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1. INTRODUCTION 

 

1.1 Alzheimer’s Disease 

Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder and 

the most common cause of dementia in the elderly, that leads to severe 

memory loss and cognitive impairment. Current estimates suggests that AD 

afflicts more than 5 million individuals in the United States and 24 million 

people worldwide, with this number projected to double in 20 years.  

Pathologically, AD is characterized by the temporal and spatial progression of 

amyloid plaques arising from extracellular deposition of the fibrillogenic 

amyloid-beta (Aβ) peptide and other proteins, and intracellular neurofibrillary 

tangles (NT) due to the hyperphosphorylation of the microtubules-stabilizing 

protein Tau.  

At the cellular level, AD is further associated with progressive dismantling of 

synapses, neuronal circuits and networks, and eventual neuronal loss within 

brain regions underlying cognition and memory formation (DeKosky and Sheff, 

1990). Loss of synapses is considered the best correlate of cognitive decline in 

AD, rather than plaques or tangles.  

 

1.1.1 Aβ Peptide And  Amyloid Cascade Hypothesis 

More than 30 years ago, amyloid peptides were recognized by Glenner 

(Glenner and Wong, 1984) as a major component of the amorphous plaque-like 

deposits in the damaged brains of AD patients. Since then, a lot of evidence 

has demonstrated that Aβ peptide has potential neurotoxic properties (Yankner 



5 
 

et al., 1989). Four other key discoveries have pointed out on the role of this 

peptide in the pathogenesis of disease. First, Aβ peptide is part  of a large type 

I membrane protein, the Amyloid Precursor Protein (APP), which is encoded by 

the APP gene on chromosome 21. Second, the APP gene is mutated in a 

significant fraction of familial AD cases. Third, individuals with Down’s 

syndrome, who have three copies of chromosome 21 and hence three copies 

of APP gene, develop clinical and pathological signs of early onset  

Alzheimer’s. And fourth, mutations of presenil-1 (PSEN1) and presenil-2 

(PSEN2) genes, which encode for the catalytic subunit of the γ-secretase 

activity that liberates the Aβ peptide from the C-terminus  of APP, can behave 

as dominant familial AD genes.  

These findings led to the elaboration of a theory of AD known as amyloid 

cascade hypothesis (Hardy and Selkoe, 2002; Citron, 2004), which best 

describes the pathogenic events causing Alzheimer neuronal death and leading 

ultimately to irreversible dementia. Indeed, this hypothesis postulates that in 

familial AD mutations in either APP or one of the PSEN genes lead to the brain 

accumulation of a 42-amino acid form of the amyloid peptide that has a 

tendency to form aggregates. Amyloid aggregates form first small oligomers 

and finally plaques. The amyloid cascade hypothesis proposes that these Aβ 

aggregates leads in turn to a series of downstream events such as plaque 

deposition, tau hyperphosphorylation, inflammation, loss of synaptic structure 

and function, and death of susceptible neurons (Glenner and Wong, 1984; 

Tanzi and Bertram, 2005; Walsh and Selkoe, 2004). The hypothesis also 

proposes that sporadic AD develops when natural history of an individual 

accelerates a normal age-dependent process of Aβ accumulation. At some 
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point, sufficient Aβ become deposited that the amyloid cascade is triggered. 

Subsequently, the sporadic disease follows the same pathway to dementia as 

the familial form. Therefore, both in familial and sporadic AD the amyloid 

cascade hypothesis claims that is the excessive accumulation of pathogenic Aβ 

assemblies in the brain to play a causal role in AD. Indeed, under normal 

conditions, Aβ is present in a soluble form throughout life, but in Alzheimer’s 

Disease pathogenesis, Aβ aggregates into higher-order species such as 

soluble oligomers and insoluble amyloid plaques in a concentration-dependent 

manner.  

In strong support of the pathogenic role of Aβ, neuronal expression of 

human APP(hAPP) and Aβ in transgenic mice elicits several AD-like 

abnormalities, including amyloid plaques, neuritic dystrophy, aberrant sprouting 

of axon terminals, functional and structural synaptic deficits, impairments in 

learning and memory, and other behavioral alterations (Chin et al., 2004, 2005; 

Games et al., 1995; Gӧtz et al.,2004; Kobayashi and Chen, 2005; Palop et al., 

2003, 2005). 

1.1.2 APP processing and Aβ generation 

The proteolytic processing pathways leading to the formation of Aβ from 

the amyloid precursor protein (APP) have been well characterized in a number 

of cell lines  (Selkoe, 2000). APP is a type I transmembrane protein. It is 

synthesized in the endoplasmic reticulum (ER) and then transported through 

the Golgi apparatus to the trans-Golgi network (TGN), where is found the 

highest concentration of APP in neuron at steady-state. From the TGN, APP 

can be transported in TGN-derided secretory vesicles to the cell surface, where 
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it is either cleaved by α-secretase to produce a soluble molecule, sAPPα, or re-

internalized via an endosomal/lysosomal degradation pathway. 

At least three enzymes are responsible for the processing of APP and 

have been called α-, β- and γ-secretases. The processing pathway by α- 

secretase, called non-amyloidogenic, cleaves plasma membrane APP within 

the Aβ domain in the C-terminal portion of the sequence of this peptide, 

producing soluble APPα, which has neurotrophic and neuroprotective effects. 

The processing pathway by β- and γ-secretases, called amyloidogenic, 

cleaves APP in the N- and C-terminal portions of the Aβ region, respectively, 

producing Aβ peptide.  

Cleavage of APP by α-secretase precludes Aβ generation as the 

cleavage site is within the Aβ domain and releases a large soluble ectodomain 

of APP called sAPPα. APP molecules that fail to be cleaved by α-secretase on 

the membrane surface can be internalized into endocytic compartments and 

subsequently cleaved by β-secretase (BACE) and γ-secretase to generate Aβ. 

After α- and β-cleavage, the carboxyl terminal fragments (CTFs) of APP, known 

as αCTF and βCTF, respectively, remain membrane associated.  αCTF and 

βCTF will be further cleaved by γ-secretase generating p83 and Aβ, 

respectively. The p83 fragment is rapidly degraded and widely believed to 

possess no important function. γ-cleavage can yield both Aβ40, the majority 

species, and Aβ42, the more amyloidogenic species, as well as release 

intracellular domain of APP (AICD).  

Although the majority of Aβ is secreted out of the cell, Aβ can be 

generated in several subcellular compartment within the cell, such as ER, 
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Golgi/TGN  and endosome/lysosome. Then, Aβ peptides generated in the 

Golgi and in recycling compartments can be secreted into the extracellular 

space (Greenfield et al. 1999). In addition, extracellular Aβ can be internalized 

by the cell for degradation. The intracellular existence of Aβ implies that it may 

accumulate within neurons and contribute to disease pathogenesis. The 

majority of secreted Aβ peptides are 40 amino acids in length (Aβ40), although 

the smaller fraction (10%) of longer, 42 amino acid species (Aβ42) have 

received greater attention due to the propensity of these peptides and other 

derivatives of the amyloid precursor protein to nucleate and drive production of 

amyloid fibrils (Jarrett et al., 1993). Studies done on familial AD mutations show 

increases in the ratio of Aβ42/Aβ40, suggesting that elevated levels of Aβ42 

relative to Aβ40 is critical for AD pathogenesis, probably providing the core for 

Aβ assembly into oligomers, fibrils and amyloidogenic plaques. 

 α-secretase is a membrane-bound endoprotease which cleaves APP 

primarily at the plasma membrane. In particular, α-secretase is a zinc 

metalloproteinase. Its activity is constitutive, but it can also be regulated by 

various factors. Several members of the ADAM family possess α-secretase-like 

activity and three of them have been suggested as the α-secretase: ADAM9, 

ADAM10 and ADAM17. Like APP, they are also type-I transmembrane 

proteins. ADAM17 likely affects regulated, but not constitutive, α-cleavage of 

APP in various cell lines; in contrast, ADAM10 is the constitutive α-secretase 

that is active at the cell surface, as demonstrated by the inhibitor effect of 

ADAM10 dominant-negative form and RNAi of ADAM10 on the endogenous α-

cleavage activity in several cell lines. ADAM9 also shows α-secretase activity, 

but it is involved only in the regulated α-cleavage as ADAM17.  
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 The major β-secretase is BACE1, that is a membrane-bound aspartyl 

protease. Several studies have confirmed that BACE-1 is the β-secretase 

involved in APP metabolism; and BACE1 activity is thought to be the rate-

limiting factor in Aβ generation from APP. BACE-1 requires an acidic 

environment for optimal activity; in fact, it is mainly found in the early Golgi, late 

Golgi/early endosomes, and endosomes that provide an acidic environment. In 

addition, BACE1 can be found at the cell surface. Several studies have found 

that BACE1 protein and activity levels are elevated in the regions of the brain 

affected by AD. 

A lot of biochemical evidence has shown that γ-secretase activity resides 

in a high molecular weight complex consisting of at least four components: 

presenilin (PS, PS1 or PS2), Nicastrin, anterior pharynx-defective-1 (APH-1), 

and Presenil enhancer-2 (PEN-2). In mammals, there are two presenilin 

homologs, PS1 and PS2. Mutations in these two genes, particularly PS1, are 

causative in the majority of familial AD cases. PSs are multi-transmembrane 

proteins with an unclear number of transmembrane domains; they possess two 

highly conserved aspartate residues indispensible for γ-secretase activity and 

they are the crucial catalytic components of γ-secretase, as confirmed by in 

vitro assays. (Fig. 1) 
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Figure 1. APP processing: non-amyloidogenic and amyloidogenic pathways. 

1.1.3 Aβ Affects Neuronal Excitability 

Excessive accumulation of Aβ is thought to be a causal factor in 

producing cognitive deficits, but the mechanisms by which Aβ accumulation 

leads to this deficits is still unclear. Mounting evidence suggests that 

epileptiform activity may play an important role in the development of AD-

related cognitive deficits. In fact, while seizures were previously thought to be 

secondary to disease progression, aberrant activity and/or seizures may 

directly contribute to cognitive deficits early in disease progression inducing 

hippocampal dysfunction and memory deficits.  

AD is associated with a 5- to 10-fold increase in seizure incidence 

(Amatniek et al., 2006; Hauser et al., 1986; Hesdorffer et al., 1996; Lozsadi and 

Larner, 2006; Mendez and Lim, 2003), and transgenic mouse models of AD 

exhibit brain-wide aberrant neuronal and epileptiform activity (Hsiao et al., 

1995; LaFerla et al.,1995; Moechars et al., 1999; Lalonde et al., 2005; Palop et 
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al., 2007; Minkeviciene et al., 2009; Vogt et al., 2009; Harris et al., 2010; 

Roberson et al., 2011; Sanchez et al., 2012).  Interestingly, the risk of epileptic 

activity is particularly high in AD patients with early-onset dementia and during 

the earlier stages of the disease, reaching an 87-fold increase in seizure 

incidence compared with an age-matched reference population (Amatniek et 

al., 2006; Mendez et al., 1994). The incidence of epileptic activity is also 

increased in sporadic AD (Amatniek et al., 2006) but is particularly high in 

pedigrees with early-onset autosomal dominant AD (Cabrejo et al., 2006; 

Larner and Doran, 2006;Palop and Mucke, 2009; Snider et al., 2005). 

Epileptiform activity has been associated with transient episodes of amnestic 

wandering and disorientation in AD (Rabinowicz et al.,2000).  

Recent studies indicate that Aβ peptide can contribute to AD cognitive 

decline inducing neuronal hyperexcitation and aberrant network activity. 

Neuronal circuits are smaller assemblies of interconnected neurons within a 

specific brain region and neuronal networks are larger assemblies of 

interconnected circuits involving different brain regions. Several recent reports 

in Alzheimer's disease-related mouse models suggest that pathologically 

elevated Aβ destabilizes neuronal activity at the circuit and network levels. In 

particular, high Aβ could induce aberrant excitatory network activity and 

compensatory inhibitory responses involving learning and memory circuits, 

leading to cognitive dysfunction. In fact, Palop et al., 2007 report that 

transgenic mouse models of AD overexpressing Aβ peptide exhibit altered 

neuronal activity, spontaneous seizures and epileptiform discharges within the 

entorhinal-hippocampal circuitry. They propose that the epileptiform activity 

together with homeostatic responses to this epileptiform activity may contribute 
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to dysfunction of the circuitry that underlies memory formation because 

blocking Aβ-induced epileptiform discharges can meliorate cognitive decline 

and behavior dysfunction in these AD mouse models.  

Soluble, rather than amyloid plaques, correlates well with the severity of 

cognitive decline and leads to malfunction of neurons. In fact, the hippocampal 

region of AD mouse model has an increased proportion of hyperactive neurons 

prior to the formation of Aβ plaques (Cleary JP, et al. 2005). Moreover, 

application of Aβ1-42 to the extracellular medium induces CA1 neuron 

hyperactivity in wild type mice (Minkeviciene et al. 2009). These finding 

demonstrate that soluble Aβ is involved in the neuronal hyperexcitation, 

aberrant network activity and cognitive impairment in AD.  

However, the molecular mechanisms by which Aβ can contribute to the 

destabilization of neuronal networks  are poorly understood.  

1.1.4 Mouse Models Of Alzheimer’s Disease 

Various transgenic models of Alzheimer disease (AD) were generated in 

the last decade in order to advance our understanding of in vivo responses to 

amyloid insult and the mechanism by which genetic alterations may cause AD. 

Indeed more features of the human disease are represented in these mice. 

Moreover,  the mice are now being used to test therapeutic agents that may 

have utility in  patients with AD.  

The discovery of genes for familial forms of AD has allowed to create 

transgenic models that reproduce many critical aspects of the disease. Initially, 

before the discovery of FAD mutations, attempts were made to overexpress 

wild-type APP in transgenic mice. However, none of these efforts produced 
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anything that resembled an Aβ plaque or any other recognizable AD-type 

pathology. After the discovery of FAD mutations in APP, a number of groups 

turned their attention to making AD models based on the overexpression of 

transgenes containing FAD mutations using a variety of promoters.  

Mutations in APP linked to FAD include Dutch (E693Q), London (V717I), 

Indiana (V717F), Swedish (K670N/M671L), Florida (I716V), Iowa (D694N), and 

Arctic (E693G) mutations. To date, more than 160 mutations in PS1 linked to 

FAD have been discovered. Mutations in a PS2 gene were soon linked to FAD 

as well. Most of FAD mutations cause aberrant APP processing toward the 

longer, more amyloidogenic Aβ1-42 species. The Swedish mutation, which is 

located just outside the N-terminus of the Aβ domain of APP, favors β-

secretase cleavage in vitro and is associated with an increased level and 

deposition of Aβ1-42 in AD brain. 

Report of the first transgenic mouse to develop a robust AD-related 

phenotype was published in 1995 (Games D et al., 1995). This line, named 

PDAPP, overexpresses a human APP transgene containing the Indiana 

mutation (V717F). After that, in 1996, Karen Hsiao and colleagues created a 

second mouse line, termed Tg2576, which overexpresses a human APP 

transgene containing the Swedish mutation (K670N/ M671L). Subsequently, 

many other transgenic lines were developed with approaches similar to those 

used to develop PDAPP and Tg2576 mice, characterized by overexpression of 

one or more human APP mutations alone or combined with mutations of PS1 

gene (Table 1). 
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Table 1: mouse models of Alzheimer’s Disease (Schaeffer EL et al. 2011).  

Tg2576 have been the most widely studied AD transgenic model 

because exhibits age-dependent increase of Aβ1-40 and Aβ1-42 levels and Aβ 

deposition, resulting in senile plaques similar to those found in AD. Aβ plaques 

were first clearly seen by 11-13 months, eventually becoming widespread in 

cortical and limbic structures. Aβ deposits were associated with prominent 

gliosis and neuritic dystrophy, without overt neuronal loss in the hippocampal 

CA1 field or apparent synapse loss in the hippocampal dentate gyrus. Tg2576 

mice exhibited deficits in synaptic plasticity in the hippocampal CA1 field and 

dentate gyrus, decreased dendritic spine density in the dentate gyrus, and 

impaired spatial memory and contextual fear conditioning months before 

significant Aβ deposition, which was detectable at 18 months of age. A spine 

density decrease was detected as early as 4 months of age, and synaptic 

dysfunction and memory impairment were observed by 5 months. Moreover, an 

increase in the ratio of soluble Aβ1-42/Aβ1-40 was first observed at these early 

ages (4-5 months). Tg2576 mice also showed increased intraneuronal Aβ1-42 
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accumulation with aging, and this accumulation was associated with abnormal  

synaptic morphology before Aβ plaque pathology. 

 

1.2 Intrinsic membrane proprieties of Neurons and Voltage 

Gated Na+ Channels 

   Neurons are highly polarized cells with multiple distinct membrane 

domains by which they can integrate excitatory and inhibitory synaptic 

potentials into an output of action potentials. Both, the input/output relation of a 

neuron and the waveform of an action potential depend on the intrinsic 

properties of the neuron. These are determined by the neuron’s endowment of 

voltage- and ion-gated ion channels. In neurons, action potentials (APs) are 

generated at the axonal initial segment (AIS), and their saltatory conduction 

occurs via the nodes of Ranvier in myelinated axons.  

These processes require a precise distribution of voltage-gated sodium (Nav) 

channels, which accumulate at high density in these two highly specialized 

axonal sub-domains and upon depolarization permit the influx of Na+ ions 

responsible of the rapid upstroke of action potentials.  

1.2.1 Voltage Gated Na+ Channels Structure 

NaV channels are integral membrane proteins that are predominantly 

expressed in excitable cells such as muscle cells and neurons. Expression of 

voltage gated Na+ channels was also reported in other cell types such as glial 

cells ([Chiu et al. , 1984) and endothelial cells (Gordienko & Tsukahara, 1994).  

Mammalian voltage-gated Na+ channels (Nav) complex is typically a 

heterodimeric or heterotrimeric structure with a single pore-forming 260 kDa α 
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subunit associated with one or two accessory β-subunits (33-36 kDa). The α-

subunit contains the Na+ selective pore, the voltage sensor, and the channels 

activation and inactivation gate. It has been shown that α-subunits alone are 

sufficient to give rise to a voltage sensitive Na+ current when expressed in 

various expression systems (Catterall, 2000). Association of β-subunits 

modulates Na+ channel kinetics and voltage dependence of activation and 

inactivation, and regulate the surface density of Nav1 (Isom, 2001, Isom, 2002, 

Qu et al. , 2001). (Fig. 2) 

 

Figure 2. Topology of voltage-gated Na
+ 

channel α and β subunits (Brackenbury  

and Isom, 2011). 

A functional voltage gated Na+ channel α-subunit contains four homologous 

domains (DI-DIV), each of them consisting of six transmembrane α-helices (S1-

S6). Within each domain the S4 segment forms a part of the Na+ channel’s 

voltage sensor, which undergoes a conformational change upon depolarization 

whose movement within the membrane induces in pore opening (Terlau  and 
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Stühmer, 1998). The transmembrane α-helices S5 and S6 form the inner part 

of the ion channel pore, whereas the linker region between these two segments 

reaches into the outer leaflet of the membrane’s lipid bilayer and forms the 

outer part of the ion channel pore. The intracellular loop between domain III 

and IV serves as an inactivation gate that blocks the open channel upon 

prolonged depolarization (Stühmer et al. , 1989, Catterall et al. , 2005).  

The linkers between the four domains vary in length and have important 

functions in channel modulation, inactivation, and drug binding as well as the 

binding sites for the toxins tetrodotoxin (TTX) or μ-conotoxin. Interactions with 

other proteins also take place within these linker domains. Such interactions 

are either intracellularly, as the binding to cytoskeleton associated proteins or 

extracellularly, as binding to Na+ channel β-subunits. 

β-Subunits of NaV belong to the immunoglobulin superfamily of cell 

adhesion molecules and associate with α-subunits in two ways: covalently in 

the case of NaVβ2 and NaVβ4 subunits through a disulfide bridge in the 

extracellular domain and non-covalently for NaVβ1 and NaVβ3 subunits (Patino 

and Isom, 2010). NaV β-subunit expression is widespread both in excitable and 

non-excitable tissues (Patino and Isom, 2010).  

The NaVβ subunits share a similar topology. Structurally, they consist of 

a single transmembrane domain and larger extracellular than intracellular 

domains. NaVβ-subunits are multifunctional, acting to modify channel gating, 

regulate channel expression in the plasma membrane; independent of their role 

in sodium channel association, they serve as cell adhesion molecules in 

interactions with the extracellular matrix and  as well as the cytoskeleton and 

intracellular signaling molecules (Isom, 2002; Brackenbury and Isom, 2011); in 
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fact, β-subunit soluble ectodomain and membrane bound C-terminal fragment 

obtained by their enzymatic cleavage are implicated in the regulation of cell–

cell contact and neurite outgrowth (Wong et al., 2005).  

 

1.2.2 Sodium Channel Classification and Nomenclature 

The sodium channels are members of the superfamily of ion channels that 

includes voltage-gated potassium and calcium channels (Yu and Catterall, 

2004); however, unlike the different classes of potassium and calcium 

channels, the functional properties of the known sodium channels are relatively 

similar.  

In the standardized nomenclature system, the name of an individual 

channel consists of the chemical symbol of the principal permeating ion (Na+) 

with the principal physiological regulator (voltage) indicated as a subscript 

(NaV). The number following the subscript indicates the gene subfamily 

(currently only NaV1), and the number following the full point identifies the 

specific channel isoform (e.g., NaV1.1). This last number has been assigned 

according to the approximate order in which each gene was identified. Splice 

variants of each family member are identified by lowercase letters following the 

numbers (e.g., NaV1.1a). In mammals, there are nine different genes, Scn1a to 

Scn11a, encoding the nine monomeric α-subunits of voltage gated Na+ 

channels, NaV1.1 to NaV1.9 which share about 80% of their sequence (Catterall 

et al. , 2005) (Fig. 3). 
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     Figure 3. Mammilian NaV α subunits (J Physiol 590.11 (2012) 

 

Five sodium channel β subunits have been described so far: NaVβ1, NaVβ2, 

NaVβ3, and NaVβ4, encoded by four different genes (SCN1B–SCN4B).  

 

Figure 4. Classification and distribution of NaV β subunits (Branckebury et a., 2008) 
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1.2.3 Voltage Gated Na+ Channels Functional Expression  

The voltage-gated Na+ channels NaV1.1–1.9 are all expressed in 

excitable tissues. With the exception of NaV1.4, that is expressed only in the 

skeletal muscle, all NaV1 subunits are expressed in the nervous system. 

NaV1.1, 1.2, 1.3, and 1.6 are most predominant subtypes in CNS. NaV1.5 is the 

major cardiac sodium channel, whereas NaV1.7, 1.8, and 1.9 are important 

players in nociceptive signaling transduction owing to their presence in 

peripheral primary sensory afferents. (Catterall et al. , 2005). 

NaVβ1, NaVβ2 and NaVβ4 are the main NaVβ subunits expressed in the 

mammalian brain.  

Both the expression of the four predominant Nav1 subtypes and the four β 

subunits are developmentally and spatially regulated in the CNS. Nav1.3 

channels are primarily expressed in embryonic and neonatal rodent brain, 

whereas it is poorly expressed in the rodent adult brain. In contrast, NaV1.3 

expression remains high in adult human brain (Chen et al., 2000;Whitaker et 

al.,2001). Nav1.1, Nav1.2, and Nav1.6 display developmentally regulated 

expression patterns in specialized neuronal subcellular domains. In fact, 

Nav1.1 is localized primarily in the soma of CNS neurons; it is also found in the 

dendrites, but it is dominant at the AIS of GABAergic neurons, retinal ganglion 

cells and in spinal cord motoneurons and nodes of Ranvier. Nav1.6 and Nav1.2 

are principally associated with AIS of myelinated and unmyelinated axons, 

respectively, with Nav1.2 expressed first during development, then being 

gradually replaced by Nav1.6 concomitantly with myelination (Kaplan et al., 

2001). Although greatly diminished, the expression of Nav1.2 might persist in 

the AIS of adult neurons and is maintained in populations of unmyelinated 
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axons (Jarnot and Corbett, 1995; Boiko et al., 2003 ). The two isoforms coexist 

in the AIS of L5 pyramidal neurons with a proximal distribution of NaV1.2 and a 

distal distribution of NaV1.6. Sodium channels in the distal part of the AIS 

display the lowest threshold, suggesting that this polarized distribution could 

explain the unique properties of the AIS, including action potential initiation 

(principally mediated by Nav1.6) and backpropagation (largely supported by 

NaV1.2). A similar conclusion is drawn in CA1 pyramidal neurons where NaV1.6 

sodium channels play a critical role for spike initiation. Nav1.6 is also 

concentrated nodes of Ranvier in myelinated axons (Schaller and Caldwell, 

2000; Boiko et al., 2001; Boiko et al., 2003; Van Wart and Matthews, 2006; Van 

Wart et al., 2007; Lorincz and Nusser,2008, 2010), and is found at lower 

abundance in neuronal soma and proximal dendrites (Krzemien et al., 2000; 

Lorincz and Nusser, 2010).  

Little information is available on β subunit localization at the cellular 

level, although NaVβ2 may be concentrated at the nodes of Ranvier  and NaVβ1 

has been detected at the AIS in cerebellar GCs. Sodium channels in the adult 

central nervous system contain NaVβ1 through NaVβ4 subunits (Isom, 2001). 

 

1.2.4 Types of NaV currents 

The voltage gated Na+ channels give rise to a prominent transient Na+ 

current (INaT) and to two smaller Na+ currents, namely the persistent Na+ 

current (INaP) (French et al. , 1990) and the resurgent Na+ current (INaR) (Raman 

& Bean, 1997).  

The transient Na+ current initiates and mediates the fast rising phase of 

the action potential. At resting membrane potentials, Nav channels are closed, 
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requiring depolarization to be activated. A small depolarization of the neuronal 

membrane potential in response to sensory input or receptor input depolarizes 

the neuronal membrane potential to the threshold for NaV activation (~ -50 mV). 

NaVs activate rapidly (~1 ms to peak) allowing the influx of sodium in an inward 

direction dictated by the electrochemical gradient and depolarizing the 

membrane potential further, forming the upstroke of the action potential. Nav 

channels close within 1–2ms  of opening, a process called fast inactivation that 

changes the channels to a non-conducting state contributing to the downstroke 

of the action potential. Channel inactivation persists through-out the 

depolarizing pulse, thus underlying the action potential refractory period. In 

addition to fast inactivation, Na+ channels also undergo slow inactivation, which 

does not primarily depend on the fast inactivation gate. Following 

hyperpolarization of the membrane potential, the channel recovers from 

inactivation by returning to the closed, resting state and is re-primed and 

available again for activation. Recovery from fast as well as slow inactivation is 

time dependent and leads to a refractory period during which depolarization 

fails to open the channel pore. Moreover, recovery from inactivation allows the 

channels to participate in the next action potential and it is required for 

repetitive firing of action potentials in neural circuits and for control of 

excitability in nerve and muscle cells.  

All the kinetically fast transient channels (NaV1.1–1.7) appear quite 

similar in functional properties, but in many neurons sodium channels 

sometimes generate much longer openings as a result of incomplete or 

defective fast inactivation of Na+ channels and a persistent Na+ (INaP) current 

can be recorded (French et al. , 1990, Crill, 1996, Magistretti & Alon-so, 1999). 



23 
 

INaP  inactivates over a time period of tens of seconds and  its amplitude is just 

a few per cent of that of the transient current at the same potentials, but is still 

functionally important. The hyperpolarized voltage dependence of activation of 

persistent sodium currents allows these channels to operate as amplifiers of 

subthreshold depolarization, because their activation kinetics are fast and they 

operate over a strategic subthreshold membrane potential range with low 

potassium channel activation.  

 In some neurons, sodium channels transiently open upon recovery from 

inactivation when the membrane potential is repolarized.  This transient 

opening gives rise to a large inward tail current termed resurgent current INaR 

(Cannon and Bean, 2010), that may be caused by a temporary block of the 

channel by an open-state channel blocker that prevents entry of channel into 

the true inactive state. In fact, this blocker  precludes the entry of the 

inactivation gate into the pore resulting in a temporarily inactive state that is 

easily reversed by minor hyperpolarization of the cell (Aman and Raman, 

2010). The inactivation released upon repolarization is thought not to depend 

on the inactivation gate of the Na+ channel α-subunit itself. One possible 

mechanism for resurgent current involves the blockade of the channel pore by 

the C-terminus of NaVβ4 subunit of sodium channels, serving as an additional 

inactivation gate (Chen et al., 2008 and Aman et al., 2009). This rapidly 

reversible form of inactivation allows neurons to fire rapidly and repetitively. 

 

1.2.5 Molecular basis of NaV currents 

The molecular mechanism by which changes in membrane voltage 

confer a conformational change on voltage-gated ion channel proteins is 
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through the movement of modular voltage sensors contained within the S4 

segment of domains I–IV (Alabi et al., 2007). Transmembrane segment S4 of 

each domain contains 3-5 positively charged residues that are essential for the 

channel response to changes in membrane potential. In response to membrane 

depolarization, electrostatic interactions between positively charged residues 

and the depolarized cytoplasm force S4 towards the extracellular surface. This 

results in a conformational change in S5-S6 that opens the channel pore and 

allows sodium influx (Yarov-Yarovo Y et al., 2012). S4 segment of domains IV 

is also implicated in the voltage-dependent coupling of activation to inactivation. 

In fact, outward movement of this segment is the signal to initiate fast 

inactivation of the sodium channel by closure of the intracellular inactivation 

gate (Catterall, 2000). 

The short highly conserved intracellular loop connecting homologous 

domains III and IV of the sodium channel α subunit serves as an inactivation 

gate. This loop moves into the pore region, binds to the intracellular pore of the 

channel to inactivate it, preventing any additional current flow. Mutagenesis 

studies of this region revealed that a hydrophobic triad of isoleucine, 

phenylalanine, and methionine (IFM) is critical for fast inactivation; moreover, 

among these three amino acids, phenylalanine residue (F1489) is fundamental 

for the inactivation because it forms a hydrophobic interaction with an 

inactivation gate receptor during inactivation (Catterall, 2000).  

 

1.3 Nav1.6 Sodium Channel  

Voltage-gated sodium channel Nav1.6 is encoded by the Scn8a gene,  

located on distal chromosome 15 in mouse (Burgess et al., 1995b) and on 
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chromosome 12q13.13 in human (Plummer et al., 1998). Scn8a is a large 

gene, with 27 exons, and encodes a 1980 residue protein. 

NaV1.6 is broadly expressed in the nervous system in a variety of cells 

including Purkinje cells, motor neurons, pyramidal and granule neurons, glial 

cells and Schwann cells and is enriched at the nodes of Ranvier (Caldwell et 

al., 2000; Kearney et al., 2002). Nav1.6 is concentrated at the axon initial 

segment and nodes of Ranvier in myelinated axons (Schaller and Caldwell, 

2000; Boiko et al., 2001; Boiko et al., 2003; Van Wart and Matthews, 2006; Van 

Wart et al., 2007; Lorincz and Nusser, 2008, 2010), and is also found at lower 

abundance in neuronal soma and dendrites (Krzemien et al., 2000; Lorincz and 

Nusser, 2010).  

 

1.3.1 Unique Biophysical Properties Of NaV1.6  

The electrophysiological properties of Nav1.6 have been characterized 

in cultured cells and in neurons from mouse. Cell culture studies allow Nav1.6 

to be studied in isolation from other channels, which is important for 

understanding its specific electrophysiological properties. In vivo studies of 

Nav1.6 have focused on using null mouse mutants to remove this channel in 

the context of the entire neuron, and provide critical insight into the role of this 

channel in the complex regulation of neuronal firing.  

The role of NaV1.6  in regulating neuronal excitability may be related to 

the following properties: its voltage dependence of activation, its subcellular 

localization at the axon initial segment (AIS), the site of initiation of action 

potentials., and its role in persistent and resurgent current. The highest density 

of the NaV1.6 subunit is present in the AISs of all major neuron types of the 
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neocortex, hippocampus, cerebellum. The NaV1.6 is preferred over the other 

NaVα-subunits in the AISs because its activation threshold is shifted to a more 

hyperpolarized potential (by ~15–25 mV) compared with that of Nav1.2 (Rush 

et al., 2005) and Nav1.1 subunits (Spampanato et al., 2001), ensuring lower 

threshold for AP generation. Moreover, NaV1.6  shows a reduced use-

dependent inactivation at frequencies >20 Hz respect Nav1.2 (Rush et al., 

2005) and Nav1.1 subunits (Spampanato et al., 2001) show a robust (Rush et 

al., 2005), which would allow high frequency firing of nerve cells. Indeed, 

cerebellar Purkinje cells from mice lacking the Nav1.6 subunit (Raman et al., 

1997) showed impaired ability to fire bursts of APs at high frequencies.  

The persistent current generated by Nav1.6 is five-fold higher than that 

generated by NaV1.2 (Smith et al., 1998, Rush et al. , 2005, Chen etal.,2008). 

The larger persistent sodium currents of NaV1.6 channels maintain 

depolarization of membrane potential near threshold and thereby permit firing 

of additional action potentials. The magnitude of persistent current depends on 

the specific cell type (Rush et al., 2005; Chen et al., 2008), suggesting that this 

property can be modulated by other factors and not only exclusively attributed 

to this subunit  [Ma et al. , 1997]. 

Resurgent current has been widely associated with the presence of 

NaV1.6. Indeed, in Scn8amed neurons lacking NaV1.6 the amplitude of INaR is 

reduced. The resurgent currents of Nav1.6 channels generate inward current 

after each action potential and permit rapid recovery from inactivation, thereby 

facilitating high frequency firing (Raman and Bean, 1997; Levin et al., 2006). 

Larger relative levels of persistent and resurgent current render 

membranes containing NaV1.6 more excitable than membranes containing the 
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neuronal channels NaV1.1 and NaV1.2. Persistent current is important for 

populations of neurons that undergo repetitive firing and it has been 

hypothesized that resurgent current contributes to increased excitability leading 

to spontaneous firing and multipeaked action potentials.  

 

1.3.2 Regulative Protein Interactions Of NaV1.6 

Voltage-gated sodium channels are components of large, multi- protein 

complexes that vary between neurons and at specific subcellular domains. 

These multiple binding partners regulate gating properties and subcellular 

localization (Dib-Hajj and Waxman, 2010) of NaV channels. Several protein 

interaction sites have been mapped to the intracellular loops and C-terminus of 

the channels. 

Microtubule-associated protein Map1b. Map1b is a cytoskeletal 

protein that binds microtubules and actin (Riederer, 2007) and contributes to 

trafficking of several channel and receptor proteins. O’Brien et al. 2012 

demonstrated that Nav1.6 is another neuronal protein that is trafficked along 

the microtubule network to the cell surface by interaction with the light chain of 

Map1b. Since microtubules extend along the full length of the axon, Map1b 

could play a role in localization of Nav1.6 to both the AIS and the nodes of 

Ranvier. The residues 77-80 (VAVP motif) in the N-terminus of NaV1.6 are 

responsible of interaction with the light chain of Map1b. Interestingly, this 

interaction may be specific to NaV1.6 because the VAVP motif is not conserved 

in the other NaV channels; in fact NaV1.1 and NaV1.2 bind Map1b at a reduced 

affinity compared to NaV1.6 due to the difference in residues of the binding site. 

Moreover, O’Brien et al., 2012 demonstrated that the interaction with Map1b 
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increases Nav1.6 peak current density resulting in an increase in current 

density enhancing  trafficking of Nav1.6 to the cell surface without a change in 

activation or fast-inactivation of the channel.  

Protein kinases. PKA and PKC have only a small effect on Nav1.6 

channel activity (Chen et al.,2008); in fact, the reduction of its current is only 

7% by PKC and 8% by PKA, despite multiple predicted PKA and PKC 

phosphorylation sites (Chen et al., 2008).   

Immunohistochemistry of hippocampal neurons demonstrated that the MAP 

kinase p38 co-localizes with Nav1.6 (Gasser et al., 2010). This stress-activated 

kinase phosphorylates NaV1.6 at serine 553 of the first intracellular loop 

(Wittmack et al., 2005). This phosphorylation creates a PXpS/TP motif 

(residues 551-554) that facilitates binding of E3 ubiquitin ligases, NaV1.6 

internalization and proteasomal degradation (Sudol and Hunter, 2000; 

Zarrinpar and Lim, 2000; Gasser et al.,2010) inducing Nav1.6 current amplitude 

reduction, as observed in the ND7/23 cell line (Wittmack et al., 2005) and in 

hippocampal neurons (Gasser et al., 2010) treated with p38 activator, 

Anisomycin.  Moreover, no effect of p38 on sodium current was observed in 

Scn8a null (med) hippocampal neurons, suggesting that NaV1.6 is the 

predominant sodium channel target of activated p38 (Gasser et al., 2010). 

Ankyrin (Ank). Ankyrins are adaptor proteins that attach membrane 

proteins to spectrin components of the cytoskeleton. In the higher vertebrates, 

three genes encoding for Ankyrins (Ankyrin-R, Ankyrin-B and Ankyrin-G)  are 

been identified: ANK1, ANK2 and ANK3.  Direct interaction between ankyrins 

and voltage-gated sodium channels is well documented (Srinivasan et al., 

1988; Davis et al., 1996; Hill et al., 2008). All vertebrate voltage-gated sodium 
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channels share a conserved ankyrin-binding motif (nine residues) in the second 

cytoplasmic loop (Nav1.6 residues 1089-1122) (Lemaillet et al., 2003; Gasser 

et al., 2012), that is necessary for binding to Ankyrin G. It has been recently 

demonstrated that AnkG binding is essential for targeting and localization of 

Nav1.6 to the AIS and nodes of Ranvier  (Gasser et al.,2012). Interestingly, 

mutations in conserved residues of the ankyrin-binding motif do not alter the 

electrophysiological properties of Nav1.6 (Gasser et al., 2012).  

Voltage-gated sodium channel β subunits. NaVβ1 (36 kDa) and NaV α 

subunits are bound in non-covalent manner. In particular, negatively charged 

residues of extracellular domain and intracellular portion of NaVβ1 are involved 

in the functional interaction with α subunit (McCormick et al.,1998; Spampanato 

et al., 2004). Biskup et al. 2004 demonstrated that NaVβ1 and NaV α subunit 

associate in the endoplasmic reticulum, after that they reach the plasma 

membrane as a complex; this association is fundamental for the correct 

delivery to the membrane and localization of NaV α subunit in specific neuronal 

domains.  

Interaction between NaVβ1 and Nav1.6 is required for function of NaV1.6 

at the distal AIS (Brackenbury et al.,2010). In fact, NaVβ1 mediate functional 

association with AIS protein scaffold. Studies of mice null for the β1 subunit 

(Scn1b-/-) suggest that interaction between β1 and NaV1.6 is required for wild-

type expression levels of Nav1.6 at the distal AIS in vitro and in vivo 

(Brackenbury et al., 2010). A higher proportion of Nav1.1 was observed at the 

AIS in cultured cerebellar granule neurons and cerebellar Purkinje neuron 

slices from Scn1b-/- mice (Brackenbury et al., 2010). As a consequence of 

reduced NaV1.6 at the AIS, slightly reduced levels of resurgent current were 
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observed in cerebellar granule neuron slices (Brackenbury et al., 2010). Thus, 

the interaction between β1 and NaV1.6 is important for localization and function 

of the channel. 

Sodium channel activity mediate neurite extension during development; 

in particular, functional reciprocity of NaV1.6 and NaVβ1 is involved in this 

process. In fact, Brackenbury et al., 2010 demonstrated that transfection of 

NaVβ1 subunits into a monolayer of Chinese Hamster Lung cells co-cultured 

with isolated mouse brain neurons positively affects neurite extension in wild 

type neurons. Transfection of NaV β1 had no effect on Scn8a null neurons in 

this co-culture system, demonstrating that some sodium channel current-

dependent neurite outgrowth is mediated by NaV1.6. 

NaVβ4 associates covalently NaV α subunit by disulfide bridge; indeed,  

one of the five cysteine residue of extracellular domain is involved in this 

bound. 

Interaction of NaV1.6 and NaVβ4 has been implicated in the generation 

of resurgent current (Grieco et al., 2005; Aman et al., 2009). In cultured 

cerebellar neurons, the β4 subunit is required for generation of resurgent 

current and contributes to persistent current and repetitive firing (Bant and 

Raman, 2010). Knockdown of β4 by siRNA in cultured cerebellar granule cells 

reduced resurgent current from ~9% of transient current in control cells to 

~3.7% in treated cells. β4 knockdown resulted in a 7.7 mV hyperpolarizing shift 

in the voltage dependence of inactivation and a decrease in repetitive firing, 

changes that are predicted to reduce neuronal excitability. Most, but not all, 

subpopulations of neurons that have resurgent current express the β4 subunit 
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(Bant and Raman, 2010). However, full-length β4 is not sufficient to generate 

resurgent sodium current.  

Calmodulin. The intracellular concentrations of Ca2+ effect gating 

properties of NaV channels activating Calmodulin/ Calmodulin Kinase II 

complexes that bind IQ domain of NaV C-terminus (Deschenes et al., 2002; 

Maltsev et al., 2008; Mori et al., 2003). 

Calmodulin (CaM) is a ubiquitous, small (16,7 kDa) calcium-binding 

protein that acts as a Ca2+ sensor translating changes in cytoplasmic Ca2+ into 

cellular responses by interacting with a diverse group of signaling molecules. 

Ion channels are prominent targets of CaM, for example L-type voltage-

dependent Ca2+ channels, but also NaV channels. All of the voltage-gated 

sodium channels contain an IQ motif in the C-terminus (Yu and Catterall, 2003; 

Feldkamp et al., 2011) by which they can associate CaM. 

The IQ motif of NaV1.6 is localized between residues 1902–1912 of carboxyl 

terminus of the channel. The same motif binds apo-CAM, the Ca2+ deficient 

form of calmodulin, and Ca2+-bound CAM (Bahler and Rhoads, 2002). Herzog 

et al., 2003 demonstrated that CaM regulates the current density and the 

kinetics properties of NaV1.6 currents in a calcium-dependent manner. Indeed, 

the authors suggest that binding of apo-CAM to Nav1.6 accelerates its 

inactivation; addition of Ca2+ to the system, converting apo-CAM to CAM, 

slowed NaV1.6 inactivation by ~50% increasing excitability. 

Nedd4. Nedd4 or Neuronal precursor cell-expressed developmentally 

downregulated 4 is a E3 ubiquitin ligase responsible of ubiquitination and 

degradation of protein containing  WW domains with PY motif.  NaV channels 

are target of ubiquitination by Nedd4. NaV1.6 contains two binding sites for 
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Nedd4, a PXY motif (residues 1943–1945) at the C-terminus, and the 

PXpS/pTP motif in the first cytoplasmic loop (residues551–554) (Abriel et al., 

2000; Sudol and Hunter, 2000; Fotia et al., 2004; Ingham et al., 2004), both 

necessary for internalization and degradation of NaV1.6 (Gasser et al., 2010). 

 

1.3.3 Nav1.6 Role In Pathophysiological Conditions  

NaV1.6 appears to be particularly important, because it is the principal 

channel at axonal sites where action potentials are generated. Juvenile lethality 

of NaV1.6 deficit  at postnatal day 21 (P21) suggests that this channel is vital for 

impulse propagation later in life, when it substitutes NaV1.2.  

Within the past year, de novo mutations of human SCN8A detected by 

exome sequencing have revealed a role for Nav1.6 in epilepsy and intellectual 

disability. Hypoactivity and hyperactivity of Nav1.6 are both pathogenic, but 

with different outcomes: haploinsufficiency is associated with impaired 

cognition (Trudeau et al., 2006; McKinney et al., 2008; Rauch et al., 2012) 

while hyperactivity can result in epilepsy (Veeramah et al., 2012). 

Scn8a gene mutations causing NaV1.6 loss or disruption result in a 

variety of recessive neuromuscular phenotypes, including tremor, cerebellar 

ataxia, dystonia and paralysis, as naturally occurring med mutant NaV1.6 

(Scn8amed) knockout mice (Meisler et al., 2002, 2004). The tremor and ataxia 

result from the altered biophysical properties, in particular reduced persistent 

and resurgent current and diminished spontaneous simple spikes (Levin et al, 

2006; Harris et al, 1992; Raman et al., 1997). In addition, prefrontal cortex 

pyramidal cells and retinal ganglion cells of the homozygous Scn8amed 
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mutants also show reduced excitability (Maurice et al., 2001; Van Wart, A. and 

Matthews, 2006).  

NaV1.6 has diverse and complex roles in epilepsy. Abnormally high 

levels of persistent NaV1.6 current causes neuronal hyperexcitability and leads 

to epilepsy (Veeramah et al., 2012). Gain of function mutations cause 

convulsive seizures, as shown in a patient with infantile epileptic 

encephalopathy (Veeramah et al., 2012). Conversely, NaV1.6 loss of function 

mutations cause absence seizures and are protective against convulsive 

seizures (Martin et al., 2007). These divergent effects between seizure types 

are presumably due to independent roles of NaV1.6 in separate epileptic 

networks. 

 

1.4 Voltage-Gated Sodium Channels And Alzheimer’s Disease 

Forms of epilepsy are accompanied by cognitive impairment. Elevated 

incidence of epilepsy has been demonstrated in patients with Alzheimer’s 

disease, as well in AD-related mouse models that have elevate levels of Aβ 

exhibit altered neuronal activity and hyperexcitability. Many papers highlight 

that NaV channels can give a strong contribute to the hypersynchronicity of 

neuronal brain circuits in AD.  In fact, altered expression and processing of 

voltage-gated sodium channels have been described in AD mouse model and 

patients. Verret et al., 2012 identified alterations in NaV1.1 channel in human 

amyloid precursor protein (hAPP) transgenic mice and AD brains. In particular, 

they demonstrated a reduction of NaV1.1 levels in inhibitory Parvalbumin cells,  

which prominently express this NaV subunit.  The authors correlated this 

reduction to Aβ-induced aberrant network activity and cognitive decline 
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because restoring physiological levels of this channel in hAPP mice they are 

able to enhance inhibitory synaptic currents and decrease network 

hypersynchronization and memory deficits.  

Corbett et al., 2013 confirmed the involvement of NaV1.1 in AD aberrant 

neuronal activity; in fact, they proved that surface expression of this NaV 

channel is reduced in inhibitory and excitatory cortical neurons of Tg2576 AD 

mice model and that NaVβ2 is responsible of this reduction. Kim et al., 2007 

previously had demonstrated that intracellular domain (ICD) of NaVβ2 is able to 

control the protein expression of NaV1 translocating to the nucleus and triggers 

expression of this NaVα subunit. Interestingly, NaVβ2 ICD is produced by 

proteolytic cleavage of BACE1 and γ-secretase enzymes, like APP. When Kim 

et al., 2007 evaluated the consequence of excessive cleavage of Navβ2 in 

overexpressing BACE1 transgenic mice, they found an surplus expression of 

NaV1.1. However, NaV1.1 is intracellularly retained, doesn’t translocate on the 

cellular membrane leading to reduced surface levels. Owing to this evidence, 

Corbett and colleagues demonstrated that AD Tg2576 mice, which express 

high levels of BACE1, exhibited increased NaVβ2 cleavage, intracellularly 

retention and reduction of surface expression of NaV1.1 in cortex of APP mice, 

like in BACE1 transgenic mice, and spike-wave discharges and abnormal 

neuronal activity. 

In addition to expression changes of one or more NaV subunits, it is possible 

that Aβ can induce neuronal circuit hyperactivity increasing NaV  current 

density. In agreement with this possibility, antiepileptic drugs that block sodium 

channel activity are effective in reducing epileptiform discharges in mouse 

model of AD (Ziyatdinova et al., 2011). Moreover, it has been demonstrated 
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that acute (1-2 min) application of soluble Aβ1-42 leads to alterations of 

spontaneous firing in CA1 pyramidal neurons. Moreover, authors proved that 

acutely exposure to Aβ1-42  also increased density of persistent sodium currents 

and these current are responsible of CA1 pyramidal neuron hyperactivity 

(Shuan-cheng Ren et al., 2014). Nevertheless, they didn’t investigate the 

cellular mechanisms by which Aβ1-42 can rapidly upregulate persistent sodium 

currents; they only supposed that NaV1.6 could be responsible of this effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

2. AIM OF THE STUDY 

 
The goal of this work was to determine the role of the Na+ channel 

subunit NaV1.6 to the Alzheimer’s Disease pathogenesis. In particular, we first 

sought to determine possible changes in NaV current density after the exposure 

to the Aβ1-42 peptide in mouse wild type and in AD-related Tg2576 hippocampal 

neurons. Then, to assess the role of NaV1.6 subunit, we analyzed the functional 

contribution of NaV1.6 in the same experimental conditions in presence of 

siRNA direct against NaV1.6 mRNA or of Anisomycin that promotes p38 MAP 

Kinase-mediated NaV1.6 endocytosis.  
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3. MATERIALS AND METHODS 

 

3.1 Drugs And Chemicals 

Aβ1-42, Poly(D)-lysine Hydrobromide Mol Wt 30,000-70,000 (P7280), 

Poly(D)-lysine Hydrobromide Mol Wt >300,000 (P7405), Cytosine β-D-

arabinofuranoside (Ara-C), Anisomycin  and mouse monoclonal anti-β-Tubulin,  

as well as all other materials for solution preparation, were from Sigma Aldrich 

(St. Louis, MO, USA). Tetrodotoxin (TTX), rabbit polyclonal anti-NaV1.6 were 

from Alomone Labs (Jerusalem, Israel). Mouse monoclonal anti-MAP2 was 

from Sigma-Aldrich (Milan), HBSS, Eagle’s MEM 10X, horse serum (HS), fetal 

bovine serum (FBS), L-glutamine and phosphate buffed saline (PBS) were 

purchased from LifeTechnologies (Oslo, Norway). Protease inhibitor cocktail II 

was purchased from Roche Diagnostic. 

 

3.2 Mice  

Animals were kept under standard conditions of temperature, humidity 

and light, and were supplied with standard food and water ad libitum. Animals 

were handled in accordance with the recommendations of International 

Guidelines for Animal Research and the experimental protocol was approved 

by the Animal Care and Use Committee of “Federico II” University of Naples. 

All efforts were made to minimize animal suffering and to reduce the number of 

animal used.  

Heterozygous male Tg2576 mice and wild-type littermates, obtained 

backcrossing male Tg2576 mice with F1 wild-type female, were used for all 

experiments. Tg2576 mice, purchased from commercial source [B6;SJL-



38 
 

Tg(APPSWE)2576Kha, model 1349, Taconic, Hudson, NY], are well-

established AD-related mouse model carrying the human APP Swedish 

670/671 mutation (K670N e M671L; Hsiao et al., 1996). F1 wild-type female 

(B6;SJL) littermates were obtained crossing female C57BL/6 with male SJL; 

C57BL/6 and SJL mice were purchased from Charles River. 

  

3.2.1 Genotyping: PCR Analysis 

Genomic DNA from mouse tails was isolated with salt precipitation 

method. Tails after the cut were incubated with tail digestion buffer (50 mM 

Tris-HCl pH 8.0, 100 mM EDTA pH 8.0, 100 mM NaCl, 1% SDS) supplemented 

with Proteinase K (Sigma Aldrich, Milan, Italy) at a final concentration of 0.5 

mg/ml and placed in water bath at 55-60°C overnight with mixing. This step 

should result in the complete solubilization of the tail fragment.  

Genomic DNA from mouse embryonic tissue was extracted with phenol 

chlorophorm method. Embryonic brain tissue was kept during cerebral 

dissection and frozen immediately upon collection. After thawing, same volume 

of Trizol Reagent (Invitrogen) was added to each sample in order to 

homogenize the tissue and DNA was extracted following manufacturer 

guideline. DNA concentration and purity of each sample was quantified using 

Nanodrop Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,US).   

We used following primers to amplify the DNA region with human APP 

Swedish mutation on both types of genomic DNA: 5′-

CTGACCACTCGACCAGGTTCTGGGT-3′ and 

5′GTGGATAACCCCTCCCCCAGCCTAGACCA-3′ (Primm, Milan, Italy).   50 

ng/µL of DNA were used for PCR reaction. The amplification protocol (30 
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cycles) was the following: 95°C for 45 s, 55°C for 60 s, 72°C for 60 s. Each 25-

µL reaction contained: 1U of AmpliTaq DNA Polymerase (Lucigen, US) and 0.5 

µM of each primer. The amplification products were visualized on agarose (2%) 

gel electrophoresis by loading approximately half (10 µL) of each reaction per 

lane. The band of 466bp indicated the transgenic genotype, whereas its 

absence indicated the wild type genotype. 

3.3 Mouse Hippocampal Cell Cultures 

Primary neuronal cultures were prepared from hippocampi of embryonic day 

(E) 16 Tg2576 and wild-type littermate mice. Embryonic age (E) was calculated 

by considering E0.5 the day when a vaginal plug was detected. Briefly, 

pregnant animals were anesthetized and sacrificed by cervical dislocation. 

Hippocampal tissues from embryos were dissected in ice-cold dissecting 

medium (HBSS supplemented with 27 mM glucose, 20 mM sucrose, 4 mM 

sodium bicarbonate), centrifuged, and the resulting pellet was mechanically 

dissociated with a fire polished glass pipette. Cells were resuspended in plating 

medium consisting in Eagle’s MEM (MEM, Earle’s salts, supplied bicarbonate-

free) supplemented with 5% fetal bovine serum, 5% horse serum, 2 mM L-

glutamine, 20 mM glucose, 26 mM bicarbonate, and plated on 35mm culture 

dishes or onto 18 mm glass coverslips  (Glaswarenfabrik Karl Hecht KG, 

Sondheim, Germany) coated with 100 g/ml poly(D)-lysine at a density of one 

embryo hippocampi/1 ml. Three days after plating, non-neuronal cell growth 

was inhibited by adding 10μM of cytosine arabinofuranoside. 24 hours after this 

treatment, the planting medium was replaced by growth medium (Eagle’s 

Minimal Essential Medium with 20 mM glucose, 26 mM NaHCO3 

supplemented with 2mM L-glutamine and 10% horse serum. Neurons were 
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cultured at 37°C in a humidified 5% CO2 atmosphere.  All the experiments were 

performed between 8-16 days in vitro DIV.  

3.4 A Oligomers Preparation And Cellular Treatments 

 Aβ1-42 oligomers were made according to the method described by 

Pannccione et al. (2012). Briefly, lyophilized Aβ1-42 synthetic peptides were 

dissolved in PBS to obtain a 1 mM stock solution, incubated for 48 hours at 

37°C to pre-aggregate the peptide, and stored at -20°C (Lorenzo and Yankner, 

1994).  Before all experiments, we tested a pre-aggregated preparation of the 

Aβ1–42. SDS-PAGE was performed using monoclonal antibody 4G8 (Sigma 

Aldrich, Milan, Italy), which recognizes an epitope within residues 1-17 of 

human Aβ. Results showed that the oligomers between 18 and 32 kDa were 

the major species of Aβ1–42 peptide in the preparation (data not shown). 

Aβ1-42 exposure was carried out in growth medium at the final 

concentration of 5 μM. When we performed time-course experiments, the Aβ1-

42 was added to culture medium at above mentioned concentration for 10 

minutes, 1, 24, 48 and 72 hours and kept throughout the experiment.  

3.5 Anisomycin Treatment  

Tg2576 and wild type hippocampal neurons grown on glass coverslips 

for 12 and 15 DIV were pretreated for 30 minutes at 37°C in a humidified 5% 

CO2 atmosphere with 10 μg/ml Anisomycin (Sigma Aldrich), a specific activator 

of MAP p38α. For electrophysiological experiments, at the end of the pre-

treatment the culture medium was replaced with the bath solution. Same 

protocol was used for immunocytochemistry analysis. 

 

http://www.jneurosci.org/content/24/14/3592.long#ref-8
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3.6 Western-blot analysis 

Hippocampal neurons from Tg2576 and wild-type mice were washed 

thoroughly to remove medium using PBS. To obtain total lysates for 

immunoblotting analysis, neurons were scraped in ice-cold RIPA buffer (50 mM 

Tris-HCl (pH 7.4), 1% Triton X-100, 0.25% sodium deoxycholate, 150 mM 

NaCl, 5 mM MgCl2, 1 mM EDTA, 0.1% SDS, Protease Inhibitor Cocktail II), 

sonicated, incubated for 1 hour on ice and centrifuged at 12000g  at 4 °C for 30 

min. The total protein content of resulting supernatant was determined using 

the Bradford reagent. 

Hippocampal tissues from Tg2576 and wild-type were homogenized in a glass 

teflon grinder (10 strokes at 500 rpm in about 1 min) using a lysis buffer 

containing (in mM): 250 sucrose, 10 KCl, 1.5 MgCl2, 1 EDTA, 1 EGTA, 1 

dithiothreitol, 20 HEPES, pH 7.5, (Angulo et al. 2004) and completed with 

Protease Inhibitor Cocktail II. Tissue suspensions were then sonicated and 

incubated for 1 hour on ice. After centrifugation at 12,000 g at 4 °C for 5 min, 

the supernatants were collected. The protein content of resulting supernatant 

was determined using the Bradford reagent. 

70 μg of proteins were mixed with a Laemmli sample buffer; then, they 

are applied and resolved on 10% SDS-PAGE polyacrylamide gels. Following 

transfer onto nitrocellulose membranes (Hybond-ECL, Amersham Bioscience, 

UK), non-specific binding sites were blocked by incubation for 2 hrs at 4°C  with 

5% non-fat dry milk (Bio-Rad Laboratories, Milan, Italy) in TBS-T buffer; 

subsequently,  incubated with primary antibodies  overnight at 4°C. After three 

10-min washes with TBT-T, the membranes were incubated 1 h with the 

appropriate secondary antibody. Excessive antibodies were then washed away 
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three times (10 min) with TBS-T. Immunoblots were visualized by enhanced 

chemiluminescence (ECL) (Amersham-Pharmacia-Biosciences, UK). Films 

were developed using a standard photographic procedure and the relative 

levels of immunoreactivity were determined by densitometry using ImageJ 

Software (NIH, Bethesda, MA, USA). 

 Primary antibodies used were: rabbit-polyclonal antibody anti-NaV1.6 and 

rabbit-polyclonal antibody anti-NaVβ1 (1:1000; Alomone Labs); rabbit-

polyclonal anti-p38α antibody (1:1000; Santa Cruz Biotechnology); mouse 

monoclonal anti-tubulin (1:3000; Sigma Aldrich). 

 

3.7 Electrophysiological recordings 

Transient Na+ currents (ITNa)  were recorded, by patch-clamp technique in 

whole-cell configuration, in the following groups of hippocampal neuronal 

cultures: (a) wild-type, (b) wild-type+Aβ1-42, (c) wild-type+Anisomycin (d) 

Tg2576, (e) Tg2576+Anisomycin. Hippocampal neurons were plated on 25-mm 

glass coverslips for recording. Currents were filtered at 5 kHz and digitized 

using a Digidata 1322A interface (Molecular Devices). Data were acquired and 

analyzed using the pClamp software (version 9.0, Molecular Devices). 

All recordings were performed at room temperature (20-21°C).  The total inward 

Na+ current was measured by applying, from a holding potential of -70 mV, 

depolarizing voltage steps of ….-ms duration ranging from -70 to +50 mV. 

These were preceded by conditioning pulses at -100 mV lasting for .. s to allow 

full recovery from INa inactivation. Possible changes in cell size occurring after 

specific treatments were calculated by monitoring the capacitance of each cell 
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membrane, which is directly related to membrane surface area, and by 

expressing the current amplitude data as current densities (pA/pF). The 

capacitance of the membrane was calculated according to the following 

equation:Cm=c·Io/Em(1-I/Io), where Cm is the membrane capacitance, c is 

the time constant of the membrane capacitance, Io is the maximum capacitance 

current value, Em is the amplitude of the voltage step, and Iis the amplitude 

of the steady-state current. 

The neurons were perfused with External Ringer solution contained (in 

mM): NaCl 126, NaHPO4 1.2, KCl 2.4, CaCl2 2.4, MgCl2 1.2, glucose 10 and 

NaHCO3 18, TEA 20, and nimodipine 10 μM (pH 7.4). The pipette solution 

contained (mM): Kgluconate 145, Mg-ATP 1, and 0.1 CaCl2, 2 MgCl2, 0.75 

EGTA, HEPES 10,  pH 7.3. TEA was included to block delayed outward 

rectifier K+ components; nimodipine (10 μM) was added to external solution to 

block L-type Ca2+-channels. TTX (50 nM) was added to the bath solution to 

isolate components of Na+-currents flowing through TTX-sensitive Na+-

channels.  

 

3.8 Immunocytochemistry in hippocampal neurons 

Hippocampal neurons obtained from Tg2576 and wild type mice were washed 

in cold PBS and fixed in 4% (w/v) paraformaldehyde in PBS for 40 minutes at 

room temperature. After four 10-min washes in PBS, the cells were first pre-

incubated in PBS containing 3% (w/v) bovine serum albumin (Sigma, Milan, 

Italy) for 60 minutes and then with the primary anti-NaV1.6 polyclonal antibody 

(1:1000) and primary anti-MAP2 monoclonal antibody (1:1000) at 4° C 

overnight. Next, cells were washed in PBS and, for double 
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immunofluorescence, were instead incubated in a mixture of fluorescent 

labeled secondary antibodies (Alexa 488- or Alexa 594- conjugated anti-mouse 

or anti-rabbit IgGs) for 1h at room temperature. Cell nuclei were stained with 

Hoechst (Sigma, Milan, Italy). After the final wash, cells were mounted and 

coverslipped with Vectashield (Vector Labs, Burlingame, CA,). Slides were 

analysed with a confocal microscope (Zeiss, Nikon Instruments, Florence, Italy) 

equipped with a CCD digital camera (Coolsnap-Pro, Media Cybernetics, Silver 

Springs, MD, USA) and Image Pro-Plus software (Media Cybernetics, Silver 

Springs, MD, USA).   

 

3.9 Nav1.6  Silencing RNA Transfection 

Small interfering RNA (siRNA) against NaV1.6 and the validated 

nonsilencing AllStars negative control siRNA that has no homology to any know 

mammalian gene were purchased from Qiagen (Milan, Italy). Two different 

predesigned siRNAs directed against mouse SCN8a transcript (GenBank 

accession number NM_001077499; Entrez Gene ID 20273) were tested:  

Mm_Scn8a_5 Flexitube siRNA (Cat.No. SI02671277) and Mm_Scn8a_6 

Flexitube siRNA (Cat.No SI02713956), which bound two different coding 

sequences on NaV1.6 mRNA downstream of the transcription start site. The 

siRNAs were transiently transfected using HiPerFect Transfection Reagent 

(Qiagen) at a final concentration of 50 nM in serum free OptiMEM medium for 5 

hours, at the end of which OptiMEM was replaced by growth medium.  

Wild type hippocampal neurons were used for siRNA transfection experiments; 

the gene-silencing efficiency of siRNA was determined 48 hrs after transfection 

by electrophysiological measurements. 
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3.10 Statistical Analysis  

Statistical analysis were performed with ANOVA followed by Newman test or 

Student t-test. Differences were considered to be statistically significant at 

p<0.05.  
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4. RESULTS 

 

4.1 Aβ1-42  exposure raised NaV functional activity in 

hippocampal neurons 

We first examined whether A1-42 peptide effected sodium current 

density e/o kinetics in hippocampal neurons recording sodium currents by 

patch-clamp technique in whole-cell configuration. To this purpose, we exposed 

hippocampal neurons to A1-42 peptide for different time, (10 minutes, 1, 24, 48, 

and 72 hours. Time-course experiments revealed that the exposure to 5 M 

A1-42 didn’t immediately modify Nav channels activity, as observed from 

electrophysiological recordings after 10 minutes exposure. On the other hand, 

24 and 48 hrs of A1-42 treatment induced a significant increase of Na+ current 

density, followed by a return to basal levels at 72 hours (Fig. 5A and 15). These 

currents were completely inhibited by the extracellular application of the 

selective sodium channel blocker TTX (50 nM) in control conditions and after 

exposure to 5 M A1-42 (Fig. 5D) indicating that this Na+-influx is mediated by 

TTX-sensitive voltage-gated sodium channels.  

Interesting, when we analysed the I–V-relationships for endogenous 

sodium currents in control and A1-42-treated hippocampal neurons, we 

observed that A1-42- exposure not only increased the peak current but also 

modified the kinetics of Nav channels. In fact, 24 hrs A1-42 treatment caused a 

significant leftward shift in the voltage dependence of activation: in fact, the 

peak current of Na+  currents occurred at -20 mV in the A1-42–exposed neurons 

respect -10 mV  in the control (Fig. 5C). Interesting, in accordance with the 
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time-course experiments, at 48 and 72 hours A1-42 exposure we observed that 

the progressive reduction of the peak current was associated with no significant 

changes in the voltage dependence of activation (Fig. 5C). 

 

Figure 5. Aβ1-42  exposure raised NaV functional activity in hippocampal neurons. 
(A) INa traces recorded under control conditions and after exposure to Aβ 1-42 for different time. 
(B) Quantification of INa represented in A. (C) I–V-relationships for endogenous sodium currents 
in control and Aβ1-42-treated hippocampal neurons. (D) INa traces recorded under control 
conditions and after Aβ 1-42 exposure in presence of TTX and relative percentage of  TTX- 
induced INa inhibition. All values are expressed as mean ± SEM of current densities in 3 
independent experimental sessions (* p<0.05 versus respective controls). 

 

4.2 Aβ1-42 fails to increase Na+ currents in NaV1.6 silenced 

mouse hippocampal cultures 

In order to test which is the contribution of NaV1.6 activity to the Aβ1-42 

effects on Nav currents, we explored the effects of selective knockdown of this 

subunit on the sodium currents recorded after the exposure to beta-amyloid 

peptide.  

To this aim, we performed silencing experiments of NaV1.6. Firstly, we 

tested the silencing efficiency of two different NaV1.6 siRNAs, the Mm_Scn8a_5  
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and Mm_Scn8a_6, both at the concentration of 50 nM, transfecting wild type 

hippocampal neuronal cultures. Patch clamp experiments revealed that 

Mm_Scn8a_6 siRNA was more effective than Mm_Scn8a_5 to knock down 

NaV1.6 as revealed from the significant reduction of the Na+ currents (Fig. 6A 

and 6B). Then, we used Mm_Scn8a_6 siRNA to silence NaV1.6 expression  

before the exposure to Aβ1-42. Interestingly, knocking down of this sodium 

channel subunit before Aβ1-42-treatment (24 hours) counteracted  the Nav 

currents increase (Fig. 6D and 6E).   

 

Figure 6 Aβ1-42 fails to increase Na
+
 currents in NaV1.6 silenced mouse hippocampal 

cultures. (A) NaV1.6 protein levels under control conditions and after siRNA transfection (B) INa 

traces recorded under control conditions and after siRNA transfection. (C) Quantification of INa 

represented in B. (D) INa traces recorded under control conditions and after Aβ 1-42 exposure 
after siRNA transfection or Anisomycin treatment . (E) Quantification of INa represented in D. All 
values are expressed as mean ± SEM of current densities in 3 independent experimental 
sessions (* p<0.05 versus respective controls). 

 



49 
 

4.3 pp38-mediated internalization of Nav1.6 counteracts Aβ-

induced INa
+

 increase  

To confirm that the increased density of INa  in the wild-type hippocampal 

neurons exposed to A1-42 for 24 hours is mainly due to NaV1.6 α-subunit, we 

added Anisomycin (10µg/mL) for 30 minutes at culture medium hippocampal 

neurons before recording sodium currents. Anisomycin is an antibiotic that is 

routinely used to activate p38 MAP kinases (Cano and Mahadevan, 1995). 

Wittmack et al. (2005) have been demonstrated that Anisomycin-activated α-

pp38 phosphorylates NaV1.6 at a single serine residue (Ser553) within the 

sequence motif Pro-Gly-Ser553-Pro in loop 1 (Nav1.6/L1). This phosphorylation 

reduces selectively NaV1.6 current density because decreases the number of 

available channels by internalization of this channel. 

In agreement with results of silencing experiments, patch clamp recordings  

revealed that Anisomycin-induced activation of p38α was able to prevented INa 

increase in wild-type hippocampal neurons exposed to Aβ1-42 peptide. More 

interestingly, as pp38α promoted only NaV1.6 endocytosis, the reduction 

observed of total Na+ current density indicated that NaV1.6 significantly 

contributes to Aβ1-42-induced INa+ enhancement (Fig 6D and 6E).  

4.4 Increased NaV Activity In Hippocampal Neurons Of AD 

Mouse Model Tg2576 

To understand whether sodium-current densities are also increased in 

AD, hippocampal neurons obtained from a mouse model of Alzheimer’s 

disease, Tg2576,  were used to record total sodium currents. Time-course 

recording experiments at different days in vitro revealed that hippocampal 

neurons from Tg2576 transgenic-mice displayed an early increase of Na+ 
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current densities respect wild-type hippocampal neurons. In fact, NaV activity 

was significantly increased already at 8 DIV in culture, reached the maximal 

value at 12 DIV, and showed a less pronounced, but still significant, increase at 

15 DIV ( Fig. 7A and 7B) in the transgenic neurons respect wild-type. These 

results are in agreement with those obtained in the hippocampal neurons 

exposed to A1-42. 

Intriguingly, analysis of the I–V-relationships for endogenous sodium 

currents in wild-type and Tg2576 hippocampal neurons revealed that 12 DIV in 

culture Tg2576 neurons displayed a significant leftward shift in the voltage 

dependence of activation compared  to wild-type neurons, with current peak at 

-30mV rather that at -10 mV of wild-type neurons (Fig. 7C), suggesting that the 

Tg2576 hippocampal neurons have an increased number of channels open at a 

given voltage, consistent with an increase in the activity of the NaV channels. 

 

Figure 7. (A) Increased NaV Activity In Hippocampal Neurons Of AD Mouse Model 
Tg2576. (A)  INa traces recorded in wild type and Tg2576 hippocampal neurons at different time 
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in culture. (B) Quantification of INa represented in A. (C) I–V-relationships for endogenous 
sodium currents in wild type and Tg2576 hippocampal neurons. All values are expressed as 
mean ± SEM of current densities in 3 independent experimental sessions (* p<0.05 versus 
respective controls). 

 

4.5 The Anisomycin-stimulated NaV1.6 endocytosis prevents 

increase of INa
+ currents in hippocampal neurons of Tg2576 

mice   

To examine whether also in the hippocampal neurons of the Tg2576 

mice the increased density of INa  is mainly due to NaV1.6 α-subunit, as in the 

hippocampal neurons exposed to A1-42, we exposed control and Tg2576 

hippocampal neurons to Anisomycin (10µg/mL) for 30 minutes before recording 

sodium currents. We observed that Anisomycin induced a significant reduction 

of sodium currents in Tg2576 hippocampal neurons respect untreated 

transgenic neurons, comparable to those recorded in untreated wild type 

neurons (Fig. (8A and 8B), indicating that the increase of NaV1.6 peak currents 

mainly contribute to the increased sodium currents in transgenic hippocampal 

neurons.  

We also examined the effects of Anisomycin on steady-state biophysical 

properties of Nav currents. Interesting, the analysis of the I/V relationship of Na+ 

currents recorded in Anisomycin-pretreated Tg2576 hippocampal neurons 

revealed that the treatment counteracted the leftward shift in the voltage 

dependence of Nav activation. In fact, as in the wild-type hippocampal neurons, 

the current peak occurred at -10mV rather that at -30mV, further supporting the 

hypothesis that NaV1.6 is responsible of the increased sodium current density  

in the transgenic hippocampal neurons (Fig. 8C). 
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Figure 8. The Anisomycin-stimulated NaV1.6 endocytosis prevents increase of 
INa

+
 currents in hippocampal neurons of Tg2576 mice. (A)  INa traces recorded in wild type 

and Tg2576 hippocampal neurons under control conditions and after treatment with 
Anisomycin.  (B) Quantification of INa represented in A. (C) I–V-relationships for endogenous 
sodium currents in wild type and Tg2576 hippocampal neurons under control conditions and 
after treatment with Anisomycin.  All values are expressed as mean ± SEM of current densities 

in 3 independent experimental sessions (* p<0.05 versus respective controls). 

 

4.6 Overexpression of NaV1.6 channel subunits in Tg2576 

hippocampal neurons as a neuroprotective mechanism 

Because NaV1.6 activity was significantly up-regulated in Tg2576 

hippocampal neurons, we measured the expression levels of this subunit in 
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these neurons. Immunoblot analysis performed with a NaV1.6-specific antibody 

on protein extracts from wild-type and Tg2576 hippocampal neurons at 12 DIV 

revealed one band at 260 kDa that corresponds to subunit. Densitometric 

analysis showed that this band was considerably more intense in hippocampal 

neurons of Tg2576 than in the controls (Fig. 9A).  

Immunocytochemical analysis, performed with the same anti-NaV1.6 

antibody, confirm raised expression of NaV1.6  in Tg2576 hippocampal neurons 

respect in wild type. More interestingly, Nav1.6 immunosignal pattern was more 

different between wild type and Tg2576 cultured hippocampal neurons; in fact, 

we observed a plasma membrane localization and a punctuated staining 

pattern mostly confined throughout the neuropil in wild type hippocampal 

neurons, whereas, in Tg2576 hippocampal cells, the NaV1.6 immunosignal was 

more confined to the soma plasma membrane (Fig. 9B). 

Moreover, to confirm that the reduction of total sodium current observed 

in Tg2576 hippocampal neurons after the treatment with Anisomycin is due to 

decreased levels of NaV1.6, immunocytochemical experiments were performed 

in Anisomycin-treated wild type and Tg2576 hippocampal neurons. 

Interestingly, NaV1.6 immunosignal is significantly reduced in both neuronal 

cultures, confirming that pharmacological stimulation of NaV1.6 endocytosis 

abolishes sodium current increase. Moreover, Anisomycin-induced NaV1.6 

internalization had different effects in wild type and Tg2576 hippocampal 

neurons. In fact, Anisomycin rapidly induced numerous beads in most neurites 

of transgenic hippocampal neurons compared with wild type cells, in which no 

morphological changes were observed. The appearance of focal bead-like 

swellings in the dendrites and axons as a consequence of NaV1.6 sodium 
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channel density reduction at the plasma membrane reflected neurite damage 

and indicated that most likely overexpression of this sodium channel subunit 

could be a protective mechanism against Aβ1-42 toxic effects (Fig. C). 

 

Figure 9. NaV1.6 and Navβ1 Auxiliary Subunit expression in Tg2576. (A) Immunoblotting 
analysis of NaV 1.6 and Navβ1 and densitometric analysis in Wild Type and Tg2576 
hippocampal neurons. (B) immunocytochemical analysis of NaV1.6 signal in Wild Type and 
Tg2576 hippocampal neurons, without or after treatment with Anisomycin. (C) Quantification of 
neuritic beading observed in B.  All values are expressed as mean ± SEM of optic densities  in  
3 independent experimental sessions (* p<0.05 versus respective controls).  

 

4.7 Reduced Expression Of Navβ1 Auxiliary Subunit In Tg2576 

Hippocampal Neurons 

To investigate which mechanism could be responsible of leftward shift in the 

voltage dependence of NaV current activation, we measured the expression 
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levels of NaVβ1 auxiliary subunit because it has been demonstrated that β1 

subunit has modulatory effects on the kinetics and gating of NaV1.6 sodium 

channels, in particular co-expression of NaV1.6 and NaVβ1 determines   

depolarizing shift in the midpoint potential for channel activation (Bingjun He 

and David M. Soderlund, 2014). To this aim, we analyzed NaVβ1 protein levels 

in cellular lysates of wild-type and Tg2576 hippocampal neurons at 12 DIV. 

Western blotting analysis revealed a significant decrease in the optical density 

of the 36kDa (NaVβ1) specific bands in hippocampal neurons of Tg2576 

respect wild type (Fig. 9A). 
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5. DISCUSSION 

The results of the present study provide the first evidence that NaV1.6 

channel subunit is involved in AD etiophatogenesis. In hippocampal neurons 

A1-42 induced a time-dependent upregulation of Na+ currents with a peak at 24 

hours. Similarly, Tg2576 hippocampal neurons displayed a Na+ current 

upregulation with a peak at XII DIV. This enhancement was selectively 

mediated by NaV1.6 channel isoform. In fact, the removal of NaV1.6 isoform 

either by NaV1.6 silencing or the pharmacological pretreatment with 

Anisomycin, as well known activator of stress-related p38 MAPK (X. Guo et al. 

2011), prevented this increase. Moreover, NaV1.6 augmented activity was due 

to the reduction of its auxiliary subunit 1 protein expression. By contrast, in the 

late phase, at 72 hours after A1-42 or in hippocampal neurons at XV DIV 

Tg2576, the Na+ currents decreased and were comparable to the respectively 

controls. 

It is well known that NaV1.6 is the major isoform at nodes of Ranvier in 

myelinated axons and, additionally, is distributed along unmyelinated C-fibers 

of sensory neurons and is expressed in presynaptic and postsynaptic 

membranes of the neocortex and cerebellum (Caldwell et al., 2000). This 

pattern of expression implies that NaV1.6 sodium channels play important roles 

in both electrical and chemical signaling in the brain. NaV1.6 currents might 

significantly impact axonal conduction and may significantly contribute to the 

pathophysiology of the injured nervous system such as multiple sclerosis 

(Black et al. 2007; Craner MJ, 2004 and 2005). Recently, several mutations in 

NaV1.6 encoding gene are been identified in patients affected by epilepsy 

(Estacion M et al., 2014). 
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It has been suggested an involvement of NaV1.6 channel subunit in AD 

since Mukhamedyarov MA et al. (2009) found that A1-42-induced 

depolarization is driven by increased Na+-influx to muscle fibers through TTX-

sensitive Na+-channels but the exact molecular mechanism is yet unknown. 

Interestingly, in the present study we observed a time-dependent modulation of 

Na+ currents. In the early phase of AD we observed an enhanced activity of 

NaV channels. In fact, we observed an upregulation of Na+ currents both in 

hippocampal neurons exposed to A1-42 or Tg2576 hippocampal neurons with a 

peak at 24 hours or at XII DIV, respectively. Moreover, this Na+ current 

upregulation was associated with a significant negative shift in the peak of 

activation of the Na+ currents of -10 mV in A1-42 exposed hippocampal neurons 

or of -20 mV in Tg2576 hippocampal neurons. By contrast, in the late phase, at 

72 hours after A1-42 or in hippocampal neurons at XV DIV Tg2576, when the 

NaV1.6 currents abruptly decreased returning at control values, no negative 

shift in the peak of activation was observed. It is well known that distal end of 

the AIS is the preferred site for action potential initiation in cortical pyramidal 

neurons because of its high NaV channel density. In particular, low-threshold 

NaV1.6 and high-threshold NaV1.2 channels are preferentially accumulate at 

the distal and proximal AIS, respectively. Patch-clamp recording in neurons 

revealed a high density of Na+ current and a progressive reduction in the half-

activation voltage (up to 14 mV) with increasing distance from the soma at the 

AIS. Moreover, recent evidence show that distal NaV1.6 promotes action 

potential initiation, whereas proximal NaV1.2 promotes its backpropagation to 

the soma (Hu W, et al 2009). On this basis it was possible to speculate that the 

upregulation of Na+ currents that occurred in our experimental conditions could 
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be due to an increased activity of NaV1.6 channel subunits. Interestingly, the 

removal of NaV1.6 channel subunits by silencing directed against NaV1.6 was 

able to prevent the upregulation of Na+ currents observed in hippocampal 

neurons exposed to A1-42 such as in Tg2576 hippocampal neurons. Moreover, 

the pretreatment with Anisomycin, as well known activator of stress-related p38 

MAPK (Guo X. et al. 2011 Neuroscience) was able to counteract the 

upregulation of NaV1.6 activity both in hippocampal neurons exposed to A1-42 

and in Tg2576 hippocampal.  

 It is well known that phosphorylation provides a fast post-translational 

modification of proteins that has been shown to regulate the acute response of 

cells to a variety of stimuli and that phosphorylation of NaV channels has been 

shown to produce rapid modulation of Na+ currents. This phenomenon seems 

closely mediated by mitogen-activated protein kinases (MAPK). MAPKs are 

expressed in neurons and are activated in several pathological conditions 

including AD. In mammalian cells, three principle MAPK pathways, including 

ERK, JNK, and p38 MAPK, have been identified. In particular, p38 MAPK 

pathway is especially relevant to the response of environmental stress and 

inflammatory stimuli (Saklatvala, 2004 and Kumar et al., 2003). Moreover, in 

AD brain, increased levels of activated p38 MAPK are detected and associated 

with neuropil theads, and neurofibrillary tangle-bearing neurons (Hensley et al., 

1999 and Sun et al., 2003). In AD transgenic mice, p38 MAPK is significantly 

activated in microglia, astrocytes and neurons, around and distant from the 

plaques, which indicates the possible involvement of stress-related signaling 

pathways during the pathogenesis of AD (Hwang et al., 2004, Hwang et al., 

2005 and Giovannini et al., 2008). In addition, it has been demonstrated that 

http://www.sciencedirect.com/science/article/pii/S0306452211008074#NEU4228
http://www.sciencedirect.com/science/article/pii/S0306452211008074#NEU6297
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http://www.sciencedirect.com/science/article/pii/S0306452211008074#bib15
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the activator of stress-related p38 MAPK, anisomycin, could induce Aβ 

overproduction by transcriptional activation of APP, BACE1, and PS1 genes 

through DNMT-dependent hypomethylation and histone H3 hyperacetylation 

suggesting the involvement of epigenetic mechanism by which oxidative stress 

contributes to the pathogenesis of AD (Guo et al. 2011). Interesting, sequence 

analysis shows that NaV1.6 contains a putative MAPK recognition module in 

the cytoplasmic loop. Moreover, it has been demonstrate that NaV1.6 channels 

and p38 MAPK colocalize in rat brain tissue and that activated p38 

phosphorylates NaV1.6, specifically at serine 553 (S553) significant and 

selective reducing peak NaV1.6 current amplitude (Wittmack et al. 2005). 

The immunoblot and immunocytochemical analysis, performed with the 

selective anti-NaV1.6 antibody, confirmed that this enhanced NaV1.6 activity 

was associated to NaV1.6 protein expression upregulation. In particular, 

immunocytochemical analysis revealed a pronounced perikaryal staining 

intensely confined to the soma plasmamembrane in Tg2576 hippocampal 

neurons whereas in wild type neurons this signal was a punctuated staining 

pattern mostly confined throughout the neuropil and less intense. Moreover, in 

the presence of Anisomycin NaV1.6 immunosignal was significantly reduced in 

Tg2576 hippocampal neurons in the presence of p38 activator.  

 The pathophysiological role played by NaV1.6 enhanced activity is 

almost controversial. Thus from one site the increase of NaV1.6 activity is 

considered neurodetrimental since cause an increase in axonal intracellular 

sodium through a persistent Na+ currents increase that leads to membrane 

depolarization and further activation of NaV channels. On the other hand, the 

increase in axonal intracellular sodium promotes the reversal of Na+/Ca2+ 
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exchanger that plays a neuroprotective action during AD in the early phase 

(Pannaccione et al. 2012). Immunocytochemical analysis performed in the 

presence of Anisomycin showed that the internalization of NaV1.6 seemed to 

play a detrimental role. In fact, Tg2576 hippocampal neurons exposed to 

Anisomycin displayed an enhanced number of neurites with beading. Neuritic 

beading, focal bead-like swellings in the dendrites and axons, is a 

neuropathological sign in epilepsy, trauma, ischemia, aging, and 

neurodegenerative diseases such as AD (Hideyuki Takeuchi, Tetsuya Mizuno, 

Guiqin Zhang, Jinyan Wang, Jun Kawanokuchi, Reiko Kuno, and Akio 

Suzumura 2005 JBC Vol. 280, No. 11, Issue of March 18, pp. 10444 –10454). 

Several previous studies report that neuritic beading is a reversible response to 

neurotoxic stimuli independent of neuronal death. By contrast, a recent study 

demonstrate that dendritic beading correlates with disease severity in 

experimental autoimmune encephalomyelitis rat spinal cord (Zhu, B., Luo, L., 

Moore, G. R., Paty, D. W., and Cynader, M. S. (2003) Am. J. Pathol. 162, 

1639-1650), suggesting that beading paralleled neuronal damage. 

Furthermore, the mechanisms underlying neuritic bead formation are 

completely unknown. Our results seemed to suggest that NaV1.6 upregulation 

could be involved in a neuroprotective mechanism.  

  Finally, western blot analysis showed that the band at ~260 kDa, 

corresponding to NaV1.6, was significantly higher in Tg2576 hippocampal 

neurons than in wild type neurons suggesting that the upregulation observed 

was due to an upregulation of NaV1.6 isoform. Interestingly, immunoblot 

analysis performed with a specific antibody against β1 auxiliary subunit of 

NaV1.6 isoform revealed that the band at ~36 kDa corresponding to β1 
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auxiliary subunit was downregulated in Tg2576 hippocampal neurons when 

compared to controls suggesting that this augmented activity was due to the 

reduction of the protein expression of 1 auxiliary subunit. It has been reported 

that NaV1.6 isoform and 1 auxiliary subunit in many brain regions coassemble 

in heteromultimeric complexes. The reciprocal interaction between the NaV1.6 

and 1 subunits identifies a specific functional association between these two 

subunits that promotes neurite outgrowth, determines sodium channel 

localization and activity.  In fact, 1 subunit modulates the kinetic and gating 

properties of NaV1.6 (Bingjun He, David M. Soderlund 2014). In particular, the 

voltage dependence of NaV1.6 activation, recorded in the absence of β1 

subunits, was shifted in the direction of hyperpolarization compared to NaV1.6 

recorded in the presence of β1 (Burbidge et al., 2002; He and He and 

Soderlund 2011; Bingjun He, David M. Soderlund 2014). 

Collectively, these results seems to demonstrate that the upregulation of 

NaV1.6 activity may be interpreted as a survival strategy activated by neurons 

in an attempt to defend themselves from the death messages triggered by this 

peptide during the early phase of exposure.  
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