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Introduction

The only particles that experiencing the weak interaction are “neutrinos”. Thus, the study of

weak forces requires the unique neutrino particles. Neutrino interactions are a powerful tool

to investigate the internal structure of the nucleons as well as astrophysical objects.

Neutrino physics during the last decades has improved impressively. Neutrinos are classified

as a fundamental particle in the Standard Model (SM) and are regarded as massless particles.

Nevertheless, the solar neutrino deficit and the atmospheric neutrino anomaly, observed and

confirmed by several neutrino experiments, stimulated the hypothesis that neutrinos have a

no null mass and oscillate. If neutrinos are not massless and if mass and flavor eigenstates do

not coincide, the Standard Model requires an extension.

There are experimental evidences suggesting the νµ→ ντ oscillation in the atmospheric sector,

but a direct evidence of the ντ appearance was missing. This fact requires a detector with the

capability of detecting the short-lived τ lepton produced in ντ Charged Current interactions.

The OPERA experiment was designed to provide a conclusive proof of the neutrino oscillations

hypothesis in the νµ → ντ channel through the observation of the τ lepton in the region

indicated by the Super-Kamiokande experiment. A very pure νµ beam, produced by the SPS

accelerator at CERN, travels 730 km to reach the OPERA detector, located at LNGS. After five

years data taking, from 2008 to 2012, OPERA has recorded neutrino interactions equivalent to

∼ 1.8×1020 pot and has discovered four ντ candidates so far.

Having observed four ντ candidates with a background of 0.23 events, νµ→ ντ oscillations are

established at 4.2σ level.

This PhD work is done in the framework of Napoli group contributing to the OPERA experi-

ment. The main goal of the work is to study the full analysis chain of neutrino interactions in

the OPERA detector and to develop a new method to estimate the energy of electromagnetic

showers for the detection of the τ→ e decay in the search for neutrino oscillations. In this

work the OPERA ECC brick is used as a calorimeter to reconstruct the electromagnetic shower

and to estimate the energy of the electron within the brick. It exploits the correlation between

the energy of the electron and the number of produced shower tracks detected through its

electromagnetic shower. Possible physical and instrumental backgrounds have been also

considered in this study, as they may influence the number of shower tracks detected inside
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the brick.

Due to the electron identification capability exploited for the reconstruction of the τ→ e decay,

OPERA is able to perform also a νµ→ νe oscillation search. In the CNGS beam the expected νe

contamination is relatively small compared to the dominant νµ component (νe /νµ = 0.8%)

and allows search for the oscillation νµ→ νe seeking an excess of νe charged current events.

Although the energy of the neutrino beam is high enough to be optimized for the ντ search

rather then for νe . This analysis is thus also useful for the νµ→ νe oscillation search and the

energy is a key element to discriminate between oscillated events (low energy) and the νe

contamination in the beam (high energy).

The content of this thesis is structured in five chapters: the first chapter presents the neutrino

history and the neutrino detection. The three-flavor neutrino oscillation phenomenon will

be discussed. The last part of this chapter explains the experimental context of neutrino

oscillations.

An overview about the OPERA experiment will be reported in the second chapter. First, the

CNGS neutrino beam will be described and afterwards, the OPERA detector and physics

performances will be detailed.

In the chapter 3 the location procedure of a neutrino interaction in the OPERA target, together

with the full analysis chain used to evaluate the detection efficiencies will be described.

Then, in the chapter 4 the description of a new algorithm aimed to analyze showers involving

one or two bricks along the beam direction will be presented. The main background sources

are described and the relationship between the number of shower tracks found inside the

brick and the energy is discussed.

At the end, chapter 5 first describes the results for the kinematical selection and afterwards

some νe interaction located in the Napoli scanning lab will be presented.

2



1 Neutrino Oscillations

1.1 A Brief History Of Neutrino Discovery

1.1.1 Discovery Of Electron Neutrino

In 1930, Wolfgang Pauli first postulated the existence of neutrino (electron neutrino) to explain

how the energy and momentum could be conserved in β-decay. The hypothesis of β-decay

was that one neutron decays into one electron and one proton [1].

n −→ p++e−. (1.1)

Experimental results had shown that the emitted electrons have a continues spectrum instead

of a single energy as shown in Figure 1.1.

Figure 1.1 – Energy spectrum of the electron in β-decay [2].
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Chapter 1. Neutrino Oscillations

For this energy missing in the β-decay, Pauli proposed the existence of a third neutral particle

in the β-decay process which escaped detection: “... I have hit upon a desperate remedy to save

the exchange theorem of statistics and the law of conservation of energy. Namely, the possibility

that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons,

which have spin 1/2 and obey the exclusion principle and which further differ from light quanta

in that they do not travel with the velocity of light. The mass of the neutrons should be of the

same order of magnitude as the electron mass and in any event not larger than 0.01 proton

masses. The continuous beta spectrum would then become understandable by the assumption

that in beta decay a neutron is emitted in addition to the electron such that the sum of the

energies of the neutron and the electron is constant...” [3, 4].

In 1932, after Chadwick discovered the neutron [5], the problem of statistics and spin of the

nuclei was solved. But the mass of neutrons proved that the neutrons could not be same as

the Pauli’s particle proposed. Fermi renamed the Pauli′s particle as “neutrino” in 1933-34 [6].

Therefore the fundamental Beta-decay process turned out to be

n −→ p++e−+ ν̄. (1.2)

After Pauli’s hypothesis, measuring the recoil of the nucleus during its beta-decay was one of

the main goals of physicist. The first result of all the measurements was the confirmation of

the idea that only one neutrino was emitted with the electron. Moreover, it was clear that a big

and a very sensitive detector was needed to detect neutrinos.

Around 25 years later in 1956, Cowan and Reines designed an experiment to show the existence

of neutrinos [7]; they built a target made of 400 liters of a mixture of cadmium chloride and

water and they put this target near a nuclear reactor [8]. So, the electron anti-neutrinos coming

from the nuclear reactor interacted with the protons inside the target and produced a neutron

and a positron (a process called the inverse β-decay) [9, 10]:

ν̄e +p+ −→ n +e+. (1.3)

1.1.2 Discovery Of Muon Neutrino

Lederman, Schwarts and Steinberger in 1962 [10], proposed an experiment to check the

existence of a second type of neutrino associated with a muon rather than an electron. This

experiment was carried out at Brookhaven. For this experiment an accelerator was needed

because the energies involved in radioactive decays are not high enough to directly produce

muons.

A beam of 15 GeV protons produced by the accelerator hits a beryllium target to produce a

beam of π+ decaying into muons and neutrinos. The produced pions decayed in a 21 meter

long decay tunnel (Figure 1.2).
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The decay process is [11]

π+ −→µ++νµ . (1.4)

Figure 1.2 – The schematic diagram of Brookhaven experiment [12].

A shielding material, made of 13.5 meter of steel, was located in the end of the decay tunnel,

absorbing all the charged particles. After that, a neutrino detector with a weight of 10 tons has

been used to observe the production of charged leptons produced in the neutrino interactions.

Therefore, by 1962 it became clear that two kinds of neutrinos exist: one associated with

electrons (electron-neutrinos, νe ) and one with muons (muon-neutrinos, νµ) [13].

1.1.3 Discovery Of Tau Neutrino

Muon and electron have almost the same properties, however the muon, with the mass of mµ

=105.66 MeV, is much heavier then the electron, me =0.511 MeV. This difference in the masses

of muon and electron leads scientists to formulate the hypothesis that lepton(s) heavier than

muon could exist. In 1957-77, M. Perl et al [14]; performed an experiment to answer to this

question where the result was the discovery of the third lepton, tau (τ±), at the e++e− collider

at Stanford. Therefore, a third type of neutrino, ντ, must exist that takes part in the weak

interaction together with τ. In 2001, this was confirmed by an experiment performed by the

DONUT Collaboration at Fermilab [15].

With the discoveries of the W and Z bosons in 1983, the knowledge of weak interactions was

completed. A few years later, in 1989, the study of the Z boson at LEP (Large Electron–Positron

Collider) showed that only three lepton families and therefore three types of neutrinos exist

[16].
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1.2 The Mass of Neutrinos

The Standard Model (SM) of particle physics [17] is a mathematical description which was

formulated in the 60′s. Neutrinos in the SM were introduced as massless particles as far as

there were no direct evidence for their mass. Also, in the SM no right handed neutrinos, νR ,

exist. However, there are left handed neutrinos, νL , that couples to the W and Z bosons. As a

result, in the SM there is no mixing and no CP violation in the lepton sector. But now we know

that neutrinos oscillate and therefore they do have masses. To accommodate the neutrino

mass in the same way as for quark and charged lepton masses, a right-handed neutrino is

needed in the SM. Then the Dirac mass term could be writes as

LD =−mD ν̄LνR +h.c, (1.5)

where the mD is a mass parameter. Similar to the mass terms of charged leptons and quarks,

this term conserves the lepton number that discerns neutrinos and leptons with negative

charge from anti-neutrinos and leptons with positive charge. In addition, each interaction

in the SM conserves the leptonic number for each family, Le , Lµ and Lτ. Each neutrino mass

eigenstate, νi , varies from its anti-neutrino mass eigenstate, ν̄i , in the sense that L(ν̄i )= -L(νi ).

The neutrino is called as Dirac neutrino when ν̄i 6= νi . In the other hand, since neutrinos

are electrically neutral, a left-handed Majorana mass term could be only introduced from a

chirally left-handed neutrino

LmL =−1

2

[
(νL)cmLνL −νLm†

L(νL)c
]
=−mL

2
νT

L νL +h.c.. (1.6)

Also the right-handed Majorana mass term could be written for right-handed neutrino, νR , as

LmR =−mR

2
(νR)cνR +h.c., (1.7)

where νc is the charge conjugated of ν. Lm mixes ν and ν̄ because both νR and νc
R absorb

neutrino and create anti-neutrino. νc
R and νR are not the mass eigenstates and the term

mR (νR)cνR contains νR ↔ νc
R mixing, where this mixing yields the neutrino mass eigenstate

as νi = νR + νc
R .

As a summary, in extensions of the standard model within a symmetry group, there are many

methods to explain a mass term for the neutrinos. As we also mentioned in this section,

a Majorana particle, which is a fermion, is its own antiparticle. On the other hand, Dirac

particles are different from their antiparticles. So, depending on the nature of neutrinos, an

appropriate mass term can be added to the Lagrangian.

If we consider that the neutrino is a Dirac type neutrino, then it differs from its own antiparticle.

Hence, there will be a left-handed neutrino that interacts with a right-handed anti-neutrino

via weak interaction. If we assume that the neutrino is a Majorana type neutrino, then the

neutrino is its own antiparticle and its mass term in the Lagrangian could be written as both

left term (L) and right term (R) as : ŁM a j or ana
L + ŁM a j or ana

R .
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At the moment there is no evidence to say that massive neutrinos are Dirac particles or

Majorana particles. Scientists are searching for double beta decays with or without neutrino

emission in their final state. If there will be no neutrino in the final state, then the neutrino is a

Majorana type neutrino because the conservation of lepton number is violated. Otherwise,

it is a Dirac type neutrino and the lepton number is conserved with adding a right-handed

partner for each existing left-handed neutrino.

From direct measurements of neutrino masses, the following upper limits for neutrino masses

have been acquired. The upper limit for the electron neutrino, νe , was obtained by measuring

the end-point of the high-energy part of the beta-spectrum in the Tritium decay and is given

by:

mνe ≤ 2.3 eV (95%C .L.) [18]. (1.8)

The first limit for the mass of muon neutrino, νµ, was obtained by muon momentum analysis

in the pion decay (π+ →µ+νµ) and it was:

mνµ ≤ 170 K eV (90%C .L.) [19]. (1.9)

The first upper limit for the mass of tau neutrino, ντ, is determined from the measurement of

the distribution of the effective mass of the five pions in the decay τ→ ντ+5π. So the upper

limit on the mass of ντ is:

mντ ≤ 18.2 MeV (95%C .L.) [20]. (1.10)

Furthermore, due to the effect of neutrinos on the structure formation in the early universe

other bounds also can be obtained. Combining the two CMB (Cosmic Microwave Background)

anisotropy measurements with LSS (Large Scale Structure) data analysis, the upper bound can

be reduced to:∑
mνi ≤ 0.71 eV [21]. (1.11)

1.3 Neutrino Oscillations

In the 1950s, Bruno Pontecorvo proposed that the neutrino oscillations are a quantum me-

chanical phenomenon in the analogy with kaon oscillations [22]. Pontecorvo’s idea was also

including sterile neutrinos, since by that time only electron neutrinos were known.

Afterwards, for the first time in 1962 Maki, Nakagawa and Sakata considered a model with

oscillation of different neutrino flavors [23].

In 1970s many physicists, including Pontecorvo and Bilenky [24], developed the modern

neutrino oscillation theory.
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Neutrino oscillations explain experimental results by allowing neutrino flavor transitions. It

is assumed that physically interacting (and observable) flavor eigenstates, like νe or νµ are

a combination of mass eigenstates (usually denoted as ν1,ν2,ν3 and etc.). Mass eigenstates

propagate through space with different velocities, as they have different masses. This causes

the oscillation of neutrino flavor. In the other words, this means that if at some point in space

a pure beam of neutrinos of one flavor will be produced, the beam will not be anymore pure

after traveling some distance. Therefore, if there will be an experiment only sensitive to a

certain flavor, a deficit will be observed [25].

The probability of flavor oscillation depends on the type of initial and final neutrino, their

energy and the distance they have traveled. Determining these probabilities are one of the

main goals of modern neutrino oscillation experiments.

In the framework of three-flavor neutrino oscillation if neutrinos have masses, so three neu-

trino mass eigenstates exist. The neutrino state is coupled to the W boson by the charged-

current interaction. A particular charged lepton is coupled to a flavor eigenstates, νe ,νµ and

ντ. Due to the existence of three active neutrinos, the mixing matrix can be a 3 × 3 unitary

matrix. In this case we can writeνe

νµ

ντ

 =

νe1 νe2 νe3

νµ1 νµ2 νµ3

ντ1 ντ2 ντ3


ν1

ν2

ν3

 = U

ν1

ν2

ν3

 . (1.12)

The matrix U is known as the Pontecorvo-Maka-Nakagawa-Sakata (PMNS) matrix [26], and it

is a unitary matrix so

UU † = U †U = I →U−1 = U † = (U∗)T . (1.13)

So we can also writeν1

ν2

ν3

 =


ν∗e1 ν∗µ1 ν∗τ1

ν∗e2 ν∗µ2 ν∗τ2

ν∗e3 ν∗µ3 ν∗τ3


νe

νµ

ντ

 . (1.14)

To calculate the oscillation probability lets just assume that we have a neutrino in a pure flavor

eigenstate | να(0) > state at time t=0

| να(0) > = | να >=
3∑

i=1
U∗
αi | νi > . (1.15)

Therefore the wave function evolves as

| να(t ) > =
3∑

i=1
U∗
αi e−i pi .x | νi >, (1.16)

where pi .x = Ei t −pi.x. If we assume that the neutrino is relativistic, then t = x = L, after

8



1.3. Neutrino Oscillations

travelling a distance L the wave function could be rewritten as

| να(L) > =
3∑

i=1
U∗
αi e−iφ | νi >, (1.17)

where φi = pi .x = Ei t− | pi | L ≈ (Ei− | pi |)L. Simply we can approximately calculate the pi

as

pi =
√

E 2
i −m2

i = Ei

√√√√1− m2
i

E 2
i

= Ei (1− m2
i

E 2
i

)1/2 ≈ Ei (1− m2
i

2E 2
i

). (1.18)

So far

φi = (Ei− | pi |)L ≈ m2
i L

2Ei
. (1.19)

By assuming α,β,γ= e,µ,τ and i, j, k = 1, 2, 3 we can determine the amplitude as

A(να→ νβ) = < νβ | να(t ) >, (1.20)

and due the Equation 1.16 we have

A(να→ νβ) = (
3∑

j=1
Uβ j < ν j |)(

3∑
i=1

U∗
αi e−iφi | νi >) =

3∑
i=1

U∗
αiUβi e−iφi , (1.21)

from which we can get the oscillation probability

P (να→ νβ) = |< νβ | να(t ) >|2 = |
3∑

i=1
U∗
αiUβi e−iφi |2 . (1.22)

The terms in oscillation probability formula come from the diagram shown in Figure 1.3. By

Figure 1.3 – The diagram for the terms in the three-neutrino oscillation probability [27].
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using the complex relation in the following equation

| a +b + c |2 = | a |2 + | b |2 + | c |2 + 2ℜ(ab∗+ac∗+bc∗), (1.23)

we can rewrite the oscillation probability as

P (να→ νβ) =
3∑

i=1
|U∗

αiUβi |2 + 2
3∑

i< j
Re [U∗

αiUβiUα jU∗
β j e i (φ j−φi )t ]. (1.24)

Concerning the Equation 1.19

φ j −φi =
m2

j L

2E j
− m2

i L

2Ei
=
∆m2

i j L

2E
(1.25)

where ∆m2
i j = m2

j −m2
i and Ei = E j = E . Due to e iθ = cosθ+ i sinθ we can write

P (να→ νβ) =
3∑

i=1
|U∗

αiUβi |2 + 2
3∑

i< j
Re (U∗

αiUβiUα jU∗
β j )cos

∆m2
j i L

2E

+ 2
3∑

i< j
Im (U∗

αiUβiUα jU∗
β j )sin

∆m2
j i L

2E

=
3∑

i=1
|U∗

αiUβi |2 + 2
3∑

i< j
Re (U∗

αiUβiUα jU∗
β j )

− 4
3∑

i< j
Re (U∗

αiUβiUα jU∗
β j )sin2

∆m2
j i L

4E
+ 2

3∑
i< j

Im (U∗
αiUβiUα jU∗

β j )sin
∆m2

j i L

2E

=
3∑

i=1
|U∗

αiUβi |2 − 4
3∑

i< j
Re (U∗

αiUβiUα jU∗
β j )sin2

∆m2
j i L

4E

+ 2
3∑

i< j
Im (U∗

αiUβiUα jU∗
β j )sin

∆m2
j i L

2E
.

(1.26)

By knowing that
∑3

i=1 |U∗
αiUβi |2 = δαβ the final formula for the three neutrino flavor oscilla-

tion probability could be written as

P (να→ νβ) = δαβ − 4
3∑

i< j
Re (U∗

αiUβiUα jU∗
β j )sin2

∆m2
j i L

4E

+ 2
3∑

i< j
Im (U∗

αiUβiUα jU∗
β j )sin

∆m2
j i L

2E
.

(1.27)

The unitary matrix U can be built as a product of 3 unitary rotation matrices including complex
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phases:

O1(θ1,α1,β1,γ1) =

 c1e iα1 s1e−iβ1 0

−s1e iβ1 c1e iα1 0

0 0 e iγ1

 , (1.28)

O2(θ2,α2,β2,γ2) =

e iγ2 0 0

0 c2e iα2 s2e−iβ2

0 −s2e iβ2 c2e−iα2

 , (1.29)

O3(θ3,α3,β3,γ3) =

 c3e iα3 0 s3e−iβ3

0 e iγ3 0

−s3e iβ3 0 c3e−iα3

 . (1.30)

Where ci ≡ cosθi and si ≡ sinθi for i = 1, 2, 3. The standard parameterization for the matrix U

is

U =

e iγ2 0 0

0 c2e iα2 s2e−iβ2

0 −s2e iβ2 c2e−iα2


 c3e iα3 0 s3e−iβ3

0 e iγ3 0

−s3e iβ3 0 c3e−iα3


 c1e iα1 s1e−iβ1 0

−s1e iβ1 c1e iα1 0

0 0 e iγ1

 . (1.31)

By multiplying these matrices the matrix U will be as

 c1c3e i (α1+γ2+α3) s1c3e i (−β1+γ2+α3) s3e i (γ1+γ2−β3)

−s1c2e i (β1+α2+γ3) − c1s2s3e i (α1−β2+β3) c1c2e i (−α1+α2+γ3) − s1s2s3e i (−β1−β2+β3) s2c3e i (γ1−β2−α3)

s1s2e i (β1+β2+γ3) − c1c2s3e i (α1−α2+β3) −c1s2e i (−α1+β2+γ3) − s1c2s3e i (β1−α2+β3) c2c3e i (γ1−α2−α3)

 .

(1.32)

To simplify the Equation 1.32, let’s define some new variables as below

a = (α1 −β1)− (α2 +β2 −γ2)−γ3

b =−β2 −α2

c =−α2 −α3

d =β1 + (α2 +β2)+ (α3 +γ3)

e =−α1 + (α2 +β2)+ (α3 +γ3)

f = γ1.

(1.33)

So

U =

e i a 0 0

0 e i b 0

0 0 e i c


 c1c3 s1c3 s3e−iδ

−s1c2 − c1s2s3e iδ c1c2 − s1s2s3e iδ s2c3

s1s2 − c1c2s3e iδ −c1s2 − s1c2s3e iδ c2c3


e i d 0 0

0 e i e 0

0 0 e i f

 .

11



Chapter 1. Neutrino Oscillations

(1.34)

If neutrinos are Majorana particles, then the left-handed and the right-handed neutrino fields

are correlated. Therefore, only a common phase of three left-handed neutrino fields can be

redetermined (e.g., f = 0). Then

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13


e iρ 0 0

0 e iσ 0

0 0 1

 , (1.35)

where ci j = cosθi j and si j = sinθi j . But if we consider that the neutrinos are Dirac particles,

the neutrinos are different from their antiparticles and the phases can be removed from the

unitary matrix. Then the neutrino-mixing matrix could be written as

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13

 . (1.36)

1.4 Mikheyev-Smirnov-Wolfenstein Effect

In this chapter till now we have assumed that neutrinos propagate in vacuum freely from the

source to the detector. But in many conditions, this is not the case. So, the question will be, is

the mater important for neutrinos?

First Wolfenstein and later Mikheyev and Smirnov figured out that the neutrino oscillation

probabilities could be strongly affected by the presence of matter. When neutrinos travel

through matter, their coherent forward scattering from particles along their way, can affect

their propagation [28].

Figure 1.4 – Coherent forward scattering diagrams for neutrinos going through matter [29].

This progress could be either via a Charged Current (CC) or Neutral Current (NC) reaction as

it’s shown in Figure 1.4. The charged current process can only occur for electron neutrinos.

However, neutral current scattering affects all flavors να equally. Therefore, the MSW effect

[30] is an additional potential in the Hamiltonian that depends on the density of the matter
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1.5. Neutrino Oscillation Experiments

traveled by the neutrinos. For example for νe , there is an additional potential from W exchange

induced νe forward scattering due to the ambient matter

V =p
2GF Ne , (1.37)

where GF is the Fermi coupling constant and Ne stands for the electron density. So, for the

neutrino oscillation in the matter we can write

i
d

d t

(
νe

νµ

)
=

−
∆m2

4E
cos2θ + p

2GF Ne
∆m2

4E
sin2θ

∆m2

4E
sin2θ

∆m2

4E
cos2θ


(
νe

νµ

)
. (1.38)

In some experimental condition only two flavors take part to the oscillation. In these cases,

it is easy to show that the formulas for the oscillation probabilities of the previous section

reduce to

P (νe → νµ)v = sin2 2θ sin2(
1.27∆m2L

E
), (1.39)

and so far we can write the neutrino oscillation probability in matter as

P (νe → νµ)M = sin2 2θM sin2(
1.27∆m2

M L

E
), (1.40)

where

∆m2
M =

√
(∆m2 cos2θ−2

p
2GF E Ne )2 + (∆m2 sin2θ)2, (1.41)

and

sin2 2θM =

(∆m2

2E

)2
sin2 2θ(∆m2

2E

)2
sin2 2θ+

(∆m2

2E
cos2θ−p

2GF Ne

)2
. (1.42)

That means due to the MSW effect, neutrinos can pass through a medium with critical density.

Therefore, the resonant condition might be fulfilled even for a very small mixing angle, θ, in

vacuum. In Equation 1.42 the MSW resonance appears when

∆m2

2E
cos2θ =p

2GF Ne . (1.43)

1.5 Neutrino Oscillation Experiments

Depending on the neutrino sources the neutrino oscillation experiments could be categorized

in three groups: solar neutrino experiments, atmospheric neutrino experiments and reactor

experiments. Neutrino oscillation experiments can be also categorized depending on their
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Chapter 1. Neutrino Oscillations

appearance or disappearance detection mode. Appearance mode experiments are those

measuring the transitions between one neutrino flavor to other neutrino flavors. However,

in disappearance mode experiments the survival probability of a neutrino flavor could be

measured by comparing the expected number of interactions with the actual number of

interactions in the detector.

Historically, depending on the particular study about neutrinos different neutrino experiments

have been done over the years by using the different detector technologies. A neutrino

experiment could include some of the following: low energy threshold to study the low-energy

neutrinos (for solar neutrinos); good particle identification to detect the electrons and muons

in neutrino studies and good energy measurement (for oscillation experiments); good angular

resolution for astrophysical neutrinos; good time resolution (for supernova neutrinos); and

charge identification. Obviously, only one experiment cannot explain all of these things.

Neutrino physicists, according to their aim, will select the most suitable technology in their

particular experiment.

1.5.1 Solar Neutrinos

The nuclear fusion process in the core of the Sun produces solar neutrinos. In this process,

neutrinos are produced exclusively with electron flavor in a wide energy spectrum. Their

investigations are provided by different solar neutrino experiments, where as shown in Figure

1.5, each of them is designed to investigate a specific energy range.

Figure 1.5 – Solar neutrino flux from different reactions at the Earth’s surface, together with
the energy thresholds of the experiments performed so far [31].
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1.5. Neutrino Oscillation Experiments

In 1968, Davis and his colleagues announced the first result on detection of solar neutrinos at

Homestake experiment in the United States, a long series of ’radiochemical’ experiments.

Radiochemical experiments [32, 33] provide the lowest energy thresholds in which, through

the inverse beta decay, a neutrino is caught by an element that is converted to another element

(a charged-current interaction). An example for radiochemical experiments is the chlorine

solar neutrino experiment, the reaction νe +37 C l →37 Ar +e [34]. By using the gallium instead

of chlorine as a target, νe +71 Ga →71 Ge +e [35], even lower thresholds of 0.233 MeV could be

achieved. The produced isotope will decay back to the original element because it is unstable.

In radiochemical experiments, there is a tank with a target element inside that usually a

compound such as perchloro-ethylene (C l2C l4) or gallium-trichloride (GaC l3). By exposing

the target element for a while the daughter element can be extracted from the tank, and

therefore the number of radioactive decays will be counted. But there are three problems

for radiochemical experiments: they cannot measure the energy, they are not sensitive to

direction and their time resolution is very poor.

Several experiments like Homestake using chlorine as a target element; GALLEX/GNO [36]

using gallium; and also the SAGE [37] experiment using a pure liquid gallium were carried on

for the detection of solar neutrinos flux.

However the HOMESTAKE [38] experiment was the first experiment that detected the solar

neutrinos, but there was a problem: the detected solar neutrinos in HOMESTAKE experiment

had a rate smaller, around 30%, than the expected rate of the Standard Solar Model (SSM) [39].

This problem was known as solar neutrino problem (SNP) [40]. At that time it was seemed that

a solution could be the νe oscillation. This deficit observed by HOMESTAKE was later proved

by GALLEX experiment in Italy and by the SAGE gallium experiment in Russia. It seemed likely

that the source of the solar neutrino problem was the behavior of the neutrino, and in the

other word in neutrino oscillations. Even if there was no incontrovertible evidence, still it

could be shown that there was a deficit of νe , however it could not be proven that they had

oscillated into some other type of neutrino. Therefore, it was necessary to have a detector that

is able to directly compare the CC and NC interaction rates, having the energies in order of 1

MeV.

In 1984, Herb Chen thought that maybe using the heavy water would be a solution to this

problem. The molecule of heavy water, D2O, is made by two deuterium (the heavier isotope

of normal hydrogen whose its nucleus contains a neutron in addition to the proton) and an

oxygen. Deuterium is extremely unstable and it can easily broken up; this process can appear

in two different ways

ν+D → p +p +e− (CC ) [41], (1.44)
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which incoming neutrino can be only electron-neutrino;

ν+D → p +n +ν (NC ) [42], (1.45)

however for neutral interaction case, incoming neutrino can be any flavor of neutrino. This

results provided by researchers from Sudbury Neutrino Observatory (SNO) in Canada [43].

The SNO data show the solar neutrinos deficit is due to the oscillation of electron neutrinos

into νµ and ντ that were below the energy threshold to produce charged current interactions.

In this picture, the validity of SSM is preserved.

Also the KamLAND [44] experiment in Japan, perceived the disappearance of ν̄e by using the

neutrinos coming from nuclear reactors. These results were a confirmation of the oscillation

solution for the solar neutrino problem.

A combined analysis of KamLAND and SNO results with other solar experiment data, in

particular the one collected in the SuperKamiokande [45] experiment, is summarized by

Figure 1.6, which shows that [46]

∆m2
12 = 7.92(1±0.09)×10−5 eV 2 , (1.46)

sin2θ12 = 0.314+0.18
−0.15 . (1.47)

Figure 1.6 – Best fit regions at 90, 99 and 99.73 % C.L. obtained fitting solar neutrino data (red
dashed contours); reactor antineutrino data (blue dotted contours); all data (shaded region)
[47].
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1.5.2 Atmospheric Neutrino Experiments

Atmospheric neutrinos are produced in the interactions of cosmic rays with the nuclei of the

Earth’s atmosphere and coming from the decay of secondary particles, mostly pions and kaons,

into muons and muon neutrinos, shown in Figure 1.7. Their average energy is in GeV/nucleon

energy region, thus resulting much more higher than the one associated to solar neutrinos

[48, 49].

A possible detection of atmospheric neutrinos is performed by underground detectors that

receive a flux of neutrinos from all the directions that should be necessarily symmetric with

respect to the vertical axis, see Figure 1.7. The neutrinos forming this flux can be divided in

upward and downward neutrinos.

Figure 1.7 – Left: Atmospheric neutrinos produced in Earth’s atmosphere, Right: A sketch
showing the relation between zenith angle and the distance travelled by atmospheric neutri-
nos.

First observations of atmospheric neutrinos occurred in the 1960s, by two deep underground

experiments performed at the Kolar Gold Field Mine, in South India [50], and at the East

Rand Proprietary Gold Mine, South Africa [51]. In the early 1980s proton decay experiments

detected the first completely contained atmospheric neutrino interactions where their all-

visible secondary particles were stopped in the detector.

A first signal of an atmospheric neutrino anomaly was found by the measurements coming

from Kamiokande experiment in 1988 [52]. Kamiokande detector was found the muon-like

events resulted a fraction of 0.59±0.07 respect to Monte Carlo predictions while the results for

electron-like events were in agreement with Monte Carlo predictions. This anomaly is well

described by the disappearance of νµ due to neutrino oscillations [53].

Another anomaly compatible with the Kamiokande data, resulted from the Irvine Michigan

Brookhaven (IMB) [54] detector in the USA, a 24 × 18 × 19 m3 tank filled with about 8 kton of

water. In particular, the neutrino deficit was found only in the contained events with energy

below 1.5 GeV.
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Eventually the anomaly could be confirmed and explained when the Super-Kamiokande

collaboration published their result in 1998 [55]. The Super-Kamiokande detector is capable

to measure and determine the direction of solar neutrinos. It is also true for atmospheric

neutrinos. This gives the possibility of measuring the number of neutrinos as a function of an

angle made by their direction and the axis perpendicular to the Earth’s surface (zenith angle).

Since the production of atmospheric neutrinos is isotropic, the number of downward-going

neutrinos must be equal to the number of upward-going. Therefore, if there is no any effect

like oscillation, one expects

Nl (cosθ) = Nl (−cosθ), (1.48)

where θ is zenith angle, see Fiqure 1.9. Downward-going neutrinos only travel around 15 km;

while, upward-going neutrinos cross the whole Earth to reach the detector. The events in the

SK detector are divided into two categories according to their energy: "sub-GeV" (E < 1.33

GeV) and "multi-GeV" (E > 1.33 GeV). So far, Super-Kamiokande data are best reproduced

by the Monte Carlo, taking into account the oscillation effects. The oscillations are identified

as a νµ→ ντ transition where other hypotheses like oscillating to sterile neutrinos or νµ→ νe

oscillations were strongly disfavored by the data, see Fiqure 1.8.

Figure 1.8 – Points with error bars: data; Red: Monte Carlo without oscillations; Green: Monte
Carlo with best-fitted oscillation effects [56].
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The result can be also briefly given as a value of up-down asymmetry [55]:

Aup−down
µ =−0.296±0.048±0.01, (1.49)

Aup−down
e =−0.036±0.067±0.02 . (1.50)

This was considered as 6σ model-independent evidence that a fraction of the upward-going

atmospheric νµ flux disappears, where the asymmetry for electron neutrinos is consistent

with 0. Moreover, a ratio of the data to Monte Carlo as a function of L/E [57] is shown in Figure

1.9.

Figure 1.9 – Number of muon-like events in Super-Kamiokande as a function of L/E (points).
The histogram shows the Monte Carlo prediction without oscillations [58].

Atmospheric data support maximal mixing, with the following oscillation parameters [46]:

sin2θ23 = 0.44(1+0.41
−0.22) . (1.51)

∆m2
23 = 2.4(1+0.21

−0.26)×10−3 eV 2 , (1.52)
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1.5.3 Search for θ13

The long-baseline experiments tried to find the upper set limits for θ13 through looking at

νµ→ νe oscillation. However, recently the best upper limit for θ13 is measured in the CHOOZ

[59] experiment where is a short baseline experiment. In this experiment, a scintillator detector

is located underground, ∼ 1 km far from the nuclear reactor core to measure the electron

antineutrinos that is produced at a nuclear power plant in France.

The new generations of experiments to measure θ13 are categorized in two different kinds:

• The experiments that measure the disappearance of ν̄e from the produced antielectron

neutrinos in reactors, like Double-CHOOZ [60], RENO [61] and Daya Bay [62].

• The experiments that measure the appearance of electron neutrinos at νµ → νe oscil-

lations coming from a νµ beam generated in an accelerator complex, such as T2K [63]

and NOνA [64].

The T2K collaboration for the first time published a result of 2.5σ from zero for sin2(2θ13) in

July 2011, where is a strong sign of the θ13 6= 0. In December of the same year the Double-

CHOOZ collaboration announced their first results, as shown in Figure 1.10, that increases the

difference of the sin2(2θ13) value and zero up to about 3σ, in comparing with results coming

from T2K and MINOS [65] experiments.

Figure 1.10 – Measured prompt energy spectrum of the far detector compared with the no
oscillation (top) and their ratio (bottom) from the measurements of the two near detectors.
Only statistical errors are shown [66].

By April 2012 Daya-Bay Collaboration performed a measurement of sin2(2θ13) = 0.089±
0.010(stat) ±0.005(syst) [67], see Figure 1.11, verifying a non-zero θ13 at more than 5σ level.
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After this result was published, the RENO collaboration measured the same angle by an inde-

Figure 1.11 – Measured prompt energy spectrum in the Far hall compared to extrapolation of
the Near halls detected flux assuming no oscillation (top) and their ratio (bottom). If there
were no oscillation the Far/Near ratio should always be 1 (dashed line in the bottom plot). The
red line shows the best νe disappearance fit. Only statistical errors are shown [68].

pendent measurement of sin2(2θ13) = 0.113±0.013(stat) ±0.019(syst) [69] that is compatible

with the result of Daya-Bay, see Figure 1.12.

Figure 1.12 – The ratio of the measured spectrum of far detector to the no oscillation prediction
[70].
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1.5.4 Summary of neutrino oscillation parameters

Neutrino oscillation experiments measure the squared mass differences (∆m2) of neutrinos

but not the absolute mass of them. Furthermore, the order of masses is not known yet, i.e.

we don’t know whether the masses are defined as normal hierarchy (NH), m3 À m2 > m1, or

inverted hierarchy (IH), m3 ¿ m1 < m2, see Figure 1.13. The best global fit results of neutrino

oscillation parameters for NH and IH are summarized in Table 1.1.

Parameter Hierarchy 3σ range Best fit

δm2/10−5eV 2 NH or IH 6.99-8.18 7.54
sin2θ12/10−1 NH or IH 2.59–3.59 3.07
∆m2/10−3eV 2 NH 2.19–2.62 2.43
∆m2/10−3eV 2 IH 2.17–2.61 2.42
sin2θ13/10−2 NH 1.69–3.13 2.41
sin2θ13/10−2 IH 1.71–3.15 2.44
sin2θ23/10−1 NH 3.31–6.37 3.86
sin2θ23/10−1 IH 3.35–6.63 3.92

Table 1.1 – Summary of best global fit of neutrino oscillation parameters, taken from [71]. ∆m2

is defined herein as m2
3 − (m2

1 +m2
2)/2, with +∆m2 for NH and −∆m2 for IH.

Figure 1.13 – Three neutrino ∆m2 Pattern of squared neutrino mass and flavor components:
Normal and inverted hierarchies [72].
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Summarizing the present knowledge about neutrinos, we can state that [73]:

• The solar electron neutrinos produced inside the sun oscillate into muon and tau

neutrinos;

• In the KamLand range of L/E, νe → νµ and ντ oscillations have been detected;

• In the atmospheric sector just pure νµ→ ντ oscillation has been detected; however no

νe → νµ and ντ oscillations.

All the results in the form of allowed regions in oscillation parameter space are illustrated in

Figure 1.14.

Figure 1.14 – Limits on oscillation parameters inferred from data of oscillation experiments.
One can see the allowed region for atmospheric sector (upper-middle part, conjunction of
Super-Kamiokande and K2K allowed regions) and for solar sector (middle part, SNO and
KamLand). LSND and MiniBoone results in the upper part of the plot [74].
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2 The OPERA Experiment

The disappearance of atmospheric muon neutrinos was assessed in the late 90’s and then

confirmed with artificial neutrino beams in the first years of this millennium. However, the

direct detection of its oscillation through the appearance of a new neutrino flavor still is an

important issue in the oscillation sector.

The OPERA experiment was designed, at Gran Sasso Laboratory (LNGS), to perform a con-

clusive prove of the νµ → ντ oscillation hypothesis. Since it was triggered by the results of

atmospheric neutrino experiments; the sensitivity of this experiment covers the ∆m2 region

allowed by atmospheric neutrino data [75]. The aim of OPERA is to detect the appearance of

tau neutrinos in an almost pure beam of muon neutrinos.

The experimental setup and the physical performance of OPERA are described in this chapter.

2.1 The CNGS Neutrino Beam

The CNGS neutrino beam [76] was designed and optimized to observe tau neutrinos produce

by νµ→ ντ oscillations [77]. CNGS beam is generated by a 400 GeV proton beam and has been

extracted from the CERN SPS by hitting a target. The proton beam is transported through the

transfer line TT41 to the target T40 [78]. The target is made of 13 graphite rods for a length of

two meters, well encompassing the proton beam. The positively charged pions and kaons are

energy-selected and directed towards Gran Sasso by using two focusing lenses, called "horn"

and "reflector" as it’s shown in Figure 2.1.

Most of the pions and kaons decay inside a long decay-pipe, 1000 meters length, and produce

theνµs andµs. An 18 meters hadron stopper, made of graphite and iron, is located downstream

of decay-pipe in order to absorb the remaining hadrons, like produced protons or those pions

and kaons that do not decay inside the decay-pipe. After the hadron stopper two sets of

detectors are located to monitor the muons. While neutrinos continue traveling towards Gran

Sasso, muons are absorbed in the rock after monitoring [79].
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Figure 2.1 – Main components of the CNGS beam line [80].

The average energy of neutrinos arriving at the LNGS is around 17 GeV, see Figure 2.2, and the

average ratio of
L

Eν
is 43 km GeV −1. The energy was optimized to increase the probability of

tau-neutrino interactions and so far increase the probability of detecting tau particles inside

the detector.

Figure 2.2 – The energy of CNGS beam spectrum and oscillation probability multiplied by the
ντ cross section [81].

CNGS νµ-beam is slightly contaminated by other neutrino flavors where the contamination of

ν̄µ interactions is around 2.1% and the contaminations of νe and ν̄e are in total around 1%.
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The main features of the beam are summarized in Table 2.1.

L 730 km
<E> 17 GeV

L/ < Eν > 43 km/GeV
ν̄µ/νµ 2.1 %

νe + ν̄e /νµ 0.87 %
ντ prompt negligible

Table 2.1 – CNGS beam features [75].

In addition, the low contamination of νe (ν̄e ) allows searching for subleading νµ → νe oscil-

lation looking for an excess of νe charged-current (CC) interactions. The systematic error

related with the νe contamination has an important role for the νµ → νe oscillation search.

This uncertainty depends on the knowledge of the kaons output. It can be assumed ∼ 5%

systematic uncertainty on the overall νe flux [82].

Figure 2.3 – Overview of the OPERA detector [83].
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2.2 The OPERA Detector

The OPERA detector is a hybrid detector composed of two identical parts, so called super-

modules (SM). Each super-module contains a target section and a magnetic spectrometer.

The target is composed of 31 brick walls, transversal to the direction of beam, interleaved by

31 target tracker walls. A magnetic spectrometer is located downstream of the target section.

It is a dipolar iron magnet equipped with Resistive Plate Chambers (RPC). The intensity of

the magnetic field is 1.53 T, in the direction of vertical axis, shown in Figure 2.3. The OPERA

detector dimensions are: 20 m in length and a cross section of 10 × 10 m2, for a total weight

of around 4 kton. OPERA is based on the Emulsion Cloud Chamber (ECC) technique, which

provides a micrometric spatial resolution by using photographic emulsions.

2.3 Emulsion Target

The ECC, or so-called brick, is the basic unit of the OPERA target. ECC brick consists of

57 emulsion films interleaved by 56 lead plates, packed together in a box with transverse

dimensions of 10.2 × 12.7 cm2 and thickness of ∼ 7.5 cm (corresponding to about 10 X0) and

a total weight of 8.3 kg [84, 85].

Figure 2.4 – Schematic structure of an ECC brick.

The size of bricks is designed by different requirements; for example the thickness of brick

should be large enough to measure the momentum of hadrons through multiple Coulomb

scattering method and also to identify and reconstruct the electron and its electromagnetic
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(EM) shower. Multiple Coulomb scattering method for hadrons requires 5-10 X0 and EM

showers need 6-7 X0. Therefore, with 10 X0 it is possible to do such measurements for half of

the events within the same brick where the interaction took place, however for the other half it

is needed to use also the information of their downstream brick.

2.4 Target Tracker

A Target Tracker (TT) wall follows each brick wall to provide time resolution to the emulsions.

The TT is used to identify the brick where the neutrino interaction took place and in case of

hadronic showers provide a calorimetric measurement of their energy. Target tracker is made

up of two scintillator planes, each made of 256 plastic scintillator strips oriented along the X

and Y-axis respectively, covering a total surface of 6.7 × 6.7 m2 defined by a brick wall. Each

strip is 1.06 cm thick with a cross section of 6.7 m × 2.62 cm. The scintillator strips of each

plane are read out by optical fibers connected to a photomultiplier of 64 pixels, in a way that 8

photomultiplier are needed for each TT plane [86].

Figure 2.5 – Schematic view of the two scintillator planes of a TT wall on the left, and a
scintillator strip with the wave length shifting fibers on the right [87, 88].

Before scanning the emulsion films to locate the neutrino interaction, the relevant region

where films have to be analyzed is selected by the signals of the Target Tracker strips. In order

to decrease the brick scanning, Changeable Sheets (CS) doublets [89] are used. CS doublets

are a pair of nuclear emulsion films attached to the downstream side of each brick. They can

be removed without opening the brick and be analyzed independently.

When there is a neutrino interaction inside the brick, the produced charged particles pass

through the CS doublet and generate a trigger in the TT. After receiving the produced triggers
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at TT, the brick is extracted and its CS doublet, after developing, is analyzed in the CS scanning

laboratories at LNGS and Japan; if charged particles inside the CS are found in good agreement

with TT triggers, the brick will be developed and analyzed in ECC scanning laboratories. The

CS information is used for a precise prediction of the charged tracks position inside the brick

in order to find and locate the neutrino vertex point.

Figure 2.6 – Schematic view of a ντ CC interaction and the decay of its final state τ lepton as it
would appear inside the brick, in the CS emulsion films and in the TT strips [90].

2.5 Muon Spectrometers

A muon spectrometer [91] is located downstream of the target in each SM and is designed to

identify muons and measure their momentum and charge. The spectrometer is made up of a

dipolar magnet [92] that consists of two iron arms and has a magnetic field intensity of 1.53

T. In order to provide a gross tracking inside the magnet, Resistive Plates Chambers (RPCs)

[93, 94] planes are placed between the iron planes of the arms.

Also six drift tubes are interleaved between the two arms to precisely measure the bending

of the muon, see Figure 2.7. They constitute the High Precision Tracker (HPT) and are used,

with the other parts of the muon spectrometer, to measure the momentum of muons and

determine the sign of their charge. Two arms of the magnet with opposite magnetic field

direction deflect muons.

RPCs are made up of electrode plates where each electrode plate consists of a 2 mm thick high

resistivity plastic laminate painted with graphite to reconstruct the muon tracks inside the
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Figure 2.7 – Drift plane arrangement in the muon spectrometer. Also shown are two planes of
RPC’s with inclined strips (XPC’s) [95].

spectrometer. Each of the two drift tube planes of the HPT, upstream of the dipole magnet, is

accompanied by an RPC plane with two 45◦ crossed strip-layers called XPC to solve ambiguities

in track spatial reconstruction. RPCs and XPCs aim is at giving an accurate trigger signal to the

HPTs.

Figure 2.8 – Schematic view of a XPC detector plane [96].
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2.6 VETO System

The CNGS beam also may interact in the rock before reaching the OPERA detector, during its

travel to LNGS; therefore the secondary particles produced in this kind of events can enter

the detector and generate false triggers. This signal may wrongly be associated with a brick

and resulting in its extraction. For this reason a VETO system is located in front of the OPERA

detector in order to reject this kind of events. The VETO consists of two glass RPC planes,

where each RPC layer is made of 8 rows, each made of four units [97].

2.7 Automated Scanning System

In the OPERA experiment, off-line data taking (emulsion scanning) is performed by fully

automatic scanning systems. Basically two types of scanning systems: the S-UTS (Super-Ultra

Track Selector) [98], developed in Japan and the ESS (European Scanning System) developed

by the collaboration between a joint effort of several European laboratories. The ESS [99, 100]

can work at a speed of 20 cm2/h/layer.

The main components of the ESS microscope mentioned above, shown in Figure 2.9, are:

• A support table (MICOS), which has high quality mechanics.

• Computer driven horizontal and vertical stages.

• A granite arm as a supporting frame for CCD camera and objective.

• A mega-pixel CCD camera (CMOS with a resolution of 1280 ×1024 pixels) mounted on

the vertical plate on the granite arm. It is interfaced with a frame-grabber and vision

processor.

• Optics and light system (NIKON) located below the scanning table.

The microscope is a Cartesian robot, holding the emulsion film on a horizontal stage (movable

in X-Y coordinates). A CMOS camera mounted on the vertical optical axis (Z), along which it

can be moved to vary the focal plane with a step equal to the focal depth of about 3 µm (see

Figure 2.9).

During the scanning, objective focuses at different depths of emulsion film and take tomo-

graphic images. In total 15 tomographic images is taken over 44 µm thick emulsion layer

while the camera is moving in the Z direction. These images are sent to Odyssey board for

processing. The camera has a capability of working with a rate of 660 MB/s. In addition,

OPERA uses the frame rate of 376 frames per second, which corresponds to 496 MB/s [101].

The first step of image tracking is to reconstruct micro-tracks using aligned clusters of dark

pixels. The position assigned to a micro-track is its intercept with the nearest plastic base
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Figure 2.9 – A schematic view of the ESS microscope (left); Taking a series of successive images
in different depths of the Emulsion (right).

surface. Then micro-tracks at both sides of plastic base are connected to form the base-tracks

(Figure 2.10).

The final step of processing is to reconstruct particle tracks by connecting the base-tracks

in consecutive emulsion films. In order to define a global reference system a set of affine

transformations relating track coordinates have to be computed to account for scanning data

taken plate by plate in different reference frames, relative misalignments and deformations.

Figure 2.10 – Micro-track reconstruction in one emulsion layer by combining clusters belong-
ing to images at different levels (left); micro-track connections across the plastic base to form
base-tracks (right).
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2.8 Physics Performances

2.8.1 Tau detection and signal efficiency

The signal produced in νµ→ ντ oscillations is a ντ CC interaction occurring inside the detector,

ντN → τ−X , with the subsequent τ decay. A summary of the different decay channels of τ, the

electron, muon and hadron channels, and their branching ratios (BR) is shown in Table 2.2.

τ decay channels BR

τ− → e−ντν̄e 17.8 %
τ− →µ−ντν̄µ 17.7 %

τ− → h−ντ(nπ0) 49.5 %
τ− → h−h−h+ντ(nπ0) 15 %

Table 2.2 – The τ decay channels investigated by OPERA [97].

The decay length distribution of τ particles that appear in detector through the νµ → ντ

interactions is shown in Figure 2.11, with an average decay length of about 600 µm.

Figure 2.11 – τ decay length distribution.

When a τ-decay occurs inside the brick, it could be classified in two categories as shown in

Figure 2.12:

• Short-decay corresponds to the events where the neutrino interaction occur in the

same lead plate of the τ decay.

• Long-decay corresponds to those events where τ-decays take place in the first or second

lead plate downstream of the neutrino interaction.
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Figure 2.12 – Schematic picture of the τ detection technique in the ECC cell for short (top) and
long (bottom) decays [102].

In case of short decays, τ candidates are identified by measuring the impact parameter (IP)

of the daughter track with respect to the interaction vertex, IP<20 µm. However for long

decay cases, the identification of τ particles is based on the large kink angle, θki nk , between τ

candidates and their daughter track, 20 < θki nk <500 mrad, see Figure 2.12.

The analysis of tau decay in τ→ e channel profits of the dense ECC structure that allows

recognizing the electron through its shower development in the downstream emulsion films.

The ECC technique is well suited to identify electrons and their showers. The energy of

electrons can be estimated by measuring the density of track segments of electron showers

produced in the brick.

The detection of the τ decay for the muonic decay channel is based on the observation of a

muon attached to the secondary decay vertex.

Tau decays into hadronic modes show the largest branching ratio, ∼ 64%. This channel is

affected by the hadronic interactions background. In order to reduce the hadronic background,

several kinematical cuts are applied.

The momentum of charged hadrons can be measured by using multiple coulomb scattering

in the lead plates.
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Figure 2.13 – Impact parameter measured in data and compared with simulation.

Figure 2.14 – τ kink angle distribution for the τ→ e decay mode.

2.8.2 Background

About 3 tau neutrino events, with CC interaction, was expected to be detected in the detector

with less than one background event, assuming full mixing and ∆m2 = 2.44×10−3eV 2, for a

total 1.8×1020 p.o.t. (protons on target). After 5 years of data taking about 19500 neutrino

interactions were collected.
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The background for τ detection has different contributions:

Decay of charmed particles: Tau particles and charmed mesons show very similar lifetime

and masses. As shown in Figure 2.15, if muon is not detected in the primary vertex,

when a charm meson is produced, in a νCC
µ interaction (νµN → µ−c X ), the event is

background.

Figure 2.15 – Tau decay topology in the νCC
τ and the corresponding background from one

prong decay of charmed particles when the produced muon is missed.

Large angle muon scattering: The other background is related to the large angle scattering

of muons, produced in νCC
µ interactions, in lead for the τ → µ decay channel. The

background contribution is around 5×10−6 ×NCC (Figure 2.16).

Figure 2.16 – Schematic view of the background from large angle muon scattering. A scattered
muon could be as same as the decay of τ→µ channel.
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Hadronic re-interactions: InνNC
µ andνCC

µ interactions if the primary muon is not recognized,

an important source of background for the τ → h channel is given by hadronic re-

interactions. In Figure 2.17 a hadronic re-interaction is compared with a tau decay to

show the similarity of these two topologies.

Figure 2.17 – Topologies of the ντ signal (a), background from hadron re-interactions from
νNC
µ (b) and νCC

µ (c).

The contribution of these background sources is different for each decay channel. The sum-

mary of total number of background events for each τ decay channel after 5 years of OPERA

data tacking is given in Table 2.3 and it is illustrated in Figure 2.18.
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Table 2.3 – The total number of background events for each τ decay channel.

39



Chapter 2. The OPERA Experiment

Figure 2.18 – The backgrounds expectations given by each decay channel [105].

2.8.3 Sensitivity to νµ→ ντ oscillation

The OPERA detector has been exposed from 2008 to 2012 to the high-energy CNGS beam

after two years of technical and low-intensity runs in 2006-2007. The detection of the first ντ
candidate event satisfying the kinematical selection criteria was reported in 2010 [103, 104],

using a sample corresponding to 1.9× 1019 protons on target (pot). CNGS completed its

operation on December 3, 2012. After five years data taking, a sample corresponding to

17.97×1019 pot has been registered by the detector since the beginning of the program in 2008

[105]. A summary of the collected data samples and the contained events is given in Table 2.4.

Moreover, the present data analysis status of OPERA experiment is shown in Figure 2.19.

Year p.o.t (1019) Contained events

2008 1.74 1931
2009 3.53 4005
2010 4.09 4515
2011 4.75 5131
2012 3.86 3923
Total 17.97 19505

Table 2.4 – Summary of the collected data samples and the contained events.

Also a summary of the expected number of τ signal events and their expected backgrounds for

each decay channel is shown in Table 2.5.
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Figure 2.19 – The present data analysis status of OPERA.

τ decay channels BR Signal (∆m2 = 2.32×10−3eV 2) All Backgrounds

τ→ e 17.8 % 0.46 ± 0.09 0.020 ± 0.004
τ→µ 17.7 % 0.33 ± 0.07 0.012 ± 0.005
τ→ h 49.5 % 0.31 ± 0.06 0.027 ± 0.005
τ→ 3h 15 % 0.43 ± 0.09 0.12 ± 0.02
Total 100 % 1.53 ± 0.16 0.175 ± 0.024

Table 2.5 – Summary of the signal and backgrounds expectations for the analysed sample
[105].

So far, four ντ candidate events have been observed with a total expected background of

(0.233 ± 0.041) events. As shown in Figure 2.20, OPERA has observed the ντ candidates for

the following channels: one event in the τ→µ decay channel, two events in the τ→ 1h decay

channel and one event in the τ→ 3h. However, no observation for the τ→ e decay channel

at the moment. OPERA is enlarging the data samples and improving the analysis in order

to improve the search for ντ candidates. Therefore, it was the motivation of this work to

develop an algorithm for the search of ντ candidates in the τ→ e decay channel. The fourth
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ντ candidate event will be briefly reported in the following.

Figure 2.20 – Signal and backgrounds expectations for each channel. Black rectangles show
the estimated uncertainty. The dashed line shows the signal expectation of the complete data
sample collected in the year 2008-2012. The dotes show the four observed ντ candidates for
each decay channels [106].

Given the all analyzed samples, νµ → ντ oscillations are established at the 4.2 σ level. The

forth ντ candidate event was found in the new analysis sample and is reported here.

2.8.4 The fourth ντ candidate event

The fourth neutrino interaction is registered on 9 September 2012 in the OPERA detector, ten

brick walls upstream of the second muon spectrometer. It has been classified as 0µ event due

to its electronic detectors display as shown in Figure 2.21.

The primary vertex of this event is made by four tracks, one of them decaying soon after. The

primary vertex was located, 18 plates from the downstream face of the brick. Two electro-

magnetic showers given by conversions of γ-rays have been found where both pointing to

the primary vertex as illustrated in the Figure 2.22. Momentum of the reconstructed tracks is

calculated by using the Multiple Coulomb Scattering (MCS) method in the bricks [108]. An

extra search by a special scanning procedure with a larger angular acceptance, tanθ = 3.5

(where θ is the angle of each track with respect to the z axis), confirmed that there is no nuclear

fragment associated with the decay vertex [109].

None of the charged particles at both vertices is identified as an electron due to the absence of

electromagnetic showers.

The τ candidate track (Track1 in Figure 2.22) has a kink topology with an angle of ∼ 137 mrad.
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Figure 2.21 – Display of the ντ candidate event as seen by the electronic detectors in the x-z
projection (top) and y-z projection (bottom). The brick containing the neutrino interaction is
highlighted in magenta. Solid lines show the position of tracks measured in the primary and
downstream bricks. Dashed lines show the linear extrapolation of the tracks using positions
and slopes at the last measured point in the bricks [107].

Its flight length is also calculated as ∼ 1100 µm. The longitudinal coordinate of the decay

vertex with respect to the downstream face of the lead plate containing the primary vertex

(zdec ) is (406 ± 30) µm. These two parameters satisfy the topological selection for the ντ

interaction search (see Table 2.6).

The kink daughter track has a momentum of about 6.0 GeV/c. Its impact parameter with

respect to the primary vertex is si m 150 µm. It was followed in the downstream bricks till the

end of the target. And it stopped in the spectrometer after leaving a signal in three RPC planes.

None of the charged particles at both vertices is identified as a muon due to result of a

discriminating variable, DT F D , to separate muons from hadrons [105]. A track is classified as

a muon if DT F D is above 0.8. Moreover, none of them is identified as an electron due to the

absence of electromagnetic showers.

The scalar sum of the momentum of all particles measured in the emulsion films (psum) is ∼
14.5 GeV/c.The momentum of the daughter track (p2r y ) is 6.02.2

−1.2 GeV/c, well above the cut
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Figure 2.22 – Event display of the fourth ντ candidate event; Left: the y-z projection longitudi-
nal to the neutrino direction, Right: the view transverse to the neutrino direction. The primary
and decay vertices are indicated as "v1" and "v2" respectively [107].

value of 2GeV/c [105]. The transverse momentum at the decay vertex, p2r y
T , is 0.82+0.30

−0.16 GeV/c

that is above the lower cut of 0.6 GeV/c. The missing transverse momentum at the primary

vertex (pmi ss
T ) is 0.55+0.30

−0.20 GeV/c, thus below the maximum allowed value, which is set at 1

GeV/c. The angle between the τ candidate direction and the sum of the transverse momenta

of the other primary particles is ∼ 166 degrees (see Figure 2.23), well above the lower cut at 90

degrees. The values of the kinematical variables for this event are summarized in Table 2.6.

The measured values are well within the expected signal region.

Figure 2.23 – The τ direction (red arrow) and the other primary particles (black arrows) in the
plane transverse to the beam. The blue arrow shows the vectorial sum of the primary particles
except the parent..
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Variable Selection Measured value

θki nk (mrad) >20 137
zdec (µm) <2600 406

p2r y (GeV/c) >2 6.0

p2r y
T (GeV/c) >0.6 0.82

pmi ss
T (GeV/c) <1 0.55
∆φ (degrees) >90 166

Table 2.6 – Selection criteria for the ντ interaction search in the τ→ 1h decay channel and the
values measured for the fourth ντ candidate event [107].
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3 Search For ντ Interactions in τ → e

Decay Channel

This work is focused on the study of the detection of ντ interactions in the τ→ e decay channel

and electron neutrino interactions. The aim of this study is to develop an improved algorithm

to identify and reconstruct the electron shower inside the OPERA brick and to improve the

energy resolution for electrons produced in νe interactions and in case of tau decaying to an

electron through their showers.

Analyzing a neutrino interaction in OPERA requires several steps; a flow diagram for the

analysis chain of neutrino interactions is shown in Figure 3.1. The electronic detectors care

about the first two steps, the electronic detector trigger and brick finding, in order to define

the position of the neutrino interactions in the detector and to identify the brick where the

interaction occurred. The next step is locating the neutrino interaction vertex in emulsion

by the changeable sheets analysis and the scan-back method. After finding the neutrino

interaction vertex, a decay search is applied in order to reconstruct the all possible tracks

attached to the vertex and find a decay vertex.

In this chapter all above steps are explained in details and the efficiencies of the different

steps are calculated for νe interactions as well as for those ντ interactions where the tau lepton

decays into an electron. The use of the brick as a calorimeter and the energy measurement

of the electron for both τ→ e decay channels and νe interactions will be reported in the next

chapter.

3.1 Monte Carlo Event Simulation

The OPERA software framework, so called OpRelease, is based on the Object Oriented Data

Analysis Framework (ROOT) [110] and it is written in C++. Furthermore, a Configuration

Management Tool (CMT) [111] is used in order to set the environment variables and to create

the execute files. The OpRelease is managed by the Concurrent Versions System (CVS) [112]

and stored on the OPERA CVS repository at CERN.

The OPERA software chain for data simulation is starting by the event generator NEGN (Neu-
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Figure 3.1 – Flow diagram of the analysis chain to search for neutrino interactions [114].

trino Event Generator for NOMAD) [113] and its output is converted into a ROOT file format

through OpConverter. The geometry of the detector is defined in OpGeom package and after-

ward, the OpSim package simulates the Hits of particles produced when crossing the detector.

In the following, the different steps of the simulation chain will be explained.

OpNegn package is the neutrino event generator for OPERA experiment. It is based on

the NEGN, which benefits from the experience earned at NOMAD experiment. For

OPERA some modifications were needed regarding the description of the beam-line,

the neutrino energy spectrum and the CNGS target.
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OpGeom is based on the ROOT geometry and the class TGeoManager that defines the full ge-

ometry of all detector parts. In addition, the major objects surrounding the detector like

the BOREXINO experiment just upstream of the OPERA detector and the surrounding

rock are also simulated.

OpSim simulates the hits of particles that propagate inside the detector. OpSim package is

based on the ROOT Virtual Monte Carlo (VMC). The output of OpSim is a ROOT file

including the information about the particle propagation (the hits) in the detector.

OpDigit simulates the detector response for all subdetectors.

OpRData is the package describing the data format. The data structure is managed by the

TreeManager and it is saved by ROOT. The TreeManager produce and read the OPERA

format files.

OpRec package manages the kinematical reconstruction and identification of particles for

both simulated and real data. Other tasks of this package are event energy evaluation;

event time tagging and muon identification.

OpCarac is meant to classify the OPERA events detected and reconstructed by OpRec. Each

event is categorized as one of the following classes: CONTAINED (if the interaction vertex

lies inside the OPERA target), SPECTRO (if the interaction is inside the spectrometer),

SIDEMUON (if the interaction particles entering the detector from the sides for example

when the CNGS neutrino beam interacts in the surrounding rock around detector),

FRONTMUON (same as the SIDEMUON where the neutrino interactions are take place

inside the BOREXINO detector or upstream rock and UNKNOWNTYPE if none of the

above appears.

OpBrickFinding is to identify the brick where the neutrino interaction occurred, for those

flagged as CONTAINED by OpCarac package. It provides a probability map for each

brick to contain the neutrino interaction.

OpEmuIO package is to simulate the scanning system and also to build track segments in

the emulsion films. OpEmuIO applies the efficiencies of the scanning system and a

Gaussian smearing on the micro-track positions and slopes according to the measured

errors.

OpEmuRec analyzes the emulsion data and it is the tool used for the data analysis. Some

algorithms, used both for Monte Carlo and data, are meant for the event reconstruction

and data analysis; other algorithms are used to simulate the location chain.
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3.2 Electronic Detector Analysis

The data acquisition trigger is used to select only those events on time with the beam, by

checking the CNGS beam and OPERA event time coincidence. Afterward, the electronic detec-

tor trigger defines the existence of hits in the X and Y projections. Moreover, it reconstructs 3D

tracks in the electronic detector.

3.2.1 Event Classification

As mentioned before, the OpCarac package classifies whether events are CONTAINED in the

OPERA detector or not. The major component of external events is classified as SIDE MUON

or FRONT MUON. Events with a relatively modest energy deposition only in the edge part

of the detector are classified as BORDER SOFT NC. They can either be due to low energy

neutrino interactions occurring at the edge or to interactions outside the detector with a leak

inside [115, 116]. In order to have a high efficiency, BORDER SOFT NC events are added to the

CONTAINED ones in the data analysis.

3.2.2 MuonID Classification

According to electronic detector response these events are categorized as 1µ or 0µ events,

shown in Figure 3.2. To classify an event as 1µ event one of the following conditions should

be satisfied: either a 3D track with a "length × density" value greater than 660 g/cm2 is

reconstructed; or the number of TT and RPC planes containing at least one hit has to be larger

or equal to 19. The complementary sample is defined as 0µ.

The momentum of muon tracks is calculated through their bending in the muon spectrometer.

The momentum of muon is determined as the momentum of the longest 3D track. This 3D

track is provided by a Kalman Filter [117].

3.2.3 Brick Finding

A probability map based on the track reconstruction and the energy deposit in the electronic

detector is evaluated to find the bricks with high probability of having the neutrino interactions.

OpEmuIO algorithm allocated a probability to each brick in a cube made of 3 × 3 × 3 bricks,

as shown at Figure 3.3, around the brick that contains the neutrino interaction.

The bricks are ranked according to their probability such as first probable brick, second

probable brick and so on. A Brick Manipulator System (BMS) is used to extract the most

probable bricks. After the brick is extracted, their CS is sent to the CS scanning laboratory and,

as shown in Figure 3.4, the found CS tracks are superimposed with the electronic detector hits

to confirm that the found tracks are correlated with the neutrino interaction.
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Figure 3.2 – Whole detector display in (a) x-z and (b) y-z projections for an event classified as
1µ; and (c) and (d) show x-z and y-z projections respectively, for a 0µ event.

3.3 Emulsion Analysis Chain

In the following, the different steps of OPERA bricks analysis such as Changeable Sheet (CS)

analysis, CS to brick connection, Scan-back, Volume Scan and vertex reconstruction, Vertex

Definition and Decay Search will be briefly explained.
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Figure 3.3 – The 3 × 3 × 3 matrix where the brick identification algorithm is applied. The true
brick where the interaction occurred is the 111.

Figure 3.4 – After the bricks are extracted, the CS scanning result is superimposed to a zoom of
the TT display. Clearly brick B contains the event and it is thus developed.

3.3.1 Changeable Sheet Analysis

When a neutrino interaction is detected by OPERA detector, first is triggered by electronic

detectors and is classified as a 1µ or 0µ event, according to the presence of the muon track
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reconstructed by electronic detectors. Using the electronic detector data a probability map is

calculated to find the most probable brick in which the neutrino interaction took place. Then,

its CS doublet are detached, developed and scanned.

The scanned area of CSs will be selected differently for the 1µ and 0µ neutrino interaction. The

scanned area for CC interactions is an area of 6×4 cm2 per emulsion around the predictions

provided by the ED hits. However, for the NC interactions this area is 8×6 cm2. Inside the

scanned area of CSs only a few tracks related to the event are expected, and they will be all

checked and confirmed by an eye-check procedure when needed.

Figure 3.5 – The alignment between the two layers is done by matching the Compton- electron
tracks [118].

To connect the two CS doublets, the position marks of the X-ray grid are used. As shown in

Figure 3.5 a better matching can be provided by the alignment of the Compton-electron tracks

found in both CSs. Afterwards a "3 out of 4" search can be performed. The "3 out of 4" is the

case that from the four micro-tracks of both CS doubles only three of them are found. If after

the Compton-alignment and the 3 out of 4 search no CS track candidate was found, the second

probable brick is extracted and its CSs will be scanned. A new CS doublet will be attached to

the original extracted brick and it will be re-inserted in the OPERA target.

3.3.2 CS to Brick Connection

If the CS analysis validates the brick, its films will be developed at LNGS laboratories. After

that, the ECC films are sent to the scanning sections to be analyzed. The electronic detector

reconstruction information and CS scanning results are stored in a central database accessible

by all scanning laboratories.
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The "CS to brick connection" procedure is then applied in the scanning laboratories. This

procedure is intended to associate the found CS tracks with the corresponding tracks inside the

brick. CSs are 4500 µm far from the brick and its tracks are projected to the most downstream

emulsion film of the brick in order to obtain the nominal position, see Figure 3.6.

For the search around each prediction, an area of 3×3 mm2 is scanned. All the tracks within

300 µm around the prediction that having a slope within 30 mrad are visually checked to

discard fake tracks. If a track is confirmed, its new prediction is projected to next most

downstream film to check whether they are compatible with the CS predictions or not. All

candidate tracks selected will be the input of the scan-back procedure.

3.3.3 Scan-back

The "scanback" procedure is the process to locate the neutrino interaction inside the brick.

After the "CS to brick connection", the candidate tracks are followed up plate by plate, as

shown in Figure 3.6, until they disappear. The scanback starts from the most downstream film

and it proceeds in the upstream plates using the extrapolated position of found segments. The

accuracy of extrapolation from one plate to the adjacent one is around 10-20 µm.

Figure 3.6 – Schematic representation of the "scanback" procedure. When the track disappear
for 5 consecutive plates the interaction point is located [118].
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The scanback process is continued until one of the following conditions occurs:

No segments are found in at least five consecutive plates. The last plate that the followed

track is found is called the stopping point. The scanning of at least 5 plates upstream

the stopping point is due to avoid the fake scanback stopping point. It could happen

due to reconstruction algorithm or the acquisition inefficiencies.

Sometime it may happen that the stopping point of the followed track is reconstructed

with wrong parameter or a background track is selected as a stopping point. Therefore,

the stopping point will be confirmed bye eye-check of the predicted position in the five

consecutive films upstream.

The followed track exits the brick; it is so called passing-through. The passing-through

means the neutrino interaction has not taken place inside the current brick. The inter-

action could be found inside the upstream brick or inside a neighbor brick. Some of the

neutrino interactions take place in the target frame, or in the target tracker detector; this

kind of events cannot be used for neutrino oscillation search where the vertex region

cannot undergo the topological analysis.

3.3.4 Volume Scan

After the scanback process finds a stopping point, a scan of the volume around the stopping

point is performed. The scan volume consists of 15 consecutive plates with an area of 1cm2

for each plate, 10 plates downstream of the stopping point and 5 upstream, as shown in Figure

3.7.

Figure 3.7 – Schematic drawing of the volume scan. Scanning 10 plates downstream of the
stopping point and 5 upstream prepare this volume.
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The five upstream plates act as a confirmation of the stopping point, while the ten downstream

plates are used to reconstruct the neutrino interaction (and possible secondary vertices) and

to classify the event as located. The angular acceptance used in the scanning is 0.6 rad wide

with respect to the perpendicular direction to emulsion films. After scanning each film the

base-tracks are reconstructed in each emulsion films. The alignment between the films is

performed with high penetrating cosmic ray tracks accumulated during a dedicated exposure

just before the development.

An automatic software is used to reconstruct the tracks and vertices. In this reconstruction,

only volume tracks with at least two base-tracks are considered. This track selection makes

the identification of the electromagnetic showers very difficult because in this way the single

base-tracks, related to the low momentum tracks, are discarded. In this thesis, a new method

is developed to reconstruct electromagnetic showers using single base-tracks to increase the

efficiency of the electromagnetic showers reconstruction and improve the energy estimation.

3.3.5 Vertex Reconstruction

After confirming the stopping point and reconstructing the neutrino interaction vertex in the

volume scan, a procedure is applied in order to define the neutrino interaction point more

precisely. The information of the tracks found in the last film, immediately downstream of

the neutrino interaction, is important to improve the accuracy of the vertex position. When

needed, those track segments are visually inspected to reject fake tracks and to re-compute

the vertex position. Sometimes the track segments in very downstream film, after the vertex,

could be missing in the reconstruction because of tracking inefficiency. In addition, e+e− pairs

coming from the conversion of gammas produced in π0 decays and pointing to the vertex can

spoil the accuracy. At the end, the neutrino interaction vertex position is calculated as the

average position of all tracks connection points.

All tracks having an impact parameter less than 10 µm are accepted in the primary vertex.

However for those tracks with an impact parameter grater then 10 µm, a further study is

needed to understand if its origin is due to multiple scattering in the traversed lead thickness

or it is just due to a background track; to figure out this, an estimation on the momentum of

particle is performed.

The momentum of particle is measured by applying the Multiple Coulomb Scattering (MCS)

algorithm. The particles having a momentum less than 1 GeV /c are defined as "low momen-

tum particles" and will be disconnected from the vertex in order to have a more accurate

determination of the vertex position.

Figure 3.8 shows the impact parameter distribution of the tracks in νCC
µ interactions with

respect to the reconstructed vertex position both for data and simulation. Only less than 5% of

the tracks have an impact parameter larger than 10µm and it is due to low-energy particles.
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3.3. Emulsion Analysis Chain

Figure 3.8 – Impact parameter distribution of the primary tracks in 1µ events with respect to
the reconstructed vertex, after the primary vertex definition. The distribution is normalized to
unity.

3.3.6 Decay Search

Once the primary vertex is defined, all tracks with an impact parameter that cannot be ex-

plained through the scattering effect have to be clearly investigated to check for the presence

of a possible short decay. In fact, the decay search procedure looks for short-lived particle

decays, such as tau and charmed particles.

Tracks reconstructed inside the analyzed volume that are not attached to the primary vertex

are potential decay daughters and are called "extra-tracks". The extra-tracks selection is based

on three different criteria:

• the longitudinal distance between the neutrino interaction and the most upstream

segment of the track (∆Z ) should be smaller than 3.6 mm;

• the impact parameter with respect to the primary vertex should be smaller than 300 µm

if ∆Z ≤ 1 mm, and smaller than 500 µm if ∆Z ≥ 1 mm;

• the reconstructed track should have at least three segments.

Extra-tracks are also considered to filter out the electron-positron pairs produced from γ

conversion coming from π0, particles not originating in the volume scan (typically, low mo-

mentum particles reconstructed as shorter tracks due to MCS) and fake tracks due to the

57



Chapter 3. Search For ντ Interactions in τ→ e Decay Channel

failure of the reconstruction program. The surviving extra-tracks originating in the interaction

vertex will be analyzed to check if they have a low momentum or not.

In addition, to detect long decays a dedicated procedure, so called "parent search", is applied to

the extra-tracks starting downstream of the vertex position. It means searching for a track that

connects the selected extra-track to the reconstructed vertex. For that, the impact parameter

of this track should not be larger than 10 µm with respect to the reconstructed vertex and the

minimum distance from the extra-track (the daughter track) should be smaller than 20 µm,

see Figure 3.9. Any candidate parent track selected according to these criteria is confirmed by

a visual inspection.

Figure 3.9 – The parent search procedure consists of searching for segments connecting an
extra-track to the primary vertex.

3.4 Event Location and Decay Search Efficiency Assessment

3.4.1 Efficiency Assessment with Monte Carlo Simulations

Monte Carlo (MC) simulation is used to estimate the detector performance. Many analyses in

this thesis is done using MC samples to estimate the event location efficiency, electromagnetic

shower reconstruction and measuring the energy of the electromagnetic showers. Table 3.1

shows the information related to all these MC samples processed through the entire OpRelease

5.0 reconstruction. They contain the neutrino interactions in ECC bricks randomly distributed

in the whole detector.

The MC samples have been analyzed by OpRelease framework combined with OpEmuRec

packages in order to calculate the event location and DS efficiencies in all different process of

event reconstruction such as Brick Finding (BF), Changeable Sheet (CS) analysis, Scan Back
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File name Channel # of interactions

nue-events-8k νe from the beam contamination 8000
oscillated-nue-3k Oscillated νe generated with νµ energy spectrum 3000

taue-5k Oscillated ντ in τ→ e mode 5000
numunc-5k νNC

µ interactions 5000

numucc-5k νCC
µ interactions 5000

Table 3.1 – MC samples used in the analyses of this work.

(SB) and Decay search (DS) procedure, as described in section 3.2 and 3.3.

An event is classified as 1µ if either it contains at least one track tagged as a muon or the total

number of fired TT or RPC planes is larger than 19. The complementary sample is defined

as 0µ. The data set used in the present analysis consists of 0µ and 1µ events with a muon

momentum smaller than 15 GeV/c. During the OPERA runs two different data selections are

defined:

2008 and 2009 data selection: in order to gain confidence on OPERA data, for the first two

years runs no kinematical cut was applied. The highest and second probable bricks of

the event have been analyzed.

2010, 2011 and 2012 data selection: once a good description of the data was achieved, a

kinematical selection for 1µ events was applied in order to speed-up the analysis without

reducing the τ signal; 1µ events with the muon momentum smaller then 15 GeV/c

have been analyzed (| pµ | < 15 GeV/c). The analysis of the most probable bricks was

performed at first for all the events. The analysis of second bricks is in progress.

Table 3.2 and Table 3.3 give the summary of event location (and DS efficiency) step-by-step

for all MC samples: prompt νe , oscillated νe , νµ → ντ in τ→ e mode and νNC
µ . In addition,

the event location for νCC
µ events that are misidentified as νNC

µ is given in Tables 3.4 and 3.5.

This effect is due to misidentification of the muon track for νCC
µ events. The efficiency of this

samples are very low compared to other samples.

Table 3.2 shows that for 2009 and 2010 data samples all channels with an electron in the

final state have a location efficiency larger than 45%. The νNC
µ channel is significantly lower

and difference is in the muon identification. However, energetic NC-like events present

long hadronic tracks that can be misidentified by the muon identification algorithm or by

electronic detector. It is also true for the 2010, 2011 and 2012 data selections. The efficiency of

this selection, starting from the brick finding, is slightly lower for each channel compare to

the previous selection due to the analyzing only most probable bricks at first for all the events.

The Decay Search is applied only to τ→ e decay channel having a decay in its final state.
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prompt νe oscillated νe νNC
µ τ→ e (Long) τ→ e (Short)

ED Trigger 0.984 ± 0.001 1 ± 0 0.995 ± 0.001 1 ± 0 1 ± 0
Event Classification 0.885 ± 0.008 0.86 ± 0.01 0.903 ± 0.006 0.911 ± 0.009 0.898 ± 0.009

OpCarac 0.841 ± 0.008 0.82 ± 0.01 0.829 ± 0.007 0.854 ± 0.009 0.844 ± 0.010
BF 0.673 ± 0.009 0.703 ± 0.011 0.592 ± 0.008 0.714 ± 0.010 0.704 ± 0.011
CS 0.533 ± 0.009 0.655 ± 0.011 0.323 ± 0.008 0.586 ± 0.011 0.578 ± 0.012
SB 0.473 ± 0.009 0.584 ± 0.011 0.275 ± 0.008 0.481 ± 0.011 0.489 ± 0.012
DS - - - 0.227 ± 0.009 0.178 ± 0.009

Table 3.2 – The summary of event location and DS efficiency for each reconstruction step
for 2008 and 2009 data selection. The efficiency of each step is cumulative with respect to
previous steps. The uncertainties are due to statistical errors.

prompt νe oscillated νe νNC
µ τ→ e (Long) τ→ e (Short)

ED Trigger 0.984 ± 0.001 1 ± 0 0.995 ± 0.001 1 ± 0 1 ± 0
Event Classification 0.885 ± 0.008 0.86 ± 0.01 0.903 ± 0.006 0.911 ± 0.009 0.898 ± 0.009

OpCarac 0.841 ± 0.008 0.82 ± 0.01 0.829 ± 0.007 0.854 ± 0.009 0.844 ± 0.010
BF 0.532 ± 0.009 0.583 ± 0.011 0.446 ± 0.008 0.574 ± 0.011 0.550 ± 0.012
CS 0.430 ± 0.009 0.543 ± 0.011 0.260 ± 0.007 0.48 ± 0.01 0.463 ± 0.012
SB 0.378 ± 0.009 0.485 ± 0.011 0.227 ± 0.007 0.391 ± 0.011 0.392 ± 0.011
DS - - - 0.188 ± 0.009 0.146 ± 0.009

Table 3.3 – The summary of event location and DS efficiency for each reconstruction step for
2010, 2011 and 2012 data selection. The efficiency of each step is cumulative with respect to
previous steps. The uncertainties are due to statistical errors.

Table 3.4 and Table 3.5 show the location efficiency of those νCC
µ events that misidentified as

νNC
µ events. The location efficiency for these events is very small having the advantage of the

muon identification.

3.4.2 Efficiency Assessment Base on Data

The location efficiencies calculated by MC simulation are checked with the OPERA data. A

sample of 19505 contained neutrino interactions corresponding to 17.97×1019 protons on

target (pot) have been registered by the OPERA detector after 5 years data tacking.

The numbers of analyzed events are summarized in Table 3.6. 0µ events contain the signals of

τ→ e, τ→ 1h, and τ→ 3h decay channels. 1µ events contain the τ→µ decay channel. Most

of the signal events occur at low muon momentum, thus a muon momentum cut at 15 GeV/c

was introduced to accelerate the finding of signal for νµ → ντ oscillations. 1µ numbers are

quoted as a reference sample and the 0µ numbers demonstrate the sample that are interested

for electrons.
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νCC
µ

mi s−−→ νNC
µ

ED Trigger 1 ± 0
Event Classification 0.097 ± 0.007

OpCarac 0.091 ± 0.006
BF 0.082 ± 0.006
CS 0.076 ± 0.005
SB 0.063 ± 0.006

Table 3.4 – Event location and DS efficiency for νCC
µ

mi s−−→ νNC
µ channel for 2008 and 2009

data selection. It is because of the misidentification of the muon track for νCC
µ events. The

uncertainties are due to statistical errors.

νCC
µ

mi s−−→ νNC
µ

ED Trigger 1 ± 0
Event Classification 0.097 ± 0.007

OpCarac 0.091 ± 0.006
BF 0.054 ± 0.005
CS 0.048 ± 0.005
SB 0.042 ± 0.005

Table 3.5 – Event location and DS efficiency for νCC
µ

mi s−−→ νNC
µ channel for 2010, 2011 and 2012

data selection. The uncertainties are due to statistical errors.

2008 2009 2010 2011 2012 Total

0µ events found with ED 283 587 434 497 348 2149
Located 0µ events 149 251 213 239 165 1017

0µ data location efficiency 53% 43% 49% 48% 47% -
1µ events found with ED 1150 2298 1265 1390 1107 7210

Located 1µ events (| pµ | < 15 GeV/c) 819 1567 828 814 654 4682
1µ data location efficiency 71% 68% 65% 59% 59% -

Total located events 968 1818 1041 1053 819 5699

Table 3.6 – The summary of event location for OPERA data.
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4 Energy Estimation of Electromagnetic
Showers

4.1 Purposes of this Analysis

The main aim of OPERA experiment is to search for the τ leptons produced by oscillated ντ

interactions. The physics program of OPERA regarding the neutrino oscillations is comple-

mented with the search for νµ→ νe oscillations. Although the experiment is not optimized for

that and therefore the sensitivity to this channel cannot compete with dedicated experiments.

A good electromagnetic shower reconstruction is important for the τ detection in the τ→ e

decay channel and also for the νµ → νe oscillations study, to detect the electron in the νCC
e

interactions.

The work done in this thesis is focused on the study of both τ→ e decay channel and νCC
e

interactions. In particular, it is to construct an algorithm with improved performances to

evaluate the energy of electrons through the identification of its shower for special events,

using the OPERA brick as a calorimeter. The algorithm currently used by the collaboration was

developed to reconstruct the electromagnetic shower and to estimate its energy for all events.

Because the algorithm is intended for all events, the energy measurement could not benefit of

a detailed analysis of the single electrons building up the shower. Thus, it had to be developed

in an environment with a worse signal to noise ratio. The previous algorithm selects the tracks

of the shower if their positions are inside a structure made of a cone, having the vertex in

the primary electron position and with an opening angle of 20 mrad, followed by a cylinder,

having a radius of 800 µm. This stringent selection is due to the relatively large background

given also the absence of any visual inspection of the involved tracks. This method could not

perform an energy estimation with a resolution better than 30%.

The algorithm developed in this work uses larger values of the geometrical parameters for

the cone definition and the Boost Decision Tree method, by the TMVA toolkit, to get a better

Signal/Background separation.

In fact, the OPERA brick can be considered as a electromagnetic calorimeter where nuclear
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emulsions inside the brick act as active detector and lead plates as passive target. When an

electron is produced in τ→ e decay or by νe interactions, its electromagnetic shower will be

detected in the emultions. Accordingly, the electromagnetic shower produced inside the brick

will be detectable through the tracks left by electrons and positrons in the emulsion films

downstream of the vertex.

The main idea of this thesis is to develop a tool for estimating the energy of electromagnetic

showers using two consecutive ECC bricks and optimizes the energy measurement of electro-

magnetic showers in one brick. The standard reconstruction of an electromagnetic shower can

be applied only to those fully contained in one brick. However, when a shower is initiated in

the downstream portion of the brick, the shower will begin in the first brick, pass through the

Electronic Detector (ED) and end in the second brick; making normal reconstruction methods

unusable. We present a new algorithm aimed to analyze showers involving one or two bricks

along the beam direction.

Although each γ particle within the electromagnetic shower produces an electron and a

positron but the process to reconstruct the base-tracks in the bricks’ emulsion foils and apply-

ing the specific cuts (see Section 4.2) rejects the low momentum particles having the energy

lesser than 30 MeV. Discarding these low momentum particles gives a linear relationship

advantage between the number of tracks related to electromagnetic shower inside the brick

and the energy of the electron.

The process of the energy measurement of the electromagnetic showers will be explained in

the following sections and it will consist of the following steps:

• the track reconstruction inside the brick;

• definition of the geometrical parameters to reconstruct the electromagnetic shower;

• background estimation;

• development of the energy calibration procedure.

The algorithm has been developed using Monte Carlo simulations of both τ→ e decay channel

and νCC
e interactions inside the OPERA detector. Furthermore, this work is performed on a

sample of events where the brick containing the neutrino interaction is correctly identified by

the brick finding algorithm, as described in section 3.2.3.

4.2 Basetrack Construction

After scanning the OPERA emulsions film, the basic unit of output data is a micro-track. In the

general scanning mode all micro-tracks within a given angular range are searched for, however

in the scanback mode, solely the well-defined positions and angular areas are considered. As
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4.2. Basetrack Construction

shown in Figure 4.1, a base-track is formed by connecting the two corresponding micro-tracks

found in the two emulsion layers. Base-tracks are built when an acceptable agreement in

slope and position of micro-tracks is found.

Figure 4.1 – The principle of base-track reconstruction: the micro-tracks matching are obtained
when an acceptable agreement in slope and position is found. Joining the two points closer to
the base forms the base-track.

The base-tracks produced by low momentum particles have been discarded in order to re-

produce what is done in the data. In principle, for low momentum particles the angular and

position deviations of the micro-tracks within two emulsion layers are quite large to form the

base-tracks. Then, the base-tracks are investigated by a quality estimator of the micro-track

angular agreement, so-called χ2, defined as:

χ2 = 1

4
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+
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σlon

)2

bot

]
, (4.1)

where ∆Str a and ∆Slon are the angular differences between the slope of the top (bottom)

micro-track and the corresponding base-track calculated in the transverse and longitudinal

planes, respectively. Theσtr a is the transverse resolution and has a value of 10 mrad for OPERA

data analysis, while the longitudinal resolution, σlon , is given as:

σlon = (1+4tanθ) σtr a , (4.2)

where θ is the 3D slope of the top (bottom) micro-track. In order to remove the background

base-tracks in a more effective way and in the other hand to minimize the signal loss, the cut

χ2 < 2.5 (4.3)
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is applied in the measurements reported in the following. As mentioned before, the low

momentum particles have large χ2 and therefore, this cut discards all particles having the

energy lesser than 30 MeV. A typical χ2 distribution is shown in Figure 4.2.

Figure 4.2 – Base-track χ2 distribution for the MC signal with the cut χ2 < 2.5.

4.3 Shower Reconstruction in ECC Bricks

4.3.1 Passage of particles inside the matter

The simplified description of the development of electromagnetic showers was first developed

by Heitel and Rossi [120]. There are two high-energy (E > 100 MeV) electromagnetic energy

loss mechanisms through which the electromagnetic cascade is propagated. Electrons and

positrons lose energy by bremsstrahlung radiation as shown in Figure 4.3, photons degrade by

pair production as shown in Figure 4.4.

Figure 4.4 shows photon total cross sections as a function of energy in lead, showing the

contributions of different processes: σp.e. is the atomic photoelectric effect (electron ejection,

photon absorption); σRaylei g h shows the Rayleigh (coherent) scattering-atom neither ionized

nor excited;σCompton is the Compton scattering of an electron; κnuc shows the pair production

for nuclear field; κe shows the pair production for electron field.

An electromagnetic shower extends inside the matter both longitudinally and laterally. A

two-dimensional model of the electromagnetic shower is shown in Figure 4.5.
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Figure 4.3 – Energy loss mechanism for electrons and positrons in copper. Above the “critical
energy” the main mechanism is the emission of bremsstrahlung radiation.

Figure 4.4 – Cross section for the interactions of photons in lead. At high energies ( > 10 MeV )
the main contribution is pair production [121].

The mean free path between collisions, or so-called radiation length, defines the longitudinal

67



Chapter 4. Energy Estimation of Electromagnetic Showers

Figure 4.5 – Two-dimensional model of an electromagnetic shower. Two processes,
bremsstrahlung and pair production are responsible for the energy degradation and the
shower development.

dimension of an electromagnetic shower and describes as

Er adi ati on = E exp−X /X0 , (4.4)

where X0, the radiation length [122], is the length which the energy reaches the 1/e of its initial

value. The maximum propagation of an electromagnetic shower inside the mater, is given by:

Xmax = log (E/Ec )

log 2
X0, (4.5)

where E is the energy of parent electron and Ec is the critical energy. The shower is going on

until the energy of the components in the shower reaches the critical energy when further

multiplication stops. The value of Ec [123] for solids and liquids, roughly defines as

Ec = 610

Z +1.24
MeV. (4.6)
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The lateral dimension of the shower inside the different materials is independent from the

energy of parent electron and it’s defined with the Moliere radius RM , given by [124, 125]

RM = 21.2
X0

Ec
MeV , (4.7)

expressed in unit of X0 when Ec is in MeV. In case of OPERA, where the effective mass is

composed of lead, Ec = 7.79 MeV, X0 = 0.56 cm and RM = 1.52 cm.

Each γ particle within the electromagnetic shower produces an electron and a positron.

Therefore the number of produced e−e+’s particles increase exponentially for the electrons

with higher energies. However, due to the base-track reconstruction procedure in the bricks’

emulsion foils (as discussed in the previous Section) the low momentum particles in the

electromagnetic shower having the energy lesser than 30 MeV will be discarded. Discarding

the low momentum e−e+’s particles gives a linear relationship advantage between the number

of base-tracks related to electromagnetic shower and the energy of the electron. A schematic

view of an electromagnetic shower inside an OPERA brick is shown in Figure 4.6.

Figure 4.6 – A schematic view of electromagnetic shower reconstruction within the brick.
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4.3.2 Selection of the signal

To reconstruct an electromagnetic shower inside the ECC brick, the following requirements

have to be satisfied:

• a good efficiency in collecting the base-tracks belonging to the shower;

• random matches with background base-tracks must be avoided.

The definition of the geometrical parameters for the electromagnetic shower selection and

the background analysis will be explained in the following sections.

The developed algorithm, selects all the base-tracks related to the shower within a cone starting

from the decay vertex position of τ in the τ→ e decay channel; and with the axis, coincident

with the direction of the electron. In principle, the cone will be used as a fixed volume to

reconstruct the conical shape of the electromagnetic shower during the propagation.

4.3.3 Background Evaluation

When an electromagnetic shower propagates inside the ECC brick, the energy estimation

of its shower will be done by counting the number of the produced base-tracks inside the

electromagnetic shower. Therefore, the rejection of background is an important task in this

analysis. There are two background sources inside the brick: the physical background and the

instrumental background.

The physical background the π0 production is associated to the presence of 2 γ’s from

π0 → γγ. The two gammas produce electromagnetic showers. When these electromag-

netic showers overlap with the shower produced by the electron, they are defined as

physical background and spoil the energy resolution.

The instrumental background is mainly related to the uncorrelated grains that randomly are

produced inside the OPERA emulsion films. These grains create some fake tracks during

the base-tracks reconstruction process and behave in a way to hide the real base-track

grains. The instrumental backgrounds accumulate a large amount of background due

to the ambient radioactivity and cosmic rays, and cannot be distinguished from the real

particle tracks.

For the first case, due to the momentum conservation, electromagnetic showers generated by

gammas are off-axis with respect to the electron shower. The physical background could be

discarded by well defining the value of the αcone . It is obvious that the number of base-tracks

inside the cone is dependent on the angle of the cone. Then, this angle should be large enough
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to well select the base-tracks produced in the shower; and it should not be so large to reduce

backgrounds.

To optimize the angle of the cone, the efficiency of the selection of base-tracks is calculated as

the ratio of the number of selected base-tracks for a specific angle of cone over the total number

of base-tracks related to the shower. The efficiency of the base-track selection increases until it

reaches a plateau, where more or less all the base-tracks related to the electromagnetic shower

are selected, as shown in Figure 4.7.

Figure 4.7 – Fraction of selected base-tracks as a function of the opening angle of the cone.

With fixing the angle of the cone as αcone = 50 mrad, the contamination of the electromagnetic

showers produced by gammas, physical background, is evaluated to be smaller than 1 %. This

allows to select about 80% of tracks related to electromagnetic shower in our selection.

In addition to this, the rejection of the instrumental background in this analysis is extremely

important. This background could be discarded by processing an eye-check procedure. How-

ever, dealing with a huge amount of background base-tracks inside the ECC brick, makes

this procedure very long and sometimes impossible. Thus, to understand the behavior of

background base-tracks in this work and to discard them automatically, an in depth study

regarding the instrumental background has been done. To discard this background, the

Boosted Decision Trees (BDT) method has been used by using the TMVA toolkit. This method

is described in details in section 4.3.5.
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4.3.4 Variables

As also mentioned before, the OPERA brick acts as a colorimeter. To estimate the background,

an empty volume without any neutrino interaction has been scanned and analyzed. The

behavior of signal is studied by simulating the electromagnetic showers with the Monte Carlo

simulation.

The following variables are separately calculated for the signal and background base-tracks

inside the cone opened in the brick.

1) α angle for each base track: once the axis of the cone is defined, each base-track inside the

cone make an angle with respect to the axis of the cone by connecting the base-track with the

cone vertex, as it’s shown in Figure 4.8.

Figure 4.8 – Alpha definition for each base-track inside the cone.

Furthermore, Figure 4.9 shows the α distribution for the signal. An 1/5 fruction of signal

base-tracks is below 50 mrad. Indeed, the produced base-tracks by electron have higher

momentum and therefore they propagate mostly around the direction of the electron until

they lose their energy. However, the background base-tracks are uncorrelated and thus the

fruction of the base-tracks within a given angle increases with the angle.

Figure 4.9 – The value of "α" angle; Left: Signal, Right: Background.
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2) Impact parameter: the next parameter, that is used in this work, is the impact parameter, IP,

for each base-track. In fact, IP is the distance between the vertex position and the projection

of each base-track on the transfer plane of vertex, see Figure 4.10, and is defined as:

I P =
√

(Xver −Xpr o j )2 + (Yver −Ypr o j )2, (4.8)

Figure 4.10 – The impact parameter, IP, calculated for each base-track

where Xver (Yver ) is the position of the cone vertex and Xpr o j (Ypr o j ) is the position of the

extrapolation of each base-track on the vertex plane, where the shower originates. Xpr o j and

Ypr o j are defined as:

Xpr o j = X − (∆Z ×Sx ), (4.9)

Ypr o j = Y − (∆Z ×Sy ), (4.10)

where X(Y) is the position of each base-track, ∆Z is the longitudinal distance between the

position of related base-track and the cone vertex and Sx (Sy ) is the slope of each base-track in

the X (Y) projection.

The calculated IP for each base-track is divided by its distance from the vertex position, ∆Z .

In case of signal, base-tracks closer to the vertex have smaller IP. However, the IP for the

background base-tracks is independent on the distance from the vertex. Therefore, dividing

the IP by ∆Z gives more power to improve the signal/background separation.

The distribution of impact parameter divided by the∆Z for signal and background base-tracks

is shown in Figure 4.11.

Signal base-tracks have smaller IP/∆Z however this value for the background base-tracks

increases with the angle. The drop of the IP/∆Z distribution for the background above 0.5 is
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Figure 4.11 – The value of "
I P

∆Z
"; Left: Signal, Right: Background.

due to the acceptance of the brick.

3, 4) Angular difference of base-tracks in both X and Y projection: the next parameters that

are used in this analysis are the angular difference between the slope of each base-track inside

the cone and the slope of the first base-track of electron (Sex and Sey ) for both X, ∆Sx , and Y,

∆Sy , projection:

∆Sx = Sex −Sx , (4.11)

∆Sy = Sey −Sy . (4.12)

The distribution of ∆Sx and ∆Sy for the signal and background is shown in Figure 4.12.

For the signal base-tracks the angle of secondary electrons/positrons is correlated to the

primary electron, therefore this angular difference for signal base-tracks is small. For the

background base-tracks the angular difference in slopes are independent on the electron

slopes and is constant.

5) χ2: the last parameter used in this analysis is the quality estimator, χ2, in the reconstruction

of the base-tracks. As described at Section 4.2, the reconstruction of base-tracks inside the

emulsion films depends on their micro-track angular agreement. The low momentum particles

have larger χ2.

Figure 4.13 shows the χ2 distribution for the signal and background base-tracks.
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Figure 4.12 –∆Sx and∆Sy distribution; Top Left: ∆Sx for Signal, Top Right: ∆Sx for Background,
Bottom Left: ∆Sy for Signal, Bottom Right: ∆Sy for Background .

Figure 4.13 – The "χ2" distribution in the reconstruction of base-tracks; Left: Signal, Right:
Background.

75



Chapter 4. Energy Estimation of Electromagnetic Showers

By calculating all these variables for both signal and background, we have the possibility to

effectively reject the background and also select the signal in a proper way. In the following

section, the method used for the signal/background separation in this work is described.

4.3.5 Boosted Decision Tree

In order to reconstruct the electromagnetic shower and estimate its energy, a separation

between signal and background is needed. Classically, this can be done by “cut-based analysis”.

However in a Boosted Decision Tree (BDT) method, a “decision tree” algorithm determines

the best-cut value for the variables. A decision tree is a binary tree structured classifier, see

Figure 4.14.

Figure 4.14 – A BDT as obtained from the TMVA toolkit. The tree is grown from a sequence of
splits onto variables, to obtain the highest purity; for example in this tree the highest purity is
P = 0.931.

To apply the BDT method, Monte-Carlo samples are equally divided into training and testing

samples. This can be set by even/odd separation or it can be done randomly. As shown in

Figure 4.14, the tree is grown by repeated true/false decisions until the final decision is taken,

for being signal or background. The training sample is divided into many nodes; the split for

each node is defined by assessing the cut values for the variables that gives the best signal over

background separation. Depending on the majority of events in the final node (leaf), they are

categorized as signal-like or background-like. After the training part, the BDT is applied to

the testing sample in order to get the BDT response. The BDT response is a value between -1,

which defines the background-like events, and +1, that defines the signal-like events.

While a single tree on its own improves upon a simple cut-based analysis, boosting significantly
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increases the performance of this single tree. It also helps smooth distributions which may

otherwise appear spiky due to features of a specific training sample when limited statistics are

used. In general, the boosting process uses the training results of the first tree to increase the

weights of candidates that were misclassified. A new tree is then trained using these weights.

Boosting effectively re-weights candidates that the previous tree classified incorrectly in order

to increase their importance during the next training. Terminal leaves are labelled either

background or signal leaves according to a set purity threshold (often 0.5). Misclassification

occurs when a candidate of one type (signal or background) terminates on a leaf of opposite

classification. Using this boosting method, many trees are then trained with new weights

calculated after each retraining. Therefore, the final classifier is given by averaging over all

trees.

A decision tree is determined by function f(x, am). The model response F(x, bm , am) is a

weighted sum (weights bm) over the main functions f(x, am). The aim is to minimize the loss

function

L(F,k) = (F (x,bm , am)−k)2, (4.13)

the difference between the true value of k and the model response, with respect to the am and

bm parameters.

In the following, the evaluation of BDT method and its graphical and numerical results will be

described.

Input variable distribution: the normalized distribution of all input variables for signal and

background is calculated. An example is shown in Figure 4.15. This helps to under-

stand how a variable could be effectively used for distinguishing between signal and

background.

Correlations between input variables: TMVA toolkit provides two different ways to display

the correlations between variables. One is a correlation matrix between variables, as

shown in Figure 4.15 and the other one is a scatter plot. These plots are illustrated

separately for signal and background samples.

Receiver Operating Characteristic (ROC) curve: the ROC curve describes the efficiency of

the BDT method and displays the background rejection versus the signal efficiency,

see Figure 4.15. A good ROC curve is in the upper right corner. Moreover, the integral

over this curve gives a numerical statement. The BDT is more efficient as much as the

numerical statement is closer to one.

Overtraining check: in order to understand the response of BDT for signal/background sep-

aration and also to know, how well a BDT can model the data, overtraining has to be

checked. Overtraining check is done by checking the overlap between the distribu-
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tion of classifier for testing and training sample, as shown in Figure 4.15. To have no

overtraining, a perfect overlap between testing and training sample is needed.

Figure 4.15 – BDT evaluation plots obtained via the TMVA toolkit; Top Left: Input variable dis-
tribution, Top Right: Correlation matrix, Bottom Left: ROC curve, Bottom Right: Overtraining
check.

4.4 Energy Estimation by Using One or Two ECC Bricks

Reconstruction of electromagnetic showers is one of the fundamental tools needed by neutrino

experiments and the estimation of their energy is a crucial issue. This is also true for the OPERA

experiment where an algorithm has been well developed and tested, in order to evaluate the

energy of electron through the identification of its shower for the τ→ e decay channel by

using the OPERA bricks. This algorithm could be used as an application for evaluating the
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energy of electron in νCC
e interactions as well as the showers produced by γ’s yielded from the

π0 particles.

4.4.1 Definition of different zones within the Brick

In order to estimate the energy of electron by its shower, it is necessary to provide the rela-

tionship between the energy of electron and the number of base-tracks produced within its

shower.

The number of base-tracks produced in the electromagnetic shower does not only depend on

the energy of the electron but it’s also affected by the geometrical position of the decay point

of τ lepton in the brick. Therefore, if the τ lepton decays in the most upstream part of the brick,

there is the possibility to reconstruct the electromagnetic shower inside the brick. However,

for the decays occurring in the most downstream part of the brick, the electromagnetic shower

will not be fully contained inside the brick because the major part of the shower will take place

in the downstream brick. Hence, for the most downstream decays, the number of selected

base-tracks will be consequently smaller.

This fact is shown in Figure 4.16 where the profile of the number of selected base-tracks related

to the electromagnetic shower is plotted as the function of the decay point of τ lepton inside

each plate, on the longitudinal axis of the brick.

Figure 4.16 – Profile histogram of the number of base-tracks as the function of the decay point
of τ lepton inside each plate. Each plate corresponds to 1.3 mm thickness with 1 mm of lead.
This plot is normalized to 1.
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Moreover, Table 4.1 gives the maximum length, Xmax , of the electromagnetic shower inside

the brick for different energies. As described before, OPERA bricks are mostly made of lead,

with X0 = 0.56 cm and Ec = 7.79 MeV.

Energy of parent electron (Gev) 1 2 4 10 20 30
Length (cm) 3.9 4.4 5.0 5.7 6.3 6.6

Table 4.1 – The length of the electromagnetic shower inside the OPERA bricks.

In addition to this, for those events with the τ decay close to the lateral edge of the brick, the

electromagnetic shower produced by its electron will partially take place in the brick and a

part of shower will be inside its neighbor brick.

In the most upstream part of the brick the number of selected base-tracks is originally inde-

pendent on the τ decay point, because the shower is mostly contained in the brick volume.

On the contrary, in the downstream part of the brick, this number gradually decreases as the

vertex position gets closer to the downstream edge of the brick. The profile of the number of

tracks reconstructed on the CS is given in Figure 4.17. The number of CS tracks is small in the

most upstream part of the brick since the shower is fully contained in the brick. It achieves its

maximum around the center of the brick and then decreases in the downstream part of the

brick because the major part of the shower develops in the downstream brick.

Figure 4.17 – Profile histogram of the number of tracks reconstructed in the CS as a function of
the decat point of τ.
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Therefore, in order to estimate the energy of electromagnetic showers, it is needed to first

divide the ECC brick in different zones, as shown in Figure 4.18. The first region is defined in

the first 21 films of the brick.

The showers occurring in this zone, so-called “Zone1”, have their shower fully reconstructed

within the brick. Normal reconstruction of an electromagnetic shower depends upon the

shower being contained in one brick. However, when a shower is initiated in the following

zone, “Zone2” including 36 films, the shower will begin in the first brick, pass through the

Electronic Detector (ED) and will end up in the downstream brick.

Therefore, to estimate the energy of the showers occurring in this zone, it’s needed to move

to use the downstream brick. In this work, an algorithm has been developed in such a way

to analyze the electromagnetic showers within one or two bricks. This is the first time in

OPERA experiment that the information of the downstream brick is used to reconstruct and to

estimate the energy of electromagnetic showers.

Furthermore, in order to ensure the lateral containment of the shower, an additional require-

ment on the position of the decay point of τ lepton has been defined: the transverse coordinate

of the decay point should be at least one centimeter away from the lateral edge of the brick.

Hence, this zone, “Zone3”, has been discarded for this analysis.

Figure 4.18 – A schematic view of the different regions defined in the brick.

In the following, the analysis of both Zone1 and Zone2 will be reported, separately.
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4.4.2 Events in Zone1

The performance of the energy estimation algorithm in this work is evaluated, for the ντ events

in τ→ e decay channel, on the Monte Carlo samples of 5000 events produced in an energy

range from 0 to 60 GeV. Figure 4.19 shows the energy spectrum of electron in τ→ e decay

channel before introducing the oscillation probability of neutrinos.

Figure 4.19 – Energy spectrum of electron in τ→ e decay channel.

The first step of the analysis is done by defining a pure sample of electrons and positrons

to assess the best performance in energy estimation of this tool. As mentioned before, the

electrons and positrons produced in the shower are selected within a cone where its axis

corresponds to the direction of electron and having a fixed angle of αcone = 50 mrad. To

estimate the background and apply it to Monte Carlo samples, a volume made of 57 OPERA

emulsion films with no neutrino interaction inside has been analyzed. Moreover, the base-

tracks produced during the transportation of the brick and also the base-tracks of cosmic rays

integrated before the development of the brick have been discarded. The same geometrical

cone is used for the background.

In order to discard the background, the relevant variables as determined in Section 4.3.4, have

been calculated both for Signal and background and a Boosted Decision Tree (BDT) method is

used to determine the best-cut value for the variables.

The five input variables is shown in Figure 4.20. These events are from the training sample

only, which consists of half the background and half the signal simulation. In these Figures the

background is shown in red and the signal in blue. TMVA also provides correlation matrices of
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all the input variables for signal and background. These show the correlation between each

set of variables used in the TMVA training. Ideally the correlation between each variable is

low, so that every variable contributes to making the BDT response score decision without

redundancy. The correlation matrix for both Signal and Background is shown in Figure 4.21.

These show that the correlation in both signal and background reconstruction variables is low

and flat over all pairings of the input variables.

Figure 4.20 – The normalized distribution of the input variables. Signal distribution is shown
in blue and the background distributions is in red; Top Left: Alpha distribution, Top Middle:
Impact Parameter over ∆Z distribution, Top Right: Angular difference in X projection, Bottom
Left: Angular difference in Y projection, Bottom Middle: χ2 distribution.

Having this information, the pure sample has been defined according to the efficiencies and

the optimal cut value given by the BDT algorithm as shown in Figure 4.22. The background

rejection is a crucial issue for a better energy estimation. Therefore, by selecting the signal

tracks with a BDT response greater than 0.2, the program selects around 160 signal base-tracks

and ∼ 17 background base-tracks on average per event .

Showers have been reconstructed over the full volume available for each event. Therefore,

it is possible to determine the calibration curve between the energy of parent electron and

the signal/background number of base-tracks selected by the BDT algorithm, having a BDT

response greater than 0.2. Although each γ particle within the electromagnetic shower pro-
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Figure 4.21 – The correlation matrix; Left: Signal, Right: Background.

Figure 4.22 – The cut efficiencies and the optimal cut value coming out by BDT algorithm. The
signal tracks having a BDT response greater than 0.2 are selected.

duces an electron and a positron but by discarding the low momentum particles having the

energy lesser than 30 MeV during the base-track reconstruction in the bricks’ emulsion films

gives a linear relationship advantage between the number of base-tracks related to electro-

magnetic shower and the energy of the electron. Figure 4.23 shows a scatter plot of the linear

dependency of the MC true energy as the function of the total number of base-tracks.

The linear relationship of the MC true energy and the total number of base-tracks works well

up to 30 GeV, however for the higher energies this linear relationship is a bit spoiled because

of the low statistic. This result is very good for our purpose since an upper cut on the neutrino
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Figure 4.23 – The calibration curve of the energy as a function of the number of base-tracks for
the Zone1 region.

energy at 20 GeV will be used in the analysis reported in chapter 5.

The reconstructed energy equation is defined as:

EREC = P0+P1∗NBT , (4.14)

where EREC is the reconstructed energy of the shower, NBT is the number of selected base-

tracks within the shower and the P0 and P1 are the intercept and the slope of the curve given

by the fit, respectively. The parameterization of the reconstructed energy, P0 and P1, for the

Zone1 are defined as:

P0 = (−0.9355±0.093) GeV , (4.15)

P1 = (0.0563±0.001) GeV , (4.16)

consistent with zero within less than 2σ.
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The energy resolution of this method is evaluated as:

∆E

E
= ET RU E −EREC

ET RU E
, (4.17)

where the ET RU E is the MC true energy of the electron given by the Monte Carlo simulation.

Figure 4.24 shows the distribution of the reconstructed energy resolution, ∆E/E, in the region

of Zone1, integrated over the entire energy spectrum.

Figure 4.24 – The
∆E

E
distribution.

The fractional resolution, σE , is the sigma of the Gaussian fit of the relative difference:

σE = 0.207±0.010 . (4.18)

The energy resolution as a function of energy is shown in figure 4.25. As expected, σE improves

with the energy. A fit using the relationship

σE = A1 + B1p
EREC

(4.19)
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has been performed, giving:

A1 = 0.28±0.09, (4.20)

B1 = 0.09±0.04. (4.21)

Figure 4.25 – The σE as a function of the electron energy.
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4.4.3 Events in Zone2

When a shower is initiated in the downstream portion of the brick, Zone2, the shower will

develop within two ECC bricks; making the normal reconstruction methods unusable. Nearly

half of the electromagnetic shower events detected take place across two bricks, meaning that

previously, half of detected events had to be discarded. The algorithm has been expanded

in such a way to analyze showers within two bricks, allowing us to include 50 percent more

events in our data sets. Without existing the second brick, one should abandon the emulsions

and use the target tracker in calorimeter mode with the lower resolution.

The process of selecting a pure sample of electrons and positrons in this zone is quite similar

to the Zone1. We enlarge the geometry in the second brick to cover any possible misalignment.

Therefore, the base-tracks produced in the shower occurred in Zone2 are selected within the

same cone used in the previous zone with a fixed angle of αcone = 50 mrad where its axis

corresponds to the direction of the electron extrapolated until it reaches the second brick;

1 mm is added to account for misalignment before extrapolating along the second brick, as

shown in Figure 4.26. The same geometrical cone is used for the background.

Figure 4.26 – The 2D schematic view of the electromagnetic showers reconstruction within
two bricks.

The size of the Electronic Detector between the two bricks is around 5.3 cm and this makes

the area to be analyzed larger in the downstream brick. Figure 4.27 shows the number of base-

tracks of the showers within the second brick as the function of the number of plates. This

plot shows that the number of base-tracks in the showers after around 20 plates is decreasing;

however, the number of background base-tracks is strongly increasing. Therefore, Only the

first 20 plates of the second brick are used in this work, see Figure 4.28.
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Figure 4.27 – Number of base-tracks of the showers within the second brick as the function of
the number of plates.

Figure 4.28 – The region used for the Zone2 analysis; only the first 20 plates of the second brick
are used in this work.

89



Chapter 4. Energy Estimation of Electromagnetic Showers

The same variables used for the Zone1 analysis have been calculated here both for Signal and

background. The normalized distribution of the input variables for Zone2 is shown in Figure

4.29. The background and signal are scaled so that they are normalized to each other. In these

Figures the background is shown in red and the signal in blue.

The correlation matrix for both Signal and Background is shown in Figure 4.30. The correlation

matrix is to check the correlation between each set of variables used in the TMVA training.

The correlation between the contributed variables to make the BDT response should be low.

As shown in Figure 4.30, the correlation in both signal and background variables is low and

flat over all pairings of the input variables.

Figure 4.29 – The normalized distribution of the input variables. Signal distribution is shown
in blue and the background distributions is in red; Top Left: Alpha distribution, Top Middle:
Impact Parameter over ∆Z distribution, Top Right: χ2 distribution, Bottom Left: Angular
difference in X projection, Bottom Middle: Angular difference in Y projection.

The optimal cut value given by BDT algorithm is shown in Figure 4.31. Given the geometry,

there is a larger amount of background base-tracks; this effect makes us to apply a stronger cut

on the BDT response. Therefore in the second brick, just those signal base-tracks having a BDT

response greater than 0.31 are selected. This allows us to accept 19 background base-tracks

and about 220 signal base-tracks on average per event.

Figure 4.32 shows a scatter plot of the linear dependency of the MC true energy as the function

of the total number of base-tracks.
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Figure 4.30 – The correlation matrix; Left: Signal, Right: Background.

Figure 4.31 – The cut efficiencies and the optimal cut value coming out by BDT algorithm. The
signal tracks having a BDT response greater than 0.31 are selected.

The parameterization of the reconstructed energy, P0 and P1, for the Zone2 are given as:

P0 = (0.294±0.189) GeV , (4.22)

P1 = (0.048±0.001) GeV. (4.23)

Figure 4.33 shows the distribution of the reconstructed energy resolution in the region of

Zone2 by using two consecutive bricks, integrated over the entire energy spectrum.
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Figure 4.32 – The calibration curve of the energy as a function of the number of base-tracks for
the Zone2 region.

Figure 4.33 – The
∆E

E
distribution.

The fractional resolution for the events occurring in Zone2 is given by:

σE = 0.23±0.01. (4.24)
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The distribution of the resolution as a function of energy is shown in figure 4.34. As expected,

σE improves with the energy. A fit using the relationship

σE = A2 + B2p
EREC

(4.25)

has been performed, giving:

A2 = 0.202±0.001, (4.26)

B2 = 0.134±0.007. (4.27)

Figure 4.34 – The σE as a function of the electron energy.

4.5 νe Analysis

By exploiting the electron identification capability for the reconstruction of the τ→ e decay,

OPERA is able to perform also νµ→ νe oscillation search. In the CNGS beam the expected νe

contamination is relatively small compared to the dominant νµ component (νe /νµ = 0.8%).

Seeking for an excess of νe charged current events can make the search for νµ→ νe oscillations

as well.
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Therefore, this analysis is also useful for the νµ→ νe oscillation search and the energy will be a

key element to discriminate between oscillated events (low energy) and νe contamination in

the beam (high energy).

The performance of the energy estimation algorithm for the νe events is done on the Monte

Carlo samples of 8000 events. The energy of the electron for the νe events is determined

similarly like the τ→ e decay by opening a cone with the axis corresponds to the direction of

electron and having a fixed angle of αcone = 50 mrad. The result of this study for the Zone1

and Zone2 are summarized in the following.

4.5.1 zone1

Figure 4.35 – The electron neutrino analysis for the Zone1; Left: The calibration curve of the

energy versus the number of base-tracks for the Zone1 region, Right: The
∆E

E
distribution.

Average number of BTs per event (Signal) 365
Average number of BTs per event (BG) 19

Table 4.2 – The average number of base-tracks in each event

P0 (-0.829 ± 0.084) GeV
P1 (0.060 ± 0.001) GeV
σ 0.20 ± 0.01

Table 4.3 – The P0, P1 snd σ given by the fit for νe events
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4.5.2 zone2

Figure 4.36 – The electron neutrino analysis for the Zone2; Left: The calibration curve of the

energy versus the number of base-tracks for the Zone2 region, Right: The
∆E

E
distribution.

Average number of BTs per event (Signal) 388
Average number of BTs per event (BG) 21

Table 4.4 – The average number of base-tracks in each event

P0 (-0.829 ± 0.191) GeV
P1 (0.050 ± 0.001) GeV
σ 0.23 ± 0.01

Table 4.5 – The P0, P1 snd σ given by the fit for νe events
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Figure4.37 shows the oscillated momentum spectrum of electron in τ→ e decay channel

and the momentum spectrum of electron in νe interactions. The difference between the two

spectrums is due to their origin. Tau neutrinos come from the oscillation of νµ’s produced by

the decay of π’s. However, electron neutrinos are produced by the decay of κ’s therefore they

have higher energies.

Figure 4.37 – Momentum spectrum of electron; Left: in τ→ e decay channel, Right: for νe

interactions.
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5.1 νe Data Analysis

The analysis done in this work is also useful for the νµ→ νe oscillation search in the OPERA

experiment. However, in order to discriminate between oscillated events (low energy) and νe

contamination in the beam (high energy), the electron energy will be a key element.

As an application of the algorithm to data, some electromagnetic showers produced by νe

interactions have been studied. In this thesis, two events located in the Napoli scanning

laboratory will be presented. The electromagnetic showers of these events were studied in

detail.

5.1.1 Event 9197043461

This event has been recorded by Electronic Detector on July 2009 and it was located in the

Napoli scanning laboratory. The neutrino interaction will be described in the following.

Event Description: This event was classified as 0µ interaction according to the Electronic

Detector reconstruction as shown in Figure 5.1.

Figure 5.2 shows a zoom of the target tracker where the neutrino interaction occurred. The

green columns in the picture represent the bricks, while the white columns represent the

electronic detectors. The spots inside the electronic detectors represent the hits produced

by the energy deposited inside the detector. The brick finding algorithm selected the brick

number 40009, highlighted in the detector display, as the most probable brick containing the

neutrino interaction.

As a first step after the brick selection, the CS doublets of the brick were extracted and analyzed.

Figure 5.3 shows the tracks found in the CS doublets. An arrow indicates each track; direction

and the magnitude of the arrows are proportional to the track slope and its application point

is the impact point of the track on the film.
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Figure 5.1 – Electronic detector display of the event 9197043461; top: the XZ projection and
bottom: the YZ projection.

Figure 5.2 – Zoom of the target tracker where the interaction took place (it is highlighted in
pink).
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Figure 5.3 – Tracks found in the CS analysis. The lengths of the arrows are proportional to their
slopes.

As it is shown in the Figure 5.3, most of the tracks converge in the area around X = 1 cm and

Y = 7.5 cm, except a few tracks produced by the passage of cosmic rays. The high number of

tracks converging in the CS doublets may indicate the presence of an electromagnetic shower.

The CS-brick connection of this brick is done successfully. In the scan-back procedure, the

tracks found in the CS are followed-up. As it’s shown in Figure 5.4, some of the tracks converged

after crossing a few films. However, only one track was followed up to the most upstream

stopping point occurring in plate 27.

The volume-scan around the stopping point, usually done on 15 films, was extended to all

the plates downstream of film 27 in order to study the possible shower hint given by the other

tracks.

By analyzing the volume-scan data, the electron track was confirmed and the neutrino vertex

is located between plates 26 and 27. An additional low momentum particle was confirmed

in the primary vertex with the electron. The depth of the vertex in the lead was calculated as

1094.7 µm.

The result of the decay search procedure was the selection of two extra tracks; one starting

from plate 29 and the other one from plate 30. After applying a visual inspection procedure on

these tracks, they were identified as two electron pairs generated by the conversion of photons

in the upstream lead. The opening angle between the two photons indicated their common

origin from a π0 decay. Therefore, the primary vertex of this event is formed by three particles:

an electron, a hadron and a π0.
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Figure 5.4 – Scan-back tracks in the emulsion films as seen in the projection XZ and YZ. Each
plate corresponds to 1.3 mm on the Z axis.

The impact parameters of electron, hadron and the two electron pairs with respect to the

common vertex is given in Table 5.1.

Particle Impact Parameter (µm)

Electron 1.6
Hadron 1.6
First γ 23.7

Second γ 31.0

Table 5.1 – Impact parameters of the particles attached to the primary vertex.

The final display of the event reconstruction inside the emulsions is shown in Figure 5.5. As

the electron was found at the primary vertex, this event was classified as a νe interaction.

Energy Measurement:

In order to reconstruct the electromagnetic shower of this event and to estimate its energy, the

algorithm developed in this work was applied. As mentioned before, this event occurred in the

very beginning of 2nd zone between plates 26 and 27. However, because at the time of writing

this thesis, the information of the downstream brick was not available, the reconstruction

and energy estimation of this event was based on the first brick only. Therefore, a volume
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Figure 5.5 – Vertex display of the interaction contained in the brick 40009. Left: Side View;
Right: Front View.

from plate 22 up to plate 57 has been made and a cone is defined starting from the primary

vertex with the axis in the direction of the electron. Moreover, both the uncorrelated tracks

in the emulsions integrated during the transportation from Japan to Gran Sasso and cosmic

rays passing through the brick before its development were discarded by applying a dedicated

procedure.

In order to do the signal/background separation, all the variables for all base-tracks inside the

cone are calculated. By applying the BDT method and selecting the base-tracks with a BDT

response greater than 0.2, the algorithm selected 298 base-tracks.

By using the parameters of the reconstructed energy, P0 and P1, for the Zone1 of νe analysis,

the energy is calculated as

E = 17.0±3.5 GeV. (5.1)

The error on the energy was calculated by propagating those on the number of tracks and on

the parameters of the calibration curve. This error is consistent with the expected resolution

calculated in the zone1. This result is in agreement with the measurement obtained with the

standard algorithm, E = 15.4 GeV.

5.1.2 Event 226395185

The event 226395185 was recorded by Electronic Detector on August 2008 and later was located

in the Napoli scanning laboratory.

Event Description: According to the electronic detector reconstruction, this event also was

identified as 0µ interaction as shown by the Electronic Detector display in Figure 5.6.
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Figure 5.6 – Electronic detector display of the event 226395185; top: the XZ projection and
bottom: the YZ projection.

A zoom of the target tracker of the event with the hits produced by the energy deposit inside

the detector is shown in Figure 5.7. The brick finding algorithm selected the brick number

48483 as the most probable brick containing the interaction. Figure 5.8 shows the tracks found

in the CS doublets of this brick.

The CS-brick connection of this brick was also done successfully and one of the found tracks

in CS doublets was found in plate 57. This track was followed-up and it stopped after 5 plates.

After the scan-back procedure and finding the stopping point, the volume-scan procedure was

applied. After analyzing the volume-scan data, a small electromagnetic shower was confirmed.

The electron found in the shower stopped between plates 52 and 53. One single base-track was

found in the plate 53 and 5 base-tracks were found in plate 54 (see Figure 5.9). No other tracks

related to the event were found in the volume-scan data. Therefore the event was registered as

a single prong event where its single prong is an electron.

In addition, the DS procedure was applied to this event but no extra track was found.

As mentioned before, the interaction was located in very downstream portion of the brick.

Therefore, the major part of the shower has occurred in its following brick. In order to re-

construct the electromagnetic shower of this event, the downstream brick was requested by

Napoli group to be developed. This brick, number 47839, was developed and sent to Napoli

scanning laboratory. In the following the reconstruction of the electromagnetic shower and

102



5.1. νe Data Analysis

Figure 5.7 – Zoom of the target tracker where the interaction occurred (it is highlighted in
pink).

Figure 5.8 – Tracks found in the CS analysis. The lengths of the arrows are proportional to their
slopes.
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Figure 5.9 – The base-tracks found in plates 53 and 54.

the energy estimation will be described.

Energy Measurement:

The electromagnetic shower is reconstructed and its energy is estimated using the new al-

gorithm developed for this work. This event is located in the 2nd zone (see Section 4.4.1)

between plates 52 and 53. Therefore, the reconstruction and energy estimation of this event is

calculated with the selection used for the events in zone2. In the first brick, a volume from

plate 48 up to plate 57 is analyzed and the strategy to reconstruct the showers in this zone is

applied. In addition, the first 20 plates of its downstream brick are used to find the rest of the

electromagnetic shower in the second brick. The alignment between the two bricks was done

by finding the primary electron in 2nd brick. The uncorrelated tracks in the emulsions due to

the transportation from Japan to Gran Sasso and due to the cosmic rays passing through the

brick were discarded for this event.

The signal/background separation process is applied and base-tracks having a BDT response

greater then 0.33 in the second brick are selected. The algorithm selected 14 base-tracks

located in the first brick and 434 base-tracks in the second brick.

By using the parameters of the reconstructed energy, P0 and P1, for the Zone2 of νe analysis,

the energy is calculated as

E = 22.8±5.2 GeV. (5.2)

This error is consistent with the expected resolution calculated in the zone2.

Figure 5.10 shows a schematic view of the electromagnetic shower reconstruction within two

bricks.
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Figure 5.10 – A schematic view of the electromagnetic shower reconstruction within two bricks.

5.2 Kinematical Selection

The presence of a ντ interaction is initiated by the decay search procedure that defines its

decay topology. A high resolution scanning is applied on the primary and decay daughter

tracks to measure their energy through the detection of the Multiple Coulomb Scattering for

hadrons and through the detection of the shower for electrons.

In order to distinguish the real τ events from the backgrounds it is necessary to apply a

kinematical selection to the τ neutrino interactions. The kinematical cuts are different for

each particular τ decay channel to suppress the possible background of each decay channel.

In the following, the kinematical and topological variables used for the selection of the τ→ e

decay channel are explained:

• zdec : the z-coordinate of the decay vertex with respect to the downstream face of the

lead plate containing the primary vertex, see Figure 5.11.

• pel ectr on
T : the transverse momentum of the electron with respect to the direction of τ

lepton.

• Eel ectr on : the energy of electron.

• θki nk : the average 3D angle between the τ lepton and its electron (kink angle).

When τ lepton decays into the electron, it is required to have a zdec smaller than 2600 µm. It
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Figure 5.11 – Definition of the zdec variable. Blue rectangles represent the 1 mm lead plates;
yellow rectangles represent the emulsion films.

also has to satisfy the cut pel ectr on
T > 0.1 GeV/c in order to eliminate the contamination from

νCC
e interactions.

To reduce the background from low energy electrons (induced by, γ → e+e−) and also to

improve the electron identification, the electron (τ’s daughter) is required to have an energy

higher than 1 GeV. In addition to this, an upper cut on the energy, 15 GeV, reduces the back-

ground coming from the prompt electrons produced in νCC
e interactions. A cut on the kink

angle, θki nk larger than 20 mrad, is also applied. The distribution of the kinematical variables

used in this selection is shown in Figure 5.12. The values of the kinematical selection for this

particular channel are summarized in Table 5.2.

The kinematical selection efficiencies for the τ→ e decay channel is calculated as 59.7%.

Variable Selection

θki nk (mrad) >20
Eel ectr on (GeV) >1 and <15

zdec (µm) <2600
pel ectr on

T (GeV/c) >0.1

Table 5.2 – Selection criteria for the ντ interaction search in the τ→ e decay channel.

5.3 Overall Detection Efficiency

The overall detection efficiency, εtot al for each channel is calculated as the product of all

reconstruction efficiencies:

εtot al = εtr i g g er ×εED ×εOpC ar ac ×εBF ×εC S ×εSB ×εLOC ×εDS ×εK I N . (5.3)

By multiplying all factors, the efficiency for the τ→ e decay channel is evaluated and the
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Figure 5.12 – Distribution of kinematical variables for the τ→ e decay channel; Top Left: zdec ,
Top Right: pel ectr on

T , Bottom Left: kink angle θki nk , Bottom Right: Eel ectr on .

results are reported in Table 5.3.

Long Decay Short Decay

2008 and 2009 data selection 0.136 ± 0.005 0.103 ± 0.005

Table 5.3 – Summary of the τ detection efficiency for 2008-2009 data selection. The uncertain-
ties are due to statistical errors.

The algorithm developed in this work has improved the resolution in the energy estimation

of the electron. This corresponds to higher efficiency in kinematical selection in the τ→ e

decay channel. As described in the previous chapters, the algorithm requires the showers

to be within a fiducial volume. This produces the drawback to reduce the overall detection

efficiency. These two effects, the first increasing the efficiency and the second one decreasing

the efficiency, compensate each other thus making the overall detection efficiency in τ→ e

decay channel comparable with the one obtained with the previous estimations (summarized
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in Table 5.4). The application of the new algorithm, although with reduced efficiency, to events

occurring near the edge will improve the overall detection efficiency in this channel.

Long Decay Short Decay

2008 and 2009 data selection 13.5 ± 0.5 9.8 ± 0.5

Table 5.4 – Summary of the τ detection efficiency for 2008-2009 data selection done in the
previous analysis [126].

Moreover, the energy spectrum of the electrons in τ→ e decay channel is shown in Figure

5.13 left. Introducing the oscillation probability of neutrinos, the energy distribution of the

electrons is shifted to left side favoring low energies, as shown in Figure 5.13 right.

Figure 5.13 – Energy distribution of the electrons generated by the τ decay; Left: before
the application of the oscillation probability; Right: after the application of the oscillation
probability.
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The OPERA experiment is a long baseline neutrino oscillation experiment designed to perform

a conclusive proof of the νµ→ ντ oscillations hypothesis. The peculiarity of this experiment is

a direct observation of τ leptons in ντ charged-current interactions and therefore the observa-

tion of neutrino oscillation in appearance mode. OPERA exploits its electron identification

capability to reconstruct the τ→ e decay. As a byproduct, it is also able to perform a νµ→ νe

oscillation search, although this oscillation mode is subdominant. The OPERA detector is

located in Gran Sasso underground laboratory, 730 km away from CERN where CNGS neutrino

beam is produced.

A sample of 19505 contained neutrino interactions corresponding to 17.97×1019 protons on

target have been registered by the OPERA detector after 5 years data taking, from 2008 to

2012. OPERA is the only experiment that has observed ντ appearance in a pure νµ neutrino

beam. So far, 4 ντ candidates have been observed in the OPERA detector with a background of

0.23 event. Given the low expected background, νµ → ντ oscillations are established with a

significance of 4.2σ.

In this thesis, the analysis chain of neutrino interactions in the OPERA target has been fully

simulated and the efficiencies are estimated for all the MC samples with an electron in the

final state: prompt νe , oscillated νe , νµ → ντ in τ→ e mode. The comparison between data

and Monte Carlo performed with the νNC
µ samples shows a good agreement, thus validating

the simulation used to describe the event analysis.

A good electromagnetic shower reconstruction is mandatory for the τ detection in the τ→ e

decay channel given the branching ratio of about 18%.

The algorithm currently used by the Collaboration estimates the electron energy through a

calorimetric measurement of the shower achieving a resolution not better than 30%.

The work done in this thesis is focused on the improvement of the electron energy resolution

for both τ→ e decays and νCC
e interactions. A dedicated shower reconstruction algorithm is

developed to evaluate the energy of electrons through the identification of its shower, using

the OPERA brick as a calorimeter. The algorithm developed in this work selects all the tracks

within a cone with the vertex located at the electron production point. It uses larger values of

the geometrical parameters for the cone definition and the Boost Decision Tree method, by
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the TMVA toolkit, to get a better Signal/Background separation.

Normal reconstruction of a shower event depends upon the containment of the shower.

However, when a shower is initiated in the downstream portion of the brick, the shower will

partially develop in the downstream brick, making normal reconstruction methods unusable.

The approach developed for this thesis is using for the first time the information of the

downstream brick to reconstruct and estimate the energy of electromagnetic showers.

In this work, the signal is studied by simulating the electromagnetic showers with the Monte

Carlo simulation. Background tracks are evaluated by scanning an empty volume without

any neutrino interaction inside. The algorithm selects all the tracks inside a cone, with the

axis along the electron direction. Several variables are separately calculated for signal and

background base-tracks inside the cone and the Boost Decision Tree method is used for the

signal/background separation.

The energy of showering electrons is determined by its correlation with the number of recon-

structed base-tracks in the cone. This number does not depend only on the electron energy

but it’s also affected by the position in the brick of the decay point of τ lepton. Therefore, the

ECC brick is divided in different zones. Showers initiated in the upstream 21 plates are fully

reconstructed within that brick. However, for showers initiated in the downstream emulsion

foils from 22nd to 57th, the full shower reconstruction is made within two bricks. To ensure

the lateral containment of the shower, the events occurred within one centimeter from the

lateral edge of the brick are discarded.

As the result, the fractional resolution, σE , of the events occurring in Zone1 is calculated based

on MC simulation as σE = 0.21±0.01, while the fractional resolution for the events occurring

in Zone2 is given as σE = 0.23±0.01 using the information of the downstream brick.

As an application of the algorithm to data, two showers associated to two different electron

neutrino interactions reconstructed in the Napoli laboratory, are studied. The electron tracks

in both interactions were reconstructed and their energies are estimated. The electromagnetic

shower of event 9197043461 is reconstructed within one brick and the electron energy is

estimated as E = 17±3.5 GeV. However, as the interaction of event 226395185 was located

in very downstream portion of the brick, the electromagnetic shower reconstruction and its

energy estimation is done within two bricks. For this event the electron energy is estimated as

E = 22.8±5.2 GeV.

A kinematical selection is applied to the τ neutrino interactions in order to distinguish the

real τ events from the backgrounds. The kinematical and topological variables used for

the selection of the τ→ e decay channel are studied with MC simulations and by using the

electromagnetic shower reconstruction and electron energy estimation evaluated through the

new algorithm developed in this work.

This algorithm gives an improved resolution of the electron energy estimation, achieving
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a higher kinematical selection efficiency in the τ→ e decay channel. On the other hand,

the containment requirement (1 cm from the edge) for the application of the algorithm

compensates the gain in the efficiency, thus producing a detection efficiency in the τ→ e

channel compared to the previous estimate. The application of this new algorithm, although

with reduced performances, to the events close to the brick edge will improve the overall

detection efficiency.
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