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Introduction

Starting from the nineteen twenties until now, a relevant part of investigation
in infinite groups was based on the fact that in many case the imposition of
finiteness conditions on an infinite group forces the group to be “close” to a
finite group.

Recently, a new point of view has been adopted, focusing the attention
on groups which are far from finiteness. The subject of this thesis is the
investigation of groups which are large in some sense, providing some new
contributions to this topic.

A subgroup property 6 is an embedding property if in any group G all images
under automorphism of G of #-subgroups likewise have the property 6.

For our purposes, the notion of a large group can be formalized in the
following way. Let X be a classe of groups. Then X is said to be a class of

large groups if it satisfies the following conditions:
e if a group G contains an X-subgroup, then G belongs to X;

e if G is any X-group and N is a normal subgroup of GG, then at least one

of the groups N and G/N belongs to X;
e 1o finite cyclic group belongs to X.

An obvious example of class of large groups is the class of groups of infinite
rank. A group G is said to have finite (Prifer) rank if there exists a positive

integer r such that all finitely generated subgroups of G can be generated
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by at most r elements and r is the least positive integer with such property;
otherwise, if such r does not exist, the group is said to have infinite rank. It
is not difficult to see that in some universe of (generalized) soluble groups, if
a group G has infinite rank, then it must be rich in subgroups of infinite rank.
Moreover, in recent years, a series of relevant papers has been published by
many authors (among which M.R. Dixon, J. Evans, L.A. Kurdachenko, N.N.
Semko, H. Smith) which shows that the subgroups of infinite rank of a group of
infinite rank have the power to influence the structure of the whole group and
to force also the behaviour of the “small” subgroups of G (i.e. the subgroups
of finite rank). In fact, it has been proved that, for some choises of group
theoretical properties X', if G is a group in which all subgroups of infinite rank
satisfy the property X, then the same happens also to the subgroups of finite

rank.

The first chapter consists of an overview of the main results concerning the

role played by the subgroups of infinite rank in the structure of a large group.

In the second and the third chapter the following embedding properties
of normal type are considered: the property of being either normal or self-
nomalizing; the property of being either normal or contranormal; the property
of being either subnormal or contranormal. It turns out that, at least in a
suitable class of generalized soluble groups, if every large subgroup of a group
G of infinite rank satisfies one of these conditions, then all subgroups of G are

forced to verify it.

It was proved by B.H. Neumann [41] that if every infinite subset of a group
GG contains a pair of permutable elements, then G is central-by-finite. Many
authors have studied similar problems, replacing commutativity by a given

group theoretical property (see [5], [18]). In some sense, this topic is connected
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with the study of large groups, because the above quoted result of Neumann
and the other results of the same type can be seen as a signal of the fact
that, in many cases, the behaviour of the infinite subsets of an (infinite) group
can influence the structure of the whole group. In accordance with this, the
fourth chapter is devoted to the study of groups in which every infinite set of
cyclic subgroups contains a pair such that at least one of them (or both) is
modular in the subgroup generated by them: it is shown that these groups are

central-by-finite.

Finally, the last chapter is a work in progress on groups of infinite rank
which are isomorphic to their non-abelian subgroups of infinite rank. The
structure of groups GG containing proper non-abelian subgroup all of which are
isomorphic to G has been investigated by Smith and Wiegold in [56], and the
corresponding problems for the class of nilpotent groups and for the class of
groups with modular subgroup lattice have also been considered (see [57], [58],
[17]). Following these results, it is proved that if G is a periodic soluble group
of infinite rank which are isomorphic to their non-abelian subgroup of infinite
rank, then G is abelian-by-finite and in the torsion-free nilpotent case it is even
abelian.

Most of our notation is standard, and it refers to [46].

I would like to thank Professor Maria De Falco that in these years has con-
stantly guided me in the research work and in the writing of this thesis, Pro-
fessor Carmen Musella for her availability and kindness, Professor Francesco
de Giovanni that has been for me a source of ispiration and Anna, colleague

and above all friend, with whom I have realized most of my papers.



Chapter 1

The role of large subgroups in

groups of infinite rank

Let 6 be a property pertaining to subgroups of a group. We shall say that
is absolute if in any group G all subgroups isomorphic to some 8-subgroup are
likewise O-subgroups. Thus 6 is absolute if and only if there exists a group
class X = X(0) such that in any group G a subgroup X has the property 6 if
and only if X belongs to X. Thus among the most natural absolute properties
we have those of being an abelian subgroup, a nilpotent subgroup, a finite
subgroup.

A subgroup property 6 is called an embedding property if in any group G all
images of f-subgroups under automorphisms of G likewise have the property
f. Of course, any absolute property is trivially an embedding property, but
the most relevant embedding properties, like normality and subnormality, are
embedding properties which are not absolute.

If 6 is an embedding property for subgroups, a group class X is said to

control 6 if it satisfies the following condition:

- If G is any group containing some X-subgroup, and all X-subgroups of G
have the property 6, then 0 holds for all subgroups of G.
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Observe that if a group class X controls the property # and X C X', then 6 is
controlled also by X’. Clearly, the class of cyclic groups controls periodicity,
and the class of finitely generated groups controls every local property. In
particular, the class of finitely generated groups controls commutativity. On
the other hand, it is well-known that the class of finitely generated groups
neither controls nilpotency nor solubility while the class of countable groups
controls both.

Although normality is controlled by the class of finitely generated groups
(and even by that of cyclic groups), it is easy to see that most of the significant
embedding properties cannot be controlled by the class of finitely generated
groups. For instance, it is well-known that there exist unsoluble groups in
which all finitely generated subgroups are subnormal, while an important result
by W. Mohres [39] shows that every group in which all subgroups are subnormal
is soluble. Therefore subnormality cannot be controlled by the class of finitely
generated groups. This failure depends on the fact that finitely generated
groups are too small. Therefore it is natural to consider the problem of how
large should be X-groups in order to obtain that the group class X controls the

main embedding properties, at least within an appropriate universe of groups.

Let X be a group class. We will say that X is a class of large groups if it

satisfies the following conditions:

e if a group G contains an X-subgroup, then G belongs to X;

e if N is a normal subgroup of an X-group G, then at least one of the

groups N and G /N belongs to X;

e X contains no finite cyclic groups.

Let X be a class of large groups, and let 6 be a subgroup property. Since

every group containing an X-subgroup likewise belongs to X, it follows that X
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controls 6 if and only if whenever in an X-group G all X-subgroups have the
property 6, then 6 holds for all subgroups of G. The easiest non-trivial example
of a class of large groups is provided by the class J consisting of all infinite
groups; however, the consideration of the locally dihedral 2-group shows that
normality cannot be controlled by the class J, even in the universe of periodic
mctabelian groups.

The idea of these definitions arises from result obtained by several authors
who have worked on the class of groups of infinite rank. A group G is said
to have finite (Priifer) rank r if every finitely generated subgroup of G can be
generated by at most r elements, and r is the least positive integer with such
property. In particular, a group has rank 1 if and only if it is locally cyclic. It
is easy to see that the class of groups of finite rank is closed with respect to
subgroups, homomorphic images and extensions, and hence groups of infinite
rank form a class of large groups. In a series of recent papers it has been
proved that in a (generalized) soluble group of infinite rank the behaviour
of subgroups of finite rank with respect to an embedding property can be
neglected in many cases, so that the class of groups of infinite rank controls
such embedding property in a suitable universe of (generalized) soluble groups
in order to avoid that these groups contain Tarski groups (infinite simple groups
whose proper subgroups have prime order) as a section.

So, now it will give a survey of results on this subject. The results described
in this section will be usually stated for locally (soluble-by-finite) groups. How-
ever, many of them can be proved in a larger class of generalized soluble groups.
Recall that a group G is locally graded if every finitely generated non-trivial
subgroup of G contains a proper subgroup of finite index. Let © be the class
of all periodic locally graded groups, and let ®© be the closure of ® by the
operators P7 P, R, L. 1t is easy to prove that any D-group is locally graded,

and that the class ® is closed with respect to forming subgroups. This class
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has been introduced by N.S. Cernikov [3], who proved in particular that every
D-group of finite rank contains a locally soluble subgroup of finite index. Ob-
viously, all residually finite groups belong to ®, and hence the consideration
of any free non-abelian group shows that the class ® is not closed with respect
to homomorphic images. For this reason, it is better in some cases to replace
D-groups by strongly locally graded groups, i.e. groups in which every section
belongs to ®. The class of strongly locally graded groups has been introduced
in [14].

In many problems concerning groups of infinite rank the existence of par-

ticular subgroups of infinite rank plays a crucial role.

Lemma 1.1 (M.R. Dixon - M.J. Evans - H. Smith [22]). Let G be a locally
soluble group of infinite rank. Then G contains a proper subgroup of infinite

rank.

Lemma 1.2 (A.I. Malcev [37]). Let G be a locally nilpotent group of infinite

rank. Then G contains an abelian subgroup of infinite rank.

Lemma 1.3 (V.P. Sunkov [61]). Let G be a locally finite group of infinite rank.

Then G contains an abelian subgroup of infinite rank.

Lemma 1.4 (V.S. Carin [2]). Let G be a locally soluble group of finite rank.
Then there exists a positive integer k such that the subgroup G®) is periodic

and hypercentral.

The first relevant theorem for our purposes was obtained by M.J. Evans
and Y. Kim, and deals with the control of normality by the class of groups of

infinite rank.

Theorem 1.5. (M.J. Evans - Y. Kim [26]) If G is a locally soluble group of
infinite rank and all subgroups of infinite rank of G are mormal, then every

subgroups of G is normal.
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In our language, the theorem of Evans and Kim just says that groups of
infinite rank form a class of large groups with respect to normality in the
universe of locally soluble groups.

It is well-known that normality is not a transitive relation in an arbitrary group
(this is for instance the case of the alternating group Alt(4)). This remark led
H. Wielandt to introduce in 1939 the concept of a subnormal subgroup: a
subgroup H of a group G is said to be subnormal in G if there exists a finite
series of G containing H and G, and the minimal length of a series of this type

is called the defect of H in G.

Theorem 1.6 (M.J. Evans - Y. Kim [26]). For every positive integer k there
exists a positive integer f(k), depending only on k, such that, if G is a lo-
cally soluble group of infinite rank in which all subgroups of infinite rank are

subnormal with defect at most k, then G is nilpotent of class at most f(k).

This result must be seen in relation with a famous theorem of J.E. Rose-
blade (see [51]) which states that for every positive integer k there exists a
positive integer h(k), depending only on k, such that, if G is any group in
which all subgroups are subnormal with defect at most k, then G is nilpotent
of class at most h(k). It is well-know that in the above quoted theorem of
Roseblade, the bound condition on the defect cannot be omitted, but without
this assumption, W. Mohres [39] proved that if G is a group in which all sub-
groups are subnormal, then G is at least soluble. Also this theorem has been

generalized looking at subgroups of infinite rank.
Theorem 1.7 (L.A. Kurdachenko - H. Smith [33]). If G is any locally (soluble-
by-finite) group of infinite rank in which all subgroups of infinite rank are
subnormal, then G is soluble.

It is natural to ask if it is possible to obtain analogous results to these of
Evans and Kim, replacing normality by other embedding properties of normal

type.
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A subgroup H of a group G is said to be permutable in G if HX = XH
for every subgroup X of G. The following result shows that this embedding

property is also controlled by the class of groups of infinite rank.

Theorem 1.8 (M.R. Dixon - Z.Y. Karatas [25]). The class of groups of infinite
rank controls permutability in the universe of locally (soluble-by-finite) groups,
i.e. if G is a locally (soluble-by-finite) group of infinite rank and all subgroups

of infinite rank of G are permutable, then all subgroups of G are permutable.

Some interesting results in this context are due to M.R. Dixon, M.J. Evans

and H. Smith.

Theorem 1.9 (M.R. Dixon - M.J. Evans - H. Smith [24]). If G is a locally sol-
uble group of infinite rank whose proper subgroups of infinite rank are nilpotent

with class at most ¢, then G itself is nilpotent with class at most c.

Theorem 1.10 (M.R. Dixon - M.J. Evans - H. Smith [23]). If G is a soluble
group of infinite rank whose proper subgroups of infinite rank have derived

length at most k, then G itself has derived length at most k.

This latest result means, in particular, that if all proper subgroups of infi-
nite rank are abelian, then G is abelian.

Recall that a group G is called metahamiltonian if all its non-abelian sub-
groups are normal. Metahamiltonian groups were introduced and investigated
by G.M. Romalis and N.F. Sesekin (see [47],[48],[49]). In particular, they
proved that if (G is any locally soluble metahamiltonian group, then the com-
mutator subgroup G’ of G is finite of prime-power order. Finally, a group G
is called quasihamiltonian if all its subgroups are permutable.

Maria De Falco, Francesco de Giovanni, Carmela Musella and Nadir Trabelsi
have proved, in [14], that if X is any class of groups with some natural proper-

ties of closure, and G is a locally (soluble-by-finite) group in which all proper
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subgroups of infinite rank belong to X, then some infomations can be obtained

on the structure of G.

Theorem 1.11 (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi
[14]). If X is the class of metahamiltonian groups, or that of quasihamiltonian
groups, then whenever G is a locally (soluble-by-finite) group of infinite rank
in which all proper subgroups of infinite rank are X-group, then G itself is an

X-group.

Theorem 1.12 (M. De Falco - F. de Giovanni - C. Musella - N. Trabelsi [14]).
If G is a locally (soluble-by-finite) group of infinite rank in which all proper
subgroups of infinite rank have locally finite commutator subgroup, then also

the commutator subgroup G' of G is locally finite.

As we remarked before normality is not a transitive relation in an arbitrary
group. A group G is called a T'-group if normality in G is a transitive relation,
or equivalently if every subnormal subgroup of GG is normal. Obviously, every
simple group has the T-property, but soluble T-groups have a restricted struc-
ture, that was first studied by W. Gaschiitz [27] in the finite case and later by
D.J.S. Robinson [44] in the general case. In particular, it turns out that every
soluble T-group is metabelian and hypercyclic (i.e. it has an ascending normal
series with cyclic factors). Moreover, any finitely generated soluble group with

the T-property is either finite or abelian.

Theorem 1.13 (M. De Falco - F. de Giovanni - C. Musella - Y.P. Sysak [13]).
If G is a periodic soluble group of infinite rank and all subnormal subgroups of

infinite rank of G are normal, then G is a T-group.

Theorem 1.14 (M. De Falco - F. de Giovanni - C. Musella [11]). If G is a
locally soluble group of infinite rank in which all proper subgroups of infinite

rank are T-groups, then all subgroups of G are T-group.



Chapter 2

Groups of infinite rank with a
normalizer condition on

subgroups

In this Chapter it will show that the class of groups of infinite rank controls

the embedding property £ in the universe of strongly locally graded groups.

2.1 &-groups

A group G is an £-group if every non-normal subgroups is self-normalizing.
Recall that a group G is said to be a T-group (or have the T-property) if
normality in G is a transitive relation, i.e. if all subnormal subgroups of G
arc normal. Although the class of T-groups is not subgroups closed (because
any simple group is obviously a T-group), it is know that subgroups of finite
soluble T-groups have likewise the T-property. A group G is called a T—group
if all its subgroups are T-groups.

The following propositions, easy to verify, will be very useful later.

Proposition 2.1.1. Every finite T-group is soluble.
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Proposition 2.1.2. The class € is S-closed and H -closed.
Proposition 2.1.3. Every E-group is a T-group and so it is a T-group.

Recall that a group G is said to be a Dedekind group if all its subgroups are
normal. Obviously, every abelian group has this property, and each Dedekind
group is not too far from being abelian. In fact, a classical result of Baer and
Dedekind proves that a non-abelian group G has only normal subgroups if and
only if G = @ x A, where (@ is a quaternion group of order 8 and A is a periodic
abelian group with no elements of order 4.

The following theorem characterizes the £-groups with some aperiodic non-

trivial element.
Theorem 2.1.4 (G. Giordano [28]). Every non-periodic £-group is abelian.

Proof. Note that if X is any infinite cyclic subgroup of G and H < X, then
H < X < Ng(H) and so H <« G whence X < G. Let Y be a finite non-trivial
cyclic subgroup of G. Now XV is soluble and also a T-group, so it is abelian
([44] Theorem 6.1.1) and Y <G. Therefore G is a non-periodic Dedekind group

so it is abelian. O
The following propositions are useful properties of locally finite £-groups.
Proposition 2.1.5. A locally finite E-group is soluble.

Proof. By Proposition 2.1.1 G is a locally soluble T-group so it is soluble (see
[44] p. 36). O

Proposition 2.1.6. A locally finite p-group in the class £ is a Dedekind group.

Proof. Let H be a proper cyclic subgroup of GG such that H < K < G, for
some finite subgroup K; but K is a finite p-group so it is nilpotent and then

H < Ny(H) < Ng(H), thus H <1 G. O

The following results characterize the locally finite and finite £-groups.
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Theorem 2.1.7 (G. Giordano [28]). Let G be a locally finite group. The

following statements are equivalent:

(i) G is a non Dedekind &-group.

(17) G is a soluble T-group with G /G’ cyclic of order p™ (p prime), |Z(G)| =
L (G Nw(G/G") = @ and 2 & T(G").

Corollary 2.1.8. For a finite group G the following are equivalent:

(1) G is a non Dedekind &-group.

(17) G is a soluble T-group, the mazximal nilpotent factor group of G is cyclic

n—1

of order p™ (p prime) and |Z(G)| =p

2.2 &£(X)-groups

Let X be a class of groups. A group G is said to be an £(X)-group if every
X-subgroup H of G such that H < Ng(H) is normal in G. It is clear that
the class £(X) is always subgroup closed and that from X C ) it follows
E(Y) C E(X). If X is the class of all groups, an £(X)-group is an E-group.

In the sequel the structure of £(X)-groups will be studied for some relevant
classes X, namely the classes of finite groups, of infinite groups, of abelian

groups.

We recall that an IT-group is a group in which every infinite subnormal
subgroup is normal; moreover a group G is called an IT-group if every subgroup

of G is an I'T-group.

The first lemma is a general result which shows that in many cases the

class £(X) is a local class.

Lemma 2.2.1. Let X be a class of finitely generated groups. Then the class
E(X) 1s L-closed.
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Proof. Let the group G satisfy locally the property £(X) and consider an X-
subgroup H of G such that H < Ng(H). Choose © € Ng(H) \ H and let g be
any element of G. The subgroup K = (H,z, g) is finitely generated, and so it
is an £(X)-group. Since H < Ny (H), it follows that H is normal in K; hence
HY = H and H is normal in G. Therefore G is an £(X)-group. O

By the Theorem 2.1.4 it follows that every non-periodic £-group is abelian.
The situation is less clear for periodic &£-groups, since clearly every Tarski
group is an E-group. Therefore it is natural to impose some restrictions on
the group G, in order to avoid that G contains a Tarski group as a section.
We will be concerned with the class of locally graded groups. It will be proved
that locally graded groups which satisfy locally the condition &£ are soluble
E-groups. We note first the following

Lemma 2.2.2. £(F) = E(LF). In particular every locally finite E(F)-group is

an E-group.

Proof. Clearly £(LF) C £(F). Conversely, let G be an £(F)-group, and con-
sider a locally finite non normal subgroup H of GG. Then there exists a cyclic
subgroup (x) of H which is not normal in GG and clearly Ng({x)) = (x). Hence
(x) is a Sylow subgroup of H. If N = Ng(H), it follows from the Frattini
Argument that N = HNy((x)) = H, so that G is an £(LF)-group. O

We can prove the following theorem, which is an improvement of the The-

orem 2.1.7.

Theorem 2.2.3 (G. Cutolo [6]). Let G be a periodic group. The following

statements are equivalent:
(1) G is a locally graded group which satisfies locally the property E(L).

(17) G is a soluble E-group.
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(1ii) G is either a Dedekind group or it is a soluble T-group and G = G' X K,
where K = (x) is a cyclic p-subgroup of G and Z(G) = ().

(If these conditions hold, G’ is a Hall subgroup of G and has no elements of
order 2).

Proof. (i) implies (77). It follows from Lemma 2.2.1 that G is an £(£)-group, so
that every finitely generated subgroup of GG is either normal or self-normalizing
in G. Let H be any finitely generated subgroup of G. If N is a normal subgroup
of finite index of H, every subgroup of H containing N is finitely generated,
and hence the factor group H/N is an E-group. In particular H/N is a T-
group, so it is metabelian. Let R be the finite residual of H. Then H/R is
a finitely generated metabelian periodic group, so it is finite. Therefore R is
finitely generated and has no proper subgroup of finite index. Since G is locally
graded, this means that R = {1}, so that H is finite and G is locally finite. It
follows from Lemma 2.2.2 that G is an £-group. Moreover G is soluble as a
locally finite T-group (see [44]).

Clearly, (7i) implies (), while the equivalence between (i) and (i7i) follows

from Theorem 2.1.7. [

Now we consider the class £(2(). This class coincides with the class £(X)

for some other group classes X.
Proposition 2.2.4. £(€) = £(A) = E(LN).

Proof. Since E(LMN) C £(RA) C £(C), it is enough to prove that every £(&)-
group G is also an E(LMM)-group. Let H be a locally nilpotent non-normal
subgroup of G; then H contains a cyclic subgroup (z) which is not normal
in G, so that Ng((z)) = (z). Therefore (x) is not properly contained in any
nilpotent subgroup of H. But H is locally nilpotent and hence H = ().
Therefore No(H) = H and G is an E(LMN)-group. O
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Corollary 2.2.5. The class £(21) is L-closed.
Proof. Since £(2L) = £(€), the result follows from Lemma 2.2.1. O
The following lemma is useful in the characterization of £(2()-groups.

Lemma 2.2.6. Let G be a group, and let H be a locally graded subgroup of G
which is minimal with respect to the condition H < Ng(H) < G. Then H is a

cyclic group of prime power order.
Proposition 2.2.7. The following hold:
(a) Every E(A)-group is an E(F)-group.
(b) Ewvery locally finite E(A)-group is an E-group.
(¢) For a periodic group the properties E(2A) and E(F) are equivalent.

Proof. (a) Let F' be a finite subgroup of G. If F' is neither normal nor self-
nomalizing in GG, then F' contains a subgroup H which is minimal with respect
to this condition. It follows from Lemma 2.2.6 that H is cyclic, which is a
contradiction, since G is an £(2)-group. Therefore G is an £(F)-group.
(b) It follows from (a) and Lemma 2.1.2.
(c) It follows from (a) that £(A) C £(F). On the other hand from Proposition
2.2.4 we obtain

EFINTCEEONT=ER)NT.

O

Note that £(F)-groups which are not £(2()-groups exist, since every torsion-
free group is an £(§F)-group.

Our next result gives a complete description of non-periodic £(2()-groups.

Theorem 2.2.8 (G. Cutolo [6]). For a non-periodic group G the following are

equivalent:
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(1) G is a non-abelian E(A)-group.

(ii) G = (C, z), where C' is an abelian subgroup of G, |G : C| =2, ¢* = ¢
for every ¢ € C and Cy < (z) (in particular the 2-component of C' has

order at most 2).

In the last part we will characterize locally graded and non periodic &(J)-
groups. It is clear that the class £(J) is quotient closed and that every factor

of an £(J)-group respect to an infinite normal subgroup is an £-group.

Proposition 2.2.9. A non-periodic group G is an E(J)-group if and only if it

18 abelian.

Proof. Let G be an £(J)-group. Thus clearly G is an IT-group. Let K be an
infinite cyclic subgroup of G. Then K is normal in G and, if H is any finite
cyclic subgroup of G, the subgroup HK is a non-periodic soluble TT-group,
and so it is abelian (see [29], p. 579). Hence H K is generated by its elements
of infinite order, so that H K, and hence its torsion subgroup H, is normal in

G. Therefore GG is a non-periodic Dedekind group and so it is abelian. O

Theorem 2.2.10 (G. Cutolo [6]). Let G be an infinite periodic locally graded
group. Then G is an E(J)-group if and only if it satisfies one of the following

conditions:
(a) G is an E-group.
(b) G is an extension of a Priifer group by a finite E-group.

(¢) G = H x P, where P is a Priifer p-group and H is an E-group whose
commutator subgroup H' is a Priifer q-group, with p # q # 2.



Eoso-groups 15

2.3 &, -groups

A group G is said to be an &, -group if every subgroup H of G of infinite rank
such that H < Ng(H) is normal in G. It is clear that the class £ is quotient
closed and that every factor of an £,-group respect to a normal subgroup of
infinite rank is an £-group.

As in many problems concerning groups of infinite rank, also in this case,

the existence of abelian subgroups of infinite rank plays a crucial role.

Lemma 2.3.1. Let G be an Ex-group. If G contains an abelian subgroup of

infinite rank, then G is an &E-group.

Proof. Let A be an abelian subgroup of infinite rank of G. Let H be any
subgroup of G of finite rank such that H < Ng(H), and take an element
x € Ng(H) \ H. Then A contains a direct product A; X As, such that the
subgroups A; and Ay have both infinite rank and (A; x As) N H{x) = {1}.
Clearly the subgroups A; and As are normal in G. Moreover, HA]NH (x) = H,
so that x € Ng(H A1)\ HA;, and hence H A; is normal in G. Similary, H A, is
normal in G, so that H = HA;NH A, is normal in G, and G is an E-group. [

Proposition 2.3.2. Let G be a periodic locally graded Eo-group of infinite
rank. Then G is an E-group.

Proof. Assume that G contains a finitely generated subgroup H of infinite
rank. If K is any normal subgroup of finite index of H, then K has infinite
rank and hence the factor group H/K is an E-group. Therefore H/K is a finite
T-group, and hence it is metabelian. If R is the finite residual of H, then H/R
is a finitely generated metabelian periodic group, and so it is finite. Thus R
is a finitely generated subgroup of G which has no proper subgroups of finite
index; it follows that R = {1}, so that H is finite. This contradiction shows

that every finitely generated subgroup of G has finite rank and so it is finite
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by Cernikov’s theorem (see [3]). Therefore G is a locally finite group, so that
it contains an abelian subgroup of infinite rank (Lemma 1.3), and hence G is

an £-group by Lemma 2.3.1. O

Lemma 2.3.3. Let G be a strongly locally graded E.-group of infinite rank.

Then G contains a proper normal subgroup of infinite rank.

Proof. Assume by contradiction that all proper normal subgroups of G have
finite rank, so that G is not soluble, and hence it is not an E-group (see
Theorem 2.2.3). Moreover, it follows from Lemma 2.3.1 that G has no abelian
subgroups of infinite rank, so that G is not locally nilpotent. Thercfore G
has a simple homomorphic image G of infinite rank (see [14], Lemma 2.4).
Clearly every subgroup of infinite rank of G is self-normalizing in G. Let H
be any finitely generated subgroup of infinite rank of G; since G is locally
graded, H contains a proper normal subgroup K of finite index, so that K is
properly contained in its normalizer, a contradiction. Therefore every finitely
generated subgroup of G has finite rank, so that G is locally (soluble-by-finite)
by Cernikov’s thoerem (see [3]). As G has infinite rank, it must contains
a proper locally soluble subgroup L of infinite rank (see [22]). Since every
subgroup of infinite rank of G is self-normalizing, L has no proper normal
subgroups of infinite rank, and hence L has a simple homomorphic image
of infinite rank (see [14], Lemma 2.4), a contradiction since simple locally
soluble groups have prime order. This contradiction completes the proof of

the lemma. O

We are now ready to prove the main result of this section.

Theorem 2.3.4 (A.V. De Luca - G. di Grazia [20]). Let G be a strongly locally
graded E.-group of infinite rank. Then G is an E-group.

Proof. 1t follows from 2.3.3 that GG contains a proper normal subgroup N of

infinite rank. The factor group G/N is an E-group, so that G” < N (see
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Theorem 2.2.3). If G” has infinite rank then G” is strongly locally graded E.-
group of infinite rank and so G” has a proper normal subgroup M of infinite
rank. As above, G < M; if G® has infinite rank then G/G® has derived
length at most 2, and hence G = G® < M, a contradiction. Therefore
in any case, K = G® has finite rank. So K is (locally soluble)-by-finite by
Cernikov’s theorem (see [3]). If S is the locally soluble radical of K then K/S
is finite, and therefore G/Cg(K/S) is finite. Hence Cg(K/S) has infinite rank
and so G/Cg(K/S) is metabelian; it follows that K < Cg(K/S) and hence K
is locally soluble (see [25] Lemma 2.7). There exists a positive integer n such
that K™ is a periodic hypercentral group with Cernikov primary components
(see [45], Lemma 10.39), so that the divisible radical R of K™ is a divisible
normal abelian subgroup of G and K™ /R has finite primary components. In
order to prove that K is soluble we may assume that R = {1}, so that each
primary component of K™ is finite.

Let P be any primary component of K. Since G/Cq(P) is finite, Cq(P)
has infinite rank. Again G/Cqg(P) is metabelian and we have P < K < G” <
Cq(P), so that P is abelian and K™ is also abelian. Thus K is soluble and
hence G is soluble. By Lemma 2.3.1 G is an £-group. |:|

Now we will consider groups which are rich in £-subgroups. In particular,
it turns out that the class of groups of infinite rank controls the embedding
property £ in the universe of strongly locally graded groups.

The proof is accomplished through some lemmas; the first of them shows

that the class £ is local, at least within the universe of locally graded groups.

Proposition 2.3.5. Let G be a locally graded group such that every finitely

generated subgroup is an E-group. Then G is an E-group.

Proof. Assume first that G is not periodic, and let H be any finitely generated
subgroup of G. 1If g is an element of G of infinite order, then the finitely
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generated subgroup (H,g) is a non-periodic £-group, so that it is abelian.
Therefore GG is abelian. Assume now that G is a periodic group and let H
be any finitely generated subgroup of G such that H < Ng(H). Choose an
element z in the set Ng(H)\ H, and let g be any element of G. The subgroup
K = (H,z,g) is finitely generated and so it is an £-group. Since H < N (H),
the subgroup H is normal in K. It follows that H is normal in G. Therefore
G is an E-group (see Theorem 2.2.3). O

Lemma 2.3.6. Let G be a locally graded group such that all its proper subgroup
are E-groups. Then G is soluble.

Proof. We can assume that G is not an E-group. It follows from Proposition
2.3.5 that G is finitely generated, so that there exists a proper normal subgroup
N of G of finite index. The subgroup N is an £-group and so it is soluble.
On the other hand, all proper subgroup of G/N are finite £-groups and hence
they are supersoluble. Therefore G/N is soluble (see [46], 10.3.4), so that G is
soluble. O

Lemma 2.3.7. Let F' be an infinite locally finite field. Then the simple groups
PSL(2,F) and Sz(F) contain proper subgroups of infinite rank which are not
E-groups.

Proof. Let G be one of the groups PSL(2,F) and Sz(F). In [43] is proved
that G' contains a subgroup H such that it is not a Dedekind group and H/H'
is not cyclic. It follows from Theorem 2.2.3 that H is not an £-group. O

Lemma 2.3.8. Let G be a locally soluble group of infinite rank whose proper

subgroups of infinite rank are E-groups. Then G is an E-group.

Proof. The group G is a soluble T-group (see [11]). We can assume that G is
not an abelian group, so that it is a periodic metabelian group.

Assume first that all proper subgroups of infinite rank of G are Dedekind
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groups, so that the commutator subgroup G’ of G is finite (see [14] Proposition
3.1). Let H be any cyclic subgroup of G. Since the factor group G /G’ has
infinite rank, there exists a subgroup K of G such that G’ < K and the groups
K and G/K have both infinite rank. Now H K is a proper subgroup of infinite
rank of G and so it is a Dedekind group; therefore H is subnormal and hence
normal in G.

We can now assume that there exists a proper subgroup L of infinite rank of G
which is not a Dedekind group. Since L is a locally finite £-group, the factor
group L/L' is finite (see Theorem 2.1.7), so that the commutator subgroup
L' has infinite rank, and hence G’ has likewise infinite rank. Let H be any
finitely generated subgroup of G. Since G’ is abelian, it contains a subgroup
A such that the groups A and G’/A have both infinite rank. The subgroup A
is subnormal and hence normal in G; moreover, HA is a proper subgroup of
infinite rank of GG, and so it is an £-group, so that H is likewise an £-group.

Therefore G is an £-group (see Theorem 2.2.3). O

Theorem 2.3.9 (A.V. De Luca - G. di Grazia [20]). Let G be a strongly locally
graded group of infinite rank. If all proper subgroups of infinite rank of G are
E-groups, then G is an E-group.

Proof. Assume for a contradiction that G is not an £-group, so that, by Lemma
2.3.8, (G is not locally soluble. If the commutator subgroup G’ of G has finite
rank, then all proper subgroups of G are £-groups (see [14], Lemma 2.7), so
that by Lemma 2.3.6 GG is locally soluble. This contradiction shows that G’
has infinite rank, and hence G/G’ is finitely generated (see [14] Lemma 2.8).
Since the commutator subgroup of any £-group is locally finite (see Theorem
2.2.3), then G’ is locally finite (see [14], Theorem A). In particular the set T’
of all elements of finite order of G form a subgroup and the factor group G/T
is a free abelian group of finite rank. Since G is not soluble, the subgroup T’

cannot be an £-group; it follows that G =T  is a periodic group.
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Assume now that every proper normal subgroups of GG has finite rank, so
that G has a simple section G/K of infinite rank (see [14], Lemma 2.4); since
all proper subgroups of G are (locally soluble)-by-finite (see [3]), the factor
group G/K must be isomorphic either to PSL(2, F') or to Sz(F) for some
infinite locally finite field F' (see [43]), and this is impossible by Lemma, 2.3.7.
Therefore G is locally nilpotent. This contradiction shows that G contains a
proper normal subgroup N of infinite rank; in particular N is soluble so that
G/N is not soluble. On the other hand, every proper subgroup of G/N is
an E-group, so that by Lemma 2.3.6, G/N is soluble. This last contradiction

proves the theorem. O



Chapter 3

Groups of infinite rank with
normality conditions on
subgroup with small normal

closure

In this chapter groups of infinite rank in which every subgroup is cither normal
(subnormal) or contranormal are characterized in terms of their subgroups of

infinite rank.

3.1 AN-groups and SC-groups

A subgroup H of a group G is said to be contranormal in G if it is not contained
in a proper normal subgroup of G, i.e. HY = G (see for istance [50]). The
notion of contranormal subgroup is opposite, in a way, to the notion of normal
subgroup.

We shall say that a subgroup H is alternatively normal in a group G if H is

either normal or contranormal in G. Groups whose subgroups are alternatively
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normal are called AN -groups. Clearly the Dedekind groups and the simple
groups are AN-groups.
The following theorem due to Subbotin describes the structure of AN-

groups.

Theorem 3.1.1 (I.Ya. Subbotin [60]). A group G is an AN -group if and only
if G is a group of following types:

(i) G is a Dedekind group.

(11) G = A(by, where A is a periodic abelian group whose subgroups are G-
invariant, (b) is a p-group with p prime, (A, (b)] = A, [A, (0*)] = {1},
m(A) 0 {p} C {2}.

(1ii) G = A x (b), where A is an abelian group, b is an element of order 2 or

4 and a® = a for all a € A.
(1) G is an extension of its center by a non-abelian group.

A natural extension of the class AN is the class of groups in which every
subgroup is either subnormal or contranormal (SC-groups). Of course, all
homomorphic images of an SC-group are SC-groups. On the other hand, since
every simple groups is an SC-group, it is clear that the class of SC-groups is
not subgroup closed.

We also note that if H is a contranormal subgroup of a group G, then

HG' = G. The converse is also true in the soluble case.

Lemma 3.1.2. Let G be a soluble group and let H be a subgroup of G. Then

the following statements are equivalent:

(1) H is contranormal in G.

(2) HG' = G.
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Proof. We have only to prove that (2) implies (1). Let H be a subgroup of
G such that G = HG'. Then G = HE(', so that G/H is perfect and hence

HS = G. Therefore H is contranormal in G. O

Since every group in which all subgroups are subnormal is soluble (see [39]),

we have the following:
Lemma 3.1.3. Let G be an SC-group such that G' # G. Then G is soluble.

Proof. Since G’ # G, G’ cannot contain contranormal subgroup of GG. Thus
every subgroup of G’ is subnormal, so that G’ is soluble, and hence also G is

soluble. O

The structure of perfect SC-groups is described by the following result, at
least in the case of groups which are not locally nilpotent.
We recall that the Hirsch-Plotkin radical is the largest maximal normal

locally nilpotent subgroup of a group G.

Proposition 3.1.4. Let G be a perfect group which is not locally nilpotent.
Then G is an SC-group if and only if it contains a largest proper normal

subgroup N and all subgroups of N are subnormal.

Proof. Let G be an SC-group and let N be the Hirsh-Plotkin radical of G.
If M is any proper normal subgroup of G, it cannot contain contranormal
subgroups of GG, so that all its subgroups are subnormal, and it is contained
in N. Therefore N is the largest proper normal subgroup of G. Moreover it is
clear that all subgroups of N are subnormal.

Conversely, if G has the required structure and H is a subgroup of G which
is not contranormal, then H¢ is a proper normal subgroup of G, and so it is

contained in N. Therefore H is subnormal in GG, and G is an SC-group. O

The next result give a description of non perfect SC-group (recall here that

a Baer group is a group in which all cyclic subgroups are subnormal).



AN -groups and SC-groups 24

Theorem 3.1.5 (M. De Falco - L.A. Kurdachenko - I.Ya. Subbotin [16]). Let
G be a group such that G' # G. Then G is an SC-group if and only if one of

the following conditions holds:
(1) All subgroups of G are subnormal.

(1) G is a Baer group such that G/G' is a Priifer group, and all subgroups

of G' are subnormal.

(1ii) G = G'(x), and there exists a prime number p such that all subgroups of
G'(xP) are subnormal and (z™) is contranormal in G for every integer n

which 1s not divisible by p.

Proof. Suppose first that GG is an SC-group which is not of type (7), so that
it contains a proper contranormal subgroup B, and in particular G = G'B.
Assume that B = B/(BNG") is generated by two proper subgroups X and Y.
Then, by Dedekind’s modular law, the normal subgroups XG’ and Y G’ are
properly contained in G, so that X and Y are not contranormal, and hence
they are both subnormal in G. It follows that also B = XY is a subnormal
subgroup of G, a contradiction. Therefore B cannot be generated by two
proper subgroups, and hence it is either a cyclic p-group or a group of type
p>°, where p is a prime.

Suppose first that B is a group of type p>®. Thus also G//G’ is a group
of type p>®. Since G’ is a proper normal subgroup of G, all its subgroups
are subnormal in G. Moreover, if (z) is a cyclic subgroup of G which is not
contained in G’, then (z)G’ is a proper normal subgroup of G, and hence (x)
is subnormal in G. Therefore GG is a Baer group and so it is a group of type
(ii). If B is a cyclic p-group, then also G/G' is a cyclic p-group, and G is a
group of type (ii7).

Suppose now that G satisfies one of the conditions (4)-(¢ii). Obviously, if

() holds, then G is an SC-group. Assume that G satisfies (i7), and let H be a
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subgroup of G. If G = G'H, then H is contranormal in G. If G # G'H, then
G'H/G' is cyclic, so that also H/(H N G')is cyclic. Thus H = (HNG')(y) for
some y. Since G is a Baer group and H N G’ is subnormal in G, also H is
subnormal in G, and G is an SC-group. Suppose finally that G satisfies (iii)
and let H be a subgroup of G. If G = G'H, then H is contranormal in G. If
G # G'H, then G'H is contained in G'(z?), and hence H is subnormal in G.
So G is an SC-group. O

Corollary 3.1.6. Let G be a torsion non-perfect group which is not a p-group
for any prime p. Then G is an SC-group if and only if one of the following

conditions holds:
(1) All subgroups of G are subnormal.

(i1) There exists a prime p such that G = (Q x P){(x), where Q = Oy (G’),
P = 0,(G"), x has p-power order, and all subgroups of (Q) x P)(x?) are

subnormal.

Proof. Suppose that G is an SC-group, and assume first that G is locally
nilpotent. Then G is the direct product of its Sylow subgroups. If C'is a proper
subgroup of G, it follows that C is direct product of subnormal subgroups of
G, so that C' is not contranormal, and hence it is subnormal in . Therefore
all subgroups of GG are subnormal. If G is not locally nilpotent, it follows from
Theorem 3.1.5 that G has the structure described in (i77).

The converse statement follows immediately from Theorem 3.1.5. O

Note that the above results generalize the Theorem 3.1.1.

3.2 AN, -groups

A group G is an AN -group if every subgroup of infinite rank is either normal

or contranormal in G. It is clear that the class AN, is quotient closed and
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that every factor of an AN,-group respect to a normal subgroup of infinite

rank is an AN-group.

As in many problems concerning groups of infinite rank, also in our case,
the existence of a proper normal subgroup of infinite rank plays a crucial role.
Moreover, recall that a group G is said to be a Dedekind group if all its sub-

groups are normal.

Lemma 3.2.1. Let G be a strongly locally graded AN -group and let N be
a proper normal subgroup of infinite rank of G. Then every subgroup of N is

normal in G.

Proof. Every subgroup of infinite rank of /V is normal in GG, so that in particular
N is a Dedekind group (see Theorem C in [26]).

Let L be a subgroup of finite rank of N. Since N is nilpotent, it contains a
direct product A; x Ay such that the subgroups A; and Ay have both infinite
rank and LN (A; x Ay) = {1} (see [38]). Clearly the subgroups A, and A, are
normal in G. Hence the subgroups of infinite rank LA; and LA, are normal

in G, so that L = LA; N LA, is normal in G. O

Our next lemma shows in particular that any strongly locally graded group
of infinite rank whose proper normal subgroups have finite rank must admit a

simple homomorphic image of infinite rank.

Lemma 3.2.2. Let G be a strongly locally graded group. Then every proper
normal subgroup of G has finite rank if and only if the subgroup generated by

all proper normal subgroups of G has finite rank.

Proof. Suppose that GG has infinite rank but all its proper normal subgroups
have finite rank. Clearly G is perfect and so it is not locally nilpotent by
Lemma 2.3 of [7]. Hence G contains a proper normal subgroup N such that

G/N is a simple group of infinite rank (see [14], Lemma 2.4). Therefore N
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has finite rank. Let H be any proper normal subgroup of GG. Since H has
finite rank, also HN has finite rank and so it is a proper subgroup of G. Then
HN = N and it follows that H < N so that N is the subgroup generated by
all proper normal subgroups of G. O

The following result will be often used in our proofs.

Lemma 3.2.3. Let G be a group containing an abelian subgroup A of infinite
rank and let H be a subgroup of G such that HY has finite rank. Then there
exists a subgroup B of A such that B has infinite rank and HEB is a proper
subgroup of G.

Proof. Since H is a proper subgroup of G, we can take an element x € G\ H®.
Then A contains a direct product B x C' such that the subgroups B and C
have both infinite rank and BC' N H%({z) = {1}. Now

HBN H®(z) = H(BN H%(z)) = H®

so z ¢ HYB, and hence HYB is a proper subgroup of G. O

Proposition 3.2.4. Let G be a strongly locally graded AN-group. If G

contains a proper normal subgroup of infinite rank, then G is an AN -group.

Proof. Let N be a proper normal subgroup of infinite rank of G. By Lemma
3.2.1 every subgroup of N is normal in G and so N is a Dedekind group. Let H
be any subgroup of finite rank of (G which is not contranormal, so that H¢ is
a proper normal subgroup of G. If H has infinite rank, then every subgroup
of HY is normal in G by the Lemma 3.2.1 and so H is normal in G.

Suppose now that H¢ has finite rank. Since N is a Dedekind group, it contains
an abelian subgroup A of infinite rank. By Lemma 3.2.3 there exists B < A
of infinite rank such that H%B is a proper normal subgroup of G. Therefore

H is normal in G by Lemma 3.2.1 and G is an AN-group. O
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It is now easy to prove the main result of this section.

Theorem 3.2.5 (A.V. De Luca - G. di Grazia [21]). Let G be a locally soluble
AN-group. Then G is an AN -group.

Proof. Since G is locally soluble, G contains a proper normal subgroup of

infinite rank. Therefore G is an AN-group by Proposition 3.2.4. O

In other words, the class of groups of infinite rank controls the embedding

property AN in the universe of locally soluble groups.

3.3 SCy-groups

In this section we will consider groups G in which every subgroup of infinite
rank is either subnormal or contranormal. Groups satisfying such property will
be called SCy.-groups. We observe that the class SC is closed for homomor-
phic images and every factor of an SC..-group respect to a normal subgroup
of infinite rank is an SC-group.

We need the following elementary property.

Lemma 3.3.1. Let G be a locally (soluble-by-finite) SCoo-group and let K be
a proper subnormal subgroup of infinite rank of G. Then every subgroup of

infinite rank of K is subnormal in G.

In particular we obtain that every proper subnormal subgroup of infinite

rank of an SC..-group is soluble (see Theorem 1.7).

Theorem 3.3.2 (A.V. De Luca - G. di Grazia [21]). Let G be a torsion-free
locally (soluble-by-finite) SCoo-group. If G contains a proper normal subgroup
of infinite rank, then G is an SC-group.

Proof. Let N be a proper normal subgroup of G of infinite rank; then N is
soluble by Lemma 3.3.1. Let H be any subgroup of G of finite rank such
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that H is not contranormal in G. Then H¢ is a proper normal subgroup of
G. Clearly, there exists a proper subnormal subgroup K of infinite rank of G
which contains H. In fact, if H has infinite rank, we can put K = H®; if H®
has finite rank, since N contains an abelian subgroup A of infinite rank, by
Lemma 3.2.3 there exists B < A of infinite rank such that H°B is a proper
subnormal subgroup of G and in this case we can choose K = HYB. By
Lemma 3.3.1 all subgroups of infinite rank of K are subnormal in G' and hence

K is nilpotent by Theorem 3 (see [33]), so that H is subnormal in G. O

Recall that the periodic radical of a group G is the largest periodic normal
subgroup of G.

The following lemma will be used to prove the last theorem of the section.

Lemma 3.3.3. Let G be a locally (soluble-by-finite) SCo-group containing a
proper normal subgroup N of infinite rank. If the periodic radical of G has

infinite rank, then every subgroup of N is subnormal in G.

Proof. By Lemma 3.3.1 every subgroup of infinite rank of N is subnormal in
G. So N is soluble and in particular it is a Baer group (see [33], Theorem 2).
Let H be any subgroup of finite rank of N. We can suppose that the largest
periodic subgroup K of N has finite rank (otherwise H is subnormal in G' by
Theorem 5 of [33]). Denote by T' the periodic radical of G and consider the
subgroup NT. If NT is a proper normal subgroup of GG then all subgroups of
infinite rank of NT' are subnormal in G and, since 71" has infinite rank, H is
subnormal in NT' by Theorem 5 of [33], and so it is subnormal in G.

Suppose that G = NT. Clearly, K is a periodic normal subgroup of G and
hence it is contained in 7. On the other hand 7' N N is contained in K, so
TNN=K.

Hence, we have that

=
~
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is a torsion-free group and so 7' is the set of all elements of finite order of G.

Now G/T has infinite rank and all its subgroups of infinite rank are subnormal;
so that by Theorem 3 of [33], it is nilpotent. Hence HT is a proper subnormal
subgroup of GG. By Lemma 3.3.1 every subgroup of infinite rank of HT is
subnormal, but T" has infinite rank and so H is subnormal in HT by Theorem

5 of [33]. Therefore H is subnormal in G. O

Theorem 3.3.4 (A.V. De Luca - G. di Grazia [21]). Let G be a locally (soluble-
by-finite) SCoo-group containing a proper normal subgroup of infinite rank. If
the periodic radical of G has infinite rank, then G is an SC-group.

Proof. Let H be any subgroup of G of finite rank which is not contranormal
in G. Then H¢ is a proper normal subgroup of G. If HY has infinite rank, by
Lemma 3.3.3 we have that H is subnormal in G.

Suppose now that H has finite rank. If NV is a proper normal subgroup of G
of infinite rank, then N is soluble by Lemma 3.3.1 and so it contains an abelian
subgroup A of infinite rank. By Lemma 3.2.3 there exists B < A of infinite
rank such that HB is a proper subgroup of G. Therefore H%B is subnormal
in G and by Lemma 3.3.1 all its subgroups of infinite rank are subnormal in
G, so that H is subnormal in G by Lemma 3.3.3. This completes the proof of
the theorem. O

The hypotheses of Theorem 3.3.2 and Theorem 3.3.4 cannot be weakened.
Kurdachenko and Smith have proved the existence of a metabelian locally
nilpotent group of infinite rank such that the largest periodic subgroup has
finite rank, all subgroups of infinite rank are subnormal but there exists a
non-subnormal subgroup of finite rank (see [33], Theorem 4). Obviously, this

subgroup cannot be even contranormal.



Chapter 4

Groups with a modularity

condition on infinite subsets

In this chapter we study the influence on a group G of the condition that every

infinite set of cyclic subgroups satisfies a suitable modularity condition.

4.1 Groups with modular subgroup lattice

A lattice £ is called modular if for all z,y, z € £ such that x < z, the modular
law holds:
zV(ynz)=(xVy) Az

We say that an element m of the lattice £ is modular in £ if, for all x,y,z € £
xV(mAz)=(xVm)Az with z <z and
mV(yAz)=(mVy ANz with m < z.

Of course, a lattice £ is modular if and only if all its elements are modular. A
subgroup of a group G is modular if it is a modular element of the subgroup

lattice £(G) of G, and G is called an M -group if it has modular subgroup
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lattice. Abelian groups and Tarski groups are obvious examples of M-groups.
Recall also that a subgroup H of a group G is said to be permutable (or quasi-
normal) if HK = K H for every subgroup K of G, and G is quasihamiltonian
if all its subgroups are permutable. Clearly, every normal subgroup is per-
mutable and every permutable subgroup is modular in a group G. It is known
that a subgroup is permutable if and only if it is ascendant and modular (see

[53] Theorem 6.2.10). Also, we note the following useful properties.

Lemma 4.1.1. Let G be a soluble group. If M is a maximal subgroup of G
that is modular in G, then |G : M| is a prime.

Proof. We use induction on the derived length of G. If G' < M, then M is
normal in G and |G : M| is a prime; so suppose that G £ M. Since M is a
maximal subgroup of G, it follows that G = G’ M and, since M is modular in G,
M NG’ in maximal and modular in G'. By induction, |G’ : M NG'| = |G : M|

is a prime. |:|

Theorem 4.1.2 (S.E. Stonehewer [59]). Let G' be generated by two infinite
cyclic subgroups M, K intersecting trivially. If M is modular in G, then M

15 normal in G.

In this section we determine all groups with modular subgroup lattice.
Let p a prime and n > 2 be a cardinal number. We say that a group GG belongs
to the class P(n,p) if G is either elementary abelian of order p™, or a semidirect
product of an elementary abelian normal subgroup A of order p"~! by a group
of prime order ¢ # p which induces a non-trivial power automorfism on A.
Here, if n is infinite, by an elementary abelian group of order p™ or p"~! we
shall mean a direct product of n cyclic groups of order p. We call G a P-group
if G € P(n,p) for some prime p and some cardinal number n > 2.

Now we describe first the finite p-group with modular subgroup lattice. We

start with an elementary remark.
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Lemma 4.1.3. A finite p-group has modular subgroup lattice if and only if

any two of its subgroups permute.

Theorem 4.1.4 (Iwasawa [53]). A finite p-group G has modular subgroup
lattice if and only if

(a) G is direct product of a quaternion group Qg of order 8 with an elemen-

tary abelian 2-group, or

(b) G contains an abelian normal subgroup A with cyclic factor group G/A;
further there exists an element b € G with G = A(b) and a positive

integer s such that a® = a' ™" for all a € A, with s > 2 in case p = 2.

We say that G is a P*-group if G is the semidirect product of an elementary
abelian normal subgroup A by a cyclic group (t) of prime power order such
that ¢ induces a power automorphism of prime order on A. Clearly, every non

abelian P-group is a P*-group.

Theorem 4.1.5 (Iwasawa [53]). A finite group has modular subgroup lattice
if and only if it is a direct product of P*-groups and modular p-groups with

relatively prime orders.
As an immediate consequence we note the following results.
Theorem 4.1.6. Every finite group with modular subgroup lattice is metabelian.

Lemma 4.1.7. Let G be a finite M-group and x,y € G. If x© is a p-element

and y a g-element where p and q are primes with p > q, then (x)¥ = (z).

Proof. By Theorem 4.1.5, G is a direct product of groups Gfi,...,G, with
relatively prime orders such that every G; is either a P*-group or an M-group
of prime power order. If x and y are contained in different components of this
decomposition, then zy = yz and hence (z)¥ = (x). So suppose that x,y € G,
for some 7. Then G; is a P*-group and hence (x) is normal in G since p is the

largest prime dividing the order of G;. O
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Now we give the precise structure of non abelian M-groups with elements

of infinite order.

Theorem 4.1.8 (Iwasawa [53]). Let G be a non-abelian group with elements
of infinite order. Then G is an M -group if and only if the following conditions
hold:

(i) The set T(G) of all elements of finite order is a characteristic abelian

subgroup of G,
(i1) G/T(G) is a torsion-free abelian group of rank one,

(1i1) FEwvery subgroup of T(G) is normal in G; all subgroups of prime order and

of order 4 are central in G.
In particular, G is quasihamiltonian.
Consider the periodic case.

Theorem 4.1.9 (Iwasawa [53]). A group G is a locally finite M-group if and
only if it is a direct product of P*-groups and locally finite p-groups with modu-
lar subgroup lattice such that elements of different direct factors have relatively

prime orders.

We say that a group G is a Tarski group if it is infinite simple but every
proper non trivial subgroup of G has prime order. For a long time it was
not known whether Tarski groups exist until Olshanskii (1979) produced the
first example of such groups. Cleary the subgroup lattice of a Tarski group is
modular. We call a group G an extended Tarski group if it contains a normal

subgroup N such that
1. G/N is a Tarski group,

2. N is a cyclic p-group, with p prime,
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3. for every subgroup H of G, H < N or N < H.
So, we have the following result as our description of periodic M-groups.

Theorem 4.1.10 (Schmidt [53]). Let G be a torsion group. Then G has
modular subgroup lattice if and only if G is a direct product of Tarski groups,
extended Tarski groups and a locally finite M-group such that elements of dif-

ferent direct factors have relatively prime orders.

In 4.1.6 we noted that every finite M-group is metabelian. This is also true

for locally finite M-groups and M-groups with elements of infinite order.

Theorem 4.1.11. Let G be an M-group. If G contains elements of infinite

order or if no Tarski group is involved in G, then G is metabelian.

If any two subgroups of the group G permute, then G is an M-group and,
clearly, GG is locally finite if it is a torsion group. So the Theorem 4.1.8 and

the results on locally finite M-groups give the structure of these groups.

Proposition 4.1.12. Let G be a torsion group. The following statements are

equivalent:
(a) Any two subgroups of G permute.

(b) G is the direct product of its p-components and these are locally finite

p-groups with modular subgroup lattice.

(¢) G is a locally nilpotent M -group.

4.2 Groups with many permutable subgroups

In response to a question of Paul Erdés, B.H. Neumann proved in [41] that a

group is central-by-finite if and only if the subsets consisting of mutually non
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commuting elements are finite. It will be discussed here the following rather
similar case.

A group G is said pseudo-Hamiltonian, or a PH-group, if every infinite set
of subgroups of GG contains a pair that permute. More in general, G is a PH*-
group if every infinite set of cyclic subgroups contains a pair that permute. Of
course, all central-by-finite groups satisfy PH, though the converse is false.
Infact Napolitani and Iwasawa [31] have constructed quasihamiltonian groups
as follows:

n—1

H,,={a,b:a? =1, b7 =1, a’ =a'")

where ¢ is a prime and n a positive integer. The direct product of any number
of groups of this type of coprime order with a suitable choise of n and ¢ give
rise to PH-groups that are not nilpotent and not central-by-finite.

We need some lemma for prove the main theorems of this section.
Recall that a group G is said eremitic if there exists a positive integer e such
that whenever an element of G' has some positive power in a centralizer C, it

has its eth power in C.

Lemma 4.2.1. Let G be a finitely generated soluble group such that for all
x,y in G there exist integers n,i > 1, such that [z*,y™,y™| = 1. Then G is

nilpotent-by-finite.

Proof. By induction on the derived length of G, we may assume that G is
(abelian-by-nilpotent)-by-finite, and thus, ignoring the finite factor at the top,
that G is abelian-by-nilpotent. Thus G is eremitic (see [35] Theorem B); this
means that there is an integer e > 1 depending only on G such that [u, v¢] =1
whenever [u,v™] = 1 for elements u,v of G and an integer m > 1. Let A
be an abelian normal subgroup of G such that GG/A is nilpotent. For a € A
and y € G, we have [(ya)’,y",y"] = 1 for some i,n > 1; so, after a small

calculation, we have [b,y",y"] = 1, where b = ' *vt* """ But (a,y) is
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metabelian, so [b,y¢, "] = 1 and [b,y%,y°] = 1. Write A additively; then
a(l —y") (1 —y°%)? =0, and so by eremiticity, a(1 — y¢)* = 0.

It will be enough if we show that G° is nilpotent, since it is of finite index.
All the elements of the form y¢ act nilpotently on A N G¢ so (AN G°) is
nilpotent. But this subgroup is subnormal in G, so G¢ is locally nilpotent and

thus nilpotent since it is finitely generated. O

Lemma 4.2.2. Let G be a finitely generated soluble group such that for every
cyclic subgroup H and every element x of G, there exists a positive integer i

such that HH* = H* H. Then G is nilpotent-by-finite.

Proof. For arbitrary z,y in G, there must exists ¢ > 0 such that

Thus, by [30], the product K = (y)(y)*" has a torsion-free abelian subgroup
of finite index. Thus [y™, (ym)‘””] = 1, for some m > 1, so [z%,y™,y™] = 1 for
some m > 1 and some ¢ > 0. Therefore GG is nilpotent-by-finite by Lemma

4.2.1. ]
Lemma 4.2.3. Every torsion-free nilpotent PH*-group is abelian.

Proof. We may assume that G is 2-generated, say G = (z,y). Let Z be the
centre of G. Then G/Z is torsion-free and so by an obvious induction, it
is abelian and hence G is of class 2. Setting H; = (xy’), i € Z, we have
H,H,, = H, H, for some n,m > 0, n # m so H,H,, is a metabelian group
by Ité6 Theorem and by [30] has an abelian subgroup of finite index. But this
group is also torsion-free nilpotent of class 2 and an easy argument shows that
it is abelian. Hence xy™ and zy™ commute, and once again, the fact that G is

torsion-free nilpotent of class 2 gives that x and y must commute. (]

Recall that the FC-centre of a group G is the subgroup consisting of all

elements of G with finitely many conjugates, and a group is said to be an
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FC-group if it coincides with F'C-centre. It is well-known that any finitely
generated F'C-group is central-by-finite.

We are now in a position to prove the main results.

Theorem 4.2.4 (M. Curzio - J. Lennox - A. Rhemtulla - J. Wiegold [5]).
Fvery finitely generated soluble PH*-group is central-by-finite.

Proof. Let G be a finitely generated soluble PH*-group. By Lemma 4.2.2,
G is nilpotent-by-finite, so it has a torsion-free nilpotent subgroup A of finite
index; by Lemma 4.2.3 A is abelian. We proceed by induction on |G/A|, all
being well when G = A.

If (A, z) < G for all x € G, then (A, x) is an F'C-group for all z in G, so G
is an F'C-group. Finitely generated F'C-groups are central-by-finite and thus
we may assume that (A, z) = G for some x. Let n be the order of x modulo
A. If n is not a prime power, then n = rs with (r,s) = 1. Since (A, z") and
(A, z®) are proper subgroups of G, the centralizers Cg(z") and Cg(x®) are of
finite index in G, as above, and Cg(z) > Cg(2") N Cg(x®).

We know now that n = p™ for some prime p. By induction, (A, a?) is
central-by-finite. Thus [A, 2P| is finite; since A is torsion-free and normal, this
means that [A, zP] = 1. Thus the group B = (A, 2?) is abelian, and of course
aP is in the centre of G.

We can assume that = has infinitely many conjugates in G, else the centre
Z(G) has finite index, since it contains A N Cg(x). Thus, there must exist
an a such that (z*) # (z*) if i # j. Property PH* now means that ¥ =
(x)(z®) = (2°)(x) for some b = a’. Modulo the central subgroup (z?), Y has
order p or p?, so [z,b]P € (xP); since [z,b]P = [z, bP], we have the contradiction
that (z*") = (x). Thus x has only finitely many conjugates, and G is central-

by-finite. This completes the proof of the theorem. O

Theorem 4.2.5 (M. Curzio - J. Lennox - A. Rhemtulla - J. Wiegold [5]). All

torsion-free PH*-groups are abelian.
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Proof. 1t is sufficient to assume that G = (gi,...,gx) is finitely generated.
Suppose that a, b are elements of G such that (a)(b) = (b){a). Since this
product is metabelian, it follows from Theorem 4.2.4 and the fact that G is
torsion-free that (a, b) is abelian. Now for any pair z, y of elements of G, there
exists i > 0 such that (y)(y*) = (y*){y). Thus (y,7*) is abelian. Similary,
(z,2¥") is abelian for some j > 0. Hence (2%, 7) is nilpotent and hence abelian
by Theorem 4.2.4. Since [z%,y,y] = 1, we have 1 = [2%, 5] = [2%,y]?, so
[¢',y] = 1. In particular, by considering the pairs (z,g;), for j = 1,...,k, we

get [, G] = {1} for some t > 0. This shows that G/Z(G) is periodic.

Obtain, if possible, a sequence (ay, as, .. .) of elements of G as follows. Pick
i—1 n

any a; € G\ Z(G) and for i > 2, pick a; from G\ U Calaj). If U Calaj) =G
j=1 j=1
for some n € N, then Cg(a;) is of finite index in G for some i < n. Set

A = (a¥). Then A is in the FC-centre of G and [A,G] is finite. But G is
torsion-free, whence A < Z(G), contradicting our choice of a;. We conclude
that in this case G is abelian.

The other alternative is the existence of an infinite sequence (ay, as, . ..) as
constructed above. By hypothesis, (a;){a;) = (a;)(a;) for some 0 < i < j. In
this case (a;, a;) is abelian, as shown earlier in the proof. But then a; € Cg(a;),

a contradiction. This completes the proof of the theorem. O

4.3 Groups with a modularity condition on in-
finite subsets

It was shown in the previous section that if G is a finitely generated soluble
group such that every infinite set of cyclic subgroups of GG contains two distinct
elements H and K such that HK = KH, then G is finite over its centre. It is
proved here that a similar result holds when the permutability is replaced by

modularity.
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Lemma 4.3.1. Let G be a finitely generated soluble group such that for every
cyclic subgroup H and every element x of G, there exists a positive integer 1

such that H and H*' are modular in (H, HTZ) Then G is nilpotent-by-finite.

Proof. Let x, y be elements of G, and let ¢ be a positive integer such that
(y) and (y)*" are modular in (y,y*'). Assume that y has infinite order. If
(y) O ()™ = {1} then (y,y"") = (y) x (y)* (see Theorem 4.1.2). On the other
hand, if () N (y)*" # {1}, then 3™ lies in the centre of (y,y*"), for some m > 1.
Therefore, in any case there exists a positive integer n such that [z, y", y"] = 1,

and hence the group G is nilpotent-by-finite (see Lemma 4.2.1). O

Lemma 4.3.2. Let G be a torsion-free nilpotent group such that every infinite
set of cyclic subgroups contains two distinct subgroups H and K such that at

least one of them is modular in the subgroup (H, K). Then G is abelian.

Proof. Since G is nilpotent, all its subgroups are subnormal, and in particular,
in any subgroups of GG every modular subgroup is permutable. Therefore the

statement follows from Lemma 4.2.3. O
We can now prove the main result of the section.

Theorem 4.3.3 (A.V. De Luca - G. di Grazia [19]). Let G be a finitely gener-
ated soluble group such that every infinite set of cyclic subgroups contains two
distinct subgroups H and K which are modular in the subgroup (H, K). Then
the centre Z(G) has finite indez in G.

Proof. The group G is nilpotent-by-finite by Lemma 4.3.1, so that it follows
from Lemma 4.3.2 that GG contains a torsion-free abelian normal subgroup A of
finite index. Assume that the statement is false, and choose a counterexample
G such that the factor group /A has smallest possible order.

Let g be any element of GG such that (A, g) is properly contained in G. It

follows from the minimal assumption on |G/A| that (A, g) is an FC-group, so
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that it is contained in the F'C-centre of G. As the finitely generated group G
cannot be an FC-group, there exists an element x such that (A, z) = G and
the cyclic group G/A must have prime-power order p™. Now A is centralized
by P, since it is a torsion-free normal subgroup of the FC-group (A, z?), and
hence 2 lies in the centre of G.

Clearly A is finitely generated, and the element = has infinitely many con-
jugates in G, so that there exists an element a of A such that (z*) # (z*)
for all distinct integers ¢ and j. It follows that there exists a positive integer
k such that the subgroups (z) and (2°") are modular in ¥ = (z, 2*"). Then
(z)/{zP) and (z*)/(zP) are modular subgroups of Y/(a?), so that they are
maximal in Y/(zP), since they both have order p. Tt follows that Y/{xP) is
finite (see Lemma 4.1.1). Therefore there exists a positive integer ¢ such that

(212"t belongs to (7). On the other hand,
(.I_lajak)t _ [x,ak]t _ [x,akt],

so that [z, a*] belongs to (z). Then (z) = (z*), as also (z~'2°")~* belongs

to («xP). This contradiction completes the proof of the statement. O

It is well-known that a group generated by two cyclic modular subgroups
need not have modular subgroup lattice. It can be proved that the hypotheses
of the above theorem can be weakened, provided that we require that every
infinite set of cyclic subgroups of G contains two distinct elements generating

a group with modular subgroup lattice. In fact, we have:

Theorem 4.3.4 (A.V. De Luca - G. di Grazia [19]). Let G be a finitely gen-
erated group such that every infinite set of elements of G contains two distinct
elements a and b such that the lattice £({a,b)) is modular. Then the factor

group G/Z (@) is periodic.
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Proof. Let G = (x1,...,x,), and let g be any element of infinite order of G.
For i € {1,...,n}, consider the set I'; = {¢"x; | n € Z}. Since I; is infinite,
there exist distinct positive integers h and k such that L; = (¢"z;, g*z;) has
modular subgroup lattice. Moreover, L; contains the element of infinite order
"% = (¢"x;)(g*x;)~t, and hence it is quasihamiltonian. It follows that L;
has finite commutator subgroup (see Theorem 4.1.8), and hence the index
|L; : Z(L;)| is finite. In particular, there exists a positive integer m such that
gh=Pm e Z(L;), and so g"=¥™ € Cq(z;). Therefore (g) N Z(G) # {1}, and

hence G/Z (@) is periodic. O

The above theorem provides in particular an extension of Theorem 4.3.3

to the case of finitely generated hyper-(abelian or finite) groups.



Chapter 5

Groups of infinite rank which
are isomorphic to their non
abelian subgroups of infinite

rank

In this chapter we give another rank condition. Also in this case the imposition
of some conditions on subgroups of infinite rank can influnce the structure of

whole group.

5.1 Groups isomorphic to their non-abelian sub-
groups

A group G is an X-group if it contains proper non-abelian subgroups, all of
which are isomorphic to G. Clearly, every X-group is infinite and 2-generated.
There is a satisfactory classification of soluble groups in the class X and, al-
though it does not know whether there exist insoluble X-groups, nevertheless

we are able to show that such groups would have to be very restricted in
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structure.

Let begin with a very easy result.
Lemma 5.1.1. If G is an abelian-by-finite X-group, then G is metabelian.

Proof. 1f G is central-by-finite then G’ is finite and therefore abelian. Other-
wise, there exists a non-central normal abelian subgroup A and then, for some
g € G, we have (A, g) non-abelian and therefore isomorphic to G. Then result

follows. O

Theorem 5.1.2 (H. Smith - J. Wiegold [56]). Let G' be an insoluble X-group,
and let Z denote the centre of G. Then G is 2-generated and G /Z is infinite

simple. Moreover, Z is contained in every non-abelian subgroup of G.

Proof. Let G and Z be as stated, and let A denote the Hirsch-Plotkin radical
of G. Certainly G is not locally nilpotent, and so A is abelian. Infact A = 7,
otherwise G ~ (A, g) for some g € G, giving the contradiction that G is soluble.
By Lemma 5.1.1, G/Z is infinite. Suppose, for a contradiction, that there exists
a normal subgroup N of G such that Z < N < G. For some g € G\ N we
have (N, g) non-abelian and hence isomorphic to G, and so G has a non-trivial
finite image. It follows that G is locally graded and hence, by Lemma 1 of [55],
that G/Z is locally graded. Now Z is also the Hirsh-Plotkin radical of N and,
since N ~ G, we deduce that N/Z ~ G/Z, that is, G/Z is isomorphic to all
of its non-trivial normal subgroup. Since G/Z has a non-trivial finite image,
we may apply the main result of [36] to obtain the contradiction that G/Z is
cyclic. Thus G/Z is simple and G'Z = G, and so G’ = G”. But G ~ G’ and
so G is perfect. Thus if H is any non-abelian subgroup of G then we have

HZ =(HZ) = H' = H, and the proof is complete. O

Now consider the nilpotent case. It convenient to state the conclusion here

in the form of lemmas.
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Lemma 5.1.3. Let G be a nilpotent group. Then G is an X-group if and only
if G has one of the following presentations (where ‘“nil —27” denotes the pair of
relations [a,b,b] =1, [a,b,a] = 1, p is an arbitrary prime and k is an arbitrary

positive integer).

(1) {a,b | nil =2, [a,b]P =1),

(i1) (a,b | nil —2, [a,b]P =" = 1),
(iii) {(a,b | nil —2, [a,0]2 =1, b** = [a,b]),
(iv) {a,b | nil — 2, [a,b]* =1, b*" = [a, b]).

Proof. First assume that G is a nilpotent X-group. Certainly G has class
exactly 2 and is generated by two elements a and b, say. Suppose that [a, D]
has infinite order; then G is free nil — 2 and G' = Z(G). For each n > 1, set
H, = (a",b,]a,b]). Then H/ = ([a,b]") and Z(H,) = {[a,b]), so Z(H,)/H] is
cyclic of order n, and we even have that GG contains infinitely many pairwise
non-isomorphic of non abelian subgroups. By this contradiction, [a,b] has
finite order m, say. If m = rs for some r, s > 1, then the subgroup H = (a", b)
has its commutator subgroup of order s # |G’|, another contradiction. So

|G’| = p, a prime,and there are just the following cases to consider.
Case 1. G/G' is free abelian, so G has the presentation (7).

Case 2. G/G" = (aG') x (bG"), where |aG’| is infinite and |bG’| is finite.
Suppose here that bG’ has order p*l where (p,l) = 1, and set K = (a, b').
Then K’ = G’ and ¥ has order p* modulo G’, and K ~ G implies [ = 1.
Thus b has order p* modulo G’, for some positive integer k, and either
" = 1, in which case we have the presentation (i), or W= la, b]*,
for some integer s prime to p, and we now assume that this relation
holds. Let H be a non-abelian subgroup of G. Then H' = G’ and
H/H' = (bH') x (a®H') for some (arbitrary) integer « prime to p. Thus
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H = (a®,b). Suppose that § : G — H is an isomorphism. Then 6(a) =
a“sb”, O(b) = V', where ¢ = £1 and r, t are integers, with (¢,p) = 1. Now
we have [a, b]* = 7" = (0") = [a°b", b]* = [a, b]**", and so p divides
st(ae —1). Thus ae = 1(mod p), that is, « = +1(mod p). But this must
hold for all « prime to p, and so p = 2 or 3, and we have the presentation

1

(741), (iv)- note that replacing a by a~' allows us to assume that s = 1

in the case where p = 3.

It remains only to show that a group G having one of the presentations (i)-(iv)
is an X-group. We shall retain the appropriate notation at each stage.

In case (7), an arbitrary non-abelian subgroup H of G satisfies H' = G’ and
H/H' free abelian, and so H ~ G. In case (i7), every non-abelian subgroup H
is of the form (a®,b), where (p,«) = 1, and the map a — a®, b — b extends
to an isomorphism from G to H. FEach non-abelian subgroup H is also of
this type in the remaining two cases. The map a — a®®, b — b, with 6 = 1
if « = 1(mod p) and 6 = —1 if « = —1(mod p) (where p = 2 or 3) again

extends to an isomorphism 6 from G to H, as the following calculations shows:

k

O(b)*" = [0(a),0(b)]* iff 07" = [a®c,b]* iff [a,b]® = [a,b]°=*, which is true and
so all relations are satisfied, and 6 extends to a homomorphism onto H. Also
O(a™b™) = 1 implies a®™b™ = 1, which implies that p divides n and m = 0

and so @ is injective. The lemma is thus proved. O

Now we deal with central-by-finite X-groups. Again it is convenient to

isolate this part of the argument.

Lemma 5.1.4. Let G be a non-nilpotent central-by-finite X-group. Then G =
(A, z), where A is a finite elementary abelian p-subgroup of order p™ which is
minimal normal in G, x is of infinite order and has order ¢ modulo Z(G),
where p, q are distint primes, and for each k in the interval 1 < k < ¢ — 1,
T is conjugate to % or 7% in GL(n,p), where now T denotes the image of T

under the natural map from (x) to GL(n,p).
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Proof. As in the proof of Lemma 5.1.1, G’ is finite and therefore abelian.
Since GG’ is not central it has a non-central Sylow p-subgroup, and we may
write G = A x (z), where A is finite normal abelian p-subgroup of G' and z
has infinite order. Now G’ = [A, (z)] and so [a,z,z] # 1 for some element a
of A, and we have ([a,z],z) ~ G. But [a,z]P = [a?,z] = 1, since (AP, x) is
certainly not isomorphic to G. It follows that A has exponent p. Suppose that
x has order n modulo Z(G). If n = rs, where r,s > 1, then (A", z) is not
abelian and is therefore isomorphic to GG. But this easily gives a contradiction,
and so n = ¢, a prime. Certainly ¢ # p, since G is not nilpotent. Further,
if A contains a proper non trivial G-invariant subgroup B then, by Maschke’s
Theorem, we have A = B x C, where C' is also non-trivial and G-invariant.
Now either (B, x) or (C,x) is isomorphic to GG, another contradiction. Finally,
if ¢ does not divide k then (A, z*) is isomorphic to G and so z* acts like 2+
on A and the conjugacy condition follows.

Now suppose that G is a group having the structure indicated, and let H
be a non-abelian subgroup of G. Then H contains a non-trivial element b of
A and an element of the form g = uz?, where v € A and A # 0(mod q).
Since A is minimal normal we have (b)'9 = A, and so H is normal in G and
H = (A, z"), for some p which is not a multiple of ¢. Clearly then H ~ G,
and the result follows. O

The following lemma is fundamental.

Lemma 5.1.5. Let G be a soluble X-group. Then G has a normal abelian

subgroup of prime index.

Proof. By Lemma 5.1.3, a nilpotent X-group has a normal abelian subgroup,
namely (a?,b)G" in the notation there employed, of prime index p. Assuming
G is not nilpotent, we see that the Hirsh-Plotkin radical A of G is abelian

and self-centralizing, and it is clear that if G/A is finite then it is of prime
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order. Thus we may assume that G is not abelian-by-finite, and hence that
G = A x (x) for some element x of infinite order.

Suppose that A contains a non-central element a of finite order. Then
H = (a,) is isomorphic to G. Now H N A = (a)® is the Hirsch-Plotkin
radical of H, else (a,z") is locally nilpotent and hence abelian for some n > 0,
giving the contradiction that H is abelian-by-finite. Thus A ~ H N A and A
has finite exponent. We may now argue as in the proof of Lemma 5.1.4 to
deduce that A has prime exponent n, say. If A is finite then G is central-by-
finite, a contradiction. It follows that G is (isomorphic to) the wreath product
{(a) ! {(x). But the non-abelian subgroup A(z") is not even 2-generated. By
this contradiction, the torsion group T of A is central in G. If G/T is abelian-
by-finite then G is nilpotent-by-finite, another contradiction. Let H/T be a
non-abelian subgroup of G/T. Then, of course, H is not abelian and T is the
maximal torsion subgroup of H, and so H/T ~ G/T and G/T belongs to X.

Factoring by T if necessary, we may assume that G is torsion-free. Let
Z denote the centre and C' the second centre of G. If C' > Z then (C,x)
is non-abelian and therefore isomorphic to G, giving the contradiction that
G is nilpotent. So Z is the hypercentre of G; also A/Z is torsion-free. Let
D = C4(x™), where n is some positive integer. Then D is normal in G and
(D, x) is abelian-by-finite and hence abelian, giving D = Z. Suppose that
H/Z is a non-abelian subgroup of G/Z. Certainly H is non-abelian, and so it
contains an element of the form ax”, for some positive integer n and element
a of A. Also, of course, HN A # {1}, and it follows that Co(H N A) = A and
hence that Z(H) = Z. Thus H/Z ~ G/Z, and we have G/Z € X. Factoring
as before, we may assume that Z = {1} and hence that C4(2™) = {1} for
all positive integer n. We claim that G has finite rank; assuming this to be
false, we have from [32] that G contains a section L/K which is isomorphic to

Cp 1 C for some prime p. Since L is isomorphic to GG, we may as well write
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G = L. Let B/K denote the base group of G/K. Then B is not isomorphic
to (7, since it is not finitely generated. Hence B is abelian and, since G/B is
infinite cyclic, we see that B = A. But then (A, zP) is not 2-generated (modulo
K) and we have the contradiction that (A, z?) is abelian. This estabilishes the
claim.

Next, suppose that A is finitely generated, of rank 7, say, and let {a4, ..., a,}
be a Z-basis for A. Relative to this basis, the action of z on A may be repre-
sented by an invertible r x  matrix X with integer entries. Set H = (A, 2?),
and let # be an isomorphism from G to H. Since A is the Hirsch-Plotkin
radical of both G and H, it is fixed by €, which is therefore determined by
some assignment a; — b; (i = 1,...,7),  — ax®™®, where {by,...,b.} is also
a basis for A and a is some element of A. By taking the composite with the

*2 5 %2 we may assume that a; — b;, v — %2

isomorphism b; — b;, ax
Suppose M represents the change of basis {ay,...,a,.} — {b1,...,b.}; then
0 restricted to A is rappresented by M and, since # is an isomorphism, we
have MX*2 = XM, or M~*XM = X*2. Consider the subgroup K = (X, M)
of GL(r,Z); this is a homomorphic image of either U = (a,b | a®* = a?) or
V = {a,b | a® = a~?) via the assignment a — X, b — M. Now each of U
and V is an extension of the dyadic rationals by the infinite cyclic group (b)
and so K is soluble and hence polycyclic (see Chapter 2 of [52], for example).
But, in every polycyclic image of U or V, the image of the subgroup (a)®
is finite, and so X has finite order n, say. This gives the contradiction that
[A, 2™ = {1}. Thus A is not finitely generated and, since C'4(x) = {1}, we see
that A contains no non-trivial finitely generated G-invariant subgroups. Since
A has rank r, there exists an r-generated subgroup Ag of A such that A/A, is
periodic. Further, since (Ag, =) is not abelian, we may assume Aéx> = A. Write
Ay = AgAZAL". Then |A; : Ao| = m, where m is an integer greater than 1,

since Ay is not normal in G. Setting Ay = A; A*A? ' we note that each of the
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indices |A? : AZ| and |A?"" : AZ"'| is also m and hence that |Ay : Ag| divides
m3. We deduce that A/A is a m-group for some finite set 7 of primes, namely
those dividing m. Since A has finite rank but is not finitely generated, it has
a subgroup A* such that A/A* ~ Cy for some prime ¢. Let £ be the set of
all subgroups L of A such that A/L ~ Cye. It easy to see that no member L
of £ can be isomorphic to A, and it follows from the X-property that, for each
Lin £, L% = A. Choose B € L such that the index |[BB*B* ' : B| = ¢,
say, is minimal. Since B is not normal in G we have § > 0 and thus, for all
Le L, |LL”L*” : L| > ¢° (here we are using the fact that A/L is locally
cyclic). Now let J = (A, x?).

There exists an isomorphism ¢ from G onto J and, as for our previous
isomorphism 6, we may assume that ¢(z) = %2, Also, ¢(A4) = A and so the

set L is invariant under ¢. Thus

+2

[BB*B*": Bl = [¢(B)$(B)" ¢(B)™ : ¢(B)| > ¢’,

a contradiction which concludes the proof of lemma. O
So we have the main theorem of this section.
Theorem 5.1.6 (H. Smith - J. Wiegold [56]). Let G be a soluble group.
(a) If G € X then G contains an abelian normal subgroup of prime inde.

(b) If G is nilpotent then G € X if and only if G has one of the following
presentations (where “nil — 2”7 denotes the pair of relations [a,b,b] =
1, [a,b,a] = 1, p is an arbitrary prime and k is an arbitrary positive
integer).
(i) (a,b | nil —2, [a,b]? = 1),

(i1) {(a,b | nil —2, [a,0]F =" = 1),
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(iid)
(iv)

(a,b | nil — 2, [a,0)2 =1, v** = [a,b]),

(a,b | nil — 2, [a,0P =1, b = [a,b)).

(¢) If G is not nilpotent then G € X if and only if either

(1) G = (A, x), where A is a finite elementary abelian p-subgroup of

order p" which is minimal normal in G, x is of infinite order and
has order ¢ modulo Z(G), where p, q are distint primes, and for
each k in the interval 1 < k < q — 1, T is conjugate to =% or z=*
in GL(n,p), where now T denotes the image of © under the natural

map from (x) to GL(n,p), or

G contains a normal abelian subgroup B = A x (b), where A =
(a1) X -+ X (ap_1) is free abelian of rank p — 1 and normal in G,
b is of infinite order or of order p* (for some non negative integer
k) and is central in G, and G = A x (z) for some x, where 2 = b,
ai = a1 fori=1,...,p—2 and ay_, = (a; - -wa,_1)"t, where p is

a prime at most 19.

5.2 Groups isomorphic to their non-nilpotent

subgroups

In this section we examinate a property which represents a natural generaliza-

tion of the property X.

A group G is an 20-group if it contains proper non-nilpotent subgroups, all

of which are isomorphic to G. Of course, QJ-groups do not satisfy the minimal

condition.

Also, we observe that a 20-group fails to be finitely generated if

and only if it is locally nilpotent. Again here, there is a quite classification of

this group at least in the soluble case.

Now we give some preliminary results.
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Lemma 5.2.1. Let G be a group, N a normal nilpotent subgroup of G and
suppose that G = N{z) for some element x. If M is a G-invariant subgroup

of N such that M(z) is nilpotent, then M < Z,(G) for some integer n.

For the second result, we recall that if GG is a locally nilpotent group and H
is a subgroup of G, the isolator I¢(H) of Hin Gis Io(H)={g € G| g" € H}

for some non-zero integer n, and it is a subgroup of G.

Lemma 5.2.2. Let G = A x (g) be a countable torsion-free locally nilpotent
group with A abelian, and suppose that H is isomorphic to G whenever H is

a subgroup of G with Io(H) = G. Then G 1is free abelian.

Proof. Let S = {b; | t € N} or {b,...,b} be a maximal Z-indipendent subset
of A. Since A; = ()¢ is contained in (by, ), it is finitely generated by
local nilpotency. Write I} = I4(A;) and a; = b;. Now choose iy least such
that by € S\ I, and write By = (b;,)¢. Then (ByN1;)/A; is finitely generated
periodic abelian and is therefore finite, of order n; say, so that (BoNi;)™ < Aj.
Set ay = b;); then ()¢ NI, = BY' NI, = (BoN1)™ < Ay Since {ay,a2)% /A,
is free abelian, it follows that (a, a2>G = A; x Ay for some finitely generated
subgroup A, of A. Write Iy = I4(A;As) and continue in the obvious manner
to obtain in the end a (g)-invariant free abelian subgroup A* = A; x Ag x - --
of A whose isolator is A. By hypothesis, G ~ A*(g), and thus we assume that
A is free abelian.

By local nilpotency again, every element of A is in some term Z;(G) of
the upper central series of G, so that A is generated by all the A N Z;(G).
We claim that we may write A = C; x Cy X - (possibly, with finitely many
factors), in such a way that C} x Cy X -+ x C; = AN Z;(G) for each i. To
see this, recall that G = (A, g) and that A is abelian, so the map d — [d,; g] is
a homomorphism from AN Z;;1(G) into A with kernel AN Z;(G). Since A is
free abelian, AN Z;(G) is a direct factor of AN Z;,1(G) and the claim follows.
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Suppose that G is not abelian and choose a prime p such that [C1Cy, (g)]
(= [C4,(g)]) is not contained in C7. Such exists because C} is free abelian. Set
B =C1A? = C; x CY x Cf x - -+, so that G ~ B(g) and thus [Z2(B(g)), (9)] £
(Z1(B{g)))P = CY. But Zy(B(g)) = C1C% and thus we have [C1CE, (g)] < CT,

a contradiction that proves the lemma. I:l

Lemma 5.2.3. Let G be a soluble locally nilpotent group that is isomorphic to

each of its non-nilpotent subgroup. If G is torsion-free it is a Fitting group.

Proof. Let G be a group that satisfies these hypothesis and suppose for a
contradiction that G is not a Fitting group. Since G is not nilpotent it has a
countable non-nilpotent subgroup and so itself countable. Choose g in G such
that ()¢ is not nilpotent, so that G’(g) is not nilpotent. But G’ is nilpotent
since it has smaller derived length than G and so is not isomorphic to GG. Since
G is isomorphic to G'(g), we deduce that G has a normal nilpotent subgroup
N with G = N(x) for some element z. From [45] Lemma 6.33 we see that
NN(z) = {1} and N = Fitt(G). It follows easily that N'(z) is not isomorphic
to G and is therefore nilpotent, so that N’ < Z,(G) for some integer a, by
Lemma 5.2.1. Let H be an arbitrary subgroup of G containing Z,(G) such
that Ig(H) = G; again, H is not nilpotent. Now in any torsion-free locally
nilpotent group centralizers are isolated; thus, if ¢ € Z(H) then G < Cq(g),
that is, g € Z(G) and so Z(G) = Z(H). Furthermore, G/Z(G) is torsion-free
and so an easy induction shows that Z,(G) = Z,(H), where a is as above. It
follows that Z,(G) is invariant under every isomorphism from G to H; thus, as
N' < Z,(G), we see that G/Z,(G) is abelian-by-cyclic. It is also torsion-free,
so that Lemma 5.2.2 applies to give that G/Z,(G) is abelian and hence that
G = Z,41(G), a contradiction that estabilishes the result. O

Lemma 5.2.4. Let G = A(x) be a locally nilpotent, residually nilpotent group,

where A is a normal abelian p-subgroup of G for some prime p. If G is not
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nilpotent, then it has a non-nilpotent subgroup B{(x) for some subgroup B of

A that is the direct product of finite G-invariant subgroups.

Proof. Firstly, there must exist a finite G-invariant subgroup B; of A such that
[B1,x] # {1}, else G would be nilpotent. Thus there is a normal subgroup N,
of G such that G/Nj is nilpotent and Ny N By = {1}. Next, since G/(N; N A)
is nilpotent and G not nilpotent, G does not act nilpotently on Ny N A; thus,
there is a finite G-invariant subgroup By of Ny N A such that [Bs, z, z] # {1}
(that is, By is not second central) and a G-invariant subgroup N of N; such
that G/Ny is nilpotent and Ny N By = {1}. Continuing in the obvious way,
we obtain a subgroup B of A of the form B = B} x By X - - -, where, for each
i, B; is finite and [B;,; ] # {1}. Clearly, B(z) is a subgroup of the required
kind. O

Now we prove that there are no torsion-free groups in 20 that are soluble
and locally nilpotent. Recall that a group G is an n-Engel group if every
n-commutator [x,,y] is trivial for all elements z, y of G. Of course, every

nilpotent group is an n-Engel group for any integer n.

Theorem 5.2.5 (H. Smith - J. Wiegold [58]). Let G be a soluble group that
is not finitely generated, and suppose that G is isomorphic to each of its non-

nilpotent subgroups. If G is torsion-free then G is nilpotent.

Proof. Suppose for a contradiction that G is a non-nilpotent group satisfying
the hypothesis of that theorem. Since G’ is nilpotent, so its isolator ([45]
Lemma 6.33). There exists a free abelian subgroup K/I of G/I such that
I¢(K) = G, and K is not nilpotent by the same lemma. Therefore, K is
isomorphic to G, which means that G has a normal nilpotent subgroup N
with G/N free abelian. Now if G is n-Engel for some integer n then it is

nilpotent, by [45] Theorem 7.36 and the fact that G is torsion-free.
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Thus G is not n-Engel for any n, whereas it is a Fitting group by Lemma
5.2.3. Let ¢ be the nilpotency class of N. Since G is not (¢ + 2)-Engel,
we may choose gy € G such that (go)“ has nilpotency class ng > c. Let
In = Ig(N{go)), so that G/N = I4/N x Uy/N for some subgroup Uy, since
G/N is free abelian. Since [G, (go)] is nilpotent, so is Iy. But G = IyU, and so
Uy is not nilpotent since Iy and Uy are normal. Thus, we may choose g; € Uy
such that the nilpotency class n; of (g;)¢ is strictly greater than c+ng. Clearly,
{90, 1} is Z-independent modulo N. As so often, we iterate. Suppose that
for some k > 1 we have constructed a subset {go, g1, ..., gx} of G that is Z-
independent modulo N and such that the nilpotency class n; of (g;)¢ is greater
then c+ng+---+n;_1, foreach j = 1,... k. Write I}, = (N (g0, - - -, gx)) and
G/N = I;;/N x Uy/N. As before, Uy is non-nilpotent and therefore contains
an element gi,; whose normal closure in G has nilpotency class n;; greater
than ¢+mng+- - - ng. We have defined inductively an infinite subset {go, g1, - ..}
that is Z-independent modulo N and such that the classes n; of (g;)¢ satisfy
Niy1 > c+ng+---+mn; foralli > 1.

Set H = N{gi,ga,...). Since (gp)% < {(gx)G" and G’ < N, we see that
H is non-nilpotent, and so there is an isomorphism 6 from G onto H. Write
y = 0(go); then (y)* has nilpotency class ng. Certainly y ¢ N since ng > ¢, and
soy = gg' - gi"h forinteger iy, . .., iy with each a; non-zero, 0 < i) < --- < iy
and some element h of N. Put (g;,...,¢,,N), so that y € K. Since «y is
non-zero, the subgroup L = (y,gi,,...,gi, ,,N) has finite index in K; here
we interpret L as (y,N) if £ = 1. It follows that L has exactly the same
nilpotency class as K. Now L is the product of the H-invariant subgroups N,
(W (@), .. {gi,_ )™, so that it has class at most d = c+ng+n;, +- - +n;,_,,
by Fitting’s Theorem. However, K contains the subgroup (g;, }* of class n;,,

which is certainly greater than d. This contradiction complete the proof of the

theorem. O
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Now give a complete description of 20-groups of finite rank. The infinite
rank case is much harder, and the best we can say is that they are Fitting

groups, of which we omit the proof.

Theorem 5.2.6 (H. Smith - J. Wiegold [58]). Let G be a soluble group in 203
that is not finitely generated. If G is of infinite rank then it is a Fitting group.

Theorem 5.2.7 (H. Smith - J. Wiegold [58]). Let G be a soluble group in 03

that is not finitely generated. The following three conditions are equivalent:
(a) G has finite rank.
(b) G is not a Fitting group.

(¢) G =P x(x) for some divisible abelian p-group P (p a prime) and some

element x of infinite order such that

(i) [P,aP] = {1}, so that 2P € Z(G):
(#3) P has no infinite proper (x)-invariant subgroups;

(7i1) G/(zP) has all proper subgroup nilpotent but is not itself nilpotent.

Proof. It easily seen that (c) implies (b), for if (x) is nilpotent we have the
contradiction that G is nilpotent. Theorem 5.2.6 means that (b) implies (a),
and thus it suffices to prove that (a) implies (c).

Suppose then that G is a soluble locally nilpotent 2J-group of finite rank.
As in the proof of Lemma 5.2.3, we have G = N (x) for some normal nilpotent
subgroup N and element z; without loss we may choose NV to be the Fitting
subgroup of G. Each primary component of the torsion subgroup 7" of G has
finite rank and is therefore Cernikov. Since a 2-group does not satisfy the
minimal condition for subgroups, we deduce that G is not a p-group for any
prime p. Furthermore, G is not the direct product of a non-trivial p-group and

a non-trivial p’-group (one of them would be non-nilpotent), and it follows that



Groups isomorphic to their non-nilpotent subgroups 57

G is not a torsion group. Thus T is nilpotent and therefore contained in .
We claim that T'(z) is not nilpotent. If it is, then 7" < Z,(G) for some integer
a, by Lemma 5.2.1. But G/T is a torsion-free locally nilpotent group of finite
rank and therefore nilpotent ([45] Theorem 6.36) and we have the contradiction
that G is nilpotent, thus establishing our claim. Thus G is isomorphic to T(z)
and, since T < N, we may as well assume that G = T(z) = T x (z) since
x has infinite order. The next claim is that 7" is a p-group for some prime p.
Otherwise T' = P x @), where P is a non-trivial p-group and () a non-trivial
p/-group, and we have that each of P(z) and Q(x) is nilpotent (neither is
isomorphic to G). Two applications of Lemma 5.2.1 yield the contradiction
that P(Q is in some term of the upper central series.

What we have now is that G = P x (z) for some nilpotent p-group P, in
the right direction for establishing (¢). Indeed, we show that this P and this
x have all the properties required by (¢). Let D denote the divisible part of
P. We shall show that D = P, so that P is divisible abelian. If D < P,
then D(x) is nilpotent; however, G/D is finite-by-cyclic since G has finite
rank, and so G/D is nilpotent. Lemma 5.2.1 then supplies the contradiction
that G is nilpotent, and so P is a divisible abelian group, as claimed. Since
P is certainly not central there is an integer k such that [Qx(P),x] # {1}.
Since Qi (P) is finite and (Q,(P), z) is nilpotent, there is a positive integer n
such that [Qx(P), 2" = {1}. For this n, P(z") is not isomorphic to G and
is therefore nilpotent. Let m be the least positive integer such that P(z™) is
nilpotent. Write m = ¢r where ¢ is prime; we see that m is itself prime, indeed
that m = p. For P(z") is not nilpotent and hence isomorphic to G, while
P(2") is nilpotent, and so m is prime. There is a finite G-invariant series of P
centralized by x'™, and we can choose a factor A of it such that [A, z] # {1}.
Then x acts on A as an element of prime order m, and from local nilpotency

it follows that the only value possible for m is p. Thus P{xP) is nilpotent.
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We claim that P(z?) is in fact abelian, that is, that [P, a?] = {1}. Assume
not. Certainly [P,2?] < P since P(zP) is nilpotent, and it follows without
difficulty that the homomorphism a — [a,2?] from P to itself has infinite
kernel K, say. If H is the divisible part of K, then H is normal in G and
has smaller rank than P, so that (H,z) is nilpotent and therefore abelian, [45]
Lemma 3.13. It follows that Cp(x) is infinite, and that the homomorphism
a — [a,z] from P to itself is not onto. Since [P, x] is divisible it has smaller
rank than P, so that [P, z] is not isomorphic to P. Thus ([P, z], x) is nilpotent
and so P(z) is nilpotent. This contradiction shoows that [P,z?] = {1} and
hence that 2? € Z(G). Part (i) of (¢) is thereby established.

Now let H be a non-nilpotent subgroup of G. Then H N P is isomorphic
to P, being the periodic part of H. It follows that H N P = P by rank
considerations, and so H contains P. If now H contains z” then, since P{aP)
is abelian, H must equal G' and this confirms part (i) of (¢): all proper
subgroup of G containing 2P are nilpotent.

Finally, we prove part (i7). As we saw above, [P, z] is isomorphic to P and
therefore is equal to it. It follows that P = G’, and hence that the factor group
B = G/{z?) is isomorphic to the group B(p,1,0) (see [42] 4.5). But then [42]
4.6 applies to give that all proper G-invariant subgroups of P are finite, as

required to conclude the proof of theorem. O

5.3 Groups isomorphic to their non-abelian sub-
groups of infinite rank

A group G is an X -group if it contains proper non-abelian subgroups of
infinite rank and G is isomorphic to all of them. We observe that every X..-
group is countable. Moreover, every factor group G/N of an X,-group G

respect to a normal subgroup NV invariant under every isomorphism from G to
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any subgroup containing N is an X,.-group and if this subgroup has infinite
rank, then G/N is an X-group.
Note this elementary property.

Lemma 5.3.1. Let G be a periodic soluble X,.-group of infinite rank. If G

contains a normal abelian subgroup of infinite rank then G is abelian-by-finite.

Proof. Let A be a normal abelian subgroup of infinite rank of GG. Clearly, there
exists a non-abelian finite group E. By the property X, the subgroup AFE is
isomorphic to G' and so G is abelian-by-finite. ]

Now we prove that every periodic X,.-group contains a normal abelian

subgroup of finite index.

Lemma 5.3.2. Let G be a periodic locally nilpotent soluble X.,-group. Then
G s abelian-by-finite.

Proof. G is the direct product of its primary component. Let G, the product
of all abelian components and G, the product of all non-abelian components.
Let Z be the centre of G. It follows from Lemma 5.3.1 that we can assume
that Z has finite rank. Therefore G, has finite rank, so that GG, has infinite
rank, and hence G is isomorphic to G,. Clearly this means that G = G,
so that all primary components are non-abelian. If all primary components
of G have finite rank, then G can decomposed in the direct product of two
coprime subgroups of infinite rank, a contradiction that shows that there exist
a prime p such that G, has infinite rank. Then G is a p-group. Consider the
commutator subgroup of GG, G’, that it is not isomorphic to G. We can assume
that G’ has finite rank by Lemma 5.3.1. Then it is a Cernikov group and so
C' = Cg(G) has infinite rank. If C' is non-abelian then G’ is contained in Z.
By Lemma 1.2 G contains an abelian subgroup B of infinite rank and BZ is
an abelian normal subgroup of G of infinite rank. Thus G is abelian-by-finite

by Lemma 5.3.1. O
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For our second result, we recall the definitions of X-residual and socle. Let
X be a class of groups and let G be any group. The X-residual of GG is the
intersection of all normal subgroups of G whose factor groups in G are X-group
and it is denoted by p%(G). The socle of G is the product of all minimal normal
subgroup of GG, and we denote it by Soc(G).

Theorem 5.3.3 (G. di Grazia). Let G be a periodic soluble X -group. Then
G is abelian-by-finite.

Proof. We can assume that G is not locally nilpotent, so that every locally
nilpotent subgroup of infinite rank is abelian. Let F' be the Fitting subgroup
of G. If F' has infinite rank then is abelian and we have the claim by Lemma
5.3.1. So F has finite rank and every p-component F), is a Cernikov group. By
Lemma 1.2 there exists an abelian subgroup of infinite rank B of G such that
(B, F,] # {1} and G ~ BF,. If [B, 05(F),)] is trivial then BF}, (and hence G) is
abelian-by-finite. If not there exist an integer n such that [B, S] # {1} where
S = Soc,(03(F}p)). So G is finite-by-abelian that implies G' nilpotent-by-finite
and hence G is abelian-by-finite. (|

When the group is not periodic, we have the following results at least in

the nilpotent case.

Proposition 5.3.4. Let G be a nilpotent Xo-group. If the subgroup T consist-

ing of all elements of finite order has infinite rank, then G is abelian-by-finite.

Proof. Tt follows from Theorem 5.3.3 that we can assume that G is not periodic,
so that T" is abelian. Moreover G/T is a free abelian group of rank at most 2
(see Theorem 5.1.6). Assume first that G/T = (a1 T') x (a2T'); in particular the
subgroups (a;)T and (a2)T are abelian, so that T'< Z = Z(G). In particular
G has class 2, so that if n is the order of ([a,b]), we have

1=[a,b]" = [a",b] = [a,b"],
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and hence (a™, b")T is an abelian subgroup of finite index of G.

Assume now that G /T is cyclic so that G = (g) x T, where g is an element
of infinite order of G. Put my ={peP |1, < Z} and m={p e P | T, £ Z}.
For any p € my, let E), be a finite subgroup of 7, such that £, £ Z. Assume
first that T}, has infinite rank; then G is isomorphic to ((g) x Tr,)E,, where p
is a prime in 7o, and hence G is abelian-by-finite.

Assume now that Ty, has finite rank, so that T, has infinite rank. It is easy
to see that there exists a prime p € 7 such that 7, has infinite rank, so that G
is isomorphic to (g) x T}, and hence T = T,,. Moreover, there exists a positive
integer n such that T[p"] £ Z, and hence G is isomorphic to (g) x T'[p"], so
that T'= T[p"] is a p-group of finite exponent.

It easy to prove that Z = ({(g9) N Z) x (T N Z). Since Z £ T (see [46]
Theorem 5.2.22), we have that (g) N Z # {1}, so there exists a positive integer
m such that ¢™ € Z, and hence (¢") x T is an abelian subgroup of finite index

of G. O

Theorem 5.3.5 (G. di Grazia). Let G be a torsion-free nilpotent X..-group.
Then G is abelian.

Proof. Assume by contradiction that G is not abelian, so that it contains two
elements a and b such that the subgroup H = (a,b) has class two. Then the
centralizer C' = Cg(H) has infinite rank (see [62]), therefore C' contains an
abelian torsion-free group of infinite rank A such that AN H = {1}. Con-
sider for each n > 1, the subgroups H, = (a",b,[a,b]) and K, = A x H,.
Clearly Z(K,)/K! = Z(K,)/H] is the direct product AH//H! x H,/H],
where H,,/H] is a cyclic group of order n. In particular (K, ),cy is a family
of non-abelian subgroups of infinite rank of G pairwise non-isomorphic. This

contradiction shows that G is abelian. O
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