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ABSTRACT

My PhD is funded by the Solanaceae Pollen thermotolerance — Initial
Training Network (SPOT-ITN) in the frame of the European Marie Curie
Actions.

The consortium aims to investigate fundamental and applied aspects
contributing to the protection of pollen at increased environmental
temperatures, deciphering the underlying of pollen development and its
response to heat stress, starting from analyses on Tomato. Obviously, the
findings are supposed to be a guideline, and the procedures to be
applicable to other plants in the future.

In the light of the SPOT-ITN project objectives, and to provide a
comprehensive bioinformatics infrastructure to support extensive
genomics analyses in tomato, we collected, processed and integrated
different resources; and organized them into dedicated databases with
appropriate query user interfaces. This bioinformatics effort required the
design of the most adequate software to reconcile the manifold resources
from different cell information levels (genomics, transcriptomics,

epigenomics). This is fundamental for data integration and analysis.

The development of appropriate tools to mine the data from the “omics”
approaches employed to trace the pollen development and the heat stress

response has also been necessary to the project.

In this thesis, the main efforts undertaken and the analyses conducted on
the basis of such resources with the strategies and approaches developed
are reported in details.
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1 Introduction

The development of Bioinformatics has been tightly linked to international
collaborations in genome sequencing projects and to efforts of the

pharmaceutical industry in its drive for drug discovery and development.

Bioinformatics strongly ewolved also thanks to seweral outstanding steps
forward in the “omics” methodologies. With the advent of new sequencing and
high-throughput technologies in the last years, large-scale genome projects have
significantly changed the face of biology enhancing the role of structural and
functional genomics research [1, 2]. The sequencing of whole genomes in short
time together with detailed definition of molecular information acquired from
the genome functionality caused a revolution in biological sciences for their
contribution to the study of molecular processes and of the mechanism
underlying the context of cellular systems [3]. Having deep information from
data describing genome organization and its modifications, the transcripts
expression, from the protein coding and non-protein coding context, and the
different substances within a test sample provides nowvel, unexpected overviews

of molecular aspects of Systems Biology [3, 4].

Powerful tools were organized and are still necessary to organize the data and,
for example, to study genome structure and regulation covering aspects such as
definition and analysis of genomic sequences, gene structure prediction,
modeling of transcriptional and translational control and large scale

comparative analyses [5].



1.1 Aims and scope

My PhD is funded by the Solanaceae Pollen thermotolerance — Initial Training
Network (SPOT-ITN) in the frame of the European Marie Curie Actions. The
project initiated in 2012, it includes 9 partner institutions in which 3 from the
private sector. Five peers from 4 European member countries and one non-
European partner are involved. The consortium aims to investigate fundamental
and applied aspects contributing to the protection of pollen at increased
environmental temperatures, deciphering the underlying of pollen development
and its response to heat stress, starting from analyses on Tomato. Obwviously, the
findings are supposed to be a guideline, and the procedures to be applicable to

other plants in the future.

This bioinformatics effort required data exchange and the design of the most
adequate software to reconcile the manifold resources from different cell
information lewels (transcriptomics, proteomics, metabolomics, epigenomics).
This is fundamental for data integration and analysis. The dewvelopment of
appropriate tools to mine the data from the “omics” approaches employed to
trace the pollen development and the heat stress response has also been

necessary to the project (Figure 1).
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Figure 1: The SPOT-ITN Bioinformatics Platform Schema

My activities, in this thesis work, was the set-up of the bioinformatics platform
for data sharing with a specific focusing to the organization and management of
data from genomics and transcriptomics. | also contributed with the
implementation of tools accompanying or integrating the already existing ones
for improving data quality and supporting data analysis and supporting specific
biological investigations useful to understand structure organization and

functionalities ofthe tomato genome in the framework of the SPOT-ITN project.

1.2 Bioinformatics and “omics” Collections

1.2.1 Genome References

A genome reference is a sequence of DNA nucleotides (bases) assembled from
the sequencing of DNA from a model species. With the advent of Next
Generation Sequencing Technologies on 2005 [6] a new window to deliver fast,

inexpensive and accurate genome information was opened [7]. Moreowver, with



the advancement of such technologies and the number of genome sequencing
projects working on different organisms and species, an increasing number of
genome sequences for model and non-model organism were made available. As
an example in the plant sciences, 18 genome sequences from Algae, one from
Bryophytes, 59 for Eudicots and 19 for Monocots were made available

(https://en.wikipedia.org/wiki/List of sequenced plant genomes).

1.2.2 Gene/Genome Annotation

Sequencing new genomes also involved the definition of their gene content. In
fact, gene annotation is one of the main and routine steps in the genome analysis
when the genome sequence becomes available. It isnormally carried out before
the genome sequence is deposited in the GenBank [8]. Sewveral specific or

general bioinformatics gene annotation pipelines also exist in the field [9-12].

Sewveral pipelines (e.g.. EuGene-PP, SEGMA etc.) are used to predict the genes
during the genome sequencing project while some others (such as RefSeq) are

meant to collect the annotated genes later with some curations included.

NCBI's reference sequence (RefSeq) database [13] is a curated non-redundant
collectionwhich stores, organizes and provides access to the public sequences
representing genomes, transcripts and proteins. On 13 July 2015, RefSeq
database included 52,494,032 proteins, 11,803,354 transcripts and 55,267
organisms (RefSeq release 71). As a hub, RefSeq offers the integrated
information from different resources and represent a current description of the
sequence and its features if available [13]. RefSeq offersa reviewed collection
in which the input from expert users and the other accessory details from the
relevant scientific communities were combined. GenBank RefSeq collection is

one of the main reference collections used in the research community.


https://en.wikipedia.org/wiki/List_of_sequenced_plant_genomes

1.2.3 Transcriptome Sequencing

The possibility of fast sequencing consistent transcriptome collections strongly
contributed to gene annotation and to the understanding of differential
expression in different biological context (tissues, stages, stress and

pathologies) for several different species.

Several worldwide available resources collect transcriptome data in the form of
sequences such as dbEST [14] and the Sequence Read Archive (SRA) [15]

dbEST is adivision of GenBank [8], established on 1992 by the National Center
for Biotechnology Information (NCBI), which is meant to collect raw reads and
does not accept assembled sequences. In October 2015, the dbEST includes over
74 million Expressed Sequence Tag (EST) sequences from 2473 organisms.
SRA is also another repository, established at NCBI on 2007, which includes
DNA sequencing data from public collections especially in the form of short
reads (normally less than 1,000 bp in length) produced by high throughput-
sequencing (e.g.. RNAseq, ChipSeq, MethSeq etc.). As of October 2015, the

SRA included owver four quadrillion bases in its database.

1.2.4 Expressed Sequence Tags (ESTs)

Expressed Sequence Tags (ESTs) are small and error-prone RNA sequence
pieces (normally ranging from 200 to 500 nucleotides) [16]. ESTs are derivative
fragments produced by single sequencing pair sequencing [17] which are either
generated by sequencing of one or both ends of an RNA molecule of all
expressed genes. They are performed on randomly selected clones from cDNA
libraries. ESTs are Small fragments of the mRNA that represent genes
expressed in certain cells, tissues, or organs from different organisms, fishing
of a gene out of a portion of genomic DNA is done by the “tags” matching base

pairs (Figure 2) [18].
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Figure 2: EST sample preparation for the sequencing (picture from [18])

Therefore, ESTs provide experimentally based important resources for
comparative and functional genomic studies and represent reliable information

for the annotation of genomic sequences [16].

1.2.5 Next Generation Sequencing Data

According to the materials used in this thesis, RNAseq and MACE techniques
for the expression data, and MethSeq technique for the genome modification

purposes are presented as follow:



RNAseq Data

RNAseq is a recently developed deep-sequencing technology exploiting Next
generation sequencing technologies for parallel transcriptome profiling. It
offers a significant level of precision comparing to the other methods in

quantification of the produced transcripts and their isoforms [19].

Generally, an RNA population is conwverted to a cDNA fragments library.
Depending on the protocol or approach selected, adaptor sequences are attached
to one or both ends of the fragmented cDNAs (Figure 3). In most cases, an
amplification process is subjected to the whole population. Depending on the
sequencing technique, one end (single-end) or both ends (pair-end) is
conducted. The reads typically range from 30 to 400 bases. Illumina
(http://mmw.illumina.com/), Applied Biosystems SOLiD
(http://www.appliedbiosystems.com/absite/us/en/home.html) and Roche 454
Life Science systems (http://www.454.com/) are the example of such

sequencing techniques applied for this purpose [19].
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Figure 3: A typical RNAseq experiment (picture from [19])

Respectively, the resulted reads are mapped on the reference genome for the
downstream analyses. When the genome reference is not available, assembly de
novo of the transcript fragments is done to produce a genomic map of the
sequenced species (This approach is also valid for the EST sequences). In both
cases, several downstream analyses can be conducted such as expression

quantification, structural and functional investigation etc.



MACE Data

Massive Analysis of cDNA Ends (MACE) [20] is a digital gene expression
profiling technique and one of the latest advancement of tag-based gene
expression analysis methods recently introduced by GenXPro Company in
Germany [20]. It is also based on Next generation sequencing technologies. In
MACE technique, a cDNA population is first linked to a streptavidin matrix via
3’-biotin. The cDNA sequences are then fragmented into 50 to 500 bp pieces.
One of the key point is that all the unbound fragments are discarded from the
consequent analyses. A high-throughput sequencing is done on the bounded

fragments starting from the bounding site.

Isoform 3 () ) AAAAAAAAA

Isoform 2 s [ AAAAAAAAA
Isoform1 ~ (NEGEE "  CEECRID AAAAAAAAA

Figure 4: MACE reads alignment mapping on the genome representing different alternative

transcripts and isoforms

Since MACE technique sequence the end of the transcripts (attached to the poly
A tail), it can be a good way to detect the alternative transcripts and isoforms in
the genomic loci (Figure 4). However the method is not able to provide/suggest

the structure of the transcript.



Non-coding RNAs (Small- and Micro-RNAs)

The non-coding RNAs are referred to the class of RNAs that do not encode for
any protein. They also represent a relevant component ofthe transcriptome level
with relevant roles that are recently going to be more understood in molecular
biology [21-25]. This class of RNAs are contributing (though still not well
discovered and characterized) in various biological processes and complex cell
control activities. Small-RNAs, including the silencing through homologous
sequence interactions, can be named as short interfering (si)RNAs [26], small
temporal (st)RNAs [27], heterochromatic SiIRNAs [28], tiny noncoding RNAs
[29] and microRNAs (miRNAs) [30, 31]. Epigenetic modifications of the
specific genomics regions, transposon silencing, RNA stability or translation
are of those processes controlled by these classes of non-coding RNASs.
Identification of the Small-RNAs and evolutionarily conserved RNA-mediated
silencing pathways opened a new window to the understanding of the genomic
processes in the field [32, 33].

MethSeq Data

Methylation-sensitive restriction enzyme assisted DNA methylation deep
sequencing [34] (so called MethSeq) is one of the epigenomics approaches for
detection of methylated and not methylated DNA sites. It is able to detect
genome-wide CG methylation along the genome sequence. In this approach,
Hpall is used as the methylation-sensitive enzyme, recognizing non-CpG-
methylated CCGG sites. After this digestion process by Hpall, the size selected
DNA fragments are subjected to the sequencing (Figure 5).
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Figure 5: CG site cutting by enzyme in MethSeq methodology (picture taken from [35])

DNA methylation can be involved in the regulation of gene expression [36-38],
protein function [39, 40] and mRNA processing [41, 42]. DNA methylation is
also associated with the silencing of repeated regions, known also to cause
genome instability in the plants and animals [43]. Hence, the detection of the
DNA modification events associated to methylation is an important step to

understand the role they can play in gene expression.

Data processing and assembly

The quality of data and the way it is processed have great impacts on the
outcomes [1]. Most analytical tools assume that the input data has an accepted
level of reliability, while for the sequencing data, both in genomics and in
transcriptomics, due to technical or biological issues, that goes from machine
biases, contaminations or several other aspects, the data should be quality
assessed and pre-processed before any further analytical steps [2]. Besides of

the data cleaning and trimming from usual factors (e.g.: additional sequences

11



used for sequencing purposes, vector sequences, low quality or missing bases),
relying on the frequency of an evidence is also a common approach to enhance
data reliability. To this end, the assembly of identical and overlapping sequences
from the same reference as well as the definition of consensus from specific
overlapping cut-offs are of those common methodological approaches to obtain
high quality and reliable sequences. Sequence assembly and the clustering of
sequences sharing identical or highly similar regions are also methodologies
leading to the definition of variances such as those due to the Single Nucleotide

Polymorphisms (SNPs) or splicing.

1.2.5.1.1 Sequence Cleaning and Trimming

In almost all the sequencing approaches, a piece of an additional sequence due
to the technique (eq. vector sequences for the ESTs or barcode and adapter for
the RNAseq data) contaminate the resulting target sequence(s) of interest. Based
on the technique and the protocol used, the type of this sequence can vary. The
need to remowve the added sequences should be remowved from the target
sequence fragment is fundamental. Based on the type of data and the specific
sequencing technology, several tools are dewveloped to clean and trim such
sequences from the raw sequence data. As an example for the EST sequences,
LUCY2 [44] and SeqTrim [4] are some of the tools to detect and remowve the
vector sequences from the EST. Sometimes the guided tools such as
RepeatMasker [45] and the use of vector databases as the masking collections

can be alternative approaches.

1.2.5.1.2 Quality Assessment

The trimming can resultin very short sequences which should be discarded from

the consequent analyses according to user defined specific cutoffs.
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The length and the quality of the resulting sequences is a relevant aspect to be
considered for several reasons. Due to technological or chemical issues and
depending on the sequencing machine, the quality of the sequenced nucleotides
may drop after a specific number of nucleotides. For the same reason, some
sequences can also contain errors which should be considered depending on the
proportion and position of the error occurrence. On the other hand, if the
trimming of the sequence from adapters, vectors, or because of low quality
nucleotides defines too short sequences, this will reduce their specificity.
Indeed, the probability of similarity of short sequences compared to the longer
ones, is higher, introducing bias to sequence assignment and to the definition of
its role, such as in assembled sequences or in the detection of the correct
reference genomic region when the sequence itself will be mapped. However
this has a direct effect on the computational costs in terms of time complexity.
Sewveral quality assessmentand correctiontools [46-48] were developed to allow
the quality assessment and low quality sequences removal by setting different
options and cut-offs. Independently from these tools, several analytical
pipelines also offer options to set length thresholds before further exploiting the

resulting collection [49-52].

1.2.5.1.3 Tentative Consensus (TCs)

A Tentative Consensus (TC) sequence is the result of multiple sequences
alignments. A consensus sequence has higher reliability because it is confirmed
by several fragments that can also elongate the resulting product. The lack of a
unique consensus can contribute information about variants or alternative

splices.

CAP3 [50] is one of the most commonly used sequence assembly programs
(offering different options such as owverlapping cut-off, quality filtering and
expansion thresholds etc.) used for the assembly from the EST collections and
for TC definition.

13



The collections of all the tentative consensus from a transcriptome sequencing
can be usually referred as unigene collections since a unigene should represent

the unique reference for atranscript, thanks to the assembly process.

Genome

esT1 IE—

EST2
EST3

EST4 -
ESTS 5

S | Assemble | —

Singleton

Tentative Consensus

»
>

s -~

Figure 6: Tentative Consensus Assembly from EST sequences. Those not confirming a

similar structure are left as singletons.

Based on the definition a TC is always defined at least by two sequences. The
sequences from a library not contributing in any TC assembly are often referred
as singletons (Figure 6). Some resources such as ISOL@ [53], NexGenEx-Tom
[54] offer the TC collections separating the singletons to flag the most reliable
sequences since they can be independently investigated from their EST
collections, but some others such as SGN [55], PlantGDB [56] and DFCI [57]

provide the TC collections including the singletons together.
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Considering the data from NGS, similar strategies are applied. Indeed the main
difference is mainly due to the need of manipulating a higher number sequence
fragments per analysis. In the field of transcriptome assembly, several tools and
pipelines (e.g. Denovo Trinity [51], Velvet [58], SOAPdenovo [59], cufflinks
[60], SSAKE [61] etc.) try to create the overlapping and consensus sequences
from the short reads to assemble the entire transcript. Other tools (such as
BedTools [62]) are also developed to create consensus sequences on the bases

of reads overlapping on the genomic regions.

Quantification

In the NGS data quantification, an important summary statistic is the number of
reads in a class (genomic feature such as gene, mRNA, exon etc.). The read
count has indeed a linear function of the target abundance that is being
measured: in RNAseq it can measure transcript abundance, or, in MethSeq, it
can indicate absence of methyl group for sites that can be potentially methylated

(eg. CpG dinucleotides).

There are two main approaches to follow to quantify a specific read amount
from NGS approaches. In the genome reference based analyses, the reads are
first mapped (aligned) on the genome sequence [60]. After the mapping, reads
can be counted on the base of their occurrence on genomic features if available
(e.g.: gene, mRNA, exon etc.). When the annotation is not available, an
annotation free analyses based on different strategies may support the creation

of reference genomic regions.

When a genome reference is not available, oftena de novo assembly is done to
have reference sequences as models [63]. In this case, the quantification of reads
can be done by calculating the abundance of reads mapped on a specific model
[51, 64].

15



In both case, the number of fragments (reads) counted is a quantity that may
refer to that target abundance. This is valid for protein coding or non-coding
transcripts. However, in terms of non-coding RNAs, often the genomic region
or the class the reads will be assigned to, are not already available from the
genome annotation. These regions, however, can be defined by identifying
overlapping fragments mapped on the genome reference sequence [65]. In this
approaches, often an offset of neighboring (e.g. a 100 window) for creating the
reference feature is also considered. Furthermore, these clusters may be also
intersected with other genomic features (e.g. coding regions, Transposon
Elements etc.) for further downstream analyses [44, 66, 67] to localize the

specific read amount on the genomic feature.

1.2.5.1.4 Raw Reads

The raw reads count is the simplest measure of quantitation for the high-
throughput sequencing data. It counts up the reads within or owerlapping a
specific genomic region or a probe. There are several tools and packages which
allow the fast and customized summarizing of the reads count for genomic
features. Among all, HTSeq-count [68] and featurecounts [69] are the most

common and user-friendly packages.

HTSeqg-count is a Python script available in the HTSeq package deweloped to
work with the NGS short reads (fastq). It is a fast and efficient software to
summarize (assign) the reads mapped ona genomic reference to an overlapping
genomic feature or class allowing several specific settings. HTSeq-count is of
those summarizing tools which prefers to relay on the most certain evidences,
and the discarding of ambiguous and multiple mapped reads is one of its

principle procedures.
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Figure 7: Reads Counting options in HTSeq-count software (figure from http://www-

huber.embl.de/users/anders/HTSeqg/doc/count.html)

Figure 7 visually described the read assignment of the HTSeq-count package to
the reference genomic feature using different parameters of union,
intersection_strict and intersection_nonempty. As it can be observed, when the
read “A” is overlapping with both “gene A” and “gene B”, it is reported as

ambiguous in all the cases.

featurecounts is also another tool developed in C environment for the short
reads summarization. It is a highly efficient general-purpose software that

allows the detailed counting of the mapped reads for various genomic features.
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Against HTSeq, featurecounts can also deal with the multiple mapped reads and
ambiguous features in which, the read will account for all the owverlapping
genomic elements. It also can deal with the genomic bins and chromosomal
locations. featurecounts is available in the form of SourceForge Subread

package or the Bioconductor Rsubread package [69].

Using any read to feature assignment tool for the quantification purposes, the
summary statistic is normally calculated for all the class members per each
replicate, creating a quantification matrix. As an example for the expression data
of twenty genes of tomato in six different conditions (one replicate per each), a
summary expression matrix of 20 x 6, excluding the headers and row names,

will be produced.

1D Condl Cond2 Cond3 Cond4 Cond% Condb
Solyc00g005000.2.1 0 2 1 1 5 3
Solyc00g005040.2.1 19 il 3 0 5 5

SolycD0g005050.2.1 23835 1725 1758 1509 1300 1450
Solyc00g005840.2.1 7364 5312 4326 5102 5400 5701

SolycD0g006470.1.1 35297 4119 1434 792 1302 2352
Solyc00g006490.2.1 2183 1330 1254 1187 662 926
SolycD0g006800.2.1 3606 2803 3610 2359 1705 1673
Solyc00g006810.2.1 3211 3089 3312 4021 3547 3321
SolycD0g006820.2.1 2292 2641 2265 1753 1350 1657
Solyc00g006830.2.1 1386 1915 1473 1274 975 1131
SolycD0g007010.2.1 820 738 712 618 404 331
Solyc00g007060.2.1 1259 1123 1073 801 538 752
SolycD0g007070.2.1 4166 3014 2369 2208 1533 1769
Solyc00g007080.2.1 34 85 a7 a7 29 8
SolycD0g007090.2.1 430 474 463 434 374 312
| Solyc00g007100.2.1 1245 899 808 746 513 547
SolycD0g007110.2.1 284 268 230 143 171 151
Solyc00g007120.2.1 649 526 491 354 224 275
SolycD0g007130.2.1 122 70 60 30 33 76

Figure 8: Snapshot of an expression matrix for 20 example genes in 6 conditions
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Figure 8 shows an example of a summary statistic table for 20 genes in 6
different conditions in the form of a gene expression matrix. As it can be
observed, the name of the genes (here the genes of tomato) are listed as the row
names while the conditions are the columns. The expression values
corresponding to each gene in each condition is reported respectively. This
summary statistic table (matrix) is then used for the gene expression analyses
and profiling. Howewer, as mentioned at the beginning of this topic, correction
of the nonlinear effects that might be introduced due to the experimental

conditions should be put into consideration for the quality purposes [70].

Normalization

Although it was claimed that RNA sequencing technology has a significant
reduction of variability in comparison to microarrays, it is demonstrated that the
unwanted and obscuring variability similar to what was first observed in
microarrays can be also observed in the RNAseq data. [71]. In addition, the
current limits in the sequencing technologies introduce a variety of biases to the
data [72-75] suggest that normalization approaches are necessary to make the
samples comparable. The aim of normalization approaches are to remowve
systematic technical effects with in the data, and minimize the impact of
technical biases on the results [76]. Here, some of the most commonly used and

popular normalization approaches used forthe NGS data analyses are presented.

Reads Per Kilobase per Million (RPKM) mapped reads is a normalization
allowing the comparison of the genes within a sample or between different
samples by re-scaling the gene counts corrected for differences in both library
sizes and gene length [77]. Although it has been shown that the correction of

differences in gene length can introduce a bias in the differential analysis
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especially for the lowly expressed genes [73], RPKM is still a popular and

commonly used normalization approach in many practical applications.

n * 1000 bp * 10”6
(L*N)

RPKM =

Where n is the number of mapping reads, L is the length of transcript and N is
the number of total reads in the sample collection. This method is a library size

concept normalization approach.

Transcript Per Million (TPM) is the analogous approach of normalization to
RPKM to correctthe library size when the length of the transcript is not put into

consideration.

n* 1000 bp * 1076
TPM = N

Where n is the number of mapping reads and N is the number of total reads in

the sample collection.

This method is a library size concept normalization approach.

The reads assigned to a class or genomic feature (eg. gene or exon etc.) are
divided by the total number of reads mapped on the genome (library size) for
that specific lane (replicate/sample). The result is then multiplied by the total

count mean across all the replicate/samples of the dataset.

Upper Quantile (UQ) in principle is very similar to Total Count (TC) where the
total read counts are replaced by the upper quartile of non-zero counts in the

normalization factors calculation [78].
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Median (Med) is also similar to TC where the total read counts are replaced by

the non-zero median counts in the normalization factors calculation.

DESeq method is a normalization method included in the R Bioconductor
package (wversion 1.6.0) [79]. As for many other normalization approaches, the
method is based on the hypothesis that most genes are not differentially
expressed. This assumption leads to this that the non-DE genes should possess
similar number of reads across all the samples, with the approximate ratio of 1.
Hence, to estimate the correction factor to be applied to all read counts of a lane
to support this hypotheses, the median of the ratio for each of the genomic
features or classes of its reads counts over itsgeometric mean across all the lanes
are calculated as the scaling factor. “sizefactors()” and “estimateSizeFactors”
are the functions calculating this factor in the DESeq package. Eventually, the
final gene expression is calculated by dividing of the raw counts by this factor

for each genomic feature or class in the corresponding lane.

Trimmed Mean of M-values (TMM) method is a normalization approach also
implemented in the edgeR Bioconductor package (version 2.4.0) [76]. This
method like DESeq is based on the assumption that most genes are not
differentially expressed. In the TMM normalization one lane is considered as
reference sample and all the others as the test samples. After excluding most of
the expressed genes and the genes with the largest log ratios, the weighted mean
of log ratios between the test and the reference sample is calculated. This factor
should be marginal to 1, otherwise a correctionfactor will be estimated as the
library sizes. This scaling size factor is calculated by “calcNormFactors()”
function is the edgeR Bioconductor package. To obtain the normalized counts
per each genomic feature or class, raw reads counts are divided by the

normalization factors re-scaled by the mean of the normalized library sizes.
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Post-Processing and Interpretation

In system biology, understanding the interactions within a living cell can lead
to the characterization of molecular components and common functionalities
[80, 81]. As a matter of fact, a major challenge in biology is to decipher the
dynamics observed in complex intracellular networks of interactions which lead
to the structure organization and function of living cells [80]. Correlation based
approaches and cluster analyses the two major strategies used for the
construction of such interaction networks and profiling. Here we provide a brief

description of such approached applied in the field of biology.

1.2.5.1.5 Correlation Analyses

Correlation networks are used widespread in bioinformatics in which describes
the correlation patterns among components (genes, proteins etc.) across the
different samples conditions, lewvels etc. [82]. Nowadays, it is hardly found a
bioinformatics tool or package developed for the co-expressionor co-regulation

analyses in which, the correlation analyses was not deployed in it e.g.[82-85].

1.2.5.1.6 Cluster Analyses

As well as the “Correlation Analyses”, clustering approaches have proven to
be useful to identify the molecular components with similar behavior [86]. In
statistics, clustering is a process in which the data is divided into similar or
homologous groups, objects or categories minimizing the variance within each
cluster [87]. It is an active field of research mainly used in for the pattern
recognition and machine learning. Due to the specificity and sensitivity of
statistical models and the type of data subjected to the cluster analyses, various
clustering algorithms has recently emerged in the field. Hierarchical Clustering

(a connectivity based model), K-menas algorithm (a centroid model), clique
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algorithm (a graph based model) are of those commonly used approaches in the
field of life sciences. Providing a comprehensive review on the clustering
approaches available isa major effort which is out of the topic of this work, but
here we suffice to the introduction of few commonly clustering algorithms used

in the “omics™ data analyses.

Hierarchical clustering is a very popular and commonly used clustering
approach in which, a similarity or dissimilarity measure (Euclidean distance,
Squared Euclidean distance, Manhattan distance etc.) is used to link the objects
together in a greedy way [88]. In other words, a dendrogram is formed
representing the similarity or dissimilarity of objects where the distance
between the linkages is the measure of their dissimilarity. Based on the way the
data is traversed to be grouped together, the Hierarchical Clustering can be
divided into Agglomerative (bottom up) or Divisive (topdown) categories. The

Hierarchical Clustering is available in the stats package implemented in R.

Although there are some packages such as pvclust [89] in which a cluster
number can be assigned to partition the dendrogram into different clusters based
on different parameters (such as p-value for the pvclust package), the principle
Hierarchical Clustering approach is independent from the number of clusters to

be specified.

k-means clustering [33] is a hard clustering technique (each object falls into one
cluster only) in which given a specific number of k, where k represents the
number of clusters, the objects will be divided into k disjoint groups with
maximum similarity and dissimilarity within the cluster and between the

clusters respectively [90].

In k-means clustering, each cluster is represented by a centroid (ci) which is the

mean or weighted average of its data points.

k

E= ZZ'O_”“"Z

i=1 O€c;
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Where O is a data object in cluster Ci, wi is the centroid (mean of objects) of C;,

and E is the objective function to be minimized.

The objective function E tries to minimize the sum of the squared distances of

objects from their cluster centers.

As observed abowe, k-means clustering only works on the numeric data but not
categorical. In general, the decrease in the number of clusters results to lose

some fine information but simplify the procedure to a great extend [87].

K-means clustering is one of the most used approaches in terms of gene

expression profiling and pattern partitioning.

Figure 9: Demonstration of k-means clustering asa hard clustering technique (picture from
[91]
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As presented in Figure 9, the data points are categorized into different groups,
in which each data point belongs to a specific cluster. Each cluster has a centroid
that is the mean of all the data points within that cluster. Depending on the cases,

different distance metric are used as a measure of variance for each cluster.

C-means clustering is a fuzzy clustering approach which was first presented on
2001 for text and image segmentation [12]. Like other fuzzy clustering methods,
c-means is a soft clustering, in which each data object can fall into multiple
clusters possessing a degree of membership. Obwviously, a hard clustering or
grouping of objects using a specific number of cluster can be done on the soft

clustering considering the membership level of each element in each cluster.

Fuzzy C-means clustering also is implemented in package “c1071” of R

environment.

e | L > |
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Figure 10: Demonstration of c-means clustering as a soft clustering technique (picture from

[92])

As presented in Figure 10, the clustering topology in c-means clustering is

presented. As it can be observed, each data point can belong to different clusters
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possessing different degrees of membership depending on its distance to each

cluster center.

Self-Organizing Map (SOM) approach was first introduced by Teuvo Kohenen
in 1998. It is an effective visualization tool for relevant mapping of a high-
dimensional distribution onto a low-dimensional grid. Hence, it is able to
convert complex, nonlinear statistical relationships among high-dimensional
data objects into simple geometric relationships on a low-dimensional display
[93]. SOM is an excellent tool in exploratory phase of data mining [94] which
is vastly applied to the omics data analyses [72, 74, 75, 80-82, 95].

Besides of the original toolkit developed by Teuvo Kohenen [93] for the SOM,
several other packages are also implemented in R packages such as kohonen,

som eftc.

Sizex

input vector

Figure 11: Self-organizing map clustering schema (picture from [96])

As depicted in Figure 11, the self-organizing map of n different inputs (here
defined as vector) scattered on a two dimensional map is presented. In this

methodology, similar data points converge while the dissimilar points diverge.
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1.2.5.1.6.1 Optimal number of clusters

A simple method to determine the number of clusters for a sample population

of objects is the “Rule of thumb” [83] which is formulated as follow:

n
k =~ |=
2

Where k is the number of clusters and n is the total number of objects to be

clustered.

This method is not very precise or flexible but still is a popular and common
method to be used for simple calculation of k at the first place to have an idea

of the data behavior.

1.25.1.6.1.1 The Elbow method

The “Elbow method” is another approach for identifying the number of clusters
for a group of objects subjected to the cluster analyses which can be traced back
to 1997 [83]. By plotting the percentage of variance explained by each cluster
against the number of cluster (analogous to F-Test), a curve will appear that in
might signifies a drastic change (lowering) in the percentage if variance
explained in the clusters (Figure 12). Obviously in this method the number of

clusters have chosen is always with a level of ambiguity [84].
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Figure 12: Elbow method for defining the number of clusters in a sample data (Picture from

[971)

Here we presented some common clustering algorithms used in “omics” data
analyses and two simple but popular approach for choosing the proper number
of clustersin a population. A comprehensive survey on the clustering algorithms
can be found at [89, 98].

1.2.5.1.7 Enrichment Analyses

GO Enrichment Analyses is the identification of the class of genes or proteins
mainly owver- but sometimes also under-presented in a set [99]. Functional
analysis of large gene lists mostly resulted from high-throughput methodologies
is a big challenge Gene annotation enrichment analysis is a promising approach
in which the likelihood GOs associated to the resulted gene listis a measure of

identifying the biological processes relevant to the study [100].

Since the inception of GO Annotation Project [101], the gene product function

on the bases of Gene Anthology representing the relevant biological knowledge
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was made available gradually. This data is now available at AmiGO 2 Database

(http://amigo.geneontology.org/amigo) providing access to these information in

various ways (query, database service, web services etc.). Ensembl BioMarts
[102] as another reference resource provides dedicated GO Anthology

collections to the research communities.

Moreower to better exploit these resources and information, several Enrichment
Analytical tools and packages were developed during the last years [99, 103-
108].

Some tools such as Blast2Go [109] also provide some pipelines for the
annotation of GO using the GO Anthology resources based on the gene product

functional annotation by tuning several pipelines.

GO Terms Enrichment Analysis are based on some statistical approaches to
detect the over- and sometimes under-presented GO terms. Here we present
Fisher Exact Test as one of the most commonly used statistical methodologies

for the GO Terms Enrichment Analyses.

1.2.5.1.7.1 Fisher Exact Test

Fisher test is a statistical test of significant on a contingency table (Table 1).

Table 1: an example of a contingency table

Healthy Diseased Total

Male 10 23 33
Female 11 8 19
Total 21 31 52

A contingency table is a matrix form table in a in which the (multivariate)

frequency distribution of the variables are summarized.
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Table 2: variables representation for the contingency table elements to conduct fisher test

Healthy Diseased Total
Male a b atb
Female c d ctd
Total atc b+d n = atbt+ct+d

With respect to the labeling reported in (Table 2), the formula to calculate the

Fisher Exact Test significance lewel is as follow:

o (C) _ @bt dia+ )b +a)
() alblcldin!

Due to the formulation of Fisher Exact Test and usage of factorial notations,
howewver the formula is valid for any sample, the analyses can be directly done
only on a small sets. To owvercome this issue, many tools use the Stirling

approximation to estimate the factorial for large numbers.

N!

W=logﬁ =

(N + %)log(N) — N Log (e)
W=A+B

N! = V2 x 104 x 108

Or

N!'=C % 104 with C = V2r x 108
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Where A is the integer part and B is the decimal part of W. Hence, any N can be

calculated as follow:

N,'N,! €, x 1041 x C, x 1042 ¢, x C, .
= = X

0A1 +A2+A3
N,! C, X 1043 Cy

In this way, all the multiplication and division of factorials with the same base

is possible in a simple but estimated way.
1.2.6 Orthology

Identification of ortholog/paralog genes is an important issue in molecular
biology that supports structural, functional and ewvolutionary inferences [110-
123]. Detection of ortholog/paralog genes has a wide range of applications in
functional investigations and comparative genomics [113,124]. As an example,
a common procedure to characterize the genes in a newly sequenced genome is
to investigate the orthology relationships for transferring functional information
from the genes in the model organisms [125-127]. It can also highlight the
species specific peculiarities. As another example, paralogy also allows to
understand the expansion or reduction of some gene families or functionalities

in the evolution process.

Due to the importance such approach can conwey, sewveral bioinformatics
pipelines for detection of ortholog genes have been developed during the last

years. Inparanoid [128] and OrthoMCL [129] are of those commonly used.

Consequently, several platforms also offer ortholog resources to the research
community. Among all, PLAZA [130], Phytozome [58], Ensemble Plant
BioMart BioMart [59],Inparanoid [61] and OrthoMCL [131] are the most

comprehensive plant resources in the field.
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1.3 Solanaceae and S. lycopersicum (Tomato)

The availability of the tomato genome and the gene annotation together with
different “omic™ resources such as collections from Expressed Sequence Tags
(ESTs), Tentative Consensuses (TCs), Transcript Indices (unigenes) and the
NGS data opened a new window to the research community to further and better
investigate the genomic resources on the tomato genome space. Howewer, the
completion of a genome sequencing effortis never at an end, and the need of a
reliable annotation is fundamental to fully exploit the acquired knowledge
(section 2.3).

1.4 Resources for Tomato

Various biological databases and platforms such as ISOLA platform [53],
SOIEST database [109], TomatEST [132], PlantGDB [56] and Dana-Farber
[67], KafTOM [133], MiBase [134] were providing relevant transcriptomics
data (ESTs and TCs) collections for tomato to the community even before the
release of the tomato genome. With the sequencing of the tomato genome, its
annotation and other high-throughput data collections offering deep and
comprehensive information for this plant species, the advancement of some
existing or introduction of new collections providing manifold resources for

this important crop was pushed forward prominently.

The Solanaceae Genomic Network (SGN) website [55] as a reference website
is offering different resources and tools for the tomato genomics. Various
resources such as the tomato genome sequence and its annotation (different
versions), datasets for phenotyping, markers and maps, genes and pathways, and
several other major collections are available on this reference website. It also
includes some information and datasets from relevant plant species such as

Potato, Eggplant, Tobacco and Arabidopsis to support the comparative
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genomics. SGN also offersthe combined results from RNAseq from unspecified
collections in the form of short reads mapped onto the genome and accessible

by a genome browser interface as coverage plots.

The Tomato Functional Genomics Database (TFGD) [135] is also a website
specifically aimed to provide a representative resource for gene expression
collections from tomato, including data from heterogeneous platforms (ESTSs,

microarrays, RNAseq).

To our knowledge, the Tomato Genomic Resources Database (TGRD) [136] is
the other tomato related resource also providing the RNA-seq based expression
of tomato genes in selected tissues (leaf, root, flower and fruit) from the Heinz

reference collection [137] .

Major reference databases such as NCBI, UniProt and RCSB together with some
tomato dedicated resources such as SGN [55] and TFGD [135] and ProMEX

[138] offer proteomic data collections for this crop species.

In terms of the metabolomics and pathway information, besides of the tomato
dedicated reference websites such as SGN [55] and TFGD [135] offering
dedicated resources to this plant species, general metabolomics and pathway
databases such as KEGG: kyoto encyclopedia of genes and genomes [139] and
Plant Metabolic Network (PMN) [140] offer precious information to the

resource community.

Availability of different tools such as Genome Browse (Gbrowse) [141] and
Integrative Genomics Viewer (IGV) [142] could also enable the fast and easy
investigation of different transcriptomic levels on the bases of a viewer to
browse the genome with its “omics” annotation and content with some specific

query input formats.
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1.5 Thesis organization

This chapter is followed by other three chapters representing the materials and
methods (chapter 2), results and discussions (chapter 3), and conclusion
(chapter 4). Chapter 2 includes all the materials in this work. It also includes all
the methodologies and implementations to setup our required resources and
conduct our analyses. Chapter 3 represents the result of our effort introducing
the major bioinformatics tools and platforms designed, and the results produced
during this work. Eventually, chapter 4 provides a conclusion on the discussed
topics highlighting the major key points in this effort. The cited references are

all listed in the “Reference” section at the end of the thesis.

1.6 Summary

An introduction to the field of bioinformatics, its application and the impact it
has on the biology area (specifically in plant) was provided in this chapter. In
addition, the research line | followed during my PhD in the frame of the SPOT-
ITN project, including the objectives and responsibilities, were introduced.
Eventually, different relevant technologies, data types, methods and approaches
as the prerequisite to better understand the foundation of this research topic was
described and presented. The thesis organization and chapters content was also

presented in brief.
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2 Materials and Methods

2.1 Introduction

The materials and methods used in this thesis work are here presented. During
the course of this PhD and at the light of the SPOT-ITN project, various public
data collections relevant to our work were collected. In addition, several private
collections from the SPOT-ITN partners were also considered to be organized
in dedicated platforms. Different methodologies and approaches to collect,
reconcile,and integrate these collections were also designed and implemented.
The platforms and tools to store and analyze these data also to support our
analytical objectives were also developed and built. Here, the description of
these resources, the tools, platforms and methods to deal with these data are

presented in details.

2.2 Experimental Designinthe SPOT-ITN

In the specific framework of the SPOT-ITN, a leader experiment was considered
for a common study from which different collections from transcriptomics,
epigenomics, proteomics and metabolomics analyses were made available to the

whole consortium.

Tomato plants (S. lycopersicum cv. Red Setter) were grown under controlled
conditions in a glasshouse (Agrobios; Metapontum, Italy) and pollen samples
were collected at three development stages—tetrads (T) (Pollen mother cells),
post-meiotic (PM) stage (microspores) and mature stage (M) (binucleate
pollen)— harvested according to the length of anthers (T: 4-6 mm, PM: 6-10

mm, and M: >10 mm). Three independent experiments were performed during
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three consecutive days. Samples derived from one day were treated as biological
replica. For heat stress (HS) experiments, HS plants were transferred in a
preheated growth chamber and exposed to 38°C for 1 hour. The temperature
was decreased to 25°C gradually within 30 minutes and plants were allowed to
recover for an additional hour at 25°C. Untreated plants (control) were kept in

the growth chamber for the same time period at 25°C.

GenXPro Company (Frankfurt Germany) provided the MACE, MethSeq and
Small-RNA sequence collections from the common experiment, which was
conducted in Metapontum (Bari, ltaly). The partners at the Vienna University
are in charge of the proteomic data (LCMS and GCMS) from the same samples.
The partners from the Wageningen University are in charge of metabolomics
data production (LCMS and GCMS) from the same sample, and its assignment

to the corresponding pathways of interest.

2.2.1 Collection

MACE libraries were prepared as described by a protocol established by
GenXPro GmbH (Frankfurt, Germany). We received 18 libraries of illumina
HiSeq sequences for each of MACE, Small-RNA and MethSeq sequences (3
biological replicates for each of the Tetrad, Post-meiotic and Mature pollen
developmental stages, each stage for 2 conditions of physiological and heat
stress) cleaned from the adapters and barcode sequences, and low quality bases.

Details on the sample preparation are presented in ANNEX III.

2.3 Genome Reference for Tomato

With attention to the tomato plant which is the focus of the SPOT-ITN project,
and to set up a genome centric infrastructure to allow genome based analyses,

the reference sequences for tomato were collectedand analyzed. The reference
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sequences were then charged into our infrastructure and used for any relevant

investigation and analyses.

2.3.1 Chromosomes and BAC Sequences

Both wersions of the 2.40 [137] and 2.50 [143] of the 12 pseudomolecules
sequences representing the reference tomato genome, S. lycopersicum cv Heinz,
together with the chromosome zero, which includes all the contig sequences not
assigned to any other chromosome yet, were downloaded fromthe SGN website
[55].

Version 2.40 is the most commonly used version before the newly released
version of the 2.50. To understand the differences and peculiarities of the two
genomes, a sequence based comparison between the two versions was carried

out. The result of the comparison is presented in the chapter 3.

One hundred and twelve (112) BAC sequences not anchored along the reference
genome (pseudomolecules) as independent resources which could be
investigated in it gene content based on the different annotation tracks were
downloaded from SGN website [55]. In fact, 1227 tomato BACs (among the

1338 in total) were anchored along the pseudomolecules.

2.4 Annotations for Tomato

To understand the genomic content of the tomato genome sequence, different
annotations available for this plant species were collected. In some cases such
as the tomato gene annotation, some efforts to improve its quality were also
undertaken. First, the collections and datasets collected for tomato genome
annotation are presented. Then the effort for revision of the tomato gene

annotation and the effort to improwe its quality will be described in details.
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The official gene annotations of tomato, ITAG 2.3 and iTAG 2.4, each
representing 34,727 and 34,725 gene loci respectively provided by the
International Tomato Genome Consortium (ITAG), was downloaded from SGN
website [55].

The RefSeq 2.3 gene annotation representing 25,946 gene loci for tomato was
downloaded from NCBI RefSeq database [13]. The initial downloaded filesfrom
RefSeq database were in GenBank format that were parsed and converted into

gff3 format using an in-house parser.

The SGN infernal (insilico predicted small-RNA regions, produced by Infernal
[144] software) version 2.3 and 2.4 were downloaded fromthe SGN ftp resource
[55].

The iTAG 2.3 and iTAG 2.4 repeat annotations (normal repeat and repeat
aggressive) representing the repetitive regions of the tomato S. lycopersicum

genome were downloaded from the SGN ftp resource [55].

One hundred and ten (110) identified and known micro-RNA sequences for the
Tomato S. lycopersicum were downloaded (April 2015) from the MirBase [85]

database for the downstream analyses.

2.4.1 Efforts on the improvement of Annotation (Guided/Revised gene

Annotation)

The ITAG 2.3 predicted loci were intersected with the same annotation to detect
the owverlapping genes. They were also intersected with the iTAG 2.3 repeat
aggressive annotation to identify the genes predicted in the repeated regions. All
the iTAG 2.3 transcripts were also remapped along the tomato genome using
GenomeThreader [49] (version 1.6.5), a software toolto compute gene structure
predictions using a similarity-based approach wvia spliced alignments. Each
mapped sequence was then compared and labelled according to the reference
gene annotation. A blast versus the UNIPROT reviewed database (downloaded
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on February 2013) was also conducted on the same mRNA collection. Further
analyses on the resulting data revealed ambiguous or miss-located loci that will

be discussed extensively in chapter 3.

Validation and Confirmation

The ITAG 2.3 predicted loci were intersected with all the tomato ESTs, TCs and
unigenes collections available in the Tomato Genome Platform organized
within this effort. RNAseq expression signaling of each iTAG 2.3 predicted loci
was checked on the bases of Heinz expression collectionavailable at NexGenEx-
Tom [54] platform.

All the predicted iTAG 2.3 loci were also intersected with the RefSeq 2.3 gene
annotation. Each locus was then flagged with its type (Figure 13) and coverage

of overlapping.
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Figure 13: Different flags for labelling the different overlapping status of 2 genomic feature

or transcript

As presented in Figure 13 all the possible overlapping types are defined by a
flag. The percentage of coverage for the query with respect to the subject locus

is calculated as follow:

q.l —so —eo
c= x 100
s.l

Where q.l isthe query length, so is the start offset, eo is the end offsetand s.l is

the subject length.
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Coding Process (mapping descriptor)

A combinational coding system was applied for summarizing the information
into a short descriptor. The descriptor is a multi-part identifier explaining the
features of a transcript, and the way it is mapped on the genome. As an example
for the Gene ID Solyc00g00500.1.1, the ID “Solyc00g00500.1.1 7M2” or
“Solyc00g00500.1.1_7Mch02: 098555:095668” can be produced. The
methodology to assemble such tags is explained in Table 3, Table 4,Table
5,Table 6.

Table 3: transcript coding representation for the remapped sequences in multiple locations

Partl Flag (Delimiter) Part2
“M” leter indicating
Number of total map ' Mapping time or
mapping method and
versus the genome position
delimiter
2or
7 M

chr02:098555:095668

As presented in table 3 for the Gene ID “Solyc00g00500.1.1 7M2”, the
transcript Solyc00g00500.1.1 has mapped seven times on the genome in which
this locus (the one used as the example) is the 2" locus of those mappings
(because of the number 2 after character “M”). Using the tag including the
chromosomal start and ends, the location of the transcript for this specific

mapping position is provided.
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Supplementary code:

To provide comprehensive information regarding the transcript, another
combinational tag representing the general overview of the transcript is

provided as follow:

Table 4: code letters used for the type of mapping (identity and coverage measure) for a

transcript

Code Letter  Code Label % Identity % Coverage

A Perfect Map 100 100
B Good Map 95 95
C Moderate Map 90 90
D Map 90 80

As an example, “Solyc00g00500.1.1 7M1 _1A4A2B1C3D” lists that this transcript
with 7 mappings has 1 perfect map (A = 100% cowverage and 100 % identity), 2
Good Maps (B = 95% coverage and 95% identity), 1 Moderate Map (C = 90%
coverage and 90% identity) and 3 Maps (D = 90% coverage and 80% identity)
on the genome. Extra flags can be added due to the combinational coverages

and identities if required.

Binary Quality Identifier:

To specify the quality of each mapped transcript on the genome, a binary quality
code was proposed to be placed in the quality column of the GFF3 file.
According to the coding presented before, a binary bit location based score is
used to provide quality measures for all the transcripts. This coding helps to
filter out those transcripts with specific quality and keep those of interest. The

quality score can be also added to the identifier as another tag.
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Table 5: binary representation of the quality for a transcript

Flag A B C D
Base 23 22 21 20
Value 8 4 2 1

As an example for the identifier “Solyc00g00500_7M1_1A2B1C3D_8”,number
8 as the last flag is the indication of flag “A” which represents the 100% identity
and cowverage. This number will be stored in the quality column of the GFF3

file to be used for the filtering purposes.

As the last flag to fulfil our ambitious goal for providing exhaustive information
related to each transcript, the overlapping of the locus with other transcripts or
being located in the void region (no overlapping with any other locus) is also
added to the identifier.

As an example, for the identifier “Solyc00g00500 7M1 _1A2B1C3D_8 NO”,
no overlapping with any other locus for this mapping is reported. The type of

flags are presented as bellow:

Table 6: overlapping labels for a mapped transcript

Flag Description Example

NO In void region (no Overlap) ~NO

OVP Overlap with percentage (max ~OVP85
percentage)

As presented in table 6, the overlapping status of a transcript when mapping on

the genome can be presented. “ NO” represents that the transcript is not
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owerlapping any other locus while “ OVP85” represents that the query

transcript has 85% of overlap with another locus.

We parsed these info into the GFF3 file format to be easily used for the genomic
tools and the associated analyses considering this multi-part 1D as the locus
identifier. The GFF3 is the standard file format for representing the genomic
features in text file (http://gmod.org/wiki/GFF3).

2.4.2 Joint annotation

Besides checking the remapping status of the tomato iTAG predicted genes to
assess the quality of annotation, we also tried to take advantage of different
resources for better flourishing of the tomato genome annotation. Here we
present different methods for joining and complementing the two gene

annotations available for the tomato genome (iTAG and RefSeq).

ITAG Preferred

With the aim of complementing iTAG annotation with the information available
in RefSeq, the RefSeq loci not available in iTAG were extracted and added to the
ITAG gene annotation. In the sense of those loci overlapping between the two
annotations, the priority was given to the iTAG as the reference, and those of

RefSeq overlapping any iTAG loci were discarded from the collection.

RefSeq Preferred

The same strategy was carried out to have a RefSeq reference based annotation

complemented by iTAG predicted genes.
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Joint (loose) annotation

Both annotations of iTAG and RefSeq were merged together in one unified
GFF3 file.

2.5 Supportive Transcriptome Collections

To include comprehensive and exhaustive transcriptome resources for the
tomato in our bioinformatics infrastructure, the following procedure was

undertaken.

2.5.1 Expressed Sequence Tags

Twenty different EST collection (Table 7) were downloaded from the GenBank
database [8]. Each collectionwas then subjected to the data processing defined

in “ESTs, TCs and Unigenes data processing” part of this section.
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Table 7: Expressed Sequence Tag (EST) collections stats

Species Name Species TaxonID Starting #
Code Sequences
Nicotiana tabacum TOBAC 4097 334809
Solanum lycopersicum SOLLC 4081 298370
Solanum tuberosum SOLTU 4113 250127
Coffea arabica COFAR 13443 174275
Capsicum annumm CAPAN 4072 118651
Solanum melongena SOLME 4111 98089
Coffea canephora COFCA 49390 69066
Nicotiana benthamiana NICBE 4100 56180
Petunia x hybrid PETHY 4102 50705
Solanum torvum SOLTO 119830 28743
Solanum habrochaites SOLHA 62890 26019
Nicotiana langsdorffii x Nicotiana NICLS 164110 12537
sanderae
Solanum pennelli SOLPN 28526 10946
Nicotiana sylvestris NICSY 4096 8583
Solanum chacoense SOLCH 4108 7752
Solanum phureja SOLPH 172790 2099
Solanum lycopersicum X SOLLP 286530 1008
pimpellifolium
Capsicum chinense CAPCH 80379 442
Nicotiana attenuata NICAT 49451 355
Solanum peruvianum SOLPE 4082 69

From here on, we refer to each species using the “Species Code” defined in the

table abowe.
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2.5.2 Tentative Consensus Collections

Twenty Tentative Consensus (TC) Collections resulting from the assembly of
the EST collections described in “ESTs, TCs and unigenes data processing” of
this section to create more reliable and extended sequences were also included
in the platform. The singleton sequences not included in this collection, since

they are available from the corresponding species EST collection.

2.5.3 Unigenes

Three S. lycopersicum collection of unigenes were downloaded from SGN [55],
Dana-farber (DFCI) [57] and PlantGDB [56] websites each representing
42257, 52502 and 56845 transcript sequences respectively. Besides the
sequence collections, the functional annotation of each collection was also
downloaded to be charged into the platform. It is important to note that TCs and

singletons are put together in these unigene collections.

2.5.4 ESTs, TCsand Unigenes data processing

Each of the twenty EST collections were cleaned from the vector sequences
available at NCBI's Vector database
(ftp://ftp.NCBI.nih.gov/blast/db/FASTA/vector.gz) downloaded on February

2013. They were also masked from the repeat sequences available in RepBase

repeat database downloaded from http://wwmw.girinst.org/ on February 2013.

RepeatMasker software [145] was used for both vector trimming and repeat

masking procedure.

To have the more reliable transcript collections,assembly of the EST sequences
from each collectionto create Tentative Consensus (TCs) was carried out using
the ParPEST pipeline [16].
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Each EST, TC and unigene collection was then mapped independently versus
the S. lycopersicum 2.40 and 2.50 genome sequences and the un-mapped BACs
(see 2.3.1) using Genome Threader [49] software (identity >= 0.90 and
coverage >= 0.80). In term of the unigenes, the functional annotation provided
by each data source downloaded from the reference website was used for the

annotation of the loci.

Each of the ESTs, TCs and unigenes were then blasted wersus the
SwissProt/UniprotKB database (downloaded on February 2013) using 10E-3

and the first 10 best hits were collected for further functional investigations.

2.6 NGS data

To enrich our platforms with the NGS expression data, major available
collections were collected, processed and charged into our infrastructure.
Sewveral private collectionswere also included in the platform to support specific
analyses. Here we present the collection’s properties and the procedure they

underwent.

2.6.1 RNAseq

Different RNAseq data collections used in our analyses are presented in terms

of species, SRA accession number, stages of plant, and the number of replicates.

48



Table 8: The RNAseq collection information representing the species, the number of

replicates for each tissues/stages and the associated SRA accession number.

Species SRA AccessionNo. Stage Number of
Replicates

Root 2
Leaf 2
Flower 2
Flower bud 2

Tomato Solanum
1 em fruit 2

Lycopersicum cv. SRP0O10775
2cm fruit 2
Heinz 1907

3 cm fruit 2
Mature green fruit 2
Breaker fruit 2
Fruit after 10 days 2
Leaf 2
fruit at 5 days after the 2

Tomato Solanum

SRP010775 breaker stage

pimpinellifolium
Breaker fruit 2
Immature fruit 2
3' end sequencing 1
Immature green fruit 4
Mature green fruit 4

Tomato Ailsa Craig SRX098400

Breaker fruit 4
Fully ripe fruit 4
5° end sequencing 3
Berry verison 3

Grapevine Fifis
SRP001320 Berry ripening 2

vinifera

Berry post-fruit set 2
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As presented in Table 8, the Illumina HiSeq 2000 [146] RNA-seq data collection
of Solanum lycopersicum cv. Heinz [137] including 20 libraries, each one
representing one of two biological replicates from 10 different tissues and stages
in physiological conditions; a collection from physiological conditions of
Solanum pimpinellifolium, including 8 libraries [137]; and a collection from
physiological conditions of Solanum lycopersicum cv. Ailsa Craig, including
20 libraries [147], were downloaded from NCBI SRA archive [15].

RNAseq Data Processing

Raw Illumina reads were cleaned from adaptor sequences and those with a
quality lower than Q20 were discarded using trim galore [47]. Reads shorter
than 20bp were also discarded. Filtered and cleaned reads were indexed by
bowtie2 [148] and mapped onto the Tomato pseudomolecules using Tophat2
[52], with default parameters (up to 2 mismatches and intron length of 50 to
50,000 nt). Ambiguous matches were filtered out, i.e. reads with multiple

matches on the genome were eliminated.

In terms of the differentially expression analyses, DESeq [79] a Bioconductor
R package using negative binomial distribution and a significance threshold of

false discovery rate (FDR) <= 0.05 was used.

2.6.2 SPOT-ITN Data Collections for Pollen

Three different NGS data collections of MACE, Small-RNAs and MethSeq from
the three dewvelopmental stages of Pollen under physiological and heat shock
stress conditions that was on the basis of SPOT-ITN experiment described in the

section 2.2 were provided from the GenXPro Company (Frankfurt, Germany)

50



Table 9: the SPOT-ITN NGS data collections per techniques representing the number of

replicates and conditions for each developmental stage

Library Type Tissue/Stage = Number of Conditions
Replicates
MACE Tetrad 3 Control & Heat Stress
Small-RNA Post-meiotic 3 Control & Heat Stress
MethSeq Mature 3 Control & heat Stress

MACE data analysis

The three stage/tissue/condition samples of MACE sequences (Tetrad, Post-
meiotic, and Mature) were mapped versus the tomato genome (version SL2.40)
[65, 137] using Tophat2 (wersion v2.0.11) [52] considering the default
parameters. All the reads mapped multiple times on the genome were discarded

from the consequent analyses.

2.6.2.1.1 Annotation Based

Conwventionally, using gene annotation (ITAG 2.3) [55, 137], the abundance of
transcripts in each samples for each gene loci was calculated using HTSeq-count
package [68]. DESeq R packages [79] was then used for the differentially
expression analyses of the pair-wise tissue/stage/condition comparisons. To

account for multiple testing, an FDR<0.05 was considered.

2.6.2.1.2 Annotation Free

Based on several issues we observed in the tomato gene annotation that will be
discussed in details in chapter 3; and also due to the fact that a large number of
reads were mapping on the void regions of the genome (regions with no gene

annotation), we also decided to analyze the data in a different way independent
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from the gene annotation. We developed a pipeline called Tracker (see Error!
Reference source not found.), in which the detection of changing sites (e.g.:

gene locus, methylation site, small-RNA cluster etc.) can be performed
independent from the annotation.
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Figure 14: MACE differentially expression analyses using Tracker pipeline
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After the mapping procedure, the tissues/stages/conditions that are supposed to
be compared will be merged together (e.g.: all tetrad stages from control and
heat together) (Figure 14). Using the Tracker pipeline, each merged collection
is subjected to the cleaning (SAM file re-organization to make ita correct format
for the consequent analyses), sorting (sorting the file based on the chromosome,
start and end location), indexing (collapsing the identical reads in the sense of
location, length, mapping type, quality etc.) and creating track references by
collapsing the index files for the selected input. At the end, for each merged
collection, a file including all the genomic regions with expression signaling
(assembled if overlapping) is created in a tabular format. In this case, a reference
annotation specific for the comparison of the merged tissues/stages/conditions
will be provided for the quantification purposes. Eventually the counting on the
basis of the corresponding reference annotation files for each of the replica for
that stage is performed using the HTSeq-count. The results are then organized

in a count matrix for the consequent analyses.

MethSeq data analyses

The MethSeq data was also analyzed on the basis of the CCGG sites and the

Tracker based analyses. The procedure is defined as follow:

2.6.2.1.3 Annotation Based

The three stage/tissue/condition samples of MethSeq sequences were mapped to
the tomato genome (SL2.40). For each genomic Hpall site (CCGG), reads
starting at this position were quantified in each library. To account for multiple

testing, the sites with FDR<0.05 were considered differentially methylated.
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2.6.2.1.4 Annotation Free

As well as the annotation free analyses for the MACE data, the same procedure
for the MethSeq data was considered. In this case, the methylation quantification
is not always based on asingle CCGG site, but if close enough (less than 100 nt
neighboring), a cluster of adjacent CCGG sites will be considered for the

methylation quantification (CpG islands detection and quantification).

2.6.3 Integration Process

Aligned with the main objective of the SPOT-ITN project to understand the
mechanism implied in the heat stress during the pollen developmental stages in
tomato, we further integrated the MACE and MethSeq data on the basis of our
annotation free analyses. Using the Overlapper (section...), we intersected the
detected regions differentially changing their expression and methylation status
versus the each other. This supports the understanding of the expression and
methylation mechanism when pollen is under heat stress during the

developmental stages.

We also demonstrated the chromosomal distribution of the differentially

expressed and methylated sites using the Map Chart [149].

The results of our annotation free analyses, and its application for the integration
of MACE and MethSeq data to understand the mechanism of heat stress in

tomato pollen will be presented in chapter 3.

Small-RNAs Data Analyses

Due to the availability of the Small-RNA collection in the frame of the SPOT-
ITN, and the analyses I conducted for the paper “The Role of TE-Derived Small
Interfering RNAs in Tomato Pollen Development”, here we present the small-

RNA analyses of the classes 21,22 nt and 24 nt which can be expanded to other

55



size classes if necessary. The pipeline used in this analyses (Figure 15) is the
adjusted version of the general Small-RNA pipeline | designed and presented in

section5.1.2
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Figure 15: Small-RNA bioinformatics pipeline schema used for this analyses (DEC= differentially expressed clusters)
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The Small-RNA sequences were mapped onto the tomato genome (version
SL2.40) using Tophat2 (version v2.0.11) considering the default parameters.
Sequences with exact match were considered. To extract the Small-RNA
sequences located in repeat regions, mapped reads were intersected with the
SL2.3 repeat aggressive annotation. None overlapping (even 1nt overlap is

considered) reads were not considered in downstream analyses.

A genomic clustering analysis was used to generate a reference of small-RNA
clusters along the chromosomes, which was adapted from [32]. The mapped
small-RNAs (21-22ntor 24nt separately) adjacent to each other (less than 100
nts) were clustered together in one group. Only clusters comprising more than
one small-RNA read were considered for downstream analysis. The small-RNA
abundance in a cluster (unique and multiple separately) was calculated using
featureCounts [69] package for each of the Small-RNA classes (21-22 nt or
24nt) and samples at respective stages (Tetrad, Post-meiotic, and Mature).
Differential expression analyses of small-RNA abundance in each cluster was
carried out using DESeq [79] using the FDR <= 0.05.

Finally, the MACE data and MethSeq data were reconciled to investigate “The

Role of TE-Derived Small Interfering RNAs in Tomato Pollen Development”.

Micro-RNA Detection and analyses

The micro-RNA analyses of the sample was carried out by GeneXPro Company
(Frankfurt, Germany). The results are organized in the “Tomato Pollen
miRNAome”  published at [150] and web  accessible via
(http://cab.unina.it/mirna-pollen) see 6.1 in ANNEX II.
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2.7 Gene Ontology and Enrichment

Gene to GO Terms associations for tomato were defined by combining two
major reference collections: i) the GO reference collection of S. lycopersicum
downloaded from the BioMart database [102] (release June 2014),ii) the results
of the S. lycopersicum mRNA sequences Blast2Go [26] versus the NCBI non-
redundant database (nr). The two datasets were then combined removing
duplicated terms. The GO annotations associated to the iTAG genes were

uploaded into the devoted section of the platform.

2.8 Platforms

Aligned with my objectives in the frame of the SPOT-ITN project, and to set-up
a genome centric bioinformatics infrastructure to properly organize and offer
resources and tools for the genomic analyses, different platforms in a unified
and integrated infrastructure was designed and implemented. Here, | present
materials, methods and the architecture used to set up the major platforms and

partitions of this collection.

All the platforms presented in this work are implemented in a three-tier
architecture schema: 1) Data Tier; 2) Logic Tier; 3) Presentation Tier. The
platform works as a web based application running on the .Net Framework 4.0,
querying embedded databases, designed and organized in a relational model and
implemented in MySQL, version 5.6.14 InnoDB engine [151]. All key fields and

query dependent tuples were indexed using the BTree indexing algorithm [152].

2.8.1 Tomato Genome Platform

As presented in Figure 16, different resources for tomato were collected,

processed and organized into dedicated databases. The platform includes
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manifold resources crosslinked to each other providing sewveral services in the
form of query pages, web services and visualization interfaces. The tomato
genome platform we present is a multi-level genome based infrastructure which
is currently available under the SPOT-ITN Bioinformatics platform accessible
via (http://cab.unina.it/SPOT-ITN-bioinfo/tracks/trck-search.aspx).
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The platform includes the EST and TC collections from the 20 Solanaceae
species (section 2.4), the three unigne collections for the SGN, Dana-Farber
and PlantGDB together with their functional annotation (2.4.5), and gene
annotations available for tomato iTAG and RefSeq (2.2.1 and 2.2.2) processed
for both genome \ersions, the SL2.40 and SL2.50 of tomato were included in

the platform.

The platform also is cross-linked to the expression platform which will be
presented in the next section. It also implements a GBrowse [141] database and

its dedicated interfaces.

2.8.2 Tomato Gene Expression Platform

We implemented NexGenEx- as a role based platform which enables the
exploration of NGS based transcriptome collections. The platform was designed
to provide enhanced tools for straightforward genome-wide gene expression

analyses.
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Figure 17 describes the main data processing pipelines necessary to define the
data to be included in the platform. The three processed NGS collections from
S. lycopersicum cv. Heinz, S. pimpinellifolium, and S. Ailsa Craig (presented
in 2.6.1) are available for the gene expression investigation. The Go Terms
collections (combined Blast2Go and BioMart redundant remowved represented
in section 2.5.5) for the genome wersion 2.40 of tomato were included into the

devoted database. Several services and tools are provided in the platform.

2.8.3 Orthologs Platform

Here, the orthologs platform schema and its data processing pipeline is
presented in details (Figure 18). The platform, at the current setting, includes
three different collections (one public and 2 private) which are described as

follow:
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Nature Collection

The orthologs collection released with the tomato genome sequence release
[137] including 3 different species of A. thaliana, S. lycopersicum and S.

tuberosum was considered.

Private Collection (Frankfurt, Germany)

An orthologs collectionincluding A. thaliana, S. lycopersicum and another 11
different plant species, one moss, four monocots and six eudicots were received
from Geothe University Frankfurt, Germany as a private collection (public upon
publication) produced in the frame of SPOT-ITN project. The protein sequence

collections are based on Phytozome v.9 [153] database.

2.9 Summary

As presented in this chapter, the materials used, and the methods to collect,
process, reconcile and analyze them was presented in details. In terms of the
bioinformatics platforms developed, the architecture used and the data sources

included in each partition was also presented.
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3 Resultsand Discussion: Platforms, data processing pipelines and

applications

3.1 Introduction

This section of my thesis is divided into three sub categories in which the main
results of my work during the PhD are presented. Initially, the major
bioinformatics tools that | developed for the data processing and analyses are
presented in brief. The presentation of the tools is not a manual neither an
exhaustive discussion. In this section the introduction to the tool, the motivation
and the idea behind it, and the advantages it offers are presented. In many of the
analytical steps in my work, the tools and pipelines presented here are deployed
to achieve the results. In the second section, the major bioinformatics platforms
and databases designed and implemented (mainly in the frame of the SPOT-
ITN) are presented in details. By providing snapshots and descriptions, here |
try to demonstrate the functionality of the platforms and the services they offer.
Eventually, the application of the methods and tools designed, the capability of
the platforms, and the analyses conducted on different collections are presented

for some example case studies.
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3.2 Major Bioinformatics Tools Developed

3.2.1 Tracker

Motivation

In NGS data analyses, it often happens that the genome sequence is not well
annotated or the reads mapped on the reference sequence refer to a location in
which no feature is predicted. Moreover, in most cases due to the necessity of
pairwise ~ comparisons  between read counts among  specific
tissues/stages/conditions of interest, having a customized reference genomic
feature annotation provided by unexpected tags along the genome can be an
advantage to trace interesting regions, since many of the reads map there and no
annotated feature is described. To this end, the availability of a software
applications allowing users to customize the feature description traced by the

NGS data mapped on the genome can be helpful.

Description

The Tracker pipeline is a multi-level software application which allows the
organization, cleaning, sorting, indexing and creation of reference tracks
(expanding and collapsing the owerlapping fragments into one reference
regions, called a track, and keeping the trace files) of the mapped reads. The
pipeline results into a report of several statistical information regarding each
generated track. Tracker is written in C# under mono IDE.net and Java

languages and runs under both Windows and UNIX environments.
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Figure 19: A brief workflow of Tracker pipeline with the possibility of intersecting the data

for the modelling purposes

As presented in Figure 19: A brief workflow of Tracker pipeline with the
possibility of intersecting the data for the modelling purposes, a general
workflow of the Tracker pipeline is presented. The pipeline accepts as input file
the sam (sequence alignment map) files [154]. Depending on the parameters
specified as input arguments (-pr y/n: considering the read as one consecutive
track or to divide it skipping the intronic regions), the tool aims to detect the
splicing event and organize the reads into bins according to the CIGAR codes

[18], i.e. the processed reads into fragments or the read files are sorted. The
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sorted files is indexed (the identical overlapping fragments/reads with similar
start, end, quality score, CIGAR code etc.) will be collapsed into one
representative sequence keeping the trace of the collapsing sequences.
Consensus sequences (putative reference tracks) are then created from the
indexed sequences resulting from the previous step. A reference file including
several statistical information for each track, such as length, total reads, min
reads, max reads as the pick, awerage of frequency, standard deviation of
frequency, median, variance and fragment variance of the frequency in each

index, is also provided as a final output.
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Figure 20: Tracker sample reference tracks output file reporting the track id, track type, genomic location of each track, total reads, total length, min

reads, max reads asthe pick, average of frequency, standard deviation of frequency, median, variance and fragment variance of the frequency in each

index.
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Example usage: Gene Annotation and Revision
The Tracker pipeline can be used for several purposes inthe NGS data analyses.
Here, an example protocol pipeline for validation and revision of gene

annotation supported by NGS data is presented.

72



Conditions
>
- Single RNA-Seq Aut ppt d

. : utomate
RNA-Seq Rezal Accepted Hits ,( . . ) .
(Set Parameters [Read

Reads Quality, nimum Reads
Count, etc])

Indexed

Tissues

Gene
Expression

Conditions
and Tissuesg

Genome Annotation
Reference File (gff3)

FMR,FML

E

Relevant Reads
(1,F,FRM,FLM,PR,PL,E
,FLR,FLL)

Results

Outside

What
they are
and Why?

Ambiguous Reads

Figure 21: Validation, detection and correction of genes annotation
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As presented in Figure 21: Validation, detection and correction of genes
annotation, the track references are built from the RNAseq data files for the
desired tissue/stage/condition. The reference regions (indeed representing
possible exons since the reads come from transcripts) are then cross checked
with the official gene annotation, available experimental transcript collections
(EST, TC, Unigenes) for the specific speciesand the transcripts/genes lying in
the same regions, if available. The majority of the exon references should
normally confirm the exons from the gene annotation or transcripts
experimental defined by ESTs, TC or Unigenes. Those newly detected tracks
with differences from the official gene annotation can help to confirm the
current gene annotation. Those not overlapping with any annotated genomic
feature but having wide representation from the reads (number of reads
contributing to the tracks and length) can be considered as putative novel exons

or genes not yet predicted in the current annotation.

The pipeline can be also used for the annotation free analyses. An example

application of this approach is presented in sections 2.6.2.1.2 and 2.6.2.1.4.

3.3 Contiger

Motivation

As it was discussed in the “Tentative Consensus and Assembly section...”
generation of contigs or consensus sequences from the overlapping genomic
features is a necessity in many bioinformatics analyses. There are tools such as
ClusterBed implemented in BedTools package [128] able to define clusters of
genomic features mapped on the genome. Though such tools already exists, the
need for having more efficient tool with the possibility of keeping the different
trace files and also transferring of all the info from the input file to the output

file made us to dewvelop Contiger.
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Description

Contiger is a tool in which the possibility of assembling the owverlapping
genomic features or the adjacent tracks (specifying the neighboring distance)
can be done in a fast way. Moreover Contiger is efficient with the memory
consumption since the number of records per memory can be specified as an
input parameter. It keeps the trace of assembled features into a parent feature
including the coverage index, and the information available in the input file are
all transferred into the output for easier and more efficienttracing purposes. The
tool works with any tab delimited file containing the chromosome name (or

reference sequence identifier) and genomic start and end positions.
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Figure 22:The schema of contig generation by Contiger
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Figure 22:The schema of contig generation by Contiger represents the two type
of contig generation A) only for the overlapping and B) using the offsetdistance
to create cluster of features. The tool is written in C# programming language

under mono IDE and can be run under both Windows and UNIX environments.

3.3.1 Overlapper

Motivation

In transcriptome data analyses, the overlapping of different tracks or features
can be important to draw useful conclusions. As an example, targeting of
different micro-RNA sequences on the coding region, or the overlapping of the
methylated sited on transposon elements or tracing a specific distance from the
gene transcription start site (TSS) requires the owerlapping of thousands or
millions (in case of NGS data) of genomic regions versus each other. This

requires appropriate tools to carry out the most appropriate intersection.

Description

Overlapperisatoolallowing the intersection of different genomic features (two
collections per time). . Due to the sorting algorithm implemented in the tool
(merge sort), it can handle bulky files in a memory efficient routine (user can
define the load of memory) with the possibility of defining offsets for each start
or end position. Possibility of choosing the specific features (e.g. only those
records representing mRNA or exon feature etc.) to be compared is another
advantage implemented in this software which also reduces the time of

processing while discarding the non-relevant records.

The software produces three output files. The log file summarizes the procedure
and the owverlapping statistics for the whole analyses. The Flags file providing

the details information on the overlapping features including all the info from
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the source collections together with the type of overlapping and the percentage
of their overlap. The Ovwerlaps file provides a summary of each input genomic
region with the number of overlaps (if any, otherwise zero). Overlapper does
not require any specific file format or order in the columns of the input file as
far as it is tab delimited and includes the genomic locations (chromosome, start
and end) of the track sequences. It transfers all the genomic information from
the starting files to the output. It can also summarize each of the overlapping
separately together with a summary table indicating how many owerlaps a
genomic feature intersects. The tool is written in ¢# under mono IDE and can

run under both Windows and UNIX environments.

3.3.2 RNAseqAnalyses Pipeline

Motivation

In NGS data analyses, adapter removal, trimming of low quality bases, mapping
of the short reads on the genome and counting of the mapped reads overlapping
a genomic feature are the routine and fundamental approaches to carry out
before the differential expressed genes analyses [60]. Normally each experiment
contains sewveral stages/tissues/conditions including different number of
replicates for each one. In some cases, different adapters and barcoding
sequences are used for each replicate. In general, biologists use bash files to
automatize the process, but this requires all the parameters should be set one by
one in each command line for each step. This can elongate the time required for
the analyses drastically and reduce the precision due to human errors. On the
other hand, the work should be done in a sequential way unless the commands

are distributed manually on the cluster or grid machines.
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Description

To facilitate the NGS data analyses procedure and automatize all the steps from
raw data to the expression count matrices, we developed a pipeline which
implements different external tools (such as trim galore for trimming [47],
cutadapt for adapter sequence removal [155], tophat2 [52] and bowtie2 [148]
for the short reads mapping and Htseg-count for the features counting [68]) for
each stepin parallel toscrounge the time and increase the accuracy. The pipeline
also allows the possibility of filtering out ambiguous reads (multiple mapped on
the genome or owerlapping with more than one genomic feature) during the
process. The pipeline can manage both single and paired-end libraries with the
possibility of having different adapter sequences for each individual replicate.
It also produces different output files such as the complete SAM [154] file (from
the Tophat bam file), the bam and index bam files to be directly used for the
NGS data visualization in a genome browser [141] like platform, and the sam

file cleaned from the ambiguous reads.
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Figure 23: The automated and parallelized RNAseq processing pipeline schema

The tool has been written in c# under mono IDE and can be run under both

Windows and UNIX environments.
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3.3.3 Differentially Expression Analyzer

Motivation

Detection of the genes differentially expressed or suppressed between two
conditions is one of the common practice to highlight information useful to
understand the mechanisms underlying a biological process [156]. There are
several tools and packages (such as DESeq [79], EdgeR [157] etc.) developed
for the DEG analyses which allows the comparison of two different conditions
to identify the genes significantly changing the expression level. Most of these
packages are implemented in an R environment and require basic knowledge of
the R scripting language to conduct the comparisons. Moreover, the need to
analyses different combination of pairwise comparisons independently requires
time and human work, or in the best case, proper bash files scripting for each

set of comparisons.

Description

To facilitate the Differentially Expression Analyses for multiple pairwise
comparison, we developed a user-friendly Windows based application allowing
to analyze multiple pairwise comparisons in an automatized way to enhance the
procedure and decrease the human effort. The software application allows the
pairwise comparison of a list of conditions (each can hawe one to seweral
replicates) to be processed in an automatized way with different filtering
possibilities implementing both EdgeR and DESeq packages. Aside from the list
of DEG genes, it also creates several plots such as expressed genes Venn
diagrams for each comparison, MA plots, Depression plot, box plot of the

expressions.

81



ol Form1

RScript path: || | Browse

Rprogram: | | Browse

Input Matrix | | Browse

Output Folder: | | Browse

Save To: | | Browse

PAdjValue: [0 05 DEG+ |1 DEG- -1 |

Conditions (Line Seperated):
Total Number of Replicates: | |
Replicate per Condition: | |
Comparison Prefix | |

Run (Fix Rep Number)

[] All Pairwise
Run (Diff. Rep Number)

Collect Data

Figure 24: Snapshot of the DEG analyses Windows application interface allowing th epairwise comparison of different stages/tissues/conditions in an

automated and efficient way
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Snapshot of the differentially expression analyzer is presented in Figure 24:
Snapshot of the DEG analyses Windows application interface allowing th
epairwise comparison of different stages/tissues/conditions in an automated and
efficient way. The software is using RScript from R environment and a

dedicated R package that their path should be specified in the tool.

It also requires an expression matrix representing the expression lewels for the
genomic features for different conditions (1.2.5.1.4). User should choose the
output directory where the results should be saved, the path to save the running
script, the FDR value to be used for the multiple testing correction,and the list

of conditions in the expression matrix.

1- If the number of replicates are fixed foreach tissue/stage/condition, users
can specify the total number of replicates and the number of replicates
per each condition to accelerate the process.

2- If the number of replicates per tissue/stage/condition are not fixed, the
number of replicate per each tissue/sample/condition should be specified

in front of the tissue name in the condition box.

In case the user wants to run all the pairwise comparisons for the available
tissues/stages/conditions, the pairwise checkbox should be checked before

running the analyses.

The final files (DEG list) can be collected using the “collect data” button to
accelerate the process. Results will be reported separated together all in one file

flagged by the comparison names.

The tool is written in c# under mono IDE and can run under the Windows.

3.4 Platforms

With the aim of setting up a multi-dimensional (multi-genome including

different “omics” data levels) genome reference based computational suit,
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different omics data collectionsand the result of the analyses conducted on them
were charged into dedicated databases allowing to access to these processed
information via user-interfaces. Different platform sections offering several
query pages and online tools to easily explore and exploit the available data
were developed.

The working version of this multi-level infrastructure is currently implemented
as the SPOT-ITN Bioinformatics platform (http://cab.unina.it/SPOT-1TN-

bioinfo) enriched with several public and private collections to support the
objective of the project described at 1.1.
Here, the application and utility of the major platforms implemented in this

infrastructure are presented in details.

3.4.1 Genome Platform

We setup a genome based computational environment to organize multilevel
data for the tomato transcriptome. The platform currently includes the genome
and transcriptome levels. The platform is set-up on the basis of both versions of
the tomato genome reference sequences and their associated iITAG and RefSeq
gene annotations. It also includes the EST and TC from different Solanaceae
species, all the available unigene collections for tomato, and their functional
annotation. It also entails several other annotation tracks available for tomato
(see 2.4). The tomato genome platform offers a cross link to the NexGeneEx-
Tom [54] database allowing the gene expression investigation and profiling. It
allows straightforward and comprehensive genomic center investigations on
high quality data resources using several advanced user-interfaces. A Gbrowse
[158] database and associated interface are also embedded in the platform. The
Expression data from the collections available in the NexGenEx-Tom are also
available in the implemented Gbrowse database for further gene expression

profiling and visualization purposes.
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Tomato Genome Platform

A Genome Platform, for the tomato, was implemented allowing extensive
transcriptome data investigation in the tomato genome space. The platform
collects different resources and reconcile high quality data in a genomic center
infrastructure in which, different transcriptomic data lewels can be
independently or collectively investigated and visualized. Cross comparison
between different transcriptional datasets and lewvels is easily possible using the

platform interfaces and the Gbrowse plugin implemented in the platform.

3.4.1.1.1 User Interface and Database access

A Graphical User Interface (GUI) is designed to provide access to the resources
available in the genome platform. The query page in the genome platform can
be tuned with different options to facilitate the user’s investigation (e.g.:
choosing different genome versions, choosing different transcript collections to
be investigated, searching by “Gene ID(s)”, “functional keywords”, “genomic

region”, and “Protein 1D”).
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Figure 25: The snapshot of the genome platform query page together with the sumamry of results for a query (here HSF keyword in all the available

track collections mapped on the tomato genome version 2.50 for all)
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As it is shown in Figure 25, A) the genome reference species (e.g.: tomato,
potato etc.), B) the version of the genome (e.g.: SL2.40,SL2.5 etc.), C) the query
type (by ID, functional keyword, genomic region, protein ID) can be specified
to run the query (D). Depending on the collections available for each genome
reference and version, a list of tracks will be available to be chosen for the
investigation. The tomato genome platform is enriched with the annotations for
the tomato (section 2.2) and the supportive transcript collections (section 2.4),
and the available expression data (2.4.1, 2.4.2, and 2.4.3) in the genome
browser.

By tuning the mentioned parameters and running the query, a chromosomal
distribution of the hits matching the users query categorized by each collection
will be summarized in details (Figure 25). Detailed information for the hits
found can be obtained by clicking on each hit number in the summary table
(Figure 26).
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- Details
Title Info
Genome: Tomato (Solanum lycopersicum)
Reference: Solanum lycopersicum (ITAG 2.40)
Version: iTAG 2.30 Annotation (The official annotation of genes for tomato provided by International Tomato Annotation Group (ITAG) on the genome SL2.40)
Database: SGN: Solgenomics database
Tvpe Gene Annotation (Gene Annotation)
Species: Solanum lycopersicum (SOLLC)
Species TaxonID: (4081

ID Name Target| Reference Start End |Strand Function GB||Info| Sequence||Expression
Sequnce

Heat stress transcription factor A3 (AHRD

gene:Solyc02g072000.2||Solyc02g072000.2 SL2 40ch02 ||35903150/|35904957|| + ([V1 *-*- DIMTW9_SOLLC): contans Structure||Overlaps||GB || Info|| Sequence | Expression
Interp... W&
Heat stress transcription factor (AHRD V1 *-

gene:Solye02g072060.1|Solve022072060.1 SL2.40ch02 ||35920510\35921838)| + (*- D4QAUS_CARPA): contains Interpro ... ||Structure||Overlaps(|GB || Info || Sequence || Expression
v
Heat stress transcription factor (AHRD V1

gene Solye02g078340 2|Solvc022078340 2 SL2 40ch02 ||37643661|37646059| +  [|**** D4QAUS_CARPA): contains Interpre ||Structure||Overlaps||GB||Info || Sequence || Expression
.9
Heat shock transcription factor 1 (AHRD V1

gene:Solye02g079180.1|[Solye022079180.1 SL2.40ch02 ||38366347||38367682) - **_ (00851 MEDSA): contains Interpro._. ||Structure||Overlaps||GB || Info|| Sequence | Expression
v
Heat stress transcription factor (AHRD V1

gene:Solye02g090820 2|Solve022090820.2 SL2.40ch02 |[46880125|[46883382 - =% DAQAUS_CARPA): contains Interpro ||Structure||Overlaps||GB || Info|| Sequence|| Expression
.U

Figure 26: Result representation of the specific collection tracks (here iTAG 2.3 predicted genes) by clicking on the number of hits found from the

summary table (figure 23)
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As presented in Figure 26, a sample snapshot of hit’s details for a specific query
are presented. In the results section, the information regarding the transcript
collectionand its mapping reference,the genomic information for each hit (such
as chromosome, start, end, strand and functional annotation) and several
hyperlinks to provide further investigational options for that track are provided.
Structure hyperlink provides the sub features details of each transcript (UTRs,

exons, CDS, introns) (Figure 27).

Detauls
H D Name H Feature Type |Target Parent Start End ||strand
\gme Solyc02g072000 2 Solyc02g072000 J-Hi_zme 35903150([35904957| +
mRNA:Solyc02g072000.2.1 mRNA |gene:Solyc02g072000.2 35903150(35904957|| —+
exon:Solyc(2g072000.2.1.1 exon mRNA Solyc02g072000.2.1|[35903150((35903672|| +
five_prime_UTR:Solyc02g072000.2.1.0 five_prime UTR mRNA:Solye022072000.2.1|[35903150|(35903456( +
CDS:Solyc2g072000.2.1.1 CDS mRNA:Solyc02g072000.2.1|[35903457|(35903672|| +
intron:Solve02g072000.2.1.1 intron mRNA:Solye02g072000.2.1|(35903673|(35903768|| +
exon:Solyc02g072000.2.1.2 exon mRINA:Solyc02g072000.2.1|35903769||35904957| +
CDS:Solyc02g072000.2.1.2 CDsS mRNA:Solye022072000.2.1|(35903769|(35904779(| +
three_prnime UTR:Solyc02g072000.2.1.0 five_prime_UTR| mRINA:Solyc02g072000.2.1|35904780|[35904957|| —+

Figure 27: Snapshot of the representation of track structure, genomic coordinates and
feature’s parent-ship for a specific track.

Overlaps hyperlink lists all the tracks having owverlap with this transcript on the
genomic loci with in all the available collections. The Sequence link provides
the sequence information (sequence, GC-Content, etc.) of the selectedtrack in
details (Figure 28).
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»Solyce2g8726008.2

ATAGGAAGAAAGATATTCOGEAATOT TEAATTTOGTATCACCTOGAAACTTAGATTTATATAT
AAGAT AAGAATAAGAATCTGTTTTCACATTTGAGCAAGTAGTCTCTAGTGTGREGTTCTGGA

AR CAAGCATGTAGTCTOTGATCAGGTGAGATTTOCTTGAATTTGAT TG TAACGCAGCGAGAT
CTAGCTCATTACGATCCTTACGAGGAGTTTTCTGGAGTOTGAT GATAAGAAGTTTTGCTCTT
AOTAGATATTCTOTTTCGTTaTTTTAGT TTAGGGGTTGTGATTTTCOTTGALACCTATCATG
GATOAAGCTTCOTOCAGCACGAATOCACTOCCTCCTTTTATTOCAAAGACATATGAAATGELT *
GOATGATCCATCCTGTGATGCTATTGTCTCCTOOAGT TCOAATAATAARAGCTTCATTOTGT | .

[Length|[1712/[AT|156] GG | 66 |
A [[523]AG[124]  GC 66

| T |[[517/ac|77| «cA | 104
G |[392]TAf102] cT o8

| € |280|TT|131] <G | 28 |
N || o [[T6[157] ccC 44

[ X | o J1c|ss| csG_|[ 76|

Other | 0 [GAl[150] TxG | 113

| AA [ 126 ||GT| 93 |GC Ratio%|[39.00|

Figure 28: Snapshot of track sequence and GC-content information for a specific track.

GB hyperlink transfer the user to the genomic region of the selected track on

the genome browser for the visualization purposes (Figure 29).
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Figure 29: Snapshot of Gbrowse visualization of a specific genomic region with different track types (iTAG gene annotation, EST and TC tracks from

tomato and potato, and RNAseq expression xyplot in the Heinz atlas collection) on that region
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Info option provides the mapping information and the blast functional report
regarding the selected track; and Expression hyperlink provides the RPKM
expression of the selected track in all the available corresponding tissue/stages
retrieved from the NexGenEx- database.

The genome platform presented, for the tomato at its current setting, provides
flexible tools and facilities to further inwvestigate the genomic space of the

selected species.

3.4.2 NexGenEx-

We implemented NexGenEx- as a role based platform which enables the
exploration of NGS based transcriptome collections. The platform was designed
to provide enhanced tools for straightforward genome-wide gene expression
analyses. A Gbrowse [141] database and associated interface are also embedded

in the platform.

NexGenEx-Tom

NexGenEx-Tom is the dedicated partition for the organization of results from
tomato NGS based transcriptomes. The platform was published in BMC Plant
Biology journal on 2014 under the name of “NexGenEx-Tom: a geneexpression
platform to investigate the functionalities of the tomato genome”, and is freely

accessible via (http://cab.unina.it/nexgenex-tom). An instant implementation of

the platform is also available in the SPOT-ITN Bioinformatics platform

(http://cab.unina.it/spot-itn-bioinfo/expression/exp-search.aspx) to support the

objectives of the project.
At the current release, the platform includes the processed gene expression

datasets form one atlas and two other main publicly available RNAseq

collections quantified and normalized with the main normalization approaches
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(see Normalization). The platform is also enriched with collective and processed
Gene Ontology datasets from the main resources with the possibility of cross
link to the associated database for further investigations. Aside from the main
motivation and objective of the platform to provide rapid and comprehensive
investigational access to the processed NGS data collections with different
quantification measures, tools for the clustering and correlation analyses, and
the GO term to gene association and Go Enrichment assessment are also
implemented in the web interface. Using a dedicated Gbrowse [141] interface,
the platform has access to all the transcriptomics tracks available in the tomato

genome platform mentioned before.

3.4.2.1.1 User Interface and Database Access

In Figure 30, we report the query page of the NexGenEx- platform. The figure
shows the main sections users are provided with when consulting the platform
content. In the S. lycopersicum cv. Heinz dedicated partition (which is
accessible selecting genome “Tomato”, reference “S. lycopersicum Version
2.40”) the three available gene expression collections (Heinz, Ailsa Craig, S.
pimpinellifolium) can be selected in the collection field. Crosslinks to reference

raw collections and to the papers presenting them are also provided.
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Fruit at 10 days (SRR404328:BR)
Fruit at 10 days (SRR404329:BR)
Feature type: U mRNA

Nommalization Method: {J Raw count
Matrix Peaks Coloring: g Local

Tranformation Method: {) Normal

Correlation Method: Both (Pearson , Spearman)

Replicate View: U Averagsd

Heatmap Colorning: @ H1: Yelow (down) <—> Red (up)

Search by: Y IDs

Locus ID(s): U 201yc069052560.2.
Solyc08g062860.2.
Solyc029080820.2.
S0lyc03g026020.2.
Solyc12g007070.1.

e
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Figure 30: Main sections provided in the NexGenEx- platform query form. 1) Genome: the

genome of interest, e.g. Tomato, 2) Reference: it indicates the reference genotype or cultivar
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sequences of interest, e.g. Solanum lycopersicum cv Heinz, version 2.40; 3) NGS collections
available in the platform, e.g. the Heinz Illumina based RNA-seq collection in physiological
condition; 4) link to the data source and paper for this collection; 5) available libraries
(replicates/stagesf/tissues) included in the collection; 6) Feature type: represents the
reference genome feature selected for read counting (e.g. mRNA, representsthe exons in the
locus); 7) Normalization method; 8) Matrix peak coloring, which defines the approach for
color coding of the expression levels. This option assigns color frequencies to the cells of a
heatmap view comparatively with the expression levels within the query result set (local) or
within the whole selected libraries (global). 9) Transformation method: expression levels or
their log2 transformed results can be accessed; 10) Correlation method: Pearson product-
moment correlation coefficient or Spareman’s correlation coefficient or Both, 11) Replicate
view: defines the expression level by each libraries (Separate) or averaged between identical
replicates (Average); 12) Heatmap coloring: different heatmap coloring combinations are
provided for expression level visualization; 13) Search in: searchable fields can be
one/multiple locus ids (IDs), or simple/multiple functional keywords with advanced selection
options (Keyword), or genome regions (Region), and 14) the search area (Locus
IDs/Functional keyword/Region): is the text area in which IDs or functional keywords may
be listed, or a specific region of the genome may be specified. Accepted formats are
described in the information pop-up from the website interface. “Info” buttonsare available
to support the users.

The NexGenEx-Tom platform enables users to investigate expression of the
reference tomato genes in different tissues and developmental stages from
different collections in physiological conditions. Users can exploit the platform
to investigate on a specific gene, or a set of genes. The query can be based on a
list of Gene Identifiers (IDs) in the form of Solyc identifiers (e.g
Solyc01g00500), or by indicating one or more functional keywords, or by
specifying the boundaries of a chromosome region (indicating the specific

directionality of transcription by selecting the strand option). Complex queries
can be defined as indicated in the “info” links.

The web-based list of results is organized in an accordion view in which each

result set can be investigated in its corresponding section/tab.
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Here, an example query including a list of 27 heat shock factor genes in tomato

and the corresponding result views are presented.

3.4.2.1.1.1 Annotation of the structure and functional annotation
By running the query in the system (Figure 30), the list of the resulting loci
associated to the query, including their functional annotation and accessory

information from the current gene annotation is reported (Figure 31).
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Functional Annotation

1 —Fuonctional Annotation

i Functional annotation and locus position

1D ParrentID Location | Start End [Strand| Function
mRNASolvc022072000.2.1[Solyc02g072000.2.1|[SL2.30ch02[35903150[35004957 = [Heat stress transcription factor A3 (AHRD V1 *-*- DIM7W9_SOL._ 0
R NA Solvc02g072060.1.1[Solyc02g072060.1.1[SL2.30ch02[35920510]35921838] +  |[Heat stress transcription factor (AHRD V1 *-*- D4QAUS_CARPA) U
ImRNA-Solyc02g078340.2. 1 [Solyc022078340.2. 1{|ISL2.30ch02|37643661|37646059) = ||Heat stress transcription factor (AHRD V1 **** D4QAUS_CARFPA).. W
mRNASolvc022070180.1.1]Solyc022079180.1.1|[SL2.30ch02[38366347[38367682] - [[Heat shocl transcription factor 1 (AHRD V1 *-*- Q008S1_MEDSA @
R NA Solvc02g090820 2 1[Solyc02g090820.2.1[SL2.30ch02[H6880125[H6883382 - |[Heat stress transcription factor (AHRD V1 **** D4QAUS_CARPA) W
ImRNA:-Solyc03g006000.2.1 (Solyc032006000.2.1ISL2.30ch03|| 678142 || 670048 + ||Heat stress transcription factor A3 (AHRD V1 *-*- DIM7WO_S0OL...W
mRNASolvc032026020.2.1]Solyc032026020.2.1[[SL2.30ch03| 7810480 [ 7812280]] =  [[Heat stress transcription factor (AHRD V1 *-*- D4QATUS_CARPA). @
R NA Solvc03g007120 2 1[Solyc03g097120.2.1SL2.30ch03[[52001766]52004029 - |Heat stress transcription factor A3 (AHRD V1 *-** DIM7W0O_SOL__ U
ImRNA-Solyc04g016000.2.1 [Solyc042016000.2.1ISL2.30ch04| 5394900 || 6508451 - ||Heat stress transcription factor (AHRD V1 ***- D4QAUS_CARFPA).. W
mRNASolvc042078770.2.1[Solyc04g078770.2.1|[SL2.30ch04[51036586]61037903] =  [[Heat stress transcription factor (AHRD V1 *-*- D4QATUS_CARPA). @
R NA Solvc06g053960.2.1]Solyc06g053960.2.1[SL2.30ch06]33333411[33336335] - |Hear stress transcription factor A3 (AHRD V1 ***. DIM7W0O_SOL__ U
ImRNA:-Solyc062072750.2. 1 [Solyc062072750.2.1|ISL2.30ch06(41255352|41258348| = ||Heat stress transcription factor A3 (AHRD V1 *-** DIMTWO_SOL_.W
mRNASolvc072040680.2.1]Solyc072040680.2.1|[SL2.30ch07H6702761[#6704429] =  [IHeat stress transcription factor A3 (AHRD V1 **** DIM7TW9_SOL__ 0
R NA Solvc07g055710.2.1[Solyc07g055710.2.1SL2.30ch07[[60972388[60973052 - |Heat stress transcription factor A3 (AHRD V1 *-*- DIM7W9_SOL W
ImRNA-Solyc082005170.2.1 (Solyc082005170.2.1|ISL2.30ch08|| 111412 || 115839 - ||Heat stress transcription factor A3 (AHRD V1 *-*- DIM7WO_S0OL...W
MR NASolvc082062060.2.1]Solyc082062060.2.1|[SL2.30ch08H0580145[40501151] - [Heat stress transcription factor A3 (AHRD VI *-** DIM7W9_SOL._ W
R NA Solvc082076590.2.1[Solyc08g076500.2.1[SL2.30ch08[[57710679]57714096] - |[Heat stress transcription factor A3 (AHRD V1 *-** DIM7W0O_SOL__ U
ImRNA-Solyc08=080540.2. 1 [Solyc082080540.2. 1SL2 30ch0850985860|60987278| - "Heat stress transcription factor (AHRD V1 *-** D4QAUS_CARFPA).. W
mRNASelyc092000100.2.1(Selyc002000100.2.1SL2.30ch09| 2445341 || 2448016 - |Heat stress transcription factor A3 (AHRD VI ***- DIM7Wo_SOL._ W
R NA Solvc09g050520 2 1[Solyc09g059520.2.1SL2.30ch00[50372011[50379351]] - |Heat stress transcription factor A3 (AHRD V1 *-** DIM7W0O_SOL__ U
ImRNA-Solyc09z065660.2. 1 [Solyc092065660.2.1SL2.30ch00(30473864|59473005) = ||Heat stress transcription factor A3 (AHRD V1 ***- DIM7TWO_SOL_.W
mRNASolvc002082670.2.1]Solyc092082670.2.1|[SL2.30ch00[63781068]63784228] =  [[Heat stress transcription factor A3 (AHRD V1 *-** DIM7W9_SOL._ W
R NA Solvci0g079380.1.1[Solycl0g079380.1.1SL2.30ch10]50254409]50255720]] +  [[Heat stress transcription factor (AHRD V1 ***- D4QAUS_CARPA) W
ImRNA-Solycl15064990.1.1 [Solycl 120649001 1(SL2 30ch1147380718|47301840| - "Heat stress transcription factor (AHRD V1 **** D4QAUS_CARFPA).. W
ImRNASolvcl22007070.1.1]Solyc122007070.1.1[[SL2.30ch12] 1512824 [ 1514000 =  [[Heat stress transcription factor A3 (AHRD V1 ***- DIM7W09_SOL._ W
IR NA Solyel 22038460 1 1[Solycl2g038460.1 1[SL2.30ch12[35761710[35761070| = :‘TK“L"“PT”CE’“’HE protein PNO1 (AHRD V1 ***- CGHSF7_AJECH)...
mRNASolvcl220083520.1.1[Solyc122008520.1.1[[SL2.30ch12[6434067764344407 - [Heat stress transcription factor A3 (AHRD V1 *-*- DIM7W?_SOL._ 0

Figure 31: Snapshot of the annotation structure and functional annotation
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The result set includes the Gene ID, the genomic location the locus on the
genome, the strand of the transcript and the functional annotation associated to
the resulted gene. A hyperlink fromthe gene to its genomic locus, visualized by

the GBrowse, is available for each gene.

3.4.2.1.1.2 Expression matrix and profiling

As presented in Figure 32, the expression levels of each queried gene, based on
the pre-settings of the query option provided by the user, can be investigated by
the selected libraries, in the form of read counts per each locus, median
normalized counts or RPKM. As an optional parameter, the average expression
level of the replicates from each library can be investigated (Replicate view set

to Average, in the query options).
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i The expression level of the result set in the selected tissues matching the set of criteria chosen

— Expression Matrix
Leaf | Root | Flower| " licm fruif]dem froifem i Matwre S8 reaker i Frotat 10 s Ford
IDs - Min || Max |Averages| StD hChange = 1 5t.D|= 1 St.Dj|Overview
BR | BR | BR | [© BE | BR | BR R BR - £

[0 ]Solvc02g072000.2.1]2.799[5.065 ] 3.270 || 4.081 | 3.760 || 5.892 | 7.415 7104 14.826 23188 |2.799[23.188 | 7.7140 | 6.112 8.284 0 2 ||Further_lnvestigate]
| O |Solyc02¢072060.1.1][0.000 [ 0.055 | 0.000 | 0.000 | 0.000 || 0.000 || 0.000 0.000 0.000 0.000  JJo.000] 0.055 || 0.006 || 0.017 - 0 1 ||Further_Investizate
|0 |Salvc020078340.2.1]0.000 [[0.084 | 0.756 | 0.144 [ 0.195 | 0434 | 0.240 0413 0.079 2473 |0.000] 2.473 [ 0482 | 0.697 - 0 1 |[Further Investigard
| |Salyc025070180 1 10000 0001 5348 | 2733 [ 0523 | 0.183 | 0215 0.096 0.166 0276 J[0.000] 5348 [ 0.963 | 1651 - 0 2 |Further_Investizatd
| O |Salvc022000820.2.1]25.688]86.561[143:023 50243 | 25.612 || 27.343 | 27.205 46431 70.158 | H7.078 |25.612[147.078] 65.025 | 44.463 5743 0 2 |Further Investizatd
| O |Solyc032006000.2.1]6.688 [[14.139] 5.204 | 3.868 | 3.690 | 6501 || 8.354 9.797 13.379 18.503  |[3.69018.503 ] 9.030 | 4.675 5.039 2 2 |[Fusther_Investigate
| |Solvc032026020.2.1]30.668[43.674(40.209 | 23206 [ 22.627 | 44477 |[140:603) 85717 | 145890 | 72616  |[22.627[145.890] 64.969 | 43.540 6.448 0 2 |Eurther_Investizatd
[ |Salvc035007120 2 1][9.003 16.649[ 15070 9.873 [ 10381 | 13344 | 20.986 30.275 40.085 65915 | 9.003]65.015 [23248] 17.031 7321 0 1 |Further_Investigatd
| O |Selvc042016000.2.1][0-217 [27.430] 1.105 | 7.084 [ 1.183 || 2515 | 0.648 3.022 0.040 0417 [0.040][27.430 | 4.366 | 7.042 685.750 0 1 |Further Investigatd
| O |Solyc042078770.2.1)1.2107.007 0.275 | 1.673 | 1.692 | 0804 || 0.217 0.145 0.000 0.000 Jo.000] 7.007 | 1.302 | 2.001 - 0 1 ||Further_Investizate
|0 |Solvc062053960.2 12,642 14336 4515 || 3.179 | 7.150 |[69.162 || 67.905 102435 | 1osie ) 2 642 378.952[ s 848 114488 143434 0 1 |Fusther Investisatd

Solyc062072750 2 1][2.656][4.437 3.853 || 2491 | 3224 | 3.024 | 2956 31734 1421 4,669 2401 4660 [ 3547 [ 0747 1874 2 3 |Further_Investizatd
|0 |Salvc072040680.2.12.315 [[0.078 | 8.809 | 3.077 [ 9.300 || 17.334 | 27.430 12.153 18.010 20098 [[0.078]27.430 [ 12.049] 8372 331.667 2 2 |Further Investizatd
| O |Solyc07¢055710.2.1][2.747]3.280] 0.835 | 0.164 | 0.532 | 1559 || 0.617 4.725 1.374 0373 JJoas4| 4725 || 1621 | 1422 28.511 1 2 |[Fusther_Investigate
|0 |Selvc08=005170.2.1]9.830 [21.122[ 16.410] 12.265 [ 13.196 || 14.781 | 17.300 13.843 15.556 15410 |[9.830]21.122 [ 14.971 ] 2.900 2.149 1 1 |Fusther Investisatd
|0 |Salvc08s062060 2 1]26.604] 5.192 [ 13.033 | 4.070 [ 42.172 [ 41.869 |[163.000]  50.173 100.224 68.380 | 4.070][163.001] 51.563 ] 46.581 40.049 1 2 |Futher Investizatd
| O |Selvc082076500.2.1]4.280 [ 7.171 | 2.385 || 2416 | 2126 || 3.164 || 1.780 0.602 0.542 0447 J[0.447] 7.171 | 2401 | 1.043 16.043 2 1 |Further Investigatd
| O |Solyc082080540.2.1][5.852 [ 4.153 ] 5472 || 7.256 | 9.303 || 9.053 | 13.522 18.295 8.654 26.500  ||4.153]26.500 ] 10.845 | 6.589 6.403 1 2 |[Fusther_Investigate
|0 |Sclvc092009100.2.1[40.652[22.165] 28.516] 18453 | 25.250 | 20.281 | 43.240 43463 24418 27492 [18.453[43.463 [30.203 ] 8.524 2355 1 3 |Futher Investizatd
|0 |Salvc099050520 2 1]10.972]14.926] 12.999 | 11361 [ 16.230 | 20.204 | 20.574 31.251 18.848 27.095  [10.972[31.251 [ 18.446 ] 6.321 2,848 2 2 |Further Investizatd
|0 |Selvc002063660.2.1]0.283 [0.545 | 4.511 || 4197 [ 10.137 [[14.761 || 1.755 3.870 5.007 10333 |[0.28314.761 | 6.533 | 4.278 52.130 2 1 |Further Investigate]
| O |Solyc092082670.2.1]1.800 | 1.661 | 1.194 | 0.233 | 0.045 || 0.000 || 0.037 0.000 0.000 0.000 JJo.000] 1.800 || 0.497 | 0.708 - 0 2 |[Further_Investigate
|0 |Salvc102079380.1.10.074 [0.514 | 0.000 | 0.000 | 0.086 | 0.194 | 0.000 0.078 0.000 0110 J[0.000] 0.514 | 0.106 | 0.149 - 0 1 |Fusther Investisate]
|0 |salvcl 1064990 1 10000 [[0.149] 0.000 | o0.191 [ 0.000 | 0.000 | 0.000 0.000 0.000 0728 J[0.000] 0.728 | 0.107 | 0.218 - 0 | |[Further_Investigate]
|0 |Selvcl24007070.1.1|24.07337.847[ 75461 || 4451 [ 25.082 | 21.005 | 47.715 17.580 81375 52760 ||4.451][81.375 ] 38.736 | 24.049 18282 1 2 |Further Investigatd
| O |Solycl2¢038460.1.1][0.000 [ 0.000][ 0.000 | 0.000 | 0.000 || 0.000 || 0.000 0.000 0.195 0.000  ][0.000 0.195 || 0.020 | 0.059 - 0 1 ||[Further_Investizate]
|0 |Salve120098520.1.18.208 [39.701 26.038 || 12.145 [ 15.182 | 33.559 | 87.490 53.620 50.949 37.253 | 's.208] /87490 36.415]22.536 10.659 2 1 |Fusther Investisate]

Compare Profile

X
Download Fxpression Table W=

Graph Width: Graph Height: Compare Profile ()

Run Cluster Analysis

Figure 32: Snapshot of expression matrix in NexGenEx- for a resulted gene set
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In addition, a complementary set of statistics, such as the minimum, maximum,
average, standard deviation and maximum fold change of the expression levels
of each locus in the selected libraries are provided. Moreover, the number of
times each of the expression values exceeds the boundaries of one standard
deviation from the average is also shown. This value permits to efficiently
investigate locus specificities [159]. This section provides a general abstract of
the loci expression lewvel behavior in the selected libraries. Moreower, by
selecting only 2 different tissues for specific gene sets, bi-comparison of the
gene expression fold change are delivered permitting to identify the differential
expression lewels.

The expression matrix can also be downloaded in csv format.
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Results Overview

Expression everywhere for - Selyc06g053960.2.1

Collection: Tomato cv Heinz physiological conditions

Accession: SRPO10775
Technique: RNA-Seq

Overview

\[Z\'onnalizmion'\.Sample Leaf | Leaf | Root | Root |[Flower|Flower [Flower bud|Flower bud[lem fruitflem fruit2em fruitf2em fruitf3em fruitf3em fruitfMarure green fruitMature green fruit|Breaker fruit[Breaker fruit[Fruir ar 10 days|[Fruir at 10 days|

[Raw count 12 20 106 121 40 32 25 34 43 35 171 687 301 340 637 765 3424 3110 2142 2044

[DESeq Method 15.2685]37.5441]00.4227(105.38941.3659(34.1805] 21.7802 304491 | 45.0244 | 58.663 || 204.812 || 750.808 | 402.381 || 454.199 721.779 718.657 32404 3227.65 1698 1687.43

[RPEOM 1.5202 [3.76305(13.3403(15.3224/4.93050[4.00078| 2.65152 3.70704 | 6.2056 | 8.11248 || 30.1405 || 108.183 | 70.5018 | 65.308 102.652 102.218 390.53 367.374 108.483 197.905

\tRam' Multiple 10 29 111 123 42 41 30 38 M4 60 178 707 600 562 661 816 3261 2084 2073 1982

Collection: GenXpro

Accession: MACE

Technique: MACE

Normalization\Sample Control | Contrel | Control Cl)].]l‘l"l.)l 1_’osr— Conrrt_:l 1_’osr— Contrl_}l 1_’ost— Control | Control | Control | Heat Stress | Heat Stress | Heat Stress | Heat Stress | Heat Stf’es_s Heat Srres_s Heat Stres_s Heat Stress | Heat Stress
Mature | Mature | Mature meiotic meiotic meiotic Tetrad | Tetrad | Tetrad Mature Mature Mature Tetrad Post-meiotic Post-meiotic | Post-meiotic Tetrad Tetrad

[Raw count 3 5 3 4 2 1 1 1 0 11 9 3 1 2 3 3 0 2

IDE Seq Method 1.61841 | 3.06334 || 470987 280288 287773 1.00734 1.34512 || 2.90683 0 368722 3.70783 1.40202 227203 1.57301 21795 288019 0 235202

TPM 7.02111 | 14.0104 || 23.6985 13.2170 14.6245 6.21276 3.16662 || 5.40167 0 10.3384 18.2102 7.01202 4.05555 7.26203 11.4361 15.8871 0 6.55066

Collection: Tomato cv Ailsa Craig physiological conditions

Accession: SRP008367

Technique: RNA-Seq

. e 3' end sequencing of [ Immature | Immature | Immature | Immature Mature || Mature | Mature | Marure |Brenker|Brenker|Breaker|Breﬁker r'.]u“' :F].]“‘v r].]u“' :F].]ll_" ¥ end seq g | ¥ endseq g | ¥ endseq =

Normalization\Sample| . . . . .|| green green green green . . . . ripe ripe ripe ripe of tomato of tomato of tomato

tomato transcripts |green fruit||green fruit|green fruit |green fruit . . . . fruit | fruit | fruit || froit N . . . . . .
fruit fruit fruit fruit fruit | fruit | froic | froit transcripts transcripts transcripts

[Raw count 25 178 107 72 80 384 1411 289 768 831 1711 648 1301 312 | 1415 | 509 528 3461 395 233

[DESeq Method 114.452 132.500 101.128 | 118.953 100.5 303534 | 1217.83 || 273.265 | 803.013 |1102.35|2071.82|842.462||1173.76|473.408]|680.260)432.642|272.078 008.516 810.807 81.5698

‘rRPK\[ 10.559 16.5015 12.8755 14.7041 122305 | 71.0599 | 165903 | 31.254 | 110.833 112.432|(262.192(183 8481|[138.778|53.0556|[76.5034 44 2104 28 522 T4.1248 446482 648001

Collection: Solanum pimpinellifolinm physiological conditions

Accession: SRP010775
Technique: RNA-Seq

"I\'onnnlizarinn'\Sample Leaf Leaf |fruit at 5 days after the breaker stage|fruit at 5 days after the breaker sragetﬂreaker fruit[Breaker fruitflmmature green fruit{iImmature green fruit|
[Raw count 10 8 2101 2431 2360 1605 1200 1563

[DESeq Method 10.841 || 8.63324 2262.59 2102.84 1765.15 1866.89 115571 146542
[RPEOM 0.373277]|0.286562 84.0408 85.0477 §1.2505 86.1762 57.287 75.9501

Figure 33:

Snapshot of the result page for a gene’s expression level in all the available collections.
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For each resulting gene, a button (further investigate) has been implemented
which enables users to further inwvestigate its gene expression in different
conditions (Figure 33). Indeed, by clicking on this link, the expression level of
the corresponding gene will be reported for all the available NGS collections in
the platform, in all the available normalized forms, as calculated for each
collection associated to the genome reference. This enables users to focus on
the locus of interest with a complete overview of its behavior in any possible

and available library per collection.

3.4.2.1.1.3 Heatmap visualization

Heatmaps provide a suitable view on gene expression levels. Customizable
heatmaps are offered in the platform to highlight high- and low- expressed
genes. This graphical approach is exploited in the platform to show the
expression levels of one or multiple genes in different conditions. The data can
be reported in the form of a matrix, where the level of expression can be marked
by a specific color scaling, which may help to highlight high, medium and low
levels of expression. The heatmap provided in the NexGenEx- platform (Figure
32 and Figure 35) can be defined by a local or a global scaling, according to the
preferred selectionin the Matrix Peak Coloring option (Figure 30). The “local”
heatmap option provides the expression level coloring ranging from the lowest
to the highest expression lewels resulting from the query. This facilitates the
comparison of the specific gene expression lewvels in the selected set. The
“global” coloring option defines the coloring range on the basis of the lowest
and highest expression lewvels in the whole libraries selected during the query.
This enables users to identify the gene expression level when compared with

the whole expression levels from all the genes in the selected library/ies.

3.4.2.1.1.4 Expression profiling plot
The Expression Profiling plot (Figure 34) shows gene expression variability in

different samples from the collection under investigation.
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Expression Profile

E Expression profile plot of the selected genes
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Figure 34: Snapshot of the expression profiling plot for a selected gene set across the selected tissues/stages/conditions
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This view depends on the number of libraries selected. The possibility to
perform the analysis on specific collections of genes, selected by keyword or ID
or by a genome region, allows the comparison of the expression profiles of

several genes in a straightforward way.

3.4.2.1.1.5 Correlation Matrix
The Correlation matrix analysis illustrates the correlation between genes on the

basis of the selected libraries (Figure 35).
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Figure 35: Snapshot of the correlation matrix between the 27 HSF genes in tomato versus each other based on the selected tissues/stage s/condition (a
matrix of 27 x27).
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The analysis can be based on the Pearson product-moment correlation
coefficient, or on the Spearman's rank correlation coefficient, or both at the
same time; and the resulting values fluctuates between -1 to 1, providing the
negatively or positively correlated genes (see 1.2.5.1.5).

The correlation matrix can be also downloaded in csv format.

3.4.2.1.1.6 Cluster Analyses

NexGenEx-Tom provides a k-means clustering tool in which the clustering of
the genes in the result set are easily possible on the bases of their expression
profiling across the selected tissue/stages. The k-means clustering tool offered
in NexGenEx-Tom is the online package of k-means Cluster Analyzer presented
in section 1.2.5.1.6.
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Figure 36: The k-means clustering (k=5) with 20 iterations and no rescaling on the 27 Heat Shock Factor genes in tomato.
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As presented in Figure 36: The k-means clustering (k=5) with 20 iterations and
no rescaling on the 27 Heat Shock Factor genes in tomato., the cluster analyses
on the 27 heat shock factor genes in iTAG 2.3 annotation, across all the
tissues/stages of the Heinz RNAseq (see Error! Reference source not found.)
collection, was carried out organizing the genes with similar expression profile
into five (5) distinct clusters. As it can be observed, the genes with similar
expression trend are grouped together. The clustering can be performed with

different number of clusters on the normal or rescaled gene expression values.

3.4.2.1.1.7 GO Terms Summary Table and their association

As it is shown in Figure 37,a GO Term summary table and the gene to GO
Term association to the queried genes is provided to the end users. Figure 37.A
shows an example of a resulting GO Term summary table of the list of occurring
GO Terms, type of GO (in terms of CC: Cellular component, MF. Molecular
Function and BP: Biological Process), GO location and the specific GO
descriptions. In addition, the enrichment of the GO in the resulting gene set is

sorted by p-value for further investigation purposes.
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i The summary of GO Terms in the query result set !

i —GO Summary-

g | GO Term |[TotalGOInCollection|GOFoundInThisGroup|Ratio [ Type Description Annotation

i | [1G0:0003677 1096 7 0.0064| MF |[DNA bmdmg heat stress transcription factor a-2
IGO:0003700 703 1 0.01 561 MF m‘:“'sm DNA bindmg transcription facter heat stress transcription factor a-4a-like
1GO:0005515 779 2 0.0026] MF Totem binding heat stress transcription factor a-2
Ml 3413 12 0.0035]] CC Jjoucleus heat stress transcription factor a-4a-like
| 963 S 0.0083]| BP |fregulation of transcription, DNA-dependent heat stress transcription factor a-4a-like
[G0:0006457] 274 1 0.0036[ BP Jpprotem folding heat shock factor protem hs£30-ltke
G0-0006950 263 6 o‘o::ﬁlg ponse to stress N s e (A e
1GO.0006984) 11 1 0.0909[ BP |ER-nucleus signaling pathway heat shock factor protem hsf24-hke
G0-0009407 15 2 0.0174] BP foxin catabolic process L I

. CN-NNNAANG 13 n N NSLAL RP lrsenanca ta haat haat etrace trancsrrmbian fastar a_la_hl-al

GO Association

i The association of the genes with the corresponding GO Term B

i —GO Genes association

E 1D GO Term |[Type] Description Annotation

{ | ISolyc02¢072000.2.160:0003700] MF ‘l:gtﬁce-smﬁc DR, B Sccapnn Bickos et srss ranscrpin fctor -4 ke

i | [[Sotyc02g072000.2.1GO:0005634|[ CC |ucleus |[heat stress transcription factor a-4a-like

1| [Solyc022072000.2.1[[GO-0006355|[ BP |fregulation of transcription. DN A-dependent |[heat stress transcription factor a-4a-like|| |

i | [Solyc022072000.2.1/]GO-0009408|| BP Jresponse to heat |[heat stress transeription factor a-da-like|| | !

i | [Solyc022072000.2.1{GO-0043565]| MF |[sequence-specific DNA bding [eat stress transcription factor a-4a-like|| |

! | [Solyc022072060.1.1/{GO-0003677| MF |DNA bnding |[beat stress transcription factor a-2

! | [Solyc022072060.1.1/{GO-0005515|| MF [protem bding |[heat stress transcription factor a-2

i | [Solyc022072060.1.1]GO-0005634] CC Jjnucleus [laeat stress transcription factor a-2

i | [Solvc02072060.1.1/{GO:0009624]] BP fresponse to high light mtensity |[heat stress transcription factor a-2

i | [Selyc022072060.1.1/{GO:0010200|[ BP Jresponse to chitin |[heat stress transcription factor a-2

i | [Solyc02072060.1.1/{GO:0010286][ BP Jfreat acclmation |[heat stress transcription factor a-2

Figure 37: Snapshot of A) the GO enrichment results and B) the GO to gene annotation for a

selected gene set.

Moreover, the genes to GO Terms association table (Figure 37.B) also provides
the association list of the resulting genes with their GO Terms and their
complete description. To further investigate the GO Terms, each GO is also

linked to the AmiGO ontology and annotation database [160].

3.4.2.1.1.8 Genome Browser Crosslink

NexGenEx-Tom is enriched with an embedded, customized and updated genome
browser interface [141]. The genome browser used, Gbrowse, permits a genome
based investigation of the structure of the gene loci included in the database and

can be accessed by the selection of each locus from the query set (Figure 38).
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Figure 38: Example of a Gbrowse based view. The gene locus, the xyplot coverage of the NGS reads and their mapping along the selected locus are

shown.
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Figure 38 shows an example of a Gbrowse based view offered by the platform.
This view enables users with in-depth investigation of the selectedloci and their
associated pattern of expression in the form of reads distribution along the
genome sequence. Expression profile of the reads mapped on the genome for
each tissue/stages is provided in the form of read tracks and cowerage plot
(xyplot). Another track defined on the basis of all the reads from the available
libraries (combined) is also added to provide a general overview of the locus
expression for each collection. The iITAG gene annotation is also accessible
through the Gbrowse partition. Specifically, the NexGenEx-Tom Gbrowse
partition is also enriched with all the annotation tracks included in the Tomato

Genome Platform presented in the previous section.

3.4.3 Orthologs Platform

To allow the comparative analyses between different species, an orthologs
platform was designed and implemented. The platform provides different query
pages to investigate the ortholog groups and their associated functional and
genomic information in details. An instant application of the platform and its
interfaces are currently implemented in the SPOT-ITN Bioinformatics platform

(http://cab.unina.it/SPOT-ITN-bioinfo/orthpar/orthpar-search.aspx).

OrthPar-Tom

The OrthPar-Tom platform, focused on the tomato orthology with different
species. At the current setting, the platform represents the orthology across two
collections (see Orthologs Platform), all including the tomato. The platform is
also enriched with the protein sequences and their domain information. For
tomato genes, the platform is also cross linked to the NexGenEx-Tom for gene

expression visualization and investigation.
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Here we present its query page, some of its features, and the results

representation of this platform for the current collections.

3.4.3.1.1 User Interface and Database Access

The platform provides a simple user interface to conduct the queries.

Search
Category: Tomato -1 Organism Information
Organism: Solanum lycopersicum (Tomato) -2
Sequence T}'pe; Protein - 3 Tomato
Reference collection: Phytozyme version 9 [Phytozyme: Nov-13] -4
- i - T: .
Search by: Identifier 5 \_axon. Solanum lycopersicum
Solyc01g068410 6 - ame.
_ |Description:
Identifier: . — ;
No description available at the
moment
——
Organism Information
Phytozyme version 9
|Database: |Ph}1oqme
(Collection size: 34727
Publish date: [Nov-13

Figure 39: Snapshot of the orthologs platform query page

As presented in Figure 39: Snapshot of the orthologs platform query page, the
orthologs platform query page is presented. By choosing the genome of interest
to investigate (29),the genome reference version (2), the type of sequence was
used for the orthology investigation (protein, transcript or gene) (3), the ortholog
collectionavailable in the platform yhe user want to investigate (4), the type of
query (ID, functional keyword, or domain keyword) (5) and the keyword text

(6); the information regarding the specified ortholog collection will presented
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next to the query fields. By running the query in the system, the results matching

the query will be provided in details (figure 30).
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Available collections
- Orthologs collection released with the Nature paper

Solyc01g005000.2.1

Network ID: group284 Network Size: 14 (13edges )

% Organism: Arabidopsis thaliana (Atha) Thale cress
¢
5 Annotation: Consortivm (Nature) (2012)
Annotation: Collection Size: ©) Sequence type: Protein
Dscription: No descripti ilable at the
é Organism:  Sol. Iycopersicum (Slyc) Tomato
5 Annotation: Consortium (Nature) (2012)
Aannotation: Collection Size: ©) Sequence type: Protein

Dscription: No description available at the moment

/) Organism: Solanum tub (Stub) Potato
4 Annotation: Consortivm (Nature) (2012)
Annotation: Collection Size: ©) Sequence type: Protein
Dscripts No d 1pty ilable at the
Visuali
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 Frankfurt Proteomic Ortholog collect
Solyc01g006000.2.1

Network ID: Net_1674_1

Network Size: 2 (ledges )

dtii (Cre1) v

(Phytozyme) (Nov-13)
(17114) Sequence type: Protein
at the moment

Gly)  Tomato

(Phytozyme) (Nov-13)

Annotation: Collection Size: (34727) Sequence type: Protein
D: No descrip at the moment
Visuali
~Frankfurt Pr ic Ortholog collects:
Solyc01g005000.2.1
Network ID: Net_6547_2 Network Size: 3 (2edges)
‘ Organism:  Glyeine max (Gmax)  Soybean
1 A ion: Phytozyme version9  (Phytozyme) (Nov-13)
Annotation: Collection Size: (55787) Sequence type: Protein
Dscription: No descripti at the moment
@ i =
2 A Phytozyme version 9 (Phytozyme) (Nov-13)
Annotation: Collection Size: (34727) Sequence type: Protein
D: No d ble at the moment

Figure 40: An example output of orthologs platform for A) the orthologs group relationship representation, B) the one-to-one orthologs representation.




Figure 40: An example output of orthologs platform for A) the orthologs group
relationship representation, B) the one-to-one orthologs representation.,
illustrates the two possible ways of ortholog collections representation for a
specific query. Snapshot A shows the ortholog group including the results
matching the query keyword. As an example, if a gene was matching the query,
all the orthologs in the same ortholog group with that id are listed categorized
by the species name. The detailed information and the number of members in
each speciesare also listed in details. Snapshot B presents the pairwise orthologs
that one of them was matching the query criteria. In this case, the bidirectional
ortholog pairs showing the relationship of each pair is presented in details.

Visualization of the ortholog graphs are also provided in the platform.
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Available collections done

OtDiMono collection

Solyc01g068410.2.1
= Gl ma.8700.1
Network ID: Net_4570_2 Network Size: 3 (2edges) V!
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2 Annotation: Phytozyme version9  (Phytozyme) (Nov-13)

Annotation: Collection Size: (55787) Sequence type: Protein
Dscrip No descripti ilable at the moment Solyc 10.2.1
\
é O Sol. Iycopersi (Slyc) Tomato \

1 Annotation: Phytozyme version9  (Phytozyme) (Nov-13) \
Annotation: Collection Size: (34727) Sequence type: Protein \
D : Nod vailable at the moment \
Visualize Glyma‘7630.1
A
Functional Annotation
D I ParrentID ILocation I Start I End lerand Function
mRNASolyc012068410.2.1|Solyc01068410.2.1 [SL2.30ch01 ‘70058865 70061867| + ‘:‘,“"“‘ Bfftux Carrier (AHRD V1, *4+* Q673ES_MEDTR); contains L.
Expression Matrix D
|| Flower lem 2em 3cm Mature green Breaker Fruitat 10
- Lff R_‘_’f" F"_’_‘f“ bud fruit | fruit | fruit fruit fruit days
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ILILVLWANFYKKGSFCWGITTFSLSTLNNTLVVGVPLMKAMYGDLGVDLVVQAAVIQALLWLTSLLFALEFWKT
KMTNNSNLIDDNNNNSLELGNISSTNTQMRNINNIELAFWPLMKAVSTKLAKNPNSYACFLGLFWALVASRWHFE
MPSIIEGSILIMSKAGSGVSMFSMGLFMALRGKIIACGAALTIY SMILRFIVGPATMALGCVVLGLRGNVLRVAI
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Figure 41: A sample orthologs platform results presentation in orthologs platform. A)

orthologs collection, species name, description etc., B) the network visualization of the

resulted orthologs, C) functional annotation of the selected ortholog pair, D) the expression

profile of the selected ortholog pair in RPKM normalized value, and E) the sequence, and
the domain information regarding the ortholog pair sequence.

Figure 41: A sample orthologs platform results presentation in orthologs
platform. A) orthologs collection, species name, description etc., B) the
network visualization of the resulted orthologs, C) functional annotation of the
selected ortholog pair, D) the expression profile of the selected ortholog pair in

RPKM normalized value, and E) the sequence, and the domain information
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regarding the ortholog pair sequence. shows the possible results representation
for an ortholog group. The collectioninformation (A), the network visualization
(B), the functional annotation of each element (C), the RPKM expression of the
element (retrieved from the NexGenEx- Database) (D), and the sequence and

domain information for that element is also presented in details.

3.4.4 Enrichment Tool

To support the functional investigation and GO Enrichment analyses, an online
tool (implemented in the bioinformatics infrastructure presented) was
implemented with a query interface. The tool includes a user friendly query
interface with the implementation of the enrichment analyses on the basis of
Fisher Exact Test (see 1.2.5.1.7.1) to provide the GO Enrichment of the selected
set. It also provides the Go to Terms association or each gene with the crosslink
to the AmiGo [160] database as for as the NexGenEx- platform. Here we present
the user interface and the result view for an example application (40 genes

highly expressed in Ascorbic Acid pathways).

User interface and Database Access

As presented in Figure 42, a graphical user interface to allow the GO functional
investigation for a selectedset of gene is provided. By selecting the genome and
the genome reference of interest, the available gene annotation and the GO
dataset associated to that annotation can be selected for the following analyses.
The Significance threshold (FDR) for the Fisher Exact Test can be also

specified.
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Search

Genome: Tomato v
Reference: Solanum lycopersicum v 2 40 (SL2 40) v
Annotation Version: ITAG 2.3 Gene Annotation v

GO Collection: Blast2Go DB (blast2go2014)-all the cdna seque v

Locus [Ds: |Solyc@5g054760.2.1 '

Enrichment P-value: 0.05 v

4 Show only enriched

All rights reserved © Copyright 2014

Figure 42: Snapshot of GO Enrichment Analyses tool implemented in the Bioinformatics

infrastructure developed

Querying the set of genes (e.g.. 40 genes highly expressed in Ascorbic Acid
pathway), the list of GOs enriched in this gene set will be provided (Figure 43).
the result section also provides the GO ID, adjusted p-value associated to the
enriched GO, the number of GOs in the set, the total number of GOs in the
collectionexcluding this set, and the type of the GO (MF= Molecular function,
BP= Biological Process,and CC= Chemical Compound). Getting advantage of
the information available in the data set, it also provides the description and
annotation of the GO term, if available.
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— GO Summary

[Enriched?| GO Term | p-value [lnr. InSet|nr. Total Type Description Annotation
Yes [[GO-0004028]0.000000( 4 9 |MF [3-chleroallyl aldehvde dehvdrogenase actrity aldehvde dehvdrogenase fanily 2 member nutochendnal-hike
Yes  [(GD-0004029]0.000000 5 6 |MF [aldehvde dehvdrogenase (NAD) actrty [aldehyde dehydrogenase fanuly 2 member mitochendnial-like
Yes  [GO-0008928[0.000000 3 1 |MF |mennose-1-phosphate guanylyltransferase (GDP) actvity|gdp-d-mannose pyrophosphorylase
Yes  [[GO-0009225]0.000000( 4 12 [BP |muclectide-sugar metabolic process [pdp-mannose 3 -epimerase
Yes [[GO-0016638]0.000000 4 6 |MF [L-ascorbate peroxidase activity [l-ascorbate peroxidase
Yes [[GO-0019853]0.000000( 6 17 [BP |L-ascorbic acid biosynthetic process |edp-mannose 3 -epmerase
Yes [|GO:0035114]0.000000 17 1572 |[BP [lemidation-reduction process [l-zalactose dehvdrogenase
Yes [[GD:0005829(0.000001] 13 1481 [[CC [fevtosol |zdp-mannose 3 -epmmerase
Yes [[GO:0001758[0.000011] 2 1 |MF [retmal dehvdrogenase activity [sldehyde debvdrogenase family I member mitochondrial-like
Yes [[GO:0031287(0.000018] 4 81 [MF |NAD bmdmg |zdp-mannose 3 -epmmerase
Yes [[GD:0003983(0.000021 2 2 [MF [[UTP:glucose-1-phosphate undvlvlitransferase activity |E‘nru::-bable udp-n-acetylglucesamimme pyrephosphorylase-like
Yes [[GO:0004475(0.000021] 2 ] |[MF |mannose-1-phosphate guanylyltransferase activity [edp-d-mannose pyrophosphorylase
Yes [[GO:0016636(0.000052] 2 4  |MF |meonodehydroascorbate reductase (NADH) activity [probable menodehydroascorbate cytoplasmic isoform 2-like
Yes [[GO:0080046(0.000052] 2 4 |MF lquercetm 4'-O-glucosylransferase activity [edp-I-galactose phosphorylase
Yes [[GO:0003979(0.000096] 2 6 [MF |[UDP-glucose 6-dehvdrogenase activity furidme diphosphate shicose debydrogenase
Yes [[GO-0006021(0.000096] 2 6 [BP |mositol bicsynthetic process [myvo-mositol-1-phosphate synthase
Yes [|GO:0030378(0.000096] 2 6 [MF |[UDP-ghicurcnate 4-epimerase activity [udp-ghicurcnate 4-epmerase 1-like
Yes [IGO-:0046686(0.000236] 6 485 |[BP [response to cadmium ion [nadph dependent mannose §-phosphate reductase

X
Dovwmload GO Ennichemnt e

Figure 43: Snapshot of GOs Enriched in the selected gene set including the 1) Enrichment flag (yes/No), GO Term, adjusted p-value of the enrichment
test for the corresponding GO, number of GO found in the set (InSet), total number of GOs in the whole set excluding the InSet number, yupe of GO
(MF= Molecular function, BP= Biological Process, and CC= Chemical Compound), GO description and annotation.
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Each GO isalso linked to the AmiGo [160] database forthe further investigation
on the GOs Enriched in the set. The genes to GO association of the selected
gene set also is provided including the GO description and annotation (Figure

44).
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— G0 Genes azzociation

D || GO Term |Tvpe Description || Annotation

5olyc01g097340.2.1[[G0-0005829] CC |jevtoscl |zdp-mannose 3 -epmerase
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Sobrc01g097340.2.1[G0:0047918 || MF [[GDP-mannose 3,5-epimerase activity

|Lc:dp-ma].mc-se 3 -epumerase

5olyc01g097340.2.1][G0-0051287
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|Lgl11tau11a‘te dehydregenase [NAD(P)H] activity

[I-galzctose dehvdrogenase

Solyc01g106450.2. 1[[G0-000582%
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Figure 44: Snapshot of GO to Gene association for the selected gene set.
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All the result sets (GO enrichment and Go to Gene association) can be

downloaded independently inthe excel format for the further references.

3.5 Applications

Setting up integrative resources to allow exploration and exploitation of the
data, improvement of quality and enhancement of data access, and eventually
converting the data into meaningful information are the main key aspects that
made us to pursue these efforts. As presented up to know, various data analysis
pipelines, databases and web platforms were designed and implemented. Each
tool or resource, or their combination, support specific objectives in which a
specific biological question is addressed.

At the light of the SPOT-ITN objectives, some example applications are here
presented to highlight results achieved and the relevance of such tools and
integrated resources.

We focused on understanding the data we were dealing with.

Efforts on the mining of the EST and TC collections we included in the tomato
genome platform, on the quality of the available versions of the tomato genome
and its annotations were reported. Since we identified several issues in the
tomato gene annotation, we also present our findings and results for the gene
annotation improvement and revision.

These preliminary investigations were also useful for our understanding of data
from the heat stress response in the tomato pollen developmental stages based
on transcriptome analyses. Then, an extensive analyses on the role of TE-
derived Small-RNAs interfering RNAs in pollen dewvelopmental stages is

presented.
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3.5.1 Experimental Transcript Collections

ESTs vector and repeats cleaning

As it was discussed in section “ESTs, TCs and Tls data processing”, each EST
collection was subjected to vector removal and repeat masking process. This
procedure supports the production of high quality and clean datasets
representing the transcriptomics data for each species. Table 10 presents the
proportion of remaining EST sequences after this quality check and filtering in

our database, which were then used for the further analysis.

Table 10: The number of sequences in the starting datasets. A) the starting number of EST
sequences in each species collection downloaded from the reference database without any

processing, B) the starting number of EST sequences for each collection species after vector
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removal and repeat masking together with the percentage of remaining sequences with

respect to the initial dataset.

Species Code Starting Seq. No. Vector&Repeat Removed
Seq. No (%)
TOBAC 334809 330311 (98.66%)
SOLLC 298370 297451 (99.69%)
SOLTU 250127 249974 (99.94%)
COFAR 174275 172921 (99.22%)
CAPAN 118651 118597 (99.95%)
SOLME 98089 98086 (100%o)
COFCA 69066 68806 (99.62%)
NICBE 56180 56019 (99.71%)
PETHY 50705 50605 (99.8%)
SOLTO 28743 28731 (99.96%)
SOLHA 26019 25916 (99.6%)
NICLS 12537 12533 (99.97%)
SOLPN 10946 10935 (99.9%)
NICSY 8583 8574 (99.9%)
SOLCH 7752 7731 (99.73%)
SOLPH 2099 2099 (100%)
SOLLP 1008 1007 (99.9%)
CAPCH 442 437 (98.87%)
NICAT 355 352 (99.15%)
SOLPE 69 69 (100%)

As presented in Table 10, at worst less than 0.2 % of each collection was
discarded due to the quality check and sequence cleansing process. The
remaining proportion of each collection as then used for the downstream
analysis. In addition to highlight the impact and contribution of each collection
species, we can observe that among all the 20 Solanaceae EST collections
available in the platform, Nicotiana tabacum, Solanum lycopersicum, Solanum
tuberosum, Coffea arabica and Capsicum annumm represent a large collection

of EST sequences (more than 75% of the total ESTs in all the 20 collections)
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while the other species contribute the other 15% of the EST cowerage in our

datasets.

EST to TC Assembly

With respect to the aim of having more reliable transcriptome datasets
confirmed with multiple sequences for each consensus (section 1.2.5.1.3), here
a complete overview of the EST to TC assembly and the remaining singletons,
with the number of protein matches for each specific set per collection species,

is provided in details.
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Table 11: The proportion of EST to TC assembly for each collection species and their

protein matches

Species ESTs Assembled Singletons No. TC Seq. EST.Dist. Protein TC.Dist. Protein
Code Match Match

TOBAC  21388% (65.36% 118920 (36% 31199 193737 (58.65%) 18871 (60.49%%)
SOLLC 251810 (84.66%) 46560 (15.65%) 21920 214658 (72.17%) 15622 (71.27%)
SOLTU 186296 (74.53%) 63831 (25.54%) 23120 170000 (68.01%) 16115 (69.7%)
COFAR 140157 (81.05%) 34118 (19.73%) 16417 117201 (67.78%) 11487 (69.97%%)
CAPAN 94778 (79.92%%) 23873 (20.13%:) 12247 81090 (68.37% 8689 (70.95%
SOLME 80354 (81.92%) 17735 (18.08%) 13500 63585 (64.83% 8993 (66.61%
COFCA 52800 (76.74% 16266 (23.64%) 8287 45561 (66.22%) 5723 (69.06%
NICBE 38745 (69.16%) 17435 (31.12%) 6817 35317 (63.04%) 4691 (68.81%)
PETHY 38920 (76.91%) 11785 (23.29%) 9569 31736 (62.71%) 6500 (67.93%)
SOLTO 21783 (75.82%) 6960 (24.22%) 4029 20569 (71.59%) 2881 (71.51%)
SOLHA 16276 (62.8%) 9743 (37.59% 2779 16732 (64.56% 2034 (73.19%
NICLS 7348 (58.63%) 5189 (41.4% 1401 7261 (57.94% 983 (70.16%
SOLPN 6673 (61.02%) 4273 (39.08% 1136 6685 (61.13% 802 (70.6%)
NICSY 1949 (22.73%) 6634 (77.37% 701 5134 (59.88% 527 (75.18%
SOLCH 1410 (18.24%) 6342 (82.03%) 591 4717 (61.01%) 457 (77.33%)
SOLPH 402 (19.15%) 1697 (80.83%) 178 1609 (76.66%) 159 (89.33%)
SOLLP 430 (42.7% 578 (537.4%) 112 755 (74.98%) 102 (91.07%
CAPCH 108 (24.71%) 334 (70.43% 26 273 (62.47%) 19 (73.08%
NICAT 44 (12.5%) 311 (88.35% 19 129 (36.65%) 10 (52.63%
SOLPE 28 (40.58%) 41 (59.42% 6 56 (81.16%) 51(83.33%)

As it is presented in Table 11, each EST collectionspecies was resulted into a
collectionof assembled EST and Singleton (those did not assemble) sequences.

The total number of EST sequences for each dataset contributing in the
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assembly and the resulted number of TC sequences is also reported in details.
Obwviously, those datasets with higher number of EST sequences (e.g. TOBAC,
SOLLC and SOLTU) provide higher number of TC assemblies in comparison to
those with lower coverage (e.g. SOLPE, NICAT and CAPCH). In addition, the
number of EST and TC sequences from each collection specie having at least
one match with a protein (blast procedure described in “BLAST” section) is
presented accordingly. Stats shows that except few data collections, more than
about 70% of the TC sequences found a protein match while this statement is
not true for the EST sequences. This shows the reliability of the TC sequences
in comparison with the ESTs. In addition, the large contribution of the EST
sequences in the assembly for each TC collection is another indication of the

reliability for these assembled datasets.

EST Mapping

on the bases of the mapping procedure presented in “EST, TC and unignees
processing” section, here we present the mapping statistics gained form the
mapping of each EST collection species on the both wersions of Tomato
Genome SL2.40 and SL2.50, and the BAC sequences un-mapped on the
genome.

BAC sequences are considered to provide to complement the genome sequences

to allow more exhaustive investigations.

127



Table 12: Overview of the EST collections mapping on the both Genome sequences of
Tomato versions ITAG 2.40 and ITAG 2.50, and the unmapped BAC sequences

Species Vector&Repeat Mapped Mapped DistMapped Dist MappedOn  Dist
Code Removed EST On2.40 On 2.50 On 240 Mapped the

Mapped
No. On 2.50 Unmapped onthe
BACs Un-
Mapped
BACs
SOLLC 297451 294474 294512 273894 273897 14465 11594
SOLTU 249974 150439 150418 142966 142956 6585 5546
TOBAC 330311 38577 38601 34792 34796 1497 1274
CAPAN 118597 31119 31115 28979 28980 1179 1009
SOLME 98086 30996 31048 27718 27733 1394 1182
SOLHA 25916 20396 20375 16889 16891 1265 820
SOLTO 28731 10582 10609 8892 8895 0 0
SOLPN 10935 9384 9403 8492 8492 448 379
PETHY 50605 6077 6084 5580 5583 275 221
NICBE 56019 5749 5750 4917 4913 345 265
SOLCH 7731 3128 3128 3073 3073 135 125
NICSY 8574 1651 1651 1553 1553 64 56
SOLPH 2099 1421 1420 1385 1385 52 48
NICLS 12533 841 843 692 692 57 45
COFAR 172921 881 888 438 438 20 20
COFCA 68806 285 296 160 160 22 16
SOLLP 1007 160 160 149 149 0 0
CAPCH 437 87 87 82 82 2 2
SOLPE 69 29 29 29 29 0 0
NICAT 352 27 27 22 22 0 0
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As presented in Table 12, the complete overview of the EST collections
mapping on the two \ersions of SL2.40 and SL2.50 tomato genome, and the
SL2.3 unmapped BACs (see 2.3.1) is presented. As it can be observed, some
collections such as SOLLC, SOLTU, TOBAC, CAPAN and SOLME hawe high
coverage while some such as SOLLP, CAPCH, SOLPE and NICAT hawe very
low coverage of ESTs mapping on the reference sequences. Aside from the
closenessor distance between the two species, this can also be due to the staring
number of sequences available ineach dataset.

We also intended to report the number of total mapping and the distinct number
of transcripts mapping on the genome to provide a brief indication of the
redundancy on the reference sequences with respectto the transcript collections.
In other words, the ratio between the number of mapping transcripts versus the
number of distinctly mapped transcripts can be a parameter to detect the
remapping and redundancy of mapping for the transcripts on the reference

genome (as much as the ratio higher, the redundancy of mapping higher).

TC Mapping

Here we present a general overview of the TC collections mapping on the both
versions of Tomato Genome SL2.40 and SL2.50, and the BAC sequences un-

mapped on the genome.

129



Table 13: Summary of TC collection species mapping on the both Tomato genome versions
ITAG 2.40 and ITAG 2.50, and the unmapped BAC sequences

Species TC Starting Mapped Mapped Dist. Dist. Mapped On Dist.
Code Sequence On 2.40 On 2.50 Mapped Mapped the Mapped
On 2.40 On 2.50 Unmapped on the Un-
BACs Mapped
BACs

SOLLC 21920 21068 21074 19754 19753 901 698
SOLTU 23120 12759 12751 12507 12505 496 439
TOBAC 31199 1602 1604 1525 1526 66 64
CAPAN 12247 2239 2239 2187 2187 85 75
SOLME 13500 3212 3212 3104 3105 128 112
SOLHA 2779 2475 2461 2058 2058 118 82
SOLTO 4029 1166 1169 1077 1078 0 0
SOLPN 1136 1036 1034 963 963 46 40
PETHY 9569 1131 1131 1071 1070 59 50
NICBE 6817 444 445 415 415 22 17
SOLCH 5901 328 328 321 321 10 10
NICSY 701 172 172 160 160 4 3
SOLPH 178 127 127 126 126 4 4

NICLS 1401 6 96 83 83 3 3
COFAR 16417 26 27 15 15 0 0
COFCA 8287 21 21 12 12 2 2
SOLLP 112 2 2 2 2 0 0
CAPCH 26 3 3 2 2 0 0
SOLPE 6 0 0 0 0 0 0

NICAT 19 0 0 0 0 0 0

The mapping summary of TC collections per each species (Table 13) provides

the coverage and proportion of each collection for the tomato genome and the

BAC sequences unmapped on the genome reference. Similar to the ESTs, the
tomato species of SOLLC, SOLME, SOLHA, and SOLPH hawe the highest

relative number of transcripts with respect to the starting collection size

cowvering the reference sequences. Moreover, SOLTU also as the closestspecies

to SOLLC also shows the relevant high cowverage of mapping on the tomato
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genome and the BAC sequences. Respectively, other Solanaceae species also
are reported on the sense of mapping with respect to the initial collection size.

It is also nice to mention that some TCs are also mapped on the unmapped BAC
sequences not considered in the official genome references. This can be another
source of information in which the sequence regions not present in the official

genome reference can be also investigated.

Unigenes Mapping

A detailed mapping overview of the three unigene collections of SGN, DFCI

and PlantGDB are provided here.

Table 14: Overview of Transcript Indices (unigenes) collections from 3 reference websites of
SGN DFCI and PlantGDB mapped on both tomato genome versions of ITAG 2.40and 2.50,

and the unmapped BAC sequences

Species  Database Starting Mapped On  Mapped  Dist. Dist. Mapped On Dist. Mapped on
Name Sequence 2.40 On 2.50 Mapped  Mapped the the Un-Mapped
Number On 2.40 On 2.50 Unmapped BACs
BACs
SOLLC DFCI 52502 50790 52823 45266 46692 2575 1796
SOLLC PlantGD 56845 55955 57075 49993 51032 2855 1940
B
SOLLC SGN 42257 41789 42625 36393 37203 2062 1418

As for the TC collections, the overview of the unigene collections mapped on
each version of the Tomato Genome and the unmapped BACs are presented in
the redundant and distinct manner (Table 14). Interestingly, around 4% of each
collection is also mapped on the unmapped BACs which provides the
information regarding the transcripts annotated on the regions not anchored in
the chromosomes. In the following section, the number of transcripts from each
collection mapped uniquely on these BAC sequences will be discussed in

details.
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TCs and unigenes mapping uniquely on the reference sequences

Table 15: Overview of TC collections uniquely Mapped on the both genome sequences and
UnMapped BACs

Species TC TC TC TC TC Unique-
Unique- Unique- Unique- SUM(Unique- Map-On-BACs-
Map Chr Map Chr  Map- Map- NotOn-Chr2.40
2.40 2.50 BAC Chr&BAC)
2.40 2.40
SOLLC 19272 19270 582 19854 8
SOLTU 12305 12306 386 12691 4
TOBAC 1481 1482 62 1543 3
CAPAN 2142 2142 65 2207 2
SOLME 3026 3027 97 3123 6
SOLHA 1990 1990 61 2051 8
SOLPN 919 919 34 953
SOLTO 1018 1019 37 1055 1
PETHY 1018 1017 44 1062 2
NICBE 395 395 15 410 1
SOLCH 314 314 10 324
NICSY 149 149 2 151
SOLPH 125 125 4 129
NICLS 76 76 3 79
COFAR 9 9 9
SOLLP 2 2 2
COFCA 8 8 2 10
CAPCH 1 1 1
SOLPE 0
NICAT 0

Having a transcript mapped uniquely on a genomic region can confirm the
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origin of the transcript. Table 15 provides the number of transcripts in each of
the TC collections uniquely mapped on a genomic reference. Interestingly, we
can observe some transcripts mapped on the unmapped BAC sequences (not
included in the official reference) with no other copy or map on any of the
Tomato chromosomes.

The same information also is presented in the sense of unigene collections.

Table 16: Unigenes uniqueness mapping overview on the genomes and BACs

Species Unique- Unique- Uniqu SUM(Uniq Unique-
Map C Map C e- ue-Map- Map-On-
hr2.40 hr2.50 Map- Chr&BAC) BACs-
BAC 2.40 NotOn-
2.40 Chr 2.40
SOLLC DFCI 43852 45189 1440 45292 54
SOLLC PlantGDB 48368 49383 1551 49919 32
SOLLC SGN 35172 35969 1130 36302 30

Table 16 shows the number of transcript form each unigene collection mapped
uniquely on the tomato genome and the unmapped BAC sequences. As well as
the TCs, we can see that some transcripts are uniquely mapped on the BAC
sequences in which the information is not considered in the official genome

reference.

Considering the total number of transcripts from all the TC and unigene
collections (Table 7) and those uniquely mapped on the genome (tables of
unique Error! Reference source not found.), we can conclude that the
majority of the transcripts are mapped uniquely on the genome. This is an

indication of the transcripts quality, reliability and specificity in each dataset.

The processing of the EST collections to produce cleaned datasets, assembly of
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the TC sequences to have more reliable transcripts confirmed by multiple
sequences, and having the unigene collections from the major reference
databases can provide useful transcript resources for the genomic analyses and
investigations. Moreower, the availability of different species collections, all
mapped on a unique reference genome (here S. lycopersicum), can allow the
cross species analyses and functional investigations. These collections are great
supports to the assessment, assignment and characterization of the genomic

features (e.g. assessing the miss-annotated genes such as split, very long etc.).

3.5.2 Genome Reference and Gene annotations

A reliable genome reference is the basis for genome centered approaches and
“omics” analyses. Hence, a good understanding ofits quality and content tracing
its improvements is fundamental for appropriate investigations. In the light of
the SPOT-ITN project we set up the tomato genome platform to support the data
analyses.

Moreover, we deeply investigated the two different genome versions of tomato.
Furthermore we tested the quality of the annotations available (iTAG and

RefSeq) to define a reference annotation too.

ITAG 2.40 vs ITAG 2.50

For tomato, two different versions of the S. lycopersicum genome sequences
have been currently released (SL2.40 [137], SL2.50 [143]). The genome \ersion
SL2.50 was made available on the SGN website on 2014 (announced in [143]).
It represents the updated version of the first version SL2.40 [137], release in
2012 by the Consortium.

An owerview reweals that the chromosomal lengths in SL2.50 is increased
comparing to the SL2.40 (Table 17, column length). In other words, long pieces

were inserted/added to the new wersion of the tomato genome (SL2.50).
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Interestingly, looking at the number of “N” added to each chromosome, which
is exactly similar to the corresponding added lengths, it is clear that the added

regions are only filled by “Ns” to improve the genomic distances in the genome.

Table 17: An overview of SL2.50 versus SL2.40 genome version

SeqID Length #A #T #C #G #N

ch00 0 0 0 0 0 0
ch01 8239200  -1858 1858  -10148 10148 8239200
ch02 5422150  -9705 9705  -13141 13141 5422150
ch03 5946950  -2289 2289 15381 -15381 5946950
ch04 2406630 -16881 16881 3450 -3450 2406630
ch05 853650 -18636 18636  -1162 1162 853650
ch06 3710000 -13028 13028 -10145 10145 3710000
ch07 2776400 0 0 0 0 2776400
ch08 2834000 1299 -1299  -31808 31808 2834000
ch09 4820000 -6147 6147 -3522 3522 4820000
ch10 693200 0 0 0 0 693200
chl1 2916500 21144 -21144 38971 -38971 2916500
ch12 1658950 9569 -9569 24075  -24075 1658950

Looking at the exact proportion of the positive and negative values in each A
and T (i.e.; A= -1885 and T= -1885in ch01), and G and C bases content (C= -
10148 and G= 10148 for ch01), a total of the inwverted regions per each
chromosome can be observed.

We also observed that the changes in the GC, CG and CpG was zero comparing
the two versions of the genome. So we concluded that no new genome sequence
representing ATGC bases was added in the new version of the tomato genome
SL2.50 comparing the SL2.40.
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These analyses raised the question if the reorganization of the genome had

affected the gene content.

ITAG 2.3and iTAG 2.4

We also check the differences between the iTAG 2.4 and 2.3 gene annotations.
Comparing the iTAG 2.3 and ITAG 2.4 gene annotations to understand the
differences and peculiarities of the two annotations, we observed that two genes
of Solyc03g053140.1.1and Solyc129032910.1.1 were discarded from the newer
version.

It is important to highlight that due to the addition of “N” insertions to the
genome, the genes in iTAG 2.4 were shifted in their genomic position. This
means that the position indicated in the GFF3 annotation file is changed on the
basis of the insertion lengths occurring before the specific gene on the genome.
Howewer that the genomic locus is identical in the sense of the genomic

sequence.

RefSeq
The RefSeq GFF3 file was tested for the standard format and compatibility for

the visualization in the Gbrowser. We also checked the number of the genomic

features available in the annotation. The stats on the produced file are as follow:
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Table 18: Stats on the RefSeq2.3 genomic features and their coverage

Feature Type Count Length
Gene 24528 122350718
mRNA 25946 128880502
Mature Transcrips 646 2399912
Exon 150609 43240563
CDS 142115 33604313

The total coverage of the gene features for the 12 tomato chromosomes in the

genome are presented in Table 18.RefSeq Annotation does not include the gene

prediction for the S. lycopersicum unassigned chromosome (chr00).

We also aimed to compare the two available gene predictions for the tomato

genome (iTAG and RefSeq) to understand their similarities, differences and

whether the two annotations forthe same genome confirm each other. The result

of the analyses are presented below:

ITAG 2.3 vs RefSeq 2.3

Table 19: Stats on the iTAG2.3 genomic features and their coverage

Feature Type Count Length
gene 34727 109860926
mRNA 34727 109860926
CDS 157239 35972459
exon 160007 41982942
intron 125280 67877984
five_prime UTR 13567 1922626
three_prime UTR 15378 3576943
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As presented above the stats on the number of genomic features and their

cowverage on the genome for the iTAG 2.3 is presented in Table 19.

In Table 19 we reportthe statisticsfor iTAG 2.3.iTAG includes 34727 gene loci
representing 34727 mRNAs while RefSeq 2.3 includes 24528 representing
26592 mRNA loci. As declared by ITAG, the official gene annotation for the
tomato genome (iTAG 2.3) does not include the alternative splicing prediction
whilst RefSeq 2.3 annotation includes the alternative splicing prediction for the
genes. Due to this fact (the availability of alternative transcript in RefSeq
annotation), the number of genes are 10119 but for mMRNA 8135 less than iTAG
2.3 official annotation.

Deeper investigations on both annotations revealed that in total 1062 mRNAs
confirm locus and structure (start and end of all the features such as locus, exons,
cds etc.) while only 207 mRNAs confirm only the locus (start and end of the
transcript) but not the internal structure between the RefSeq and iTAG gene
annotations. Moreowver, owerlapping the ITAG 2.3 and RefSeq 2.3 gene
annotations 1624 mRNAs from RefSeq did not overlapping any iTAG predicted
loci,and 10931 iTAG 2.3 mRNAs did not overlapping any RefSeq 2.3 predicted
MRNA. The significant difference between the iTAG and RefSeq can be also
proportional to the total number of predicted mMRNAs in each annotation (see
Table 18 andTable 19).

ITAG Annotation Issues
To understand the quality of the official tomato gene annotation, we also made
some exhaustive assessment on the ITAG 2.3 in which several issues raised.

Here we present the ambiguities, miss-annotations and the issues detected in the

ITAG 2.3 gene annotation for the S. lycopersicum genome.

Very Long Genes
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Our analyses resulted to the detection of two very long genes in the annotation

in which, the genes span for more than 200,000 pb on the genome.

Exon lengths divided by exon counts for each mRNA transcript in iTAG 2.3
predsicted in S. lycopersicum

80

70 o

Exon Count

50000 100000 150000 200000 250000
mRNA Length

Figure 45: The exon lengths versus exon counts in iTAG 2.3 predicted genes

As it is shown in Figure 45, the number of exons versus the sum of the exons
length for each transcript is presented. The plot shows the distribution of the
ITAG 2.3 predicted genes in the tomato genome where the majority of them are
less than 25000 bp long. The 2 genes of Solyc019g110700.2 and
Solyc019111180.2 possess the length of 244,093 bp and 214,621 bp
respectively. In addition, the gene Solyc01g111080.2,though much shorter than
the 2 mentioned before, also has is a long gene spanning 23681 bp on the
genome. A Gbrowse snapshot of the three very long genes mentioned are

presented in (Figure 46)
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Figure 46: A genome browser snapshot of the 3 very long genes and the TC tracks overlapping the locus.
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Interestingly, all the three genes are owverlapping on their genomic locus also
cowvering multiple iTAG 3.4 predicted genes. By cross checking these three
genes with the S. lycopersicum TC collection, the unigene collections form the
SGN, PlantGDB and DanaFarber, all available in our Tomato Genome
Platform; we could not confirm any experimental transcript confirming the

predicted structures.

Table 20: Statisticson the UTR's length and overlapping of the 3 very long genes in iTAG

predicted genes in S. lycopersicum

3’ UTRs S’ UTRs

Gene ID Length Overlaps
Length Length
Solyc01g110700.2 244,093 bp 64 bp 219069 bp 54
Solyc01g111180.2 214,621bp  212781bp 18 bp 49
Solyc01g111080.2 23681 bp 22853 bp 52bp 5

We also observed that the reason these genes are so long is due to the long UTR
regions predicted (Figure 47 and Table 20).

Concerning the owerlapping genes, we observed that the gene
Solyc019091150.2 (118,735 bp) also owerlaps 14 other genes, in its intron

region, in the annotation (Figure 47).
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Figure 47: A genome browser snapshot of a long gene covering several iTAG 2.3 annotated loci in its intron
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Figure 69 shows the genome browser snapshot for the gene Solyc01g091150.2
overlapping multiple iITAG 2.3 predicted locus in its intron region. By cross
comparing this gene with the available TC and unigene transcript collections in
our platform, we could not find any experimental transcript confirming its
structure. Hence, probably this gene also is miss-annotated in the iTAG
annotation.

Three exact Overlapping Genes with different CDS regions matching the
same Protein

The further analyze overlapping genes predicted in the iTAG 2.3 we noticed that
three genes (Solyc01g088200.2.1, Solyc019088210.2.1 and
Solyc019088230.2.1), exactly overlapping each other in their exons start and
ends but differ completely in their coding regions. An illustration of these three

genes overlapping each other on the genome is presented in Figure 48
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Figure 48: Demonstration of the 3 iTAG 2.3 predicted genes with exact exonic and different
CDS overlapping matching 1 protein consecutively.
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Interestingly all the three genes also match the same protein in a consecutive
manner (Figure 48). This can be also due to the miss-annotation of one single

gene as three different genes on the genome.

Blast of all the iTAG 2.3 mRNAs versus the proteins databank

As the result of our blast analyses for the iTAG 2.3 mRNA sequences versus the
protein databank (downloaded on February 2014), 758 mRNAs with unknown
function in the annotation found at least one protein match in the database
(Table 21).

Table 21: The blast results of iTAG 2.3 mRNA versus the protein databank

26059 at least one protein match | 758 Unknown genes in ITAG (Can be annotated)

34727 ITAG -
1754 Annotated in ITAG

genes 8671 No protein match -
6917 Unknown in ITAG

The proteins with match with these 758 unknown annotated mRNAs can

provide a putative functional annotation for these transcripts.

Split Genes
The blast analyses of the iTAG 2.3 mRNA transcripts also revealed split genes
in the annotation. We identified 1873 genes that match the same protein in

consecutive portions. An example of the split genes is presented in Figure 49
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Figure 49: Example of 4 iTAG 2.3 predicted genes matching consecutive regions of a

protein.

Figure 49 shows the four iTAG 2.3 predicted genes, Solycl1g067110.1.1,
Solyc119067120.1.1, Solyc11g067130.1.1,and Solyc11g067140.1.1, matching

the protein FAHWO4 in consecutive regions.

On Repeated Regions (iTAG 2.3 Repeat Aggressive)

The intersection of the iITAG 2.3 genes and the repeat aggressive annotation
resulted to the identification of several genes located in overlapping repeated
regions. In Table 22, the number of genes owerlapping a specific repeat

aggressive class more than 50, 80 and 100% are presented.
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Table 22: The summary of iTAG 2.3 predicted genes with the iTAG 2.3 repeat aggressive

classes based on the overlapping thresholds of 50, 80 and 100 %of coverage

Repeat Aggr. Class 50% 80% 100%

DNA/En-Spm 2

DNA/Harbinger 2 1
DNA/hAT 7 1 1
DNA/MuDR 4 3 2
LINE 8 4 3
Low_complexity 14 2 1
LTR 295 191 143
LTR/Copia 110 85 75
LTR/Gypsy 65 52 47
RC/Helitron 32 12 5
rRNA 46 36 26
Simple repeat 19 4

Grand Total 604 391 303

As presented in Table 22, it is interesting to observe that 303 times a gene falls

completely inside a repeated region (100% of coverage).

iTAG Remapping onto the tomato genome

By mapping the iTAG 2.3 mRNA sequences versus the S. lycopersicum genome
(2.3), we categorized the transcripts into three major groups (once map, multiple
map and not mapped on the genome). We also further divided the once and
multiple mapped transcripts into two classes of “Confirming their iTAG gene
structure prediction” and “not confirming their iTAG gene structure prediction”
(Table 23).
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Table 23: The summary of remapping the 34727 iTAG 2.3 mRNA transcripts versus the
iTAG 2.40 genome

Total Number of Transcripts (34727)

Once Mapped | 30046 Confirming Gene Structure 27968

Not Confirming Gene Structure | 2078

Multiple Mapped | 4593 Confirming Gene Structure 4165

Not Confirming Gene Structure 428

Found by Blast 62
No Match 88 Partially Found by Blast 24

Very Long and Discarded Genes 2

As it can be observed in the Table 23, the majority of iTAG 2.3 predicted genes
(27968) could map uniquely on the genome confirming their own predicted
structure. Still 6759 genes either do not confirm their structure or have multiple
mappings on the reference genome. To further characterize the remapping status
of the annotated gene on each of the chromosomes, we further summarized the
results into a bigger table, in which Snapshot from this table is provided in
Figure 50
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13 chromosomes (unassigned contigs and 12 Tomato Chromosomes) (Subject)

- -
13 i et TR ER - - : i f : : v B8 c.inra.. B :
chromosomes B RS E e, TR N TEE IR i . R e e )
: - o e e e
(Reference) g

- B
il ARy B Sepa

Total Gene Mapped OnceMap MultMap Remapped

887 884 528 356 All
Var 251.9228317 1025
Average 5.634831461 100-100 >=95-95 <=95-95 Other
Min 2 822 135 5 63
Max 288 Overlap NoOverla Overlap NoOverla Overlap NoQOverlajOverlap NoOverla;
Distinct 805 1 100 23 4 1 23 39
All 806 16 100 35 4 1 24 39

Total Gene Mapped OnceMapMultMap Remapped

4293 88 3791 493 All
Var 42 56809944 113
Average 5.675456389 100-100 »>=95-95 «<=95-95 Other
Min 2 1 42 7 63
Max a3 Overlap NoOverla Overlap NoOverla Overlap MNoOverlaOverlap NoOverla
Distinct 1 o 13 18 7 o] 37 20
All 1 o 14 28 7 o] 37 26

Figure 50: Snapshot of the 13*13 cross table characterizing the genes remapping from each of the 13 S. lycopersicum chromosomes on oth er

chromosomes
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Figure 74 is snapshot of a bigger table which summarizes the behavior of the
annotated genes if mapped on all the other chromosomes (See ANNEX V). The
total number of genes from the starting chromosome, the total, once and
multiple number of times they remapped onthe target chromosome, the detailed
categorization of the remapping statistics on the bases of their identity and
coverage when mapping, and whether they overlap an iTAG predicted loci or
not are listed in a redundant and distinct way (redundant = if the genes mapped
four times, four is considered; distinct= if the gene is mapped four times, one is
considered). This 13 * 13 dimensional table, summarizing all the iTAG genes
predicted on the 13 tomato chromosomes versus each other, provides a
comprehensive owerview of the annotation issues like missing annotation,
genome duplication by sequencing miss-assembly, similarity of the genomic

regions, and potential new unpredicted gene loci on each chromosome.
To provide a broader overview of the iTAG 2.3 predicted genes in the sense of

their remapping status, Figure 51 demonstrates the frequency of the number of

times each gene matched a chromosomal region of the S. lycopersicum genome.
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Figure 51: Remapping time distribution of ITAG 2.3 genes divided into two groups of large
and small scales

As it is shown in (Figure 51 and also Table 23), 30046 genes have one
positioning when mapped on the genome whereas 2088 and 661 genes have two
and three times of remapping on the genome, respectively. At the extreme, the
3 genes of Solyc00g005070.1.1, Solyc12g019160.1.1 and Solyc049047730.1.1
locate on 288 regions, 112 and 111 times, respectively. This highlights that
several iITAG 2.3 genes either have multiple copies or homologous genes not
predicted on the genome, or several pieces of DNA sequence were repeated.

In principle, each gene should have only one gene mapped in the locus,
overlapping to the loci it is associated to. This is a clear indication of some
repeated or highly similar regions on the genome which share a big similarity
proportion with several transcript sequences.

After cross comparing the remapped transcripts on their genomic coordinates
considering their strands, a list of genes exactly identical in the sense of their
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genomic structure (with some difference on their strands) were identified (Table
24).
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Table 24: List of identical genes. Per each genes is specified: length, exons number,

identical region 50 nt after and before, strand and alignment coverage (Replace with my

own data for the overlapping of identical genes considering the strands)

Sequence identical (included
s length #exons 50nt before and after strand coverage
(nt) the gene area)
23:5283333??81111\ 694 2 YES plus/plus 100%
2232223333381111\ 234 1 YES plus/plus 100%
Sobeizgoiossors ' pusilus 100%
gg:zzgggggﬁggﬂ\ 495 2 YES (2 mismatches) plus/plus 100%
Sobeosgosaitorl 2oL L vES@msmach  puspus  100%
2332813 18224218:;1\ 8922\ 8923 8 YES (3 gaps) plus/plus 100%
Soheosgoot001a 3 ' usilus 100%
Soheosprinolr ' pusiplus 100%
22:5282382228811\ 2491 4 YES (2 mismatches) plus/plus 100%
Solyc03g120400.1.1\
Solyc05g012960.1.1\ 174 1 YES (2 mismatches) plus/plus 100%
Solyc09g014290.1.1
23:52833333281111\ 360 1 YES plus/plus 100%
2232183332328:?? 722 2 YES plus/plus 100%
Sohei0goizas01s 0 ' lusiplus 9496
Soveizgooersors  ZL 2 pusiplus 100%
zg:igﬁggig%gii\ 1366 3 YES (1 mismatch) plus/plus 100%
gg:izgggégggig:ﬂ\ 405 1 YES plus/minus 100%
22:52823882228:1:1\ 1587 1 YES plus/minus (162926/;/:587)
Solyc07g055360.1.14 228 1 YES plus/minus 98% (320/328)

Solyc07g055590.1.1
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We identified several independently (differently) predicted genes in iTAG 2.3
annotation which are identical in the sequence and structure on the genome (also

in some cases with differences in the strand).
Unassigned chromosome (Chromosome Zero)

The chromosome zero and its gene content are the unassigned chromosomes
and genes in the tomato genome. Figure 52 illustrates the behavior of the
transcripts of the genes predicted on the unassigned chromosome of the tomato
which were mapped on the other chromosomes with different identities and
coverages, categorized into the overlapping and not overlapping with respect to
other iTAG predicted loci.

Remapping of genes from chromosome zero on other
chromosomes showing different coverages and overlapping status.
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Figure 52: Representation of the remapped genes with different thresholds of identity and
coverage remapped on the other chromosomes, categorized into the overlapping and not

overlapping with respect to the other iTAG predicted loci
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The distribution of the ITAG 2.3 predicted genes from chromosome zero
mapped in the void (un-annotated) regions of the other chromosomes with high
level of identity and coverage suggests the possibility of putatively not predicted
genes on those regions which were, in contrast, annotated on the unassigned
chromosome. In other words, there are in total 79 genes of chromosome zero
remapped on the void regions of other chromosomes with the identity and
cowverage >= 95 that can be putatively predicted on the genome.

Our analyses revealed a comprehensive owerview of the ITAG 2.3 genes in
which, seweral miss-annotated genes (very long, owerlapping with multiple
genes, split genes, putative new genes, those predicted on the repeat region, and
identical genes and genomic regions) were identified. These information are
fundamental since they can introduce several biases and miss-leading issues
when exploiting the genome information. As an example in the NGS data
analyses, the genes overlapping multiple other genes can lead to the ambiguity
in the gene expression quantification. In most methods such as HTSeq-count
(see Quantification), the count forall these gens will be considered as zero. This
is also valid for those genes with multiple mapping on the genome since the
reads matching multiple locations on the genome, in most cases, will be
automatically discarded from analysis. In terms of the split genes, the expression
quantification will be highly affected since the complete transcript is not
considered. Obviously the quantification of expression for the genes not
predicted on the genome (the putative new genes we found) is not also possible
unless they are put into consideration. However, in this specific case they would

result to be repeated.

3.5.2.1.1 Revised annotations

Therefore we go to the conclusion that the three genes are probably miss-

annotated in the annotation.
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3.5.2.1.2 ITAG 2.3 Revised annotation

These wversion of the annotation is on the basis of the official iTAG 2.3
annotation 2.3 in which.

The added information provided in the revised annotation is in Table 25.
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Table 25: Major information segments available in the revised annotation

Label Description e.g.
Type of | It presents the type of owerlapping | No owerlap, partical
overlapping from one predicted transcript versus | overlap, inside,
the other one. over, locus match,
locus and structure
match.
ITAG 2.3 | In case this transcript is overlapping
overlapping loci | another iTAG loci, the iTAG ID of the
overlapping loci is listed.
Code Regarding the iTAG 2.3 overlapping
Flag, the query length, subject length
and the percentage of ovrerlaping is
listed.
RefSeq Incase this loci is owerlapping a
overlapping loci | RefSeq 2.3 loci, the RefSeq ID of the
overlapping loci is listed
Remapped Number of times transcript maps on
Time/code in the| the S. lycopersicum genome with
id identity coverage higher than 90 and
80 respectively
Repeats Owerlap | Represents the percentage of owverlap | 69% LTR-RE,12%

for this transcript with each of the
ITAG 2.3 repeats aggressive classesin

details.

rRNA
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Confirmed by
EST/TC/Unigene

S

Represents the transcript
confirmation by any of the 20
Solanaceae EST, TC collections
together with the three universal
unigenes collections for the tomato.
The number of owerlap for each
collectionand species, the percentage

of owerlap are listed in details.

Locus Expression

The maximum level of RNAseq
expression from the Heinz Atlas
collection for this trascrip calculated
on the basis of its gene locus is

presented.

Exon Expression

The maximum level of RNAseq
expression from the Heinz Atlas
collection for each gene locus is

presented.

Exons GenBank

format

The GenBank format of all the exons

for the transcript are listed.

(startl,endl,start2,e

nd2,....,startn,end)

The information together with the genomic information available in the original

annotation file have been made available both in the Excel and GFF3 file

formats

3.5.2.1.3 ITAG 2.3 Preferred Annotation

Considering the iTAG 2.3 gene annotation as the reference annotation for the S.

lycopersicum genome, a GFF3 file including the ITAG 2.3 predicted genes

together with those of RefSeq2.3 genes not overlapping any iITAG 2.3 predicted
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loci (1624 mRNAs) are presented to provide a more comprehensive and
exhaustive gene annotation for this species. The annotation fileis in the standard
GFF3 format including all the functional and genomic details provided in the

original files.

3.5.2.1.4 RefSeq Preferred Annotations

In contrast with the iITAG 2.3 preferred annotation, a GFF3 file representing the
RefSeq 2.3 predicted genes including those of iTAG 2.3 not overlapping any
RefSeq 2.3 gene (10931 mRNAs) is provided including all the functional and

genomic information available in the source files.

3.5.2.1.5 Impact of different annotations in the NGS data analyses

Here, the expression quantification for each gene from all the 10 tissue/stages
of Heinz atlas collectionfor the 4 annotations iTAG 2.3, RefSeq 2.3, iTAG 2.3
Preferredand RefSeq 2.3 Preferredannotations separating once- and all-mapped

reads on the genome are presented in details.
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Heinz collection expression summary for each tissue/stage for unique mapped reads
based on iTAG 2.3, RefSeq 2.3, iTAG 2.3 Prefered and RefSeq2.3 prefered Annotations
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green fruit fruit 10 days
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Heinz collection expression summary for each tissue/stage for unique+multiple mapped
reads based on iTAG 2.3, RefSeq 2.3, iTAG 2.3 Prefered and RefSeq2.3 prefered
Annotations
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Figure 53: Representation of different read countings (A= once map and B= unique+multiple map) using iTAG 2.3, iTAG 2.3 Preferred, RefSeq 2.3,

and RefSeq 2.3 preferred annotations
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In Figure 53.A, the reads that uniquely mapped on the genome (once-) are
checked using the four annotations of iTAG, RefSeq, iTAG Preferred and
RefSeq preferred. Indeed we report the number of reads mapped in the gene
loci. In Figure 53.B, multiple read mapped on the genome and once mapped

were considered for the quantification.

3.5.3 NGS Data Analyses

During my PhD, several NGS data analyses were conducted, in collaboration
with other research groups or independently for some of my target based
analyses, on various collections. Here, some example of findings on major
collectionsuseful to highlight features of the iTAG 2.3 annotations are reported.
The Heinz collection, as a representative collection of RNAseq from seweral
tomato tissues from the sequenced genome, was used for several investigations
and analyses to expand our knowledge on the reference genome defined for this

crop species. Here we present some of the results and findings acquired.

Zero level Genes

The data analysis highlighted that among all 34727 iTAG annotated genes, 6412
genes showed zero read mapped on the gene loci when considering any of the
libraries from each of the replicates from the Heinz collection. Interesting to
observe that the number of genes that are zero are also 5700 in the paper of
tomato genome release [137]. This is probably due to analytical approaches and
highlights the importance of clear description of the methods used to reproduce
the data. Indeed, owverlapping genes are counted as zero from many of the
methodologies [68, 69]. Moreower, besides the 0 counting genes, 10025 genes
showed expression lewvels lower than 1 RPKM in all the tissues/stages, falling
in the criteriato be defined as not expressed genes. Hence, in total, 24702 genes
show expression level higher than 1 RPKM in at least one of the investigated

physiological conditions.
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Genes specifically expressed ina tissue

We also analyzed the number of genes that showed the expression level higher
than specified thresholds (0.3 and 1 RPKM, respectively) only in one condition
(defined as specifically expressed). On the other hand, we also reported the list
of genes with expression level lower than the given thresholds only in a specific
condition (defined as specifically not expressed). In Figure 54, we report the
number of specifically expressed and specifically not expressed genes per
conditions according to the different thresholds. The statistics shows that
comparatively a large number of genes (1106) are specifically expressed in root
while a significant number of genes (695) are tissue specifically not expressed

in “fruit after 10 days”.

Specifically expressed Specifically not expressed

Tissue\Threshold 0.3 1 0.3 1
Leaf 99 Il 138 Fl 158 El 158
Root 836 I 123 Fl 160
Flower B 120 to105 | 44 I 46
Flower bud B 624 L 630 | 45 [ 33
1cm fruit I 57 | 65 | 48 1 62
2cm fruit I 72 [ 53 | 18 | 13
3cm fruit I 55 [ 48 | 38 [ 37
Mature greenfruit | 51 I 51 | 28 | 8
Breaker fruit | 26 | 19 Bl 179 E] 144
Fruit at 10 days I = [ 64 756 695 |
All Fruit 9 21 190 235

Figure 54: Tissue specifically expressed and not expressed status for the Heinz NGS

collection

We also observed that 21 genes are specifically expressed in the fruit stages
while 235 genes are specifically not expressed in the same conditions. The

results suggest that probably these genes, not expressed in other tissues but only
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fruit) are the fruit specific expressed genes, which can have important roles in

the fruit maturation and the processes involved.

3.5.4 Transcriptome analyses for the Heat Stress Response in Tomato Pollen

Gene based MACE data analysis

MACE NGS data provided by GeneXpro were analyzed by a classical gene
reference based approach.

The collection was also a precious resource that was made available in the
SPOT-ITN project since RNAseq from the developmental stages of pollen were
not available for tomato in the SRA archive (ref). As an example, the Heinz
collectiondoes not include stages from pollen. To this end, we tried the exploit
the data to better understand the peculiarities of this collection in terms of

expression profiling.

3.5.4.1.1 Putative pollen specific genes detection in tomato

We crosschecked the information from Heinz tissue specific genes with those

from MACE data analyses.

Table 26: Representation of expression signaling between the Heinz and MACE NGS

collections
Total Gene Heinz MACE (ALL)
1051
6412
5361
34727
662
26561
25899

No Expression Signal
With Expression Signal
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The analyses revealed that among the 6412 genes not expressed in any of the
Heinz tissues/ stages, 5361 genes showed expression signaling at least in one of
the tissues of pollen from our MACE collection (control and heat stress
conditions). The results suggest the putative pollen specific genes in S.
lycopersicum which are expressed in pollen stages only and not in any other

tissue.

Table 27: Representation of specifically expression of MACE NGS collection between
Control and Heat Shock Stress stages

Heinz | MACE(CT) | Different | Common | Different | MACE(HS)
6412 1599 548 1051 290 1341
4813 292 4521 550 5071
26561 1465 803 662 478 1140
25096 478 24618 803 25421

No Expression Signal
With Expression Signal

Comparison of the expressed and not expressed genes between the putative
pollen specific genes detected at the previous step also revealed that, 292 of
these putative pollen specific genes are specific in the physiological condition
while 550 of these putative pollen specific genes are expressed only when the
pollen undergo the heat shock.

Due to these evidence, an integrative approach was undertaken to decipher the
transcriptome changes during tomato pollen developmental stages and under
stress response. As described in the materials and method (see 2.4) and due to
the issues observed in the tomato gene annotation, we exploited an “annotation

free” approach using Tracker to investigate the transcription changes
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DEG Analyses

We localized Hot Regions as those identified by the software Tracker and
resulting as differentially expressed regions when comparing the heat shocked
and the physiological conditions of each pollen developmental stage in the
MACE collectioninterms of number of regions showing up- or down-regulation

signals. These data were also intersected with the iITAG 2.3 annotated loci.

Table 28: MACE Annotation free analyses DEG loci detected with their overlapping status
with the iTAG annotated loci

Comparisons . Associated to  HS
DEG Loci  Status .
(Heat Shock vs. Control) ! a gene loci  Related
Tetrad 15 11;1;‘/(1(15); 6 2
Post-meiotic 71 S&‘ﬁ?) 32 4
Mature 159 g{’,&}},ﬁ; 88 7

Characterize be ... change into Associated to gene loci ...

As presented (Table 28), 15 (10 up and 5 down), 71 (57 up and 14 down) and
159 (112 up and 47 down) Hot Regions were detected in the pairwise
comparison of Tetrad, Post-meiotic and Mature stages in the tomato pollen,
comparing the heat shock versus physiological condition. Among all only 126
(6+32+88) regions were overlapping an annotated locus in which 13 (2+4+7) of
them are heat shock related genes.

Interestingly, 119 regions (genes or isoforms, see MACE Data) were fallen out
of the gene regions in which no functional assignment could be assigned to them
from the iTAG 2.3 official annotation.

We also categorized the differentially expressed/suppressed regions into 4
major trends of (up-up, down-down, up-down, and down up) across the

developmental stages (Figure 55).
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CT=> CPM => CM HST => HSPM => HSM
Trend (TotalDEG) (5898) (5337)
Tetrad Post meiotic Mature All-iTAG-Revised Common All-iTAG-Revised

' UP-UP 67 9 61
DW-DW 141 2 179

Up-DW 20 0 15

DW-UP 88 15 44

Other 5582 5038

Figure 55: Statistics regarding the MACE detected DEGs with respect to their up- or down-

regulation trend

Figure 55 lists the differentially expressed/suppressed regions annotated with
the iTAG 2.3 revised annotation (see 2.4.1) in which, different number of genes
showing common and different trends in the sense of expression across the
physiological and heat shock conditions are demonstrated.

We also considered the same approach to detect hot methylated or under
methylated regions from MethSeq data provided by GenGPro Company
(Frankfurt, Germany).

The analysis resulted in a strong de-methylated regions when comparing heat
stages versus physiological ones. Interestingly, the largest number of regions
affected by the phenomena are at the firststage of pollen development indicating
that the stress caused a drastic change of methylation status (usually repressing
expression) to de-methylated ones (Figure 56.B).

Comparing the expressed regions with those de-methylated (Figure 56.A and
B)
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Pairwise Expression Comparison of
Heat vs Control Condition
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Figure 56: A) Genes differentially expressed and suppressed, and B) Methylated and de-
methylated CCGG sites (Opening of chromatin) in response to heat shock during the
developmental stages of Tetrad, Post-Meiotic and Mature Pollen.

The general trend of expression and methylation, comparing the heat shock and
physiological conditions for each pollen stage, across the developmental
processes can be overviewed. In terms of the expression (Figure 56.A), an
increase of down-regulation and up-regulation of the genes across the
developmental stages is observed. However, except the tetrad stage, a higher
down-regulation comparing to the up-regulation of the genes in the same stage

for the other two stages is presented. Interestingly, the de-methylation event
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preceded and accompanied the expression in the corresponding stages with a
significant difference comparing to the methylation process (619 vs 145 in
Tetrad, 543 vs 87 in Post-meiotic,and 209 vs 150 in Mature). Although the de-
methylation is decreasing in the pair wise comparison of each developmental
stage, the de-methylated regions comparing to the methylated regions along the
pollen development under heat shock is increasing significantly. This can be the
result of tomato plant response to the stress during the dewvelopment. A
chromosomal distribution of this process for each step during the pollen

development is presented in figure below
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Tetrad Control vs. Tetrad Heat Stress
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Figure 57: A) Changes of Methylation and expression in tomato genome and genes during the post-meiotic pollen developmental stages in response to

the heat shock stress
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Post-meiotic Control vs. Post-meiotic Heat Stress
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Figure 57.A shows the differentially expressed/suppressed and methylated/de -
methylated sites in the Tetrad stage comparing the heat shock versus the control.
A large number of de-methylation together with some genes up-regulation are
observed. Figure 57.B is the demonstration of methylation and expression status
of the genome and genes when comparing the heat shock versus physiological
condition in the Post-meiotic stage. It is shown that the de-methylation of the
genome is evident. Also the up- and down regulation of the genes are increasing
comparing the previous stage (Tetrad). Looking at the mature stage of pollen
comparing the heat shock versus the physiological condition (Figure 57.C), it is
observed that the de-methylation of the genome is still ongoing but to a less
extent comparing to the previous stages of the pollen (Tetrad and Post-meiotic).
The GO Enrichment analyses for the up- and down-regulated genes detected in
our approach considering all the developmental stages also suggests biological
processes such as response to the endoplasmic reticulum stress, regulation of
pH, methylation, cell wall modification and mitochondrial organization, and
developmental vegetative growth are enriched during the pollen developmental

under heat shock.
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Figure 58: Representation of Gene Set Enrichment Analyses for the genes Differentially
Expressed or Suppressed in HSR during the developmental stages of Tetrad, Post-Meiotic
and Mature Pollen.

These results can provide a comprehensive overview of the phenomena implied
in tomato pollen dewvelopment under heat stress, helpful to underlie the
mechanism involved and the general biological process. On the other hand, due
to the lack of a complete annotation for tomato, a large humber of Hot Regions
are not functionally identified. This requires further experimental and
bioinformatics minings to characterize the differentially expressed/suppressed

sites (hot regions) where they are not fallen in a predicted gene locus.
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3.5.5 The Role of TE-Derived Small Interfering RNAsin Tomato Pollen

Development

A genome wide analyses on the small-RNA collection (see 2.2.1) provided by
GenXPro (Frankfurt, Germany) with respect to their interaction with the TE
elements was conducted. Specifically, since nowelties from miRNAs were
already provided by GenXPro (Frankfurt, germany), we focused on a different
aspect.

Out of 74,469,092 sequencing reads generated after removing low quality reads,
we mapped 94.3% of the reads (which were ranging from 11-38nt. We obtained
the percentage of reads mapped per each size class over the total mapped reads
for the respected condition. We calculated the fraction of reads per each library

for each size class (Figure 59).
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Figure 59: Fraction of reads in library for each of size class per each tissue/stage in pollen
developmental stages
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As it is demonstrated in the Figure 59, no significant changes are observed
between the similar stages under control and heat stress. In contrast, a
significant change is observed in the 21.22 and 24 nt classes between the

developmental stages.

Notably, we found that the abundance of 21-22nt class and 24nt classes were
significantly switched during pollen development (Figure 60).

Basing our analyses on the 2 classes of 21, 22 and 24 nt RNA fragments, we
considered the type of mapping into unique and multiple mapped on the

genome.

In the tetrads and post-meiotic stages, the 24nt Small-RNA predominated the
Small-RNA reads (52% and 46%); however, at mature stage (binucleate pollen),
the 21-22nt Small-RNAs became dominant (38%), while the abundance of 24nt
Small-RNAs was drastically reduced (to 27%). Within the 21-22nt class, the
relative abundance of 22nt Small-RNAs over 21nt Small-RNAs was significantly
increased from PM stage (63% +2.5%) to M stage (75%+1.2%) (P=0.010).
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Figure 60: Fraction of reads foreach 21, 22 and 24 nt size class of Small-RNA normalized
by reads per million (RPM) normalized for each of the stages in Pollen.

Among Small-RNA reads that mapped to repeat region of tomato genome, both
uniquely mapped and multiple mapped reads were significantly altered from
PM to M stages (P<0.05) (Figure 60).

Table 29: Number of Small-RNA clusters generated for the 21, 22 and 24 nt classes and their

repeats overlapping status

21-22nt 24nt
Total Cluster generated 29638 85755
On repeats 24882 71588

(83.9%) (83.5%)
On gene-coding region 762 (2.5%) 1716 (2.0%)
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As presented in Table 29, a total cluster of 29638 and 85755 Small-RNAs for
the 21, 22 and 24 nt classes were generated respectively (see 2.6.3). Ower all the
clusters, 83.9% for the 21, 22 nt and 83.5% for the 24 nt classes were located
on the repeated regions. The clusters generated for the 21-22nt were ranging in
the length from 25bp to 9063bp (Median: 971bp) while for the 24 nt were
ranging from 100bp to 31259bp (Median: 2658bp).

Repeat classes:
P Simple 21-22nt Simple 24nt

5%
DNA 6%

transposon
4%

DNA
transposon
7%

LINE
0%

SINE
0%

Figure 61: The intersection of the 21, 22nt and 24 nt Small-RNA classes with the iTAG 2.3

repeats aggressive.

As presented in Figure 61, the majority of the Small-RNAs are located in the
LTR repeated regions (over 75%) while the other repeat classes such as low and
simple overlap over 12 and 6 percent of the clusters respectively. During pollen
development, we identified 4,488 and 55,458 of 21-22nt and 24nt differential
expressed Small-RNA clusters (DEC= Differentially Expressed Clusters) on
repeat region respectively. Specifically, 596 (13.3%) of 21-22nt clusters and
284 (0.5%) of 24nt clusters were significantly altered from tetrad to post-
meiotic stage; 3,892 (86.7%) of 21-22ntand 55,174 (99.5%) of 24nt Small-RNA
clusters were significantly altered from post-meiotic to mature stages. We
further annotated the DECs to repeat regions on the tomato genome, including
both class | retrotransposons (LTR, LINE, and SINE) and class II DNA
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transposons (Figure 61). The majority of DECs (80-85%) are located at the

Long-terminal-repeat (LTR) retrotransposons.

Unlike miRNAs, which function mainly in post transcriptional gene silencing
(PTGS) mechanism, there is a class of Small-RNAs (siRNAs) that can function
in both PTGS and transcriptional gene silencing (TGS). In PTGS, siRNAs target
transcripts specifically by sequence complementary, similar to the action of
mMIiRNAs; while in TGS, siRNAs rather mediate DNA and histone modification
events to surrounding genome regions, thereby influencing transcription ability
[161]. To determine whether the 21-22nt and 24nt Small-RNAs could be
involved in the same mechanism during tomato pollen dewvelopment, we
associated the 21-22nt and 24nt differential expressed clusters (DECs) to their

mapping patterns on the genome respectively.
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Figure 62: a) and b) are schematic representation of two types of mapping patterns in Small-RNA libraries. c¢) Dot plot showing the differential
mapping patterns of 21-22nt and 24nt siRNAs at DECs. X-axis: SiRNA expression changes, represented as log2 fold change between development

stages. Y-axis: Density of according DECs, where density=Number of mapped reads / length of clusters.
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We were able to identify differential mapping patterns for 21-22nt DECs and
24nt DECs at both developmental stage transitions: from tetrads to post-meiotic
and from post-meiotic to mature. The 21-22nt Small-RNAs were mostly densely
mapped to specific loci with high abundance, likely involved in PTGS; while
24nt Small-RNAs mapped with low density, but covering broader genome

regions, are likely involved in the TGS mechanism.

CpG methylation was not affected by siRNA alterations in repeats

We next investigated if the differential expression of siRNAs altered the DNA
methylation status at surrounding loci. It has been reported that during plant
gametogenesis both asymmetric CHH methylation and symmetric CG
methylation went through reprogramming, preferentially in sperm nucleus and
vegetative nucleus respectively [67, 162, 163]. Using methylation-sensitive
restriction enzyme-assisted DNA methylation deep sequencing (Meth-Seq), we
were able to detect genome-wide CG methylation during pollen development.
We found that in tomato pollen, even though TE-derived siRNAs (both 21-22nt
and 24nt) were differentially expressed at both stage transitions (from T to PM,

and from PM to M), the CG methylation level was not affected (Figure 63).
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Figure 63: Methylation changes in the developmental stages of pollen in transition from
Tetrad to post-meiotic and Post-meiotic to Mature stages.
TE-derived siRNA affected the expression of adjacent genes

The siRNAs have been shown to affect TE activity, which can further influence
transcription ability of neighboring genes [164]. Therefore, we further

investigated if alteration in SIRNAs expression (or targeting) affected nearby
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gene expression in tomato pollen development. To assess the relationship
between siRNA abundance and nearby gene expression, we measured the
distance from any TE-mapped, differential expressed siRNA clusters (DECs)
(either 21-22nt or 24nt) to its nearest neighboring gene, including 5kb upstream
of TSS (Transcription Start Site) and 5kb downstream of TTS (Transcriptional
Termination Site). The effect of siRNA alteration on gene expression was
further separated as to whether the siRNA clusters were up-regulated or down-
regulated during development (from T to PM, and from PMto M). The genome-
wide gene expression data were generated from Massive Analysis of cDNA
Ends (MACE).

Owerall, we identified 310 and 1,005 genes potentially affected by 21-22nt
SiRNA targeting or 24nt siRNA targeting respectively. We found that, for the
21-22nt class, gene expression level was most strongly influenced by DECs
located close to the TSS (Figure 64.a). The most proximally located genes (to
the up-regulated DECs) showed an awerage 4 fold up-regulation in gene
expression (log2 fold change of 2); as the distance increased to 2kb from DECs,
the influence on gene expression became trivial (log2 fold change of 0); when
the distance was about 5kb apart, gene expression become negatively correlated
to the siRNA changes. Similarly, genes proximal to the down-regulated DECs
were averagely down-regulated (log2 fold change of -2 to 0). Howewer, forthe
24nt class siRNAs, the effect of DEC proximity on gene expression is not
detectable (Figure 64.b). These results showed a differential influence of 21-
22nt or 24nt siRNAs (targeting to TES) on their nearby gene expression,
possibly indicating their differential involvements in cellular mechanisms and

functions.
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Figure 64: DEC and neighboring gene expression during pollen development. Linear regression models showing the relationship between the distance
(kilobase) of DEC to TSS and the change of the corresponding gene expression (log2 fold change) for 21-22nt siRNAs (a and b), and 24nt siRNAs (c
and d). Grey area: 95% confidence interval (CI) for the linear fit. Red dotted line: log2 fold change=0.
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We further annotated those genes that are differentially expressed by siRNA
targeting. GO enrichment analyses revealed that genes involved in metabolic
and biosynthetic processes, actin filament bundle and nucleosome assembly,
cell cycle and embryonic development, as well as cellular defense functions

were significantly enriched (Figure 65).
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Figure 65: The GO Enrichment analyses for the genes adjacent to the SiRNA targeting on
the genome affected in the expression level.

The spatial distance between the Go terms indicates the similarity and
dissimilarity of the GO terms, while the ratio of the size foreach circleis related
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to the GO frequency in the subset. The color indicates the enrichment adjusted

p-value for the fisher exact test.

siRNAs Pathways were developmentally regulated

Cascades of genes are involved in both the production and the targeting of 21-
22nt and 24nt siRNAs specifically in plants [165]. To determine how these
genes are regulated during tomato pollen development, we performed pathway
analyses using gene expression data generated from MACE. In the 24nt SIRNA
pathway, genes involved in siRNA processing and targeting (e.g. HEN1,
AGO4/6/9), as well as RADM (e.g. SUVH2/9, DMS3) were significantly up-
regulated at the post-meiotic and mature stages; genes involved in chromatin
modification (e.g. MET1, DDM1, LDL1/2) were highly expression throughout

development stages (Figure 66).
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Figure 66: The expression heatmap and clustering of the genes involved in the 24 nt siRNA

pathway.

In the 21-22nt siRNA pathway, there was a prominent elevation in the siRNA
production genes (e.g. DCL2/4) at the PM and M stages, correlating with the
significant up-regulation of 21-22nt siRNA abundance (Figure 67).
Interestingly, an important gene NERD involved in non-canonical RdADM was

also up-regulated in the mature pollen (Figure 67).
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Figure 67: The expression heatmap and clustering of the genes involved in the 21-22 nt

SiRNA pathway

3.6 Summary

As presented in this chapter, the materials used, and the methods to collect,
process, reconcile and analyze them was presented in details. In terms of the
bioinformatics platforms developed, the architecture used and the data sources

included in each partition was also presented.
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4 Conclusions

In the light of the SPOT-ITN projectobjectives, and to provide a comprehensive
bioinformatics infrastructure to support extensive genomics analyses in tomato,
we collected, processed and integrated different resources; and organized them
into dedicated databases with appropriate query user interfaces. In this thesis,
the main efforts undertaken and the analyses conducted on the basis of such

resources with the strategies and approaches developed are reported in details.

Deeper investigation on the two available reference genome sequences of the
tomato revealed that the newly released genome (SL2.50) is the reorganization
of the previous version (SL2.40) based exclusively on added gaps (in the form
of “N” insertion) and some genomic sequence’s inversions. In other words, both
of the genome sequences are the same in the sense of their genomic content
which was not immediately derived from the presented paper associated to the

second release ref.

Comparing the two available iTAG gene annotations for tomato we also
revealed that except two genes that were remowved in the newest wersion
(iITAG2.4) , all the other genes were transferred to the new annotation
considering the genomic location shifts caused by the gap insertions in the new

genome release (see 2.4).

Deeper investigation on the tomato iTAG gene prediction also highlighted
several issues in the annotation regarding the miss-annotated and ambiguous
genes. We found that many genes from iTAG have multiple copies on the

genome overlapping other predicted loci. In many cases the genes are also
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mapped on regions where no gene were predicted by the consortium. Moreover,

303 genes were predicted completely inside the repeated regions.

We also detected several genes that are predicted as split genes with respect to
the possible correct loci (putative split genes). These issues can highly
compromise genomic analyses such as gene expression quantification and
functional investigations. To give support to this end we contributed a revised
version of the iTAG gene annotation to highlight, and in some cases correct,

these issues.

Due to the availability of the two different annotation pipeline for tomato (iTAG
and RefSeq), we processed them into different alternative annotations described
to meet the need of the interested scientific community. We also further
analyzed the Heinz RNAseq collectiononthe basis of these annotations, and the
results revealed a better coverage for the uniquely mapped reads on the genome
for the iTAG annotation complemented with RefSeq (iTAG preferred, see 2.4.2).
Deeper analyses are however required to define an updated annotation for

tomato.

The effort to organize resources for tomato resulted in the several dedicated
platforms. The aim was to allow the exploration and exploitation of the tomato
genome space in an integrative way. The platforms are enriched with user
friendly interfaces allowing ease of access to the processed collections using
query dialog boxes. We setup a unique genome platform including both tomato
genome sequences and the unmapped BACs. The availability of querying all
the EST, TC and unigene collections mapped on both genomes together with
the availability of different annotations are some of the peculiarities of our
infrastructure. Indeed, though sewveral reference sites are available for tomato
[55, 135, 136], no platform provide access to the whole Solanaceae EST, TC
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and universal unigene collections together in as tarcks mapped on a common

genome reference.

We also designed and setup an expression platform in which, at the current
setting for tomato (NexGenEx-Tom), access to different processed NGS atlas
collections (S. lycopersicum cv. Heinz, S. pimpinellifoliumand Ailsa Craig) was
made available. The possibility of gene expression profiling and differentially
expression analyses in one single click, and the availability of different online
toolboxes for the cluster analyses and GO Enrichment are the main peculiarities
of this platform. NexGenEx-Tom is also enriched with a cross link to the tomato

genome platform.

We also implemented an otholog database and the dedicated interfaces enriched
with different ortholog collections (see two ortholog collections sections 2.8.3)

allowing the extensive comparative genomics between different species.

The different transcriptome collections from ESTs, TCs, and unigenes were
processed when necessary (raw ESTs) and integrated in the infrastructure.
Thanks to the availability of such transcriptome data, besides of being useful
for the comparative genomic and exhaustive genomics analyses, they supported
us to better exploit the tomato genome reference and its genomic content. Using
these collections, we also investigated the content of the 112 unmapped BAC
sequences (those that were not anchored to the tomato pseudomolecules),
providing information not considered in the reference tomato genome

sequences.
The availability of some public and private NGS data collections allowed us to

further investigate the tomato genome space in terms of its expression content.

As an example, the availability of the Heinz expression data from 11 tissue

189



stages supported general owverviews on gene expression in the different

tissues/stages.

We also presented that to properly process, integrate and investigate such data
collections, various tools analytical approaches were necessary, with some of
them implemented during the thesis work. Examples come from Tracker, a tool
to conduct annotation free analyses due to the limits in the gene annotation, and
Overlapper, a tool to intersect different genomic features; and NGS data
analyses pipelines that analyze NGS data collections in parallel; etc. (see 3.2)
that were implemented to allow genome wide investigations when a preliminary

gene annotation is available.

Getting advantage of the developed tools, approaches and the bioinformatics
platform we setup, we were able to carry out the integrative analyses on the
tomato pollen developmental stages deciphering the role of heat shock on the
gene expression and on genome reorganization in terms of methylation of CpGs
changes. Our finding suggested that the genome methylation is affecting the
gene expression during the developmental stages as the plant response to the
stress (see 3.5.4).

We also applied our methodologies and tools for the identification of the TE-
derived small-RNAs characterizing the role of the 21-22 and 24 nt Small-RNA
fragments on the silencing of the Transposon Elements during the
developmental stages of tomato pollen in physiological stages and also in
comparison with the heat shock conditions. Based on our analyses, no
significant change was observed between the similar stages under control and
heat stress. On the contrary, a significant change is observed in the 21.22 and
24 nt Small-RNA classes between the developmental stages. Notably, we also
found that the abundance of 21-22nt class and 24nt class Small-RNAs were
significantly switched during pollen development. We also intersected these

changes with the expression and methylation for the pollen developmental
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stages in the physiological condition. Our findings suggests that the
differentially regulation of the small-RNAs might have some effects on the
adjacent genes expression level while no significant methylation changes in the
developmental stages of pollen in the physiological condition were observed
(see 3.5.5).
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5 ANNEX I: Bioinformatics Tools

5.1.1 Bulk-Sorter

Motivation

Sorting is one of the routine parsing events which may be required very often
when working with the text files. With the advent of high-throughput
technologies and the amount of data they offer, management of these data files
is a big challenge to overcome. Searching for a feature or record, intersecting 2
files to find the overlaps and indexing of the records in a flat file for easier and
faster random access are of those processes that can be done easier and more
efficiently on a sorted file. However, the memory resources on the computing
machines are limited, and management of bulky files in memory can be
impossible in most cases. Hence, the availability of such a tools to easily sort

large files in short with low memory consumption is essential.

Description

Getting advantage of the Merge Sort approach [164], we deweloped a simple
merge sorter (so called Bulk-Sorter) that can manage to sort text files with any
size on any memory resource. Depending on the memory size the user specifies
for the software, the tool splits the file into sub fragments in which each file is
sorted independently. The merging process will then be done on the fragmented
file parts considering the sorting of the incoming records from each fragmented
part. Eventually the whole files is sorted into one merged file and the sub
fragments are removed (refer to the Merge Sort Method Description). The tools
is also implemented as an external module in the sorting section of the Tracker

pipeline. The tool can be run under both Windows and UNIX environments.
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5.1.2 Small-RNA Analyses Pipeline

Motivation

Seweral tools and pipelines exists for the Small-RNA target analyses [67, 96,
165]. The need for a Differentially Sites detection of Small-RNAs with the
possibility of customizing its steps due to the needs and requirements of our
analyses resulted to the development of a Small-RNA pipeline in which,

different tuning of settings and thresholds can be orchestrated.

Description

The Small-RNA pipeline designed is a general Differentially Sites of Small-
RNAs detection in which, 1) detection of Small-RNA classes with significant
changes (e.g. 21+22 nt or 24 nt sequences), 2) categorization and classification
of different Small-RNA classes to be subjected to the downstream analyses
(keeping only the 24 nt sequences and discarding all the others), 3) selection of
Small-RNAs on specific genomic regions with to address some dedicated
biological questions (e.g. those only owverlapping the repeated regions on the
genome), and 4) clustering of adjacent Small-RNA sequences to create
customized or universal reference genomic features for the counting is made
possible in a convenient and efficientway. The sequence size selectioncan be

conducted before or after the mapping process.
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Figure 68: A general Small-RNA analyses workflow and pipeline schema

The detected Changing Clusters or Sites can be then intersected (using

Overlapper software) with other genomic regions (coding or non-coding

features) for the downstream analyses. The tool can be run under both Windows

and UNIX environments.
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5.1.3 Correlationer (maybe remove)

Motivation

Correlation analyses is the basis of many approaches in the field of
bioinformatics. Generation of gene networks and reasoning on the relation of
molecular components are often made by considering the level of correlation
the 2 objects (genes or compounds) possess across different conditions.
Howewver the concept is quite simple and several packages implement the
correlation coefficient calculation with a simple function (R environment,
Matlab etc.), calculation of the correlation level among a list with thousands or
millions of records is a challenge is not simply possible. In most cases such as
or Matlab, an errorindicating lack of memory is produced, or the result will be

very hard to manage.

Description

With regards to the importance of correlationcoefficientcalculation as the basis
of many approaches used, and due to the challenges and limits the correlation
coefficient calculation of thousands of genes, all versus all, may introduce, we
developed the tool “Correlationer” to memory efficiently calculate this value
for all the components. The Correlationer calculates the Pearson and Spearman
correlation coefficient of all the elements versus all the others (with any
dimension) allowing to specify a threshold of correlation to discard those not
passing that value. Hence, only the genes with a specific threshold specified as
the accepted level of correlation (positive, negative or both) will appear in the
output. Since the correlation coefficients are being calculated once at the time,
the memory consumption is very low, but it also increase the time of processing.

The tool can be run under both Windows and UNIX environments.
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5.1.4 K-means calculator and Analyzer

Motivation

K-means clustering is one of the most common and popular clustering
algorithms used for the omics data. It has been implemented in several packages
(R environment and Matlab) which allows the users to cluster the list of
elements specifying a cluster number (k). The possibility of rescaling or
normalizing input data is also possible with some scripting in the respective
environments. Howewver, such tools exist, having a simple interactive tool
efficiently working on bulk datasets, and producing final outputs with some
stats (frequency of clusters and their distribution) is an advantage to obtain.
Moreover, running the clustering with multiple number of clusters (different K
values) is a good way to obtain the best cluster number disjointing the dataset

groups.

Description

Here we developed a console application for the k-means cluster analyses and a
supplementary package to test different K values to obtain the best cluster
number for the analyses. The number of iterations, scaling by min-max scaling
on rows or all the set can be easily specified as the input parameters. K-means
calculator a fast and efficient package in which the outliers for each cluster and
the frequency and distribution of the clusters are reported in separate output

files. The tool can be run under both Windows and UNIX environments.
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5.1.5 FastaToBatchMapper

Motivation

Bioinfromaticians are routinely facing the sequence mapping on the reference
sequences. Often happens that thousands or millions of transcripts or protein
sequences in the form of multi-fatsa files are supposed to be mapped versus a
genome or reference sequence to identify its genomic origin or mapping
location. Due to the advancement of computational technologies and the
availability of parallel processing approaches, splitting of big jobs into smaller
jobs and distributing them on different nodes/processors or even threads (if
multi-threading available) are a common and useful methodology to be
considered. The job management software applications simply manage your
jobs and eventually the output files are produced. Normally the time consumed

are divided by the number of sub-jobs you have ran in parallel.

Description

Here we present the FastaToBatchMapper as a simple tool in which the fasta
sequences inside the multi-fasta file(s) are split into cluster of fasta sequences
(the number of sequences in each file is specified by user), and the mapping of
these sequences, specifying the mapping parameters depending on the mapping
software, is parallelized on the available nodes and cores of the high-level
computing machine. The software at the moment is designed to work with the
GenomeThreader [49] mapping tool and TORQUE job management system

(http://www.adaptivecomputing.com/products/open-source/torque/). The tool

organizes the analyses of each fastaf ile in a separate folder collecting the
mapping outputs in the result directory. The distributed mapping outputs are

then combined, indexed, and parsed into a valid GFF3 file format.
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Figure 69: the schema of the distributed and parallelized sequence mapping pipeline
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The tool can be run under both Windows and UNIX environments.

5.1.6 Genome Scanner

Motivation

In the genomics area, it may happen that the general knowledge concerning the
dense, overlapping and noncoding regions of the reference genome is required.
Sewveral visualization tools such as IGV [], GenomeBrowser [] and JBrowse []
provide the possibility of browsing the genome reference (limited to a specific
view) for this observation. Nonetheless, scanning of the whole genome to gain
the detailed knowledge of each genomic region with customized annotation files

is not easily possible.

Description

We deweloped a genome scanner tool in which the cowerage of each base
regarding its overlapping with any genomic region (specified as one of the
inputs) is reported in details. Possibility of reporting the bases with specific
coverage is also possible in the genome scanner. Genome Scanner is not very
memory efficient but provides in-depth and detailed information regarding each

base. The tool can be run under both Windows and UNIX environments.

5.1.7 Sequence Length Classifier

Motivation

In many genomic analyses (e.g. small-RNA or micro-RNA analyses),
classification of sequences into respective length classes, before or after the
mapping, is an important issue to be addressed. As an example, for the micro-

RNA analyses targeting the coding sequences, filtering out all the sequences
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longer or shorter than the accepted micro-RNA sequence length is essential.
Besides of being able to have a robust idea on the mapped or not mapped
sequences, the time for the mapping or analyzing of the non-relevance

sequences are also reduced.

Description

Here we present a tool for size classification of sequences before (fastq file
format) or after mapping (sam file format), in which a specific or multiple
relevant size classes can be combined together. The output file format is
identical with the input file introduced to the software, excluded from the non-
relevant sequences. The tool can be run under both Windows and UNIX

environments.

5.1.8 Sequence Length Distributioner

Motivation

Understanding of the length distribution of the available sequences in a sample
can be important for several reasoning purposes. As an example, in a Small-
RNA fastg file, understanding of the frequency of sequences with specific
lengths can result to better evaluation of samples and more proper sequences
size class extraction. Development of a tool parsing and calculating the fastq

file in a distribution table is a handy tool to be available.

Description

Sequence Length Distributionerisa simple parser summarizing all the available

lengths distribution in a/multiple fastq sequence files. The tool produces a tab

218



delimited distribution table for each sequence size. The tool can be run under

both Windows and UNIX environments.

5.1.9 SequencePatternDetector

Motivation

Detection of all the specific sequence patterns on the reference sequence (e.g.
Heat Shock Element binding sequences [163] detection or CpG sites for
methylation analyses [7] etc.) can be often faced in the reference based data
analyses. To the best of our knowledge, IGV provides rapid investigation of a
sequence on the genome which allows the browsing of its genomic region on
the genome reference. But still a tool to list all the existing patterns with their
genomic locations can be very useful for the reference annotation production

and changing sites detection.

Description

SequencePatternDetector is a tool to detect all the genomic or reference
sequence locations matching a specific sequence pattern. For instance by
providing the CCGG as the matching pattern sequence, all the possible sited that
can be cut by Hpall will be extracted and their chromosomal locations will be
listed in the output file. By checking the cut and not cut sites by the restriction
enzyme for all the detected regions, the sites differentially methylated can be
detected easily. The tool can be run under both Windows and UNIX

environments.
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6 ANNEX II: Bioinformatics Platforms and Databases

6.1 Tomato Pollen miRNAome

| contribute the organization of a dedicate website organizing the collection of
novel miRNAs independently detected from the partner GenXPro, Germany in
the framework of the SPOT-ITN project (http://cab.unina.it/mirna-pollen/)
[166].

6.1.1 User Interface and database access

As the default page (Figure 70), the website provides the navigation pane
allowing to mowe to different result views and query pages implemented in the
Tomato Pollen miRNAome database. The website is enriched with a cross-
navigation to the genome browser implemented in the Tomato Genome

Platform presented before (see 2.8.1).
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Tomato Pollen miRNAome

Sections
Home | known miRNAs | Novel miRNAs | GO Aunotation | Citation

Abstract

Background: The unprecedented role of sncRNAs in the regulation of pollen biogenesis on both transcriptional and epigenetic
levels has been experimentallv proven. However, the knowledge on their global regulation. especially under stress conditions, 1s
still scarce. We used tomato pollen m order to identify pollen stage-specific sncRNAs. We further deploved elevated
temperatures to discern stress responsive sncRNAs For this purpose high throughput sequencing has been performed for three-
replicated sncRINAs libraries originated from tomato tetrad. post-meiotic. and mature pollen from control and heat stress
conditions. Results: Among those three fissues. post-meiotic and mature pollen react most strongly by regulation of the
expression of coding and non-coding genomic regions in response to heat. Using onuBAS we identified known and predicted
novel miFNAs responsive or not to heat. To gain msight to the function of these muRNAs we predicted targets and annotated
them to Gene Omtology terms. This approach revealed that most of them belong to protemn binding. transcription. and
Senne/Threonme kinase activity GO categories. Moreover we observed differential expression of both tENAs and snoRNAs
tetrad. post-meiotic. and mature pollen comparing normal and heat stress conditions. Conclusions: Thus, we describe a global
spectrum of sncRNAs expressed in pollen as well as unveiled those which are regulated at specific time-points during pollen
biogenesis. We mntegrated the small RNAs mto the regulatory network of tomato heat stress response in pollen.

All Rights Reserved©Copyright 2015

Figure 70: snapshot of the miRNA-Pollen webpage available at http://cab.unina.it/mirna-pollen/
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Based on the procedure described in [166], the already known identified
mMiRNAs listing their abundant changes between the three stages of pollen
development (Tetrad, post-meiotic, and Mature) are presented in the “Known
miRNA” section of the database. The adjusted p-value for the pairwise
comparison of the miRNA abundance is also presented in the FDR column.
Each of the columns can also be sorted by clicking on its header title (Figure

71).
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Sections
Homie | known miRNAs | Novel miRNAs | GO Annotation | Citation

norm.CT norma.HST log2fc CT HST fdr CT HST norm.CPM norm.HSPM log2fc CPM HSPM fdr CPM _HSPM norm.CM norm.HSM leg2fc CM_HSM fdr CM_HSM

sly-miR-
0210- 108 231992 276208 0.251677 0.889901 404524 348.993 -0.213028 1 24483 465.632 0.927409 0272086
tzdb

sly-miR-
0211- 108 281823 372427 0402168 0.889901 65.5089 29.6252 -1.14487 1 816194  181.019 1.14916 0336385
tgdb

sly-miR-
022-tgdb

sly-miR-
023-tgdb

sly-miR-
024-tgdb

sly-miR-
025-tgdb

sly-miR-
027-tgdb

sly-miR-
028-tgdb

sly-miR-
0310- 108 810058  95.9744 0.244624 0.889901 94.2495 64.0529 -0.557221 1 96.5318 132433 0456183 0.462161
tzdb

sly-miR-

0311- 108 827078  100.928 0.287238 0.889901 96.781 65.4047 -0.565331 1 103.61 139.161 0.425585 0.470998
tzdb

sly-miR-

0312- 108 827078  100.928 0.287238 0.889901 96.781 654047 -0.565331 1 103.61 139.161 0.42558

108 330.084 438114 0.408475 0.889901 256.789 202,517 -0.342542 1 148.814  203.073 0.448482 0.379023

108 332415 441309 0.408803 0.889901 25937 204.629 -0.342002 1 150.854 204754 0440734 0.382306

108 249.149 339308 0.445587 0.889901 322916 230.089 -0.488966 1 214468 296901 0.469219 0.462161

108 179.005  232.656 0.378196 0.889901 147.067 104.444 -0.493748 1 115102 155931 0.437996 0.462161

108  81.1818  96.4406 0.248485 0.889901 94332 64.3835 -0.551056 1 06.5318 133513 046574 0.462161

108 811818  96.4406 0.248485 0.889901 94332 64.3835 -0.351056 1 06.5318 133313 046574 0.462161

wh

0.470998

Figure 71: snapshot of known miRNAs from the platform
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Based on the methodology and procedure described for the novel miRNAs
detection in [150], the list of novel miRNAs identified in the collection
including sewveral accessory information such as genomic region (chromosome,
start, end, and strand), the energy and sequences are provided for each of the

stages (see 2.2) (Figure 72).
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Sections

View by: All M

stage mame chr st en star_sequence mature_sequence
Post-meiotic Pollen SL2.40ch12 12524 SL2.40chl2 63094877 63095144 - -1333 AGGTTCTAATGTCAACCATGT ATTGTTGACATAAGTACCTGT
Post-meiotic Pollen SL2.40ch09_6937 SL2.40ch09 51705112 51705381 + -8373 GTITGCCCTGCAGGGAGATGAA CATCTCCCTACAAGGCAAGTA
Post-meiotic Pollen SL2.40ch00_1102 SL2.40ch00 12537499 12537768 + -81 GGTTCAATAAAGCTGTGGGAA TCCACAGCTTTCTTGAACTGC
Post-meiotic Pollen SL2 40ch00_1141 SL240ch00 12631154 12631423 = -5699 CTTITGTGACACTAGTTTGAAAAAA CTCACAAGATAGTGTCACGTAGAC
Post-meiotic Pollen SL2.40ch00_141  SL2.40ch00 2016837 2017106 + -53.62 CTITTTGAGGATTTTTGAGATTIC TTCTCAAACAATTTTCAATTTTAC
Post-meiotic Pollen SL2.40ch00_3421 SL2.40ch00 20038625 20038892 - -52.12 TGTCTACAAAGTCCTTATTIT CATGACAGCTTTGACATGACGACG
Post-meiotic Pollen SL2 40ch00_3791 SL240ch00 18265604 18265871 - -7437 TTGTGAAAGTTGGAGGTCAAAGT TTATGCTCTTAAACTTITGGATGTG
Post-meiotic Pollen SL2.40ch00_4396 SL2.40ch00 15325404 13325671 - -51.9 GAAGGTTCAATTGGCGTTTCTATA TTTAATAATGCCCGAACTCTTTC
Post-meiotic Pollen SL2.40ch00_5330 SL2.40ch00 8770264 8770531 - -552 ATCTCGTTTTGAGAATCAAGATA TAACACGTTATCAACACGAGACTC
Post-meiotic Pollen SL2 40ch00_5585 SL240ch00 6581480 6581747 - -12967 AAAATAAGTTCAGGGGGGTAA ACCCCTCTGAACTTATTTCAT
Post-meiotic Pollen SL2.40ch01_1009 SL2.40ch01 2575786 2576055 + -140.1 GTCCTAAAATACTCTAATTCAAAC TTGAATTAGAACATTTTAGGACTA
Post-meiotic Pollen SL2.40ch01_10390 SL2.40ch01 70879593 70879862 = -79.84 ACGTTITGTGCGTGAATCTAAC TAGATTCACGCACAAGCTCGT
Post-meiotic Pollen SL2.40ch01_10590 SL2.40ch01 71389466 71389735 + -473  AACTCAATTATATATGATCTC GATTTCGGGTATAGATTAAGGAGG
Post-meiotic Pollen SL2.40ch01_1088 SL2.40ch01 2722512 2722781 =+ -72 ATTCAGGGCTATCGATA TCGATACGCACCTGAATCT
Post-meiotic Pollen SL2.40ch01 11375 SL2.40ch01 73665788 73666057 + -905  AAACACTAGTATATTGTGTTTTTT AAMACACAATATACTAGTGATTTC
Post-meiotic Pollen SL2.40ch01_118  SL2.40ch01 331164 331433 + -833 CTGAAATTCCAAAAACACACCTTA AGATGTGTCTCTGAGATTTCAATT
Post-meiotic Pollen SL2 40ch01_11901 SL2 40ch01 74989995 74990091 + -1932 ACTATTATTGGACATCTGAAA AGAGATGTGTCAAGTCAATAGTGA
Post-meiotic Pollen SL2.40ch01_12400 SL2.40ch01 76334332 76334601 + -52.03 GCATGTCAGTGACTATGT TTGGTTACTGATGGCTA
Post-meiotic Pollen SL2.40ch01 1245 SL2.40ch01 3116729 3116998 + -883 ATATGGAAGAGGTGATTGGAG CCAGTCACCTCATCCGTATTT
Post-meiotic Pollen SL2 40ch01_1253 SL240ch01 3120713 3120982 + -5709 ATTAGGTGAATATGCTAAGGAGATGG ATCTTCTCATCATAAGCATCTTTT
Post-meiotic Pollen SL2.40ch01_1290 SL2.40ch01 3201917 3202186 + -5192 GTGCTCCTCATAAGACTTGTTITA GATTTTGAAGTGTGACGTAGACTT
Post-meiotic Pollen SL2.40ch01 12978 SL240ch01 77887671 77887940 + -8321 CACTATTAGATATGATCTGAT CAGATCATATCTAACAGTGGA
Post-meiotic Pollen SL2 40ch01_14224 SL.2 40ch01 81651855 81652124 + -889  ATTTGATGCTAAGGGCTTAAG TATGCCCTTACCGTCAAATAC
Post-meiotic Pollen SL2.40ch01_14243 SL2 40ch01 81730157 81730426 - -476  GITTTCTATAATCACAAAATGAG CAAGATTGTGAATATAAATTT
Post-meiotic Pollen SL2.40ch01_14464 SL2.40ch01 82368194 82368319 + -632 CTTCCAAAGCTGCAGAAATGA ATTTCTGCAGCTTTGGAATTT
Post-meiotic Pollen SL2.40ch01_14679 SL2.40ch01 82968318 B2968587 + -62.38 ACAAACATTAATTTITAAAAGTAACGA GITCTCCAACTTTGAGTGTGT
Post-meiotic Pollen SL2.40ch01_15139 SL2.40ch01 84522965 84523234 + -838 GAGGGGGCCAAAGTGCCAAA TGGCATTCTGTCCACCTCCC

Post-meiotic Pollen SL2.40ch01 15939 SL2.40ch01 87025279 87025450 = -116.5 TTGAAGTTGGCACCTTGTCTGAT CAGACTGTGCCAACTTCAAAT

Figure 72: snapshot of Novel miRNA page from the platform
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As for the known miRNAs, this result section can be also sorted by each column
allowing to search for similar sequences or the miRNAs in the neighboring

genomic regions.
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Sections

Home | knewn miRNAs | Novel miRNAs | GO Annotation | Citation
By GO Term ID: Filter
By GO Keyword: Filter
By gene functional keyword: Filter

Remove filters

Deatils SL2.40ch00

1102

Dearils SL2.40ch00

1141

TCCACAGCTTTCTTGAACTGC Solyc09g009180.2.1

CTCACAAGATAGTGTCACGTAGAC Solvc08g006500.2.1

Chaperone protein dnal (AHRD V1 *-
*- CBZVX3_ENTGA)%3B contains
Interpro domain(s) IPR003095 Heat

334.41823068

374.70231294

351.34384501

312.74926741

406.6000743

40912872358

GO:0031072:GO:0006457

heat shock protein
binding:protein

shock protein Dnal g
Glutamate-gated kainate-type ion
channel receptor subunit GluR> intracellular

(AHRD V] s
BOHBY7_POPTR)%3B contains
Interpro domain(s) IPR017103
Ionotropic glutamate-like
receptor®s2C plant

Cytochrome P430 80A2 (AHRD V1
#EE. CR0A2 ARATH)%3B contains

7.6708027042

9.6706104966

10.580773131

6.3253416465

8463014427

22373311174

GO:0005217:GO:0005515

ligand-gated ion
channel
activity:protein
binding

Deatils SL2.40ch00 1141 CTCACAAGATAGTGTCACGTAGAC Solvc03g006990.2.1 Tnterpro domain(s) IPR002401 27681631464 71146062552 109.17691423 23685643761 03319950014 009867642  GO:0019825 oxygen binding
Cytochrome P450%2C E-class%2C
group I
Deatils SL240ch00 1141 CTCACAAGATAGTGTCACGTAGAC Solycl2006400.11 Usknown Protein (AHRD V1) 64140003731 28258223183 12453747742 075.67350443 130.37766264 32677048735 NA NA
Peptide deformylase (AHRD V1 i
Deatils SL2 40ch00_1141 CTCACAAGATAGTGTCACGTAGAC Solyc07g0158602 1 BYCKRWO_POPTR)%IB contains 197 g3533031 17581728602 10214035445 20410335766 19057545371 102.00860440 GO-0042586 P
- - Interpro domain(s) IPRO00181 activity
Formylmethionine deformylase -
Beta xylosidase (AHRD V1 ***-
QERIY3_FRAAN)%3B contains bobdiate
Deatils SL240ch00_1141 CTCACAAGATAGTGTCACGTAGAC Solyc01079570.2.1 Interpro domain(s) IPRO01764 40.020533882 24.065585000 26.002020686 15.687636637 13.177675613 35413725166 GO-0005975 e
Glycoside hydrolase®2C family : B
3%2C N-terminal
Carboxyl-terminal peptidase (AHRD
V1 *=*_ B6UST6_MAIZE)%3B
Deatils SL240ch00 1141 CTCACAAGATAGTGTCACGTAGAC Solvcl1g070090. 11 contains Interpro domain(s) 50687356863 3.0737310613 247.45182621 4.7721964543 8.2851540068 308.80952023 NA NA

IPR004314 Protein of unknown
function DUF239%2C plant

1-aminocyclopropane-1-carboxylate

Figure 73: snapshot of the GO Enrichment view of the genes associated or the miRNAs with the possibility of querying by gene 1D, GO keyword or

functional keyword.
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To better understand the role and functionality of the detected miRNAs, the
target genes (genes owerlapping with the miRNA mapping on the genomic
locus), their functional annotation and GO description, and the normalized value
of their abundance in each of the stages (see 2.2) are presented in the "GO

Annotation” section of the database (Figure 73).
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7 ANNEX Il

RNA Isolation

RNA was isolated from pollen in two fractions (Small-RNA < 200 nt and large

RNA > 200 nt) according to manufacturer’s protocol.

MACE Library Preparation

MACE libraries were prepared as previous established protocol established by
GenXPro GmbH (Frankfurt, Germany). Briefly, the large RNA fractions
(>200nt) were rewverse transcribed with SuperScript Double-Stranded cDNA
Synthesis Kit (Life Technologies) using biotinylated poly (dT) primers. cDNA
was fragmented with Bioruptor (Diagenode) to an average size of 250 bp.
Biotinylated cDNA ends were captured by Dynabeads M-270 Streptavidin
Beads (Life Technologies) and ligated with T4 DNA Ligase 1 (NEB) to modified
adapters (TrueQuant, GenXPro). The libraries were amplified by PCR with
KAPA HiFi Hot-Start Polymerase (KAPA Biosystems), purified by Agencourt
AMPure XP beads (Beckman Coulter) and sequenced with HiSeq2000

(Illlumina).

DNA Isolation and Meth-Seq Library Preparation

DNA was isolated from pollen using the DNeasy Blood & Tissue Kit (Qiagen,
Hilden, Germany). Genome-wide analysis of DNA methylation was performed
by MethSeq at GenXPro GmbH (Frankfurt, Germany). Hpall was used as the
methylation-sensitive enzyme, recognizing non-CpG-methylated CCGG sites.
After digestion by Hpall, the DNA fragments were ligated to Hlumina’s p5

primer for sequencing (Illumina).
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sncRNA Sequencing Library Preparation

For preparation of Small-RNA libraries, 5 ug RNA (Small-RNA fraction) was
size-selected (<40 nt) by polyacrylamide gel electrophoresis (FlashPAGE, Life
Technologies) and precipitated. About 30 ng Small-RNA (<40 nt) was
successive ligated (T4 RNA Ligase 1 and T4 RNA Ligase 2, NEB) to modified
3" and 5" adapters (TrueQuant RNA adapters, GenXPro). Adapter-ligated RNA
was reverse transcribed (SuperScript Ill, Life Technologies) and amplified by
PCR (KAPA HiFi Hot-Start Polymerase, KAPA Biosystems). Amplified
libraries were size-selected by polyacrylamide gel electrophoresis (PAGE) and

sequenced (HiSeq2000, Illumina).
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8.2 Manuscripts under review

Ruggieri V., Bostan H., Barone A., Frusciante L. and Chiusano M.L.
(2015). Integrated Bioinformatics: To Decipher the Ascorbic

Acid Metabolic Network in Tomato. Plant Molecular Biology.

8.3 Manuscripts in preparation

Revised Annotation: A guidance forthe Tomato Solanum lycopersicum
cv. Heinz Gene Annotation,

New Tomato Solanum lycopersicum cv. Heinz gene Annotation:
Flourishing of the genome using all the official gene annotations,
validating and cross comparing the elements structure,

The Role of TE-Derived Small Interfering RNAs in Tomato Pollen
Dewvelopment,

Exonate Pipeline: An annotation independent pipeline creating
customized reference annotations (replicate, tissue/stage or condition
based) for Differentially Expression and Methylation analyses,
Exploring the Tomato based on integrated data sources: the gene hunting
season is open,

NexGenEx-Pot: a gene expression platform to inwvestigate the
functionalities of the potato genome,

Tomato Housekeeping genes revised: An NGS Methodology for
Identification of housekeeping genes in tomato,

SPOT-ITN Bioinformatics Platform: A reference platform for tomato
pollen thermos-tolerance (note: platform design finished, pending for

consortium decision: http://www.unina.it/spot-itn-bioinfo).
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8.4 Presentations and Conferences

e Bostan, H. and Chiusano, M.L., 2015. “Reconciliation and Integration:
an essential step towards the modelling of biological systems starting
from omics data”, Sorrento, Italy, 18-22 March (Oral presentation).

e Bostan, H. and Chiusano, M.L., 2014. "SPOT-ITN Data Sharing and
Bioinformatics Platform™. Goethe University of Frankfurt, Germany 8th
December (Oral presentation).

e Bostan, H. and Chiusano, M.L., 2014."A tutorial to the SPOT-ITN Data
Sharing and Bioinformatics Platform". University of Vienna, Austria,
4th November (Oral presentation).

e Bostan, H., Ambrosino, L., Ruggieri, V., Chiusano, M.L., 2014.
“Characterization of Derivative Relationship between Tomato and
Grapevine: A Key Step to Inwvestigate Fruit Development in the Two
Species”. 3rd Annual Conference of the COST ACTION FA1106 on
Fleshy fruit research, Chania, Crete, 21-24 September (Oral
presentation).

e Ruggieri, V., Bostan, H., Barone, A., Frusciante, L., Chiusano, M.L.,
2014. “Integrating omics For Tomato Ascorbic Acid Pathway”.
Proceedings Of the 58th Italian Society of Agricultural Genetics Annual
Congress Alghero, Italy — 15-18 September, 2014 ISBN 978-88-
904570-4-3 (poster).

e Bostan, H., Colontuono, C., Chiusano, M.L., 2014. “Tomato Genome
Annotation: Genome peculiarities or miss-annotation”. BITs Annual
Meeting, Rome, Italy, 23 February (Poster).

e Bostan, H. and Chiusano, M.L., 2013.“Development of a bioinformatics
platform for gene expression analysis in tomato: A first step to
investigate pollen peculiarities”. 2nd SPOT-ITN conference, Arnhem,

Netherlands, 2nd November (oral presentation and poster).
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e Ruggieri, V. Bostan, H., Chiusano, M.L., 2013. “Integrated
Bioinformatics: A key step towards the annotation of metabolic
pathways. An example for ascorbic acid in tomato”. COST ACTION
FA1106 Quality Fruit, Crete, Greece (Poster).

e Bostan, H. and Chiusano, M.L., 2013.“Development ofa bioinformatics
platform for gene expression analysis in tomato: A first step to
investigate  pollen peculiarities”. Computational Biology and

Bioinformatics, Awelino, Italy (Oral presentation).

8.5 Collaborations

e De novo Genome Assembly, Functional and Expression analyses of a
Fungi in University of Naples ‘“Federico II”, Naples, Italy,

e De novo Genome Assembly and characterization of the identified
transcripts in the collection for a group at stazione zoological, Naples,
Italy,

e A deep characterization of the response to water stress and rehydration
in tomato (External collaboration with the group of Dr. Grilo, university
of Naples ‘“Federico II”, Italy, co-author)

e Expression analyses in tomato San marzano in collaboration with the
group of Prof. Rosa Rao, university of Naples “Federico 1I”, Italy,

e mMRNA and Small-RNA Expression analyses in Red setter in
collaboration with the group of Prof. Rosa Rao, university of Naples
“Federico II”, Italy,

e Genopom Bioinformatics Platform (1 was in charge of setting up the
platform for the whole project, re analyses the data with a common

procedure and organize the data in the platform,
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e Epitom Bioinformatics Platform (I was in charge of setting up the
platform for the whole project, re analyses the data with a common

procedure and organize the data in the platform)

235



