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Abstract 

 

The main goal of this PhD thesis is the development and performance 

assessment of innovative techniques for the autonomous navigation of aerospace 

platforms by exploiting data acquired by electro-optical sensors. Specifically, the 

attention is focused on active LIDAR systems since they globally provide a higher 

degree of autonomy with respect to passive sensors. Two different areas of research 

are addressed, namely the autonomous relative navigation of multi-satellite systems 

and the autonomous navigation of Unmanned Aerial Vehicles. The global aim is to 

provide solutions able to improve estimation accuracy, computational load, and 

overall robustness and reliability with respect to the techniques available in the 

literature. 

In the space field, missions like on-orbit servicing and active debris removal 

require a chaser satellite to perform autonomous orbital maneuvers in close-

proximity of an uncooperative space target. In this context, a complete pose 

determination architecture is here proposed, which relies exclusively on three-

dimensional measurements (point clouds) provided by a LIDAR system as well as on 

the knowledge of the target geometry. Customized solutions are envisaged at each 

step of the pose determination process (acquisition, tracking, refinement) to ensure 

adequate accuracy level while simultaneously limiting the computational load with 

respect to other approaches available in the literature. Specific strategies are also 

foreseen to ensure process robustness by autonomously detecting algorithms' 

failures. Performance analysis is realized by means of a simulation environment 

which is conceived to realistically reproduce LIDAR operation, target geometry, and 

multi-satellite relative dynamics in close-proximity. An innovative method to design 

trajectories for target monitoring, which are reliable for on-orbit servicing and active 

debris removal applications since they satisfy both safety and observation 

requirements, is also presented. 

On the other hand, the problem of localization and mapping of Unmanned Aerial 

Vehicles is also tackled since it is of utmost importance to provide autonomous safe 
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navigation capabilities in mission scenarios which foresee flights in complex 

environments, such as GPS denied or challenging. Specifically, original solutions are 

proposed for the localization and mapping steps based on the integration of LIDAR 

and inertial data. Also in this case, particular attention is focused on computational 

load and robustness issues. Algorithms' performance is evaluated through off-line 

simulations carried out on the basis of experimental data gathered by means of a 

purposely conceived setup within an indoor test scenario. 

 

KEYWORDS: LIDAR; spacecraft relative navigation; uncooperative pose 

determination; sensor modeling; sensor simulation; spacecraft relative dynamics 

design; Unmanned Aerial Vehicles; localization; mapping 
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Chapter 1 - Introduction 

 

1.1 Autonomous relative navigation of multi-satellite 

systems 

 

Advanced applications like On-Orbit Servicing (OOS) [1, 2] and Active Debris 

Removal (ADR) [3, 4] have recently received growing attention by researchers 

operating in the space domain. 

Indeed, OOS missions represent the only way to have a reliable physical access 

to a space vehicle while it is still in orbit, giving the possibility to carry out extremely 

important activities such as satellite inspection or repair, satellite relocation and 

satellite restoration or augmentation. As a consequence, OOS may lead to a 

significant reduction of the risk of mission failure and of the mission cost, an 

increase of the mission performance, lifetime and of the mission flexibility, as well 

as enable new missions [1]. On the other hand, several studies [5, 6] have shown the 

need of ADR together with the adoption of passive mitigation measures to stabilize 

the population of debris in orbit, respectively by removing man-made non-functional 

space objects thanks to an autonomous active spacecraft and by designing satellites 

for future operations so that they are able to autonomously de-orbit at the end of their 

operative life. This is of utmost importance to prevent the triggering of the "Kessler 

syndrome" [7] which is worldwide seen as the major threat to the possibility to 

develop future space missions. 

OOS and ADR are related to the concept of multi-satellite systems since they 

both require a servicing spacecraft, typically known as the chaser, to perform 

autonomous relative navigation maneuvers, such as rendezvous and docking and 

monitoring, in close-proximity of an assigned target which is an operative satellite 

and a debris, respectively. These maneuvers require development and 
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implementation of technologies and techniques for short range pose determination. 

Specifically, the target-chaser relative pose, namely the set of parameters which 

represent the relative attitude and position between the two platforms, needs to be 

estimated in real time and with high accuracy in order to represent a reliable input to 

carry out control of the relative motion. Although some solutions have already been 

implemented by means of demonstration missions for OOS of cooperative spacecraft 

[8] and for Formation Flying (FF) [9], the state of the art still lacks of consolidated 

resources suitable for most of OOS applications as well as for ADR since they 

require additional technical challenges to be dealt with. Firstly, the target may be 

uncooperative, meaning that it is not equipped with a dedicated communication link 

and there are not easily recognizable artificial markers on its surface, e.g. Light 

Emission Diodes (LEDs) or Corner Cube Reflectors (CCRs), located according to a 

specific known pattern. Secondly, it may be freely tumbling, i.e. characterized by an 

uncontrolled rotational dynamics, thus being difficult to be approached by the chaser 

due to the necessity to compensate for the angular velocity. Finally, due to the long 

exposure to the space environment (e.g. space radiation, possibility of impact of 

small non-tractable debris fragments), it may suffer physical damages as well as 

optical degradation of its surfaces, thus looking different than expected. These are 

the reasons why, up to now, the related activities are limited to planning of 

demonstration mission [10, 11] and to proofs of concept [12]. 

In this framework, mainly due to the uncooperative nature of the targets, pose 

determination can be tackled by relying only on measurements provided by Electro-

Optical (EO) sensors and on algorithmic solutions which exploit the knowledge of 

the target geometry (model-based techniques). Specifically, EO sensors can be 

classified into active and passive systems, e.g. respectively Light Detection and 

Ranging (LIDAR) technologies, and monocular or stereovision cameras operating in 

the visible and infrared bands. On the other hand, depending on the typology of 

selected EO sensor, model-based algorithms can be further ranked into monocular 

and three-dimensional (3D) techniques. Here, LIDAR have been preferred to passive 

sensors, in spite of the related higher mass, cost, power consumption, and lower 

frame rate, mainly because of their robustness to the variable illumination conditions 

typical of the space environment and their capability to easily discriminate the target 
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from the background (segmentation) independently of the light conditions. Hence, 

the main goal of this research activity is the development and performance 

assessment of innovative model-based algorithms, which are based on the processing 

of 3D data (point clouds) provided by an active LIDAR, for pose determination of an 

uncooperative space target.  

The proposed approaches are aimed at providing advancements to the state of the 

art in terms of 

 accuracy level, by minimizing the estimation error in the pose 

parameters; 

 computational load, by keeping the processing latencies at minimum; 

 robustness and integrity of the designed architecture, by foreseeing 

strategies for autonomous failure detection as well as for safe transition 

between the different steps of the pose determination process. 

In addition, given the complexity (from both the technical and the economical 

points of view) of performing demonstration mission in space as well as of realizing 

realistic experimental setup, the availability of numerical simulation environments is 

of crucial importance to test and validate technologies and techniques required for 

ADR and OOS missions. Hence, the performance of the approaches presented in this 

thesis is assessed within a simulation environment which is conceived to realistically 

reproduce the operation of a LIDAR, multi-satellite relative dynamics, target 

geometry and to implement pose determination algorithms. In particular, as regards 

the relative dynamics simulation, an original method to design relative trajectories 

for target monitoring, suitable for both OOS and ADR activities, is also introduced. 

These trajectories are conceived to satisfy not only safety requirements, but also 

relative navigation ones by wisely selecting the perspective at which the EO sensor 

on-board the chaser observes the target, thus providing meaningful and not 

ambiguous datasets. 
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1.2 Autonomous navigation of UAVs in complex 

environments 

 

Unmanned Aerial Vehicles (UAV) have nowadays become essential tools to 

perform a wide range of both military and civil applications, e.g. border patrol, 

coastal surveillance, crime fighting, hurricane and polar ice cap monitoring, forest 

fire detection, natural disasters response, aerial photography, crop dusting, package 

delivery, and pipeline and powerline monitoring. One of the main guidelines for 

researchers working on UAVs is the necessity to improve their level of autonomy 

when flying in complex environments, i.e. unknown areas, potentially dangerous to 

the human life and full of static and/or mobile obstacles, which can be both indoor 

and outdoor. This is of crucial importance since the autonomy of an UAV, defined as 

the capability of accomplishing their assigned missions by carrying out, without any 

external control, sensor data integration, perception, situational awareness, 

communication, planning, decision-making, and execution, represents the best way 

to unleash their full potential, thus leading to further advanced applications [13].  

From this perspective, one important issue to deal with is the necessity to make 

the UAV capable of navigating autonomously and safely in any scenario. This has 

been achieved, in the case of widely open outdoor areas, by integrating inertial data 

from an Inertial Measurement Unit (IMU) with position information provided by 

Global Navigation Satellite System (GNSS), e.g. GPS, by means of a sensor fusion 

architecture [14, 15]. This concept, known as GPS-INS, has been applied 

successfully to both fixed wing and rotary UAVs [16, 17], e.g. by exploiting the 

Extended Kalman Filter (EKF) approach. On the other hand, in several 

environments, respectively indicated as GPS-denied and GPS-challenging, the GPS 

signal may be completely absent (i.e. indoor) or unreliable due to multipath, 

absorption and jamming phenomena (e.g. in urban or natural canyons and under 

forest foliage). In these cases, autonomous navigation must be performed by relying 

on the integration of inertial data with measurements provided by EO sensors or by 

other ranging systems. This can lead the UAV to acquire advanced capabilities of 
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state estimation (i.e. knowledge of the vehicle's state in terms of attitude, position 

and velocity to be sent to the flight control unit) and perception (e.g. target detection 

and tracking). 

One possibility to autonomously navigate a Micro-UAVs (MAVs) flying in 

GPS-denied or GPS-challenging areas is given by simultaneous localization and 

mapping (SLAM), which is the process allowing a vehicle to reconstruct its own 

trajectory in terms of both position and attitude (localization), while simultaneously 

building a map of the area surrounding its travelled path (mapping) [18, 19]. The 

limitations in terms of payload, power, and processing resources together with the 

necessity to deal with a 6-Degree-of-Freedom (6-DOF) dynamics, make the 

implementation of SLAM on board MAVs much more challenging than for marine 

or ground vehicles [20]. As regards the selection of the ranging sensor to be installed 

on the MAV, active systems (LIDAR, RADAR and ultrasonic rangefinders) are 

recommended over hybrid (RGB-depth cameras) and passive (monocular and stereo 

cameras) ones since they are less sensitive to ambient light variation and they can 

work at any time (day and night), thus providing an higher degree of autonomy. 

Moreover, they produce directly 3D representations of the scene without requiring 

any computationally expensive image processing step. Among active systems, the 

attention is focused on LIDAR. Indeed, they can get larger distance measurements 

than ultrasonic rangefinders and depth camera, and they are lighter, less power 

consuming and provide more understandable information than RADAR. 

For these reasons, this part of the thesis has the purpose of providing innovative 

techniques for the two main steps of SLAM (localization and mapping), which are 

based on the integration of laser scan data provided by a two-dimensional (2D) 

LIDAR, and inertial measurements given by a low cost IMU, namely the vehicle's 

acceleration, angular velocity and attitude. Specifically, also in this case, the issues 

of the algorithms' real-time implementation, and of the necessity of ensuring 

robustness against failures are addressed. Algorithms' performance is evaluated 

through off-line simulations based on real data collected by exploiting an 

experimental setup purposely design to operate carried by hand within an indoor test 

scenario. 
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It is worth outlining that the work relevant to this area of research has been 

realized during a period of six months spent at Cranfield University (UK) in the 

framework of the "Program STAR - Linea 2" financially supported by UniNA and 

Compagnia di San Paolo. 

 

1.3 Thesis organization 

 

The present thesis is organized as follows. 

Chapter 2 presents the concept of pose determination and the different existing 

approaches, as well as an overview about the state of the art of algorithms used in 

space applications. This is aimed at providing an overall classification of the existing 

techniques and at highlighting the current limitations. Then, the proposed pose 

determination architecture is described entering in the detail of each step of the 

process (i.e. acquisition tracking, refinement, transition from acquisition to tracking). 

Chapter 3 illustrates the different parts composing the simulation environment by 

which the performance of the proposed approach for pose determination is evaluated: 

the LIDAR measurement simulator which includes geometric, detection and noise 

models; the relative dynamics generator which exploits the target-chaser trajectory 

provided by the safe relative motion design method presented in chapter 4; the 

criteria for target selection and modeling. An overview of LIDAR systems adopted in 

space application is also provided to justify the modeling choices. 

Chapter 4 starts with the introduction of the concept of safe trajectories during 

close-proximity operations. Afterwards, the innovative analytical approach, which is 

adopted to generate the target-chaser trajectories for the numerical simulations, is 

presented in detail. 

Chapter 5 contains all the results of the numerical simulations realized to 

evaluate the performance of the proposed pose determination algorithms, together 
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with the definition of the criteria adopted for performance analysis. Also the 

effectiveness of the autonomous failure detection strategy is assessed. 

Chapter 6 presents an overview of the state of the art in the field of SLAM using 

LIDAR systems. Then, the innovative techniques for localization and mapping, 

based on LIDAR and inertial data integration, are illustrated. Finally, the 

experimental setup and the indoor scenario for gathering data is described, and the 

results of the off-line implementation of the proposed algorithms are analyzed to 

determine their capabilities. 

Finally, chapter 7 contains a discussion suitable for summarizing the achieved 

results and providing anticipations about the further developments of the research 

activity. 
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Chapter 2 - Spacecraft pose determination in 

close-proximity 

 

2.1 Introduction 

 

The capability to perform autonomous relative navigation between two 

spacecraft relies on a large variety of technologies, i.e. Radio Frequency (RF), 

GNSS-based, and EO sensors. However, each of these categories of instruments has 

its own field of application in terms of inter-satellite distance as well as depending on 

whether the two spacecraft are cooperative or not. 

If the inter-satellite distance is extremely large, i.e. from hundreds of kilometers 

to a few hundreds of meters, like during far-range and close-range rendezvous [21], 

there is no sensor capable of inferring the full relative attitude state (3 DOF). 

However, relative navigation can still be performed by relying on range and line-of-

sight (LOS) estimates, or even exclusively on LOS measurements. For instance, RF 

methods can provide reliable range, range-rate and LOS measurements, as shown by 

several applications of the Russian Kurs system for space rendezvous [21], but the 

target is cooperative since several antennas must be installed at specific locations on 

both the satellites. Range and LOS measurements can also be given by the 

differential GPS approach [22], whose applicability has been demonstrated by the 

Spaceborne Autonomous Formation Flying Experiment (SAFE) during the PRISMA 

mission [23]. However, this still represents a cooperative concept since a GPS 

antenna and a GPS receiver must be installed on board the target, together with other 

antennas to ensure a reliable communication link. On the other hand, autonomous 

LOS tracking of an uncooperative target from about 30 km up to 3 km of distance 

has been demonstrated during the Advanced Rendezvous demonstration using GPS 

and Optical Navigation (ARGON) experiment, again in the frame of the PRISMA 

program, by using a simple camera and specific image processing algorithm [24]. 



Chapter 2 - Spacecraft pose determination in close-proximity.  11 

 

Moreover, if a laser range finder is coupled with a passive camera, both range and 

LOS of an uncooperative spacecraft can be estimated at far range, as demonstrated in 

the frame of the Orbital Express (OE) mission [25]. 

In spite of these achievements, FF, OOS and ADR activities involve spacecraft 

relative dynamics to be controlled during operations like final approach, mating, 

monitoring, and station keeping, which are characterized by a narrower range of 

distances, e.g. from 100 m to even contact (in case docking is foreseen). Hence, they 

are classified as close-proximity operations and they require the full 6-DOF pose 

state to be estimated. In this context, although RF methods represent a potential 

solution to obtain the full relative attitude state in addition to relative position 

information with respect to a cooperative target [21], they require too complex, 

heavy and power consuming antennas and electronic equipment on both chaser and 

target vehicles. At the same time, techniques based on differential GPS do not 

provide an adequate accuracy level at very close range since they can suffer from 

multi-path effects as well as from shadowing of the navigation satellites by the target 

structure. Hence, EO sensors represent the best choice to fly in close-proximity also 

because their performance tends to improve as the range reduces. Of course, the 

specific instrument as well as the measurement principle, e.g. active or passive 

sensing, must be carefully selected depending on the application. 

Spacecraft pose determination is the problem of computing the rigid rotation (3 

DOF) and translation (3 DOF) aligning the reference frames related to the two 

satellites involved. In this respect, when trying to follow the evolution of the relative 

pose of a moving object by exploiting measurements from a given EO sensor, the 

general architecture of the pose determination process, shown in Figure 2.1, is 

composed of two main steps, namely acquisition and tracking. 

Pose acquisition is performed when the first dataset is provided by the adopted 

sensor and no a-priori information about the target relative position and attitude is 

available. Pose tracking means updating the pose parameters, as soon as new datasets 

are acquired, by taking the knowledge of pose estimates from one or more previous 

time instants into account. Pose tracking can also be augmented (in terms of accuracy 

level and computational efficiency) by introducing an additional step known as pose 
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refinement. It is worth outlining that the pose refinement step can be designed to 

operate either by receiving in input both the sensor data and the previous pose 

estimates [26] (like in Figure 2.1), or by relying only on this latter information [27-

31] (like in Figure 2.2). 

 

 

Figure 2.1 - Logical scheme of the process for pose determination of a moving object. Pose 

refinement initializes the tracking step and updates the estimated pose state. 

 

 

Figure 2.2 - Logical scheme of the process for pose determination of a moving object. Pose 

refinement initializes the tracking step. 
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In the context of spacecraft relative navigation, it can be clearly stated that the 

acquisition step is the most critical one of the process. Indeed, the estimated relative 

state can even be characterized by coarse accuracy, provided that it falls in the field 

of convergence of the tracking algorithm, but it must be obtained fast enough to 

avoid losing track of the moving target. Hence, performance analysis of pose 

acquisition algorithms is mainly focused on computational efficiency aspects and on 

reliability over extremely wide portions of the pose space. On the other hand, 

tracking algorithms search for convergence within a narrow area of the pose space 

thanks to the knowledge of previous estimates of the relative state. For this reason, 

they are typically quite fast and must be designed with particular attention to the 

accuracy level. 

In the case of both cooperative and uncooperative targets, pose determination 

algorithms based on EO measurements can be classified in two categories. 

 Monocular techniques rely on passive vision systems, like Charged 

Coupled Device (CCD) cameras, to estimate the target pose on the basis 

of angular measurements only. 

 3D techniques exploit active LIDAR or passive stereovision systems to 

obtain 3D information about the target, e.g. respectively point clouds and 

range images. Of course, this is pretty straightforward for LIDAR, while 

it involves complicated processing steps, e.g. image rectification and 

disparity map calculation, if stereocameras are used. 

The former category is related to the problem of estimating the relative position 

and orientation of the camera with respect to the observed scene, which is known as 

extrinsic camera calibration [32]. Indeed, if the position and attitude of the target in 

the scene is a priori known, the target pose with respect to the camera can be derived. 

If n correspondences between real world and image points are found, the extrinsic 

camera calibration can be performed by solving the Perspective-n-Point (PnP) 

problem [33, 34], for which the following remarks must be made. 

 If n is less than 3, the problem is under-constrained and it admits infinite 

solutions. 
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 If n is equal to 3, the problem is under-constrained, but, if the points are 

not collinear, the upper bound of ambiguous solutions is limited to four. 

 If n is equal to 4 or 5 more than one real solutions exists. However, if 4 

image-real world correspondences of coplanar points are available , the 

existence of one unique solution can be mathematically demonstrated 

[33]. 

 If n is larger than 5, the problem is linearly determined. 

In the case of cooperative targets, this concept can be applied since they are 

typically equipped with active LEDs or passive CCRs mounted on their external 

surface (or on their docking interface) according to specific known patterns. Hence, 

image-real world point correspondences can be attained by exploiting the bright 

projections of these point targets on the focal plane of the camera. For instance, in 

the framework of the PRISMA space program, pose determination in close-proximity 

is accomplished by imaging the LEDs located on the target surface at assigned 

positions by using a monocular camera, i.e. the Vision Based Sensor (VBS) [35]. 

Specifically, an analytical solution to the P4P problem, which is based on the volume 

measurement of tetrahedra composed of point triplets [36], is used to determine the 

relative positions between two consecutive LEDs in the reference frame relative to 

the camera (observation unit vectors). Hence, being the same information also a-

priori known in the reference frame relative to the target (reference unit vectors), the 

relative attitude can be derived by means of deterministic or stochastic approaches 

[37] and, as a consequence, the relative position is obtained by a simple vector 

combination. 

If 3D sensors are used, the solution to pose determination of cooperative targets 

is even more straightforward since the relative positions between consecutive 

artificial markers can be directly extracted from the measurements without any 

complex processing, like it is done in [38] by acquiring image pairs from a 

stereovision system. 

A significant limitation of cooperative techniques is that lack or miss detection 

of a marker may lead to system failure. Moreover, cooperative targets are peculiar of 

FF missions, while for most of OOS and ADR applications, the target satellite is 
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uncooperative. Hence, the research activity presented in this thesis is focused on the 

issue of uncooperative pose determination. 

 

2.2 Uncooperative pose determination: model-based 

algorithms 

 

Uncooperative pose determination is generally handled by model-based 

algorithms, whose basic concept is to compare the data extracted from measurements 

of the selected EO sensor with similar information derived from a target model, 

typically stored on board. Of course, if the target satellite is damaged so that the 

available model does not correctly represent its actual geometry, this issue could be 

overcome by building the model directly on board [39]. 

Model-based algorithms can be ranked in two categories.  

 Feature-based methods [40-56] are based on the extraction from the 

acquired dataset of geometric features, such as corners, lines, curves, and 

contours. 

 Appearance-based methods [57-59] are based on the analysis of the shape 

and texture of the acquired datasets, which leads to the generation of the 

so-called appearance model. 

In this survey, point-based techniques [53-56], which directly exploit raw data 

from 3D sensors, are ranked as feature-based since they rely on the same concepts 

with the advantage given by the absence of the feature extraction step. 

For both feature-based and appearance-based approaches, different types of 

techniques can be used depending on their role within the pose determination process 

(acquisition or tracking), as well as on the typology of data available (monocular or 

3D). 
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2.2.1 Feature-based methods 

 

If feature-based methods are selected, a solution to the pose determination 

problem can be obtained either by means of iterative techniques (e.g. least-squares 

methods), which optimize a purposely defined objective function, or by exploiting 

the Template Matching (TM) algorithm. It is worth outlining that while the former 

approach is typically used for pose tracking, the latter one in most cases is suitable 

for both the steps of the pose determination process. 

While the idea behind iterative techniques is quite straightforward, it is necessary 

to clarify the meaning of TM. This method derives from the concept of searching, 

within a 2D dataset (monocular image) or a 3D dataset (range image or point cloud), 

for specific features and/or specific image sections, which can be matched to an 

assigned template [60]. The template can have the same size as the available dataset, 

or it can occupy only a limited area of it, while the matching function is carried out 

by exploiting a correlation approach. Specifically, different kinds of correlation laws 

exist, among which the sum of absolute differences [61], the normalized cross 

correlation [62], and the distance transform [63] are most commonly used for 

monocular data, while mean square distance metrics [53, 54] and binary correlation 

[55] are suitable for 3D data. In the framework of pose determination tasks, TM 

requires the generation of a database of templates by sampling the 6-DOF pose 

space. Each template corresponds to a specific set of relative position and attitude 

parameters, and a correlation function is used to establish the degree of similarity 

between each template and the acquired dataset. Hence, the pose solution is given by 

the set of parameters related to the template for which the correlation function is 

optimized (i.e., maximized or minimized). This procedure is clarified by the flow 

diagram of Figure 2.3. 

An example of TM algorithm applied to extract the initial target pose from 

monocular data can be found in [41]. Each template, indicated as prototype view, is 

generated by projecting the silhouette (i.e. the contour) of the target model onto the 

image according to an assigned set of pose parameters. Unlike other features, 
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silhouettes can be robustly extracted independently of the characteristics of the 

target, which may be un-textured or slightly transparent. The peculiarity of this 

approach is that it aims at limiting the computationally expensive search in the pose 

space by building the database of images with a hierarchical structure in which 

similar prototype views are clustered at the lower levels of the hierarchy. 

 

 

Figure 2.3 - Logical scheme of the classical application of the TM concept to pose determination 

tasks. 

 

As regards TM approaches based on 3D data, many algorithms [53-56] exist 

which are specifically tailored to the pose determination of uncooperative spacecraft 

flying in close-proximity. These techniques do not require an initial guess and 

foresee specific solutions to improve computational efficiency and data storage 

issues connected to the basic TM concept (see sub-chapter 2.2.4 for more detail). 
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Another example of TM approach operating on 3D datasets but capable of 

performing only pose tracking, is the Bounded Hough Transform (BHT) method 

[42]. In this case, the model is a set of voxels, indicated as voxel occupancy. Voxels 

are the basic elements in 3D images. They are volumetric small regions of the space 

filled with binary values to indicate if these regions are empty or occupied. The 

templates are 3D binary arrays obtained by applying the corresponding pose 

transformations to the voxel occupancy. Classical pose tracking algorithms search for 

the pose solution in a continuous space closely to the initialization. On the other 

hand, the BHT method restrains the search to a discrete space obtained by sampling 

the continuous one around the available initial relative state. Moreover, the 

correlation between the acquired datasets and the template is computed by exploiting 

the classification concept which is inherited from the Hough Transform (HT) [64]. 

Moving on to the iterative (non-linear) techniques, they generally foresee the 

following steps if monocular sensors are used. 

 The model is represented as a sparse set of features like points (e.g. raw 

data, or extracted image descriptors like corners), lines (e.g. edges) or 

curves (e.g. circles and ellipses). 

 The same features are extracted in the acquired image. 

 The model is projected onto the image according to the initial pose 

solution. 

 The actual pose is obtained as the transformation that provides the best fit 

(alignment) between projected and image features 

The latter step is typically performed by minimizing a squared metric function. A 

point-based approach relying on the Scale Invariant Feature Transform (SIFT) can be 

found in [43], edge features are used in [44, 45], while ellipses are extracted in [46]. 

An iterative but linear solution to the problems of searching for model to image 

correspondences and pose estimation is provided by the SoftPOSIT algorithm [47]. 

This technique is composed of two steps. Firstly the soft-assign [49, 50] algorithm 

determines correspondences between image and model points/lines. Afterwards, the 

POSIT (POS with Iterations) algorithm [51] iteratively estimates the pose. 
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Specifically, it uses the POS (Pose from Orthography and Scaling) algorithm to 

approximate the perspective projection with a scaled orthographic projection, thus 

finding a coarse estimate of the relative state by solving a linear system. Hence, the 

approximated pose is used to compute better scaled orthographic projections of the 

feature points, and the process is iterated until convergence. In [48], the SoftPOSIT 

applicability was extended to the case in which lines are detected in the image 

instead of points; this is important since lines are typically more stable than points, 

i.e. more invariant to changing in lightning conditions and are less likely to be 

produced by clutter and noise. Although the POSIT approach can provide an initial 

estimate of the pose, this is typically too coarse, thus potentially leading to failures or 

slow convergence. Hence, the SoftPOSIT algorithm is used exclusively for the pose 

tracking step of the pose determination process. 

If 3D sensors are used, feature-based algorithms for pose determination are 

typically point-based since the raw data can be used without needing any complex 

and time consuming detection method. The collected dataset, expressed in the sensor 

reference frame, is rotated and translated on the basis of the initial pose. Hence, 

similarly to monocular approaches, the actual pose is obtained minimizing an error 

function defined by a comparison with a point-based representation of the target 

model. The best example of this approach is given by the Iterative Closest Point 

(ICP) algorithm [52]. It is an iterative technique able to find the best rigid 

transformation to align two datasets (registration) by minimizing a cost function 

which measures the similarity level between corresponding elements. Although the 

ICP concept is proposed to register any kind of sets of measurements, which can be 

composed of points, lines, or planes, it is mostly used to align a measured point cloud 

to a model point cloud for pose determination tasks. 

 

2.2.2 Appearance-based methods 

 

In order to avoid the necessity of complex feature extraction steps, an alternative 

solution for pose determination consists in applying appearance-based approaches. 



Chapter 2 - Spacecraft pose determination in close-proximity.  20 

 

They are specifically tailored for pose estimation or recognition of objects having 

complex articulated shapes, e.g. human hands or faces, when dealing with 2D data 

(no LIDAR). A distinction can be made between Active Appearance Models (AAM) 

methods [57] as well as solutions based on the Principle Component Analysis (PCA) 

[65]. 

The original AAM method states that the appearance of an object can be defined 

by its shape, i.e. set of 2D landmark points of the object image, as well as by its 

texture, i.e. set of intensity values of the pixels lying inside the shape. Given this 

definition the pose estimation problem is solved by finding the best transformation 

that fits the observed appearance (current image) and the expected appearance 

(model). 

Mittrapiyanuruk et al. [58] have introduced and tested in laboratory two AAM 

algorithms able to track the pose of a moving target respectively from images 

generated by a stereovision system (3D technique) and a single camera (monocular 

technique). Both these techniques need an initial guess of the pose thus not being 

suitable for pose acquisition. 

The PCA is a technique used to analyze multidimensional datasets. Specifically, 

it aims at deriving their principal directions, i.e. the main related information, by 

studying eigenvectors and eigenvalues of the associated covariance matrix. For this 

reason, PCA-based methods for pose determination are generally known as 

eigenspace approaches. Instead of considering every possible view of the target (like 

it is done by TM-based techniques), only a limited number of views, forming a basis 

in the eigenspace, are considered. The pose of the object at the time of interest is 

computed by representing the actual image collected by the sensor as a linear 

combination of the reference images forming the eigenspace. An example of 

monocular PCA-based approach is presented in [59]. Also PCA-based methods can 

be used for pose tracking if a reasonable initial guess of the pose is available. 

Both AAM and PCA-based methods require a preprocessing stage performed on 

a series of sample images. In the former case, it is needed to build the appearance 

model, while in the latter one, it is used to create the eigenspace and to perform 
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segmentation of the object from the image background. Another difference is given 

from the fact that PCA involves the minimization of a non-linear error function, 

while the algorithms based on AAM are linear, though iterative. 

 

2.2.3 Comparison and synthesis 

 

A compact survey of model-based techniques suitable for determining the pose 

of an uncooperative target with respect to an observer, by using EO sensors, is 

provided in Table 2.1. 

 

Model-based 

technique 
Methodology 

Data 

type 
Acquisition Tracking References 

Feature-

based 

TM-based 

2D YES YES [41] 

3D YES  YES  [53-56] 

BHT 3D NO YES [42] 

 Iterative non-

linear 

2D NO YES [43-46] 

3D NO YES  [52] 

Iterative linear 

(softPOSIT) 
2D YES YES [47-51] 

Appearance-

based 

AAM 

2D NO YES [57, 58] 

3D NO YES  [57, 58] 

PCA-based 2D NO YES [59] 

Table 2.1 - Survey of model-based techniques for uncooperative pose determination. 
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According to this survey, only TM-based methods and the softPOSIT algorithm 

are suitable for both acquisition and tracking. The former ones are typically not fast 

enough for tracking due to the necessity to search in the entire 6-DOF pose space. An 

exception to this statement is given by the BHT, being a TM approach specifically 

tailored for tracking applications. On the other hand, the initial solution provided by 

softPOSIT can be too coarse to ensure safe transition from acquisition to tracking. 

Feature-based methods represent a more convenient solution to uncooperative 

pose determination with respect to appearance-based ones. Indeed, they are more 

reliable to large variations of the pose which can occur in space and can cause lost of 

validity of the appearance model. Also, they can provide solutions to both the 

acquisition and tracking issues, and they are applicable independently of the EO 

technology adopted (while appearance-based techniques are intrinsically related to 

the processing of single camera images also in the case of the stereo approach in 

[58]).  

Appearance-based methods have the advantage of not requiring feature detection 

steps, thus being particularly convenient in cluttered background. However, this is 

not an issue in space applications where in most cases, segmentation of the target 

with respect to the background is extremely easy. 

This explains why feature-based algorithms are selected for spacecraft pose 

determination in close proximity, as it is shown in the next sub-chapter. 

 

2.2.4 Space applications 

 

This sub-chapter contains a survey of model-based techniques conceived for 

pose determination of non-cooperative spacecraft by processing measurements of EO 

sensors. Their performance has been assessed by means of numerical simulations, 

off-line runs on data gathered during previous space missions, off-line or real-time 

runs on data gathered by means of experimental test-beds. 
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Firstly, monocular approaches, both for acquisition and tracking, are addressed. 

Full monocular-based pose determination architecture is proposed by Astrium 

Satellites in the framework of a program for optimization and implementation of 

sensors and navigation solutions onboard a debris-removal vehicle named “The 

Debritor” with the main objective to ensure high safety proximity maneuvers [66]. 

Specifically, pose acquisition is performed by applying a customized version of the 

silhouette TM algorithm [41]. Indeed, modifications are necessary to be compliant to 

the specific features of TM approaches (valid for both monocular and 3D 

algorithms), when they are adopted for spacecraft pose determination. Specifically, 

since the database is generated during a preprocessing learning stage carried out off-

line, it must be stored on board the chaser. Hence, two issues arise, which are 

indicated hereunder. 

 Necessity to limit the computational cost related to the search in the 6-

DOF database to avoid losing track of the target. 

 Necessity to restrain the amount of on-board data storage. 

In [66], these issues are dealt with by building a 2-DOF database (the view 

points are sampled on a sphere as it can be seen in Figure 2.4) with a hierarchical 

structure. Once an edge-based matching stage is completed, the remaining unknowns 

are obtained through the segmentation of the silhouette of the object. This strategy 

accelerates the algorithm's convergence but it is spread over multiple frames, thus 

increasing the risk of losing track of the target. Pose tracking is performed by 

applying the edge-tracking method in [45] modified to improve robustness with 

respect to outliers. Algorithms' performance is evaluated on synthetic images of 

debris, i.e. an Ariane 4 upper stage and a Spot family satellite, and real images of the 

Soyuz TMA-12 spacecraft taken during its rendezvous phase with the International 

Space Station (ISS). The former ones have been simulated using an Astrium 

rendering tool called "Surrender" (based on classical rendering functions, adapted to 

peculiarity of space environment and debris properties), coupled with a simplified 

space dynamics simulator to reproduce trajectories and satellite dynamics. Range and 

tumbling rate of the simulated targets have been set respectively variable from 10 m 

to 100 m and from 0°/s to 2°/s, in order to be consistent with the typical requirements 
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of the final phase of an ADR mission. The algorithm provided good results averaged 

over several tests. Specifically, the attitude error was around 1°, while the position 

error varied approximately from 50 cm to 5 cm as the range decreased from 50 m to 

5 m. Additional results can be found in [67, 68]. As regards the computational load, 

the authors claim the algorithms to be still at a prototype level since they are able to 

run in real time but only on ground. 

 

 

Figure 2.4 - Template (prototype model view) generation by sampling a 2-DOF relative attitude 

space (spherical coordinates) for silhouette TM [66]. 

  

Another approach for spaceborne pose determination of non-cooperative targets 

based on monocular images is proposed in the framework of a program from the 

German Space Agency (DLR) [69]. Acquisition is accomplished by exploiting a TM 

method based on the concept of perceptual grouping [70]. Perceptual groups are 

combinations of lines and points to be extracted from both the model and the 

acquired images and then to be matched. These entities are more robust descriptors 

than edges or corners, thus ensuring a more reliable matching process. In this case, 

the database is given by all the possible perceptual groups extracted from the model, 

and the initial pose solution is given by the viewpoint which gives the best alignment 

between model and image perceptual groups. On the other hand, pose refinement and 

tracking are performed by applying, respectively, a multi-dimensional Newton-
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Raphson method and a weighted iterative batch least-squares estimator with a-priori 

information. Both these techniques try to find the best alignment between 

corresponding perceptual groups, which are re-matched after the initialization. This 

pose determination architecture is summarized by the flow diagram in Figure 2.5. 

 

 

Figure 2.5 - Spaceborne monocular-based pose determination architecture [69]. 

 

The performance of this approach is evaluated by runs over real images collected 

during the ARGON experiment of the PRISMA mission [24]. The authors claim the 

tracking algorithm to be reliable enough (accuracy of 10 cm and 10° in position and 

attitude, respectively) provided that the initial angular error is kept below 40°. 

Moreover, they state the major limiting factor for accuracy and reliability to be in the 

image processing module, which is now based on the HT. 

Liu and Hu addressed the problem of finding the pose of non-cooperative 

cylinder-shaped spacecraft by processing images from a single camera [46]. A coarse 

estimate of the relative orientation of the symmetry axis and of the relative 

translation vector (4 DOF) is obtained by exploiting projective geometry, after 

having matched ellipses extracted from the acquired images to the ones in the model 

[71]. Hence, the solution is refined by optimizing a non-linear objective function. 

The full pose (6 DOF) is then computed by exploiting information provided by the 

non-symmetric components of the spacecraft, e.g. antennas and solar arrays. This 

method does not need any initial guess. The accuracy of this approach is assessed by 

exploiting real space images of the Soyuz as well as synthetic images of the same 
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target generated by the Satellite Tool-Kit (STK). A significant issue is given by the 

worsening of the relative position accuracy as the rotation of the cylinder with 

respect to its transversal axes increases. Moreover, the method would probably suffer 

from partial surface occlusion which may deny ellipses to be detected.  

Additional spaceborne feature-based techniques are specifically tailored to pose 

tracking [26, 72, 73], thus requiring an initial pose estimate. 

Kelsey et al., from the Scientific Systems Company Inc. (SSCI), have designed 

both the HW and SW components of a Vision System for Autonomous Rendezvous 

and Docking (VISARD) for OOS applications [26]. Given a coarse pose 

initialization and images from a single camera, the system is able to perform pose 

refinement by exploiting the edge-tracking approach from [44], and pose tracking, by 

using an EKF. Performance analysis of VISARD algorithms is provided by 

processing images obtained from an experimental setup which allows reproducing 

various scenarios, e.g. space-based rendezvous and proximity operations, aircraft 

mid-air refueling, and ground-based visual servoing. Scaled replicas of existing 

satellites are used as target objects, namely a 1/20 scale Delta II second-stage rocket 

body model, a 1/72 scale Soyuz satellite model, and a Magellan 1/24 scale model. 

Example of VISARD images are shown in Figure 2.6. 

  

 

Figure 2.6 - Scaled satellite models used for VISARD experiments. 
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The pose refinement algorithm is stated to be able to handle errors in the initial 

pose parameters up to 30° in attitude and 10% of the range in position. However, 

algorithm performance significantly reduces as the initialization error increases, i.e. 

the standard deviation of the angular error is 1.33° for initial errors below 2° and it 

becomes 10.22° if the initial error is below 30°. 

Cropp et al. estimate the pose of an uncooperative target by matching a pre-

generated 3D line model with lines detected in the image [72]. At first, image lines 

are detected with sub-pixel accuracy thanks to the HT. Then, heuristics are used to 

generate a list of correspondences between image and model lines. This is aimed at 

reducing the computational cost since otherwise all the possible matches would have 

to be processed. However this represents also a significant limitation of the 

algorithm, as these heuristics are strictly related to the geometry of the considered 

target. Once the correspondences have been found, two least-squares error functions, 

which satisfy specific geometric constraint [74], are minimized to get the relative 

attitude and position. A method based on Random Sample Consensus (RANSAC) 

[33] is used to improve algorithm robustness against incorrect matches. The relative 

pose is computed several times, considering different subsets of line 

correspondences, within the initial global set. The quality of each estimated pose is 

computed by projecting the model on the image plane and evaluating the differences 

in position and orientation between the corresponding lines. Hence the best-fit pose 

parameters are determined and a Gauss-Newton minimization is performed to 

improve the solution. A series of numerical simulations are realized, considering 

UoSAT (a microsatellite from Surrey Space Center) as target. They show the 

capability of the algorithm to attain an average rotation error less than 5° and an 

average translation error of about 2% of the target range (maximum 10 m). However, 

the authors state that the accuracy could be improved by applying filtering 

techniques exploiting information from multiple successive frames. 

Another pose tracking algorithm [73] is proposed by a Spanish company (GMV 

Aerospace and Defense) in the framework of the COBRA IRIDES experiment which 

aims at modifying the attitude motion of a non-cooperative satellite by means of the 

interaction between the thruster exhaust gases and the target itself [75]. Specifically, 
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a modified version of the edge tracking approach provided in [44] is adopted. It 

envisages an original solution to extract from the model only salient features, i.e. 

silhouette, creases or boundaries which are candidates to match image edges, as well 

as to remove hidden lines. In order to test algorithm performance, real images from 

the PRISMA and Picard missions are taken, and the pose is initialized by manually 

matching model and image corners as shown in Figure 2.7. The analysis of the 

results shows that the algorithm provides a tracking error of a few degrees and tens 

of cm in the relative attitude and position, respectively. 

 

 

Figure 2.7 - Manual pose acquisition based on model-image point correspondences, in the case 

of the Picard satellite [73]. 

 

Moving on to 3D techniques, several pose determination architectures [56, 76, 

77] have been proposed, capable of relying on point clouds measured by active 

LIDAR and/or passive stereo vision system. 

Neptec has developed a vision system for autonomous on-orbit rendezvous and 

docking that does not require the use of cooperative markers on the target spacecraft. 

The system uses efficient model-based algorithms [56], developed in collaboration 

with the Canadian Space Agency (CSA), to provide 6-DOF relative pose information 

in real time by processing point clouds from the active TriDAR 3D sensor [78]. Pose 

acquisition is performed by an innovative object localization algorithm, namely the 

polygonal aspect hashing (PAH). It is a point-based technique which allows 

accelerating the search for the pose solution within a 6-DOF database built off-line, 
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by restraining it to those sets of parameters for which the target model surfaces are 

aligned to one or more polygons (composed of about 4/6 points) extracted from the 

input data, as shown in Figure 2.8. Given the point-correspondences for each 

polygon, a pose solution is computed. However, the algorithm outputs the one which 

minimizes an error function. The process can be repeated with more polygons from 

the same input point cloud or from newly acquired point clouds over time in order to 

improve accuracy. Pose tracking, instead, is performed by means of a customized 

version of the ICP algorithm. 

 

 

Figure 2.8 - Pose acquisition by polygon matching [56]. 

 

Algorithms' performance is evaluated by means of off-line runs over simulated 

and real sensor data of a 1/2 scale model of a Pressurized Mating Adapter (PMA) 

which is connected to a lateral port of a Node of the ISS. Specifically, the robustness 

of the PAH technique against reduction in the size of the point cloud, occlusion and 

spatial resolution is tested. The algorithm is considered successful if the errors 

remain 20 cm and 10° in position and attitude respectively. High values of the 

success rate are obtained if the number of matched polygons is large enough (more 

than 4) despite the reduction in point cloud size and sensor resolution (due to the 

increase in the relative distance), while the effect of occlusions starts being relevant 
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causing a drop in performance when the target visibility goes below 50%. As regards 

the ICP algorithm, it provides accuracies below 1 cm and 1° in relative position and 

attitude, respectively [79]. 

Jasiobedki et al. designed a vision system [76] that was proven capable of 

determining the pose of a known satellite for operations at medium and short range 

by using model-based 3D algorithms able to process data from a terrestrial scanning 

LIDAR, i.e. the Optech ILRIS-3D [80], or two stereo cameras [81]. As regards pose 

acquisition, a TM approach is presented which addresses the issue of computational 

efficiency by exploiting the idea of splitting the computation of the pose parameters 

in two phases, like it is done in [66]. Specifically, the PCA is applied in order to find 

the orientation of the target main axis. Hence, a 3D binary TM algorithm [55] is used 

to look in a 4-DOF database for the best estimate of the remaining rotation and the 

relative position parameters. It is clear that a major limitation of this approach is that 

it is specifically tailored for objects having an elongated shape. Also in this case, 

pose tracking is performed by means of a customized version of the ICP algorithm. 

Algorithms' performance is evaluated within a testbed developed at MacDonald, 

Dettwiler and Associates Ltd. (MDA). The experimental setup, depicted in Figure 

2.9, includes two industrial robots, one holding the instrument, the other holding an 

exact 1/5 scaled replica of Radarsat-2.  

 

 

Figure 2.9 - MDA experimental setup [76] to test uncooperative pose determination techniques. 
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The two robots can follow predefined trajectories so that not only the acquisition 

but also the tracking operational mode can be tested. The illumination system can 

simulate direct sun light and Earth albedo, and actual space surface materials are 

used to create realistic effects. Algorithms' performance depends on the sparseness of 

the point cloud. However, an asymptotic behavior is reached when the number of 

points goes above 2000. Specifically, pose acquisition shows sub-degree accuracy in 

relative attitude and an accuracy between 3 cm to 5 cm in relative position. On the 

other hand, tracking accuracy is below 1 cm and 0.4° in position and attitude, 

respectively, independently of data sparseness. 

In [42], performance of several variant of the BHT methods is compared to the 

ICP algorithm in terms of computational load and accuracy level for pose tracking. 

Also a hybrid techniques which applies the BHT and then refines its solution by 

means of the ICP algorithm is tested. This is done by using both simulated LIDAR 

data, obtained thanks to the Virtual Reality Modeling Language (VRML), as well as 

real data gathered by the same experimental setup as in [76]. Results, obtained using 

the Radarsat satellite as well as freeform objects (e.g. a duck, a dinosaur, a molecule 

model) as targets, show that the hybrid method provides the best performance. 

Similar values of the accuracy level and computational load are obtained 

independently of the target shape 

Sommer and Ahrns [77] developed a conceptual Guidance Navigation and 

Control (GNC) system layout for rendezvous operations toward a non-cooperative 

but known space vehicle. An active LIDAR system is considered as the main relative 

navigation sensor, whose measurements are processed by 3D model-based 

techniques for pose determination. Pose acquisition is performed by applying a TM 

approach which exploits small range images (30x30 points) to improve the 

computational efficiency, while pose tracking applies the ICP algorithm. 

Performance is tested within a numerical simulation environment which reproduces 

LIDAR operation and target-chaser relative dynamics for a linearly approaching 

trajectory. The selected target is ENVISAT, being a perfect example of large debris 

in low Earth orbit. The TM approach provides an attitude error of about 5°. The 

tracking algorithm ensures an accuracy of few centimeters for the position and less 
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than 1° for the attitude while the relative range varies from 50 m to 10 m. Below 10 

m, the performance significantly worsens due to the reduction of the target visibility. 

In addition to purely monocular and 3D techniques, an hybrid approach to pose 

tracking of uncooperative spacecraft, i.e. characterized by the simultaneous use of 

both passive and active technologies, has been conceived and tested [82]. Two 

different sensors are used. A Photonic Mixer Device (PMD), i.e. a 3D Time-of-Flight 

(TOF) camera, is used to collect range images which are processed to measure the 

target distance in the sensor boresight direction and the relative rotation with respect 

to this direction. The remaining 3 DOF, i.e. the cross-boresight component of the 

relative position vector and the relative rotation around the boresight axis, are 

obtained by processing monocular images from an high-resolution grayscale camera. 

The proposed algorithm compares the acquired ranges and the monocular images to a 

target model represented as a set of plane and outer lines. Hence, the camera and the 

PMD respectively perform edge-tracking and plane-tracking. This technique has 

been extensively tested, within the DLR facility called EPOS (European Proximity 

Operations Simulator) shown in Figure 2.10, using a scaled mock-up of the rear part 

of a Geostationary Earth Orbit (GEO) satellite as target.  

 

 

Figure 2.10 - EPOS facility at DLR [82]. 
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An approaching maneuver is simulated with relative distance varying from 22 m 

to 4 m. If no artificial disturbance is applied to the relative trajectory, the algorithm 

provides sub-cm and sub-degree accuracy in relative position and attitude. If sine 

disturbances are introduced, the accuracy level reduces for any estimated DOF. 

However the performance worsening is more relevant to the DOF computed by 

means of the PMD, potentially due to its limited resolution. 

This survey is summarized in Table 2.2. Globally, both active and passive 

technologies give promising and comparable results in terms of pose estimation 

accuracy. Passive sensors are lighter, less expensive and power consuming, and 

provide larger frame rates than active ones. However, LIDAR have fundamental 

advantages in terms of 

 capability to discriminate target from background (segmentation); 

 level of autonomy. 

Indeed, segmentation can be negatively affected by the presence of the Earth in 

their Field of View (FOV) of passive sensors, which are also more sensitive to the 

variability of the illumination conditions. This latter aspect can prevent the extraction 

of robust features. During space operations without ground-control, the necessity to 

increase the autonomy level as much as possible is certainly a driving factor. 

Moreover, recent developments in innovative detectors (e.g. the Avalanche Photo 

Diode, APD), compact scanner systems (e.g. the Micro-Opto-Electro- Mechanical 

Systems, MOEMs), and high-power and short-pulse laser sources have pushed 

LIDAR applications in space. Hence, this thesis deals with the development and the 

performance assessment of 3D model-based algorithms by focusing on LIDAR, 

although the proposed concepts are easily extendable to the case of passive stereo-

vision systems. It is also important to state that active systems typically have low 

resolution thus providing sparse dataset. On one side, this allows significantly 

reducing the computational load, which is further limited by the fact that most 3D 

techniques are point-based thus relying on direct processing of raw data. On the other 

side, this could limit the algorithms' accuracy level. Hence, it is essential to 

demonstrate capability of the proposed techniques to provide performance 
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comparable to state-of-the-art approaches while dealing with highly sparse point 

clouds, occluded target images, and highly variable target shape. 

 

Experiment 

owner 

EO 

sensor 
Pose determination 

Performance 

analysis criterion 
Target 

Astrium 

France 

CCD 

camera 

Acquisition and tracking 

Silhouette TM [41] 

Edge-tracking [45] 

Off-line runs on 

synthetic and real 

images from past 

missions 

Ariane 5 upper 

stage 

Spot family 

satellite 

Soyuz TMA-12 

DLR 
CCD 

camera 

Acquisition and tracking 

Perceptual group 

matching [70] 

Edge-tracking [69] 

Off-line runs on real 

images from past 

missions 

TANGO (target 

of PRISMA 

mission) 

Beihang 

University 

CCD 

camera 

Acquisition and tracking 

Ellipse matching and 

iterative refinement [46] 

Off-line runs on real 

images from past 

missions 

Soyuz 

SSCI 
CCD 

camera 

Tracking 

Edge-tracking [44] 

Real-time runs on 

real images from 

experimental setup 

Delta II second-

stage 

Soyuz  

Magellan  

University 

of Surrey 

CCD 

camera 

Tracking 

Line-to-line matching 

[72] 

Off-line runs on 

simulated images 

Uosat 

microsatellite 

GMV 
CCD 

camera 

Tracking 

Edge-tracking [44] 

Off-line runs on real 

images from past 

missions 

TANGO 

Picard 

Neptec LIDAR 

Acquisition and tracking 

PAH [56] 

ICP [52] 

Off-line runs on real 

point clouds from 

past missions 

PMA 

MDA 

Robotics 

LIDAR 

Stereo-

camera 

Acquisition and tracking 

3D binary TM [55] 

ICP [52] and BHT [42] 

Real-time runs on 

real images from 

experimental setup 

Radarsat 2 

Freeform 

objects 

Astrium 

Germany 
LIDAR 

Acquisition and tracking 

TM [77] 

ICP [52] 

Off-line runs on 

simulated images 
ENVISAT 

DLR 

PMD 

CCD 

camera 

Tracking 

Hybrid camera-LIDAR 

approach [82] 

Real-time runs on 

real images from 

experimental setup 

GEO satellite 

mock-up 

Table 2.2 - Survey of model-based techniques for pose determination of uncooperative 

space targets. 



Chapter 2 - Spacecraft pose determination in close-proximity.  35 

 

2.3 Pose determination architecture 

 

Hereinafter, the model-based algorithms developed to estimate the relative 

attitude and position of a servicing spacecraft with respect to a non-cooperative 

target satellite during close-proximity maneuvers are presented. The algorithms are 

3D, meaning that they are designed to operate on 3D point clouds which can be 

provided by either an active LIDAR (directly) or a passive stereovision system 

(through stereo processing). 

To this aim, the following rules are adopted concerning the mathematical 

notation: italic type is used for scalar quantities and quaternions, italic type with a 

single underline is used for other vectors, and italic type with double underline is 

used for matrixes. 

For the sake of mathematical simplicity but without losing generality of the 

exposition, the proposed algorithms estimate the relative position and attitude of a 

target reference frame (TRF) with respect to a sensor reference frame (SRF) which is 

relative to the EO system installed on board the chaser. Indeed, the rigid rotation and 

translation between the SRF and a chaser reference frame is a-priori known by 

construction. The relative pose vector (p) is composed of 6 parameters: T is the 3D 

relative position vector of the chaser with respect to the target and expressed in SRF, 

while the rotation matrix from TRF to SRF (R) is derived by a 321 sequence of Euler 

angles (i.e., yaw, γ, pitch, β, and roll, α) or equivalently by the unit quaternion, q. 

The logical scheme of the adopted pose determination architecture is represented 

in Figure 2.11. The pose acquisition block receives the first acquired dataset in input 

and estimates the initial pose vector (p0) without requiring any a-priori solution. 

Different techniques are proposed, which are described in detail in sub-chapter 2.4. 

Then, p0 is adopted to initialize the pose tracking block which estimates the time 

evolution of the pose parameters by processing new measurements. For the tracking 

step, different versions of the same ICP-based algorithm are described in sub-chapter 

2.5. This architecture follows the concept expressed in Figure 2.2, meaning that pose 
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tracking is augmented by a pose refinement step aimed at improving the accuracy of 

the tracking initialization only on the basis of previous estimates. However, this 

architecture is improved with respect to the solutions which can be found in the 

literature, as it includes strategies to enhance algorithms' robustness toward possible 

failures. Indeed, on one side, an additional block is introduced to manage the safe 

transition from acquisition to tracking by solving any possible ambiguity in the pose 

estimation process (see sub-chapter 2.6). On the other side, the pose solutions 

provided by both acquisition (after the transition step) and tracking algorithms are 

subject to a supplementary step foreseen for autonomous failure detection. 

 

 

Figure 2.11 - Logical scheme of the architecture proposed for uncooperative pose determination. 

Blocks containing model-based algorithms are highlighted in red. Blocks introduced to enhance 

robustness and efficiency of the proposed architecture are highlighted in green. 
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2.4 Pose acquisition 

 

2.4.1 3D on-line Template Matching 

 

The 3D on-line Template Matching algorithm, shortly indicated as on-line TM, 

is a model-based technique able to estimate p0. All the previously mentioned TM 

approaches operating on 3D data [55, 56, 77] exploit off-line processing to build and 

organize the on-board database, and each of them foresees a different strategy to 

reduce the computational cost of the on-board processing. On the other hand, the on-

line TM aims at improving the computational efficiency of the pose acquisition step 

with respect to the state-of-the-art approaches, while simultaneously cutting down 

the amount of data storage. Indeed, these aspects are both of utmost importance for 

close-proximity operations in space.  

The on-line TM uses the idea of splitting the search for the pose solution within 

the relative state space in two phases [55, 66], but in an innovative way. As soon as 

the sensor point cloud (P) is acquired by the available LIDAR/stereovision system, 

the target initial relative position (T0) is estimated by exploiting a centroiding 

approach as shown by eq. (2.1), 
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where PC = (PCx, PCy, PCz) and Np are respectively the centroid and the size of P, 

while xi, yi and zi are the SRF coordinates of the i
th

 measured point (P
i
). 

Hence, the search for the remaining unknowns, i.e. the initial Euler angles (γ0, β0, 

α0), can be restrained to a 3-DOF database. This procedure provides a significant 

reduction of the number of templates to be generated and compared to the sensor 

data thus improving the computational efficiency. Moreover, the database can be 

created dynamically since each template is generated on-line, i.e. directly on board, 
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just before being compared to P. In this way, the only data to be stored on board are 

the geometrical information about the target needed to generate the templates.  

A flow diagram which describes in detail the main steps of the on-line TM is 

presented in Figure 2.12. 

 

 

Figure 2.12 - Flow diagram of the 3D on-line TM architecture. The estimated initial pose 

parameters are highlighted by bold type. 

 

It is clear that, unlike traditional TM approaches, the off-line actions (enclosed in 

the red box) are limited to the definition of the algorithm operational parameters, and 

the storage of the target geometric model. As regards the algorithm operation, it is 

necessary to assign 
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 the range of variation of the Euler angles, i.e. (−179°, 179°) for α and γ, 

and (−89°, 89°) for β, where the boundaries are left out to avoid 

considering ambiguous triplets; 

 the angular sampling step (Δ) with which the above defined intervals are 

sampled. 

Of course, the lower the value of Δ is, the larger the number of templates (N) 

becomes. 

Moving to the on-line stage, once T0 is estimated by applying eq. (2.1), four 

steps, enclosed in the blue box in Figure 2.12, are iterated for each sampled set of 

Euler angles (or, equivalently, for each corresponding q). 

Firstly, a template, i.e. a point cloud (PT), is built by the 3D sensor measurement 

simulator (see sub-chapter 3.3.1 for details about the template generation process). 

Secondly, PT is translated so that its centroid (PCT) is aligned to PC, thus 

maximizing the point-cloud overlapping. This step is necessary in order to cope with 

the misalignment due to the fact that the estimation error in T0, which is used to 

generate the templates, can even be of the order of a few meters (depending on the 

size and shape of the point cloud). If not eliminated, this misalignment could easily 

make the algorithm produce wrong relative attitude solutions. The output of this 

overlapping step is a modified template (PTm) computed by applying eq. (2.2) to any 

element in PT. 

CCT

j

T

j

Tm PTqPTqPTqP  ),(),(),( 000                          (2.2) 

P
j
Tm is the j

th
 element of PTm, and j varies from 1 to the size of PT (Nt). 

Thirdly, template-sensor correspondences are determined by means of the 

Nearest Neighbor (NN) approach, i.e. each point in P is associated to the closest one 

in PTm according the Euclidean metric. At least in theory, the NN approach could be 

applied by inverting the roles of the two point clouds (i.e. associating each point in 

PTm to the closest one in P). However, the first solution is adopted since the second 
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one involves the possibility of excluding some measurements from the pose 

estimation process, thus potentially leading to performance worsening. 

Fourthly, the level of similarity between the two point clouds is established by 

computing a correlation function (C), which is defined in eq. (2.3) as the mean 

square distance of corresponding template-sensor points. 
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P
i
Tm is the element of the modified template corresponding to P

i
. 

Finally, once this iterative on-line procedure is repeated for each given set of 

Euler angles, the relative attitude solution is the triplet associated to the template 

which minimizes C. 

 

2.4.2 3D on-line Fast Template Matching 

 

Although the on-line TM technique provides a significant reduction of the 

number of templates to analyze, it is still highly time consuming. Hence, a variant of 

this algorithm is introduced, namely the 3D On-line Fast Template Matching, which 

is shortly indicated as on-line fast-TM. 

The main idea of the on-line fast-TM is to exclude, from the evaluation of the 

correlation function, those templates which are potential candidates to produce large 

value of C, meaning that they are badly correlated with P. Indeed, they can be a-

priori recognized by analyzing a parameter which measures the point cloud 

distribution with respect to the boresight axis of the adopted sensor. Given a generic 

point cloud (PC), this parameter, DBOR, can be defined as the mean distance from the 

sensor boresight axis, as shown in eq. (2.4), 
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where NPC, xPC
i
 and yPC

i
 are the size and the SRF cross-boresight coordinates of its i

th
 

point, respectively. So, referring again to the flow diagram in Figure 2.12, the on-line 

fast-TM requires executing the two final steps in the blue box only if the condition 

on DBOR, defined by eq. (2.5), is satisfied. 
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Equation (2.5) states that all the templates characterized by a distribution with 

respect to the sensor boresight direction which differs from the one of P by more 

than a given threshold (τ), must be neglected. Of course the lower the selected τ is, 

the more the number of non-correlated templates increases, and, consequently, the 

larger the amount of saved computational time becomes. However, as it will be 

shown in detail by the results in chapter 5, if τ is too low the algorithm may exclude 

also potential good candidates to minimize the correlation function. Hence, the 

selected threshold must ensure the better trade-off between the computational time 

saving and the necessity to attain a negligible loss of performance. 

Also, the computational time saving provided by this technique is affected by the 

fact that each template must be built and overlapped to sensor point cloud before 

being able to decide whether its distribution is compatible to the measured one. This 

means that the percentage of time saved thanks to this approach is always lower than 

the percentage of non-correlated templates. 

 

2.4.3 3D PCA-based on-line Template Matching 

 

Due to the limitations of the on-line fast-TM, it is interesting to consider the 

possibility of conceiving different techniques which exploit information obtained 

from the distribution of the measured point cloud to further improve the 
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computational efficiency while simultaneously keeping at the same level (or even 

improving) algorithm performance. 

To this aim the 3D PCA-based on-line Template Matching, shortly indicated as 

PCA-TM, is introduced. This technique exploits the centroiding approach, as well as 

the PCA and TM concepts to obtain an extremely large reduction of the 

computational time with respect to the previously defined methods. The search for 

the initial pose solution is subdivided in three stages. 

Firstly, T0 is estimated by exploiting eq. (2.1), as done for both the on-line TM 

and on-line fast-TM. 

Secondly, if the target has an elongated shape (which is typical of most active 

spacecraft and debris) its main axis (eM) can be estimated by exploiting the PCA. 

Indeed, it states that the principal directions of an assigned dataset are given by the 

eigenvectors of the associated covariance matrix. Thus, eM is identified by the 

eigenvector corresponding to the maximum eigenvalue of the covariance matrix (Q) 

associated to the measured point cloud. This latter quantity is computed by eq. (2.6). 
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If the estimated main target axis direction, expressed in SRF, is assumed to 

correspond to the positive z-axis (z) of the TRF, the relation between eM = (eMx, eMy, 

eMz), and z is given by eq. (2.7), where the expression for the relative rotation matrix 

is obtained by setting to zero the yaw initial rotation. 
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So, the roll and pitch angles can be estimated thanks to eq. (2.8). 
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Finally, it is necessary to compute γ0, which represents the unresolved rotation 

around the target main axis. 

This task is accomplished by means of an on-line TM approach in which a 1- 

DOF database of templates is built directly on-board by sampling the range of 

variation of γ, i.e. (-179°, 179°), with a fixed angular sampling step (still indicated by 

Δ), which is the unique tunable parameter within the PCA-TM. Also in this case the 

number of templates is inversely related to Δ. 

For each of the N values of γ, the four steps of the on-line TM, enclosed in the 

blue box in Figure 2.12, are repeated to evaluate the degree of similarity between the 

corresponding template and P. In this case the correlation function (CPCA-TM) is given 

by eq. (2.9).  
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Hence, γ0 is set as the value of the yaw angle that minimizes CPCA-TM. Although 

this procedure is very straightforward, a further problem arises due to the 

uncooperative nature of the target. Indeed, the PCA allows estimating, without 

ambiguity, the target main axis, but its direction remains undetermined since there is 

no way to establish whether eM corresponds to the positive or negative z-axis in TRF. 

Thus, two different solutions can be obtained for roll and pitch angles, indicated as 

(α01, β01) and (α02, β02), by applying twice eq. (2.7) and eq. (2.8) considering both the 

positive and negative z-axis direction. As a consequence of this ambiguity, the TM 

part of the algorithm has to be run twice thus leading to a double solution also in the 

yaw angle (i.e. γ02 and γ02). At the end of this process, two values of p0 are available, 

which are listed in eq. (2.10), 
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where β01 and β02 are opposite while α01 and -α02 are supplementary angles. The 

PCA-TM overall architecture is summarized by the flow diagram in Figure 2.13. 

 

 

Figure 2.13 - Flow diagram of the 3D PCA-based on-line TM architecture. The estimated initial 

pose parameters are highlighted by bold type. 

 

In spite of the necessity to solve the ambiguity between the two solutions in eq. 

(2.10), which is carried out by the acquisition-to-tracking transition step (see sub-

chapter 2.6), the PCA-TM is an extremely promising approach. Indeed, the on-board 

data storage is restricted just like for the on-line TM and on-line fast-TM. Moreover, 

the PCA-TM provides a significant advantage in terms of computational efficiency 

with respect to both the previously proposed approaches. This depends on the fact 

that the TM-based search is limited to the 1-DOF database thus cutting down the 

number of analyzed templates. Indeed, by varying Δ from 10° to 60°, N ranges from 

26011 to 196 for the on-line TM, while it goes from 37 to 7 for the PCA-TM. 
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Finally, it is worth outlining that the PCA-TM robustness can be enhanced by 

introducing an additional step which verifies the consistency of the direction 

estimated by the PCA. Although most potential targets for OOS and ADR 

applications have an elongated shape, there could be some pose conditions at which 

the target principal direction is occluded so that the measured point cloud is not able 

to image it correctly. However, these conditions can be identified, before applying 

the TM step, by analyzing the shape of P thanks to the PCA. The basic idea is that 

the ratio (r) between the maximum and minimum eigenvalues of Q is a direct 

measure of the elongation of the object observed from a specific point of view. 

Hence, the higher the value of r is, the more reliable the estimated eM is. The validity 

of this procedure will be demonstrated by exploiting results from numerical 

simulations in sub-chapter 5.2.3. A modified architecture for the PCA-TM, including 

this consistency check, is shown in Figure 2.14. According to this scheme, if r is 

lower than a safety threshold (τλ), selected by analyzing off-line the target geometry, 

it is necessary to wait for a certain amount of time, during which the true pose may 

evolve toward most favorable conditions. 

 

 

Figure 2.14 - Flow diagram of the 3D PCA-based on-line TM architecture modified to include 

PCA consistency check. The estimated initial pose parameters are highlighted by bold type. 
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2.5 Pose tracking 

 

2.5.1 Customized Iterative Closest Point algorithm 

 

The ICP algorithm is largely applied to deal with the problem of pose 

determination since it is a simple and fast solution to register two datasets. 

Specifically, it allows finding, through an iterative process, the best estimate of the 

rigid rotation and translation necessary to align a point-based representation of the 

target to P. The ICP procedure comprises several different phases for each of which 

many variants have been derived [83]. However, three mandatory steps can be 

identified. 

 Initialization. An initial guess of the pose parameter is used to express 

both P and PM in the same reference. 

 Matching. Correspondences between model and sensor points are 

determined. 

 Selection and minimization of error metric function. It monitors the 

convergence of the algorithm. 

The proposed customized ICP algorithm [31] is obtained by selecting specific 

solutions for the above-mentioned stages. However, it also foresees the possibility to 

activate an additional weighting step after matching, and it includes a strategy for 

autonomous failure detection. 

With the exception of the tracking phase starting in which the initial guess is the 

one provided by pose acquisition, each time a new dataset is available, the first ICP 

iteration is initialized by a prediction algorithm [31], which is in charge of the pose 

refinement step within the pose determination architecture depicted in Figure 2.11. It 

is a linear kinematic-only filter which updates the values of the previous estimates of 

the Euler angle on the basis of their time derivative, and it is aimed at both 

accelerating algorithm's convergence and improving its accuracy. The subscripts 
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"INIT" and "EST" in eq. (2.11) indicate respectively the initial guess and the ICP 

estimate for each Euler angle. 
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As regards the matching step, two different methods, namely the NN and the 

Normal Shooting (NS), are compared in terms of performance accuracy and 

computational efficiency. While the former method associates each sensor point to 

the closest one in a point-cloud generated off-line from the target model, i.e. the 

model point cloud (PM), the latter one generates PM dynamically, i.e. on-line at each 

algorithm iteration, by projecting the sensor points on the planes corresponding to the 

closest target model surface according to the local normal. The difference between 

these two methods to determine sensor-model point correspondences is highlighted 

in Figure 2.15, considering a 1D problem so that, in the NS case, the target model is 

a single line (instead of a plane) whose normal is n. 

 

 

Figure 2.15 - NN and NS solutions to the ICP matching step. 
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If the NN approach is adopted PM is pre-processed to build a K-D tree [84]. This 

is done to accelerate the NN search which otherwise could be very time consuming 

since the size of PM is typically one, two or even three order of magnitude larger than 

P (depending on how densely the surfaces of target 3D model are sampled). The 

correct choice for the off-line generation of PM, in terms of discretization, is typically 

driven by a trade-off between accuracy and computational efficiency. 

It is now necessary to clarify a problematic which arises from the 

implementation of the NS concept. Indeed, due to potential errors in the initial guess 

used to rotate and translate P from the SRF to the TRF, some elements of PM could 

fall outside of the physical boundaries of the target surfaces (see Figure 2.16). The 

simplest solution could be to eliminate all the sensor/model point pairs for which this 

phenomenon occurs. However, this could lead to lose too many information thus 

compromising the effectiveness of the algorithm. Hence, a distance threshold (τNS) is 

defined to verify the consistency of projected model points with respect to the target 

3D model, as it can be seen in Figure 2.16. 

 

 

Figure 2.16 - Check of model point consistency for the NS. 
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Numerical simulations are performed to evaluate the ICP sensibility to the 

discretization level of the target model, for the NN, and to the value of τNS, for the 

NS, whose results are presented in sub-chapter 5.3.3. 

After matching, a weighting step can potentially be introduced. It consists in 

assigning different weights (w) to the matched sensor-model point pairs. Specifically, 

the weighting law shown in eq. (2.12) is selected, which assigns lower weights to 

pairs characterized by greater distance (dICP). In this equation, the index i identifies 

each point pair and max{dICP} is the maximum pair distance. 
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As regards the selection of the error metric function, also indicated as cost 

function (f), it is defined in eq. (2.13) as the mean squared distance of corresponding 

model-sensor points. 
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In eq. (2.13), P
i
M is the model point corresponding to P

i
. This cost function is 

minimized through a closed-form solution based on the unit quaternion, as proposed 

by Horn [85]. Firstly, the covariance matrix of the sensor-model point pairs (QSM) is 

derived by eq. (2.14) where PCM is the centroid of the model point cloud, and it is 

used to build a symmetric 4x4 matrix (QΣ) according to eq. (2.15). 
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In eq. (2.15), tr(QSM) is the trace of QSM, while ΔQ is the column vector 

composed of the out-of-diagonal elements of QSM - QSM
T
. Once the optimal 

quaternion (qICP) is estimated as the eigenvector corresponding to the maximum 

eigenvalue of QΣ, T is updated by means of eq. (2.16). 

CCMICP PPqRT  )(                                      (2.16) 

All the above-described stages of this implementation of the ICP algorithm must 

be iterated since a convergence criterion is met. Specifically, the stop condition is 

reached when the time derivative of the cost function between two subsequent 

iterations goes below a threshold of 10
-6

 m
2
. Moreover, in order to limit the 

achievable computational time, a maximum number of 30 iterations is considered for 

each run of the technique. The value of the cost function at convergence is indicated 

as fCONV. 

Once the convergence criterion is met, the pose solution must be subject to the 

autonomous failure detection block shown in Figure 2.11, in order to move on to 

subsequent time step. The autonomous failure detection strategy is ICP-based, as it 

relies on the fact that the value of fCONV is a measure of the algorithm's accuracy 

level, i.e. the higher fCONV is, the coarser the estimated pose gets [31]. This means 

that when fCONV is larger than a specific threshold (fLIM), the ICP pose solution is not 

reliable and the algorithm must be applied to the next set of measurements using the 

same initial guess. The logical scheme describing this failure detection strategy is 

shown in Figure 2.17. If the failure test is not satisfied for a fixed number of 

subsequent applications of the ICP algorithm, the tracking is considered lost and the 

pose must be re-initialized again by means of the acquisition step. 

Finally, it is important to notice that this autonomous failure detection strategy is 

applicable also after the pose acquisition step. For these cases, the "Customized ICP 

algorithm" block in Figure 2.17 is not representative of the tracking phase but of the 

transition step from acquisition to tracking as it is clarified in the next sub-chapter. 
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Figure 2.17 - Autonomous failure detection strategy of the proposed pose determination 

architecture. 

 

2.6 Transition from acquisition to tracking 

 

In order to ensure a safe transition from acquisition to tracking, an ICP-based 

strategy is adopted. Again, the basic idea is to exploit the relation between the 

accuracy level attained by the ICP algorithm and the value of fCONV. 

If the on-line TM or the on-line fast-TM are in charge of pose acquisition, once 

the initialization is available, the transition simply consists in applying the ICP 

algorithm and then verifying whether the pose solution is reliable to move on to the 

tracking step by means of the failure detection strategy. This substantially means that 
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if the condition fCONV < fLIM is not satisfied the transition is considered not successful 

and the pose acquisition must be applied again on a subsequent dataset provided by 

the available sensor. It is worth outlining that the maximum iteration number is set to 

100 during this transition step, as a further safety criterion. This is necessary since 

the pose parameter gap that the ICP algorithm has to fill is larger than when the 

tracking phase has already started, due to the coarse accuracy of the pose estimate 

provided by the acquisition step. 

If the PCA-TM is adopted, the acquisition-to-tracking transition requires a 

strategy to identify which is the correct pose solution between the two possible ones 

listed in eq. (2.10). This strategy is summarized by the flow diagram in Figure 2.18. 

 

 

Figure 2.18 - Flow diagram describing the strategy adopted to safely manage the transition from 

acquisition to tracking in the case of the PCA-TM. Possible final outputs are highlighted in red. 
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The first step of the process consists in applying twice the ICP algorithm by 

exploiting the NN approach, taking as initial guess both p01 and p02. This provides 

two possible solutions (p1NN and p2NN) as well as the corresponding values of the 

error metric function at convergence (f1NN and f2NN). If the latter values differ of more 

than a threshold (εT) of 10
-6

 m
2
, the ambiguity between p1NN and p2NN can be solved. 

Thus, the pose solution corresponding to the lowest between f1NN and f2NN is taken as 

input of the pose tracking stage (p0T). 

If the NN approach provides ambiguous pose estimates, i.e. | f1NN - f2NN | < εT, the 

procedure is repeated, starting from p01 and p02, but applying the NS approach. This 

leads to a couple of solutions (p1NS and p2NS), so that p0T can be determined by 

comparing the corresponding values of the error metric function at convergence (f1NS 

and f2NS). Also in this case, if the solution is still ambiguous, i.e. | f1NS - f2NS | < εT, it is 

necessary to wait for a certain amount of time, during which the true pose may 

evolve toward most favorable conditions, and to execute the PCA-TM algorithm on 

an updated set of 3D measurements. 

In conclusion, if the ambiguity is solved, also for the PCA-TM the final check of 

the transition process is to apply the ICP and wait for the outcome of the failure 

detection condition as shown in Figure 2.17. 
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Chapter 3 - Models and simulation environment 

 

3.1 Introduction 

 

One of the main issues related to research activities on the subject of relative 

navigation between spacecraft flying in close-proximity is the lack of reliable and 

effective means by which innovative technological and algorithmic solutions can be 

proved. Indeed, the amount of open-access data about uncooperative OOS or ADR 

space activities is extremely limited, and the capability to realize meaningful tests on 

ground is restrained by the difficulty to reproduce, within an experimental testbed, 

realistic conditions, especially in terms of illumination and relative dynamics. Hence, 

in order to fully assess the performance of technologies and algorithms for 

uncooperative pose determination, it is necessary to integrate experimental tests with 

numerical simulations. Indeed, realistic software environments ensure the possibility 

to reproduce a much wider range of operational conditions with respect to an 

experimental setup. 

For these reasons, the purpose of this chapter is to describe the numerical 

simulation environment, developed in MATLAB, designed to evaluate the 

performance of the pose determination algorithms presented in sub-chapter 2.4 and 

2.5. This simulation environment, whose architecture is depicted in Figure 3.1, is 

able to realistically reproduce 

 highly variable target-chaser relative dynamics during relative navigation 

operations like rendezvous, station keeping and monitoring, 

 and the operation of a LIDAR capable of acquiring 3D point clouds. 

Also, it includes the implementation of the above-mentioned model-based 

algorithms. 
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Firstly, the input data about target and chaser absolute dynamics are processed 

within a relative dynamics simulator to obtain the true relative position and attitude 

parameters. 

Secondly, these latter data, together with the LIDAR operational and noise 

parameters, and the target 3D model, are exploited by a complex LIDAR simulator 

which includes modeling of all the related geometric, detection and noise aspects, 

thus generating realistic point clouds. 

Finally, the pose determination algorithms are applied to get estimates of the 

pose parameters, so that their performance in terms of estimation accuracy and 

computational efficiency can be evaluated. 

 

 

Figure 3.1 - Architecture of the simulation environment for performance evaluation of 

spacecraft pose determination algorithms. The inputs, the intermediate data, and the final 

output are contained in red, blue and green circles respectively. The violet dashed rectangle 

identifies all the blocks composing the LIDAR measurement simulator.  
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All the aspects relative to the above-described simulation environment are 

organized in this chapter as follows. 

Sub-chapter 3.2 describes the measurement principle of LIDAR systems and 

contains a review about spaceborne LIDAR adopted during missions involving 

relative navigation maneuvers. 

Sub-chapter 3.3 describes the LIDAR measurement simulator including details 

about how all the related geometric, detection and noise aspects are modeled. 

Sub-chapter 3.4 is focused on the characterization of the simulated LIDAR 

system motivating the choices of its operational parameters and noise data. 

Finally, sub-chapter 3.5 presents the selection of the targets adopted within the 

numerical simulations and the method adopted to create their 3D models, which 

depends on the information required by the pose determination algorithms. 

Sub-chapter 3.6 describes the relative dynamics simulator which generates the 

true pose from the absolute dynamics information of the chaser and the target. As 

highlighted in Figure 3.1, the simulator includes a relative motion model which is 

used to determine the target and the chaser mean orbit parameters, given the relative 

trajectory design data in input. For the sake of clarity of the presentation, this model 

is presented in chapter 4. 

 

3.2 LIDAR system overview 

 

The term LIDAR is used to indicate a large variety of sensors that are basically 

able to measure distances by illuminating a target with a laser and analyzing the 

backscattered radiation. The main components of a LIDAR system are the laser 

source (operating in the ultraviolet, visible and IR regions of the electromagnetic 

spectrum), the optics, the detector and the control electronics. 
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The basic typology of LIDAR is given by laser range finders which use a single 

detector to measure the distance travelled by a non-steerable laser beam. While these 

systems are able to compute exclusively range and LOS of the target, 3D LIDAR can 

provide 6-DOF relative information by acquiring data, e.g. point clouds, within an 

assigned FOV. As regards the technological solutions 3D LIDAR can be ranked into 

three main groups: scanning devices (e.g. single-point, slit or pattern-projection 

scanners), sensors based on detector arrays, and spatial light modulators [86-88].  

Scanning LIDAR have typically one detector and they are able to change the 

direction of a single narrow laser beam by means of lenses, mirrors or other devices 

moved by high-speed and high-precision galvanometers, thus providing high-

resolution point clouds. As regards the scanning pattern, several solutions exist 

ranging from the classical raster scan (depicted in Figure 3.2) to more complicated 

patterns, e.g. Lissajous, rosette and spirals, which are able to cover the FOV faster 

since they do not require stopping the scanning mirrors at the end of a line [89]. 

 

 

Figure 3.2 - Conceptual representation of scanning LIDAR measurement principle [88]. 

 

These sensors are relatively easy to calibrate since the user only needs to be 

concerned about the light sensitivity and timing for one detector. However, they 

contain moving parts which can be potential source of hardware failure, they ensure 

poor frame rate due to the time needed to scan the FOV and, most of all, the acquired 
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point cloud can be affected by undesirable blur effects due to the target motion while 

the sensor scans its FOV. 

The second major class of LIDAR contains those instruments which illuminate 

the entire scene with a single broad laser beam and use a detector array to 

individually measure the TOF of the light backscattered from each pixel direction 

(see Figure 3.3). The receiver optics and detector array operate in much the same 

way as a conventional camera. So, they do not have moving parts and their images 

are not affected by noticeable motion blur. However, scannerless LIDAR have more 

detectors, thus being more challenging to calibrate, and the fabrication limit on the 

size of the detector arrays restrains the size of the 3D point cloud, thus getting poor 

and fixed spatial resolution. 

 

 

Figure 3.3 - Conceptual representation of the measurement principle for scannerless LIDAR 

[88]. 

 

Spatial light modulators basically operate by illuminating portions of the scene 

according to a pre-defined pattern and then sensing the return with a single detector. 

The backscattered radiation is processed to obtain meaningful information by using 

compressed sensing algorithms [90]. While the former two categories have been 

already used for relative navigation on board previous spacecraft and for flight 
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experiments, spatial light modulators are innovative instruments, still under 

development, and far from practical space application. For these reason, the attention 

is focused on the first two categories. 

Regarding the typology of laser source, LIDAR can be divided in pulsed or 

continuous-wave (CW) systems. This distinction is valid to laser range finders as 

well as to scanning and scannerless instruments. In particular, sensors based on a 

detector array which rely on a pulsed laser source are called flash LIDAR. 

CW LIDAR compute distances by measuring the phase difference between an 

amplitude-modulated (AM), more frequently used, or a frequency modulated (FM) 

emitted signal (the reference signal) and the reflected echo, thus exploiting the 

heterodyne principle. The major related issue is that their applicability is limited to 

close-range applications by the phase integer ambiguity [88]. CW LIDAR can also 

exploit a different measuring principle, namely the triangulation method. As shown 

in Figure 3.4, triangulation consists in emitting a laser beam which is reflected by the 

target and focused by a lens on a CCD detector. The location where the reflected 

beam is backscattered on is a function of the target range. This procedure ensures to 

attain millimeter or even sub-millimeter accuracy, which unfortunately decreases as 

the inverse of square root of the distance [91]. For this reason, CW LIDAR based on 

triangulation are typically used at close range, e.g. below 15 m. 

 

 

Figure 3.4 - Principle of triangulation for distance measurement [92]. 
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On the other hand, pulsed LIDAR are direct-detection system which compute 

distances by measuring the time delay between transmitted and received laser pulses 

typically exploiting Gallium Arsenide TOF counters. These systems, also known as 

TOF LIDAR, are intrinsically simpler since the laser source is incoherent. TOF 

LIDAR represent the most convenient choice when the interval of operating 

distances is very large, i.e. from a few meter to a few kilometer, since they can 

provide constant accuracy level as a function of the range. However, the accuracy 

provided by the TOF principle is limited since the range resolution depends on the 

achievable time resolution. For instance, in order to get an accuracy of centimeter 

order, a time resolution of tens of picoseconds is needed thus requiring complicated 

and expensive electronics. 

For the sake of completeness, it is worth outlining that an additional method, 

based on pseudo-random number (PRN), can be used for TOF computation. It 

consists in encoding a PRN sequence onto the laser and then performing an 

autocorrelation with the sensed return. However this method is typically not used for 

spaceborne LIDAR. 

 

3.2.1 Spaceborne LIDAR for relative navigation 

 

An extended (but not necessarily exhaustive) review of active laser-based 

sensors used or in development to perform relative navigation maneuvers between a 

chaser satellite and a cooperative/uncooperative target is presented hereunder. 

Laser Range Scanner 

The Laser Range Scanner (LARS) [91, 93, 94], developed by the CSA, is a 3D 

sensor for space applications capable of doing surface imaging, target ranging and 

tracking. It was realized to cooperate with the Canadian Space Vision System 

(CSVS, designed to help astronauts to assemble the ISS) on the STS-52 shuttle flight 

in 1992 to test the capability of 3D space inspection and surface reflectance 

monitoring of the ISS [78]. LARS is a single point laser scanner able to operate at 
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short range, i.e. from 0.5 m to 10 m, by using the triangulation method, as well as at 

long range, i.e. 10 m to 10 km, by using the TOF method, thus exploiting the 

complementary accuracy performances of the two techniques at different ranges. The 

triangulation and TOF modes respectively use CW and pulsed laser sources. The 

resolution at short range is sub-millimeter but it reduces gradually with distance, i.e. 

it becomes 1 cm at 10 m of range. At long range the TOF method provides a constant 

accuracy of about 3 cm. The capability of LARS to scan the entire FOV is 

guaranteed by two high speed galvanometers. LARS is particularly suitable for 

operating in space, where surfaces have high contrasts and can generate specular 

reflections, since it guarantees an extremely wide dynamic range of intensities. 

Moreover, it has clear advantages over microwave systems in terms of size, mass, 

power and precision. In the case of a single target, the algorithm which directly 

process LARS data can reach a refresh rate of 137 Hz in tracking mode. 

NEAR Laser Rangefinder 

The NEAR Laser Rangefinder (NLR) [95, 96] is a TOF-based laser altimeter 

developed by the Applied Physics Laboratory (APL) at John Hopkins University and 

installed on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft that was 

launched in space in 1996. The main mission objective was to provide information 

about composition, mineralogy, morphology, internal mass distribution and magnetic 

field of the asteroid Eros 433. The NLR is a bi-static system, i.e. composed of 

separate transmitter and receiver, able to send infrared laser pulses to the surface of 

the asteroid, receive the backscattered ones (detected by an APD) and record the 

TOF (measured by a Gallium Arsenide chip) in order to compute the distance. The 

system architecture is accurately described in Figure 3.5.  

With regards to its main specifications, the pulse duration is 15 ns and its 

frequency varies between 0.125 Hz and 8 Hz. During the one-year observation of 

Eros, approximately 11 million measurements were obtained from NLR. It provided 

range measurements with 31.2 cm resolution and less than 6 m accuracy. Altimeter 

data combined with orbital tracking allowed the volume and the mass of Eros to be 

estimated to a precision of 0.01 % and 0.0001 %, respectively. 
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Figure 3.5 - System architecture of the NLR [95]. 

 

Rendezvous Laser RADAR 

The Rendezvous laser Radar (RVR) [97, 98] was designed by the National Space 

Development Agency of Japan (NASDA) in the framework of the ETS-VII mission 

started in 1997. During this mission the RVR was the main sensor used for relative 

navigation between the chaser and the target satellites at intermediate and close 

range, i.e. between 0.3 m and 660 m. The RVR is a CW FM system. It emits a laser 

beam in a specified angle without any scanning system, by using a near-infrared laser 

diode which radiates pulsed light (810 nm wavelength) in an 8.5° cone. The laser 

light is reflected by CCRs on the target and detected on the chaser using a CCD 

camera and an APD. The RVR estimates the LOS angle by processing the CCD 

image and computes the relative range by comparing the phase difference between 

transmitted and received beam. One great property of this system is that it can 

function under the optical interference of the Sun and other active optical sensors. 

Laser Dynamic Range Imager 

The Laser Dynamic Range Imager (LDRI) [99], developed by Sandia National 

Laboratories (SNL), is a scannerless range 3D imager used to remotely measure 
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vibration of the ISS structure and to determine the structural modal frequencies and 

amplitudes. It is characterized by six modes of operation, a 40° FOV, range 

resolution of 2.5 mm at approximately 45 m and a 7.5 Hz update rate. The LDRI 

operation consists in illuminating the scene with an amplitude modulated CW diffuse 

source, and imaging the average reflected intensity on a CCD detector, composed of 

640 x 480 pixels. The sensor flew on the space shuttle flight STS-96 and provided 

range measurements and video of the newly installed P6 solar array panel radiators. 

Additional measurements of curvature in the solar array panels demonstrated the 

potential for on-orbit characterization or inspection of structures. Space Shuttle 

flights results are reported in [99]. 

Laser Camera System 

The Laser Camera System (LCS) [79, 100] was the critical system, developed by 

Neptec under contract by the National Aeronautics and Space Administration 

(NASA), for repair decisions during two Space Shuttle missions for ISS assembly, 

namely STS-118 and STS-122. Although a prototype had already been tested on 

several previous missions starting from the STS 105, the development of this sensor 

was a crucial point for NASA, especially after the Space Shuttle Columbia tragedy in 

2004. The LCS, depicted in Figure 3.6, is a high precision triangulation 3D laser 

scanner designed to carry out on-orbit inspection of the spacecraft.  

 

 

Figure 3.6 - LCS mounted on the ISS robot arm for inspection purposes [78]. 
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Specifically, it was used to scan the shuttle’s thermal protection system (TPS) at 

stand-off ranges in the interval (1, 3) m to detect cracks less than 1 mm thick and 

facilitate clearance of the shuttle for landing. Two moving mirrors, driven by high-

precision galvanometers, steer a continuous laser beam on a target in space, creating 

a three-dimensional representation of the scanned area. The diffusely reflected light 

is captured by a collecting lens which focuses the energy on a linear detector array 

(LDA). The LCS has two operational modes. 

 Imaging mode is mainly adopted for inspection tasks. The system scans 

an object and registers a voxel for each illuminated point. Each one of 

these voxels is identified by four parameters, namely the two 

galvanometer angles, the detected peak and the intensity of the reflected 

signal. From these data it is possible to compute the spatial coordinates 

of the considered point by triangulating the intersection between the 

projected and reflected ray paths. 

 Centroid acquisition mode is used to determine the position of discrete 

target points on an object by projecting Lissajous patterns on circular 

targets with strong black and white contrasts. 

The LCS also demonstrated capability to track retro-reflectors on the target surface. 

Laser Mapper 

The Laser Mapper (LAMP) [101, 102] was developed by the NASA’s Jet 

Propulsion Laboratory (JPL) for five guidance and navigation applications. 

 Capture of a Mars sample in Mars orbit. 

 Hazard avoidance during smart landing on Mars. 

 Traverse planning for Mars rovers. 

 Rendezvous or docking with another spacecraft in earth orbit. 

 Small body landing/exploration/mapping. 

The system was used as the primary relative navigation sensor during the 

demonstration mission XSS-11 in order to perform the Autonomous Rendezvous 

Experiment (ARX). The LAMP is a TOF laser which operates by emitting short and 
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high-power pulses of infrared light which are pointed toward the target by a two-axis 

gimbaled mirror that allows the system to cover an area of 10° x 10° in 1 s. The laser 

pulses hit the target and a small amount of the light is reflected back to the 

instrument, collected by a telescope and sent to the APD in order to stop the count of 

the TOF. A rendezvous software is combined with the LAMP in order to acquire and 

track the target providing range and LOS measurement. The tracking operation 

consists in continually scanning the FOV in a small window around the target. The 

size of the sub-window is determined by the angular aspect of the object being 

tracked (the larger the angular extent of the target is, the bigger the scan window 

gets). The centroid of each scan is computed to estimate LOS and range. During the 

mission XSS-11, for the ARX experiment, a set of retro-reflectors was mounted on 

the surface of the orbital sample that could be identified by the instrument up to a 

distance of 5 km. However, the LAMP is able to identify also a generic Lambertian 

surface up to a distance of 2.5 km, although the photon budget is significantly 

reduced. 

Rendezvous and Docking Sensor 

The Rendezvous and Docking Sensor (RVS) [103] was developed by Jena-

Optronik for the European Space Agency (ESA) and the Japanese Space Agency 

(JAXA), as well as for the American Cygnus program, in order to support and 

control the automated docking of unmanned transfer vehicles with the ISS. It was 

first used in space on board the first Automatic Transfer Vehicle (ATV-001), 

although the RVS prototype had already been qualified in orbit with two Space 

Shuttle Missions (STS-84 and STS-86) docking to the MIR space station in 1997. 

The RVS, depicted in Figure 3.7, is a TOF laser range finder combined with a 

galvanometric scanning system able to measure range and LOS of a target from a 

distance of about 1500 m. It uses a mirror system to send short laser pulses toward 

the target, e.g. the Russian module of the ISS (where the ATV docks), that are 

reflected toward the RVS by special retro-reflectors installed on its surface. 

Jena-Optronik has recently developed the new generation version of sensors for 

rendezvous and docking, namely the RVS-3000 and RVS-3000 3D, which are both 

lighter in weight and less power consuming than the basic RVS. The former system 
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is able to operate in cooperative mode up to a further range (3000 m), but it also 

measures target range and LOS in an uncooperative mode up to 100 m of range. The 

RVS-3000 flew as an experiment on the last European transport vehicle ATV-005. 

The RVS 3000 3D represents a further advancement since it is able of providing 

automatic target identification and tracking as well as 3D imaging (point cloud 

representation). 

 

 

Figure 3.7 - Lateral view of the RVS [103]. 

 

TRIDAR 

The Triangulation LIDAR sensor (TRIDAR) [92], depicted in Figure 3.8 and 

developed by Neptec, was used during the Space Shuttle missions STS-128 (2009), 

STS-131 (2010) and STS-135 (2011). During STS-128 TRIDAR provided astronauts 

with real-time guidance information during rendezvous and docking with the ISS. 

During STS-131 TRIDAR tracked the ISS for rendezvous and docking as well as for 

undock and fly-around operations. During STS-135 TRIDAR repeated its tracking 

demonstration with improved performance from hardware and software upgrades. It 

represents the first vision system used in space able to automatically acquire and 

track a space target in an uncooperative way that means using only knowledge about 

its shape. TRIDAR operates at distances between 0.5 m and 2000 m. It combines a 

short-range, high precision and auto-synchronous triangulation sensor, i.e. a modified 
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version of the previously described LCS, with a mid-to-long-range TOF LIDAR 

sensor in the same unit (in a way similar to LARS). The two sensors share the same 

optical path and control electronics resulting in a compact package with multi-range 

and multi-role capabilities. The data collected by the system can be used to perform 

6-DOF real-time tracking of the target pose. A further version of the TRIDAR has 

been selected to support the operations of autonomous rendezvous and docking for 

the Hubble Robotic Vehicle (HRV). This system will operate at short range, i.e. 

below 10 m, and mid-range, i.e. between 10 m and 150 m. 

 

 

Figure 3.8 -TRIDAR mounted on the shuttle's cargo bay [104]. 

 

Hawkeye 

Hawkeye [78] is the laser range finder recently developed by Neptec, qualified 

for use in Geosynchronous Orbit and specifically designed to provide ranging as well 

as satellite situational awareness for FF applications. Hawkeye, depicted in Figure 

3.9, is able to measure the target range up to a nominal distance of 30 km, although 

its operational range could exceed this limitation depending on the target size and 
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surface characteristics (large size and highly reflecting materials). Since it weighs 

less than 3 kg and consumes low power (2.2 W), it is particularly suitable for 

application on small satellites. 

 

 

Figure 3.9 - Hawkeye laser range finder [78]. 

 

DragonEye 3D Flash LIDAR Space Camera  

The DragonEye Space Camera [105] is a lightweight flash LIDAR, developed by 

Advanced Scientific Concepts Inc. (ASC Inc.), characterized by a full array of 128 x 

128. Each pixel is able to measure TOF at a frequency up to 30 Hz, allowing 16300 

3D range data and intensity points to be generated as 3D point-cloud images or video 

streams in real time. This system, designed under contract by NASA, is conceived 

for autonomous rendezvous and docking applications, and a prototype successfully 

flew during STS-127 and STS-133 missions for performance assessment. This flash 

LIDAR is composed of three main items contained within a compact small case 

depicted in Figure 3.10. 

 One 3D sensor engine. 

 One laser illuminator with lens/diffuser. 

 One cooling surfaces/vacuum enclosure. 
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Figure 3.10 - DragonEye Flash LIDAR Space Camera [104]. 

 

GoldenEye 3D Flash LIDAR Space Camera 

The GoldenEye Space Camera [105] is another flash LIDAR developed by ASC 

Inc. It is designed for deep space, geosynchronous or landing operations, during 

which it admits two configurations, namely the Space Operations LIDAR (SOLID) 

and the Geosynchronous 3D (GEO-3D). The choice between SOLID and GEO-3D 

depends on the application requirements. 

An example of deep space operation using SOLID GoldenEye is given by the 

OSIRIS-REX Asteroid Sample Return mission. The SOLID GoldenEye Space 

Camera has similar specification and performance if compared to the DragonEye 

one. However, it is heavier and more power consuming, but it is also able to provide 

a wider operational range, i.e. up to 3000 m instead of 1500 m. 

A summary of the documented information about the sensors listed above is 

given in Table 3.1(a) and Table 3.1(b), where the symbol N/F (not found) is used to 

indicate those specifications which are not open-access. Moreover, the symbol N/A 

(not applicable) is used for the "FOV" slot of all the laser range finders, i.e. NLR, 

RVR and Hawkeye, since, by definition, they take measurements from a single 

direction. 
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System 

(developer) 

Operational 

mode 

Technology & 

measurement 

principle 

Operational 

range (m) 

Documented 

accuracy 

LARS 

(CSA) 
cooperative 

Scanning 

- CW Triangulation  

- pulsed TOF 

 

- 0.5 ÷ 10 

- 10 ÷ 10000 

 

- sub-mm 

- 3 cm 

NLR 

(APL) 

non-

cooperative 

Laser range finder 

Pulsed TOF 
< 160000 < 6 m 

RVR 

(NASDA) 
cooperative 

Laser range finder 

CW FM 
0.3 ÷ 660 

23 cm (3σ) 

0.02° (3σ) 

LDRI 

(SNL) 

non-

cooperative 

Scannerless 

CW AM 
< 45 0.25 cm 

LCS 

(Neptec) 

- cooperative 

- non-

cooperative 

Scanning 

CW Triangulation 
1 ÷ 10  0.1 mm ÷ 5 mm (1σ) 

LAMP 

(JPL) 

- cooperative 

 

- non-

cooperative 

Scanning 

Pulsed TOF 

- < 5000 

 

 

- < 2500 

- 10 cm (bias) 

  2.6 cm (3σ) 

  0.034° (3σ) 

- N/F 

RVS 

(Jena-

Optronik) 

cooperative 
Scanning 

Pulsed TOF 
1 ÷ 1500 

0.01 m ÷ 0.5 m (bias) 

0.01 m ÷ 0.1 m (3σ) 

0.1° (bias) 

0.1° (3σ) 

RVS-3000 

(Jena-

Optronik) 

- cooperative 

- non-

cooperative 

Scanning 

Pulsed TOF 

- 1 ÷ 1500 

 

- 1 ÷ 100 

N/F 

TRIDAR 

(Neptec) 

non-

cooperative 

Scanning 

- CW Triangulation  

- Pulsed TOF 

0.5 ÷ 2000 N/F 

Hawkeye 

(Neptec) 

non-

cooperative 

Laser range finder 

Pulsed TOF 
50 ÷ 30000 

2 m (bias) 

45 mm (3σ) 

DragonEye 

(ASC Inc.) 

non-

cooperative 

Scannerless 

Pulsed TOF 
< 1500 

10 cm (bias) 

15 cm (3σ) 

GoldenEye 

(ASC Inc.) 

non-

cooperative 

Scannerless 

Pulsed TOF 
< 3000 

10 cm (bias) 

15 cm (3σ) 

Table 3.1(a) - Survey of currently existing and under development spaceborne LIDAR 

systems (part a). 
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System 

(developer) 

Mass 

(kg) 

Power 

Consumption (W) 

Operating 

wavelength (nm) 

FOV 

(°) 

Data 

rate (Hz) 

LARS 

(CSA) 
6 6 1540 30x30 N/F 

NLR 

(APL) 
5 15 1064 N/A 0.125 ÷ 8 

RVR 

(NASDA) 
N/F N/F 810 N/A  2 

LDRI 

(SNL) 
2.3 37 807 40x40 7.5 

LCS 

(Neptec) 
12.1 

75 

(max) 
1500 30x30 5 

LAMP 

(JPL) 
5.9 35 1064 10x10 2 

RVS 

(Jena-Optronik) 
14.5 40 ÷ 70 910 40x40 N/F 

RVS-3000 

(Jena-Optronik) 
8 30 ÷ 50 1500 40x40 1 ÷ 4 

TRIDAR 

(Neptec) 
15.9 70 

1540  

(TOF) 

1400 

(triangulation) 

30x30 N/F 

Hawkeye 

(Neptec) 
3 2.2 ÷ 20 1064 N/A N/F 

DragonEye 

(ASC Inc.) 
3 35 1570 45x45 5 ÷ 30 

GoldenEye 

(ASC Inc.) 
6.5 50 1570 45x45 5 ÷ 10 

Table 3.1(b) - Survey of currently existing and under development spaceborne LIDAR 

systems (part b). 
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By looking at these data it is possible to make the following statements. 

Those systems which are designed to deal with cooperative targets are 

characterized by extremely large intervals of operating distances and precise and 

accurate estimates of relative position and angular parameters. Indeed, this depends 

on the much larger intensity of the backscattered radiation which can be collected at 

the detectors' surface if the target is covered by retro-reflectors with respect to the 

one obtained by imaging Lambertian (uncooperative) surfaces. However, also the 

sensors designed for non-cooperative applications are able to provide satisfying 

accuracy levels but within a narrower range of distances. Among them, scanning 

systems like LCS and LAMP are better performing than flash LIDAR. The real 

limitation of LIDAR is given by the related specifications in terms of weight and 

demanded power. From this point of view, scannerless systems have some 

advantages being lighter and slightly less power consuming than scanning sensors. 

Due to the fact that the FOV is imaged instantaneously by all the pixels composing 

the detector, scannerless systems can also provide more frequent measurements but 

they are characterized by poorer resolution. All the listed LIDAR have comparable 

characteristics in terms of the size of the FOV. Specifically, it is limited around 30° 

and 40° both in azimuth and elevation. On one side, this choice certainly allows 

reducing the amount of data to be processed and, consequently, the computational 

load. However, it also determines the necessity to improve pose determination 

algorithms performance in terms of computational efficiency in order to avoid losing 

track of the target. Indeed, this phenomenon can occur when dealing with 

uncooperative non-controllable targets, i.e. debris, which are typically characterized 

by a fast tumbling motion. 

As a result of this review, the operation of a pulsed TOF LIDAR is selected to be 

reproduced by the simulator presented in the next sub-chapter. This choice is 

consistent with the willingness of assessing the performance of the developed pose 

determination algorithms against highly variable conditions in terms of relative 

dynamics. Indeed, the TOF measurement principle provides reasonable and constant 

accuracy within an extremely wide interval of relative distances, unlike triangulation, 

AM and FM methods which are relative to CW LIDAR. 
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3.3 LIDAR measurement simulator 

 

The purpose of this sub-chapter is to describe the simulator designed to 

realistically reproduce the operation of a pulsed TOF LIDAR. The simulator is 

composed of three blocks, i.e. the geometric, the detection and the noise models, 

whose details will be presented in the following. Two distinct operative modules are 

foreseen, as it can be seen in Figure 3.11, each of which having a specific goal. 

 

 

Figure 3.11 - LIDAR measurement simulator: LIDAR point cloud and template generation 

modules. 

 

The template generation module (enclosed in the red box in Figure 3.11) relies 

exclusively on the geometric model and it is part of the on-board software 

implementing the proposed acquisition algorithms, as previously shown in Figure 

2.12. 
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The LIDAR point cloud generation module (enclosed in the blue box in Figure 

3.11) exploits all the models composing the simulator in order to generate the 

synthetic point clouds which are then processed by the pose determination algorithms 

presented in sub-chapters 2.4 and 2.5. 

 

3.3.1 Geometric model 

 

Ray tracing is a technique, commonly adopted in computer graphics, able to 

generate synthetic 2D images by determining the interceptions (tracing) between the 

path travelled by the light along the directions identified by all the pixels composing 

the camera focal plane and virtual objects located within a pre-defined 3D 

environment [106]. The geometric model of the LIDAR measurement simulator is 

based on an algorithm which aims at extending the principle of ray tracing to 

generate 3D synthetic images of an assigned target. The input required by this 

algorithm is limited to the true relative position and attitude parameters between the 

TRF and SRF as well as to a model representation of the target (whose details are 

discussed in sub-chapter 3.5). 

Firstly, the algorithm determines whether the planar surfaces composing the 

target model are in sight with respect to the LIDAR or occluded. This is done by 

computing, for each surface, a visibility parameter (IS), defined as the dot product 

between the vector identifying the position of the geometric center of the considered 

surface with respect to the sensor (PCS) and the corresponding normal unit vector 

(nS), as shown by eq. (3.1) where all the quantities are expressed in SRF. 

SCSS nPI                                               (3.1) 

All the surfaces for which IS is positive or zero shall be considered occluded, 

thus being able to identify a non-zero number (NS) of visible planar surfaces. 
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The following step consists in determining the interceptions between all the laser 

beam directions (which sample the observed FOV) and the planes corresponding to 

each of the NS visible surfaces. Specifically, the range of the interception (R) is 

obtained by solving the system of equations composed of the parametric 

representation of a straight line and the Cartesian representation of a plane, as shown 

in eq. (3.2), 
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      (3.2) 

where dS is the known term in the Cartesian representation of a flat surface; x, y, and 

z are the Cartesian coordinates of the target point hit by the laser beam; nSx, nSy and 

nSz are the coordinates of nS; DCx, DCy and DCz are the direction cosines of the LOS 

identified by the laser beam. 

At this point, each laser beam will have NS possible interceptions but most of 

them are not consistent with the actual size of the target, meaning that all the 

interceptions falling outside of the geometrical boundaries of the target surfaces must 

be discarded. This is done by verifying that a condition of consistency is met. 

Specifically, the distance of the computed interception to the center of the surface 

must be upperly limited by a scalar parameter, depending on the shape (e.g. 

rectangular, circular, elliptical) of the surface. Hence, if more than one point still 

represent plausible interceptions, the ambiguity is solved by considering the one 

characterized by the minimum value of R. 

At the end of this procedure, an ideal, i.e. purely geometric, point-cloud 

representation of the target can be obtained, although the real output is given by the 

ideal values of R. 

The method described above is valid if the target model is exclusively composed 

of planar surfaces. However, its applicability can be easily extended to more 
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complicated models including curve (3D) surfaces (e.g. paraboloids, hyperboloids, 

cylinders). Specifically, this is done by substituting the Cartesian representation of a 

flat surface in eq. (3.2) with the Cartesian representation of the geometric curve of 

interest. Moreover, the 3D surfaces are always considered in sight. If the target 

model includes both curve and planar surfaces, the interceptions of any laser beam 

direction with the two typologies of surface must be computed (and verified for 

consistency) separately. Hence, potential ambiguities are again solved by considering 

the interception with the minimum value of R. 

 

3.3.2 Detection model 

 

Once the geometric point cloud is computed, the LIDAR detection process is 

simulated in detail taking all the radiometric aspects into account. This establishes 

whether the backscattered laser beams are detected or not, thus practically extracting 

only the detected values of R. To this aim the probability of detection (PD) of each 

received echo is evaluated by using eq. (3.3), as a function of the probability of false 

alarm (PFA) and the Signal to Noise Ratio (SNR) [107]. 

]}
1

ln5.0)5.0[(1{5.0 5.0

FA

D
P

SNRerfP 
                (3.3) 

The PFA is expected to be very low for spaceborne LIDAR, so it is set equal to 

10
−4

. On the other hand, the derivation of the SNR can be carried out by first 

recalling the concept of the LIDAR equation. 

LIDAR equation 

The LIDAR equation governs the process of propagation of a laser signal and it 

basically provides the mathematical relation between the amount of detected power 

(PwDET) as a function of the transmitted one, in a way analogous to the original 
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RADAR equation [108]. The LIDAR equation is here derived by taking advantage of 

the following assumptions. 

 The target is extended (well-resolved), meaning that the surface area 

which contributes to the target reflectivity is limited by the size of the 

illuminating beam rather than by the target dimension. 

 The retro-reflection angle (θREF), identified by the power backscattered 

toward the detector, is equal to the angle of incidence of the transmitted 

laser beam (θINC). 

The former assumption is valid for spaceborne applications in the range of 

distances of interest (tens of meters) since the area covered by the laser spot is much 

lower than the size of the target due to the extremely limited value of the beam 

divergence (θB) typical for LIDAR. The latter assumption is justified by the fact that 

LIDAR have typically a monostatic configuration, i.e. the displacement between the 

transmitting and receiving components is neglible. 

Firstly, the instantaneous power transmitted by the laser source (PwTR) is 

computed in eq. (3.4), in the case of a pulsed LIDAR, as a function of the average 

laser power (PwAVG), the pulsed repetition frequency (PRF) and the pulse width (tW). 

W

AVG
TR

PRFt

Pw
Pw 

                                             (3.4) 

As regards the incident power (PwINC), if the incident laser beam is perpendicular 

to the target surface (θINC = 0°), it can be obtained by simply multiplying PwTR with 

τA, i.e. the atmospheric transmission loss factor. However, this latter parameter, 

which models the loss of power due to the absorption and scattering by atmospheric 

molecules along the propagation direction of the transmitted signal, can be set equal 

to 1 for spaceborne applications. Hence, in the most general case (θINC ≠ 0°), the loss 

of incident power is ruled by the cosine of θINC as it is shown in Figure 3.12. 

At this point, it is necessary to compute the amount of power reflected by the 

target surface (PwREF). In the most general case, this can be done by introducing the 

bidirectional reflectance distribution function (BRDFλ), which relates the energy 
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incident on a point within an illuminated area to the reflected one as a function of the 

directions of incidence and reflection, the material and roughness of the local 

surface, and the wavelength of the incident radiation (λ) [109]. In the context of the 

analyzed application, the statements listed below can be made. 

 Since the target is well-resolved, the surface material can be considered 

homogeneous over the illuminated area, and the points of incidence and 

reflection are coincident. 

 The incident radiation transmitted by the LIDAR is uniform and 

isotropic, e.g. in terms of λ, within θB. 

 

 

Figure 3.12 - Lambert's cosine law. The loss of power due to absorption and scattering by 

atmospheric molecules is negligible in space. 

 

Under these considerations, the BRDFλ and, consequently, the reflection 

coefficient (ρTλ), i.e. the ratio between the reflected and incident power, are constant 

within the illuminated area and depend on λ and on the surface material. Moreover, 

the relation between BRDFλ and ρTλ is given by eq. (3.5), 
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RT BRDF                                                 (3.5) 

where θR is the solid angle in which the backscattered radiation is dispersed. Hence, 

PwREF can be computed by exploiting eq. (3.6) 

)cos( INCTRTINCTREF PwPwPw                          (3.6) 

Once PwREF is given, the power arriving at the receiver per unit of area (IR) can 

be computed thanks to eq. (3.7), 
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                      (3.7) 

where the effect of τA during the propagation of the returning signal is still negligible 

and θR is set equal to π since the surfaces of space targets can be considered 

Lambertian thus ensuring purely diffusive reflection. 

At this point, if the receiver area (AR) is identified by the aperture diameter (DA), 

the PwDET can be determined by using eq. (3.8) which takes the power loss due to the 

transmittance of the optics (τO) into account. Specifically, the optics of a LIDAR 

system is typically composed of an optical band-pass filter, whose bandwidth (Δλ) is 

centered at the wavelength of the laser source. 
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                                 (3.8) 

Hence, a final expression for PwDET is given by eq. (3.9) which can be obtained 

by substituting eq. (3.7) into eq. (3.8). 
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SNR derivation for LIDAR 

The SNR is typically defined as the power ratio between the signal (meaningful 

information) and the background noise. However, an alternative definition is here 

considered which allows computing the SNR as the ratio between the signal expected 

value and the noise standard deviation [108]. 

The signal expected value is the average number of photoelectrons (μSIG) 

produced by the detector when a laser beam (backscattered from the target) falls on 

its surface. This quantity is strictly related to the number of photons (Γ) hitting the 

detector during the integration time of its circuit (Δt), which can be put equal to tW 

for this application [108]. However, the photons arrive at random times thus 

introducing an uncertainty in the value of Γ. This effect is known as photon counting 

noise and it can be evaluated by modeling Γ as a Poisson random variable whose 

mean (μΓ) is equal to the detected energy, given by eq. (3.9), divided by the energy 

per photon, given by the Planck's law. Hence, μSIG can be computed as in eq. (3.10) 

by including the effect of the quantum efficiency of the detector (η) which is a 

measurement of a device's electrical sensitivity to light, i.e. the ratio between 

electron generation rate and photon incident rate. 




h

tPw WDET
SIG                                    (3.10) 

In the equation above, h is the Plank constant and ν is the frequency of the 

electromagnetic radiation. 

As regards the noise standard deviation, the main phenomena affecting the 

performance of LIDAR are the laser speckle, the thermal noise and the background 

noise. 

The laser speckle noise effect is a statistical fluctuation of the light arriving at the 

detector caused by interference occurring there from a large collection of 

independent coherent radiators. As a consequence of this phenomenon, if the object 

imaged by a laser system is composed of surfaces that are rough on the scale of 

optical wavelengths (as most objects are), the image is found to have a granular 
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appearance, with a multitude of bright and dark tiny spots that bear no apparent 

relationship to the macroscopic scattering properties of the object [110]. However, 

since interference is a phenomenon which is related to the degree of coherence of the 

electromagnetic waves and TOF LIDAR are direct-detection systems which do not 

need coherent laser sources, the laser speckle noise contribution can be neglected for 

the analyzed case. 

The thermal noise is a problem which arises at the detector level since any object 

at a temperature different than 0 K radiates photons. The variance of the number of 

thermal noise electrons (σTH
2
) depends on the detector temperature (Temp) and on the 

capacitance of the detector circuit (Ca) [108], as shown in eq. (3.11), 

2

2

e

b
TH

q

TempCak


                                     (3.11) 

where kb is the Boltzmann constant, while qe is the electron elementary charge. In 

some cases, Ca is not available within the detector's specification. Hence, the thermal 

noise can be derived as a function of the average number photoelectrons due to the 

dark current (μDARK), i.e. the limited amount of electric current which flows on the 

detector surface even if no photons are entering the device [108]. 

The background noise is a measure of the total number of unwanted photons 

collected by the detector but not originated by the laser transmitter. These 

background photons do not carry any information concerning the range to the target 

thus contributing to the system measurement noise. The total number of unwanted 

photoelectrons can be modeled as a Poisson random variable whose variance (σBACk
2
) 

can be obtained by adding the dark current contribution to the background one as 

done in eq. (3.12), 
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h
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
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                            (3.12) 

where μDARK is given by eq. (3.13) if iD is defined as the mean intensity of the dark 

current. 
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Equation (3.12) relies on the fact that a Poisson distribution has equal mean and 

variance, and it is obtained by substituting PwDET in eq. (3.10) with the power 

detected from background (PwBACK). This latter quantity mainly depends on the 

photons coming from the sun and reflected on the target surface toward the LIDAR 

detector according to eq. (3.14), 
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where SIB is the solar irradiance level at mean Earth-Sun distance in units of 

W/(m
2
μm) of electromagnetic bandwidth, and dA is the surface area of the target 

illuminated by the laser computed by means of eq. (3.15). 
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Once all the main sources of noise have been statistically modeled, the SNR can 

be computed by means of eq. (3.16), where the overall noise standard deviation is 

approximated as the square root of the sum of the variances of each individual noise 

contributions 
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                                     (3.16) 

 This approximation is valid since the individual terms can be considered 

statistically uncorrelated [108]. However, the final expression for the SNR, adopted 

in the simulator, derives from the use of an APD as detector. Indeed, the APD is able 

to produce a surplus of photoelectrons, i.e. the avalanche, from a single incoming 

photon . Hence, the exact amount of photoelectrons induced by each photon is given 

by the APD Gain (GAPD), thus obtaining the following expression for the SNRAPD. 
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                           (3.17) 

It is worth outlining that, if APDs are used, η measures the probability with 

which the avalanche occurs. 

Detection process simulation 

Once the SNR is evaluated, the detection process can be simulated by adopting a 

statistical approach similar to the one used in [111]. For each point of the geometric 

point cloud, the PD is computed using eq. (3.3) and a random number is extracted 

from a uniform distribution in the interval (0, 1). All the geometric points and 

consequently the ideal values of R for which the random extraction produces a 

number larger or equal to the corresponding value of PD is considered to be part of 

the detected point cloud, thus extracting only the detected values of R. 

 

3.3.3 Noise model 

 

The reproduction of the operation of a pulsed TOF LIDAR can be considered 

complete if the 3D position of the points composing the detected point cloud is 

modified by taking all the main sources of noise into account. Specifically, it is 

necessary to consider the range uncertainty, the pointing uncertainty and the effect 

caused by the presence of outliers within the acquired data. The solutions adopted to 

model these noise contributions are described hereunder. 

The range uncertainty is directly dependent on the error in measured TOF and it 

is modeled as a Gaussian white noise (0, σRANGE) to be added to the detected values 

of R corresponding to each backscattered laser beam. 

The pointing uncertainty is the angular error between the ideal laser beam 

direction (LIDEAL) and the real one (LNOISE) and it is reproduced by adopting a method 

similar to the approach proposed in [112]. Specifically, the angular separation 
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between LNOISE and LIDEAL (νLOS) is extracted from a normal distribution (0, σLOS). 

Then, LNOISE is rotated around LIDEAL of an angle (εLOS) extracted from a uniform 

distribution in the interval (0, 2π). This procedure is summarized in Figure 3.13. 

It is now necessary to clarify the meaning of LIDEAL and LNOISE. The former 

parameter identifies the directions along which the reflected light is ideally collected. 

These directions are used to determine the true ranges of interception and 

consequently the geometric point cloud. On the other hand, LNOISE represents the 

noised directions provided in output by the sensor due to its pointing uncertainty. 

These directions are combined with the noised values of R to obtain the simulated 

point cloud. Hence, this uncertainty causes a deformation of the simulated point 

cloud with respect to the geometric and detection ones. 

 

 

Figure 3.13 - Modeling adopted for the pointing uncertainty of the simulated LIDAR. 
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It is worth outlining that the effect of pointing and range uncertainties could be 

simulated in a different way. Firstly, the true ranges of interception are computed 

relying on the noised directions. Secondly, the noised ranges are obtained by 

superimposing the effect of σRANGE on the true ones (after having discarded the 

misdetections). Finally, the simulated point cloud is generated by combining the 

noised ranges with the ideal directions. However, the pointing uncertainty is typically 

so low for spaceborne LIDAR, that the two procedures do not provide significant 

variations in the result. 

In conclusion, the presence of outliers within the measured point cloud is also 

reproduced. Specifically, it is modeled as an assigned percentage of points whose 

range uncertainty is four times larger than σRANGE [56]. This allows considering the 

effects on the LIDAR measurements of possible multipath phenomena which can 

occur on the surfaces of space targets, typically because they might be covered by 

several external devices which are not represented within the target 3D model 

exploited by the simulator. Of course, different percentages can be assigned to 

different kinds of surface. 

 

3.4 Characterization of the simulated LIDAR system 

 

The purpose of this sub-chapter is to present (and motivate if necessary) the 

selection of all the operational and noise parameters adopted within the previously 

described models to realistically generate 3D point clouds provided by a pulsed TOF 

LIDAR. 

As regards the technological solution, the simulator is designed to be flexible, 

meaning that it can be used to reproduce the operation of both scanning and flash 

LIDAR, since the only difference is in the values of LIDEAL. Indeed, for scanning 

sensors, the ideal laser beam directions are identified by the scan pattern. Specifically 

a raster scan pattern is implemented in the numerical simulations realized for 

performance assessment of the developed pose determination algorithms since it 
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allows to uniformly sample the FOV. However more complicated patterns, e.g. 

Lissajous, rosette and spirals, able to ensure faster scan rate, can also be 

implemented. On the other hand, the ideal directions of flash LIDAR are identified 

by the centers of each pixel. 

A squared FOV of 40°x40° is selected to be imaged by the LIDAR at 1 Hz 

measurement rate. These values are consistent with the specifications of spaceborne 

systems, as previously shown in Table 3.1(b). Also the angular resolution (δLOS) is 

selected to be the same in azimuth and elevation, and it is set to 1° during the 

numerical simulations performed. These values correspond to an extremely poor 

resolution if compared to typical performance of both flash LIDAR (e.g. δLOS is 

around 0.35° for both the DragonEye and the GoldenEye cameras) and scanning 

LIDAR (for which δLOS can even be lower than 0.01°). This choice is justified by the 

willingness of evaluating the performance of pose estimation algorithms against 

extremely challenging conditions in terms of sparseness of the point clouds. Indeed, 

if the representation of the target is so sparse, the size of the point clouds is 

significantly reduced with respect to the one exploited by the pose determination 

algorithms available in the literature. Hence this choice, on one side, allows 

improving the computational efficiency (less data to process), but on the other side it 

makes the pose determination problem more prone to ambiguity issues. In 

conclusion, it is worth outlining that both FOV and δLOS can be freely tuned by the 

user for additional performance analyses. 

The detection model is characterized by assigning all the operational parameters 

of the LIDAR transmitter and receiver considering as reference typical data of 

systems adopted in space applications. 

As regards the output signal wavelength, two alternative choices are available 

since LIDAR are active EO sensors operating in the near infrared (NIR) or in the 

short-wavelength infrared (SWIR) bands of the electromagnetic spectrum. A 1064 

nm wavelength is generally used for remote sensing applications, like for the NLR. 

However, by looking at Table 3.1(a), it is possible to see that the same value of λ is 

used also by the LAMP and the Hawkeye. Also other systems, i.e. the LDRI and the 

RVS, operate in the SWIR band, but adopting lower wavelengths, respectively 807 
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nm and 910 nm. This choice could represent a significant issue regarding the 

possibility to use them during manned space activities since the corresponding 

wavelengths are not eye-safe. This problem can be solved by selecting greater 

wavelengths, i.e. in the NIR band. Indeed, this region is not only eye-safe (i.e. the 

strong absorption by water present in the eye reduces the optical power reaching the 

retina, thus increasing the maximum permissible exposure level for the transmitted 

power) but it also allows improving the SNR since it is characterized by a relevant 

reduction of SIB. For instance, SIB is 300.8 W/(m
2
μm) if λ is 1500 nm, while it 

becomes more than 50 % larger, i.e. 613.9 W/(m
2
μm) if λ is 1064 nm [113]. This 

motivates the choice of a 1540 nm wavelength for this SNR computation like in the 

case of the LARS and the TRIDAR in their TOF operational mode. The 

corresponding value of SIB is 268.6 W/(m
2
μm). 

As shown by eq. (3.4), the LIDAR transmitted power depends on three 

parameters. The PwAVG is set to 1 mW which represents a conservative choice 

considering that PwAVG varies in the interval (1, 100) mW for the LARS while it is 

constantly kept equal to 150 mW for the LCS. On the other hand, the selection of the 

PRF must be done avoiding ambiguities between return signals. To this aim, the 

Pulse Repetition Interval (PRI) must be longer than the round-trip time of the pulse 

to the maximum detectable distance (RMAX), thus obtaining a maximum allowable 

value for the PRF (PRFMAX), as stated by eq. (3.18). 

MAX

MAX
R

c
PRF

PRI
PRF

2

1


                           (3.18) 

In spite of this limiting condition, the PRFMAX is very high at the relative 

distances typical of close-proximity operations, i.e. some tens of meters. For 

instance, it is 1MHz if RMAX is 150 m. Hence, the PRF is set equal to 10 kHz, which 

is in line with typical performance of spaceborne laser scanners, e.g. 18 kHz for the 

LARS, 10 kHz for the LAMP, and varying in the interval (8, 12) kHz for the 

TRIDAR. Finally, the tW is set equal to 10 ns like for the LARS. It is worth nothing 

that this value is consistent with the choice adopted for the PRF since the tW is a few 

orders of magnitude smaller than the PRI, thus avoiding ambiguities. An additional 



Chapter 3 - Models and simulation environment.  88 

 

parameter which is relative to the transmitting LIDAR components is the laser beam 

divergence which is set equal to 0.02° like for the LAMP. 

As regards the LIDAR receiver, it is necessary to select the aperture diameter, 

the detector, and the optical band-pass filter. Firstly, the aperture size is set equal to 4 

cm which is in line with the 2.5 cm of the LARS and the 5 cm of the LAMP [5]. 

Secondly, the selected detector is the G8931-20 InGaAs APD produced by 

Hamamatsu [114] since it works in the interval (900, 1700) nm thus being well suited 

to be used within spaceborne LIDAR. Finally, an optical band-pass filter, produced 

by ThorLabs Inc., is selected [115]. Specifically, it has a center wavelength of 1540 

nm and Δλ equal to 24 nm. In correspondence of this wavelength, the optical filter 

provides a maximum value of τO equal to 0.3898. In conclusion, all the data selected 

to simulate the detection process are summarized in Table 3.2. 

 

LIDAR transmitter 

λ (nm) 1540 

PwAVG (mW) 1 

PRF (kHz) 10 

tW (ns) 10 

θB (°) 0.02 

LIDAR receiver - Aperture 

DA (m) 0.04 

LIDAR receiver - G8931-20 InGaAs APD 

η 0.7247 

GAPD 10 

Ca (pF) 1.5 

Temp (K) 273.15 

iD (nA) 150 

LIDAR receiver - Optical band-pass filter 

Δλ (nm) 24 

τO (λ) 0.3898 

Table 3.2 - Specifications of the simulated pulsed TOF LIDAR. 
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The performance of the LIDAR detection process as a consequence of the 

previously described characterization is shown in Figure 3.14. Specifically, the PD is 

evaluated as a function of θINC at different ranges. In order to perform this analysis, a 

very low value, i.e. 0.2, is selected for ρTλ. 

 

 

Figure 3.14 - Probability of detection of the simulated LIDAR as a function of θINC at different 

ranges. 

 

By looking at Figure 3.14, it is possible to state that as the inclination of the 

incident beam increases, if the range is below 40 m, the probability of misdetection is 

practically zero for any value of θINC lower than 80°. Hence, for each value of R it is 

possible to identify a threshold of θINC below which the probability of misdetection 

becomes different from zero. This threshold decreases rapidly as a function of range. 

For instance, it goes from 80° to 40° if the range is increased from 40 m to 80 m. 

However, the effect of range can be better seen by representing the PD as a 

function of R at different values of θINC, like it is done in Figure 3.15. 
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Figure 3.15 - Probability of detection of the simulated LIDAR as a function of R at different 

inclinations of the laser beam. 

 

If the laser beam is perpendicular to the target surface (θINC = 0°), the 

configuration selected for the LIDAR (which is quite conservative with respect to 

typical performance of spaceborne systems especially in terms of emitted power) 

ensures the probability of misdetection to be equal to zero in the interval of distances 

(0, 90) m. Of course, in a way complementary to the data contained in Figure 3.14, 

the extension of this interval reduces as θINC increases. An additional statement 

obtained from this analysis is that, having assigned to the PFA the value of 10
-4

, the 

SNR must be at least 70 dB in order to obtain a PD that is reasonably close to 1. 

Finally, as regards the characterization of the noise model, the values of σRANGE 

(25 mm), σLOS (0.007), and the percentage of outliers (5% to 7%) are chosen to be 

representative of a typical performance of 3D active sensor [56]. As it will be 

described in detail in chapter 5, these values are set for most of the performed 

simulations since the basic aim is to assess algorithm's performance against pose 

variability in the 6 DOF relative state space. However, the effect of variation of these 

data is also analyzed by means of ad-hoc simulations. 
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3.5 Target modeling and selection 

 

As discussed in chapter 2, the problem of pose determination of an 

uncooperative target can be carried out by relying on measurements provided by 

active or passive EO sensors which must be processed by means of purposely 

developed model-based algorithm. It is clear that the strategy adopted for target 

modeling is strictly related to the specific algorithm exploited. Hence, this sub-

chapter firstly describes in detail the target modeling approaches required by the 

algorithms developed for pose acquisition and tracking. Secondly, the targets 

selected for the numerical simulations, as well as their corresponding models, are 

presented. 

 

3.5.1 Target modeling 

 

As regards the algorithms proposed for pose acquisition, i.e. the on-line TM, the 

on-line fast-TM, and the PCA-TM, the target model is needed exclusively for 

template generation. This function is carried out by the corresponding module of the 

LIDAR measurement simulator which exploits only the geometric model (see sub-

chapter 3.3.1). Specifically, it requires the target to be represented as the combination 

of 2D (planar) and 3D surfaces. Planar surfaces are basic 2D geometric entities, i.e. 

rectangles, squares, circles and ellipses, since they allow describing with enough 

level of detail the shapes of most of the existing satellites and debris. They are 

identified by the set of information listed below (vector quantities are expressed in 

the TRF). 

 The normal unit vector of the corresponding plane. 

 The position vector of the geometric center of the surface with respect to 

the TRF origin. 
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 One or more scalar parameters describing the size of the surface, i.e. the 

length of two sides (one side) for a rectangle (square), the length of the 

radius (semi-axes) for a circle (ellipse). 

These latter data represent the scalar parameters mentioned in sub-chapter 3.3.1 

necessary to check the consistency of the computed interceptions. 

As regards the 3D surfaces, paraboloids, hyperboloids and cylinders can be used. 

For instance, in the latter case, the required data are limited to the radius and the 

height of the cylinder. 

As regards the different versions of the ICP algorithm adopted for pose tracking, 

the same target modeling strategy is needed if the NS approach is used for the 

matching step, since it dynamically builds the model point cloud by projecting the 

measured points, expressed in TRF, on the closest surface of the target. On the other 

hand, the NN approach requires each surface to be discretized as a set of points, thus 

building the model point cloud off-line. 

In order to finalize the generation of the simulated LIDAR point clouds used to 

test the entire pose determination process, additional data (whose selection is part of 

the target modeling strategy) are needed to carry out the detection process, namely 

the values of ρTλ for any surface included in the model. In the context of space 

applications, the materials are generally opaque, so ρTλ can be obtained by using eq. 

(3.19), 

  TT 1                                              (3.19) 

where αTλ is the absorption coefficient which is also is equal to the emissivity (εTλ) 

for a surface in thermodynamic equilibrium at constant temperature (Kirchhoff law). 

In conclusion, it is extremely important to underline that the idea behind the 

generation of the satellite models used in the simulator is to capture only the 

macroscopic features of the real objects. This choice not only limits model 

complexity but also allows performing a conservative analysis of proposed approach 

performance. Indeed, preserving in the model only the macroscopic features of the 
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target does not help solving ambiguous poses, thus offering the possibility of 

demonstrating approach effectiveness and robustness. However, the possibility that 

not modeled target surface details affect measurement accuracy (e.g. by multipath) is 

properly considered by means of the percentage of outliers randomly introduced 

within the measured point clouds. 

 

3.5.2 Target selection 

 

Performance of the pose determination algorithms developed in this thesis is 

evaluated considering targets of different typology and shape, which may be 

representative of space debris or still active serviceable satellites. Specifically, the 

following targets have been selected. 

 ENVISAT, which is a huge low Earth orbit spacecraft recently (2012) 

declared as a debris. 

 One satellite of the COSMO-SkyMed constellation (shortly indicated as 

CSM), which is a medium-size active satellite. 

 One abandoned Kosmos 3M 2
nd

 stage debris, i.e. a rocket body (RB). 

As regards ENVISAT and CSM, the simplified models are given by an assembly 

of cuboid-shaped elements which represent the main body, the solar arrays, the 

synthetic aperture radar (SAR) antenna, and the related appendixes. Hence, these 

models are exclusively composed of planar rectangular surfaces. On the other hand, 

RB is modeled as a simple cylinder, thus being composed of two planar surfaces (i.e. 

the top and bottom circles) linked by a cylindrical lateral surface. For all these 

targets, the dimensions are consistent with information provided in the literature and 

they are collected in Table 3.3 [116-120]. For each of these targets, the TRF is 

defined as a body-centered reference frame with the origin in the geometric center of 

their main body, and axes indicated as xTRF, yTRF and zTRF. Examples of model point 

clouds generated for ENVISAT, CSM and RB is shown in Figure 3.16. 
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ENVISAT 

Surface 
Length along xTRF 

(m) 

Length along yTRF 

(m) 

Length along zTRF 

(m) 

Main body 4 4 10 

SAR antenna 0.1 10 1.3 

Solar array 0.1 6 15 

Appendix 

SAR antenna - Main body 
0.5 0.1 0.1 

Appendix 

 Solar array - Main body 
6 0.1 0.1 

CSM 

Surface 
Length along xTRF 

(m) 

Length along yTRF 

(m) 

Length along zTRF 

(m) 

Main body 1.5 3 1.5 

SAR antenna 1.5 0.1 5.5 

Solar array 1 0.1 1.5 6 

Solar array 2 0.1 1.5 6 

Appendix 

Solar array 1 - Main body 
0.1 0.1 1.5 

Appendix 

Solar array 2 - Main body 
0.1 0.1 1.5 

Communication antenna 1 0.7 0.1 0.1 

Communication antenna 2 0.7 0.1 0.1 

RB 

Top and bottom circles Radius (m) 1.2 

Cylindrical lateral surface Height along zTRF (m) 6.5 

Table 3.3 - Geometrical dimension of the components of the simplified models generated for 

the selected targets. 
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Figure 3.16 - Model point clouds for ENVISAT (left), CSM (center), and RB (right), expressed 

in TRF. 

 

Additional information that must be included in the target modeling is the choice 

of the surface materials since it determines the values of the emissivity and, 

consequently, of the corresponding reflection coefficients. 

Both for ENVISAT and CSM, a low value of the reflection coefficient (0.15) is 

conservatively selected for the surfaces of the main body and appendixes. Indeed, 

this can partially reproduce the reduced amount of power backscattered toward the 

detector due to the various devices typically installed on the external surface of the 

real target and not considered in the simplified model, which can cause multipath 

phenomena and can affect the uniformity of the radiation backscattered by a given 

satellite surface. Instead, the SAR antennas are made of reflective metallic materials, 

e.g. aluminum alloys, thus being characterized by high values of the reflection 

coefficient (0.97). Finally, as regards the solar arrays, fused silica cover (0.17) is 

adopted for the solar cell surface, while the other surfaces are assumed to be covered 

by Silverized Teflon (0.34). This produces an average value of the reflection 

coefficient (computed assigning weights proportional to the surface areas of each 

element) of 0.26 for ENVISAT and 0.38 for CSM. Instead, for the RB the reflection 
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coefficient has been considered constant and equal to 0.4. These choices can be 

considered conservative since the satellite surface optical properties degradation due 

to exposition to the space environment typically leads to an average value of the 

reflection coefficient of about 0.6 [121]. 

 

3.6 Relative dynamics simulator 

 

The relative dynamics simulator is used to generate the true target-chaser pose 

parameters. These data are not only inputs for the LIDAR simulator but they also 

represent the truth to which the outputs of the acquisition and tracking algorithms are 

compared. As it is shown in Figure 3.1, this module of the simulation environment 

requires the following inputs. 

 The mean orbit parameters of the target and the chaser. 

 The absolute rotational dynamics of the target and the chaser.  

The first input is provided by a relative motion model, discussed in chapter 4, as 

a function of some geometrical design parameters which are used to assign the shape 

and size of the desired relative trajectory. Specifically, the simulated scenarios are 

inspired by close-proximity operations in space, e.g., rendezvous and docking, 

station keeping and monitoring. However, target monitoring scenarios are addressed 

with particular attention since they allow observing the target from multiple 

perspectives thus being able to generate much more variable sets of relative position 

and attitude parameters over which to test acquisition and tracking capabilities of the 

proposed approaches. These mean orbit parameters are used to numerically 

propagate the relative trajectory taking the main gravitational and perturbing forces 

into account. 

With regards to the second input, the chaser is assumed to be three-axis 

stabilized with its boresight axis pointed toward the target geometric center. On the 

other hand, the target attitude is propagated by integrating the Euler's equations of 
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the rotational dynamics by considering only the perturbation determined by the 

gravity gradient torque. This calculation requires the inertia tensor (I) of the target to 

be determined. While the inertia tensor of ENVISAT is taken from [122], where the 

assigned values are chosen to be on the upper end of the expected ones, the inertia 

tensors of CSM and RB are computed on the basis of the geometrical and mass 

characteristics of the simplified models defined in sub-chapter 3.5.2. The results are 

collected in Table 3.4. 

 

ENVISAT 

I (kg m
2
) 

129000 4500 1500 

4500 125000 1800 

1500 1800 17000 

CSM 

I (kg m
2
) 

5375 0 265 

0 3780 0 

265 0 2277 

RB 

I (kg m
2
) 

5705 0 0 

0 5705 0 

0 0 1058 

Table 3.4 - Inertia tensor for the selected targets. 

 

As regards the propagation of the absolute rotational dynamics of the considered 

targets, ENVISAT and RB are assumed to be gravity gradient stabilized thus having 

their minimum inertia axis (i.e. zTRF) aligned with the radial direction of their Target 

Orbital Reference Frame (TORF). Specifically, these targets will have their TRF 

perfectly aligned to the TORF, i.e. yTRF is anti-parallel to the orbital angular 

momentum vector and xTRF is consequently pointed to get a right-handed reference 

frame. 
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On the other hand, CSM is assumed to be three-axis stabilized and performing 

yaw steering (being an active satellite for Earth observation). Hence, a non-zero 

relative attitude exists between the TRF and the TORF, which is represented by the 

321 sequence of Euler angles defined hereunder. 

 The rotation around the 3
rd

 axis is the yaw steering (γSTEERING) which can 

be computed by applying eq. (3.20), 















)/()cos(

)cos()sin(
90

ECSMCSM

CSMCSM
STEERING

ni

tni
arctg

       (3.20) 

where iCSM and nCSM are the mean orbit inclination and the orbital angular 

velocity of CSM, t is the time and ΩE is the Earth angular velocity. 

 The rotation around the 2
nd

 axis is 0°. 

 The rotation around the 1
st
 axis is 90°. 
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Chapter 4 - Relative trajectory design 

 

A fundamental requirement to be satisfied by autonomous orbital maneuvers, 

which involve two space objects flying in close-proximity, is that the related relative 

trajectories must be designed to minimize the risk of collisions. In particular, the 

required level of safety cannot be considered successfully attained if it is exclusively 

assured by actively controlling the absolute dynamics of the servicing spacecraft with 

respect to an uncooperative target (OOS or ADR applications), or the relative 

dynamics of two-body formations (FF applications). 

This concept was first emphasized by the partial failure of the Demonstration of 

Autonomous Rendezvous Technology (DART) project, which was carried out by 

NASA in 2005 [123]. The aim of this mission was to demonstrate the capability of a 

controllable platform (the DART spacecraft), which was launched from ground, to 

perform rendezvous as well as other maneuvers like station keeping, 

circumnavigation and collision avoidance around a non-maneuverable and 

uncooperative target (the MUBLCOM satellite), which was already on orbit. 

Unfortunately, the DART spacecraft collided with its target during the proximity-

operation phase, due to a malfunctioning of its relative navigation system. 

Specifically, the investigations performed by NASA allowed discovering that the 

transition point from the GPS-based to the vision-based relative navigation was 

missed due to errors in the estimation of the relative state. Hence, these errors did not 

allow the DART autonomous computer to control the undesired drift of the relative 

trajectory which occurred in the along-track direction. However, the necessity to 

avoid introducing relative motion that makes the servicing platform pass through the 

target vehicle’s along-track (also known as V-bar) at any point in subsequent orbits 

was fully recognized only thanks to the lessons learned during the OE mission. 

Indeed, a collision was accidentally avoided during an abort maneuver and loss of 

navigation information thanks to the unintentional presence of out-of-plane motion 

[8]. 
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These missions clearly demonstrated the necessity to design relative trajectories 

which never intersect the along-track direction of the space object around which it is 

desired to maneuver, thus making them passively safe, meaning that absence of 

collision is ensured even without accurately controlling the relative dynamics. The 

first example of trajectory design which satisfies this constraint is given by the 

concept of safety ellipses (SE) which can be obtained by setting the phase difference 

between the in-plane and the out-of-plane relative motion to 90° [21]. An example of 

SE with the target located at its center is shown in Figure 4.1. Specifically, the 

trajectory is represented in the Target Hill Reference Frame (THRF), which is 

defined as follows: the x-axis is in orbit radial direction, the z-axis is parallel to the 

orbital angular momentum vector (cross-track) and the y-axis is perpendicular to the 

plane composed of the previous two axes and directed to obtain a right-handed 

coordinate system (along-track). 

 

 

Figure 4.1 -Example of SE. The blue lines represent the relative trajectory and the 

corresponding projections on the planes of the THRF. The black dots identify the target. 

 

The SE concept has been exploited by many researcher over the last few years. 

Specifically, Naasz [124] proposes a mathematical description of the SE in Hill's 
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coordinate, which is based on phase-space considerations. This model is used in the 

framework of the Hubble Space Telescope Robotic Servicing and De-orbit Mission, 

in order to obtain a trajectory which optimizes the solar power collection since the 

primary design requirement is to keep the boresight axis of the relative navigation 

sensor, installed on board the de-orbiting module, always pointed toward the Hubble 

Space Telescope. On the other hand, Gaylor and Barbee [125] derive the equations of 

motion for the SE by exploiting geometric and kinematics considerations and they 

use this concept to design trajectories for safe target separation and 

circumnavigation. One successful implementation of this concept can be found in the 

PRISMA mission. Specifically, the safe orbit control module foresees a sequence of 

maneuvers necessary to put the main spacecraft on a SE designed so that it is always 

kept outside of an ellipsoidal avoidance region centered at the target [126]. 

A fundamental limitation of the SE concept as it has been introduced in the 

literature, is that the servicing spacecraft is allowed passing above/below the target 

during the relative orbit, as it can be clearly seen by looking at Figure 4.1. This could 

be the cause of collisions especially in the case of close motion with respect to a 

target which is an uncooperative freely tumbling object. Moreover, the capability to 

adequately control the relative motion during close-proximity maneuvers is strictly 

related to the accuracy with which the relative position and attitude are estimated. 

Hence, the capability to design relative trajectories which not only satisfy safety 

constraints but also optimize the target visibility (inside the FOV of the sensor in 

charge of relative navigation) for pose determination purposes, is crucial.  

In this context, this chapter presents an analytical approach conceived to design 

different typologies of trajectories for safe target monitoring. These trajectories are 

then used within the simulation environment which assesses the performance of the 

developed pose determination algorithms. Numerical simulations, whose results are 

shown in chapter 5 (see sub-chapter 5.2.3 and sub-chapter 5.3.2) are specifically 

addressed at showing how this analytical approach can also be used to optimize the 

trajectory in terms of target observation conditions. Indeed, this can be done by 

carefully selecting the orbit design parameters so that the overall target shape is 
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imaged for most of the time without occlusions (optimal point of view) and without 

losing too much detail (optimal interval of relative distances). 

 

4.1 Analytical approach 

 

The presented method has the crucial advantage that the design process is carried 

out by assigning high-level constraints regarding the stability of the relative motion 

as well as the size and the shape of the trajectory in order to directly derive the 

differences between the target-chaser mean orbit parameters. The main idea is to 

compare the classical form of the Hill's equation [127], which is expressed in 

rectangular relative motion coordinates, with the relative motion model in [128] 

which instead is developed in mean orbit parameters and it is based on a time explicit 

formulation. This model is particularly indicated to the case of spacecraft flying in 

close-proximity in Low Earth Orbit (LEO), as it is valid for targets moving along 

low-eccentricity orbits and it includes the perturbation effect due to secular Earth 

oblateness (J2). 

This approach is exploited to generate three different typologies of relative 

trajectory. Firstly, a stable circular formation around any kind of target (it can move 

either on a circular or a low eccentricity orbit) is considered. Although this kind of 

relative motion potentially ensures safe target monitoring as it allows keeping 

constant the relative distance, it does not exclude potential collisions due to 

unintentional along-track drifts of the target when the chaser passes ahead or behind 

it. For this reason, two additional trajectories are proposed, namely the minimum-

range-variation SE (SEΔRmin) and the multiple-requirement SE (SEMR). These 

trajectories represent improved versions of the classical concept of SE since they 

involve the chaser to pass neither above/below nor ahead/behind the target, thus 

intrinsically preventing collision in the case of unintentional drifts in along-track 

direction. Of course, while for the circular formation the only geometrical design 

parameter is its radius, multiple geometrical constraints are foreseen by the modified 
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SE strategies. Before entering the detail of the determination of these trajectories, the 

relative motion model expressed in terms of the differences in the mean orbit 

parameters as well as the classical formulation of the relative in Hill's variable 

(rectangular coordinates), are briefly recalled. 

 

4.1.1 Relative motion models 

 

The nomenclature here adopted is typical of FF applications and is relevant to 

two-body formations. Specifically, the target and the chaser are indicated as chief 

and deputy, respectively, and the classical symbolism is adopted for the mean orbit 

parameters: a is the semi-major axis, e is the eccentricity, M is the mean anomaly, Ω 

is the right ascension of the ascending node, ω is the argument of perigee, i is the 

orbit inclination, and u  is defined as  M . With regards to these parameters, no 

subscripts are used for the chief, while the subscripts "D" and "0"are used to refer to 

the deputy and the initialization, respectively. Moreover, the symbol δ indicates the 

difference between deputy and chief parameters. Finally, it is fundamental to clarify 

that the symbols x, y and z are used to indicate the Hill's coordinates in THRF 

exclusively in the content of this chapter. 

The relative motion model in terms of differences in the mean orbit parameters is 

shown in eq. (4.1), where t is the time variable. 
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  (4.1) 

For the sake of clarity of the exposition, the model's equation can be re-arranged 

as shown in eq.(4.2), 
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where ydr is the drifting term, xoff and yoff are the radial and along-track offset, Ax and 

Az are the amplitude of the radial and cross-track oscillations, φx and φz are the phases 

of the radial and the out-of-plane oscillations. These quantities can be computed as 

shown in eq. (4.3). 
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Since the following sub-chapters require the duality between this representation 

and the one in rectangular coordinate to be exploited, the Hill's equations are recalled 

in eq. (4.4), 
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                                                       (4.4) 

where n is the orbital angular velocity of the chief. The general solution is given by 

eq. (4.5). 
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The equations above can also be written as shown in eq. (4.6), if the secular term 

is nullified, thus getting stable relative trajectories. 





















































































0
0

2

2

02

0

0
0

2

2

02

0

0
0

2

2

02

0

/cos

/sin2

/cos

z
n

z
arctgnt

n

z
zz

x
n

x
arctgnt

n

x
xy

x
n

x
arctgnt

n

x
xx







                          (4.6) 

From the analysis of the Hill's equations, it is known that the elimination of the 

secular term is equivalent to set δa (which is the radial offset) equal to zero [128]. 

The representation in mean orbit parameters, instead, shows that if the chief is 

located on a low-eccentricity orbit and if the effect of J2 is considered, the relative 

motion stability is ensured by nullifying u  and  , considering that these latter 

parameters depend not only on δa, but also on δe and δi. In this context, it can be 

demonstrated that the effect of δe is negligible [127]. Hence, the drift of the relative 

trajectory can be prevented by setting to zero both δa and δi. 

 

4.1.2 Design of the circular formation 

 

If the chief is on a circular orbit, circular formations can easily be designed in 

Hill's variables as shown in [128]. The procedure is briefly summarized hereunder. 

Four conditions are given by imposing zero along- track drift and offset, see eq. (4.7) 

and eq. (4.8) respectively, and that the cross-track oscillation has the same phase and 

3 times the amplitude if compared to the radial oscillation, as in eq. (4.9) and eq. 

(4.10). 
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nxy 00 2              (no along-track drift)       (4.7) 

nxy /2 00
            (no along-track offset)       (4.8) 

00 3xz                                                        (4.9) 
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.

0 3 xz                                                      (4.10) 

Equation (4.7) is a stability constraint, while the remaining equations determine 

the shape of the trajectory. Equation (4.8) could also be re-written to consider a 

freely assigned along track offset. Although, the mathematical procedure would be 

exactly the same, this case in not considered in the following as it is of lower 

importance in the context of monitoring scenarios. Indeed, if the chief is at the center 

of the relative trajectory, it is easier for the deputy to observe it from every point of 

view. The signs of eq. (4.9) and eq. (4.10) have to be the same to ensure the same 

phasing between radial and cross-track oscillations. The choice of the sign 

determines the inclination (±30°) of the plane of relative orbit, which contains the 

along-track axis, with respect to the along-track/cross-track plane. For instance, eq. 

(4.11) is obtained by selecting the "plus" sign. 
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Choosing the values of the initial radial position and velocity of the deputy with 

respect to the chief, is equivalent to assigning the radius (RC) and the phasing (θC) of 

the relative orbit, as shown in eq. (4.12). 
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By combining the conditions composing eq. (11), or equivalently eq. (12), it is 

possible to directly relate RC to the initial radial position and velocity, and 

consequently to Ax. 
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Although this procedure is very straightforward, it is extremely limiting in OOS 

and ADR missions which do not allow freely selecting the chief (target) orbit, which, 

for instance, can be non-circular. Moreover, if orbital perturbations are not included 

the condition on the secular term set in Hill's variable do not necessarily prevent the 

relative motion from drifting. Hence, the following analytical approach can be used 

if the chief is on a small eccentricity non-keplerian (J2 secular effects included) orbit. 

Before entering the detail, it is worth outlining that due to the previous assumptions 

on δa and δi, which are set equal to zero to ensure stability of the relative trajectory, 

the time drift (caused by non-keplerian effects) of the differences in the mean orbit 

parameters, which represent the unknowns of this problem, can be considered 

negligible. This is a crucial statement to make it possible the parallelism between the 

Hill's and mean orbit parameters formulations of the relative motion. The remaining 

conditions are required to determine the circular shape. Specifically, the along-track 

offset is set to zero by looking at eq. (4.3), thus obtaining the dual of eq. (4.7). 

0cos)( 000  iM                                           (4.14) 

Again. if an along-track offset was desired, eq. (4.15) should be considered, 

instead. 
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At this point, RC is linked to δe and δM0 by substituting the expression of the 

amplitude of the radial oscillation contained in eq.(4.3) within eq. (4.13). 
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By combining the relations in eq. (4.3) with eq. (4.9) and eq. (4.10), it is possible 

to express the conditions on the amplitude and phase of the radial and cross-track 

oscillation in terms of differences between mean orbit parameters. The result is 

shown by eq. (4.17) and eq. (4.18), respectively. 



Chapter 4 - Relative trajectory design.  108 

 

a

RM
ee

M
e

MM
eei C

2
3

2
sin4

2
sin4

2
cos

2
sin43sin 02042020222

0 









































 (4.17) 

 





























 

2
sin2

sin
tan

02

01

000
M

ee

Me
D 




                                 (4.18) 

This procedure has led to six constraints just as shown in terms of rectangular 

coordinates. In that case, it was possible to select two degrees of freedom, i.e. RC and 

θC. On the other hand, in this latter case, the condition on δi involves a constraint on 

the value of the θC (which results to be dependent on the initial position of the chief). 

This is the reason why RC becomes the unique tunable design parameter. Once RC is 

selected, the remaining differences in mean orbit parameters can be determined. 

Specifically, δΩ0 can be extracted from eq. (4.17) where the choice of the sign still 

determines the inclination (±30°) of the relative orbital plane. 
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An expression for δω0 is obtained from eq. (4.14). 
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However, this relation is not directly applicable since δM0 is still unknown. 

Hence, it is necessary to combine eq. (4.18) with eq. (4.20) and to express the 

resulting relation in terms of δe. 
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Equation (4.21) is then substituted into eq. (4.16), resulting in a non-linear 

equation in the only unknown δM0, which can be solved with a numerical approach 

(e.g. Newton-Raphson). 
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4.1.3 Design of the modified safety ellipses 

 

The SEΔRmin is conceived to combine the classical SE concept with an additional 

constraint regarding the variation of the distance along the relative trajectory. The 

fundamental idea is that the design of one stable and safe trajectory, which also keeps 

limited the variation of the target-chaser relative distance, can be extremely useful. 

Indeed, if a particular value of the range is demonstrated to be advantageous in terms 

of target observability, e.g. resolution and coverage in the observed field-of-view, 

this modified SE allows the chaser to move in a restricted interval of distances from 

the target around this specific value. This can be accomplished by carefully tuning 

the two design parameters, which univocally define the SEΔRmin, namely Ax and the 

minimum distance in the radial/cross-track plane (dxzMIN). The analytical procedure 

necessary to design the SEΔRmin, is based on the assumption that the difference in 

frequency between in plane and out-of-plane oscillations is negligible, which means 

neglecting the perigee precession rate. Although this latter statement is valid only 

over a limited time interval, it is typically long enough to cover the applications 

addressed by this work. Hence, the following formulation for the relative motion 

model of eq. (4.1) and eq. (4.2) can be used, 
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where Δφz is the phase difference between the radial and cross-track oscillations. 

This quantity, together with the argument Γx, can be computed as shown in eq. 

(4.23). 
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The SEΔRmin, determined by the proposed approach, is the trajectory ensuring the 

minimum variation of range among all the ones identified by the assigned values of 

Ax and dxzMIN, which simultaneously has the in-plane motion of the circular 

formation defined by Ax. Firstly, it is necessary to define the difference in the cross-

track oscillation between the desired trajectory and the corresponding circular (ΔzC), 

as shown in eq. (4.24). 
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This relation can be manipulated by applying basic trigonometric relations, thus 

obtaining eq. (4.25). 
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Hence, the minimum-range condition is equivalent to minimize the amplitude of 

ΔzC (AΔzC
) with respect to Az. For the sake of mathematical simplicity, but without 

losing generality of the exposition, the square value of AΔzC
 is minimized, as shown 

in eq. (4.26). 
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The condition above allows expressing Δφz as a function of Ax and Az, as shown 

in eq. (4.27). 
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It is now necessary to derive Az as a function of the design parameters. To this 

aim, the definition of distance in the radial/cross-track plane (dxz), given by eq. 

(4.28), is minimized thus writing eq. (4.29). 
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Finally, by substituting eq. (4.27) within eq. (4.29), it is possible to obtain a bi-

quadratic equation in which the only unknown is Az. 
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It is clear that this method is applicable only if the tuning parameters are 

assigned so that the discriminant of eq. (4.30) is positive, which means that Ax and 

dxzMIN must satisfy the constraint given by eq. (4.31). 
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If eq. (4.31) is verified, Az and Δφz can be computed by applying eq. (4.32) and 

eq. (4.27) respectively. 
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The ambiguity about the four possible solutions for Az must be solved. Firstly, 

the maximum between the two values of Az
2
 is selected. . Secondly, the sign plus is 

selected for Az. If this latter choice leads to a negative value of e for the chaser (at the 

end of the analytical procedure), the negative sign must be assigned to Az, instead. 

At this point, the parallelisms between the formulations of the relative motion 

model in eq. (4.1) and eq. (4.5), can be used to compute the differences between the 

target-chaser mean orbit parameters identifying SEΔRmin, considering that δa and δi 

are still set equal to zero to ensure stability of the relative trajectory. Firstly, δΩ0 is 

computed by using the definition of Az given by eq. (4.3) (recalling again the 

assumption about the perigee precession rate). 
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At this point, δω0 can be determined by applying eq. (4.20), which still 

corresponds to zero the along-track offset. However, also in this case δM0 and δe are 

still unknown. Firstly, eq. (4.34) is obtained by combining the definitions of φx and 

φz in eq. (4.3). 
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Hence, δe can be expressed as a function of δM0, by combining eq. (4.34) with 

eq. (4.20), as shown in eq. (4.35). 
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Finally eq.(4.35) is substituted into the definition of Ax given within eq. (4.3), 

thus obtaining a non-linear equation which is again solved numerically thanks, for 

instance, to the Newton-Raphson method. 

Moving on to the SEMR, it is designed, just like the SEΔRmin, so that the relative 

trajectory does not intercept either the along-track or the radial axes of the THRF. 

However, the fundamental difference is that the idea of minimizing the variation of 

the target-chaser relative distance is substituted by the possibility of freely selecting 

the cross-track separation at zero along-track (z ), which results to be an extremely 

important degree of freedom if optimal observation conditions for pose 

determination are requested, as it will be demonstrated in chapter 5. Hence, the SEMR 

is univocally defined by the same design parameters of SEΔRmin, i.e. Ax and dxzMIN, 

with the addition of z . 

This problem relies on the same assumptions used to write eq. (4.22) and eq. 

(4.23). The first step consists in fully characterizing the trajectory from the 

geometrical point of view. i.e. by computing Az, and Δφz. By definition, z  can be 

derived by using eq. (4.36), which can then be used to find an expression for Δφz. 

zzAz  cos~                                                     (4.36) 
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By substituting eq. (4.37) in eq. (4.29), it is possible to get a second-order 

equation in Az whose solution is given by eq. (4.38). 
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Once Az is derived (by considering the positive root of the second order 

equation), Δφz can be computed from eq. (4.37). Since all the geometric parameters 

describing the SEMR are known, the corresponding differences in the mean orbit 

parameters can be determined by exploiting exactly the same approach relative to the 

SEΔRmin. 

In order to conclude the discussion of this sub-chapter, it is necessary to 

summarize the differences between the two presented trajectories. Once Ax and 

dxzMIN are selected, it is clear that the design of the SEΔRmin allows minimizing the 

ratio between the maximum and minimum target-chaser relative distance without a-

priori knowing the corresponding value of z . However, since in the space of the 

geometrical parameters which identify the modified SE (Ax, dxzMIN, and z ) the 

applicability of this strategy is limited by eq. (4.31), the SEMR appears to be a more 

powerful tool to design relative trajectories for close-proximity operations which 

satisfy multiple requirements (hence the name) as it will further shown in the 

following sub-chapter. 

 

4.2 Examples 

 

Practical implementations of the previously defined analytical approach to 

design safe trajectories for target monitoring are here shown considering as targets 

the space objects selected in sub-chapter 3.5.2. 
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As regards ENVISAT, CSM and one of the Kosmos 3M rocket bodies, the Two 

Line Elements (TLE) relevant to a recent measurement (November 9
th

 2015) are 

adopted as starting point for the analysis. Firstly, three different relative trajectories 

are designed around ENVISAT by exploiting each one of the strategies discussed in 

the previous sub-chapters to compute the chaser mean orbit parameters. In order to 

compare these different solutions, the corresponding design parameters are assigned 

so that the minimum target-chaser relative distance is of (about) 25 m. While in the 

case of the circular trajectory, this requirement is satisfied by simply setting RC to 25 

m, the SEΔRmin and the SEMR require a tuning procedure of their corresponding 

design parameters. Specifically, as regards the SEΔRmin, a minimum relative distance 

of 25.2 m is ensured by setting Ax to 21 m and dxzMIN to 13 m. On the other hand, a 

SEMR characterized by a minimum range of 25.01 m is obtained by setting Ax to 16 

m, dxzMIN to 8 m, and z  to 25 m. As a result of this design process, the mean orbit 

parameters of both the chaser and ENVISAT are collected in Table 4.1. 

 

Mean orbit 

parameters 

Chaser - 

circular 

trajectory 

Chaser - SEΔRmin Chaser - SEMR 

ENVISAT 

(9
th

 November 

2015) 

a (km) 7143.78192394 7143.78192394 7143.78192394 7143.78192394 

i (°) 98.31650000 98.31650000 98.31650000 98.31650000 

Ω (°) 9.13622451 9.13659470 9.13664281 9.13640000 

e 0.00009663 0.00009451 0.00009545 0.00009630 

ω (°) 78.47285310 78.09171042 78.25466816 79.49300000 

True 

Anomaly (°) 
1.02031869 1.40158263 1.23860338 0 

Table 4.1 - Initial mean orbit parameters to obtain relative trajectories around ENVISAT 

characterized by a minimum range of 25 m using the three proposed approaches. 



Chapter 4 - Relative trajectory design.  115 

 

By looking at the relative trajectories which derive from the mean orbit 

parameters listed above, the main features of the proposed approaches can be put into 

evidence. The fact that the circular trajectory is only passively safe since it intersects 

the along-track axis of the THRF is highlighted in Figure 4.2 where the trajectory 

projection on the radial/cross-track plane is a straight line. 

 

 

Figure 4.2 - Circular trajectory (25 m radius) around ENVISAT, together with its projections 

on the reference planes of THRF. 

 

On the other hand, the remaining design strategies both provide relative motions 

of the chaser around the target which satisfy the additional safety constraint of 

intersecting neither the along-track nor the radial axis of the THRF, as it is shown in 

Figure 4.3 and Figure 4.4, where their projections on the along-track/cross-track 

plane are ellipses, instead of being straight lines as foreseen by the classical SE 

concept (see Figure 4.1). 
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Figure 4.3 - SEΔRmin (Ax of 21 m, dxzMIN of 13 m) around ENVISAT, together with its projections 

on the reference planes of THRF.  

 

 

Figure 4.4 - SEMR (Ax of 16 m, dxzMIN of 8 m,    of 25 m) around ENVISAT, together with its 

projections on the reference planes of THRF.  
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By favoring    over Ax, it is possible to generate trajectories characterized by very 

limited range variation and low values of φOUT, i. e. the out-of plane observation 

angle, which can be computed by means of eq. (4.39). 









 

z

Ax
OUT ~tan 1                                                (4.39) 

Conversely, if Ax is larger than z , both the range variation and φOUT increase. 

Hence, a great advantage of this design strategy is that it gives the possibility to 

select the most convenient value of φOUT to optimize the target observation 

conditions for relative navigation purposes, which depend on both the shape of the 

target and its absolute rotational dynamics. Examples of how the proper selection of 

φOUT improves pose estimation performance are shown in sub-chapter 5.2.3. 

 Due to its higher flexibility, the SEMR model is used to provide examples of 

trajectory design for both CSM and RB for which the design parameters are tuned in 

order to obtain a minimum relative range to the target of about 11 m and 7 m 

respectively. Specifically, in the case of CSM a SEMR characterized by a minimum 

range of 11.2 m is obtained by setting Ax to 8 m, dxzMIN to 6 m and z  to 14 m thus 

leading to a 29.7° value for φOUT. On the other hand, a SEMR around RB ensuring a 

minimum range of 7 m is obtained by setting Ax to 5 m, dxzMIN to 4 m and    to 14 m 

thus leading to a 16.6° value for φOUT. The target-chaser initial mean orbit parameters 

corresponding to the above defined trajectories (depicted in Figure 4.5 and Figure 

4.6) are collected in Table 4.2. 
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Mean orbit 

parameters 

Chaser - SEMR 

around CSM 

CSM 

(9
th

 November 

2015) 

Chaser - SEMR 

around RB 
RB 

a (km) 6997.94011260 6997.94011260 7145.76400000 7145.76400000 

i (°) 97.86000000 97.86000000 74.03200000 74.03200000 

Ω (°) 0.00018183 0 294.88419744 294.88400000 

e 0.00118088 0.00118000 0.00432250 0.00432200 

ω (°) 90.03532213 90 81.40148794 81.39500000 

True 

Anomaly (°) 
359.96461925 0 359.99340088 0 

Table 4.2 - Initial mean orbit parameters to obtain SEMR around CSM and RB characterized by 

a minimum range of respectively 11.2 m and 7 m.. 

 

 

Figure 4.5 - SEMR (Ax of 8 m, dxzMIN of 6 m,    of 14 m) around CSM, together with its projections 

on the reference planes of THRF.  
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Figure 4.6 - SEMR (Ax of 5 m, dxzMIN of 4 m,    of 14 m) around RB, together with its projections 

on the reference planes of THRF.  
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Chapter 5 - Pose determination algorithms: 

performance assessment 

 

This chapter presents and discusses the results of all the numerical simulations 

carried out to assess the performance of the pose determination architecture 

described in sub-chapter 2.3. Specifically, this performance evaluation is done 

considering both the pose estimation accuracy level and the computational efficiency 

issues. The effectiveness of the autonomous failure detection strategy and of the 

check for consistency of the PCA solution (which is relevant only to the PCA-TM 

algorithm), as well as the applicability of the analytical approach presented in chapter 

4 to smartly design trajectories which optimize target observation conditions are 

assessed. The simulations are performed in MATLAB™ environment and run on a 

commercial desktop equipped with an Intel™ i7 CPU at 3.4 GH . Of course, 

embedded processors used for space applications are not as fast as ground ones, due 

to limitations in size and weight for payload, but at the same time, the proposed 

algorithms have not been implemented to run in real time. Hence, although the run-

time represents a good indicator of absolute computational efficiency, the most 

valuable results are obtained by comparing the performance of different solutions to 

identify the faster ones and evaluate the effect of setting parameters on the 

computational load. Finally, it is worth recalling that the selection of all the LIDAR 

specifications and the noise parameters, adopted for the numerical simulations, has 

been presented and motivated in sub-chapter 3.4. 

 

5.1 Performance analysis criteria 

 

Before entering the details of the numerical results, it is necessary to clarify the 

criteria adopted to determine algorithms' accuracy. 



Chapter 5 - Pose determination algorithms: performance assessment.  121 

 

With regards to the pose acquisition step, effectiveness of 3D on-line Template 

Matching (on-line TM), the 3D on-line Fast Template Matching (on-line fast-TM) 

and the 3D PCA-based on-line Template Matching (PCA-TM) is verified in terms of 

both computational cost and accuracy level. However, the pose accuracy attained by 

these techniques is not a meaningful metrics since the attitude parameter space is 

sampled with large angular steps (tens of degrees). Moreover, the centroiding 

approach, exploited to determine the relative position vector, produce errors of the 

order of meters, depending on the fact that the centroid is estimated by considering 

only the visible portions of the target. This poor accuracy level is the reason why the 

pose solution provided by the acquisition step cannot be directly sent into a 

navigation filter. However, this is not a real issue since the only aim of the pose 

acquisition step is to obtain a pose solution which falls in the field of convergence of 

the tracking algorithm, meaning that pose acquisition is deemed successful if a 

subsequent application of the ICP algorithm is able to estimate the pose with a 

prefixed accuracy level. In this thesis, a threshold of 3° is adopted, as it represents 

approximately ten times the value of the ICP attitude accuracy level at regime [31]. 

The success rate of the proposed pose acquisition algorithms (respectively indicated 

as SRTM, SRfast-TM, and SRPCA-TM) is evaluated at fixed values of the target-chaser 

distance (still indicated as R in the following) over large numbers of sets of relative 

attitude parameters (the Euler angles) selected by means of random extractions from 

uniform distributions defined on their specific intervals of variation, i.e. (-90°, 

90°)for β, (-180°, 180°) for α and γ. The determination of the success rate at different 

values of R allows densely covering an extremely wide portion of the 6-DOF pose 

space. The effect on the success rate of varying Δ, which determines the number of 

templates and consequently the computational load, is also analyzed. 

Moving on to the pose tracking step, performance of different versions of the 

ICP algorithm discussed in sub-chapter 2.5 are evaluated, over specifically designed 

relative trajectories, and compared. Although the errors in the estimation of the 

relative translation vector and of the relative Euler angles with respect to the real 

values (deriving from the assigned relative dynamics) directly represent meaningful 

metrics, equivalent error parameters are also introduced to better summarize the 

results. Specifically, the relative attitude estimation error is represented by ϕERR, 
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which is the equivalent Euler angle corresponding to the quaternion error (qERR) 

between the true and estimated ones (respectively qTRUE and qEST) [129]. Once qERR is 

obtained using eq. (5.1), in which the quaternion division is exploited, φERR can be 

computed using eq. (5.2), 

EST

TRUE
ERR

q

q
q                                                     (5.1) 

 SERRERR q _

1cos2                                               (5.2) 

where qERR_S is the scalar component of qERR. An additional measure of the error in 

the relative attitude is δφEA, which represents the angle between the directions of the 

Euler axes corresponding to the real and the estimated orientation of chaser with 

respect to the target. It is computed using eq. (5.3), 

 
   

VEST

SEST

VTRUE

STRUE

EA q
q

q
q

_

_

1

_

_

1

2

cos2
sin

2

cos2
sincos

































            (5.3) 

where qTRUE_S, qTRUE_V, qEST_S, qEST_V are the scalar and vector components of qTRUE 

and qEST. On the other hand, the error in the relative position is measured by |T|ERR, 

which is the difference between the Euclidean norms of the true and the estimated 

values of T, and ϑERR, which is the angle between the directions of the true and the 

estimated values of T. Finally, as regards the computational time analysis, it is based 

on the evaluation of the ICP convergence time (tCONV) and of the corresponding 

number of iterations (NIT). 

A statistical analysis is performed in order to compute, for each parameter of 

interest, the time statistics (i.e. mean, std and rms) over the assigned relative 

trajectory. Specifically, the incremental mean and standard deviation [130] are 

dynamically computed over NSIM simulations (each one differing from the others due 

to the random extractions for the LIDAR range and pointing uncertainties), at each 

position along the trajectory. If X is the parameter of interest, the incremental mean 

value after NSIM simulations (μXN) is given by eq. (5.4). 
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)1([
1

1


 SIMXN

SIM

X NX
N NN

                                (5.4) 

As regards the incremental standard deviation after NSIM simulations (σXN), it is 

computed using eq. (5.5), 

1


SIM

N
X

N

S
N

                                                  (5.5) 

where SN is given by eq. (5.6)  

)1([
1

1


 SIMXN

SIM

X NX
N NN

                                (5.6) 

 

5.2 Pose acquisition results 

 

5.2.1 On-line TM and on-line fast-TM 

 

Before starting the evaluation of the performance of the on-line TM and of the 

on-line fast-TM over an extremely large portion of the 6-DOF relative state space, it 

is necessary to determine which approach is preferable, between the NN and NS 

ones, to be selected for the matching step when the ICP is adopted to establish 

success or failure of pose acquisition. 

To this aim, the performance of the on-line TM is analyzed over a set of relative 

poses selected along a relative trajectory, considering ENVISAT as test case. 

Specifically, one SEMR is designed around ENVISAT by setting Ax to 22 m, dxzMIN to 

20 m and z  to 10 and considering the TLE relevant to a recent measurement (January 

7
th

 2014) as starting point for the analysis. As a result of this procedure, the initial 

mean orbit parameters for the chaser and the target are listed in Table 5.1. 
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Mean orbit 

parameters 
Chaser - SEMR  

ENVISAT 

(7
th

 January 

2014) 

a (km) 7144.370 7144.370 

i (°) 98.4045 98.4045 

Ω (°) 76.2196 76.2199 

e 1.277 ∙ 10
-4

 1.247 ∙ 10
-4

 

ω (°) 86.6180 86.9910 

True 

Anomaly (°) 
0.3731 0 

Table 5.1 - Initial mean orbit parameters to obtain the SEMR around ENVISAT characterized 

by Ax of 22 m, dxzMIN of 20 m, and    of 10 m. 

 

This modified safety ellipse has R ranging from about 25 m to 53 m. The SRTM is 

computed as the percentage of successful pose solutions over 241 positions equally 

separated in time (50 s) along two relative orbits (see the black dots in Figure 5.1). 

The time step is selected so that two consecutive poses are significantly different in 

terms of both relative attitude and position. 

 

 

Figure 5.1 - Time variation of the R along two consecutive orbits (in blue) for the designed 

SEMR. The black dots indicate the positions at which the SRTM is computed. 
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The effect of adopting five different values of Δ (i.e. 60°, 40°, 30°,20°, and 10°) 

is estimated on the SRTM, on the number of templates to be generated and 

consequently on the computational cost, as shown in Figure 5.2. Of course, the 

information about the computational cost does not include the time needed to declare 

success/failure by comparing the accuracy level attained by a subsequent application 

of the ICP with the 3° error threshold. 

 

 

Figure 5.2 - (Top) Effect of Δ on SRTM comparing the NN and NS approaches. (Center) Effect of 

Δ on the number of templates. (Bottom) Effect of Δ on the average computational cost. 
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This analysis clearly shows that the NN approach is more effective than the NS 

one, as the associated value of SRTM is larger for any value of Δ. This can be 

explained by remarking that highly rough initializations of the pose parameters, as 

the ones provided by the adopted pose acquisition strategy, can cause sensor-model 

point associations characterized by larger distances when projecting a sensor point on 

the closest model surface as requested by the NS logic, compared to the ones 

determined by the NN approach. This is the reason why, in the following, only the 

NN variant will be used to declare success/failure of the pose acquisition algorithms 

for performance evaluation. This result also motivates the choice of always adopting 

the NN method for the first application of the ICP algorithm, which represents the 

transition from acquisition to tracking to both the on-line TM and the on-line fast-

TM.  

The analyzed sets of pose parameters cover a very limited portion of the 6-DOF 

relative state space, being restricted by the assigned relative trajectory. Hence, 

although the results cannot be considered fully representative of algorithm's 

performance in terms of the achievable success rate, further interesting comments 

can be made. 

As expected, a reduction of Δ produces an increase in the SRTM since it allows 

restraining the angular gap that the tracking algorithm has to compensate. 

Specifically, if Δ is 10°, the SRTM reaches its maximum value of 76.3 %, but the 

number of templates is so large (26000) that the computational time also becomes 

unacceptably high (145 s) for close-proximity flight. On the other hand, if Δ is 60°, 

the number of templates drops down to 196 and so does the computational time (1 s), 

but the SRTM reduces to 58.9 %. However, it is interesting to notice that the selection 

of intermediate values of Δ (20° and 30°) keeps the algorithm’s computational time 

low enough (20 s and 7 s) to enable real-time operations, while simultaneously 

providing values of the SRTM very close to the maximum (73.4 % and 71.8 %). This 

can be explained observing that the number of templates reduces of one order of 

magnitude if Δ is increased from 10° to 20°, while the average estimation error in the 

Euler angles (evaluated considering only the successful pose estimates) remains 

approximately the same, as it is shown in Table 5.2. 
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Average attitude estimation error 

Δ (°) 10 20 30 40 60 

Successful pose estimates 184 177 173 163 142 

Euler angles 

α (°) 9.73 14.04 13.83 39.83 56.88 

β (°) 6.17 6.88 8.15 14.50 18.97 

γ (°) 21.40 22.70 37.45 47.62 78.45 

Table 5.2 - On-line TM mean estimation error in the relative Euler angles averaged over the 

successful pose estimates within sequence of 241 poses sampled along the designed SEMR. 

 

The error in the yaw angle is larger than the one in pitch and roll for any value of 

Δ. This is motivated by the fact that ENVISAT has one principal direction and, 

consequently, the relative rotation angle around the corresponding axis of the TRF is 

more prone to produce ambiguous estimations. Of course, this is also related to the 

fact that the target simplified model does not include many details present on the 

satellite external surface. Another important property of the on-line TM can be 

noticed by comparing the values of the estimation error in the relative position vector 

when the algorithm is successful to the same ones corresponding to algorithm 

failures. These results are collected in Table 5.3 where TX, TY and TZ are the 

components of T in the SRF.  

 

Relative 

position vector 

components 

Average position estimation error 

Δ = 10°  Δ = 20° Δ = 30° Δ = 40° Δ = 60° 

On-line 

TM 

success 

TX (m) 2.809 2.697 2.689 2.772 2.853 

TY (m) 1.324 1.268 1.251 1.343 1.369 

TZ (m) 1.924 1.936 1.868 1.808 1.868 

On-line 

TM 

failure 

TX (m) 4.021 4.198 4.130 3.773 3.443 

TY (m) 1.588 1.714 1.732 1.478 1.412 

TZ (m) 4.698 4.360 4.390 4.192 3.601 

Table 5.3 - On-line TM mean estimation error in the relative position vector components 

averaged over the successful pose estimates within sequence of 241 poses sampled along the 

designed SEMR. 
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It is clearly shown that error induced by the centroiding approach in the 

estimation of the relative position vector, which depends on the specific conditions in 

terms of target relative attitude, is the one that compromises the algorithm's 

capability to find the set of sampled Euler angles adequately close to the real triplet. 

For instance, the on-line TM algorithm is more likely to provide success if the error 

in the estimation of the along boresight component of T is kept below 2 m. 

It is now necessary to determine all the potential advantages/drawbacks which 

can result if the on-line TM is substituted for its fast variant. Specifically, the on-line 

fast-TM is applied selecting a value of τ equal to 0.1 in eq. (2.5), meaning that the 

only templates to be considered for potential matching must have a point distribution 

with respect to the sensor boresight axis which is more than 10 % different from the 

one associated to the measured dataset. The choice of this value is driven by the 

necessity of not to risk losing too many templates which instead could represent 

potential candidates to minimize the correlation function, C, of eq. (2.3). Also for 

this analysis, ENVISAT is selected as test case. Firstly, the two methods are 

compared over the 241 sets of pose parameters identified along the previously define 

SEMR. 

Results collected in Figure 5.3, immediately show that the on-line fast-TM 

excludes from the evaluation of C about 66 % of the generated templates for any 

value of Δ. Although one could expect the computational efficiency to improve in a 

proportional way, the actual acceleration is limited to 15 % of the computational time 

associated to the on-line TM. This is due to the fact that the on-line fast-TM has no 

impact on the time required for templates generation, which represents the main 

contribution to the overall computational burden. In terms of success rate (SR), the 

results highlight that the fast-TM strategy causes a loss of performance as compared 

to the basic approach since it can lead to the exclusion of potentially good candidate 

templates. This loss of performance is affected by the value of Δ. Specifically, if the 

angular sampling step is low enough (10° or 20°), the loss of success rate (SRTM - 

SRfast-TM) is extremely limited (about 1 %), while it increases up to 22 % when Δ 

grows to 60°. However, this effect is still not clear since these results are relevant to 

an analysis carried out over a restricted portion of the 6-DOF relative state space. 
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This is the reason why the loss of success rate occurring when Δ is 40° (10 %) is 

lower than if Δ is 30° (14 %).  

 

 

Figure 5.3 - On-line TM vs. on-line fast-TM. (a) Success rate. (b) Loss of success rate of the on-

line fast-TM. (c) Percentage of templates excluded from the correlation function evaluation. (d) 

Computational time reduction. 

 

Hence, this study must be extended over a much wider portion of the 6-DOF 

pose space thus obtaining absolute performance indicators. This is done by 

evaluating the SRTM and the SRfast-TM over 500 sets of randomly selected Euler 

angles and considering four different values of R (20 m. 30 m, 40 m, and 50 m), as 

shown in Figure 5.4. 
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Figure 5.4 - (Left side) SRTM as a function of Δ at different ranges. (Right side) Variation of 

SRfast-TM with respect to SRTM as a function of Δ at different ranges 

 

Firstly, it is confirmed that the SR reduces as Δ increases, as this happens 
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97.2 % by changing Δ from 60° to 10°. On the other hand, if R is 40 m, the SRTM 
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to 30°, the value of SRTM goes from 87.8 % at 20 m down to 67.6 % at 50 m. This 

phenomenon has two main causes. 

 The fixed angular resolution adopted to simulate LIDAR measurements 

(δLOS is 1° in azimuth and elevation), causes a reduction in the size of the 

measured point clouds (it varies, on average, from about 490 points at 20 

m to about 120 points at 50 m). Sparse point clouds can more easily give 

rise to ambiguous matches (they can produce similar values of C) 

 The SNR of the backscattered laser beams goes down, thus increasing the 

probability of point misdetection. 

Of course, this performance worsening at increasing R is independent of how 

well the attitude parameters space is sampled. 

By focusing the attention on the right side of Figure 5.4, it is possible to notice 

that the increase of R has a negative effect also on the SR performance of the on-line 

fast-TM. For instance, if R is 20 m, the loss of success rate remains below 1 % for 

any Δ up to 40°. In particular, by setting Δ to 20°, the SRTM - SRfast-TM becomes -0.4 

% thus meaning that the adoption of the fast variant of the proposed TM algorithm is 

able not only to reduce the computational load but also to slightly improve the 

performance. On the other hand, if R is 30 m, the SRTM - SRfast-TM is always positive 

(no SR improvement introduced by the fast variant) and gets worse for increasing  

since it varies from 3.9 % ( = 10°) to 23 % ( = 60°). 

As regards the computational load, also the time saving provided by the on-line 

fast-TM with respect to the basic TM algorithm is influenced by the variation of the 

target range. Specifically, as R enlarges, the size of the LIDAR point cloud reduces 

and so the contribution of the correlation determination task to the overall 

computational burden becomes less important, thus limiting the time acceleration 

provided by its fast variant. This is shown in Table 5.4, where the analyses 

performed setting R to 20 m and 50 m are considered. Indeed, in spite of a similar 

percentage of uncorrelated templates, the time acceleration ensured by the on-line 

fast-TM algorithm with respect to the basic approach varies on average from 24 % at 

closer range (20 m) to 9 % at farther range (50 m). 
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Δ (°) 
R = 20 m 

Uncorrelated templates (%) Computational time reduction (%) 

10 68.9 31.3 

20 68.6 19.3 

30 67.9 23.6 

40 67.5 23.6 

60 67.3 21.8 

Δ (°) 
R = 50 m 

Uncorrelated templates (%) Computational time reduction (%) 

10 65.6 10.5 

20 66.0 12.9 

30 67.0 8.9 

40 66.5 5.4 

60 69.3 9.1 

Table 5.4 - Effect of the target-chaser relative range on the percentage of uncorrelated templates 

and on the overall time acceleration characterizing the on-line fast-TM. 

 

In conclusion, the possibility to substitute the on-line TM with the on-line fast-

TM can be justified by the advantage attained in terms of computational efficiency 

only if the associated loss of success rate is kept to a minimum. Indeed, this 

phenomenon is clearly caused by the fact that the eq. (2.5) is a reliable measure of 

the similarity between the templates and the LIDAR point cloud only if enough 

information to perform the discrimination process are available. This condition is 

satisfied only if the number of templates is large (Δ is low), and if the sensor point 

cloud is not too sparse thus being able to recognize more geometric details (the 

sensor is sufficiently close to the target). 

Finally, regarding the global performance of the proposed techniques it is 

possible to state that the selection of intermediate values of Δ (20° and 30°) provides 

the best compromise between the necessities to simultaneously ensure high success 

rates and computational time which is sustainable for real-time applications. 
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5.2.2 PCA-TM: success rate analysis  

 

Results from the previous sub-chapter motivate why the performance of the 

PCA-TM is derived by using the NN matching method within the ICP algorithm 

used to declare success/failure. On the other hand, differently from the cases of the 

previously analyzed techniques, the transition step from acquisition to tracking 

requires the ICP algorithm to be applied with both the NN and NS approaches in 

order to solve any possible ambiguity in the estimated pose. 

Numerical simulations are realized covering an extremely wide portion of the 6-

DOF relative state space. Specifically, the SRPCA-TM is evaluated as the number of 

successful estimates over 1000 sets of randomly generated Euler angles, at different 

values of R. Firstly, it is interesting to focus on the effect of Δ on the PCA-TM 

performance in terms of success rate and computational efficiency, as done for the 

on-line TM and the on-line fast-TM. Specifically, ENVISAT is considered as test 

case, Δ is varied from 5° to 60°, and the target-chaser relative distance is set to 20 m 

and 30 m. Results of this simulations are collected in Table 5.5. 

 

Δ 

(°) 

Number of 

templates 

SRPCA-TM (%), 

R = 20 m 

Average 

computational 

time (s) 

SRPCA-TM 

(%), R = 30 m 

Average 

computational 

time (s) 

5 73 96.5 0.889 89.8 0.913 

10 37 96.2 0.451 89.6 0.484 

20 19 96.2 0.238 89.5 0.240 

30 13 95.7 0.161 89.5 0.167 

40 10 91.1 0.125 89.2 0.129 

50 8 85.3 0.102 88.4 0.104 

60 7 78.0 0.089 87.5 0.089 

Table 5.5 - Effect of the angular sampling step on the success rate and computational time of the 

PCA-TM, considering ENVISAT as test case at two different values of the relative range. 
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One first interesting result of this analysis is that the effect of Δ on the SRPCA-TM 

is weak, compared to the behavior observed for the SRTM and the SRfast-TM. Indeed, 

the SRPCA-TM estimated considering a relative range of 20 m is larger than 90 % even 

if Δ is set to 40°, which means restraining the evaluation of eq. (2.3) to only 10 

templates. The result obtained setting R to 30 m is even more impressive since the 

SRPCA-TM stays above 87 % independently of Δ. Of course, the reduction of the 

angular sampling step still affects the average computational time, which tends 

growing as a nearly linear function of the number of templates but is always kept 

below 1 s. By considering also the step for transition from acquisition to tracking the 

overall computational time is always kept 2 s. 

It is now extremely important to evaluate the effect on the performance of the 

PCA-TM of the size and shape of the target, as a crucial part of the algorithm is the 

adoption of the PCA to identify the direction of the target main axis by analyzing the 

shape of the measured point cloud . Specifically, the analysis will be focused on the 

success rate since high computational efficiency is always ensured by the extremely 

limited number of templates. Hence, the SRPCA-TM is estimated considering the three 

targets presented in sub-chapter 3.5 (ENVISAT, CSM, and RB) and setting Δ to 30° 

(which provides the best combination of high success rate and low computational 

load). The intervals of distance is (20 m, 80 m) for ENVISAT, and (10 m, 40 m) for 

CMS and RB. This choices are done taking the size of each target into account, so 

that the number of points in the cloud goes from a few hundreds to a few tens, while 

the target goes from partial to full view conditions. Results of these analyses are 

shown in Figure 5.5, where PCCoverage is the ratio between the mean cross boresight 

dimensions of the measured point cloud and the target, while TRGTCoverage is the ratio 

between the maximum cross boresight distance covered by the target and the LIDAR 

swath width (SW). Specifically, PCCoverage indicates how much the point cloud covers 

the target surface (averaged over the variable attitude conditions), thus being less 

than 1 by definition. On the other hand, TRGTCoverage measures how large the 

maximum cross boresight distance covered by the target is compared to SW. Thus, a 

value of TRGTCoverage ≤ 1 implies that the target is completely contained in the 

LIDAR FOV independently of its relative orientation. 
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Figure 5.5 - Performance analysis of the PCA-TM considering different targets and variable 

range. Effect of the target-chaser (T/C) relative range on the SRPCA-TM (a), the number of 

detected points (b), the PCCoverage (c), and TRGTCoverage (d). 

 

Figure 5.5-b shows that, as expected, the number of detected points drops down 

as the R grows. Although this causes an overall reduction of the success rate for any 

considered target geometry (see Figure 5.5-a), the performance worsening has 

different aspects to point out depending on the analyzed case. 

As regards ENVISAT, the SRPCA-TM is above 68 % for any value of the R, 

excluding 80 m (46.2 %). Indeed, this latter condition is particularly unfavorable due 

to the limited size of the point clouds (about 30 points on average) covering an 

extremely large spacecraft (see dimensions of ENVISAT in Table 3.3), and to the 
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high percentage of misdetections (around 30 % on average). Moving from 20 m to 70 

m, the variation of the success rate has a peculiar behavior. Specifically, it is 

characterized by a local minimum (68.2 %) and maximum (79.4 %), respectively 

found at 40 m and 60 m. This can be explained by observing that the PCA-TM 

capability of successfully computing the target pose depends not only on the point 

cloud density, but also on the target observation geometry. Specifically, denser point 

clouds help the algorithm to distinguish similar (ambiguous) poses, but this task is 

more complex if the target, and in particular its main axis, is only partially included 

in the FOV. Hence, from 20 m to 40 m the reduced point cloud size dominates and is 

responsible of the performance worsening. On the other hand, from 40 m to 60 m, 

both PCCoverage and TRGTCoverage tend to 1 (meaning that the point cloud covers, on 

average, the entire target surface and the target is fully contained in the LIDAR SW). 

Considering the particular shape of ENVISAT, this condition helps in solving for 

ambiguous poses, so that the success rate exhibits a local maximum. Of course, 

above 60 m, the further decrease of the SRPCA-TM is produced by the increased level 

of point cloud sparseness, i.e. the number of points becomes too low. 

In spite of comparable values of the number of LIDAR measurements, CSM is 

characterized by worse performance in terms of success rate. Specifically, the SRPCA-

TM goes from 84.4 %, if R is 10 m, down to 46.9 %, if R is 40 m. Indeed, the y-z 

plane of its TRF is a symmetry one (while ENVISAT is fully not symmetrical), and 

this makes the pose determination issue much easily subject to ambiguous 

assignments at relative distances farther than 20 m where CSM starts being fully 

contained in the sensor FOV. On the opposite, a relative distance of 10 m produces 

partial views of CSM (PCCoverage of about 60 %) and this helps solving pose 

ambiguities. In order to fully demonstrate that performance degradation of the PCA-

TM in terms of success rate when the target is fully contained in the sensor FOV is 

exclusively due to the symmetry of the simplified CSM model, ad-hoc simulations 

are performed. Specifically, the geometry of the target is modified with respect to 

actual CSM shape by attaching an additional cuboid-shaped element (3 m x 0.1 m x 

1.5 m) to its main body, as it is shown in Figure 5.6. Simulation results are compared 

to the ones obtained for CSM in the interval of R (20, 40) m in Table 5.6. The 

significant positive effect of introducing an asymmetry in the target geometric model 
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clearly demonstrate the before-mentioned statement. It is particularly interesting to 

notice that the attained values of SRPCA-TM are better than the ones obtained for 

ENVISAT in the same interval of ranges. This is mostly related to the fact that the 

modified CSM is totally in sight by the LIDAR while ENVISAT is only partially 

contained in the FOV. 

 

 

Figure 5.6 - Model point clouds for CSM (left), and its modified version (right). 

 

R 

(m) 

SRPCA-TM (%) 

CSM 
Modified 

CSM 

20 70.4 94.7 

30 54.7 93.1 

40 46.9 89.0 

Table 5.6 - Success rate comparison between CSM and its modified version. 
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As regards the RB, it is firstly necessary to remark that the pose acquisition 

algorithm based on the PCA does not require the TM procedure since the z-axis of its 

TRF is a symmetry one (i.e. the pose has only 5-DOF). In the considered interval of 

R, the RB is always fully contained in the SW (see Figure 5.5-d), thus the size of the 

point cloud compared to the target dimension (see Figure 5.5-c) reduces almost 

linearly for increasing range. Although this determines a global reduction of the 

success rate as the relative distance goes from 10 m to 40 m, the SRPCA-TM is slightly 

larger at 20 m (89.2 %) than at 10 m (85.6 %). This derives by the fact that the 

difference in detected points between the lateral surface and the base of the cylinder 

is positive and large enough, so that the shape of the point cloud allows identifying 

its main axis, in a wider range of Euler angles. The fact that the TM step is not 

required by symmetric cylinder-shaped objects makes the achievable success rate 

strictly related to their elongation, as it mainly determines the shape of the point 

cloud. Ad-hoc simulations are performed to show this effect, considering two 

modified versions of RB. The first one (RBM1) is obtained by doubling the radius 

with respect to RB, thus halving the ratio between the inertia in the symmetry axis 

and the inertia in the perpendicular direction (Iratio). Conversely, the second modified 

rocket body (RBM2) is obtained by doubling the height with respect to RB, thus 

doubling also Iratio. Simulation results are compared to the ones obtained for RB in 

the interval of R (20, 30) m in Table 5.7. As predictable, the higher Iratio is, the larger 

the SRPCA-TM becomes. Moreover, RBM1 is so flattened that the region in the relative 

attitude space where the PCA is able to identify its main axis is extremely limited, 

thus compromising the achievable success rate. 

 

Target Radius (m) Height (m) Iratio 
SRPCA-TM (%) 

R = 20 m  R = 30 m  

 RBM1 2.4 6.5 2.7  35.3 27.4  

 RB 1.2 6.5 5.4  89.2  85.1 

RBM2 1.2 13 10.8  97.6 97.3  

Table 5.7 - Success rate comparison between cylinder-shaped targets with different Iratio. 
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5.2.3 PCA-TM: robustness improvement 

 

Two point clouds for each the three test cases adopted as target (ENVISAT, 

CSM and RB), obtained considering a relative range of 30 m, are shown in Figure 

5.7. Specifically, the point clouds on the left and on the right correspond to attitude 

conditions for which the PCA-TM provides, respectively, failure and success. 

 

 

Figure 5.7 - Examples of target point clouds at 30 m of relative range: (a) ENVISAT, α=150°, 

β=-30° and γ=0°; (b) ENVISAT, α=90°, β=30° and γ=0°; (c) CSM, α=30°, β=0° and γ=0°; (d) 

CMS, α=120°, β=90° and γ=0°; (e) RB, α=0°, β=0° and γ=0°; (f) RB, α=80°, β=10° and γ=0°. 
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Figure 5.7 clearly shows how the success/failure of the PCA-TM strongly 

depends on the shape of the acquired point cloud, meaning that the measured points 

must be spread enough in the direction of the main axis, eM. Since this condition is 

certainly not satisfied if the target is viewed by the LIDAR with a very shallow 

angle, the algorithm's robustness against such situations must be improved. To this 

aim, two solutions are envisaged, which are presented in the current sub-chapter. 

Firstly, it is necessary to apply the consistency check defined in sub-chapter 

2.4.3 which leads to the modified architecture for the PCA-TM shown in Figure 2.14. 

The criterion introduced to a-priori establish whether the target main axis direction 

can be easily identified or not by analyzing the shape of the measured point cloud is 

here recalled and its applicability is assessed thanks to ad-hoc simulations. The basic 

idea is that the ratio (r) between the maximum and minimum eigenvalues of the 

covariance matrix, Q defined in eq. (2.6), is a direct measure of the elongation of the 

object observed from a specific point of view. Hence, the higher the value of r is, the 

more reliable the estimated eM direction is. Specifically, the PCA is applied to 10000 

point clouds obtained by assigning a fixed value to R (30 m) and γ (0°), while the 

couples of α and β are extracted from two uniform distributions, respectively in the 

intervals (-180°, 180°) and (-90°, 90°). This analysis is performed for each of the 

assigned targets to identify the regions in the α-β plane where eM is a good 

representation of the z-axis (z) of the TRF (red regions in Figure 5.8). This condition, 

which is verified by applying the same ICP-based method defined in sub-chapter 5.1, 

is not satisfied (blue regions in Figure 5.8) for ENVISAT and CSM when their views 

are occluded respectively by the solar array and the SAR antenna, and for RB if the 

lateral surfaces are poorly in sight of the LIDAR. The behavior of r, depicted in 

Figure 5.9, clearly shows the correlation between large (low) values value of r and 

the algorithm's success (failure). In order to visualize the effect of the relative range, 

the PCA-TM success/failure and of the value of r in the α-β plane are depicted 

considering a larger value of the target-chaser distance (40 m), respectively in Figure 

5.10 and Figure 5.11. At this farther range the correlation is still evident, as the 

number of failures and the portion of the α-β plane where r becomes too low tend to 

enlarge. This is particularly evident for RB, as it can be seen by looking at Figure 

5.9-c and Figure 5.11-c. 
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Figure 5.8 - PCA estimation of the target main axis in the α-β plane, considering a relative range 

of 30 m. (a) ENVISAT; (b) CSM; (c) RB. 
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Figure 5.9 - Behavior of r in the α-β plane, considering a relative range of 30 m. (a) ENVISAT; 

(b) CSM; (c) RB. 
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Figure 5.10 - PCA estimation of the target main axis in the α-β plane, considering a relative 

range of 40 m. (a) ENVISAT; (b) CSM; (c) RB. 
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Figure 5.11 - Behavior of r in the α-β plane, considering a relative range of 40 m. (a) ENVISAT; 

(b) CSM; (c) RB. 
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Hence, the level of robustness of the pose acquisition step can be improved by 

running the PCA-TM algorithm only if the estimated r is higher than the safety 

threshold, τλ, as shown in Figure 2.14. Practically, if the LIDAR views the target at a 

very small angle with respect to its main axis, the PCA will probably give in output a 

direction different from the actual one. This produces a value of r much lower than 

the one corresponding to a situation in which the main axis is perfectly in sight. 

Hence, it possible to discard this PCA solution exploiting τλ. In that case, it is 

necessary to wait for a certain amount of time, during which the true pose may 

evolve toward most favorable viewing conditions. 

The second solution to improve the robustness of the PCA-TM is to exploit the 

analytical approach for relative trajectory design presented in chapter 4. The main 

concept of this method is to derive the differences between the target-chaser mean 

orbit parameters by assigning high level constraints regarding the stability and the 

shape of the relative trajectory. Hence, the crucial point is that the target observation 

condition can be optimized (ensuring that its main axis is globally visible during 

most of the relative trajectory) by properly selecting one single geometrical 

parameter, i.e. the out-of plane observation angle, φOUT, defined in eq. (4.39). In 

order to demonstrate this point, the locus of the roll and pitch values corresponding 

to four relative trajectories around ENVISAT is superimposed to the Figure 5.8-a, as 

it is shown in Figure 5.12. The first three trajectories are defined by the initial mean 

orbit parameters collected in Table 4.1. In spite of having the same minimum range 

constraint (25 m), the values of φOUT are different. Specifically, the 25-m-radius 

circular trajectory has φOUT equal to 30°, the SEΔRmin (Ax is 21 m and dxzMIN is 13 m) 

has φOUT equal to 53°, and the SEMR (Ax is 16 m, dxzMIN is 8 m, and z  is 25 m) has 

φOUT equal to 32.6°. The fourth relative trajectory is another SEMR (Ax is 24 m, dxzMIN 

is 22 m, and z  is 9 m) which also has a minimum range of 25 m but φOUT equal to 

69.4°. By looking at Figure 5.12, it is possible to state that low values of φOUT 

represent the most convenient design choice since they ensure the principal direction 

of ENVISAT to be constantly in sight of the LIDAR during their relative motion. 

This comes from the fact that ENVISAT is gravity gradient stabilized, thus the larger 

φOUT is, the more the chaser will look at it from above/below and this observation 

geometry clearly prevents the LIDAR from providing enough elongated datasets 
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during part of the relative trajectory. Hence, it is clear that the design strategy related 

to the SEMR represents the best trade-off between safety and observation geometry 

requirements since it also allows to directly selecting the desired value of φOUT by 

properly assigning its design parameters according to eq. (4.39). On the other hand, 

the SEΔRmin model satisfies the safety conditions but it does not allow to freely 

selecting φOUT, while the circular trajectory strategy, in spite of having the advantage 

of ensuring a fixed value of φOUT (30°), has to be discarded since it does not avoid 

the chaser to pass ahead/behind the target. 

 

 

Figure 5.12 - Locus of the roll and pitch angles of four relative trajectories around ENVISAT in 

the α-β plane. Red (blue) dots correspond to successes (failures) of the PCA in identifying the 

target main axis at a relative range of 30 m. 
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and RB. Specifically, the two SE around CSM ensure a minimum range of 11 m and 

have φOUT equal to 51.34° and 29.74°, while the two safety ellipse around RB ensure 

a minimum range of 7 m and have φOUT equal to 81.87° and 19.65°. These 

trajectories have been obtained selecting the design parameters collected in Table 

5.8.. 

 

Design 

parameters 
SEMR around CSM SEMR around RB 

Ax (m) 8 10 5 7 

dxzMIN (m) 6 8 4 5 

   (m) 14 8 14 1 

φOUT (°) 29.74 51.34 19.65 81.87 

Table 5.8 - Geometrical design parameter for two SEMR around CSM and RB which ensure the 

same minimum range constraint (11 m and 7 m respectively) but different values of φOUT.  

 

Hence, the analysis which determines successes and failures of the PCA in the α-

β plane is realized for both CSM and RB considering a relative range to 20 m. This 

allows superimposing the above-defined trajectories to the success/failure 

representation as done in Figure 5.12. This is done in Figure 5.13 for CSM and in 

Figure 5.14 for RB. It is interesting to notice that previous results about ENVISAT 

are confirmed by the analysis regarding the rocket body. Indeed it is gravity gradient 

stabilized, so that it is possible to ensure its lateral surface to be always in sight of the 

LIDAR by designing a relative trajectory characterized by a low value of φOUT. On 

the other hand, CSM is three-axis stabilized with its main direction toward the along-

track axis and the SAR antenna pointed toward the Earth. Hence, the LIDAR is able 

to generate elongated point clouds during most part of the relative motion almost 

independently of the out-of-plane observation angle. In addition, it is worth outlining 

that although the most critical observation condition for CSM takes place when the 

chaser looks at it from directly below the SAR antenna, the designed SEs are both 

able to avoid the corresponding region in the α-β plane. 
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Figure 5.13 - Locus of the roll and pitch angles of two relative trajectories around CSM in the α-

β plane. Red (blue) dots correspond to successes (failures) of the PCA in identifying the target 

main axis at a relative range of 20 m. 

 

Figure 5.14 - Locus of the roll and pitch angles of two relative trajectories around RB in the α-β 

plane. Red (blue) dots correspond to successes (failures) of the PCA in identifying the target 

main axis at a relative range of 20 m. 
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5.2.4 Global performance summary 

 

In order to conclude the performance assessment of the techniques proposed for 

pose acquisition, it is convenient to summarize and compare the achieved results in 

terms of success rate (computed considering highly variable relative position and 

attitude conditions) and computational efficiency. Specifically, Table 5.9 collects the 

values of SRTM, SRfast-TM, and SRPCA-TM, as a function of Δ, considering ENVISAT 

as test case and setting R to 20 m and 50 m.  

 

R = 20 m 

Δ (°) SRTM (%) SRfast-TM (%) SRPCA-TM (%) 

10 97.2 97.2 96.2 

20 94.0 94.4 96.2 

30 87.6 86.8 95.7 

40 69.2 69.0 91.1 

60 64.8 58.4 78.0 

R = 50 m 

Δ (°) SRTM (%) SRfast-TM (%) SRPCA-TM (%) 

10 70.2 69.8 74.9 

20 68.8 63.4 74.7 

30 67.6 58.6 73.9 

40 62.7 52.8 74.6 

60 57.6 48.4 74.4 

Table 5.9 - Success rate comparison between the proposed techniques for pose acquisition. 

 

This comparison clearly shows that the PCA-TM provides best performance both 

at close range (20 m) and middle range (50 m). This means that this statement is 

valid in the case of both partial and global target visibility. Indeed, if R is 20 m, the 

percentage of coverage of the surfaces of ENVISAT ensured by the point cloud is on 

average 60 %, while almost total coverage is obtained when R is 50 m(PCCoverage is 

on average 90 %). The success rate provided by the on-line TM and the on-line fast-

TM algorithm can be kept just slightly below the ones attained by the PCA-TM only 

if the angular sampling step is low enough (adequate sampling of the 3-DOF relative 
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attitude space). In particular, the value of Δ, below which the reduction of SRTM and 

SRfast-TM becomes too relevant, gets lower as the range increases. For instance, at 

close range, the SRTM and the SRfast-TM are even larger than SRPCA-TM if Δ is 10° and 

they are still comparable to this latter quantity even if Δ is 30°. On the other hand, at 

farther range comparable performance is attained only if Δ is 10°. This phenomenon 

is related to the fact the SRPCA-TM is almost independent on the value of Δ.  

Table 5.10 contains the corresponding computational time analysis, where in the 

case of the PCA-TM the time required by the step for transition from acquisition to 

tracking is included. 

 

R = 20 m 

Δ (°) 

Number of templates Computational time (s) 

On-line 

TM 

On-line 

fast-TM 

(mean) 

PCA-TM 
On-line 

TM 

On-line 

fast-TM 

(mean) 

PCA-TM 

10 26011 12158 37 137.99 123.46 1.53 

20 3610 1706 19 19.40 16.89 1.27 

30 1183 562 13 6.35 5.79 1.18 

40 500 238 10 2.60 2.46 1.14 

60 196 102 7 1.02 0.92 1.11 

R = 50 m 

Δ (°) 

Number of templates Computational time (s) 

On-line 

TM 

On-line 

fast-TM 

(mean) 

PCA-TM 
On-line 

TM 

On-line 

fast-TM 

(mean) 

PCA-TM 

10 26011 8936 37 193.24 132.79 1.53 

20 3610 1229 19 23.96 19.34 1.34 

30 1183 391 13 8.11 6.19 1.28 

40 500 167 10 3.41 2.61 1.27 

60 196 60 7 1.36 1.06 1.29 

Table 5.10 - Computational time comparison between the proposed techniques for pose 

acquisition. 

 

The PCA-TM is characterized by a very low computational load, independently 

of Δ, due to the extremely restrained number of templates (the TM is applied to a 

database obtained sampling a 1-DOF relative state space). On the other hand, the 
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computational cost relative to the on-line TM and the on-line fast-TM is low enough 

(a few seconds) to make them applicable for pose acquisition during close-proximity 

flights, while simultaneously ensuring acceptable success rate only if Δ is set to 30°. 

In conclusion, the PCA-TM outperforms the other techniques conceived in this 

thesis for pose acquisition, both in terms of success rate and computational 

efficiency. Indeed, this performance is comparable with the results obtained by the 

most advanced 3D techniques available in the literature [55, 56], but it is achieved 

considering higher variability of the pose conditions and of the size and shape of the 

target, and more relevant sparseness of the measured point clouds. 

Of course, it is worth clarifying that although a very large portion of both 

operating spacecraft and large debris in orbit do have a principal direction, this 

condition may not be satisfied in a few cases. If this latter case occurs, the on-line 

TM and the on-line fast-TM can still be exploited for the acquisition step within the 

architecture proposed for pose determination of an uncooperative target since they 

have demonstrated good performance over an extremely wide interval of relative 

attitude and relative position states. 

 

5.3 Pose tracking results 

 

5.3.1 Performance comparison of ICP algorithm variants 

 

The first step of the performance assessment of the ICP algorithm, described in 

sub-chapter 2.5, is to compare the results obtained implementing different potential 

strategies. Specifically, four variants are selected by coupling, or not, the NN and NS 

methods, used in the matching step, with the pose prediction algorithm introduced to 

accelerate the ICP convergence. The analysis is realized selecting ENVISAT as test 

case. Moreover, it is necessary to assign the relative trajectory (and the 
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corresponding number of orbits) during which the pose must be tracked. Specifically, 

the relative trajectory around ENVISAT is the SEMR defined in sub-chapter 5.2.1 (Ax 

is 22 m, dxzMIN is 20 m and z  is 10). As soon as the acquisition step is accomplished, 

the tracking algorithm is applied for the time interval during which the chaser 

describes two complete relative orbits around the target, i.e. about 12000 s. This 

allows testing the proposed technique in a wide interval of relative Euler angles and 

range, whose time variation along the relative trajectories is shown in Figure 5.15. 

Indeed, the time variation of γ (see Figure 5.15-a) is slowed down due to the 

combination of its absolute yaw motion and the relative orbit angular velocity. 

 

 

Figure 5.15 - Time variation of the true relative pose parameters during two consecutive orbits 

around ENVISAT. (a) Euler angles. (b) Range. 
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It is also worth noticing that while the relative range varies from 23 m to 53 m, 

the number of detected points varies in the interval (45, 887) while the average value 

is about 200. It is clear that the choice of considering a very poor resolution for the 

LIDAR leads to extremely challenging conditions for pose determination toward 

which the implemented ICP variants are tested. 

The performance of the four variants of the ICP algorithm is evaluated both in 

terms of pose estimation accuracy and computational time. Specifically, the 

statistical analysis presented in sub-chapter 5.1 is implemented by setting the number 

of simulations to 100. Simulation results are collected in Table 5.11, where the 

accuracy level is measured by the rms of φERR and |T|ERR, respectively for the relative 

attitude and position.  

 

ICP algorithm 

variant 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

NN 0.28 1.3 39 8.3 

NS 0.24 1.3 19 9.8 

NN aided with 

prediction 
0.24 1.0 39 7.8 

NS aided with 

prediction 
0.21 1.1 16 8.7 

Table 5.11 - Statistical analysis of performance of the ICP variants in terms of pose estimation 

accuracy and computational time. The results are computed for two relative orbits around 

ENVISAT and averaged over 100 simulations. 

 

By looking at these results, it is clear that all the implemented ICP variants 

provide comparable accuracy levels since the errors in the relative attitude and 

position are always kept below 0.3° and around 1 cm, respectively. This result is 

confirmed also by the other error parameters defined in sub-chapter 5.1. Specifically, 

the rms of δφEA and ϑERR is kept below 0.08° and 0.07°, respectively, independently 

of the considered ICP variant. In spite of this similar performance, the NS method 

can be considered more effective than the NN one for pose tracking since it provides 
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a significant saving in terms of computational cost (of about 53 % and 58 %, without 

and with the aiding of the prediction algorithm, respectively). This can be explained 

by observing that the NS method allows performing the ICP matching step much 

faster than the NN one, in spite of a slight increase in the mean number of required 

iterations. It is also important to notice that the prediction algorithm provides not 

only the expected acceleration of the ICP convergence (of about 14 % adopting the 

NS approach) but also a slight increase in the pose estimation accuracy. This latter 

effect is a consequence of the significant and relatively fast variability of the pose 

parameters determined by the chaser motion around the target. 

For a better understanding of all the statistics shown in Table 5.11, it is necessary 

to look at the time variation of both the accuracy and the computational time 

parameters. In this respect, the four implemented ICP variants are compared in terms 

of φERR (see Figure 5.16), |T|ERR (see Figure 5.17), tCONV (see Figure 5.18) and NIT (see 

Figure 5.19). 

 

 

Figure 5.16 - Time variation of φERR along the assigned relative trajectory around ENVISAT 

considering the four implemented ICP variants. (a) NN. (b) NS. (c) NN aided with prediction. 

(d) NS aided with prediction. The red dotted-line represents the mean value. The blue dotted-

lines represent the 3σ bounds. Results are averaged over 100 simulations. 

0 2000 4000 6000 8000 10000 12000
-1

0

1

2

Time (s)

(°)

(a)

0 2000 4000 6000 8000 10000 12000
-1

0

1

2

Time (s)

(°)

(c)

0 2000 4000 6000 8000 10000 12000
-1

0

1

2

Time (s)

(°)

(b)

0 2000 4000 6000 8000 10000 12000
-1

0

1

2

Time (s)

(°)

(d)



Chapter 5 - Pose determination algorithms: performance assessment.  155 

 

 

Figure 5.17 - Time variation of |T|ERR along the assigned relative trajectory around ENVISAT 

considering the four implemented ICP variants. (a) NN. (b) NS. (c) NN aided with prediction. 

(d) NS aided with prediction. The red dotted-line represents the mean value. The blue dotted-

lines represent the 3σ bounds. Results are averaged over 100 simulations. 

 

 

Figure 5.18 - Time variation of tCONV along the assigned relative trajectory around ENVISAT 

considering the four implemented ICP variants. (a) NN. (b) NS. (c) NN aided with prediction. 

(d) NS aided with prediction. Results are averaged over 100 simulations. 
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Figure 5.19 - Time variation of NIT along the assigned relative trajectory around ENVISAT 

considering the four implemented ICP variants. (a) NN. (b) NS. (c) NN aided with prediction. 

(d) NS aided with prediction. Results are averaged over 100 simulations. 
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prediction algorithm also tend to amplify the standard deviation of φERR in 

correspondence to the spikes of its mean value. Of course, the same observation can 

be made by looking at the time variation of |T|ERR in Figure 5.17. 

Finally, the NS method looks less sensitive to the sensor noise if compared to the 

NN one. This can be noticed by looking at the time variation of the standard 

deviation error both in Figure 5.16 and Figure 5.17. 

At this point, it is interesting to evaluate the effect of introducing the weighting 

step in the ICP algorithm, as it is described in sub-chapter 2.5.1. Specifically, this 

analysis has been done considering the variant of the ICP algorithm which exploits 

the NN method and the aiding of the prediction algorithm as the pose refinement 

step. Preliminary numerical simulations, for which the results were averaged over 10 

simulations, showed a slight performance worsening due to the fact that the great 

majority of the sensor/model point pairs exhibited comparable point-to-point 

distances. Thus, in order to enhance the possible advantage connected to the adoption 

of a weighting law, ad-hoc simulations are performed considering larger noise levels, 

i.e. σRANGE is set to 10 cm (instead of 25 mm) and σLOS is set to 0.0028° (instead of 

0.0007°). Specifically, the effect of switching on and off the weighting step of the 

ICP algorithm is analyzed. The related simulation results, averaged over 100 

simulations, are in collected in Table 5.12, both in terms of pose estimation accuracy 

and computational efficiency. 

 

ICP weighting 

step 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

Off 0.44 1.9 56 12.1 

On 0.42 1.9 43 9.7 

Table 5.12 - Effect on ICP performance in terms of pose estimation accuracy and computational 

efficiency of the weighting step adopting the NN method aided with the prediction algorithm 

The results are computed over two relative orbits and averaged over 10 simulations. 

 



Chapter 5 - Pose determination algorithms: performance assessment.  158 

 

Hence, it is possible to state that, when dealing with highly noisy point clouds, 

the adoption of weights provides faster algorithm convergence (about 22 %) due to a 

reduced iteration number, while providing also a slight improvement in the 

estimation of the attitude parameters (about 6 %). However, the most important 

result is that the ICP algorithm has been proved to be robust against significant 

increase in the level of LIDAR noise both with and without the introduction of the 

weighting step. 

 

5.3.2 Effect of target visibility 

 

The spikes observed in Figure 5.16 and Figure 5.17, which characterize the time 

variation of the errors in the estimation of the pose parameters, are clearly related to 

the variation of the true pose which can lead to particularly unfavorable observation 

conditions of the target in the sensor FOV. This phenomenon is here analyzed in 

detail focusing on the results obtained by applying the NS version of the ICP 

algorithm aided by means of the prediction step. 

Figure 5.20 shows the time variation (along the relative trajectory designed 

around ENVISAT) of φERR together with the value of the ICP cost function at 

convergence (fCONV), the size of the point cloud detected by the LIDAR (NP), and its 

distribution around the sensor boresight axis (DBOR) as defined in eq. 2.4. Firstly, the 

comparison between Figure 5.20-a and Figure 5.20-b demonstrates that a direct 

correlation exist between the accuracy level attained by the ICP algorithm and the 

value of fCONV. Specifically, the higher (lower) fCONV gets, the worse (better) the 

accuracy level becomes. Secondly, by looking at Figure 5.20-c and Figure 5.20-d, 

this phenomenon appears to be strictly related to NP and DBOR. In particular, it is clear 

that ICP performance worsening is caused by unfavorable observation conditions of 

the target which determine either a significant reduction of NP or an increased 

concentration of the measured points around the sensor boresight axis (reduction of 

DBOR) or even the occurrence of both these events. Conversely, observation 

conditions which give rise to large numbers of measurements coupled with relevant 
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dispersion around the sensor boresight axis (which means better coverage of the 

target surface), allow the ICP obtaining fine accuracy levels.  

 

 

Figure 5.20 - Effect of the true pose variation on ICP performance adopting the NS method 

aided with the prediction algorithm. The sub-plots represent the time variation along the two 

consecutive relative orbits around ENVISAT of φERR (a), fCONV (b), NP (c) and DBOR (d). The 

dashed-red (green) vertical lines identify examples of time instants at which the sets of pose 

parameters providing unfavorable (favorable) observation conditions. 
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Examples of time instants corresponding to favorable (680 s and 3000s) and 

unfavorable (7100 s and 11100 s) observation conditions are indicated by green and 

red dashed-lines, respectively, in Figure 5.20. Hence, additional interesting 

information can be derived by showing the corresponding point clouds. For instance, 

by looking at the point cloud (composed of 53 points) acquired after 7100 s as 

depicted in SRF in Figure 5.21, it is clear that a disadvantageous condition (φERR is 

0.39°) occurs if the measured points are mostly concentrated on one single surface of 

the target. Indeed, this situation can also produce ambiguous pose estimates 

especially due to the simplified modeling of the target which does not include surface 

details. 

 

 

Figure 5.21 - LIDAR point cloud (blue dots) in SRF after 7100 s. 

 

On the other hand, after 680 s, the measured point cloud (166 points) covers a 

large portion of the target and most of its surfaces are in sight. The corresponding 

point cloud, depicted in Figure 5.22, allows the ICP providing better accuracy (φERR is 

0.14°). 
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Figure 5.22 - LIDAR point cloud (blue dots) in SRF after 680 s. 
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monitoring trajectory to optimize the observation condition of the target main axis, 
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verify whether the optimal design criterion based on the selection of low values for 

the out of plane observation angle (φOUT), is able to provide advantages also to the 

performance attained during pose tracking. 

To this aim the NS variant of the ICP algorithm aided by means of the prediction 

step is applied considering ENVISAT and CSM as test cases. Specifically, tracking 

performance is evaluated considering the relative trajectories around the two targets 

defined in sub-chapter 5.2.3 and during a time interval of 12000 s (corresponding to 

two consecutive relative orbits). Results in terms of pose estimation accuracy and 

computational time are collected in Table 5.13 and Table 5.14 respectively for 

ENVISAT and CSM. Specifically, the rms of φERR and |T|ERR, as well as the mean of 

tCONV and NIT are computed along the assigned time interval. These quantities are 

then averaged over 10 simulations (due to the reduced number of simulations the 

statistical analysis described in sub-chapter 5.1 is not exploited). The same analysis 
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is applied also to the RB. In order to demonstrate consistency of the results against 

variability of the ICP strategy, the NN variant of the ICP algorithm aided by means 

of the prediction step is exploited. Simulation results are collected in Table 5.15 

using the above-mentioned criteria. It is also worth recalling that for all the targets 

the trajectories which are compared in terms of tracking performance are designed 

setting the same minimum range criterion (25 m for ENVISAT, 11 m for CSM, and 7 

m for RB). 

 

Relative trajectories around 

ENVISAT 
φOUT (°) 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

Circular 

(R = 25 m) 
30 0.12 0.7 8 3 

SEΔRmin 

(Ax = 21 m, dxzMIN = 13 m) 
53 0.21 1.2 15 7.3 

SEMR 

(Ax = 16 m, dxzMIN = 8 m, and    = 25 

m) 

32.6 0.18 0.9 12 5.6 

SEMR 

(Ax = 24 m, dxzMIN = 22 m, and    = 9 

m) 
69.4 0.25 1.0 166 9.2 

Table 5.13 - ICP performance in terms of pose estimation accuracy and computational time 

adopting the NS method aided with the prediction algorithm. The results are computed over the 

two relative orbits considering four different trajectories around ENVISAT and averaged over 

10 simulations. 

 

Relative trajectories 

around CSM 
φOUT (°) 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

SEMR 

(Ax = 8 m, dxzMIN = 6 m, and    = 14 

m) 

29.7 0.30 0.6 16 5.7 

SEMR 

(Ax = 10 m, dxzMIN = 8 m, and    = 8 

m) 
51.3 0.26 1.4 15 5.8 

Table 5.14 - ICP performance in terms of pose estimation accuracy and computational time 

adopting the NS method aided with the prediction algorithm. The results are computed over the 

two relative orbits considering two different trajectories around CSM and averaged over 10 

simulations. 
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Relative trajectories 

around RB 
φOUT (°) 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

SEMR 

(Ax = 5 m, dxzMIN = 4 m, and    = 14 

m) 

19.6 0.56 4.0 6 6.0 

SEMR 

(Ax = 7 m, dxzMIN = 5 m, and    = 7 m) 
81.9 2.96 10.2 7 5.3 

Table 5.15 - ICP performance in terms of pose estimation accuracy and computational time 

adopting the NN method aided with the prediction algorithm. The results are computed over the 

two relative orbits considering two different trajectories around RB and averaged over 10 

simulations 

 

The results collected from Table 5.13 to Table 5.15 confirm that it is possible to 

obtain target observation conditions which are favorable also for the implementation 

of the ICP algorithm, if the relative trajectory is designed by setting φOUT as low as 

possible. This occurs independently of the target geometry and of the adopted ICP 

variant. For instance, the simulations performed for ENVISAT (see Table 5.13) show 

that the circular trajectory, which has φOUT equal to 30°, is characterized by a relative 

attitude and relative position accuracy of 0.12° and 7 mm, respectively. The result 

obtained for RB (see Table 5.15) is even more clear. For instance, the value of φERR 

goes from about 3° to less than 0.6° by reducing φOUT from 81.9° to 19.6°. On the 

other hand, in the case of CSM (see Table 5.14), by reducing φOUT from 51.3° to 

29.7°, the accuracy improvement is obtained only regarding the rms of |T|ERR which 

reduces from 14 mm to 6 m. 

 

5.3.3 ICP performance sensibility to model parameters  

 

This sub-chapter contains the results of the numerical simulations carried out to 

evaluate how the performance of the two versions of the ICP algorithm obtained by 

using either the NN or the NS method for the matching step are affected by the 

variation of the associated settings or modeling parameters. For all these simulations, 
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ENVISAT is selected as test case and pose tracking is performed along the relative 

trajectory presented in sub-chapter 5.2.1. Moreover, the time statistics of the 

parameters measuring pose accuracy and computational efficiency are evaluated 

adopting the statistical analysis presented in sub-chapter 5.1, for which the results are 

averaged over 10 simulations. 

In the case of the NN method, the most important factor which can be modified 

to determine algorithm performance both in terms of pose estimation accuracy and 

computational efficiency is the level of discretization of the model point cloud. Ad-

hoc simulations are realized by varying the discretization step (ΔP), i.e. the fixed 

distance between consecutive model points, which must be assigned for each surface 

of the target. Specifically, three values of ΔP are assigned, i.e. 5 cm, 10 cm and 50 cm 

thus making the corresponding model point cloud highly dense, intermediate dense 

and highly sparse, respectively. Simulation results are collected in Table 5.16.  

 

ΔP (cm) 
Size of the model 

point cloud 

φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

5 167426 0.28 1.3 37 8.2 

10 43020 0.42 2.2 10 7.9 

50 2046 1.17 4.5 4 5.6 

Table 5.16 - Statistical analysis of the effect on the ICP algorithm performance of the level of 

discretization of the model point cloud, in the case of adoption of the NN method. The results 

are computed over the two relative orbits around ENVISAT and averaged over 10 simulations. 

 

As expected, the larger the selected ΔP is, the more sparse the model point cloud 

becomes, thus leading to a performance worsening in terms of the errors in both the 

relative position and attitude parameters, which is mainly caused by the fact that the 

ICP algorithm is operating on highly sparse point clouds. On the other hand, the 

computational efficiency tends to improve as ΔP is increased. Hence, the selection of 
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ΔP must be done by finding the value which minimizes the computational load 

provided that specific requirements are satisfied regarding the accuracy level. This is 

possible since the accuracy level appears to be acceptable, the error in the relative 

attitude and position are kept below 1.2° and 5 cm, respectively, even if an highly 

sparse model point cloud is adopted.  

In the case of adoption of the NS method, the only tunable parameter, which can 

be modified to affect the ICP performance, is the distance threshold (τNS), defined in 

sub-chapter 2.5, used to verify the consistency to the target geometry of the model 

points generated by projecting the measurements on the target surfaces. Up to now, 

all the simulations exploiting the NS method were carried out by setting τNS to 10 cm. 

Hence, ad-hoc numerical simulations are realized to evaluate ICP performance 

variation considering eight different values of τNS, from 1 mm to 10 m. Results are 

collected in Table 5.17. 

 

τNS (m) 
φERR (°) 

rms 

|T|ERR (cm) 

rms 

tCONV (ms) 

mean 

NIT 

mean 

10
-3

 110.51 668.8 125 64.7 

4·10
-2

 13.21 100.2 24 12.9 

5·10
-2

 3.20 22.2 19 10.4 

1·10
-1

 0.24 1.2 19 9.7 

5·10
-1

 0.36 3.2 18 9.8 

1 0.39 3.2 19 9.9 

10 21.53 182.0 30 17.0 

Table 5.17 - Statistical analysis of the effect on the ICP algorithm performance of the variation 

of τNS in the case of adoption of the NS method. The results are computed for the two relative 

orbits around ENVISAT and averaged over 10 simulations. The best configuration is 

highlighted in red. 
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By looking at Table 5.17, it is clear that although the value of τNS can be selected 

within a quite large interval (5 cm, 1 m), the performance of the ICP algorithm tends 

to become unacceptable outside of it. Moreover, it is possible to state that 10 cm is 

the best choice both in terms of accuracy level and computational efficiency. 

 

5.4 ICP-based autonomous failure detection of pose 

determination 

 

The correlation, highlighted in Figure 5.20, between the value of the ICP cost 

function at convergence (fCONV) and the accuracy level attained in the estimation of 

the pose parameters is the key concept on which the autonomous failure detection 

strategy presented in sub-chapter 2.5 is based. Here, results of numerical simulations 

described in the previous sub-chapters are used to demonstrate how it is possible to 

select the threshold (fLIM) for the value of fCONV in order to unambiguously identify 

the success or the failure of the proposed algorithms for uncooperative pose 

determination. All the simulation results regarding the tracking phase of the pose 

determination process have never shown the triggering of instability phenomena, 

leading to a divergence of the error in the estimated relative attitude and position 

parameters (and consequently of the values reached by fCONV). Hence, the attention is 

focused on the simulation results regarding the application of the algorithms 

developed for pose acquisition. 

Firstly, the analysis of the success rate of the on-line TM over the relative 

trajectory around ENVISAT, presented in sub-chapter 5.2.1, is considered. By setting 

Δ to 30°, the values obtained for the SRTM and the computational time are 71.8 % and 

7 s, respectively. Figure 5.23 shows the values of fCONV corresponding to the 

application of the ICP soon after the on-line TM pose solution is acquired. 
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Figure 5.23 - (Up) Values of fCONV corresponding to the 241 sets of pose parameters considered 

along the two consecutive orbits around ENVISAT. (Down) Enlargement of the same graph. 

The red dots and blue circles correspond to the successes and failures, respectively, of the on-

line TM. The maximum value of fCONV which corresponds to algorithm failure is highlighted. 

 

It is clear that a difference of at least two orders of magnitude exists between the 

values of fCONV corresponding to the algorithm's success and failure. Specifically, in 

the former case fCONV is of the order of few mm
2
, while in the latter case it varies 

from more than 10 cm
2
 up to a few m

2
. 

At this point, it is necessary to extend this analysis considering a wide interval of 

relative distances and the entire 3-DOF space of the relative attitude parameters. To 

this aim, the effect of the selection of fLIM on the conditioned probabilities of 

declaring success or failure of pose acquisition is analyzed by referring to the PCA-

TM simulation results. In the following, PSS (PFF) is the probability of declaring 
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success (failure) given success (failure), while PSF (PFS) is the probability of 

declaring success (failure) given failure (success). Figure 5.24 shows the behavior of 

these conditioned probabilities as a function of fLIM. Specifically, it is obtained from 

the results of the simulations done for ENVISAT, setting Δ to 30° and R to 20 m. 

 

 

Figure 5.24 - Variation of the conditioned probability of declaring success or failure of the PCA-

TM algorithm as a function of fLIM. 

 

It is clear that a very low value of fLIM (in the order of few cm
2
) could be selected 

as an adequate and safe threshold to unambiguously identify successes and failures 

of pose acquisition. In fact, for any value of fLIM above 2 mm
2
, the PSS and the PFF 

are close to 100 %, while simultaneously the PSF and the PFS are close to 0 %. For 

instance, having set fLIM to 5 cm
2
, it is possible to determine the absolute probability 

of correctly declaring success and failure (POK). This quantity is computed from the 

results of the numerical simulations done for ENVISAT and CSM considering 

different values of the relative range and setting Δ to 30°. Results are collected in 

Table 5.18, including, for any value of POK, the corresponding value of SRPCA-TM. 
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R (m) 
ENVISAT CSM 

SRPCA-TM (%) POK (%) SRPCA-TM (%) POK (%) 

10 / / 84.4 97.0 

20 95.7 99.6 70.4 78.0 

30 89.5 99.4 54.7 62.4 

40 68.2 99.8 46.9 57.7 

50 73.9 99.1 / / 

60 79.4 98.4 / / 

70 70.6 98.6 / / 

80 46.2 94.8 / / 

Table 5.18 - Summary of the values of POK obtained setting fLIM to 5 cm
2
. The corresponding 

values achieved for the SRPCA-TM are also included. 

 

These simulations demonstrate that the proposed approach works extremely well 

when operating on large and asymmetric targets, e.g. ENVISAT. In fact, the absolute 

probability of correctly declaring success and failure is higher than 94 % even at a 

relative range of 80 m where the SRPCA-TM is extremely low. On the other hand, in 

the case of CSM, the reliability of the autonomous failure detection strategy is 

assured only at very close ranges, when partial views allow to solve the ambiguity 

caused by the symmetry of the target, or if the LIDAR resolution is high enough to 

obtain more information from the measured point clouds.  

Finally, by looking at the time variation of fCONV in Figure 5.20-b, it is worth 

outlining that the above-mentioned value of fLIM could be successfully exploited also 

when applying the autonomous failure detection step during pose tracking. 

 

 

 

 



Chapter 6 - LIDAR-based localization and mapping of UAVs.  170 

 

Chapter 6 - LIDAR-based localization and 

mapping of UAVs 

 

SLAM is the real-time process by which a mobile ground/aerial robot, moving 

within an unknown environment, computes its own trajectory (localization) while 

simultaneously building a map of that environment (mapping). A fundamental 

feature of any SLAM algorithm is that this map must be globally consistent, meaning 

that the robot must be able to recognize previously visited locations (i.e. loop closure 

detection) and to integrate the subsequent constraints within the existing map [131]. 

Although the SLAM problem can be considered solved from the theoretical point of 

view [18], and several improvements have been carried out in the last two decades 

[19], there are still many open issues especially regarding its real-time 

implementation on board MAVs. 

The SLAM problem can be dealt with by exploiting EO sensors, which can be 

active and passive, or other ranging systems, like RADAR. As regards this latter 

technological solution, the main related issue is that RADAR are still too heavy and 

power consuming, and may require significant data processing efforts, to be installed 

on board any kind of MAV. However, it is worth mentioning that great amount of 

research efforts are currently in progress toward the integration of compact radar 

systems on board MAVs [132]. Hence, by focusing on EO sensors, a distinction can 

be made between visual SLAM algorithms, which rely on monocular or stereovision 

passive cameras, and LIDAR ones which use 2D or 3D laser scanners. 

Visual SLAM algorithms can be classified into two different categories, namely 

the loosely-coupled and tightly-coupled approaches, depending on the way visual 

and inertial data are integrated. In the former case, the visual data are processed, 

separately and (typically) at different frequency with respect to the inertial ones, by a 

"pose estimator" block in order to compute the position and attitude parameters of 

the considered platform, which are then sent within the navigation filter [133]. On 

the other hand, the tightly-coupled approach involves the adoption of image 
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processing techniques to identify robust features from the acquired visual data. Each 

of these features provides two additional equations, defining their motion within the 

image plane, to the navigation filter (for instance an EKF) [134]. 

In this work LIDAR-based localization and mapping algorithms are addressed. In 

fact, LIDAR are characterized by low sensibility to variable ambient light conditions, 

thus providing a higher degree of autonomy with respect to passive sensors. 

This chapter is relative to the 6-months activity carried out at Cranfield 

University (UK) in the frame of Program STAR - Linea 2 - financially supported by 

UniNA and Compagnia di San Paolo. It is organized as follows. 

Sub-chapter 6.1 is a short review of most recent solutions developed for 

localization and mapping using laser scanner measurements. Specific attention is 

addressed to the issue of implementing SLAM on board MAV and some recent 

solutions are listed. 

Sub-chapter 6.2 describes in detail the innovative techniques developed for 

localization and mapping to be performed on board of a MAV. They are based on the 

integration of laser scan data provided by a two-dimensional (2D) LIDAR, and 

inertial measurements, i.e. vehicle's acceleration, angular velocity and attitude given 

by a low cost IMU. 

Sub-chapter 6.3 describes the experimental setup designed to acquire real-data 

over which algorithm performance are assessed, as well as the related test area. 

Finally, sub-chapter 6.4 contains the results obtained by running off-line the 

developed algorithms over the acquired data. 

 

6.1 Literature review 

 

LIDAR-based techniques for the localization step of a SLAM algorithm can be 

generally classified into probabilistic and scan matching approaches [135]. 
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Probabilistic techniques (which have been most commonly adopted over the years 

especially for indoor applications) deal with the problem of matching detected 

landmarks between consecutive datasets by using the concept of maximum 

likelihood. An example of probabilistic method for local SLAM with detection and 

tracking of moving objects from a moving vehicle in dynamic outdoor environments 

can be found in [136]. On the other hand, matching methods are typically conceived 

to estimate the vehicle trajectory incrementally, i.e. by comparing subsequently 

acquired datasets. However, in some cases the measured dataset relative to a certain 

time instant is directly matched to the updating map, as this procedure can reduce the 

risk of ambiguities, which is particularly relevant to vehicles moving at high speed in 

outdoor environment. Scan matching approaches can be further divided into three 

different categories, namely feature-to-feature, point-to-feature and point-to-point 

techniques. 

The selection of the localization technique affects also the choice of the approach 

adopted for the mapping step. For instance, the main advantage of using features for 

localization is that they can also be used to build the map, thus reducing the related 

amount of information to store. Also, the search for the correspondences is faster, 

although the contribution of the feature extraction algorithm must be considered, for 

an overall comparison of the computational time performance. To be precise, three 

different methods basically are applicable to perform mapping [135]. In addition to 

the raw data representation, which is extremely simple to implement but can lead to a 

huge amount of data to be stored, the remaining approaches (mostly adopted in the 

literature) are the occupancy grid methods and the feature-based ones. Occupancy 

grids techniques aim at organizing the environment where the vehicle is moving as a 

grid, which can be 2D or 3D. Each time a new dataset is available the probability that 

each grid location is occupied by an obstacle is computed. On the other hand, 

feature-based methods represent the environment as a set of predefined features 

which need to be extracted from the acquired datasets. Occupancy grid solutions 

have two main advantages. Firstly, they are conceptually much more tailored to deal 

with unstructured environments, in which reliable features (corners, lines or planes) 

are difficult to detect. Secondly, they can provide dense as well as sparse 

representation of the observed environment, depending on its complexity, by 
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properly setting the resolution of the grid. At the same time, the main drawback is 

that the independence assumption between cells during updates may lead to 

inconsistent maps. On the other hand, feature-based algorithms for mapping lead to 

compact representations of the observed environment, with a high speed of execution 

and little memory consumption. Also, this representation is less easily prone to 

generate inconsistencies, as it implicitly considers correlation between cells. The 

main drawbacks are the possible loss of information due to the sparse 

(discontinuous) representation of the environment, as well as the difficulties intrinsic 

to the feature extraction and the data association processes. 

Some interesting LIDAR-based solutions recently proposed for localization and 

mapping are discussed in the following. 

One scan matching method developed to overcome the computational load issue 

of point-to-point correspondence determination is the Polar Scan Matching (PSM) 

algorithm. It basically associates points having the same bearing in two successive 

scans, taking into account the polar nature of the local reference frame of many 2D 

laser scanners [137]. Algorithm's performance is evaluated considering both 

simulated data and real scans acquired by a Sick LMS 200 laser scanner installed on 

a ground robot. With regards to the real scans, firstly, static acquisitions are taken at 

four different locations for each element of a list of indoor environments for which 

the ground truth is available. Secondly, the PSM is applied to all the possible pairs of 

scans relative to the environment, thus computing the variation of orientation and the 

displacement. Results show that this technique works better in cluttered indoor 

environment, where the scan matching error is of cm order in position and sub-

degree in attitude, while it has problems in corridor environments where the error 

tends to diverge. Additional tests are realized by implementing the PSM technique 

within a Kalman filter-based SLAM algorithm, which demonstrate capability to 

obtain global accuracy level which is better than the one provided by the odometry of 

the robot used for the tests [138]. 

Another scan matching method, which is based on the HT, namely the Hough 

Scan Matching (HSM), is proposed in [139]. This technique allows comparing dense 

scans without the need of extracting features. Specifically, it is based on the 



Chapter 6 - LIDAR-based localization and mapping of UAVs.  174 

 

definition of a spectrum function which allows to translate the matching problem to 

the Hough domain whose invariance properties allows to compute separately the 

orientation and translation pose parameters. Algorithm's performance is evaluated 

performing simulations on real scan data of different environments taken from the 

Internet, and adopting models of four different range sensors (i.e. SICK LMS, SICK 

PLS, Hokuyo PB9-01, and the edge-extracting pipeline of an omnidirectional 

camera). The algorithm performs slightly better in an office-like environment than in 

an unstructured one. Specifically, in the former case, sub-degree and cm level 

accuracies are respectively obtained in heading and translation, while in the latter 

case, the heading error is of a few degrees and the translation error is around 10 cm. 

One scan matching method based on cross correlation of two LIDAR scans can 

be found in [140]. The algorithm looks for the rigid-body transformation which 

maximize a correlation function in a probabilistic way. It is worth outlining that 

unlike point-to-point or point-to-feature matching techniques (e.g. the Iterative 

Closest Point, ICP, or the Iterative Closest Line, ICL) which perform a local search, 

the correlative scan matching aims at finding the global maximum of the correlation 

function over a large space of plausible transformations which must be provided a 

priori (e.g. by means of wheel/visual odometry). The performance of different kinds 

of correlative approaches proposed in [140] is evaluated on simulated data obtained 

from a map generated from real LIDAR data. Also, the performance of these 

correlative techniques is compared to modified implementation of the ICP and ICL 

algorithms, both in terms of pose estimation accuracy and computational load. The 

correlative approach is more computational time demanding than ICP and ICL and 

provides comparable accuracy level in case of small initialization error. However, it 

is proven to be more robust toward larger errors in the required initialization. 

A LIDAR based approach to perform SLAM in 3D outdoor environments can be 

found in [141]. It performs localization by means of a modified ICP algorithm 

(point-to-point scan matching approach), which is designed to compensate the 

orientation errors due to erroneous point correspondence determinations. The 

peculiar aspect of this work is that 3D feature points are extracted from the raw data 

and identified by purposely defined descriptors in order to compute faster and more 
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robust point-to-point correspondences. The mapping step of this SLAM approach 

relies on a raw data representation. Experimental tests are carried out installing a 2D 

laser scanner (LMS291, SICK, Germany) on board an unmanned ground robot. The 

laser scanner is mounted on a DC motor which provides a tilt angle measured by an 

encoder in order to obtain 3D scans. The absolute roll and pitch angles of the robot 

are given by an IMU, while the yaw angle and motion increments are get by means 

of a wheel encoder and the IMU. The results of the experimental tests show that the 

algorithm is able to provide a faster convergence with respect to the basic ICP 

implementation, and also to reduce the vertical drift in the estimated trajectory. 

A flexible and scalable 2D SLAM approach usable for a multitude of scenarios 

involving unmanned ground and marine vehicles is proposed in [142]. The mapping 

step is based on an occupancy grid map [143] concept, while localization is 

performed by means of a scan matching approach which is based on optimization of 

the alignment of beam endpoints with the map learnt so far. The main advantage of 

this approach is that it does not require the necessity to search for point 

correspondences. The full state vector is estimated by a 3D EKF which exchanges 

information with the 2D SLAM algorithm (although they run at different 

frequencies). Specifically, the EKF provides the pose information (once projected on 

the xy plane) necessary to initialize the scan matcher, while the pose computed by 

SLAM is used as a measurement update for the filter. The reliability of this approach 

is tested in various scenario by installing an Hokuyo UTM-30LX 2D laser scanner on 

board unmanned ground/marine vehicles. No information about the quantitative 

accuracy of the approach is provided. 

The works analyzed up to now show several techniques capable of providing 

successful localization and mapping capabilities to autonomous ground/marine 

vehicles moving within large scale outdoor and indoor environments. However, 

when trying to apply these algorithms to enable MAVs with SLAM capabilities, 

more complex technical challenges arise with respect to ground/marine vehicles. 

Specifically, three main issues must be taken into account. Firstly, the flying robot's 

propeller can generate a limited thrust to remain airborne and this significantly 

restrains the amount of payload available for sensing and computation. Secondly, 
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MAVs have a very complex and fast dynamics thus having to rely on complex 

filtering techniques to get reliable state estimation. Finally, MAVs can hover at 

different heights and so they move along 3D trajectories. A more detailed description 

of these technical challenges can be found in [20]. 

An example of design of a quadrotor helicopter capable of performing fully 

autonomous exploration within an indoor unknown environment is given by [20]. 

Specifically, an Hokuyo UTM-30LX 2D laser scanner is installed on the AscTec 

Hummingbird from Ascending Technologies GmBH to perform localization by 

applying the correlative scan matching approach [140]. The relative motion 

parameters computed from scan matching are then sent to a standard EKF which 

provides the entire state vector solution. Experimental tests show that after 1 min 

flight, the average distance error was less than 1.5 cm, while the average velocity 

error was 0.02 m/s, with a standard deviation of 0.025 m/s. The proposed localization 

algorithm is also integrated to the GMapping technique [144] to perform 2D SLAM. 

This SLAM solution is proven to be reliable for autonomous exploration of large 

indoor environment. The only problem is the computational load since the algorithm 

runs on-line but it takes 1 s or 2 s to process incoming laser scans. This latter aspect 

could cause too large delays to be able to safely control the MAV. 

Droeschel at al. [145] propose a local multi-resolution occupancy grid map 

method to perform SLAM on board a MAV by exploiting 3D LIDAR scans. 

Specifically, they use an Hokuyo UTM-30LX-EW 2D laser scanner which is rotated 

around the axis perpendicular to its scan plane by means of a Dynamixel MX-28 

servo actuator in order to produce 3D scans. It is worth outlining that visual 

odometry from a stereocamera system is used in order to compensate vehicles 

motion (during the sensor rotation) for the 3D scan assembly. The main characteristic 

of the proposed approach is that the occupancy grid map has higher resolution closer 

to the vehicle, and conversely lower one by moving farther from it. This solution 

allows to reduce the computational effort of the SLAM algorithm while 

simultaneously keeping the same accuracy level. A scan matching technique based 

on a probabilistic approach (maximizing occupancy likelihood) which registers the 

acquired scans to the map built so far in order to estimate the MAV's motion is also 



Chapter 6 - LIDAR-based localization and mapping of UAVs.  177 

 

presented. The performance of this approach is compared to the classical ICP and the 

Generalized ICP (GICP) algorithms by means of experimental tests in which the 

ground-truth pose information are given by an indoor motion capture (MoCap) 

system. Results demonstrates that the algorithm estimates the trajectory more 

accurately with faster runtime than the compared techniques. An hexarotor MAV 

equipped with redundant sensing payload (two rotating Hokuyo UST-20LX laser 

scanners, three stereo camera pairs, and one IMU) is presented in [146]. This 

hardware architecture aims at providing omnidirectional environment perception as 

well as 6-DOF pose estimation capabilities. The 2D laser scanner are rotated to 

produce 3D scans and the same SLAM algorithms as in [145] are tested to the data 

acquired by means of this platform. 

Another technique using LIDAR scans for localization and mapping in real time 

is presented in [147]. The adopted sensor is again an Hokuyo UTM-30LX EW laser 

scanner mounted on a motor capable of providing rotations around its boresight axis 

(which are measured by an encoder) in order to produce 3D scans. The LIDAR 

odometry algorithm looks for two different types of 3D feature points (i.e. edge and 

planar points) in two consecutive 3D scans, and it finds the feature correspondences 

by adopting purposely defined metrics. Finally, it estimates the rigid transformations 

which best aligns the two sets of corresponding feature points by exploiting the 

Levenberg-Marquand algorithm [148]. The mapping algorithm is similar to the 

odometry ones, in the way feature points are extracted and the pose parameters are 

updated, but it runs at lower frequency (i.e. 1 Hz instead of 10 Hz). Experimental 

tests show that these techniques are able to estimate the trajectory of autonomous 

robot with an accuracy of about 1 % and 3 % of the travelled path, respectively 

indoor and outdoor. Other tests are aimed at comparing the accuracy levels of three 

approaches, i.e. LIDAR odometry alone, IMU alone, LIDAR odometry and IMU. 

Results show that the most accurate trajectory estimations in terms of percentage of 

the travelled path are obtained with the third approach. A more recent paper [149] 

presents an integration of visual and LIDAR odometry for localization. Specifically, 

visual odometry runs at 60 Hz, LIDAR odometry is used for refinement of the 

localization solution and it runs at 10 Hz, and finally the mapping algorithm runs at 1 

Hz. This approach is aimed at minimizing the trajectory drift and providing more 
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robust maps. Experimental tests show that this approach provides an error on the 

estimated trajectory which is kept below 1% of the travelled path. Of course the 

major drawback of this method is that it can only tolerate temporary light outrage, 

but it is not suitable in the case of continuous darkness. 

An ICP-based SLAM algorithm is provided by [150]. It is conceived to be used 

on board of a quadrotor MAV purposely designed to fly in unknown indoor 

environments for inspection purposes. The main original approach of the proposed 

version of the ICP algorithm relies in a modified approach to the ICP matching step 

aiming at improving the computational efficiency. The mapping step is performed on 

the basis of a raw data representation. 

In spite of the promising results achieved by the techniques mentioned in this 

short review, the problem of performing in real time LIDAR SLAM on board a 

MAV is still an open issue. In this context, the objective of the research activity is 

the development of algorithms capable of estimating the vehicle's trajectory with 

high accuracy as well as of simultaneously providing highly accurate maps by 

exploiting limiting processing and data storage resources. Moreover, the level of 

robustness against variability of the environment and of the lighting conditions must 

be improved. 

 

6.2 Localization and mapping based on LIDAR-inertial 

integration 

 

The pose of the MAV is described in the following by a set of 6 parameters 

representing the position and the attitude of its body reference frame (BRF) with 

respect to a local inertial reference frame, i.e. the East-North-Up (ENU). 

Specifically, TA is the 3D position vector of the MAV with respect to the ENU and 

expressed in the ENU, while a 321 sequence of Euler angles, i.e. heading (γA), pitch 

(βA), and roll (αA), or equivalently the unit quaternion (qA), is used to represent the 
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attitude of the BRF with respect to the ENU. For the sake of clarity, two assumptions 

are made. Firstly, the MAV's BRF is considered coincident and aligned with the 

LIDAR reference frame (LRF), which has the x-axis in the boresight direction, the z-

axis perpendicular to the scan plane (pointed upward), and the y-axis oriented to 

obtain a right-handed reference frame. Secondly, the ENU origin is assumed to be 

coincident with the initial position of the MAV. However, the proposed approach can 

be easily extended to a more general case. 

 

6.2.1 LIDAR/Inertial Odometry algorithm 

 

Localization is carried out by a hybrid LIDAR/Inertial Odometry algorithm (L/I-

O). Specifically, it is one point-to-point ICP-based scan matching algorithm. The 

pose of the considered flying vehicle is tracked by integrating attitude information 

from an IMU with position information obtained by recursively registering two 

consecutive scans provided by a 2D LIDAR. Of course, the initial pose of the MAV 

must be fully known at the start of the trajectory, in order to be compliant with the 

concept of odometry [131]. 

Generally speaking, 2D scan matching is the problem of registering two sets of 

2D data, i.e. a reference scan and a current scan, by looking, in the pose search space, 

for the optimal rotation and translation, i.e. the ones that provide the best alignment 

by minimizing a purposely defined error function [139]. Typically, the reference scan 

represents the environment in which the vehicle moves and it can be a pre-built map 

or a previous scan, while the current scan is the measurement dataset provided by the 

available range sensor at the time of interest. 

The L/I-O algorithm extracts the attitude directly from an IMU at high frequency 

(about 90 Hz), while the position is estimated at lower frequency (up to 36 Hz) using 

a LIDAR odometry technique based on a point-to-point scan matching algorithm. A 

block diagram to describe this system architecture is provided in Figure 6.1. 
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Figure 6.1 -Block diagram describing the system architecture for localization. 

 

The scan matching algorithm is described in detail as follows. Let tk and tk+1 be 

two successive time instants at which two LIDAR scans are acquired and let P
LRF

(tk) 

and P
LRF

(tk+1) be the corresponding point clouds in LRF. Firstly, a coordinate 

transformation is applied to convert these point clouds from LRF to the Vehicle 

Reference Frame (VRF), which is a new frame aligned to ENU with the origin at the 

current position of the MAV (and so coincident to the LRF origin). This is done as 

shown in eq. (6.1), 
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where RVRFtoLRF is the rotation matrix representing the attitude of LRF with respect to 

VRF. Secondly, a customized version of the ICP algorithm is applied to find the best 

estimate of the rotation and translation necessary to align P
VRF

(tk+1), i.e. the current 

scan, to P
VRF

(tk), i.e. the reference scan. Specifically, the algorithm provides in output 

an estimate of the variation of the Euler angles (ΔαA, ΔβA, ΔγA) and of the position 

vector (ΔTA) between the two VRFs, occurred during the time interval from tk to tk+1. 

This ICP algorithm is similar to the one described in sub-chapter 2.5. 

Specifically, it is characterized by a sequence of steps, i.e. initialization, matching, 

outliers rejection, selection and minimization of an error metric function, which are 

iteratively repeated until a convergence criterion is met. Each time a new scan is 

available, the ICP algorithm is initialized by setting to zero all the previously defined 

parameters, i.e. ΔαA, ΔβA, ΔγA and ΔTA. With regards to the matching step, which 

mainly determines the algorithm's computational load and the accuracy level, the NN 



Chapter 6 - LIDAR-based localization and mapping of UAVs.  181 

 

approach is adopted, meaning that each point in the current scan is associated to the 

closest one in the reference scan according to the Euclidean metric. In addition, the 

reference scan is pre-processed to build a K-D tree [84], in order to accelerate the 

NN search. The outliers rejection step is introduced to compensate for wrong point 

associations that may arise if there is a poor overlap between the scenes observed in 

two LIDAR acquisitions, meaning that a large number of measurements in the actual 

scan may not have real correspondences in the reference scan. Indeed, this 

phenomenon can lead to significant error in the ICP pose solution. Hence, if d is the 

set of distances between correspondent points, the reference/actual scan matches 

characterized by a relative distance which is outside the interval defined by the mean 

and mode values of d are considered as outliers. As regards the error metric function 

(f), it is selected as the mean squared distance of corresponding points between the 

two scans, as shown in eq. (6.2).  
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Also in this case, the ICP cost function is minimized by using the closed form 

solution proposed by Horn [85]. In (2), Pi
VRF

(tk+1) and Pi
VRF

(tk) are respectively the i
th

 

point of the actual scan and the corresponding one in the reference scan, N(tk+1) is the 

number of points in the current scan, R(VRF(tk)toVRF(tk+1)) is the rotation matrix 

representing the attitude variation of the VRF between the time instants of the two 

scans. Once qA is estimated, the corresponding values of ΔαA, ΔβA, and ΔγA can be 

extracted, and, finally, ΔTA is computed as the difference between the centroid of the 

two scans, as given by eq. (6.3). 
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At this point, the value of f can be updated and the procedure is repeated until the 

variation between two successive iterations goes below a threshold (e.g. 10
-6

 m
2
). 

Once the criterion to stop iteration is met, the output of eq. (6.3) can be used to 

update the MAV's position vector using eq. (6.4). 
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The logic behind the proposed L/I-O algorithm is summarized by the flow 

diagram shown in Figure 6.2. 

 

 

Figure 6.2 -Flow diagram describing the proposed L/I-O algorithm for localization. The red 

circle contains the final output. 

 

Also, the level of robustness of the solution provided by the presented ICP 

algorithm can be augmented by means of the autonomous failure detection strategy 

defined in sub-chapter 2.5. If the value of the cost function at convergence (fCONV) is 

larger than one pre-defined threshold (fLIM), the MAV's position is updated by 

integrating the inertial acceleration provided by the IMU, according to eq. (6.5) 
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where v and a represent velocity and acceleration of the MAV, respectively. 

These latter quantities are converted in ENU thanks to the attitude estimates. 

 

6.2.2 Line-based mapping 

 

The feature-based approach is preferred to the occupancy grid method since it 

leads to compact representations of the environment with a high speed of execution 

and little memory requirement, thus being more compliant with MAVs' limitation 

both in terms of weight and power consumption. Specifically, the attention is focused 

on line-based mapping algorithms, as this activity is preliminary interested to SLAM 

applications in structured 2D indoor environments.  

Before entering the details of the proposed approach, it is necessary to review the 

most important methods available in the literature for line or edge detection, which is 

the core function within line-based algorithms for mapping. A complete review of 

the main existing algorithms for edge detection from 2D range data can be found in 

[151]. Specifically, the most used techniques in the literature are compared in terms 

of speed complexity, correctness and precision by means of experimental tests on 

real scan data collected in a large scale office environment. A line extraction 

algorithm can be divided in three different steps respectively aiming at finding the 

number of lines in the scan, identifying which points correspond to which line, 

converting those points into the representation chosen storage (line fitting). While 

this latter goal is typically performed by exploiting least-squares methods [152-154], 

the most common solutions for the former two problems are listed hereunder. 

 The split and merge algorithm, used for example in [152] and [154], recursively 

searches for lines starting from the entire scan. If a line is not extracted, the scan 
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is split by two and the search is repeated. This method is quite common due to its 

easy implementation. 

 The line regression algorithm, used for example in [153], transforms the line 

extraction problem into a search problem in the line parameter space by adopting 

a concept similar to the Hough transform. This method is quite complex to 

implement. 

 The incremental algorithm tries to incrementally build lines by moving along the 

scan with a fixed point step. 

 The RANSAC algorithm [33] has the advantage to be more versatile since it can 

be used to detect different kind of features once the feature-model is provided. 

The Hough transform method has only been quite popular [155]. However, since 

it applies to 2D images, it requires a pre-processing step, namely the rasterization 

process, to transform the 2D scan into an image, thus incrementing the overall 

computational load. 

 The Expectation-Maximization (EM) algorithm is a probabilistic method whose 

main problem is the fact that it needs a proper selection of the initialization in 

order not to be staked by local minima. 

For any of these methods, a clusterization algorithm is proposed in [151] aimed 

at reducing the computational load. Clusters which contain a number of points below 

a threshold are deleted. The main result of the performance comparison between 

these algorithms is that the Split-and-merge and the Incremental approach are the 

most suitable for SLAM since they are fast enough to ensure real-time 

implementation, they tend to provide a very low number of false positive, and the 

accuracy level is comparable (although lower) to the one provided by more accurate 

but much more computationally demanding probabilistic approaches (e.g. RANSAC 

or EM). 

The proposed line-based mapping technique which processes the 3D data 

provided by the 2D laser scanner, has three basic steps. Firstly, the updated position 

solution is used to translate the measured point cloud from VRF to ENU. Secondly, 

the dataset must be processed to detect lines which are then stored in the updating 

map. While different approaches to data clusterization and line identification exist, 
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line fitting is typically performed by means of least-squares methods. However, they 

can be computationally slow especially when dealing large number of points in the 

acquired dataset. Hence, the main purpose of the proposed line detection method is to 

find a solution for line-fitting which is as accurate and reliable as the least-squares 

methods, while simultaneously having better computational efficiency. The 

algorithm's operation can be divided into three steps. 

The first step is the clusterization process. Unlike traditional approaches, it is 

characterized by two hierarchical levels. Firstly, the scan is subdivided into separate 

clusters by looking for those locations, indicated as break-points, at which the inter-

point distance (i.e. the distance between consecutive points in the scan) is larger than 

a specific threshold (DTh). This part of the algorithm is similar to the clusterization 

process proposed in [151], where the radial distance between consecutive points is 

compared to a threshold. However, the proposed method foresees a second level of 

clusterization, meaning that additional break-points are identified within each cluster, 

by exploiting the polar structure of the point cloud acquired by the 2D laser scanner. 

Basically, both the x and y coordinates of the measured points can be considered 

function of the scan angle θLID. Hence, the sub-cluster search aims at looking for 

those locations i at which either eq. (6.6) or eq. (6.7) is satisfied. These two 

conditions, where N is the number of points in the cluster, compare the local value of 

the x and y derivatives with respect to θLID, to the sum of their mean and standard 

deviation computed over the cluster. At the end of this process, all the clusters with 

less than 10 points are neglected. 
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An example of application of this hierarchical clusterization process to real data 

acquired by a 2D laser scanner is shown in Figure 6.3 (DTh is set to 0.1 m). 
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Figure 6.3 -Clusterization step of the line-based mapping algorithm. Black and red dots identify 

the first element of each cluster, respectively after the 1
st
 and the 2

nd
 level of the process. 

 

After clusterization, the identification step can start. Unlike the techniques listed 

in [151], this approach relies on the PCA. Specifically, the PCA is applied by 

assigning to each cluster the ratio between the maximum and minimum eigenvalues 

(r) associated with its covariance matrix. Hence, if r is larger than a fixed threshold 

(ETh), a cluster is considered as line feature and its direction is given by the 

eigenvector corresponding to the maximum eigenvalue (whose components are λx, λy 

and λz). Specifically, this line passes through the centroid of the cluster and it is 

oriented as the eigenvector corresponding to the maximum eigenvalue of the 

covariance matrix. Figure 6.4 is obtained by applying the PCA-based algorithm for 

line fitting (ETh is set to 500) to the clusters identified in Figure 6.3. 

 

 

Figure 6.4 - PCA-based line fitting. 
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Finally, the line detection algorithm foresees a storage step aimed at assigning to 

each detected line a list of 8 parameters (4 of which are independent) to be stored in 

memory. Firstly, αL is the angle associated to the line direction, according to eq. 

(6.8). 
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Secondly, xC and yC are the coordinates of the centroid of the cluster, while xE1 

and yE1, as well as xE2 and yE2, are the coordinates of the two ends of the line 

segments. They are found by projecting the first and the last elements of the cluster 

on the edge direction according to eq. (6.9), 
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where ρE1 and ρE2, i.e. the distances of the two ends from the line segment centroid, 

can be computed using eq. (6.10). 
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Finally, dL is the distance of the line segment from the origin of the reference 

frame in which it is represented, and it can be computed using eq. (6.11). 
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Since the sub-cluster search could generate break-points within a real edge (due 

to the LIDAR measurement noise), an intermediate merging step is implemented. It 

allows merging two consecutive clusters if the corresponding lines satisfy the 

condition defined by eq. (12),  
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where αCC is the orientation of the direction of the segment which links the two 

centroids, and αT is a very small angular threshold (e.g. 0.05°). This means that the 

line detection algorithm is applied to the aggregate cluster.  

 

In order to prove the advantages of this PCA-based line fitting with respect to 

classical Least-Squares (LS in the following) method, ad-hoc numerical simulations 

are conceived and realized. Firstly, a set of n points is defined in the 2D space. This 

points are randomly distributed along a direction identified by a fixed angular 

coefficient (ml), and their coordinates (x
i
 and y

i
) are given by eq. (6.13), 
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where xS is the fixed step between points along the x-axis, and νσ
i
 is the i

th
 extraction 

from a normal distribution with zero mean and standard deviation equal to σ. 

Secondly, both the PCA and LS methods are applied obtaining the corresponding 

lines, each one identified by an angular coefficient (mPCA and mLS), and a constant 

term (nPCA and nLS). Finally, the line fitting accuracy is evaluated as the mean 

squared distance of the assigned points from the estimated line (ErrPCA and ErrLS), 

according to eq. (6.14). 
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Results are averaged over 10000 Monte-Carlo simulations and are shown in 

Table 6.1, in terms of line fitting accuracy and computational load. With regards to 

the simulation inputs, ml is set to 5, xS is set to 4 cm, and νσ is equal to 5 cm. 

 

n 
PCA time 

saving (%) 

ErrPCA (m
2
) 

rms 

ErrLS (m
2
) 

rms 

ErrPCA - ErrLS 

(%) 

25 83 2.4·10
-3

 2.4·10
-3

 1.2·10
-1

 

50 83 2.4·10
-3

 2.4·10
-3

 2.9·10
-2

 

100 83 2.5·10
-3

 2.5·10
-3

 7.1·10
-3

 

250 83 2.5·10
-3

 2.5·10
-3

 1.1·10
-3

 

500 82 2.5·10
-3

 2.5·10
-3

 3·10
-4

 

1000 80 2.5·10
-3

 2.5·10
-3

 1·10
-4

 

10000 57 2.5·10
-3

 2.5·10
-3

 <10
-4

 

Table 6.1 - Comparison between PCA and LS methods for line fitting. 

 

This analysis proves that the PCA-based line fitting is almost twice faster than 

the LS approach while being able to provide the same level of accuracy. 

Once the line detection phase is completed, the storage step of the mapping 

method must be carried out. Specifically, each candidate has to be compared to every 

line in the map in terms of two parameters, i.e. αL and dL. If a correspondence is not 

found, the candidate line becomes a new element of the map. On the other hand, if 

the candidate represents a visualization of the same feature of the environment from 

a different position, the two lines must be merged. This is done by projecting the two 

ends of the candidate line on the direction of the corresponding one in the map, and 

by comparing these projections to the pre-existing ends. The updated ends are the 

ones that determine the maximum length of the updated line in the map. 
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6.3 Experimental setup and test scenario 

 

In order to assess the performance of the algorithms developed for localization 

and mapping, an experimental setup and a test area are prepared for data recording 

and testing. 

The setup, shown in Figure 6.5 is composed of the items listed hereunder. 

 One 2D LIDAR, i.e. the UTM-30LX-EW produced by Hokuyo. 

 One autopilot, i.e. the Pixhawk produced by 3DRobotics. 

 One embedded board, i.e. the Nitrogen6X, produced by Boundary-

Devices. 

 One battery and two voltage regulators. 

The latter components are needed since the battery has to power both the LIDAR 

(at 12 V) and the Nitrogen board (5 V). The selection of the LIDAR is mainly due to 

its limited size and weight with respect to similar sensors. Thus, it can be easily 

integrated in the architecture of a small MAV. The specifications of the UTM-30LX-

EW can be found in [156], while a complete characterization can be found in [157]. 

 

 

Figure 6.5 - Assembled experimental setup for LIDAR/Inertial data recording. (Left) Top view. 

(Right) Front view. 
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The Nitrogen board is used to register data from both the Pixhawk (using USB 

connection) and the LIDAR (using Ethernet connection) by exploiting the 

corresponding nodes of the Robot Operating System (ROS) [158], namely the 

mavros and the urg_node, respectively. In this way the IMU data from the Pixhawk 

and the range data from the LIDAR can be simultaneously recorded, together with 

their timestamps, within the same bag-file. This makes it possible to run the proposed 

algorithms offline in MATLAB environment by directly reading from the generated 

bag-files. Since IMU data are collected at higher update rate than the LIDAR data, 

the attitude parameters corresponding to the LIDAR timestamps are obtained through 

linear interpolation. The test area, imaged in Figure 6.6, is a 2D maze in which the 

experimental setup is carried by hand. Since the ground truth is not available, the 

localization error cannot be determined point by point along the estimated trajectory. 

Hence, once the indoor scenario is selected, the localization accuracy level is 

evaluated by comparing the length of the estimated travelled path with the length of a 

reference trajectory. This latter quantity (9 m) is computed by taking measurements 

from a single point Laser Range Finder (BOSCH DLR130 Distance Measurer). 

 

 

Figure 6.6 - Test area on the right, with indication of the start and ending points of the travelled 

path. 
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6.4 Localization and mapping results 

 

Firstly, Several runs of the L/I-O algorithm are realized to evaluate the effect on 

performance of its tuning parameters, which are defined hereinafter. The Range 

Limit (RL) is the value of distance over which LIDAR measurements are disregarded 

from the acquired scan. The Angular Resolution (AR) is the angle between two 

consecutive LIDAR measurements which are not deleted from the acquired scan 

(minimum value for AR is 0.25°). The Odometry rate (OR) is the frequency at which 

the L/I-O algorithm is applied (maximum value for OR is 36 Hz which is the LIDAR 

measurement rate). On the other hand, other parameters of the algorithm are kept 

constant and are listed hereinafter. The ICP maximum number of iteration is set to 

30. The minimum value for the time derivative of the ICP cost function at 

convergence is set to 10
-6

 m
2
. The value of fLIM is set to 0.5 m

2
. 

Firstly, the effect of RL is evaluated by considering different values (from 60 m 

to 3 m) while keeping the AR (0.25°) and the OR (6 Hz) fixed. Results in Table 6.2 

show that the RL should always be set below 30 m. This is not highlighted by the 

error on the estimated length of the overall trajectory (LEST), which is almost the 

same for any value of RL, but by looking at the sum of fCONV during the test (fSUM) 

and at its mean (fMEAN). Indeed, these parameters represent an index of how well two 

consecutive scans are aligned by the algorithm, meaning that the lower their value is, 

the larger the accuracy of localization becomes. When RL is 60 m, fSUM and fMEAN 

reach the values of 8.8 m
2
 and 0.149 m

2
, respectively, which are one order of 

magnitude larger than for the other runs. This degradation in performance is 

explained by the fact that LIDAR measurements longer than 30 m are not reliable 

and can cause wrong point-to-point matching by the ICP thus compromising its 

operation. Indeed, when the laser intensity reflected back at the detector is below an 

internal threshold of the sensor (this happens, for instance, when the laser shot passes 

through a window), a value of range around 60 m is the output. Below 30 m, a 

reduction of RL gives advantages in terms of computational load (less number of 

points to be matched by the ICP routine) and localization accuracy. However, if RL 
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is too low (3 m), it may produce an increase in the error in LEST, which shows that it 

is convenient to neglect part of the scan to reduce the computing time, provided that 

it does not cause excessive loss of information. It is finally worth mentioning that the 

attained very low values of fSUM and fMEAN do not disprove the previous statements 

since they are caused by the significant reduction in the amount of points analyzed in 

the scan. 

 

RL 

(m) 

fCONV > fLIM 

(%) 
fSUM (m

2
) fMEAN (m

2
) 

Mean comp. 

time (s) 
LEST (m) 

Error on 

LEST (%) 

60 10 8.799 0.149 0.134 8.16 9 

30 7 1.202 0.020 0.136 8.20 9 

15 5 0.973 0.017 0.149 8.30 8 

11 5 0.984 0.017 0.130 8.44 6 

7 2 0.282 0.005 0.160 8.50 6 

3 0 0.171 0.003 0.159 8.02 11 

Table 6.2 - Performance analysis of the LIDAR/Inertial-Odometry algorithm. Effect of RL (AR 

is 0.25° and OR is 6 Hz). 

 

Secondly, the effect of AR is analyzed considering three values (0.25°, 0.5° e 1°) 

while keeping fixed the RL (11 m) and the OR (6 Hz). Results in Table 6.3 show that 

it is convenient to change AR from 0.25° to 0.5° since it causes a faster ICP solution 

(about 30 %) while ensuring the same accuracy level. It is also possible to state that a 

further reduction of the resolution (AR set to 1°) is not advisable, not only because it 

generates a performance worsening but also because it compromises the applicability 

of the line extraction algorithm for mapping (the analyzed scans become too sparse 

to obtain robust line features). 
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AR 

(°) 

fCONV > fLIM 

(%) 
fSUM (m

2
) 

fMEAN 

(m
2
) 

Mean comp. 

time (s) 

LEST 

(m) 

Error on 

LEST (%) 

0.25 5 0.984 0.017 0.130 8.44 6 

0.5 3 0.947 0.016 0.094 8.48 6 

1 7 2.603 0.044 0.063 8.40 7 

Table 6.3 - Performance analysis of the LIDAR/Inertial-Odometry algorithm. Effect of AR (RL 

is 11 m and OR is 6 Hz). 

 

Thirdly, the effect of OR is analyzed considering four values (36 Hz, 18 Hz, 6 

Hz, 3 Hz) while keeping fixed the RL (11 m) and the AR (0.5°). Results in Table 6.4 

show that low values of OR (3 Hz and 6 Hz) provide better performance than by 

applying the localization algorithm at larger frequencies (18 Hz and 36 Hz). This is 

because the lower rate of execution reduces the propagation of the error, which is 

bonded to the concept of odometry. Since pose variation is computed by comparing 

two successive datasets without considering the history of the trajectory, there is no 

way to correct any mistake committed during the application of the algorithm. 

 

OR 

(Hz) 

fCONV > fLIM 

(%) 
fSUM (m

2
) 

fMEAN 

(m
2
) 

Mean comp. 

time (s) 

LEST 

(m) 

Error on 

LEST (%) 

36 1 2.751 0.008 0.059 7.21 20 

18 1 1.682 0.010 0.077 7.93 12 

6 3 0.947 0.016 0.094 8.48 6 

3 13 1.357 0.047 0.118 8.49 6 

Table 6.4 - Performance analysis of the LIDAR/Inertial-Odometry algorithm. Effect of OR (RL 

is 11 m and AR is 0.5°). 

 

This same principle can be used to understand why the accuracy of the algorithm 

proposed for localization is also affected by the velocity at which the experimental 
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system is moved along the same path. Table 6.5 contains the results obtained for the 

L/I-O algorithm with the same tuning parameters (RL set to 11 m, AR set to 0.5° and 

OR set to 6 Hz) applied to two different datasets, respectively, which were recorded 

by moving along the assigned trajectory within the test area but with different 

velocities 

 

Time 

length 

(s) 

LIDAR / IMU 

measurements 
fSUM (m

2
) 

fMEAN 

(m
2
) 

Mean comp. 

time (s) 

LEST 

(m) 

Error on 

LEST (%) 

26.36 961 / 2441 1.180 0.007 0.013 7.79 13 

9.72 355 / 903 0.947 0.016 0.018 8.48 6 

Table 6.5 - Performance analysis of the LIDAR/Inertial-Odometry algorithm. Effect of motion 

velocity (RL is 11 m, AR is 0.5°, and OR is 6 Hz). 

 

It is clear that, moving faster within the test area limits the error propagation of 

the odometry approach. 

Finally, an example of application of the proposed localization and mapping 

algorithms is shown in Figure 6.7. It is worth outlining that mapping can be carried 

out at different rate with respect to localization, e.g. in this case the mapping rate is 3 

Hz while the localization one is 6 Hz. First of all, it is important to outline that the 

reference trajectory, depicted in green in Figure 6.7, is an approximation of the real 

travelled trajectory and it is used to determine the error in LEST. by looking at Figure 

6.7, it is possible to state that the line-based mapping technique is able to provide a 

sparse but accurate representation of the travelled environment. Specifically, all the 

edges of the real map are accurately extracted in terms of length, location and 

inclination in the ENU. However, an exception is given by the two lines identified by 

blue circles at their ends since they have the same inclination as the corresponding 

real edges but are displaced of some centimeters from the real lines. This can be 

justified as a consequence of the error propagated in the estimated trajectory along 

the travelled path. Future work will be aimed at solving this issue by improving the 
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accuracy of the proposed localization and mapping algorithms. This can be done by 

exploiting the information given by the map itself, in real time, to correct the solution 

given by the odometry algorithm. 

 

 

Figure 6.7 -Example of application of localization and mapping algorithm to the analyzed test 

case: reference trajectory (dashed-dot green); estimated trajectory red; vertices of the real map 

(black dots);real map (black lines);estimated map (blue lines). 
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Chapter 7 - Conclusion and future work 

 

The research activity presented in this thesis was addressed to the development 

and performance assessment of innovative techniques for advanced applications 

regarding the autonomous navigation of aerospace platforms. 

Autonomous relative navigation of multi-satellite systems 

In the framework of space activities like on-orbit servicing and active debris 

removal an original architecture was proposed to carry out the process of pose 

determination of an uncooperative target in relative motion in close-proximity with 

respect to a servicing spacecraft (chaser). A trade-off study, aimed at evaluating 

advantages and drawbacks of the related potential technological solutions, led to the 

selection of the LIDAR as the sensor responsible of relative navigation. Hence, this 

architecture was composed of original 3D model-based algorithms using LIDAR 

measurements (point clouds), specifically tailored to the different steps of the 

process, namely acquisition and tracking. The global aim was to provide solutions 

ensuring high accuracy levels in the estimation of the relative position and attitude 

parameters, while simultaneously optimizing computational efficiency and data 

storage issues as well as enhancing robustness of the overall architecture against 

variable observation conditions and potential algorithms' failures. 

With regards to the pose acquisition step, different algorithms were designed 

which combine the template matching concept with the centroiding approach, and, in 

one case, also with the principal component analysis to restrain the search for the 

pose solution to an extremely limited portion of the relative state space, thus being 

able to reduce the computational load with respect to traditional approaches. Another 

crucial original aspect, common to all the presented techniques, was the possibility to 

perform the template matching search within a database built dynamically (on-line) 

thus allowing relevant saving in the amount of on-board data storage. With regards to 

the pose tracking step, a customized version of the iterative closest point algorithm 

was developed, which exploits different model-sensor point matching strategies at 
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different stages during the tracking phase, and is augmented by a prediction 

technique to accelerate algorithm convergence. 

In order to cope with the extremely restricted amount of open-access data 

regarding uncooperative relative motion on orbit, a software environment was 

developed to assess pose determination algorithms' performance by means of 

numerical simulations. The simulator proved to be a powerful tool to realistically 

reproduce the target-chaser relative dynamics, typical of close-proximity maneuvers, 

and the operation of a 3D spaceborne LIDAR. 

The 3D PCA-based on-line template matching algorithm outperformed the other 

techniques conceived in this thesis for pose acquisition both in terms of success rate 

and computational efficiency. It was proved able to provide very high success rates 

(up to 96 %) considering targets of different shape and size. This result was achieved 

over a much wider portion of the relative state space than what was done for other 

techniques representing the state of the art in the context of uncooperative pose 

determination. In fact, the entire relative attitude space coupled with a wide interval 

of target-chaser relative distances (from 10 m to 80 m) were selected in order to 

cover the overall space of pose solutions which is of interest in the context of target 

monitoring scenarios. Also, the computational time was kept always around 1 s, thus 

being compliant with the necessity to provide the tracking algorithm with an initial 

guess of the pose parameters fast enough to avoid losing track of the target. 

Algorithm's robustness was improved by adopting two solutions. Firstly, a method to 

establish the applicability of the algorithm during operation, based on the analysis of 

the shape of the measured point cloud was introduced. Secondly, one additional step 

to ensure safe transition from acquisition to tracking by solving any possible 

ambiguity in the pose solution was included in the pose determination process. Both, 

these strategies were proved to work properly in any simulated scenario, by 

respectively identifying a-priori potential failures and solving pose ambiguities. The 

3D PCA-based on-line template matching algorithm was specifically envisaged to 

estimate the initial relative position and attitude of targets characterized by a 

principal direction, as it is mostly verified for both operating spacecraft and large 

debris. If this condition is not satisfied, the other developed algorithms, namely the 
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on-line template matching and the on-line fast template matching, can be applied, 

instead. Indeed, they were able to provide high success rates (up to 97 %, but lower 

on average over the analyzed region of the relative state space) in spite of a larger but 

still acceptable computational time (around 10 s). Also, it was possible to state that 

the on-line fast template matching is preferable to the basic version of the algorithm, 

as it improves the computational efficiency while keeping constant the success rate, 

only at close range or if the database is adequately sampled so that enough 

information is available to solve potential pose ambiguities. 

Numerical simulations regarding the tracking process demonstrated the 

capability of the proposed implementation of the iterative closest point algorithm to 

attain sub-degree and centimeter accuracy level in the estimation of the relative 

attitude and position, respectively, again considering different targets. This result was 

achieved performing the pose determination process along target-chaser relative 

trajectories designed for monitoring scenarios, which ensured large variability of 

pose conditions. Sensibility of the tracking performance to the adoption of different 

variants of the implemented algorithm as well as to changes in the model parameters 

was tested by means of ad-hoc simulations. They allowed demonstrating that the 

adoption of the normal shooting method in the matching step aided by the prediction 

algorithm is the best performing both in terms of pose estimation accuracy and 

computational load, thus being the most suitable approach when the stationary state 

of the tracking process is reached. Moreover, the optimal configuration of the model 

parameters was also found. 

It is crucial to outline that all these results were obtained in spite of the extremely 

relevant sparseness of the considered datasets (from 50 to 500 points, on average, 

reducing range), obtained assigning low resolution (1°) to the simulated LIDAR with 

respect to the achievable performance (up to 0.01°). This helped limiting the 

computational burden, on one side, but also allowed testing the pose determination 

process against much more challenging conditions, on the other side. It is also worth 

outlining that the proposed techniques were designed to extract the pose by 

observing the global structure of the target. Hence, they were not conceived to be 

applied at very close distances (below 10 m/20 m from the target depending on its 
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size). Indeed, during final approach and docking maneuvers, pose determination 

(both cooperative and uncooperative) is preferably performed relying on the analysis 

of local structures. However, in the analyzed region of the relative state space, the 

proposed methods demonstrated the capability to work properly even in case of 

relevant occlusion of the target shape. The robustness of the overall architecture was 

further enhanced by means of an autonomous failure detection strategy applied to 

both the acquisition and the tracking algorithms. For instance, this method provided 

an absolute probability of correctly identifying successes and failures of pose 

acquisition above 99.8 % considering a large asymmetric-shaped debris (ENVISAT) 

as test case. An additional major result accomplished by this research activity was 

the introduction of an original analytical approach to design innovative safe 

trajectories for target monitoring. Specifically, the core principle was given by the 

possibility of estimating the differences between the initial mean orbit parameters of 

the chaser and the target which univocally identify the relative trajectory by assign 

high level requirements regarding its stability, size and shape. Results from ad-hoc 

numerical simulations demonstrated that this method can be used to design trajectory 

which provide optimal observation condition to the sensor responsible of relative 

navigation both regarding the acquisition and tracking step of the pose determination 

process. In particular, it was demonstrated that for targets whose rotational dynamics 

is gravity gradient stabilized, which is typical of several uncontrolled space objects 

having a minimum inertia axis, optimal observability for pose determination can be 

attained by setting the out-of-plane observation angle as low as possible, of course 

provided that it is compatible to other geometrical and stability constraints. 

The future of this activity lies in two potential advances. Firstly, algorithms' 

effectiveness can be tested over real data acquired thanks to a purposely designed 

experimental setup including sensors able to measure point clouds, like 3D LIDAR 

or depth cameras. Secondly, the solution of pose determination can be integrated into 

a navigation filter. 

Autonomous navigation of Unmanned Aerial Vehicles 

Regarding the problem of autonomous safe navigation of UAVs flying in 

complex environments, like GPS-challenging or GPS-denied, a research activity was 
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carried out in collaboration with the Cranfield University (UK). The focus was on the 

development of original solutions to the problems of localization and mapping for 

micro-UAVs taking their related limitations in terms of payload and processing 

resources into account. The LIDAR technology was selected as it provides the best 

compromise considering operating distances, weight and power requirements, and 

achievable level of autonomy, among all the potential ranging sensors. The proposed 

techniques were both based on the low-level integration (not inside a navigation 

filter) of LIDAR measurements and inertial data. Localization was entrusted to an 

odometry algorithm based on scan matching which implements a customized version 

of the iterative closest point algorithm and foresees an autonomous failure detection 

strategy. Mapping was performed adopting a line-based representation of the 

environment. The most important aspect of the original line-based mapping 

algorithm was relative to the adoption of the principal component analysis to carry 

out line fitting, instead of using state-of-the-art least-squares methods, thus obtaining 

a time saving of about 80 %, while keeping constant the accuracy level. Localization 

and mapping algorithm performance were evaluated by means of off-line runs over 

real data acquired by means of a purposely conceived experimental setup carried by 

hand within a 2D test area. They demonstrated capability to estimate the vehicle's 

trajectory and the map of the environment with centimeter-level accuracy. Also, 

effectiveness of the autonomous failure detection of localization was demonstrated. 

Further work will be aimed at using information from the updating map to 

improve localization accuracy and at comparing the proposed solution to the results 

provided by means of an extended Kalman filter algorithm. Indeed, this comparison 

will show advantages and drawbacks of the proposed method with respect to more 

consolidated state-of-the-art solutions.  
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