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Chapter 1                                             

INTRODUCTION 

Today a relevant amount of the total final primary energy is consumed in buildings, which are 

the largest energy consuming sector in the developed world [1]. Therefore, in the next years 

decision makers and planners are called to respond more effectively to a rising number of 

energy-related conflicting concerns dealing with energy saving, increasing of building energy 

and services demand, improved comfort life-time, satisfaction of indoor comfort indexes [2-5]. 

To this purpose, simulation-based methods have to be applied to solve sustainable building 

design problems and to dynamically predict the energy performance in a wide range of 

conditions. 

Since the late '70s, building simulation is a well-recognized method for the building energy 

performance assessment [1]. Nowadays, due to mature and diffuse Information and 

Communication Technologies (ICT), its application is increasing wider and wider both to predict 

the indoor air temperature and humidity in time-dependent external weather conditions and to 

assess the influence of different buildings features (e.g. building use and envelope types, comfort 

parameters, building automation and control algorithms, occupants behaviour/preferences, etc.) 

on the building thermohygrometric behaviour and comfort [2]. Note that, building performance 

characterisation based on full scale testing of buildings is costly and difficult (e.g. due to 

changing structures, materials, ventilation strategy) and the real test of performance can be 

carried out only once the building is constructed and occupied. Therefore, the use of numerical 

models is a suitable tool for energy analysis during the very early stage of building design, e.g. 

for selecting innovative energy saving techniques or different construction materials like phase 

change materials (PCM) [3]. Finally, simulations help in control designing or control tuning, as 

well as in minimum disruption of the working system when deploying a new controller in a real 

environment.  

Models used for simulation analysis can be classified as white-, black- and grey-box models 

[6]. White-box models (often referred as physics-based, analytical or forward models) fund on 

the understanding of the process physics and of its underlying engineering principles. Black-box 

models (or inverse and data-driven models) are based on measuring the system inputs and 
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outputs and then fitting them by a linear or nonlinear mathematical regressor to approximate the 

system behaviour during specific or standard operating conditions. Grey-box models are instead 

a combination of physics based and data-driven models and they are usually derived by using the 

equations within the white-box models and estimating parameters, or specific mathematical 

expressions, by using system measurements. Energy simulation programs usually exploit white-

modelling approaches that ensure good prediction accuracy over a wide range of operating 

conditions without the need of providing additional measurement data [6]. They are embedded 

into commercial analysis tools (e.g. TRNSYS, Energy-Plus, ESP-r, etc. [6, 7]) or in generic 

programming environments [8] [9-11]. Commercial tools are regularly adopted among experts 

and professionals (architects, engineers, etc.) and they provide a variety of components in their 

libraries for a quick start of numerical analyses. Nevertheless, these programs are less flexible 

with respect to the controller development, the possible integration of new advanced controllers 

(alternative to standard strategies e.g. proportional-integral-derivative control (PID)) into the 

simulation code, and the implementation of specific mathematical models for describing the 

thermal dynamic of innovative materials like, for example, latent storage mediums [12]. 

As buildings continue to require increased energy performance and better comfort, control 

systems are becoming more and more complex and, hence, simulation codes based on generic 

programming environments offer a viable solution for testing new alternative control 

methodologies and for capturing the synergy between control algorithms and the forthcoming 

indoor thermohygrometric dynamics [9, 13-15]. With respect to the challenging multiple aim of 

fulfilling building cooling and heating requirements while guaranteeing indoor comfort, as well 

as of responding to variable weather conditions, thermal dynamics (due, for example, to the 

integration of energy storage elements with other building facilities), occupant behaviour and 

utility rate structures, existing control strategies currently implemented into buildings are still far 

away to reach their full potentials and, sometimes, are insufficient in accomplishing the 

ambitious expected benefits. Thus, there is still the need to examine existent strategies, to try to 

address the above issues by proposing alternative strategies and to test them via simulations tools 

[16]. Control techniques for energy buildings can be divided into different categories that 

essentially range from classical output control-loops (e.g. PID) to hard control (e.g. model 

predictive control (MPC), optimal control, adaptive control) and soft control (e.g. based on 

artificial intelligence tools, learning methods, agent based management algorithms). A scientific 

literature review and a detailed overview of the state-of-the-art in buildings control approaches 

can be found in [17]. Furthermore, although comfort level for building occupants also depends 
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on the indoor humidity levels, most of the control techniques presented in literature follows the 

classical approach of regulating only the building temperature to a certain set point [5]. 

Classical temperature control techniques basically consist of proportional-integral-derivative 

(PID) output feedback controls (and on their more recent implementation through fuzzy schemes 

[18]). The advantage of these schemes is their intuitiveness and simplicity and the absence of a 

precise mathematical models of the building system for the control design and implementation. 

Nevertheless, to achieve good performances a huge effort has to be spent for gains tuning 

(without providing the analytical proof of optimality, as well as closed-loop stability), while 

PID-controlled signals tends to result in overshoot (overheating) due to the weakness of the 

control scheme in processing disturbance inputs. As a further disadvantage, control parameters 

do not automatically adapt to changing in environmental conditions or building features and, 

hence, they have to be offline retuned every time that the working conditions evolve with time. 

In this regard, the lack of a very accurate and case specific gain tuning procedure effectively 

influences the reliability of parametric, multi-criteria and multi-objective analyses, which play a 

crucial role on the identification of optimal energy efficiency solutions and building features for 

the design of the next generation of buildings, such as net zero energy buildings (NZEBs)[19, 

20]. In such analyses, multiple parameters, which may be related to the building features and to 

its boundary conditions (e.g. weather, usage, etc.), vary during the whole optimization procedure. 

Therefore, for efficient and reliable simulations, control parameters must be able to 

automatically adapt to such changes. Moreover, the tuning gains phase is very critical since an 

improper gains selection makes the entire system unstable and, for this reason, users are often 

not able to participate in the configurations scheme [5, 17]. As a result, tuning is always time-

consuming and difficult. Different approaches, (based on artificial intelligence tools, such as, for 

example, learning methods [21] and agent-based energy management [15]), share with PID 

techniques the main advantage to be model-free, or better they do not need a detailed physics-

based mathematical (ODEs) model of the building dynamics for the control design. The 

achievement of the thermal goal is reached, for example in the case of learning algorithms, by 

the choice of well-defined and huge training sets in different conditions or, for the case of agent-

based solutions, by splitting the overall management problem into several well-posed sub-

problems to be solved in order to find a balance among building energy requirement, thermal 

conditions and occupants comfort [17]. It is worth remarking that in the case of soft algorithms it 

is usually not possible to analytically guarantee the achievement of the control objective, or to 

analytically assess the stability and robustness of the overall system in perturbed situations. As a 
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result, as for PID schemes, great care has to be devoted to the selection of the training sets 

related to a wide range of different working conditions. As classical control schemes provide 

tuning-dependent results, hard techniques able to analytically guarantee the achievable 

performance have been proposed. Among them, Model Predictive Control (MPC) schemes are 

popular in the technical literature that deals with application to building-related systems [18].  

MPC is a model-based controller which allows calculating an optimal command sequence. 

Particularly, MPC uses corresponding system dynamic models, such as building energy 

simulations models, to predict the system thermal behaviour. This prediction is then combined 

with optimization algorithms in order to determine the optimal control inputs. Note that, in order 

to elaborate the control sequence, not only a precise dynamic model of the system around the 

operating point, but also good estimations of all environmental conditions or disturbances acting 

on the system dynamics are needed, e.g. on-line whether forecast and time-history of the 

occupant behaviour. The need of an accurate system dynamic model for prediction purposes 

clamps down on the MPC application, since the effectiveness of the controller is significantly 

affected by the model accuracy. However, high accurate models are difficult to be developed due 

to the building systems complexity [22]. Further studies are hence still required to clearly 

disclose the robustness with respect to unmodelled nonlinear dynamics, such as the 

characteristics of innovative construction materials (especially in case of integrated thermal 

energy storage elements), and to reveal the effect of model prediction performance on control 

performance during practical system implementation. An optimal control sequence can be also 

determined by using optimal control techniques [23]. 

Although optimal control is an efficient mathematical tool for dealing with optimization 

problems through controlling engineering devices, it is not a viable solution in the case of 

building-related systems, since it is unable to deal with uncertain systems. Therefore, despite the 

effectiveness of the classical optimal approach (like linear quadratic algorithms, LQ) [23], 

changes in the operating condition and indoor disturbances affect the closed- loop behaviour; 

thus, the resulting trajectories can be strongly different from those optimal in real scenarios. 

Since every building has its proper nonlinear thermohygrometric behaviour (due to the 

particular structure, construction materials, location, usage and climatic conditions), the problem 

to devise control schemes can be addressed by adaptive techniques that vary their parameters in 

order to accommodate changing dynamics in the system under control. This also provides a 

remarkable advantage with respect to the effectiveness of building simulation tools. In fact, this 

feature enables multiple building simulations (e.g. in case of sensitivity analyses and/or 
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optimization procedures) to run without the need of tuning the control system for each building 

model to be simulated. The different algorithms in the wide family of adaptive controllers can be 

classified into different categories according to the methods of adjusting controller parameters 

and to the approach with which they deal with the dependency on more or less accurate system 

models [24]. In spite of their adaptation features and, hence, their great robustness with respect 

to uncertainties, the application of innovative adaptive techniques to building-related systems is 

still rare [25, 26]. Possible reasons can be an excessive control effort or a high computational 

demand if choosing algorithms with complex adjusting lows for control or that exploits on-line 

parameter estimation techniques for their implementation. Moreover they may result to be less 

intuitive for engineers without knowledge of control. 

1.1 Aim of the thesis 

In this thesis, we design a novel Optimal-Adaptive scheme for controlling the air temperature 

and humidity for building indoor spaces in uncertain conditions, without requiring a priori 

knowledge of the building dynamics and/or its external disturbances. The algorithm, named LQ-

EMRAC (Linear Quadratic - Enhanced Model Reference Adaptive Control) inherits the main 

advantages of Model Reference Adaptive Control (MRAC) and optimal control schemes (LQ) 

and it is able to appropriately and automatically vary its control gains, according to changes of 

the energy building behaviour, guaranteeing at the same time optimality with respect to a 

selected performance index that is function of the thermohygrometric requirements and the 

control effort. 

Algorithms that belong to the MRAC family work on the principle of adjusting the controller 

parameters, so that the measured variables of the actual system under control track the dynamics 

of a Reference Model with the same reference input [24]. The Reference Model is used to give 

an ideal response of the controlled system to the reference input and it is selected just to specify 

the required performance. Therefore, it is different from complex system models, as those 

needed for the MPC implementation [18]. The controller is mathematically described by a set of 

adjustable parameters that are varied through an on-line adjustment mechanism, so that the 

actual system can track the reference model. To this aim, reference model dynamics are 

compared with real-time system operation variables and the difference between them defines the 

error signal, which is then used to adjust the control gains in order to reduce the tracking error to 

zero. Clearly, the main advantage of model-referenced adaptive control is that an accurate 

system model is not necessary for its deployment.  



Chapter 1: Introduction  

7 

 

Differently from the classical MRAC approach, in the proposed LQ-EMRAC scheme the 

reference model is selected so as to provide optimal temperature and humidity profiles according 

to a cost function to be minimized. In so doing, the controller has the benefits of the adaptive 

strategy (such as robustness to perturbation and unmodelled dynamics and minimal knowledge 

of the plant dynamics for control design and implementation), while it also matches the 

performance dynamics of an optimal LQ-regulator, in order to impose an optimal 

thermohygrometric profile. Moreover, the LQ-EMRAC approach enhances the classical MRAC 

scheme by providing, in addition to the classical adaptive actions, novel control actions to 

improve the performance and the robustness of the scheme with respect to uncertainties and 

disturbances. 

Summarizing, the main advantages of the proposed control are: i) robustness against a large 

class of perturbations, external disturbances, nonlinear unmodelled dynamics or parameters 

uncertainty that are suddenly counteracted by the control strategy; ii) ability to impose desired 

optimal dynamics; iii) reliance on a very reduced amount of information compared to other 

control techniques; iv) absence of on-line assessment of characteristic parameters of both 

building model or model reference; v) no need of a previous knowledge of the system initial 

conditions for the control implementation, vi) very accurate regulation and fast tracking of the 

optimal thermohygrometric profiles in case of stringent indoor air requirements (often mandatory 

in specific building spaces such as hospital units, museum display cases, laboratory chambers, 

etc.). 

The above described control algorithm has been embedded in DETECt 2.3, a building energy 

performance simulation tool developed in MatLab® environment and based on a white-

modelling approach [9, 26]. In particular, the LQ-EMRAC strategy has been implemented in this 

new release of DETECt, enhancing the previous ones [9, 26], in order to improve the  robustness 

of the simulation results, especially in case of multiple simulations, such as parametric analyses. 

The code is able to dynamically predict: i) the building performance, in terms of both indoor air 

temperature and humidity; ii) the occupants’ thermohygrometric comfort, through the assessment 

of several thermohygrometric comfort indexes (this is another novelty of DETECt 2.3 vs. the 

previous releases); iii) the sensible and latent heating and cooling energy demands and loads. In 

addition, the LQ-EMRAC strategy is also capable to deal with the nonlinear features of 

innovative construction materials (such as PCM), whose effects on the space heating and cooling 

demands can be suitably and consistently assessed through DETECt [26, 27]. Finally we remark 

that, thanks to the proposed control scheme, parametric analyses, performed through a single 
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simulation run, can be obtained with no need to tune the control system for each building 

simulation model. 

In order to show the effectiveness of the adaptive solution, different case studies are 

developed throughout the thesis. In particular the numerical analysis can be divided as follows: 

1. energy and comfort performance have been expounded by taking into account 

different buildings which are diverse with respect to the use, geometry and 

construction materials. In particular, geometry and usage of these sample buildings 

vary as a function of the square meters floor area, ranging from a basic small 

residential house to a large commercial mall. Furthermore, simulations are carried out 

by locating such buildings in different weather zones. For each case study, continuous 

and intermittent control system operating strategies are considered; 

2. numerical analysis performed for different choices of the optimal reference profiles to 

impose to the thermohygrometric variables; 

3. the analysis at point one has been done also when the building envelope integrates 

phase change materials (PCM), which are mainly used to improve energy reduction 

further especially during summer season by stabilizing indoor air temperature; 

4. adaptive control of multi-zone systems when some zones are completely included in 

others and characterized by different thermohygrometric requirements. For this 

configuration two case studies have been developed. Specifically, we consider i) an 

expo indoor space of a museum building, including a display/case and ii) special 

indoor hospitals spaces including multiple infant-incubators.  

Results confirm the ability of the proposed approach to reach the selected thermohygrometric 

requirements and comfort conditions for any investigated building. In particular the numerical 

analysis in point one is used to show the flexibility of the control solution to different buildings, 

climate weather conditions and use. The analysis in point two is exploited to study the effect of 

the choice of the reference model in terms of required sensible and latent heats and comfort 

indexes. Notice that the possible use of PCM layers make the parameters of the building model 

time-varying as the specific heat of these layers chance on the basis of their temperature. 

Consequently, control strategies with fixed control gains might fail in imposing the required 

thermohygrometric conditions. Instead the analysis carried out in point three have shown the 

ability of the controller to reconfigure its gains to regulate the required indoor air relative 

humidity and temperature also in this case. Finally the analysis in point four has been used to test 

the robustness of the adaptive systems for the control of buildings in presence of coupled 
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dynamics which have not been considered during the control design. Indeed, by neglecting the 

thermal coupling between zones the control design gets easier but during the simulation the 

mutual thermal effects play the role of additional disturbances that the control systems must be 

able to reject in closed loop. 

Note that, even though the adaptive strategy is designed by considering an optimal reduced 

order reference model, the numerical analysis assesses the control performance on the detailed 

physical and nonlinear building models, included in DETECt [26, 27], which consist of several 

(more than 70) nonlinear differential equations. This further contributes to remove doubt on the 

robustness of the control approach with respect to unmodelled dynamics. We remark that the 

effectiveness of the adaptive approach to impose the required profiles to the indoor air 

temperature and humidity is proved in the thesis also analytically with a consistent proof of 

stability of the closed loop system in a more generic framework. 

To compare the performance provided when the adaptive controller is exploited to tame the 

building dynamics with those given by state-of-art strategies available in the technical literature, 

both in terms of tracking of the required set points and energy demands, we have implemented a 

MPC strategy and additional numerical analysis are carried out in the thesis when these 

predictive controllers are inserted in the control loop.  

We point out that, for the design of MPC algorithms it is crucial to have models of the 

building dynamics that are very predictive but yet simple so that it is possible to solve in an 

effective way the optimization problems required for the computation of the control action. 

Consequently, an additional aim of the thesis is that of proposing a systematic method for the 

generation of low order grey box building models. We remark that these models can be exploited 

also for aims different from the design of advanced model based controllers [17, 28]. Indeed by 

using reduced order models it is possible to i) reduce drastically the computation time to get an 

insight into building energy performance, especially when a large set of simulations are required 

to assess them [29] ii) derive mathematical models of building dynamics via reverse engineering 

methods when experimental data are available [30] and iii) simulate groups of buildings 

organized in districts with the aim to evaluate the overall energy performance [31]. Hence the 

design of methods for the building model reduction represent an additional result that is used in 

the thesis to devise predictive controllers but they have their own importance in the context of 

building performance analysis. We note that, in order to measure the effectiveness of the 

resulting low order building models to predict both indoor building temperature, heating and 

cooling energy demands, as well as comfort a set of performance indexes are defined to evaluate 
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the deviations of the outputs of the reduced order models with respect to the corresponding 

outputs of detailed models.  

In addition to the work described in the thesis, additional results were obtained on modeling, 

simulation and analysis of buildings embedding novel technologies for reducing energy 

consumption [27, 32] (NZEBs in Mediterranean climates, see also List of Publications). 

1.2 Outline of the thesis  

The thesis is outlined as follows. 

Chapter 2. This is a background chapter which provides to the reader some details about the 

in-house Building Energy Performance Simulation (BEPS) code DETECt and the 

building mathematical model which is implemented in it. This in-house code is 

indeed used throughout the thesis to confirm numerically the effectiveness of the 

adaptive control solution to impose to the indoor air temperature and humidity the 

required profiles. A more complete description of the code can be found in [9]. 

Chapter 3. In this chapter the control architecture used in the thesis is described in detail. In 

addition a first strategy is proposed for the control of the indoor air temperature with 

the aim of improving the pre-existing Proportional Integral (PI) control solution 

embedded in DETECt. Specifically the PI control gains are selected as the result of 

an optimization problem that takes into account indoor tracking error and the 

heating/cooling energy. Hence, it can be considered as an attempt to improve a 

classical control solution by imposing a sort of optimality to the control action. 

Chapter 4. This chapter is completely dedicated to the design of the novel model reference 

adaptive control strategy for generic linear time invariant (LTI) dynamical systems 

subjected to parameter uncertainties and disturbances, as well as the steps required 

for its numerical implementation. Furthermore, the effectiveness of the control 

solution to impose the dynamics of the reference model is analytically proven by 

adopting both hyperstability theory and Lyapunov techniques.  

Chapter 5. In this chapter the design of the adaptive solution proposed in Chapter 4 for the 

control of the termohygrometric variables in buildings is presented. The chapter 

opens with the design of a simplified building model to be used for the tuning of the 

reference model for the generation of the indoor air temperature and humidity 

profiles to be tracked in closed-loop. Then different case studies are presented to 

show numerically the effectiveness of the approach. Specifically, we consider 
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different buildings which are diverse with respect to the use, geometry and 

construction materials. Also a brief comparison with the PI solution presented in 

Chapter 3 is provided in order to point out the limitation of control strategies with 

fixed gains. Notice that the numerical analysis are carried out by using as building 

model that presented in Chapter 2. 

Chapter 6. Here we further prove the ability of the adaptive control strategy to impose the 

required thermohygrometric dynamics in the case of multi-zone buildings where 

some thermal zones are completely included in others. As case studies we consider 

two possible scenario, i.e., i) an expo indoor space of a museum building, including a 

display/case and ii) special indoor hospitals spaces including multiple infant-

incubators.  

Chapter 7. This chapter is completely devoted to present the grey-box modelling approach to 

derive low order building models for the design of advanced model based control 

strategies, e.g., predictive controllers. To show the ability of the low order building 

models to predict indoor air temperature, heating and cooling as well as comfort 

indexes, e.g., PMV and PPD, the model reduction procedure is applied to the case 

studies in Chapter 5 and results are compared to those provided by the detailed model 

presented in Chapter 2. The comparison is carried out quantitatively by using a set of 

performance indexes which are also defined in the chapter. 

Chapter 8. In the first part of the chapter, model predictive controllers are designed and 

numerically validated for the case studies in Chapter 5. For the design of these MPC 

controllers the low order models introduced in Chapter 7 have been exploited to 

predict buildings dynamics with a reduced computational effort and acceptable error. 

The second part of the chapter is instead dedicated to preliminary compare some 

features of the predictive approach to those of the adaptive solution proposed 

throughout the thesis both in the case of perfect knowledge of the weather data and 

internal loads as well as in the case of uncertain conditions. 

Chapter 9. In the final chapter we summarize the main contributions of the thesis and some 

open problems are briefly given for the further research activities. 

Appendix A. In this first appendix some details about adaptive control is given. The aim is to 

provide to the reader some basic concepts and definitions about this solution to the 

control of systems with uncertain parameters. In addition, a standard classification of 
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adaptive control schemes is also provided to better frame the adaptive technique 

proposed in the thesis. 

Appendix B. This appendix reports additional details about the results of the model reduction 

procedure which have not been given in Chapter 7.  
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Chapter 2                                                          

BUILDING DYNAMIC MODEL  

In this chapter, the dynamic model used to analysis building energy performance when 

advanced control algorithms for the optimal computation of the sensible and latent heats are 

exploited is presented together with some details about its implementation as numerical code. 

This in-house code, named DETECt, can be used for the testing of a variety of new building 

technologies to increase system energy efficiency before they are actually implemented. 

Therefore, it becomes a useful tool to carry out scientific research activities and it is used 

throughout the thesis as the numerical environment to prove the effectiveness of the novel 

control algorithms for the themohygrometric variable . As detailed described in the chapter, the 

outputs of this numerical code are not limited to the yearly heating and cooling load and energy 

demand, but they include the dynamic temperature profile of indoor air, indoor air humidity as 

well as the dynamic profile of the thermal fluxes through the building elements, just to name a 

few. The chapter summarizes briefly the basic features of the code, with particular care to those 

that are relevant for the following chapters where advanced methodologies for the computation 

of sensible/latent heats, which represent the aim of the thesis, are presented in depth. The 

material of this background chapter is taken from [9, 26, 27, 33] where the reader can find 

additional detail about DETECt. Here only some features are reported for the sake of 

completeness. 

2.1 A brief introduction to DETECt in the framework of BEPS codes 

Building Energy Performance Simulation (BEPS) codes have been used for decades for 

predicting the energy performance of buildings and energy savings associated with energy 

efficiency measures. In the last years, recent advances in analysis and computational methods as 

well as computer power have increased the opportunity for significant improvements in analysis 

tools developments. As a consequence, building energy performance simulations have become 

an irreplaceable tool for building design and energy diagnosis. Indeed, they are widely used for 

analyzing the energy consumption in buildings in order to assess buildings energy efficiency and 
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requirements, especially nowadays as a collaborative effort among researchers, building 

designers and government agencies have been built up with the aim to move towards the net zero 

energy building. Therefore, up-to-date building energy simulation codes are required for 

providing greater design flexibility in order to meet new targets in terms of buildings energy 

performance and occupants’ thermal comfort. However, since building energy simulation is a 

complicated process involving modelling and analytical skills, the use of the building energy 

investigation tools and the analysis of the related results can be considered as a challenge for 

building designers and practitioners and often also advanced users doubt about the fidelity and 

accuracy of the related calculations results. From this point of view, in order to validate novel 

BEPS codes several general criteria and validation procedures (consisting of comprehensive and 

integrated suite of building energy analysis tool tests involving analytical, comparative, and 

empirical methods) have been developed and are available in literature [34]. Recently, the 

Energy Performance Building Directive (EPBD) issued by the European Union emphasizes the 

need of performance-based standards and requires the certification of new software developed 

for BEPS in compliance with the related standards. In this regard, the EN ISO 13790:2008 

allows the assessment of the energy requirement for heating and cooling by means of several 

calculation methods [35]. For the dynamic one a specific validation procedure is described in the 

EN 15625:2008 [36]. Here, a set of assumptions and requirements that should be followed 

together with several tests for the validation of computer software are described. In particular, 

the dynamic calculation (with a time step of one hour or less) is referred to annual energy needs 

due to heating and cooling of a single space. No specific numerical technique is here imposed. 

An alternative validation method for testing, diagnosing and validating the capabilities of 

BEPS codes is the BESTEST (Building Energy Simulation TEST) procedure [37]. This method 

consists of analytical techniques and tests that allow the results of a given BEPS program or 

design tool to be compared with those obtained by the current state-of-the-art codes. A number 

of the BESTEST cases have been incorporated into ANSI/ASHRAE Standard 140-2011 [38]. By 

the latter the original International Energy Agency (IEA) BESTEST is assumed as a standard 

method for BEPS codes validation. Note that the BESTEST procedure is adopted also by the 

European Committee for Standardization (CEN) as a test for checking the reference cooling load 

and energy calculation methods, based on the requirements of several standards addressing 

different aspects of the EPBD [39]. In accordance with these procedures, many BEPS codes have 

been validated [40-45]. Through these tools, the system behavior in terms of energy use for 

heating, cooling, lighting, etc., as well as indoor comfort and building operating temperatures, 
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can be usefully and accurately predicted. From this point of view, in order to carry out a BEPS 

analysis by suitable computer codes different approaches can be followed [46]. In general, the 

differences among them concern the fidelity and the accuracy by which the occurring physical 

phenomena are modelled. Usually, in order to realize straightforward tools, only few system 

phenomena can be modelled taking into account just the most significant physical aspects 

occurring in the building dynamics. This, for example, occurs in some models in which the 

conduction heat transfer is solved by lumping all the building thermal masses in a single node of 

a considered thermal network. Through this approach the integration of just one or two 

mathematical equations is necessary, avoiding the adoption and the resolution of many partial 

differential equations [47-49]. On the other hand, these simulation methods are mostly suitable 

for a basic building analysis only. In fact, they are not able to provide details about the building 

surfaces temperature or for simulating the frequent rapid variation of the thermal conditions 

occurring in buildings equipped by HVAC systems [50]. 

For all these reasons, more detailed simulation models are often used, as discussed above. 

Through these tools, in order to accurately predict the whole building dynamic behavior, the 

energy response of each thermal zone is analyzed taking into account almost all the physical 

phenomena by suitable mathematical models. In general, through these tools the simulations are 

carried out accounting time-variant parameters as: weather conditions, occupancy, lighting and 

machinery loads, building thermal inertia, etc.. Detailed output such as building energy heating 

and cooling demands, indoor and building surfaces temperature, humidity levels and even the 

operating system costs can be dynamically calculated for various design and operating 

conditions. A summary about assumptions, features and limitations of such standards are 

reported in [45, 51, 52]. Although all these standard tools are capable of a high level of 

flexibility, many new in-house BEPS codes have been developed mostly for research scopes. In 

addition, in the last years, the research in the building energy saving field led to investigate a lot 

of new building envelope technologies and innovative HVAC systems often supported by 

renewable energies or innovative control strategies [53]. In order to allow all these novel 

technologies to be implemented into commercial tools, a certain time-to-market is unavoidable. 

Thus, these fast growing research and development efforts often involve the development of 

suitable and flexible computer-based models for the energy performance calculation of 

innovative building-plant systems. Furthermore, in some of the above reported simulation codes, 

several household actions can be often simulated only in a rigid or basic way, without accurately 

emulating all the real interactions of occupants with the building [54-57]. As a result, depending 
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on the occurring physical phenomenon that has to be studied, specific in-house codes are more 

and more developed. In fact, recently, for research scopes, as alternative to commercial building 

simulators, several lumped parameter models have been developed and used for computer based 

optimization, analyzing the building envelope behavior, and to study distribution of internal solar 

radiation, etc. [40, 42, 58, 59]. 

In many of these models, the thermal resistance capacitance network approach is widely 

adopted [51]. In addition, although many reduced order models have been widely considered 

also for research scopes [47, 60], in order to analyze the effect of the spatial distribution of the 

heat capacity on the heat flux through the building envelope elements, a high number of thermal 

capacitances is taken into account through distributed parameters models [58, 61]. For all these 

reasons, several authors have developed building-plant simulation codes for the analysis of 

innovative and traditional systems, as reported in [62, 63]. 

In this framework, the code called DETECt has been proposed in [9, 62] as a simple but yet 

detailed code for assessing building envelope performance. Different from several of the above 

mentioned commercial codes, some simplifications are adopted but without renouncing to 

describe the main physical phenomena occurring in each building element. The main difference 

between DETECt and the most utilized commercial software lies in the adopted methods for the 

heat transfer in the building. In the following, the adopted methods for the one dimensional 

transient heat conduction through multi-layer envelope components, the solar and long wave 

radiation handling into and out of the building, ventilation and infiltration treatment, etc., are 

described. In the code developed in [9] all these models are grouped in a unique calculation tool. 

Notice that, a similar approach is adopted also in other works where in-house codes have been 

developed mostly for studying a single physical phenomenon [58, 59]. Obviously, at the code 

development status, in comparison with the presented code, commercial tools provide more 

complete user’s interface and data libraries for building elements features, weather files, etc., as 

reported in [45, 52].  

We point out that DETECt is implemented in MATLAB, which is well recognize as a 

standard tool for the scientific numerical computation [64]. Moreover, additional computer 

subroutines for the performance simulation of any kind of building plants (HVAC systems,  

renewable energy applications, etc) can be suitably linked to this tool obtaining a complete 

building-plant simulation code (e.g. [62, 63]). In addition, by using DETECt it is also possible to 

perform new and retrofit-oriented building sensitivity analyses, that can be used to assist the user 

in the retrofit selection process. These analyses can be easily performed though a specific code 
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interface by starting from a unique generated building model, without re-entering in the iterative 

simulation procedure the varied details of the different building features that have to be analyzed 

(e.g. thickness and stratification of building envelope elements,  etc.).  

It is important to point out that DETECt has been extensively validated in [9] by exploiting as 

validation method the BESTEST procedure. This choice fits fundamental criteria for the 

validation of BEPS codes such of completeness, accuracy, reproducibility and cost effectiveness 

of the test suite. Indeed, the BESTEST procedure presents widely available high quality 

empirical validation data sets. In particular, it includes detailed and unambiguous 

documentations of the input data for a selected number of representative design conditions. It is 

worth pointing out that DETECt results matched those of the BESTEST qualification cases in 

terms of heating and cooling annual energy demand and integrated peak-load, annual transmitted 

and incident solar radiation, annual hourly zone temperature, moreover, also hourly variables fit 

the reference trends. Briefly, DETECt exceeded the BESTEST reliability test as low or very low 

deviations of the results obtained by this code vs. those provided by BESTEST validation 

procedure has been observed. Note that DETEC underwent and additional code to code 

validation test  for several commercial buildings located in different weather locations as 

reported in [9]. 

In the following sections, the main features of the model implemented in DETECt, which are 

essential for the rest of the thesis, are given in detail. Precisely, the heat transfer due to 

conduction and convection involving the building elements are shown in Section 2.2.1, while the 

nonlinear actions provided by radiation and solar radiation are presented in Sections 2.2.2 and  

2.2.3, respectively. Indoor air temperature and humidity dynamics are instead presented in 

Sections 2.2.4 and 2.2.5. Finally, before summarizing the chapter content in Section 2.4, the 

input/output description, as well as an overview of the software modules composing the DETECt 

code are given in Section 2.3.  

2.2 Model Description  

The first steps to be carried out in a detailed building energy simulation analysis concern the 

calculation of building heating and cooling loads and demands. This calculation procedure starts 

from the heat flows analysis related to a building thermal zone. These flows, as is well known, 

depend on heat conduction through walls, internal and external convection and radiation, sun 

radiation transmission through fenestration, heat gains due to building equipment and occupants 

and ventilation [10, 50]. In general, the dynamic simulation methods mainly attempt to assess the 
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building energy balance by solving the heat transmission through the related envelope. From this 

point of view, suitable numerical and analytical algorithms are implemented in purposely 

designed performance simulation codes [50, 65-67]. 

In most of these tools the one-dimensional heat flow assumption is usually adopted. Even if 

through this hypothesis inaccurate results are achieved close to envelope corners, edges, etc., it 

can be generally accepted since transverse heat transfer often plays a minor role in the building 

conduction phenomena [68, 69]. The thermal network calculation techniques is usually used as 

an alternative to the simple energy balance assessment [42, 70, 71]. A very simple thermal 

network model consists of lumping all the system thermal mass in a single node [35, 48, 72-74]. 

In general, when low or null temperature gradient within the thermal mass are expected, the 

classical lumped parameters approach can be adopted. On the other hand, real building elements 

are often composed by different structural and energy saving insulation materials in mutual 

thermal contact. In these cases, being the allocation of heat capacity and thermal resistance a 

complex function of the space, a thermal model obtained by distributed parameters better 

describes the occurring transient physical phenomena [58]. Here, the distributed capacitances 

and resistances of a material layer are lumped together at nodes. In addition, by distributing these 

parameters on multiple nodes, the dynamic calculation of the indoor air and building surfaces 

temperatures can be also assessed. This method also allows the use of active climate controls for 

the detailed calculation of the building energy requirements. It must be said that in building 

dynamic analyses, a compromise between very simple models and those with a very high 

number of nodes should be also taken into account to keep the computation time at an acceptable 

level. Consequently, in order to consider both thicknesses and thermo-physical features of the 

different layers included in each considered building element, a minimum number of nodes have 

to be modelled. 

2.2.1 Heat flow calculation procedure 

In DETECt the thermal behaviour of each m-th multi-layer building element (wall, floor, roof, 

horizontal and vertical internal partition and window), is modelled through a thermal Resistance 

Capacitance (RC) network. Here, each building element construction material is considered as 

uniform and therefore its thermal mass and conductivity are uniformly discretized into a number 

of layers. Thus, each building element is discretized into a suitable number, N, of thin sub-layers 

of different thicknesses in function of the adopted discretization criterion [75, 76]. In each sub-

layer a uniform temperature is supposed. The sub-layer temperature is represented with a single 
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node of the considered thermal network in order to account the related thermal mass. Each sub-

layer includes two conductive resistances and a single capacitance, which is lumped in the 

middle of the layer. For each m-th building element two additional surface non-capacitive 

thermal nodes are accounted and considered as boundary nodes linked, in general, to the outdoor 

and indoor air temperatures. Figure 2.1 shows this thermal network composed by the N+2 nodes 

for the generic m-th building element. Interface contact resistances are neglected, thus a perfect 

thermal contact of each adjacent inner homogeneous material layer to the connected ones is 

always supposed (i.e. identical interfacial temperatures are assumed). Furthermore, 

homogeneous, isotropic and time-invariant thermo-physical properties (i.e., density, specific heat 

and conductivity) are supposed. The heat transfer occurring out of each m-th building element is 

modeled via convective and radiative equivalent thermal resistances. 

 

 

Figure 2.1. Schematics of the RC thermal network for the generic m-th element of the building envelope. 

 

Therefore, in order to assess the system thermal response, the number of simultaneous 

equations to be solved is equal to N+2 for each element. The higher the number of sub-layers, 

the lower the sub-layer thickness and capacity. Obviously, by using a high number of nodes the 

discretized model tends to become identical to the physical one and the accuracy of the 

simulation results improves (i.e., temperature gradients can be accurately accounted) [58]. On 

the other hand, beyond a certain N, the more accuracy of the numerical results becomes 

negligible despite the simulation time still increases.  

For each capacitive n-th node (1 n N  ) of the m-th building element (1 m M  ) the 

differential equation describing the related heat transfer is (see also Figure 2.1): 
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where: t is the time, ,m nC  and ,m nT  represent the thermal capacitance and the temperature of the 

n-th node of the m-th building element, respectively. Moreover, ,m jT , with 1j n   and 

1j n  , are the temperatures of the neighbour nodes which are directly connected to the n-th 

layer; ,
cond
m jR  is the sum of the halves sub-layers thermal resistances that couple the n-th node to 

their neighbour ones. Such total resistance is equal to the one of half sub-layer when 1n   and 

n N  as the first and last capacitive nodes are connected to surfaces which are modelled as non-

capacitive subsystems. For such outer ( 0n  ) and inner ( 1n N  ) surface non-capacitive 

nodes, the algebraic equation describing the related heat transfer is:  
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The extremal nodes of the m-th building element are linked to convective thermal resistances 

(external, ,
conv
m extR , and internal, ,

conv
m intR , respectively, see Figure 2.1). Such resistances interconnect 

the above mentioned surface boundary nodes to the outdoor and indoor temperature nodes 

( 1j   and 2j N   for outT  and inT , respectively). Although in Figure 2.1 some radiative 

thermal resistance are shown, in the model, all the radiation phenomena are lumped in ,m nQ  (as it 

is described in the following). Hence, ,m nQ represents the generic thermal source term acting on 

the surface node. The thermal capacitance, ,m nC , of each sub-layer, the conductive resistance, 

,
cond
m nR , of each half sub-layer and the convective external, ,

conv
m extR , and internal, ,

conv
m intR , ones, are 

computed as:  
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(2.3) 

where for each building element sub-layer: ,m n  is the thickness, ,m nk  is the thermal 

conductivity, A is the heat exchange surface area, ,m exta  and ,m inta  are the outdoor and indoor 
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surface unitary convection heat transfer coefficients, respectively. In particular ,m exta is set as a 

constant on the basis of the surface type (rough, smooth, very smooth/glass, etc.) or can be 

optionally calculated, for rough surfaces, by empirical relationships as a function of the outdoor 

wind speed [77, 78]:  

 

, 0.78

3.8 5.7   for 5 m/s,

7.0        for 5 m/s,
m ext

v v
a

v v

  
 

 
 (2.4) 

where: v is the wind velocity, which can be set as a constant when its time-history is not given. 

Note that, constant properties of materials and no surface condensation or dust gathering are 

always assumed.  

This RC model is applied to both opaque and transparent surfaces. It must be said that in most 

building energy simulation programs a negligible thermal inertia for thin glazing systems is 

assumed. This assumption may lead to remarkable errors when it is applied to thick or multi-

layered glazing systems [79]. For this reason, the thermal inertia of glasses is always taken into 

account as an element of the system in Figure 2.1. 

2.2.2 Thermal network boundary conditions 

The forcing functions in (2.2) are basically composed by radiations and outdoor temperatures, 

which act only on the surfaces of each m-th building element. Precisely, the ambient temperature 

boundary condition is considered as convection load, while the radiation as a thermal source, 

,m nQ . The film resistances, see (2.3), interconnect the boundary outdoor, outT , and indoor, inT , 

temperature nodes with the related boundaries of the building element. Note that, in the 

presented model the occurring heat gains and/or ventilation and HVAC system effects are 

assumed to act only on the indoor air node, as reported in the following.  

The radiation forcing functions is assumed acting on the outer (n = 0) and inner (n = N+1) 

surfaces of each m-th building element. Outer surfaces are here considered as in contact with 

indoor or outdoor space conditions. On an outer surface, the only considered boundary condition 

is the indoor air temperature of the related adjacent space. Such temperature can be kept as 

constant or follow a suitable time profile depending on whether it is switched-on or turned-off 

the building HVAC system, respectively. On the contrary, in case of an external outer surface the 

considered boundary conditions are the outdoor air and sky temperatures and the solar radiation. 

The forcing function on external opaque and glazed surfaces describing both the solar and 

long wave radiations is denoted as m . On inner opaque and glazed surfaces (as well as on 
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internal facing surfaces of the gap of multi-layered glazing system), the accounted forcing 

function is the radiation incident on the m-th surface due to the solar radiation load entering 

through windows, m , and to the net long wave radiation load, m , received by the other i-th 

(1 i M  ) internal surfaces of the considered thermal zone. In particular, for each m-th element 

with a heat exchange surface area A, those forcing functions are computed as: 
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where f is the external surface view factor and skyT  is the sky temperature. If for the latter 

quantity a time history is not available, it can be computed as
1.50.0552sky outT T   in accordance 

with [80], where outT  is the outdoor air temperature. On the external and internal surfaces of 

each m-th element, ,m ext  and ,m int  are the selected emissivity, respectively; ,m ext  and ,m int  , 

are the selected absorption factors, respectively; 
ext
mI  and 

int
mI  are the total solar radiation fluxes, 

respectively. In particular, the solar radiation entering through glasses is absorbed, reflected and 

distributed within the internal space by selected absorption, reflection and view factors, 

respectively, therefore, 
int
mI  is the total solar radiation flux received by an internal m-th surface 

including the solar irradiance reflected by other interior surfaces [81]. Such flux is the m-th entry 

of the total solar radiation flux vector, 
intI , computed as: 
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where the generic entries ijF  and
S
j  are the internal surfaces view factors and the solar 

reflectivity coefficients, respectively, while 
0 0 0

1

T

MI I I 
   is the vector of the solar 

radiation directly received by the interior surfaces; it depends on the solar radiation effectively  
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Figure 2.2. Relevant three dimensional geometries: (a) Aligned Parallel Rectangles, and (b) Perpendicular 

Rectangles with common edge (Figure taken from [82]). 

 

transmitted through windows. The latter is function of the equivalent solar transmission 

coefficient of the glazed surfaces. We point out that, the physical law (2.6) can be expressed 

synthetically as 
1 0( - )int

SI I FP I , where I  is the identity matrix of order m, and F  and SP  

are the internal surfaces view factors matrix and the solar reflectivity matrix, respectively. In 

addition, the coefficients ijF  are calculated for parallelepiped structure as in [78, 82]. Indeed, 

according with [82], the view factor between two generic surfaces iA and jA  is given as 
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where ijR is the distance between two generic infinitesimal elements idA and jdA , while i  is 

angle between the normal vector to the surface idA  and the vector connecting idA  to jdA . 

Analogously, j  is angle between the normal vector to the surface jdA  and the vector 

connecting jdA  to idA .  

Even though the integral (2.7) can be discretized and computed numerically, for some 

relevant geometry, it can be solved analytically as a function of some relevant parameters of the 

surfaces. Of particular interest are the geometries reported in Figure 2.2. Precisely, in the case of 

aligned parallel rectangles with later lengths X and Y separated by a gap of length L (Figure 

2.2a), we have 
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where /X X L  and /Y Y L .  

                                            (a)                             (b) 
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In the case of perpendicular rectangles with common edge completely described by the 

lengths X, Y and Z, as shown in Figure 2.2b, the views factors can be evaluated as 
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where H=Z/H and W=Y/H.  

When the view factors are known, the m-th entry of the total solar radiation flux vector can be 

calculated as in [81]  
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From (2.10), expression (2.6) can obtained after some additional algebraic manipulations. 

In Figure 2.1 the external and internal solar radiation fluxes are reported in terms of thermal 

load, solQ  and ,sol tranQ , respectively. In this regard, further details about the calculation of solar 

radiation incident on the building are reported in the following. 

In order to calculate the long-wave radiation exchange on the internal surfaces within the 

zone, the Gebhart's absorption method is adopted [83]. Hence, Gebhart’s factors must be 

computed and collected in the Gebhart's matrix G. We recall here that the Gebhart’s factor, 

named ijG , between a generic iA  and jA is defined as the ratio between the energy absorbed at 

jA  originating as emission at iA  and the total radiation emitted from iA . Alternatively, it 

represents the fraction of the emitted radiation from the i-th interior surface that is absorbed by 

the remaining j-th surface of the considered thermal zone.  

In [83] it has been shown that such a coefficient is given by 
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with 
LW
i  and 

LW
i  being the long wave reflectivity and emissivity coefficients of the i-th 

surface, respectively. From (2.11) the fraction of the emitted radiation from the m-th interior 

surface that is absorbed by the remaining surfaces of the considered thermal zone is computed by 

using the Gebhart's matrix, G, which consists of a number of m vectors of coefficients calculated 

as: 



Chapter 2: Building dynamic model  

25 

 

 
 

 

 

1

11 1 12 2 1
11

2 21 1 22 2 2 2

1 1 2 2

1- - -... -

- 1- ... -
.

... ...... ... ... ...

- - ... 1-

LW LW LW
LWM M

m mm

LW LW LW LW
m M M m m

LW
LW LW LWMm

Mm m
M M MM M

F F F
FG

G F F F F

G FF F F

  


   

  


 

   
   

         
           

 

 (2.12) 

Notice that, the m2 Gebhart's matrix coefficients only depend on surfaces geometry and 

materials thermal properties. Hence, it can be pre-computed on the basis of these proprieties. 

Notice that also (2.12) can be expressed systematically via linear algebra as 

1( )LW LWG I FP FE  , where LWP  and LWE  are long wave reflectivity and emissivity matrices, 

respectively. 

2.2.3 Solar radiation calculation 

In order to calculate the solar radiation incidence angle on the building surfaces, as well as the 

global radiation striking of any arbitrarily tilted and orientated external or internal surface, 

different geometric relationships have to be taken into account [84]. Hence, to describe 

accurately their mathematical models in function of the hourly sun position, some preliminary 

fundamental relations are given below. 

The solar azimuth given by the angle of the surface normal from the South, s , and solar 

zenith representing the tilt angle from the horizontal, s , are computed as:  
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 (2.13) 

where   is the latitude of the selected site,   is hourly solar angle, i.e., the angular displacement 

of the sun east or west of the local meridian due to rotation of the earth on its axis at 15° per hour 

(morning negative and afternoon positive), and   is the declination angle, which is calculated in 

[84] as 
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 (2.14) 

with dj  being the Julian day of the year. 

Defining as p , and p  the azimuth angle and the zenith angle of the generic building surface, 

the incident angle i  is computed as 
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  arccos sin sin cos( ) cos cos .i s p s p s p          (2.15) 

(Notice that 90p    for vertical wall surfaces.) Consequently, The hourly incident beam, 
ext,b
mI , 

and total, 
ext
mI , solar radiation fluxes on a m-th building surface are calculated by: 
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where DNI  is the hourly direct normal irradiance, often available from database of weather data, 

and 
ext,d
mI is the diffuse irradiance. The latter can be computed by subtracting the beam irradiance 

on a horizontal surface from the global one or through properly relationships. In the first case, 

the beam irradiance on a horizontal surface can be calculated by the first relationship in (2.16) or 

directly obtained by database of weather data, similarly to the global one. It is noteworthy that 

nowadays the hourly direct normal irradiance as well as the global one on a horizontal surface 

are usually available, thanks to their large use in solar system performance investigations. 

However, in case of lack of such solar radiation data, the Hottel and Liu-Jordan methods for the 

direct and diffuse irradiances can be adopted and implemented [85, 86].  

2.2.4 Indoor air temperature model 

The energy rate of change connected to the indoor air mass is equal to the difference between 

the energy supplied to and removed from a thermal zone. The dynamical model of the thermal 

network node of the indoor air to be solved simultaneously with the system (2.1) and (2.2) is  
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      (2.17) 

where inC  is the thermal capacitance of the zone indoor air, whose temperature, inT , is 

considered homogeneous in the space (perfect indoor air mixing). The first term on the right-

hand side in (2.17) describes the heat exchange between the M internal surfaces nodes and the 

indoor air. Internal convective resistances, ,int
conv
mR , are calculated as a function of the surfaces 

condition (vertical or horizontal wall; ascendant or descendant flow). We note that, in our 

modelling approach, with exception of the solar radiation thermal load transmitted through the 

windows and incident on the indoor surfaces, ,sol tranQ  in Figure 2.1, all the sensible heat gains 

are considered networked to the indoor air node only, i.e., model (2.17). They include: i) the 

thermal zone internal load, gainQ , represented as a lumped heat source term and consisting of 
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convective sensible internal gains due to occupants (here due to the metabolic rate in function of 

the indoor air temperature), lights and equipment; ii) the ventilation thermal load, i.e., 

 vent vent p out inQ m c T T  , where ventm is the air ventilation mass flow rate (no distinction 

between infiltration and mechanical ventilation is assumed) and pc  is specific heat capacity of 

air, respectively ; iii) HVACQ  is the sensible heat supplied to, or removed from, the building space 

by an ideal HVAC system in order to maintain the indoor air at the desired set point temperature. 

Note also that, HVACQ  is here considered as acting on the node as purely convective. The design 

of algorithms in the form of feedback systems for the automatic computation of sensible heat is 

crucial [6, 7]. Indeed, features as energy consumptions and robustness to external disturbances 

are strongly connected to the performance of the resulting feedback control system. In this thesis, 

novel adaptive algorithms, belonging to the family of direct MRAC systems are designed and 

discussed in Chapter 4. (The reader is instead referred to Appendix A for the definition of this 

class of feedback controllers). 

2.2.5 Indoor humidity model 

To model indoor humidity dynamics, a temperature-humidity decoupled approach is adopted 

[9, 87]. Specifically, for each indoor space the moisture balance is calculated by neglecting the 

moisture exchange between the air node and the surrounding building surfaces. Consequently, 

the adopted moisture balance on the indoor space air is: 

 
  ,in

in vent out in wg vap

d
m m m

dt


       (2.18) 

where in  is the indoor dry air mass; ventm  is the air ventilation mass flow rate; out  and in  

are the external and indoor air specific humidity, respectively; wgm  is the inlet water vapor mass 

flow rate to the thermal zone (e.g. due to occupants); vapm  is the water vapor mass flow rate 

delivered to (or removed from) the indoor space for maintaining a desired humidity set point. 

Notice that vapm  is equal to lat
HVAC vsQ h , where vsh  is the water latent evaporation heat at 0°C 

and lat
HVACQ  is the latent heat supplied to, or removed from, the building space. As in the case of 

the computation of HVACQ  in Section 2.2.4, also water vapor mass flow rate is computed in 

feedback according to the adaptive algorithm presented in Chapter 4.  
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2.2.6 Modelling the effect of phase change materials  

In the conduction model presented in Section 2.2.1 it has been assumed that the specific heat 

of each capacitive node is constant. This hypothesis is not valid anymore when advanced Phase 

Change Material (PCM) are supposed to be integrated into the building envelope [26, 27]. 

Specifically, the thermal behaviour of PCM layers can be described by adopting an equivalent 

heat capacity whose value changes on the basis of the temperature layer including the PCM. 

More in detail, such a value rapidly increases in a specific temperature range reaching its 

maximum at the melting point temperature. This modeling approach allows to take into account 

the latent heat as an increased form of sensible heat in the transition phase, according to the 

effective heat capacity formulation approach [88, 89]. As shown in [88], this assumption has the 

main advantage of simplifying the mathematical representation of the phase-change heat transfer 

mechanism which can be studied as a single-phase non-linear conduction problem.  

Hence, according to the technical literature, in the developed model, the behaviour of PCM 

undergoing phase change is taken into account in equation (2.1) by adopting a temperature 

dependent thermal capacitance for those nodes of building elements related to PCM layers 

(  , , ,m n m n m nC C T ). In each modelled material layer, this parameter is considered as constant only 

in case of a single phase. In all the other cases, the specific heat of PCMs is assumed to be 

variable with the occurring temperature (  , ,PCM PCMm n m nC T ), that influences the state of aggregation 

of the PCM layer (liquid state, solid state or undergoing the phase change). The above mentioned 

apparent PCM heat capacity fits a Gaussian shaped curve [88], where the maximum corresponds 

to the peak melting temperature as: 
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2

 
(2.19) 

where , PCMm nM  is the mass of the PCM layer, a is the maximum increment of the PCM 

specific heat due to the latent heat (height of the curve peak), b is the average temperature of the 

phase change for melting and solidification (which determines the curve peak position) and c is 

the range of the phase change (curve width). In the building simulation code, a database of 

materials properties is also included. Note that specific heat capacity, density and conductivity of 

such composite materials are dynamically assessed by manufacturers [90]. As a result, also PCM 

embedded in traditional building materials matrixes (gypsum, concrete, etc.) can be modelled 

and simulated. It is worth noting that in (2.19) the different parameters must be set in order to 
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take into account the different profiles of the equivalent heat capacity during the melting and 

solidification processes (a hysteresis phenomenon is typical for paraffin materials). 

 

2.3 Description of the numerical implementation of the building model 

The implementation in DETECt of the dynamical model of buildings described in Section 2.2 

as well as the simulator logic are briefly described in this section for the sake of completeness. 

Figure 2.3 shows the software architecture and its kernel (light blue block) that summarizes the 

calculation procedure carried out through DETECt. The latter includes the heat conduction 

through building elements and the most important occurring phenomena, such as solar heat gains 

through windows, infrared heat exchanges, internal gains and ventilation. The input data taken 

into account in the simulation code are: hourly weather data (temperature, humidity, global and 

direct normal radiation), occupancy loads and schedules, ventilation flow rate, temperature set 

points, building size and orientation, thermal features of the building elements (conductivity, 

density, specific heat, absorption and emission coefficients, etc.). On the other hand, the DETECt 

output data can be selected according to the specific needs of the user. For instance, in addition 

to heating and cooling loads and yearly requirements, relevant time histories for building design 

can be obtained. These include the dynamic trends of temperatures (indoor air and building 

elements surfaces and layers), energy demands expressed as latent and sensible thermal loads, as 

well as spatial temperature gradients into walls. In addition, in the latest DETECt release, some 

comfort indexes widely adopted in the scientific literature has been included. Thus, in order to 

analyze the thermohygrometric comfort in each building thermal zone, the numerical code 

allows to calculate the following indexes:  

- PMV (Predicted Mean Vote), i.e., the comfort perception of a large population of people 

exposed to a certain environment. It establishes a thermal strain based on steady-state heat 

transfer between the body and the environment assigning a comfort vote to that amount of 

strain; 

- PPD (Predicted Percentage of Dissatisfied). It represents the predicted percentage of 

dissatisfied people at each PMV. As PMV changes away from zero in either the positive 

or negative direction, PPD increases.  

- The mean radiant temperature of the indoor building space. 

Additional details about the PMV and PPD are reported in [91, 92].  
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Figure 2.3. Input/Output schematization and fundamental modules of DETECt. 
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We explicitly point out that, through DETECt, in order to determine the effect of transparent 

elements on the space heating and cooling requirements, as well as to obtain the desired thermal 

transmittance, different and complex glasses can be simulated. In particular, by the presented 

model coated to tinted single or multi glazed windows filled by different gases can be selected, 

but in each wall only one window of rectangular shape can be modelled for sake of simplicity. 

For all the considered glazing systems, uniformly distributed absorption factors are considered. 

In addition, we note that, in the first versions of the presented code only constant normal 

incidence Solar Heat Gain Coefficients, SHGC, were implemented. Nevertheless, since the 

normal incident solar radiation is a very rare occurrence in dynamic buildings simulations, 

radiative properties of glazing systems must vary with the angle of solar incidence. For these 

reasons, optic features as well as solar radiation absorption, reflection and visible and solar 

transmission coefficients are calculated in the latest version of the code as a function of radiation 

incidence angle varying in function of the weather data file [84]. In particular, the equivalent 

solar transmission coefficient depends on the transmittance for direct radiation, which, for 

ordinary glasses, can be calculated by a fifth order polynomial expression, function of the solar 

incident angle [93]. Note that, the glass solar transmittance coefficient can be also calculated by 

interpolation of constant values imposed by the user. In the presented code the diffuse radiation 

entering through windows and the radiation transmittance coefficients are assumed as isotropic 

and hemispherical, respectively. 

In order to modulate the solar heat gain, with the aim to increase and decrease the related 

effect during winter and summer, respectively, windows external solar shadings, overhangs and 

fins can be taken into account. 

Before solving the model describing the buildings dynamics numerically (see Sections 2.2.1, 

2.2.4 and 2.2.5), fundamental quantities are precomputed on the basis of the input data. For 

instance, at the beginning of the simulation the view factor matrix and the Gebhart's matrix in 

(2.6) and (2.12), respectively, are precomputed. When the Dynamic simulation subroutine starts, 

the simulation time domain is split in a large number of discretized time steps. The numerical 

integration of the set of differential equations presented in Sections 2.2.1, 2.2.4 and 2.2.5 is 

carried out simultaneously and iteratively as variable step size numerical schemes are adopted. 

Obviously, the maximum step size has to be selected with regard to the requested simulation 

fidelity and calculation efficiency. Indeed, the smaller the maximum step-size, the higher the 

accuracy of the resulting output data, but the higher the simulation time.  
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Analogously, the higher the number of thermal network nodes introduced in Section 2.2.1, the 

higher the accuracy of the resulting output data, but the higher the simulation time. Hence, for 

the routine for solving all the differential equations connected to the building model, thermal 

network nodes and maximum step-size (or maximum sample time) are set as trade-off between 

the desired calculation accuracy and simulation time [94]. Typically, in such kind of calculation 

procedures, a maximum sub-layer thickness of 1 cm and a maximum sample time of about 300 s 

are taken into account [58].  

Note that, thanks to the efficiency of numerical integration methods as well as to the 

nowadays powerful computational systems and tools, long standing finite difference methods 

can be employed for the solution of such set of Ordinary Differential Equations (ODE). In the 

presented code, such equations are solved by a suitable tool, such as a built-in ODE solver 

included in MatLab, which employs variable step size Runge-Kutta and trapezoidal rule 

integration methods [95]. In each interval of integration the error of time discretization lies 

within a given range of tolerance, while the convergence criteria need to be satisfied within the 

maximum time step also defined.  

It is important to point out that, during the simulation, not only the differential equations 

describing the plant dynamics are integrated, but also those of the control systems are solved at 

the same time. These dynamical systems must be introduced in the code to tame the dynamics of 

the indoor temperature and indoor relative humidity on the basis of some control objectives. In 

other words, they are used to impose either preassigned profiles or some given set points to the 

fundamental thermohygrometric variables, therefore allowing a precise calculation of the 

required sensible and latent heat to get some thermohygrometric working condition. Indeed, 

those dynamical systems decide online the amount of sensible and latent heat that must be either 

provided to or subtracted from the indoor node to achieve the required operating condition. To 

this aim, these systems compute their outputs, i.e., the control actions, not only as functions of 

the temperature and relative humidity references, but also by exploiting in feedback the current 

indoor air proprieties. 

In the first releases of DETECt [9], only the indoor air temperature were controlled in 

feedback by means of a Proportional Integral (PI) strategy [96], schematized as the PI block in 

Figure 2.3, while a simple calculation of the latent heat were carried out for assessing the latent 

energy that has to be added to or subtracted from the examined thermal zone to keep the require 

specific humidity and a given value. This calculation procedure were based by solving in each 

simulation time step, τ, the space moisture balance. In particular, for each time step, the latent 
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energy calculation is based on the following logic. If the indoor air relative humidity is higher 

(lower) than the selected set point then the latent energy must be removed from (added to) the 

space. Consequently, the latent heat required in (2.18) is computed as 

 ( ) ( )lat
HVAC vs in in spQ h t t     with being the required set point specific humidity. Additional 

details about this procedure can be found in [9]. 

As the thesis is devoted to improve the management of the sensible and latent heat, in the 

following subsection details about the pre-existing feedback control algorithm embedded in 

DETECt are given for the sake of completeness .  

2.3.1 Pre-existing controllers for the computation of sensible and latent heats 

In the first version of the DETECt code, the sensible heat supplied to, or removed from, the 

building space by an ideal HVAC system in order to maintain the indoor air at the desired set 

point temperature is computed according to a Proportional Integral (PI) control strategy [18]. 

This controllers are driven by the error signal e(t) (see also Figure 2.3) that in the case of 

temperature control represents the deviation between the indoor air temperature and the set point 

one, Tsp. Thus, in order to track the set point temperature, the sensible load to be supplied 

(heating mode) to or to be removed (cooling mode) from the thermal zone is function of the 

output control signal u(t), which range from 0 to 100% [97]. Here, 0 corresponds to the HVAC 

system stand-by while 100% is proportional to the peak representing the design heating and 

cooling load of the space. 

According with the PI strategy the sensible heat is computed in feedback as  

 
( ) ( ) ( ) ,       ( ) ( )

t

p i sp inu t K e t K e t dt e t T T     
0

 (2.20) 

where pK  and iK  are the control gains, i.e., the proportional and integral gain, respectively. 

Such error is weighted on the basis of such proportional and integral gains, which vary in 

function of the heating or cooling HVAC mode. To simplify the tuning of the controller, the 

proportional gain is assumed as the ratio of the maximum controlled system output ( HVACQ peak) 

to the throttling range ( min( ) -in spT T  and max( ) -in spT T , for heating and cooling modes, 

respectively) [97]. The maximum and the minimum values of Tin can be considered equal to the 

relative outdoor air temperature or calculated by a free floating simulation (HVAC always turned 

off). The integral gain, added to the controller with the aim to eliminate the offset caused by the 
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proportional gain, is tuned by assuming a time scale ( /p iK K ) equal to the simulation time step. 

Notice that these gains are decided offline and kept constant during the simulations.  

As any control strategy with fixed control gains, PI approach presents mainly two drawbacks: 

i) there is no guarantee that that selected control gains provide satisfactory performance, i.e., a 

satisfactory tracking of the reference temperature; and  ii) the overall control system can be not 

robust with respect to external disturbances, parameter variation and unmodelled dynamics. It is 

interesting to note that all these uncertainties can affect building dynamics and consequently 

building performance in terms of energy consumption as well as thermohygrometric comfort of 

the occupants. For instance, and just to name a few, external temperature, ground temperature 

and solar radiation, i.e., whether conditions, act on the temperature dynamics as disturbances. 

Moreover, control strategies with fixed gains have to be retuned for the specific building on the 

basis of its parameters and actual weather conditions to get excellent taking performance of the 

reference thermohygrometric profiles. This can be a challenging task that can increase the design 

time of innovative buildings. To reduce this time it would be more convenient to assume during 

the design stage nominal building parameters and simplified models, but in this case the 

controller has to be robust to unavoidable parameter uncertainties and unmodelled dynamics. As 

additional drawback, in general PI control actions do not allow to include any optimality in terms 

of thermohygrometic comfort and energy consumption and phenomena like windup can 

jeopardize their performance. Those disadvantages will be tackled in the thesis systematically by 

proposing different feedback control strategies ranging from PI with optimal tuning of the 

control gains to model predictive algorithms and model reference adaptive control strategies.  

2.4 Discussion 

In this chapter, the mathematical model of building dynamics implemented in DETECt been 

briefly presented to give to the reader details about the BEPS code where both the optimal 

adaptive strategies for the computation of sensible and latent heat and algorithms for building 

model reduction (which are required, for example, by the application of model predictive 

controllers) have been implemented.  

Hence, the aim of this chapter was also to present the features that will be used in the next 

chapters and the code architecture. Precisely, through DETECt the dynamic building behavior 

can be analyzed in case of different weather locations, envelope materials, building shape and 

orientation, as well as geometry. The outputs of this software include: sensible and latent heat 

demands for the whole year or for selected shorter periods, heating and cooling loads, operating 
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temperature and humidity of indoor air, building elements surfaces and nodes (modelled by a 

thermal network into each considered building element). In addition, dynamic profiles of 

building temperatures and heat fluxes are provided. The effectiveness of the model predictions 

have been shown in [9], where DETECt results have been proven to pass the BESTEST 

procedure and to be comparable to those provided by available commercial BEPS codes in large 

variety of working conditions. Obviously, as an in-house code, DETECt allows enhancements 

also depending on the research need. Hence, the control and model reduction approaches 

proposed in the rest of the thesis improve the available code as they have become additional 

routines of the latest DETECt release. 
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Chapter 3                                                     

PRELIMINARY ENHANCEMENTS TO BUILDINGS 

CONTROL 

In this chapter we present the control architecture used to host the model reference adaptive 

control algorithm for the computation of the required sensible heat and water vapor mass flow 

rate. This architecture is basically composed by a couple of feedback controllers, a supervisor as 

well as air indoor temperature and relative humidity trajectory planner. In particular, the 

supervisory machine decides the activation/deactivation of the control algorithms on the basis of 

some feedback measurements and a given scheduled region on the psychometric chart where no 

sensible and latent heats have to be provided to the thermal zones, for example, because a 

satisfactory comfort level is there assured without any additional action. 

As possible application of the control scheme, the chapter focus then on a methodology for 

selecting optimally, in accordance to a cost function which weighs both comfort and energy 

saving, the control gains of a PI control algorithm for the computation of the sensible heat to be 

provided by HVAC systems for the temperature control. Notice that, this represents also the first 

attempt in this work to seek for optimal control solutions for the control of thermohygrometric 

variables by means of control algorithms with fixed gains and it is presented in Section 3.3. To 

prove its effectiveness different case studies have been considered. Nevertheless, in the last 

section (Section 3.5) we stress the issues connected to this solution which motivates the need of 

adaptive strategies which are developed and implemented in the next chapters.  

Material of this chapter has been published in [33, 98]. Precisely, the supervisory machine has 

been presented in [33] while the tuning method for temperature controllers with fixed gains has 

been published in [98]. 

3.1 Architecture for the thermohygrometric control in buildings 

The control architecture used throughout the thesis for computing dynamically the amount of 
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Figure 3.1. Schematics of the control architecture for the thermohygrometric variables. 

 

sensible and latent heats to provide to or to remove form the thermal zone to get a suitable 

thermohygrometric condition is depicted in Figure 3.1. This architecture is based on three main 

blocks, i.e., Feedback Controllers, Supervisor and Trajectory Planner. Briefly, in the Trajectory 

Planner block are implemented strategies for the computation of paths on the psychometric chart 

from the point describing the initial state of the thermal zone at the beginning of the control 

horizon to a final point corresponding to the required set-point working condition. More in 

detail, defining t0 as the initial time instant of the interest for the control of the thermal zone, and 

(Tsp,sp) the required set-points of temperature and relative humidity of the indoor air, 

respectively, the Trajectory Planner block computes its output, say (Tm(t),m(t)), so that 

(Tm(t0),m(t0)) = (Tin (t0),in(t0)) and Tm (t)→ Tsp, and m(t) →sp, with (Tin(t0),in(t0)) being the 

current indoor air temperature and relative humidity at the time t0 which are provided in 

feedback to this block. Notice that, different algorithms available in the literature can be 

implemented in the Trajectory Planner Block (see for example [99]). Nevertheless, in the thesis 

its outputs are chosen according to the procedure shown in Chapter 4, i.e., they are the outputs of 

an optimal reference model.  

The required indoor temperature and relative humidity profiles are then imposed to the 

thermal zone by exploiting feedback control strategies implemented in the blocks Temperature 

Controller and Humidity Controller shown in Figure 3.1. These blocks compute dynamically, in 

accordance with the control algorithms which are actually implemented, the required sensible 

heat and the water vapor mass to add or subtract to the indoor zone in accordance with a 

decoupled approach.  
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We point out that the decupled approach to control temperature and humidity has used in the 

technical literature as a mean to improve energy saving in buildings [100] and it can be 

implemented via air conditioning systems which will be used for buildings of the next future 

[101]. 

Finally, the online activation/deactivation of both controllers and Trajectory Planner are 

orchestrated by the Supervisory Machine to reduce energy consumption when the 

thermohygrometric control is not required, allowing as a consequence the free-floating evolution 

of the indoor temperature and humidity. Basically there are two notable cases when the 

controllers have to be switched off. The first case is when buildings are operated according to the 

“intermittent running regime” [102, 103]. Here, for some hours, often nighttime, the control 

system is switched off because there are not occupants who demand thermal comfort, e.g., 

museums, malls, offices etc. The second reason for turning off the control algorithms is when the 

external/internal loads (outdoor temperature, radiation, etc…) can preserve the 

thermohygrometric comfort without any additional heating/cooling or 

humidification/dehumidification, i.e., when the external inputs are so that the indoor temperature 

and indoor relative humidity evolve within a preassigned comfort zone (as those presented in 

[104]). Notice that, the former case, activations/deactivations of controllers introduce time based 

switches in the overall scheme in Figure 3.1 [105], while the second case induces state based 

switches as activations and deactivations are functions of the thermohygrometic variables, i.e., 

indoor temperature and relative humidity, which define the working condition of the thermal 

zone. As for buildings operated according to intermittent running regime the time based 

commutations occur at a slow rate (several hours), it is reasonable to assume that they do not 

alter the performance of the underlying feedback temperature/humidity controllers [105]. On the 

other hand, the switching rate of state based commutations can become unbounded, i.e., the so 

called Zeno solutions [106]. As a consequence high frequency components will be induced in the 

control outputs, i.e., chattering phenomena on the control actions [107], which can be either not 

implementable by the underlying actuators or damage them [108]. For this reason, a particular 

care has been dedicated to the design of the Supervisor as an automaton [109] which will be 

illustrated in detail in the chapter. 

3.2 Supervising System and its modelling 

The supervisory system in Figure 3.1 is used to decide the activation/deactivation of the 

temperature and humidity controllers. To this aim each controller is switched on/off on the basis 
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of the evolution of an event driven automaton. As these systems have the same structure, in what 

follows we describe for the sake of brevity only that for the management of the temperature 

control. By denoting  , 0,24on offt t   as the time instants delimiting the time interval where 

occupants required thermohygrometric comfort, e.g., the working hours in the case of buildings 

for office use, and with lT and uT  the lower and upper bounds for the indoor air temperature 

allowed for ensuring comfort, then the aim of the Supervisor is: i) to activate the temperature 

controller only when  ,in l uT T T  and ,h in offt t t     ( with  0,  24ht   being the time t expressed as in 

the 24-hour clock system [110]), ii) to avoid numerical chattering (i.e., activation/deactivation of 

the underlying controller with infinite, or very high frequency [107]), and iii) to detect when the 

controller can be shut down without compromising comfort. To achieve these aims, an ad-doc 

finite state machine [111], which evolve on the basis of some events, has been designed and 

implemented. 

The automaton describing the states and the transitions composing the Supervisor for the 

temperature controller is shown Figure 3.2a. For its description, we denote in what follows 

( ) ( )T sp ine t T T t  , with spT being either uT  (when ( )in on uT t T ) or lT (when ( )in on lT t T ), and T is a 

positive small threshold which is set to 0.05 in the code. The states of the system are 

“Initialization”, “Tracking”, “Free Evolution” “Heating” and “Cooling”. Specifically, i) the 

system is in the state “Initialization” when  ,h on offt t t , i.e., for the time range which is not of 

interested for the control, e.g., nighttime; ii) in the state “Tracking” the underlying temperature 

contoller is active and the profile generated by the Trajectory Planner block (see Figure 3.1) is 

imposed to the indoor temperature; iii) the automaton is in “Free Evolution” , when the internal 

loads and disturbances, as external temperature, are so that the indoor air temperature dynamics 

are in the preassigned range of variation, i.e.,  ,in l uT T T , the controller is then switched off for 

reducing consumption; iv) in the state “Heating” the controller is active to keep the indoor 

temperature to lT  when the external disturbances tend to reduce it (for example in cold seasons), 

analogously v) in the state “Cooling” the controller is active to keep the indoor air temperature to 

uT  when the external disturbances tend to increase it (for example in summer seasons).  

Briefly, independently on the actual state of the machine, if    , 24 0,h off ont t t 
 
then the next 

automaton state is “Initialization” till h ont t  on the next day. When such event occurs, the next 

state can be either “Free Evolution” or “Tracking” on the basis of the actual indoor air 

temperature. In the case inT  is outside  the required  range, a reference  trajectory is computed  by 

https://en.wikipedia.org/wiki/24-hour_clock
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(a)                                                                        (b) 

Figure 3.2. Automaton for the management of the activation/deactivation of the temperature controller 

for intermittent running building a) for [ , ]h on offt t t , and b) [ , ]h on offt t t . 

 

the Trajectory Planner and become the reference input to the underlying control temperature 

algorithm. Notice that, during the transition from “Initialization” to “Tracking”, the reference 

trajectory is initialized with the actual indoor air temperature, and in the case ( )in on uT t T , the 

resulting required temperature profile, mT
 
in Figure 3.1, is so that  m uT t T ,  m uT T  , and spT  

is set equal to uT . Analogously, if ( )in on lT t T  , then  m lT t T ,  m lT T  , and spT .is set equal to 

lT . Assuming, without loss of generality that, ( )in on uT t T  and    in mT t T t (as the underlying 

temperature controller is active), then ( )Te t
 in the state “Tracking” is always positive and the 

switching to the next state occurs when this error becomes smaller than T . As the initial indoor 

temperature was assumed to be above uT , then a negative sensible load 0s
HCQ   has been 

required during tracking, therefore to preserve continuity of the control variable the next 

scheduled state is “Cooling”. In this state, the sign of the control action changes when the 

internal loads and external disturbances can drive the indoor air temperature in the acceptable 

range of variation, i.e.,  ,in l uT T T . Hence, if this case occurs, the next state of the automaton is 

“Free Evolution” where the temperature controller is switched off. The supervisory machine will 

remain in this state as far as the indoor temperature does not cross either uT  or lT . Of course if 

in uT T  a negative control action is required to keep in uT T , therefore the state “Cooling” is 

restored. Instead, if in lT T , a positive control action to regulate in lT T
 is provided after the 

automaton state is set to “Heating”. We note that the automaton for the supervisory control of the 

relative humidity is similar to that in Figure 3.2a and it is not reported here for the sake of 

brevity. Indeed, it can be obtained substituting the indoor air relative humidity, say in , to inT , 
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vapm  to s
HCQ , u  and l  to uT  and lT , respective, with u  and l being the lower and the upper 

bounds which delimit the acceptable range of variation of the relative indoor air humidity, while 

Te  is replaced with ( ) ( )sp ine t t   
 
where sp is the relative humidity set point and T  is 

substituted with  . Finally the states Heating and Cooling are replace with “Humidification” 

and “Dehumidification”, respectively.  

We explicitly note that, by setting properly the parameters of the automaton in Figure 3.2a, 

different working conditions can be achieved. For example, to get a continuous running 

configuration, the user must set 0ont   and 24offt  , while to keep the temperature to a given 

value, i.e., avoiding possible free-floating, it is enough to set u l spT T T  , with spT  being the 

required temperature. 

 In the case the building is designed to work in intermittent running regime, it is possible to 

use an additional automaton, which works in parallel to that depicted in Figure 3.2a, so that the 

temperature controller is restored in the loop also for (0, ) ( ,24)h on offt t t  providing that the 

indoor air temperature exceeds some boundaries. In so doing, it is possible to implement setback 

strategies to achieve additional energy saving [112]. Figure 3.2b shows such an automaton when 

this option is selected. In this case, when [ , ]h on offt t t , it is still possible that the temperature 

controller is switched on. Indeed, the finite state machine switches to the state “Heating”, 

activating therefore the Temperature Controller block in Figure 3.1, in the case the indoor air 

temperature goes below the temperature slT . Analogously, the underlying temperature controller 

is activated also if the indoor temperature goes over the temperature suT  as the automaton 

switches to the state “Cooling”. Notice that, slT  and suT  are the parameters of the automaton in 

Figure 3.2b which need to be tuned in accordance with the specific use of the thermal zone. 

We clearly point out that both the automatons in Figure 3.2 can be recast as flowcharts. For 

instance the finite state machine in Figure 3.2a can be described via the flowchart in Figure 3.3. 

When this formalism is adopted, the state of the supervisor is modelled as a flowchart variable 

named State, which can assume at any time instant ,init endt t t   , with initt  and endt  the time instate 

that delimit the beginning and the end of the control horizon, respectively, one of the values in 

the following finite set  Initialization Tracking Free Floating Heating Cooling, ,  , , . Notice that in 

Figure 3.3, t  represents the simulation time step.  
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Figure 3.3. Flowchart describing the Supervisory machine in Figure 3.1a for activation/deactivation of the 

temperature controller.  

 

Finally, we point out that the set of automatons described above have been implemented in  

SimuLink/Stateflow [95] and included in the latest version of DETECt.  

3.3 Optimal tuned PI strategy 

Nowadays, building automation and control systems play a remarkable role in order to 

achieve building energy efficiency and thermal comfort [6, 15]. In this regard, the feasibility of 

control schemes based on different techniques and their effectiveness for improving the accuracy 

of building energy performance simulation models have been recently analysed [15]. 

Nevertheless, such techniques can provide different results depending on the accuracy and 
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robustness of the adopted control solutions and building simulation approaches [15, 113]. With 

respect to control it is worth to be noted here that, although in the technical literature advanced 

control solutions have been recently proposed (see for example those based on model predictive 

control schemes [114] or artificial intelligence tools, such as, for example, learning methods 

[15]), fixed gains control algorithms, such as PI and PID controllers, are still widely used. These 

methods have the great advantage of being easy to be designed and to be implemented [115], but 

they require an appropriate tuning of control gains to be effective.  

Automatic and well assessed methods for the tuning of PI/PID control parameters are today 

available in order to reduce the time required by the tuning phase [116]. Nevertheless, often 

these methods do not provide any optimality of the solution, which is essential, for example, in 

the context of indoor air temperature control. To overcome this limit, we propose a novel 

procedure for the optimal and automatic tuning of the PI gains. The approach is based on a 

purposely designed cost function to be minimized so to optimize the control gains over a finite 

control horizon. The adopted cost function weights both the temperature tracking error and the 

sensible thermal energy required to impose the demanded set-point. Due to the complexity of the 

building model, the resulting parameter optimization problem cannot be solved analytically. 

Hence, an iterative numerical procedure for its solution is also designed. 

The optimized control algorithm has been embedded in the control architecture in Figure 3.1 

for temperature control (Temperature Controller Block). 

The control approach has been simulated in DETECt. As described in Chapter 2, this tool is 

able to analyse the building thermal behaviour and to assess the benefits of different and 

advanced building envelope techniques, solar gain controls and daylighting solutions in case of 

different weather locations, envelope materials, building shapes, orientations and geometries. In 

addition, temperatures dynamic profiles and time-variant spatial trends can be obtained. We note 

that, in the first release of DETECt, presented in [9] and in Section 2.3.1, the PI gains were 

selected by using an heuristic scheduling method [117]. Hence, the method here proposed can be 

seen as an alternative approach for a systematic tuning of the pre-existing controller. 

3.3.1 Procedure for the Optimal tuning of PI control parameters 

Given the tuple  , ,A B C , with n nA R  , nB R  and 1 nC R   we define the following system 

 
( , )x Ax Bu F x t

y Cx

  



 (3.1) 
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where nx R  is the state vector, ,u y R are the system input and output, respectively, and 

( , ) nF x t R  is a vector function embedding all the time varying and nonlinear terms acting on the 

system dynamics. In what follows we assume system (3.1) to be controlled via a PI algorithm, 

hence 

 
0

( ) ( ) ( ) ,
t

p I
t

u t K e t K e d     (3.2) 

where ( ) ( ) ( )e t r t y t   is the tracking error between the system output y(t) and a prefixed time-

varying reference trajectory ( )r t ; 
PK  and 

IK are control gains to be opportunely tuned; 
0t is the 

initial time instant. 

As usual, closed-loop dynamics strongly depend on the specific choice of the control gains. 

Indeed a wrong selection of these parameters may jeopardize the system performance, leading to 

instability in some critical cases. Moreover, the tuning procedures, based on heuristic methods, 

may result to be time-consuming or not effective. To solve this problem, different experimental 

or model based methodologies have been proposed in the control literature for the appropriate 

gains tuning with the aim of guaranteeing stability and robustness (see for example [116], [118] 

and references therein for a complete overview of standard and innovative PI tuning procedures). 

Here we propose a different approach based on a purposely designed cost function to be 

minimized so to optimize the control gains. Specifically, consider a positive function, 

say ( , )P IJ K K , so that: 

 ( , )P IJ K K  assumes finite values for stable solutions of system (3.1) under the control 

action (3.2); 

 smaller values of ( , )P IJ K K corresponds somehow to a better tracking of the reference 

trajectory; 

the control gains are then set as *

P PK K and *

I IK K  so that  

  
 

  * *

,
, min , .

p I

P I p I
K K

J K K J K K  (3.3) 

According to this approach, different choices of ( , )P IJ K K can be made in order to derive the 

PI gains according to (3.3). Here, we consider the following quadratic function measuring both 

mean squared tracking error and control effort over a finite control horizon as 

  
0

0

2 2, ( ; , ) ( ; , ) ,

t

p I p I p I

t

J K K qe K K hu K K d  



     (3.4) 
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with q and h  being positive constants that weigh the terms in the integral (3.4), and   the finite 

time interval that is of interest in the control problem (control horizon). Notice that the 

optimization problem discussed here is different from the one usually considered in optimal 

control theory where the controller structure is not a priori fixed [23]. Here instead the structure 

of the controller is fixed to the PI structure (3.2) and the aim is the parameters optimization. 

Moreover, differently from the classical linear quadratic optimal control [23], here numerical 

methods are exploited to solve the parameter optimization problem in (3.4) that cannot be solved 

in closed form due to its complexity. The iterative procedure proposed to numerically solve the 

optimization problem is shown in Figure 3.4. This procedure is implemented by the following 

tools: (i) an optimization toolbox (Optimizer), which decides the parameters ( ) ( )( , )i i

P IK K  for the i-

th interaction; (ii) a detailed simulator of the controlled system, i.e., system (3.1) under the 

control action (3.2). (Note that the Simulation-Code block in Figure 3.4 provides the data 

necessary to compute the function J ); (iii) the Compute-J subsystem which allows the 

computation of the J -function at each interaction. 

 

Figure 3.4. Iterative procedure adopted to numerically solve the optimization problem (3.4). 

 

We remark that, as the optimization problem is numerically solved by an iterative procedure, 

the initial condition plays a fundamental role for the rate of convergence [119]. Moreover, initial 

conditions have to guarantee the stability of the controlled system at the very first interaction. 

Note that the stability at the generic i-th interaction (i >1), is instead ensured by the Optimizer 

itself, since unstable solutions lead to high values of J  in (3.4), and therefore they are 

automatically excluded. For these reasons, the optimization procedure is initialized by selecting 

the PI gains with the closed-loop Ziegler and Nichols method [116] (denoted as ,ZN ZN

P IK K in 

Figure 3.4). Furthermore, optimization toolboxes are available in most of the numerical software 
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packages (as, for example, MatLab, Maples, etc.), so the minimization problem of the equation 

(3.3) can be effectively solved. Note that, the proposed approach can be extended to the generic 

problem of tuning feedback control actions parameters described as:  

 
 

 

, ; ,

, ; ,

c c

c

x f x e

u g x e










 (3.5) 

where: 
cx  is the state of the controller; f and g are liner or nonlinear functions for mapping the 

tracking error and the state of the controller onto the state derivative and control action; while   

is the set of the control parameters to be selected. In this case the cost function J  must be a 

positive function of the parameter vector . 

In the next section, to show how to tune a PI strategy with gains optimally computed in 

accordance with the procedure discussed above, the effectiveness of this approach as well as its 

drawbacks, we illustrate in detail the design of the indoor air temperature controller block in 

Figure 3.1 for a set of thermal zones of different sizes and under different weather conditions. 

Humidity control is instead investigated in the next chapters when the model reference adaptive 

algorithm is introduced.  

3.4 Case Studies  

In order to show pros and cons of the proposed tuning method in Section 3.3.1 for an accurate 

tracking of a given indoor air temperature trajectory, which in turns allows a more accurate 

prediction of the heating and cooling demands in buildings, different case studies have been 

implemented and analysed by using DETECt [9]. More in detail, we have considered buildings 

of different geometry, construction materials and subjected to different weather conditions 

(external disturbances). In the following subsections we describe the typologies of buildings 

implemented in the simulation code in accordance with the model presented in Chapter 2 as well 

as the design of the optimized PI scheme in Section 3.3.1 for taming indoor air temperature 

dynamics.  

3.4.1 Description of buildings  

As case studies different buildig size, construction material as well as outdoor weather 

conditions are taken into account. In particular: 

 we characterize the building geometry by its square meters floor area. Thus, a small 

size dwelling (48 m2), a middle size office (200 m2) and a large size mall (900 m2) are 
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modelled. Some details about geometry and operating features are reported in Table 

3.1;  

 Building 

 Small Middle Large 

Surface to Volume ratio (%) 1.3 0.53 0.30 

Window to Wall ratio (%) 55 45 20 

Air change (vol/h) 0.5 1.0 2.0 

People vapour mass flow rate 

(g/h･p) 
40 45 60 

Table 3.1. Geometry features of the considered buildings. 

 

 both light and heavy building envelopes have been considered. Table 3.2 shows the 

envelope stratification data for both the simulated buildings; 

Building element 
Lightweight building Heavyweight building 

Materials (mm) Materials (mm) 

wall 

Plasterboard 12 Concrete block 100 

Fiberglass quilt 66 
Foam 

insulation 
61.5 

Wood siding 9.0 Wood siding 9.0 

roof 

Plasterboard 10 
Identical to Lightweight 

case 
Fiberglass quilt 111.8 

Roof deck 19 

floor 
Timber flooring 25 Concrete slab 80 

Insulation 1.003 Insulation 1.007 

window 
Glass 4.0 Identical to Lightweight 

case 
Air 6.0 

Glass 4.0 

Table 3.2. Envelope stratification (from inside to outside). 

 

 input weather data (such as outdoor temperature, solar radiation, etc.) vary according 

to hourly profiles and are related to cold winter climates and temperate Mediterranean 

ones. Details on heating and cooling degree days, HDDs and CDDs respectively, of 

the investigated weather zones are reported in Table 3.3. Here, the annual Incident 

Solar Radiation (ISR) on the horizontal surface of each weather zones are also 

reported.  

Location 
HDD 

(Kd) 

CDD 

(Kd) 

ISR 

(kWh/m2y) 

Copenhagen 3757 77 988 

Freiburg 2966 287 1470 

Denver 2667 977 1662 

Milan 2584 487 1114 

Nice 1506 471 1562 

Rome 1370 777 1430 

Naples 1335 833 1825 

Athens 1082 1284 1407 

Table 3.3. Climatic zones, HDD and CDD indexes and ISR. 
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Hence, 48 case studies have been simulated and analysed, covering a wide range of operating 

conditions. Furthermore, we assume that the HVAC system of these buildings are intermittently 

operated [41], i.e. the temperature is not controlled all day long, but only in a given range of 

hours, defined as occupied hours.  

Here we assume that the temperature must be constant to a given set-point from 08:00 to 

18:00. In particular, the reference set-point is set at 20°C from the October 1st to April 30th and at 

25°C from May 1st to September 30th. In addition, for each investigated case study the simulation 

horizon was set at one year to cover both winter and summer weather conditions (simulation 

starts on January 1st and ends on December 31st). Hence, the automaton in Figure 3.2a 

implemented in the supervisory machine in Figure 3.1 has been tuned so that u l spT T T   , where 

the temperature set-point depends on the season.  

3.4.2 Design of the optimal PI algorithm for indoor air temperature  

In order to impose the required indoor air temperature set point over the daily interval of 

interest (from 08:00 to 18:00), a PI controller is adopted. The controller is tuned according to 

Section 3.3.1, by taking into account the following design options: 

 for the optimization procedure presented in Section 3.3.1, we select as controlled 

variable, 
iny T , the indoor air temperature, and as control input, s

HCu Q , the sensible 

load in (2.17); 

 due to the rather slow dynamics of the building, the controller must be activated in 

advance with respect to the beginning of the occupied time slot [41]. In particular, the 

controller is activated at 07:00 each day; 

 a smooth transition from the air temperature obtained at 07:00 to the demanded set-

point required at 08:00 is imposed. This transition is guaranteed by Trajectory Planner 

block in Figure 3.1. Notice that in order to avoid discontinuities in the system 

dynamics, the output of this block is initialized to the indoor air temperature at 07:00; 

 for the cost function in (3.4), we select q = 100 and h = 0.1. This imposes to the 

optimization procedure to search for the PI gains that allow the resulting indoor air 

temperature to closely match the reference trajectory; 

 in order to reduce the computational time required for finding the optimal PI gains, 

few days have been considered in the optimization horizon,   in (3.4). Nevertheless, 

the procedure can also be applied to different days, random or not consecutive.  
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The numerical architecture depicted in Figure 3.4 adopted for solving the optimization 

problem of equation (3.3) was implemented in MatLab. In particular as Simulation-Code, the 

DETECt code [9], based on the thermal model of the building briefly described in Chapter 2, 

was adopted. The Optimizer block was implemented by using functions of the MatLab 

optimization toolbox and choosing as searching method the Interior Point algorithm [95]. The 

number of interactions required for solving the problem of equation (3.3) varied from 5, for the 

middle-size heavyweight building located in Denver, to 81, for the small-size lightweight 

building located in Naples. 

3.4.3 Numerical results 

We consider here the tracking performance achieved by the simulation code when the tuning 

strategy described in Section 3.3.1 is adopted for PI gains. In the following we analyse the time 

histories for the cases of heavyweight envelope buildings in a cold winter weather zone (Denver) 

and in a temperate climate one (Naples).  

Even though the simulation time has set to one year (365 days, 8760 hours), we show in 

Figure 3.5a the performance of the closed-loop system only for a set of four sample days. Note 

that such time interval includes the change of the indoor set-point temperature (from 20 to 25°C). 

Here, it is clearly shown that adopting the control strategy presented in Section 3.3.1, the indoor 

air temperature is always controlled at the required temperature set-point (independently of the 

occurring: initial air temperature; building thermal inertia; weather conditions).  
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Figure 3.5. Indoor air temperature for heavyweight buildings (a) over a set of sample days (black line is referred to the 

temperature set-point) (b) for the 230-th day of the year. For both figures, solid lines denote for Denver: Small-size (blue), 

Middle-size (green), and Large-size (red), and Naples: Small-size (cyan), Middle-size (magenta), and Large-size (yellow). 
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Notice that, regions shaded in grey refer to hours in which the building is not occupied 

(switched off HVAC system, inactive control). Obviously, is such hours the indoor air 

temperature evolves in accordance with model (2.17) when 0s

HCQ   (free floating indoor 

conditions).  

We remark that, when the control system is activated the reference temperature is the output 

of a suitable designed second order LTI system with (i) an initial output equal to the indoor air 

temperature at 07:00; (ii) a settling time of one hour; (iii) absence of overshoots in the step 

response; and (iv) the demanded steady-state temperature for the occupied time as input. This 

feature is clearly shown in Figure 3.5b. Here, the time profile of the indoor air temperature 

subsequent to the controller activation is depicted for the 230-th day of the year. 

We remark that similar tracking performance were achieved for all the investigated case 

studies (the remaining time histories are omitted for sake of brevity). The effectiveness of the 

control method to precisely impose temperature profiles can be detected also by Table 3.4.  

Location 

 Building  

Small-size Middle-size Large-size 

Light Heavy Light Heavy Light Heavy 

Denver 0.02 0.017 0.028 0.023 0.0257 0.0254 

Naples 0.018 0.018 0.027 0.022 0.035 0.0278 

Rome 0.025 0.0159 0.0292 0.0243 0.037 0.031 

Milan 0.019 0.016 0.0243 0.0251 0.0324 0.0294 

Athens 0.02 0.0182 0.0267 0.024 0.0352 0.035 

Freiburg 0.023 0.0176 0.0247 0.0271 0.038 0.032 

Copenhagen 0.018 0.015 0.026 0.0293 0.041 0.029 

Nice 0.019 0.018 0.0245 0.0232 0.0357 0.031 

 

 

Here, the temperature mean squared error for the entire year and for all the 48 developed case 

studies is reported. 

Notice that for each indoor air set-point temperature imposed to the heating and cooling 

building simulation model, the resulted control action (i.e. the sensible load) can be exploited for 

obtaining the related yearly heating and cooling energy demands. Such information could be of a 

great interest for building designers and practitioners. In particular, Figure 3.6a and Figure 3.6b 

report the winter heating demand for the investigated lightweight and heavyweight buildings 

(dwelling, office and mall), respectively. As it is possible to observe, the amount of yearly 

heating demand strongly depends on the occurring Heating Degree Day (HDD): the higher the 

Table 3.4.  Temperature mean squared error over the year (in °C). 
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HDD the higher the heating requirements. Furthermore, as expected, the heavier the envelope, 

the higher the heating demand.  

  

(a) (b) 

Figure 3.6. Yearly winter heating demand for (a) lightweight buildings and (b) heavyweight buildings, small-size 

(blue bar), middle-size (green bar) and large-size (red bar). 

 

Analogously, Figure 3.7a and Figure 3.7b show the yearly summer cooling demands for the 

light and heavyweight buildings, respectively. In summer, as expected, the heavier the building 

envelope, the lower the cooling demand.  

 

(a) (b) 

Figure 3.7. Yearly summer cooling demand for (a) lightweight buildings and (b) heavyweight buildings, small-size 

(blue bar), middle-size (green bar) and large-size (red bar). 

. 

Obviously, for all the investigated case studies, the highest heating demands are obtained for 

the large size (mall) building. The opposite occurs for the cooling demands. These results are due 

to the same internal gains per square meter of building floor assumed in all the cases. Such 

hypothesis was taken into account in order to analyse the only effects of the building geometry 



3.4 Case Studies 

52 

 

and weather conditions on the heating and cooling buildings performance. Of course, the higher 

the heated (cooled) volume, the higher (the lower) the related demands.  

As, expected, among all the analysed weather zones and for all the investigated buildings, the 

lowest heating and the highest cooling demands are always obtained in Athens (Mediterranean 

climate). The highest heating and the lowest cooling demands are always obtained in 

Copenhagen (highest HDD among the investigated weather zones). 

Finally, in Figure 3.8a and Figure 3.8b, the calculated heating and cooling peak loads for all 

the investigated case studies are reported. Notice that for sake of brevity only the results related 

to the heavyweight building envelopes are shown. Here, it is possible to observe that the heating 

peak loads are much higher than the cooling ones. This is due to: i) the very low internal gains 

assumed for all the case studies; ii) the selected weather conditions (disturbances).  

 

(a) (b) 

Figure 3.8. (a) Yearly Heating peak loads for heavy buildings and (b) Yearly Cooling peak loads for lightweight 

buildings, small-size (blue bar), middle-size (green bar) and large-size (red bar). 

 

While the highest cooling load is obtained also in this case in Athens, the highest heating one is 

observed in Denver (and not in Copenhagen). Thus, the worst winter condition is obtained in 

Denver. Here, a cold clear winter and a hot dry summer is observed as well as large diurnal 

temperature variations throughout the year. Also such results can be useful for building 

designers. 

Concerning plant disturbances, the winter outdoor air temperatures Tout resulted to be the most 

predominant among those taken into account. In fact Tout is almost always and everywhere lower 

than the selected indoor air set point of 20°C. It must be also noted that during summer Tout is 

averagely close to the indoor air temperature set-point, which in the investigated case studies was 
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fixed equal to 25°C. During such season and especially in Mediterranean weather zones, 

remarkable plant disturbances are caused also by sun radiation. 

3.5 Discussion  

In this chapter we have introduced the control architecture that will be used to host the model 

reference adaptive control algorithm. In addition to the feedback controllers for the online 

computation of the sensible heat and water vapor mass flow rate to impose a given 

thermohygrometric condition, this scheme includes two additional systems, i.e., the Supervisory 

Machine and Trajectory Planner. The former modelled via a set of event driven dynamical 

systems, i.e., automatons, is used to avoid the onset of unwanted chattering solutions for the 

sensible heat and water vapor mass flow rate, while the latter provides the references for the 

underlying controllers and will be used in the following chapters to generate 

humidity/temperature profiles in accordance with a quadratic cost function.  

In the second part of the chapter an approach for the optimal tuning of parameters of a PI 

strategy (and more in general of a generic controller with fixed control gains) has been 

introduced for the building control. The main advantage of this tuning method is that the 

resulting controller minimizes the loss function in (3.4). In the case of the control of buildings, 

this cost function allows to measure in one single performance index both comfort (as the first 

term in (3.4) measures the distance to the required set-point) and energy saving (because the 

second term in (3.4) weights the energy demand). Consequently, the tuning of the coefficients of 

such a function provides solutions to the well-known tradeoff between cost reduction and 

improvement of the comfort that is one of the challenge in building management. Furthermore, 

the implementation of the proposed strategy in DETECt solves systematically the lack of 

optimality of the pre-existing control solution. Hence, both the novel control scheme and the 

tuning algorithm represent enhancements of such dynamic simulation code for the prediction of 

building heating and cooling requirements and loads. The effectiveness of the tuning procedure 

and the resulting control action to impose indoor air temperature profiles were also tested on a 

wide range of case studies related to several buildings of different geometry and construction 

materials, subjected to different weather conditions. In general, through the simulation results 

interesting guidelines, useful for building energy designers and practitioners, can be obtained. On 

the other hand three main issues remain open. Precisely: 

 the solution of the optimization problem is done according to the numerical scheme in 

Figure 3.4 which requires the dynamics simulation of the building dynamics for an 
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unknown number of times. Hence, it can be time consuming in the case of slow 

convergence of the iterative algorithm to the optimal solution; 

 the resulting control parameters strongly depend on the specific case (building 

physical parameters, weather conditions, scheduling of the occupants, etc), i.e., all the 

data required to run the simulator. Consequently, the optimization process must be 

redone for any case study. Indeed, the reuse of the control parameters tuned on a 

given building to another case not only can jeopardize comfort (as the resulting 

indoor air relative humidity and temperature can be quite different from those 

scheduled) but also closed loop instabilities can be induce [96];  

 often classical control solutions with fixed gains, e.g., PI strategies, are not robust to 

parameters uncertainty, unmodeled nonlinear dynamics and disturbances. 

Nevertheless, in the case of the control of buildings robust control solution are 

desirable to provide a satisfactory comfort also in the case of uncertain conditions. 

Indeed building control algorithms have to tackle affectively not only whether 

uncertainties, e.g., external temperature and solar radiation etc., and unexpected 

thermal loads variations (external disturbances), but also parameter variations. The 

latter occurs because i) parameters of a dynamical building model are affected by 

uncertainties and ii) in the case of building envelopes that include advanced materials, 

e.g., phase change materials (see for instance Section 2.2.6 for its modelling) the 

system to be controlled is intrinsically a parameter varying system [120]. 

Consequently, control algorithms with fixed gains can be difficult to be tuned in real 

scenarios and fail to provide a satisfactory comfort level. 

In the following chapters these issues will be tackled by introducing a novel model reference 

adaptive control algorithm with optimal choice of the reference dynamics. Precisely, the control 

gains of this strategy change on the basis of the actual system response with the aim of imposing 

to the system outputs a required behavior. Hence, robustness to parameters variations and 

disturbances are achieved without any preliminary setting of the control gains. In addition, as the 

control gains dynamically changed on the basis of the actual building conditions, the control 

design is simplified as no a priori numerical analysis, simulations, are required.  
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Chapter 4                                                             

OPTIMAL MODEL REFERENCE ADAPTIVE 

CONTROL  

A crucial issue in building engineering is to accomplish the trade-off between reduction of 

energy consumption and high level thermal comfort for the occupants. To this aim, advanced 

control algorithms are fundamental to guarantee a certain optimality of the system performance 

also in working conditions that can be quite different from the nominal ones due to the presence, 

for example, of variable external wheatear conditions or parameter uncertainties. To impose an 

optimal profiles of the indoor air temperature and relative humidity while assuring robustness to 

plant parameter uncertainties and external disturbances, in this thesis we propose an extension of 

model reference adaptive scheme that embeds not only additional adaptive actions to improve 

tracking performance but also an optimal reference model tuned according to the LQ optimal 

procedure (see Appendix A for more details about adaptive control methods). Performance of the 

novel strategy to impose the desired thermohygrometric conditions are investigated both 

analytically and numerically. This chapter is completely devoted to present in detail this strategy, 

named LQ-EMRAC (Linear Quadratic - Enhanced Model Reference Adaptive Control), from an 

analytical prospective. The problem is formulated and solved by using a formalism so that the 

results presented here can be used not only for the control of buildings but easily extended to 

others mechanical systems described by a set of ODEs. Fundamental closed loop performance as 

stability and tracking ability of the closed loop system are investigated via hyperstability and 

Lyapunov theory. The effectiveness of the control to buildings is instead explored in the 

following chapters via a wide set of case studies. The application of the control algorithm 

presented in this chapter to the control of buildings has been published in [33, 121]. 

4.1 Introduction to optimal MRAC  

In the control of buildings, as often happen also for other applications, it is required for the 

controller to minimize certain cost criteria while control is attained. It is common practice to 

address this requirement by using classical Optimal Control techniques such as the well-known 

Linear Quadratic Regulators (LQR) [23]. Their simplicity is indeed desirable to practitioners in 
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order to reduce costs and minimize the control design efforts. Briefly, the aim of optimal 

controllers is that of ensuring optimal performance through the minimization of specific cost 

functions. Classical optimal control schemes are usually characterized by fixed control gains. It 

has been shown that, typically, LQ schemes lack the flexibility and the structural stability of 

other more sophisticated control approaches as, for instance, exemplified by the two significative 

cases discussed in [122] and [123]. The lack of robustness to model uncertainties and nonlinear 

perturbation is, at times, a strong limitation for the use of LQ strategies. Many problems of 

relevance in applications contain uncertainties, model inaccuracies and other effects that can 

make unviable the use of classical optimal control schemes. One way of achieving greater 

control flexibility is to use adaptive control schemes where the control gains are appropriately 

varied (or adapted) according to the system behavior. The control algorithm proposed in this 

chapter extends the family of model reference adaptive controllers. The main idea behind the 

approach is to seek a simple and alternative route to implement the LQ regulator via self-

organizing control algorithm which is effective also in those practical cases when the LQ action 

itself fails. In so doing, the derived controller has the benefits of an adaptive strategy (in terms of 

minimal knowledge of the plant, minimal design effort and robustness to uncertainties) while 

also matches the performance of an LQ regulator. (The reader is referred to Appendix A for 

some details about adaptive control methods and basic definition regarding this control strategy, 

more details about model reference adaptive control and linear quadratic regulator can be found 

in [24] and [23], respectively). The resulting control scheme, called LQ-EMRAC (Linear 

Quadratic - Enhanced Model Reference Adaptive Control) aims at achieving the desired 

performance by means of a model reference adaptive controller equipped with an optimally 

controlled reference model. Specifically, the reference model used to adaptively tune the MRAC 

gains is itself controlled via an LQR feedback strategy that requires the computation off line of 

the solution of the Riccati equation associated with the synthesis of the LQR control acting on 

the reference model. The underlying MRAC is also innovative and represent an enhancement of 

that proposed in [24]. Indeed, to improve tracking performance two additional control actions 

have been added to the original Landau’s control scheme, i.e., an explicit integral adaptive action 

and an adaptive action based on the sign of the tracking error. The former is used for improving 

transient and the effect of a possible bias acting on the plant [124], while the latter enhances the 

robustness to unmodelled disturbances [125, 126].  

A consistent proof of stability and closed-loop tracking performance the proposed control 

scheme are proved. Although it is not the scope of this Ph.D. thesis to derive a general class of 
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new optimal adaptive controllers, some remarks with respect to the wide literature on this 

research field are reported below for the sake of completeness. In particular the formal solution 

of the optimal adaptive control, starting from the pioneering work of Feldbaum (see for example 

[127] and references therein), usually implies stringent properties to be satisfied. In detail, in 

adaptive dual control systems the control signal has to be such as to guarantee the closest 

possible satisfaction of the control goal while sufficiently exciting the plant to allow the 

estimation. Within this context the problem can be solved through the use of dynamic 

programming, but the equations can neither be solved analytically nor numerically even for 

simple examples because of the growing dimension of the underlying state space (which has to 

be augmented by the parameter vector dynamics). 

The difficulties in finding the optimal solution demand the use of some relaxation methods 

which lead to various approximations of the optimal adaptive problems (implicit methods) or 

reformulations of the problem itself by considering special cost functions (explicit methods). 

Two surveys on optimal adaptive control methods can be found in [128]. For these reasons, 

most of the schemes attempting at merging on-line adaptation and optimality require intense 

computations, conservative hypotheses on the system nature, good knowledge of the plant and 

the absence of any nonlinear perturbation on the plant model. Some applicative examples can be 

found in [129-133] and in [134-136]. It is apparent that despite their potential benefits, such 

controllers are hardly used as general tools in generic applicative areas as they are too costly to 

design and implement.  

In this framework, the LQ-EMRAC scheme, detailed in the following sections, is therefore an 

attempt to overcome the issues connected to the available approaches to the optimal control for 

uncertain system by achieving an optimal-like plant response by selecting, as a reference model, 

a nominal linear model of the plant controlled via a classical LQ strategy for the underlying 

model referenced adaptive controller. In so doing, any mismatch between the optimal model and 

the actual plant will be compensated by the adaptive action provided by the enhanced MRAC 

algorithm, which will also guarantee stability in those cases where the LQ strategy alone would 

fail [23, 122, 123].Thus, it is possible to consider the LQ-EMRAC as a simple and effective way 

to conjugate the simplicity and the optimality of the LQ action with the robustness of the MRAC 

control. 
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4.2 The LQ-EMRAC strategy 

The idea behind the LQ-EMRAC approach is to recover robustness of the classical Linear-

Quadratic (LQ) strategy with respect to unknown environmental conditions, disturbances, 

parameter uncertainties and unmodelled dynamics, that is typical in the optimal control theory 

[23], by implementing it via an Adaptive Model Reference Control (MRAC) scheme [24, 137], 

enhanced by two new additional control actions to improve tracking performance of the 

reference model dynamics. 

As in the case of classical MRAC [24], also for the LQ-EMRAC strategy the Reference 

Model represents the desired dynamic performance to impose to a given uncertain system and 

the challenge is to find an Adaptive Mechanism so that the system state exactly tracks that of the 

reference model. The reference dynamics can be selected in terms of a requested behaviour in 

closed-loop and their design do not require a precise and detailed knowledge of the system under 

control. To accomplish optimality of the reference profiles, the Reference Model is chosen as a 

simplify Linear Time-Invariant (LTI) model of the system under control driven by an optimal 

LQ control action. In so doing, the reference model dynamics, say  mx t , are solutions of an 

optimization problem resulting from a minimization of a quadratic cost index J [23]. The 

mathematical formulation of the LQ-EMRAC strategy is given in what follows. 

Consider the system dynamics described as  

  , ,x A x B u f x t      (4.1) 

where   nx t   is the state of the system to be controlled;  u t   is the control input; 

 , nf x t   is a bounded disturbance; n nA   and nB  1 are the dynamic and input matrixes, 

respectively.  

The control objective is to find an adaptive strategy so that the system state tracks the 

trajectories of a simplified LTI model of the plant (4.1) controlled via an LQ strategy [23]. 

Although it is well known in the classical control theory [23], some details on the construction of 

the optimal reference model through the LQ approach are also here provided for the sake of 

completeness.  

The first step is to describe the system dynamics (4.1) by selecting a very simple nominal LTI 

model of the form 

          0 0 0 0 0 0 0 0,        ,x t A x t B u t y t C x t       (4.2) 
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being 0
nx   the state vector, 0y   the output of the system, 0

n nA   the dynamic matrix, 

0
nB   the input vector and 1

0
nC   the output vector. (Notice that, in the case of the control of 

building a possible choice can be based on some rough estimation of the plant matrices as 

illustrated in Section 5.1.) Then it is necessary to impose onto the system in (4.2) an optimal 

control signal    0  optu t u t  that minimizes the following quadratic functional cost: 

         
0

0 0 0 0 1 0 0 2 0 0, ,
TT T

o
t

J x t u y Q y y r Q y r u R u d

             
    (4.3) 

where r is the given set point, 0t  is the initial time instant 1
nQ   and 2Q , R  are positive 

matrices and the auxiliary variable 0y  is defined as: 0 0 0 y C x , with 0 0  nC I L C  and 

 
1

0 0 0



  T TL C C C , being nI  the unit matrix in the vector space n n . 

According to optimal control theory [23, 138], the quadratic cost function in (4.3) is 

minimized by selecting: 

 0 ,
optopt

opt Ru K x K r     (4.4) 

where the optimal constant gains are 

  1 1
0 0 0  and  ,

optopt T T opt
RK R B P K R B A B K Q L              (4.5) 

with P being the solution of the following Riccati equation 

 

1
0 0 0 0

0 1 0 0 2 0

,

.

T T

T T

A P P A P B R B P Q

Q C Q C C Q C

         

 
 (4.6) 

Consequently the optimal reference model takes the following form: 

      ,m m m mx t A x t B r t     (4.7) 

where   n
mx t   is reference the state vector;  r t   is the reference input signal; n n

mA   and 

n
mB   are the dynamic and input matrix, respectively, given by  

 
0 0

0

,

.

opt
m

opt
m R

A A B K

B B K

 


 (4.8) 

To compensate adaptively any mismatch between the optimal reference dynamics  mx t  and 

the actual dynamics  x t  the control input  u t  in (4.1) is chosen as 
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        ,MRAC I Eu t u t u t u t    (4.9) 

where 
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u t K t y t

u t K t x t

x t x d 
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 (4.10) 

and the adaptive gains are on-line computed as 
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(4.11) 

and  
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(4.12) 

where 0
IK , 0

I
RK  and 0

I
IK  are the initial values of the integral part of the adaptive gains at the 

initial time instant 0t ;  ,  ,  ,    nD  (being nD  the subspace of diagonal matrices in 

n n ) and  ,  ,    are some adaptive weights with the same sign of RK  assumed as in 

[23] to be known. 

Furthermore, the output error ye necessary to online compute the gain dynamics is defined as: 

    ,e e ey t C x t   (4.13) 

with  ex t  being the state tracking error, i.e., the distance between actual and optimal reference 

dynamics as: 

      ,e mx t x t x t   and ,T
e m cC B P   (4.14) 

and cP
 
is the solution of the following Lyapunov equation [139] 
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 , 0.T
c m m cP A A P M M        (4.15) 

Figure 4.1 shows the LQ-EMRAC scheme. Notice that, the optimal choice of the reference 

model and the additional control actions (i.e., uI(t) and uE(t) in (4.10)) make the LQ-EMRAC 

different from the Landau’s scheme depicted in Figure 4.2 for the sake of completeness. 

 

 

Figure 4.1. Model reference adaptive LQ-EMRAC scheme. 

 

 

Figure 4.2. Landau’s Model reference adaptive control scheme [24]. 

Remarks. 

 The cost function in (4.3), which is exploited in the minimization process, is similar to 

the one used in (3.4) as it weighs both the distance between the actual plant trajectory 

and the reference one as well as the control effort via the quadratic form involving the 

control input u(t). Hence, similar to the discussion in Section 3.3, in the case of the 
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control of buildings, this function provides a measurement for both comfort and 

energy saving. Consequently, the tuning of the matrices in (4.3) gives to practitioners 

a mean for solving the tradeoff between cost reduction and improvement of the 

comfort that is one of the challenge in building management. Nevertheless, different 

from the optimal PI tuning in Section 3.3, the optimization process is performed for 

the reference model and not for the control parameters whose, in the case of the LQ-

EMRAC, changes online on the basis of the adaptive mechanisms in (4.11) to provide 

the required robustness to disturbances, parameter variations and unmodelled 

nonlinearities. This allows to prevent loss of tracking performance as we will show in 

the Section 5.4.4. 

 As additional technical assumptions we supposed that the pair 0 0( , )A B  in (4.2) is 

stabilizable and pair 0 0( , )A   is detectable, being 0
n n   so that 0 0

T Q    with Q 

defined in (4.6). Hence, the introduction of the auxiliary variable y  in (4.3) allows to 

weight the complete state of the system (4.2) and therefore it is used for avoiding 

possible unstable solutions of non-observable parts of the closed loop system [23].  

 We remark here that, when the optimal model in (4.7) (built according to the LQ 

approach) is chosen as reference model for the LQ-EMRAC scheme, the classical 

matching conditions, required to show the feasibility of the MRAC objective (see 

[140])  are automatically satisfied. 

 According to [124], the main advantages, when the integral term  Iu t  in (4.9) is used 

in the control-loop, are: i) the compensation of non-zero mean bias terms on the plant, 

not only in steady state conditions, but also during the transient phase when the plant 

has a low bandwidth bias; ii) in the case some locking strategies are used for the 

adaptive gains in (4.12), the control strategy has a structure comparable with a 

conventional PID controller, and this is a desirable property. 

 Similar to the control scheme introduced in [125], the term  Eu t  in (4.9) is a sliding 

action that ensures convergence to zero of the tracking error in the presence of 

bounded disturbances acting on the system to be controlled [141]. Notice that, the 

switching term in (4.10), which is based on the sign of ey , is modulated via the 

adaptive gain EK . Hence, different from [126] no apriority knowledge about the upper 

bound of the norm of the disturbance term in (4.1) is required. 
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 In the case Eu , Iu ,   and   are set to zero the algorithm (4.9) reduces to the 

classical MRAC strategy given in [140]. Hence, both the novel adaptive control 

actions and the proportional terms of the adaptive gains enhance the pre-existing 

adaptive scheme. 

 When Eu  and Iu  are set to zero and the matrices of system (4.1) and the reference 

model (4.7) are in control canonical form, the algorithm (4.9) reduces to the LQ-MCS 

strategy presented in [142]. 

 The solution of (4.15) exists as mA  is a Hurwitz matrix [23]. In addition choosing M  

in (4.15) as Q  in (4.6), then cP P . Indeed, according to the LQ theory [23], 

( ) T
m m mW x x Px , with P  solution of (4.6), is a Lyapunov function of the LQ closed- 

loop system (4.7) with 0r  . 

 Typically the adaptive gains are started from zero, i.e., 0 0EK  , 0 0IK  , 0 0I
RK  , 

0 0I
IK   in (4.11) and (4.12). 

 When implementing  Eu t  in (4.9), the discontinuous control action can be replaced 

by a continuous one as 

  
( )

( ) ,
( )

e
E E

e

y t
u t K t

y t 



 (4.16) 

where EK  is that computed as in (4.11) and  is a sufficiently small positive constant 

to be chosen appropriately. In so doing classical chattering phenomenon affecting the 

control variable can be avoided [109]. 

The steps required to design the LQ-EMRAC strategy are summarized in what follows. 

1) Identify a nominal linear model of the plant of interest of the form (4.2). This model 

represents a rough estimate of the plant matrices that can be used to design a classical 

optimal control law. 

2) Design a classical LQ optimal controller on the nominal plant model selected above in 

order to minimize the target cost function (4.3), with 1Q , 2Q  and R  being appropriate 

weight matrices. 

3) Implement the LQ-EMRAC scheme, see also Figure 4.1, by using the closed-loop LQ 

nominal plant in (4.7) as the reference model for the adaptive algorithm (4.9) acting on 

the real system dynamics (4.1). 
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The analytical proof of the asymptotic stability of the closed-loop dynamics, that is necessary 

to guarantee the effectiveness of the control action, is derived in Section 4.3 by using a 

Lyapunov approach [139] and, hence, by selecting a proper generalized energetic function 

depending on both tracking error and adaptive gains. Note that, differently from previous 

attempts [142], the convergence to zero of all the closed-loop dynamics is proven without 

assuming the plant structure to be in control canonical form and it is derived according to the 

Barbalat’s Lemma [143]. An alternative proof of the closed loop stability and tracking 

performance based on the Hyperstability theory is provided instead in Section 4.4. 

4.3 Proof of closed loop stability via Lyapunov method 

The effectiveness of the control algorithm presented in Section 4.2 is analytically proven by 

showing the convergence to zero of the tracking error with a Lyapunov approach [139], i.e., by 

finding a generalized energetic function depending on both tracking error and adaptive gains.  

Before showing in detail the proof, we disclose some technical aspects that are related to the 

mathematical derivation. In particular, in accordance again with the classical MRAC theory [24], 

we assume that the sign of the opt
RK  in (4.8) is known. As a further technical assumption, we 

assume that the nonlinear term acting on the plant dynamics (4.1) is bounded and it can be 

parameterized as    , , mf x t B d x t  with  ,d x t being a generic function of the plant state and the 

time. In addition, we assume that some saturation strategy and an anti-windup scheme are 

adopted when computing the integral Ix  in (4.10) [96]. Moreover, we select the control weights 

 ,  ,  ,  ,  ,   and   in (4.11) and (4.12) with the same sign of opt
RK . Note that, the 

boundedness of  ,f x t  implies the boundedness of  ,d x t , i.e. there exists a constant 0D  so 

that  , d x t D . 

To derive the proof, we first recast the closed-loop state vector as  
 

T
T T
e Ex K , being 

     
 

optopt I I I
I RRK K K K K , so that the closed-loop dynamics under the LQ-EMRAC 

control action can be written as 

 
  sgn ,

,

T Tm m m
e m e e E eopt opt opt

R R R

e

B B B
x A x y d K y

K K K

y

    

  

             

   

  (4.17) 

where,   
 

T T T
Ix x r  and  , ,      diag  and   2 1, ,        ndiag D . 
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Notice that, since each entry of   and   have the same sign of opt
RK , matrices  opt

RK  and 

 opt
RK  are positive definite. 

Choosing now the following candidate Lyapunov function 

 
11

,T T
e c e opt

R

V x P x
K

  


         (4.18) 

with 0cP  being the solution of (4.15) and  11 22 2 1,2 1, , ,      n ndiag , it is possible to 

prove that the derivative of (4.18) along the solutions of system (4.1) is 

 
 

 
2 sgn2

2 ,
sgn

eT T E
e e e e optopt optopt

RR RR

y Kd
V x M x y y

KK KK
  

 
             
 
  

  (4.19) 

where  11 22 2 1,2 1, , ,      n ndiag . 

Now, since quantity opt
E RK K is a positive increasing term, there exists a time instant, say *t , 

so that   
opt opt

E R RK t K D K  for all *t t . Hence, for *t t also the last term in (4.19) is negative 

and, therefore, we can claim that  

 
2

min ,T
e e eV x M x x         (4.20) 

where min is the minimum eigenvalue of the M-matrix. 

According to the Lyapunov theory [139], since V  is definite negative than the origin of the 

closed-loop system is a globally stable equilibrium point, and all the closed-loop signals are 

bounded [143]. Moreover, from (4.20), after some algebraic manipulations, we have that for any 

*t t  it holds 

  
 

*

*
2

min

.
t

e
t

V t
x d 


  (4.21) 

From inequality (4.21), we have that ex  is a square measurable function as time goes to infinity. 

Now, since all closed-loop dynamics are bounded and ex  is square measurable, it follows that ex  

goes to zero as the time goes to infinity according to the Barbalat’s Lemma [143]. 

4.4 Proof of close loop stability via Hyperstability  

The convergence to zero of the tracking error can be also proven by showing that the error 

dynamics can be recast as an asymptotically hyperstable system [24, 144]. To this aim the proof 
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is composed by the following steps: (i) the closed-loop system is rewritten as an LTI feedforward 

system in feedback with an nonlinear system; (ii) the feedforward path is shown to be a Strictly 

Positive Real (SPR) block, and (iii) show that the feedback path satisfy Popov’s integral 

inequality [144] (i.e., the feedback block is a passive nonlinear mapping). In accordance with 

Theorem in C-2, p. 385 in [24], the feedback system is then asymptotically hyperstable, and 

therefore closed-loop trajectories converge to zero for any initial state (i.e., 0ex   as t   ). 

Step (i): Recast the Error Dynamics as a Feedback System. 

From (4.17), the error dynamics can be also easily represented as the feedback system shown 

in Figure 4.3. The feedforward block is described by the LTI model whose input-state-output 

representation is characterized by the triple  , ,m m eA B C , while the feedback block is a nonlinear 

mapping which depends on the output signal ey  and the adaptive gains. 

 

 

Figure 4.3. Closed-loop error dynamics (4.17) represented as an equivalent feedback system. 

 

The feedback system in Figure 4.3 is mathematically described as  

 

,    and   

( )
,

  e m e m e e e

TT
e E e

opt opt opt
R R R

x A x B y C x

y w w K sign y dw

K K K






  


     (4.22) 

where the second equation represents the nonlinear mapping which transforms the ey  into the 

auxiliary variable  . 

Step (ii): Strictly Positive Realness of the feedforward path. 

Since mA   satisfies (4.15) and 
T

e m cC B P , then the Kalman-Yakubovich-Popov lemma holds, 

and therefore the feedforward path is an SPR system [24]. 

Step (iii): Passivity of the feedback path. 

In order to prove that the feedback block in Figure 4.3 satisfies the Popov’s integral 

inequality, it suffices to show that, for some finite constant c , it holds [24]: 
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1

0

2 , 
t

e
t

I y d c       (4.23) 

for any generic time instant 1t . 

Substituting (4.22) in (4.23) after some algebraic manipulations, we have  

 1 2 3      ,I I I I     (4.24) 

with  

 

 

1

0

1

0

1

0

2

1

2

3

 

sg

,

(
.

n

,

)

Tt
e

optt
R

Tt

e optt
R

t
E e

e optt
R

y w w
I d

K

w
I y d

K

K y d
I y d

K












 










  
(4.25) 

Since each element of the  -matrix has the same sign of opt
RK , we have that 

/ / 0
opt optT T
R Rw w K w w K   , for all 2 1nw  , with  11 22 2 1,2 1, , ,      n ndiag . 

Consequently,  

 1  0I    (4.26) 

for all time instants.  

Consider now 2I  in (4.25). By exploiting the second equation in (4.17) we can solve the 

integral that defines 2I  as follows 
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Since each element of the  -matrix has the same sign of opt
RK , we have that 

11
1 1 1 1( ) ( ) / ( ) ( ) / 0

opt optT T
R Rt t K t t K     

   , for any generic time instant 1t , where the matrix 

 is defined as  11 22 2 1,2 1, , , n ndiag      , therefore  
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 Final, consider the term 3I , after simple algebraic manipulations we have  
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Taking into account (4.29) and that the quantity opt
E RK K is a positive increasing term as EK  

has always the same sign of opt
RK , there exists a time instant, say *t , so that   

opt opt
E R RK t K D K  

for all *t t , with D  the positive constant so that 0( ) ,   d t D t t    (which exists as the 

disturbance was assumed to be bounded). Consequently also the term (4.29) is positive for *t t . 

Hence, 
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(4.30) 

From (4.26), (4.28) and (4.30) follows immediately that 
2 2 2
2 3( ) I c c c    , therefore the 

Popov’s integral inequality (4.23) is fulfilled. In so doing the feedback system Figure 4.2 is 

hyperstable and their dynamics converge to zero according to [24]. 

Notice that, for any time instant *t t the bounded input-output property of the feedback 

passive systems guarantees boundedness of the error dynamics [126]. Furthermore, the 

convergence of the adaptive gain EK  to a finite value in the absence of persistent perturbations 

can be easily shown by following the approach in [125]. In practice, it might keep growing if 

persistent disturbances are present. In this case, a simple implementation solution is to lock the 

evolution of over a certain threshold. 

4.5 Discussion  

In this chapter, we have presented a novel model reference adaptive control algorithm. The 

aim of the controller is for the adaptive strategy to match the dynamic behavior of an LQ-

regulator which would be unsuitable because of the uncertain, time-varying nature of the plant. 

The idea is to use an optimally controlled reference model and implement the control action onto 

the plant by means of an adaptive controller consisting of state feedback and feedforward actions 

enhanced by means of a switching action and an integral action. In so doing the adaptive gains of 

the algorithm change to compensate online any mismatch between the dynamics of the system to 

be controlled and the optimal reference trajectories. The additional control terms are added to 

further improve tracking. In particular the adaptive action based on the integral of the tracking 
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error is used to improve steady-state regime, while the action depending of the sign of the 

tracking error is used to tackle disturbance during transients.  

In this chapter we have also shown the analytical proof of the closed-loop asymptotic stability 

when the novel control action, named LQ-EMRAC, is inserted in the control loop by using both 

Lypunov techniques and hyperstability theory. 

We wish to emphasize that the control scheme presented in this work could be a practical 

alternative to other more sophisticated adaptive-optimal controllers which is easy to implement 

and do not require a large amount of off-line analytical work to design the control parameters or 

select initial conditions on the adaptive gains.  

For its feature, the LQ-EMRAC is proposed in this thesis as a novel approach to control the 

dynamics of buildings. In particular, the underlying adaptive mechanism allows to impose the 

required LQ optimal model dynamics to the building termohygrometric variables also in 

presence of unmodeled conditions, e.g., uncertain or time-varying building parameters (for 

instance in the case of PCM materials), change of the weather conditions and occupants. In the 

next chapters the effectiveness of the proposed algorithm will be shown on a variety of case 

studies together its design. 
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Chapter 5                                                                    

DESIGN AND NUMERICAL ANALYSIS OF THE 

EMRAC TO BUILDINGS  

In this chapter, in order to investigate the effectiveness of the method presented in Chapter 4 

for imposing some profiles to the thermohygrometric variables in buildings, the model reference 

adaptive control strategy has been implemented in DETECt. This tool enables multi-zone 

building simulation analyses and is capable to dynamically predict: i) spaces sensible and latent 

heating and cooling demands and loads; ii) indoor air temperatures and humidity, as well as 

building envelope internal and external temperatures; iii) the performance of phase change 

materials (PCM) embedded in building enclosures and; iv) the thermohygrometric comfort of 

occupants (see Chapter 2 and [9] for further details).  

In order to analyze the effectiveness and robustness of the proposed control strategy, in this 

chapter several case studies are proposed. They refer to some reference buildings with different 

geometry, use and construction materials (also including PCM integrated into the building 

envelope) simulated in different weather conditions. For each case study, both continuous and 

intermittent control system regimes are considered. Results confirm the ability of the developed 

approach to achieve the selected indoor air temperature and humidity conditions in order to 

guarantee indoor comfort in uncertain conditions. In addition, before showing in detail the 

numerical results, a simplified physical based dynamical model of building dynamics given in 

Chapter 2 is here derived and used for the design of the reference dynamics as required by the 

design procedure of the optimal model reference adaptive control in Chapter 4. Such a procedure 

is also reformulated in this chapter for its specific use to the control of thermohygrometric 

variables in buildings. The material of this chapter has been published in [33, 121]. 

5.1 Reduced heat flow calculation procedure  

In order to apply the adaptive control in Chapter 4, a linear and low-order nominal building 

model must be developed and used in the optimal LQ procedure. In what follows such a 

simplified model is obtained by the high order physical based building model in Chapter 2 for 
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the sensible load calculation. Specifically, the building model reduction is carried out by lumping 

all the thermal capacitances of the building envelope in a single node. As a result, an equivalent 

thermal resistance of the whole building envelope is adopted and weighted average thermal 

properties are taken into account. Through such approach, the reduced low-order thermal 

network system includes two temperature nodes, one for the lumped building envelope and one 

for the indoor air. Due to such a simplification, the set of algebraic and differential equations 

given in Chapter 2 becomes 
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dt RR

   
  




 
  




 (5.1) 

where 
eq
grR  is the equivalent thermal resistance between the node related to the lumped envelope 

temperature and the ground, vR  is the resistance equivalent to air ventilation and infiltration, 

,

1


N

w m n

n

C C  is the lumped thermal capacitance of the whole building envelope, with Cm,n being 

the capacitances of the layers of the m-th building element (see Section 2.2.1), whose 

temperature is Tw, while the indoor air temperature is denoted as Tin. The equivalent internal and 

external thermal resistances of the building envelope, i.e., eq
intR  and eq

extR , are calculated as the sum 

of: i) a half conductive resistance  2condR , with 
1 1

,

1 1

( ( ) )

M N
cond cond

m n

m n

R R  

 

    calculated from series 

(1 < i < N) and parallel resistances (1 < j < M), for both opaque and transparent elements (see 

Section 2.2.1); ii) combined radiation and convection heat transfer resistances, for internal ,0
cr
mR  

and external , 1
cr
m NR  surfaces. Additional average thermal properties, weighted on the building 

surface areas, are taken into account, such as combined radiation and convection average 

external ( oh ) and internal ( ih ) heat transfer coefficients and the average incident solar radiation 

flux, extI . Note that the model related to the latent load calculation is already suitable for control 

application in its form in (2.18). In model (5.1), the input signals acting on the nodes are: the 

outdoor temperature, outT , the average incident solar radiation flux, extI , the ground temperature 

grT , while gQ  is a lumped heat source term which consists of convective sensible internal gains 

due to occupants, lights and equipment, and s
HCQ  is the additional sensible heat to add or 

subtract to control the indoor air temperature.  



5.2 LQ-EMRAC Design for Thermohygrometric control 

72 

 

We remark that this simplified model is only used for the computation of the reference 

dynamics, while the actual control gains adapt in accordance to the adaptive mechanisms in 

(4.11)-(4.12). 

5.2 LQ-EMRAC Design for Thermohygrometric control  

As recently proposed for NZEBs, energy saving and indoor comfort can be achieved 

simultaneously by independently controlling sensible loads and the water vapour mass flow rate 

[101]. Following this approach (also adopted in [9]), here an independent temperature and 

humidity control, where two separate LQ-EMRAC actions drive each of the variables of interest, 

is proposed. 

The general steps required to design the LQ-EMRAC strategy in Chapter 4 can be 

summarized as follows: 

Step 1. Select a nominal linear model of the plant of interest, i.e., the matrices 0A  and 0B  in (4.2). 

Step 2. Optimize the nominal model selected above by designing a classical LQ optimal action 

able to minimize the target cost function J  in (4.3). 

Step 3  Implement the LQ-EMRAC scheme in Figure 4.1 by using the model designed in Step 2 

as the reference model for the adaptive algorithm in (4.9)-(4.12). 

According to this procedure, the first step for the design of the LQ-EMRAC in the specific 

thermohygrometric case is the choice of nominal linear models for both the indoor air 

temperature and humidity (Step 1). To this aim, for the temperature dynamics, we reduce the 

nonlinear physical building model in Chapter 2 in accordance with the approach discusses in 

Section 5.1. In so doing, the state vector in (4.2) is      0

T

w inx t T t T t     (being wT  and inT  the 

temperatures of lumped thermal capacities of the whole envelope and indoor air temperature, 

respectively); 0 
s
HCu Q  is the sensible heat to be supplied to or removed from the building space 

and the system matrices are 
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being eq
intR , eq

extR  and 
eq
grR  the equivalent thermal resistances between the nodes related to the 

lumped envelope temperature, wT , and the indoor air temperature, inT , the outdoor air 

temperature, outT , and the ground temperature, grT , respectively; vR  is the resistance equivalent 

to air ventilation and infiltration; inC  and wC  are the lumped thermal capacities of the indoor air 

and the building envelope, respectively. (The reader is referred Section 5.1 and Chapter 2 for 

further details on building modelling.) 

For the humidity dynamics the nominal model is obtained from (2.18). The nominal model in 

this second case is a first order linear system of the form in (4.2) where    0 inx t t  and the 

system input is the water vapour mass flow rate to be supplied to or removed from the indoor 

space (which is proportional to the space latent load, lat

AC
Q , i.e. 

0 vap
u m ), while 

 1
0 0 0,    ,    1v in inA m B C        (5.3) 

It is worth remaking that the choice of these very simplified reference models, one for the 

temperature dynamics and one for the humidity behaviour, reduces the complexity of the control 

design without jeopardizing the close-loop performance, whose robustness is guaranteed by the 

evolution of the adaptive actions aimed to compensate any unmodelled dynamic and parameters 

mismatch.  

Once the nominal models for the temperature and humidity have been selected, it is necessary 

to impose an appropriate LQ action (see (4.4)) on each of the nominal models whose matrices 

are given in (5.2) and (5.3), respectively, in order to achieve the optimality of the reference 

profiles (Step 2). The weight matrices have been selected to impose a settling time of 1 hour 

avoiding overshoots for a step variation of the reference signal for both temperature and 

humidity dynamics [102]. Different choices can be obviously made according to different 

thermohygrometric behaviours to be imposed during transients. Notice that when the optimal 

reference model is designed it is implemented in the Trajectory Planner block in Figure 3.1.  

As it usually occurs when implementing adaptive strategies [24], the scalar quantities 

modulating the adaptive gains can be heuristically obtained as a tradeoff between convergence 

time and reactivity of the control action. Here, we select for the temperature control: 250I  , 

250I  , 
25I   and 2   with 2I  being the identity matrix in 2 ; while for the humidity 

control: 1  , 0.1  , 0.5   and 0.01  . For both temperature and humidity controls, 

110 

   , 
110 

    and 
110 

    are also chosen.  
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Once the Reference Model is built, the closed-loop dynamics are driven by the adaptive 

actions according to the block scheme reported in Figure 5.1 (Step 3). Here, two separate control 

loops are designed for the indoor air temperature and humidity, each one with its proper 

reference model.  

System 
(Building)

 ... ...x y

 ... ...m mx yOptimal
Reference

Model 

u

Adaptive
mechanism

+

K

+_
ex

KR

r

KE

KI

 

Figure 5.1. Enhanced Model Reference Adaptive Control algorithm with optimal reference dynamics 

applied to buildings. 

 

With respect to the temperature control, it must be noted that, if wall temperature 

measurements are not available, the control strategy can be applied by setting to zero the 

adaptive gains  1

IK t  and  1

I

IK t  in (4.11) for the temperature control-loop. This implementation 

choice has been already used in the adaptive control literature [145] and the results reported in 

Section 5.4 show that it does not affect the overall performance of the temperature controller. 

Furthermore, although humidity and temperature variables are controlled independently by 

adopting a decoupled approach for the sensible and latent heat, the indoor air specific humidity 

set point is calculated as a function of the selected indoor air temperature and relative humidity 

set points, as reported in [146]. 

5.3 Case Studies 

In order to show the effectiveness of the proposed approach, the energy analysis is carried out 

by taking into account several buildings, with different geometry and construction materials, 

located in diverse weather zones (therefore, they are subjected to different external disturbances 

due to the variable weather conditions).  

The geometry and use of the sample buildings vary as a function of the square meters floor 

area. In particular, a small size House (48 m2), a middle size Office (200 m2) and a large size 
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Mall (900 m2) are taken into account. The different building shapes are selected by also 

considering: i) different heat transfer Surface to heated/cooled Volume ratios (S/V); ii) different 

construction materials for taking into account light and heavyweight building envelopes. Details 

regarding building features and envelope layers are summarized in Figure 5.2, Table 5.1 and 

Table 5.2. Note that: i) the assumptions related to all the building envelope features (e.g. 

materials thickness in Table 5.1, thermodynamic properties, etc.) are made in agreement to the 

BESTEST procedure [147], while ii) the assumptions made for the House building (S/V ratio, 

internal sensible heat gains and windows to wall ratio, WWR, calculated only for the South 

facing walls) are reported in Table 5.2 and refer to BESTEST reference building [147]. 
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Figure 5.2. Case studies buildings: a) House; b) Office; c) Mall. 

 

 

Building element 

Lightweight envelope Heavyweight envelope 

Materials 
Thickness 

(mm) 
Materials 

Thickness 

(mm) 

wall 

Plasterboard 12.0 Concrete block 100 

Fiberglass quilt 66.0 Foam insulation 61.5 

Wood siding 9.0 Wood siding 9.0 

roof 

Plasterboard 10.0 

Identical to the lightweight case Fiberglass quilt 111.8 

Roof deck 19.0 

floor 
Timber flooring 25.0 Concrete slab 80.0 

Insulation 1003 Insulation 1007 

window 

Glass 4.0 

Identical to the lightweight case Air 6.0 

Glass 4.0 

Table 5.1. Buildings envelope layers (from the inside to the outside). 
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Building 

House Office Mall 

Surface to Volume ratio (%) 1.3 0.53 0.30 

Window to Wall ratio (%) 55 45 20 

Air change (vol/h) 0.5 1 2 

Internal sensible heat gains (W/m2) 4.2 9.4 22.5 

Vapour mass flow rate due to people (g/h･p) 40 45 60 

WWRs only refer to the South façades. During night time the air change is decreased to 0.5 vol/h and 

occupancy and internal gains are assumed equal to zero.  

Table 5.2. Simulation assumptions for the investigated buildings. 

 

In this analysis, input climate data (such as outdoor temperature, solar radiation, etc.) vary 

according to hourly Meteonorm weather data files. In particular, such data refer to 9 weather 

zones which range from cold winter areas to temperate Mediterranean ones. The Heating and 

Cooling Degree Days (calculated by assuming a base temperature of 20 °C) as well as the annual 

Incident Solar Radiation on the horizontal surface (HDD, CDD and ISR, respectively) of each 

weather zones (sorted for decreasing HDDs) are reported in Table 5.3.  

Weather zone HDD (Kd) CDD (Kd) ISR (kWh/m2y) 

Copenhagen 3700 79 988 

Denver 2924 740 1832 

Freiburg 2894 295 1114 

Milan 2519 501 1253 

Rome 1507 784 1563 

Nice 1454 485 1470 

Naples 1279 860 1529 

Jerusalem 1214 1031 2093 

Athens 1044 1313 1562 

Table 5.3. Climatic zones, HDD and CDD indexes and ISR. 

 

The simulation horizon is set at one year in order to cover both the heating and cooling 

dominated seasons (simulation starts on January 1st and ends on December 31st). Additional 

building design and operating parameters can be found in [9]. With respect to the comfort 

analysis, the metabolism of all occupants is set equal to 1.2 Met (light work) during the 

simulations, while the dressing thermal resistances are set at 1.0 and 0.5 Clo for winter and 

summer, respectively. Finally, the indoor air velocity varies between 0 and 1.0 m/s according to 

the building use [34]. As a consequence of combination of buildings and weather zones, the 

results of this analysis are related to 54 different case studies. For each of them, two different 

heating and cooling regimes are investigated:  

i) Continuous running (24/24h all over the year). The indoor air temperature and specific 

humidity set points are set, as an example, at 20°C and 50% (i.e. specific humidity is set to 

7.5 g/kg), respectively. In general, this condition has to be tackled for special kind of 
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environments where strict thermohygrometric conditions must be always ensured (e.g. 

medical wards, laboratories, industrial chambers, etc.). This is a strict regulation problem 

were the set-point has to be guaranteed although the system is subjected to unknown time-

varying disturbances, which have to be counteracted; 

ii)  Intermittent running. The ideal heating and cooling system is intermittently operated in 

order to combine energy saving with an indoor thermohygrometric quality acceptable for 

the occupants. Note that the analysis of the impact of operational zoning and operation 

strategies on both energy consumption and acceptable comfort is behind the scope of the 

thesis. Therefore, here, only the ability of the proposed approach in Chapter 4 in tracking 

the desired temperature and humidity profiles (in case of predefined scheduled intermittent 

operation of the heating and cooling system) is analyzed. Hence, according to a given 

management policy, the adaptive controllers are active in some temperature/humidity 

regions depending on the season and the buildings features. Table 5.4 summarizes the 

exemplar intermittent operation strategy selected in the carried out analysis. The 

supervisor, modelled as a finite-state dynamical system in Section 3.2, easily implements 

the activation/deactivation of both the temperature and relative humidity controllers 

according to the required strategy. 

Building 

Winter Summer 

Scheduling 

Control 

deactivation  Scheduling 

Control 

deactivation  

T [°C]  [%] T [°C]  [%] 

House October 

1st to April 

30th (24/7) 

7:00–18:00 20–33 45–55 May 1st to 

September 

30th (24/7) 

14:00–18:00 10–25 45–55 

Office 7:00–18:00 20–28 45–55 12:00–18:00 10–25 45–55 

Mall 9:00–18:00 20–28 45–55 11:00–18:00 10–25 45–55 

Table 5.4. Intermittent operation policy. 

 

An additional investigation is carried out in case of the integration of PCM into the building 

envelope that has been modelled as in Section 2.2.6. In particular, for the examined buildings, 

the following layers layouts were investigated: 

 House and Mall buildings: a 3 cm PCM layer is integrated in the building roof 

externally to the thermal insulation layer (between the fiberglass quilt and roof deck, 

see Table 5.1); 

 Office buildings: a 3 cm PCM layer is positioned into the East and West perimeter 

walls internally to the insulation layer (between the plasterboard and the fiberglass 

quilt for the lightweight building and between the concrete block and the foam 

insulation for the heavyweight one, see Table 5.1). 



5.4 Numerical Results 

78 

 

Note that, in the developed case studies each simulated PCM layer refers to a composite 

material panel, obtained by mixing gypsum with suitable PCM paraffin microcapsules (BASF - 

Micronal®), whose content is about 42% of the whole mass fraction of the panel. Thermal 

properties, specific heat, density and conductivity, are accounted by the correlations reported in 

[90]. In particular, the PCM microcapsules density and conductivity are set equal to 980 kg/m3 

and 0.18 W/mK, respectively. The specific heat of solid and liquid phase is set equal to 2.5 and 

2.0 kJ/kgK, respectively, reaching about 28.9 kJ/kgK at the nominal peak melting temperature of 

26 °C (note that the transition between solid and liquid phase goes from about 19 to 28 °C). Note 

that the cooling/solidification curve is shifted of 1 °C towards lower temperatures vs. the melting 

one [148]. 

Details about the remaining simulation assumptions are reported in Table 5.2.  

5.4 Numerical Results 

In this section, for the sake of brevity, only results obtained in some exemplar cases, selected 

among those included in the carried out numerical investigation, are reported. Nevertheless, for 

the case of the intermittent regime, a more comprehensive numerical analysis is presented, with 

the purpose to delve deeper into the robustness of the control system with respect to different 

possible choices of the Reference Model (in terms different modulations of the transient 

reference trajectories).  

As already mentioned, the adaptive algorithm, designed by considering simplified second and 

first order systems for the temperature and humidity building dynamics, is implemented to tame 

the dynamics of a detailed physics-based nonlinear model of the building consisting of more than 

70 differential equations (as described in Chapter 2). This further confirms the robustness of the 

control approach against unmodelled dynamics. 

At last, the proposed strategy is also compared to a classical PI control algorithm, which is 

frequently adopted as the common practice for energy building control. The PI gains have been 

selected as shown in Chapter 3 (see also Section 3.4.2). 

5.4.1 Analysis in continuous running 

The effectiveness of the adaptive control strategy in satisfying strict thermohygrometric 

requirements, despite of the presence of time-varying disturbances, is confirmed by all the indoor 

air temperature and humidity mean square root errors calculated with respect to the required set-

points over a time horizon of one year. They resulted to be always less than 10-3 for every 
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building use, in every weather zone and for both the light and heavyweight building envelopes. 

The very good performance for the indoor air temperature and humidity regulations is mainly 

due to the ability of the control strategy to automatically adapt its gains, in order to tailor its 

action according to the different scenarios, without any participation of designers/occupants and 

precise knowledge of environment/building features.  

The energy demands required to achieve this fine regulation are reported in Table 5.5 and 

Table 5.6. 

Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Copenhagen 
H 156.46 139.38 169.05 160.00 194.49 193.12 

C -43.13 -26.46 -19.75 -10.45 -3.24 -1.34 

Denver 
H 130.42 96.46 140.70 121.10 170.97 166.90 

C -96.25 -62.08 -50.00 -30.00 -15.66 -10.90 

Freiburg 
H 135.63 117.50 148.30 137.40 170.41 167.62 

C -57.08 -38.75 -29.30 -18.00 -8.27 -4.81 

Milan 
H 120.42 102.08 132.25 120.50 152.73 149.27 

C -72.50 -53.75 -38.70 -26.40 -12.70 -8.46 

Rome 
H 76.88 54.38 89.45 73.85 108.58 104.17 

C -104.79 -81.25 -57.80 -41.25 -19.98 -14.51 

Nice 
H 71.46 49.79 84.85 69.85 104.29 100.61 

C -94.79 -72.29 -50.35 -34.40 -14.62 -9.88 

Naples 
H 71.88 51.67 84.75 70.35 101.99 97.63 

C -103.33 -82.29 -57.85 -42.35 -20.94 -15.47 

Jerusalem 
H 65.8 38.96 77.80 57.85 95.64 89.13 

C -132.08 -104.17 -75.20 -54.20 -27.52 -19.83 

Athens 
H 54.79 38.54 66.40 55.00 81.66 78.02 

C -119.38 -101.67 -69.40 -56.75 -30.98 -26.09 

Table 5.5. Continuous running: sensible (heating (H) and cooling (C)) energy demands. 

 

Here, results about sensible and latent heating and cooling demands for all the investigated 

buildings (House, Office and Mall) and envelope thermal inertia (light and heavy) are 

summarized. Note that the weather locations are sorted in descending order of HDDs. By 

analyzing such data, related to the continuous running regime, several conclusions can be 

pointed out: i) the lower the HDDs, the lower the building heating demands (a decreasing trend 

is not strictly detected because of the effect of heat gain due to the solar radiation); ii) the 

envelope thermal inertia has a significant effect on the calculated building sensible heating and 

cooling requirements (the higher the mass of the envelope, the lower the heating and the cooling 

demands); iii) in general, the higher the HDDs, the lower the difference between light and heavy 

envelope requirements. Obviously, as expected latent requirements are not influenced by the 

building thermal inertia. 
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Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Copenhagen 
H 3.79 3.79 3.83 3.82 2.64 2.64 

C -25.98 -25.97 -25.65 -25.65 -28.87 -28.87 

Denver 
H 3.42 3.41 3.51 3.51 2.58 2.58 

C -33.54 -33.54 -33.21 -33.21 -37.59 -37.60 

Freiburg 
H 5.48 5.47 5.59 5.58 3.97 3.96 

C -22.99 -22.99 -22.66 -22.66 -25.58 -25.59 

Milan 
H 14.60 14.60 14.79 14.78 12.40 12.39 

C -18.99 -18.99 -18.73 -18.73 -21.13 -21.13 

Rome 
H 19.39 19.38 19.71 19.70 16.73 16.72 

C -10.86 -10.86 -10.70 -10.70 -13.08 -13.08 

Nice 
H 17.37 17.36 17.60 17.59 14.67 14.66 

C -11.84 -11.84 -11.68 -11.68 -14.15 -14.15 

Naples 
H 22.28 22.26 22.58 22.56 19.49 19.48 

C -9.87 -9.87 -9.69 -9.70 -11.90 -11.90 

Jerusalem 
H 22.60 22.59 23.06 23.05 19.75 19.74 

C -8.08 -8.08 -7.94 -7.94 -10.20 -10.20 

Athens 
H 15.21 15.19 15.56 15.54 12.31 12.29 

C -8.68 -8.68 -8.55 -8.55 -10.77 -10.77 

Table 5.6. Continuous running: latent (heating (H) and cooling (C)) energy demands. 

5.4.2 Analysis in intermittent running 

In this section some results, exemplar with respect to the energy building dynamic behaviour, 

are presented. The first aspect to be discussed concerns the transient dynamic at the switching on 

of the heating and cooling system, as it is scheduled in Table 5.4. Note that such table also 

reports the control deactivation ranges, comprised by the indoor air temperature and humidity set 

points, which change, according to the selected schedules, from the winter (heating dominated) 

to the summer (cooling dominated) season and vice versa.  

In order to analyze the dynamics of indoor air temperature and humidity, several figures are 

presented. In particular, Figure 5.3 shows the time history of the indoor air temperature and 

relative humidity during the winter season (360th day of the year) for a Mall building located in 

the weather zone of Rome. The switching on policy of the heating and cooling system depends 

on the transient time allowed to reach the thermohygrometric comfort conditions. In this 

analysis, we assumed that such conditions must be reached one hour after the activation of the 

heating and cooling plant. As shown in Figure 5.3, both the thermohygrometric variables exactly 

track their reference behaviour, designed (through the Reference Model) to ensure a smooth 

transition during transient operations, which goes from the occurring initial air temperature and 

humidity levels towards the admissible thermohygrometric conditions (corresponding to the 

deactivation of the temperature and humidity control, as reported in Table 5.4). 
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Figure 5.3. Winter season, 360th day of the year. Transient dynamics of (a) indoor air temperature and (b) 

indoor air relative humidity. Mall building - Rome. 

 

 

Figure 5.4. Winter season, 360th day of the year. Time history of the evolution of the adaptive gains within 

the: (a) temperature control loop and (b) humidity control loop. Mall building – Rome. 

 

The resultant bounded dynamic behaviour of the adaptive gains is reported in Figure 5.4 for 

both the indoor temperature and humidity loops. Similar results are achieved also in the 

remaining investigated weather zones, where the thermohygrometric conditions reach the 

different boundaries of the operational zone depending on the different initial conditions. An 

example is depicted in Figure 5.5 for light and heavyweight Mall buildings located in four 

different weather zones. For such zones, the indoor air dynamic routes (from point 1 to point 2) 
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on the psychrometric chart are shown in Figure 5.6. Note that, through the temperature and 

humidity profiles assigned by the control Reference Model, the selected thermohygrometric 

comfort domain (area delimited by the magenta dashed line in Figure 5.6) is always reached for 

any initial indoor air condition (points 1). 

 

Figure 5.5. Winter season. Transient dynamics of (a) the indoor air temperature and (b) indoor air 

humidity. Lightweight Mall building - Naples and Jerusalem (290th day of the year), heavyweight Mall 

building - Rome and Milan (360th day of the year). 
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Figure 5.6. Winter season. Indoor air routes on the psychrometric chart for Mall buildings. Lightweight 

building - Naples and Jerusalem (290th day of the year), heavyweight building  - Rome and Milan (360th day 

of the year). 
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Figure 5.7. Winter season. Time history of the control actions at the control activation (a) sensible load 

and (b) water vapour mass flow rate. Lightweight Mall building - Naples and Jerusalem (290th day of the 

year), heavyweight Mall building - Rome and Milan (360th day of the year). 
 

Furthermore, for all the case studies, the boundedness of the adaptive gains implies the 

boundedness of the control actions, obtained by modulating the sensible heating (or cooling) 

system capacity and the water vapour mass flow rate (to be added to or subtracted from the 

indoor space), indoor space), as shown, for example, in Figure 5.7 for the Mall building in the 

same weather conditions of Figure 5.5 and Figure 5.6. Note that the control signals, tailored by 

the adaptive actions, satisfy the physical constraints and always result within the selected region 

of admissible thermohygrometric variables. 

In Figure 5.8, for heavyweight House buildings located in several cold winter zones, the 

performance of the closed-loop system is shown over a set of sample days, related to scheduled 

changes of the selected indoor air temperature set points (winter to the summer season, occurring 

at the 120th day of the year) according to the management policy in Table 5.4.  

Results refer to the exemplar case of heavyweight House buildings located in several cold 

winter regions. The white areas reported in Figure 5.8 are related to hours during which the 

heating and cooling system is switched on, if necessary. Results clearly show the decoupling of 

the indoor air temperature and relative humidity control loops. For example, at the 120th day of 

the year and for the case study related to the house located in Freiburg, in order to guarantee the 

desired comfort level it is sufficient to regulate only the relative humidity, while the indoor air 

temperature is free to float (no control is required). The remaining grey shaded regions in Figure 

5.8 refer to hours during which the control system is scheduled as inactive and in which free 

floating indoor air temperature and humidity are obtained. 
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Figure 5.8. Heavyweight House buildings in cold winter regions. Time history of indoor air temperature 

and relative humidity (scheduled controls depend on the winter and the cooling seasons, Table 5.4). The 

dashed lines delimit the free floating region.  

 

 

Closed-loop performance are also provided for lightweight Office buildings located in several 

hot summer zones. Results, reported in Figure 5.9, refer to a set of sample days related to 

scheduled changes of the selected indoor air temperature set points (summer to winter the 

season, occurring at the 273th day of the year) according to the management policy in Table 5.4. 

Again, results show how the control strategy suddenly reacts, once it is activated, recovering the 

required indoor conditions after the night stop. Moreover, it is evident that the control action is 

able to automatically adapt to the very different conditions and to tame the thermohygrometric 

dynamics only when it is necessary (as a function of the weather zone and the indoor conditions). 

Note that also in this case, the very low mean squared errors (always lower than 10-3 for all the 

analyzed cases) highlight the control effectiveness. 

The calculated energy demands are reported in Table 5.7 and Table 5.8. Here, the building 

sensible and latent, heating and cooling, demands for all the investigated buildings and envelopes 

in case of the intermittent regime are reported. Similarly to Table 5.5 and Table 5.6 for the 

continuous regime, in Table 5.7 and Table 5.8 the obtained results are sorted in descending order 

of the investigated weather locations HDDs. From the analysis of these tables, several 

considerations can be underlined. For example, as for the continuous running, the lower the 

HDD, the lower the building heating demand (although a strictly decreasing trend cannot be 

detected because of the solar radiation effects). For severe cold climates (very high HDDs and 

low ISR), the higher the thermal inertia, the higher the heating demands. 
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Figure 5.9. Lightweight Office buildings in hot summer regions. Time history of indoor air temperature 

and relative humidity (scheduled controls depend on the winter and the cooling seasons, Table 5.4). The 

dashed lines delimit the free floating region. 

 

Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Copenhagen 
H 57.75 73.71 64.31 83.30 77.66 96.60 

C -16.71 -5.46 -6.58 -0.57 -0.32 0.00 

Denver 
H 37.94 35.88 43.96 53.62 62.10 82.81 

C -32.71 -14.54 -19.25 -6.50 -5.81 -1.65 

Freiburg 
H 49.46 60.13 56.04 70.72 66.45 83.65 

C -23.19 -10.50 -11.64 -3.42 -2.24 -0.22 

Milan 
H 44.88 52.90 51.01 63.99 60.94 77.78 

C -30.40 -18.04 -17.61 -7.74 -4.49 -0.99 

Rome 
H 21.94 19.10 27.94 31.44 36.07 47.86 

C -41.83 -26.54 -27.30 -14.36 -8.72 -4.06 

Nice 
H 20.44 16.21 26.30 28.72 33.40 44.45 

C -36.83 -22.73 -22.34 -10.90 -5.44 -1.63 

Naples 
H 20.44 18.10 26.52 29.45 32.85 43.61 

C -41.83 -27.02 -27.93 -15.49 -9.53 -4.46 

Jerusalem 
H 14.04 9.40 19.31 19.46 26.63 36.58 

C -53.85 -30.60 -37.09 -18.60 -11.82 -4.50 

Athens 
H 15.73 11.83 21.07 22.42 26.44 34.51 

C -48.54 -35.10 -34.92 -23.66 -16.54 -11.52 

Table 5.7. Intermittent running: sensible (heating (H) and cooling (C)) energy demands. 

 

Conversely, for low HDDs, the lighter the building envelope, the higher the heating demands 

in case of House buildings, and the lower the heating demands in case of Office and Mall 

buildings. This dissimilar behaviour is justified by the higher outdoor air infiltration rate adopted 

in Office and Mall buildings (selected according to their non-residential usage). In other words, 
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higher air infiltration rates cause an increase of the external solicitation effect (due to the outdoor 

ambient temperature) on the indoor air condition, resulting in a trend (i.e. thermal inertia vs. 

heating demand) similar to that one observed in higher HDDs weather zones. On the other hand, 

a decrease of the calculated cooling demands is always observed by shifting from the light to the 

heavyweight envelope, for all the investigated buildings and weather zones. Finally, differently 

from the continuous running regime, a remarkable effect of the building thermal inertia is 

observed also for the latent energy requirements. Note that in the developed model the air 

humidity is dependent on the air temperature and independent of the building envelope mass. 

Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Light 

(kWh/m2y) 

Heavy 

(kWh/m2y) 

Copenhagen 
H 9.90 5.66 8.53 5.85 8.86 6.94 

C -0.96 -0.68 -1.12 -1.62 -2.62 -3.69 

Denver 
H 22.27 10.88 15.30 9.93 14.28 12.32 

C -0.71 -0.43 -0.68 -0.78 -1.40 -1.49 

Freiburg 
H 10.40 5.07 8.57 5.12 8.23 6.07 

C -1.36 -1.07 -1.29 -1.73 -2.42 -3.30 

Milan 
H 10.40 3.92 7.88 4.12 7.32 4.93 

C -3.37 -2.91 -3.75 -4.25 -5.58 -6.50 

Rome 
H 9.85 1.80 5.73 1.59 3.80 2.25 

C -4.52 -3.61 -4.65 -5.03 -6.32 -7.35 

Nice 
H 10.22 2.04 5.41 1.71 4.22 2.47 

C -3.75 -2.88 -3.82 -4.26 -5.48 -6.47 

Naples 
H 8.39 1.74 5.10 1.38 3.52 1.86 

C -5.06 -4.17 -5.62 -6.19 -7.68 -8.60 

Jerusalem 
H 9.68 2.38 4.80 0.92 2.43 1.43 

C -5.02 -3.66 -5.30 -5.36 -6.94 -7.87 

Athens 
H 8.55 1.90 3.86 1.16 2.93 1.65 

C -3.25 -2.61 -3.28 -2.74 -2.72 -3.04 

Table 5.8. Intermittent running: latent (heating (H) and cooling (C)) energy demands. 

 

In modern smart buildings the thermohygrometric comfort requirements must be accurately 

fulfilled. Therefore, in order to analyze the system performance with respect to this target, the 

time histories of PMV, PPD and mean thermal radiant temperature, mrT , (see Section 2.3), are 

assessed all over the year. For the investigated case studies, such analysis showed that good 

PMVs and PPDs are always and everywhere achieved. While this result is obvious for the case 

of continuous running conditions, simulation results confirm the capability of the proposed 

approach to restore high comfort levels (lost during control deactivation intervals because of the 

change of the external conditions and the variable internal thermal loads) also for the intermittent 

regime. In this paragraph, the thermal comfort performance is discussed by means of several 
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figures related to different sample days, simulated buildings and weather locations. In particular, 

Figure 5.10 and Figure 5.11 show the thermal comfort (described by means of PMV, PPD and 

mrT ) related to the simulated Mall buildings located in some weather zones with cold winters 

and hot summers.  

Specifically, Figure 5.10 refers to several winter days, ranging from January 16th to 22nd, 

related to heavyweight buildings located in Freiburg, Copenhagen, Milan and Denver. Here, it is 

clearly shown that during the steady state regime (subsequent to the switching on transient time), 

very good PMVs (always included between -0.5 and 0) and PPDs (always less than the 10%) are 

achieved, despite of rather low mrT . Such low temperatures basically depend on the occurring 

building envelope features (the adopted high U-values and low masses are selected according to 

the BESTEST assumptions [147]). As a result, during the night, the lower the outdoor ambient 

temperature (e.g. Denver), the lower the mean radiant one and, consequently, the lower the 

thermal comfort level (e.g. on January 20th low PMVs and very high PPDs occur). 
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Figure 5.10. Heavyweight Mall buildings in cold winter zones. Time history of PMV, PPD and Tmr. 

 

Similar results are obtained during the summer season, as shown in Figure 5.11. Such figure 

refers to the days ranging from July 21nd to 26th (i.e. 202nd - 207th days of the year) and to the 

lightweight Mall buildings located in Athens, Nice, Jerusalem and Rome. Here, as a result of the 

optimal performance of the control actions, good PMVs (always included between 0 and 0.75) 

and PPDs (always less than the 20%) are obtained during the steady state regime. The mean 

radiant temperatures, mrT , of the buildings envelopes are highly fluctuating during control 

deactivation intervals, due to the low thermal inertia of the simulated lightweight buildings. The 

comfort analysis is completed through Figure 5.12 and Figure 5.13.  
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Figure 5.11. Lightweight Mall buildings in hot summer zones. Time history of PMV, PPD and Tmr. 

 

 

Figure 5.12. Heavyweight Mall buildings in cold winter zones. Time history of (a) indoor air temperature, 

relative humidity and (b) sensible load and water vapour mass flow rate. 

 

Here, we show the dynamic trends of the indoor air temperature and relative humidity, as well 

as of the related control actions (sensible heating/cooling and water vapour mass flow rate added 

to/subtracted from the space). Such analysis takes into account the same weather zones, 

buildings, and weather conditions investigated in Figure 5.10 and Figure 5.11. Specifically, 

Figure 5.12 refers to several cold winter days in Freiburg, Copenhagen, Milan and Denver and to 

heavyweight Mall buildings, while Figure 5.13 is referred to some hot summer days in Athens, 

Nice, Jerusalem and Rome and to lightweight Mall buildings. In these figures it is possible to 
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observe a proportional dependence of the control actions occurring in the investigated weather 

conditions. 

 

Figure 5.13. Lightweight Mall buildings in hot summer zones. Time history of (a) indoor air temperature, 

relative humidity and (b) sensible load and water vapour mass flow rate. 

 

As an example, in Figure 5.12 is clearly shown that the lower the indoor air temperature 

(during the heating system switching off) the higher the sensible heating necessary at the control 

activation (e.g. Denver day 20th). A similar result can be observed in case of hot summer days, as 

shown in Figure 5.13. Note that, according to the simulated weather conditions, the magnitudes 

of the control actions, necessary to reach the desired transient dynamics and to achieve the 

imposed set points and comfort levels, are fairly different and depend on the specific case study. 

For example, the sensible cooling demand in Rome is about half of the Athens one. According to 

the adopted thermohygrometric model, such conclusions can be also observed for the control 

actions related to the indoor air humidity control (i.e. water vapour mass flow rate). In fact, the 

farther the indoor air humidity from the set points, the higher the 

humidification/dehumidification requirements. In Rome, the water vapour mass flow rate to be 

subtracted from the indoor space doubles those calculated for Nice and Jerusalem, Figure 5.13.  

Finally, note that, due to low thermal inertia of the investigated buildings and the adopted 

design and operating assumptions, in day hours during which the system control is switched off 

(grey regions of the above discussed figures), both the indoor air temperature and the relative 

humidity are averagely far from the related selected set points.  
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5.4.3 Energy and comfort analysis for different choices of the reference 

models 

As above discussed, the reference trajectories can be modulated by opportunely choosing the 

weight parameters of the cost function (4.3). These parameters balance the tradeoff between 

control reactivity and control effort. According to the LQ control theory [23], different optimal 

transient behaviours can be indeed associated to different choice of the values assumed by the 

parameter R in (4.3) that weighs the control effort, i.e., the sensible and latent loads in the case of 

the control of indoor air temperature and humidity, in the computation of the cost function. 

Roughly speaking, by reducing the R-parameter, the LQ optimization provides a greater control 

effort without altering the value of the final cost (4.3). As a consequence, the reference set point 

can be reached with a smaller relaxation time. On the contrary, by increasing R, high control 

efforts have a severe impact on the final cost (4.3). Hence, the LQ procedure yields a more 

moderate control effort at the expense of a larger settling time. In so doing, the R-parameter can 

be exploited to calibrate the dynamic performance of the close-loop system. To better illustrate 

this feature, results for different choices of the R-parameter in the temperature and relative 

humidity control loops are shown for two heavyweight House buildings located in Denver and 

Rome. For Denver the transient evolution of indoor air temperature and relative humidity as well 

as of the related control actions (when control is activated according to the intermittent strategy, 

see Table 5.4) is reported for a sample winter day (January 2nd) in Figure 5.14. 

 

Figure 5.14. Heavyweight House building in Denver. Transient dynamics of (a) indoor air temperature, 

relative humidity and (b) sensible load and water vapour mass flow rate at the control switching on for 

different choices of the Reference Model. 

 

             (a) (b) 

6

14

22

T
em

pe
ra

tu
re

 (
°C

)

 

 

7:00 7:15 7:30 7:45 8:00 8:15
23

36

49

R
el

at
iv

e 
hu

m
id

it
y 

(%
)

Time [h]

R - parameter

7:00 7:15 7:30 7:45 8:00 8:15
0

1.3

2.6

Time (h)

V
ap

ou
r 

fl
ow

 r
at

e 
(k

g/
s)

0

4

8

S
en

si
bl

e 
ca

pa
ci

ty
 (

kW
)

x 10
-3

R - parameter

R - parameter 

R - parameter 



Chapter 5: Design and Numerical Analysis of the EMRAC to buildings  

91 

 

-2.4

-1.2

0

P
M

V
 (

-)

0

50

100

P
P

D
 (

%
)

7:00 7:15 7:30 7:45 8:00 8:15
4.5

6

7.5

Time (h)

T
em

p
er

at
u
re

 (
°C

)

R - parameter

 

Figure 5.15. Heavyweight House building in Denver. Time history of PMV, PPD and Tmr at the control 

switching on for different choices of the Reference Model. 

 

As expected, to lower values of the R-parameter corresponds a faster behaviour (in terms of 

both settling and rise time), but the price to be paid for an increase of control reactivity is the 

necessity of a higher control effort to be supplied (i.e. a higher energy consumption), as shown 

by the depicted sensible heating and water vapour mass flow rate added to the indoor space (as a 

function of R). For the same sample day, the results of the comfort analysis are shown in Figure 

5.15. Here, it is possible to observe that the choice of the R-parameters clearly affects the 

comfort level of occupants. Note that, for each value of R the achievement of a satisfactory 

comfort level (detected by suitable PMVs and PPDs) is obtained in different time intervals from 

the instant of heating and cooling system switching on (for the selected time range mrT is always 

very low).  

In Figure 5.16 and Figure 5.17 the results of a similar investigation for a sample summer day 

in Rome (July 18th) are shown.  

The tuning of the R-parameter provides to designers a degree of freedom for selecting the 

dynamic behaviour and the comfort level to be imposed to the system with respect to the energy 

demands. In other words, as a function of the building usage, suitable R-parameters (which 

influence the dynamics of the indoor air temperature and humidity) must be selected. In general, 

the selection of a suitable combination of values of the R-parameter in the temperature and 

humidity control loops has to be done for each building use by taking into account the minimum 

time in which a certain comfort condition must be reached. Obviously, such choice has a 

remarkable effect on the building dynamics as well as on the indoor comfort, as shown in Figure 

5.14, Figure 5.15, Figure 5.16, and Figure 5.17. In this regard, through the simulation code, it is 

possible to provide and/or create suitable maps containing many combinations of the values to be 
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assumed by the R-parameter, which allow achieving different comfort levels starting by various 

temperature and humidity initial conditions. As a result, by means of such maps, the 

minimization of the sensible and latent energy requirements, given the desired comfort level, can 

be carried out by selecting the appropriate combination of the values assumed by the R-

parameter for the temperature and humidity control loops. 

 

Figure 5.16. Heavyweight House building in Rome. Transient dynamics of (a) indoor air temperature, 

relative humidity and (b) sensible load and water vapour mass flow rate at the control switching on for 

different choices of the Reference Model. 
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Figure 5.17. Heavyweight House building in Rome. Time history of PMV, PPD and Tmr at the control 

switching on for different choices of the Reference Model. 

5.4.4 A brief comparison with the PI algorithm 

In the control literature [149], the adaptive controllers are well known to be very effective to 

handle situations in which the parameter variations and environmental changes are frequent. 

Although this is especially true when adaptive controllers are compared to conventional fixed 
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gain controllers, as PID, in this section we briefly compare the LQ-EMRAC scheme with the 

optimal PI controller proposed in Chapter 3 (see also [98]). It is worth nothing that here an 

accurate tuning of PI action can improve steady state performances by reducing the steady state 

errors, whereas PD controller may improve transient period by reducing the maximum 

overshoot. Nevertheless, the adaptive controllers have the major advantage, with respect to PID 

ones, of maintaining constant dynamic performance in presence of unpredictable and 

immeasurable variations, as well as to improve and to shape opportunely the entire dynamic 

characteristic of the system under control, making the plant dynamics as close as possible to the 

reference model. To show this feature in the case of the thermohygrometric control, we applied 

both strategies to the case of the lightweight Office building located in Denver during a sample 

winter day. Note that the PI control was previously optimally tuned with respect the heavyweight  

Office building model (while the LQ-EMRAC controller does not have precise knowledge of the 

building features, such as building shape, envelope materials, etc.). 
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Figure 5.18. Lightweight Office building in Denver (at December 1st). Comparison among the time 

histories of the indoor air temperatures obtained by PI and LQ-EMRAC control schemes. 

 

Despite of this, the worsening PI control performance, compared to the adaptive scheme, is 

clearly visible in Figure 5.18, where the time-histories of the indoor air temperatures are reported 

for both the controllers. In such figure, it is possible to observe that the PI control is not able to 

accurately overlap the temperature set-point of 20 °C.  

To better understand this loss of performance we have computed for the heavyweight Office 

building model located in Denver the phase margin and the crossover frequency of the closed 

loop system when the PI strategy is used to impose the required temperature dynamics (see [96] 

for the definition of such quantities). These performance indexes have been computed both when 

the PI gains are tuned according to the optimization procedure proposed in Section 3.3 and in the 
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case these gains are selected by using the Ziegler–Nichols rule [116]. As the Ziegler–Nichols PI 

gains have been chosen as initial guess for the optimization procedure in Section 3.3, the aim is 

to evaluate the effect of the optimization method on the phase margin and the crossover 

frequency. We recall here, for the sake of completeness, that some relevant features, like 

robustness and settling time (i.e., the time required for the output to track the desired reference 

input) of classical closed loop control systems embedding linear controllers with fixed gains can 

be assessed by computing such performance indexes [96]. In particular the phase margin, say ψm 

(deg), can be used to evaluate both closed loop stability and the magnitude of the oscillatory 

response to step variations of the input to the control system [96]. Specifically, a negative value 

of this parameter indicates that the closed loop system is unstable; low values (up to 35°) imply 

the presence of oscillations in the step response which cannot be neglected and small robustness 

to plant parameter variations and unmodelled dynamics, e.g., delays; while high values of ψm 

provide step responses of the closed loop system without overshoots and more robustness to 

uncertainty. Instead the crossover frequency, say ωc, can be used to get some information about 

the closed loop “readiness” as 4.6 /s c  , with s  being the closed loop settling time. Hence, 

higher values of the crossover frequency corresponds to smaller settling times and vice versa. 

In the case of heavyweight Office building model located in Denver the phase margin 

changed from about 65° (Ziegler–Nichols tuning) to 12° for the optimal tuning, while the 

crossover frequency shifted from 0.00142 rad/s to 0.00223 rad/s for the optimal PI. Hence the 

optimization procedure improved the settling time of about three times at the expense of closed 

loop robustness, making the resulting controller not suitable to impose the temperature reference 

for different building parameters (see Figure 5.18). We point out that, for the adaptive strategy is 

not possible to define the phase margin and crossover frequency as the control gains are not 

constant but they change according to nonlinear adaptive mechanism (4.11)-(4.12), therefore a 

similar analysis cannot be carried out for the adaptive scheme. Nevertheless, the adaptive 

controller is intrinsically robust to parameter variations as the control gains change online on the 

basis of the actual building response. 

At last, we underline that numerical results are obtained by using the same work-station (Intel 

i7, 3.60 GHz, 32 Gb Ram) and the time saving through the LQ-EMRAC controller vs. the PI one 

was of about 180 minutes (-20%) to perform the entire set of simulations. 
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5.4.5 Analysis in case of PCM materials 

From a control prospective, dealing with PCM layers implies that the building envelope is a 

time-varying system, i.e. a linear system where the entries of the systems dynamic matrices are 

not fixed, but vary as a function of the plant state (e.g. temperatures) and time [120]. In this case, 

the design of fixed gain strategies (such as PID) can be ineffective, since this would require a 

different gain tuning for each value assumed by the matrices entries, i.e. for each of the different 

admissible system configurations. Conversely, adaptive strategies automatically adapt control 

gains to compensate dynamic changes occurring in the thermal capacitances of PCM layers. In 

order to provide evidence of this last aspect, several simulations are carried out for all the above 

examined buildings operating in intermittent regime. It is worth noticing that the adaptive 

controllers was not re-tuned with respect to the case when the PCM is not taken into account.  

Exemplar results reported in this section refer to a heavyweight House located in Freiburg 

(cold winter zone) and a lightweight Office in Nice (hot summer zone). This analysis aims to 

compare building energy and comfort performance obtained with and without PCM integrated 

into the building envelope. In particular, results highlight how the adoption of PCM allows 

reducing the energy consumption providing at the same time a better thermohygrometric 

comfort. Specifically, results reported in Figure 5.19 confirm the effectiveness of the controller 

in ensuring the required indoor air temperatures (according to the intermittent control system 

regime) with and without PCM. The figure refers to the heavyweight House building located in 

Freiburg and to five sample days, i.e. March 26th - March 31st (corresponding to the 85th - 90th 

days of the year).  
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Figure 5.19. Heavyweight House building in Freiburg. Time history of indoor air temperature and 

sensible heating capacity. 
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In such figure, in case of PCM adoption, the decrease of the indoor air temperature minimum 

and maximum peaks (lower fluctuation) is clearly visible. In addition, a reduction of time delay, 

calculated between the temperature peaks (in free floating regime) occurring without and with 

PCM, is also obtained, as shown in Figure 5.19. As a consequence, due to the lower indoor air 

temperature fluctuation, milder control actions (i.e. lower heating energy demand) are required 

when PCM is adopted. 

Note that, dealing with PCM is more challenging, since the control action has to neutralize the 

effect of uncertainties due to the high variability of the temperature-dependent thermal 

capacitances. Nevertheless, the adaptive terms can effectively tackle this additional on-line 

variation of the plant parameters and provide at the same time temperature tracking errors that 

are comparable to those obtained without PCM. As a result, it is possible to reliably compute 

energy savings with respect to commonly used building materials. Also for this analysis, the 

heating and cooling energy calculation is carried out for all the investigated case studies. As an 

example, for the heavyweight House building located in Freiburg, the application of PCM 

materials reduces the winter heating demand of about 10.8%, while a summer cooling demand 

decrease of about 25.1% is obtained in the case of the lightweight Office located in Nice.  

In Figure 5.20 the simulated thermal behaviour of the outer, the middle and the inner PCM 

layers is reported for the same sample days of the end of March. Here, it is clearly visible how 

the thermal capacitance of such layers is time-variant according to the variable external 

disturbances.  
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Figure 5.20. Heavyweight House building in Freiburg. Time history of outdoor air temperature, solar 

radiation and thermal capacitance of three PCM roof layers. 
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In all the cases, the thermal capacitance fluctuation is higher in the outer PCM layer than in 

the middle and inner ones. Note that on March 27th and 30th, for the outer PCM layer a complete 

melting and a subsequent solidification processes occur, due to the combined effects of outdoor 

air temperature and solar radiation (a temperature of the layer higher than 26 °C can be 

observed). Therefore, the thermal capacitance of the outer PCM layer reaches two consecutive 

peaks, while its minimum, occurring between such peaks, is related to the liquid phase.  

By integrating PCM layers into the envelope, higher levels of comfort are detected even 

during night hours during which temperature and humidity controls are deactivated, as shown in 

Figure 5.21. Here, it is clearly evident that in case of PCM adoption, the obtained PMVs are 

always closer to zero (minimum PPDs) and, as expected, the mean radiant temperature 

oscillation is always lower. Similar results regarding the control scheme reliability and 

interesting energy and comfort benefits are also detected for the summer season. For the sake of 

brevity, such results are reported only for the lightweight Office building located in the weather 

zone of Nice for several sample, i.e. July 14th – July 19th (corresponding to the 195th - 200th days 

of the year).  
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Figure 5.21. Heavyweight House building in Freiburg. Time history of: PMV, PPD and mean radiant 

temperature. 

 

In particular, Figure 5.22 shows that the adoption of PCM implies a lower cooling demand 

(thus a milder control action), which is always detected when compared to the case without 

PCM. On July 14th, no cooling energy is even required (no control action) in case of PCM 

adoption, due to the quite low hourly outdoor air temperatures and solar radiations.  
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Figure 5.22. Lightweight Office building in Nice. Time history of: indoor air temperature and sensible 

cooling capacity. 

 

5.5 Discussion  

In this chapter the novel Enhanced Model Reference Adaptive Control (EMRAC) scheme 

proposed in Chapter 4 have been applied to the control of the thermohygrometric variables in 

buildings. The reference model is obtained by a Linear-Quadratic (LQ) optimization and it is 

developed for controlling nonlinear building dynamics. The goal of this control scheme is to 

strictly control the thermohygrometric behaviour of buildings in uncertain conditions (also for 

guaranteeing indoor comfort). This is obtained through the control ability to appropriately and 

automatically vary its control gains, without requiring a priori knowledge of the building 

dynamics. The LQ-EMRAC performance (in terms of control robustness against disturbances) 

was extensively analysed through the development of 54 different case studies. In particular, 

they refer to: i) three different building uses (small house, office building and large commercial 

mall); ii) two diverse building envelopes (lightweight and heavyweight); iii) nine different 

European weather zones (ranging from cold winter climates to temperate Mediterranean ones).  

Energy and comfort analyses were also carried out for continuous and intermittent control 

system operating strategies, as well as for different choices of the reference profiles. Additional 

tests have been performed by taking into account the nonlinear thermal behaviour of roof and 

walls integrated with Phase Change Materials (PCM). 

Simulation results show that the proposed control strategy is able to impose the reference 

behaviours to both indoor air temperature and humidity, in any simulated conditions and for both 
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the continuous and intermittent regimes. As a result, indoor air temperature and humidity 

tracking mean squared errors, for each investigated case study, resulted to be always negligible. 

Due to such accurate thermohygrometric control, high occupants’ comfort levels are also 

achieved, obtaining good PMVs (ranging from -0.5 to 0.75) and PPDs (less than 10% in winter 

and 20% in summer) for all the investigated case studies. 

In addition, due to the LQ-EMRAC ability, simulation results also show: i) smooth transitions 

of both the indoor air temperature and humidity during transient operations; ii) bounded dynamic 

behaviours of the adaptive gains; iii) bounded sensible and latent heating and cooling control 

actions. Additional feature will be analyzed in the next chapters. In particular the control of 

thermohygrometric variables for multi-zone systems, where some zones are totally included in 

others, will be considered in the next chaper. 
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Chapter 6                                                       

ADAPTIVE CONTROL OF MULTI-ZONE 

THERMAL SYSTEMS 

The aim of this chapter is twofold. The first is to extend the model implemented in DETECt 

(see Chapter 2) so that it is possible to simulate also multiple thermal zones totally enclosed into 

others. The second aim is to control the resulting multi-zone system when different 

thermohygrometric conditions are required for each zone. The regulation of indoor air 

temperature and humidity, according to the different specific requirements of each zone, is 

guaranteed by the adaptive model reference scheme embedded into the code, namely LQ-

EMRAC, Linear Quadratic Extended Model Reference Adaptive Control, presented in Chapter 

4. Such algorithm allows the control of the different indoor spaces thermo-hygrometric variables 

in uncertain conditions through the on-line variation of its control gains. As a result, a great 

control flexibility and robustness is achieved and the control action is able to automatically 

counteract unexpected and unknown thermo-hygrometric behaviour deviations (e.g. due to 

external disturbances acting on the different zones), without requiring, for its design or on-line 

implementation, an a priori knowledge or a detailed mathematical description of the overall 

dynamics.  

In order to show the effectiveness and robustness of the control approach to multizone 

systems when some of them are totally included in others, two case studies are developed 

throughout the chapter. In particular, the first refers to an indoor hall of a museum building with 

an included glass display case. Here, an accurate climate control (rigid constraints of temperature 

and humidity of the case indoor air) is required. As it is well known, such occurrence is 

mandatory in case of particular exhibited items contained in museums glass cases (e.g. archival 

artifacts, paper-based objects, etc.). Here, preservation techniques must be emphasized in order 

to avoid eventual irreversible damages. In this specific case there are two thermal zones to be 

modeled and controlled. The first one, i.e., the hall of a museum, is operated according to an 

intermit running regime, while for the included zone a continuous running mode is adopted. 

Hence, we test the robustness of the adaptive approach for the included zone to sudden variation 
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of the thermohygrometric conditions of the surrounding environment caused by the 

activation/deactivation of the controllers for the hall of a museum. 

The second case study is referred to a Neonatal Intensive Care Ward (NICW) where several 

Neonatal Intensive Care Units (NICUs) for premature and full-term newborn babies are located. 

In each NICU, an accurate climate control of air temperature and humidity is required for 

producing healthful micro-environment for the hosted babies. Although many works in literature 

highlighted the need of a neutral thermal environment for increasing the survival rate of preterm 

infants [150, 151], the adoption of accurate and advanced regulation of both the temperature and 

the relative humidity within the NICUs have been only recently emphasized [152]. For this 

second case study, the main idea is to analyze the effect of sudden disturbances, e.g., windows 

and NICUs openings, and how the adaptive control tackle such unexpected events. 

At the best of the authors' knowledge, the presented dynamic BEPS code is the first one in 

literature in which: i) an innovative and optimal adaptive scheme for controlling indoor air 

temperature and humidity is implemented; ii) the thermo-hygrometric behaviour of multiple 

thermal zones totally included into larger ones can be assessed. The chapter opens by 

considering the modelling of multi thermal zones where some of them are totally included in 

other as this modelling is common to both case studies shown after. The material of this chapter 

has been partially published in [153-155]. 

6.1 Modelling thermal multi-zones systems 

In order to analyse the effectiveness and robustness of the LQ-EMRAC control algorithm for 

assessing the thermo-hygrometric behaviour of different building thermal zones enclosed into 

others, a suitable simulation model was developed. The model is based on the resistive-

capacitive (RC) thermal network approach and extend that presented in Chapter 2 based on [9] to 

the case that there are Z zones and Z-1 of them are completely enclosed into a main one. 

Through such model, the dynamics of temperatures and humidity, as well as of heating and 

cooling loads and demands, occurring within each modelled zone, can be assessed. A sketch of 

the modelled RC thermal network, related to Z thermal zones (one main zone including the 

remaining Z-1 zones) is showed in Figure 6.1. 

The calculation procedure takes into account the heat flows between: i) the outdoor 

environment and the main thermal zone (Zone 1 in Figure 6.1); ii) the main thermal zone and the 

enclosed ones (zones 2 to Z in Figure 6.1). Several simplifications are taken into account, such 

as:  
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Figure 6.1. Sketch of the modelled RC thermal network. 

 the indoor air of each thermal zone is considered as uniform and, thus, modelled as a 

single indoor air temperature node;  

 the building envelope of the main Zone 1 is subdivided into M multi-layer elements, 

subdivided in N sub-layers (of different thicknesses), where thermal masses and 

conductivities are uniformly discretised (see also Chapter 2). For each m-th envelope 

component of Zone 1 (main zone), N capacitive and 2 surface nodes are taken into 

account; the construction envelope of the enclosed zones (from 2 to Z) is lumped in a 

single node. 

As a result, the whole system is modelled through a high order RC thermal network of: i) M × 

(N+2) nodes in which the building envelope of the main zone is subdivided (consisting of M 

envelope elements (m = 1, …, M) and N sub-layers (n = 1, …, N), see also Chapter 2 for further 

details on the modelling of Zone 1); ii) Z-1 nodes of the lumped envelopes of each enclosed 

zone; iii) Z nodes related to the indoor air of each enclosed zone and the main one.  

The set of differential equations describing the energy rate of change of the envelope of Zone 

1 are those described in detail in Chapter 2 (see Section 2.2 and [9]). Instead a simplified 

approach is adopted for the enclosed zones (z = 2,…,Z). Here, the differential equation 

describing the energy rate of change of the temperature node of each enclosed zone envelope 

(Tw,z) is calculated as: 

 
,1 ,

1, 2,

,           2 ,
in w,z in z w,zw,z

w,z glob glob
z z

T T T TdT
C z Z

dt R R

 
    (6.1) 

where Cw,z is the envelope lumped thermal capacitance, whose indoor air temperature is Tin,z; 

glob
j,zR is a global thermal resistance that takes into account all the heat transfer effects. At the 

exterior of the enclosed zones, glob
1,zR  is calculated by adding the half sub-layer conductive 

thermal resistance of each enclosed zone envelope node to the equivalent convective and 

radiative thermal resistance (modelled by a combined linearized convective-radiative thermal 

Z 

…. 
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resistance). In addition, the radiative exchange includes the heat transfer between the enclosed 

zones envelopes and the main zone, disregarding the long-wave fraction of each enclosed zone 

vs. the remaining ones. Within the enclosed zones, the equivalent global thermal resistance 

( 2,
glob

zR ) includes combined conduction and convection phenomena only.  

The dynamics of the indoor air of the main zone Tin,1 and of each enclosed zone Tin,z are 

described as 

 , ,
,,

,

M Z Z
in,1 m,N in,1 out in,1 w,z in,1 in,z in,1

in 1 g 1 AC,1conv glob
v,1 v zm,int 1 zm=1 z=2 z=2

dT T - T T T T - T T T
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        (6.2) 

and 
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C Q Q z Z
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      (6.3) 

where 
conv
m,intR  are the thermal resistances defined in Section 2.2 and Rv,1 and Rv,z are the thermal 

resistances that describe the air ventilation and infiltration thermal loads. Specifically, Rv,1 links 

the indoor air node of Zone 1 to the external one (outdoor air at Tout), whereas Rv,z links the 

indoor air node of the Z-th zone to the one of Zone 1. The sensible heat gains include: i) the 

thermal zone internal gains due to occupants, lights and equipment, ,g 1Q  and g,zQ ; ii) the 

sensible heat to be supplied to (or removed from) the building space by an ideal HVAC system, 

aiming at maintaining the indoor air at the desired set point temperature, ,AC 1Q  and ,AC zQ , 

respectively. (We remark that (6.2) replaces (2.17) for modelling the dynamics of indoor air 

temperature of Zone 1 in the case it contains additional thermal zones that are completely 

included. Hence, the reader is referred to Section 2.2.4 for further details and comments for this 

dynamical system.) 

For each indoor space, the moisture balance is calculated by neglecting the moisture exchange 

between the air node and the surrounding building surfaces. As a result, the adopted moisture 

balances for the main zone and the enclosed ones are described  

    ,1
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        (6.4) 

and 

  ,z
,z ,1 ,1 ,z ,z , ,           2 ,

in
in v in in wg vap z

d
m m m z Z

dt


        (6.5) 

where Ωin,z in is the indoor dry air mass; ,v zm  is the air ventilation mass flow rate; ,wg zm  is the 

inlet water vapour mass flow rate to the thermal zone (due to occupants), ωin,z is the indoor air 
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specific humidity, ,vap zm  is the water vapor mass flow rate delivered to (or removed from) the 

indoor space for maintaining a desired humidity set point in accordance with the decoupling 

approach in [87], with z = 1…Z (i.e., for each zone), where ωout is the outdoor air specific 

humidity.  

Notice that ,vap zm  is equal to ,
lat
HVAC z vsQ h , where vsh  is the water latent evaporation heat at 

0°C and ,
lat
HVAC zQ  is the latent heat to supply to, or to remove from the z-th zone to keep its 

humidity to a given set point. Again we remark that (6.4) replaces (2.18) for modelling the 

dynamics of indoor air specific humidity of Zone 1 in the case it contains additional thermal 

zones that are completely included. Hence, the reader is referred to Section 2.2.5 for further 

details and comments for this dynamical system. 

6.2 Case Study 1: two zones  

As first case study to show the effectiveness of the design approach presented in Chapter 4 

also for the precise control of multi-zone systems with different thermohygrometric needs, we 

start to consider the simple case of two zones as depicted in Figure 6.2.  

 

 

Figure 6.2. Sketch of the modelled RC thermal network in the case when a zone is totally included in 

another. 

 

The presented case study refers to a possible museum indoor space in which two thermal 

zones are modelled. In particular, the first zone is referred to a museum hall while the second one 

(totally included in first zone) to a glass display case with an accurate climate control (rigid 

constraints of temperature and humidity of the case indoor air) necessary to preserve collected 

exhibits such as: paints, woods, papers and leathers (which require suitable conditions of indoor 

air temperature and relative humidity, simultaneously). The numerical analysis, carried out in the 

next section, is referred to the weather zones listed Table 5.3. 
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For Zone 1, it is considered a length, width and height equal to 20, 10 and 3.5 m, respectively. 

The building longitudinal axis is East–West oriented and a South facing windows (4-6-4 air 

filled double-glazed system) of 32 m2 is taken into account. The thickness of the building walls 

and floor/ceiling are 25 and 30 cm, respectively. Their stratigraphy is designed by concrete 

bricks (λ = 0.51 W/mK, ρ = 1400 kg/m3, c = 1000 J/kgK) and thermal insulation (λ = 0.04 

W/mK, ρ = 15.0 kg/m3, c = 1400 J/kgK). Note that each building element is subdivided in 10 sub 

layers of equal thickness. The direct solar radiation transferred through the windows to the inside 

zone is assumed to be absorbed by the floor with an absorption factor of 0.3. The absorption and 

emission factors of interior surfaces are assumed to be equal to 0.15 and 0.9, respectively. For 

such zone, a ventilation rate equal to 1 Vol/h and a crowding index of 0.12 person/m2 are taken 

into account. A cubic shaped zone 2 with 1 m length side is considered. In particular, a glass 

envelope of 3 cm thickness, with an occurring air infiltration of 2 l/h is modelled.  

The simulation starts on 0:00 of January 1st and ends at 24:00 of December 31st. For zone 

one it is assumed an intermittent running regime similar that considered in Section 5.3. In 

particular, the heating/cooling system of the thermal Zone 1 is switched on from 08:00 to 18:00, 

from November 1st to March 31st (heating mode) and from 14:00 to 20:00, from June 1st to 

September 30th (cooling mode). The heating/cooling system is activated for indoor air 

temperatures lower than 20°C and higher than 28°C, during heating mode, and for indoor air 

temperatures lower than 10°C and higher than 25°C, during cooling mode. Simultaneously, 

humidification and dehumidification are required for indoor relative humidity lower than 45% 

and higher than 55%. Notice that, for this case study also setback strategies have been 

considered. In particular, during the heating mode the temperature controller is activated also for 

simulation time t ∉ [08:00, 18:00] providing that the indoor air temperature goes below 10 °C, 

while in the case of the cooling mode the temperature controller is re-activated when the indoor 

air temperature becomes higher that 28 °C and the simulation time t ∉ [14:00, 20:00]. 

Consequently also the automaton in Figure 3.2b has been used for the simulation of Zone 1. 

Notice that additional thermal loads due to people effect the indoor temperature/relative 

humidity evolution from 09:00 to 18:00 and from 15:00 to 20:00 during winter and summer 

season, respectively. 

The heating/cooling system for the thermal Zone 2 is switched on 24/7 for accurately 

conserving the case exhibited items. Here, the indoor air temperature and relative humidity are 

controlled all over the year at 20°C and 65%, respectively. 
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The LQ-EMRAC presented in Chapter 4 has been implemented to control the air temperature 

and humidity, simultaneously, of both the modelled thermal zones. In particular, following a 

decentralized control approach (where each control variable is used to impose the dynamic 

behaviour of only one variable to be controlled according to decentralized control scheme [156], 

while coupling between zones are assumed to be as additional unmodelled dynamics to tackle in 

closed-loop), four different and independent adaptive controllers have been designed. In order to 

design the LQ-EMRAC control, the simplified models (see Section 5.1) was adopted as nominal 

models to be optimized via the LQ approach. Note that, the choice of these simplified models 

reduces the complexity of the control design, without jeopardizing the closed-loop performance. 

On the other hand, the robustness of the closed-loop control is guaranteed by the adaptive 

actions, whose gains evolve to compensate any parameters mismatch and/or presence of 

unmodelled dynamics (see Chapter 4). The weight matrices, which define the cost function (4.3), 

were set in order to impose: i) a settling time of 50 minutes for Zone 1 and 10 minutes for Zone 

2; ii) absence of overshoots for any step variation of the reference signal. The choice of the 

relaxation time for Zone 1 is done according to [103] with the aim to ensure a smooth daily 

transition during the transient operation toward the regime set-point. Finally, the reference input 

signals (i.e., r in Figure 4.1) depends on the selected temperature and humidity set points. Note 

that, the humidity control is obtained through the input reference set point of indoor air specific 

humidity, in order to achieve the selected relative humidity set-point. 

6.3 Numerical results  

In the following subsection we discuss the results of the numerical analysis first for the Zone 

1, i.e., the museum hall, and then those of Zone 2, i.e., the glass display. We note that during the 

design of the adaptive control schemes the mutual thermal effects between the zones have not 

been taken into account. Hence, the coupled dynamics in Section 6.1 are considered as additional 

uncertainties to tackle in closed loop to impose the required indoor air temperature and humidity 

set points. 

6.3.1 Analysis for Zone 1 (Outer zone) 

As mentioned above, for Zone 1 indoor air temperature and humidity are daily controlled only 

for some hours. Hence, at control activation both these thermohygrometric variables have to be 

regulated to the desired set points if they are not inside the admissible range of variation. In this 

case, as discussed in Chapter 4, for each variable, the gains of the corresponding controller adapt 



Chapter 6: Adaptive Control of Multi-Zone thermal systems  

107 

 

so that it is possible to track in closed loop the output of the reference model which converges to 

the required set point. The tracking of the reference model dynamics are imposed despite 

external disturbances, e.g., solar radiation, external temperature and internal loads, and the 

thermal coupling with Zone 2. To better illustrate this feature, Figure 6.3 shows the evolution of 

indoor air temperature and humidity and the corresponding reference models at the control 

activation occurring at the 319th day of the year in Denver. (Notice that, in this figure, as in 

those in the rest of the section, grey shaded area denote the time range where the controllers are 

not activated according to the scheduling discussed in Section 6.2.) Here it is clear that adaptive 

strategies can impose the demanded thermohygrometric regime also in this challenging case as a 

satisfactory performance of the developed closed-loop control scheme can be observed 

(coincident references and obtained temperature/humidity profiles).  

Figure 6.3. Time history of (a) indoor air temperature and (b) together with the corresponding reference 

profiles in the case of Denver (319th day of the year).  

 

Figure 6.4. Time history of the adaptive gains for the case of Denver (319th day of the year.) for (a) indoor 

air temperature control and (b) indoor air relative humidity. 
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The evolution of the adaptive gains (4.11)-(4.12) to obtain the tracking performance in Figure 

6.3 are shown in Figure 6.4 for the sake of completeness. In particular, in Figure 6.4a, we note a 

change of the rate of variation of the adaptive gains around 9:00. This is mainly due to the effect 

of additional internal loads caused by the arrival of people in the room. Despite this effect, 

tracking of the reference profiles is not jeopardized as the adaptive system fast adjusts its gains 

to face the new working condition.  

Similar tracking performance have been obtained for other weather zones and different days 

of the year, some of them have been depicted in Figure 6.5. 

Figure 6.5. Transient dynamics of (a) the indoor air temperature and (b) humidity for some selected days. 

Denver (319th day of the year), Copenhagen (11th day of the year), Naples (99th day of the year), Rome (114h 

day of the year), Nice (278h day of the year), Jerusalem (280th day of the year). 

 

In particular from Figure 6.5a we note that in the case of the 99th day of the year in Nice 

(dashed dark yellow line), when the control system is switched on, the indoor air temperature is 

already within the acceptable range of variation given in Section 6.2. Consequently, additional 

heating/cooling is not provided and the sensible heating is set to zero (see also Figure 6.6a). In 

this case the change of the derivative of the indoor air temperature at 9:00 and its increase 

towards 22 °C is caused by the arrival of people in the room.  

Similarly, in the case of relative humidity control the adaptive strategy is not switched on 

when the room is located in Jerusalem on the 280th day of the year, as shown in Figure 6.5b, 

because the indoor air relative humidity already belongs to [45, 55] % at 8:00. In this specific 

case, when people arrive at 9:00, the indoor air temperature has been already driven to 20 °C (see 

dashed dark red line in Figure 6.5a) by the temperature controller with the control action 

(sensible heating) in Figure 6.6a. Hence, additional latent loads due to people increase the indoor 
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air relative humidity which continues to free float in the preassigned range of variation while the 

vapour flow rate is constantly set to zero (see dark red line in Figure 6.6b).  

Figure 6.6. Time history of the control actions at the control activation for some selected days. Denver 

(319th day of the year), Copenhagen (11th day of the year), Naples (99th day of the year), Rome (114h day of 

the year), Nice (278h day of the year), Jerusalem (280th day of the year) (a) sensible heat and (b) water 

vapour mass flow rate. 

 

From Figure 6.6 we can also remark that for the temperature control of the room located in 

Copenhagen on the 11th day of the year, the setback strategy was activated to keep indoor air 

temperature at 10 °C during nighttime, while for the other weather zones, the indoor air 

temperatures were above 10 °C and therefore none additional heating was required according to 

the scheduling given in Section 6.2. Also the effect of the arrival of people at 9:00 is clear in 

Figure 6.6. Indeed, additional internal loads imply that lower sensible heats can be supplied to 

keep the indoor air temperatures at the required set-point. Consequently, the adaptive 

temperature controllers adapt their gains automatically so that required thermohygrometric 

conditions are preserved also for the new operative working regime. We clearly not that, the 

additional internal loads due to people were not able to increase indoor air temperature so that 

free floating ware allowed. Free evolution of the indoor air temperature has been detected for 

some cases in Figure 6.5a only after 10:30, e.g., for Naples (99th day of the year), Rome (114h 

day of the year), Nice (278h day of the year), Jerusalem (280th day of the year) where the 

required sensible heat in Figure 6.6a converged to zero.  

The phase portrait of the thermohygometric variables over the time interval 8:00÷9:00 for the 

weather zones in Figure 6.5 is shown on the psychrometric chart in Figure 6.7. Here, in 

accordance with Figure 6.6, it is clear that for rooms in the weather zone of Naples and Rome, at 

the beginning of the 99th and 114th day of the year, respectively, heating and dehumidification 
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are required to enter in the admissible region defined by the constraints introduced in Section 6.2 

(see trajectories D4 and E4 in Figure 6.7). On the other hand heating and humidification have to 

be provided in the case of Denver (319th day of the year) and Copenhagen (11th day of the year), 

i.e., trajectories A1 and B1. Finally a pure heating is required for Jerusalem (280th day of the 

year) and only dehumidification is needed for Nice (278th day of the year). Notice that, the 

resulting trajectories, i.e., C2 and F3 are almost a horizontal and vertical segment, respectively, 

as the indoor specific humidity, in the case of Jerusalem, and the indoor air temperature, in the 

case of Nice, vary in a small range during the first hour after the control activation.  
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Figure 6.7. Winter season. Indoor air routes on the psychrometric chart for mall buildings. Denver (319th 

day of the year), Copenhagen (11th day of the year), Naples (99th day of the year), Rome (114th day of the 

year), Nice (278th day of the year), Jerusalem (280th day of the year). 

 

We remark that for the control of the room the maximum root mean squared tracking error for 

the weather zones in Table 5.3 where about 0.0373 °C for the indoor air temperature control and 

0.28 % for the indoor humidity control. These are small residual errors considering also the 

thermal effect of Zone 2 on Zone 1 which was not considered during the design of the control 

strategy.  

The energy demands required to achieve this fine regulation is reported in Table 6.1. Similar 

considerations as those given in Section 5.4.2 for Table 5.7 and Table 5.8 can be redone also for 

data in the first two columns in Table 6.1. In particular, it is possible to note that the lower the 

HDD, the lower the building heating demand (although a strictly decreasing trend cannot be 

detected because of the solar radiation effects). Conversely, lower the HDD, the higher is the 

building cooling demand.  

Copenhagen 
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Weather 

zone 
Mode 

Energy Demand Peak Load Comfort 

Sensible 

(kWh/m2y) 

Latent 

(kWh/m2y) 

Sensible 

(kW) 

Latent 

(g/s) 

PMV  

(-) 

PPD 

(%) 

Copenhagen 
H 80.35 13.18 21.34 3.23 -0.589 12.2 

C -1.24 -1.67 -4.29 -2.64 -0.132 5.35 

Denver 
H 54.31 21.64 26.09 3.57 -0.378 7.97 

C -10.59 -1.01 -9.45 -2.16 0.116 5.27 

Freiburg 
H 66.32 11.37 20.93 3.09 -0.513 10.5 

C -5.69 -1.52 -8.81 -2.22 -0.056 5.06 

Milan 
H 59.17 9.23 19.24 2.88 -0.137 5.38 

C -11.43 -5.57 -8.36 -4.6 -0.013 5.01 

Rome 
H 25.7 3.84 15.17 2.38 0.143 5.42 

C -19.29 -6.42 -11.28 -5.21 0.27 6.51 

Nice 
H 22.08 4.35 12.22 2.17 0.043 5.03 

C -14.79 -4.84 -9.27 -3.62 0.245 6.25 

Naples 
H 23 3.23 14.12 2.17 0.131 5.35 

C -20.53 -8.23 -10.97 -5.54 0.297 6.82 

Jerusalem 
H 15.78 3.26 11.71 1.99 0.201 5.84 

C -21.92 -7.43 -11.52 -7 0.572 11.9 

Athens 
H 16.03 3.39 11.94 2.09 0.318 7.11 

C -31.81 -3.05 -12.93 -2.6 0.406 8.43 

Table 6.1. Man value data for Zone 1: average PMV and PPD during winter (H) and summer (C) seasons, 

heating (H) and cooling (C) energy demand and peak load. 

 

As the size and the scheduling policy for the winter season of the building considered in this 

section are similar to office buildings in Chapter 5 under intermit regime, some additional 

consideration can be done. Precisely, even though the building described in Section 6.2 is 

heavier than the heavy office building in Chapter 5 and possible setback can be activated during 

the nighttime, the heating demand are smaller. This is mainly because of the presence of Zone 2 

whose air temperature is constantly controlled at 20 °C. This is also the low-bound set-point 

indoor air temperature for the room. Consequently, Zone 2 heats the surrounding environment to 

the required set point and then less sensible heat is required to control the indoor air temperature. 

Table 6.1 also reports the peak load demands both for heating/cooling and 

humidification/dehumidification. These values can be used for the design of conditioning 

systems that must provide the required sensible and latent heats for the control of Zone 1.  

To give some concise overview about comfort in Zone 1, Table 6.1 reports also the mean 

value of the PMV and PPD computed in steady state (i.e., after transient due to control system 

activation). We note that the mean PMV value never exceeds 0.6 and consequently PPD is 

limited 12.2%. In addition, for many weather zones smaller PMV mean values are achieved. For 

those cases the mean PPD is around 5% which corresponds to the minimum value for this 

comfort index. 
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Figure 6.8. Time history of PMV, PPD and mean radiant temperature for cold winter zones. 

 

Figure 6.9. Time history of (a) indoor air temperature, relative humidity and (b) sensible load and water 

vapour mass flow rate for cold winter zones. 

 

To better illustrate the dynamics of the comfort indexes, Figure 6.8 shows the time history of 

PMV, PPD and mean radiant temperature for cold weather zones for a set of days during the 

winter season. Here, it is clear that comfort is fast imposed when the control systems are 

activated (white regions in Figure 6.8). For example, a PPD below 10% is always achieved also 

when its initial value is about 70%. The indoor air temperature and relative humidity dynamics 

for the same days in Figure 6.8 and the corresponding control actions required for their control 

are given in Figure 6.9a and Figure 6.9b, respectively. These figures also show that over the 

selected days the setback strategy was activated several times, avoiding therefore the indoor air 

temperature to go below 10 °C. In particular, the temperature controller is switched on also 
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during the nighttime (grey shaded area in Figure 6.9) for Denver and Copenhagen over the first 

four days, but for former weather zone an increase of the outdoor temperature was noted on the 

68th day of the year, which prevented the reactivation of the setback strategy.  

For the sake of completeness, Figure 6.10 and Figure 6.11 show a similar comfort analysis but 

for warm summer zones.  
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Figure 6.10. Time history of PMV, PPD and mean radiant temperature for warm summer zones. 

 

Figure 6.11. Time history of (a) indoor air temperature and relative humidity, and (b) sensible load and 

water vapour mass flow rate for warm summer zones. 

 

6.3.2 Analysis for Zone 2 (Included zone) 

For the included thermal zone, i.e., Zone 2 or equivalently the museum display case, we start 

noticing that the air temperature and humidity mean square root errors calculated with respect to 
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the required set-points over a time horizon of one year were small, confirming therefore the 

effectiveness of the adaptive control strategy in satisfying strict thermohygrometric 

requirements, despite the coupling with Zone 1 which was not taken into account during the 

control design. Precisely, they resulted to be always less than 10-3 for every weather zone. 

Figure 6.12 shows the sensible heat and the vapour flow rate (control actions) required to 

achieve this precise regulation in the case of a set of winter days for cold zones. In particular, we 

remark that, as for the winter season the indoor air temperature of Zone 1 is controlled at 20 °C 

from 8:00 to 18:00 (see Figure 6.9a), which is also the air temperature set point for Zone 2, in 

steady state there is not a gradient temperature between the two zones.  
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Figure 6.12. Winter season. Time history of the control actions of the sensible load and the water vapour 

mass flow rate for Zone 2.  

 

Figure 6.13. Winter season. Time history of the adaptive gains for Zone 2 (a) for the air temperature 

control and (b) for the air relative humidity control. 
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achieved also during the nighttime for those weather zones where the setback strategy is 

activated, e.g., Copenhagen. In this case the sensible heat to provide to Zone 2 to regulate its air 

temperature to 20°C when the indoor air temperature of Zone 1 is 10 °C is about 2.5 W (see grey 

shaded area in Figure 6.12 and Figure 6.9a). A similar analysis can be carried out also for the 

humidity control in Zone 2 for cold winter zones. Specifically, from 8:00 to 18:00 and from the 

64th to the 70th day of the year, the indoor air relative humidity is controlled at 45%. On the other 

hand the required set point for Zone 2 is 65%. Hence, to balance the difference between the 

indoor air humidity in Zone 1 and the demanded one a vapour flow rate of about 0.25 mg/s has 

to be provided to Zone 2 (see white area in Figure 6.12). Instead, when the humidity control of 

the room is deactivated (shaded grey area in Figure 6.9a) the vapour flow rate to provide to Zone 

2 varies on the basis of the free floating evolution of the indoor air relative humidity in the 

surrounding zone (Zone 1).The adaptive gains to obtain the regulation of the thermohygrometric 

variables for cold winter zones are given in Figure 6.13 for the sake of completeness.  

A similar analysis can be done also for hot summer zones. In this case, an example of the 

required control actions are given in Figure 6.14 while the related adaptive gains are depicted in 

Figure 6.15.  
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Figure 6.14. Summer season. Time history of the control actions (sensible load and the water vapour mass 

flow rate) for Zone 2. 

 

For the temperature control we only remark that, as the air temperature of Zone 1 is controlled 

at 25 °C from 15:00 to 20:00 (see white area in Figure 6.11a), for these hours a constant cooling 

of about -1.25 W is required to keep temperature of Zone 2 at 20 °C. Instead a steady state of the 

cooing demand is not achieved when the temperature controller for Zone 1 is deactivated (see 

grey shaded area in Figure 6.11a).  

For the included Zone 2 (glass display case), the calculated energy demands, both for sensible 

and latent heats, are reported in Table 6.2. 
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Figure 6.15. Summer season. Time history of the adaptive gains for Zone 2 (a) for the air temperature 

control and (b) for the air relative humidity control. 

 

As in the case of the room, also these data can be used by practitioners to estimate both 

consumptions and tune proper air conditioning systems. In particular it is possible note that for 

many weather zones the sensible demand has the same order of magnitude of the latent energy 

demand. Furthermore, for high HDD (first four weather zones in Table 5.3) the heating demand 

differs from the humidification demand at most of 37.14% (Milan).  

Weather 

zone 
Mode 

Energy Demand Peck Load 

Sensible 

(kWh/m2y) 

Latent 

(kWh/m2y) 

Sensible 

(W) 

Latent 

(mg/s) 

Copenhagen 
H 5.15 3.76 2.99 1.68 

C -0.92 -0.48 -1.35 -0.93 

Denver 
H 4.61 6.18 3 1.85 

C -2.3 -0.29 -1.99 -1.01 

Freiburg 
H 4.47 3.25 2.99 1.62 

C -1.66 -0.43 -1.97 -0.79 

Milan 
H 4.2 2.64 2.99 1.53 

C -2.73 -1.59 -1.98 -1.34 

Rome 
H 2.47 1.1 2.55 1.35 

C -3.66 -1.83 -2.00 -1.49 

Nice 
H 2.16 1.24 2.10 1.28 

C -3.34 -1.38 -1.99 -1.23 

Naples 
H 2.27 0.92 2.46 1.28 

C -3.78 -2.35 -2.00 -1.62 

Jerusalem 
H 1.92 0.93 2.13 1.21 

C -3.8 -2.12 -2.00 -1.88 

Athens 
H 1.66 0.97 2.03 1.25 

C -4.78 -0.87 -2.01 -0.9 

Table 6.2. Man value data for Zone 2: heating (H) and cooling (C) energy demand and peak load. 
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6.4 Case Study 2: multi-zones  

To further prove the effectiveness of the adaptive strategy to suppress the coupled dynamics 

of thermal systems in Figure 6.1 also when more than one inner zone dynamics have to be 

tackled, we consider here an additional case study that refers to a Neonatal Intensive Care Ward 

(NICW) in which six Neonatal Intensive Care Units (NICUs), for premature and full-term 

newborn babies, are placed. In each NICU, an accurate climate control provides exact suitable 

conditions of air temperature and relative humidity, simultaneously. The sketch of the modelled 

seven-zones building is shown in Figure 6.1 with Z=7.  

For the NICW, Zone 1, a heavy building envelope, with length, width and height equal to 8, 7 

and 3.5 m, respectively, is considered. The building longitudinal axis is East-West oriented and a 

South facing window (4-6-4 air filled double-glazed system) of 12 m2 is taken into account. The 

thickness of the building walls and floor/ceiling are 35 and 25 cm, respectively. Their 

stratigraphy is designed by concrete (λ = 0.51 W/mK, ρ = 1400 kg/m3, c = 1000 J/kgK), semi-

aerated bricks (λ = 0.6 W/mK, ρ = 1000 kg/m3, c = 840 J/kgK) and thermal insulation (λ = 0.04 

W/mK, ρ = 15.0 kg/m3, c = 1400 J/kgK). The direct solar radiation transferred through the 

window to the inside zone is assumed to be absorbed by the floor with an absorption factor of 

0.3. The absorption and emission factors of interior surfaces are assumed to be equal to 0.15 and 

0.9, respectively. For such zone, a ventilation rate equal to 0.8 Vol/h and a crowding index of 

0.054 person/m2 (3 pers.) are adopted. Each NICU (zones 2 to 7 in Figure 6.1) has length, width 

and height equal to 1.3, 0.77 and 0.60 m, respectively. In such zones, a polycarbonate envelope 

of 2.0 cm thickness is assumed and an occurring air infiltration of 0.5 Vol/h is modelled. In order 

to assess the effectiveness and robustness of the control algorithm, several accidental, heavy and 

intensive thermo-hygrometric disturbances are simulated. They regard: i) the opening of Zone 1 

windows, simulated  by an additional outdoor air flow rate of 1.4 kg/s, occurring at 9:00 and 

16:00 (for 1 hour); ii) the opening of the 6 NICUs, modelled as additional outdoor air flow rates 

of 3.5 g/s for each NICU, occurring for 10 minutes every 6 hours; iii) a steep increase of internal 

gains, simulated from 14:00 to 16:00 by increasing the crowding index to 0.142 person/m2 (9 

pers.). 

The computer simulation model of the neonatal ward, including the incubators systems, was 

implemented in a MatLab/Simulink environment. The simulation starts at 0:00 on January 1st 

and ends at 24:00 on December 31st. In zone 1, heating and cooling are activated for indoor air 

temperature lower than 20°C and higher than 26°C, respectively. Simultaneously, humidification 

and dehumidification are required for relative humidity lower than 45% and higher than 55%, 
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respectively. Inside the NICUs, different indoor air temperature and humidity set points are taken 

into account as a function of the mass of infants, gestational age and days of life Table 6.3 [152].  

Characteristics NICU1 NICU 2 NICU 3 NICU 4 NICU 5 NICU 6 

Birthweight [kg] 0.90 1.35 1.75 2.85 2.05 2.35 

Gestational age in weeks [w] 25 32 27 24 28 30 

Days [d] or weeks [w] of life  3 d 10 d 8 d 13 d 4 w 6 w 

Temperature set point [°C] 34 33 32 32 30 29 

Humidity set point [%] 85 40 60 85 60 40 

Table 6.3. NICUs temperature and humidity set points as a function of the mass of infants, gestational age 

and days of life 
 

In the NICW and NICUs zones, air temperature and humidity are controlled 24/7. Sensible 

and latent losses of each premature infant are calculated by adopting a decoupled approach [87]. 

Such physical and biological model includes conduction, convection, radiation, evaporation, 

breathing and heat generation from the infant, as described in [152]. Finally, in the following 

numerical analysis we consider as weather zones those in Table 5.3. 

6.5 Numerical results  

In the following subsection we discuss the results of the numerical analysis first for the Zone 

1, i.e., Neonatal Intensive Care Ward (NICW), and then those of Zone 2-7, i.e., the six Neonatal 

Intensive Care Units (NICUs). As in Section 6.3, during the design of the adaptive control 

schemes the mutual thermal effects between the zones have not been taken into account. Hence, 

the coupled dynamics in Section 6.1 are considered as additional uncertainties to tackle in closed 

loop to impose the required indoor air temperature and humidity set points. 

6.5.1 Analysis for Zone 1 (Outer zone) 

In this section we stat considering the closed-loop dynamics of the Neonatal Intensive Care 

Ward (NICW). For the evolution of the thermohygrometric variable, when the adaptive 

controller is used to tackle external disturbances, many observations can be done. The 

classification of the resulting system dynamics can be done mainly on the basis of the weather 

zones in Table 5.3 as well as the time range of interest. For example, for cold zone there is never 

free floating of the indoor air temperature and humidity and the required set points are constantly 

20 °C and 45%, respectively. On the other hand, for weather zones with smaller HDD in Table 

5.3 free floating was not detected for hot summer days. Consequently, for these cases the 

adaptive controllers impose an indoor air temperature of 26 °C with a relative humidity of 55% 

despite the activation and deactivation of the sudden disturbances described in Section 6.4 As 
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detected for the case study illustrated in Section 6.2 and Section 6.3, also in this case the 

regulation error is always below 10-3 for every weather zone. The sensible heat and the vapour 

flow rate (control actions) for a set of weather zones and some sample days are reported in 

Figure 6.16. In these figures different colors for the shaded areas are used to denote the 

activation and deactivation of different disturbances acting on Zone 1. The meaning of each 

color is reported in Table 6.4. From Figure 6.16, it is clear that the dominant disturbance to be 

rejected to preserve the required thermohygrometric conditions is the window opening.  

Figure 6.16. Sensible heat and vapour flow rate (a) cold winter zones during the 14th day of the year and 

(b) hot summer regions during the 230th day of the year. See Table 6.4 for details on colour shaded areas.  

 

Time 

range 
Description of the disturbance 

Color of the shaded 

area  

1 No lightning, and a crowding index equal to 0.036 person/m2 Grey 

2 
Opening of Zone 1 windows, simulated  by an additional outdoor air 

flow rate of 1.4 kg/s, occurring at 9:00 and 16:00 (for 1 hour) 
Light Purple 

3 
Opening of the 6 NICUs, modelled as additional outdoor air flow rates 

of 3.5 g/s for each NICU, occurring for 10 minutes every 6 hours 
Dark Pink 

4 
A first steep of internal gains, simulated from 06:00 to 12:00 by 

increasing the crowding index to 0.054 person/m2 
Light Yellow 

5 
A second steep of internal gains, simulated from 14:00 to 16:00 by 

increasing the crowding index to 0.142 person/m2 (9 pers.). 
Dark Yellow 

6 Lighting on and a crowding index equal to 0.036 person/m2 White (no color) 

Table 6.4. Activation/deactivation of disturbances. 

 

Indeed, from 9:00 to 10:00 and from 16:00 to 17:00 the control actions increase, reaching 

higher values with respect to the other hours of the day. Precisely, in the case of cold winter 

zones during the 14th day of the year (Figure 6.16a) both additional sensible and latent heats are 

required to control the indoor air temperature to 20°C and the indoor relative humidity to 45%. 

While in the case of hot summer regions during the 230th day of the year (Figure 6.16b) 
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additional cooling and dehumidification are needed to keep the indoor air temperature and 

humidity to 26°C and 55%, respectively. For the sake of completeness, Figure 6.17 shows the 

adaptive gains corresponding to the days in Figure 6.16. 

Free floating evolution of the thermohygrometric variables have been obtained in the case of 

cold weather zones during warm days. The the joint effect of the presence of the NICUs and 

higher external temperature allow both the indoor air temperature and the humidity to evolve 

within the possible admissible ranges.  

Figure 6.17. Adaptive gains: (a) cold winter zones during the 14th day of the year and (b) hot summer 

regions during the 230th day of the year. See Table 6.4 for details on colour shaded areas. 

 

For istance, Figure 6.18 shows the indoor air temperature and relative humidity evolution 

during May 28th-29th. It is interesting to remark that for these days the indoor air temperature 

evolve in free evolution as far as windows are kept closed. Nevertheless the adaptive controller 

has to be reactivated to avoid that such temperature goes below the admissible low value during 

window openings. On the other hand openings of NICUs have a small effect of this temperature 

and only a small increase has been detected. This is possibly due to the small time range (10 

min) that this systems are open.  

The effect of NICUs openings is more severe in the case of indoor air relative humidity as 

clearly shown in Figure 6.18 where sudden and not negligible increase of this quantity, as 

response to this impulse disturbance, has been observed.  

Similar considerations can be done for warm weather zones during winter season (see for 

example Figure 6.19). In this case it is interesting to point out that without the presence of the 

NICUs, free floating would not been possible. Precisely, in this case the NICUs provide to Zone 
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1 a sufficient extra heating which allows, taking into account also outdoor air conditions, to 

switch off the heating system.  
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Figure 6.18. Evolution of the indoor air temperature and relative humidity for cold weather zones during 

a set of warm days (148th -149th day of the year). See Table 6.4 for details on colour shaded areas. 
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Figure 6.19. Evolution of the indoor air temperature and relative humidity for hot weather zones during a 

set of winter days (314th -315th day of the year). See Table 6.4 for details on colour shaded areas. 

 

For the sake of completeness Figure 6.20 reports the control action for some days for the 

cases in Figure 6.18 and Figure 6.19. Here it is evident, that conditioning systems must be 

reactivated to tackle the effect of window openings. 

We finally conclude by considering the energy demands, peak loads and comfort for all 

weather zones in Table 5.3 which results are concisely reported in Table 6.5. It is possible to 

note that for any generic day, a suitable mean value comfort, expressed in terms of mean PMV 

and PPD, is always achieved despite the HDD value. In particular PMV varies from -0.574 to 

0.513, consequently the mean PPD is always below 12%.  

Copenhagen 
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Energy demand strongly depends on the HDD. Precisely, for high HDD, heating demand is 

dominant. On the other hand, when HDD decreases the need for cooling cannot be neglected. In 

addition, window openings for two hours per day strongly effect heating/cooling demand and 

higher values have been obtained with respect to those in Section 5.4.1. Such energy demands 

were expected as during window openings the required sensible heat increase also up to ten 

times with respect to the hours when this disturbance is deactivated (see Figure 6.16). Similar 

considerations can be done also for latent energy demands and the required peak load. 

Figure 6.20. Control actions for the case of (a) cold weather zones during the 148th day of the year and (b) 

hot weather zones during the 315th day of the year. See Table 6.4 for details on colour shaded areas. 

Weather 

zone 
Mode 

Energy Demand Peck Load Comfort 

Sensible 

(kWh/m2y) 

Latent 

(kWh/m2y) 

Sensible 

(kW) 

Latent 

(g/s) 

PMV  

(-) 

PPD 

(%) 

Copenhagen 
H 317.48 60.05 49.74 7.41 -0.574 11.90 

C -32.22 -4.24 -5.54 -0.76 -0.045 5.04 

Denver 
H 237.48 98.97 74.3 10.97 -0.165 5.56 

C -79.77 -3.37 -16.74 -2.58 0.124 5.39 

Freiburg 
H 261.47 54.67 46.09 7.72 -0.202 5.85 

C -55.9 -3.41 -15.93 -0.74 0.045 5.04 

Milan 
H 229.53 43 42.19 7.61 0.132 5.36 

C -88.03 -16.92 -13.42 -2.1 0.102 5.21 

Rome 
H 104.98 28.64 30.8 2.55 0.295 6.81 

C -125.8 -23.29 -17.49 -5.01 0.364 7.75 

Nice 
H 89.38 33.08 26.58 2.15 0.235 6.15 

C -103.99 -18.81 -11.72 -3.89 0.391 8.18 

Naples 
H 92 26.93 29.92 2.14 0.295 6.80 

C -129.96 -27.14 -17.18 -5.62 0.399 8.31 

Jerusalem 
H 71.62 24.58 26.61 1.62 0.324 7.18 

C -137.63 -24.84 -17.23 -7.97 0.554 11.43 

Athens 
H 64.4 27.28 27.18 2.56 0.383 8.05 

C -179.08 -6.81 -22.33 -0.74 0.513 10.49 

Table 6.5. Man value data for Zone 1: heating (H) and cooling (C) energy demand and peak load, average 

PMV and PPD during winter (H) and summer (C) seasons. 
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6.5.2 Analysis for the included zones 

Different from a Neonatal Intensive Care Ward (NICW), the Neonatal Intensive Care Units 

(NICUs) require the exact regulation of both indoor air temperature and relative humidity (see 

Table 6.3) for 24/7. As detected for the case study illustrated in Section 6.2 and Section 6.3, also 

in this case the regulation error is always below 10-3 for every weather zone. Figure 6.21a shows, 

as an illustrative example, results achieved during several hours of the same winter day (January 

25th) in the case of the weather zone of Naples. Specifically, the profile of the heating control 

actions necessary to keep the NICUs 1-6 (or equivalently Zones 2-7) air temperatures perfectly 

constant and equal to their required set-points during the 24 h are depicted together with the 

dynamic profiles of the previously described sensible load disturbances. Obviously, the thermal 

loads of the Zones 2-7 are much smaller than those related to Zone 1. 

Figure 6.21. NICUs – Indoor air temperature and humidity control actions and simulated disturbances in 

the case of the weather zone of Naples. 

 

In Figure 6.21b the profile of the humidification/dehumidification control actions necessary to 

keep the NICUs at their required relative humidity set-points for the selected summer day (July 

15th) are reported together with the occurring latent load disturbances. Note that, in several cases 

the NICUs disturbances overlap each other. 

With the help of the obtained numerical results, some conclusions can be highlighted, such as: 

i) temperature and humidity set points (control targets) for the enclosed Zones 2-7 are always 

achieved for all the investigated sensible and latent load disturbances; ii) in all the zones (where 

a continuous control of both the temperature and humidity is required) very low regulation errors 

for the indoor air temperature and relative humidity are obtained despite of the oscillation of 

outdoor and Zone 1 climate conditions.  

Since Zone 1 is controlled, for Zones 2-7 (NICUs 1-6) the external temperature always 

oscillates between 20 – 26 °C with a relative humidity between 45% and 55%. Consequently, 
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different from Zone 1, the maximum control actions (sensible heat and vapour flow rate) are 

required during the openings of the NICUs, i.e., window openings do not effect NICUs 

thermohygrometric dynamics. In addition, in the case the indoor temperature of the surrounding 

zone (Zone 1) is controlled at either 20 °C or 26 °C (analogously, the indoor relative humidity is 

controlled at either 45% or 55%) the maximum sensible heats (analogously, vapour flow rate) for 

the included zones do not depend on the day and take a constant value, while when there is free 

floating in Zone 1, the maximum value of the control actions in Zones 2-7 cannot be predicted 

easily. For example, Figure 6.22 shows the case of Copenhagen. Here, it is clear that for this 

weather zone and for almost all winter days, the indoor air temperature and relative humidity for 

Zone 1 are controlled at 20 °C and 45%, respectively. Furthermore, the maximum sensible and 

vapour flow rate peak loads scale on the basis of the NICU as a function of the reference 

temperature set point and the relative humidity set point, respectively (see Table 6.3). In 

addition, free floating of the thermohygrometric variables of Zone 1 occur during the summer 

season.  
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Figure 6.22. Maximum value of the control actions (sensible heat and vapour flow rate) for each day of the 

year in the case of Copenhagen. 

 

Similar considerations can be done also for the Jerusalem weather zone in Figure 6.23. 

Nevertheless, different from Figure 6.22, in this case there is not free floating for the 

thermohygrometric variables of Zone 1 also for hot summer days. Hence, for those days, a 

constant maximum sensible and vapour flow rate peak loads are required for the included zones.  

Table 6.6 and Table 6.7 report the sensible heating and latent heating/cooling demands, 

respectively, computed on the yearly basis for all the investigated thermal zones and weather 

conditions. For NICUs (zones 2-7), the obtained sensible and latent energy demands basically 

depends on the required indoor conditions (see Table 6.3).  
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Figure 6.23. Maximum value of the control actions (sensible heat and vapour flow rate) for each day of the 

year in the case of Jerusalem. 

 

It is interesting to note that such energy demands do not change too much on the basis of the 

weather zone. Again, this is mainly due to the precise control of the indoor air within Zone 1 

whose thermohygrometric state variables are bounded in the design set by means of the adaptive 

control despite the selected weather zone. 

 
NICU 1 

(kWh/m2y) 

NICU 2 

(kWh/m2y) 

NICU 3 

(kWh/m2y) 

NICU 4 

(kWh/m2y) 

NICU 5 

(kWh/m2y) 

NICU 6 

(kWh/m2y) 

Copenhagen 10.8 9.38 7.96 5.91 5.46 4.07 

Denver 9.49 8.07 6.66 4.64 4.19 2.83 

Freiburg 10.37 8.95 7.53 5.49 5.04 3.66 

Milan 10.05 8.63 7.22 5.18 4.74 3.36 

Rome 9.19 7.78 6.37 4.36 3.91 2.55 

Nice 9.18 7.78 6.37 4.35 3.9 2.55 

Naples 9.17 7.76 6.36 4.34 3.89 2.54 

Jerusalem 8.66 7.25 5.85 3.85 3.4 2.05 

Athens 8.82 7.42 6.01 4.01 3.55 2.21 

Table 6.6. Sensible heating demands for the NICUs for the weather zones in Table 5.3. 

6.6 Discussion  

In this chapter we have investigated the capability of the LQ-EMRAC strategy proposed in 

Chapter 4 to control a novel configuration of multi-zone thermal systems, where some zones are 

totally included in others. To this aim the building model embedded in DETECt (see Chapter 2) 

has been extended to take into account this novel scenario. To test the effectiveness of the 

adaptive strategy two case study have been proposed. The first one considers two thermal zones 

of a museum building. Here, a glass display case with a rigid temperature humidity micro-

climate control is enclosed in a large indoor space. In particular the museum hall has been 
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operated via an intermittent regime, while for the glass display case a continuous running mode 

has been adopted. 

Weather 

zone 
Mode 

NICU 1 

(kWh/m2y) 

NICU 2 

(kWh/m2y) 

NICU 3 

(kWh/m2y) 

NICU 4 

(kWh/m2y) 

NICU 5 

(kWh/m2y) 

NICU 6 

(kWh/m2y) 

Copenhagen 
H 57.58 7.88 20.13 32.87 14.47 1.71 

C -0.04 -31.54 -30.49 -55.01 -47.82 -60.79 

Denver 
H 53.65 5.92 17.5 30.23 11.99 1.15 

C -0.24 -33.7 -31.99 -56.49 -49.46 -64.33 

Freiburg 
H 56.48 7.33 19.47 32.2 13.83 1.52 

C -0.05 -32.1 -30.93 -55.45 -48.28 -61.7 

Milan 
H 56.14 7.23 19.4 32.13 13.76 1.43 

C -0.03 -32.32 -31.19 -55.7 -48.53 -61.94 

Rome 
H 54.97 6.7 18.92 31.66 13.29 1.15 

C -0.02 -32.95 -31.87 -56.39 -49.22 -62.82 

Nice 
H 54.66 6.49 18.66 31.4 13.03 1.1 

C -0.01 -33.04 -31.91 -56.43 -49.27 -63.07 

Naples 
H 54.11 6.29 18.47 31.21 12.84 1.09 

C -0.03 -33.41 -32.29 -56.81 -49.65 -63.63 

Jerusalem 
H 53.41 5.89 18.06 30.8 12.44 0.83 

C -0.03 -33.7 -32.57 -57.09 -49.94 -64.07 

Athens 
H 53.42 5.79 17.93 30.67 12.32 0.84 

C -0.01 -33.58 -32.42 -56.94 -49.79 -64.05 

Table 6.7. Latent heating (H) and cooling (C) demands for the NICUs for the weather zones in Table 5.3. 

 

Hence, we have tested the control capability to provide to the inner zone the required 

temperature/humidity micro-climate conditions (for preserving aims) also for not negligible 

change of the thermohygrometric conditions of the surrounding zone. 

The second case study is instead connected to a neonatal intensive care ward. Here, a rigid 

temperature/humidity the micro-climate control is simulated for six enclosed neonatal intensive 

care units for newborn babies. The analysis of the effect of different accidental, heavy and 

intensive thermohygrometric disturbances on the resulting control actions have been then 

considered for both the included zones and the surrounding one, including window openings. In 

this case, the adaptive solution has shown to cope very well with these unexpected change of the 

operative conditions. 

It is interesting to note that for both cases the adaptive controllers had to tackle coupled 

thermal dynamics that were not considered during the design of the control strategy. In so doing 

we have proven also the effectiveness of the adaptive approach to impose the required 

thermohygrometric conditions in the presence of unmodelled dynamics.  
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Chapter 7                                                                  

DESIGN OF REDUCED ORDER MODEL FOR 

BUILDING DYNAMICS 

In this chapter we propose and grey box approach to design high predictive mathematical 

models of the thermohygrometric variables in buildings but with a reduced number of 

differential equations. We point out that reduced models are of a great importance for research in 

the building sector. Indeed by using low order models it is possible to i) reduce drastically the 

computation time to get an insight into building energy performance when BEPS are used, 

especially when a large set of simulations are required to assess them [29] ii) derive 

mathematical models of building dynamics via reverse engineering methods when experimental 

data are available [30] and iii) design advanced model based controllers for ensuring energy 

saving and comfort [17, 28]. In particular, to optimize energy consumption, advanced control 

algorithms, as those belonging to the class of model predictive controllers (which will be 

designed in Chapter 8), need building models for the estimations of the dynamic evolutions of 

the thermohygrometric variables for future time instants. Models used to obtain these predictions 

must be accurate but simple as much as possible in order to keep the complexity of the 

computation of the control strategy acceptable especially for its implementation via cost 

effective microprocessors. An additional reason for developing simple building models is 

provided by the increasing interest to evaluate energy performance at the district scale [31]. In 

this case detailed models cannot be used because the large number of buildings to consider 

rapidly increase the complexity of the entire model making it useless. Hence, the current 

attention is limited to a rough estimation of the total energy consumptions.  

In this thesis, reduced models are developed to devise up-to-date control strategies for 

buildings with the aim to compare their energy performance with those obtained via the adaptive 

strategy proposed in Chapter 4 and used in Chapter 5 and Chapter 6. 

This chapter is divided into two parts. In the first we show in detail the grey box approach 

used to approximate the temperature dynamics of each building element with low order thermal 

networks. The second part is instead completely dedicated to prove the effectiveness of the 

modelling procedure on a set of case study of the interest. The analysis of the numerical results is 
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carried out quantitatively via a set of performance indexes that measures the deviation of the 

reduced model outputs with respect to those provided by a detailed building model both in terms 

of predicated i) indoor air temperature; ii) heating and cooling demands; iii) maximum peak load 

and iv) comfort (mean radiant temperature, PMV and PPD). An additional investigation is 

carried out also to evaluate the simulation time reduction when these simplified models are 

exploited. A statistical analysis is used to represent the trend of these indices in an effective and 

compact way.  

From an implementation viewpoint the proposed framework is composed by a set of routines 

which have been integrated into the DETECt code. Hence, it represents a novel tool of this BEPS 

code that allows to users the automatic generation of low order models which can be exploited, 

for instance, for the cases described above where simple but reliable models are fundamentals. 

 

7.1 Description of the gray box model reduction approach 

According to [157] a grey-box model is one that has a known structure but has unknown 

parameters. The structure of these models derive from the physical or mechanistic knowledge of 

the underlying phenomenon that they have to reproduce including the delineation of subsystems 

and their interconnections. The challenge when deriving grey–box model is twofold i) develop 

meaningful reduced-order models that reflect the system behavior, while being better suited to 

identification, simulation and control design than a more complicated detailed but cumbersome 

model; ii) identify the unknown parameters. 

In the case of buildings, it is required that reduced order models predict with a small deviation 

not only energy demand but also comfort of the occupants so that they can effectively substitute 

more complex models for some applications, e.g., design of control algorithms [17, 28] where 

the precise knowledge of the spatial gradients through the building elements are not required. As 

the comfort indexes PMV and PPD depend not only on indoor air temperature but also on the 

temperature of the elements of the building that face to the indoor zone of interest (through the 

mean radiant temperature), these temperatures become the key thermodynamical variables to 

match in order to obtain reliable low order systems. Consequently, the idea is to substitute each 

building element in Figure 2.1 with a simplified one so that Ti,N, i.e., the temperature of the layer 

of the i-th element connected to the indoor air temperature node, is well reproduced. The 

complete reduced building model is then obtained by connecting the simplified element models 

in accordance with their original interconnection.  
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Figure 7.1. Schematization of the working principle of the building model reduction procedure. 

 

In so doing the problem of model reduction of the entire thermal zone is recast as the model 

reduction of its M elements. Each of this M problem is expected to be easier to solve. We point 

out that, each building element is assumed to be described by a low order thermal network whose 

parameters are tuned by minimizing a cost function that measures the mismatch of the network 

output with respect to the behavior of the corresponding building element. 

Figure 7.1 shows a schematization of the required steps to generate a reduced model of a 

thermal zone of interest from its detailed description. Those steps are outlined as follows. 

1) Identify the number of elements of the thermal zone which effect the indoor air 

temperature and comfort indexes and how they are interconnected. 

2) For each of them choose a low order thermal network and select as output variable 

the temperature of the node that faces to the indoor zone of interest. 

3) Select a cost function that measures, for each set of the network parameters, the 

deviation of the output of the reduced element model with respect to the detailed 

one and use the complete model to generate data required for the computation of 

this cost function (i.e., Identification Data set in Figure 7.1). 

4) Choose for the network parameters those that minimize the cost function defined 

at Step 3. 

5) Connect the simplified models in accordance with the interconnection scheme in 

Step 1. 

To implement the above procedure there is the need to specify the topology of the thermal 

network in Step 2 and the cost faction in Step 3. Indeed different choices in these steps lead to 
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different reduced models which can perform differently for example in terms of simulation time, 

energy demand, and comfort predictions, just to name a few. In the following subsections we 

describe in detailed all the design choices that have been considered in this thesis for 

constructing reduced models in accordance to the scheme in Figure 7.1 and the procedure 

sketched above.  

7.1.1 Low order thermal networks  

In what follows we consider two low order thermal network topologies to be used in Step 2. 

Precisely, we model each building element either as a first order or a second order network 

which are shown in Figure 7.2a and Figure 7.2b, respectively. 
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(a) (b) 

Figure 7.2. Low order thermal network used for the building model reduction: (a) first order model and  

(b) second order model. 

 

According to Figure 7.2, each network has three inputs, i.e., an external temperature u1, the 

indoor air temperature u2 and a possible solar radiation u3. Notice that, on the basis of the 

building element, the first input can represent either the outdoor temperature, in the case of 

walls, roof and windows, or the ground temperature when considering the floor element. In the 

latter case, in accordance with the hypothesis done in Chapter 2, I, i.e., u3, models the solar 

radiation effectively transmitted through windows to the floor, therefore the source current 

generator for the second order network (see also Figure 7.2b) is connected to the second node, 

between R2 and R3.  

By applying the Kirchhoff’s laws to the networks in Figure 7.2 and defining  1 2 3

T
u u u u  

the stack of the inputs, the first order system in Figure 7.2a is described by the following Linear 

Time Invariant (LTI) system 

 1 2 1 2

1 1 1 1 1 1
,

,

x x u
C R R CR CR C

y x

   
      

   



 (7.1) 
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with x being the temperature of the only node. 

On the other hand, in the case of second order model in Figure 7.2b, by defining  1 2

T
x x x  the 

stack of the temperature of the capacitive nodes, the second order network dynamics are  

 

 

1 1 2 1 2 1 1 1

2 32 2 2 2 3

1 1 1 1 1 1
0

,
11 1 1 1 0 0

0 1 .

C R R C R C R C
x x u

C RC R C R R

y x

    
     

              
     



 
(7.2) 

From Figure 7.2 it is clear that in the case of a first order thermal network the vector 

parameter of model (7.1) is  1 2p R R C , while for the second order network in (7.2) this 

vector parameter is  1 2 3 1 2p R R R C C . 

Notice that different from the approach presented in [158, 159] we use as output of the 

simplified networks the temperature of the node that face to the indoor zone of interest instead of 

the heat flows at both sides of each the building element. In so doing, if these output variables 

predict well the corresponding temperatures of the detailed model in Chapter 2, also the mean 

radiant temperature, and as consequence PMV and PPD, are well predicted.  

7.1.2 Cost Functions  

As in [160], also in this work we use two different cost functions to measure the distance 

between the output of the reduced models of the building elements and the corresponding 

outputs of the detailed model in Chapter 2. Precisely, the first cost index is set in the frequency 

domain. Hence, the idea is to tune the model parameters so that the frequency response of the 

low order thermal networks in Figure 7.2 match those of the detailed model. Consequently, the 

identification data set, required for Step 3 in the procedure above, is composed by the frequency 

response of the building element of the interest for each input of the network. These functions 

can be computed via the detailed model in Chapter 2 in a preassigned range of frequencies.  

The frequency response of models in (7.1) and (7.2) can be instead computed analytically 

starting from the system response in the Laplace domain [161, 162]. Precisely, for models in 

(7.1) and (7.2) the output in the Laplace domain ( )Y s  is computed as 

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )Y s G s U s G s U s G s U s   , where ( )iU s , for i = 1,2,3, is the Laplace transform, 

at the complex frequency s , of the i-th input, while ( )iG s , is the transfer function between 

the i-th input and the output. Then, the frequency response to the i-th input at the frequency ω is 
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arg( ( ))
( ) ( ) ij G j

i iG j G j e
  , for i = 1,2,3, where j is the imaginary unit, and ( )iG j  and 

arg( ( ))iG j  are the modulus and argument of the complex number ( )iG j , respectively. 

In the case of the first order model in (7.1) the transfer functions, ( )iG s , for i = 1,2,3, are  
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 (7.3) 

while for the second order network in Figure 7.2b we have 
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 (7.4) 

The mismatch between the frequency response of the reduced model (7.3) or (7.4) with the 

complete model is computed by the following cost index, which is a function only of the network 

parameters 

 

3

1 1
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J p m
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  (7.5) 

where arg( ( ))
( ) ( ) i kj G j

i ik kG j G j e
   is the actual frequency response of the building element of 

interest with respect to the i-th input, i = 1,2,3, computed at the frequency ωk, k =1,2,…z, while 

mi and θi are positive constants that weight the relative difference between the building 

frequency response to i-th input with respect to that of its reduced model when the vector 

network parameters is p.  

Notice that the set of frequencies ω1,< ω2<ω3<….< ωz to evaluate (7.5) must be chosen so 

that they cover the frequency spectrum of the input signals (e.g., solar radiation, outdoor 

temperature, ground temperature etc.) which are relevant for the building element. As rule-of-

thumb we can choose max{5 ,2 }z T N   , where N  is the Nyquist frequency of the input 
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signal and T  is the cutoff frequency of the building element of interest. In addition we point out 

that this approach does not depend from the actual time history of the input signals (or 

equivalently, on the weather zone where the building is located), but only from the frequency 

response of the thermal zone to be modelled. 

An alternative approach to measure the output deviation of models (7.1) and (7.2) from the 

actual dynamics of the corresponding building element is that of using the following cost index 

defined in the time domain 

  
21

( ) ( ) ( ; )
( )

tJ p y t y t p dt
m 

 
   (7.6) 

where ( ; )y t p  is either the output of the model (7.1) or (7.2) with parameter p at the time t , 

where   is the time range of interest for the identification procedure with ( )m   being its 

length, while ( )y t  is the output of the building element to be reduced, i.e., the temperature of the 

node which faces to the indoor zone of the building element, computed by means of detailed 

building model in Chapter 2. 

Notice that the identification data set for computing the index (7.6) is ( )y t  with t . This 

function can be calculated from the time history of the inputs, e.g., solar radiation, outdoor 

temperature etc by integrating numerically either (7.1) or (7.2). Consequently, the Jt-index 

depends on the weather zone where the building is located. In addition these time histories must 

be also used to compute the output ( ; )y t p of the thermal networks in Figure 7.2.  

When the cost index is selected, the parameter vector of the low order model is set as follows: 

 arg min ( )opt
p

p J p


  (7.7) 

with J being either Jf  in (7.5) or Jt in (7.6) and   is the admissible parameter set. 

It is interesting to note that parameters of systems with structure (7.3) or (7.4) can be 

identified, after some additional manipulation, by using a black box time domain approach, e.g., 

least square methods [163]. Nevertheless when these approaches are used it is not easy to impose 

physical constraints on the admissible parameter set (i.e.,   in (7.7)), and only combinations of 

physical parameters can be identified, i.e., the coefficients of polynomials in (7.3) and (7.4). 

Consequently, it is not possible in general to tune models with structures (7.1) and (7.2), whose 

state variables have a physical meaning, but only input-output models whose depend on the 

output variable  y and its derivatives.  

Finally, we remark that neither the minimization of the cost in (7.5) nor that in (7.6) can be 

solved analytical. Hence, numerical methods must be used. In this thesis the seeking of the 
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minima for both (7.5) and (7.6) is done by exploiting interior point algorithms which are 

available in the MatLab Optimization Toolbox [95] (the reader is referred to [164] for additional 

details on iterative and interior point optimization algorithms). In addition, as iterative 

optimization algorithms can stuck in local minima, also advanced genetic optimization methods 

have been used for the minimization of the cost index (7.5). Precisely the genetic algorithm used 

is that presented in [165] (the reader is referred to [166] for an introduction to the genetic 

algorithm and their application in engineering). We point out that genetic algorithms have not 

been used for the minimization of the cost function (7.6). The main reason for not seeking for 

global minima via genetic algorithms in the case of the optimization in the time domain is that 

the evaluation of Jt in (7.6) is more complex and time-consuming than the computation of Jf  in 

(7.5). Indeed, for computing (7.6) it is required to solve a set of ODEs (7.1) or (7.2) which is 

more complex, from a numerical viewpoint, than the evaluation of the static function (7.5). As 

genetic optimization procedures often require a large number of evaluations of the cost function 

to find the global minima, we have decided to apply them only for the easy-to-compute cost 

indexes as those required for the model reduction in the frequency domain.  

7.2 Add-on for the automatic building model reduction and simulation 

The method for generating low order models of buildings described in Section 7.1 has been 

implemented in MatLab/Simulink language as a novel Add-on integrated in DETECt. The tool 

not only allows to generate reduced order DETECt models of buildings but also to simulate them 

and, if required, compare the simulation results with those provided by the detailed model 

described in Chapter 2 

The main modules composing the software are shown in Figure 7.3. Briefly, for each building 

element composing the detail model, the user can select how to approximate its dynamics in 

accordance to the decision tree in Figure 7.4, i.e., the complexity of the element model η (fist or 

second order thermal network), the cost index between (7.5) and (7.6) to be minimized and the 

numerical method to find its minimum. 

The software module “Model Splitting” decomposes the building model provided by DETECt 

in M sub-models, one for each building element, with M being the number of constructive 

elements delimiting the thermal zone of interest. Now, in the case the user selects the time 

domain cost function (7.6), these dynamical sub-models are integrated over the time range Ω 

(required as input) to compute the M functions ( )y t  in (7.6). Instead, when the frequency domain 

identification method is selected, the “Model Splitting” routine computes for each constructive 
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element the frequency response with respect to each input and over the frequencies required by 

the user, .i.e.,  i kG j , i  = 1,2,3, and k = 1,2,…z.  
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Figure 7.3. Module decomposition of the automatic building model reduction. 
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Figure 7.4.  Decision tree of all the possible choices for the model reduction of each building element. 

 

The modules “Frequency Domain Identification” and “Time Domain Identification” include 

the code and call to other MatLab functions and Simulink schemes to set and solve the 

optimization problem in (7.7) when the frequency domain or the time domain approach is used, 

respectively, and the parameter vector is constrained in the set  . In particular in the case of the 

Frequency Domain Identification” module the transfer functions in (7.3) or (7.4) are computed 

for the evaluation of (7.5) as required by the underlying numerical optimization procedures 

(iterative algorithms of the MatLab Optimization Toolbox [95], indicated as IA in Figure 7.3, or 

the Genetic Algorithm presented in [165], indicated as GA in Figure 7.3) taking also into account 

the value of the input parameters η, and the weights ( , )i im  , i = 1,2,3. Similarly, for the “Time 

Domain Identification” module, a Simulink scheme is used to integrate either (7.1) or (7.2) over 
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the time range Ω, on the basis of the input parameter η, to generate ( ; )y t p  for the evaluation of 

(7.6) as required by the underlying numerical optimization procedures.  

The optimal parameters of the reduced model of each building element are then stored into an 

archive for future use together additional information (“Ident. Info” in Figure 7.3) that include: 

 the number of interaction required by the optimization procedure to converge (in the case 

of iterative optimization numerical algorithm); 

 the time required by the optimization procedure to converge (in the case of iterative 

optimization numerical algorithm); 

 the position of the eigenvalues of the reduced and detailed building element; 

 The cost value for the first and last interaction, i.e., the initial cost and the optimal cost, 

respectively. 

There are basically two software modules that can access to the archive in Figure 7.3. The 

fundamental one is the module “Low Order Building Model Generation” which accesses to the 

archive to collect, for each building element, the optimal parameters of a pre-simplified 

constructive element. When the parameters of all elements have been collected, the module 

constructs for each of them either the mathematical model (7.1) or (7.2) and assembles the 

resulting systems by connecting them as in the detailed DETECt model, generating in turns the 

low-order complete model of the entire building. We point out that, the user can select for the 

reconstruction process the model order (η-parameter in Figure 7.3) for each building element as 

well as if the parameters to be used must be those derived by the time domain optimization or the 

frequency domain optimization (“t-or-ω”-parameter in Figure 7.3). In so doing model of mixed 

order can be generated.  

Often reduced order building models are used to design advanced controllers to tame 

optimally the building dynamics. Nevertheless, on the user demands, the low-order building 

model can be exploited by the “Simulation” module. This module is mainly developed in 

Simulink and it used to solve the set of differential equations composing the complete low order 

building model to perform, for instance, energy and comfort analysis. To this aim the user must 

specify also the time range where the set of ODEs must be solved, the time histories of all 

building inputs (e.g., outdoor temperature, solar radiation, etc) as well as control specifications 

(indoor temperatures set points, time of control activation and deactivation, possible setback 

temperatures etc.). It is important to point out that, for temperature control, the “Simulation” 

module uses the control architecture presented in Chapter 3 embedding the optimal model 

reference adaptive controller presented in Chapter 4. In so doing a precise control of the 
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temperature profile can be achieved without a preliminary study of the dynamics of the reduced 

building system. 

The additional module that can use the data in the archive in Figure 7.3 is the “Performance 

Index”. This module uses the stored data to perform analysis, via a set of performance indexes 

both on the identification and simulation results. These indexes will be introduced in the 

following subsections. 

Finally, we point out that users can combine easily the identification modules on the basis of 

their needs and required precision. For example, frequency domain and time domain 

identification methods can be merged as shown by the algorithm in Figure 7.5. 
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Figure 7.5. Possible combination of the proposed identification methods for each building element. 

 

In this case, the user decides to use at first the identification in the frequency domain and 

solve the minimization of the cost function (7.5) initially by means of iterative optimization 

algorithms. In the case the resulting optimal cost is not satisfactory (this is if Jf ≥ εf1 with εf1 some 

positive constant), e.g., the iterative algorithm was stuck in a local minima, the same 

optimization can be performed via genetic algorithms. If also this result is not acceptable, e.g., Jf 

≥ εf2 with εf2 some positive constant, then the user can choose to use also weather data to improve 

the matching between the reduced model and the detailed one by optimizing the cost function in 

the time domain (7.6). Of course in the later case the identification result will strongly depend on 

the weather zone, i.e., building location.  

7.2.1 Performance indices for evaluating low order building models 

When the low order building model has been found the tool allows to compare its dynamics 

and performance with those of the detailed model, A set of indexes have been implemented to 
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evaluate quantitatively the results of the add-on in Figure 7.3. These indexes can be dived in two 

sets. By defining Θ the time interval of interest, e.g., day, week, year. The first set of 

performance indexes measure the mismatch between the low order model and the detailed one in 

term of energy prediction and indoor air temperature. In particular we measure the indoor air 

temperature prediction capability as 

 ( ) ( ) ,d l
in in

t
Max T max T t T t


    (7.8) 

with d
inT  and l

inT being the indoor air temperature of the detailed model and that of the low order 

model, respectively. 

In addition we evaluate the mismatch in predicting energy demands as 

 

100 ,
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(7.9) 

where dE  and lE are the heating/cooling demands computed on the time range Θ by using the 

detailed and reduced model, respectively, while sd
HCQ  and sl

HCQ  are the sensible heats computed 

by feedback controllers, designed as in Chapter 4, for the detailed and reduced model, 

respectively. Consequently, ΔP gives a measure of the deviation between the low order building 

model and the detailed one in terms of the peak sensible loads. 

The second set of performance indexes is used instead to evaluate the accuracy of comfort 

predictions. Hence, by denoting as d
rT , dPMV  and dPPD  the mean radiant temperature, the 

predicted mean vote and the predicted percentage dissatisfied, respectively, for the detailed 

model, and l
rT , lPMV  and lPPD , the same quantities but computed for the low order building 

system, we define 
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 (7.10) 

Finally, the benefit of the use of low order model in terms of simulation time reduction is 

measured as 
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d l

d

 




   (7.11) 

Where d  ( l ) is the time required to perform a simulation of one year in the case the detailed 

(reduced order) model is exploited. 

7.3 Numerical validation of the building model reduction procedure 

To test the effectiveness of the reduced modelling approach in Section 7.1, we consider the 54 

case studies presented in Chapter 5. For each of them we have designed the grey box models in 

Table 7.1. Notice that, for the model Gm we have chosen to use a first order system for 

modelling window, roof and north wall as for these building elements acceptable frequency 

responses can be obtained also with the simplest thermal network (see Figure 7.2a). 

Model Name Description Color 

G8 

Grey model where all the building elements are described as first order 

networks (see Figure 7.2a) tuned in the frequency domain, i.e., 

minimizing (7.5). The complete model is composed by a set of 8 

ODEs. 

Dark Blue 

G15 

Grey model where all the building elements are described as second 

order networks (see Figure 7.2b) tuned in the frequency domain, i.e., 

minimizing (7.5). The complete model is composed by a set of 15 

ODEs. 

Red 

Gm 

Grey model where some building elements, i.e., window, roof and 

north wall, are described as fist order networks (see Figure 7.2a) while 

the remaining elements are second order networks (see Figure 7.2b). 

For all elements, the tuning is carried out in the frequency domain, i.e., 

minimizing (7.5). This mixed order model is composed by a set of 12 

ODEs. 

Orange 

Gt 

Grey model where all the building elements are described as second 

order networks (see Figure 7.2b) tuned in the time domain, i.e., 

minimizing (7.6). The complete model is composed by a set of 15 

ODEs. 

Black 

Table 7.1. Grey box models and colors associated to each of them for the figures in the following sections. 

 

To better point out the effectiveness of low order grey box models, in what follows we 

compare the performance of these reduced systems in terms of temperatures, energy and comfort 

predictions with those provided by reduced order white box models. These white box systems 

have been derived from the detailed one in Chapter 2 by using two or three capacitive nodes for 

each building element. A summary of these additional building dynamical systems is given in 

Table 7.2. Notice that W2 is a white box model composed by two equations, one for the 

envelope and one for the indoor air temperature, similar to that used in [103]. Furthermore the 

detailed model is composed by and ODE of 71 equations. 
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Model Name Description Color 

W22 
Building model tuned by means of physical parameters and composed 

by a set of 22 ODEs. 
Green 

W15 
Building model tuned by means of physical parameters and composed 

by a set of 15 ODEs. 
Light Blue 

W2 
Building model tuned by means of physical parameters and composed 

by a set of 2 ODEs see also [103].  
Magenta 

Table 7.2. White box models and colors associated to each of them for the figures in the following sections. 

 

We remark that also for each white model in Table 7.2 we have considered the 54 case studies 

in Chapter 5. Hence, in the following subsections we consider 432 numerical simulations on a 

yearly basis. Consequently, to compare this large set of data concisely and effectively, statistical 

analysis are performed. The mathematical expression of the resulting Probability Density 

Functions (PDF) of interest have been collected in Appendix B, where for each of them we point 

out its parameter vector. The values of these parameter vectors are reported in tables in the 

following sections. Concerning all the figures shown in the next subsections, the meaning of the 

different color lines is that summarized in Table 7.1 and Table 7.2 when not indicated explicitly 

in the figure caption. 

7.3.1 Grey box identification results 

The parameters of models G8, G15 and Gm in Table 7.1 have been identified in the frequency 

domain. For constructing the cost function in (7.5), we have chosen frequencies belonging to the 

range ω ∈ [0, 10-3] rad/s which contains the relevant part of the frequency spectrum of the 

external inputs, i.e., outdoor temperature and solar radiations, of the weather zones taken into 

account in Chapter 5. This is also confirmed by Figure 7.6 which shows the Fast Fourier 

Transform of the solar radiations. A similar range of frequencies have been found suitable also 

for the spectrums of external temperatures, but they are not reported here for the sake of brevity. 

Some statistical results about the frequency domain identification are reported in Table 7.3. 

Index Mean Variance Maximum PDF  PDF Parameters 

Jopt - 1° order  model 281.86 1.68⋅105 1500 Rayleigh 349.04   

Jopt - 2° order model 2.85 16.67 15.1 Rayleigh 3.5   

Δλ1-1° order  model -13.77 346.32 65 Normal -13.77 18.56  

Δλ1-2° order  model -1.04 16.38 11.1 t-location Scale -0.46 1.16 2.19 

Δλ2-2° order  model 24.14 560.35 95.15 Gen.Extreme Value 1.07 8.74 6.12 

Table 7.3. Statistical analysis of the identification result in the frequency domain. 

 

We remark that the random variables that model the numerical data for any generic index in 

Table 7.3, as well as their parameters, are the result of another optimization problem based on 

the outcome of the identification and it is solved in Matlab via the routines in [167].  
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Figure 7.6. Fast Fourier Transform of the solar radiations for the weather zone of interest, North wall (red), 

South wall (blue), West wall (magenta), Est wall (cyan), roof (black): (a) Copenhagen; (b) Denver,  

 (c) Freiburg; (d) Milan; (e) Rome; (f) Nice; (g) Naples; (h) Jerusalem (i) Athens.  

 

In addition to the Probability Density Function (PDF) for the optimal cost Jopt, (i.e., the results 

of the minimization of (7.5) for each element of each model G8, Gm and G15) we have also 

computed the PDF of the percentage variation of the eigenvalues of the reduced thermal 

networks with respect those of the corresponding detailed building elements. To define formally 

this measure, assume to sort the eigenvalues of a given LTI system in a descending order. Hence, 

for each low-order model we compute  

 100 ,
d l
i i

i d
i

 





    (7.12) 
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with i = 1, for first order networks, or i=1,2 for second order networks, while d
i  and l

i  are the 

i-th eigenvalues of the detailed and low order model, respectively.  

As clearly shown in Table 7.3 and Figure 7.7, the optimal costs of first order thermal models are 

much larger than those of second low order systems. This is mainly due to the impossibility of 

first order models to match the frequency response of detailed building elements at high 

frequencies.  

 

Figure 7.7. Optimal cost probability distribution for (a) first order thermal networks and (b) second order 

thermal networks  

 

The limitation of first order thermal networks in reproducing the frequency response with 

high precision at high frequencies is apparent in Figure 7.8 and Figure 7.9 where some Bode 

diagrams are shown. Nevertheless for these frequencies the modulus of the frequency responses 

are lower compared to their gains (i.e., Gi(j0)). In addition, also the magnitude of the spectrum of 

the external inputs are negligible for these high frequencies when compared to the magnitude of 

the harmonic components at low frequencies (see Figure 7.6). Hence, we expect a marginal or 

still acceptable error when predicting building performance with simplified building models 

embedding first order thermal networks, i.e., G8 and Gm in Table 7.1.  

From Figure 7.8 and Figure 7.9 we can also observe, in agreement with the technical literature 

about building model reduction, that: i) the loss of matching for first order system is more severe 

for heavy buildings with respect to light buildings and ii) second order thermal network improve 

a lot the matching of the frequency response at high frequencies. These remarks are general and 

can be done also for other building elements reduced via a frequency domain approach, but 

results are here omitted for the sake of brevity. 
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Figure 7.8. Floor temperature frequency response with respect to outdoor temperature ((a) and (d)), indoor 

air temperature ((b) and (e)), and solar radiation through window ((c) and (f)) for a light weight house, when 

first order ((a), (b), and (c)) and second order ((d), (e), and (f)) thermal networks are used. Detailed model 

(dashed red line) and low-order model (solid blue line). 
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Figure 7.9. North wall temperature frequency response with respect to outdoor temperature ((a) and (d)), 

indoor air temperature ((b) and (e)), and solar radiation ((c) and (f)) for heavy weigh office, when first order 

((a), (b), and (c)) and second order ((d), (e), and (f)) thermal networks are used. Detailed model (dashed red 

line) and low-order model (solid blue line). 
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We move now to study the position of the eigenvalues of low order building elements. As 

clearly indicated in Table 7.3 and Figure 7.10, there can be also a consistent variation among the 

eigenvalues of the low order networks and the dominant poles of the corresponding building 

element of the detailed model. Precisely, this variation is up to about 65% (in absolute value) in 

the case of first order networks. Instead, in the case of second order thermal networks, the first 

eigenvalue differs from the dominant pole of the corresponding building element of the detailed 

model up to about 11%, but the difference between the its second eigenvalue and that of the 

detailed model can be also of about 95%. 
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Figure 7.10. PDF of the percentage variation of the eigenvalues of the low order thermal networks with 

respect to the dominant poles of the corresponding detailed building element models (i.e., Δλ index in (7.12)); 

(a) Δλ1 for first order networks; (b) Δλ1 for second order networks and (c) Δλ2 for second order networks. 

 

Consequently, we can conclude that, if model reduction of building elements is carried out by 

using the dominant poles of a detailed building model, the resulting low order systems can be 

quite different from the optimal ones which have been identified with the procedure proposed in 

Section 7.1, therefore they might be not effective. In addition, when this approach is used with 

second order transfer functions, the resulting dynamics cannot be expressed by using the 

physical structure in (7.2). 

Before moving to consider the result provided by the time domain identification approach, we 

note that in the case of the frequency domain method, often the minimization of the function 

(7.5) has been performed via iterative algorithms. Nevertheless, genetic algorithms have been 

used in those cases where the iterative methods failed. Figure 7.11 shows the evolution of the 

cost function with respect to the evolving of the generations required by the method in [165]. 

Here it is clear the effectiveness of these methods in reducing the cost function at each new 

generation.  

To tune the parameters of the building elements for Gt models (see Table 7.1 for their 

definition), the minimization of (7.6) in the time domain has been carried out via iterative 
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methods. As initial guess for the optimization algorithm, say p0, we have chosen the optimal 

parameters previously found from the identification in the frequency domain. 

Figure 7.11. Cost evolution when genetic algorithms are used to search for the minimum of the cost 

function (7.5) in the case: (a) a first order model for the south wall of a heavy house and (b) a second order 

model for the roof of a heavy office 

 

In so doing, we expect to improve further the performance of the model G15 (see Table 7.1 

for its definition) by taking into account also weather data of each weather zone of interest in 

Table 5.3. As a preliminary quantitative measure of the enhancements provided by this approach, 

we define the following index which measures the cost reduction from the frequency based 

identification to time based identification  

 
0( ) ( )

100 ,
( )

t t opt

t
t opt

J p J p
J

J p


    (7.13) 

where popt are the optimal parameters resulting from the minimization of (7.6).  

For defining an additional index to evaluate the result of time based identification, consider 

the following quantity 

 ( ) max ( ) ( ; ) ,
t

p y t y t p


     (7.14) 

where ( )y t , ( ; )y t p  and Ω are those introduced in Section 7.1.2.  

From a practical viewpoint, ( )p  is the maximum error over the time range Ω between the 

building element temperature provided by the detailed model, i.e., ( )y t , and that of the low order 

reduced thermal network when its parameters are p, i.e., ( ; )y t p . Consequently, to evaluate the 

improvement in predicting the evolution of the element temperature when shifting from 

frequency identification to time based identification we use the following performance index 
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Notice that the time range Ω required for computing Jt in (7.6) has been chosen as set of days 

in winter and summer seasons. Furthermore, the building element generating ( )y t  is assumed to 

evolve in free evolution, i.e., no additional sensible heat is provided to control the indoor air 

temperature. 

The performance indexes computed over the 54x7=378 cases have been analyzed from a 

statistical viewpoint and results are concisely reported in Table 7.4 and shown in Figure 7.12.  

Index Mean Variance Maximum PDF  PDF Parameters 

tJ  66.35 288.31 117.29 t-Location Scale 72.61 6.16 1.42 

T  61.23 310.96 114.13 t-Location Scale 66.94 7.13 1.68 

Table 7.4. Statistical analysis of the identification result in the time domain. 

Figure 7.12. Statistical analysis of the Identification result based in the time domain, (a) PDF of the 

tJ index and (b) PDF of the T index 

 

As clearly shown in Table 7.4 and Figure 7.12 time domain identification improves the 

temperature prediction of low order networks in Figure 7.2 with respect to the frequency based 

identification. Indeed, when shifting to the time domain approach there is on the average a cost 

reduction of about 65% and an improvement of temperature prediction of 60%.  

Figure 7.13 and Figure 7.14 clearly show, for two exemplar cases, how temperature 

predictions improve when considering thermal networks tuned in the time domain setting with 

respect to the same networks whose parameters are identified by using the frequency domain 

approach. In these figures the area shaded in grey represents the identification data set, i.e., the 

temperatures, both of the detailed and low order building element models, used during the 

minimization of the cost function (7.6) over the time range Ω. As it is apparent, temperature 

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

Cost Variation (%) before and after Time Identification

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 F

u
n

c
ti
o

n

 
0 50 100 150

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 Temperature (%) before and after Time Identification

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 F

u
n
c
ti
o
n

 

(a) (b) 



Chapter 7: Design of reduced order model for building dynamics  

147 

 

predictions improve not only over Ω but also outside (validation data set) and the residual error 

provided by networks tuned via the minimization of (7.6) by means of an iterative searching 

method with initial guess (initial point) set to the solution of the minimization of the cost 

function in (7.5) is always below 1°C. 

Nevertheless, it is interesting to note that complete envelope models embedding building 

elements identified in time domain, i.e. models Gt in Table 7.1, have almost the same 

performance of G15 when control algorithms are used to impose some given indoor air 

temperature profile (see also Sections 7.3.2-7.3.4 and Appendix B for a detailed analysis).  

 

Figure 7.13. Time based identification results for the sought wall in the case of a light mall building in Denver 

(a) temperature profiles of the: detailed building model, i.e. ( )y t , (back line); second order model with 

parameters tuned on the basis of the frequency domain identification process, i.e.,
0( ; )y t p , (blue line); second 

order model with parameters tuned on the basis of the time domain identification process, ( ; )opty t p , (red 

line); identification dataset (gray shaded area), (b) prediction errors: 0( ) ( ; )y t y t p  (blue line) and 

( ) ( ; )opty t y t p  (red line). 

 

We finally show some additional results connected to the computational effort to tune low 

order networks by means of both frequency and time based identification, or equivalently the 

computation effort required to minimize either the cost function in (7.5) or that in (7.6). 

Precisely, Table 7.5 and Figure 7.15 show some statistical data about the number of interactions 

of the iterative optimization algorithm and time required to perform the tuning of a given 

building element. Notice that, we indicate as Nij (τij), the number of iteration (time required) to 

identify the parameters of a low order thermal network in Figure 7.2 of order {1,2}i  and by 

using the method { , }j f t , with f and t denoting the frequency based and time based 

identification approach, respectively. 
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Figure 7.14. Time based identification results for the roof in the case of a heavy office building located in 

Milan (a) temperature profiles of the: detailed building model, i.e. ( )y t , (back line); second order model with 

parameters tuned on the basis of the frequency domain identification process, i.e.,
0( ; )y t p , (blue line); second 

order model with parameters tuned on the basis of the time domain identification process, ( ; )opty t p , (red 

line); identification dataset (grey shaded area), (b) prediction errors: 0( ) ( ; )y t y t p  (blue line) and 

( ) ( ; )opty t y t p  (red line). 

 

Index Mean Variance Maximum PDF  PDF Parameters 

N1f  -1° order freq. based 216 3.85⋅103 402 Inverse Gaussian 216.29 2.9⋅103  

N2f - 2° order freq. based 483 3.50⋅104 1044 Gen. Extreme Value 0.6 110.2 270.53 

N2t- 2° order time based 336 3.26⋅104 878 Gen. Extreme Value 0.12 101.49 260 

τ1f  -1° order freq. based (s) 0.84 0.06 1.6 Inverse Gaussian 0.83 11.05  

τ2f - 2° order freq. based (s) 2.32 8.46 11 Gen. Extreme Value 0.56 0.56 1.30 

τ2t- 2° order time based (s) 684.4 1.72⋅105 1986 Gen. Extreme Value 0.2 228.28 498.49 

Table 7.5. Statistical analysis of the identification result in terms of computational effort. 
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Figure 7.15. (a) PDFs of the number of iteration for identifying a building element: N1f (back line), N2f (blue 

line), N2t (red line); (b) PDFs of the required time for identifying a building element: τ1t (back line), τ2f (blue 

line) (c) PDFs of the required time for identifying a building element of a second order with the time based 

identification approach, i.e., τ2t. 
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thermal network or the approach used to tune them. Indeed, they have the same order of 

magnitude both for mean and variance (see Figure 7.15a and the first three rows of Table 7.5). 

On the other hand, the time required to tune the parameters for a second order thermal network 

via a time domain approach is much larger than that needed to tune the same network but using a 

frequency domain formulation. This increase of the identification time was expected. Indeed the 

evaluation of the cost function in the time domain, i.e., Jt in (7.6), requires to solve a set of 

differential equations that is much more complicated, from a numerical viewpoint, than 

evaluating the static function Jf  in (7.5) which defines the cost index in the frequency domain 

identification setting. Consequently, even though the time based approach allows to obtain better 

predictions of the building elements temperatures (see Table 7.4 and Figure 7.12), the simulation 

time reduction expected when using low order building models identified with the time domain 

approach, e.g. the Gt model is Table 7.1, is jeopardized by the additional time required for the 

tuning of their low order thermal networks. 

7.3.2 Indoor air temperature and energy predictions 

In Section 7.3.1 we have analyzed the identification results both in the frequency and time 

domain. In this section and the next one we test the performance obtained when the low order 

building element models previously discussed are assembled together generating the simplified, 

but complete, building systems defined in Table 7.1. Furthermore we compare these performance 

with the white reduced models introduced in Table 7.2. Here we just recall that the low order 

grey models are: G8 (composed by 8 differential equations), Gm (composed by 12 differential 

equations), G15 and Gt (both composed by 15 differential equations); while the reduce order 

white box models are: W2 (composed by 2 differential equations), W15 (composed by 15 

differential equations) and W22 (composed by 22 differential equations). Furthermore, the 

detailed model, with respect to which the performance indexes are computed, is instead 

composed by 71 differential equations (see Chapter 2).  

In order to show the effectiveness of the proposed model reduction approach, the performance 

indexes defined in Section 7.2.1 have been computed for each model structure by taking into 

account several buildings, with different geometry and construction materials, located in 

different weather zones. The selected 54 case studies are those presented in detail in Section 5.3.  

In this section we discuss the performance indexes defined in (7.8) and (7.9), while in the next 

section the indexes in (7.10) and (7.11) are analyzed for the same cases. For the indexes form 

(7.8) to (7.10) we have set as time range Θ = 1 week. In so doing for each simulation we obtain 
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52 samples of every index and consequently 52×54 = 2808 samples for each pair (simplified 

building model, performance index) which is a satisfactory number for carrying out statistical 

investigations.  

We first consider the performance index MaxΔT in (7.8) computed both for winter and 

summers weeks. Hence, we first investigate the ability to predict the indoor air temperature in 

free evolution by exploiting the grey box building models.  

The effectiveness of the gray box modelling to predict precisely this temperature is shown 

both in Table 7.6 and graphically in Figure 7.16.  

 

Maximum Variation of indoor temperature in free evolution during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 5.88 7.34 14.10 Gamma 4.46 1.32 

W15 0.71 0.09 1.61 Nakagami 1.56 0.58 

W22 0.33 0.05 1.00 Weibull 0.36 1.44 

G8 0.46 0.10 1.40 Inverse Gaussian 0.46 0.80 

Gm 0.37 0.04 0.97 Inverse Gaussian 0.37 0.96 

G15 0.12 0.01 0.42 Lognormal -2.51 0.82 

Gt 0.10 0.01 0.40 Inverse Gaussian 0.10 0.11 

Maximum Variation of indoor temperature in free evolution during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 6.73 15.91 18.69 Rayleigh 5.53  

W15 0.71 0.2 2.05 Gamma 2.84 0.25 

W22 0.34 0.05 1.01 Nakagami 0.71 0.16 

G8 0.39 0.04 0.99 Rayleigh 0.31  

Gm 0.25 0.02 0.67 Rician 0.19 0.15 

G15 0.09 0.004 0.27 Inverse Gaussian 0.09 0.18 

Gt 0.08 0.003 0.24 Inverse Gaussian 0.08 0.15 

Table 7.6. Statistical analysis of the Maximum Variation in °C of the indoor temperature (MaxΔT-index) 

for all models in Table 7.1 and Table 7.2 

 

 

Figure 7.16. Statistical analysis of the Maximum Variation (°C) of the indoor temperature with respect to 

the detailed building model (MaxΔT-index) for different simplified building models computed in (a) winter 

weeks and (b) summer weeks. See Table 7.1 and Table 7.2 for details on color lines. 
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We point out that the PDF of G15 and Gt rapidly converge to zero which implies a smaller 

variance and consequently a small maximum prediction error compared to the other simplified 

models. In addition, the prediction ability of G15 is comparable to that of Gt, which provides the 

best MaxΔT-index, both in terms of mean, variance and maximum prediction error and both for 

summer and winter weeks. Furthermore, all the grey model, except G8 during summer, provide a 

maximum prediction error of the indoor air temperature always below 1°C, and for  G15 this 

error reduces to a maximum of about 0.40°C in winter and 0.27 °C in summer.  

It is possible to note that the performance of grey box models are in general better than those 

provided by reduced order white models not only when the latter have the same order of 

complexity of the former, but also when considering white models with higher order, e.g., W22. 

In addition, both for summer and winter weeks, the prediction errors of W2 are much larger with 

respect to the other models and it is not reported in Figure 7.16 as its PDF was out of the scale. 

Similar conclusions can be drown also when considering the performance index ΔP defined in 

(7.9) which measures the percentage variation of the maximum peak load (sensible load) 

between that provided by the detailed building model in Chapter 2 and each of the reduced 

models in Table 7.1 and Table 7.2, on the weekly basis. Results are collected in this case in 

Table 7.7 and graphically shown in Figure 7.17. Precisely, for this index performance, the model 

G15 and Gt provide, both for winter and summer, smaller values in terms of mean, variance, and 

maximum not only with respect to the white model of same complexity (W15), but also with 

respect to W22 which approximates the detailed building dynamics by using 22 equations (seven 

additional dynamical equations than G15 and Gt). 

Percentage prediction error for estimating heating peak load demand during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 21.44 151.02 58.30 Nakagami 0.65 610.65  

W15 2.52 5.43 9.51 Nakagami 0.89 9.58  

W22 2.72 2.18 7.14 Gen. Extreme Value 0.80 0.60 1.16 

G8 6.96 8.79 15.85 Inverse Gaussian 6.96 33.04  

Gm 5.90 2.78 10.90 Gamma 11.93 0.49  

G15 1.63 3.28 7.06 Lognormal -0.32 1.54  

Gt 1.34 2.27 5.85 LogNormal -0.54 1.57  

Percentage prediction error for estimating cooling peak load demand during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 22.76 514.17 90.78 Gen. Extreme Value 0.37 10.31 11.77 

W15 8.62 29.70 24.96 t Location-Scale 7.77 2.94 2.42 

W22 3.27 7.11 11.26 Gen.Extreme Value 0.91 0.41 0.37 

G8 6.75 26.84 22.29 t Location-Scale 6.01 1.78 1.48 

Gm 4.93 8.60 13.72 Logistic' 4.79 1.72  

G15 1.43 3.88 7.33 Gen. Extreme Value 0.91 0.33 0.30 

Gt 1.18 2.70 6.10 Inverse Gaussian 3.27 5.30  

Table 7.7. Statistical analysis of the Percentage prediction error for peak load demand (ΔP -index) for all 

models in Table 7.1 and Table 7.2. 
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Figure 7.17. Statistical analysis of the Percentage prediction error for peak load demand with respect to 

the detailed building model (ΔP-index) for different simplified building models (a) Heating (b) Cooling. See 

Table 7.1 and Table 7.2 for details on color lines. 

 

Moreover, G15 and Gt have similar performance also with respect to the ΔP-index and have a 

narrow PDF around their mean value (see Figure 7.17). 

To better appreciate the effectiveness of low order building models to reproduce indoor air 

temperature and demanded sensible heat predicted by a detailed but complex one, Figure 7.18 

and Figure 7.19 show some time-histories for two case studies. Here we point out that for both 

cases, G15 and Gt provide very small prediction errors. More in detail, the prediction error of the 

indoor air temperature is always below 0.05°C while that on the sensible load never excesses 

0.5kW. In addition, we remark that also the performance of G8 and Gm are satisfactory with a 

maximum prediction error on temperature of about 0.12°C in Figure 7.18 and 0.32°C in Figure 

7.19, and a prediction error of the sensible load of about 2.05kW in Figure 7.18 and 0.5kW in 

Figure 7.19, which are consistent with data in Table 7.6 and Table 7.7 

The difference between the prediction ability of grey box models with respect to low order 

white ones is more evident when considering the computation of the heating and cooling 

demands reported in Table 7.8 and Figure 7.20 which give a numerical and graphical statistical 

analysis of the ΔE-index in (7.9). We recall here that this index measures the percentage 

variation of the energy demand of a reduced order model with respect to the detailed one in 

Chapter 2 and it is computed for every week of the 54 case studies presented in Chapter 5 for 

each low order model.  

Results in Table 7.8 clearly indicate that in the case of heating also the simplest grey box 

model designed in this chapter, i.e., G8, provides better prediction than the most complex low 

order white box building model, i.e., W22. 
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Figure 7.18. Lightweight Mall buildings in Nice. (a) Indoor air temperature and sensible load provided by 

all grey simplified building models and the detailed one (purple line), and (b) corresponding prediction 

errors. See Table 7.1 for details on color lines for the grey box models, while the grey area denotes time 

intervals where the temperature control is deactivated. 

 

Figure 7.19. Heavyweight Office buildings in Naples. (a) Indoor air temperature and sensible load 

provided by all grey simplified building models and the detailed one (purple line), and (b) corresponding 

prediction errors. See Table 7.1 for details on color lines for the grey box models, while the grey area denotes 

time intervals where the temperature control is deactivated. 

 

Consider for example the maximum error for heating prediction, this is about 13.3% for W22 

but about 4.25% for G8 and shrinks to 1.29% and 1.01% for G15 and Gt, respectively. In the 

case of cooling, G8 provides better predictions than W15 despite it uses 7 equations less to 

predict cooling demand, but its performance are worse than W22. Instead the models, Gm, G15 

and Gt still outperform the white models, including W22 composed by 22 equations, having for 

G15 and Gt a maximum cooling prediction error of about 5.5% and 4.25%, respectively, and 

mean values around 1.08% and 0.83%, respectively. 
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Percentage prediction error for estimating heating demand during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 21.86 151,13 58.74 Nakagami 0.85 628.62  

W15 5.36 8.64 14.17 Inverse Gaussian 5.36 15.14  

W22 3.82 10.00 13.30 Inverse Gaussian 3.82 3.82  

G8 0.89 1.25 4.24 Log-Normal -0.62 1.03  

Gm 0.78 0.64 3.18 Loglogistic -0.63 0.50  

G15 0.35 0.10 1.29 Weibull -0.78 0.86  

Gt 0.28 0.06 1.01 Weibull 0.27 1.00  

Percentage prediction error for estimating cooling demand during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 51.37 104 351.37 Log-Logistic 3.12 0.79  

W15 11.94 159.45 49.82 Inverse Gaussian 11.94 13.38  

W22 6.87 34.55 24.50 Gen. Extreme Value 0.41 2.31 4.15 

G8 5.32 76.30 31.47 Lognormal 0.98 1.22  

Gm 3.55 20.89 16.96 Inverse Gaussian 3.55 2.52  

G15 1.08 2.17 5.49 Log-Logistic 0.36 1.00  

Gt 0.83 1.30 4.25 Log-Logistic -1.04 0.86  

Table 7.8. Statistical analysis of the Percentage prediction error for Heating and Cooling demand          

(ΔE -index) for all models in Table 7.1 and Table 7.2 

 

Figure 7.20. Statistical analysis of the Percentage prediction error for Heating /Cooling demand with 

respect to the detailed building model (ΔE-index) for different simplified building models (a) Heating           

(b) Cooling. See Table 7.1 and Table 7.2 for details on color lines. 

 

Notice that also for Figure 7.17 and Figure 7.20 the PDFs of W2 have not been reported 

because they were out of the scale, readers can find statistic data also for this model in Table 7.3 

and Table 7.8. 

7.3.3 Comfort Predictions and simulation time 

In this section we evaluate quantitatively the ability of low order building models in Table 7.1 

and Table 7.2 to predict comfort. To this aim we compute for them the performance indexes in 

(7.10) on the weekly basis, i.e., we set Θ = 1 week. Before showing numerical results, we point 
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0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

 E (%) complete-reduced in winter

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n

ct
io

n

 
0 2 4 6 8 10

0

0.5

1

1.5

2

 E (%) complete-reduced in summer

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n

ct
io

n

 

(a) (b) 

ΔE (%) Cooling demand 

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n
ct

io
n

 

P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n
ct

io
n

 

ΔE (%) Heating demand 



Chapter 7: Design of reduced order model for building dynamics  

155 

 

and PPD predictions have been computed assuming for the thermal zone an indoor air relative 

humidity equal to 50%.  

We first consider the ability of the models to predict effectively the mean radiant temperature 

by means of the ΔTr–index in (7.10) which measures for each week the maximum variation of 

the mean radiant temperature between the reduced order model and that predicted via the 

detailed one in Chapter 2. Statistical results for each model are collected in Table 7.9 and shown 

in Figure 7.21. In particular, all models, except W2, provide a good level of prediction with a 

residual error that never exceed 2°C. Nevertheless, the grey models are those which better 

replicate the mean radiant temperature response of the detailed building system. Precisely, for 

G15 and Gt the maximum temperature prediction error, i.e., the ΔTr-index, is about 0.35 °C and 

0.30 °C for summer weeks. 

Maximum Variation of the mean radiant temperature during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 5.06 3.21 10.43 Gen. Extreme Value -0.06 1.50 4.29 

W15 0.57 0.04 1.17 Nakagami 2.24 0.36  

W22 0.2 0.04 0.92 Lognormal -1.24 0.47  

G8 0.53 0.06 1.26 Gen. Extreme Value 0.14 0.14 0.43 

Gm 0.39 0.01 0.69 Gen.Extreme Value -0.0003 0.09 0.34 

G15 0.18 0.05 0.85  Gen. Extreme Value 0.46 0.04 0.11 

Gt 0.15 0.03 0.66 Gen. Extreme Value 0.45 0.04 0.10 

Maximum Variation of the mean radiant temperature during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 2.65 1.62 6.46 Gen. Extreme Value 1.20 8.64  

W15 0.61 0.16 1.81 Nakagami 0.61 1.17  

W22 0.31 0.04 0.91 Lognormal 0.25 0.66  

G8 0.49 0.07 1.28 Gen. Extreme Value -0.76 0.14  

Gm 0.36 0.04 0.96 Gen.Extreme Value -1.07 0.14  

G15 0.17 0.004 0.35 Gen. Extreme Value 0.27 0.03 0.14 

Gt 0.14 0.003 0.30 Gen. Extreme Value 0.25 0.02 0.12 

Table 7.9. Statistical analysis of the Maximum Variation in °C of mean radiant temperature (ΔTr-index) 

for all models in Table 7.1 and Table 7.2 

 

These residual errors are about three times less than that given by white models of the same 

complexity (W15), and about three times smaller than that provided by the white model W22 

despite it contains seven additional dynamical equations. Furthermore, G15 and Gt provide a 

very small variance. Consequently their PDFs are narrow and concentrated around their mean 

values as depicted in Figure 7.21. 

We consider now the error for predicting the PMV by using the performance index ΔPMV 

(see Section 7.2.1 for its definition). The statistical analysis for this index is reported in Table 

7.10 and shown Figure 7.22. We note that the models W15 and G8 give a maximum error of 

about 0.7 and 0.5, respectively. Taking into account that the PMV∈ [-3, +3], these models might 

be inadequate for a precise estimation of the PMV despite they have often provided satisfactory 
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results for the previous performance indexes. In addition, it is clear from Table 7.10 that G15 and 

Gt are the only models which provide a maximum PMV prediction error less than double their 

mean values. As the maximum errors are 0.12 and 0.11 for G15 and Gt, respectively, these 

models seem to be promising low order systems to be used not only for the computation of 

energy demand but also for estimating comfort. 

Figure 7.21. Statistical analysis of the Maximum Variation (°C) of the mean radiant temperature with 

respect to the detailed building model (ΔTr-index) for different simplified building models computed in (a) 

winter weeks and (b) summer weeks. See Table 7.1 and Table 7.2 for details on color lines. 

 

Maximum Variation of the PMV during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 0.69 0.07 1.48 Nakagami 1.85 0.54  

W15 0.14 0.003 0.30 Gamma 6.97 0.02  

W22 0.08 0.002 0.21 Inverse Gaussian 0.08 0.33  

G8 0.11 0.003 0.27 Gen. Extreme Value 0.31 0.03 0.08 

Gm 0.08 0.0008 0.17 Gen. Extreme Value 0.22 0.02 0.07 

G15 0.05 0.001 0.14 Gen. Extreme Value 0.67 0.004 0.04 

Gt 0.05 0.0008 0.14 Gen. Extreme Value 0.70 0.003 0.04 

Maximum Variation of the PMV during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 1.51 0.95 4.43 Birnbaum-Saunders 1.16 0.77  

W15 0.28 0.024 0.70 Birnbaum-Saunders 0.24 0.58  

W22 0.15 0.005 0.36 Gen. Extreme Value 0.88 0.03 0.09 

G8 0.19 0.012 0.49 Gen. Extreme Value 0.09 0.04 0.17 

Gm 0.14 0.007 0.39 t Location-Scale 0.14 0.03 10.71 

G15 0.08 0.0002 0.12 Gen. Extreme Value 0.43 0.01 0.07 

Gt 0.08 0.0001 0.11 Gen.Extreme Value 0.37 0.004 0.07 

Table 7.10. Statistical analysis of the Maximum Variation of the PMV (ΔPMV-index) for all models in 

Table 7.1 and Table 7.2 

 

We clearly point out that the loss of performance for the prediction of the PMV by G8 and 

W15 despite their acceptable performance to predict the mean radiant temperature and the indoor 

air temperature is mainly due to the polynomial nonlinearly which maps these temperatures onto 

the PMV. This static nonlinearity tends to amplify also small errors in these temperatures when 

computing the PMV. The loss of performance due to nonlinearities is even clearer when 
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considering the performance index ΔPPD for measuring the effectiveness of reduced models to 

predict PPD. Indeed, as the PPD is an exponential function of the PMV, also small PMV 

prediction errors can produce a notable error in the PPD prediction. This effect can be noted 

from Table 7.11 and Figure 7.23, which provide details about the statistical analysis on the 

ΔPPD-index. The analysis of this index reveal that also W22 is not suitable for predicting 

comfort as the maximum prediction error is about 20%. A quite acceptable results have been 

obtained by using Gm, which provides a ΔPPD of about 10%.  

 

Figure 7.22. Statistical analysis of the Maximum Variation of PMV with respect to the detailed building 

model (ΔPMV-index) for different simplified building models computed in (a) winter weeks and (b) summer 

weeks. See Table 7.1 and Table 7.2 for details on color lines. 

 

Maximum Variation of the PPD during winter weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 30.55 180.87 70.85 Weibull 34.50 2.46  

W15 6.31 8.38 14.99 Nakagami 1.29 48.14  

W22 3.42 6.28 10.93 Birnbaum-Saunders 2.78 0.68  

G8 4.49 6.02 11.85 Gen. Extreme Value 0.21 1.30 3.41 

Gm 3.65 2.04 7.93 Gen. Extreme Value 0.02 1.10 2.99 

G15 2.29 2.86 7.36 Gen. Extreme Value 0.16 0.67 1.77 

Gt 2.18 1.68 6.06 Log-Logistic 0.71 0.20  

Maximum Variation of the PPD during summer weeks 

Model Mean Variance Maximum PDF PDF Parameters 

W2 51.42 743.92 133.24 Rician 36.22 32.22  

W15 11.56 38.37 30.14 Rayleigh 9.27   

W22 7.09 14.18 18.38 Gamma 3.35 2.11  

G8 8.22 7.57 16.47 Gen. Extreme Value -0.06 2.38 7.02 

Gm 6.30 4.37 12.57 t Location-Scale 6.25 1.85 15.15 

G15 3.78 0.84 6.52 t Location-Scale 3.75 0.46 2.00 

Gt 3.69 0.54 5.89 t Location-Scale 3.75 0.36 1.89 

Table 7.11. Statistical analysis of the Maximum Variation of the PPD (ΔPPD-index) for all models in 

Table 7.1 and Table 7.2 
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Figure 7.23. Statistical analysis of the Maximum Variation of PPD with respect to the detailed building 

model (ΔPPD-index) for different simplified building models computed in (a) winter weeks and (b) summer 

weeks. See Table 7.1 and Table 7.2 for details on color lines. 

 

It is interesting to point that the best results are still obtained by using G15 and Gt as they 

predict the PPD with and error at most of 7.36% and they are the only models to have a 

maximum  ΔPPD-index less than 10%. The excellent performance of these models can be noted 

also from Figure 7.23 where it is clear that both the PDF of G15 and Gt are concentrated around 

their mean values, i.e., 3.78% and 3.69%, respectively. 

Notice that the PDFs of W2 have not been reported in Figure 7.21, Figure 7.22 and Figure 

7.23, because they were out of the scale, readers can find statistic data also for this model in 

Table 7.9, Table 7.10 and Table 7.11.  

For the sake of completeness, Figure 7.24 and Figure 7.25 show the time-histories of the 

comfort predictions for the case studies considered in Figure 7.18 and Figure 7.19 when grey 

models are used. Here it is possible to observe that G15 and Gt provides prediction errors of the 

PMV always below 0.1 and an PPD prediction error always less than 5%. 

We finally conclude the analysis by considering the performance index Π in (7.11), which 

measures the time reduction to simulate the building dynamics on a simulation horizon of one 

year when using low order models instead of the detailed one. For this index the statistical 

analysis is reported in Table 7.12 and Figure 7.26. As expected W2 and G8 provides the highest 

time reduction but W2 was found to be not suitable for almost all the performance index 

previously considered. On the other hand G15 and Gt, which have shown to be the best low 

order models with respect to all the performance indexes, provide also a quite consistent 

simulation time reduction which is on the average about 50%. 
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Figure 7.24. Lightweight Mall buildings in Nice. (a) PMV, PPD and mean radiant temperature provided 

by all grey simplified building models and the detailed one (purple line), and (b) corresponding prediction 

errors. See Table 7.1 for details on color lines, while the grey area denotes time intervals where the 

temperature control is deactivated. 

 

Figure 7.25. Heavyweight Office buildings in Naples (a) PMV, PPD and mean radiant temperature 

provided by all grey simplified building models and the detailed one (purple line),  and  (b) corresponding 

prediction errors. See Table 7.1 for details on color, while the grey area denotes time intervals where the 

temperature control is deactivated. 

 

Model Mean Variance Maximum PDF PDF Parameters 

W2 80.64 23.92 95.31 t Location-Scale 80.82 0.72 1.13 

W15 31.88 89.85 60.31 t Location-Scale 31.57 6.39 2.95 

W22 31.07 108.15 62.24 t Location-Scale 31.10 4.99 2.28 

G8 51.99 37.12 70.26 t Location-Scale 51.85 3.59 2.56 

Gm 51.08 74.60 76.99 t Location-Scale 51.57 2.61 1.33 

G15/Gt 47.66 58.79 70.66 t Location-Scale 46.95 3.13 1.88 

Table 7.12. Statistical analysis of the simulation time reduction (Π-index) for all models in Table 7.1 and 

Table 7.2 
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Figure 7.26. Statistical analysis of the simulation time reduction with respect to the detailed building 

model (Π-index) for different simplified building models in the case the simulation horizon is set to one year. 

See Table 7.1 and Table 7.2 for details on color lines. 

7.3.4 Overview of the identification and numerical results  

In this section we report a set of remarks which summarize the extensive quantitative analysis 

carried out in the previous sections for evaluating performance of low order models. 

 The grey models composed by 15 equations, i.e., Gt and G15, provide always better 

performance than the white model with the same number of equations, i.e. W15. This 

is especially remarkable when predicting heating and cooling demands (see Table 7.8) 

and comfort. Indeed, in the case of energy demand, these low order models provide 

prediction errors ten times lower than W15, while for comfort G15/Gt predictions are 

also of about five times more precise than those given by W15 (see for example 

ΔPMV and ΔPPD indices in Table 7.10 and Table 7.11 computed for summer weeks). 

In addition, models G15/Gt outperform the model W15 in terms of indoor temperature 

predictions from three to five times (see Table 7.6). 

 The grey box models G15 and Gt have similar or even better performance also when 

compared to those obtained with the white model composed by 22 dynamical 

equations, i.e., W22, despite this model is more complex and have seven more 

dynamical equations. Precisely, Gt/G15 provides predictions at least twice better with 

respect to W22 when considering the indoor air temperature (see Table 7.6). In the 

case of heating and cooling Gt/G15 models improve predictions of W22 with a 

maximum percentage errors that shift form 13.30% to about 1.30% for heating 

demand and from 24.5% to 5.5% for cooling demand (see Table 7.8). Similar 

performance have been obtained also when considering the prediction of peak load 
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demand and comfort, except for the predictions of PMV and PPD in summer weeks, 

where Gt/G15 works better than W22 by reducing the prediction errors of the 

connected performance indices of about threefold (see Table 7.10 and Table 7.11). It 

is important to point out that the time required to solve numerically (or equivalently, 

to simulate) the set of differential equations composing G15/Gt is on the average 50% 

less than that required by W22 (see Table 7.12). In addition the variance of the Π-

index is less in the case of Gt/G15, therefore the average percentage time reduction 

can be obtained with higher probability when using Gt/G15 models instead of model 

W22. 

 Except for the prediction of the maximum peak load demand, the building model 

composed by eight equation, i.e., G8, provides acceptable prediction errors for any 

building featured considered in the Section 7.3.2 and Section 7.3.3. For some of them, 

e.g., heating demand, PMV and PPD in summer weeks, G8 prediction errors are 

smaller than those provided by W22 (see Table 7.9, Table 7.10 and Table 7.11). 

Compared to the grey box models Gt and G15, this reduce model provides worse 

prediction performance and with a time reduction for building simulations that is 

lower than that expected. This is mainly because the time for solving the equations 

describing the adaptive controller in Chapter 4, which have been used for all the 

simulations in this chapter, does not scale with building model complexity.  

 Regarding the grey box model Gm, which is composed by twelve equations, it is 

interesting to note that its ability to reproduce building features is better than the white 

box model embedding three additional equation, i.e., W15. In addition, for some 

building feature, e.g., heating and cooling demand, comfort, and indoor air 

temperature in summer weeks, this low order model have provided better performance 

also with respect to W22 despite it has ten less equations for capturing building 

dynamics. Nevertheless, its performance are worse, especially for comfort prediction, 

with respect those provided by G15 and Gt, and the time reduction for building 

simulations is comparable to these slightly more complicated grey box models. 

 Despite they are used in the technical literature to design model predictive controllers 

[41], building models composed by two equations, one for the envelope and one for 

the indoor air temperature, i.e., W2, is inadequate to reproduce any feature of the 

detailed building model. Consequently, model based controllers can provide 

performance that can deviate a lot from those obtained by numerical tools embedding 
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such simplified building models especially when model based controllers 

implemented in hardware and tested experimentally. 

 Models G15 and Gt provide very similar performance indexes. These performance are 

slightly better in the case of Gt. Nevertheless, as discussed in Section 7.3.1, even 

though building elements of both models require a similar number of interactions to be 

tuned by means of the numerical optimization process (see Table 7.5 and Figure 7.15a 

and Figure 7.15b), the time required to carry out a parameter identification of a 

building element of a Gt model is much larger than that needed to identify the same 

element for a G15 model. Consequently, this makes G15-models more efficient with 

respect to Gt-models. 

From the remarks above we conclude that low order G15-models provide the better 

performance to reproduce building features of a detailed building model and with a consistent 

reduction of the simulation time. In addition these models have better performance indexes when 

compared to low order white box models with the same or even higher complexity. Finally, the 

identification time required to tune the model parameter is acceptable taking into account the just 

mentioned advantages.  

For this reason, in the following chapter, G15 models will be used to design model predictive 

control algorithms. In the following section, we consider a heavyweight building as an additional 

case study. In accordance with the literature [28], these class of buildings are difficult to simulate 

and challenging to be reduced. Consequently, they provide a good benchmark to prove further 

the effectiveness of the proposed procedure for generating low order building models and the 

prediction ability of the resulting reduced order systems. 

7.4 Additional case study 

In what follows, we examine an additional case study to prove the effectiveness, of the model 

reduction approach illustrated in Section 7.1. Different form Section 7.3, here we consider a 

heavier building structure. Notice that, in accordance to the technical literature [28], these kind 

of buildings are known to be more difficult to be simplified. Here, we consider a typical Italian 

building envelope, with length, width and height equal to 20, 10 and 3.5 m, respectively. The 

building longitudinal axis is East–West oriented and a South facing, air filled double-glazed 

windows. The thickness of the building walls and floor/ceiling are 25 and 30 cm, respectively. 

Their stratigraphy is designed by concrete bricks (λ = 0.8 W/mK, ρ = 1800 kg/m3, c = 840 

J/kgK) and thermal insulation (λ = 0.03 W/mK, ρ = 40.0 kg/m3, c = 1290 J/kgK). The direct solar 
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radiation transferred through the windows to the inside zone is assumed to be absorbed by the 

floor with an absorption factor of 0.3. The absorption and emission factors of interior surfaces 

are assumed to be equal to 0.15 and 0.9, respectively. For such zone, a ventilation rate equal to 1 

Vol/h and a crowding index of 0.12 person/m2 are taken into account.  

The time horizon of interest is one year. The heating/cooling system of the thermal zone is 

switched on from 07:00 to 18:00, from November 1st to March 31st (heating mode) and from 

12:00 to 18:00, from June 1st to September 30th (cooling mode). The indoor air temperature is 

controlled when it is outside the range 20-28 °C, in the case of heating mode, while in the 

cooling model the control system is activated when this temperature is outside the range 10-

25°C. As in the previous numerical example, the relative humidity indoor air is assumed to be 

controlled at 50%. As weather zones we have considered all those given in Table 5.3. 

The analysis in Sections 7.3.2, 7.3.3 and 7.3.4 has shown that the best compromise between 

the time required to identify the reduced model and the accuracy of its predictions, both in terms 

of energy and comport, is provided when using a second order thermal network for each building 

element identified by means of the frequency domain approach.  

Hence, for this additional case study we have only designed G15 model, i.e., a low order 

model where all the elements of the building envelope are second order thermal networks (see 

also Table 7.1).  

Figure 7.27 shows the identification result in the frequency domain for the case of south wall 

and floor. Compared to Figure 7.8 and Figure 7.9, for this case study there is a higher mismatch 

between the frequency response of the low order model and that of the detailed model, especially 

for the south wall. This is basically due to the presence of low frequency poles which increase, 

with respect to the previous case, the roll-off of the Bode diagrams of the detailed building 

element models. These steep slopes cannot be perfectly reproduced by means of second order 

thermal networks which provide at most a roll-off of -40dB/dec for the magnitude, and -90 

deg/dec for the phase. On the other hand, these low frequencies poles reduce also the bandwidth 

of the building constructive elements. Hence, there is not the need to match precisely the 

frequency response of the detailed model in the entire range of the spectrum of the external 

inputs, i.e., up to 10-3 rad/s (see for example the spectrum of the radiations in Figure 7.6) as the 

building better filters out high frequency components. Consequently, we expect satisfactory 

predictions both in terms of energy and comfort as it shown in what follows. Notice that as time 

interval of interest for the computation of the performance indexes we have still selected the 

week (i.e., Θ = 1 week in (7.8)-(7.10)). 
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Figure 7.27. South wall temperature frequency response with respect to (a) outdoor temperature (b) indoor 

air temperature and (c) solar radiation. Floor temperature frequency response to (a) ground temperature (b) 

indoor air temperature and (c) solar radiation through window. Detailed model (dashed red line) and low-

order model (solid blue line). 

 

7.4.1 Indoor air temperature and energy predictions 

We first investigate the effectiveness of the reduced order model to predict indoor air 

temperature end energy consumptions. In particular Figure 7.28 shows the PDF of the MaxΔT-

index computed both for winter and summer weeks. Here it is clear that those distributions have 

a small mean, at most of 0.13°C, but also a small variance as the bell shapes are narrow. In 

addition, the maximum prediction indoor temperature error is low and never exceeds 1°C. 

Additional details about the PDFs in Figure 7.28 are given in Table 7.13. 

Similar results are obtained also when considering the persentage difference between the 

maximoun heating peak load demands. In this case, better results, compared to those discussed in 

Section 7.3.2, have been obtained for the performance index ΔP with a maximum prediction 

error of about 1.11%. Hence, data provided by the low order model can be used also for the 

design of air conditioning systems by practitioners. As for the index MaxΔT, the probability 

density function takes a bell shape and its values concentrate around the mean with a small 

variance of about the 0.06 (see Figure 7.29a). 
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Figure 7.28. Statistical analysis of the Maximum Variation (°C) of the indoor temperature with respect to 

the detailed building model (MaxΔT-index) in the case of a massive building in (a) winter and (b) summer 

weeks.  

 

Regarding to the effectivness of the low order model to predict heating demand, we have 

detected, by computing the ΔE-indext over all the weeks of the year and for all wheater zones in 

Table 5.3, that on the average there is a missmatch of 0.33% between heteang demand provided 

by the detailed building model and that prediceted by using the low order model, while the 

maximoun deviation is less then 4%. Figure 7.29b depicts the shape of the PDF for the ΔE index, 

while all the PDF parameters are given in Table 7.13. Notice that the energy analysis for cooling 

is not reported here for the sake of brevity and also because for this type of building heating 

demand was not predominant. 

Figure 7.29. Statistical analysis of the Percentage prediction error for (a) peak load demand (ΔP-index) 

and (b) Heating demand (ΔE-index) with respect to the detailed building model in the case of a massive 

building. 

 

For the sake of completeness, Figure 7.30 shows the time history of the indoor air temperature 

and the sensible heat computed by means of the detailed building model and the reduced one 

(Figure 7.30a) and the corresponding prediction errors (Figure 7.30b) when the building is 

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

Max  T in winter weeks

P
D

F

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

5

10

15

20

25

Max  T in summer weeks

P
D

F

 

(a) (b) 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

 P (%) complete-reduced in winter

P
D

F

 
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

 E (%) complete-reduced in winter

P
D

F

 

(a) (b) 

ΔE (%) Heating demand 

 

ΔP (%) Heating demand 

 



7.4 Additional case study 

166 

 

located in Athens. Also in this case it is evident that for computing these quantities reduced 

models can be effectively used. 

Index Mean Variance Maximum PDF PDF Parameters 

MaxΔT (winter) 0.13 0.08 0.97 Log-Logistic -2.62 0.27  

MaxΔT(summer) 0.12 0.03 0.63 Gen. Extreme Value 0.30 0.02 0.09 

ΔE (heating) 0.33 1.41 3.89 Lognormal -2.86 1.47  

ΔP (heating) 0.38 0.06 1.11 Log-logistic -1.09 0.26 0 

Table 7.13. Statistical analysis of the Maximum Variation in °C of the indoor temperature (MaxΔT-

index), Percentage prediction error for peak load demand (ΔP -index), and Percentage prediction error for 

Heating demand (ΔE-index) with respect to the detailed building model in the case of a massive building. 

 

Figure 7.30. Results in the case of Athens. (a) Indoor air temperature and sensible load, reduced model 

(red line) and detail model (blue line) (b) corresponding prediction errors. Grey area denotes time intervals 

where the temperature control is deactivated. 

 

7.4.2 Comfort Predictions and simulation time 

The analysis of comfort indexes has reviled that in this case the deviation of the low order 

model with respect to the detailed one in terms of PMV, PPD and mean radiant temperature is 

lower than that detected in Section 7.3.3. 

Table 7.14 reports the statistical analysis of the comfort indexes ΔTr, ΔPMV and ΔPPD and 

shows that the mismatch between the low order and complete model is, on the average, less than 

0.08 for PMV predictions, 2.30% for PPD predictions and below 0.18°C when considering the 

estimation of the mean radiant temperature. In addition, for all indexes the variance is low as 

confirmed also by the narrow bell shape of the probability density functions of such 

measurements depicted in Figure 7.31 and Figure 7.32 for winter and summer weeks, 

respectively.  

For the sake of completeness the time evolution of PMV and PPD and mean radiant 

temperature is depicted in Figure 7.33 in the case of the Rome together with the corresponding 
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prediction errors. As clearly shown the model reduction approach proposed in Section 7.1 is 

further confirmed to give a quite precise insight of comfort in buildings.  

 

Index Mean Variance Maximum PDF PDF Parameters 

ΔTr (winter) 0.15 0.04 0.75 Gen. Extreme Value 0.33 0.02 0.12 

ΔTr (summer) 0.18 0.001 0.27 Gen. Extreme Value -0.02 0.02 0.16 

ΔPMV (winter) 0.05 0.001 0.14 Gen. Extreme Value 0.44 0.001 0.04 

ΔPMV (summer) 0.08 10-4 0.11 Gen. Extreme Value 0.26 0.003 0.08 

ΔPPD (winter) 2.30 1.99 6.53 t-Location-Scale 2.16 0.02 1.04 

ΔPPD (summer) 1.99 2.50 6.73 Log-Logistic -0.13 1.46 0 

Π  45.96 6.16 53.40 Inverse-Gaussian 45.96 1.7E4  

Table 7.14. Statistical analysis of the Maximum Variation in °C of the mean radiant temperature (ΔTr-

index), Maximum Variation of PMV (ΔPMV-index), Maximum Variation of PPD (ΔPPD-index) and 

simulation time reduction (Π-index) with respect to the detailed building model in the case of a massive 

building. 
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Figure 7.31. Statistical analysis of the Maximum Variation in °C of the mean radiant temperature (ΔTr-

index), Maximum Variation of PMV (ΔPMV-index), Maximum Variation of PPD (ΔPPD-index) with respect 

to the detailed building model in the case of a massive building and computed for winter weeks. 
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Figure 7.32. Statistical analysis of the Maximum Variation in °C of the mean radiant temperature (ΔTr-

index), Maximum Variation of PMV (ΔPMV-index), Maximum Variation of ΔPPD (ΔPPD-index) with 

respect to the detailed building model in the case of a massive building and computed for summer weeks. 
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Figure 7.33. Result in the case of Rome. (a) PMV, PPD and mean radiant temperature provided by low 

order building model (red line) and the detailed one (blue line), and (b) corresponding prediction errors. 

Grey area denotes time intervals where the temperature control is deactivated. 
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Figure 7.34. Statistical analysis of the simulation time reduction with respect to the detailed building 

model (Π-index) model in the case of a massive building. 

 

Finally, we remark again that model reduction is required not only for designing model based 

control strategies for the control of thermo-hygrometric variables in buildings, as those in 

Chapter 8, but also for reducing simulation time. 

Time reduction for simulating this heavyweight building is of about 46% (see Π-index in 

Table 7.14 and its PDF depicted in Figure 7.34). As clear shown simulation time reduction is 

within a range from 40% to 55%. This is a remarkable gain as in many building analysis a large 

amount of numerical simulations are carried out, for example, to test novel technologies for 

different building configurations. 
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7.5 Discussion  

In this chapter we have proposed a systematic approach for deriving low order, but yet, high 

predictive building models from the detailed one presented in Chapter 2. Precisely, the method 

requires to slit the building model in its components. For each of them a simplified first or 

second order thermal network is used to capture its temperature dynamics. The network 

parameters are the result of an optimization problem based on a cost function that can be set both 

in the frequency domain or time domain.  

To prove the effectiveness of the method, performance indexes have been introduced to 

measure quantitatively the deviation between the low order models and the detailed one in terms 

of energy and comfort predictions. Numerical results on a wide set of data have shown that 

reduced order models composed by second order thermal networks and identified by matching 

the frequency response of the detailed model provide very satisfactory performance indexes and 

are fast to be identified (G15 models). For these reasons they are used in the next chapter for the 

design of model predictive controllers with the aim of testing their performance with those given 

by the adaptive approach proposed in Chapter 4. Nevertheless, the model reduction method can 

be used in all those case where low order models are preferable with respect to detailed models, 

i.e., in order to i) reduce drastically the computation time to get an insight into building energy 

performance, especially when many simulations are required to evaluate them [29] ii) derive 

mathematical models when experimental data are available [30] and iii) simulate and evaluate 

energy demands of districts [31]. 
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Chapter 8                                                                  

MPC FOR THE OPTIMAL COMPUTATION OF THE 

SENSIBLE LOAD 

In this chapter we design model predictive controllers (MPC) for the indoor air temperature 

control for different buildings. The aim is to compute energy demands when such model based 

control strategies are used on the same case studies presented in Chapter 5 for the intermittent 

running regime with reference set points scheduled in accordance with Table 5.4. In so doing we 

compare over the same case studies the performance obtained via this model based approach 

with those given by the adaptive solution proposed in Chapter 4. We investigate both the case 

when there is a perfect knowledge of the weather data and internal loads as well as the case when 

these data are affected by uncertainties. We show that on the case studies considered in Chapter 

5, better performance are obtained by using the adaptive solution when the closed-loop systems 

are subjected to severe unpredicted variations of the uncontrolled system inputs. Hence, the 

classical MPC is considered here as a benchmark model based controller to further show the 

effectiveness of the adaptive solution on specific case studies. Consequently, an exhaustive 

comparison between predictive and adaptive control solutions which takes into account all the 

features of such controllers is out of the scope of the chapter.  

In order to make the chapter self contained as much as possible, it opens with a brief revision 

of the model predictive control strategy. Then some details about its design are given for the sake 

of completeness. Notice that for devising MPC strategies the knowledge of the model of the 

process to be controlled is a key ingredient. These models must be as much predictive as possible 

in order to estimate precisely the indoor temperature in the future time instants. On the other 

hand in order to keep the computational effort of the MPC control law acceptable, these models 

cannot be very complicated. Consequently, we use those designed with the model reduction 

procedure detailed discussed in Chapter 7. 
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8.1 MPC control strategy 

In this section the model predictive control strategy for generic discrete time liner system is 

briefly reviewed to give a reader some details about the design of this control solution. For 

further details the reader is referred to the wide literature about this topic as [168, 169].  

Assume that then process is modelled as the following linear time invariant discrete time 

system  

 
( 1) ( ) ( ) ( ),

( ) ( ),

x k Ax k Bu k Dw k

y k Cx k

   


 (8.1) 

where nx  is vector state, mw is the vector of measurable disturbances, u  and y  

are the control input and the system output, respectively. The system matrix is n nA  , the 

disturbance matrix is nD , while the output and the input matrices are nB  and 1 nC  , 

respectively.  

 

 

Figure 8.1. The principle of model predictive control (taken from [170]). 

 

The control law generated by the model predictive controller is based on an iterative 

optimization of the system model. Precisely, at the current time instant k the optimal control 

strategy is calculated by minimizing a cost function subjected to additional constraints over a 

finite number of steps, say Np, known as prediction horizon. 

Usually, cost functions to be minimized are quadratic and can be expressed, for example, as  

  
2 2( ) ( ) ( )

p c
k N k N

y r u

i k i k

J y i y i u i 

 

 

     (8.2) 

where yr(k) is the reference signal to be tracked and δu and δy are positive constants. 

Constrains can be formulated both on system input and output, for example they can take the 

following form  
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 (8.3) 

with umin, umax, ymin, ymax, Δumin, and Δumax being constants.  

When the optimal control sequence is computed often only a sunset of samples (steps) of the 

entire control horizon Nc are applied to the system before the process described above is iterated. 

 

Remarks. 

 Only for the sake of simplicity the system in (8.1) has been supposed to be single input 

single output and the MCP control problem formulation for multi-input multi-output 

systems can be found in the literature.  

 At the time instant k, the cost function in (8.2) depends on future samples of the output. 

For this reason a predictive model of the system to be controlled is required together with 

predictions of all the inputs, i.e., some predictions of the time evolution of the 

disturbances have to be known. 

 The cost function in (8.2) depends on two terms. The first one measures the distance 

between the system output and the reference, while the second is a measure of the control 

effort. Consequently, the resulting evolution of the system output is a tradeoff between 

minimization of the tracking error and the magnitude of the control action.  

 By means of the constrains in (8.3) it is possible to impose not only the maximum 

variations that the system output and control action can assume, but also the maximum 

rate of variation of the control action can be decided.  

The problem of finding the optimal sequence for the cost (8.2) at the time k can be recast as a 

more standard optimization problem with constraints which allows its numerical solution.  

In particular, after some algebraic manipulation the system dynamics to be considered can be 

rewritten as  

 ( ) u wY Hx k U W      (8.4) 

where  
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and  
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Taking into account (8.4)-(8.7), after additional algebraic manipulations the optimal control 

sequence can be found by solving the following quadratic programming problem  

 min 2T

U
U U U



    
   (8.8) 

subject (8.3), where  

 
 ( )

T
u y u u

T T
u y r u u

I
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and  

 
( ) ( 1) ( ) ,

( 1) ( ) ( 2) .

r r r r p

r c

Y y k y k y k N

U u k u k y k N

    

     
 (8.10) 

Notice that the problem (8.8) depends on the state x(k).  

Addition details about the numerical MPC formulation and its numerical solution can be 

found in [168-170]. 

8.2 Design of MPC for computation of the sensible heat 

Section 8.1 has pointed out that the key ingredients to design an MPC algorithm are: i) a 

predictive model of the system to be controlled so that when applying the optimal control 

sequence to the real system the resulting evolution is as close as possible to the expected one, ii) 

the weights δu and δy which characterize the cost function (8.2) as well as the predictive and 

control horizons and iii) the constraints in (8.3). In particular we remark that the model of the 

system should not only be predictive but also as simple as possible to reduce the complexity of 

the optimization problem. 
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In the case of the temperature control there is an additional design choice to be made which is 

connected to discretization of the building dynamics. Indeed, indoor air temperature evolves in 

the continuous time domain. On the other hand the system model in (8.1) for the design of MPC 

algorithms is set in the discrete time domain. Consequently, there is the need to use some 

discretization method to map the former onto the latter.  

For the case studies in Chapter 5 for the intermittent running regime with reference set points 

scheduled in accordance with Table 5.4, we have made the following choices.  

 As building model to be used during the optimization of the cost function (8.2) we 

exploited those designed in Chapter 7. Indeed, these models have shown to be simple, 

fast to be integrated numerically and they provide accurate predictions of the indoor 

air temperature, energy demand and comfort. More in details, we use G15 models 

which have provided the best values of the performance indices introduced in Chapter 

7 and their identification is not time consuming. Here, we just recall that a G15 model 

is composed by a set of second order thermal networks (one for each building 

element) and the parameters of each network are so that its frequency response 

matches that of the corresponding element of the detailed building model in Chapter 2.  

 As discretization method we have considered the zero order hold (ZOH). In so doing 

the resulting discrete time system is still strictly proper (i.e., the system output does 

not depend directly on the input [96]) and consequently the MatLab optimization 

procedures can be exploited to for the numerical solution of the problem. Here, we 

recall that given a liner time invariant continuous time system of the form  

 
,

,

c c c

c

x A x B u D w

y C x

  


 (8.11) 

it is possible to map it onto a discrete time system of the form (8.1) via the following 

transformations  

 
0 0

,     ,    
s s

c s c c

T T
A T A A

c cA e B e B d D e D d
       (8.12) 

where Ts is the sampling time.  

In the case of temperature control, this parameter has been chosen so that aliasing 

phenomena are avoided [171]. 

 The prediction horizon has been chosen so that it is possible to capture well the 

temperature dynamics while the control horizon is a quarter of the prediction one. 
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 The weighs of the cost function (8.2) has been selected as a tradeoff between 

reduction of energy consumption and thermal comfort for the occupants. Indeed in the 

case of temperature control the first term in (8.2) measures the distance between the 

actual temperature and that required set point, while the latter takes into account the 

heating/cooling required during the control horizon.  

 Constraints in (8.3) has been set so that it is always possible to achieve the reference 

temperatures.  

8.3 Numerical Results 

In this section we evaluate the numerical results of the MPC strategy for the indoor air 

temperature control for all the case studies in Chapter 5 when intermit running regime is used 

and the indoor air humidity is assumed to be controlled a 50%. In what follows some results, 

exemplar with respect to the energy building dynamic behaviour, are presented.  

We start considering the time evolution for a sample day for some lightweight office 

buildings in cold winter zones. As clearly shown in Figure 8.2a the indoor temperature is 

controlled over the hours of interested for this kind of buildings as specified in Table 5.4. Notice 

that such table also reports the control activation ranges, comprised by the indoor air temperature 

set points, which change, according to the selected schedules, from winter (heating dominated) 

to summer (cooling dominated) season and vice versa.  

Figure 8.2. Winter season (53th day of the year). (a) Indoor air temperature evolution of some lightweight 

office buildings in cold winter zones over a set of hours; (b) transient dynamics. Grey shaded areas denote the 

time range where the MPC controller is deactivated according to Table 5.4. 

 

To better investigate the transient dynamics when the MPC temperature controller is switched 
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of the controller. It is interesting to note that the resulting indoor temperature evolution towards 

the required set point is not assigned a priori but depends on the weather data and which 

constraints become active. Consequently, different relaxation times are obtained (see Figure 

8.2b). 

Figure 8.3. Winter season (53th day of the year). (a) Sensible heat and (b) Comfort indices for some 

lightweight office buildings in cold winter zones over a set of hours (b) transient dynamics. Grey shaded areas 

denote the time range where the MPC controller is deactivated according to Table 5.4. 

 

The required sensible heat is instead reported in Figure 8.3a. In particular in the case of some 

weather zones (Denver and Milan) the algorithm automatically decides to set the heating demand 

to zero therefore allowing the free floating of the temperature within the acceptable range (see 

also Table 5.4), and in the case of Denver, the controller is restored for a short time around 18:00 

before it is deactivated. The realise of the temperature for Denver and Milan is mainly due to the 

higher solar radiations which are depicted in Figure 8.4 for the sake of completeness. The MPC 

algorithm can predict, via the building model, that these radiations can lead the indoor air 

temperature inside the acceptable range (see Table 5.4.) without any addition heating load. 

Hence, for some hours the heating demand is reduced to zero (see Figure 8.3a) and then the 

indoor air temperature increases. In the case of Denver there is a smaller free floating region not 

only because solar radiations for this weather zone are smaller when compared to those in Milan, 

but also because the outdoor air temperature is lower in the case of Denver, but time histories of 

the outdoor temperatures are not reported here for the sake of brevity. 

Figure 8.3b shows that when the controller is activate, the comfort indexes are acceptable. 

Only for the case of Milan there is small increase of PMV and PPD during the free floating 

regime. Similar results are obtained during summer season, as shown in Figure 8.5 and Figure 
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8.6 for some warm weather zones. We remark that in this case it is even more evident how 

constraints effect the resulting relaxation time and comfort. 

Figure 8.4. Winter season (53th day of the year).Solar radiation (a) north (b) south (c) east and (d) west 

walls. Grey shaded areas denote the time range where the MPC controller is deactivated according to Table 

5.4. 

 

Indeed, Figure 8.5 shows that the time to reach the required set point is about 30 min in the 

case of Nice and Rome, but it is about one hour for Athens and it increases to one hour and half 

for Naples. As a consequence for the latter two weather zones the comfort indexes enter 

definitely in a satisfactory range, e.g. PPD less than 20%, after a longer transient (see also Figure 

8.6b). 

In order to analyze the system performance with respect to comfort, the time histories of 

PMV, PPD and mean radiant temperature, mrT , (see Section 2.3), are assessed all over the year. 

For the investigated case studies, such analysis showed that good PMVs and PPDs are achieved. 
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Figure 8.5. Summer season (220th day of the year). (a) Indoor air temperature evolution of some 

lightweight office buildings in cold winter zones over a set of hours; (b) transient dynamics. Grey shaded 

areas denote the time range where the MPC controller is deactivated according to Table 5.4. 

 

Figure 8.6. Summer season (220th day of the year). (a) Sensible heat and (b) Comfort indices for some 

lightweight office buildings in cold winter zones over a set of hours (b) transient dynamics. Grey shaded areas 

denote the time range where the MPC controller is deactivated according Table 5.4. 

 

It particular via a precise prediction of the system dynamics it is possible to restore 

satisfactory comfort levels which were lost during control deactivation because of the change of 

the external conditions and the variable internal thermal loads. In what follows thermal comfort 

performance are discussed taking into some sample days, simulated buildings and weather 

locations. In particular, Figure 8.7 and Figure 8.8 show the thermal comfort (described by means 

of PMV, PPD and mrT ) related to the simulated Mall and Office buildings located in some 

weather zones with cold winters and hot summers, respectively. Precisely, Figure 8.7 refers to 

several winter days, ranging from January 22nd to 28th related to lightweight buildings located in 

13 14 15 16 17 18 19
24

26

28

30

32

34

time (h)

In
d
o
o
r 

A
ir

 T
em

p
er

at
u
re

 (
°C

)

 

 

Rome

Naples

Athens

Nice

 

14:00 14:30 15:00 15:30 16:00
24

26

28

30

32

34

time (h)

In
d
o
o
r 

A
ir

 T
e
m

p
e
ra

tu
re

 (
°C

)

 

 

 

(a) (b) 

13 14 15 16 17 18 19
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

time (h)

S
en

si
b

le
 C

ap
ac

it
y

 (
k

W
)

 

28

30

32

34

T
r (

°C
)

0

1

2

3

P
M

V

13 14 15 16 17 18 19
0

25

50

75

100

time (h)

P
P

D

 

(a) (b) 

13 14 15 16 17 18 19
24

26

28

30

32

34

time (h)

In
d
o
o
r 

A
ir

 T
em

p
er

at
u
re

 (
°C

)

 

 

Rome

Naples

Athens

Nice



Chapter 8: MPC for the optimal computation of the sensible load  

179 

 

Freiburg, Copenhagen, Milan and Denver. Here, it is clearly shown that during the steady state 

regime (subsequent to the switching on transient time), very good PMVs (always included 

between -0.5 and 0) and PPDs (always less than the 10%) are achieved, despite low values of the 

mean radiant temperature mrT .  
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Figure 8.7. Lightweight Mall buildings in cold winter zones. Time history of PMV, PPD and Tmr. Grey 

shaded areas denote the time range where the MPC controller is deactivated according to Table 5.4. 

 

Similar results are obtained during the summer season, as shown in Figure 8.8. Such figure 

refers to the days ranging from June 29nd to July 5th (i.e. 180th - 186th days of the year) and to the 

heavyweight Office buildings located in Athens, Naples, Jerusalem and Rome. Here, as a result 

of the optimal performance of the control actions, good PMVs (always included between 0 and 

0.5) and PPDs (always less than the 15%) are obtained during the steady state regime.  

20

25

30

T
r(°

C
)

 

 

-1
-0.5

0
0.5

1
1.5

P
M

V

Naples Rome Jerusalem Athens

180 181 182 183 184 185 186
0

15
30
45
60

time (day)

P
P

D
 (

%
)

 

Figure 8.8. Heavyweight office in hot summer zones. Time history of PMV, PPD and Tmr. Grey shaded 

areas denote the time range where the MPC controller is deactivated according to Table 5.4. 
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To complete the analysis, we show the dynamic trends of the indoor air temperature and the 

control action (sensible heating/cooling to add or subtract to the space) required for the optimal 

temperature control. Such analysis takes into account the same weather zones, buildings, and 

weather conditions investigated in Figure 8.7 and Figure 8.8.  

In particular, Figure 8.9a refers to the case of lightweight Mall buildings in Freiburg, 

Copenhagen, Milan and Denver, while Figure 8.9b is referred to some hot summer days in 

Athens, Nice, Jerusalem and Rome for heavyweights office buildings. As in Chapter 5, in these 

figures it is possible to observe a proportional dependence of the control actions occurring in the 

investigated weather conditions. In case of cold winter days as the indoor temperature goes much 

lower the required set point during control deactivation (gray shaded areas), therefore when the 

controller is switched on, high sensible heat must be provided to the zone to recover comfort 

fast.  

A similar result can be observed in case of hot summer days, as depicted in Figure 8.9b. Here, 

it is clearly shown that the farther the indoor from the set point, the higher the cooling 

requirements.  

 

Figure 8.9. Control actions in the case (a) Lightweight Mall buildings in cold winter zones and (b) 

Heavyweight office in hot summer zones. Grey shaded areas denote the time range where the MPC controller 

is deactivated according to Table 5.4. 

8.4 Comparison with the MRAC approach 

In this section we compare the cooling/heating required to control the indoor air temperature 

when either the MPC strategy (designed in Section 8.2) or the model reference adaptive 

algorithm (designed in Chapter 5) are used. Specifically, the analysis is carried out under two 
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different operative conditions: (i) the weather data and internal loads are perfectly known, and 

(ii) predictions of the weather data and the internal loads are affected by random uncertainties. 

Precisely we assume that these measurements are affected by an error of about ±20%. Again, as 

case of studies we consider all those presented in Chapter 5 for the intermittent running regime 

with reference set points scheduled in accordance with Table 5.4. 

Table 8.1 collects the yearly percentage energy variations when the model predictive 

controller replaces the model reference adaptive algorithm for the computation of the heating (H) 

and cooling (C) demands in the case of perfect knowledge of weather data and the internal loads. 

Hence, entries of Table 8.1 are computed as 

 100
MRAC MPC

MRAC

E E

E


 (8.13) 

with EMRAC (EMCP) being the energy required for heating or cooling the thermal zone of interest 

when the model reference adaptive algorithm (the model predictive controller) is used. 

Consequently, negative values of (8.13) indicates that better energy performance have been 

obtained when the adaptive approach has been exploited to tame the building dynamics. 

Analogously, positive values of (8.13) means that the predictive strategy has performed better for 

that specific case. From Table 8.1 the following remarks can be drown. 

Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 
Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 
Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 

Copenhagen 
H -0.89 -0.80 0.07 -0.03 3.10 1.97 

C -1.42 -1.19 0.64 1.11 1.36 1.48 

Denver 
H -1.46 -2.16 0.04 -1.01 2.36 0.83 

C -0.98 -0.18 -0.10 1.78 3.48 2.12 

Freiburg 
H -1.01 -1.18 -0.38 -0.64 2.43 1.15 

C -1.47 -2.26 -0.13 -0.24 1.05 3.46 

Milan 
H -0.82 -0.76 -0.08 -0.19 3.14 0.74 

C -0.56 0.43 -0.28 1.95 1.15 1.29 

Rome 
H -2.10 -1.99 -0.82 -1.18 1.78 -0.43 

C 0.07 -0.90 -0.70 0.23 0.85 0.86 

Nice 
H -1.51 -2.32 -0.37 -0.98 3.29 0.07 

C 0.18 0.42 -0.13 1.12 0.71 1.51 

Naples 
H -2.24 -2.30 -0.81 -1.31 2.59 -0.32 

C 0.72 0.52 -0.58 1.87 0.913 0.84 

Jerusalem 
H -2.25 -3.64 -0.44 -1.30 2.52 -0.23 

C 0.82 -0.34 -0.51 0.35 0.93 1.14 

Athens 
H -1.89 -2.76 -0.89 -1.27 0.11 -0.86 

C 1.03 1.57 -0.35 1.98 0.94 1.27 

Table 8.1. Percentage energy variation, heating (H) and cooling (C), when the model reference adaptive 

controller is replaced with MPC strategy in the case of perfect knowledge of the weather data and internal 

loads computed by using (8.13).  
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Remarks 

 The model reference adaptive strategy has performed better with respect to the 

predictive controller for 58 times out of 108 energy analysis. Specifically, the required 

yearly heating is smaller when the adaptive approach is used for 38 times out of 54 

case studies. On the other hand the MPC has shown to be more effective for the 

optimal computation of the cooling demand as the required cooling energy is smaller 

than that obtained when the adaptive controller is inserted in the control loop 36 times 

out of 54. 

 The MRAC strategy performs better than the predictive one especially for buildings of 

small and medium sizes (houses and offices). Precisely, for the case of houses the 

MRAC approach requires smaller energy demands 27 times out of 36 energy analyses 

(heating and cooling for nine weather zones, lightweight and heavyweight buildings). 

Instead, for office buildings the adaptive strategy is more convenient under the energy 

consumption viewpoint 25 times out of 36. On the other hand for buildings of large 

size (defined malls in Chapter 5), the MPC performs better than the MRAC algorithm 

as the energy consumption for controlling the indoor air temperature is smaller 32 

times out of 36.  

 The MRAC strategy is less energy consuming for lightweight buildings 28 times out 

of 54 case studies, and 27 times out of 54 case studies for heavyweight buildings.  

 From Table 8.1 is possible to note that, in the case of perfect knowledge of the 

weather data, there is a slight difference between the energy performance provided by 

the adaptive control solution and the predictive strategy. Indeed the maximum heating 

positive percentage variation is 3.29% and it has been obtained in the case 

heavyweight mall in Nice. Instead, the maximum heating negative percentage 

variation is -3.64% and it has been detected in the case of heavyweight house in 

Jerusalem. Also the cooling demands required by the adaptive and predictive 

strategies are comparable. In this case, the maximum cooling positive percentage 

variation is 3.48% (lightweight mall in Denver), while the maximum cooling negative 

percentage variation is -1.47% (lightweight house in Freiburg).  

We point out that in this working condition both the adaptive and the model based control 

solutions have similar energy performance as both can effectively impose the required 

scheduling in Table 5.4. Consequently, in steady state regime both controllers compensate 

disturbances to keep the desired set-point indoor air temperature.  
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Consider now the case where the weather data and the internal loads are known with a 

random uncertainty of about ±20% .Table 8.2 reports the yearly percentage energy variations 

when the model predictive controller replaces the model reference adaptive algorithm for the 

computation of the heating (H) and cooling (C) demands in this case.  

Weather 

zone 
Mode 

House Office Mall 

Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 
Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 
Light 

(kWh/m2y) 
Heavy 

(kWh/m2y) 

Copenhagen 
H -1,66 -1,01 -0,58 -0,23 2,83 1,55 

C -1,58 -5,1 -4,73 -49,78 -59,42 -65.28 

Denver 
H -2,84 -2,47 -1,6 -1,32 1,6 0,62 

C -1,03 -1,09 -2,03 -5,56 -4,94 -38,98 

Freiburg 
H -2,26 -1,44 -1,42 -0,88 1,95 0,91 

C -1,62 -3,56 -3,5 -12,71 -17,34 -53,29 

Milan 
H -2,11 -1,2 -1,37 -0,6 2,5 0,44 

C -0,61 -0,55 -2,41 -5,87 -13,42 -85,49 

Rome 
H -6,44 -3,42 -4,32 -2,24 0,01 -1,12 

C 0,07 -1,44 -1,39 -3,69 -8,69 -24,01 

Nice 
H -7,07 -4,59 -4,57 -2,53 1,38 -0,87 

C 0,16 -0,37 -2 -4,86 -14,62 -63,4 

Naples 
H -7,01 -3,7 -4,68 -2,55 0,66 -1,2 

C 0,68 0,04 -1,17 -1,82 -8,2 -23,44 

Jerusalem 
H -8,76 -5,77 -5,69 -3,06 0,04 -1,32 

C 0,82 -0,76 -0,83 -3,2 -7,33 -25,82 

Athens 
H -10,21 -5,36 -6,94 -3,09 -2,93 -2,17 

C 1,03 1,23 -0,79 -0,02 -3,81 -7,84 

Table 8.2. Percentage energy variation, heating (H) and cooling (C) computed by using (8.13), when the 

model reference adaptive controller is replaced with MPC strategy in the case of the weather data and 

internal loads affected by uncertainties.  

 

When weather data available to the model based controller are affected by uncertainties, 

closed-loop performance, both in terms of tracking of the required temperature set point and 

demanded heating/cooling, get worsen. In particular the following remarks can be drown. 

 

Remarks 

 The model reference adaptive strategy has performed better with respect to the 

predictive controller for 89 times out of 108 energy analysis. Specifically, the required 

energy demand is smaller when the adaptive approach is used 42 times out of 54 case 

studies when computing heating, and 47 times out of 54 case studies when considering 

cooling demands. 

 In the case of heating, the model based strategy performs better than the adaptive one 

only in the case of lightweight mall buildings and some heavyweight mall buildings 

located in cold weather zones (i.e., Copenhagen, Denver, Freiburg, and Milan). 



8.4 Comparison with the MRAC approach 

184 

 

Nevertheless the energy reduction is limited and never exceeds 2.83% (lightweight 

mall buildings in Copenhagen). 

 In the case of cooling, the predictive control approach outperform the adaptive 

algorithm mainly for some lightweight house buildings located in warm weather zones 

(Rome, Nice, Naples, Jerusalem and Athens). In this specific case, the advantage in 

replacing the model reference adaptive controller is even slighter as the maximum 

energy reduction is 1.03% (lightweight house building in Athens). 

 There are several cases where the model reference adaptive algorithm outperform the 

model based control strategy in terms of heating/cooling demands. In particular in the 

case of heating, the adaptive control method for computing the sensible heat provides 

an energy reduction which on the average is 3.2%. The maximum heating energy 

reduction by using the MRAC algorithm instead of the predictive one is about 10.21% 

(lightweight house building in Athens). 

 When the weather data are affected by uncertainties the model reference adaptive 

control algorithm in Chapter 4 results to be more energy saving that the model based 

approach when computing cooling demands. In particular cooling demands are on the 

average 16.2% smaller when the adaptive controller is inserted in the control loop. For 

some cases we have also detected a cooling energy greater than 50% (e.g., 

heavyweight mall buildings in Nice and Milan). 

It is important to point out that the model reference adaptive controller was found to be 

remarkably more convenient, under the energy consumption viewpoint, for those cases where the 

model based controller has shown poor tracking performance of the reference temperature set 

points defined in Table 5.4 due to the presence of unexpected variations of the weather data. In 

this regard, Figure 8.10 shows the temperature dynamics and the required sensible heat provided 

by both control strategies in the case of a heavyweight office building in Milan over a summer 

day (243th day of the year, August 31st). For this day, overestimated weather data and internal 

loads were available to the MPC controller. Consequently, the peak of the sensible heat to be 

removed (cooling) is higher at the control activation, and even though the indoor air temperature 

enters in the admissible range at the very beginning (see Table 5.4), the required sensible heat 

does not converge to zero. This is mainly because the controller is assuming wrongly higher 

outdoor air temperature and solar radiations in future time instants, therefore it requires to 

subtract additional heat with the aim of keeping the indoor air temperature within the admissible 

range of variations.  
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Figure 8.10. Heavyweight Office in Milan, 245th day of the year: (a) indoor air temperature, (b) sensible 

capacity (control action).Grey shaded areas denote the time range where controllers are deactivated 

according to Table 5.4. 

 

The effect of uncertainty on the weather data becomes even more evident from 13:30 to 15:30 

when the outdoor temperature and the solar radiations increase. In particular the indoor 

temperature is reduced to 23.5°C which implies additional cooling despite an indoor air 

temperature of 25°C is acceptable according to the scheduling in Table 5.4. We remark that in 

this case the MRAC approach in Chapter 4 keeps constantly the indoor air temperature at the 

acceptable upper bound and consequently a smaller control action (sensible load) is required. 

Hence, a less yearly cooling demand is achieved. Precisely, the MRAC strategy requires about 

5.87% less cooling energy with respect to the model based solution (see Table 8.2). 

Another unwanted dynamic induced when weather data are not precisely known and 

predictive solutions are used is the misdetection of activation and deactivation of the controller. 

To better analyse this effect, Figure 8.11 shows the case of a lightweight mall in Athens during 

the 80th day of the year (February 26th). For this building configuration there is not the need to 

control the indoor air temperature between 14:00 and 16:45. Hence, the adaptive controller is 

deactivated allowing the free floating of the indoor air temperature in the preassigned range (see 

Table 5.4). On the other hand during the 80th day of the year, underestimated weather data and 

internal loads are available to the MPC strategy. Hence, the control algorithm decides to provide 

to the thermal zone an additional positive sensible heat which in turns increase the indoor air 

temperature without improving comfort. It is also interesting to note that for this case study, 

uncertainties on weather data and internal loads induce an overshoot at control activation and a 

steady state error of about 0.5 °C (see zoom in Figure 8.11a).  
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Figure 8.11. Lightweight Mall in Athens, 80th day of the year: (a) indoor air temperature, (b) sensible 

capacity (control action).Grey shaded areas denote the time range where controllers are deactivated 

according to Table 5.4. 

 

A similar unwanted behaviour has been also detected in case of a lightweight house in Athens 

during the 50th day of the year (February 19th). As clearly shown in Figure 8.12, for this case, 

underestimated weather data and internal loads induce saturation of the control variable at the 

control activation (Figure 8.12b) and an overshoot of 2.5 °C with respect to the low admissible 

indoor air temperature bound (see also Table 5.4). Furthermore, also for these operative 

conditions, there is a misdetection of the control deactivation which occurs at 12:30 instead of 

11:30.  

Figure 8.12. Lightweight House in Athens, 50th day of the year: (a) indoor air temperature, (b) sensible 

capacity (control action).Grey shaded areas denote the time range where controllers are deactivated 

according to Table 5.4. 
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Similar additional and unnecessary heating has been also observed for several winter days. 

Consequently, the model based strategy is less convenient of about 10.21% with respect to the 

adaptive solution when uncertainties jeopardize model based control performance as reported in 

Table 8.2. Also additional unnecessary cooling have been also detected when the predictive 

algorithm is inserted in the control loop in the case of uncertain working conditions. For 

instance, in Figure 8.13 it is depicted the case of a Heavyweight Mall in Rome during the 185th 

day of the year (July 4th). In particular we note that during the time range of interest, i.e., from 

11:00 to 21:00 (see also Table 5.4 for the scheduling policy), there is the need for cooling only 

from about 15:00 to 19:45 in order to keep the indoor air temperature in the required range (see 

Table 5.4). On the other hand, as overestimated weather data and internal loads are available to 

the predictive strategy, an unnecessary cooling is provided over the entire day. Such additional 

cooling has been observed also for other days of this specific case study when input data are 

affected by uncertainties. Consequently, the overall yearly cooling is about 24% smaller when 

the adaptive algorithm replaces the model based control approach (see Table 8.2). 

Figure 8.13. Heavyweight Mall in Rome, 185th day of the year: (a) indoor air temperature, (b) sensible 

capacity (control action).Grey shaded areas denote the time range where controllers are deactivated 

according to Table 5.4. 

 

It is interesting to note that for all case studies analysed form Figure 8.10 to Figure 8.13, the 

model reference adaptive controller in Chapter 4 has shown to provide satisfactory tracking 

performance also in the case of input uncertainties. This is mainly due to the ability of the 

control algorithm to adjust its gains also to unexpected variations of the weather data and internal 

loads. For the sake of completeness, Figure 8.14 shows the adaptive gains for the cases discussed 

above whose dynamics depend on the actual indoor air temperature evolution. 
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From the implementation viewpoint in the in-house code DETECt, we remark that the time 

required for simulating the building dynamics when the predictive algorithm is used in the 

control loop is larger than that obtained when the adaptive algorithm is exploited for their 

regulation. The increase of simulation time is up to ten times. This is mainly due to the need to 

solve online the optimization problem (8.8). 

Figure 8.14. Evolution of the adaptive gains for some case studies (a) Heavyweight Office in Milan, 245th 

day of the year (b) Lightweight Mall in Athens, 80th day of the year (c) Lightweight House in Athens, 50th day 

of the year (d) Heavyweight Mall in Rome, 185th day of the year. 
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The aim of this chapter was twofold. In the first part we have designed for the buildings in 
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time predictive and simple to simplify the online solution of dynamic optimization problems, the 

low order building systems in Chapter 7 have been exploited during the control design. Several 

case studies have shown the effectiveness of the approach in the case of perfect knowledge of 

weather data and internal loads. In the second part of the chapter a comparison, in terms of 

heating/cooling demands, between the model based strategy and the model reference adaptive 

control solution in Chapter 4 has been carried out both in the case of perfect knowledge of the 

weather data and internal loads as well as when these measurements are affected by 

uncertainties. Numerical results have shown that in the former case the controllers have similar 

performance. This is mainly because both are effective solutions to impose the indoor air 

temperature in accordance with the scheduling in Table 5.4. Instead, in the latter working 

condition, the adaptive control approach has resulted to be more convenient than the model 

based solution under the energy saving viewpoint. The increase of energy consumption in the 

case of severe uncertain weather conditions and internal loads is mainly caused by the lack of 

robustness of classical model based control algorithms to face unexpected changes of the input 

data. On the other hand the adaptive control method provides always satisfactory tracking of the 

reference signals via adaptation of the control gains on the basis of the actual difference between 

the building dynamics and those of the reference model. We point out that an in-depth 

comparison between the predictive and adaptive solutions is out of the scope of the thesis as 

additional features should be taken into account for such a comparison which have been left out 

in this work. For example predictive solutions might be re-designed by using the formalisms of 

stochastic dynamical systems to manage better uncertain data. Consequently, the comparison 

here proposed has the only aim to further show the robustness of the model reference adaptive 

strategy in Chapter 4 when applied to buildings to impose precisely the required preassigned set 

points to the thermohygrometric variables of interest. 
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Chapter 9                                                   

CONCLUSION 

In this thesis, a novel Enhanced Model Reference Adaptive Control (EMRAC) scheme is 

presented. The reference model is obtained by a Linear-Quadratic (LQ) optimization and it is 

developed for controlling nonlinear building dynamics by imposing to them optimal profiles of 

the thermohygrometric variables. The proposed LQ-EMRAC strategy enhances the classical 

MRAC adaptive algorithm with additional adaptive actions, necessary to increase its ability to 

deal with high variable external disturbances, parameter uncertainties and unmodelled dynamics. 

The goal of this control scheme is to strictly control the thermohygrometric behaviour of 

buildings in uncertain conditions (also for guaranteeing indoor comfort). This is obtained 

through the control ability to appropriately and automatically vary its control gains, without 

requiring a precise a priori knowledge of the building dynamics and/or its external disturbances. 

In fact, with respect to alternative adaptive approaches, the proposed control law relies on a 

minimal knowledge of the system dynamics and it can be easily implemented. 

The LQ-EMRAC control scheme has been embedded in a new release of DETEC, a dynamic 

building energy performance simulation. In this new code release, an additional tool for the 

dynamic assessment of several comfort indexes (PMV, PPD, mean radiant temperature) has been 

also included. Through this tool, the LQ-EMRAC performance (in terms of control robustness 

against disturbances) was extensively analysed through the development of different case 

studies. In particular, they refer to: i) three different building uses (small house, office building 

and large commercial mall); ii) two diverse building envelopes (lightweight and heavyweight); 

iii) nine different weather zones (ranging from cold winter climates to temperate Mediterranean 

ones). Energy and comfort analyses were also carried out for continuous and intermittent control 

system operating strategies, as well as for different choices of the optimal reference profiles. 

Additional tests have been performed by taking into account the nonlinear thermal behaviour of 

roof and walls integrated with Phase Change Materials (PCM). 

Simulation results show that the proposed control strategy is able to impose the required 

reference behaviours to both indoor air temperature and humidity, in any simulated conditions 

and for both the continuous and intermittent regimes. As a result, indoor air temperature and 
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humidity tracking mean squared errors, for each investigated case study, resulted to be always 

negligible. Due to such accurate thermohygrometric control, high occupants’ comfort levels are 

also achieved, obtaining good PMVs (ranging from -0.5 to 0.75) and PPDs (less than 10% in 

winter and 20% in summer) for all the investigated case studies. 

In addition, due to the LQ-EMRAC ability, simulation results also show: i) smooth transitions 

of both the indoor air temperature and humidity during transient operations; ii) bounded dynamic 

behaviours of the adaptive gains; iii) bounded sensible and latent heating and cooling control 

actions. These features have been also detected in the case of the control of multi-zone systems 

where a set to thermal zones are completely included in others and each of them has different 

thermohygrometric requirements. As during the design state the thermal coupling between zones 

were not considered, the robustness of the adaptive solution to unmodeled dynamics remain 

proven. Furthermore, due to the typical features of the LQ-EMRAC, its implementation in the 

real environment only requires measured data, being able to automatically deal with both the 

weather variability and the time-varying nonlinearities of the system (e.g. due to innovative 

energy saving solutions, PCM adoption in construction materials, etc.).  

For the case studies presented in Chapter 5 when the intermittent operation policy in Table 5.4 

is used, also predictive control strategies have been designed and their performance, in terms of 

tracking of the required set points and heating/cooling energy demand, have been compared to 

that given by the adaptive solution. Numerical results have shown that in the case of perfect 

knowledge of weather data and internal loads, these control solutions have similar performance, 

mainly because both strategies are able to impose the required steady-state regimes. Nevertheless 

in case of uncertain conditions, the adaptive controllers is still able to impose the set point 

temperatures and therefore also better energy performance are achieved. It is important to point 

out that such a comparison has been done only for the intermittent regimes in Table 5.4 where 

the required set points are known a priory. Consequently, an in-depth comparison between 

adaptive and model based solutions require additional investigations and it is still an open 

question.  

As MPC strategies require very predictive models of the building temperature dynamics that 

are at the same time as simple as possible in order to facilitate the solution of the online 

optimization problems, in this thesis we have also proposed and implemented a systematic 

procedure for the generation of low order grey-box building models. Different from the approach 

presented in [158, 160] we have chosen as system outputs the temperatures of the surfaces of the 

building envelope so that also comfort can be well predicted. The effectiveness of the method 
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has been validated numerically by considering different case studies which are diverse with 

respect to the size, geometry and construction materials. The indoor air temperature, 

heating/cooling demands, as well as comfort indexes (i.e., man radiant temperature, PMV and 

PPD) predicted via the low order building models have been compared to those provided by the 

detailed model implemented in DETECt. The deviations between the outputs of the detailed and 

low order models have been quantitatively measured via a set of performance indexes which 

have been defined for this aim. Results confirm that for many reduced order systems such 

indexes take small values and therefore they can be used successfully for the design of advanced 

model based building controller. It is remarkable that these models can be exploited also for aims 

different from control design. Indeed by using reduced order models it is possible to i) reduce 

drastically the computation time to get an insight into building energy performance, especially 

when a large set of simulations are required to assess them [29] ii) derive mathematical models 

of building dynamics via reverse engineering methods when experimental data are available [30] 

and iii) simulate large groups of buildings organized in districts with the aim to evaluate energy 

performance [31]. Hence, the design of methods for the building model reduction represent an 

additional result.  

Finally, the main contributions and conclusions of the thesis are: 

 the design of a novel model reference adaptive control scheme, named LQ-EMRAC, 

for the control of thermohygrometric variables in buildings;  

 prove analytically the effectiveness of the novel control strategy to impose in closed-

loop the profiles generated via the model reference system; 

 the LQ-EMRAC scheme allows to obtain very accurate regulation and fast tracking of 

the thermohygrometric profiles in case of stringent indoor air requirements, which are 

often mandatory in case of hospital units, museum display cases, laboratory chambers, 

etc.; 

 improved reliability and usefulness of the adopted building simulation tool is obtained 

by embedding the LQ-EMRAC control scheme. Due to its ability to deal with a wide 

range of disturbances, multiple building simulations can be carried out without the 

need of tuning the control system for each building model. This feature is particularly 

useful in case of sensitivity analyses and optimization procedures, which require 

multiple parameters to vary during the whole optimization process; 

 the design of a systematic procedure for the generation of low order building models 

starting from a detailed but complex one. These models can be used for a variety of 
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aims especially for the design of advanced model based control strategies. The 

performance indexes proposed in the thesis have proven their effectiveness to predict 

fundamental quantities, i.e., indoor air temperature, heating and cooling demands, as 

well as comfort indexes; 

 a preliminary comparison, on very specific case studies, between the performance 

provided by the adaptive control solution and those given by model based controllers 

have been also carried out, showing that in the case of uncertain weather data adaptive 

controllers perform better. 

Possible future research might include: 

 the extension of the proposed control approach to building including renewable energy 

sources. Specifically, a possible investigation to solar collectors might be considered 

in order to propose an alternative solution to those recently presented in [172]; 

 an additional future research line can be the control of a group of buildings organized 

in thermal district. In this case the idea is to coordinate a group of buildings which 

share a set of energy sources so that the energy required from the resulting network is 

smaller than the sum of energy required by each building when they are considered as 

individual systems. To achieve this aim more advanced design methods, e.g., complex 

networks [173], can be exploited.  
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Appendix A                                                                
ADAPTIVE CONTROL: A BRIEF OVERVIEW  

According to many dictionaries, to adapt means to change (oneself) so that one’s behavior 

will conform to new or changed circumstances. Hence, intuitively an adaptive controller can 

modify its behavior in response to changes in the dynamics of the process and in presence of the 

disturbances. Consequently, it is not a case that in the last fifty years adaptive control theory has 

been proved to be one of the most promising techniques to control complex plants whose 

dynamics are affected by disturbances and unknown parameters [137]. In this thesis, according 

to [137] we refer to an adaptive controller as a controller with adjustable parameters and a 

mechanism for adjusting them. In so doing an adaptive scheme is characterized via two loops. 

One loop is a normal feedback with the process and the controller, and the other one is the 

parameter adjustment loop. 

 The aim of this appendix is to provide to the reader some basic concepts and definitions 

about adaptive control as the control solution proposed for buildings in Chapter 4 belongs to a 

subclass of this set of controllers. 

A.1 Basic concepts about adaptive control 

According to the definition in [137], reported above, a generic adaptive controller can be 

represented as shown in Figure A. 1. The way of changing the controller gains in response to 

changes in the plant behavior and disturbances distinguishes one scheme from another. The 

method used to modify the control parameters is often referred to as adaptive law, update law or 

adjustment mechanism. 

A first way to classify adaptive strategies is to look how the adaptive law is combined with 

the control law. On the basis of the coupling between the inner loop and the outer loop in Figure 

A. 1, we distinguish indirect adaptive control (see Figure A. 2a) and direct adaptive control (see 

Figure A. 2b). 
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Figure A. 1. Generic adaptive control scheme (taken from [137]) 

 

Figure A. 2. (a) Indirect adaptive control scheme (b) Direct adaptive control scheme (taken from [140]) 

 

For the former class, plant parameters θ*, supposed to be unknown, are estimated on line and 

the time varying control parameters, say θc (t), are computed by solving an algebraic equation of 

the form θc (t)=F(θ(t)) with θ(t) being the estimate of  θ* at the time t.  Since the update law is 

based explicitly on the plant parameters, this kind of the adaptive approach is also known as 

explicit adaptive control.  

In the case of direct adaptive strategies, the control parameters are directly updated without 

any online estimations of the plant paramters. Often the adaptive law is given as a set of integral-

differential equations that are based on some measurable variables of the plant. When it is 

possible to re-parameterize the model of the plant in terms of the control parameters, i.e., when it 

is possible to construct what is known as implicit model of the plant, then it is possible to convert 

an indirect control scheme in a direct one. For this reason direct adaptive controllers are also 

known as implicit adaptive controllers.  

In all the previous control schemes the adaptive mechanism makes the closed loop dynamics 

nonlinear and time varying. The theory adopted to design the control action and to show the 

  

(a) (b) 
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effectiveness of the closed loop to track the input signal can be exploited for a further 

classification of the adaptive strategies. Mainly sensitivity approach, passivity theory and 

Lyapunov techniques have been widely used over the years. The pros and cons of each approach 

are briefly discussed below. 

Sensitivity. This method, introduced in the 1960s, was among the first approaches to design 

controllers able to adapt their parameters. At each time the derivative of the control parameter 

vector, i.e., dθc/dt, is in the direction that minimizes a given performance function. This 

derivative is called sensitivity function, and its on line computation is the main drawback of this 

methodology. In fact, despite of the simplicity of the method, the sensitivity function almost 

always depends on the plant parameters, that are supposed to be unknown. When approximations 

of the sensitivity function are adopted, like the well-known M.I.T. rule, it is difficult to prove 

rigorously closed-loop stability or bounded tracking error [137].  

Lyapunov Techniques. The problem of designing the adaptive law is formulated as a stability 

problem of a nonlinear dynamical system. In closed loop the dimension of the state space is 

augmented by the control parameters. The adaptive law is chosen so that the derivative of a 

candidate Lyapunov function is negative definite along the closed loop trajectories. In so doing, 

classical Lyapunov direct methods ensure stability and bounded adaptive gains [139]. The main 

challenge here is to find a Lyapunov function as their construction is systematically possible 

only for some classes of dynamical systems.  

Passivity. In this case, the inner and the outer loop of the control system in Figure A. 1 are 

often reshaped as a suitable feedback system such that only the feedback dynamics depend on 

the adaptive gains. Using this decomposition the feedforward system and the feedback system 

are independently designed and made passive [139]. Passivity theory ensures that the dynamics 

produced by the interaction between the feedforward and the feedback paths are still passive, 

hence boundedness of all the signals inside the loop remains proven. The fundamental advantage 

of this approach is that it is possible to prove stability in closed loop without taking into account 

the mutual interaction between parts of the control system.  

A.2 Classification of adaptive control schemes  

As we mentioned before, an adaptive controller may be considered as the result of a coupling 

between a control law with an adjustment mechanism. The way these ingredients are mixed 

generates different adaptive controllers with different properties. Nevertheless, many adaptive 

schemes in the literature belongs to one of the following generic set: gain scheduling, model-
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reference adaptive control, self tuning regulators, and dual control [137] which are shown in 

Figure A. 3. In want follows we will give a brief description of each of them not only for the 

sake of completeness, but also to better frame the control strategy proposed in Chapter 4 for the 

control of buildings.  

Figure A. 3. Possible of adaptive control schemes: (a) gain scheduling (b) model-reference adaptive control (c) self-

tuning regulator (d) dual control (taken from [137]). 

 

 

 

A.2.1 Gain Scheduling 

One of the earliest and most intuitive approach to adaptive control is gain scheduling (see 

Figure A. 3a). It was introduced in the 1950 and 1960 to control aircraft with high performance. 

It can be used for those cases where there exists a set of measurable variables, named also 

auxiliary measurements, whose determine the set of the operating conditions of the plant. For 

each operating regime the mathematical model of the plant is assumed to be well-known. Hence, 

it is possible to tune off-line the control parameter vector according to a preassigned control 

objective. The key idea behind gain scheduling algorithms is to select on-line the control 

parameters in agreement with the actual operating condition. Often the set of control parameter 

vectors are stored in a look-up table and they are selected, or scheduled, as function of the 

current operating regime. 

  

(a) (b) 

  

(c) (d) 
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Remarks 

1. Gain scheduling is particularly convenient when the plant dynamics depend in a well-

known fashion on a small set of variables which can be easily measured and define the 

operating regime and the mathematical plant description. 

2. One of the main advantage of this approach is that the control parameters can change as 

quickly as the auxiliary measurements, providing therefore a fast adaptation of the overall 

control system to a different working condition. On the other hand these switches make 

the overall control scheme a switching one, hence asymptotic stability could depend on 

the switching frequency [105]. 

3. Even if this control approach does not need complex online computations, for each 

operating condition is required to design a control parameter vector, then the design effort 

could be time consuming especially when the amount of operating regimes is not small.  

4. Since the controller is scheduled only on the basis of the actual auxiliary measurements. If 

there is a discrepancy between the actual plant dynamics and the model used to design the 

controller, then in some working condition the control objective could not to be achieved. 

The incapability to accommodate the controller to uncertain plants is due to the off-line 

design of the control parameters. The absence of a real learning capability is the main 

drawback of the gain scheduling approach, and historically, it has been a matter of a 

controversy whether this control scheme should be considered an adaptive system or not. 

A.2.2 Model-reference adaptive control 

This adaptive control strategy can be adopted when the control specifications are given in 

terms of a reference model. Hence, the reference model dynamics represent how the process 

output should respond to the command signal. Intuitively, the aim in the case of Model 

Reference Adaptive Control (MRAC) is to find an adaptive feedback control law that changes 

the dynamics of the plant so that its input-output dynamics are exactly those of the reference 

model.  

In the MRAC literature mainly two schemes have been proposed, i.e., series high-gain and 

parallel schemes. Nevertheless the most common are parallel schemes as that shown in Figure 

A. 3b. Also in this case, the inner loop is an ordinary feedback loop composed by the process and 

the controller. The outer loop adjusts the controller parameters so that the difference between 

process output y and the reference model output ym converge to zero. Even if the formulation of 

the model reference adaptive control is easy and appealing, finding adaptation laws to solve the 
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MRAC problem is not trivial. A quite standard procedure to design an MRAC scheme can be 

found in [24] and it is based on hyperstability theory developed by Popov [144] which can be set 

in the more general context of passivity theory [174]. Indeed, the methodology proposed by 

Landau in [24] to prove stability can be thought as a procedure that makes the closed loop 

dynamics passive. Briefly, the proposed design approach is based on recasting the closed-loop 

system, which includes also the adaptive gains, as a feedback system. Then passivity of both 

blocks are studied and imposed separately. Passivity theorem is finally used to assure 

dissipativity of the overall system and consequently the convergence of the plant dynamics to 

those of the reference model.  

The main advantage of this approach is the possibility to study performance of adaptive 

systems by studying the main blocks composing the control scheme (after its recast) without 

considering interaction between these blocks as far as they can be made passive.  

A.2.3 Self-Tuning Regulators  

The design of a Self Tuning Regulator (STR) scheme needs a fixed structure of the inner 

controller and relations whose map the plant parameters onto the parameters of the controller. 

Since the plant parameters are unknown recursive estimators, as those proposed in [163], can be 

exploited to identify plant parameters. When computing the control gains, the estimates of the 

plant parameters are assume to be the real parameters values, this approach is known in the 

literature as certainty equivalence principle.  

A typical STR scheme is shown in see Figure A. 3c. Again, the adaptive controller can be 

thought composed by two loops. The inner loop consists of the process and an ordinary feedback 

controller. The parameters of the controller are adjusted in accordance with the output of the 

recursive estimator. The block labeled Controller design maps the plant parameter estimates onto 

the control parameters so that tracking of the reference signal is assured.  

According to the previous description STR strategies are indirect adaptive strategies. 

Nevertheless for some schemes belonging to this family it is possible to re-parameterize the 

process so that the model can be expressed in terms of the controller parameters. This simplifies 

the control scheme because the block Control Design in Figure A. 3c disappears and the 

parameters of the inner controller are updated directly. In that cases the STR algorithm reduces 

to an explicit adaptive strategy. 

 

 



Appendix A 

200 

 

Remarks. 

1. The main advantages of STR control strategies are: (i) just the structure of the 

mathematical model of the plant has to be known, but not its parameters; (ii) the flexibility 

with respect to the control design methodology (linear quadratic, PID, minimum variance 

just to name few) and to the identification algorithm (recursive least square, maximum 

likelihood, extended Kalman filtering and so on). 

2. To perform its task, often parameter estimators need the use of probing control signals or 

perturbations. In fact, in order to ensure the convergence to plant parameters the input to 

the parameter estimator has to satisfy a set of conditions. This set of conditions are 

referred to as persistent excitation (PE). Obviously, the persistent excitation property 

strongly depends on the estimator strategy, i.e., each estimator algorithm is characterized 

by a set of conditions to be satisfied in order to guarantee convergence to zero of the 

estimation error. Since the input to the parameters estimator is generated by the inner 

loop, often it is not possible to guarantee a priori persistent excitation. Hence, extra 

(probing) signals have to be added.  

3. The main drawback of the STR strategy is that the stability analysis of the overall control 

scheme turns to be complicated because in general it is not possible to separate the inner 

loop dynamics form the outer loop dynamics. 

A.2.4 Dual Control  

Dual control schemes were the results of an attempt to formulate adaptive control as a 

solution of an optimization problem. According to this approach, the system and its environment 

are described by stochastic models. In particular, the plant parameters are modeled as a set of 

differential equations with zero right-hand side and an initial distribution that reflects the 

parameters uncertainty. The control objective is to minimize the expected value of a loss 

function, which is a scalar function of the augmented state (state variables and plant parameters) 

and the control action [116]. 

The solution of the problem can be obtained in principle by using stochastic dynamic 

programming. The resulting feedback controller, reported in Figure A. 3d, is one whose 

parameters are changed online (adaptive controller) by means of a nonlinear function that maps 

the hyperstate into the space control variables. Notice that the hyperstate is defined as the 

conditional probability distribution of the augmented state with respect to the measurements 

(output and input of the plant).  
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The main drawback of the dual control, that makes it unfeasible for practical problems, is that 

the hyperstate has to be computed online. In principle, the hyperstate belongs to an infinite 

dimensional vector space and it is the solution a complex nonlinear filtering problem which is 

difficult and time consuming to solve.  

A.3 Discussion 

In this Appendix basic concepts and definitions about adaptive control has been reviewed for 

the sake of completeness. Even though adaptive schemes can deal with plant parameters 

uncertainties each of them has pros and cons. Precisely, even though the gain scheduling 

schemes are easy to be implemented and allow a fast reconfiguration of the controller, they need 

the existence of a set of scheduling variables that can characterize the system response precisely. 

Self tuning schemes based on parameter estimators require instead some persistent excitation 

conditions to ensure closed loop stability, while dual control strategies are difficult to actuate, 

except for some specific systems. Consequently, in this thesis MRAC algorithms have been 

designed to solve the control problem in buildings. Indeed these strategies allow a systematic 

design of the control action to guarantee convergence to zero of the difference of the system 

dynamics and that of the reference model.  
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Appendix B                                                          
MODEL REDUCTION: ADDITIONAL RESULTS  

In this appendix we give additional details about the results of the model reduction approach 

proposed in Chapter 7. In particular in the first part we report for the sake of completeness the 

mathematical expressions of the probability density functions used throughout that chapter. In 

particular for each of them we point out its parameter vector, say ζ, which is reported in some 

tables of Chapter 7. Instead, in the second part of the appendix additional details about the 

performance indexes introduced in Section 7.2.1 and computed separately for each model, for 

each building shape, size and type, i.e., for all cases introduced in Chapter 5, are presented in 

summarizing tables.  

B.1 Probability density functions  

Normal Distribution 
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where b is the scale parameter of the distribution.
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where  μ is the Location, σ is the Scale parameter  and ν is the degrees of freedom parameter 
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Generalized Extreme Value Distribution 
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where k is the shape parameter, σ is the Scale parameter and μ is the location parameter. 

 

 

Inverse Gaussian 
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where μ is the scale parameter and λ is the shape parameter. 

 

 

Generalized Pareto 
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shape parameter k ≠ 0, scale parameter σ, and threshold parameter θ. 

 

 

Weibull 

 

1
( / )( )

b
b

x ab x
f x e

a a


  

   
  

        a b    

shape parameter b and scale parameter a. 

 

 

Rician 
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with non centrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0. I0 is the zero-order 

modified Bessel function of the first kind. 
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Birnbaum Saunders 
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with scale parameter β > 0 and shape parameter γ > 0, for x > 0. 
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where B( · ) is the Beta function. The indicator function I(0,1)(x) ensures that only values of x in 

the range (0 1) have nonzero probability. 
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where Γ(·) is the Gamma function. 
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where μ is the mean and σ is the scale parameter. 

 

Log-Logistic 
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where μ is the Log-mean and σ is the Log-scale parameter. 
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where μ is the Log mean and σ is the Log standard deviation.
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B.2 Additional results 

B.2.1 Maximum weekly Variation of Indoor temperature in free evolution 

Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for W2 model 

 Mean Variance PDF Parameters   

Light Bestest 8.01 1.05 Extreme Value 8.47 0.80  

HeavyBestest 9.59 4.33 Generalized Extreme Value -0.63 2.27 9.23 

Light Office 4.32 0.74 Log-Logistic 1.44 0.11  

Heavy Office 5.83 1.69 Log-Logistic 1.74 0.12  

Light Mall 3.18 1.89 InverseGaussian 3.18 16.99  

Heavy Mall 4.35 3.95 BirnbaumSaunders 3.95 0.45  

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for W22 model 

 Mean Variance PDF Parameters   

Light Bestest 11.74 1.58 Normal 11.74 1.08  

HeavyBestest 11.58 2.05 Weibull 12.19 9.71  

Light Office 6.50 0.33 Logistic 6.50 0.32  

Heavy Office 6.22 0.73 Rician 6.16 0.86  

Light Mall 2.30 0.15 Generalized Extreme Value 0.12 0.25 2.12 

Heavy Mall 2.02 0.25 Log-logistic 0.67 0.13  

Table B.1. Distribution of Temperature variation in free evolution for W2 Model 

Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for W15 model 

 Mean Variance PDF Parameters   

Light Bestest 1.01 0.02 Generalized Extreme Value -0.80 0.14 1.00 

HeavyBestest 0.97 0.10 Generalized Extreme Value -0.35 0.34 0.92 

Light Office 0.73 0.01 Extreme Value 0.77 0.06  

Heavy Office 0.67 0.02 Rician 0.66 0.13  

Light Mall 0.40 0.01 Generalized Extreme Value 0.04 0.08 0.34 

Heavy Mall 0.45 0.03 Log-Logistic -0.85 0.19  

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for W15 model 

 Mean Variance PDF Parameters   

Light Bestest 1.41 0.005 Gamma 440.66 0.003  

HeavyBestest 0.89 0.01 Log-Logistic -0.12 0.06  

Light Office 0.83 0.01 Generalized Extreme Value 0.05 0.06 0.79 

Heavy Office 0.49 0.03 Generalized Pareto -0.45 0.37 0.23 

Light Mall 0.38 0.01 Weibull 0.42 5.09  

Heavy Mall 0.26 0.01 Gamma 9.83 0.03  

Table B.2. Distribution of Temperature variation in free evolution for W15 Model 

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for W22 model 

 Mean Variance PDF Parameters   

Light Bestest 0.63 0.0002 t Location-scale 0.64 0.02 0.96 

HeavyBestest 0.49 0.03 Generalized Pareto -0.91 0.52 0.22 

Light Office 0.43 0.01 t Location-scale 0.47 0.02 0.97 

Heavy Office 0.23 0.01 Generalized Pareto -0.82 0.30 0.07 

Light Mall 0.10 0.12 Logistic 0.09 0.003  

Heavy Mall 0.10 0.0005 InverseGaussian 0.10 1.68  

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for W22 model 

 Mean Variance PDF Parameters   

Light Bestest 0.61 0.001 Generalized Extreme Value 0.38 0.01 0.60 

HeavyBestest 0.58 0.005 Generalized Extreme Value 0.28 0.03 0.55 

Light Office 0.35 0.01 Generalized Pareto -1.17 0.39 0.17 

Heavy Office 0.31 0.05 Generalized Pareto -0.78 0.21 0.20 

Light Mall 0.09 0.0001 Generalized Pareto -2.14 0.22 0.02 

Heavy Mall 0.12 0.0001 Extreme Value 0.13 0.02  

Table B.3. Distribution of Temperature variation in free evolution for W22 Model 
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Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for G8 model 

 Mean Variance PDF Parameters   

Light Bestest 0.23 0.004 BirnbaumSaunders 0.22 0.27  

HeavyBestest 0.92 0.05 Gamma 17.48 0.05  

Light Office 0.20 0.002 Log-Logistic -1.60 0.11  

Heavy Office 0.72 0.02 Generalized Extreme Value 0.02 0.12 0.65 

Light Mall 0.18 0.003 Generalized Extreme Value 0.11 0.03 0.15 

Heavy Mall 0.52 0.03 Generalized Extreme Value 0.12 0.12 0.44 

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for G8 model 

 Mean Variance PDF Parameters   

Light Bestest 0.39 0.01 Weibull 0.43 5.80  

HeavyBestest 0.66 0.01 Log-Logistic -0.43 0.09  

Light Office 0.25 0.003 Weibull 0.28 4.99  

Heavy Office 0.54 0.02 Generalized Extreme Value 0.18 0.09 0.47 

Light Mall 0.14 0.45 t Location-Scale 0.14 0.01 1.82 

Heavy Mall 0.37 0.02 Generalized Extreme Value 0.15 0.08 0.31 

Table B.4. Distribution of Temperature variation in free evolution for G8 Model 

 

Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for Gm model 

 Mean Variance PDF Parameters   

Light Bestest 0.25 0.01 Gamma 10.70 0.02  

HeavyBestest 0.66 0.02 Nakagami 5.00 0.46  

Light Office 0.20 0.03 Nakagami 3.64 0.04  

Heavy Office 0.52 0.01 Log-Logistic -0.66 0.10  

Light Mall 0.17 0.03 Generalized Extreme Value 0.11 0.04 0.15 

Heavy Mall 0.39 0.02 BirnbaumSaunders 0.36 0.37  

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for Gm model 

 Mean Variance PDF Parameters   

Light Bestest 0.33 0.01 Weibull 0.36 5.24  

HeavyBestest 0.39 0.01 Generalized Extreme Value 0.15 0.05 0.35 

Light Office 0.20 0.003 Weibull 0.22 4.23  

Heavy Office 0.33 0.01 Generalized Extreme Value 0.14 0.06 0.28 

Light Mall 0.10 0.0001 Logistic 0.10 0.01  

Heavy Mall 0.20 0.01 InverseGaussian 0.20 1.44  

Table B.5. Distribution  of Temperature variation in free evolution for GM Model 

 

Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for G15 model 

 Mean Variance PDF Parameters   

Light Bestest 0.15 0.001 Normal 0.15 0.03  

HeavyBestest 0.05 0.0001 Logistic 0.05 0.01  

Light Office 0.30 0.06 t Location-Scale 0.30 0.05 2.09 

Heavy Office 0.03 0.0001 InverseGaussian 0.03 0.26 
 

Light Mall 0.08 0.001 InverseGaussian 0.08 0.68 
 

Heavy Mall 0.07 0.0004 InverseGaussian 0.07 0.71 
 

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for G15 model 

 Mean Variance PDF Parameters   

Light Bestest 0.17 0.0005 Normal 0.17 0.02  

HeavyBestest 0.05 0.00003 Generalized Extreme Value -0.04 0.005 0.05 

Light Office 0.20 0.01 Generalized Extreme Value 0.02 0.03 0.18 

Heavy Office 0.04 0.00002 Log-Logistic -3.20 0.06 
 

Light Mall 0.06 0.0001 Generalized Extreme Value 0.003 0.01 0.05 

Heavy Mall 0.05 0.0001 Generalized Pareto -0.38 0.02 0.03 

Table B.6. Distribution  of Temperature variation in free evolution for G15 Model 
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Distribution of the Maximum Variation of indoor temperature in free evolution during winter weeks for GT15 model 

 Mean Variance PDF Parameters   

Light Bestest 0.12 0.0005 Normal 0.12 0.02  

HeavyBestest 0.04 0.0001 Weibull 0.04 3.74  

Light Office 0.25 0.04 t Location-Scale 0.25 0.04 2.10 

Heavy Office 0.03 0.00001 InverseGaussian 0.03 0.22  

Light Mall 0.07 0.001 InverseGaussian 0.07 0.58  

Heavy Mall 0.06 0.0003 InverseGaussian 0.06 0.60  

Distribution of the Maximum Variation of indoor temperature in free evolution during summer weeks for GT15 model 

 Mean Variance PDF Parameters   

Light Bestest 0.14 0.0004 Normal 0.14 0.02  

HeavyBestest 0.04 0.00002 Generalized Extreme Value -0.04 0.004 0.04 

Light Office 0.17 0.001 Generalized Extreme Value 0.02 0.02 0.15 

Heavy Office 0.03 0.00002 Log-Logistic -3.37 0.06  

Light Mall 0.05 0.0001 Generalized Extreme Value 0.003 0.01 0.04 

Heavy Mall 0.04 0.0001 Generalized Pareto -0.38 0.02 0.03 

Table B.7. Distribution of Temperature variation in free evolution for GT15 Model 

B.2.2 Heating/Cooling mismatches 

 

Distribution of Weekly Energy and Peak variation during winter and summer weeks for the W2 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 5.13 23.68 Nakagami 0,33 50,06  

∆Pc 11.10 34.93 Generalized Pareto -1,23 24,57 0,10 

∆Eh 25.93 197.51 Generalized Pareto -0,63 34,32 4,84 

∆Ph 39.52 2.31 Log-Logistic 3,68 0,02  

HeavyBestest 

∆Ec 5.99 14.54 Nakagami 0,69 50,37  

∆Pc 7.36 54.20 Exponential 7.36   

∆Eh 33.05 137.65 Generalized Pareto -0,55 26,28 16,07 

∆Ph 24.75 24.92 Log-Logistic 3,20 0,05  

Light Office 

∆Ec 22.79 142.26 Generalized Pareto 0,11 9,52 12,11 

∆Pc 15.04 88.44 Generalized Pareto -0,77 26,64 0,03 

∆Eh 16.83 106.67 Generalized Pareto -0,51 22,11 2,17 

∆Ph 29.80 1.26 t Location-Scale 29,80 0,62 2,89 

Heavy Office 

∆Ec 32.85 5  103 Log-Logistic 3,11 0,46  

∆Pc 38.89 165.64 Log Logistic 3,61 0,17  

∆Eh 28.36 89.23 Generalized Pareto -0,64 23,39 14,10 

∆Ph 11.77 3.08 Log-Logistic 2,45 0,08  

Light Mall 

∆Ec 43.86 103 Gen Ex Value 0,34 12,25 30,36 

∆Pc 11.79 38.58 t Location-Scale 11,79 2,24 1,44 

∆Eh 8.89 37.24 Generalized Pareto -0,38 11,19 0,79 

∆Ph 20.77 3.27 Generalized Extreme Value -0,02 1,45 19,97 

Heavy Mall 

∆Ec 76.20 104 Generalized Pareto 0,28 49,43 7,39 

∆Pc 15.96 457.53 Log-Logistic 2,25 0,53  

∆Eh 17.67 20.02 Generalized Pareto -0,43 8,68 11,59 

∆Ph 3.41 4.97 Generalized Pareto -0,67 5,69 0,004 

Table B.8. Distribution of Energy Variation for W2 Model 

 



Appendix B 

208 

 

 

 

 

 

 

Distribution of Weekly Energy and Peak variation during winter and summer weeks for the W15 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 3.51 1.84 Generalized Pareto -0.51 2.92 1.59 

∆Pc 6.85 1.44 Generalized Pareto -0.51 2.57 5.14 

∆Eh 8.76 4.19 Birnbaum Saunders 8.53 0.23  

∆Ph 3.36 1.31 Nakagami 2.27 12.62  

Heavy Bestest 

∆Ec 8.32 3.96 Inverse Gaussian 8.32 145.73  

∆Pc 8.10 1.91 Nakagami 8.70 67.70  

∆Eh 9.03 8.11 Generalized Pareto -0.44 5.62 5.13 

∆Ph 1.47 0.98 Generalized Pareto -0.59 2.32 0.01 

Light Office 

∆Ec 6.22 11.02 Generalized Pareto -0.07 3.81 2.67 

∆Pc 8.81 4.66 Weibull 9.64 4.65  

∆Eh 5.41 0.72 Inverse Gaussian 5.41 220.33  

∆Ph 1.28 0.12 Log-Logistic 0.21 0.15  

Heavy Office 

∆Ec 9.30 12.87 Inverse Gaussian 9.30 62.64  

∆Pc 7.61 7.68 Log-Logistic 1.97 0.19  

∆Eh 4.90 1.99 Generalized Pareto -0.53 3.10 2.87 

∆Ph 4.13 0.37 Generalized Pareto -0.72 1.63 3.19 

Light Mall 

∆Ec 5.46 17.00 Log Logistic 1.52 0.32  

∆Pc 2.58 4.71 Generalized Extreme Value 0.59 0.64 1.29 

∆Eh 2.92 0.39 Generalized Pareto -0.55 1.42 2.00 

∆Ph 1.33 0.07 Rician 1.31 0.26  

Heavy Mall 

∆Ec 10.68 67.95 Generalized Pareto -0.06 9.34 1.92 

∆Pc 5.80 14.21 Birnbaum Saunders 4.83 0.64  

∆Eh 2.16 0.24 Generalized Pareto -0.57 1.12 1.45 

∆Ph 4.25 0.06 Generalized Extreme Value -0.12 0.21 4.15 

Table B.9. Distribution of Energy Variation for W15 Model 
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Distribution of ∆E and ∆P during winter and summer weeks for the W22 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 3.40 0.65 Generalized Pareto -0.70 2.13 2.16 

∆Pc 1.39 0.21 Generalized Pareto -0.46 0.92 0.76 

∆Eh 6.71 5.00 Birnbaum Saunders 6.37 0.33  

∆Ph 5.64 1.93 Gamma 16.54 0.34  

HeavyBestest 

∆Ec 5.52 2.19 Inverse Gaussian 5.52 76.83  

∆Pc 3.32 0.85 Generalized Pareto -0.79 2.88 1.72 

∆Eh 8.74 10.87 Generalized Pareto -0.39 6.15 4.32 

∆Ph 6.31 1.58 Inverse Gaussian 6.31 158.87  

Light Office 

∆Ec 4.10 6.04 Generalized Extreme Value 0.36 0.80 3.21 

∆Pc 1.86 0.61 Gamma 5.68 0.33  

∆Eh 2.78 0.65 Logistic 2.78 0.44  

∆Ph 1.17 0.01 Generalized Extreme Value -0.02 0.09 1.12 

Heavy Office 

∆Ec 6.67 17.10 Generalized Extreme Value 0.28 1.83 4.93 

∆Pc 4.07 3.31 Log Logistic 1.32 0.22  

∆Eh 4.02 2.07 Generalized Pareto -0.43 2.81 2.06 

∆Ph 1.53 0.04 Log Logistic 0.42 0.07  

Light Mall 

∆Ec 2.56 1.52 Log-Logistic 0.85 0.23  

∆Pc 1.01 0.13 Log-Logistic -0.04 0.18  

∆Eh 0.94 0.08 Generalized Pareto -0.61 0.70 0.50 

∆Ph 0.87 0.01 Weibull 0.91 11.61  

Heavy Mall 

∆Ec 6.18 15.67 Birnbaum Saunders 5.16 0.63  

∆Pc 2.90 3.07 Log-Logistic 0.94 0.28  

∆Eh 1.18 0.10 Generalized Pareto -0.58 0.72 0.73 

∆Ph 0.95 0.02 Logistic 0.95 0.07  

Table B.10. Distribution of Energy Variation for W22 Model 
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Distribution of ∆E and ∆P during winter and summer weeks for the G8 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 1.95 0.03 Generalized Extreme Value -0.008 0.14 1.88 

∆Pc 5.83 0.02 Inverse Gaussian 5.83 1.2 10^4  

∆Eh 1.09 0.54 Gamma 2.23 0.49  

∆Ph 5.37 0.02 Log-logistic 1.68 0,015  

HeavyBestest 

∆Ec 5.54 1,45 Log-logistic 1,69 0.12  

∆Pc 7.80 1.36 Log-logistic 2.04 0.08  

∆Eh 1.93 3.81 Nakagami 0.29 7.54  

∆Ph 11.04 3.93 Inverse Gaussian 11.04 342,53  

Light Office 

∆Ec 1.76 0.33 Generalized extreme value 0.30 0.23 1.52 

∆Pc 5.31 1.96 Generalized Pareto -2.40 11.52 1.93 

∆Eh 0.61 0.63 Log-logistic -0.78 0.41  

∆Ph 5.03 0.02 Log Logistic 1.61 0.014  

Heavy Office 

∆Ec 5.94 19.85 Generalized extreme value 0.34 1.53 4.27 

∆Pc 7.1 7.24 Log-logistic 1.90 0.19  

∆Eh 0.95 0.90 Exponential 0.95   

∆Ph 10.41 1.93 Birnbaum Saunders 10.33 0.13  

Light Mall 

∆Ec 0.43 0.19 Log-logistic -1.32 0.51  

∆Pc 1.59 3.24 Extreme Value 0.39 0.50 0.99 

∆Eh 0.29 0.0044 Generalized extreme value 0.13 0.04 0.26 

∆Ph 3.22 0.09 Weibull 3.35 12.85  

Heavy Mall 

∆Ec 10.67 149.74 Inverse Gaussian 10.67 8.12  

∆Pc 8.30 43.99 Log-logistic 1.93 0.33  

∆Eh 0.66 0.20 Nakagami 0.63 0.64  

∆Ph 8.14 0.39 Rician 8.12 0.63  

Table B.11. Distribution of Energy Variation for G8 Model 
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Distribution of ∆E and ∆P during winter and summer weeks for the Gm Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 1.78 0.02 Generalized Pareto -0.28 0.24 1.60 

∆Pc 5.50 0.01 Log-logistic 1.70 0.01  

∆Eh 1.30 0.89 Generalized Pareto -0.22 1.39 0.17 

∆Ph 5.32 0.05 Generalized Extreme Value 0.30 0.88 5.23 

HeavyBestest 

∆Ec 3.80 0.45 Log-logistic 1.32 0.09  

∆Pc 5.77 0.40 Logistic 5.77 0.35  

∆Eh 1.08 1.16 Exponential 1.08   

∆Ph 7.62 0.95 Generalized Extreme Value -0.02 0.78 7.18 

Light Office 

∆Ec 1.53 0.15 Generalized Pareto 0.03 0.36 1.16 

∆Pc 4.74 1.72 Generalized Pareto -2.26 10.08 1.65 

∆Eh 0.70 0.35 Birnbaum Saunders 0.53 0.82  

∆Ph 4.99 0.01 Generalized Extreme Value -0.04 0.08 4.94 

Heavy Office 

∆Ec 4.01 7.78 Generalized Extreme Value 0.33 1.01 2.94 

∆Pc 4.21 5.41 t Location-Scale 4.21 0.64 1.44 

∆Eh 0.67 0.33 Generalized Extreme Value 0.19 0.32 0.41 

∆Ph 8.03 0.56 Inverse Gaussian 8.03 921.68  

Light Mall 

∆Ec 0.62 0.50 Generalized Extreme Value 0.39 0.20 0.38 

∆Pc 1.26 1.67 Log-Logistic -0.01 0.37  

∆Eh 0.27 0.01 Generalized Extreme Value 0.32 0.03 0.24 

∆Ph 3.42 0.06 Generalized Extreme Value -0.44 3.25 3.36 

Heavy Mall 

∆Ec 4.60 39.90 Inverse Gaussian 4.60 2.45  

∆Pc 3.73 24.16 Log-Logistic 1.02 0.41  

∆Eh 0.57 0.04 Rician 0.52 0.22  

∆Ph 6.65 0.10 Rician 6.64 0.32  

Table B.12. Distribution of Energy Variation for GM Model 
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Distribution of ∆E and ∆P during winter and summer weeks for the G15 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 0.33 0.02 Generalized Pareto -1.41 0.71 0.03 

∆Pc 0.75 0.03 Generalized Pareto -1.26 0.79 0.40 

∆Eh 0.72 0.02 Generalized Pareto -0.51 0.33 0.51 

∆Ph 1.30 0.01 Extreme Value 1.37 0.10  

HeavyBestest 

∆Ec 0.06 0.001 Rayleigh 0.05   

∆Pc 0.27 0.02 Logistic 0.27 0.03  

∆Eh 0.10 0.01 Beta 0.59 4.95  

∆Ph 0.11 0.005 Nakagami 0.71 0.02  

Light Office 

∆Ec 1.88 0.85 Generalized Pareto -0.03 0.98 0.93 

∆Pc 1.92 5.25 t Location-Scale 5.87 0.32 0.99 

∆Eh 0.47 0.14 Weibull 0.51 1.28  

∆Ph 5.25 0.05 Generalized Extreme Value 0.13 0.14 5.24 

Heavy Office 

∆Ec 0.29 0.01 Log-logistic -1.28 0.18  

∆Pc 0.29 0.02 Rayleigh 0.23   

∆Eh 0.07 0.004 Exponential 0.066   

∆Ph 0.11 0.003 Rayleigh 0.08   

Light Mall 

∆Ec 0.53 0.39 Log-Logistic -1.19 0.55  

∆Pc 0.31 0.09 Generalized Extreme Value 0.29 0..13 0.18 

∆Eh 0.49 0.004 Generalized Pareto -0.39 0.12 0.4 

∆Ph 0.83 0.008 Logistic 0.83 0.05  

Heavy Mall 

∆Ec 1.06 1.62 Generalized Pareto 0.25 0.67 0.17 

∆Pc 0.78 0.44 Log-Logistic -0.44 0.34  

∆Eh 0.14 0.003 Birnbaum Saunders 0.13 0.40  

∆Ph 1.54 0.02 Weibull 1.60 14.45  

Table B.13. Distribution of Energy Variation for G15 Model 
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Distribution of Weekly Energy and Peak variation during winter and summer weeks for the GT15 Model 

 Mean Variance PDF Parameters   

Light Bestest 

∆Ec 0.26 0.01 Generalized Pareto -1.46 0.57 0.03 

∆Pc 0.61 0.02 Generalized Pareto -1.14 0.60 0.34 

∆Eh 0.56 0.01 Generalized Pareto -0.50 0.25 0.39 

∆Ph 1.07 0.01 Extreme Value 1.13 0.09  

HeavyBestest 

∆Ec 0.05 0.002 Rayleigh 0.04   

∆Pc 0.22 0.002 Extreme Value 0.24 0.03  

∆Eh 0.08 0.01 Beta 0.60 6.63  

∆Ph 0.09 0.003 Nakagami 0.66 0.01  

Light Office 

∆Ec 1.46 0.51 Generalized Pareto -0.03 0.76 0.72 

∆Pc 4.85 1.34 t Location-Scale 4.85 0.28 1.01 

∆Eh 0.36 0.08 Weibull 0.39 1.28  

∆Ph 4.44 0.04 Generalized Extreme Value 0.01 0.15 4.35 

Heavy Office 

∆Ec 0.23 0.007 Log Logistic -1.53 0.18  

∆Pc 0.24 0.02 Rayleigh 0.19   

∆Eh 0.25 0.003 Exponential 0.05   

∆Ph 0.09 0.002 Rayleigh 0.07   

Light Mall 

∆Ec 0.41 0.23 Log Logistic -1.44 0.55  

∆Pc 0.25 0.05 Generalized Extreme Value 0.26 0.11 0.15 

∆Eh 0.38 0.002 Generalized Pareto -0.40 0.09 0.31 

∆Ph 0.65 0.01 Beta 21.98 11.92  

Heavy Mall 

∆Ec 0.82 0.97 Generalized Pareto 0.25 0.52 0.13 

∆Pc 0.66 0..31 Log-Logistic -0.61 0.34  

∆Eh 0.11 0.002 Birnbaum Saunders 0.10 0.40  

∆Ph 1.24 0.01 Logistic 1.24 0.06  

Table B.14. Distribution of Energy Variation for GT15 Model 
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B.2.3 Comfort Analysis 

 
Distribution of Comfort Indexes Variation for W2 Model 

Comfort Analysis in Light Bestest for Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,83 0,02 Log-Logistic -0,20 0,08 0 

∆PPD 40,30 32,71 Logistic 40,17 3,11 0 

∆Tr 5,50 3,49 Inverse Gaussian 5,50 48,00 0 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 3,01 0,12 Normal 3,01 0,34 0 

∆PPD 83,91 41,16 Generalized Extreme Value -0,58 6,99 82,61 

∆Tr 4,29 1,59 Weibull 4,75 3,90 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,94 0,03 Logistic 0,94 0,09 0 

∆PPD 39,86 75,87 t Location-Scale 39,64 4,84 2,17 

∆Tr 5,51 3,52 Generalized Extreme Value 0,15 1,25 4,58 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 2,42 0,16 Normal 2,42 0,40 0 

∆PPD 76,23 79,20 Extreme Value 80,35 7,20 0 

∆Tr 2,82 0,40 Generalized Extreme Value 0,069 0,45 2,53 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,56 0,03 Generalized Extreme Value 0,19 0,11 0,47 

∆PPD 24,99 114,14 Generalized Extreme Value 0,34 5,76 19,23 

∆Tr 5,10 3,17 Gamma 8,06 0,63 0 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 1,50 0,02 Logistic 1,50 0,09 0 

∆PPD 63,63 44,49 Extreme Value 66,65 5,14 0 

∆Tr 2,18 0,79 Generalized Pareto -0,43 1,92 0,80 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,69 0,07 Generalized Extreme Value 0,25 0,16 0,55 

∆PPD 29,76 215,19 Inverse Gaussian' 29,76 113,79 0 

∆Tr 5,49 3,18 Inverse Gaussian' 5,49 54,00 0 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 1,12 0,06 Nakagami 5,39 1,32 0 

∆PPD 46,49 215,91 Generalized Pareto -1,22 65,49 15,38 

∆Tr 2,87 0,52 Inverse Gaussian 2,87 48,74 0 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,49 0,04 Inverse Gaussian 0,49 2,65 0 

∆PPD 22,16 127,21 Generalized Pareto -0,46 24,12 5,38 

∆Tr 4,06 2,35 Nakagami 1,88 18,85 0 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,57 0,06 Log-Logistic -0,61 0,12 0 

∆PPD 23,94 54,99 Birnbaum-Saunders 22,84 0,31 0 

∆Tr 1,14 0,63 Generalized Extreme Value 0,27 0,35 0,81 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,60 0,07 Gamma 5,04 0,12 0 

∆PPD 26,25 220,32 Generalized Pareto -0,80 43,51 2,60 

∆Tr 4,71 1,94 Gamma 11,69 0,40 0 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,44 0,02 Generalized Extreme Value 0,14 0,08 0,38 

∆PPD 14,38 49,90 Gamma 3,98 3,61 0 

∆Tr 2,59 0,50 Lognormal 0,92 0,26 0 

Table B.15. Distribution of Comfort Indexes variation for W2 Model 
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Distribution of Comfort Indexes Variation for W15 Model 

Comfort Analysis in Light Bestest for Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,20 0,001 t Location-Scale 0,21 0,005 0,91 

∆PPD 9,70 3,80 Generalized Extreme Value -1,02 1,69 9,75 

∆Tr 0,79 0,02 Generalized Extreme Value -0,87 0,13 0,79 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 0,57 0,002 Nakagami 42,24 0,32 0 

∆PPD 21,50 7,02 Generalized Extreme Value -0,006 2,14 20,25 

∆Tr 1,38 0,013 Weibull 1,43 14,22 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,17 0,003 Generalized Pareto -1,44 0,28 0,06 

∆PPD 6,81 14,85 Generalized Pareto -0,97 11,86 1,16 

∆Tr 0,60 0,03 Beta 5.00 3,38 0 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 0,32 0,001 Beta 53,32 113,53 0 

∆PPD 13,46 5,06 Log-Logistic 2,59 0,09 0 

∆Tr 0,65 0,007 Beta 21,88 11,64 0 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,15 0,0004 Generalized Extreme Value -0,67 0,02 0,14 

∆PPD 7,59 2,07 Generalized Extreme Value -0,82 1,50268 7,46 

∆Tr 0,64 0,008 t Location-Scale 0,62 0,03 1,27 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 0,32 0,0007 Normal 0,32 0,03 0 

∆PPD 15,00 5,51 Generalized Extreme Value -0,54 2,56 14,48 

∆Tr 0,75 0,007 Birnbaum-Saunders 0,75 0,11 0 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,13 0,0003 Weibull 0,13 8,15 0,13 

∆PPD 5,15 2,41 Weibull 5,71 3,80 5,15 

∆Tr 0,49 0,02 Log-Logistic -0,75 0,13 0,49 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 0,18 0,003 Generalized Pareto -0,44 0,11 0,10 

∆PPD 7,64 7,24 Inverse Gaussian 7,64 62,61 0 

∆Tr 0,35 0,01 Generalized Pareto -0,51 0,22 0,20 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,09 0,00046 Inverse Gaussian 0,09 1,96 0 

∆PPD 4,39 0,73 Weibull' 4,74 5,85 0 

∆Tr 0,49 0,03 Inverse Gaussian 0,49 4,00 0 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,19 0,001 Extreme Value 0,20 0,03 0 

∆PPD 7,02 5,50 Generalized Pareto -0,74 5,98 3,67 

∆Tr 0,34 0,002 Lognormal' -1,09 0,14 0 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,09 0,001 Log-Logistic -2,41 0,17 0 

∆PPD 4,20 3,72 Weibull 4,75 2,34 0 

∆Tr 0,42 0,04 Birnbaum-Saunders 0,38 0,45 0 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,11 0,001 Generalized Pareto -0,22 0,04 0,08 

∆PPD 4,80 2,47 Log-Logistic 1,53 0,18 0 

∆Tr 0,20 0,002 Inverse Gaussian 0,20 3,76 0 

Table B.16. Distribution of Comfort Indexes variation for W15 Model 
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istribution of Comfort Indexes Variation for W22 Model 

Comfort Analysis in Light Bestest for Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,13 10-6 Inverse Gaussian' 0,13 629,77 0 

∆PPD 6,49 0,15 Extreme Value' 6,66 0,28 0 

∆Tr 0,50 0,0002 t Location-Scale' 0,50 0,007 1,73 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 0,23 0,0001 Generalized Extreme Value' -0,046 0,009 0,23 

∆PPD 11,84 0,14 t Location-Scale' 11,79 0,20 2,11 

∆Tr 0,64 0,005 Beta' 29,14 16,49 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,10 0,001 Generalized Pareto -0,95 0,09 0,06 

∆PPD 4,04 4,68 Generalized Pareto -0,93 6,25 1,16 

∆Tr 0,33 0,01 Generalized Pareto -0,89 0,36 0,14 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 0,23 10-4 t Location-Scale 0,23 0,004 1,95 

∆PPD 11,92 0,51 Extreme Value 12,18 0,42 0 

∆Tr 0,45 0,004 Generalized Pareto -0,72 0,18 0,34 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,10 0,0004 Generalized Extreme Value -1,04 0,02 0,11 

∆PPD 4,32 1,21 Generalized Pareto -0,99 4,16 2,11 

∆Tr 0,38 0,005 t Location-Scale 0,37 0,02 1,19 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 0,14 0,002 Generalized Pareto -1,10 0,15 0,08 

∆PPD 6,33 4,29 Generalized Extreme Value 0,20 1,32 5,27 

∆Tr 0,29 0,005 Generalized Pareto -0,92 0,23 0,17 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,06 10-4 Inverse Gaussian 0,06 1,01 0 

∆PPD 1,87 1,14 Generalized Extreme Value 0,54 0,38 1,31 

∆Tr 0,22 0,004 Inverse Gaussian 0,22 2,85 0 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 0,12 0,002 Generalized Pareto -1,03 0,12 0,07 

∆PPD 5,34 4,74 Generalized Pareto -0,66 5,30 2,24 

∆Tr 0,23 0,002 Generalized Extreme Value -0,53 0,05 0,22 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,06 0,006 Logistic 0,05 0,002 0 

∆PPD 2,58 12,03 t Location-Scale 2,17 0,07 0,70 

∆Tr 0,34 0,14 Log-Logistic -1,19 0,20 0 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,07 10-6 Weibull 0,078 46,17 0 

∆PPD 3,79 0,06 Extreme Value 3,90 0,18 0 

∆Tr 0,12 0,001 Generalized Extreme Value 0,18 0,02 0,10 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,04 4,06 Inverse Gaussian 0,04 1,55 0 

∆PPD 1,25 0,08 Log-Logistic 0,21 0,12 0 

∆Tr 0,17 0,005 Birnbaum-Saunders 0,16 0,39 0 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,07 10-5 Extreme Value 0,08 0,0036 0 

∆PPD 3,37 0,40 Extreme Value 3,64 0,44 0 

∆Tr 0,13 0,0002 Logistic 0,13 0,008 0 

Table B.17. Distribution of Comfort Indexes variation for W22 Model 
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Distribution of Comfort Indexes Variation for G8 Model 

Light Bestest during Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,072 10-4 Inverse Gaussian 0,07 3,16 0 

∆PPD 3,36 0,35 Lognormal 1,20 0,17 0 

∆Tr 0,38 0,011 Generalized Extreme Value 0,05 0,08 0,33 

Light Bestest during Summer Weeks 

∆PMV 0,20 0,0008 Log-Logistic -1,64 0,08 0 

∆PPD 9,16 5,37 Weibull 10,06 4,53 0 

∆Tr 0,54 0,008 Weibull 0,58 7,26 0 

HeavyBestest during Winter Weeks 

∆PMV 0,17 0,002 Generalized Pareto -0,50 0,10 0,10 

∆PPD 7,04 6 Gamma 8,09 0,87 0 

∆Tr 0,73 0,03 Genalized Extreme Value 0,04 0,13 0,65 

HeavyBestest during Summer Weeks 

∆PMV 0,26 0,002 Generalized Extreme Value 0,08 0,03 0,24 

∆PPD 10,68 6,38 Inverse Gaussian 10,68 203,40 0 

∆Tr 0,62 0,01 Log-Logistic -0,49 0,09 0 

Light Office during Winter Weeks 

∆PMV 0,08 0,0001 Generalized Extreme Value -0,34 0,01 0,07 

∆PPD 3,45 0,41 Gamma 29,34 0,12 0 

∆Tr 0,44 0,01 Generalized Extreme Value 0,08 0,087 0,39 

Light Office during Summer Weeks 

∆PMV 0,16 0,0004 t Location-Scale 0,17 0,004 1,11 

∆PPD 6,15 2,16 Gamma 17,62 0,35 0 

∆Tr 0,45 0,006 Extreme Value 0,48 0,06 0 

Heavy Office during Winter Weeks 

∆PMV 0,14 0,0006 Generalized Extreme Value 0,04 0,02 0,12 

∆PPD 5,51 3,15 Birnbaum-Saunders 5,23 0,32 0 

∆Tr 0,64 0,03 Generalized Extreme Value 0,12 0,11 0,56 

Heavy Office during Summer Weeks 

∆PMV 0,22 0,001 t Location-Scale 0,21 0,02 2,04 

∆PPD 9,13 6,03 Nakagami 3,54 89,29 0 

∆Tr 0,49 0,01 Generalized Extreme Value 0,18 0,07 0,43 

Light Mall during Winter Weeks 

∆PMV 0,07 0,006 t Location-Scale 0,07 0,009 3,09 

∆PPD 2,98 10,83 Generalized Extreme Value 0,20 0,49 2,44 

∆Tr 0,45 0,13 Generalized Extreme Value 0,27 0,07 0,37 

Light Mall during Summer Weeks 

∆PMV 0,17 0,06 t Location-Scale 0,15 0,007 1,61 

∆PPD 7,09 4,79 t Location-Scale 7,10 0,82 3,51 

∆Tr 0,47 0,34 t Location-Scale 0,41 0,03 2,22 

Heavy Mall during Winter Weeks 

∆PMV 0,11 0,001 t Location-Scale 0,11 0,01 2,24 

∆PPD 4,59 3,31 'Nakagami' 1,68 24,35 0 

∆Tr 0,52 0,04 Generalized Extreme Value 0,20 0,12 0,42 

Heavy Mall during Summer Weeks 

∆PMV 0,17 0,001 Inverse Gaussian 0,17 3,45 0 

∆PPD 7,24 5,47 Nakagami 2,51 57,80 0 

∆Tr 0,40 0,01 Generalized Extreme Value 0,18 0,07 0,34 

Table B.18. Distribution of Comfort Indexes variation for G8 Model 
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Distribution of Comfort Indexes Variation for Gm Model 

Comfort Analysis in Light Bestest for Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,07 9,77 Log-Logistic -2,75 0,07 0 

∆PPD 3,10 0,30 Log-Logistic 1,12 0,09 0 

∆Tr 0,34 0,01 Inverse Gaussian 0,34 3,05 0 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 0,17 0,0004 t Location-Scale 0,18 0,007 1,40 

∆PPD 7,98 2,69 Generalized Extreme Value -0,62 1,81 7,68 

∆Tr 0,47 0,009 Weibull 0,51 5,87 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,13 0,0005 Weibull 0,135 6,56 0 

∆PPD 5,10 2,36 Weibull 5,66 3,72 0 

∆Tr 0,41 0,007 Log-Logistic -0,906 0,109 0 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 0,17 0,0005 Inverse Gaussian 0,175 10,71 0 

∆PPD 7,76 1,946 Rician 7,639 1,40 0 

∆Tr 0,33 0,002 Lognormal -1,107 0,148 0 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,067 10-4 Log-Logistic -2,70 0,074 0 

∆PPD 3,133 0,269 Gamma 36,53 0,085 0 

∆Tr 0,417 0,016 Inverse Gaussian 0,417 4,821 0 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 0,15 0,0006 Generalized Extreme Value -0,750 0,025 0,14 

∆PPD 5,54 2,73 Generalized Pareto -0,610 3,94 3,12 

∆Tr 0,37 0,004 Weibull 0,400 6,45 0 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,10 0,0002 Log-Logistic -2,27 0,084 0 

∆PPD 4,33 1,871 Generalized Pareto -0,92 4,82 1,72 

∆Tr 0,41 0,013 Generalized Extreme Value 0,127 0,076 0,357 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 0,14 0,0006 Generalized Extreme Value 0,039 0,019 0,13 

∆PPD 6,38 2,46 Gamma 16,65 0,38 0 

∆Tr 0,29 0,003 Inverse Gaussian 0,298 8,10 0 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,06 e-04 Logistic' 0,064 0,0050 0 

∆PPD 2,60 0,319 Generalized Extreme Value' 0,115 0,402 2,321 

∆Tr 0,41 0,012 Generalized Extreme Value' 0,194 0,069 0,355 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,12 0,038 Logistic' 0,11 0,0018 0 

∆PPD 5,46 5,118 Log-Logistic' 1,66 0,113 0 

∆Tr 0,37 0,226 t Location-Scale' 0,338 0,038 2,927 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,08 0,0004 Inverse Gaussian' 0,08 1,12 0 

∆PPD 3,63 2,919 Generalized Pareto' -1,09 6,41 0,61 

∆Tr 0,36 0,0166 Generalized Extreme Value' 0,263 0,0771 0,294 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,11 0,0005 Generalized Extreme Value' 0,257 0,013 0,098 

∆PPD 4,76 1,94 Logistic' 4,70 0,744 0 

∆Tr 0,31 0,003 Lognormal' -1,172 0,179 0 

Table B.19. Distribution of Comfort Indexes variation for GM Model 

 

 



Appendix B  

219 

 

 

Distribution of Comfort Indexes Variation for G15 Model 

Comfort Analysis in Light Bestest for Winter Weeks 

Index Mean Variance PDF Parameters   

∆PMV 0,05 10-5 Log-Logistic -2,97 0,05 0 

∆PPD 2,46 0,12 Generalized Extreme Value -0,50 0,38 2,37 

∆Tr 0,11 10-3 Generalized Extreme Value 0,10 0,02 0,10 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 0,09 10-5 Generalized Extreme Value 0,02 0,004 0,09 

∆PPD 4,29 0,10 Generalized Extreme Value -0,51 0,34 4,21 

∆Tr 0,14 0,0003 Rician' 0,13 0,02 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,04 10-6 Log-Logistic -3,18 0,01 0 

∆PPD 1,77 0,14 Generalized Extreme Value -0,68 0,43 1,72 

∆Tr 0,11 0,0006 Weibull 0,12 5,43 0 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 0,07 10-6 Weibull 0,072 111,21 0 

∆PPD 3,34 0,11 Generalized Extreme Value -0,54 0,37 3,26 

∆Tr 0,14 0,0002 Lognorma -1,99 0,10 0 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,08 0,0007 Log-Logistic -2,5297 0,12 0 

∆PPD 4,17 0,59 Gamma' 29,097 0,14 0 

∆Tr 0,47 0,024 Birnbaum-Saunders 0,453 0,32 0 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 0,11 0,0003 Generalized Pareto -0,50 0,04 0,08 

∆PPD 4,89 1,34 Generalized Pareto -0,44 2,28 3,31 

∆Tr 0,28 0,007 Birnbaum-Saunders 0,27 0,31 0 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,04 10-7 t Location-Scale 0,041 0,0003 2,589 

∆PPD 1,71 0,140 Generalized Pareto -1,348 1,892 0,857 

∆Tr 0,11 0,0006 Weibull 0,12 5,134 0 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 0,07 10-6 Weibull 0,0712 60,67 0 

∆PPD 3,04 0,378 Generalized Pareto -1,385 3,291 1,56 

∆Tr 0,14 0,0002 Log-Logistic -1,970 0,0607 0 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,05 0,006 Logistic 0,042 0,00075 0 

∆PPD 2,18 11,09 Logistic 1,79 0,029 0 

∆Tr 0,16 0,149 Logistic 0,138 0,0037 0 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,07 e-06 t Location-Scale 0,073 0,0004 1,64 

∆PPD 3,79 0,059 Extreme Value 3,87 0,143 0 

∆Tr 0,16 0,0004 Rician 0,16 0,019 0 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,04 10-6 Rician 0,043 0,002 0 

∆PPD 1,45 0,18 Gamma 11,58 0,13 0 

∆Tr 0,13 0,0005 Lognormal -2,03 0,16 0 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,07 10-5 Rician 0,07 0,003 0 

∆PPD 3,40 0,41 Generalized Extreme Value -0,72 0,67 3,32 

∆Tr 0,15 0,0004 Beta' 52,27 293,07 0 

Table B.20. Distribution of Comfort Indexes variation for G15 Model 
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Distribution of Comfort Indexes Variation for GT15 Model 

Comfort Analysis in Light Bestest for Winter Weeks 

∆PMV 0,05 10-5 Generalized Extreme Value -0,003 0,004 0,02 

∆PPD 2,41 0,09 Generalized Extreme Value -0,50 0,32 2,34 

∆Tr 0,09 0,0005 Generalized Extreme Value 0,11 0,01 0,08 

Comfort Analysis in Light Bestest for Summer Weeks 

∆PMV 0,08 1e-5 Log-Logistic -2,48 0,02 0 

∆PPD 4,17 0,06 Generalized Extreme Value -0,45 0,26 4,10 

∆Tr 0,11 0,0002 'Normal' 0,11 0,02 0 

Comfort Analysis in HeavyBestest for Winter Weeks 

∆PMV 0,04 10-6 Generalized Extreme Value -0,15 0,001 0,04 

∆PPD 1,79 0,15 Generalized Extreme Value -0,77 0,43 1,75 

∆Tr 0,09 0,0004 Weibull 0,10 5,43 0 

Comfort Analysis in HeavyBestest for Summer Weeks 

∆PMV 0,07 10-7 Logistic 0,07 0,0003 0 

∆PPD 3,43 0,08 Generalized Extreme Value -0,51 0,30 3,36 

∆Tr 0,12 0,0001 'Lognormal' -2,17 0,10 0 

Comfort Analysis in Light Office for Winter Weeks 

∆PMV 0,07 0,0004 t Location-Scale 0,07 0,006 1,70 

∆PPD 3,52 0,36 Log-Logistic 1,25 0,09 0 

∆Tr 0,39 0,02 Birnbaum-Saunders 0,37 0,33 0 

Comfort Analysis in Light Office for Summer Weeks 

∆PMV 0,09 0,0002 Generalized Pareto -0,36 0,02 0,07 

∆PPD 4,33 0,78 Generalized Extreme Value 0,01 0,68 3,93 

∆Tr 0,23 0,005 'Birnbaum-Saunders' 0,22 0,31 0 

Comfort Analysis in Heavy Office for Winter Weeks 

∆PMV 0,04 1,55 t Location-Scale 0,04 0,0002 2,07 

∆PPD 1,72 0,14 Generalized Pareto -1,30 1,78 0,88 

∆Tr 0,09 0,0004 Weibull 0,10 5,17 0 

Comfort Analysis in Heavy Office for Summer Weeks 

∆PMV 0,07 10-6 Weibull 0,071 74,99 0 

∆PPD 3,07 0,41 Generalized Pareto -1,48 3,46 1,53 

∆Tr 0,12 0,0002 Log-Logistic -2,14 0,06 0 

Comfort Analysis in Light Mall for Winter Weeks 

∆PMV 0,05 0,004 Logistic 0,04 0,0006 0 

∆PPD 2,15 6,54 Logistic 1,89 0,023 0 

∆Tr 0,13 0,10 Logistic 0,12 0,003 0 

Comfort Analysis in Light Mall for Summer Weeks 

∆PMV 0,07 10-7 Log-Logistic -2,62 0,005 0 

∆PPD 3,77 0,05 Generalized Extreme Value -0,80 0,20 3,75 

∆Tr 0,14 0,0003 'Rician' 0,14 0,02 0 

Comfort Analysis in Heavy Mall for Winter Weeks 

∆PMV 0,04 10-6 Lognormal -3,15 0,03 0 

∆PPD 1,49 0,16 Nakagami 3,61 2,39 0 

∆Tr 0,11 0,0003 'Gamma' 39,49 0,003 0 

Comfort Analysis in Heavy Mall for Summer Weeks 

∆PMV 0,07 10-6 Logistic 0,07 0,001 0 

∆PPD 3,43 0,41 Generalized Extreme Value -0,70 0,65 3,33 

∆Tr 0,12 0,0002 Nakagami 16,01 0,017 0 

Table B.21. Distribution of Comfort Indexes variation for GT15 Model 
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B.2.4 Simulation time reduction 

Distribution of Time Reduction for 2eq Model 

 Mean Variance PDF Parameters   

Light Bestest 82.58 4.88 Generalized Extreme Value -1,14 2,06 82,71 

Heavy Bestest 80.91 0.93 Generalized Extreme Value 0,27 0,43 80,51 

Light Office 81.50 0.94 Generalized Extreme Value 2,52 0,09 80,90 

Heavy Office 82.02 7.57 Generalized Extreme Value 0,63 0,63 80,59 

Light Mall 82.17 5.01 Generalized Extreme Value 1,27 0,59 80,67 

Heavy Mall 80.51 0.60 Generalized Extreme Value 0,56 0,32 79,94 

Table B.22. Time Reduction for 2eq Model 

 

Distribution of Time Reduction for 8eq Model 

 Mean Variance PDF Parameters   

Light Bestest 52.68 66.43 Generalized Extreme Value -1,20 7.34 53.32 

Heavy Bestest 52.07 8.74 Inverse Gaussian 52.07 104  

Light Office 55.16 20,02 Generalized Extreme Value 0.52 1,92 52,06 

Heavy Office 53.06 47.13 Generalized Extreme Value 2.01 0.99 48.66 

Light Mall 51.71 30.78 Log Logistic 3.94 0.06  

Heavy Mall 46.94 25.21 Weibull 49.10 11.32  

Table B.23.  Time Reduction for 8eq Model 

 

Distribution of Time Reduction for 12eq Model 

 Mean Variance PDF Parameters   

Light Bestest 56.47 9.71 Inverse Gaussian 56.47 104  

Heavy Bestest 49.55 27.60 t Location-Scale 50.61 0.91 0.87 

Light Office 53.16 3.65 Inverse Gaussian 53.16 104  

Heavy Office 54.02 50.11 Generalized Extreme Value 5.11 1.00 50.50 

Light Mall 51.90 51.33 Logistic 51.90 3.95  

Heavy Mall 46.52 35.28 Generalized Extreme Value -1.01 5.91 46.55 

Table B.24. Time Reduction for 12eq Model 

 

Distribution of Time Reduction for 15eq Model 

 Mean Variance PDF Parameters   

Light Bestest 52.20 24.23 Generalized Extreme Value 0.34 1.74 50.33 

Heavy Bestest 46.60 9.10 Inverse Gaussian 46.60 104  

Light Office 50.71 35.00 Generalized Extreme Value 0.53 2.28 46.91 

Heavy Office 45.98 70.16 t Location-Scale 45.98 1.97 1.07 

Light Mall 48.95 43.73 Generalized Extreme Value 0.98 1.86 44.91 

Heavy Mall 44.62 3.85 Inverse Gaussian 44.62 104  

Table B.25. Time Reduction for 15eq Model 

 

Distribution of Time Reduction for 22eq Model 

 Mean Variance PDF Parameters   

Light Bestest 36.11 51.46 Generalized Pareto -1.10 26.93 23.29 

Heavy Bestest 30.37 14.85 Generalized Pareto -1.06 13.99 23.57 

Light Office 37.59 86.42 Generalized Pareto -1.12 35.52 20.85 

Heavy Office 32.44 86.07 BirnbaumSaunders 31.60 0.28  

Light Mall 31.04 36.09 Inverse Gaussian 31.04 828.90  

Heavy Mall 22.32 60.56 Generalized Pareto -2.10 54.94 4.58 

Table B.26. Time Reduction for 22eq Model 
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