative energy spectra and the corresponding operating conditions.

The cumulative energy spectra for the flames of ethanol are roughly similar.

As in the previously cases, the PSDs (Fig. 4.59) of the first normalized 10 POD

coefficients (the PSDs were shifted along the y-axis) include a portion with a -5/3

decay, typical of the energy spectrum of turbulence. It is possible to see that the

bandwidth of the first POD is wider and wider when the operating condition is

closer and closer to blow-off. In addition, the PSD of Mode 1 shows a peak (100

Hz) only for the blow-off (E1B1). Mode 2 shows bandwidth behaviour similar to

Mode 1, but its PSD shows dominant peaks in every operating conditions anal-

ysed. Particularly, the PSD of Mode 2 shows dominant peaks at 24.41 Hz, 29.3 Hz

and 73.24 Hz, for flames E1S1, E1S2 and E1B1 respectively. Besides, it is possible

to highlight that the highest peak of the PSD of Mode 2 occurs during the oper-

ating condition close to blow-off. This suggests that the flame is characterized by



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.5. POD Analysis: results and discussion 158

periodic fluctuations before its extinction.

Figure 4.60 shows the normalized CSP of the coefficients of Modes 1 and 10 for

the flame E1S1, E1S2 and E1B1. It is possible to note that a clear trend between

the CSP of Mode 1 and operating condition is shown for frequencies lower than 60

Hz. This result suggests that the dynamics of the flame becomes faster and faster

when the operating condition is approaching blow-off.

Furthermore, Figure 4.60 shows clearly that the higher the POD Mode order, the

higher the contribution of energy at high frequencies. Consequently, this suggests

that they may be associated with the fast components of the flame pattern. Figure

4.61 and 4.62 show the PSDs and CSPs of the integral luminosity of the OH-PLIF

signal for the flames E1S1, E1S2 and E1B1. The PSD of the integral OH-PLIF

show no dominant peak for all flames, instead it is possible to note that the cut-off

frequency increases when the operating condition approaches blow-off: this may

be due to the faster dynamics. Furthermore, it is possible to see that the CSP of

the integral OH-PLIF follows the same trend of the CSP of the first POD Mode

when the blow-off condition is approached. Hence, it is possible to say that the

blow-off is characterized from faster dynamics than the stable operating conditions.

Finally, both results obtained from the PSD and CSP analysis are in agreement

with those obtained from the analysis carried on the OH* data.

4.5.4 n-Heptane

OH* results. Figures 4.63-4.65 show respectively the mean component and the

first 5 POD Modes from the OH* of H1S1, H1S2 and H1B1. Observing the mean

components of the three flames (H1S1, H1S2 and H1B1), it can be noted that the

flame is closer and closer to bluff-body when the operating condition is closer and

closer to blow-off condition. It is evident that this behaviour is similar to that of
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flame analysed in the previous sections.

Looking at Modes 1 for the flames H1S1, H1S2 and H1B1, it is possible to note

that they draw flame patterns that can be associated with the transverse fluctua-

tion of the heat release rate. Thus, the feature associated with Mode 1 does not

change when the operating condition is approaching blow-off. Modes 2 and 4 for

flame H1S1 (Fig. 4.63) can be associated with the axial fluctuation of the flame.

Mode 3 can be associated with the turn-over of the flame from a central zone to

lateral zones. Mode 5 shows a pattern more complex than previous, mainly due to

the interaction between turbulent small scales and the flame front. For flame H1S2

(Fig. 4.64), Mode 2 shows a pattern that can be associated with the turn-over

motion of the flame from a central zone to lateral zones; Modes 3-5 can be asso-

ciated with the components of the axial fluctuation of the flame. For flame H1B1

(Fig. 4.65), Modes 2, 4 and 5 show different patterns that can be associated with

the different components of the axial fluctuation of the flame; instead, Mode 3 can

be associated with the turn-over of the flame from a central zone to lateral zones.

By comparing the results obtained for flame H1S1, H1S2 and H1B1, it is evident

when the operating condition approaches blow-off (H1B1), it is possible to observe

a morphologic change of the first 5 POD Modes. Nevertheless, it is necessary to

highlight that such change is less marked than with the fuels analysed in previous

sections. Figures 4.66-4.68 report respectively for flames H1S1, H1S2 and H1B1,

three snapshots from raw data (upper row) and the corresponding POD recon-

structions obtained using the mean component and first 1 POD Modes (middle

row), and using the mean component and first 5 POD Modes (lower row). It is

possible to note once again how POD is a useful technique in order to filter the

small-scale features, consequently it allows to highlight the dominant features of

the flame.

Figure 68 shows the cumulative energy spectra captured by the POD Modes
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Figure 4.63: Mean image and the first 5 POD Modes from OH*, Flame H1S1.

Figure 4.64: Mean image and the first 5 POD Modes from OH*, Flame H1S2.

for flames H1S1, H1S2 and H1B1. It is interesting to note that a clear trend ex-

ists between cumulative energy spectrum and the operating condition. In other

words, when the operating condition approaches blow-off, the energy captured by

low order Modes increases.

Figure 4.70 shows the PSDs of the normalized POD coefficients for H1S1,

H1S2 and H1B1. As in the previous cases, the PSDs of the POD coefficients show

a range with slope -5/3 [dB/decade], that is typical of the turbulent energy spec-

trum. Looking at the PSD of the coefficient of the first POD Mode, it is possible

to observe that no dominant peak (dominant frequency) occurs for any operating
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Figure 4.65: Mean image and the first 5 POD Modes from OH*, Flame H1B1.

Figure 4.66: Flame H1S1. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.
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Figure 4.67: Flame H1S2. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.

Figure 4.68: Flame H1B1. (Upper) Snapshots from raw OH* movie. Snapshots at

the same times from reconstructed OH* movie using (middle) the mean and Mode

1 only and (lower) the mean and Modes 1 to 5.
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Figure 4.69: Cumulative energy spectrum of the POD Modes of OH* chemilumi-

nescence and OH-PLIF for flames of n-heptane.

conditions analysed. In addition, it is possible to note that the cut-off frequency

increases when the operating condition is approaching blow-off. Reminding that

Mode 1 has been associated with the transverse fluctuation for all operating con-

ditions analysed, it is possible to say that the axial fluctuation have a frequency

band lower than 100 Hz. For flame H1S1, the PSD of the coefficient of Mode 2,

which was associated with axial fluctuation, shows a strong peak at 53.71 Hz and

a weak peak at 107.4 Hz (first harmonic of 53.71 Hz). Both Modes 3 and 5 show

a dominant frequency at 34.18 Hz. Since Modes 3 and 5 were associated with the

turn-over motion of the flame, it is possible to say that such phenomena presents

a dominant frequency at 34.18 Hz. For the flame H1S2, Modes 2 and 4 show dom-

inant peaks respectively at 39.06 Hz and 53.71 Hz. Since both Modes 2 and 4 can

be associated with the axial (up/down) fluctuation, it is possible to say that such

fluctuations are characterized by dominant frequencies at 39.06 Hz and 53.71 Hz.

For flame H1B1 (operating condition close to blow-off), the frequency analysis of

the POD coefficients highlights as Mode 2 shows no dominant peak in frequency,
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Figure 4.70: Flames of heptane. PSD of POD coefficients from Modes 1 to 10 of

OH*.

Mode 3 shows a weak peak at 19.53 Hz, Mode 4 shows two peaks at 14.65 Hz and

63.48 Hz, and Mode 5 shows two peaks at 29.3 Hz and 87.9 Hz (third harmonic

of 29.3 Hz). Since Mode 4 can be associated with the axial fluctuation of the heat

release, it is possible to say that the dynamic of such fluctuation is characterized

by dominant frequencies of 14.65 Hz and its third harmonic. Since Mode 3 can be

associated with the flame turn-over from central zone to lateral zones, it is possible

to say that such phenomenon is characterized by dominant frequency at 19.53 Hz.

Figure 4.71 shows the CSPs of the normalized POD coefficients of Modes 1 and

10 for flames H1S1, H1S2 and H1B1. Once more, it is evident that the higher the

Mode order, the higher is the contribution of energy at the high frequencies. Look-
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Figure 4.71: Flames of heptane. CSP of POD coefficients of Modes 1 and 10 of

OH*.

Figure 4.72: Flames of heptane. PSDs of the integral luminosity OH*.
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Figure 4.73: Flames of heptane. CSPs of the integral luminosity OH*.

ing at the CSPs of Mode 1 for all operating condition investigated, it is possible

to note a clear trend between the operating condition and the energy of the first

Mode captured by low frequencies (<500 Hz). This trend highlights that, when

blow-off is approached, the energy captured by the first Mode at low frequencies

decreases. Hence, it is possible to say that the n-heptane flame during the blow-off

conditions is characterized by faster dynamics than stable conditions (H1S1 and

H1S2).

Figures 4.72 and 4.73 show the PSDs and CSPs of the spatial integral of OH*

(marker of the integral heat release rate) for flames H1S1, H1S2 and H1B1. It

is possible to note that the PSD of the integral OH* for flame H1S1 shows a fre-

quency peak at 53.71 Hz. Indeed, no peak is found in the PSDs of integral OH* for

flames H1S2 and H1B1. Hence, it is possible to say that the integral heat-release

rate tends to assume a less and less periodic behaviour while operating condition

is approaching blow-off. Moreover, it is possible to note, when blow-off is ap-

proached, that the cut-off frequency of the heat-release rate decreases. Looking at

the CSPs of the integral OH*, it can be seen that there exists a relation between
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the CSP and the operating condition. Specifically, when the operating condition

approaches blow-off, the amount of energy captured by the low frequencies gets

higher and higher. Hence, it is possible to note that blow-off is characterized by

faster dynamics than stable conditions (H1S1 and H1S2). Therefore, this result

is in agreement with the result obtained from the analysis carried out on the first

POD Modes. Finally, the change of the spectral information is due to a qualitative

change of the operating condition (from stable condition to unstable condition).

OH-PLIF results. Figures 4.74 and 4.75 show the mean component and the

first 5 POD Modes from the OH-PLIF respectively for flames H1S1 and H1B1.

Focusing on the mean components of these flames, it can be noted that the size

of flame H1B1 (close to blow-off) is slightly smaller than the size of flame H1S1.

Besides, it can also be noted that flame H1B1 is slightly closer to the bluff-body

than flame H1S1. For flame H1S1 (Fig. 4.74), Mode 1 shows a pattern that can

be associated with the transversal oscillation of the flame. Modes 2 and 3 draw

patterns that can be associated with the fluctuation of the flame along the jet

axis. Mode 4 shows a pattern that can be associated with combustion phenomena

that occurs simultaneously in both left and right sides of the spatial domain.

Similarly to Modes 2 and 3, Mode 5 shows a pattern that can be associated with

the axial fluctuation but with a more complex feature. For flame H1B1 (close

to blow-off, Fig. 4.75), Mode 1 clearly shows a feature that can be associated

with the transverse fluctuation of the flame. Mode 2 shows a pattern that can

be associated with the turn-over of the flame from lateral zones to a central zone.

Modes 3-5 show components of the axial fluctuation on the left side but with

more complex features. By comparing the first 2 POD Modes of flames H1S1

(Fig. 4.74) and H1B1 (Fig. 4.75), it can be seen that meaningful changes do not
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Figure 4.74: Mean image and the first 5 POD modes from OH-PLIF, Flame H1S1.

Figure 4.75: Mean image and the first 5 POD modes from OH-PLIF, Flame H1B1.

occur between flames H1S1 (stable) and H1B1 (unstable). Instead, Modes 3-5

show meaningful changes when blow-off is approached. It is possible to highlight

that the behaviour of the n-heptane flame is meaningfully different from the other

previous fuels analysed.

Figures 4.76 and 4.77 show, for flames H1S1 and H1B1 respectively, few snap-

shots from the raw PLIF-OH movie (upper row) and the corresponding POD

reconstructions obtained using the mean and first 5 POD Modes (middle row),

and the mean and first 20 POD modes (lower row). As in the previous cases, once
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Figure 4.76: Flame H1S1. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and mode 1 only and (lower) the mean and modes 1 to 20.

Figure 4.77: Flame H1B1. (Upper) Snapshots from raw OH-PLIF movie. Snap-

shots at the same times from reconstructed OH* movie using (middle) the mean

and mode 1 only and (lower) the mean and modes 1 to 20.
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Figure 4.78: Cumulative energy spectrum of the POD modes of OH-PLIF. Flames

of heptane.

more the ability emerges of POD to extract the dominant features. In fact, the

reconstruction obtained using the mean component and first 20 POD modes pro-

vides more details on the morphology of the flame than the reconstruction obtained

using the mean and first 5 POD Modes. Figure 4.78 shows the cumulative energy

spectra captured by POD Modes for flames H1S1 and H1B1. It is interesting to

note, when the blow-off condition is approached, that the energy captured by low

order Modes decreases. Hence, the dominant features of H1B1 are less coherent

than those of H1S1.

In order to study the dynamic of the n-heptane flame far and close to blow-off

conditions, the PSDs of the normalized POD coefficients were analysed. There-

fore, Figure 4.79 shows the PSDs of the first 10 normalized POD coefficients (the

PSD were shifted along the y-axis to improve the representation) which include a

portion at high frequencies with a -5/3 decay, typical of the energy spectrum of

turbulence within inertial range. For the flame H1S1, it is possible to note that

the PSD of Mode 1 (transverse fluctuation) shows a strong peak at about 34.18
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Figure 4.79: Flames of heptane. PSD of POD coefficients from modes 1 to 10 of

OH-PLIF.
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Figure 4.80: Flames of heptane. CSP of POD coefficients of modes 1 and 10 of

OH-PLIF.

Hz. In addition, it can be noted that, when the operating condition approaches

blow-off, Mode 1 shows no dominant frequency. As a consequence of this result, it

is possible to identify a qualitative change of the state of the burner by monitoring

the PSD of POD Mode 1. Looking at the PSD of other POD Modes, it is possible

to note that a -5/3 decay occurs for frequencies higher than 100 Hz.

Figure 4.80 shows the normalized CSPs of the coefficients for Modes 1 and 10.

In contrast to the results obtained for the previous fuels, wherein the CSP of the

first POD Mode shows a clear trend with the operating condition, in the case of

n-heptane there is no trend of the CSP of the first POD Mode with the operating

conditions. Figures 4.81 and 4.82 show respectively PSDs and CSPs relative to

spatial integral of the OH-PLIF signal for flames H1S1 and H1B1. For both flames

H1S1 and H1B1, the PSDs of the integral OH-PLIF signal show a peak about at 90

Hz. Therefore, it is possible to note that the bandwidth of the integral OH-PLIF

is about 100 Hz. Similarly to what was obtained for the first POD Mode, there is

no clear trend between the CSP of the integral OH-PLIF signal and the operating
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Figure 4.81: Flames of heptane. PSD of the integral luminosity OH-PLIF.
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Figure 4.82: Flames of heptane. CSP of the integral luminosity OH-PLIF.

conditions.

4.6 Coherent-Incoherent component analysis

In this section, the study of the coherent (non-Gaussian) and incoherent (Gaussian)

components is developed and discussed for every flame studied in the previous

section. This analysis is a new tool to analyse experimental data in order to

improve the knowledge of the differences in the underlying phenomena between

stable conditions and blow-off. Besides, in order to verify the accuracy of the

analysis, both the method of separation of coherent and incoherent components

proposed by (Bizon et al., 2009a), and that based on Shapiro-Wilk normality test,

which is presented for the first time in this work, are employed to extract the

coherent and incoherent components from OH* and OH-PLIF imaging swirling

spray flames far from and at blow-off.
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Figure 4.83: Flames of D1S1. Coherent-incoherent decomposition of a OH* snap-

shot.

4.6.1 n-Decane

OH* results. The fluctuations of OH* for D1S1, D1S2 and D1B1 were studied

by means of the coherent-incoherent component analysis by using both methods

based on ρ and Shapiro-Wilk normality test. The reconstructed movies of the

coherent and incoherent fluctuation are given as supplementary material.

Firstly, the coherent-incoherent analysis carried out with the method based on ρ

index is discussed. For flame D1S1, Figure 4.83 shows the mean, the fluctuation,

the coherent and incoherent components of OH* obtained by using the method

based on ρ . It is possible to see as the large-scale features of the fluctuation

belongs to the coherent (non-Gaussian) component, and the small-scale features

belong to the incoherent (Gaussian) component. It is necessary to recall that in

this method POD modes are reordered according to increasing ρ.

It is interesting to view as the energies captured by the POD modes are dis-

tributed along ρ . Therefore, Figure 4.84 shows the scatter plots concerning the

energy spectra based on ρ for flames D1S1, D1S2 and D1B1. Looking at these

spectra, it is possible to observe as such energy spectra (Fig. 4.84) are localized
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Figure 4.84: Flames of D1S1. Distribution of the energies captured by the POD

modes along ρ.
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inside a bounded region of the plane. For both flames D1S1 and D1S2 (stable con-

ditions), it is interesting to observe as the shapes of these regions (in the plane)

look roughly alike. Conversely, the energy spectrum based on rho for flame D1B1

(close to blow-off), shows a branch at low energy (low luminosity) that can be

associated with the extinction phenomena of the flame, which are characterized

by low intensity of OH*. It is possible to note that such branch is characterized

by high ρ . This result suggests that the extinction phenomena are characterized

by non-Gaussian behaviours.

By applying a threshold value to ρth, it is possible to classify the POD Modes as

Gaussian ( ρth ≤ ρ) or non-Gaussian ( ρth > ρ). Subsequently, it is possible to

reconstruct the coherent and incoherent components using Eqs (4.11)-(4.12). Fur-

thermore, it is interesting to show the amount of incoherent (or coherent) energy as

function of ρ. This last information is given from the cumulative energy spectrum

based on ρ, Eρ (Eq. (4.14)). Figure 4.85 shows Eρ for the flames D1S1, D1S2 and

D1B1. It is possible to note a clear trend between Eρ and the operating conditions.

Particularly, it can be noted that, when the operating condition approaches blow-

off, the coherent energy increases. This means that the fluctuation of the OH* field

assumes a less Gaussian behaviour at blow-off. This result can be explained by

the fact that the flame, during stable operating conditions, assumes a stochastic

behaviour similar to that of the flow, which is strongly turbulent. Indeed, it is

known from the literature that, for high Reynolds number flows, the fluctuations

of the velocity field are usually assumed to be Gaussian. On the other hand, the

coherent energy, which represents the amount of energy captured by non-Gaussian

modes, becomes higher and higher as the operating condition is closer and closer

to blow-off. Hence, it is possible to conclude that the OH* signal assumes a be-

haviour far from Gaussian for operating conditions close to blow-off. Moreover,

as it was shown from OH-PLIF measurements, it is necessary to remember that
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Figure 4.85: Flames of n-decane (OH*). Cumulative energy spectra based on ρ.

blow-off, before extinction, is characterized by a fragmented flame that will tend

to extinction. As a result, this suggests that fragmented flames assume statistical

behaviour far from Gaussian.

By applying the method of classification based on Shapiro-Wilk normality test to

classify the POD modes as coherent and incoherent, it is expected that the same

conclusion obtained from the method proposed by Bizon et al. (2009a). Figure

4.86 shows the distribution of the energies captured by the POD Modes on the

p-values obtained from Shapiro-Wilk normality test, respectively for flames D1S1,

D1S2 and D1B1. Recalling that the p-value can be considered as a measure of the

statistical evidence that the sample does not satisfy the null hypothesis; hence,

in our case, it is extracted from a non-Gaussian population. The energy spectra

based on the Shapiro-Wilk test (Fig. 4.86) provide useful information about the

phenomena investigated. Indeed, it is possible to show as the most energetic POD

modes has a behaviour strongly non-Gaussian (very low p-values). The data are
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Figure 4.86: Flames of D1S1 (OH*). Distribution of the energies captured by the

POD modes along p-value.
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Figure 4.87: Flames of n-decane (OH*). Cumulative energy spectra based on

p-value.

thus investigated by using the cumulative energy spectrum based on Shapiro-Wilk

normality test, Ep−value (Eq. (4.15)). Figure 4.87 shows the cumulative energy

spectra based on Shapiro-Wilk for flames D1S1, D1S2 and D1B1. It is possible to

note that a clear trend exists between these spectra and the operating conditions.

As introduced in Section 4.4.2, the cumulative energy spectrum based on Shapiro-

Wilk test (Eq. (4.15)) makes it possible to show the energy captured by coherent

component as a function of the p-value.

It is then possible to classify the POD modes as coherent and incoherent by

choosing an appropriate threshold (level of significance, α) for the p-value. Sub-

sequently, POD modes having a p-value lower than the level of significance will

be classified as coherent, otherwise they will be classified as incoherent modes.

Table 4.2 reports the percentages of coherent and incoherent energies at the most

common level of significance for all flames investigated by means of OH* mea-



Chapter 4. Analysis of OH* and OH-PLIF imaging of swirling spray flames far
from and at extinction – 4.6. Coherent-Incoherent component analysis 181

Table 4.2: OH* measurements. Energies captured by the coherent component at

three values of significance.

OH* D1S1 D1S2 D1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 52.77% 62.53% 65.89%

0.05 54.49% 59.81% 65.89%

0.1 64.60% 69.08% 76.36%

OH* DD1S1 DD1S2 DD1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 43.09% 48.61% 74.65%

0.05 55.25% 62.09% 81.62%

0.1 57.89% 69.35% 84.98%

OH* H1S1 H1S2 H1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 40.11% 52.90% 64.17%

0.05 52.33% 57.39% 65.99%

0.1 59.35% 60.92% 69.63%

OH* E1S1 E1S2 E1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 66.33% 59.37% 59.29%

0.05 72.37% 65.57% 64.77%

0.1 77.70% 73.02% 68.01%
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Figure 4.88: Flames of D1B1. Coherent-incoherent decomposition of a OH-PLIF

snapshot.

surements. Hence it is evident that, when the operating condition is approaching

blow-off, the energy captured by the coherent component gets higher.

OH-PLIF results. Similarly to OH* data, incoherent/coherent analysis is car-

ried out for the OH-PLIF data for flames D1S1, D1S2 and D1B1. Recalling that

OH-PLIF data are relative to a flame sheet, the influence of the turbulent field on

the flame is much evident. Figure 4.88 shows a raw snapshot, the mean, the fluc-

tuation, coherent and incoherent components of OH-PLIF for D1B1. It is possible

to see as the large-scale features of the fluctuation are captured by the coherent

(non-Gaussian) component, and the small-scale features are captured by the in-

coherent (Gaussian) component. Figure 4.89 shows the scatter plots concerning

the energy spectra based on ρ for flames D1S1, D1S2 and D1B1. Looking at these

spectra, it is possible to observe that they draw bounded regions inside the ρ− e

plane. Moreover, it is interesting to note how the shapes of the regions relative to

D1S1 and D1S2 (stable operating conditions) are roughly similar. Moreover, it is

possible to note that flame D1B1 (blow-off) draws, inside the ρ− e plane, a zone
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Figure 4.89: Flames of D1S1 (OH-PLIF). Distribution of the energies captured by

the POD modes along ρ.
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Figure 4.90: Flames of n-decane (OH-PLIF). Cumulative energy spectra based on

ρ.

localized at ρ values higher than the stable flames. Besides, it is possible to notice

when the operating condition is closer and closer to blow-off, the branch of POD

modes at low energy and high ρ values becomes more and more marked; in other

words, the number of POD modes, which belong to such branch, increases.

In order to study the amount of energy captured by the coherent and incoherent

components, the cumulative energy spectra based on ρ, Eρ , are studied (Figure

4.90) for all n-decane flames. It is of interest to note how these spectra show a clear

trend on the operating condition; specifically, when the blow-off is approached, the

energy captured by the coherent component increases. This result suggests that

the fluctuation of the flame front assumes a less Gaussian statistical behaviour. In

addition, this last result is in good agreement with that obtained from the OH*

data; hence, the same considerations can be made.

For flames D1S1, D1S2 and D1B1, Figure 4.91 shows the distributions of the

energy captured by each POD mode along p-values obtained by evaluating the

statistical test proposed by Shapiro (1965). Fig. 4.92 shows the cumulative energy
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Figure 4.91: Flames of D1S1 (OH-PLIF). Distribution of the energies captured by

the POD modes along p-value.
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Figure 4.92: Flames of n-decane (OH-PLIF). Cumulative energy spectra based on

p-value.

spectra based on Shapiro-Wilk test for the OH-PLIF signals relative to flames

D1S1, D1S2 and DDB1. Also in this case, it is possible to note as the energy

captured by the coherent component is higher and higher, when the operating

condition is closer and closer to blow-off. Besides, it is possible to note as the

spectra based on the p-value show a clearer trend than that based on ρ (Bizon

et al., 2009a). At a fixed level of significance, it is possible to reconstruct the

coherent and incoherent components of the data by using Eqs (4.14)-(4.15).

Once more, it is possible to classify the POD modes as coherent or incoherent,

through the choice of a proper level of significance for Shapiro-Wilk normality

test. For all investigated flames, Table 4.3 reports the energy captured by coher-

ent and incoherent components at the most common level of significance. It is

possible to say that the statistical behaviour of the n-decane flame at the blow-off

(D1B1) is more Gaussian than the stable operating conditions (D1S1 and D1S2).
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Table 4.3: OH-PLIF measurements. Energies captured by the coherent component

at three values of significance.

OH-PLIF D1S1 D1S2 D1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 41.60% 45.12% 74.90%

0.05 48.62% 55.91% 89.54%

0.1 53.43% 59.88% 90.99%

OH-PLIF DD1S1 DD1S2 DD1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 - 28.88% 54.44%

0.05 - 38.33% 66.66%

0.1 - 43.87% 70.39%

OH-PLIF H1S1 H1S2 H1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 40.59% - 69.51%

0.05 53.74% - 78.47%

0.1 59.66% - 82.41%

OH* E1S1 E1S2 E1B1

α Coherent Energy Coherent Energy Coherent Energy

0.01 57.67% 70.97% 71.31%

0.05 64.87% 77.42% 80.31%

0.1 69.40% 84.65% 87.80%
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Hence, once more, it is possible to highlight that, when the operating condition

approaches blow-off, the coherent energy increases. Then, at blow-off, the fluc-

tuation of the flame front (OH-PLIF signal) is characterized by a less Gaussian

behaviour. This result can be due to fact that the flame, during stable operating

conditions, assumes a statistical behaviour similar to that of the flow, which is

strongly turbulent. Indeed, for high Reynolds flows, the fluctuations of the ve-

locity field are usually assumed to be Gaussian. Therefore, the coherent energy,

which represents the amount of energy captured by non-Gaussian modes, is higher

and higher as the blow-off condition is approached. As a result, this suggests that

fragmented flames, which occur during the blow-off, have statistical behaviour far

from Gaussian.

4.6.2 Other fuels

OH* results The coherent-incoherent component analysis was also carried out

on the OH* chemiluminescence measurements for n-dodecane (DD1), n-heptane

(H1) and ethanol (E1) flames. Moreover, we should recall that OH* is know as a

marker of the heat release rate.

For the n-dodecane flames (DD1), Figures 4.93 and 4.94 show the energy spectra

and cumulative energy spectra based on method proposed by Bizon et al. (2009a).

By comparing these spectra, it is possible to note that the n-dodecane flames

(DD1) are roughly similar to n-decane flames (D1). Particularly, when the oper-

ating condition is closer and closer to blow-off, the energy captured by coherent

component is higher and higher. This result is in good agreement with that ob-

tained for the n-decane flames. Besides, in reference to Fig. 4.93, the shapes of

the regions associated to the flames of n-dodecane have morphologies similar to

those of n-decane flames. Indeed, as for n-decane flames, the n-dodecane flames
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show a branch at low energy and high ρ. Such branch is more and more evident,

when the operating condition is approaching to blow-off (DD1B1). Looking at

the cumulative energy spectra based on ρ for the n-dodecane flames (D1), it is

possible to note that a clear trend exists between the operating condition and the

cumulative energy spectra correspond to that obtained for the n-decane flames in

the previous section. Figure 4.94 shows the cumulative energy spectra based on

p-value (method based on Shapiro-Wilk normality test). Once again, it is possible

to notice that a trend exists between the cumulative energy spectra and the op-

erating conditions, and it is similar to that regarding of the n-decane flames. As

a result, this suggests that the n-dodecane (DD1) and n-decane (D1) flames have

roughly similar statistical behaviours.

For the n-heptane flame (H1). Figures 4.95 and 4.96 show respectively the

energy spectra and the cumulative spectra energy based on ρ. By comparing the

energy spectra based on ρ for the n-heptane flames and that regarding the previous

flames, it is possible to note little dissimilarity among the shapes of the regions

spanned by the points. Particularly, for flame H1B1, the branch at low energy

and high is shorter and less marked than those of the flames DD1S1 and DD1S2.

In addition, n-heptane flames show also a trend between the operating conditions

and the length of such branch, localized at low-energy and high ρ , but it is less

marked than those obtained for D1 and DD1 flames. Looking at the cumulative

energy spectra based on ρ (Fig. 4.96), no trend is shown between the cumulative

energy spectrum and operating condition. This result is completely different than

those obtained from previous fuels analysed.

Recall that the Shapiro-Wilk test is one the most powerful normality tests. Thus,

for flames H1, in order to prove the correctness of the result obtained by method

based on ρ , the coherent-incoherent analysis is also carried out by using the

method of classification based on Shapiro-Wilk normality test. Therefore, Figure
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Figure 4.93: Flames of n-dodecane (OH*). Distribution of the energies captured

by the POD modes along ρ.
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Figure 4.94: Flames of n-dodecane (OH*). Cumulative energy spectra based on ρ.

4.97 shows the cumulative energy spectra based on p-value for flames H1. By

observing these spectra at the most common levels of significance (1%, 5%, 10%)

(Table 4.2), it is possible to note that a clear trend exists between the amounts

of energy captured by coherent and incoherent components respectively, and the

behaviour of the flame. Particularly, when the operating condition is approaching

blow-off, the amount of energy captured by the coherent component is higher and

higher. This last result is in agreement with the results obtained for flames of

n-decane and n-dodecane. In this case, the method based on Shapiro-Wilk test

has been more powerful than the method based on ρ.

Finally, OH* data for ethanol flames are studied through the coherent-incoherent

analysis. Figures 4.98 and 4.99 show energy spectra and cumulative energy spectra

based on ρ for the flames E1S1, E1S2 and E1B1. In this case, the regions spanned

by points of the energy spectra based on for E1S1, E1S2 and E1B1 identify (Fig.

4.98). By comparing the energy spectra based on ρ for the n-ethanol flames and

those regarding the previous flames, it is possible to note few differences among

the shapes of the regions spanned by the points. Firstly, for the flame E1, the
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Figure 4.95: Flames of n-heptane (OH*). Distribution of the energies captured by

the POD modes along ρ.
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Figure 4.96: Flames of n-heptane (OH*). Cumulative energy spectra based on ρ.
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Figure 4.97: Flames of n-heptane (OH*). Cumulative energy spectra based on

p-value.
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Figure 4.98: Flames of ethanol (OH*). Distribution of the energies captured by

the POD modes along ρ.
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Figure 4.99: Flames of ethanol (OH*). Cumulative energy spectra based on p-

value.

Figure 4.100: Flames of ethanol (OH*). Cumulative energy spectra based on

p-value.
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branch at low energy and high ρ occurs for all operating conditions; conversely

to the previous flames studied. Secondly, the length of this branch decreases as

the blow-off condition is approached. Looking at cumulative spectra based on ρ ,

no trend occurs in these spectra. Then, the method based on Shapiro-Wilk test

should be able to find any useful statistical feature that can be used for the clas-

sification of the operating condition.

Figure 4.100 shows the cumulative energy spectra based on p-value for the flames

of ethanol (E1S1, E1S2 and E1B1). Wherein, it can be seen that a clear trend

occurs between the cumulative energy spectra and the operating condition. Partic-

ularly, it is clear that the flame becomes more and more incoherent as the blow-off

condition is approached. In other words, this means that the ethanol flame close

to blow-off, E1B1, is more Gaussian than flames E1S1 and E1S2, with regard to

stable conditions. It is interesting to highlight that this result is in opposition to

those obtained for the previous fuels. As a result, regarding to OH* measurements,

when the operating condition approaches to blow-off, the heat release of ethanol

flame (E1) assumes a statistical behaviour in opposition to that of the other fuels

analysed (D1, DD1, H1).

OH-PLIF results. The coherent-incoherent component analysis was also car-

ried out on the OH-PLIF measurements for n-dodecane (DD1), n-heptane (H1)

and ethanol (E1) flames. It is necessary to recall that the OH-PLIF signal is a

marker of the instantaneous flame front; for this reason, the results of this sub-

section will concern the flame front. For OH-PLIF data, Figures 4.101-4.103 show

respectively the energy spectra based on ρ for flames DD1, H1 and E1. Also for

these flames, it is possible to note that the shapes of the region spanned by points

in the ρ− e plane (Figs 4.101-4.103), are roughly similar to those obtained for the

corresponding OH* measurement. Besides, the branch of points at low energy and
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Figure 4.101: Flames of n-dodecane (OH-PLIF). Distribution of the energies cap-

tured by the POD modes along ρ.

high ρ occurs regularly for OH-PLIF data as well. As in the previous section, in

order to extract clearer information from data, the spectra Eρ are estimated and

studied. Then, Figures 4.104-4.106 show respectively the spectra Eρ for flames

DD1, H1 and E1. Looking at the cumulative energy spectra Eρ (Figs 4.104-4.106)

obtained from OH-PLIF measurements, it is possible to highlight that they show

trend similar to that obtained for flames D1. This result suggests that the flame

front assumes behaviour less and less Gaussian as the blow-off is approached, in-

dependently from the fuel used. This result is very useful in order to individuate a

proper control parameter for the developing of robust controller based on optical
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Figure 4.102: Flames of n-heptane (OH-PLIF). Distribution of the energies cap-

tured by the POD modes along ρ.
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Figure 4.103: Flames of ethanol (OH-PLIF). Distribution of the energies captured

by the POD modes along ρ.
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Figure 4.104: Flames of n-dodecane (OH-PLIF). Cumulative energy spectra based

on ρ.

Figure 4.105: Flames of n-heptane(OH-PLIF). Cumulative energy spectra based

on ρ.
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Figure 4.106: Flames of ethanol (OH-PLIF). Cumulative energy spectra based on

ρ.

Figure 4.107: Flames of n-dodecane (OH-PLIF). Cumulative energy spectra based

on p-value.
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Figure 4.108: Flames of n-heptane (OH-PLIF). Cumulative energy spectra based

on p-value.

Figure 4.109: Flames of ethanol (OH*). Cumulative energy spectra based on

p-value.
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diagnostic techniques. The coherent-incoherent component analysis has also been

carried out by means of the method of classification based on Shapiro-Wilk test.

Figures 4.107-4.109 show the cumulative energy spectra based on p-value. Once

again, for all fuels analysed, it is possible to observe a clear trend between the

cumulative energy spectra and the operating conditions. Particularly, it is possi-

ble note that the flame is more and more coherent when the operating condition

is closer and closer to blow-off. Since results are in good agreement with those

obtained from the analysis carried out through the method based on ρ proposed

by Bizon et al. (2009b), this suggests that the coherent-incoherent analysis is a

good tool in order to characterize the combustion processes from statistical point

of view (Gaussian and non-Gaussian components).



Chapter 5

DMD applications

This section is focused on the application of Dynamic Mode Decomposition to PIV

measurements of high Reynolds and high swirl number flow in order to extract the

dominant dynamics, in terms of frequency and growth rate, of the turbulent flow

investigated in terms.

5.1 DMD Analysis of experimental PIV Data of a

Swirled Jet

Swirl flows are widely used in several technical applications such as cyclone sepa-

rators, gas turbine combustors, hybrid rockets etc. (Gupta, 1984). For example,

in combustion processes the high turbulence levels and the recirculating flow ob-

served at high swirl levels greatly improve reactants mixing and flame stability,

while allowing the reduction of pollutant emissions. Improvement in these techni-

cal applications requires a deeper understanding of the dynamics of swirling flows,

whose features are still debated by the scientific community. One peculiar phe-

nomenon of swirl flows is the so-called Precessing Vortex Core (PVC). The PVC

occurs in high Reynolds and swirl number flows and is characterized by the reg-

204
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ular precession of the large-scale vortical structure typical of swirling jets around

the geometrical axis of symmetry (Gupta, 1984). An analysis of the 3D and un-

steady flow structure of the PVC can be found in the experimental works of Cala

(2004), Cala et al. (2006) and Shtork et al. (2007), while a review of PVC insta-

bility in swirl combustion systems can be found in Syred (2006). In this section, it

will be discussed the application of Dynamic Mode Decomposition (DMD) to PIV

measurements of a swirled jet in order to identify and characterize the dominant

dynamic components of the system.

5.1.1 Experimental setup

The investigated flow is a turbulent free swirling jet of air at ambient pressure

and temperature. The swirl generator was of axial plus-tangential entry type

characterized by four axial and four tangential air inlets. A converging nozzle of

exit radius R = 12 mm was located vertically on top of the swirl generator. A

circular pipe having an inner radius Rinj = 6 mm was located coaxially to the

swirl generator and used for flow seeding. Its exit section was set at about 26

Rinj below the nozzle exit. A schematic view of the nozzle is shown in Figure 5.1,

while a detailed drawing of the swirl generator is reported in Martinelli (2007).

The total air flow rate and the swirl strength were regulated by controlling the

flow rates in the seeding system, the axial and the tangential entries by using

thermal mass flowmeters whose error was estimated around ±1% of the full scale.

The seeding system generates oil droplets with an estimated diameter of about

1-2 m. The maximum measurable frequency of the flow fluctuations, limited by

the inertia of the tracer particles, was estimated to be around 12.7 kHz, while

the Stokes number estimation allowed to assume that the centrifugal effect on

tracer particles was negligibly small Martinelli (2007). PIV measurements were

performed using a high speed double pulsed Nd:YLF laser operating at 527 nm.
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(b) (a) 

Figure 5.1: Schematic of the nozzle, all dimension in mm (a). Sketch of the

experimental set-up (b).

Double images were acquired with a CMOS (Dantec NanoSense MKIII) cross-

correlation PIV camera with a full resolution of 1280 × 1024 pixels. The spatial

resolution in the direction normal to the measurement plane was estimated from

the average thickness of the laser sheet, which was about 1 mm. The laser sheet

was located normally to the nozzle axis and at about 1 mm above the nozzle exit,

(see Figure 5.1). At the investigated swirl and Reynolds numbers (Re = 244400)

the jet exhibits a Precessing Vortex Core (PVC) with a frequency of about 486 Hz

(Martinelli, 2012), thus, to fulfill the Nyquist-Shannon sampling theorem, PIV

images were acquired at about three time the PVC frequency, i.e. 1500 double

images/s, while the interframe time was set to 10 µs. The camera operates at the

(reduced) resolution of 640× 640 pixels corresponding to a field of view of about

33 × 33 mm2 and a magnification of 0.305.

PIV images were processed by means of the Dantec software. The size of the

interrogation area was set to 32 × 32 pixels corresponding to a spatial resolution

of about 1.2 mm. An overlap of 50% was used. The velocity maps were vector-

validated basing on the cross-correlation peak height ratio and on the velocity

magnitude. The statistical error relative to the mean value of the velocity is
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Figure 5.2: Representative snapshots of the arrow field velocity maps (top) and

their moduli shown as scalar fields (bottom).

estimated to be less than 3% for the 1000 couples of images acquired.

5.1.2 DMD analysis

Figure 5.2 shows representative snapshots of the PIV velocity field, with clear

evidence of the PVC. DMD applied to the PIV data elucidates the dynamics

connected with vortex motion and other transient phenomena. Figure 5.3 reports,

in the complex plane, the spectrum of the companion matrix S (Eq. (2.54)),

where it is seen that all eigenvalues tend to localize close to the unit circle. Figure

5.3 (left) shows the eigenvalues of S. As expected, there are many complex and

conjugate eigenvalues, due to the oscillating dynamics. The radius of each data

marker corresponds to the square amplitude of the mode, i.e. the amount of kinetic
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Figure 5.3: DMD analysis using the last 300 snapshots. (Left) Scatter plots of

the eigenvalues of S. (Right) Scatter plots of the normalized growth rates versus

normalized frequencies for all dynamic modes. In both scatter plots, size of the

circle denote the amount of energy captured by dynamic mode.

energy of the flow captured by the dynamic mode. Most of the kinetic energy of the

flow is captured by mode DM0, namely the mean component, and by one pair of

complex-conjugate modes, DM2 and DM2* , associated with the main precessing

vortex. a magnification of 0.305. In order to analyse transient phenomena that

may be captured by the PIV dataset, DMD was carried out on different numbers

of snapshots, namely for different observation times. Particularly, two ensembles

of snapshot were studied by DMD. The first set is made up of 1000 snapshots (i.e.

the entire sequence of snapshots), and the second one is made up of the last 300

snapshots of the entire sequence. Figures 5.4 and 5.5 show the amplitude spectra

of the dynamic modes relating to the two sequences of 1000 snapshots and 300

snapshots, respectively. It is possible to notice that the dynamic mode DM1 occurs,

with significant amplitude, only for the case of 1000 snapshots, namely when the
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Figure 5.4: Amplitudes of the DMD modes for 1000 snapshots.
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Figure 5.5: Amplitudes of the DMD modes for 300 snapshots.

time interval includes the early transient. Indeed, DM1 is not observed for the

sequence made of the last 300 snapshots. Figure 5.6 shows the spatial features

associated with dynamic modes DM0 and DM1. Since DM0 has both zero growth

rate and zero frequency, DM0 is associated with the mean component. Mode DM1
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has significant values of amplitude and growth rate, therefore it is associated with a

transient phenomenon. Precisely, the growth rate of DM1 is about -7.95 s−1, which

corresponds to a half-time of about 175.3 ms, and to about 20% of the amplitude of

the mean component. For these reasons, DM1 can be considered as a marker of the

transient condition of the system. In Figure 5.6 we look at the morphology of the

first four modes. We see that DM0 is axisymmetric as it should be, dealing with a

conical swirled jet. DM1 is roughly axisymmetric as well, and peaks near the edge

of the jet. This indicates that the main transient component of the flow is related

to viscous phenomena that decay in amplitude whilst maintaining axisymmetric

structure. The spiral patterns of the paired modes associated with the precessing

vortex are also reported. In Figures 5.3 it is possible to see a cloud of minor modes

in a neighbourhood of the normalized frequencies of the pair of dominant conjugate

modes associated with the precessing vortex, however only one dominant pair of

dynamic modes (DM2, DM2*) are related to the precessing vortex, with frequency
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Figure 5.6: Amplitudes of the DMD modes for 300 snapshots.
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of 486 Hz for both samples. DM1, detected as the second largest in the set of first

1000 snapshots, disappears in the set of last 300 snapshots. The mean component

(DM0) and the precessing vortex (DM2 and DM2*) are identified by the three

largest circles in Figure 5.3 and the three highest spikes in Figures 5.4 and 5.5,

and are present in both spectra, the one obtained by 1000 snapshots and the one

obtained by using the last 300 only. Finally, since all growth rates are negative,

or, equivalently, the eigenvalues of S are less than unity in absolute value, the

dynamics of the system can be considered stable. In other words, all dynamic

mode have a stable behaviour.



Conclusions

The development and the applications of the numerical techniques presented in

this thesis were focused on:

- the analysis of the cycle-to-cycle variations in optically accessible engines in

terms of luminosity and morphological features of the flames,

- the analysis of the characteristic features of swirl spray flames of various

liquid fuels (ethanol, heptane, decane, dodecane) at conditions far from and

close to blow-off.

Chapter 3 was focused on the analysis of flame images acquired from a port-fuel

injection spark-ignition (PFI SI) engine and a Diesel engine. With regards to

PFI-SI, cycle-resolved images of the combustion were acquired for two injection

strategies: closed valve (CV) injection and open valve (OV) injection. The anal-

ysis of the cycle variations were carried out either on global indexes (in-cylinder

pressure, integral luminosity and centroid of the luminosity field) and in terms of

morphological features. Cycle-to-cycle variations analysis carried out on the global

indexes has shown that CV injection strategy exhibits higher variability than OV

injection strategy.

The analysis of cycle variations in terms of dominant features of the flames was car-

ried out by applying Proper Orthogonal Decomposition (POD) and Independent

212
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Component Analysis (ICA). POD has permitted to analyze the cycle variations

through the coefficient of variation of the POD coefficients (CoVPOD), which takes

into account both the variations for the luminous intensities and of the morpholo-

gies of the flames. Besides, it was shown that the most energetic POD modes iden-

tify and separates the dominant features connected to normal combustion (flame

front propagation) and the irregular combustion due to the diffusion-controlled

combustion of liquid fuel deposited on the intake valves and chamber combustion.

ICA has allowed to extract the independent spatial structures of the flames for both

CV and OV operating conditions. Spatial independent components and their coef-

ficients are first extracted from sets of luminosity images, and then used to identify

leading structures and to study the transient behaviour of the combustion process.

The three components identified from the combustion images are representative of

ignition and radial-like flame propagation (first component), and erratic luminous

combustion (second and third component) occurring subsequently. A set of cycle-

resolved sequences has been analysed in terms of cycle variation, by making use of

the statistics of the coefficients of the independent components. It is seen that the

second and third ICs represent the dominant morphology of the cyclic variations,

and the corresponding coefficients represent the magnitude and the time evolu-

tion of such variations. Fluctuations in the luminosity field are mainly ascribed to

combustion of fuel pockets.

With regards to flame images collected from an optical Diesel engine, ICA has

allowed to identify the independent components that describe the combustion pro-

cess. Two independent components were sought and found, as emerging from the

analysis, related to combustion along the fuel jets and near the bowl walls respec-

tively. The former present low variability over the cycles, the latter high variability.

This confirms quantitatively that strong deviations from the ideal combustion pro-

cess are located near the bowl walls.
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Application of the optical flow (OF) technique has allowed to estimate the motion

field associated with the propagation of the flame front, more precisely burned gas

front, from the spark to the chamber wall. OF proves to be a useful tool, able to

extract information on the dynamic of the flame, provided that consecutive image

sequences sufficiently time-resolved are available. The motion field of the flame

front was analysed in terms of spatial average and spatial standard variation of the

local speed of the flame front. The spatial average velocity can be interpreted as a

global measure of the propagation of the front flame, whereas the spatial standard

deviation of the local flame speed can be interpreted as a global measure of the

interaction between the turbulent eddies and the flame front.

In chapter 4, POD has been used for the analysis of 5 kHz OH* chemiluminescence

and OH-PLIF images from ethanol, n-heptane, n-decane, and n-dodecane swirl-

stabilised spray flames far from and close to blow-off, to examine how the flame is

modified at extinction conditions and how the large-scale features of the blow-off

process may be detected before complete extinction. The analysis has allowed to

identify for each flame and each operating condition the dominant structures of

the flame (POD modes). The most meaningful dominant features extracted by

POD are:

- transverse oscillations of the flame due to interaction between the swirl mo-

tion and flame front;

- axial oscillations of the flame due to the convective axial flow;

- motion of turn-over of the flames due to interaction of the flame and recir-

culation zones induced by the use of a bluff-body.

From the POD analysis it is seen that flames becomes more and more compact

when the operating condition approaches blow-off.
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The dynamics of the dominant features of the flames were studied by applying the

Fourier analysis to the POD coefficients, which captured all the temporal infor-

mation. From this analysis is emerged that all the power spectra densities (PSDs)

of the POD coefficients include a portion with a -5/3 decay, which is typical of

the turbulent energy spectrum in the inertial subrange. This result validates that

the acquired data take into account the effects of the turbulence on the flame.

From the Fourier analysis (PSD and CSP) is is seen that the flames of n-heptane,

n-decane and n-dodecane at blow-off are characterized by slower dynamics; in-

stead, the flame of ethanol is characterized by faster dynamics. This result might

be due to the lower volatility of the ethanol that influences the mixing and the

dynamics of the combustion, but further studies are necessary to better elucidate

the relevant mechanism. The statistical behaviour of the flames was analysed via

the coherent (non-Gaussian) and incoherent (Gaussian) analysis. Coherent and

incoherent analyses were carried out by using two method of separation:

- the method based on kurtosis and skewness;

- the method based on the Normality Test of Shapiro-Wilk, which is introduced

in this thesis.

Coherent-incoherent analyses carried out on OH-PLIF measurement has shown

that the flame front assumes less and less Gaussian behaviour as the blow-off is

approached, independently from the fuel used. This result is very useful in order

to individuate a proper control parameter, i.e. the percentage of coherent energy

at fixed level of significance, for the development of a robust controller to prevent

blow-off, based on advanced optical measurements.

Chapter 6 reports an application of Dynamic Mode Decomposition to PIV mea-

surements from a swirled jet flow. DMD has allowed to identify the features of
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the precessing vortex in terms of frequency, growth rate and morphology (spatial

pattern described by the dynamic modes), and even allowed to identify the feature

associated with a transient phenomenon. On account of the determined eigenval-

ues, the system can be considered dynamically stable.

The study of future works should be focused on the development of these tech-

niques in order to extract useful information. Both POD and ICA are shown to be

powerful numerical tools, able to extract useful information from a huge amount

of data. Particularly, the modal decomposition methods (ICA,DMD and POD)

may be employed for the development of empirical models that may be employed

to describe the propagation of the flame kernel in spark-ignition engines, whereas

DMD can be employed on time-resolved image sequences of turbulent flames to

extract the dominant dynamics of stationary and non-stationary flames.



Bibliography

A. Albarbar, F. Gu, and A.D. Ball. Diesel engine fuel injection monitoring using

acoustic measurements and independent component analysis. Measurement, 43

(10):1376 – 1386, 2010. ISSN 0263-2241. doi: http://dx.doi.org/10.1016/j.

measurement.2010.08.003.

Kozo Aoki, Masayasu Shimura, Shinichi Ogawa, Naoya Fukushima, Yoshitsugu

Naka, Yuzuru Nada, Mamoru Tanahashi, and Toshio Miyauchi. Short- and

long-term dynamic modes of turbulent swirling premixed flame in a cuboid com-

bustor. Proceedings of the Combustion Institute, 35(3):3209 – 3217, 2015. ISSN

1540-7489. doi: http://dx.doi.org/10.1016/j.proci.2014.10.003.

Simon Ayache and Epaminondas Mastorakos. Investigation of the tecflam non-

premixed flame using large eddy simulation and proper orthogonal decomposi-

tion. Flow, Turbulence and Combustion, 90(2):219–241, 2013. ISSN 1386-6184.

doi: 10.1007/s10494-012-9428-6.

J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow tech-

niques. International Journal of Computer Vision, 12(1):43–77, 1994. ISSN

0920-5691. doi: 10.1007/BF01420984.

G. Berkooz, P. Holmes, and J. L. Lumley. Annual Review of Fluid Mechanics, 25:

539–575, 1993. ISSN 0066-4189. doi: 10.1146/annurev.fl.25.010193.002543.

217



Bibliography – Bibliography 218

K. Bizon, G. Continillo, K.C. Leistner, E. Mancaruso, and B.M. Vaglieco. Pod-

based analysis of cycle-to-cycle variations in an optically accessible diesel engine.

Proceedings of the Combustion Institute, 32(2):2809 – 2816, 2009a. ISSN 1540-

7489. doi: http://dx.doi.org/10.1016/j.proci.2008.08.010.

K. Bizon, G. Continillo, S. Lombardi, S.S. Merola, P. Sementa, C. Tornatore, and

B.M. Vaglieco. Analysis of flame kinematics and cycle variation in a port fuel

injection spark ignition engine. SAE International Journal of Engines, 2(2):

443–451, 2010a. doi: 10.4271/2009-24-0057.

K. Bizon, G. Continillo, E. Mancaruso, S.S. Merola, and B.M. Vaglieco. Pod-based

analysis of combustion images in optically accessible engines. Combustion and

Flame, 157(4):632 – 640, 2010b. ISSN 0010-2180. doi: http://dx.doi.org/10.

1016/j.combustflame.2009.12.013.

Katarzyna Bizon and Gaetano Continillo. Spectral reduction on empirically

derived orthogonal basis of the dynamical model of a circulating fluidized
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