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Introduction

This thesis deals with linear and nonlinear stability analysis of the equilib-

ria of some reaction-diffusion systems modeling epidemiological models and

convection phenomena in porous media.

Reaction-diffusion equations have been deeply studied in recent years thanks

to their several applications to ecology, biology, biochemistry, classical theory

of heat and mass transfer and so on. At first, reaction-diffusion equations

have been especially used to model chemical phenomena, but they are also

well suited to model a wide range of other kinds of dynamical processes. In

general, they can be used to describe the movement of many individuals in

a given environment or media. These individuals could be very small, such

as basic particles in physics, bacteria, cells or very large, such as animals,

humans or certain kinds of events like epidemics or rumors. In this more

general case, the state variable of the reaction-diffusion equations represents

the density function of the particles or of the individuals of a given popula-

tion spreading in a given domain. The dimension of the population density

is usually defined as the number of particles or organisms per unit area or

unit volume.

According to what happens for a chemical substance, the population size

can change either for the movement of the individual particles or for produc-

tion/killing of individuals due to physical, chemical or biological reasons.
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The way in which the particles move is the result of a highly complicated

process which can be attributed to a lot of reasons, For example, to the mi-

gration processes of humans that can be for looking for a better life, for a

job, political, for religious or economical reasons and so on. Although these

reasons can be quoted as motivation to move, generally people move from

areas where the population density is higher to areas where it is lower. This

is similar to what happens in many physical phenomena like heat transfer

(from warmer places to colder ones). By making this assumption, the flux of

the population is governed by the Fick’s law.

On the other hand, the number of individuals may change because of other

reasons like birth, death, hunting and so on.

Most of the thesis deals with the analysis of some reaction-diffusion systems

modeling the spreading of an infection within a population.

In order to study infectious disease transmission, mathematical models play

a central role since they allow to predict the asymptotic behaviour of the in-

fection and, consequently, to take some actions in order to control epidemics.

When a population is not infected yet by a disease, all the individuals are

regarded as susceptibles. Introducing a few number of infected in the com-

munity, in order to know if the epidemic will die out or if it will blow up, it

would be useful to study the longtime behaviour and the stability of the so

called disease-free equilibrium (DFE). If DFE is stable, then epidemic will

decay; then, the problem to determine if endemic equilibria (equilibria with

all positive components) exist arises. When endemic equilibria exist, their

stability analysis allows to state if epidemic will persist or not.

In the present thesis, first of all, a SEIR epidemic model, under different

kinds of boundary conditions, is considered.

In classical epidemic models, the host population is supposed to be divided
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into three disjoint classes: S, which are individuals susceptible to infection,

I, which are infective individuals and R which are the removed ones. How-

ever, in several cases, the disease incubation period is not negligible: that

means that the disease may require some time for individuals to pass from

the infected state to the infective one. In this case, a further class has to be

considered, the individuals exposed to infection or individuals in the latent

state ([2], [3], [52]).

A key role in epidemic models is played by the so called force of infection

or incidence rate, which is the function describing the mechanism of disease

transmission. In classical models, the incidence rate is proportional to the

product of susceptibles and infectives. However, in order to generalize the

dynamics of disease transmission, since 1970’s Capasso and his coworkers

stressed the importance to consider nonlinear incidence rates, in particular

by studying a case of cholera epidemic [8]. Since then, many authors pro-

posed peculiar nonlinear forms for the force of infection [5], [7], [26], [32], [53].

The present thesis will deal with the well known and meaningful incidence

rate g(S, I) = KIS(1 + αI), where K and α are positive constants. This

functional means an increased rate of infection due to double exposure over

a short time period so that the single contacts lead to infection at a rate

KIS whereas new infective individuals arise from double exposures at a rate

KαI2S.

In most of epidemic models known in literature, the population is supposed

to be homogeneously distributed in the domain at hand so that there is no

distinction between individuals in one place and those in another one and

the time evolution of the disease is described through a system of ordinary

differential equations. However, in order to consider the more general case

in which the disease may spread faster in some parts of the domain then in
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other ones, it is necessary to allow the variables of the model to depend on

space as well as on time and hence a reaction-diffusion model.

The same motivation justifies the introduction of a reaction-diffusion sys-

tem modeling the spreading of a cholera epidemic in a non homogeneously

mixed population. Cholera is an acute intestinal infection caused by the bac-

terium Vibrio Cholerae. The mechanism of transmission occurs, principally,

via the ingestion of contaminated food or water and only secondarily via

direct human-to-human contacts. A lot of mathematical models are devoted

to study cholera outbreaks in different parts of the world. In particular, Ca-

passo and Paveri-Fontana in 1979 studied the cholera epidemic in Bari in

1973 by introducing a system modeling the evolution of infected people in

the community and the dynamics of the aquatic population of pathogenic

bacteria. In fact, cholera diffusion is strictly linked to the interactions be-

tween individuals in the community and bacteria in contaminated water, [8].

In this thesis, the attention is focused on some reaction-diffusion systems

modeling the spreading of epidemics within a population or within interact-

ing populations.

Successively, Capasso and Maddalena in 1981, in order to let the model be

more realistic, assumed that the bacteria diffuse randomly in the habitat,

hence they analyzed a model consisting of two nonlinear parabolic equations

[9]. Since many studies found that toxigenic Vibrio Cholerae can survive in

some aquatic environments for months to years, many authors began to con-

sider the aquatic environment as a reservoir of Vibrio Cholerae in endemic

regions. Codeco in 2001 analyzed the role of aquatic reservoir in promoting

cholera outbreaks by introducing an ODE model that includes the dynamics

of susceptible population [19].

In this thesis, the above model is generalized taking into account non homo-
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geneously mixed toxigenic Vibrio Cholerae reservoir in contaminated water

and dividing the total population into three disjoint classes: susceptibles,

infected and removed individuals. A central role is played by the study of

influence of diffusivity of each population on the model dynamics.

In studying the above reaction-diffusion models, the main aims are to study:

• the longtime behaviour of solutions, in particular their boundedness

and the existence of absorbing sets;

• the linear and nonlinear stability of equilibria, especially of the biolog-

ically meaningful ones, aiming to obtain the optimal result of coinci-

dence between the linear and nonlinear stability thresholds.

The method applied in order to reach the second aim is the Liapunov di-

rect method which, unlike approximate methods that are often involved in

the stability study of partial differential equations, works directly with the

system and it is potentially applicable when nonlinearities are involved. How-

ever, for the stability analysis, the central problem in using the direct method

consists in the construction of a peculiar Liapunov function which allows to

find conditions ensuring coincidence between linear and nonlinear stability

thresholds as far as the global stability when it is possible. In this thesis

a peculiar Liapunov functional, introduced by Rionero [54], [55], [62] is em-

ployed; this functional is directly linked, together with its derivative along

the perturbations, to the principal invariants of the linear operator of the

model at hand.

In this thesis, a similar Liapunov functional is also used in order to study the

linear and nonlinear stability of a vertical constant throughflow, which is a

stationary solution of a system modeling fluid motions in horizontal porous

layers, uniformly heated from below and salted from above by one salt.
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The research concerned with fluid motions in porous media, due to their

large applications in real world phenomena, is very active nowadays. In fact,

porous materials occur everywhere (see for instance geophysical situations,

cultural heritage contaminant transport and underground water flow [25],

[56] and the references therein). In particular, convection and stability prob-

lems in porous layers in the presence of vertical throughflows find relevant

applications in cloud physics, in hydrological studies, in subterranean pol-

lution and in many industrial processes where the throughflows can control

the onset and evolution of convection (see [12], [13], [29], [30], [43], [44]-[46],

[50], [61], [68], [69]). In fact, the effect of vertical throughflow on the onset of

convection has been considered in many cases (the effect in a rectangular box

in [45]; the effect combined with a magnetic field in [43]; stability analysis

in a cubic Forchheimer model in [29] and when the density is quadratic in

temperature in [30]; the effect with an inclined temperature gradient in [50]).

In the present thesis the effects of both temperature gradient and salt con-

centration on the stability of a vertical flow are taken into account. Already

in [12] and [18] the authors consider both the effects. Precisely, the effect of

variable thermal and solutal diffusivities on the onset of convection for non

constant throughflows has been analyzed in [18], while in [12] the stability

of a vertical constant throughflow in a porous layer, uniformly heated and

salted from below, has been investigated. In particular, sufficient conditions

ensuring linear and global nonlinear stability in the L2−norm have been de-

termined.

In the present thesis, the more destabilizing case of horizontal porous layers

uniformly heated from below and salted from above by one salt is analyzed.

The thesis is organized as follows.

Chapter 1 is devoted to some general definitions and known results about
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reaction-diffusion models, including some existence theorems.

In Chapter 2 some basic properties of dynamical systems and the basic tools

for Liapunov direct method are recalled, stressing the differences in its appli-

cations to ordinary differential equations and partial differential equations.

Chapter 3 deals with the linear and nonlinear stability analysis of the biolog-

ically meaningful equilibria of a SEIR reaction-diffusion model for infections

under mixed boundary conditions and then under homogeneous Neumann

ones and of a reaction-diffusion system modeling a Cholera epidemic.

Finally, in Chapter 4 the linear and nonlinear stability of a vertical constant

throughflow through a porous medium in a horizontal layer, uniformly heated

from below and salted from above by one salt, is investigated. By using a

new approach concerned with the Routh-Hurwitz conditions and the use of a

peculiar Liapunov functional, necessary and sufficient conditions for the lin-

ear stability of a vertical constant throughflow are determined. Furthermore,

conditions ensuring the global non linear stability for the vertical constant

throughflow are obtained.
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Chapter 1

Reaction-diffusion systems

Reaction-diffusion equations have been deeply studied in recent years due to

their several applications to ecology, biology, biochemistry and the classical

theory of heat-mass transfer. At first, they have been especially used to model

chemical phenomena. In this sense, they describe how concentration of one

or more substances distributed in the space changes under the influence of

two processes: local chemical reactions, through which the substances are

converted one into each other, and diffusion, which cause the substances’

spread out in space.

Let us suppose that the substances, whose diffusion and spreading we are

interested in, occupe a domain Ω and let us assume that Ω is an open bounded

subset of R
n with n ≥ 1 (in particular, for physical reasons, we will be

interested in the cases of n = 1, 2, 3). Let us denote by ∂Ω the boundary of

Ω and by B an elementary volume at fixed location within the domain. Let

us introduce the function u(x, t) : Ω× R
+ −→ R which is the concentration

of the chemical substance, being t the time variable and x ∈ Ω the location.

The change of the amount of a ”substance” U within the elementary volume

B is given by the flux of matter through the elementary volume boundary
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∂B plus the net production rate of a chemical species (the reaction kinetics)

in B, and so, in mathematical terms

d

dt

∫

B

u(x, t) dx = −
∫

∂B

J · n dS +

∫

B

f dx, (1.1)

where J is the flux density, i.e. the scalar product J · n is the net rate at

which particles cross a unit area in a plane perpendicular to n (positive in

the n direction, n being the outward-oriented normal to B on ∂B), and

f , the reaction kinetics, is the rate of production and degradation of the

reactant. Generally, it consists of a polynomial or rational function of u

and of some parameters that represent interaction with other chemicals and

external factors.

Using the divergence theorem (assuming the underlying fields are smooth),

(1.1) becomes
d

dt

∫

B

u(x, t) dx =

∫

B

[−∇ · J+ f ] dx.

If we suppose that the domain is fixed in time, we can differentiate through

the integral and, in view of the arbitrary choice of the elementary volume B

in Ω, the following local conservation equation holds

∂u

∂t
= −∇ · J+ f,

for any flux transport J and any ”supply” f . Obviously, the last term f may

depend on u, such as on position x and time t, i.e. f = f(t, x, u).

If we suppose that the instantaneous flux J is due to isotropic Fickian diffu-

sion, then J(x, t) = −D(x)∇xu(x, t), where D(x) is called diffusivity and ∇x

is the gradient operator with respect to the x variable. Hence one obtains

the following reaction-diffusion equation for species U on a fixed domain

∂u(x, t)

∂t
= ∇ · (D(x)∇xu(x, t)) + f(t, x, u), (x, t) ∈ Ω× R

+. (1.2)
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Now, on considering a changing in time domain Ω(t) with boundary ∂Ω(t),

let B(t) be an elementary volume which moves with the flow due to domain

change. Applying the conservation of matter and the divergence theorem

(being instantaneously valid at all times) to any measurable B(t), we obtain

d

dt

∫

B(t)

u(x, t) dx =

∫

B(t)

[−∇ · J+ f ] dx.

In view of the Reynolds transport theorem, one has that

d

dt

∫

B(t)

u(x, t) dx =

∫

B(t)

[

∂u

∂t
+∇ · (vu)

]

dx

where v is the velocity field of the flow. Also in this case, the arbitrary choice

of B(t) implies
∂u

∂t
= −u∇ · v −∇u · v −∇ · J+ f,

that, for isotropic Fickian flux, becomes

∂u

∂t
= −u∇ · v −∇u · v +∇ · (D(x)∇xu) + f,

which is the local form of the diffusion equation with convection. The term

∇ · v gives the local rate of volume expansion or contraction. In particular,

for incompressible flows, ∇ ·v = 0. The convection or advection term ∇u ·v
represents the transport of chemicals within the domain as it moves and no

relative movement of the chemicals with respect to the domain is present.

Since one is generally interested in the interaction of several particles species,

for example several chemicals {U1, ..., Un}, then equation (1.2) is replaced

by a system which describes the evolution of a vector of concentrations

u = (u1, ..., un) and now the kinetic term, f(t, x,u) = (f1, ..., fn) is a vec-

tor describing the interaction of the species.

Reaction-diffusion equations are also well suited to model a wide range of

other kinds of dynamical processes. In general, they can be used to describe
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the movement of many individuals in an environment or media. The individ-

uals can be very small such as basic particles in physics, bacteria, molecules

or cells, or very large objects such as animals, plants or certain kind of events

like epidemics or rumors.

In this more general case, the state variable u(x, t) represents the density

function of the particles or of the individuals of a given population spreading

in the domain Ω. The dimension of the population density is usually the

number of particles or organisms per unit area (if n = 2) or unit volume (if

n = 3). We will assume that the function u(x, t) has regularity properties,

like continuity and differentiability, which is reasonable when a population

with a large number of individuals is considered. Technically, we define the

population density function u(x, t) as follows. Let x be a point of the do-

main Ω and let {Bn}n∈N be a sequence of spatial regions (which have the

same dimension as Ω) surrounding x; here Bn is chosen in such a way that

the spatial measurement |Bn| of Bn (length, area, volume, or, mathemati-

cally, the Lebesgue measure) tends to zero as n −→ ∞, and Bn ⊃ Bn+1;

then

u(x, t) = lim
n−→∞

number of individuals in Bn at time t

|Bn|
,

if the limit exists.

According to what happens for a chemical substance, population can change

in two ways: the first one is that the individual particles can move around

and the second one is that new individuals may be produced or existing

individuals may be killed due to physical, chemical or biological reasons. We

shall model these two different phenomena separately.

The way in which the particles move is the result of a highly complicated

process which can be attributed to a lot of reasons. For example, the reasons

of the emigration of human can be looking for a better life, looking for a
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better job, political, economical or religious reasons. Although these reasons

can be quoted as motivation to move, generally people move from areas where

population density is high to areas where it is lower. This is similar to what

happens in many physical phenomena, like the heat transfer (from warmer

place to colder place) or the dilution of chemical in water. By making this

assumption, the vector J, that represents the flux of the population density

in this context, is governed by the Fick’s law, i.e.

J(x, t) = −D(x)∇xu(x, t),

where D(x) is the diffusion coefficient at x and ∇x is the gradient operator

with respect to the x variable.

On the other hand, the number of particles at any point may change because

of other reasons like birth, death, hunting and so on. We assume that the

rate of change of the density function due to these reasons is f(t, x, u), which

we usually call the reaction rate.

For any elementary volume B of the domain, the total population inside B

is

∫

B

u(t, x) dx and the rate of change of the total population is

d

dt

∫

B

u(t, x) dx.

The net growth of the total population inside the region B is
∫

B

f dx

and the total out flux is
∫

∂B

J(x, t) · n(x) dS,

where ∂B is the boundary of B and n(x) is the outer normal direction to ∂B

at x. By using the same procedure as before, one obtains again the reaction-

diffusion equation (1.2). The diffusion coefficient D(x) is not a constant in
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general since the environment is usually heterogeneous. However, when the

region of the diffusion is approximately homogeneous, we can assume that

D(x) ≡ D, then (1.2) can be simplified to

∂u

∂t
= D∆u+ f(t, x, u),

where ∆ = ∇ · (∇) =
n

∑

i=1

∂2

∂x2i
is the Laplacian operator.

1.1 Boundary conditions

If we consider a reaction-diffusion equation on a bounded domain Ω ⊂ R
n,

then we need, additional to the initial conditions, well-suited boundary con-

ditions (otherwise, uniqueness cannot be guaranteed). Let us consider the

equation
∂u

∂t
= D∆u+ f(t, x, u), t > 0, x ∈ Ω (1.3)

under the initial conditions

u(x, 0) = u0(x), x ∈ Ω. (1.4)

For the existence of solutions of reaction-diffusion equations, the choice of

properly posed boundary conditions and reasonable initial data is crucial. In

general, suitable boundary conditions for the initial value problem (1.3)-(1.4)

can assume one of this form

• Neumann boundary conditions, i.e.

∇u · n = b(x, t), t > 0, x ∈ ∂Ω

where n is the outer normal at x ∈ ∂Ω and b is a prescribed function.

The homogeneous case, i.e. b ≡ 0, corresponds to the no-flux condition:
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it means that no particles or individuals can leave or enter the domain

Ω via the boundary. In the case of a chemical reaction, it means that

there is no additions and subtractions of any chemicals through the

boundary and all chemicals are generated inside the reactor and they

remain there.

Homogeneous Neumann boundary conditions are also meaningful in

many population ecological models. For example, if the spatial domain

of the system is an isolated island and if all living species on the island

do not attempt to emigrate, then the ecosystem of the island can be

considered as a closed one and no-flux boundary conditions can be

taken into account.

For the classical heat conduction equation
∂T

∂t
= D∆T , the no-flux

boundary conditions mean that the boundary is heat-insulated.

• Dirichlet boundary conditions, i.e.

u = b(x, t), t > 0, x ∈ ∂Ω

where b is a prescribed function. If b ≡ 0, these are called homogeneous

Dirichlet boundary conditions. Dirichlet boundary conditions assume

that the solution takes the value b(x, t) for each point x on the bound-

ary ∂Ω and for any t > 0. In many cases, the homogeneous Dirichlet

boundary condition makes the mathematical problem easier, but for

most chemical reactions, no-flux condition is more appropriate than

Dirichlet boundary condition. When the problem assumes the Dirich-

let boundary conditions u(x, t) ≡ c, being c a constant, we can think

u(x, t) takes the value c for all the points outside of Ω. For example,

for the heat equation
∂T

∂t
= D∆T , constant Dirichlet conditions mean

that the outside environment has a constant temperature T0.
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For ecological applications, sometimes we can assume homogeneous

Dirichlet boundary condition u(x, t) ≡ 0 on ∂Ω, which implies that any

individual of the species cannot survive outside of or even on the bound-

ary of Ω. Thus, in this case, the boundary is lethal (sometimes called

absorbing) and any individual who wanders outside (due to diffusion)

is killed by the sterile exterior environment or the deadly boundary.

• Robin boundary conditions (or mixed boundary conditions), i.e.

α(x, t)u+ β(x, t)∇u · n = b(x, t), t > 0, x ∈ ∂Ω

with α(x, t), β(x, t) ≥ 0 and b(x, t) prescribed functions.

Let us remark that it is also possible to combine different types of boundary

conditions on separate parts of the boundary or to consider more compli-

cated cases. In fact, here, the boundary conditions have been introduced as

linear conditions in u; however, it is also possible to have nonlinear boundary

conditions (but this makes the analysis of the reaction-diffusion system more

complicated).

1.2 Existence theorems

Theorems of local (in time) existence and uniqueness of generalized and

smooth solutions for reaction-diffusion systems are well known in literature;

moreover, when solutions are a-priori bounded, global existence can be also

obtained (see, for instance, [28], [34], [67]). Very different techniques may be

used to obtain existence results, for example comparison principles or a more

topological-functional approach.

In this section we will refer only to a comparison-existence theorem for

smooth solutions. Comparison theorem, based on the maximum principles,
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is a qualitative technique which, in the case of a single nonlinear equation,

gives existence and uniqueness theorems for initial-boundary value problem

by supplying a-priori bounds on the solution of the equation. It is capable to

extension to certain system of parabolic PDEs, but, in general, gives weaker

results (for more details we refer to [1], [67]). Among the various existence

and comparison theorems that can be established by both functional and

classical methods (see [22]), we recall the approach due to Pao [47], since

the monotone argument he adopts is constructive and in the mean time it

leads to an existence-comparison theorem for the corresponding steady-state

problem.

The basic idea of this method is that, by using an upper solution or a lower

solution as the initial iteration in a suitable iterative process, the resulting se-

quence of iterations is monotone and converges to a solution of the problem.

For coupled systems of equations, the definition of upper and lower solutions

and the construction of monotone sequences depend on the quasi monotone

property of the reaction function in the system. To illustrate the method, let

us consider the following coupled system of two parabolic equations in the

form


























∂ui
∂t

− Liui = fi(t, x, u1, u2) in DT

Biui = hi(x, t) on ST i = 1, 2

ui(x, 0) = ui,0(x) in Ω

(1.5)

where DT = Ω × (0, T ] and ST = ∂Ω × (0, T ], being T > 0 an arbitrary

fixed time, Li are the following uniformly elliptic operators with smooth

coefficients

Li =
n

∑

j,l=1

a
(i)
j,l (x, t)

∂2

∂xj∂xl
+

n
∑

j=1

b
(i)
j (x, t)

∂

∂xj
, i = 1, 2
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and

Bi = αi(x, t)
∂

∂ν
+ βi(x, t) i = 1, 2

are the boundary operators, with αi, βi (i = 1, 2) nonnegative smooth func-

tions such that αi+βi > 0, i = 1, 2. Moreover, let us assume that ∂Ω has the

outside strong sphere property when αi = 0 and is of class C1+α when αi > 0,

that the boundary and initial functions hi, ui,0(x), i = 1, 2 are nonnegative

smooth functions in their respective domains and that the functions fi are

Hölder continuous in DT × J1 × J2 for some bounded sets J1, J2 ⊂ R.

Let us recall that a function fi = fi(u1, ..., uN ) is said to be a quasimonotone

nondecreasing (respectively nonincreasing) function if, for fixed ui, fi is non-

decreasing (respectively nonincreasing) in uj for j 6= i. Hence, in the case of

a vector function f = (f1, f2) of two components, there are three basic types

of quasimonotone functions.

Definition 1 A function f = (f1, f2) is called quasimonotone nondecreasing

(respectively nonincreasing) in J1 × J2 if both f1 and f2 are quasimonotone

nondecreasing (respectively nonincreasing) for (u1, u2) ∈ J1 × J2. When f1

is quasimonotone nonincreasing and f2 is quasimonotone nondecreasing (or

vice versa), then f is called mixed quasimonotone.

The function f is said to be quasimonotone in J1 × J2 if it has anyone of the

quasimonotone properties in Definition 1.

As usual, we refer to f as C1-function in J1 × J2 if both f1 and f2 are

continuosly differentiable in (u1, u2) for all (u1, u2) ∈ J1×J2. The function f

is called a quasi C1-function in J1 × J2 if f1 is continuously differentiable in

u2 and f2 is continuously differentiable in u1 for all (u1, u2) ∈ J1×J2. Hence,
if f is a quasi C1-function, then the three types of quasimonotone functions
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in Definition 1 are reduced to the form

∂f1/∂u2 ≥ 0, ∂f2/∂u1 ≥ 0

∂f1/∂u2 ≤ 0, ∂f2/∂u1 ≤ 0 for (u1, u2) ∈ J1 × J2

∂f1/∂u2 ≤ 0, ∂f2/∂u1 ≥ 0

respectively. These three types of reaction functions appear very often in

many physical problems.

For definiteness, when f is mixed quasimonotone, we always consider f1 as

quasimonotone nonincreasing and f2 as quasimonotone nondecreasing.

Definition 2 A pair of functions ũ = (ũ1, ũ2), û = (û1, û2) in C(D̄T ) ∩
C1,2(DT ) are called ordered upper and lower solutions of (1.5) if ũ ≥ û, if,

for i = 1, 2,










Biũi ≥ hi(x, t) ≥ Biûi on ST

ũi(x, 0) ≥ ui,0(x) ≥ ûi(x, 0) in Ω

and if











(ũ1)t−L1ũ1−f1(t, x, ũ1, ũ2)≥0≥(û1)t−L1û1−f1(t, x, û1, û2)

(ũ2)t−L2ũ2−f2(t, x, ũ1, ũ2)≥0≥(û2)t−L2û2−f2(t, x, û1, û2)

when (f1, f2) is quasimonotone nondecreasing,











(ũ1)t−L1ũ1−f1(t, x, ũ1, û2)≥0≥(û1)t−L1û1−f1(t, x, û1, ũ2)

(ũ2)t−L2ũ2−f2(t, x, û1, ũ2)≥0≥(û2)t−L2û2−f2(t, x, ũ1, û2)

when (f1, f2) is quasimonotone nonincreasing and











(ũ1)t−L1ũ1−f1(t, x, ũ1, û2)≥0≥(û1)t−L1û1−f1(t, x, û1, ũ2)

(ũ2)t−L2ũ2−f2(t, x, ũ1, ũ2)≥0≥(û2)t−L2û2−f2(t, x, û1, û2)
(1.6)

when (f1, f2) is mixed quasimonotone.
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In the above definition, ũ and û are required to be in C(D̄T )∪C1,2(DT ) in the

sense that their components ũi, ûi, (i = 1, 2), are in C(D̄T ) ∪ C1,2(DT ). The

ordering relation ũ ≥ û is meant in the usual componentwise sense, that is

ũi ≥ ûi, (i = 1, 2) in D̄T . Moreover, let us remark that upper and lower solu-

tions for quasimonotone nondecreasing functions are independent one of each

other and can be constructed separately. The same is true for quasimono-

tone nonincreasing functions except that the pair (ũ1, û2) and (û1, ũ2) are

independent. However, for mixed quasimonotone functions, upper and lower

solutions are coupled and must be determined simultaneously from (1.6).

The pair is sometimes referred to as coupled upper and lower solutions. Let

us suppose that, for a given type of quasimonotone reaction function, there

exists a pair of ordered upper and lower solutions ũ = (ũ1, ũ2), û = (û1, û2).

Let us define the sector

〈û, ũ〉 =
{

(u1, u2) ∈ C(D̄T ) : (û1, û2) ≤ (u1, u2) ≤ (ũ1, ũ2)
}

. (1.7)

Let us remark that, if 〈û, ũ〉 is contained in J1 × J2, then in the definition

of quasimonotone function it suffices to take J1 × J2 = 〈û, ũ〉. In the sequel,

we will consider each of the three types of reaction functions in the sector

〈û, ũ〉. In addition, we will assume that there exist bounded functions ci =

ci(x, t), i = 1, 2, such that, for every (u1, u2), (v1, v2) in 〈û, ũ〉, (f1, f2) satisfies
the one-sided Lipschitz condition











f1(t, x, u1, u2)− f1(t, x, v1, v2) ≥ −c1(u1 − v1) when u1 ≥ v1

f2(t, x, u1, u2)− f2(t, x, v1, v2) ≥ −c2(u2 − v2) when u2 ≥ v2.

(1.8)

To ensure the uniqueness of the solution, we also assume that there exist

bounded functions ci = ci(x, t), i = 1, 2, such that, for every (u1, u2), (v1, v2)
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in 〈û, ũ〉, one has that











f1(t, x, u1, u2)− f1(t, x, v1, u2) ≤ c1(u1 − v1) when u1 ≥ v1

f2(t, x, u1, u2)− f2(t, x, u1, v2) ≤ c2(u2 − v2) when u2 ≥ v2.

(1.9)

It is clear that, if there exist bounded functions Ki = Ki(x, t) such that

(f1, f2) satisfies the Lipschitz condition

|fi(t, x, u1, u2)− fi(t, x, v1, v2)| ≤ Ki (|u1 − v1|+ |u2 − v2|)

for (u1, u2), (v1, v2) ∈ 〈û, ũ〉 , (i = 1, 2), then both conditions (1.8) and (1.9)

are satisfied. Let us remark that in the hypotheses (1.8) and (1.9) the func-

tions ci and ci, (i = 1, 2) are not required to be positive. This weakened

condition plays an important role in the study of the qualitative behaviour

of the solution. Without any loss of generality, we may assume that the

functions ci (i = 1, 2) in (1.8) are Hölder continuous in D̄T . This implies that

the functions F1, F2 given by

Fi(t, x, u1, u2) = ci(x, t)ui + fi(t, x, u1, u2), i = 1, 2

are Hölder continuous in DT × 〈û, ũ〉 and are monotone nondecreasing in

ui, (i = 1, 2).

Defining the operators Li by

Liui = (ui)t − Liui + ciui, i = 1, 2,

one obtains that the differential equations in (1.5) are equivalent to

Liui = Fi(t, x, u1, u2) in DT i = 1, 2.
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Starting from a suitable initial iteration (u
(0)
1 , u

(0)
2 ), we construct a sequence

{

u(k)
}

=
{

u
(k)
1 , u

(k)
2

}

from the iteration process



























Liu
(k)
i = Fi

(

u
(k−1)
1 , u

(k−1)
2

)

Biu
(k)
i = hi(x, t) i = 1, 2

u
(k)
i (x, 0) = ui,0(x).

(1.10)

It is clear that, for each k ∈ N, the above system consists of two linear

uncoupled initial boundary value problems and therefore the existence of
{

u
(k)
1 , u

(k)
2

}

is guaranteed (see [47] for details). To ensure that this sequence

is monotone and converges to a solution of (1.5), it is necessary to choose a

suitable initial iteration. The choice of this function depends on the type of

quasimonotone property of (f1, f2). In the following lemmas, we will establish

the monotone property of the sequence for each one of the three types of

reaction functions.

(i) Quasimonotone nondecreasing function: For this type of quasimono-

tone function, it suffices to take either (ũ1, ũ2) or (û1, û2) as the initial

iteration (u
(0)
1 , u

(0)
2 ). Let us denote the two corresponding sequences by

{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

respectively where (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2)

and (u
(0)
1 , u

(0)
2 ) = (û1, û2). The following lemma gives the monotone

property of these two sequences.

Lemma 1 For quasimonotone nondecreasing (f1, f2), the two sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

possess the monotone property

u
(k)
i ≤ u

(k+1)
i ≤ u

(k+1)
i ≤ u

(k)
i in D̄T (i = 1, 2) (1.11)

where k ∈ N.

Proof For the proof, see [47].
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Remark 1 In the absence of an upper solution, the monotone non-

decreasing property of the sequence
{

u
(k)
1 , u

(k)
2

}

remains true provided

that condition (1.8) holds for every bounded function (ũ1, ũ2). In this

case, the sequence
{

u
(k)
1 , u

(k)
2

}

either converges to some limit as k → ∞
or becomes unbounded at some point in D̄T . A similar conclusion holds

for the sequence
{

u
(k)
1 , u

(k)
2

}

.

(ii) Quasimonotone nonincreasing function: When the reaction function

(f1, f2) is quasimonotone nonincreasing, we choose (ũ1, û2) or (û1, ũ2)

as the initial iteration in (1.10). Let us denote the corresponding se-

quences by
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

respectively where (u
(0)
1 , u

(0)
2 ) =

(ũ1, û2) and (u
(0)
1 , u

(0)
2 ) = (û1, ũ2). The following lemma holds.

Lemma 2 For quasimonotone nonincreasing (f1, f2), the two sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

possess the mixed monotone property in the

sense that their components u
(k)
i and u

(k)
i satisfy relation (1.11).

Proof For the proof, see [47].

(iii) Mixed quasimonotone function: The construction of monotone sequences

for mixed quasimonotone functions requires the use of both upper and

lower solutions simultaneously. When f1 is quasimonotone nonincreas-

ing and f2 is quasimonotone nondecreasing, the monotone iteration

process is given by











L1u
(k)
1 =F1

(

u
(k−1)
1 , u

(k−1)
2

)

, L2u
(k)
2 =F2

(

u
(k−1)
1 , u

(k−1)
2

)

,

L1u
(k)
1 =F1

(

u
(k−1)
1 , u

(k−1)
2

)

, L2u
(k)
2 =F2

(

u
(k−1)
1 , u

(k−1)
2

)

,

(1.12)

where (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2). The boundary

and initial conditions for u
(k)
i and u

(k)
i are the same as in (1.10). It fol-
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lows from this iteration process that the equations in (1.12) are uncou-

pled but are interrelated in the sense that the k-th iteration
{

u
(k)
1 , u

(k)
2

}

or
{

u
(k)
1 , u

(k)
2

}

depends on all the four components in the previous iter-

ation. This kind of iteration is fundamental in its extension to coupled

system with any finite number of equations. The idea of this construc-

tion is to obtain the quasimonotone property of the sequences as shown

in the following lemma.

Lemma 3 For mixed quasimonotone (f1, f2), the sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

given by (1.12) possess the monotone property (1.11).

Proof For the proof, see [47].

The above construction of monotone sequences yelds a sequence of ordered

upper and lower solutions for (1.5), which are given in the following

Lemma 4 Let (ũ1, ũ2) ad (û1, û2) be ordered upper and lower solutions of

(1.5) and let (f1, f2) be quasimonotone and satisfy condition (1.8). Then , for

each type of quasimonotone (f1, f2), the corresponding iterations
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

given by Lemmas 1-3 are ordered upper and lower solutions.

Proof For the proof, see [47].

The construction of monotone sequences in Lemmas 1-3 is not limited

to the process in (1.10) and (1.12). Consider, for instance, the case where

(f1, f2) is quasimonotone nondecreasing in 〈û, ũ〉. Then a different process

of iteration is given by

L1u
(k)
1 = F1

(

t, x, u
(k−1)
1 , u

(k−1)
2

)

, L2u
(k)
2 = F2

(

t, x, u
(k)
1 , u

(k−1)
2

)

. (1.13)

The boundary and initial conditions for u
(k)
1 and u

(k)
2 are the same as in

(1.10). In the above iterative scheme, the component u
(k)
1 is used in the
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second equation as soon as it is computed from the first equation. This

kind of iteration is similar to the Gauss-Seidel iterative method for algebraic

systems which has the advantage to obtain faster convergent sequences. In

the following Lemma we show the monotone property of the sequences when

the initial iteration is either an upper or a lower solution.

Lemma 5 Let (f1, f2) be quasimonotone nondecreasing in 〈û, ũ〉. Then the

sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

obtained from (1.13) with (u
(0)
1 , u

(0)
2 ) =

(ũ1, ũ2) and (u
(0)
1 , u

(0)
2 ) = (û1, û2) and with the boundary and initial conditions

in (1.10) possess the monotone property (1.11).

Proof For the proof, see [47].

It follows by the same argument as in the proof of Lemma 5 that, if

(f1, f2) is quasimonotone nonincreasing, then the sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

obtained from (1.13) with (u
(0)
1 , u

(0)
2 ) = (ũ1, û2) and (u

(0)
1 , u

(0)
2 ) =

(û1, ũ2) possess the monotone property (1.11). In the case of mixed quasi-

monotone (f1, f2), an improved iteration process for
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

is given by










L1u
(k)
1 = F1

(

u
(k−1)
1 , u

(k−1)
2

)

, L2u
(k)
2 = F2

(

u
(k)
1 , u

(k−1)
2

)

,

L1u
(k)
1 = F1

(

u
(k−1)
1 , u

(k−1)
2

)

, L2u
(k)
2 = F2

(

u
(k)
1 , u

(k−1)
2

)

.

(1.14)

Following a similar argument as in the proof of Lemma 5, it can be shown

that these two sequences also possess the monotone property (1.11).

Lemmas 1-3 imply that, for each one of the three types of quasimonotone

functions, the corresponding sequence obtained from (1.10) and (1.12) con-

verges monotonically to some limit function. The same is true for the se-

quences given by (1.13) and (1.14). Let us define

lim
k→∞

u
(k)
i (x, t) = ui(x, t), lim

k→∞
u
(k)
i (x, t) = ui(x, t), i = 1, 2. (1.15)
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Our aim is now to show that, if conditions (1.8) and (1.9) hold, then ui ≡
ui ≡ ui, i = 1, 2, and u = (u1, u2) is the unique solution of (1.5). The proof of

this result is based on the integral representation of the linear scalar parabolic

boundary value problems and it is contained in the following theorem.

Theorem 1 Let (ũ1, ũ2) and (û1, û2) be ordered upper and lower solutions

of (1.5) and let (f1, f2) be quasimonotone nondecreasing in 〈û, ũ〉 and satisfy

the conditions (1.8) and (1.9). Then (1.5) has a unique solution u = (u1, u2)

in 〈û, ũ〉. Moreover, the sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

, obtained

from (1.10) with (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2) converge

monotonically to (u1, u2) and satisfy the relation

(û1.û2) ≤
(

u
(k)
1 , u

(k)
2

)

≤ (u1, u2) ≤
(

u
(k)
1 , u

(k)
2

)

≤ (ũ1, ũ2) in D̄T (1.16)

for every k ∈ N.

Proof For the proof, see [47].

A similar existence-comparison theorem holds also for quasimonotone

nonincreasing functions.

Theorem 2 Let (ũ1, ũ2) and (û1, û2) be ordered upper and lower solutions

of (1.5) and let (f1, f2) be quasimonotone nonincreasing in 〈û, ũ〉 and satisfy

the conditions (1.8) and (1.9). Then (1.5) has a unique solution u = (u1, u2)

in 〈û, ũ〉. Moreover, the sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

, obtained

from (1.10) with (u
(0)
1 , u

(0)
2 ) = (ũ1, û2) and (u

(0)
1 , u

(0)
2 ) = (û1, ũ2) converge

monotonically to (u1, u2). The monotone property of the sequences is in the

sense of (1.11).

Finally, one obtains that an analogous existence-comparison theorem holds

for mixed quasimonotone functions.
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Theorem 3 Let (ũ1, ũ2) and (û1, û2) be coupled upper and lower solutions

of (1.5) and let (f1, f2) be mixed quasimonotone in 〈û, ũ〉 and satisfy the

conditions (1.8) and (1.9). Then (1.5) has a unique solution u = (u1, u2)

in 〈û, ũ〉. Moreover, the sequences
{

u
(k)
1 , u

(k)
2

}

and
{

u
(k)
1 , u

(k)
2

}

, obtained

from (1.10) with (u
(0)
1 , u

(0)
2 ) = (ũ1, ũ2) and (u

(0)
1 , u

(0)
2 ) = (û1, û2) converge

monotonically to (u1, u2) and satisfy the relation (1.16).

When the iteration processes in (1.10) and (1.12) are replaced by (1.13)

and (1.14) respectively, the result of Lemma 5 and similar results for quasi-

monotone nonincreasing and mixed quasimonotone functions imply that the

corresponding sequences converge to some limit functions in the same way

as in (1.15). It is easily seen from the same argument as in the proof of

Theorems 1-3 that these limits are solutions of (1.5) in accordance with the

quasimonotone property of (f1, f2). This observation leads to the following

conclusion:

Theorem 4 Under the hypotheses of Theorems 1-3, except that the iteration

processes (1.10) and (1.12) be replaced, respectively, by (1.13) and (1.14), all

the conclusions in the corresponding theorems remain true.

Remark 2 The monotone method for coupled systems of two parabolic equa-

tions can be easily extended to systems with an arbitrary finite number of

equations.
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Chapter 2

The Liapunov Direct method

Since a lot of physical systems and real world phenomena can be described

through partial differential equations, the problem of studying the properties

of the solutions of such equations has been deeply studied. In particular, the

analysis of the stability/instability of suitable solutions, for example of the

stationary states, with respect to perturbations on the initial data, allows

to predict, in such a way, the longtime behaviour of the solutions. To reach

this aim, several methods have been developed and used: most of them re-

quire linearization, truncation or other kind of approximations of the original

equations; Liapunov Direct Method, instead, deals directly with the original

system, without using approximation methods.

In this chapter, the outlines of the Liapunov’s Direct Method will be de-

scribed and some peculiar Liapunov functionals, introduced by Rionero in

[54], [55], will be used in order to investigate the stability properties of the

solutions of evolution equations, aiming to obtain the optimal result of coin-

cidence between the linear and nonlinear stability thresholds.
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2.1 Basic properties of dynamical systems

Let F be a phenomenon taking place into a domain Ω of the physical three

dimensional space R
3 and u : (x, t) ∈ Ω× R −→ u(x, t) ∈ R

n or u : (x, t) ∈
Ω×[0, T ] −→ u(x, t) ∈ R

n, being n ∈ N and T ∈ (0,+∞), whose components

ui(x, t), (i = 1, ..., n) are the relevant quantities describing the state of F .

The vector u is called the state vector.

If one finds, by experimental data, physical law and so on that there exists

a function

F

(

t,x,u,
∂ui
∂xr

,
∂2uj
∂xr∂xs

, ...

)

, i, j = 1, ..., n; r, s = 1, 2, 3

which governs the behaviour of the time derivative of u, such that, for any

positive T

ut = F in Ω× (0, T ) (2.1)

holds, then the phenomenon F is modeled by the PDE (2.1) to which we

associate prescribed initial data

u(x, 0) = u0(x) x ∈ Ω (2.2)

and suitable boundary conditions

B(u,∇u) = u∗ on ∂Ω× [0, T ], (2.3)

where B is a given operator and u∗(x, t) is an assigned vector.

The initial boundary value problem (I.B.V.P.) (2.1)-(2.3) is the mathematical

model describing the evolution of F , also called evolution equation of F .

According to the definition due to Hadamard, a given I.B.V.P. is said to be

well posed in the state space X, endowed with a suitable topology, if there

exists a solution, if this solution is unique and it depends continuously on

the initial data. A problem which is not well posed is said to be ill posed.
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Remark 3 Existence, uniqueness and continuous dependence of solutions

depend strongly on the choice of the underlying function spaces in which

the data are given and in which we are looking for solutions. Depending

on the problem, one might use spaces of continuosly differentiable functions

Ck ((0, T )× Ω) or spaces of integrable functions Lp ((0, T )× Ω). Thus, the

choice of functional topology in the state space is very important and it has

to be linked to the physics of the phenomenon.

In the sequel, we recall some basic concepts of the theory of dynamical sys-

tems referring to [25], [70], [72] and assuming that the I.B.V.P. (2.1)-(2.3) is

well posed.

Definition 3 A dynamical system on a metric space X is a mapping

v : (v0, t) ∈ X × R → v(v0, t) ∈ X (2.4)

such that

v(v0, 0) = v0. (2.5)

Usually the following additional property is required for a dynamical system

(semigroup property):

v(v0, t+ τ) = v(v(v0, τ), t), v0 ∈ X; t, τ ∈ R
+. (2.6)

For example, let u(u0, t), with u(u0, 0) = u0, be a global solution of the

I.B.V.P. (2.1)-(2.3). Then u is a dynamical system.

The properties (2.4) and (2.6) give to the one parameter family of operators

v(v0, ·) the semigroup structure, according to the following definition:

Definition 4 A semigroup of operators on a metric space X is a one

parameter family {S(t)}t≥0 of operators S(t) : X → X such that










S(t+ s) = S(t)S(s)

S(0) = I, (I is the identity in X).
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The equivalence between the definition of the semigroup operators {S(t)}t≥0

and the dynamical system is immediately obtained by setting

v(v0, t) = S(t)v0 v0 ∈ X; t ∈ R
+.

Definition 5 Let v be a dynamical system, then the function

v(v0, ·) : t ∈ R → v(v0, t) ∈ X

for a prescribed v0 ∈ X, is called motion associated to the initial conditions

v0 and is denoted by v(v0, t) or v(t).

If v(v0, t) = v0, ∀t ∈ R, then the motion is stationary (or steady) and v0

is an equilibrium point.

Let v and w be two motions. If

v(0) = w(0) ⇒ v(t) = w(t) ∀t > 0 (resp.t < 0)

then the motion is unique forward (respectively backward) in time with

respect to the initial data.

The forward uniqueness ensures the semigroup property.

The set {t, v(t)} with t ∈ R
+, is the positive graph of the motion v and

its projection into X, that is the subset γ+ = {v(t) : t ∈ R
+} is the positive

orbit or trajectory starting at v0.

Definition 6 A dynamical system on a metric space X is a C0-semigroup

if (2.4)-(2.6) and the following properties hold

v(t, ·) : X → X is continuous ∀t ≥ 0;

v(·, v0) : R+ → X is continuous ∀v0 ∈ X.
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Remark 4 As we have just seen, a dynamical system may be generated by

an evolution equation. In the study of dynamical systems generated by PDEs,

the existence of the operators S(t) and their properties is linked to the problem

of the existence of solutions for PDEs and so, like for the uniqueness, it must

be proved case by case.

Let us end this section with the important notion of continuous dependence

on the initial data, that means wondering if, given a particular (basic) motion

v(v0, ·), any other motion v(v1, ·), starting at the same initial time from a

position v1 sufficiently closed to v0, will remain as closed as desired to v(v0, ·)
for every finite time T > 0.

This is an important requirement if the mathematical model at stake de-

scribes observable natural phenomena. In fact, data in nature cannot be

conceived as rigidly fixed and the process of measuring them always involves

small errors. Therefore, a mathematical problem cannot be considered as

realistically corresponding to physical phenomena unless a variation of the

given data in a sufficiently small range leads to an arbitrary small change in

the solution.

Let v be a dynamical system on a metric space (X, d) and let B(x, r), with

x ∈ X and r > 0, be the open ball centered at x and having radius r.

Definition 7 A motion v(v0, ·) of a dynamical system depends continu-

osly on the initial data if and only if

∀T, ǫ > 0, ∃δ(ǫ, T ) > 0 : v1 ∈ B(v0, δ) ⇒ v(v1, t) ∈ B(v(v0, t), ǫ), ∀t ∈ [0, T ].

The following theorems hold.

Theorem 5 Let v be a dynamical system on a metric space X having the

C0-semigroup properties. Then any motion depends continuosly on the initial

data.
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Proof. See [25].

Theorem 6 A motion which is not unique cannot depend continuosly on the

initial data.

Proof. See [25].

2.2 Liapunov stability

The concept of stability can be interpreted in many different ways. In the

sequel, we will refer to the Liapunov stability with respect to perturbations

on the initial data, that means, roughly speaking, that for a sufficiently small

perturbation on the initial data, the system will remain close to the original

solution for all future times.

Definition 8 A motion v(v0, t) is Liapunov stable (with respect to perturba-

tions on the initial data) if and only if

∀ǫ > 0, ∃ δ(ǫ) > 0 : v1 ∈ B(v0, δ) → v(v1, t) ∈ B(v(v0, t), ǫ), ∀t ∈ [0,∞).

A motion is unstable if it is not stable.

It results that the Liapunov stability extends the requirements of continuous

dependence to the infinite interval of time (0,∞).

Definition 9 A motion of a dynamical system v(v0, ·) is said to be an at-

tractor or attractive on a set Y ⊂ X if

v1 ∈ Y ⇒ lim
t→∞

d [v(v0, t), v(v1, t)] = 0. (2.7)

The largest set Y satisfying (2.7) is called the basin (or domain) of at-

traction of v(v0, ·).
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Definition 10 A motion v(v0, ·) of a dynamical system is asymptotically

stable if it is stable and if there exists δ1 > 0 such that v(v0, ·) is attractive

on B(v0, δ1).

In particular, v(v0, ·) is exponentially stable if there exists δ1 > 0, λ(δ1) >

0,M(δ1) > 0 such that

v1 ∈ B(v0, δ1) ⇒ d[v(v0, t), v(v1, t)] ≤Me−λtd(v1, v0), ∀t ≥ 0.

If δ1 = ∞, then v(v0, ·) is asymptotically (exponentially) globally stable.

Remark 5 Let X be a metric linear space. It is always possible to express

the stability of a given basic motion v(v0, t) through the stability of the zero

solution of the perturbed dynamical system

u : (u0, t) ∈ X × R
+ → v(v0 + u0, t)− v(v0, t)

where

u(u0, t) = v(v1, t)− v(v0, t) (v1 = v0 + u0)

is the perturbation at time t to the basic motion v(v0, t). Indeed the definition

of stability of v(v0, ·) is equivalent to

∀ǫ > 0, ∃δ(ǫ) > 0 : u0 ∈ B(O, δ) =⇒ u(u0, t) ∈ B(O, ǫ), ∀t ≥ 0,

where O is the origin of X.

2.3 Liapunov direct method

In 1893 A.M. Liapunov, in order to establish conditions ensuring the stability

of solutions of O.D.Es, introduced a method based on studying the sign of the

time derivative of an auxiliary function along the solutions of O.D.Es without

determining explicitely solutions. Liapunov Direct method or Second Method
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[37] has been recognized to be very general and powerful and has been used

for over 65 years in the qualitative theory of O.D.Es (cfr. [21], [27], [35],

[74]). A first step toward the application of the Liapunov’s direct method to

P.D.Es was made by Massera [38], who extended this method to denumerably

infinite system of O.D.Es. A general stability theory based on the existence of

a Liapunov functional for the invariant sets of dynamical systems in general

metric spaces was established by Zubov [76]; other pioneering results were

due to Movchan [41].

Our aim is to introduce the fundamental ideas and problems of the Liapunov

direct method by considering its applications to some phenomena modeled

by P.D.Es.

Definition 11 Let v be a dynamical system on a metric space X. A func-

tional V : X → R is a Liapunov function on a subset I ⊂ X if V is

continuous on I and it is a nonincreasing function of time along the solu-

tions having the initial data in I.

In order to ensure that V [v(x, ·)] is a nonincreasing function of time, in the

sequel we will assume that V is differentiable with respect to time and that

the derivative is nonpositive. However, it is standard in literature to ensure

that V is nonincreasing by requiring that the generalized time derivative

V̇ := lim
t→0

inf
1

t
{V [v(x, t)]− V (x)} , x ∈ I,

is nonpositive.

Assume that X is a normed linear space. By virtue of Remark 5, the

stability of a given motion can be expressed through the stability of the zero

solution of the perturbed dynamical system. Therefore, one can introduce

the direct method for investigating the stability of an equilibrium position

36



only.

Denoting by Fr (r > 0) the set of functions φ : [0, r) → [0,∞) which are

continuous, strictly increasing and such that φ(0) = 0, then the Liapunov

method can be summarized by the following theorems.

Theorem 7 Let u be a dynamical system on a normed space X and let O be

an equilibrium point. If V is a Liapunov function on the open ball B(O, r),

for some r > 0, such that

i) V (O) = 0,

ii) ∃f ∈ Fr : V (u) ≥ f (‖u‖) , u ∈ B(O, r),

then O is stable.

If, in addition,

iii) ∃g ∈ Fr : V̇ (u) ≤ −g (‖u‖) , ∀u ∈ B(O, r),

then O is asymptotically stable.

Proof. See [25].

Remark 6 Let u be a dynamical system on X and let O be an equilibrium

point. If V is a Liapunov function on the open ball B(O, r) and is positive

definite, i.e.

V (O) = 0, V (u) > 0, u 6= 0,

then the stability with respect to the measure V of the perturbation immedi-

ately follows. If, moreover, there exists a positive constant c such that, along

the solutions, inequality

V̇ ≤ −cV

holds, then one has

V ≤ V (u0)e
−ct,

i.e. the asymptotic exponential stability with respect to the measure V .
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Setting Σ(X,α) = {x ∈ X : V (x) < α}, the following theorem holds.

Theorem 8 Let u be a dynamical system on X × R
+ and let O be an equi-

librium point. If V is a Liapunov function on the open set Ar = B(O, r) ∩
Σ(X,O), for some r > 0, and

i) V (O) = 0,

ii) ∃g ∈ Fr : V (u) ≤ −g[−V (u)], u ∈ Ar,

iii) Aǫ 6= ∅, ∀ǫ > 0,

then O is unstable.

Proof. See [25].

All the above theorems are set in a normed linear space X where different

kinds of norms can be introduced.

Let us recall that two norms ‖·‖1 and ‖·‖2 on X are equivalent if there exist

two constants c1 ≥ c2 > 0 such that c2 ‖x‖2 ≥ ‖x‖1 ≥ c1 ‖x‖2 , ∀x ∈ X.

Therefore, stability/instability properties are invariant under equivalent norms.

If X = R
n, i.e. X is a finite dimensional space, all possible norms are equiv-

alent and so the stability does not depend on the chosen norm. This is the

case of phenomena modeled by O.D.Es.

If we consider phenomena with infinite degrees of freedom, modeled by

P.D.Es, then it can turn out that a solution is stable with respect to one

norm and unstable with respect to another one. In this case, stability de-

pends on the topology of the state space X; this is a relevant difference

between O.D.Es and P.D.Es. For a discussion about the importance of the

choice of functional topology, see [24], while for examples of topology depen-

dent stability, see [25].
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An important application of Liapunov functions is that they can be used in

order to determine some invariant sets.

Definition 12 A set A ⊂ X is positively (respectively negatively) in-

variant for the dynamical system v if v(v0, t) ∈ A for any v0 ∈ A and t ≥ 0

(respectively t ≤ 0).

Positively invariant sets play a fundamental role in studying the longtime

behaviour of solutions of a dynamical system; for example, if a bounded set

A ⊂ X can be shown to be positively invariant, then x ∈ A ⇒ γ(x) ∈ A

and hence the positive orbit γ(x) is bounded.

Definition 13 A set A is attractive on an open set B ⊃ A if it is positively

invariant and

v0 ∈ B ⇒ lim
t→+∞

d[v(v0, t), A] = 0.

An important role in the study of the asymptotic behaviuor of solutions is

also played by the positive limit sets.

Definition 14 Let v be a dynamical system on a metric space X and let

x ∈ X. A set Ω(x) ⊂ X is the positive limit set of the motion v(x, t) if

∀y ∈ Ω(x) there exists a sequence (tn(y))n, tn ∈ R
+, such that











lim
n→∞

tn = ∞

lim
n→∞

d[v(x, tn), y] = 0.

In particular, Ω(x) = x if x is an equilibrium point; if v(x, t) is periodic in

time, i.e. ∃τ : v(v0, t + τ) = v(v0, t), then Ω(x) = γ(x), where γ(x) is the

orbit of v(x, t). In general, Ω(x) belongs to the closure of γ(x).

Information about the asymptotic behaviour of motions by means of Lia-

punov functions are provided by the following La Salle Invariance Principle.
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Theorem 9 Let v be a dynamical system on a metric space X, with the

C0-semigroup properties and let V be a Liapunov function on a set A ⊂ X.

If

i) V (x) > −∞ ∀x ∈ Ā,

ii) γ(x) ⊂ A,

being Ā the closure of A, then Ω(x) belongs to the largest postive invariant

subset M+ of Ω∗ =
{

x ∈ Ā : V̇ (x) = 0
}

. Further, if X is complete and γ(x)

is precompact, then

lim
t→∞

d[v(x, t),M+] = 0.

Proof. See [35].

As remarked in [25], the La Salle Invariance Principle works very well

when X = R
n, but when X is an infinite dimensional space, then, in order to

use Theorem 9, one also needs conditions ensuring precompactness of positive

orbits; this is another fundamental difference between O.D.Es and P.D.Es.
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Chapter 3

On the nonlinear stability of

some reaction-diffusion models

for infections

This chapter deals with some reaction-diffusion systems modeling the spread-

ing of epidemics within a population or within interacting populations. In

order to study infectious disease transmission, mathematical models play a

fundamental role, since they allow to predict the asymptotic behaviour of in-

fection and, consequently, they can suggest some actions in order to prevent

or control the spreading of epidemic.

Numerous contributions to mathematical theory of epidemics have been given

in the last years (cfr.[5]-[7], [26], [31]-[33], [53]).

When a population is not infected by a disease yet, all the individuals are

regarded as susceptibles. Introducing a few number of infected in the com-

munity, in order to know if the epidemic will die out or if it will blow up, it

would be useful to study the stability of the so called disease-free equilibrium.

If the disease-free equilibrium is stable, then epidemic will decay. Hence, the
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problem to determine if endemic equilibria (equilibria with all positive com-

ponents) exist arises. When endemic equilibria exist, their stability analysis

allows to state if epidemic will persist.

In the first section of this chapter, a SEIR model for infections under mixed

boundary conditions is studied; in the second section the same model is an-

alyzed under homogeneous Neumann boundary conditions and, finally, the

third section deals with a reaction-diffusion system modeling the spreading

of a cholera epidemic in a nonhomogeneously mixed population. For all the

previous models, the goal is to study the longtime behaviour of solutions

(boundedness, existence of absorbing sets in the phase space,...) and to

investigate the linear and nonlinear stability of biologically meaningful equi-

libria, aiming to obtain the optimal result of coincidence between the linear

and nonlinear stability thresholds.

3.1 On the nonlinear stability of an epidemic

SEIR reaction-diffusion model under mixed

boundary conditions

3.1.1 Introduction

In classical epidemic models (cfr. [5]-[7], [26], [32], [53]), the host population

is supposed to be divided into three disjoint classes: S(t), the individuals

susceptible to infection, I(t), the infectious individuals and R(t), the removed

ones. When the infection requires some time for individuals to pass from the

infected state to the infective one, a further class has to be considered: the

exposed to the infection, i.e. individuals in the latent state E(t) (cfr. [2],

[3], [52]). A key role in epidemic models is played by the so called force
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of infection, or incidence rate, i.e. a function describing the mechanism

of transmission of the disease. In classical models, the incidence rate is

proportional to the number of infective individuals. In order to generalize

the dynamics of disease transmission, since 1970s, Capasso and his coworkers

stressed the importance to consider nonlinear incidence rates. Since then,

many authors proposed peculiar nonlinear forms for the force of infection ([5],

[7], [26], [32], [53]). In the sequel, the following well known and meaningful

force of infection is considered

g(S, I) = KIS(1 + αI),

K and α being positive constants (cfr. [2], [26], [33] for details), so that an

increased rate of infection due to double exposures over a short time period

such that the single contacts lead to infection at a rate KIS whereas new

infective individuals arise from double exposure at a rate KαI2S, is taken

into account.

Most of epidemic models known in literature are ODE systems, but in order

to consder the more general case in which the population is not homoge-

neously mixed in the domain at hand, it is necessary to allow the variables

of the model to depend on space as well as on time and hence a reaction-

diffusion model has to be considered (cfr. [10], [42], [51]). In this case, the

diffusion of individuals may be connected with searching for food, escaping

high infection risks and so on.

For these reasons in the sequel a reaction-diffusion SEIR model is introduced

and analyzed: the longtime behaviour of the solutions is studied and, in par-

ticular, absorbing sets in the phase space are determined; by using a peculiar

Liapunov function, the nonlinear asymptotic stability of endemic equilibrium

is investigated. The results are contained in paper [14].

43



3.1.2 Mathematical model

Let Ω be a bounded domain in which the epidemic is diffusing. We assume

that Ω ⊂ R
3 is sufficiently smooth and that the reaction-diffusion equations

governing the evolution of the infection diffusion model of SEIR type are










































∂S

∂t
= µ(N0 − S) + γ1∆S −KIS(1 + αI),

∂E

∂t
= −(θ + µ)E + γ2∆E +KIS(1 + αI),

∂I

∂t
= −(σ + µ)I + θE + γ3∆I,

∂R

∂t
= σI − µR + γ4∆R,

(3.1)

with

γi(> 0) (i = 1, 2, 3, 4) the diffusion coefficients,

µ(> 0) the birth/death rate,

σ(> 0) the recovery rate,

θ(> 0) the rate at which exposed individuals become infectious,

N0 =
1

|Ω|

∫

Ω

[S(x, 0) + E(x, 0) + I(x, 0) +R(x, 0)] dΩ,

|Ω| = the measure of Ω

and (for biological reason)

ϕ : (x, t) ∈ Ω× R
+ → ϕ(x, t) ∈ R

+, ∀ϕ ∈ {S,E, I, R}.

To (3.1) we associate the following mixed boundary conditions











S = S∗, E = E∗, I = I∗, R = R∗ on Σ× R
+,

∇S · n = 0, ∇E · n = 0, ∇I · n = 0, ∇R · n = 0 on Σ∗ × R
+,

(3.2)

with ∂Ω = Σ ∪ Σ∗ , Σ ∩ Σ∗ = ∅ , Σ 6= ∅, n being the unit outward normal

on Σ∗ and S∗, E∗, I∗, R∗ being non negative constants. Further, we suppose

that
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i) Ω is of class Cp (p ≥ 2), with the interior cone property;

ii) ϕ ∈ W 1,2(Ω) ∩W 1,2(∂Ω), ∀ϕ ∈ {S,E, I, R};

iii) γ1 = γ2 = γ.

3.1.3 Absorbing sets

Let us denote by T > 0 an arbitrary fixed time and by ΩT = Ω × (0, T ]

the parabolic cylinder, ΩT being the parabolic interior of Ω̄× [0, T ] (i.e. ΩT

includes the top Ω× {t = T}).
We refer here to the positive smooth solutions of (3.1) under the boundary

conditions (3.2) and the smooth positive initial data



























S(x, 0) = S0(x), E(x, 0) = E0(x),

x ∈ Ω.

I(x, 0) = I0(x), R(x, 0) = R0(x),

(3.3)

The existence of solutions of (3.1)-(3.3) in C2
1(ΩT ) can be proved as done in

[40].

The following theorem holds.

Theorem 10 Let (S,E, I, R) be a positive solution of (3.1)-(3.3) with ϕ ∈
C2

1(ΩT ) ∩ C(Ω̄T ), ∀ϕ ∈ {S,E, I, R}. Then (S,E, I, R) is bounded according
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to


























































































S(x, t) < M1 = max

{

N0, max
Ω̄

S0(x), S
∗

}

,

E(x, t) < M2 = max

{

µN0 + θM1

θ + µ
, max

Ω̄
(S0+E0)(x), S

∗+E∗

}

,

I(x, t) < M3 = max

{

θM2

(σ + µ)
, max

Ω̄
I0(x), I

∗

}

,

R(x, t) < M4 = max

{

σM3

µ
, max

Ω̄
R0(x), R

∗

}

.

(3.4)

Proof. By following the procedure used in [11], let us set max
Ω̄T

S = S(x1, t1).

We have to distinguish the following cases.

1) If (x1, t1) belongs to the interior of ΩT , then (3.1)1 implies that
[

∂S

∂t
− µ(N0 − S)− γ∆S

]

(x1,t1)

< 0. (3.5)

Since
[

∂S

∂t

]

(x1,t1)

= 0, [∆S](x1,t1)
< 0,

then (3.5) can hold if and only if

µ(N0 − S) > 0

and hence if and only if S(x1, t1) < N0.

2) If (x1, t1) ∈ ∂Ω× [0, T ), in view of the regularity of the domain Ω, since

Ω verifies in any point x0 ∈ ∂Ω the interior ball condition, there exists

an open ball B∗ ⊂ Ω with x0 ∈ ∂B∗. If S(x1, t1) > N0, choosing the

radius of B∗ sufficiently small, it follows that

γ∆S − ∂S

∂t
> 0 in B∗
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and, by virtue of Hopf’s Lemma [49], one obtains that

(

dS

dn

)

(x1,t1)

> 0.

Since
dS

dn
= 0 on Σ∗ × R

+, it follows that (x1, t1) ∈ Σ× R
+ and hence

S(x1, t1) = S∗.

3) Finally, if (x1, t1) ∈ Ω× {0}, then S(x1, t1) < max
Ω̄

S0(x).

In order to prove (3.4)2, by adding (3.1)1 and (3.1)2, one obtains

∂(S + E)

∂t
= µN0 − µ(S + E)− θE + γ∆(S + E). (3.6)

Let be max
Ω̄T

(S + E) = (S + E)(x2, t2).

4) If (x2, t2) belongs to the interior of ΩT , then, by virtue of (3.6) and

(3.4)1, it follows

[

∂(S+E)

∂t
−µN0−θM1 + (θ+µ)(S+E)−γ∆(S+E)

]

(x2,t2)

< 0. (3.7)

Since
[

∂(S + E)

∂t

]

(x2,t2)

= 0, [∆(S + E)](x2,t2)
< 0,

then (3.7) can hold if and only if

(S + E)(x2, t2) <
µN0 + θM1

θ + µ

and hence E(x, t)+ <
µN0 + θM1

θ + µ
, ∀(x, t).

5) If (x2, t2) ∈ ∂Ω × [0, T ) and (S + E)(x2, t2) >
µN0 + θM1

θ + µ
, then, by

following the same procedure of 2) one recovers that

(

d(S + E)

dn

)

(x2,t2)

> 0.
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Hence, in view of (3.2), since
d(S + E)

dn
= 0 on Σ∗ × R

+, it follows

that (x2, t2) ∈ Σ × R
+ and (S + E)(x2, t2) = S∗ + E∗ and hence

E(x, t) < S(x, t) + E(x, t) < S∗ + E∗, ∀(x, t).

6) Finally, if (x2, t2) ∈ Ω × {0}, then (E + S)(x2, t2) < max
Ω̄

(S0 + E0)(x)

and hence E(x, t) < S(x, t) + E(x, t) < max
Ω̄

(S0 + E0)(x), ∀(x, t).

7) (3.4)3-(3.4)4 can be obtained by following, step by step, the same pro-

cedure of the previous cases accounting for (3.4)1-(3.4)2.

Denoting by 〈·, ·〉 and ‖·‖ the scalar product and the norm in L2(Ω) respec-

tively, the following uniqueness theorem holds.

Theorem 11 Model (3.1), under the boundary conditions (3.2) and the (pos-

itive) initial data (3.3), admits a unique positive solution.

Proof. Let (S1, E1, I1, R1) and (S2, E2, I2, R2) be two positive solutions of

(3.1)-(3.3). Setting

S̃ = S1 − S2, Ẽ = E1 − E2, Ĩ = I1 − I2, R̃ = R1 −R2,

it follows that










































∂S̃

∂t
=−µS̃+γ∆S̃−K(Ĩ+I2)(S̃+S2)[1+α(Ĩ+I2)]+KI2S2(1+αI2),

∂Ẽ

∂t
=−(θ+µ)Ẽ+γ∆Ẽ+K(Ĩ+I2)(S̃+S2)[1+α(Ĩ+I2)]−KI2S2(1+αI2),

∂Ĩ

∂t
= −(σ + µ)Ĩ + θẼ+γ3∆Ĩ ,

∂R̃

∂t
= σĨ − µR̃ + γ4∆R̃,

(3.8)

under the initial-boundary conditions


























S̃(x, 0) = 0, Ẽ(x, 0) = 0, Ĩ(x, 0) = 0, R̃(x, 0) = 0 x ∈ Ω

S̃ = Ẽ = Ĩ = R̃ = 0 on Σ× R
+

∇S̃ · n = ∇Ẽ · n = ∇Ĩ · n = ∇R̃ · n = 0 on Σ∗ × R
+.

(3.9)
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Setting

W̃ =
1

2

(

‖S̃‖2 + ‖Ẽ‖2 + ‖Ĩ‖2 + ‖R̃‖2
)

, (3.10)

by virtue of the boundedness of solutions and the boundary conditions, it

follows that the time derivative of W̃ along the solutions of (3.8)-(3.9) is

such that

dW̃

dt
≤ c1‖S̃‖2 + c2〈|Ĩ|, |S̃|+ |Ẽ|+ |R̃|〉+ c3〈|S̃|, |Ẽ|〉, (3.11)

with c1, c2 and c3 positive constants.

By using Hölder and Cauchy inequalities, one has

dW̃

dt
≤ cW̃ ,

being c a positive constant. Hence, it turns out that

W̃ (t) ≤ W̃ (0)ect ∀t ≥ 0.

Since W̃ (0) = 0 and W̃ is positive definite, one obtains

W̃ (t) ≡ 0

and hence the thesis follows.

Let us denote by Σ̄ the subset of the phase space in which solutions of

(3.1)-(3.3) are contained, i.e.

Σ̄ = {(S,E, I, R) ∈ [R+]4 :

‖S‖2 + ‖E‖2 + ‖I‖2 + ‖R‖2 ≤ (M2
1 +M2

2 +M2
3 +M2

4 ) |Ω|
}

.

(3.12)

Setting

E = ‖S − S∗‖2 + ‖E − E∗‖2 + ‖I − I∗‖2 + ‖R−R∗‖2
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and














































































a1 = 2µ [1− (N0 + S∗)ε1] , a2 = 2(θ + µ)(1− E∗ε2),

a3 = 2(σ + µ)(1− I∗ε3), a4 = 2µ(1−R∗ε4),

b1 = 2 |Ω|
[

µ(N0 + S∗)

ε1
+KM1M3(M1 + S∗)(1 + αM3)

]

,

b2 = 2 |Ω|
[

(θ + µ)E∗

ε2
+KM1M3(M2 + E∗)(1 + αM3)

]

,

b3 = 2 |Ω|
[

(σ + µ)I∗

ε3
+ θM2(M3 + I∗)

]

,

b4 = 2 |Ω|
[

µR∗

ε4
+ σM3(M4 +R∗)

]

,

(3.13)

where εi are positive constants (i = 1, 2, 3, 4), the following theorem holds.

Theorem 12 Choosing



























0 < ε1 <
1

N0 + S∗
, 0 < ε2 <

1

E∗
,

0 < ε3 <
1

I∗
, 0 < ε4 <

1

R∗
,

(3.14)

then ∀ε > 0 the manifold

Σε={(S,E, I, R) ∈ [R+]4 :

‖S − S∗‖2 + ‖E − E∗‖2 + ‖I − I∗‖2 + ‖R−R∗‖2 ≤ (1 + ε)
b̄

ā

}

(3.15)

is an absorbing set for (3.1), with

ā = min {a1, a2, a3, a4} , b̄ = b1 + b2 + b3 + b4.

Proof. Let

ϕ1 = S, ϕ2 = E, ϕ3 = I, ϕ4 = R.
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Multiplying (3.1)1 for (ϕ1 − ϕ∗
1) and integrating over Ω, it follows that

1

2

d

dt
‖ϕ1 − ϕ∗

1‖2 = µN0

∫

Ω

(ϕ1 − ϕ∗
1) dΩ− µ

∫

Ω

ϕ1(ϕ1 − ϕ∗
1) dΩ+

+γ

∫

Ω

(ϕ1−ϕ∗
1)∆(ϕ1−ϕ∗

1) dΩ−K
∫

Ω

ϕ3ϕ1(1+αϕ3)(ϕ1−ϕ∗
1) dΩ.

In view of Hölder and generalized Cauchy inequalities, it turns out that
∫

Ω

(ϕ1 − ϕ∗
1) dΩ ≤ ‖ϕ1 − ϕ∗

1‖|Ω|
1

2 ≤ ε1‖ϕ1 − ϕ∗
1‖2 +

|Ω|
ε1
,

ε1 being a positive constant. Applying the divergence theorem, taking into

account of the boundary conditions (3.2), and by virtue of (3.4), one has

d

dt
‖ϕ1 − ϕ∗

1‖2 ≤ −a1 ‖ϕ1 − ϕ∗
1‖2 + b1, (3.16)

with a1 and b1 such as in (3.13)1,(3.13)5 .

Analogously, multiplying (3.1)i for (ϕi − ϕ∗
i ) (i = 2, 3, 4) and integrating

over Ω, by using Hölder and generalized Cauchy inequalities, applying the

divergence theorem, taking into account of the boundary conditions and in

view of (3.4), one obtains

d

dt
‖ϕi − ϕ∗

i ‖2 ≤ −ai ‖ϕi − ϕ∗
i ‖2 + bi, i = 2, 3, 4 (3.17)

with ai and bi, (i = 2, 3, 4) such as in (3.13).

Choosing εi (i = 1, 2, 3, 4) such as in (3.14) and adding (3.16) and (3.17)i,(i =

2, 3, 4), one has
dE

dt
≤ −āE + b̄. (3.18)

Now, let us prove that (3.18) guarantees that (3.15) is positively invariant

and attractive.

Let’s start to prove that, ∀ε > 0, Σε is positively invariant.

The trajectories corresponding to the initial data in Σε, i.e.

E(0) =
(

1 +
ε

2n

) b̄

ā
∈ Σε, (n = 1, 2, . . .)
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could escape from Σε if and only if there exists t∗ such that



























E(t∗) = (1 + ε)
b̄

ā
,

(

dE

dt

)

t=t∗
≥ 0.

By virtue of (3.18), it follows that

(

dE

dt

)

t=t∗
≤ −āE(t∗) + b̄ = −εb̄ < 0,

so that Σε is positively invariant.

In order to prove that Σε is an attractor, by integrating (3.18), one obtains

E(t) ≤ E(0)e−āt +
b̄

ā

(

1− e−āt
)

≤ E(0)e−āt +
b̄

ā
.

Let B a bounded set of the phase space. Then there exists a positive constant

M such that M = sup
B
E. Hence, from

Me−āt +
b̄

ā
= (1 + ε)

b̄

ā
,

it turns out that, for

t > t̄ =
1

ā
ln
āM

ε b̄
,

every trajectory starting from B reaches Σε and remains there indefinitely,

so that Σε is also an attractive set.

We remark that, since by virtue of (3.12) the solutions belong to Σ̄, obviously,

one can choose B ⊂ Σ̄ and hence Σε ⊂ Σ̄.

Remark 7 In view of Theorem 12 we can confine ourselves to study the

longtime behaviour of system (3.1) taking the initial data belonging to Σε.
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3.1.4 Equilibria and preliminaries to stability

Denoting by R0 the basic reproduction number in absence of diffusion, R0 is

given by

R0 =
N0θK

(θ + µ)(σ + µ)

and setting

R∗
1 =

√

K

αµ
, R∗

2 = 2R∗
1 −R∗2

1 ,

the following remark holds.

Remark 8 It can be easily shown that

i) R∗
1 < 1 if and only if R∗

1 < R∗
2,

ii) R∗
2 ≤ 1.

The biologically meaningful equilibria (S̄, Ē, Ī , R̄) of (3.1) are the non-negative

solutions of the system







































µ(N0 − S̄)−KĪS̄(1 + αĪ) = 0,

−(θ + µ)Ē +KĪS̄(1 + αĪ) = 0,

−(σ + µ)Ī + θĒ = 0,

σĪ − µR̄ = 0.

(3.19)

The following two kinds of solutions arise.

i) DISEASE-FREE EQUILIBRIUM:

System (3.1) admits the equilibrium (S1, E1, I1, R1) = (N0, 0, 0, 0) which

- from biological point of view - means that no infection arises.

ii) ENDEMIC EQUILIBRIA:

The biologically meaningful equilibria (endemic equilibria) of (3.1) are
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the positive stationary constant solutions (S̄, Ē, Ī , R̄) of (3.1). It is

easily verified that, solving (3.19), one obtains

S̄ =
(θ + µ)(σ + µ)

Kθ(1 + αĪ)
, Ē =

σ + µ

θ
Ī, R̄ =

σ

µ
Ī, (3.20)

where Ī has to verify the equation

aĪ2 + bĪ + c = 0, (3.21)

with

a = Kα > 0, b = µα
(

R∗2

1 −R0

)

, c = µ (1−R0) ,

∆ = b2 − 4ac = µα(µαR0 +K + 2
√
Kµα)(R0 −R∗

2).

(3.22)

We have to distinguish the following three cases.

1) If R0 < 1, then c > 0. Since

∆ > 0 ⇔ R0 > R∗
2, (3.23)

and

R∗
2 ≥ 0 ⇔ R∗

1 ≤ 2,

it follows that

- if R∗
1 ≥ 2 or {R∗

2 < R0 with 1 < R∗
1 < 2} then {b > 0, ∆ > 0}

and hence (3.21) admits two real negative solutions;

- if {R∗
2 < R0 with R∗

1 < 1} then {b < 0, ∆ > 0}, hence (3.21)

admits two real positive solutions;

- if {R0 < R∗
2 with R∗

1 < 2} then ∆ < 0, i.e. (3.21) does not

admit real solutions;

- if {R0 = R∗
2 with 1 < R∗

1 < 2} then {b > 0, ∆ = 0}, so there

are not any endemic equilibria;
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- if {R0 = R∗
2 with R∗

1 < 1} then {b < 0, ∆ = 0} and hence

there exists a unique endemic equilibrium.

2) If R0 = 1, then c = 0 and the existence of endemic equilibria

depends on R∗
1. In fact, when R∗

1 = 1, accounting for (3.22)2,

(3.22)3, (3.22)4, one has ∆ = b = c = 0 and hence do not exist

endemic equilibria. When R∗
1 6= 1, (3.21) admits the non null so-

lution Ī = − b

a
that, by virtue of (3.22)1, (3.22)2, is biologically

meaningful, i.e. Ī > 0, iff R∗
1 < 1.

3) If R0 > 1, then, by virtue of (3.22)3-(3.22)4, one obtains that

c < 0 and ∆ > 0. Hence in this case, (3.21) admits a unique real

positive solution.

The previous results can be summarized in the following theorem.

Theorem 13 System (3.1)

i) always admits the disease free equilibrium (S1, E1, I1, R1) = (N0, 0, 0, 0);

ii) admits a unique endemic equilibrium if

R0 > 1, (3.24)

or










R0 = 1,

R∗
1 < 1;

(3.25)

or










R0 = R∗
2 < 1,

R∗
1 < 1;

(3.26)
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iii) admits two endemic equilibria if










R∗
2 < R0 < 1,

R∗
1 < 1;

(3.27)

iv) does not admit any endemic equilibria in the other cases.

In the sequel, let (3.24) or (3.25) or (3.26) holds true. In this case (3.1)

admits a unique endemic equilibrium (S̄, Ē, Ī , R̄). Setting

X1 = S − S̄, X2 = E − Ē, X3 = I − Ī , X4 = R− R̄

(3.1) reduces to










































∂X1

∂t
= a11X1 + a12X2 + a13X3 + a14X4 + γ∆X1 − F (X1, X3)

∂X2

∂t
= a21X1 + a22X2 + a23X3 + a24X4 + γ∆X2 + F (X1, X3)

∂X3

∂t
= a31X1 + a32X2 + a33X3 + a34X4 + γ3∆X3

∂X4

∂t
= a41X1 + a42X2 + a43X3 + a44X4 + γ4∆X4

(3.28)

where






















































a11=−[µ+KĪ(1 + αĪ)], a12=0, a13=−KS̄(1 + 2αĪ), a14=0,

a21=KĪ(1 + αĪ), a22=−(θ + µ), a23=KS̄(1 + 2αĪ), a24=0,

a31=0, a32=θ, a33=−(σ + µ), a34=0,

a41=0, a42=0, a43=σ, a44=−µ,

F (X1, X3) = KX3[(1 + 2αĪ)X1 + αX3(S̄ +X1)].

(3.29)

To (3.28)-(3.29) we add the boundary conditions


























Xi = 0 on Σ× R
+

i = 1, 2, 3, 4.

∇Xi · n = 0 on Σ∗ × R
+

(3.30)
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Denoting by W ∗(Ω) the functional space defined by

W ∗(Ω)=

{

ϕ ∈ W 1,2(Ω) ∩W 1,2(∂Ω) : ϕ=0 on Σ×R
+,
dϕ

dn
=0 on Σ∗×R

+

}

,

our aim is to study the stability of (S̄, Ē, Ī , R̄) with respect to the perturba-

tions (X1, X2, X3, X4) ∈ [W ∗(Ω)]4.

3.1.5 Linear stability of endemic equilibrium

Remark 9 We remark that the infimum

ᾱ(Ω) = inf
ϕ∈W ∗(Ω)

‖∇ϕ‖2
‖ϕ‖2 , (3.31)

exists and is a real positive number ([4], [67]);

Adding and subtracting the term ᾱγiXi to equation (3.28)i, (i = 1, 2, 3, 4),

and setting

L∗ =

















a11 − ᾱγ 0 a13 0

a21 a22 − ᾱγ a23 0

0 a32 a33 − ᾱγ3 0

0 0 a43 a44 − ᾱγ4

















,

in order to analyze the linear stability of the endemic equilibrium, and hence

of the null solution of the perturbation system (3.28), we have to find condi-

tions ensuring that all L∗ eigenvalues have negative real parts. The charac-

teristic equation of L∗ is

[λ− (a44 − ᾱγ4)](λ
3 − I1λ

2 + I2λ− I3) = 0, (3.32)

where I1, I2, I3 are the principal invariants of the matrix

J ∗ =











a11 − ᾱγ 0 a13

a21 a22 − ᾱγ a23

0 a32 a33 − ᾱγ3










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and are given by



































































































I1 = traceJ ∗ = a11 + a22 + a33 − ᾱ(2γ + γ3),

I2=

∣

∣

∣

∣

∣

∣

∣

a11−ᾱγ 0

a21 a22−ᾱγ

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

a11−ᾱγ a13

0 a33−ᾱγ3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

a22−ᾱγ a23

a32 a33−ᾱγ3

∣

∣

∣

∣

∣

∣

∣

I3 = detJ ∗ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − ᾱγ 0 a13

a21 a22 − ᾱγ a23

0 a32 a33 − ᾱγ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Accounting for (3.32), the eigenvalues of L∗ are given by the three roots of

the characteristic equation of J ∗

λ3 − I1λ
2 + I2λ− I3 = 0 (3.33)

and by

a44 − ᾱγ4,

where, in view of (3.29), a44−ᾱγ4 < 0. Passing now to the equation (3.33), as

it is well known, the necessary and sufficient conditions guaranteeing that all

the roots of (3.33) have negative real part are the Routh-Hurwitz conditions

[39]

I1 < 0, I3 < 0, I1I2 − I3 < 0. (3.34)

Obviously (3.34) require necessarily that I2 > 0. If one of (3.34) is reversed,

then there exists at least one eigenvalue of J ∗ with positive real part and

hence the null solution of (3.28) is linearly unstable. Denoting by I
∗, A∗ the
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principal invariants of the matrix





a22 − ᾱγ a23

a32 a33 − ᾱγ3



, i.e.

I
∗ = a22 + a33 − ᾱ(γ + γ3),

A∗ = ᾱ2γγ3 − ᾱ(γa33 + γ3a22) + a22a33 − a23a32,
(3.35)

it follows that


























I1 = a11 − ᾱγ + I
∗, I2 = (a11 − ᾱγ)I∗ + A∗,

I3 = (a11 − ᾱγ)A∗ + a13a21a32,

I1I2 − I3 = (a11 − ᾱγ + I
∗)(a11 − ᾱγ)I∗ + A∗

I
∗ − a13a21a32.

(3.36)

The following theorem holds.

Theorem 14 If

A∗ > 0, (3.37)

then the endemic equilibrium is linearly stable.

Proof Let us remark that in view of (3.36) and (3.29), if A∗ > 0, then the

Routh Hurwitz conditions (3.34) are verified and the thesis follows.
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3.1.6 Nonlinear stability of endemic equilibrium

Introducing the scalings µi (i = 1, 2, 3, 4) (µi are positive constants to be

chosen suitably later) and setting






















































































Xi = µiUi, U = (U1, U2, U3, U4)
T , F̃=(F̃1, F̃2, F̃3, F̃4)

T ,

F̄=F (µ1U1, µ3U3)= Kµ3U3[(1 + 2αĪ)µ1U1 + αµ3U3(S̄ + µ1U1)],

F̃1= − 1

µ1

F̄+γ(∆U1 + ᾱU1), F̃2 =
1

µ2

F̄ + γ(∆U2 + ᾱU2),

F̃3 = γ3(∆U3 + ᾱU3), F̃4 = γ4(∆U4 + ᾱU4),

(3.38)

(3.28) reduces to
∂U

∂t
= L̃U+ F̃, (3.39)

where L̃ is

L̃ =

















b11 0 b13 0

b21 b22 b23 0

0 b32 b33 0

0 0 b43 b44

















with

bii= aii − ᾱγi, bij=
µj

µi

aij, i 6= j. (3.40)

The boundary conditions (3.30) become

Ui = 0 on Σ× R
+, ∇Ui · n = 0, on Σ∗ × R

+, i = 1, 2, 3, 4. (3.41)

Hence the problem to find conditions guaranteeing the stability of (S̄, Ē, Ī , R̄)

is reduced to determine conditions guaranteeing the stability of the null so-

lution of (3.39)-(3.41). Remarking that, by virtue of (3.35) and (3.40), one
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obtains that A∗ = b22b33 − b23b32 = b22b33 − a23a32 and setting



























A1 = A∗ + (b32)
2 + (b33)

2

A2 = A∗ + (b22)
2 + (b23)

2

A3 = b22b32 + b23b33,

in order to study the nonlinear stability of endemic equilibrium, let us intro-

duce the Rionero-Liapunov functional (see [54],[55] for details)

W =
1

2
‖U1‖2 + V +

1

2
‖U4‖2,

where

V =
1

2

[

A∗(‖U2‖2 + ‖U3‖2) + ‖b22U3 − b32U2‖2 + ‖b23U3 − b33U2‖2
]

,

which is positive definite if A∗ > 0.

The time derivative of W along the solutions of (3.39) is

Ẇ = b11‖U1‖2+I∗A∗(‖U2‖2+‖U3‖2)+b44‖U4‖2+A1b21 〈U1, U2〉+
+ (−A3b21+b13) 〈U1, U3〉+b43 〈U3, U4〉+Φ1+Φ2,

(3.42)

being























Φ1 = γ < U1,∆U1+α0U1 >+<A1U2−A3U3,γ(∆U2+α0U2)>+

+ <A2U3 −A3U2, γ3(∆U3 + α0U3)>+γ4< U4,∆U4+α0U4>,

Φ2 =
1

µ1

< U1,−F̄ > +
1

µ2

< A1U2, F̄ > +
1

µ2

< A3U3,−F̄ >,

(3.43)

with F̄ given by (3.38)2.

The following Lemmas hold.

Lemma 6 If

A∗ > 0 and (γ + γ3) |A3| < 2
√

A1A2γγ3, (3.44)
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then there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

Φ1 ≤ −γ ‖∇U1‖2 + ᾱγ ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 . (3.45)

Proof. By using the divergence theorem, by virtue of the boundary condi-

tions (3.41) and in view of Poincaré inequality (3.31), from (3.43)1 it follows

that

Φ1 ≤ −γ ‖∇U1‖2 + ᾱγ ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 + Φ∗,

being ǫ a positive constant and

Φ∗ =−A1γ ‖∇U2‖2−|A3| (γ+γ3) 〈∇U2,∇U3〉−A2γ3(1−ǫ) ‖∇U3‖2+
+A1γᾱ ‖U2‖2+|A3| ᾱ(γ+γ3) 〈U2, U3〉+A2γ3(1−ǫ)ᾱ ‖U3‖2 .

(3.46)

Since (3.44)2 implies that there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

|A3| (γ + γ3) = 2
√

(1− ǫ1)γγ3A1A2, |A3| (γ + γ3) ≤ 2
√

(1− ǫ)γγ3A1A2,

by following the same procedure used for the proof of Lemma 3.2 in [54], one

obtains that Φ∗ ≤ 0 and hence the thesis follows.

Lemma 7 There exists a positive constant M(Ω) such that

Φ2≤M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

Proof. In view of (3.43)2 and (3.38)2 and since from (3.4) and (3.38)1 one

obtains

Ui ≤
Mi

µi

, i = 1, 2, 3

it turns out that

Φ2 ≤ c1 < U2
1 , |U3| > +c2 < |U1| , U2

3 > +c3 < |U2|, |U1U3| > +

+c4 < |U2|, U2
3 > +c5 < |U3|, U2

3 >,
(3.47)
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where






























c1 = k(1 + 2αĪ)µ3,

c2 = kαS̄
µ2
3

µ1

+ A1kαM2
µ1µ

2
3

µ2
2

+ |A3| k(1 + 2αĪ)
µ1µ3

µ2

+ |A3| kαM3
µ1µ3

µ2

,

c3 = A1k(1 + 2αĪ)
µ1µ3

µ2

, c4 = A1kαS̄
µ2
3

µ2

, c5 = |A3| kαS̄
µ2
3

µ2

.

By virtue of the Hölder and embedding inequalities

< |f |, g2 >≤ ‖f‖ ‖g‖24, ‖g‖24 ≤ K1(Ω)[‖∇g‖2+‖g‖2], K1(Ω) > 0,

and in view of Cauchy inequality, from (3.47) it follows that

Φ2 ≤ η1 ‖U3‖
(

‖U1‖2 + ‖∇U1‖2
)

+ η2 ‖U1‖
(

‖U3‖2 + ‖∇U1‖2
)

+

+ η3 ‖U2‖
(

‖U1‖2 + ‖∇U1‖2
)

+ η4 ‖U2‖
(

‖U3‖2 + ‖∇U3‖2
)

+

+ η5 ‖U3‖
(

‖U3‖2 + ‖∇U3‖2
)

,

being

ηi = K1(Ω)ci, i = 1, 2, 5 η3 =
1

2
c3K1(Ω) η4 =

(

1

2
c3 + c4

)

K1(Ω).

Hence the thesis follows with M(Ω) = max
i=1,...,5

ηi.

Remark 10 We remark that, setting

p =
A∗

2
, q =

A∗

2
+
[

(b22)
2 + (b23)

2 + (b32)
2 + (b33)

2
]

,

it follows that

p(‖U2‖2 + ‖U3‖2) ≤ V ≤ q(‖U2‖2 + ‖U3‖2). (3.48)

The following lemma holds.

Lemma 8 Setting

ζ1 =

[

1 +
ᾱ2γγ3 + ᾱγ(σ + µ) + ᾱγ3(θ + µ)

(θ + µ)(σ + µ)

]

N0

S̄(1 + 2αĪ)
, (3.49)

then

A∗ > 0 ⇔ R0 < ζ1. (3.50)
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Proof. By virtue of (3.20), (3.35) and (3.49), one has that

A∗ =
(θ + µ)(σ + µ)

N0

S̄(1 + 2αĪ)[ζ1 −R0], (3.51)

and hence (3.50) immediately follows.

The following theorem holds.

Theorem 15 If and only if

R0 < ζ1 and (γ + γ3) |A3| < 2
√

A1A2γγ3, (3.52)

then the null solution of (3.28)-(3.30) is (locally) nonlinearly, asymptotically

stable with respect to the L2(Ω)-norm.

Proof. By virtue of Lemma 6 and Lemma 7, in view of (3.40)1 and by using

the generalized Cauchy inequality, from (3.42) it follows that

Ẇ ≤ − |a11| ‖U1‖2 − |I∗|A∗(‖U2‖2 + ‖U3‖2)− |a44|‖U4‖2+
− γ ‖∇U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 +

+
A2

1a
2
21µ

2
1

2µ2
2|I∗|A∗

‖U1‖2 +
1

2
|I∗|A∗ ‖U2‖2 +

+ (−A3b21+b13) 〈U1, U3〉+
a243µ

2
3

2|a44|µ2
4

‖U3‖2+
1

2
|a44| ‖U4‖2 +

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

(3.53)

Choosing the positive scalings such that































−A3b21 + b13 = 0

|a11| −
A2

1a
2
21µ

2
1

2µ2
2|I∗|A∗

>
1

2
|a11|

|I∗|A∗ − a243µ
2
3

2|a44|µ2
4

>
1

2
|I∗|A∗

(3.54)
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i.e.


























































µ2
1 =

a13µ
2
2µ

2
3

a21 (b22a32µ2
2 + b33a23µ2

3)

µ2
2 >

(A∗ + b233) a
2
21µ

2
1µ

2
3

|I∗|A∗|a11|µ2
3 + a232a

2
21µ

2
1

µ2
4 >

|a43|2
|a44||I∗|A∗

µ2
3

and choosing

ǫ < min

{ |I∗|A∗

4A2ᾱγ3
, ǫ1

}

,

from (3.53) it turns out that

Ẇ ≤−1
2
|a11|‖U1‖2−

1

4
|I∗|A∗(‖U2‖2+‖U3‖2)−

1

2
|a44| ‖U4‖2+

−γ ‖∇U1‖2−A2γ3ǫ ‖∇U3‖2+
+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)

1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

Therefore, setting

h1 = min

{

µ,
A∗|I∗|

2

}

, h2 = min{γ, ǫA2γ3},

one has that

Ẇ ≤−h1
2
(‖U1‖2+‖U2‖2+‖U3‖2+‖U4‖2)−h2(‖∇U1‖2 +‖∇U3‖2)+

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

By virtue of (3.48), it turns out that

Ẇ ≤ −(δ1 − δ3W
1

2 )W − (h2 − δ2W
1

2 )(‖∇U1‖2 + ‖∇U3‖2),

with

δ1=h1 min {1, 1/2q} , δ2=M(Ω)max{
√
2, p−1/2}, δ3=M(Ω)max{2

√
2, p−3/2}.
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Hence, if

W
1

2 (0) < min {δ1/δ3, h2/δ2} ,

applying recursive arguments, it follows that

Ẇ ≤ −K̃W, K̃ = const. > 0

and hence the thesis follows.

3.2 On the stability of a SEIR reaction diffu-

sion model for infections under Neumann

boundary conditions

3.2.1 Introduction

In this section, we want to reconsider the model introduced in the prevoius

one [17]. In particular, while in the prevoius case it is supposed γ1 = γ2, i.e.

that both susceptible and infected individuals have the same diffusion coeffi-

cient, in the present case we reconsider the problem in the more general case

γ1 6= γ2 which, a priori, is biologically the more realistic case. Furthermore,

differently from the previous case, we assume that the infection at stake re-

quires to put in quarantine. From mathematical point of view, it means that

one has to consider the homogeneous Neumann boundary conditions. More-

over, since the quarantine hospitals normally can have many floors, it seems

to prefer to embed the problem in a three-dimensional domain.

3.2.2 Mathematical model

Let Ω be a regular domain of class Cp (p ≥ 2), with the interior cone property.

Let us consider the reaction-diffusion model of SEIR type (3.1) governing
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the evolution of an infection in Ω with all the parameters having the same

meaning of the previous section.

To (3.1) we add the following homogeneous Neumann boundary conditions

∇S · n = 0, ∇E · n = 0, ∇I · n = 0, ∇R · n = 0 on ∂Ω× R
+, (3.55)

being n the unit outward normal on ∂Ω.

Let us define

N(t) =
1

|Ω|

∫

Ω

[S(x, t) + E(x, t) + I(x, t) +R(x, t)] dΩ,

i.e. the population size at time t. The following theorem holds.

Theorem 16 The total population size in Ω is constant for all time, i.e.

N(t) = N0, ∀t ≥ 0. (3.56)

Proof. By adding (3.1)1, (3.1)2, (3.1)3, (3.1)4 and integrating over Ω, one

has

d

dt

∫

Ω

(S+E+I+R) dΩ=µN0 |Ω|−µ
∫

Ω

(S + E + I +R) dΩ+

+γ1

∫

Ω

∆S dΩ + γ2

∫

Ω

∆E dΩ + γ3

∫

Ω

∆I dΩ + γ4

∫

Ω

∆RdΩ.

(3.57)

In view of the boundary conditions (3.55), the divergence theorem leads to

∫

Ω

∆ϕdΩ =

∫

Ω

∇ · ∇ϕdΩ =

∫

∂Ω

∇ϕ · n dΣ = 0, ∀ϕ ∈ {S,E, I, R},

hence (3.57) becomes
d

dt
N(t) + µN(t) = µN0. (3.58)

Integrating (3.58), one easily obtains (3.56).
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3.2.3 Absorbing sets

Let us denote by T > 0 an arbitrary fixed time and by ΩT = Ω × (0, T ]

the parabolic cylinder, ΩT being the parabolic interior of Ω̄× [0, T ] (i.e. ΩT

includes the top Ω× {t = T}).
We refer here to the positive smooth solutions of (3.1) under the boundary

conditions (3.55) and the smooth positive initial data


























S(x, 0) = S0(x), E(x, 0) = E0(x),

x ∈ Ω.

I(x, 0) = I0(x), R(x, 0) = R0(x),

(3.59)

The following theorems hold.

Theorem 17 Model (3.1), under the boundary conditions (3.55) and the

(positive) initial data (3.59), admits a unique positive solution in C2
1(ΩT ) ∩

C(Ω̄T ).

Proof. The existence of solutions of (3.1), (3.55), (3.59) can be proved as

done in [40] and the uniqueness as done in [14].

In order to obtain a L∞-norm estimate of the solution, let us recall a result

of [48].

Lemma 9 Let us consider the parabolic system






















∂ui
∂t

−∆ui = fi(x, t, u), x ∈ Ω, t > 0, i = 1, ..., l

∂ui
∂ν

= 0 x ∈ ∂Ω, t > 0

ui(x, 0) = u0i (x) x ∈ Ω

where u = (u1, ..., ul), u
0
i ∈ C

(

Ω̄
)

, i = 1, ..., l and assume that, for each

k = 1, ..., l, the functions fk satisfy the polynomial growth condition

|fk(x, t, u)| ≤ c1

l
∑

i=1

|ui|q + c2 (3.60)
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for some nonnegative constants c1 and c2 and positive constant q. Let p0 be

a positive constant such that p0 >
n

2
max{0, q− 1} and τ(u0) be the maximal

existence time of the solution u corresponding to the initial data u0. Sup-

pose that there exists a positive constant Cp0(u
0) such that ‖u(·, t)‖Lp0 (Ω) ≤

Cp0(u
0), ∀t ∈ (0, τ(u0)), then the solution u exists for all time and there is a

positive constant C∞ such that ‖u(·, t)‖L∞(Ω) ≤ C∞(u0), ∀t ∈ (0,∞).

Theorem 18 Any positive solution (S,E, I, R) of (3.1), (3.55), (3.59) is

bounded, i.e. there exists a positive constant C, depending on the nonnegative

initial data (S0(x), E0(x), I0(x), R0(x)) such that, ∀t ∈ (0,∞)

‖S(·, t)‖L∞(Ω) + ‖E(·, t)‖L∞(Ω) + ‖I(·, t)‖L∞(Ω) + ‖R(·, t)‖L∞(Ω) ≤ C. (3.61)

Proof. By following the procedure used in [11], let us set max
Ω̄T

S = S(x1, t1).

We have to distinguish the following cases.

1) If (x1, t1) belongs to the interior of ΩT , then (3.1)1 implies that

[

∂S

∂t
− µ(N0 − S)− γ∆S

]

(x1,t1)

< 0. (3.62)

Since
[

∂S

∂t

]

(x1,t1)

= 0, [∆S](x1,t1)
< 0,

then (3.62) can hold if and only if

µ(N0 − S) > 0

and hence if and only if S(x1, t1) < N0.

2) If (x1, t1) ∈ ∂Ω× [0, T ), in view of the regularity of the domain Ω, since

Ω verifies in any point x0 ∈ ∂Ω the interior ball condition, there exists
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an open ball B∗ ⊂ Ω with x0 ∈ ∂B∗. If S(x1, t1) > N0, choosing the

radius of B∗ sufficiently small, it follows that

γ∆S − ∂S

∂t
> 0 in B∗

and, by virtue of Hopf’s Lemma [49], one obtains that

(

dS

dn

)

(x1,t1)

> 0.

Since
dS

dn
= 0 on ∂Ω×R

+, it follows that S(x1, t1) > N0 is not possible.

3) Finally, if (x1, t1) ∈ Ω× {0}, then S(x1, t1) < max
Ω̄

S0(x).

Hence,

‖S(·, t)‖L∞ < M1 = max{N0,max
Ω̄

S0(x)}, ∀t > 0; (3.63)

moreover, in view of (3.63) and of the Young inequality, one obtains that the

nonlinear term g(S, I) = KIS(1 + αI) has a polynomial growth such that

g(S, I) ≤ c1I
2 + c2, (3.64)

being c1 = KM1

(

α +
1

2

)

and c2 =
1

2
KM1. Therefore, (3.64) implies that

the hyphotesis (3.60) of Lemma 9 holds with q = 2. In order to apply

Lemma 9 with p0 = 2 to the model (3.1), (3.55), (3.59), let us first estimate

the L2-norm of each component of the solution (S,E, I, R) with respect to

the spatial variable.

In order to do this, multiplying (3.1)1 by S(x, t) and integrating over Ω, by

using the divergence theorem and the boundary conditions (3.55), it follows

that
1

2

d

dt

∫

Ω

S2 dΩ + γ1

∫

Ω

|∇S|2 dΩ + µ

∫

Ω

S2 dΩ =

= µN0

∫

Ω

S dΩ−
∫

Ω

KIS2(1 + αI) dΩ.
(3.65)
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In view of (3.63), (3.65) implies that

1

2

d

dt

∫

Ω

S2 dΩ + µ

∫

Ω

S2 dΩ ≤ µN0M1, ∀t ≥ 0

and hence
1

2

d

dt

∫

Ω

S2 dΩ ≤ e−2µt

∫

Ω

S2
0 dΩ +

M1

µ
, ∀t ≥ 0. (3.66)

In order to estimate the L2-norm of E(x, t) with respect to the spatial vari-

able, let us set

V (x, t) = S(x, t) + E(x, t)

so that, adding (3.1)1 and (3.1)2, one has

∂V

∂t
= γ2∆V + (γ1 − γ2)∆S + µN0 − (θ + µ)V + θS. (3.67)

Multiplying (3.67) by V and integrating over Ω, by virtue of the divergence

theorem and of the boundary conditions (3.55) it follows that

1

2

d

dt

∫

Ω

V 2 dΩ + γ2

∫

Ω

|∇V |2 dΩ + (θ + µ)

∫

Ω

V 2 dΩ =

(γ2 − γ1)

∫

Ω

∇S · ∇V dΩ + µN0

∫

Ω

V dΩ + θ

∫

Ω

SV dΩ, ∀t ≥ 0.
(3.68)

In view of the Cauchy inequality, for any t ≥ 0, one obtains that

(γ2−γ1)
∫

Ω

∇S ·∇V dΩ ≤ γ2
2

∫

Ω

|∇V |2 dΩ+
(γ1 − γ2)

2

2γ2

∫

Ω

|∇S|2 dΩ, (3.69)

µN0

∫

Ω

V dΩ ≤ 2θ + µ

4

∫

Ω

V 2 dΩ +
µ2N2

0 |Ω|
2θ + µ

(3.70)

and

θ

∫

Ω

SV dΩ ≤ 2θ + µ

4

∫

Ω

V 2 dΩ +
θ2

2θ + µ

∫

Ω

S2 dΩ. (3.71)

Taking into account (3.69), (3.70) and (3.71), and by virtue of (3.66), (3.68)

implies that

d

dt

∫

Ω

V 2 dΩ + µ

∫

Ω

V 2 dΩ ≤ (γ1 − γ2)
2

γ2

∫

Ω

|∇S|2 dΩ +m1, (3.72)
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being m1 =
2µ2N2

0 |Ω|
2θ + µ

+
2θ2N0 |Ω|M1

2θ + µ
+

2θ2

2θ + µ

∫

Ω

S2
0 dΩ.

Moreover, (3.72) is equivalent to

d

dt

(

eµt
∫

Ω

V 2 dΩ

)

≤ (γ1 − γ2)
2

γ2
eµt

∫

Ω

|∇S|2 dΩ +m1e
µt, (3.73)

then, by integrating (3.73) from 0 to t, one has
∫

Ω

V 2 dΩ ≤ e−µt

∫

Ω

V (x, 0)2 dΩ+

+
(γ1 − γ2)

2

γ2
e−µt

∫ t

0

[∫

Ω

eµτ|∇S|2 dΩ
]

dτ +
m1

µ
.

(3.74)

On the other hand, multiplying (3.65) by eµt then integrating from 0 to t

and using (3.63), one obtains that

1

2

∫ t

0

[

eµτ
d

dτ

∫

Ω

S2 dΩ

]

dτ + µ

∫ t

0

[

eµτ
∫

Ω

S2 dΩ

]

dτ+

+γ1

∫ t

0

[

eµτ
∫

Ω

|∇S|2 dΩ
]

dτ ≤ N0 |Ω|M1e
µt.

Integrating by parts, one has that

∫ t

0

[

eµτ
d

dτ

∫

Ω

S2 dΩ

]

dτ = eµt
∫

Ω

S2 dΩ−
∫

Ω

S2
0 dΩ+

− µ

∫ t

0

[

eµτ
∫

Ω

S2 dΩ

]

dτ ;

(3.75)

therefore, from (3.75) it turns out that

2γ1

∫ t

0

[

eµτ
∫

Ω

|∇S|2 dΩ
]

dτ ≤
∫

Ω

S2
0 dΩ + 2N0M1 |Ω| eµt, ∀t ≥ 0. (3.76)

By virtue of (3.76) and (3.66), (3.74) implies that

∫

Ω

V 2 dΩ ≤
∫

Ω

(

S2
0 + E2

0

)

dΩ +
(γ1 − γ2)

2

2γ1γ2

∫

Ω

S2
0 dΩ+

+
N0 |Ω|M1(γ1 − γ2)

2

2γ1γ2
+
m1

µ
, ∀t ≥ 0.

Setting

M2 =

∫

Ω

(

S2
0 + E2

0

)

dΩ +
(γ1 − γ2)

2

2γ1γ2

∫

Ω

S2
0 dΩ +

N0 |Ω|M1(γ1 − γ2)
2

2γ1γ2
+
m1

µ
,
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one obtains that

∫

Ω

E2 dΩ ≤
∫

Ω

(S + E)2 dΩ =

∫

Ω

V 2 dΩ ≤M2, ∀t ≥ 0. (3.77)

Now, multiplying (3.1)3 by I, integrating over Ω and using the divergence

theorem and the boundary conditions (3.55), one obtains that

1

2

d

dt

∫

Ω

I2 dΩ = −(σ + µ)

∫

Ω

I2 dΩ + θ

∫

Ω

EI Ω− γ2

∫

Ω

|∇I|2 dΩ; (3.78)

by virtue of the generalized Cauchy inequality and of (3.77), (3.78) implies

that

1

2

d

dt

∫

Ω

I2 dΩ ≤ θ2

2(σ + µ)

∫

Ω

E2 dΩ−σ + µ

2

∫

Ω

I2 dΩ ≤ θ2M2

2(σ + µ)
−σ + µ

2

∫

Ω

I2 dΩ.

Hence, it follows that
∫

Ω

I2 dΩ ≤M3 ∀t ≥ 0 (3.79)

being

M3 =

∫

Ω

I20 dΩ +
θ2M2

(σ + µ)2
.

Following the same procedure for the forth equation (3.1)4, one has that

∫

Ω

R2 dΩ ≤M4 ∀t ≥ 0 (3.80)

where

M4 =

∫

Ω

R2
0 dΩ +

θ2M2

µ2
.

In view of (3.66), (3.77), (3.79) and (3.80) and applying Lemma 9 with p0 = 2,

the thesis follows.

Let us denote by 〈·, ·〉 and ‖·‖ the scalar product and the norm in L2(Ω),

respectively. The following theorem holds.
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Theorem 19 Every ball of radius bigger than
b̄

ā
is an absorbing set, with











ā = 2µ,

b̄ =2|Ω|C2 (µ+ θ + σ +K(1 + αC)) .

Proof. Multiplying (3.1)1 for S, (3.1)2 for E, (3.1)3 for I and (3.1)4 for R,

integrating over Ω and adding member by member, it follows that

1

2

d

dt

(

‖S‖2+‖E‖2+‖I‖2+‖R‖2
)

=µN0

∫

Ω

S dΩ−µ‖S‖2+γ1
∫

Ω

S∆S dΩ+

−K
∫

Ω

IS2(1 + αI) dΩ−(θ+µ) ‖E‖2+γ2
∫

Ω

E∆E dΩ+

+K

∫

Ω

ISE(1 + αI) dΩ−(σ + µ) ‖I‖2+θ
∫

Ω

EI dΩ+

+γ3

∫

Ω

I∆I dΩ+σ

∫

Ω

IR dΩ−µ ‖R‖2+γ4
∫

Ω

R∆RdΩ.

Let us define

H = ‖S‖2+‖E‖2+‖I‖2+‖R‖2 .

Applying the divergence theorem, taking into account of the boundary con-

ditions (3.55) and by virtue of (3.61), one obtains

dH

dt
≤ −āH + b̄

and hence, following the same procedure used in Theorem 12, Theorem 19

holds.

3.2.4 Equilibria and preliminaries to stability

Let us denote by R0 the basic reproduction number in absence of diffusion,

R0 =
N0θK

(θ + µ)(σ + µ)
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and let us set

R∗
1 =

√

K

αµ
, R∗

2 = 2R∗
1 −R∗2

1 .

The biologically meaningful equilibria (S̄, Ē, Ī , R̄) of (3.1) are the non-negative

solutions of the system






































µ(N0 − S̄)−KĪS̄(1 + αĪ) = 0,

−(θ + µ)Ē +KĪS̄(1 + αĪ) = 0,

−(σ + µ)Ī + θĒ = 0,

σĪ − µR̄ = 0.

The following two kinds of solutions arise.

i) DISEASE-FREE EQUILIBRIUM:

System (3.1) admits the equilibrium (S1, E1, I1, R1) = (N0, 0, 0, 0) which

- from biological point of view - means that no infection arises.

ii) ENDEMIC EQUILIBRIA:

The biologically meaningful equilibria (endemic equilibria) of (3.1) are

the positive stationary constant solutions (S̄, Ē, Ī , R̄) of (3.1).

The following theorem holds.

Theorem 20 System (3.1)

i) always admits the disease free equilibrium (S1, E1, I1, R1) = (N0, 0, 0, 0);

ii) admits a unique endemic equilibrium if

R0 > 1, (3.81)

or










R0 = 1,

R∗
1 < 1;

(3.82)
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or










R0 = R∗
2 < 1,

R∗
1 < 1;

(3.83)

iii) admits two endemic equilibria if











R∗
2 < R0 < 1,

R∗
1 < 1;

(3.84)

iv) does not admit any endemic equilibrium in the other cases.

Proof. For the proof, see that one of Theorem 13.

Let (3.81) or (3.82) or (3.83) holds true. In this case (3.1) admits a unique

endemic equilibrium (S̄, Ē, Ī , R̄). Setting

X1 = S − S̄, X2 = E − Ē, X3 = I − Ī , X4 = R− R̄,

(3.1) reduces to










































∂X1

∂t
= a11X1 + a12X2 + a13X3 + a14X4 + γ1∆X1 − F (X1, X3)

∂X2

∂t
= a21X1 + a22X2 + a23X3 + a24X4 + γ2∆X2 + F (X1, X3)

∂X3

∂t
= a31X1 + a32X2 + a33X3 + a34X4 + γ3∆X3

∂X4

∂t
= a41X1 + a42X2 + a43X3 + a44X4 + γ4∆X4

(3.85)

where






















































a11=−[µ+KĪ(1 + αĪ)], a12=0, a13=−KS̄(1 + 2αĪ), a14=0,

a21=KĪ(1 + αĪ), a22=−(θ + µ), a23=KS̄(1 + 2αĪ), a24=0,

a31=0, a32=θ, a33=−(σ + µ), a34=0,

a41=0, a42=0, a43=σ, a44=−µ,

F (X1, X3) = KX3[(1 + 2αĪ)X1 + αX3(S̄ +X1)].

(3.86)
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To (3.85)-(3.86) we add the boundary conditions

∇Xi · n = 0 on ∂Ω× R
+ i = 1, 2, 3, 4. (3.87)

Denoting by W ∗(Ω) the functional space defined by

W ∗(Ω)=

{

ϕ ∈ W 1,2(Ω) ∩W 1,2(∂Ω) :
dϕ

dn
=0 on ∂Ω×R

+,

∫

Ω

ϕdΩ = 0

}

,

our aim is to study the stability of (S̄, Ē, Ī , R̄) with respect to the perturba-

tions (X1, X2, X3, X4) ∈ [W ∗(Ω)]4.

3.2.5 Linear stability of endemic equilibrium

Remark 11 We remark that the infimum

ᾱ(Ω) = inf
ϕ∈W ∗(Ω)

‖∇ϕ‖2
‖ϕ‖2 , (3.88)

exists and is a real positive number ([4], [67]);

Adding and subtracting the term ᾱγiXi to equation (3.85)i, (i = 1, 2, 3, 4),

and setting

L∗ =

















a11 − ᾱγ1 0 a13 0

a21 a22 − ᾱγ2 a23 0

0 a32 a33 − ᾱγ3 0

0 0 a43 a44 − ᾱγ4

















,

in order to analyze the linear stability of the endemic equilibrium, and hence

of the null solution of the perturbation system (3.85), we have to find condi-

tions ensuring that all L∗ eigenvalues have negative real parts. The charac-

teristic equation of L∗ is

[λ− (a44 − ᾱγ4)](λ
3 − I1λ

2 + I2λ− I3) = 0, (3.89)
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where I1, I2, I3 are the principal invariants of the matrix

J ∗ =











a11 − ᾱγ1 0 a13

a21 a22 − ᾱγ2 a23

0 a32 a33 − ᾱγ3











and are given by



































































































I1 = traceJ ∗ = a11 + a22 + a33 − ᾱ(γ1 + γ2 + γ3),

I2=

∣

∣

∣

∣

∣

∣

∣

a11−ᾱγ1 0

a21 a22−ᾱγ2

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

a11−ᾱγ1 a13

0 a33−ᾱγ3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

a22−ᾱγ2 a23

a32 a33−ᾱγ3

∣

∣

∣

∣

∣

∣

∣

I3 = detJ ∗ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − ᾱγ1 0 a13

a21 a22 − ᾱγ2 a23

0 a32 a33 − ᾱγ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Accounting for (3.89), the eigenvalues of L∗ are given by the three roots of

the characteristic equation of J ∗

λ3 − I1λ
2 + I2λ− I3 = 0 (3.90)

and by

a44 − ᾱγ4,

where, in view of (3.86), a44−ᾱγ4 < 0. Passing now to the equation (3.90), as

it is well known, the necessary and sufficient conditions guaranteeing that all

the roots of (3.90) have negative real part are the Routh-Hurwitz conditions

[39]

I1 < 0, I3 < 0, I1I2 − I3 < 0. (3.91)
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Obviously (3.91) require necessarily that I2 > 0. If one of (3.91) is reversed,

then there exists at least one eigenvalue of J ∗ with positive real part and

hence the null solution of (3.85) is linearly unstable. Denoting by I
∗, A∗ the

principal invariants of the matrix





a22 − ᾱγ2 a23

a32 a33 − ᾱγ3



, i.e.

I
∗ = a22 + a33 − ᾱ(γ2 + γ3),

A∗ = ᾱ2γ2γ3 − ᾱ(γ2a33 + γ3a22) + a22a33 − a23a32,
(3.92)

it follows that


























I1 = a11 − ᾱγ1 + I
∗, I2 = (a11 − ᾱγ1)I

∗ + A∗,

I3 = (a11 − ᾱγ1)A
∗ + a13a21a32,

I1I2 − I3 = (a11 − ᾱγ1 + I
∗)(a11 − ᾱγ1)I

∗ + A∗
I
∗ − a13a21a32.

(3.93)

The following theorem holds.

Theorem 21 If

A∗ > 0, (3.94)

then the endemic equilibrium is linearly stable.

Proof Let us remark that in view of (3.93) and (3.86), if A∗ > 0, then the

Routh Hurwitz conditions (3.91) are verified and the thesis follows.
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3.2.6 Nonlinear stability of endemic equilibrium

Introducing the scalings µi (i = 1, 2, 3, 4) (µi are positive constants to be

chosen suitably later) and setting






















































































Xi = µiUi, U = (U1, U2, U3, U4)
T , F̃=(F̃1, F̃2, F̃3, F̃4)

T ,

F̄=F (µ1U1, µ3U3)= Kµ3U3[(1 + 2αĪ)µ1U1 + αµ3U3(S̄ + µ1U1)],

F̃1= − 1

µ1

F̄+γ1(∆U1 + ᾱU1), F̃2 =
1

µ2

F̄ + γ2(∆U2 + ᾱU2),

F̃3 = γ3(∆U3 + ᾱU3), F̃4 = γ4(∆U4 + ᾱU4),

(3.95)

(3.85) reduces to
∂U

∂t
= L̃U+ F̃, (3.96)

where L̃ is the Jacobian matrix

L̃ =

















b11 0 b13 0

b21 b22 b23 0

0 b32 b33 0

0 0 b43 b44

















with

bii= aii − ᾱγi, bij=
µj

µi

aij, i 6= j. (3.97)

The boundary conditions (3.87) become

∇Ui · n = 0, on ∂Ω× R
+, i = 1, 2, 3, 4. (3.98)

Hence the problem to find conditions guaranteeing the stability of (S̄, Ē, Ī , R̄)

is reduced to determine conditions guaranteeing the stability of the null so-

lution of (3.96)-(3.98). Remarking that, by virtue of (3.92) and (3.97), one
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obtains that A∗ = b22b33 − b23b32 = b22b33 − a23a32 and setting



























A1 = A∗ + (b32)
2 + (b33)

2

A2 = A∗ + (b22)
2 + (b23)

2

A3 = b22b32 + b23b33,

in order to study the nonlinear stability of endemic equilibrium, let us intro-

duce the Rionero-Liapunov functional (see [54], [55] for details)

W =
1

2
‖U1‖2 + V +

1

2
‖U4‖2,

where

V =
1

2

[

A∗(‖U2‖2 + ‖U3‖2) + ‖b22U3 − b32U2‖2 + ‖b23U3 − b33U2‖2
]

,

which is positive definite if A∗ > 0.

The time derivative of W along the solutions of (3.96) is

Ẇ = b11‖U1‖2+I∗A∗(‖U2‖2+‖U3‖2)+b44‖U4‖2+A1b21 〈U1, U2〉+
+ (−A3b21+b13) 〈U1, U3〉+b43 〈U3, U4〉+Φ1+Φ2,

(3.99)

being























Φ1 = γ1 < U1,∆U1+ᾱU1 >+<A1U2−A3U3,γ2(∆U2+ᾱU2)>+

+<A2U3 −A3U2, γ3(∆U3 + ᾱU3)>+γ4< U4,∆U4+ᾱU4>,

Φ2 =
1

µ1

< U1,−F̄ > +
1

µ2

< A1U2, F̄ > +
1

µ2

< A3U3,−F̄ >,

(3.100)

with F̄ given by (3.95)3.

The following Lemmas hold.

Lemma 10 If

A∗ > 0 and (γ2 + γ3) |A3| < 2
√

A1A2γ2γ3, (3.101)
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then there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

Φ1 ≤ −γ1 ‖∇U1‖2 + ᾱγ1 ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 .

Proof. By using the divergence theorem, by virtue of the boundary condi-

tions (3.98) and in view of Poincaré inequality (3.88), from (3.100) it follows

that

Φ1 ≤ −γ1 ‖∇U1‖2 + ᾱγ1 ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 + Φ∗,

being

Φ∗ =−A1γ2 ‖∇U2‖2−|A3| (γ2+γ3) 〈∇U2,∇U3〉−A2γ3(1−ǫ) ‖∇U3‖2+
+A1γ2ᾱ ‖U2‖2+|A3| ᾱ(γ2+γ3) 〈U2, U3〉+A2γ3(1−ǫ)ᾱ ‖U3‖2 .

Since (3.101)2 implies that there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

|A3| (γ2+γ3) = 2
√

(1− ǫ1)γ2γ3A1A2, |A3| (γ2+γ3) ≤ 2
√

(1− ǫ)γ2γ3A1A2,

by following the same procedure used for the proof of Lemma 3.2 in [54], one

obtains that Φ∗ ≤ 0 and hence the thesis follows.

Lemma 11 There exists a positive constant M(Ω) such that

Φ2≤M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

Proof. In view of (3.100)2 and (3.95)2 and since from (3.61) and (3.95)1 one

obtains

Ui ≤
C

µi

, i = 1, 2, 3

it turns out that

Φ2 ≤ c1 < U2
1 , |U3| > +c2 < |U1| , U2

3 > +c3 < |U2|, |U1U3| > +

+c4 < |U2|, U2
3 > +c5 < |U3|, U2

3 >,
(3.102)
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where






























c1 = k(1 + 2αĪ)µ3,

c2 = kαS̄
µ2
3

µ1

+ A1kαC
µ1µ

2
3

µ2
2

+ |A3| k(1 + 2αĪ)
µ1µ3

µ2

+ |A3| kαC
µ1µ3

µ2

,

c3 = A1k(1 + 2αĪ)
µ1µ3

µ2

, c4 = A1kαS̄
µ2
3

µ2

, c5 = |A3| kαS̄
µ2
3

µ2

.

By virtue of the Hölder and embedding inequalities

< |f |, g2 >≤ ‖f‖ ‖g‖24, ‖g‖24 ≤ K1(Ω)[‖∇g‖2+‖g‖2], K1(Ω) > 0,

and in view of Cauchy inequality, from (3.102) it follows that

Φ2 ≤ η1 ‖U3‖
(

‖U1‖2 + ‖∇U1‖2
)

+ η2 ‖U1‖
(

‖U3‖2 + ‖∇U1‖2
)

+

+ η3 ‖U2‖
(

‖U1‖2 + ‖∇U1‖2
)

+ η4 ‖U2‖
(

‖U3‖2 + ‖∇U3‖2
)

+

+ η5 ‖U3‖
(

‖U3‖2 + ‖∇U3‖2
)

,

being

ηi = K1(Ω)ci, i = 1, 2, 5, η3 =
1

2
c3K1(Ω), η4 =

(

1

2
c3 + c4

)

K1(Ω).

Hence the thesis follows with M(Ω) = max
i=1,...,5

ηi.

Remark 12 We remark that, setting

p =
A∗

2
, q =

A∗

2
+
[

(b22)
2 + (b23)

2 + (b32)
2 + (b33)

2
]

,

it follows that

p(‖U2‖2 + ‖U3‖2) ≤ V ≤ q(‖U2‖2 + ‖U3‖2). (3.103)

The following lemma holds.

Lemma 12 Setting

ζ1 =

[

1 +
ᾱ2γ2γ3 + ᾱγ2(σ + µ) + ᾱγ3(θ + µ)

(θ + µ)(σ + µ)

]

N0

S̄(1 + 2αĪ)
, (3.104)

then

A∗ > 0 ⇔ R0 < ζ1. (3.105)
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Proof. By virtue of (3.92), (3.86) and (3.104), one has that

A∗ =
(θ + µ)(σ + µ)

N0

S̄(1 + 2αĪ)[ζ1 −R0],

and hence (3.105) immediately follows.

The following theorem holds.

Theorem 22 If and only if

R0 < ζ1 and (γ2 + γ3) |A3| < 2
√

A1A2γ2γ3, (3.106)

then the null solution of (3.85)-(3.87) is (locally) nonlinearly, asymptotically

stable with respect to the L2(Ω)-norm.

Proof. By virtue of Lemma 10 and Lemma 11, in view of (3.97) and by

using the generalized Cauchy inequality, from (3.99) it follows that

Ẇ ≤ − |a11| ‖U1‖2 − |I∗|A∗(‖U2‖2 + ‖U3‖2)− |a44|‖U4‖2+
− γ1 ‖∇U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 +

+
A2

1a
2
21µ

2
1

2µ2
2|I∗|A∗

‖U1‖2 +
1

2
|I∗|A∗ ‖U2‖2 +

+ (−A3b21+b13) 〈U1, U3〉+
a243µ

2
3

2|a44|µ2
4

‖U3‖2+
1

2
|a44| ‖U4‖2 +

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

(3.107)

Choosing the positive scalings such that































−A3b21 + b13 = 0

|a11| −
A2

1a
2
21µ

2
1

2µ2
2|I∗|A∗

>
1

2
|a11|

|I∗|A∗ − a243µ
2
3

2|a44|µ2
4

>
1

2
|I∗|A∗
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i.e.


























































µ2
1 =

a13µ
2
2µ

2
3

a21 (b22a32µ2
2 + b33a23µ2

3)

µ2
2 >

(A∗ + b233) a
2
21µ

2
1µ

2
3

|I∗|A∗|a11|µ2
3 + a232a

2
21µ

2
1

µ2
4 >

|a43|2
|a44||I∗|A∗

µ2
3

and choosing

ǫ < min

{ |I∗|A∗

4A2ᾱγ3
, ǫ1

}

,

from (3.107) it turns out that

Ẇ ≤−1
2
|a11|‖U1‖2−

1

4
|I∗|A∗(‖U2‖2+‖U3‖2)−

1

2
|a44| ‖U4‖2+

−γ1 ‖∇U1‖2−A2γ3ǫ ‖∇U3‖2+
+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)

1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

Therefore, setting

h1 = min

{

µ,
A∗|I∗|

2

}

, h2 = min{γ1, ǫA2γ3},

one has that

Ẇ ≤−h1
2
(‖U1‖2+‖U2‖2+‖U3‖2+‖U4‖2)−h2(‖∇U1‖2 +‖∇U3‖2)+

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

By virtue of (3.103), it turns out that

Ẇ ≤ −(δ1 − δ3W
1

2 )W − (h2 − δ2W
1

2 )(‖∇U1‖2 + ‖∇U3‖2),

with

δ1=h1 min {1, 1/2q} , δ2=M(Ω)max{
√
2, p−1/2}, δ3=M(Ω)max{2

√
2, p−3/2}.
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Hence, if

W
1

2 (0) < min {δ1/δ3, h2/δ2} ,

applying recursive arguments, it follows that

Ẇ ≤ −K̃W, K̃ = const. > 0

and hence the thesis follows.

3.3 A reaction-diffusion system modeling Cholera

dynamic under mixed boundary condi-

tions

3.3.1 Introduction

In this section the problem studied in [16], aimed to analyze the spread of

Cholera in an heterogeneous environment, is reconsidered.

Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae

(V. cholerae). The mechanism of transmission occurs, principally, via inges-

tion of contaminated food or water and, secondarily but more rarely, via

direct human-to-human contacts [65]. In the developed world, seafood (in

particular consuming contaminated oysters and shellfish) is the usual cause,

while in the developing world it is more often water. Generally, the incuba-

tion period lasts from less than one day to five days. Symptoms are watery

diarrhea and vomiting that can quickly lead to severe dehydration and death

if treatment is not promptly given. Without treatment the case-fatality rate

for severe cholera is about 50%, [63]. Only 1% to 30% of V. cholerae infec-

tions develop into severe cholera cases, [64]. People with lowered immunity

(for example people with AIDS or malnourished children) are more likely to
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experience a severe case if they become infected.

Cholera is endemic in many parts of the world such as Asia, India, Africa

and Latin America. It affects 3-5 million people and causes 100.000−130.000

deaths a year as of 2010, [71]. The primary therapy consists in re-hydrating

infected people in order to replace contaminated water in the organism and

correct electrolyte imbalance. However, prevention strategy is strongly rec-

ommended by the World Health Organization (WHO). It provides water

purification, sterilization of all materials that come in contact with cholera

patients, improvements in sanitation systems and in personal hygiene. These

measurements minimize human contact with contaminated water and con-

sequently spread of the epidemic. Till now, the preventive care consists in

active immunization by mean of vaccines. Injectable vaccines are given by

two intramuscular or subcutaneous inoculations. Protection lasts not more

than six months and it is not complete. Because of the high side effects, this

kind of care is actually deterred. Oral vaccines are available by two prepara-

tions. The first (Orochol) can be given to people being more than two years

old. Efficiency is for 60-90%, it starts after seven days and can last up to two

years (boosters have to be given every six months). The second preparation

(Cholerix ) is given in two doses far-between two weeks. Efficiency is in 65%.

In order to study infectious diseases transmission, the mathematical mod-

els play a central role. In fact, although they represent only an approximation

of the problem (they consider only some variables that are involved in the

phenomenon), they allow to obtain estimation about the spread of epidemics.

In this way it is possible to predict the asymptotic behaviour of infection and,

consequentially, to take some actions in order to control epidemics. When

a population is not infected by a disease, all the individuals are regarded as
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susceptibles. Introducing a few number of infected in the community, in or-

der to know if the epidemic will die out or if it will blow up, it would be useful

to study the stability of the so called disease-free equilibrium. If the disease-

free equilibrium is stable, then epidemic will decay. In general, the problem

to determine if endemic equilibria (i.e. equilibria with positive components)

exist, arises. When endemic equilibria exist, their stability analysis allows

to state if epidemic will persist. A lot of mathematical models for infectious

diseases are devoted to study cholera outbreak in different parts of the world.

In particular Capasso and Paveri-Fontana in [8] studied the cholera epidemic

in Bari (Italy) in 1973 by introducing a system modeling the evolution of

infected people in the community and the dynamics of the aquatic popula-

tion of pathogenic bacteria. In fact, cholera diffusion is strictly linked to the

interactions between individuals in community and bacteria in contaminated

water. Successively, Capasso and Maddalena in [9], in order to let the model

be more realistic, assumed that the bacteria diffuse randomly in the habitat.

Hence they analyzed a model consisting in two nonlinear parabolic equa-

tions under boundary conditions of the third type. Many studies (see, for

example, [20]) found that toxigenic V. cholerae can survive in some aquatic

environments for month to years. This suggests to believe that the aquatic

environment may be a reservoir of toxigenic V. cholerae in endemic regions.

Codeco in [19] analyzed the role of aquatic reservoir in promoting cholera

outbreak by introducing an ODE model that includes the dynamics of the

susceptible population. Three possible scenario, when cholera comes into a

new place, have been analyzed: no outbreak (cholera-free); an outbreak fol-

lowed by few waves (epidemic pattern); an outbreak followed by subsequent

outbreaks that can assume a seasonal pattern (endemic pattern). Tian and

Wang in [71] introduced a fourth equation in order to study the evolution of
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removed individuals.

In [9], the above mentioned models have been generalized taking into account

of non-homogeneously mixed toxigenic V. cholerae reservoir in contaminated

water and dividing the total population in three disjointed and not homoge-

neously mixed classes (susceptibles - infected - removed) in order to study -

among other things - the role of diffusivity of each population on the model

dynamics.

3.3.2 Mathematical model

Let Ω ⊂ R
3 be a smooth convex domain in which cholera is diffusing. Let

us suppose that the population is divided in three disjointed classes: S, the

susceptibles; I, the infected; R the removed and let us denote by B the

concentration of toxigenic V. cholerae in water (cells/ml). The physics of

the problem leads to suppose that S, I, R, B are positive, smooth functions.

Further, we suppose that these functions depend on time as well as on space.

The reaction-diffusion equations which, as far as we know, appear to be new

in the existing literature and govern cholera disease, are



















































































∂S

∂t
= µ(N0 − S) + γ1∆S − βλ(B)S,

∂I

∂t
= βλ(B)S − (σ + µ)I + γ2∆I,

∂B

∂t
= eI − (µB − πB)B + γ3∆B,

∂R

∂t
= σI − µR + γ4∆R.

(3.108)
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In comparison with existing models in literature, the additional diffusion

terms γ1∆S, γ2∆I, γ3∆B, γ4∆R have been introduced in order to take into

account the possibility of each constituent to move in the environment. In

(3.108)

λ(B) =
B

KB + B
,

is the probability to catch cholera, [66], where KB (cells/ml) is the constant

indicating the half saturation rate and it is linked to the concentration of

V. cholerae in water that yields 50% chance of catching cholera. The con-

stants appearing in (3.108) are positive and have been specified in Table 3.1.

Furthermore, according to [19] and [75], it is supposed that µB > πB.

Symbols Description Units

N0 total population size at time t = 0 person

γi diffusion coefficients (i=1,2,3,4) t−1 m2

µ birth/death rate t−1

σ recovery rate t−1

µB loss rate of bacteria t−1

πB growth rate of bacteria t−1

e =
p

W
contribution of each infected person to the population cells/ml t−1

of V. cholerae person−1

p rate at which bacterias are produced by an cells t−1

infected individual person−1

W volume of contaminated water in infected individual ml

β contact rate with contaminated water t−1

Table 3.1: Description of the constants appearing in (3.108)
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The diffusion coefficients γi, (i = 1, 2, 3, 4) in model (3.108) are strictly

linked to the possibility of population to move in the environment. Generally

γi (i = 1, 2, 3, 4) are such that γi 6= γj, (i 6= j) and depend on the poor hygiene

state, on the country in which the disease is developed.

Let us associate to (3.108) the following mixed boundary conditions



























S = S∗, I = I∗, B = B∗, R = R∗ on Σ× R
+,

∇S · n = ∇I · n = ∇B · n = ∇R · n = 0 on Σ∗ × R
+,

(3.109)

with ∂Ω = Σ ∪ Σ∗ , Σ ∩ Σ∗ = ∅ , Σ 6= ∅, n being the unit outward normal

on Σ∗ and S∗, I∗, B∗, R∗ being non negative constants. In the sequel we shall

assume that:

(i) Ω ⊂ R
3 is a smooth domain having the internal cone property;

(ii) ϕ ∈ W 1,2(Ω) ∩ W 1,2(∂Ω), ∀ϕ ∈ {S, I, R,B}, where W 1,2(A) is the

Sobolev space H1(A) = {f ∈ L2(A)/Df ∈ L2(A)}.

To (3.108), (3.109) we associate smooth, non-negative initial data

ϕ(x, 0) = ϕ0(x) with x ∈ Ω, ∀ϕ ∈ {S, I, B,R}. (3.110)

Let us define

N(t) =
1

|Ω|

∫

Ω

[S(x, t) + I(x, t) +R(x, t)] dΩ,

the population size at time t (|Ω| is the measure of Ω). Hence

N0 =
1

|Ω|

∫

Ω

[S(x, 0) + I(x, 0) +R(x, 0)] dΩ.

Let us denote by T > 0 an arbitrary fixed time and by ΩT = Ω × (0, T ]

the parabolic cylinder, ΩT being the parabolic interior of Ω̄× [0, T ] (i.e. ΩT
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includes the top Ω × {t = T}). Let be ΓT = ∂Ω × (0, T ). Therefore, the

parabolic boundary of ΩT , Γ̃T = ΓT ∪ {∂Ω× {t = 0}}, includes the bottom

and vertical sides of Ω× [0, T ], but not the top. The following theorem holds.

Theorem 23 Model (3.108)-(3.110) admits a unique positive solution in

C2
1(ΩT ) ∩ C(Ω̄T ),

Proof. For the proof we refer to [47].

Theorem 24 Let (S, I, B,R) ∈ [C2
1(ΩT ) ∩ C(Ω̄T )]

4 be a non negative so-

lution of (3.108)-(3.110). Then ∀ϕ ∈ {S, I, B,R}, ϕ is bounded according

to


























































































S(x, t) ≤ max

{

N0,max
Ω̄

S0(x), S
∗

}

:=M1,

I(x, t) ≤ max

{

β

σ + µ
M1,max

Ω̄
I0(x), I

∗

}

:=M2,

B(x, t) ≤ max

{

e

µB − πB
M2,max

Ω̄
B0(x), B

∗

}

:=M3,

R(x, t) ≤ max

{

σ

µ
M2,max

Ω̄
R0(x), R

∗

}

:=M4.

(3.111)

Proof. By following the procedure used in [11], let us set max
Ω̄T

S = S(x1, t1).

We have to distinguish the following cases.

1) If (x1, t1) belongs to the interior of ΩT , then (3.108)1 implies that

[

∂S

∂t
− µ(N0 − S)− γ1∆S

]

(x1,t1)

< 0. (3.112)

Since
[

∂S

∂t

]

(x1,t1)

= 0, [∆S](x1,t1)
< 0,
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then (3.112) can hold if and only if

[µ(N0 − S)](x1,t1)
> 0

and hence if and only if S(x1, t1) < N0.

2) If (x1, t1) ∈ ΓT then S(x1, t1) ≤ max
Ω̄

S0(x).

3) If (x1, t1) ∈ ∂Ω× (0, T ), then in view of the regularity of the domain Ω,

since Ω verifies in any point x0 ∈ ∂Ω the interior ball condition, there

exists an open ball D∗ ⊂ Ω with x0 ∈ ∂D∗. If S(x1, t1) > N0, choosing

the radius of D∗ sufficiently small, it follows that

γ1∆S − ∂S

∂t
> 0, in D∗,

and by virtue of Hopf’s Lemma, [49], one obtains that

(

dS

dn

)

(x1,t1)

> 0.

Since
dS

dn
= 0 on Σ∗ × R

+, it follows that (x1, t1) ∈ Σ× R
+ and hence

S(x1, t1) = S∗.

Now let us prove (3.111)2. Let us set max
Ω̄T

I = I(x2, t2). As in the previous

case, we have to distinguish three cases.

1’) If (x2, t2) belongs to the interior of ΩT , then (3.108)2 and (3.111)1 imply

that
[

∂I

∂t
+ (σ + µ)I − βM1 − γ2∆I

]

(x2,t2)

< 0. (3.113)

Hence, following the same procedure used in 1), one obtains that I(x2, t2) <
β

σ + µ
M1.

2’) If (x2, t2) ∈ ΓT then I(x2, t2) ≤ max
Ω̄

I0(x).
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3’) If (x2, t2) ∈ ∂Ω× (0, T ) and I >
β

σ + µ
M1, then, by following the same

procedure used in 3), one recovers that (3.111)2 holds.

Let us set max
Ω̄T

B = B(x3, t3) and let us distinguish three cases.

1”) If (x3, t3) belongs to the interior of ΩT , then (3.108)3 and (3.111)2 imply

that

[

∂B

∂t
− eM2 + (µB − πB)B − γ3∆B

]

(x3,t3)

< 0. (3.114)

Since
[

∂B

∂t

]

(x3,t3)

= 0, [∆B](x3,t3)
< 0,

then (3.114) can hold if and only if B(x3, t3) <
eM2

µB − πB
.

2”) If (x3, t3) ∈ ΓT then B(x3, t3) ≤ max
Ω̄

B0(x).

3”) If (x3, t3) ∈ ∂Ω× (0, T ) and B >
eM2

µB − πB
, then, by following the same

procedure used in 3), one recovers that (3.111)3 holds.

Let us prove (3.111)4. Setting max
Ω̄T

R = R(x4, t4), let us distinguish three

cases.

1”’) If (x4, t4) belongs to the interior of ΩT , then (3.108)4 and (3.111)2 imply

that
[

∂R

∂t
− σM2 + µR− γ4∆R

]

(x4,t4)

< 0. (3.115)

Since
[

∂R

∂t

]

(x4,t4)

= 0, [∆R](x4,t4)
< 0,

then (3.115) can hold if and only if R(x4, 3t4) <
σM2

µ
.

2”’) If (x4, t4) ∈ ΓT then R(x4, t4) ≤ max
Ω̄

R0(x).
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3”’) If (x4, t4) ∈ ∂Ω × (0, T ) and R >
σM2

µ
, then, by following the same

procedure used in 3), one recovers that (3.111)4 holds.

3.3.3 Equilibria and preliminaries to stability

A fundamental role in disease-diffusion is played by the basic reproduction

number, usually denoted by R0, which is linked to the ability of disease to

invade a population and it is defined as “the expected number of secondary

cases produced by a typical infected individual during its entire period of

infectiousness in a completely susceptible population”, [23]. The basic re-

production number, for model (3.108), has been estimated by Codeco in [19]

and Tian and Wang in [71] in the case of S, I, R,B depending only on time.

It is given by

R0 =
N0βe

KB(µB − πB)(σ + µ)
. (3.116)

Hence, as one is expected, R0 grows up with β and e, i.e. with the contact

rate with contaminated water and contamination of aquatic environment of

each infected person. R0 behaviour with respect to KB is showed in figure

3.1.

0 500000000 1000000000

0

0.003

0.006

KB

R0

Figure 3.1: Reproduction number in the caseN0 = 10000, β = 1, e = 10, σ =

0.2, µ = 0.0001, µB − πB = 0.33

The biologically meaningful equilibria of (3.108) are the non-negative so-
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lutions (S̄, Ī , B̄, R̄) of the system










































µ(N0 − S)− β
BS

KB + B
= 0,

β
BS

KB +B
− (σ + µ)I = 0,

eI − (µB − πB)B = 0,

σI − µR = 0.

(3.117)

It is easy to remark that (3.117):

i) always admits the disease-free equilibrium (S1, I1, B1, R1) = (N0, 0, 0, 0)

which - from biological point of view - means that all individuals are

susceptibles and no infection arises;

ii) if and only if R0 > 1, admits a unique endemic equilibrium (i.e. a

solution with positive components)


























































































S2 =
KB(σ + µ)(µB − πB)(β + µR0)

βe(β + µ)
,

I2 =
µKB(µB − πB)

e(β + µ)
(R0 − 1),

B2 =
µKB

β + µ
(R0 − 1),

R2 =
σKB(µB − πB)

e(β + µ)
(R0 − 1).

(3.118)

Our aim is to find the best conditions guaranteeing the linear and nonlin-

ear stability of the two constant equilibria when (3.109) holds. Let (S̄, Ī , B̄, R̄)

be a biologically meaningful equilibrium of (3.108). Setting

X1 = S − S̄, X2 = I − Ī , X3 = B − B̄, X4 = R− R̄, (3.119)
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model (3.108) becomes



















































































∂X1

∂t
= µ(N0 −X1 − S̄) + γ1∆X1 − βf(X1, X3),

∂X2

∂t
= βf(X1, X3)− (σ + µ)(X2 + Ī) + γ2∆X2,

∂X3

∂t
= e(X2 + Ī)− (µB − πB)(X3 + B̄) + γ3∆X3,

∂X4

∂t
= σ(X2 + Ī)− µ(X4 + R̄) + γ4∆X4,

(3.120)

where

f(X1, X3) =
(X1 + S̄)(X3 + B̄)

KB +X3 + B̄
.

To (3.120) we append the following initial-boundary conditions



























Xi = 0 on Σ× R
+,

i = 1, 2, 3, 4

∇Xi · n = 0 on Σ∗ × R
+,

(3.121)

Denoting by W ∗(Ω) the functional space defined by

W ∗(Ω)=
{

ϕ ∈ C2
1(ΩT ) ∩ C(Ω̄T ) : ϕ = 0 on Σ×R

+,∇ϕ · n = 0 on Σ∗×R
+
}

,

our aim is to study the stability of (S̄, Ī , B̄, R̄) with respect to the perturba-

tions (X1, X2, X3, X4) ∈ [W ∗(Ω)]4.

Remark 13 We remark that the infimum

ᾱ(Ω) = inf
ϕ∈W ∗(Ω)

‖∇ϕ‖2
‖ϕ‖2 (3.122)

exists and is a real positive number (cfr. [4], [67]).
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In view of the Mac-Laurin expansion

f(X1, X3) =
S̄B̄

KB + B̄
+

B̄

KB + B̄
X1 +

KBS̄

(KB + B̄)2
X3 − F (X1, X3),

with

F (X1, X3) =
KBX3

(KB + θ1X3 + B̄)2

[

(θ1X1 + S̄)X3

(KB + θ1X3 + B̄)
−X1

]

,

(0 < θ1 < 1).

Hence system (3.108) becomes











































∂X1

∂t
= a11X1 + a12X2 + a13X3 + a14X4 + γ1∆X1−βF (X1, X3)

∂X2

∂t
= a21X1 + a22X2 + a23X3 + a24X4 + γ2∆X2+βF (X1, X3)

∂X3

∂t
= a31X1 + a32X2 + a33X3 + a34X4 + γ3∆X3

∂X4

∂t
= a41X1 + a42X2 + a43X3 + a44X4 + γ4∆X4

(3.123)

where










































a11=−
(

µ+
βB̄

KB + B̄

)

, a12=0, a13=− βKBS̄

(Kb + B̄)2
, a14=0,

a21=
βB̄

Kb + B̄
, a22=−(σ + µ), a23=

βKBS̄

(KB + B̄)2
, a24=0,

a31=0, a32=e, a33=−(µB − πB), a34=0,

a41=0, a42=σ, a43=0, a44=−µ.

(3.124)

Adding and subtracting the term ᾱγiXi to equation (3.120)i, (i = 1, 2, 3, 4)

introducing the scalings µi (i = 1, 2, 3, 4) (µi are positive constants to be
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chosen suitably later) and setting






















































































Xi = µiUi, U = (U1, U2, U3, U4)
T ,

F̄=βF (µ1U1, µ3U3)=
βKBµ3U3

(KB+θ1µ3U3+B̄)2

[

(θ1µ1U1+S̄)µ3U3

KB + θ1µ3U3 + B̄
−µ1U1

]

F̃1=
1

µ1

F̄+γ1(∆U1 + ᾱU1), F̃2 = − 1

µ2

F̄ + γ2(∆U2 + ᾱU2),

F̃3 = γ3(∆U3 + ᾱU3), F̃4 = γ4(∆U4 + ᾱU4), F̃=(F̃1, F̃2, F̃3, F̃4)
T ,

(3.125)

(3.120) reduces to
∂U

∂t
= L̃U+ F̃, (3.126)

where L̃ is the Jacobian matrix

L̃ =

















b11 0 b13 0

b21 b22 b23 0

0 b32 b33 0

0 b42 0 b44

















with

bii = aii − ᾱγi, bij =
µj

µi

aij, i 6= j (3.127)

The initial-boundary conditions (3.121) become


























Ui = 0 on Σ× R
+,

i = 1, 2, 3, 4

∇Ui · n = 0 on Σ∗ × R
+,

(3.128)

The problem to find conditions guaranteeing the stability of (S̄, Ī , B̄, R̄) is

reduced to determine conditions guaranteeing the stability of the null solution

of (3.126)-(3.128).
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3.3.4 Linear stability analysis of biologically meaning-

ful equilibria

The null solution of (3.126) is linearly stable if and only if all the eigenvalues

of L̃ have negative real parts. The characteristic equation of L̃ is given by

(b44 − λ)(λ3 − I1λ
2 + I2λ− I3) = 0, (3.129)

where Ii, (i = 1, 2, 3) are the principal invariants of the matrix

L̃1 =











b11 0 b13

b21 b22 b23

0 b32 b33











and are given by


































































































I1 = traceL̃1 = b11 + b22 + b33 = λ1 + λ2 + λ3,

I2 =

∣

∣

∣

∣

∣

∣

∣

b11 0

b21 b22

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

b11 b13

0 b33

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

b22 b23

b32 b33

∣

∣

∣

∣

∣

∣

∣

=

= b11(b22 + b33) + b22b33 − b23b32 = λ1(λ2 + λ3) + λ2λ3,

I3 = detL̃1 = b11(b22b33 − b23b32) + b13b21b32 = λ1λ2λ3.

Accounting for (3.129), the eigenvalues of L̃ are given by λi, (i = 1, 2, 3)

solutions of

λ3 − I1λ
2 + I2λ− I3 = 0, (3.130)

and

λ4 = b44,
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where, in view of (3.127)9, λ4 = b44 < 0. Passing now to the equation (3.130),

as it is well known, the necessary and sufficient conditions guaranteeing that

all the roots of (3.130) have negative real part, are the Routh-Hurwitz con-

ditions (cfr. [39]):

I1 < 0, I3 < 0, I1I2 − I3 < 0. (3.131)

Obviously (3.131) require necessarily that I2 > 0. If one of (3.131) is reversed,

then there exists at least one eigenvalue of L̃ with positive real part and

hence the null solution of (3.126) is linearly unstable. Denoting by I
∗, A∗

the principal invariants of the matrix





b22 b23

b32 b33



, i.e.

I
∗ = b22 + b33, A∗ = b22b33 − b23b32,

it follows that


























I1 = b11 + I
∗, I2 = b11I

∗ + A∗, I3 = b11A
∗ + b13b21b32,

I1I2 − I3 = (b11 + I
∗)b11I

∗ + A∗
I
∗ − b13b21b32.

(3.132)

Setting

A∗
1 = −b13b21b32

b11
(≤ 0), A∗

2 =
b13b21b32 − b11I

∗(b11 + I
∗)

I
∗

, (3.133)

the following lemma holds.

Lemma 13 The Routh-Hurwitz conditions are verified if and only if

A∗ > max {A∗
1, A

∗
2} . (3.134)

Proof. In view of (3.132), (3.131) are equivalent to


























b11 + I
∗ < 0, b11A

∗ + b13b21b32 < 0,

(b11 + I
∗)b11I

∗ + A∗
I
∗ − b13b21b32 < 0.

(3.135)
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From (3.127), since I∗ < 0, it easily follows that (3.135)1 is always satisfied

while (3.135)2-(3.135)3 are verified if and only if (3.134) holds.

Setting

R∗
0 = 1 +

ᾱ[γ2(µB − πB) + γ3(σ + µ) + ᾱγ2γ3]

(σ + µ)(µB − πB)
, (3.136)

from lemma 13, the following two theorems hold.

Theorem 25 The disease-free equilibrium is linearly stable if and only if

R0 < R∗
0. (3.137)

Proof. Substituting (S̄, Ī , B̄, R̄) = (N0, 0, 0, 0) in (3.127), one has that


























































b11 = −(µ+ ᾱγ1), b13 = −µ3βN0

µ1KB

, b21 = 0,

b22 = −(σ + µ+ ᾱγ2), b23 =
µ3βN0

µ2KB

,

b32 =
µ2

µ3

e, b33 = −(µB − πB + ᾱγ3).

(3.138)

Hence

A∗ = (σ + µ+ ᾱγ2)(µB − πB + ᾱγ3)−
βN0e

KB

=

= (σ+µ)(µB−πB)
[

1−R0+
ᾱ[γ2(µB−πB)+γ3(σ+µ)+ᾱγ2γ3]

(σ + µ)(µB − πB)

]

=

= (σ + µ)(µB − πB)(R
∗
0 −R0)

(3.139)

and

A∗
1 = 0, A∗

2 = −b11(b11 + I
∗) < 0. (3.140)

In view of (3.140), it follows that

max{A∗
1, A

∗
2} = 0.
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Hence (3.134) is verified if and only if

A∗ > 0, (3.141)

i.e., by virtue of (3.139), if and only if (3.137) holds.

Theorem 26 When the endemic equilibrium exists, it is always linearly sta-

ble.

Proof. Substituting (S̄, Ī , B̄, R̄) = (S2, I2, B2, R2) in (3.127), one has that



























































































b11 = −µ(β + µ)R0 + ᾱγ1(β + µR0)

β + µR0

,

b13 = −µ3(σ + µ)(µB − πB)(β + µ)

µ1e(β + µR0)
,

b21 =
µ1βµ(R0 − 1)

µ2(β + µR0)
, b22 = −(σ + µ+ ᾱγ2),

b23 = −µ1

µ2

b13, b32 =
µ2

µ3

e, b33 = −(µB − πB + ᾱγ3).

(3.142)

Hence

A∗=(σ+µ+ᾱγ2)(µB−πB+ᾱγ3)−
(σ+µ)(µB−πB)(β+µ)

β + µR0

=

=
µ(σ+µ)(µB−πB)(R0−1)

β + µR0

+ᾱ [γ2(µB−πB)+γ3(σ+µ)+ᾱγ2γ3] ,

(3.143)

and






























A∗
1 = − βµ(β + µ)(σ + µ)(µB − πB)(R0 − 1)

(β + µR0)[µR0(β + µ) + ᾱγ1(β + µR0)]
,

A∗
2 = − K1R

2
0 +K2R0 +K3

(β + µR0)2[σ + µ+ µB − πB + ᾱ(γ2 + γ3)]
(< 0),

(3.144)
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where Ki, (i = 1, 2, 3) are positive constants given by

K1 =µ2(σ+µ+µB−πB+ᾱ(γ2+γ3)) {ᾱγ1[σ+µ+µB−πB+ᾱ(γ1+γ2+γ3)]+

+ (β + µ) [β + µ+ σ + µ+ µB − πB + ᾱ(γ1 + γ2 + γ3) + ᾱγ1]} ,

K2 = βµ {[σ + µ+ µB − πB + ᾱ(γ2 + γ3)] [ᾱ(β + µ)(γ1 + γ2 + γ3)+

+ ᾱγ1(β + µ) + 2ᾱγ1(σ + µ+ µB − πB + ᾱ(γ1 + γ2 + γ3))] +

+ (β + µ)(µB − πB)
2 + (β + µ)(σ + µ+ µB − πB)[σ + µ+ ᾱ(γ2 + γ3)]}

and

K3 =β2ᾱγ1[σ+µ+µB−πB+ᾱ(γ2+γ3)][σ+µ+µB−πB+ᾱ(γ1+γ2+γ3)]+

+βµ(µB − πB)(σ + µ)(β + µ).

Since (S2, I2, B2, R2) exists if and only if R0 > 1, then, from (3.143) and

(3.144)1, it turns out that

A∗ > 0, A∗
1 < 0. (3.145)

In view of (3.144)2 and (3.145), it follows that (3.134) is always satisfied.

3.3.5 Nonlinear stability analysis of biologically mean-

ingful equilibria

In epidemic disease models, the nonlinear analysis of the biologically mean-

ingful equilibria has to be investigated in order to take into account the
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contribution of nonlinear terms. Many papers find that the conditions en-

suring the linear stability of equilibria are only sufficient to guarantee the

nonlinear stability. Hence, the problem to find if there exists coincidence be-

tween linear and nonlinear stability thresholds, arises. In this section we will

prove that, for the biologically meaningful equilibria of (3.108), there is co-

incidence between linear and nonlinear stability thresholds. To this end, let

us introduce the Rionero-Liapunov functional (see [54], [55] for more details)

W =
1

2
‖U1‖2 + V +

1

2
‖U4‖2,

where

V =
1

2

[

A∗(‖U2‖2 + ‖U3‖2) + ‖b22U3 − b32U2‖2 + ‖b23U3 − b33U2‖2
]

.

Remark 14 Let us remark that if (S̄, Ī , B̄, R̄) = (S2, I2, B2, R2) then A
∗ > 0

and V , W are positive definite. If (S̄, Ī , B̄, R̄) = (N0, 0, 0, 0) then (3.137) is

equivalent to require that A∗ > 0 and hence to guarantee that V and W are

positive definite.

The time derivative of W along the solutions of (3.126) is

Ẇ = b11‖U1‖2+I∗A∗(‖U2‖2+‖U3‖2)+b44‖U4‖2+A1b21 〈U1, U2〉+
+ (−A3b21+b13) 〈U1, U3〉+b42 〈U2, U4〉+Φ1+Φ2,

(3.146)

being


































A1 = A∗ + b232 + b233, A2 = A∗ + b222 + b223, A3 = b22b32 + b23b33,

Φ1 = γ1 < U1,∆U1+ᾱU1 >+<A1U2−A3U3,γ2(∆U2+ᾱU2)>+

+ <A2U3 −A3U2, γ3(∆U3 + ᾱU3)>+γ4< U4,∆U4+ᾱU4>,

Φ2 =
1

µ1

< U1, F̄ > +
1

µ2

< A1U2, F̄ > − 1

µ2

< A3U3, F̄ >,

(3.147)

with F̄ given by (3.125)2.

The following Lemmas hold.
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Lemma 14 If

A∗ > 0 and (γ2 + γ3) |A3| < 2
√

A1A2γ2γ3, (3.148)

then there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

Φ1 ≤ −γ1 ‖∇U1‖2 + ᾱγ1 ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 . (3.149)

Proof. By using the divergence theorem, by virtue of the boundary con-

ditions (3.128) and in view of Poincaré inequality (3.122), from (3.147)2 it

follows that

Φ1 ≤ −γ1 ‖∇U1‖2 + ᾱγ1 ‖U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 + Φ∗,

being

Φ∗ =−A1γ1 ‖∇U2‖2−|A3| (γ2+γ3) 〈∇U2,∇U3〉−A2γ3(1−ǫ) ‖∇U3‖2+
+A1γ2ᾱ ‖U2‖2+|A3| ᾱ(γ2+γ3) 〈U2, U3〉+A2γ3(1−ǫ)ᾱ ‖U3‖2 .

(3.150)

Since (3.148)2 implies that there exists ǫ1 ∈ (0, 1) such that ∀ǫ ∈ (0, ǫ1)

|A3| (γ2+γ3) = 2
√

(1− ǫ1)γ2γ3A1A2, |A3| (γ2+γ3) ≤ 2
√

(1− ǫ)γ2γ3A1A2,

by following the same procedure used for the proof of Lemma 3.2 in [54], one

obtains that Φ∗ ≤ 0 and hence the thesis follows.

Lemma 15 There exists a positive constant M(Ω) such that

Φ2≤M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

Proof. By virtue of (3.111), (3.119), (3.125)1, the following inequalities hold

a.e. in Ω

θ1µ1U1 + S̄ = θ1X1 + S̄ = θ1(S − S̄) + S̄ = θ1S + (1− θ1)S̄ ≤M1
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and

KB + θ1µ3U3 + B̄ = KB + θ1B + (1− θ1)B̄ > KB.

Therefore, it turns out that

Φ2 ≤ c1 < |U1| , U2
3 > +c2 < U2

1 , |U3| > +c3 < |U2|, U2
3 > +

+c4 < |U2|, |U1U3| > +c5 < |U3|, U2
3 >,

(3.151)

where






























c1 =
µ2
3βM1

µ1K2
B

+
µ1µ3 |A3| β
µ2KB

, c2 =
µ3β

KB

,

c3 =
µ2
3A1βM1

µ2K2
B

, c4 =
µ1µ3A1β

µ2KB

, c5 =
µ2
3 |A3| βM1

µ2K2
B

.

By virtue of the Hölder and embedding inequalities

< |f |, g2 >≤ ‖f‖ ‖g‖24, ‖g‖24 ≤ K1(Ω)[‖∇g‖2+‖g‖2], K1(Ω) > 0,

and in view of Cauchy inequality, from (3.151) it follows that

Φ2 ≤ η1 ‖U1‖
(

‖U3‖2 + ‖∇U3‖2
)

+ η2 ‖U3‖
(

‖U3‖2 + ‖∇U3‖2
)

+

+ η3 ‖U2‖
(

‖U3‖2 + ‖∇U3‖2
)

+ η4 ‖U2‖
(

‖U1‖2 + ‖∇U1‖2
)

+

+ η5 ‖U3‖
(

‖U3‖2 + ‖∇U3‖2
)

,

being

ηi = K1(Ω)ci, i = 1, 2, 5, η3 =

(

c3 +
1

2
c4

)

K1(Ω) and η4 =
1

2
c4K1(Ω).

Hence the thesis follows with M(Ω) = max
i=1,...,5

ηi.

Remark 15 We remark that, setting

p =
A∗

2
, q =

A∗

2
+
[

(b22)
2 + (b23)

2 + (b32)
2 + (b33)

2
]

,

it follows that

p(‖U2‖2 + ‖U3‖2) ≤ V ≤ q(‖U2‖2 + ‖U3‖2). (3.152)
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The following theorem holds.

Theorem 27 The disease-free equilibrium and the endemic equilibrium are

nonlinearly stable if and only if they are linearly stable, i.e.

i) the disease-free equilibrium is nonlinearly stable if and only if

R0 < R∗
0. (3.153)

ii) the endemic equilibrium is always nonlinearly stable when it exists (i.e.

when R0 > 1).

Proof. Necessity follows by remarking that, if one of the Routh-Hurwitz

conditions is reversed, then there is linear instability. Passing to prove suffi-

ciency, let us distinguish the two cases.

i) Accounting for the disease-free equilibrium, from (3.127) and (3.124)

it follows that b21 = 0; moreover, the condition (3.153) is equivalent to

require that A∗ > 0. Hence, by virtue of Lemma 14 and Lemma 15 and

by using the generalized Cauchy inequality and (3.127), from (3.146)

it follows that

Ẇ ≤ − |a11| ‖U1‖2 − |I∗|A∗(‖U2‖2 + ‖U3‖2)− |a44| ‖U4‖2+
− γ1 ‖∇U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 +

+
a213µ

2
3

2µ2
1|I∗|A∗

‖U1‖2 +
1

2
|I∗|A∗ ‖U3‖2 +

+
a242µ

2
2

2 |a44|µ2
4

‖U2‖2+
1

2
|a44| ‖U4‖2 +

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).
(3.154)

Choosing the positive scalings such that

µ2
3

µ2
1

=
|a11| |I∗|A∗

a213
,

µ2
2

µ2
4

=
|a44| |I∗|A∗

a242
(3.155)

108



and choosing

ǫ < min

{ |I∗|A∗

4A2ᾱγ3
, ǫ1

}

,

from (3.154) it turns out that

Ẇ ≤−1
2
|a11| ‖U1‖2−

1

4
|I∗|A∗(‖U2‖2+‖U3‖2)−

1

2
|a44| ‖U4‖2+

−γ1 ‖∇U1‖2−A2γ3ǫ ‖∇U3‖2+
+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)

1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).
(3.156)

Therefore, setting

h1 = min

{

|a11| , |a44| ,
A∗|I∗|

2

}

, h2 = min{γ1, ǫA2γ3},

one has that

Ẇ ≤−h1
2
(‖U1‖2+‖U2‖2+‖U3‖2+‖U4‖2)−h2(‖∇U1‖2 +‖∇U3‖2)+

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).

By virtue of (3.152), it turns out that

Ẇ ≤ −(δ1 − δ3W
1

2 )W − (h2 − δ2W
1

2 )(‖∇U1‖2 + ‖∇U3‖2),

with

δ1=h1min {1, 1/2q} , δ2=M(Ω)max{
√
2, p−1/2}, δ3=M(Ω)max{2

√
2, p−3/2}.

Hence, if

W
1

2 (0) < min {δ1/δ3, h2/δ2} ,

applying recursive arguments, it follows that

Ẇ ≤ −K̃W, K̃ = const. > 0

and hence the thesis follows.
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ii) Accounting for the endemic equilibrium, the condition guaranteeing its

existence, i.e. R0 > 1, is equivalent to require that A∗ > 0. Hence,

by virtue of Lemma 14 and Lemma 15 and by using the generalized

Cauchy inequality, from (3.146) it follows that

Ẇ ≤ − |a11| ‖U1‖2 − |I∗|A∗(‖U2‖2 + ‖U3‖2)− |a44| ‖U4‖2+
− γ1 ‖∇U1‖2 − A2γ3ǫ ‖∇U3‖2 + A2γ3ᾱǫ ‖U3‖2 +

+
A1a

2
21µ

2
1

2µ2
2|I∗|A∗

‖U1‖2 +
1

2
|I∗|A∗ ‖U2‖2 + (−A3b21 + b13) 〈U1, U3〉+

+
a242µ

2
2

2 |a44|µ2
4

‖U2‖2+
1

2
|a44| ‖U4‖2 +

+M(Ω)(‖U1‖2+‖U2‖2+‖U3‖2)
1

2 (‖∇U1‖2+‖∇U3‖2+‖U1‖2+‖U3‖2).
(3.157)

Choosing the positive scalings such that






























−A3b21 + b13 = 0

|a11| −
A1a

2
21µ

2
1

2µ2
2|I∗|A∗

>
1

2
|a11|

|I∗|A∗ − a242µ
2
2

2 |a44|µ2
4

>
1

2
|a44|

i.e.


























































µ2
1 =

a13µ
2
2µ

2
3

a21a32b22µ2
2 + a21a23b33µ2

2

µ2
2 >

(A∗ + b233)a
2
21µ

2
1µ

2
3

|I∗|A∗ |a11|µ2
3 + a232a

2
21µ

2
1

µ2
4 >

a242µ
2
3

|a44| |I∗|A∗

(3.158)

and choosing

ǫ < min

{ |I∗|A∗

4A2ᾱγ3
, ǫ1

}

,

from (3.157) it turns out that (3.156) holds and the proof follows as in

the previous case.
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Remark 16 Summarizing the results contained in Theorem 27, we remark

that:

i) in the absence of diffusion, R0 = R∗
0 = 1 is a bifurcation parameter for

the disease-free equilibrium. In this case, when R0 is slightly greater

than 1, then the disease-free equilibrium loses its stability and a globally

stable endemic equilibrium (not existing for R0 < 1) arises. This is

called forward bifurcation;

ii) in presence of diffusion, R0 = R∗
0 is a bifurcation parameter for the

disease-free equilibrium. When 1 < R0 < R∗
0 there is coexistence of

disease-free and endemic equilibrium which are both stable. In a neigh-

borhood of R∗
0 the following scenario is verified:

– for R0 < R∗
0, a stable disease-free equilibrium coexists with a stable

endemic equilibrium;

– for R0 > R∗
0, the disease-free equilibrium becomes unstable while

the endemic equilibrium remains stable.

In this case a backward bifurcation is verified.
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Chapter 4

On the stability of vertical

constant throughflows for

binary mixtures in porous

layers

The research concerned with fluid motions in porous media, due to their large

applications in real world phenomena, is very active in the nowadays. In fact,

porous materials occur everywhere (see for instance geophysical situations,

cultural heritage, contaminant transport and underground water flow [25],

[56] and the references therein). Generally, they are analyzed by mean of

reaction-diffusion dynamical systems of P.D.Es, which, as it is well known,

play an important role in the modeling and analysis of several phenomena. In

particular, convection and stability problems in porous layers in the presence

of vertical throughflows find relevant applications in cloud physics, in hydro-

logical studies, in subterranean pollution and in many industrial processes

where the throughflows can control the onset and evolution of convection

112



(see [12], [13], [29], [30], [43], [44]-[46], [50], [68], [69]). In fact, the effect

of vertical throughflow on the onset of convection has been considered in

many cases (the effect in a rectangular box in [45]; the effect combined with

a magnetic field in [43]; stability analysis in a cubic Forchheimer model in

[29] and when the density is quadratic in temperature in [30]; the effect with

an inclined temperature gradient in [50]). The present section, which deals

with the results contained in the paper [15], is devoted to study the effects

of both temperature gradient and salt concentration on the stability of a

vertical flow. Already in [12] and [18] the authors consider both the effects.

Precisely, the effect of variable thermal and solutal diffusivities on the onset

of convection for non constant throughflows has been analyzed in [18], while

in [12] the stability of a vertical constant throughflow in a porous layer, uni-

formly heated and salted from below, has been investigated. In particular,

sufficient conditions ensuring the linear and the global nonlinear stability in

the L2−norm have been determined.

In the present section, we will analyze the more destabilizing case of hori-

zontal porous layers uniformly heated from below and salted from above by

one salt and, by using a new approach concerned with the Routh-Hurwitz

conditions, necessary and sufficient conditions for the linear stability of a

vertical constant throughflow will be determined. Furthermore, conditions

ensuring the global non linear stability for the vertical constant throughflow

have been obtained.

4.1 Introduction and mathematical model

Let Oxyz be an orthogonal frame of reference with fundamental unit vectors

i, j,k (k pointing vertically upwards). The model describing the fluid motion
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in a horizontal porous layer of depth d, uniformly heated from below and

salted from above by one salt, in the Darcy-Oberbeck-Boussinesq scheme, is

given by


















































































∇p = −µ
k
v − ρfgk,

∇ · v = 0,

∂T

∂t
+ v · ∇T = KT∆T,

∂C

∂t
+ v · ∇C = KC∆C,

(4.1)

where

ρf = ρ0[1− αT (T − T0) + αC(C − C0)], (4.2)

is the fluid mixture density and

p = pressure field, T = temperature field, v = seepage velocity,

C = solute concentration field, µ = dynamic viscosity, k = permeability,

ρ0 = reference density, T0 = reference temperature,

C0 = reference solute concentration, −gk = gravitational acceleration,

αT = thermal expansion coefficient, αC = solute expansion coefficient,

KT = thermal diffusivity, KC = solute diffusivity.

To (4.1) we append the boundary conditions


























T (x, y, 0, t) = TL, T (x, y, d, t) = TU ,

C(x, y, 0, t) = CL, C(x, y, d, t) = CU ,

(4.3)

where TL, TU , CL, CU are positive constants such that TL > TU and CL < CU

(i.e. the layer is uniformly heated from below and salted from above).
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On considering the following dimensionless variables



























































x′ =
x

d
, t′ =

KT

d2
t, v′ =

d

KT

v, p′ =
k(p+ ρ0gz)

µKT

,

T ′ = (T − T0)T̃ , C
′ = (C − C0)C̃,

T̃ =

(

αTρ0gkd

µKT (TL − TU)

) 1

2

, C̃ =

(

αCρ0gkd

µKTLe(CU − CL)

) 1

2

,

(4.4)

where Le = KT/KC is the Lewis number, system (4.1), omitting all the

primes, reduces to























































































∇p = −v + (RTT −RSC)k, ,

∇ · v = 0,

∂T

∂t
+ v · ∇T = ∆T,

Le

(

∂C

∂t
+ v · ∇C

)

= ∆C,

(4.5)

where

R2
T =

kdρ0αT g|δT |
µKT

is the thermal Rayleigh number,

R2
S =

Lekdρ0αCg|δC|
µKT

is the solute Rayleigh number,

(4.6)
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being δT = TL − TU and δC = CL − CU . The boundary conditions (4.3)

become


























T (x, y, 0, t) = (TL − T0)T̃ , T (x, y, 1, t) = (TU − T0)T̃ ,

C(x, y, 0, t) = (CL − C0)C̃, C(x, y, 1, t) = (CU − C0)C̃.

(4.7)

A throughflow solution of (4.5)-(4.7) is given by























































































v∗ = Qk, Q = const,

T ∗(z) =
RT (e

Qz − 1)

1− eQ
− T̃ (T0 − TL),

C∗(z) = −RS(e
LeQz − 1)

Le(1− eLeQ)
− C̃(C0 − CL),

p∗(z) = p∗0 −Qz +RT

∫ z

0

T ∗(ξ)dξ −RS

∫ z

0

C∗(ξ)dξ,

(4.8)

where p∗0 is a constant.

Setting

u = v − v∗, θ = T − T ∗, Γ = C − C∗, π = p− p∗, (4.9)
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system (4.5) becomes






















































































∇π = −u+ (RT θ −RSΓ)k,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = −f1(z)w −Q

∂θ

∂z
+∆θ,

∂Γ

∂t
+ u · ∇Γ = f2(z)w −Q

∂Γ

∂z
+

1

Le

∆Γ,

(4.10)

where u = (u, v, w) and

f1(z) =
∂T ∗

∂z
=
QRT e

Qz

1− eQ
, f2(z) = −∂C

∗

∂z
=
QRSe

LeQz

1− eLeQ
. (4.11)

To (4.10) we append the boundary conditions

w = θ = Γ = 0 on z = 0, 1. (4.12)

In the sequel, we will assume that

i) the perturbations u = (u, v, w), θ,Γ are periodic in the x and y direc-

tions of periods
2π

ax
and

2π

ay
, respectively;

ii) Ω =

[

0,
2π

ax

]

×
[

0,
2π

ay

]

× [0, 1] is the periodicity cell;

iii) u, v, w, θ,Γ belong toW 2,2(Ω), ∀t ∈ R
+ and can be expanded in Fourier

series, uniformly convergent in Ω, together with all their first derivatives

and second spatial derivatives.

Remark 17 Let us observe that, when the throughflow tends to zero (Q−→
0), (4.8) reverts to the conduction solution

v∗
1 = 0, T ∗

1 (z) = −RT z−T̃ (T0−TL), C∗
1(z) =

RS

Le

z−C̃(C0−CL). (4.13)
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4.2 Absorbing sets

Let us denote by

• 〈·, ·〉 and ‖·‖ the scalar product and the norm in L2(Ω), respectively;

• f+(x) = max {0, f(x)}, f−(x) = max {0,−f(x)} where f : R −→ R.

Lemma 16 Let (u, θ,Γ) ∈ [W 2,2(Ω)]5 be a solution of (4.10)-(4.12). Then

θ = θ̃ + θ̄, Γ = Γ̃ + Γ̄ in Ω× R
+, (4.14)

with

|θ̃| ≤ 1, |Γ̃| ≤ 1, (4.15)

and θ̄, Γ̄ decreasing functions of t such that



























∥

∥θ̄(·, t)
∥

∥ ≤ {‖(θ − 1)+‖+ ‖(θ + 1)−‖}t=0 e
−ηt,

∥

∥Γ̄(·, t)
∥

∥ ≤ {‖(Γ− 1)+‖+ ‖(Γ + 1)−‖}t=0 e
−ηt,

(4.16)

where

η = π2min

{

1,
1

Le

}

. (4.17)

Proof. The proof can be found in [70].

Lemma 17 Let (u, θ,Γ) ∈ [W 2,2(Ω)]5 be a solution of (4.10)-(4.12). Then

‖u‖ ≤ RT ‖θ‖+RS ‖Γ‖ . (4.18)

Proof. The proof can be found in [12].
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Lemma 18 Let (u, θ,Γ) ∈ [W 2,2(Ω)]5 be a solution of (4.10)-(4.12). Then

1

2

d

dt

(

‖θ‖2 + ‖Γ‖2
)

≤ −π2

(

‖θ‖2 + 1

Le

‖Γ‖2
)

+

+

[ |Q|RT e
Q

2 |eQ − 1|(2RT +RS) +
|Q|RTRSe

LeQ

2 |eLeQ − 1|

]

‖θ‖2 +

+

[ |Q|RSe
LeQ

2 |eLeQ − 1|(RT + 2RS) +
|Q|RTRSe

Q

2 |eQ − 1|

]

‖Γ‖2 .

(4.19)

Proof. On multiplying (4.10)3 by θ, (4.10)4 by Γ, integrating over Ω, adding

the two resulting equations and on applying the divergence theorem, one has

1

2

d

dt

(

‖θ‖2 + ‖Γ‖2
)

+

∫

Ω

u · ∇
(

θ2

2

)

dΩ +

∫

Ω

u · ∇
(

Γ2

2

)

dΩ =

= −
∫

Ω

f1(z)wθ dΩ +

∫

Ω

f2(z)wΓ dΩ− Q

2

∫

Ω

∂

∂z

(

θ2 + Γ2
)

dΩ+

−‖∇θ‖2 − 1

Le

‖∇Γ‖2.

(4.20)

By virtue of (4.10)2 and (4.12), the divergence theorem leads to
∫

Ω

u · ∇
(

θ2

2

)

dΩ ≡
∫

Ω

u · ∇
(

Γ2

2

)

dΩ ≡
∫

Ω

∂

∂z

(

θ2 + Γ2
)

dΩ ≡ 0. (4.21)

By using the boundedness of f1(z) and f2(z), one obtains






























|f1(z)|<
|Q|RT e

Q

|eQ − 1| =⇒−
∫

Ω

f1(z)wθ dΩ ≤ |Q|RT e
Q

|eQ − 1| ‖u‖‖θ‖,

|f2(z)|<
|Q|RSe

LeQ

|eLeQ − 1| =⇒
∫

Ω

f2(z)wΓ dΩ ≤ |Q|RSe
LeQ

|eLeQ − 1| ‖u‖‖Γ‖.

(4.22)

By virtue of (4.21)-(4.22) and Poincaré inequality, it follows that

1

2

d

dt

(

‖θ‖2 + ‖Γ‖2
)

≤ |Q|RT e
Q

|eQ − 1| ‖u‖‖θ‖+
|Q|RSe

LeQ

|eLeQ − 1| ‖u‖‖Γ‖+

−π2‖θ‖2 − π2

Le

‖Γ‖2.

(4.23)
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On applying the Schwartz inequality, the thesis holds in view of Lemma 17.

Theorem 28 The set

Σ =
{

(u, θ,Γ) ∈ [W 2,2(Ω)]
5
: ‖(θ − 1)+‖+ ‖(θ + 1)−‖ < η,

‖(Γ− 1)+‖+ ‖(Γ + 1)−‖ < η, ‖u‖ ≤ (RT +RS)(|Ω|
1

2 + η)
}

,

(4.24)

being |Ω| the measure of Ω and η given by (4.17), is an absorbing set of

(4.10)-(4.12) for the solutions (u, θ,Γ) ∈ [W 2,2(Ω)]
5
.

Proof. The proof can be found in [12].

4.3 Independent unknown fields

The main boundary value problem (b.v.p.)










































∇π = −u+ (RT θ −RSΓ)k, in Ω,

∇ · u = 0, in Ω

w = θ = Γ = 0, on z = 0, 1,

(4.25)

has been studied in details in [12], [57],[58]. For the sake of completeness, we

recall here some main results.

Let L∗
2(Ω) be the set of functions ψ : (x, t) ∈ Ω × R

+ −→ ψ(x, t) ∈ R such

that

i) ψ belongs to L2(Ω), ∀t ∈ R
+, together with its first derivatives and

second spatial derivatives;

ii) ψ is periodic in the x and y directions of periods
2π

ax
and

2π

ay
, respec-

tively and

[ψ]z=0 = [ψ]z=1 = 0; (4.26)
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iii) ψ can be expanded in Fourier series absolutely uniformly convergent in

Ω, ∀t ∈ R
+, together with all its first derivatives and the second spatial

derivatives.

Since the set {sin(nπz)}n∈N is a complete orthogonal system for L2([0, 1])

under the boundary conditions (4.26), then, ∀ψ ∈ L∗
2(Ω), there exists a

sequence
{

ψ̃n(x, y, t)
}

n∈N
such that

ψ =
∞
∑

n=1

ψn(x, y, z, t) =
∞
∑

n=1

ψ̃n(x, y, t) sin(nπz), (4.27)

being the series appearing in (4.27) absolutely uniformly convergent in Ω.

In view of the periodicity in the x and y directions, one obtains that































∂ψ

∂t
=

∞
∑

n=1

∂ψ̃n

∂t
sin(nπz), ∆1ψn = −a2ψn, ∆ψn = −ξnψn,

a2 = a2x + a2y, ξn = a2 + n2π2, ∆1 =
∂2

∂x2
+

∂2

∂y2
.

(4.28)

Lemma 19 Let (u, θ,Γ) - with w, θ,Γ ∈ L∗
2(Ω) - be a solution of the b.v.p.

(4.25). Then (w, θ,Γ) is solution of the b.v.p.



















∆w = RT∆1θ −RS∆1Γ, in Ω,

w = θ = Γ = 0, on z = 0, 1.

(4.29)

Proof. The proof can be found in [57].

Lemma 20 Let (wn, θn,Γn) ∈ [L∗
2(Ω)]

3 verifying the boundary conditions

(4.29)2, ∀n ∈ N. Then the three components of u, solution of (4.25), are
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given by






























































u =
∞
∑

n=1

un(x, y, z, t) =
∞
∑

n=1

1

a2
∂w̃n(x, y, t)

∂x

d

dz
sin(nπz),

v =
∞
∑

n=1

vn(x, y, z, t) =
∞
∑

n=1

1

a2
∂w̃n(x, y, t)

∂y

d

dz
sin(nπz),

w =
∞
∑

n=1

wn(x, y, z, t) =
∞
∑

n=1

(RTa
2

ξn
θn −

RSa
2

ξn
Γn

)

.

(4.30)

Proof. The proof can be found in [57].

Since θ,Γ, w ∈ L∗
2(Ω), on setting























































θn = θ̃n(x, y, t) sin(nπz),

Γn = Γ̃n(x, y, t) sin(nπz),

wn = w̃n(x, y, t) sin(nπz),

(4.31)

the following theorem holds.

Theorem 29 Let wn, θn,Γn ∈ L∗
2(Ω), ∀n ∈ N. Then a complete orthogonal

system of solutions of the b.v.p. (4.25) is given by






























wn =
RTa

2

ξn
θn −

RSa
2

ξn
Γn,

un =
1

a2

(

∂2wn

∂x∂z
i+

∂2wn

∂y∂z
j

)

+ wnk.

(4.32)

Proof. The proof can be found in [57].

Remark 18 We remark that, in view of (4.32), the independent unknown

fields are reduced to θ and Γ.
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4.4 Auxiliary linear stability

Linearizing (4.10)3 and (4.10)4, by virtue of (4.27), (4.28)3 and (4.30)3, one

has

∂

∂t





θn

Γn



=Ln





θn

Γn



−





v∗ · ∇θn
v∗ · ∇Γn



 (4.33)

with

Ln =





an(z) bn(z)

cn(z) dn(z)



 (4.34)

and


























an(z) = −
(

f1(z)RTa
2

ξn
+ ξn

)

, bn(z) =
f1(z)RSa

2

ξn
,

cn(z) =
f2(z)RTa

2

ξn
, dn(z) = −

(

f2(z)RSa
2

ξn
+

1

Le

ξn

)

.

(4.35)

To (4.33), we associate the “linear auxiliary system”

∂

∂t





θn

Γn



 = Ln





θn

Γn



 (4.36)

where Ln is given by (4.34). The equation governing the eigenvalues of Ln is

λ2n − Inλn + An = 0, (4.37)

where


























An(z) = detLn = andn − bncn = λ1nλ2n,

In(z) = trLn = an + dn = λ1n + λ2n.

(4.38)

Denoting by S∗ = N× R
+ × [0, 1], the Routh-Hurwitz conditions, necessary

and sufficient to guarantee that all the roots of (4.37) have negative real part

∀n ∈ N, are

An(z) > 0, In(z) < 0, ∀(n, a2, z) ∈ S∗, (4.39)
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i.e.

inf
S∗

An(z) > 0, sup
S∗

In(z) < 0. (4.40)

If one of the (4.40) is reversed, then the null solution of system (4.36) is

unstable.

The following lemmas hold.

Lemma 21 The conditions






















QeQ

eQ − 1
R2

T +
LeQe

LeQ

eLeQ − 1
R2

S < 4π2, when Q > 0,

Q

eQ − 1
R2

T +
LeQ

eLeQ − 1
R2

S < 4π2, when Q < 0,

(4.41)

guarantee that (4.40)1 holds.

Proof. In view of (4.35) and (4.38)1, it follows that, An > 0, ∀(n, a2, z) ∈ S∗,

if and only if

1

Le

ξ2n + f2(z)RSa
2 +

1

Le

f1(z)RTa
2 > 0, ∀(n, a2, z) ∈ S∗. (4.42)

Let

G(z) = |f1(z)|RT + |f2(z)|RsLe, (4.43)

then (4.42) becomes

G(z) <
ξ2n
a2
, ∀(n, a2, z) ∈ S∗. (4.44)

Since min
(n,a2)∈N×R+

ξ2n
a2

= 4π2, (4.44) is equivalent to

max
z∈[0,1]

G(z) < 4π2. (4.45)

By virtue of (4.11), from (4.43) one obtains that

G′(z) =
Q2eQz

eQ − 1
R2

T +
Q2L2

ee
LeQz

eLeQ − 1
R2

S, (4.46)
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and hence, by remarking that


























G′(z) > 0, ∀z ∈ [0, 1] when Q > 0,

G′(z) < 0, ∀z ∈ [0, 1] when Q < 0,

(4.47)

one obtains






























max
z∈[0,1]

G(z) = G(1) =
QeQ

eQ − 1
R2

T +
LeQe

LeQ

eLeQ − 1
R2

S, when Q > 0,

max
z∈[0,1]

G(z) = G(0) =
Q

eQ − 1
R2

T +
LeQ

eLeQ − 1
R2

S, when Q < 0,

(4.48)

and the thesis follows.

Lemma 22 The conditions


























QeQ

eQ − 1
R2

T +
QeLeQ

eLeQ − 1
R2

S < 4π2

(

1 +
1

Le

)

, when Q > 0,

Q

eQ − 1
R2

T +
Q

eLeQ − 1
R2

S < 4π2

(

1 +
1

Le

)

, when Q < 0,

(4.49)

guarantee that (4.40)2 holds.

Proof. By virtue of (4.35) and (4.38)2, it follows that, In < 0, ∀(n, a2, z) ∈
S∗, if and only if

f1(z)RTa
2

ξn
+ ξn +

f2(z)RSa
2

ξn
+

1

Le

ξn > 0, ∀(n, a2, z) ∈ S∗. (4.50)

Let

H(z) = |f1(z)|RT + |f2(z)|RS, (4.51)

then (4.50) becomes

H(z) <
ξ2n
a2

(

1 +
1

Le

)

, (4.52)
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i.e.

max
z∈[0,1]

H(z) < 4π2

(

1 +
1

Le

)

. (4.53)

In view of (4.11), from (4.51) one obtains that

H ′(z) =
Q2eQz

eQ − 1
R2

T +
Q2Lee

LeQz

eLeQ − 1
R2

S. (4.54)

Since






































H ′(z) > 0, ∀z ∈ [0, 1] when Q > 0,

H ′(z) < 0, ∀z ∈ [0, 1] when Q < 0,

(4.55)

it follows that






























max
z∈[0,1]

H(z) = H(1) =
QeQ

eQ − 1
R2

T +
QeLeQ

eLeQ − 1
R2

S, when Q > 0,

max
z∈[0,1]

H(z) = H(1) =
Q

eQ − 1
R2

T +
Q

eLeQ − 1
R2

S, when Q < 0,

(4.56)

and the thesis is proved.

In the case Q > 0, on setting






























R1 =
1− eQ

eLeQ − 1
Lee

(Le−1)QR2
S +

4π2

Q

(

eQ − 1

eQ

)

,

R2 =
1− eQ

eLeQ − 1
e(Le−1)QR2

S +
4π2

Q

(

eQ − 1

eQ

)(

1 +
1

Le

)

,

(4.57)

the following theorem holds.

Theorem 30 If and only if

R2
T < min(R1,R2), (4.58)

then the null solution of system (4.36) is stable.
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Proof. The proof follows very easily by virtue of Lemmas 21 and 22.

In the case Q < 0, on setting































R3 =
1− eQ

eLeQ − 1
LeR2

S +
4π2

Q

(

eQ − 1
)

,

R4 =
1− eQ

eLeQ − 1
R2

S +
4π2

Q

(

eQ − 1
)

(

1 +
1

Le

)

,

(4.59)

the following theorem holds.

Theorem 31 If and only if

R2
T < min(R3,R4), (4.60)

hen the null solution of system (4.36) is stable.

Proof. The proof follows very easily by virtue of Lemmas 21 and 22.

Remark 19 We remark that, in the case Le > 1,

R1 −R2 =
1− eQ

eLeQ − 1
e(Le−1)Q(Le − 1)R2

S − 4π2

LeQ

(

eQ − 1

eQ

)

< 0, (4.61)

and

R3 −R4 =
1− eQ

eLeQ − 1
(Le − 1)R2

S − 4π2

LeQ

(

eQ − 1
)

< 0. (4.62)

Hence the necessary and sufficient conditions guaranteeing the linear stability

of the null solution of system (4.36), when Le > 1, become



























R2
T < R1, when Q > 0,

R2
T < R3, when Q < 0.

(4.63)
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4.5 Auxiliary evolution system of the n-th

Fourier component of perturbations

We start this Section by proving a uniqueness theorem for (4.10).

Theorem 32 The problem (4.10) under the initial boundary conditions






























































u(x, 0)= u(0)(x) =
∞
∑

n=1

un0(x), π(x, 0)= π(0)(x) =
∞
∑

n=1

πn0(x),

θ(x, 0)= θ(0)(x)=
∞
∑

n=1

θn0(x), Γ(x, 0)= Γ(0)(x) =
∞
∑

n=1

Γn0(x),

w = θ = Γ = 0 on z = 0, 1,

(4.64)

admits a unique solution (u, π, θ,Γ) ∈ [W 2,2(Ω)]
6
.

Proof. Let (u1, π1, θ1,Γ1) and (u2, π2, θ2,Γ2) be two solutions of (4.10) under

the initial boundary conditions (4.64). Setting

u = u1 − u2, θ = θ1 − θ2, Γ = Γ1 − Γ2, π = π1 − π2, (4.65)

from (4.10) it follows that






















































































∇π = −u+ (RT θ −RSΓ)k,

∇ · u = 0,

∂θ

∂t
+ u1 · ∇θ + u · ∇θ2 = −f1(z)w −Q

∂θ

∂z
+∆θ,

∂Γ

∂t
+ u1 · ∇Γ + u · ∇Γ2 = f2(z)w −Q

∂Γ

∂z
+

1

Le

∆Γ,

(4.66)
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with

w = θ = θ2 = Γ = Γ2 = 0 on z = 0, 1. (4.67)

On setting

E =
1

2

(

‖θ‖2 + ‖Γ‖2
)

, (4.68)

in view of Theorem 28 and by virtue of (4.19), one obtains

E(t) < E0e
at, a = const > 0 (4.69)

and hence

E0 = 0 =⇒ E(t) = 0, ∀t ∈ R
+ (4.70)

and the thesis follows.

Let (ū, π̄, θ̄, Γ̄) be solution of the (nonlinear) initial boundary value prob-

lem (i.b.v.p.)























































































∇π̄ = −ū+ (RT θ̄ −RSΓ̄)k,

∇ · ū = 0,

∂θ̄

∂t
+ ū · ∇θ̄ = −f1(z)w̄ −Q

∂θ̄

∂z
+∆θ̄,

∂Γ̄

∂t
+ ū · ∇Γ̄ = f2(z)w̄ −Q

∂Γ̄

∂z
+

1

Le

∆Γ̄,

(4.71)



























(w̄)t=0 = w̄(0), (θ̄)t=0 = θ̄(0), (Γ̄)t=0 = Γ̄(0),

w̄ = θ̄ = Γ̄ = 0, on z = 0, 1,

(4.72)
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with w̄(0), θ̄(0), Γ̄(0) of type (4.64).

By virtue of the results of the previou sections, it follows that (4.71)-(4.72)

is equivalent to

∂

∂t





θ̄

Γ̄



 =
∞
∑

n=1

Ln





θ̄n

Γ̄n



−





v∗ · ∇θ̄
v∗ · ∇Γ̄



−





ū · ∇θ̄
ū · ∇Γ̄



 , (4.73)

under conditions (4.72).

For any n ∈ N, let us associate to (4.73), under the initial boundary condi-

tions (4.72), the “auxiliary system”, linear with respect to ϕin

∂

∂t





ϕ1n

ϕ2n



 = Ln





ϕ1n

ϕ2n



−





v∗ · ∇ϕ1n

v∗ · ∇ϕ2n



−





ū · ∇ϕ1n

ū · ∇ϕ2n



 , (4.74)

under the i.b.c.


























(ϕ1n)t=0 = θ̄
(0)
n , (ϕ2n)t=0 = Γ̄

(0)
n ,

ϕ1n = ϕ2n = 0, on z = 0, 1,

(4.75)

ϕin (i = 1, 2), being unknown functions of (x, y, z, t) and ū = ū(x, y, z, t)

divergence free vector determined by solving (4.73) under (4.72) and hence

to be considered known. The following theorem holds (cfr. [36], [59], [60] for

more details).

Theorem 33 Let (ϕ1n, ϕ2n) be a solution of (4.33)-(4.75), ∀n ∈ N. Then

the series
∞
∑

n=1

ϕ1n and
∞
∑

n=1

ϕ2n are convergent and it follows that

∞
∑

n=1

ϕ1n = θ̄,
∞
∑

n=1

ϕ2n = Γ̄, (4.76)

being (θ̄, Γ̄) solution of (4.71)-(4.72).
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Proof. In the case v∗ = 0 the proof is given in [36]. Its generalization in the

case v∗ 6= 0 can be found in [12].

Remark 20 In view of Theorem 33, it follows that the asymptotic stability

of the null solution of (4.71)-(4.72) is guaranteed by conditions, independent

of n, ensuring the asymptotic stability of the null solution of (4.33)-(4.75)2.

4.6 Absence of subcritical instabilities and global

nonlinear stability

In order to study the nonlinear stability of the null solution of (4.33), let us

consider the standard L2(Ω)-energy

E =
∞
∑

n=1

En, (4.77)

where

En =
1

2

[

µ‖ϕ1n‖2 + ‖ϕ2n‖2
]

, (4.78)

being µ a positive scaling to be suitably chosen later. The time derivative of

En along the solutions of (4.33) is given by

dEn

dt
=

∫

Ω

[

µanϕ
2
1n + (µbn + cn)ϕ1nϕ2n + dnϕ

2
2n

]

dΩ+

−1

2

∫

Ω

(µū · ∇ϕ2
1n + ū · ∇ϕ2

2n) dΩ.

(4.79)

The following lemma holds.

Lemma 23 Conditions (4.41) guarantee that

∃µ ∈ R
+ : (µbn + cn)

2 − 4µandn < 0, ∀n ∈ N, ∀z ∈ [0, 1]. (4.80)
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Proof. Let us consider

F (n, z) = (µbn + cn)
2 − 4µandn, (4.81)

i.e.

F (n, z) = b2n(z)µ
2 + 2[bn(z)cn(z)− 2an(z)dn(z)]µ+ c2n(z). (4.82)

From (4.35), bn(z) < 0 and cn(z) < 0 ∀n ∈ N, ∀z ∈ [0, 1], then, since (4.41)

guarantees that An(z) > 0, ∀n ∈ N, ∀z ∈ [0, 1], one obtains

an(z)dn(z)− bn(z)cn(z) > 0 ⇒ an(z)dn(z) > bn(z)cn(z) > 0. (4.83)

Hence


















bn(z)cn(z)− 2an(z)dn(z) < 0,

∆n = [bn(z)cn(z)− 2an(z)dn(z)]
2 − bn(z)

2cn(z)
2 > 0.

(4.84)

Let us define






























µ1n =
2andn − bncn −

√

4a2nd
2
n − 4anbncndn

b2n
(> 0),

µ2n =
2andn − bncn +

√

4a2nd
2
n − 4anbncndn

b2n
(> 0),

(4.85)

and






























µ̄ = sup
(n,z)∈N×[0,1]

µ1n ,

¯̄µ = inf
(n,z)∈N×[0,1]

µ2n .

(4.86)

Since(µ̄, ¯̄µ) ⊂ (µ1n , µ2n), ∀n ∈ N, ∀z ∈ [0, 1], on choosing

µ ∈ (µ̄, ¯̄µ), (4.87)
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it follows that

F (n, z) < 0, ∀n ∈ N, ∀z ∈ [0, 1] (4.88)

and the thesis follows.

Theorem 34 If condition (4.58) (in the case Q > 0) or (26) (in the case

Q < 0) holds, then the vertical throughflow (4.8) is globally nonlinearly stable

in the E-norm.

Proof. Since En is positive definite ∀n ∈ N and ∀z ∈ [0, 1], the stability of

(4.8) is guaranteed if (4.79) is negative definite ∀n ∈ N and ∀z ∈ [0, 1]. In

view of the boundary conditions (4.75)2, the divergence theorem leads to

∫

Ω

ū · ∇ϕ2
1n dΩ ≡

∫

Ω

ū · ∇ϕ2
2n dΩ ≡ 0. (4.89)

Let us remark that, either (4.58) or (4.60) guarantee that

sup
S∗

an(z) < 0, sup
S∗

dn(z) < 0. (4.90)

In fact, since (25) and (26) guarantee that the Routh-Hurwitz conditions

(4.40) hold, then

an(z)dn(z) > bn(z)cn(z), (4.91)

hence

an(z)dn(z) > 0 (4.92)

and, in view of (4.40)2,

an(z) + dn(z) < 0. (4.93)

Collecting (4.92) and (4.93), one obtains (4.90). Hence, on choosing µ as

in (4.87), one obtains that
dEn

dt
is negative definite and the null solution of

(4.71) is globally nonlinearly stable with respect to E-norm.
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Remark 21 Let us underline that the condition ensuring the stability of the

null solution of the linear auxiliary system (4.36) also ensures the nonlinear

global stability of the null solution of (4.71) under the boundary conditions

(4.72)2. In fact, by virtue of the boundary conditions

θ̄n = Γ̄n = 0, on z = 0, 1, (4.94)

the divergence theorem leads to

∫

Ω

θ̄nv
∗ · ∇θ̄n dΩ ≡

∫

Ω

Γ̄nv
∗ · ∇Γ̄n dΩ ≡ 0,

∫

Ω

θ̄nū · ∇θ̄n dΩ ≡
∫

Ω

Γ̄nū · ∇Γ̄n dΩ ≡ 0.

(4.95)

Hence, there is no contribution of the terms v∗ · ∇θ̄n, v∗ · ∇Γ̄n, ū · ∇θ̄n,
ū · ∇Γ̄n to the E-norm and, as one is expected, such terms can be avoided at

least in the E-energy.

Remark 22 We remark that, since































lim
Q→0+

R1 ≡ lim
Q→0−

R3 ≡ −R2
S + 4π2,

lim
Q→0+

R2 ≡ lim
Q→0−

R4 ≡ −R2
S

Le

+ 4π2

(

1 +
1

Le

)

,

(4.96)

the necessary and sufficient condition guaranteeing the linear stability of the

conduction solution (4.13) becomes, as expected,

R2
T < min

{

−R2
S + 4π2,−R2

S

Le

+ 4π2

(

1 +
1

Le

)}

. (4.97)
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Fac. Sci. Toulose, 9, 203-474, (1907).

[38] Massera J.L., Contributions to Stability Theory. Ann. of Math., 64, 182-

206, (1956).

[39] Merkin D.R., Introduction to the theory of stability. Text in Applied

Mathematic, 24, Springer, (1997).

[40] Mora X., Semilinear parabolic problems define semiflows on Ck spaces.

Trans. Am. Math. Soc., 278, 21-55, (1983).

[41] Movchan A.A., The Direct Method of Lyapunov in Stability Problems of

Elastic Systems.P.M.M., 23, 483-493, (1959).

[42] Mulone G., Straughan B., Wang W., Stability of epidemic models with

evolution. Stud. Appl. Math., 118, n.2 117-132, (2007).

[43] Murty Y.N., Effect of throughflow and magnetic field on Benard convec-

tion in micropolar fluids, Acta Mechanica, 150, 11-21, (2001).

139



[44] Nield D.A., Kuznetsov A.V., The Onset of Convection in a Heteroge-

neous Porous Medium with Vertical Throughflow, Transp. Porous Med.,

88, 347-355, (2011).

[45] Nield D.A., Kuznetsov A.V., The Effect of Vertical Throughflow on the

Onset of Convection in a Porous Medium in a Rectangular box, Transp.

Porous Med. 90, 993-1000, (2011).

[46] Nield D.A., Convection in a porous medium with an inclined temperature

gradient and vertical throughflow, Int. J. Heat Mass Transf., 41, 241-243,

(1998).

[47] Pao C.V., Nonlinear parabolic and elliptic equations. Plenum Press, New

York, (1992).

[48] Peng R., Zhao X.Q., A reaction-diffusion SIS epidemic model in a time-

periodic environment, Nonlinearity, 25, 1451-1471, (2012).

[49] Protter M.H., Weinberger H.F., Maximum principles in differential

equations. Prentice-Hall, Inc., Englewood Cliffs, (1967).

[50] Qiao Z., Kaloni P., Nonlinear convection in a porous medium with in-

clined temperature gradient and vertical throughflow, Int. J. Heat Mass

Transf., 41, 2549-2552, (1998).

[51] Rao F., Wang W., Li Z., Stability analysis of an epidemic model with

diffusion and stochastic perturbation. Commun. Nonlinear Sci. Numer.

Simul., 17, n.1, 2551-2563, (2012).

[52] Rionero S., On the nonlinear stability of the critical points of an epi-

demic SEIR model via a novel Lyapunov function. Rend. Acc. Sc. fis.

mat. Napoli, Vol. LXXV, 115-129, (2008).

140



[53] Rionero S., Buonomo B., On the Lyapunov stability for SIRS epidemic

models with general nonlinear incidence rate. Appl. Math. Comput., 217,

4010-4016, (2010).

[54] Rionero S., Stability of ternary reaction-diffusion dynamical systems.

Rend. Lincei Mat. Appl., 22, 245-268, (2011).

[55] Rionero S., A peculiar Lyapunov functional for ternary reaction-

diffusion dynamical systems. Boll. U.M.I., (9), IV, 393-407, (2011).

[56] Rionero S., Functionals for the coincidence between linear and nonlinear

stability with applications to spatial ecology and double diffusive convec-

tion, Proceedings ”Wascom 2005” 13th Conference on Waves and Stabil-

ity in Continuous Media, World Scientific, 461-474, (2006).

[57] Rionero S., Symmetries and skew-symmetries against onset of convection

in porous layers salted from above and below, Int. J. Non-linear Mech.,

47, Issue 4, 61-67, (2012).

[58] Rionero S., A new approach to nonlinear L2−stability of double diffusive

convection in porous media: Necessary and sufficient conditions for global

stability via a linearization principle, J. Math. Appl., 333, 1036-1057,

(2007).

[59] Rionero S., Multicomponent diffusive-convective fluid motions in porous

layers: ultimately boundedness, absence of subcritical instabilities and

global nonlinear stability for any number of salts, Phys. Fluids , 25,

054104, (2013).

[60] Rionero S. Absence of subcritical instabilities and global nonlinear sta-

bility for porous ternary diffusive-convective fluid mixtures, Phys. Fluids

24, 104101, (2012).

141



[61] Rionero S., Soret effects on the onset of convection in rotating porous

layers via the “auxiliary system method”, Ric. Mat., 62 (2), 183-208,

(2013).

[62] Rionero S., Heat and mass transfer by convection in multicomponent

Navier- Stokes mixture: Absence of subcritical instabilities and global non-

linear stability via the Auxiliary System Method, Rend. Lincei Mat. Appl.

25, 1-44, (2014).

[63] Sack D.A., Sack R.B., Nair G.B., Siddique A.K. Cholera. Lancet 363

(9404), 223-233, (2004).

[64] Sack D.A., Cadoz M., Cholera vaccines. In Plotkin A.S., Orenstein

W.A. Vaccines. Philadelphia: W.B. Saunders Co., (1999).

[65] Sanches R.P., Ferreira C.P., Kraenkel R.A., The role of immunity and

seasonality in cholera epidemics. Bull. Math. Biol., 73, 2916-2931, (2011).

[66] Sengupta T.K., Nandy R.K., Mukhopadyay S., Hall R.H., Sathyamoor-

thy V., Ghose A.C. Characterization of a 20−KDa pilus protein ex-

pressed by a diarrheogenic strain of non-O1/non-O139 Vibrio cholerae.

FEMS Microbiol. Letters, 160, 183-189, (1998).

[67] Smoller J., Shock waves and reaction-diffusion equations. Springer-

Verlag, New York, (1983).

[68] Straughan B., The Energy Method, Stability and Nonlinear Convection,

Second Edition, Appl. Math. Sci., 91, Springer-Verlag, (2004).

[69] Straughan B., Stability and Wave Motion in Porous Media, Appl. Math.

Sci., Springer-Verlag, (2008).

142



[70] Temam R., Infinite dimensional dynamical system in mechanics and

physics. Appl. Math. Sc. 68, Springer Verlag, 26 (1988).

[71] Tian J., Wang J., Global stability for cholera epidemic models. Math.

Biosci., 232, 31-41, (2011).

[72] Walker J.A., Dynamical system and evolution equations. Theory and

applications. Plenum Press, New York, (1980).

[73] Wang J., Zhang J., Jin Z., Analysis of an SIR model with bilinear inci-

dence rate. Nonlinear Anal. Real World Appl., 11, n.4, 2390-2402, (2010).

[74] Yoshizawa T., Stability theory by Liapunov’s second method. Math. Soc.

of Japan, Tokio, (1966).

[75] Zhou X., Cui J., Modeling and stability analysis for a cholera model

with vaccination. Math. Methods Appl. Sci., 34, 1711-1724, (2010).

[76] Zubov V.I., Methods of A.M. Lyapunov and their applications. Noord-

hoff L.T.D., Groningen, (1964).

143


