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ABSTRACT 

Image-based 3D modelling is increasingly used as a fast and cheap 

alternative to laser-scanning for the 3D digital representation of geological 

outcrops. This rapidly improving technique is progressively opening the way to 

the widespread use of virtual outcrop models in geology, as the technique 

allows nearly everybody to construct a detailed digital model of geological 

exposures simply using a few handy and cheap devices. 

In this dissertation, the photogrammetry method has been used to 

demonstrate and evaluate the potential of virtual outcrops in structural geology. 

In particular, through the analysis of different outcrops at different scales, I 

showed that virtual outcrop models enable a switch from a mere 

descriptive/qualitative analysis of the outcrops to a quantitative one. In fact, by 

mean of virtual reality it is possible to overcome almost all technical 

limitations that are generally encountered during field work at different scales 

including prospective distortion, inaccessibility and the lack of instruments for 

quantitative acquisition of data, among others.  
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1. INTRODUCTION 
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Geological bodies (e.g. sedimentary strata, deformation structures, etc.) 

present three-dimensional complex geometries and architectures resulting by 

the combination of the depositional/formational stacking patterns with the 

deformation history. Understanding their actual three-dimensional geometry 

(e.g. shape and distribution) has a considerable economic and social 

significance in terms of geofluids provision (e.g. hydrocarbon and drinkable 

water), ore deposits and civil engineering, among many others. 

It is for this reason that, during relatively recent years, industries first, 

and at a later stage the academic community, have adopted as standard the 

construction of 3D geological models. Those models are obtained from 

primarily subsurface seismic datasets or outcrops.  

Offshore seismic data, such as seismic profiles or 3Dimensional cubes, 

provide two dimensional or complete three-dimensional clues to enable 

identification of geological elements, and in particular km-scale geometries 

that are impossible to observe from wells or outcrops. However, seismic 

methods suffer from non-unique interpretations that need semi-quantitative 

validation, such as large-scale outcropping analogues. This is obvious 

considering the amount of heterogeneities in any geological setting and the 

finite resolution of the method, which is typically from several meters to tens 

of meters; it is essentially at this scale that the fluid-flow behaviour within rock 

masses (e.g. reservoirs) is controlled (Vaughan et al., 2004). 

In areas where geological and geophysical data are typically sparse due 

to the complexity of the structures and accessibility problems, such as in 

onshore fold-and-thrust provinces, the construction of three-dimensional 

models is even more intricate (e.g. Fernández et al., 2004, 2009). 
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On the other hand, outcrops, which represent surface analogues of the 

buried geological systems, are able to provide primary information about 

meters to decametres-scale heterogeneities that are not resolvable through 

indirect methods. By solving these scales, it is possible to gather important 

clues, for example, to populate reservoir models bridging the resolution gap 

between seismic and well data within petroleum systems. Conventional outcrop 

studies, however, has long lacked fully reconstructed outcrop models, which 

could be realistically and quantitatively compared to their subsurface analogues 

(Verwer, 2008). This issue mainly results from the difficulty of capturing both 

the two-dimensional and the three-dimensional geometry of geological bodies 

and surfaces in a consistent and accurate way. 

With the advent of the digital age, however, the development of digital 

field acquisition methods (e.g. real time kinematic global positioning systems, 

RTK GPS, and light detection and ranging, LiDAR), have made possible the 

actualization of fully three-dimensional spatial analysis (e.g. McCaffrey et al., 

2005). At their early stages, those methods were not very versatile, expensive 

and inaccurate as were software applications available to process and analyse 

these digital datasets. 

During recent years, however, techniques aimed at the acquisition of 

three-dimensional information of outcrops, have experienced a fast 

development with their widespread applicability to various scientific fields, 

including architecture, cultural heritage, archeology, topography, forensic 

sciences, and geology among others. In particular, three-dimensional 

representations in geology are known as virtual outcrop models (VOMs) (Xu et 

al., 1999, 2000; Pringle et al., 2001; Bellian et al., 2005; Clegg et al., 2005; 

McCaffrey et al., 2005; Trinks et al., 2005; Buckley et al., 2008, 2010; Jones et 

al., 2008), but are also referred as digital (Bellian et al., 2005; García-Sellés et 
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al., 2011) or photorealistic outcrop models (Xu et al., 2000; Buckley et al., 

2008; Minisini et al., 2014). 
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11..11  VVIIRRTTUUAALL  OOUUTTCCRROOPP  MMOODDEELLSS  

A VOM is essentially defined as a digital 3D representation of the 

outcrop topography. This is generally represented in the form of a XYZ point 

cloud, which is a set of coordinate points, in an arbitrary or georeferenced 

coordinate system. The information is commonly stored as a plain text file 

(ASCII file) that can also enclose the RGB (Red Green Blue) information of 

each point (i.e. coloured point cloud). When an enough dense cloud of an 

outcrop is available, the user at the computer screen is able to already 

distinguish many geological features (e.g. bed-forms, fractures, and faults), and 

several kinds of measurements may be obtained. In several cases, the quality of 

the dataset can be improved by meshing the point cloud. Through this process, 

the point cloud is converted to a three-dimensional triangulated or gridded 

surface, made of irregular polygons (generally triangles), that is commonly 

referred as a mesh. When the photographic information is available (such as 

with photogrammetry or a laser scanner with an integrated camera) the mesh 

may also be textured (i.e. an image is draped onto the mesh). More in detail, 

during the texturing of the mesh, two coordinates (U and V) are assigned to 

each vertex of each triangle of the mesh. At the same time, a texture map is 

generated; this is basically a two-dimensional (U and V) image consisting of a 

puzzle of triangular images that will be applied to the mesh. The visual 

experience with a well-textured mesh of an outcrop can be very close to reality. 

VOMs can be substantially generated by two competitive surveying 

methods: LiDAR and digital stereo-photogrammetry (here simply referred as 

photogrammetry). The first is by far the most accomplished method employed 

in the production of virtual outcrops. In particular, it has certainly been the 

most acknowledged method within the geological community (Hodgetts, 

2013), albeit limited to a certain elite of people due to budget limitations. 
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Among many companies that are actually producing scanners, the best known 

are Leica, Riegle, Trimble and Optec. Although different kinds and models of 

scanner exist, the basic principle is that a light pulse (preferably green, since an 

infra-red wavelength would be affected by absorption of the water eventually 

present on the outcrop surface) is emitted from the laser head and the time, 

from emission to return of the reflected beam, measured. Of course, knowing 

light velocity (and some correction factors), the distance of each point hit by 

the light beam is computed. The entire outcrop is scanned this way by rotating 

the laser head at constant angular velocity.  

Photogrammetry is instead an estimative technique whereby metric data 

for an object (i.e. the shape, position and size) is obtained through the analysis 

of two or more images of the same scene taken from different points of view 

(Figure 1). In particular, metric data for the objects are obtained by estimating 

the spatial coordinates of each point in the photos. Since only two-dimensional 

coordinates can be obtained from a single image, two or more photos are 

needed to estimate the three-dimensional coordinates of points. 

The algorithms involved in the automated reconstruction of 3D models 

from 2D unconstrained photographs are termed Structure from Motion (SfM; 

Ullman 1979). These algorithms have seen a dramatic development over the 

last two decades, in particular, recent advances have been made with respect to 

the image matching techniques (e.g. Gruen 2012), which are methods 

developed with the aim of establishing the relationship between images, and 

hence to study how a feature observed in one image may be recognized in other 

images taken in different conditions (e.g. different point of view, focal 

distance, lighting condition, etc.). The turning point has probably occurred 

when the detection of features among multi-view imageries has become 

possible, for example with the Scale Invariant Feature Transform algorithm 
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(SIFT; Lowe 2004), which transforms image data into scale-invariant 

coordinates relative to local features.  

 

Figure 1. This scheme shows the parameters involved in stereoscopic view. When a point P 

is photographed from two cameras C1 and C2, the position of P in the two photos (Pc1 and 

Pc2) depends on the position of the two cameras, on their focal length, and on their 

orientation, which is defined by 4 parameters (the ijk versor and the angle α defining the 

amount of rotation about the ijk axis). From Tavani, Granado, et al., 2014 

More particularly, SfM algorithms, given a set of partly overlapping 

photographs pointing at the same scene, detect suites of points or point clusters 

in the different photographs. The knowledge of these point coordinates in the 

different photographs makes possible the computation of the parameters that 

relate the XYZ position of a point in the space to its XnYn position in the n
th

 

photograph (i.e. set by camera position, orientation, and focal length), and the 

subsequent transformation of pixels seen in different photographs into points 
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placed in an arbitrarily 3D space (Figure 1). In essence, this process leads to 

the construction of a sparse point cloud.  

A denser point cloud is then generally built through pair-wise depth map 

computation (i.e. an image that contains information relating to the distance of 

the surfaces of scene objects from a viewpoint) or Multi-View Stereo (MVS) 

matching methods (i.e. specific algorithms designed to operate ultra-high 

resolution images by decomposition of the initial images to efficiently compute 

dense 3D point clouds). 

To date, SfM algorithms are implemented in many freeware and 

commercial software (Snavely et al., 2008). Commercial software has several 

advantages including the availability of all in one solution designed in a user 

friendly manner. Among these, PhotoModeler and PhotoScan are certainly 

leading the academic market. Totally free solutions are instead available 

combining SfM-MVS algorithms (James and Robson, 2012) such as Bundler 

(SfM) and PMVS2 (Furukawa and Ponce, 2010) or CSVM (Furukawa et al., 

2010) (MVS), among other solutions (Bemis et al., 2014). 

 Also thanks to recent hardware and software developments, 

photogrammetry has experienced a so rapid growth that it is now possible to 

produce VOMs through the use of any digital cameras (including camera 

phone and compact cameras). 
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11..22  LLIIDDAARR  VVSS  PPHHOOTTOOGGRRAAMMMMEETTRRYY  

Numerous controversial papers exist in favour of the accuracy of the two 

methods, nevertheless, while accuracy and error of a certain model of laser 

scanner are clearly stated in the vendor specifications (albeit with minor case 

by case variability), the same properties cannot be determined in advance for 

the photogrammetry case. It is therefore not possible to determine a priori 

which method will be, at the end, more accurate. Before studying a specific 

outcrop or geological structure, the choice of the method should, hence, be 

based on different considerations, keeping in mind that LiDAR certainly has a 

better constrained workflow that is less subjected to case by case variability. 

LiDAR, however, has a variety of disadvantages that goes beyond the 

mere, nevertheless important, economic factor. For instance, even if recent 

models of laser scanners are now much lighter than in the past, they still 

remain quite bulky and heavy devices, so that remote areas are still challenges 

(Hodgetts, 2013). On the other hand, the most evident advantage of 

photogrammetry is, in fact, its versatility in the most disparate conditions; it 

has dramatically faster acquisition time and much lower apparatus weight (i.e. 

the weight of a digital camera), so that even remote areas are easily accessible. 

LiDAR, instead, has the advantage of a minor or a completely unnecessary 

post-acquisition processing. 

Despite these most obvious advantages for each technology and without 

considering topics like accuracy and precision of the differently derived point 

clouds (this is anyway a fundamental issue that has to be considered case by 

case), there is a less intuitive, although simple, crucial consideration. Although 

both technologies are able to generate an accurate georeferenced point cloud 

that can be later triangulated in order to generate a polygonal mesh, the process 
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of texturing (i.e. applying an image to the mesh), which is easy and 

straightforward with photogrammetry (James and Robson, 2012; Tavani et al., 

2014), is often complex in LiDAR datasets from multiple scan positions 

(Hodgetts, 2013). This is an obvious consequence of the nature of the two 

methodologies, one that begins from the same information that has to be 

textured (i.e. a photoset), and one that has to consider hybrid solution to solve 

the problem of texturing (i.e. LiDAR plus photos).  
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2. METHODS 
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For all those reasons discussed in the previous chapter, and in particular 

the versatility of the photogrammetric method together with the ease with 

which point clouds can be meshed and textured, I used this method to build the 

3D models for the case studies presented. In particular, the models were built 

using the commercial software Agisoft PhotoScan; this software has been 

chosen among many alternatives because of its user-friendly nature and the 

availability of an academic license.  

Different cameras and set-up were used for the different case studies 

presented. These will be discussed in their relative sub-chapters, while here, 

only general methods are presented. 
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22..11  GGEENNEERRAALL  AADDVVIICCEE  OONN  PPHHOOTTOO  CCAAPPTTUURREE  

In this paragraph I will not enter into the merits of how photographs have 

been taken during fieldworks, since this topic will be discussed later for each 

case study. Nevertheless, general rules exist in order to obtain good quality 

VOMs. These rules are thought to optimize SfM algorithms. In essence, photos 

should be taken from multiple points of view and with a substantial overlap. It 

is worthwhile to use the same camera to minimize errors coming from the use 

of different lenses and camera sensors, while keeping the focal length fixed is 

not compulsory but it is strongly recommended (Tavani et al., 2014). 

Furthermore, in the case of not diffuse light (e.g. sunny days), it is 

recommended to take photos consecutively to avoid the coupling of shadows of 

different shapes within different images (e.g. Arbués et al., 2012).  

Photographs should not be taken too obliquely to facilitate features 

matching between images, but this is a debatable argument since oblique 

photos would, at the same time, enhance the model accuracy (Moreels and 

Perona, 2006; Bemis et al., 2014; James and Robson, 2014). Nevertheless any 

attempt to quantify an optimal angle between images and the outcrop should be 

case by case dependent and rely on specific SfM algorithms. A fast rule is that 

it is always convenient to take many more photographs than necessary, and, 

eventually, delete some of them later from the PC. 
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22..22  BBUUIILLDDIINNGG  AA  VVOOMM  WWIITTHH  PPHHOOTTOOSSCCAANN  

After all selected photographs of an outcrop are imported into PhotoScan 

(Verhoeven, 2011), a photo-mask (Figure 2a) can be applied to each photo in 

order to exclude ―problematic‖ areas from further analysis and matching. 

These areas are, for example, unwanted or unnecessary features like vegetation 

or the sky and in particular images in the background (e.g. clouds, birds, trees, 

etc.), that in addition to being time-consuming may produce errors or overload 

the model with non-interesting scenes. Even though photo-masking can be very 

time consuming for the users, it can improve later computations.  

After those areas are masked, the first subsequent mandatory step is 

photo-alignment. This command attempts to recognize every point in common 

between each overlapping photograph, allowing to compute position and 

orientation of each photo and, in turn, the creation of a sparse point-cloud 

representing the surfaces of the objects within the target scene (e. g. Gruen et 

al., 2004; Verhoeven, 2011; Favalli et al., 2012).  

This is a time-consuming and iterative process which can be improved 

by manually indicating matching points among photographs (Figure 2c). 

Wrong alignments, which can be recognized by the presence of unrealistic 

geometries within the point cloud (Figure 2b), are generally solved by 

indicating further matching points or, eventually, removing those photos that 

cannot be aligned. Photos with large overlap are generally aligned without 

problems regardless of the camera parameters.   
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Figure 2. Steps involved in the photo-alignment. (A) Masking of photos allows one to 

remove unwanted areas from the reconstructed model. (B) Photo-alignment of unoriented 

photos providing as output both the reconstructed point-cloud and the position of photos. At 

this stage, large errors can be easily recognized, being evidenced by unrealistic photo-

positioning (in the example, some photos are located more than 500 m above the ground) 

and by the presence of incorrectly positioned points. (C) Providing the position of known 

objects (markers) in the different photos can greatly help the alignment of photos. From 

Tavani, Granado, et al., 2014. 

Once photos are aligned and the sparse point cloud generated (Figure 

3a), depth maps (i.e. estimated distance of each pixel from the camera position) 

are reconstructed for each photograph by interpolating data from the 

recognized points. Depth maps allow the software to run a second round of 

point-detection, which eventually results in the creation of a second and denser 

point-cloud (Figure 3b). 
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Figure 3. Steps involved in the VOM reconstruction via PhotoScan. (A) Colored (RGB) 

point-cloud is reconstructed after photo-alignment. (B) Dense point-cloud, after depth maps 

reconstruction. (C) Triangular mesh derived from the dense point cloud, seen in wireframe 

mode, is built through the “built texture” command. (D) Textured mesh. Refer to text for 

further details. These examples are taken from the Frontone VOM. 

The succeeding step (i.e. ―building geometry‖) triangulates the point-

cloud and returns a mesh made of irregular triangles (Figure 3c). In reality, the 

term triangulation is here improperly used to indicate that the point cloud is 

discretized by a gridded surface made of irregular triangles where each triangle 
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can be imagined as a best-fit plane of a local point cluster, and not by a real 

triangulation (e.g. Delaunay triangulation). Then, through the "building 

texture" command, a texture map can be rapidly generated and draped onto the 

triangular mesh (Figure 3d). In detail, two coordinates (U and V) are assigned 

to each vertex of each triangle of the mesh, representing a point in the texture 

map. The U and V coordinates of vertexes enable a triangle in the texture map 

to be cropped, and then paste onto the corresponding triangle of the mesh 

(Figure 4). The higher the number of triangles in the mesh is, the higher the 

resolution of the texture map should be. 

The last step in the realization of the model is the re-orientation and 

rescaling of the 3D model and, eventually, its georeferencing to a known 

coordinate system. This can be achieved when the real position of at least 3 

points within the model is known.  

 

Figure 4. Procedure for texturing of a triangular mesh. From Tavani, Granado, et al., 2014. 
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22..33  MMOODDEELL  MMAANNAAGGIINNGG  AANNDD  DDAATTAA  EEXXTTRRAACCTTIIOONN  WWIITTHH  OOPPEENNPPLLOOTT  

The models where later imported into the OpenPlot free software 

(Tavani et al., 2011, 2014), where I extracted a series of geological data 

directly from the textured meshes, including, for instance, bedding, fractures, 

and faults attitudes. Although it was not used in all of the case studies, the use 

of the OpenPlot software has been fundamental to most of the analysis. The 

main tools of the software are hence described in this sub-chapter. 

OpenPlot is a multiplatform (Linux, Mac OS and Windows) and open 

source software for geostructural data analysis. The software has a 3D 

environment which allows visualizing and manipulating both point clouds and 

textured meshes. For technical information the reader can refer to Tavani, 

Granado, et al., (2014) or go to http://www.openplot.altervista.org/ for updated 

material and tutorial.  

In order to be imported into OpenPlot, the textured mesh has to be 

exported from PhotoScan as a wavefront file and the ―export texture‖ option 

must be enabled during exporting. The wavefront OBJ format includes three 

files: (i) an *.obj file which contains the geometric information of the mesh, (ii) 

a *.mtl file with material definition (not used by OpenPlot), and (iii) a *.jpg (or 

*.png) file which represents the texture map. When dealing with large projects 

it is also possible to separate the model into parts and export them separately, 

to ease the rendering speed into the next steps. 

Within the 3D environment of OpenPlot, one of the drawing tools is 

―draw-polyline‖ (Figure 5). This tool allows the user to digitize a polyline by 

clicking point-by-point along the intersection between a geological target 

surface (such as bedding, fractures, faults, etc.) and the outcrop topography 
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(Hodgetts et al., 2004; Trinks et al., 2005). A best fit plane of this polyline is 

then computed and stored (see Tavani, Granado, et al., 2014) together with its 

strike and dip. The success of the computation of each plane is strictly related 

to the quality and three-dimensionality of the mesh since a plane is best 

calculated from co-planar but non-collinear points (Fernández et al., 2009). 

The created planar polygons are georeferenced structural objects, hence, they 

can be filtered, analysed, plotted and so on. Polylines can be digitized over 

either point clouds or meshes, but the use of a mesh strongly increases the 

chance of catch a geological surface that may be hidden between points if the 

resolution of the point cloud is not large enough.  

 

Figure 5. Point-by-point digitization of a geological surface. In this case an almost 

horizontal bed belonging to the Conocchia cliff outcrop. 
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A complementary procedure aimed at measuring virtual geological 

surface attitudes also exists. This can be applied when surfaces of interest, or at 

least part of them, are exposed (Figure 6a). In this case, the triangular polygons 

composing the mesh are in fact parallel to the surface of interest. In OpenPlot it 

is possible to plot the orientation of selected triangles from the 3D environment 

to a contour plot (Figure 6b), where the occurrence of clusters in the triangles 

orientation are recognized. Directly from the contour plot, a colour can be 

assign to these clusters (i.e. each triangle in the cluster is coloured with the 

assigned colour (Figure 6c), thus enhancing the recognition of areas that 

include parallel triangles (Figure 6d). From Figure 6c and Figure 6d it is 

evident that one of the clusters, corresponding to triangles dipping toward the 

north that have been here coloured in green, is related to vegetation and can 

then be disregard from geological consideration. The cluster coloured in 

yellow, dipping at high angle toward E-NE, is parallel to bedding. Eventually, 

from the 3D environment of OpenPlot, the user can select cluster of triangles 

belonging to bedding (Figure 6e), where the triangle vertexes are used to 

extract a best-fit plane (Figure 6f). The quality of the extracted best-fit plane 

can be evaluated by comparing the average triangle orientation and the 

orientation of the best-fit plane (Figure 6g). 
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Figure 6. Data extraction through orientation analysis of the mesh. Given an area of 

interest (A), the orientation of triangles of this area is plotted (B). In the stereoplot, a color 

filter can be applied. (C) The 3D mesh is then re-loaded in color mode, so that the user can 

detect areas where triangles orientation is rather constant and parallel to the orientations of 

interest. (D) At this stage, smaller areas are selected and, in order to individuate near-

planar features, sub-areas with near-parallel triangles are selected. (E) Vertexes of 

triangles within the selected area are used to extract a best fit plane (F). (G) Comparison 

between the average orientation of triangles of the selected area and the orientation of the 

best-fit plane allows the user to evaluate the quality of the fit. This example is taken from the 

Rocca di Cave VOM. 
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3. CASE STUDIES 
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For convenience of presentation, case studies have been grouped into 

four sections, which, on a first approximation, reflect the scale of the outcrops. 

This distinction was necessary because the scale, in turn, involves different 

approaches and methods, and eventually, different goals. 

The first section discusses about partly-accessible outcrops at the meso-

scale and, in particular, it illustrates the workflow for producing properly 

oriented sections of the VOMs by presenting three different examples. In 

addition, an innovative and low-cost approach to scale and re-orient a model, 

and to evaluate, on first approximation, the error generated within the model is 

presented in this section. This intuitive workflow gives its best benefits for all 

those outcrops where the use of highly precise and expensive instruments is not 

repaid in terms of accuracy needs. 

Within the second section, the photogrammetric method is used to 

acquire very detailed profiles (which it is not synonymous with accuracy) of 

rough surfaces such as faults. The method accuracy is hence investigated in 

two ways: (1) making 3D models of rough objects of known size, and (2) 

testing self-affinity of fault surfaces following already described procedures 

(e.g. Candela et al., 2009, 2012; Bistacchi et al., 2011; Renard et al., 2013) that 

these authors applied to 3D or 2D data produced by means of laser scanners, 

laser profilometers and eventually by white light interferometers. A Matlab© 

code has been here developed and it is presented into the Appendices.  

Within the third section, the workflow followed during the structural 

study of an inaccessible, reservoir scale, analogue within the Sorrento 

Peninsula (Italy), is presented. The outcrop, chosen for his potential as 

analogue, is inaccessible to standard studies due to its position and size. 
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Photographic acquisition of this outcrop required the use of an unmanned aerial 

veichol (UAV), here referred as drone, equipped with a digital camera.  

The last session describes how old photos of outcrops, initially made 

without taking into account their 3D development, can be used to produce 3D 

models. This task may prove useful in several applications in structural 

geology, such as teaching, revaluation and arrangement of new and old 

projects, and sharing of results.  
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33..11  SSCCAALLIINNGG,,  RREE--OORRIIEENNTTAATTIIOONN  AANNDD  OORRTTHHOORREECCTTIIFFIICCAATTIIOONN  OOFF  MMEESSOO--

SSCCAALLEE  OOUUTTCCRROOPPSS  

To this category belong outcrops of several meters up to few tens of 

meters that are generally, at least partly, accessible. Among the several 

applications that an image-based VOM holds for geological research (e.g. 

extended area coverage, large number of measurements, and as a teaching 

tool), perhaps one of the most interesting and, at the same time, basic needs is 

to be able to look at a virtual outcrop in orthographic view mode from any 

geologically-relevant point of view (e.g. fold axis, fault slip-normal, fracture-

bedding intersection). This application allows the user to virtually orthorectify 

the outcrop (Figure 7), so that true measurements of geological features can be 

done directly on the computer monitor.  

 

Figure 7. Orthorectification of a Virtual Outcrop Model (VOM) in PhotoScan. The 

orthorectification essentially consists in the projection of the model onto a plane oriented 

perpendicularly to a direction of interest, for instance, the bedding-fault intersection 

direction in the shown example. This example is taken from the San Severino VOM. 

In this sub-chapter, I show geologically relevant application of this basic 

application to VOMs. In particular, the workflow for producing 

―orthorectified‖ virtual outcrops is here illustrated using three different 

examples from the central-northern Apennines (Italy). The orthorectification of 

these outcrops has the aim of studying, without geologically-significant 
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distortion and through geologically-representing points of view: (1) the 

displacement of strata along an incipient normal fault in the San Severino 

locality; (2) the wedge geometry of tilted carbonate strata in the Rocca di Cave 

locality; (3) the deformation processes involved in the formation of a kink fold 

in the Frontone locality.  

Regardless of the resolution of a VOM, errors and distortions in the 

obtained models cannot be determined without knowing the position of points 

included in the outcrop. Accurate positioning of points can be obtained, for 

example, by means of a total station, which is an expensive and, above all, 

heavy device. Nevertheless, extremely accurate positioning of points may be 

unnecessary for a number of applications in structural geology. 

In this work, I have addressed the error issue by using some portable and 

cheap tools that focus on the internal relative scales and positions of objects: a 

compact laser distance meter, a compass, a laser level mounted on a tripod with 

a graduated rotary table, and some coded targets (Figure 8a).  

In the field (Figure 8b), the compass served to orient the rotary table, 

which represents the origin of a local reference system, towards the north. The 

laser level is then used to position a first suite of coded targets (hereafter 

named ―coordinate targets‖) at a constant elevation (that of the level). The 

position of these targets with respect to the origin (i.e. the laser level) is 

annotated as angular coordinates obtained by the graduated rotary and as 

distances obtained by the laser distance meter. Additional targets (hereafter 

named ―random targets‖) are randomly distributed on the outcrop surface and 

only their distance from the origin is measured.  
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The outcrop is then extensively photographed from different positions 

providing a good overlap between each successive image. It is also important 

to acquire a set of photographs of the outcrop along with the laser level, since 

the latter will serve as origin for a local coordinate system. 

After importing all photographs into PhotoScan, the targets are manually 

identified in each photo. This identification process has the fringe benefit of 

greatly improve the correct positioning of photographs. The VOM is then 

generated in PhotoScan through the photo alignment, densification of the point 

cloud, building of the geometry and building of the texture processes.  

 

Figure 8. (A) Field devices used in this work: (1) Canon EOS 450D camera. Photograph 

resolution is set to 4272X2848 pixel. (2) Leica DISTO D2 distance meter (0.05 to 60 m 

measuring range, accuracy = ± 1.5 mm). (3) Silverline equipment including (3.1) a 40 cm 

long level (error on the horizontal determination is ± 0.29 °) with a laser pointer and (3.2) a 

tripod with a graduated rotary table. (4) Silva compass. (5) Coded targets. (B) Scheme 

showing the field use of compass, distance menter, laser level, and rotary table, to place a 

first suite of targets in the outcrop and to get their polar coordinates (coordinate targets: 

red targets in the figure). Additional targets (random targets: white targets in the figure) are 

arbitrarily placed and only their distance from the origin is measured. 

In the 3D digital model, the positions of the coordinate targets are used 

to scale and re-orient the model in PhotoScan. This operation is achieved by 

simple trigonometry by assigning a XYZ value to each coordinate target where 
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the level is at the origin (0 0 0) (Figure 9). For instance, the XYZ coordinates 

are calculated as illustrated in Figure 9. 

 

Figure 9. This scheme shows the orientation of the coordinate system that result from the 

proposed trigonometric calculations. See text for details. 

The positions of all targets in the scaled 3D digital model are then 

computed, to compare the distances between the targets and the origin as 

measured in the real world and in the digital environment. This easy procedure 

allowed estimating discrepancies (i.e. errors) between measurements in reality 

and the corresponding points in the digital model.  

The subsequent step is the extraction of the geological data, such as 

bedding and fracture attitudes. This procedure is done on the textured mesh 

after importing it into OpenPlot. As shown later, through different analyses of 



 

30 
 

the resulting attitudes, it is possible to calculate the direction of interest to 

orthorectify the 3D model.  

Once the direction for orthorectification is known, the XYZ positions of 

the coordinate targets are re-calculated in a rotated reference system with the Y 

axis oriented as the direction of interest.  

In particular, the new coordinates can be easily calculated through 

elementary transformation matrices. For instance, given a direction of 

projection of 300/20 (azimuth/dip), two rigid rotations around the origin are 

necessary (Figure 10): one is around the Z axis amounting to the azimuth angle 

and the subsequent is around the rotated X (i.e. X‘) amounting to the dip angle. 

 

Figure 10. Equal area stereo-net showing the coordinate system (in yellow) obtained from 

the rotary level and the laser distance meter. In order to re-orient the Y axis toward the 

computed point of view two rotations must be made. A first rotation, amounting to the 

azimuth angle, is carried out around the Z axis, while a second rotation, amounting to the 

dip angle, is carried out around the X‟ axis. Z axes are negative because they are elevations 

depicted in the lower hemisphere. 

The resulting elementary transformation matrixes are given by: 



 

31 
 

  (       [ ])  [
   ( )     ( )  

   ( )    ( )  
   

] 
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In linear algebra, this rotation is equivalent to a change of base (i.e. the 

transition from a fixed reference system to a rotated one).  

When these new coordinates are updated into PhotoScan, the VOM is 

automatically rotated to the new point of view and can be then exported in 

orthographic mode. 
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33..11..11  TThhee  RRooccccaa  ddii  CCaavvee  oouuttccrroopp  

The Rocca di Cave outcrop is an E-W-oriented, 20 m wide, and 4 m high 

exposure located near Rome within the Miocene-Pleistocene Apennine fold-

thrust belt at the following coordinates: latitude 41°50'48''N and longitude 

12°57'2''E. The geological framework of the area is detailed in Tavani et al. 

(2015). A NNW-SSE-striking near vertical normal fault affects the rocks 

consisting of sub-horizontal Cretaceous and steeply dipping to near vertical 

Miocene carbonate strata in the fault footwall and hanging wall, respectively 

(Figure 11). 

 

Figure 11. Photograph of the Rocca di Cave study outcrop showing a steeply dipping 

normal fault characterized by Cretaceous limestones in the footwall and Miocene 

calcarenites in the hanging wall. Coded targets on the outcrop are indicated with triangles. 

Yellow-filled triangles, in particular, indicate target placed at the same elevation of the 

laser level. 

 The laser level was positioned at about 10 m from the outcrop and, 

following the previously-illustrated procedure, the level was used to place 

seven coordinate targets (at the same elevation of the laser level) along with ten 

random target placed at various elevations (Figure 11).  
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110 photographs (12.1Mpixel each) were taken at distances of about 2 

and 4 meters from the outcrop (Figure 12). As seen in Figure 12, photographs 

were taken almost perpendicularly to the photographed portion of the outcrop. 

The photographed areas range between 5x3.3 m and 2x1.3 m (width times 

height), so that the resolution of photographs (i.e. pixels/photographed area) 

ranges between about 2 to 0.7 pixel/mm
2
. Different elevations and distances 

from the outcrop during photograph acquisition ensured that each portion of 

the outcrop is seen in at least four photographs.  

 

Figure 12. RGB coloured point cloud of the Rocca di Cave outcrop with spatial distribution 

of photographs used to build the cloud, as seen in Agisoft PhotoScan. 

Ten more photographs were acquired displaying both the study outcrop 

and the laser level in its working position. These latter photographs are 

mandatory to include also the origin of the system (i.e. the laser level) in the 

3D model. As the laser level was placed about 10 m away from the outcrop, 

these latter photographs are oblique to the outcrop and have different 
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resolutions for the laser level (about 1 pixel/mm
2
) and for the outcrop (less than 

0.4 pixel/cm
2
).  

In PhotoScan, a first point-cloud (Figure 13a) consisting of about 5x10
4
 

points for the area of the laser level and 1.2x10
6
 points for the outcrop surface 

was generated. The surface of the outcrop is about 300 m
2
, hence the density of 

this first point cloud was 0.4 points/cm
2
. A second and denser point-cloud of 

24x10
6
 points (only for the outcrop) was built from the depth maps (resolution 

of about 8 points/cm
2
; Figure 13b). Next, from this dense point cloud a 

triangular mesh made of 30x10
6
 irregular triangles with an average area of 0.1 

cm
2
 (Figure 13c) was built. As the mesh vertexes hold photographic RGB 

colour attributes, displaying the mesh in solid-coloured mode allows one to 

recognise real objects and features much better than in the point cloud (Figure 

13d). The rendering performance of the mesh can be further improved by 

texturing. Texture maps resolution has, however, serious hardware limitations. 

Generally, the size of the texture map is limited to 4096x4096 or 8192x8192 

pixels; these high values frequently implying the pixellation of the mesh, i.e. 

individual pixels are recognisable (Figure 13e). Such a problem can be solved 

by dividing the mesh into smaller sub-meshes and applying different texture 

maps to each sub-mesh (Figure 13f). It is highly recommended to scale and re-

orient the mesh, using the coordinate targets, before it is split, so that the sub-

meshes are scaled and re-oriented too.  
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Figure 13. Different versions of the Rocca di Cave Virtual Outcrop Model, with detail 

showing a coded target. (A) Coloured (RGB) point-cloud. (B) Dense point-cloud built after 

depth maps reconstruction. (C) Triangular mesh derived from the dense point cloud, seen in 

wireframe mode. (D) Triangular mesh seen in coloured mode. Photographic colour (RGB) 

information exists for the three triangle vertexes, and colour inside the triangle is derived 

from this information. (E) Textured mesh, where an image (i.e. the texture) is draped onto 

the mesh (so that the rendering within triangles is improved). (F) Increasing the resolution 

of the texture increase the quality of rendering. 

 The distance between all targets and the origin (Rv) in the digital 

model was computed after scaling and re-orientation, and compared with that 

measured in the field (Rf). In the case of the Rocca di Cave outcrop, 

differences between Rf and Rv are less than 4 cm (Figure 14a) with an average 

value of 2 cm. These differences are insensitive to the X, Y, and Z coordinates 

(Figure 14b). This result points out the absence of a remarkable distortion 

along the three axes. Differences are higher than 2 cm only for those coded 

targets that we could not fully adhere to the outcrop surface. As a consequence, 
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the software averaged the decoupled target and outcrop surfaces as it did not 

recognise the small empty space between the outcrop surface and the target 

(Figure 15), thus producing an higher Rf vs. Rv mismatch. It is therefore 

recommended to fully adhere the targets to the outcrop surface to avoid 

miscalculated Rf vs. Rv values. 

 

Figure 14. Difference between measured (Rf) and digitally computed (Rv) distances of 

targets from the origin in the Rocca di Cave outcrop. (A) Frequency distribution of Rf-Rv. 

(B) Scatterplot with Rf-Rv values along the Y-axis and X, Y, and Z coordinates of the target 

along the X-axis of the plot. 
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Figure 15. Example of second order distortion during reconstruction of a coded target not 

pasted onto the outcrop's surface. (A) Photographic dataset. (B) Digital model, where the 

empty space between the outcrop and the coded target was not successfully reproduced. 

Instead, the target was deformed and an error occurred. 

The textured sub-meshes were imported into the OpenPlot software, 

where bedding attitudes were extracted directly from the textured sub-meshes 

using both of the previously-described procedures. 

Despite the high resolution of both the second point cloud and the 

triangular mesh, the resolution of the first mesh was 0.4 points/cm
2
 and the 

maximum error of the VOM was about 4 cm. In order to avoid errors, it was 

chosen to digitized only planar features having an exposed area of at least 100 

cm
2
 (Figure 6) through the orientation analysis of the mesh.  
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A total of 138 bedding surfaces of the Miocene calcarenites were 

digitized (Figure 16).  

 

Figure 16. View of the Rocca di Cave outcrop model in OpenPlot, with digitalized bedding 

surfaces (green polygons). 

Beds strike about NNW-SSE and dip 60-70° toward ENE (Figure 17). 

The tensor analysis of poles to beds (e.g. Whitaker and Engelder, 2005) 

provides three eigenvalues and associated eigenvectors that represent the 

direction of maximum (K1), minimum (K3), and intermediate (K2) pole 

concentrations.  

 

Figure 17. Frequency contour in stereographic equal-area projection of poles to digitalized 

bedding surfaces together with results of the tensor analysis (i.e. eigenvalues and associated 

eigenvectors). 
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The observation that K3 is about half K2 indicates that poles to bedding 

are well clustered along a plane oriented perpendicularly to K3. In other words, 

K3 coincides with the beta axis (i.e. the direction of intersection between the 

bedding planes). 

The K3 was then used to reorient the VOM in PhotoScan so to obtain a 

coplanar-to-bedding orthorectified view of the outcrop.  An about 4-pixel/cm
2
 

orthorectified image was hence exported using this view (Figure 18a). 

Subsequently, this image was imported in Inkscape (a vector graphic drawing 

software) where beds were traced (Figure 18b) as it is usually done when 

picking horizons on a seismic reflection profile. From this line drawing, a 

properly oriented (i.e. orthorectified and oriented perpendicularly to beta axis) 

scheme was produced and rotated in order to restore the uppermost Miocene 

beds to its original horizontal attitude (Figure 18c). This simple rotation 

procedure revealed that Miocene beds (i.e. their formation) are at least partially 

sin-kinematic, as they form a growth wedge (Tavani, Vignaroli, et al., 2015). 
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Figure 18. (A) 4 pixel/cm
2
 orthorectified photograph of the outcrop produced in PhotoScan 

by using K3 as point of view. (B) Line-drawing of layers shown in the previous photograph. 

(C) Rotation of the orthorectified and interpreted model, showing the fan geometry and 

syntectonic origin of the Miocene Calcarenites. 

  



 

41 
 

33..11..22  TThhee  SSaann  SSeevveerriinnoo  oouuttccrroopp  

The San Severino outcrop is a barely accessible steep cliff located in the 

eastern (outer) sector of the Apennines fold-thrust belt at the following 

coordinates: latitude 43°13'28''N and longitude 13°07'5''E. The outcrop is E-W-

oriented and consists of a 10 m wide and 10 m high exposure of shallow 

dipping Mesozoic carbonate layers of the Maiolica formation affected by an 

embryonic normal fault (Figure 19a) (Tavani et al., 2012). 

 Only the lower part of the outcrop is accessible and the cliff can be 

photographed only from ground level. Accordingly, in order to cover the upper 

part of the outcrop with at least three sets of photographs, we took photographs 

at different distances from the outcrop (5 to 15 m) and with different focal 

lengths, which resulted in a resolution ranging from 1 to 0.2 pixel/mm
2
. 

Moreover, as it was not possible to position the coded targets in the upper 

portion of the cliff, only for this portion of the outcrop, random targets were set 

using a long-distance highly visible green light laser pointer and contextually 

measured with the distance meter and photographed (Figure 19b).  

In total, including photographs of these ―flying targets‖, 156 photographs 

were used to build the VOM. The first point cloud was made of 1.8x10
6
 points 

with a resolution of about 0.2 points cm
2
 (Figure 19c), while the dense point 

cloud was 9x10
6
 points. The latter was cut to remove the uppermost portion of 

the cliff, which was not affected by faulting, and vegetated areas, for a 

remaining surface of about 220 m
2
 (that is 4 points/cm

2
) (Figure 19d). 
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Figure 19. (A) Photograph of the San Severino outcrop showing the near vertical cliff and 

the embryonic normal fault along with the laser level. (B) Example of a “flying  target” 

made with a green laser light. (C) RGB coloured point cloud of the outcrop, with position of 

photographs indicated. (D) Dense point-cloud. (E) View, in the 3D digital model, of the 

target in B. 

The subsequent 3D triangulation of points enabled a triangular mesh 

made of 1x10
7
 irregular triangles (having an average area of about 0.2 cm

2
) to 

be obtained. The model was then scaled and re-oriented using all targets 

including the ―flying targets‖ (Figure 19e). 
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The VOM error (Rf vs. Rv) was found to range between about -4 and 6 

cm (Figure 20a). Similarly to the Rocca di Cave outcrop, also in this outcrop 

errors are insensitive to the X, Y, and Z coordinates (Fig. 11b). One target is 

affected by a greater error (i.e. 20 cm). We disregarded this latter value, as it is 

probably associated with a measurement error. Removing this anomalous 

value, we obtained that the average value of the absolute errors is 2.8 cm. 

 

Figure 20. Difference between measured (Rf) and digitally computed (Rv) distance of 

targets from the origin in the San Severino outcrop. (A) Frequency distribution of Rf-Rv. (B) 

Scatterplot with Rf-Rv values along the Y-axis and X, Y, and Z coordinate of the target along 

the X-axis of the plot. 

After the above described operations (i.e. triangulation, scaling, and re-

orientation of the model), the mesh was split into four sub-meshes, thus 

deriving four 4096x4096 pixels texture images, which were draped over the 

sub-meshes.  

In OpenPlot, 248 attitudes of meso-structures were measured: 58 

bedding surfaces, 140 joints, and 50 segments of the study fault (Figure 21a).  

Bedding surfaces identify a single maximum corresponding to a N302°-

striking and NE3°-dipping plane (Figure 21b). Joints mostly consist of high-

angle-to-bedding surfaces striking E-W and N-S (Figure 21b). The digitized 
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segments of the fault are clustered around a single maximum corresponding to 

a N191°-striking and NW74°-dipping plane (Figure 21b).  

 

Figure 21. (A) View of the San Severino VOM in OpenPlot, with digitalized bedding 

surfaces (green polygons with orange outline), fault segments (red polygons with green 

outline), and joints (blue polygons with yellow outline). (B) Frequency contour in 

stereographic equal-area projection of poles to digitalized bedding surfaces, joints, and 

fault segments. DN and CI refer to data number and contouring interval, respectively. 

From tensor analysis of these data, three mutually orthogonal versors 

were derived: the bedding-fault intersection versor, the bedding-normal versor 

and the one orthogonal to both. The VOM was hence rotated in PhotoScan to 

obtain, in orthographic view, a frontal view of the plane oriented 

perpendicularly to both bedding and the fault.  
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A 4-pixels/cm orthorectified photograph was exported from PhotoScan 

and subsequently imported in Inkscape, where beds and fault segments were 

traced (Figure 22a).  

 

Figure 22. (A) Orthorectified photo with line-drawing of layers and fault segments in the 

San Severino Outcrop. (B) Fault stratigraphic separation diagram. (C) Close-up of the 

folded area indicated in A. 

From this line drawing, the resulting properly oriented (i.e. orthorectified 

and oriented perpendicularly to both bedding and fault) scheme, was used to 

get measurements of true thicknesses and stratigraphic displacements. Using 

this scheme, it was possible to correlate cutoff points of hanging wall and foot-

wall strata and hence to construct a stratigraphic separation diagram (Figure 

22b). In particular, it was possible to observe a folded area along the fault 

(Figure 22c), between segments i and ii, where layers are folded and bent 

toward the fault (Figure 22b).  
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33..11..33  TThhee  FFrroonnttoonnee  oouuttccrroopp  

The Frontone outcrop is located in the outer sector of the Northern 

Apennine, and in particular in the frontal sector (NE) of the Mt. Catria anticline 

(e.g. Alvarez et al., 1978; Marshak et al., 1982; Geiser, 1988; Barchi et al., 

1991; Chilovi et al., 2002; Massoli et al., 2006), which is a structure involved 

in the Apennines‘ Thrust Wedge during the Messinian (Elter et al., 1975; Bigi 

et al., 1989). 

Along the outcrop, a plunging meso-fold, with straight limbs (e.g. kink 

folds), was studied (Figure 23). This fold affects strata belonging to the 

Maiolica formation, characterized by thinly to medium bedded whitish micritic 

limestones that show typical conchoidal fracturing, and grey or blackish cherty 

nodules and layers.  

 

Figure 23. Photograph of the Frontone study outcrop showing folded strata belonging to the 

Maiolica formation. The fold has an outcropping amplitude of at least 4 meters and an half-

wave length of 2.5 meters. Laser level is 40 cm long. 

The fold in question is characterized by both bedding-parallel and 

bedding-perpendicular pressure solution surfaces (PPS), fractures and veins. 
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These latter are evident within the outer arc of the hinge zone, where the 

thickness of the strata clearly increases. 

Although a series of geological sizes could be estimated in the field, 

there are a series of observations that require specific points of view for 

calculations and classifications. In this case study, this is the direction of the 

fold axis, since folds should be observed on a section that is orthogonal to it.  

 

Figure 24. RGB coloured point cloud of the Frontone outcrop with spatial distribution of 

photographs used to build the cloud, as seen in Agisoft PhotoScan. The outcrop was over-

abundantly photographed from both distance and very close to the fold, to gather an 

extremely high dense point cloud. 

The outcrop was photographed with two cameras, a Canon EOS 450D 

and a Canon EOS 1100D, both sharing a 12.1 Mpixel sensor. 351 photographs, 

taken at various distances from the outcrop, were used to build an extremely 

detailed (dense) VOM of the fold in PhotoScan (Figure 3). These photos can be 

grouped in about three sets (as seen in Figure 24). Close ups photos of the sole 

studied fold cover a photographed area of about 0.33x0.22 m each (i.e. 167 

pixel/mm
2
). Photos from the second line (as seen in Figure 24) that are 
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perpendicular to the outcrop portray an area of about 2.32x1.55 (i.e. 3.4 

pixel/mm
2
), while it is tricky to define the resolution of photos that are at 

different angles with the outcrop (however we know that these have lower 

resolution). Finally, perpendicular photos from the third line have resolution of 

about 1.59 pixel/mm
2
.  

The first point cloud was made from 2.2x10
6
 points with a resolution of 

about 5.5 points per cm
2
 within the much photographed area (Figure 24), while 

the dense point cloud, made of 2.3x10
7
 points, had a resolution of about 58 

points per cm
2
 within the same area. The resulting mesh was made of 2.2x10

7
 

triangles (having an average area of about 1.8 mm
2
). The model was then 

scaled and re-oriented using the position of the targets measured with the laser 

level as described for the former case studies.  

The VOM error (Rf vs. Rv) was found to range within about ±2 cm 

(Figure 25a). As observed in the Rocca di Cave and San Severino outcrops, 

error is insensitive to the X, Y, and Z coordinates (Figure 25b). 

 

Figure 25. Difference between measured (Rf) and digitally computed (Rv) distances of 

targets from the origin in the Frontone outcrop. (A) Frequency distribution of Rf-Rv. (B) 

Scatterplot with Rf-Rv values along the Y-axis and X, Y, and Z coordinates of the target 

along the X-axis of the plot. 
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Later, the mesh was split into ten sub-meshes, thus deriving ten 

4096x4096 pixels texture images, which were draped over the sub-meshes in 

PhotoScan. 

In OpenPlot, 166 surface attitudes were measured (Figure 26a), in 

particular 65 were bedding surfaces and bed-parallel PSS, and 101 were among 

bed-perpendicular PSS, fractures and veins.  

 

Figure 26. (A) View of the Frontone VOM in OpenPlot, with digitalized elements. (B) 

Contour plot of poles to bedding and bed-parallel PSS with results of tensorial analysis. (C) 

Contour plot of poles to non-bed-parallel PSS and fractures. 
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Bedding surfaces and bed-parallel PSS identify two maxima 

corresponding to planes dipping at 17/74 (Dip azimuth/Dip angle) and at 

234/45 (Figure 26b). Non-bed-perpendicular PSS and fractures form two major 

maxima corresponding to planes dipping at 273/73 and 342/74, and a less 

representative one that corresponds to a plane dipping at 115/81 (Figure 26c).  

From tensor analysis of bedding and bed-parallel PPS, three mutually 

orthogonal eigenvectors with their relative eigenvalues were derived (Figure 

26b). In particular, the smallest eigenvalue corresponds to the direction of 

minimum concentration of poles and hence to the direction of the intersection 

between the two limbs of the fold (i.e. the statistical direction of the fold axis). 

Confronting the two stereo plots of Figure 26, it is evident that the 

position of the smallest eigenvalue lies within the weak maxima observed in 

Figure 26c; this maxima hence corresponds to fractures that are perpendicular 

to fold axis and almost parallel to the outcrop wall. 

The direction of the smallest eigenvector, 292/26 (Azimuth/Dip), was 

used to calculate the position of the markers in a coordinate system where one 

of the axes is parallel to the fold axis. This is achieved by rigid rotation of the 

point cloud around the origin as previously described. After updating these 

coordinates in PhotoScan, the orthographic view of the model was exported 

(Figure 27). 

The size of the angle between the two limbs (i.e. the interlimb angle) is 

72.2°, so the fold can be classified according to its degree of 

tightness/openness as an open fold (120°-70°) (Fossen, 2010). 
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Figure 27. Orthorectified view of the Frontone outcrop. 

The fold, as observed in the orthographic view (Figure 27), can be 

classified with two distinct superposed profiles. In fact, in the inner part the 

fold is characterized by a typical chevron shape, with long planar limbs and a 

short, angular hinge zone, while the hinge zone of the outer part presents a 

round shape. The strata in the inner part also present a major thickening of the 

hinge with respect to the thickness of the fold limbs. 
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Using the exported image, it was also possible to classify the fold on the 

basis of isogons (Ramsay and Huber, 1987). In essence, isogons are lines 

connecting points with equal dipping angle at the two sides of a folded stratum. 

AutoCAD® software was used to construct isogons along two strata of the fold 

has shown in Figure 28. 

 

Figure 28. Isogons construction with AutoCAD® software. 

Once isogons are constructed in vector graphics software it is then 

possible to classify the folds according to dip isogons using the diagram shown 

in Figure 29. In this diagram, folds must be first rotated in order to set vertical 

their axial plane so that the dip of the limbs (α) increases in each direction from 

the hinge (Figure 29a). For each isogon, the normalized orthogonal thickness 

(  
 ) is calculated as the thickness measured orthogonal to the layer (  ) at one 

of the two corresponding points of equal dip on each arc (red dots in Figure 

29a) divided by the thickness along the axial plane (  ) (Fossen, 2010).  

When the calculated   
  for the two folded strata of the fold in question 

are plotted against α (Figure 29b), the fold can be classified in between Class 
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1C and Class 2 according to Ramsay (1987), which are characterized by 

slightly and moderate thinned limbs, respectively. 

 

Figure 29. (A) Scheme showing how to obtain the values that are later imported in the 

diagram in B. (B) Diagram of fold classes according to Ramsay (1967) for the two strata of 

Figure 28. From Fossen (2010), modified. 
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33..22  EEVVAALLUUAATTIINNGG  RROOUUGGHHNNEESSSS  SSCCAALLIINNGG  PPRROOPPEERRTTIIEESS  OOFF  FFAAUULLTT  

SSUURRFFAACCEESS  

33..22..11  TThheeoorryy  aanndd  BBaacckkggrroouunndd  

Faulting is the result of sliding between two pieces of rock that are in 

contact. This sliding over an already pre-existing surface is described by the 

Amontons‘ law:  

 | |           

where   is the shear stress acting along the plane and     is the normal 

component;    is the coefficient of friction and    is a term similar to cohesion 

(e.g. Jaeger et al., 2009).  

The Amonton‘s law differs from the Coulomb‘s failure criterion for 

intact rocks:  

 | |           

where    is the coefficient of internal friction, which is the slope of the 

failure envelope on a      plane and    is the cohesion of the intact rock. 

Those laws, even when expressed in terms of the effective normal stress: 

            

where    is the pore fluid pressure, do not explain the role of time-, 

temperature-, slip-, or slip rate-dependent processes in driving instability as 

observed during laboratory tests (Lockner and Beeler, 2002). In essence, the 
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experimental evidences relating friction to hold time, slip velocity and 

displacement are well described by rate and state friction laws, whose 

fundamental equation is given by: 

         (
 

  
)     (

   

  
)  

where   is the frictional resistance (or friction),    is a constant 

appropriate for steady-state slip at a velocity   ,   is the frictional slip rate,   is 

a state variable, and   and   are empirical constants (Marone, 1998).   , which 

is known as the critical slip distance, is related to the dimensional properties of 

the fault asperities and controls the stability of sliding (Dieterich, 1979). It is 

hence evident that fault asperity dimension, and hence roughness, is one of the 

parameters involved in the mechanics of fault slip (Power et al., 1987) and, 

therefore, it may have implication on seismic hazard assessment. In addition, 

roughness may control the geometry of faults (Power et al., 1987) and may 

affect the development of their spatial architecture (Candela et al., 2012 and 

references therein), thus influencing, to some extent, the compartmentalization 

and the permeability of faults. 

Many studies in earth sciences have been addressed by fractal analysis 

(i.e. studying natural geometries that exhibit a repeating pattern at various 

scales). When geometries are repeated and appear exactly the same at every 

scale, this is said to be a self-similar behaviour. When an object instead scales 

by different amounts in the x- and y-direction, this is said to be a self-affine 

behaviour. In essence, for a self-affine object, we can observe the same 

geometry after rescaling in x- and y-directions in a certain different way. 

For a self-affine 2-D surface Z(X,Y) with coordinates (X,Y) the 

following relationship describes the scaling where  
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   (   )              

where    and    are the scaling exponents, also known as Hurst 

exponents or indexes of dependence, respectively in the x- and the y-direction. 

Since it is not possible to derive the scaling exponents of self-affine scaling 

transformations (e.g. Sapozhnikov and Foufoula-Georgiou, 1995), different 

methods have been developed during the years for their estimation (e.g. 

Candela et al., 2009). Among them, a Fourier power spectrum method has been 

preferred (e.g. Sagy et al., 2007; Candela et al., 2009, 2012; Bistacchi et al., 

2011; Renard et al., 2012, 2013; Davidesko et al., 2014) having proved to be 

both robust and consistent. Using this method, the Fourier power spectrum P(k) 

(i.e. the square of the modulus of the Fourier transform, Schuster, 1898) of a 

1D fault profile Z(X) is calculated as a function of the wavenumber k. After 

plotting the Fourier power spectrum as a function of k in a bi-logarithmic scale 

graph, a self-affine function exhibits a linear slope, which is itself a function of 

the Hurst exponent through  ( )        . A spectrum representing the 

entire rough surface in a certain direction is given by stacking several power 

spectra and averaging to reduce noise associated with single profiles. 

Early studies on fault roughness (e.g. Power and Tullis, 1991; Lee and 

Bruhn, 1996) suffer for the accuracy limitations of the instruments used to 

obtain fault profiles (Candela et al., 2009). With the development of new 

generation of laser scanners, increasingly accurate topographic data can now be 

collected, allowing fault surfaces to be better characterized in the 3D space 

(Renard et al., 2006; Sagy et al., 2007; Candela et al., 2009; Brodsky et al., 

2011). In particular, recent work has shown that roughness decreases along the 

slip-parallel direction with increasing slip. 
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For instance, a recent study by Candela et al. (2012) has investigated the 

roughness of fault surfaces over nine decades of length scale using three 

different scanner devices (a laser scanner, a laser profilometer and a white light 

interferometer) (Figure 30). Their work has shown that fault roughness shows a 

single anisotropic self-affine behaviour over 50mm and 100 m scale.  

Observation at smaller scales, such as at micro- and nano-scales, by 

means of atomic force microscopy (ATM), has shown that no anisotropy is 

observed below the micro scale and that roughness is not self-affine at all 

scales being smoother at the nanoscale (Siman-Tov et al., 2013). 

 

Figure 30. Fourier power spectra of Dixie Valley fault along two perpendicular directions, 

from Candela et al. (2012). In particular, black arrows indicate a “saturation effect” of the 

LiDAR due to noise. Please, refer to text for further explanations. 

In this section, a series of fault roughness topographies have been 

acquired by means of photogrammetry in order to test and prove its potential 

even in this peculiar application. In particular, since standard laser scanners 

have a noise of about 1 cm in distance (e.g. Candela et al., 2012), these devices 

may be only used to study large scale anisotropies, and one must resort to other 

methods, such as laboratory laser profilometers, to resolve the roughness at 

smaller scales. 
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By contrast, the resolution of photogrammetry is strictly related to 

photograph resolution and a broader scale range than would be obtained using 

only a laser scanner, can be studied simply using this highly versatile method. 

In particular, as showed by Candela et al. (2012) and indicated by the black 

arrows in Figure 30, the laser scanner method reaches saturation in resolution 

below about 9 cm. 

In this work, point clouds of natural fault surfaces were obtained using 

the photogrammetric method. Those point clouds were hence loaded into 

Matlab, where their self-affinity, estimated from Fourier power spectra, was 

tested following, and to a certain extent improving, the procedures described in 

Candela et al. (2009, 2012), Bistacchi et al. (2011), and Renard et al. (2013), 

among others. In particular, my Matlab code, and hence the analytical part of 

the workflow, is described in the next subchapter. 
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33..22..22  FFoouurriieerr  PPoowweerr  SSppeeccttrruumm  ((PPFFSS))  aannaallyyssiiss  mmeetthhoodd  

Each fault point cloud is imported into Matlab as a 3-D [xyz] matrix (X), 

where the first two columns (x and y) define the 2D coordinate position over 

the fault plane and the last column (z), perpendicular to the plane xy, defines 

the fault heights (i.e. roughness). Since it is highly unlikely that these z values 

are, at this stage, perfectly perpendicular to the mean fault plane (Figure 31A), 

a best fit plane of the point cloud is obtained and then the point cloud is rotated 

through the ROTATION.M (Appendix 1) function in order to set z 

perpendicular to the best fit plane. In essence, through this function, the new z 

column is equivalent to the residual distances of the orthogonal distance 

regression LSPLANE.M (Least-squares plane from Mathworks repository) 

(see Appendix 1).  

 

Figure 31. These are examples of (A) a point cloud of a smoothed fault affected by unnatural 

trend, and (B) the same fault after rotation and interpolation. Please note that z is times10
-4

. 

In particular, in LSPLANE.M, the best fit plane is calculated by single 

value decomposition that returns, among other things, the direction cosines of 

the normal to the best-fit plane ( ̂   ).  The new coordinate system is centred 

with the centroid of the data (i.e. the mean position of all the points in all of the 

coordinate directions that by definition lies on the best-fit plane) (Figure 31B). 
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In ROTATION.M The new direction of  ̂ ( ̂   ) is defined by the cross 

product between  ̂    and  ̂   , while  ̂    is the cross product between  ̂    

and  ̂   . A further arbitrary rotation around  ̂    defined by the variable 

―r_deg‖ is then needed to match  ̂    or  ̂    with the fault slip direction prior 

to extracting the 2D signal for the PFS analysis. 

 

Figure 32. This is one of the profiles that were analyzed. In particular this is the along slip 

profile number 440 that passes through the sample of Figure 31 across x=0. Not in scale. 

Once rotated, the new matrix (Xnew) has to be converted to a 2-D (xy) 

matrix and a 1-D (z) vector (Renard et al., 2006; Sagy et al., 2007; Candela et 

al., 2009) with the direction of  ̂ now perfectly perpendicular to the mean fault 

plane. Minor distortion, resulting from this rotation, was evaluated confronting 

the new z vector with the residual distances; discrepancies were found in the 

order of 10
-15

.  

The new xy matrix consists of irregularly spaced coordinates, while a 

regular sampling rate is needed for Fast Fourier Transform (FFT) algorithms to 

work. For this reason, through the INTERPOL.M (Appendix 2) function, a 

regularly spaced grid with spacing defined by the variable ―samp‖ is built 

(Figure 31B) and the corresponding linearly interpolated z value stored in a 

mxn matrix (qz), where m and n are the number of resampled points along the 

x and y dimensions respectively. As suggested in Candela et al. (2012), ―samp‖ 

is systematically chosen to be twice as large as the average irregular spacing of 

the original point clouds and it has to be manually defined in the script. In my 
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workflow, the overall 3D rotation and 2D interpolation has been preferred 

regardless of what done by previous authors, who had chosen to detrend and to 

interpolate each 1D profile independently; in my opinion, my approach helps to 

preserve long wavelengths and improve interpolation. 

The FFT analysis through the surface, that, at this stage, is defined by the 

regularly spaced (as defined in ―samp‖) interpolated grid qz, is finally achieved 

using a 1-D FFT approach (Renard et al., 2013). In essence, each row and then 

each column of the matrix qz is extracted (Figure 32) and analysed 

independently (Figure 33). This is achieved through the functions 

positiveFFTx.M (Appendix 3) and positiveFFTy.M (Appendix 4) 

along the x and y directions, respectively, and averaged to obtain a 

representative mean Fourier power spectrum for each direction. Please refer to 

comments in these scripts for further explanations. 

 

Figure 33. Fourier power spectrum of the signal in Figure 32. 
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33..22..33  RReepprroodduucciibbiilliittyy  ooff  ssmmaallll  ssccaallee  ffeeaattuurreess  

Since the photogrammetric method, has not been applied to the study of 

3D surface roughness, a preliminary effort was made in order to test if 

photogrammetry was capable of reproducing fault anisotropies with enough 

detail and accuracy. For these reason two independent testing paths were 

followed: (1) producing 3D models of rough objects of known size, and (2) 

testing if a 3D model of a photogrammetry-derived fault surface shares similar 

self-affinity properties of faults gathered with more established methods, and in 

particular with scale ranges generally covered by laser scanners and laser 

profilometers. The latter test has, of course, the dual role of validating the 

method and describing the workflow to evaluate roughness scaling properties. 

 

Figure 34. Control objects of known size characterized by asperities heights of about 2mm 

(with two different bases, T1 and T2), 1mm (T3) and 500μm (T4). Those objects were 

photographed over a graph paper in order to scale the model very quickly and precisely 

using scaling markers. Further markers (here called random markers) were used to improve 

model building.  
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Four objects (here referred as control objects), each characterized by 

regularly-spaced squared asperities of one certain size (Figure 34), were 

produced at the Department of Physics at Durham University. Those objects, 

with asperities from about two to half millimetres, are made of steel and 

present mirror surfaces. Since reflections are unnatural and prejudice the 

success of the digital models, those control objects were painted before photo 

acquisition.  

Control objects were photographed under natural light condition at 360° 

around the objects and at different angulations (heights) to produce point 

clouds with almost constant density in any direction. The camera used was an 

entry level Canon EOS 1100D with EF-S 18 - 55mm lens and 12.2 Mpixels. It 

was necessary to use a tripod to hold the camera in order to use higher f/stops 

(which coincide to smaller apertures and longer acquisition time) that helps to 

sharpen the background increasing the depth of field. Low ISOs are also 

suggested to increase exposure time. Scaling was defined by photographing 

these control objects over a piece of graph paper (Figure 34) or a cutting mat 

where distances between markers set in the virtual environment were easily 

obtained through the grid. The same task could be done using further objects of 

known size.  

Precise height dimensions of asperities were gauged using a digital 

electronic calliper with 0.001mm resolution (±0.005 accuracy). Those 

dimensional values, obtained by subtraction between highs and lows, were 

compared with those measured in the digital models after scaling. 

Discrepancies were found in the order of 10
-2

 mm (Table 1), which it seems 

such an amazing result, although minor unrealistic geometries where 

sometimes observed along the vertical and sharp walls of the asperities. These 
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model deformations are likely linked to the unnatural monotone colour of the 

control objects that, in turn, has complicated pixels matching. 

 
     

 
Measured 

roughness (mm) 
dev.st 

Calculated 
roughness (mm) 

dev.st 
Difference 

(µm) 

 Tester 1 2.025 0.026 2.097 0.031 72 

Tester 2 2.109 0.062 2.115 0.030 6 

Tester 3 1.042 0.033 1.059 0.044 17 

Tester 4 0.450 0.021 0.418 0.048 32 

Table 1. Comparison between roughness measured with a caliper and roughness measured 

in OpenPlot. Further explanations are in text.  
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33..22..44  MMooddeelliinngg  aa  rreeaall  ffaauulltt  ssuurrffaaccee  

A set of carbonate fault samples (courtesy of the Rock Mechanics 

Laboratory in the Earth Sciences Department at Durham University) belonging 

to the Central Apennines Downfaulted Area (CADA, Ghisetti and Vezzani, 

1999), were photographed proceeding similarly as described in the previous 

subchapter. The CADA is characterized by active normal faulting since the 

Late Pliocene/Early Pleistocene (Bosi and Messina, 1991), which is 

superimposed over the contractional edifice of the Apennine fold and thrust 

belt (Bigi et al., 1989) and is comprised of the Upper Jurassic-Lower 

Cretaceous platform carbonates of the Lazio-Abruzzi tectonic unit. All samples 

were collected from the main fault surfaces of these active normal faults that 

are characterized by a cataclastic matrix and both striated and polished (mirror-

like) fault surfaces. 

When a surface is imported in Matlab for the Fast Fourier analysis, the 

first step is to define a sampling rate through the variable ―samp‖, into the 

INTERPOL.M (Appendix 2) function. Given a certain point cloud surface, 

―samp‖ is calculated as  √
    

            
  and updated in INTERPOL.M.  

As an example, the striated surface in Figure 35A is composed of 

1,575,762 points over an about 0.0029m
2
 surface. For this surface, samp is 

0.000085m. This means that the mean distance between adjacent points was 

43µm. 

The succeeding step is the determination of the variable ―r_deg‖ in 

ROTATION.M (Appendix 1), which defines the rotation angle around the  ̂ 

axis and helps to reorient  ̂ or  ̂ parallel to the slip direction. This task, 

together with the determination of the variable ―bor‖ in INTERPOL.M 
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(Appendix 2) may need a few iterations. When interpolation is satisfactory, it is 

then time to start the FFT analysis through the functions positiveFFTx.M 

(Appendix 3) and positiveFFTy.M (Appendix 4). 

 

Figure 35. (A) Striated surface rotated and interpolated, and power spectra along X (B) 

(along slip) and along Y (C) (perpendicular to slip). 

The function positiveFFTx.M returns the power spectra along X 

(Figure 35B); this is the superposition of each power spectrum of the signals 

extracted from rows (that in the case of Figure 35 means the along slip 

direction). The whole along X Fourier spectrum is computed averaging 

individual profiles with regularly spaced wave numbers (black dots in Figure 

35B) and interpolated. The output of the interpolation are displayed in the 
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Matlab main window as the linear           interpolation of Logs 

values. The    and    are then related to the power interpolation by a basic 

logarithm property as  ( )          . This step is necessary in Matlab 

since when fitting a power law to the original data, for example using   

   (           ) (‗power1‘ in Matlab), the fitting is not optimized and leads 

to inexact and unacceptable results. As an example compare Figure 36 with 

Figure 35C. 

 

Figure 36. Example of an unacceptable interpolation using „power1‟ fit in Matlab, to 

compare with Figure 35C. R
2 
here is 0.7501. 

A correct interpolation is the most important step of the workflow since 

the whole self-affinity is estimated through the relation  ( )         , 
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where H is the Hurst exponent and   the pre-factor. Hence   is equal to 
    

  
 

and       . 

A total of 6 fault surfaces belonging to the CADA were analysed and the 

resulting averaged profiles plotted over the summary graph of Candela et al. 

(2012) (Figure 37). As shown in Figure 37, the results obtained with the 

photogrammetric method (this work), are consistent with those obtained by 

Candela et al. (2012) using laser scanners, laser profilometers and white light 

interferometers. The main discrepancy with Candela et al. (2012) is in the 

mean values of the Hurst exponents they report, that are 0.58±0.04 and 

0.81±0.1 along and perpendicular to the slip direction, respectively, while my 

data suggest mean values of 0.87±0.083 and 0.95±0.076. Nevertheless, the 

almost perfect fitting of both the along and perpendicular to slip overall trends 

observed by Candela et al. (2012) highlights that, at least for these scale ranges, 

advanced users can use photogrammetry as a valid and compelling alternative 

to standard apparatuses. 
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Figure 37. Comparison of results in this thesis with previous works. Candela et al., 2012 

(modified). 
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33..33  SSTTRRUUCCTTUURRAALL  SSTTUUDDYY  OOFF  AA  RREESSEERRVVOOIIRR--SSCCAALLEE  IINNAACCCCEESSSSIIBBLLEE  

OOUUTTCCRROOPP::  TTHHEE  CCOONNOOCCCCHHIIAA  CCLLIIFFFF  

Spatial and dimensional properties of fractures have been studied for 

more than forty years (Bonnet et al., 2001 and references therein) with the aim 

of characterizing geological reservoirs or assessing seismic hazard, among 

many others. Fractures, which are generally described as narrow or planar 

discontinuities in displacement and mechanical properties (Fossen, 2010), are 

brittle structures that, by definition, occur in the upper crust where the internal 

strength of the rock is overcome by stresses of various origins (e.g. tectonic, 

overburden, internal pore pressure, thermal expansion or contraction). 

Fractures can form in opening mode (mode I), such as veins and joints (Pollard 

and Aydin, 1988), when the displacement occurs, from a flaw in the rock mass 

(Gross, 1993), along a direction which is perpendicular to the propagation front 

and to the discontinuity walls. On the contrary, shear-modes fractures, such as 

faults, are sliding or tearing features where displacement is in-plane with the 

fracture walls and parallel (mode II) or perpendicular (mode III) to the 

propagation front, respectively. Moreover, a so called closing mode (mode IV) 

or anticrack (Fletcher and Pollard, 1981) mode is often employed to define 

compression fractures such as pressure solution seams.  

Important fracture scaling relations have been observed during the years 

(Leberl et al., 2010; Schultz et al., 2013), for example between joint aperture 

and length (Olson, 2003; Odonne et al., 2007; Guerriero et al., 2015), host beds 

thickness and both joint (Narr and Suppe, 1991; Gross, 1993; Gross et al., 

1995; Wu and D. Pollard, 1995; Ji and Saruwatari, 1998; Bai and Pollard, 

2000; Gillespie et al., 2001; Odonne et al., 2007; Rustichelli et al., 2013) and 

solution cleavage spacing (Durney and Kisch, 1994; Tavani et al., 2010). In 

addition, extensive scaling observations have been made on shear fractures, 

such as fault displacement with length (Cowie and Scholz, 1992; Dawers et al., 
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1993; Kim and Sanderson, 2005; Schultz et al., 2008; Tondi et al., 2012) and 

displacement with fault thickness (Scholz, 2002; Tondi et al., 2006; Childs et 

al., 2009) among other geometrical properties. Gaining these observations is 

particularly important in order to make the correct assumptions when 

populating fracture reservoir models using methods such as DFN (discrete 

fracture network modelling) (Dershowitz and Einstein, 1988; Cacas et al., 

1990; Watanabe and Takahashi, 1995), for the reason that they allow us to 

simulate the hydraulic properties of the reservoirs (Maffucci et al., 2015). 

Observations aimed at finding scaling relations, such as those mentioned 

above, are generally made at the micro/meso scale or, eventually, at the seismic 

scale and hence, for logistical reasons, from different geological contexts or 

even from different types of rock. Between these scales, indeed, there is a 

―gap‖ of observations that might be bridged by outcrops of tens to hundreds of 

meters. However, analogues of this size are frequently unapproachable by 

standard analysis methods (e.g. scan-line and scan area). In fact, in order to be 

statistically significant, transect lengths should be proportional to the length of 

the perpendicular fractures that are measured. In other words, since smaller 

fractures are more abundant than larger fractures, a longer transect is required 

to sample a representative number of larger fractures (see Bonnet et al., 2001). 

Accordingly, the sampling of fractures of several meters in length (up to few 

tens of meters), which are not resolvable through seismic methods, requires 

longer transects and, hence, extensive outcrops (hundreds of meters wide). 

A traditional approach to solve the ―gap‖ issue is represented, for 

example, by the use of orthorectified photo-panels that, however, has the big 

disadvantage of forcing into 2D any interpretation of the real 3D nature of the 

fracture array (Minisini et al., 2014). The most obvious bias to this approach 

entails that different sets of fractures, at certain angles with the outcrop wall, 
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are all consider as a single quasi-perpendicular set. A fully 3D approach to this 

issue has been, however, addressed since late ‗90s through the use of VOMs. 

In particular, this work has involved the use of an unmanned aerial 

vehicle (UAV, (Firpo et al., 2011; Neitzel and Klonowski, 2011; Harwin and 

Lucieer, 2012; Torres et al., 2012)), here referred to as a drone, equipped with 

a mirrorless photo-camera. The use of a drone was necessary because the study 

outcrop, namely the Conocchia cliff (about 250 m-wide and 200 m-high), is 

inaccessible and exposed toward the Gulf of Positano (southward) (Figure 38) 

at an altitude over 1100 meters. This meant that there were no suitable places 

to shoot photographs directly from the field, more so to acquire data by means 

of field-based LiDAR stations. 

 

Figure 38. 3D Google Earth view from South of the Sorrento Peninsula with a particular of 

the Conocchia cliff (inset). 
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In this work, I present the workflow employed for the structural study of 

this outcrop, from photographs acquisition up to model managing and data 

extraction and analysis. The strength of the proposed workflow is that it shows 

how to gather orthorectified 2D photo-panes along with the 3D spatial 

orientation of meter and decameter long fractures from an inaccessible outcrop. 

These derived panels may be employed to solve the fracture scaling relations 

between the meso- and the seismic scale. 

The study cliff (at latitude 40°38'39.5''N and longitude 14°29'44.3''E) is 

located within the Lattari Mountains in the Sorrento peninsula in the inner 

sector of the southern Apennine fold and thrust belt. The Lattari Mountains 

mostly expose rocks of the shallow-water Triassic-Cenozoic carbonate 

succession of the Apennine platform (Butler et al., 2004). This carbonate 

platform domain, together with the Apulian carbonate platform to the east and 

the Lagonegro basin interposed between them, developed on the southern 

portion of the Mesozoic Adria promontory, on the southern margin of the 

Neotethys ocean (Mostardini and Merlini, 1986; Iannace et al., 2011),  that 

experienced a multiphase structural evolution related to the development of the 

Apennine fold and thrust belt. This, from Early Miocene, consists of forebulge 

and foredeep stages followed by the succeeding inclusion in the tectonic wedge 

(Mazzoli et al., 2008; Vitale and Ciarcia, 2013). Later, during Pliocene and 

Pleistocene, this portion of the belt was shaped by the extensional to strike-slip 

stage associated with the opening of the Tyrrhenian basin (e.g. Malinverno and 

Ryan, 1986; Casciello et al., 2006).  

The Apulian platform hosts the biggest oil and gas reservoirs within 

Southern Italy (e.g. Tempa Rossa oil-field). However, despite belonging to a 

different paleo-domain, the Lattari Mountains are represented by very similar 

rocks to those observed within Southern Italy reservoirs (Mazzoli et al., 2008; 
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Guerriero et al., 2010, 2011, 2013), having originated in a comparable geologic 

context (Iannace et al., 2011). 

In particular, the outcrop studied in this work is characterized by an 

alternation of shallow-water limestones and dolomites of Hauterivian-

Barremian age pervaded with several, both stratabound and non-stratabound, 

vertical fractures up to few tens of meters in height, mostly related to the 

foreland-flexturing and along-foredeep stretching stages in the area (e.g. 

Tavani, Storti, et al., 2015). Structural studies carried on in this area reveal that, 

despite the multistage and ling-living deformational sequence of the area, the 

meso-scale fracture pattern is rather simple. This, in fact, mostly includes 

fractures and extensional faults developed during the first deformation stage 

associated with convergence, i.e. these extensional structures mostly developed 

due to the foreland-flexuring in the peripheral bulge area (e.g. Vitale and 

Ciarcia, 2013). 

33..33..11  TThhee  CCoonnoocccchhiiaa  33DD  VVOOMM  

Due to the inaccessibility of the outcrop, photographs were acquired by 

means of a drone (Figure 39), which was equipped with a mirrorless Sony Nex-

7 photo-camera. Sensor sensitivity (i.e. ISO) was set at 800. Time of exposure 

was 1/4000 seconds with f/8 and the chosen focal length was 24mm (in 35mm 

format). These settings were kept constant with the purpose of optimizing post-

acquisition processing in PhotoScan. 105 overlapping photos (50 Mpixels 

each) were taken consecutively from different points of view and at different 

angles with respect to the outcrop (Figure 39) with the intent of prevent data 

voids (i.e. uncovered areas) within the model. Figure 40 shows one of the 105 

photographs with scales measured from the digital model and out-of-target 

scene masking. 
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Figure 39. Workflow for the creation of a Virtual Outcrop Model. Photographs were 

acquired by means of an UAV (1) and later imported in Photoscan (2). The workflow of 

Photoscan (3) goes through the steps of photo alignment, depth maps reconstruction, 

building of the geometry and building of the texture. 

Due to the extent of the outcrop, coupled with a limited flight range of 

the drone, a work plan was studied to limit both the number of flights and the 

time required to conclude the survey. The drone was launched from the base of 

the cliff in order to start each flight as close as possible to the outcrop wall and 

batteries were changed as quickly as possible in order to acquire photos with 

similar lighting condition. 

A total-station was used to measure the accurate position of 5 points 

within the cliff (blue flags in Figure 39). After the generation of the model 

(Figure 39), these points were used to ensure the post processing scaling and 

re-orientation of the VOM (e.g. photo-control points in Chandler, 1999).  
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Figure 40. Low resolution example of one of the 105 photographs with scale and out-of-

model masking. 

The Conocchia model is a triangular mesh made of about 11.1x10
6
 

triangular faces and 5.6x10
6
 vertices. To facilitate model management, the 

model was split into eight sub-models that were imported independently into 

OpenPlot. A model of the entire Conocchia cliff was also generated after point 

decimation to produce a low-resolution model of the Conocchia, which allows 

the viewer to visualize it as a whole. 

One thousand and three georeferenced fractures and twenty bedding 

surfaces belonging to the Conocchia model were digitized using the polylines 

method in OpenPlot. Obviously, more fractures are present along the outcrop 

but smaller fractures were not analyzed due to texture resolution and because 

their digitization was beyond the scope of this work, which is the study of 

larger scale fractures (bigger than few meters). 
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Figure 41. Perspective view from South of the Conocchia VOM with digitized fractures 

(black rectangles with yellow borders) and bedding surfaces (green rectangles with orange 

borders). 

Figure 41 is a perspective capture from the 3D environment of OpenPlot; 

it shows the digitized fractures (black rectangles) and a few, visually 

prominent, digitized bedding surfaces (green rectangles). 

In the upper part of the model (non-vegetated vertical cliff) it was 

possible to digitalize each layer with a single polyline (now best-fit plane), this 

is the proof of the magnificent lateral continuity of the chosen outcrop and also 

reveals that there is no macroscopic vertical shear across the fractures. On the 

contrary within the vegetated area it was not possible to follow each bed 

laterally but this is simply due to vegetation cover. 
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Figure 42. Perspective view from South of the Conocchia VOM after the selection of 

fractures from the stereonet. 

As shown in the plots of Figure 41, poles to bedding (green dots) form a 

tight cluster around 156/81 (Azimuth/Plunge) which indicates that bedding at 

the Conocchia cliff is almost horizontal with a gentle plunge towards NW. 

Poles to fractures are distributed around three clusters (Figure 41, inset). The 

three sets correspond to fracture planes at high angle to bedding which are 

oriented almost ENE-WSW (set 1), ESE-WNW (set 2) and NW-SE (set 3). 

In OpenPlot, it is possible to select a group of fractures directly from the 

stereonet (Figure 42, inset), simply by drawing a polygon containing the 

desired poles inside the stereonet. After selection, each selected group of poles 

(namely cluster) can be independently visualized in the 3D environment 

(Figure 42). This procedure allowed us to easily and quickly understanding the 

orientation of these clusters with respect to the outcrop thus recognizing those 

fractures properly oriented with respect to the cliff. In particular,  fractures in 



 

79 
 

set 3 are oriented at high angle to the cliff and as a consequence the least 

affected by biases. 

 

Figure 43. Rotation of the model in orthographic view toward the direction of intersection 

between set 3 and bedding.  

Once a group of fractures is selected, it is also possible to project the 

selected features (set 3 and bedding in Figure 42) onto a plane which is 

perpendicular to both. This is equivalent to rotating the model toward the 

direction of intersection between fractures and bedding while looking in 

orthographic view (Figure 43). This direction was computed in OpenPlot 

through a tensorial analysis of the selected cluster (i.e. set 3) and bedding. In 



 

80 
 

particular, this direction corresponds to the eigenvector associated with the 

lowest eigenvalue (Figure 44, inset).  

 

Figure 44. Projected features for Set 3 overlaid over the VOM. Result of the tensorial 

analysis (inset). 

Directly in OpenPlot, the computed direction was assigned to the data 

and used for projection onto a perpendicular panel (Figure 44). The projected 

features are saved in *.svg format and hence ready to be opened by any vector 

drawing software. 

Larger projected elements were manually re-digitized using Inkscape 

(Figure 45a), and a blue colour was assigned to fractures larger than 20 meters. 

From this perspective it was then possible to identify mechanical boundaries, 
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which are layers where major fractures arrest on, and hence to schematize 

mechanical units between them (Figure 45b). 

 

Figure 45. (A) Digitalization of larger projected elements with identification of fractures 

larger than 20 meters in blue.(B) Identification of the major mechanical boundaries. 

From the scheme of Figure 45b it was also possible to construct a 

synthetic representation of the mechanical stratigraphy of the outcrop for 

fractures larger than 20 meters belonging to set 3 (Figure 46). 

 This procedure may be, hence, applied not only to study scaling 

relations of fractures, but also to mechanical stratigraphy studies if a 

stratigraphic log of the outcrop is available. 
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Figure 46. Synthetic representation of the mechanical stratigraphy of the outcrop for set 3 

fractures larger than 20 meters. 
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33..44  RREEGGIIOONNAALL  SSCCAALLEE  DDAATTAA  EEXXTTRRAACCTTIIOONN  FFRROOMM  PPHHOOTTOOGGRRAAPPHHSS  

33..44..11  TThhee  KKhhaavviizz  AAnnttiicclliinnee  ccaassee  ssttuuddyy  ((ZZaaggrrooss,,  IIrraann))  

Within the Zagros fold and thrust belt, the Khaviz anticline (Figure 

47A), which is NW-SE oriented, is orthogonally cut by a 4 km-long valley 

constituting a natural cross-section of this anticline. Along this valley, the 

Miocene Asmari Fm. is continuously exposed along inaccessible vertical cliffs 

from the forelimb to the backlimb of the anticline (Wennberg et al., 2006), 

showing an impressive extensional array in the fold‘s crest (Figure 47C). 

 

Figure 47. (A) Geological map of the Khaviz Anticline. (B) Google Earth image of the study 

area, showing the reconstructed cliff and the shooting location of photos used to build the 

3D model. (C) Panoramic view of the cliff, with major faults shown. From Tavani, Granado, 

et al., 2014. 
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Panoramic photos of this exposure were taken in 2003 (courtesy of Dr. 

Stefano Tavani) from the positions shown in (Figure 47B). These photos (38 in 

total with a resolution of  3.8 Mpixels) were taken with a Single Lens Reflex 

Nikon E4500 camera, without taking into account the possibility of a future 3D 

reconstruction (Tavani et al., 2014). Furthermore, these photos were taken in 

two different days under different lighting conditions. 

Basically, most of the basic requirements for helping the SFM 

algorithms were not met in this example, and in fact, at a first stage, the photo-

alignment was affected by significant noise (i.e. error), represented by points 

located up to few hundreds of meters below the ground level (Figure 48A). 

Through the removal of those photos associated with these unrealistic points, a 

better point cloud, free of first-order errors, was generated (Figure 48B).  

 

Figure 48. (A) Initial photo-alignment. (B) Improved photo-alignment and point cloud 

reconstruction. (C) Triangulation, showing markers used for georeferencing and 

problematic areas. From Tavani, Granado, et al., 2014. 
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Second-order errors were detected after triangulation of the point cloud, 

and consisted of small ―bubbles‖, horizontal peaks and isolated triangles. These 

errors may indicate a not yet accurate photo alignment or a wrong correlation 

of points between the different photos. By adding additional markers and 

removing further problematic photos (10 photos in total were removed) a more 

accurate point cloud was generated (Figure 48C). Noteworthy, errors still 

occurred in two areas, as indicated in the inset of Figure 48C, resulting from a 

portion of the outcrop covered only by three photos, taken in different days, 

and with different focal lengths. 

The model was georeferenced using three non- collinear points located 

far away from one from each other (Figure 48C). The X and Y coordinates of 

these points were provided by high-quality image of the area available at 

Microsoft‘s Bing maps, while the Z coordinate was derived using a 1:25.000 

topographic map. Such approximate georeferencing may imply a certain degree 

of error (26 m according to the software estimates), which is however small 

when compared to the 4 km long model, and indicates a model distortion of 

less than 1%. 

Major faults, together with selected bed surfaces among them, were then 

extracted from the textured mesh using OpenPlot (Figure 49).  

This example has shown that, even in the less ideal conditions (i.e. few 

Megapixel camera, photos taken in different days, and different focal lengths, 

among others), it is possible to construct a reliable VOM and extract geological 

information from it. This task is particularly intriguing if we think about how 

many old photos from fieldwork we may have in our databases that we could 

use to reappraise the 3D view of outcrops on the computer screen or to 

extract/verify geological surface attributes. A further, even more fascinating, 
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development of this task may result from internet photo collections (Snavely et 

al., 2006, 2008) and in the possibility of extracting reliable geological data 

from places that have never been visited. 

 

Figure 49. 3D Outcrop Model of the Khaviz Anticline, in Google Earth environment, 

together with the extrapolated bedding and fault surfaces. Model available at 

http://dx.doi.org/10.1016/j.cageo.2013.10.013. 

  

http://dx.doi.org/10.1016/j.cageo.2013.10.013
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4. DISCUSSIONS 
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44..11  CCOONNSSIIDDEERRAATTIIOONNSS  BBEETTWWEEEENN  PPHHOOTTOOGGRRAAMMMMEETTRRYY  AANNDD  LLIIDDAARR  

Structure from Motion algorithms have been so much developed that, by 

now, the photogrammetric method can be considered not only as a 

supplementary tool for LiDAR surveys, but instead as a valid and multipurpose 

alternative.  

In this thesis, although I have not addressed a direct comparison between 

photogrammetry and LiDAR produced VOMs, I proved that photogrammetry 

can be employed in geology in several situations and at different scales. 

Nevertheless, any efforts that would be made to determine which method is 

more accurate cannot be solved with a sole case study, as a few authors has 

tried to do, since too many time to time variables are involved with as many 

sources of error. From this point of view, the general trend of considering 

LiDAR data superior in term of accuracy, and then to use them to check image 

matching results, can be an erroneous preconception (Gruen, 2012). Yet, what 

is the level of accuracy that is needed dealing with VOMs? Of course this 

depends on the observation scale and goals, and I think that, in all the case 

studies here presented, I have demonstrated that accurate VOMs can be 

produced by mean of photogrammetry. In particular, the average error for the 

models I constructed is between several tens of microns (for the fault surface 

models) and few meters (for the Khaviz case study), that overall represent an 

about 2% of error for each model. This suggests that error is scale-independent, 

since it mainly depends on the resolution of the photographs, while the error 

threshold depends on goals. 

Due to preconceptions or misleading assumptions, probably driven by 

the still poor efficiency of SfM algorithms at the beginning of this century, 

photogrammetry has been only recently accepted by the geological community, 
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while other scientific fields (e.g. architecture, cultural heritage, archeology, 

topography, forensic sciences, etc.) are a few years ahead. 

As I have already said in the introduction, the choice of photogrammetry 

over LiDAR should be based on the specific outcrop conditions and goals, 

taking in mind that LiDAR is subjected to less case by case variability (that is 

to a less amount of variables).  

Figure 50 synthesizes the main pros and cons that should be evaluated 

prior to field investigations. In particular, photogrammetry benefits of a major 

versatility (e.g. reaching remote areas or using a drone), but accuracy of results 

cannot be estimated a priori. As shown, photogrammetry needs very little time 

during the acquisition phase, but can require a long period of, depending on 

goals and hardware, post processing. Nonetheless, in some respects, time spent 

in the field may have a higher value in terms of costs and efforts. A shorter 

acquisition time may be crucial in several situations, for example when the 

outcrop is situated beside a road. 

 

Figure 50. Schematic representation of pros and cons of photogrammetry and LiDAR. 
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The issue of texturing, which is an extremely easy task for 

photogrammetry, is not of minor importance, as has been proved for Rocca di 

Cave, San Severino Marche and Frontone outcrops. 

44..22  CCOONNSSIIDDEERRAATTIIOONNSS  OONN  VVOOMMSS  

A Virtual Outcrop Model is not just a supplementary tool to field 

geology, but it gives the opportunity for taking extensive measurements (i.e. 

extended area coverage and larger number of measurements), at different 

scales and even from inaccessible outcrops as for the Conocchia cliff or partly 

for the San Severino Marche outcrop. Furthermore, data extracted from a 

georeferenced VOM are themselves georeferenced, so that VOMs allow 

multiple datasets, that is different types of data, acquired at different times and 

scales, and using different equipment, to be merged in a single multi-scale 

model (Jones et al., 2011 and references therein). The advent and availability 

of VOMs to everybody, will allow in the future, if this is not happening 

already, the switching from descriptive geology, as it commonly done by 

conventional studies, to a more quantitative one, which is also multiscale and 

georeferenced. 

An important point to emphasize when dealing with VOMs, as 

highlighted by Jones et al. (2011) for the LiDAR technique, is that outcrop 

topography and not geology is reproduced; this is true also for 

photogrammetry, therefore, even if in most cases surface topography reflects 

geology, geologists cannot be replaced by technicians for the interpretations of 

these datasets (Jones et al., 2011). More controversial is the extent to which 

digital datasets (i.e. data extracted from virtual outcrops) should be supported 

by field data collected by geologists, i.e. can geologists study virtual outcrops 

without even visiting the site? My feeling is that gathering a conceptual model, 
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for example of the fracture pattern and its evolution, during fieldwork is 

inevitable to discern the fracture nature (i.e. opening mode, filling, slickenlines, 

etc) by their orientation and also to study abutting and cross-cutting 

relationships. These features can only be appreciated within the field. 

Nevertheless a 3D model built by means of photographs always needs some 

control points to be re-oriented and re-scaled; therefore it is strongly suggested 

to perform at least a preliminary but qualitative structural analysis of the 

outcrop during this stage of the workflow when possible. A straightforward 

usefulness of virtual outcrops is that with a few photographs and some field 

data it is possible to work quietly sitting on your office chair irrespective of 

weather conditions, safety concerns and time/money available for fieldwork. 

Furthermore, the use of 3D models after any campaign can avoid or limit the 

need for further fieldwork; it is common, in fact, to need to review field data 

and notes after a field trip. Not of minor importance is the use of virtual 

outcrops as teaching tools (McCaffrey et al., 2005) for both undergraduates and 

for the oil industries. 

As for any measurement, field measurements are not error free but, on 

the contrary, particularly prone to it (Jessell et al., 2010). Measurements of any 

natural surface (e.g. fault, bedding, fracture, contact, etc.) made in the field can 

be subjected to error in the order of (or greater than) the error produced through 

a digital model. The issue is that ―everything is relative‖, therefore nobody 

knows if field measurements can represent the ―real surfaces‖ better than by 

means of photogrammetry or LiDAR techniques. This pretentious assertion has 

never been tested or quantified because the choice of the data used as reference 

to estimate error and uncertainty is purely subjective. 

Even in presence of a perfectly smooth plane, placing a compass in a 

precisely horizontal position is a quite improbable event (Ragan, 2009). 
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Therefore in the case of natural irregularities or rough surfaces the error 

inevitably increases (Groshong, 2006). Error in strike measurement also 

depends on structure attitude itself with higher error (error > 5°) in 

low/medium dipping surfaces (Woodcock, 1976). A greater error can occur to 

a non-expert operator or if the surface to measure is of limited extent (surface 

area smaller than the size of the compass), weathered or in an inconvenient 

position. Furthermore, since the strike is measured as an angle from the 

magnetic north (azimuth), measurements can be affected by magnetic 

interferences of various origins (e.g. magnetic minerals within the rock, 

geologist‘s instruments/accessories, high voltage, etc.). The error can be 

limited through a statistical approach that is by giving several measures of the 

same surface and then making the average, however this method would prove 

to be extremely inopportune and of poor benefit. Instead, a statistical approach 

is the only possible solution in the case of virtual outcrop. In fact through many 

computer programs (such as OpenPlot) it is possible to digitalize polylines of 

geological relevance directly over the textured mesh or the point cloud and a 

best fit plane is then calculated. In practice, if the geological surface is better 

represented as a plane and the model is accurate enough, a much more reliable 

measure (which is also georeferenced) can be obtained, indeed providing a 

more realistic characterization of discontinuity orientation (e.g. Sturzenegger 

and Stead, 2009). 

One of the most problematic aspects in geology, is the difficulty in 

sharing the data and the observations made in the field. Furthermore, 

measurements of geological structures are often not sufficiently representative 

of the structures themselves, since they are influenced by the operator that, in 

his experience, takes measurements and decides sampling (e.g. what and how 

many fractures to measure). With the use of VOMs, these issues can be 

overlooked since it is possible to associate each measurement to the structures 
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and share the data. By doing so, a real debate can be opened among geologists, 

seeing as a direct comparison of various interpretations can be made for each 

structure. Moreover, a real dialogue can be developed among experts in 

different topics (e.g. between structural geologists and sedimentologists, earth 

scientists and engineers, field investigators and reservoir modellers, among 

many others). 
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5. CONCLUSIONS 
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In this work several case studies have been addressed and solved by 

means of close-range multi view stereo-photogrammetry. Thanks to hardware 

and software recent improvements, this technique is nowadays able to produce 

accurate (depending on goals) virtual outcrop models (VOMs). In particular, 

this technique has properties such as versatility and ease of use that make it 

more suitable than LiDAR technology in several situations. For instance, the 

ease with which texturing takes place and the possibility of change the model 

resolution by changing the distance or the focal length, probably represent the 

main advantages. In particular, I was able to make models from few 

centimetres up to hundreds of metres, in order to evaluate the roughness of 

faults (i.e. asperities at the microscale) as well as the spatial distribution of 

several metres long fractures. For all these models I tried to evaluate the error; 

this was found to be about 2-3% in all the models made, pointing out that the 

error is scale-independent, and related to photos resolution. Moreover, model 

accuracy can be improved in several ways, which I previously discussed, 

during post-acquisition processing. 

In this work I showed how VOMs can be very effective in solving 

several issues that are generally encountered during field-work (e.g. 

inappropriate points of view, inaccessibility of the outcrop, and limited 

observation scales). Considering the results obtained at different scales, it 

would be of interest to develop a single multi-scale model, where geological 

observation made at the different scales can be evaluated as a whole. This, in 

particular, can have several implications in reservoir characterization or slope 

stability analysis.  
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APPENDICES 

AAppppeennddiixx  11  
 

% This Matlab© function rotates a point cloud [xyz] in order to obtain a  
% new matrix of point (Xnew) where the z column is normal to the least- 
% squares plane i.e. parallel to the direction of the smallest  
% eigenvector.  

 
function [Xnew, x0, a, d, normd, R] = rotation(X) 
[x0, a, d, normd] = lsplane(X); 
Vx = [1 0 0]; 
Vy = [0 1 0]; 
Vz = [0 0 1]; 

 
if a(3)<0 
    a=-a; 
end 

 
Vnz = [a(1) a(2) a(3)]; 
Vnx = cross(Vz,Vnz)/norm(cross(Vz,Vnz)); 
Vny = cross(Vnz,Vnx)/norm(cross(Vnz,Vnx)); 
R = [Vnx; Vny; Vnz]; 

  
r_deg = 30; 

  
R = [cosd(r_deg) sind(r_deg) 0; -sind(r_deg) cosd(r_deg) 0; 0 0 1]*R; 
% The rotation matrix undergoes a further rotation r_deg around z' axis.  
% This value is currently set manually in order either to align x’ and  
% y’ axes to x and y axes or to match x’ or y’ with the slip direction.  
% This is necessary because z’ is clearly stated by LSPLANE.M whereas x’  
% has been defined as the cross product between the rotated plane and the  
% original one and y’ as the cross product between z’ and x’.  
% This further rotation could be avoided if the Wahba’s problem was  
% solved. Namely, it seeks to find a rotation matrix between two  
% coordinate systems from a set of vector observations. The solution is  
% found by exploiting the Single Value Decomposition Method (for further  
% info see Markley F.L. Attitude Determination using Vector Observations  
% and the Singular Value Decomposition – 1988). In my case, since only z’  
% is clearly defined, there are undefined possible solutions for x’ and  
% y’, and so an univocal solution is defined by this rotation. 

  
m = size(X, 1); 

 
    for i=1:m 
        Xnew(:,i) = R*(X(i,:)-x0')'; 
    end 

 

Xnew = Xnew'; 
end 

  
function [x0, a, d, normd] = lsplane(X) 
% --------------------------------------------------------------------- 
% LSPLANE.M   Least-squares plane (orthogonal distance 
%             regression). 
% 
% Version 1.0     
% Last amended   I M Smith 27 May 2002.  
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% Created        I M Smith 08 Mar 2002 
% --------------------------------------------------------------------- 
% Input     
% X        Array [x y z] where x = vector of x-coordinates,  
%          y = vector of y-coordinates and z = vector of  
%          z-coordinates.  
%          Dimension: m x 3.  
%  
% Output    
% x0       Centroid of the data = point on the best-fit plane. 
%          Dimension: 3 x 1.  
%  
% a        Direction cosines of the normal to the best-fit  
%          plane.  
%          Dimension: 3 x 1. 
%  
% <Optional...  
% d        Residuals.  
%          Dimension: m x 1.  
%  
% normd    Norm of residual errors.  
%          Dimension: 1 x 1.  
% ...> 
% 
% [x0, a <, d, normd >] = lsplane(X) 
% --------------------------------------------------------------------- 

  
% check number of data points  
  m = size(X, 1); 
  if m < 3 
    error('At least 3 data points required: ' ) 
  end 
% 
% calculate centroid 
  x0 = mean(X)'; 
% 
% form matrix A of translated points 
  A = [(X(:, 1) - x0(1)) (X(:, 2) - x0(2)) (X(:, 3) - x0(3))]; 
% 
% calculate the SVD of A 
  [U, S, V] = svd(A, 0); 
  size(U) 
  size(S) 
  size(V) 
% 
% find the smallest singular value in S and extract from V the 
% corresponding right singular vector 
  [s, i] = min(diag(S)); 
  a = V(:, i); 
% 
% calculate residual distances, if required   
  if nargout > 2 
    d = U(:, i)*s; 
    normd = norm(d); 
  end 
% --------------------------------------------------------------------- 
% End of LSPLANE.M. 
  end 
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AAppppeennddiixx  22  
 

% This function creates a regularly spaced interpolated grid of the z 
% values. Please define an appropriate value for spacing in "samp" (this  
% will affect the sampling rate of the FFT). Please define a value  
% different from 0 in "bor" to exclude matrix edges. 
% Xq is the resampled vector along x; 
% Yq is the resampled vector along y; 
% XX and YY define the resampled grid; 
% F is the interpolant function; 
% qz is the corresponding interpolated z values. 
function [F, XX, YY, Xq, Yq, qz, samp]=interpol(xyn, zn) 
% Two vectors are created from the matrix 'xy' with regular sampling rate. 
samp = 0.0003855; % please define here a proper value for sampling rate 
Xq = min(xyn(:,1)):samp:max(xyn(:,1)); 
Yq = min(xyn(:,2)):samp:max(xyn(:,2)); 
%% Wrong interpolations result at the edges of the matrix if rotated x  
% and y axes do not meet with the unrotated x and y. Increase the value in 
% “bor” if artifacts are observed in figure 1 or eventually define a  
% different rotation angle in “r_deg” if plausible.  
bor = 800; % please set a proper value to cut matrix edges 
[Xqmin, Xqmax] = size(Xq); 
Xqmin = Xqmin + bor; 
Xqmax = Xqmax - bor; 
[Yqmin, Yqmax] = size(Yq); 
Yqmin = Yqmin + bor; 
Yqmax = Yqmax - bor; 
Xq = Xq(Xqmin:Xqmax); 
Yq = Yq(Yqmin:Yqmax); 
clear bor Xqmin Xqmax Yqmin Yqmax; 
%% Produce a full grid from the regularly spaced vectors then interpol 
[XX, YY] = meshgrid(Xq,Yq); 
F = scatteredInterpolant(xyn(:,1),xyn(:,2),zn); 
qz = F(XX,YY);  
%% to plot interpolated data in 2D 
figure(10), pcolor(XX,YY,qz),shading flat;  
set (10, 'Color',[1 1 1],'name','Rotated data (interpolated)'); 
set(gca,'fontweight','bold','fontsize',12,'fontname','Times New Roman'); 
    title('Rotated data (interpolated)', 'FontWeight','bold',... 
        'FontSize',16,'FontName','Times New Roman')     
    xlabel('x (m)', 'FontWeight','bold','FontSize',12,... 
        'FontName','Times New Roman') 
    ylabel('y (m)', 'FontWeight','bold','FontSize',12,... 
        'FontName','Times New Roman') 
set (get(colorbar('EastOutside'),'ylabel'),'string','z (m)',... 
    'FontWeight','bold','FontSize',12,'FontName','Times New Roman'); 
axis equal; 
% xlim([min(Xq) max(Xq)]); 
% ylim([min(Yq) max(Yq)]); 
%% enable to export the new x,y,z point cloud 
%xxx = XX(:); 
%yyy = YY(:); 
%zzz = qz(:); 
%newpoints = [xxx, yyy, zzz];  
%dlmwrite('exported.txt', newpoints, 'delimiter', ',', 'newline' , 'pc'); 
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AAppppeennddiixx  33  
 

% This function performs the FFT analysis through the direction defined by  
% x (at each loop a now row in qz is analyzed). At the end of the loop,  
% all power spectra are plotted in figure 2 together with the average 

power 
% spectrum obtained by averaging in a geometric progression (with the 
% exception of the first 3 values which are simply the mean at the 
% respective points). Red line is the power law fitted curve. Output of 

the 
% fit are showed in the main Matlab window. 
% x is the signal that is to be transformed. 
function [Xy, freqx, absXsqall, absmeanx, progmeanx, xprogmean]... 
    =positiveFFTx(qz,samp) 
Fs=1/samp;  %sampling rate, sampling frequency. 
Nx=length(qz(1,:));  %sample lenght. 
kx=0:Nx-1;  %create a vector from 0 to N-1. 
Tx=Nx/Fs;   %get the frequency interval. 
freqx=kx/Tx;    %create the frequency range. 
winx=hann(Nx);  %generate a Hann window of length N samples, returns the  
                % N-point symmetric Hann window in a column vector. 
%% FFT Loop 
for indx=1:length(qz(:,1)) 
% x = qz(indx,:);   %extract the signal to analyze. 
x = qz(indx,:); %extract the signal to analyze. 
xw = winx(:).*x(:); %use the Hann window to weight or window the data. 
%takes the FFT of the signal, and adjusts the amplitude accordingly. 
Xy=fft(xw)/Nx;  %Take the magnitude of fft of x and scale the fft so that  
                %it is not a function of the length of x. 
cutOff = ceil(Nx/2);    %only want the first half of the FFT, since it is  
                        %redundant, calculate the number of unique points. 
%Take only the first half of the spectrum (FFT is symmetric, throw away  
%second half). 
Xy = Xy(1:cutOff);      %first half of the spectrum 
freqx = freqx(1:cutOff);    %this is an evenly spaced frequency vector  
                            %with cutOff points.  
% Since we dropped half the FFT, we multiply Xy by 2 to keep the same 
% energy. 
% The DC component and Nyquist component, if it exists, are unique and  
% should not be multiplied by 2. 
absX=abs(Xy); 
if rem(Nx, 2) % odd N excludes Nyquist point 
  absX(2:end) = absX(2:end)*2; 
else 
  absX(2:end -1) = absX(2:end -1)*2; 
end 
absX=absX*2;   %Apply HANN Window Amplitude Correction Factor (ACF) 
absXsq=((absX.^2)); %furier power spectral density sensu Schuster (1898)  
% absXsq=((absX.^2)./(Nx*samp));   %normalized 
if indx==1 
    absXsqall=zeros(length(absXsq),length(qz(1,:)));%preallocating matrix  
    absXsqall(:,1)=absXsq(:);                       %to save memory 
else 
    absXsqall(:,indx)=absXsq(:); 
end 
end 
indx %visualize number of iterations 
%% This section has been devolopped to average the data in a geometric 
% progression and hence to plot the results of power interpolation. 
clear logfreqx absXsqall2 progmean strep xi yi t 
absmeanx=mean(absXsqall,2); %mean of the furier power spectral density of  
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                            %all profiles. 
for ii=5:length(freqx) 
logfreqx((ii-4))=log10(freqx(ii)); 
absXsqall2((ii-4),:)=absXsqall(ii,:); 
end 
for conta2=1:3  %Cuts away the first value (null in freqx and exclude the 
                %succeding 3 columns from progression. 
progmeanx(conta2,1)=freqx(conta2 + 1); 
progmeanx(conta2,2)=absmeanx(conta2 + 1); 
end 
strep=(log10(progmeanx(conta2,1))-log10(progmeanx((conta2 -1),1))); 
for t=min(logfreqx(:)):strep:max(logfreqx(:)) 
    conta2 = conta2 + 1; 
    conta = 0; 
    sommx = 0; 
    for xi = 1:length(absXsqall2(:,1)) 
        if (logfreqx(xi))>=t & (logfreqx(xi))<(t+(strep)) &... 
                                        (t+(strep))< max(logfreqx(:)) 
            for yi = 1:length(absXsqall2(1,:)) 
                conta=conta+1; 
                sommx=sommx+absXsqall2(xi,yi); 
            end 
        end 
    end 
    sommx=sommx/conta; 
    progmeanx(conta2,1)=10^(t+(strep/2)); 
    progmeanx(conta2,2)=sommx; 
end 
%% To cut NaN values from geometric progression results 
clear xprogmean 
conta=0; 
conta1=0; 
TF=isnan(progmeanx(:,2)); 
for ii=1:length(progmeanx(:,1)) 
    if isnan(progmeanx(ii,2)) 
        conta1=conta1+1; 
    else 
        conta=conta+1; 
        conta1=conta1+1; 
        xprogmean(conta,1)=progmeanx(conta1,1); 
        xprogmean(conta,2)=progmeanx(conta1,2); 
    end 
end 
%% Fit data 
[fitobject,gof,output]=fit(log10(xprogmean(1:end,1)),... 
            log10(xprogmean(1:end,2)),'poly1') 
cfit(fitobject); 
coefx=coeffvalues(fitobject) 
Hx=(coefx(1)+1)/(-2) 
y1=(10^(coefx(2)))*((min(xprogmean(1:end,1)))^coefx(1)); 
y2=(10^(coefx(2)))*((max(xprogmean(1:end,1)))^coefx(1)); 
matx= [(min(xprogmean(1:end,1))) y1;... 
      (max(xprogmean(1:end,1))) y2]; 
%% Fitting of y=ax^b doesn't work!!! 
% [fitobject,gof,output]=fit(xprogmean(1:end,1),... 
%                       xprogmean(1:end,2),'power1') 
% cfit(fitobject); 
% gof; 
% output; 
% coefx=coeffvalues(fitobject) 
% Hx=(coefx(2)+1)/(-2) 
%% Plot the FPS (P(k)). 
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figure(2),plot(freqx,absXsqall,'-o','MarkerSize',3); 
set (2, 'Color',[1 1 1],'name','Power spectra along X'); 
set(gca,'fontweight','bold','fontsize',12,'fontname','Times New Roman'); 
set(gca,'xscal','log') 
set(gca,'yscal','log') 
hold on 
plot(xprogmean(1:end,1),xprogmean(1:end,2),'ks-','MarkerFaceColor','k'); 
%plot(freqx,absmeanx,'ks-','MarkerFaceColor','k');%mean of each freqx 
% p=plot(fitobject,xprogmean(1:end,1),yprogmean(1:end,2)); 
% set(p,'LineWidth',2) 
plot(matx(:,1),matx(:,2),'r-', 'Linewidth', 2); 
grid 
title('Power spectra along X', 'FontWeight','bold',... 
        'FontSize',16,'FontName','Times New Roman')     
xlabel('Spatial frequency, k [m^-1]', 'FontWeight','bold',... 
        'FontSize',12,'FontName','Times New Roman') 
ylabel('Power amplitude density, P(k) [m^3]', 'FontWeight','bold',... 
        'FontSize',12,'FontName','Times New Roman') 
hold off; 
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AAppppeennddiixx  44  
 

% This function performs the FFT analysis through the direction defined by  
% y (at each loop a now column in qz is analyzed). At the end of the loop,  
% all power spectra are plotted in figure 3 together with the average 

power 
% spectrum obtained by averaging in a geometric progression (with the 
% exception of the first 3 values which are simply the mean at the 
% respective points). Red line is the power law fitted curve. Output of 

the 
% fit are showed in the main Matlab window. 
% y is the signal that is to be transformed. 
function [Yx, freqy, absYsqall, absmeany, progmeany, yprogmean]... 
    =positiveFFTy(qz,samp) 
Fs=1/samp;  %sampling rate, sampling frequency. 
Ny=length(qz(:,1));  %sample lenght. 
ky=0:Ny-1;  %create a vector from 0 to N-1. 
Ty=Ny/Fs;   %get the frequency interval. 
freqy=ky/Ty;    %create the frequency range. 
winy=hann(Ny);  %generate a Hann window of length N samples, returns the  
                % N-point symmetric Hann window in a column vector. 
%% FFT Loop 
for indy=1:length(qz(1,:)) 
y = qz(:,indy); %extract the signal to analyze. 
yw = winy(:).*y(:); %use the Hann window to weight or window the data. 
%takes the FFT of the signal, and adjusts the amplitude accordingly. 
Yx=fft(yw)/Ny;  %Take the magnitude of FFT of y and scale the FFT so that  
                %it is not a function of the length of y. 
cutOff = ceil(Ny/2);    %only want the first half of the FFT, since it is  
                        %redundant, calculate the number of unique points. 
%Take only the first half of the spectrum (FFT is symmetric, throw away 
%second half). 
Yx = Yx(1:cutOff);      %first half of the spectrum 
freqy = freqy(1:cutOff);    %this is an evenly spaced frequency vector  
                            %with cutOff points. 
% Since we dropped half the FFT, we multiply Yx by 2 to keep the same 
% energy. 
% The DC component and Nyquist component, if it exists, are unique and  
% should not be multiplied by 2. 
absY=abs(Yx); 
if rem(Ny, 2) % odd N excludes Nyquist point 
  absY(2:end) = absY(2:end)*2; 
else 
  absY(2:end -1) = absY(2:end -1)*2; 
end 
absY=absY*2;    %Apply HANN Window Amplitude Correction Factor (ACF) 
absYsq=((absY.^2)); %furier power spectral density sensu Schuster, 1898 
% absYsq=((absY.^2)./(Ny*samp));    %normalized 
if indy==1 
    absYsqall=zeros(length(absYsq),length(qz(:,1))); %preallocating matrix 
    absYsqall(:,1)=absYsq(:);                        %to save memory. 
else 
    absYsqall(:,indy)=absYsq(:); 
end 
end 
indy %visualize number of iterations 
%% This section has been devolopped to average the data in a geometric 
% progression and hence to plot the results of power interpolation. 
clear logfreqy absYsqall2 progmean strep xi yi t 
absmeany=mean(absYsqall,2); %mean of the furier power spectral density of  
                            %all profiles. 
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for ii=5:length(freqy) 
logfreqy((ii-4))=log10(freqy(ii)); 
absYsqall2((ii-4),:)=absYsqall(ii,:); 
end 
for conta2=1:3  %Cuts away the first value (null in freqy and exclude the 
                %succeding 3 columns from progression. 
progmeany(conta2,1)=freqy(conta2 + 1); 
progmeany(conta2,2)=absmeany(conta2 + 1); 
end 
strep=(log10(progmeany(conta2,1))-log10(progmeany((conta2 -1),1))); 
for t=min(logfreqy(:)):strep:max(logfreqy(:)) 
    conta2 = conta2 + 1; 
    conta = 0; 
    sommy = 0; 
    for xi = 1:length(absYsqall2(:,1)) 
        if (logfreqy(xi))>=t & (logfreqy(xi))<(t+(strep)) &... 
                                        (t+(strep))< max(logfreqy(:)) 
            for yi = 1:length(absYsqall2(1,:)) 
                conta=conta+1; 
                sommy=sommy+absYsqall2(xi,yi); 
            end 
        end 
    end 
    sommy=sommy/conta; 
    progmeany(conta2,1)=10^(t+(strep/2)); 
    progmeany(conta2,2)=sommy; 
end 
%% To cut NaN values from geometric progression results 
clear yprogmean 
conta=0; 
conta1=0; 
TF=isnan(progmeany(:,2)); 
for ii=1:length(progmeany(:,1)) 
    if isnan(progmeany(ii,2)) 
        conta1=conta1+1; 
    else 
        conta=conta+1; 
        conta1=conta1+1; 
        yprogmean(conta,1)=progmeany(conta1,1); 
        yprogmean(conta,2)=progmeany(conta1,2); 
    end 
end 
%% Fit data 
[fitobject,gof,output]=fit(log10(yprogmean(1:end,1)),... 
            log10(yprogmean(1:end,2)),'poly1') 
cfit(fitobject); 
coefy=coeffvalues(fitobject) 
Hy=(coefy(1)+1)/(-2) 
y1=(10^(coefy(2)))*((min(yprogmean(1:end,1)))^coefy(1)); 
y2=(10^(coefy(2)))*((max(yprogmean(1:end,1)))^coefy(1)); 
maty= [(min(yprogmean(1:end,1))) y1;... 
      (max(yprogmean(1:end,1))) y2]; 
%% Fitting of y=ax^b doesn't work!!! 
% [fitobject,gof,output]=fit(yprogmean(1:end,1),... 
%                        yprogmean(1:end,2),'power1') 
% cfit(fitobject); 
% gof; 
% output; 
% coefy=coeffvalues(fitobject) 
% Hy=(coefy(2)+1)/(-2) 
%% Plot the FPS (P(k)). 
figure(3),plot(freqy,absYsqall,'-o','MarkerSize',3); 
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set (3, 'Color',[1 1 1],'name','Power spectra along Y'); 
set(gca,'fontweight','bold','fontsize',12,'fontname','Times New Roman'); 
set(gca,'xscal','log') 
set(gca,'yscal','log') 
hold on 
plot(yprogmean(1:end,1),yprogmean(1:end,2),'ks-','MarkerFaceColor','k'); 
%plot(freqy,absmeany,'ks-','MarkerFaceColor','k');%mean of each freqy 
% p=plot(fitobject,yprogmean(1:end,1),yprogmean(1:end,2)); 
% set(p,'LineWidth',2) 
plot(maty(:,1),maty(:,2),'r-', 'LineWidth', 2); 
grid 
 title('Power spectra along Y', 'FontWeight','bold',... 
        'FontSize',16,'FontName','Times New Roman')     
 xlabel('Spatial frequency, k [m^-1]', 'FontWeight','bold',... 
        'FontSize',12,'FontName','Times New Roman') 
 ylabel('Power amplitude density, P(k) [m^3]', 'FontWeight','bold',... 
        'FontSize',12,'FontName','Times New Roman') 
hold off 
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