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Abstract

Computer Science and Control Systems Engineering

Department of Electrical Engineering and Information Technologies

Doctor of Philosophy

Green Resource Management in Distributed Cloud Infrastructures

by Giovanni Battista Fioccola

Computing has evolved over time according to different paradigms, along with an in-

creasing need for computational power. Modern computing paradigms basically share

the same underlying concept of Utility Computing, that is a service provisioning model

through which a shared pool of computing resources is used by a customer when needed.

The objective of Utility Computing is to maximize the resource utilization and bring

down the relative costs. Nearly a decade ago, the concept of Cloud Computing emerged

as a virtualization technique where services were executed remotely in a ubiquitous way,

providing scalable and virtualized resources. The spread of Cloud Computing has been

also encouraged by the success of the virtualization, which is one of the most promising

and efficient techniques to consolidate system’s utilization on one side, and to lower

power, electricity charges and space costs in data centers on the other. In the last few

years, there has been a remarkable growth in the number of data centers, which rep-

resent one of the leading sources of increased business data traffic on the Internet. An

effect of the growing scale and the wide use of data centers is the dramatic increase

of power consumption, with significant consequences both in terms of environmental

and operational costs. In addition to power consumption, also carbon footprint of the

Cloud infrastructures is becoming a serious concern, since a lot of power is generated

from non-renewable sources. Hence, energy awareness has become one of the major

design constraints for Cloud infrastructures. In order to face these challenges, a new

generation of energy-efficient and eco-sustainable network infrastructures is needed. In

this thesis, a novel energy-aware resource orchestration framework for distributed Cloud

infrastructures is discussed. The aim is to explain how both network and IT resources

can be managed while, at the same time, the overall power consumption and carbon

footprint are being minimized. To this end, an energy-aware routing algorithm and an

extension of the OSPF-TE protocol to distribute energy-related information have been

implemented.
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Chapter 1

An Introduction to Cloud

Computing

1.1 Virtualization: Concepts and Taxonomy

Cloud computing is a virtualization technique where services run remotely in a ubiq-

uitous way, providing scalable and virtualized resources. In order to deliver critical

services to their customers, many organizations rely on heterogeneous applications and

resources to satisfy a growing and multidisciplinary demand. With the objective of

providing users with distributed and very intensive applications, virtualization is one

of the most promising and efficient techniques to consolidate system’s utilization on

one side, and to lower power, electricity charges and space costs in data centers on the

other [1]. This concept was introduced in the 1960s by IBM Corporation, originally to

partition a large mainframe computer into several logical instances: a Virtual Machine

(VM) was intended as an exact software reproduction of a real machine and all of its

subsystems to provide concurrent, interactive access to a mainframe computer. This

capability of partitioning allowed multiple processes and applications to run at the same

time, thus increasing the efficiency of the environment and decreasing the maintenance

overhead. In other words, VM was a fully protected and isolated copy of the under-

lying system through which users could execute, develop and test applications on the

same computer. At the end of 1960s, general-purpose computing was the domain of

large, expensive mainframe hardware, therefore virtualization was used to reduce the

1
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hardware acquisition cost by letting more users work on it simultaneously. Thus, for a

brief period, this technology flourished both in industry and in academic research. As

hardware got cheaper and modern multitasking Operating Systems (OSs) emerged, the

1970s and 1980s eroded the value of VMs. By the late 1980s, neither academics nor

industry practitioners viewed VMs as much more than a historical curiosity. In 1990s,

with the emergence of wide varieties of PC-based hardware and operating systems, in

addition to the advent of multi-core computing and ever increasing power of servers,

the virtualization ideas were in demand again. Cheaper hardware had led to a number

of devices often underused, and the increased functionality of operating systems had

made them vulnerable; moreover, there was a need to run different applications that

were targeted for a specific hardware or operating system on a single machine. To re-

duce the effects of system crashes, one application running per machine was preferable;

therefore, moving applications into virtual machines and consolidating them onto just

a few physical platforms increased efficiency and reduced management costs. The main

use for VMs then was to execute heterogeneous applications, originally targeted for dif-

ferent hardware and operating systems, on a given computer. In the virtual world, the

physical computer is referred to as the host and the virtual machines residing on it

are called guests. The following definition of virtualization is chosen: “Virtualization

is a technology that combines or divides computing resources to present one or many

operating environments using methodologies like hardware and software partitioning or

aggregation, partial or complete machine simulation, emulation, time-sharing, and many

others” [2]. In 1974, Gerald J. Popek and Robert P. Goldberg were the first ones to

identify the hardware requirements to build a virtual machine [3], which is an efficient,

isolated duplicate of a real machine; they provided the first technical definition of VM

through the introduction of the Virtual Machine Monitor (VMM). As a piece of soft-

ware, a VMM has three essential characteristics: first, the VMM provides an execution

environment that is essentially identical to the real machine; second, programs running

in this environment show at worst only minor decreases in speed; and last, the VMM is

in complete control of the hardware resources: the VM applications and the operating

system should not access them in a privileged way. There are two types of VMMs known

today:

� A VMM that runs directly on the hardware without the need of a hosting operating

system. It is known as hypervisor. VMware vSphere, Microsoft Hyper-v and Citrix
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Xen server are examples of virtualization software.

� A VMM that runs on top of an operating system. Examples are JavaVM and

.NET environments. In this case, VMM monitors virtual machines and redirects

their requests to appropriate Application Programming Interfaces (APIs) on the

host operating system.

Virtualization is also commonly defined as a technology that introduces a software ab-

straction layer between the hardware and the operating system with applications run-

ning on top of it [4]. This abstraction layer is called VMM or hypervisor, which provides

a compatible, uniform view of the underlying hardware, and it hides the physical re-

sources of the computing system from the operating system, making machines from

different vendors with different I/O subsystems look the same. This means that it is

possible to run multiple virtual machines with different operating systems in parallel on

the same hardware. During the years it has been proven that, by committing hardware

and IT equipment to dedicate applications, the resulting utilization of resources is under

a cost-effective threshold. There are different types of virtualization:

� System level virtualization: it is the technique that enables the emulation of

a real physical system with all its devices, such as CPU, memory, disk, network

interfaces and so on; the virtual machine runs a full operating system.

� Process level virtualization: it consists in the virtualization of individual appli-

cation processes; an application has to be written specifically for the VM. It allows

the deployment of applications through the execution of a VM for each process

without changing the host operating system.

� Operating system level virtualization: it refers to the virtualization of the

kernel interface of an operating system. It uses the kernel of host OS to instantiate

user spaces dedicated to the management of multiple guest OSs, without the need

for a hypervisor; multiple user space domains can run in parallel on the same

system and share the same kernel. However, each domain is isolated from the

others.

� Resource virtualization: it consists in virtualizing system specific resources

such as storage volumes and network resources. There are various approaches to
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perform it: aggregating individual components into a larger resource pool; Grid

computing or computer clusters where multiple computers are combined into a

large supercomputer; partitioning a single resource such as disk space into smaller

resources of the same type.

1.1.1 Hardware Virtualization

Figure 1.1: Hardware virtualization

In hardware virtualization (also known as system level virtualization), the virtual re-

source represents a full computer and contains the same hardware components of a real

computer: CPU, memory, storage devices, network interface controllers (see Figure 1.1).

However, these components are all virtual. Operations on virtual components are trans-

lated into operations on real components of the physical machine. An instance of such

a virtual computer is known as a hardware virtual machine or system virtual machine.

The idea behind this technique is to share the same resources among different users that

can create their own VMs. Hardware virtualization offers a number of advantages:

� Binary compatibility: existing systems, consisting of applications and their

underlying operating systems, can be virtualized without modification of their

binary code. This allows legacy systems, which might not work on new hardware,

to run in virtual machines with compatible interfaces.

� Server consolidation: multiplexing resources by executing multiple virtual ma-

chines on the same physical machine can reduce the number of servers used in a



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 5

service hosting environment. Often, each service (DNS, DHCP, etc.) is hosted on

a dedicated physical machine. Instead, multiple services can be consolidated onto

a reduced number of physical nodes, which leads to a reduction of maintenance

and energy cost.

� Isolation: each virtual machine is isolated from the others, which reduces the

amount of damage possible from each operating system. If a virtual machine

is compromised by an attacker, his ability to perform attacks on other virtual

machines is limited compared to a single multitasking operating system where

multiple services share the same environment. However, like in most computer

systems, this isolation is not 100% secure: implementation bugs do exist and

attackers can exploit them.

� Migration: it is possible to capture the state of a virtualized system exploiting the

full encapsulation of operating systems in their virtualized execution environment.

This state can be transferred on the network to another physical machine to be

resumed on the new hardware. Additionally, live migration performs most of

the transfer while the virtual machine is executing, minimizing virtual machine

downtime.

� Replication: it is possible to replicate a virtual machine on another physical

node; in case of failure of the primary node, the execution of the virtualized system

continues on the secondary node, providing high availability [5].

The major components of the hardware virtualization are:

� Host OS: it is the operating system actually running on the hardware and it can

access the physical resources through its kernel. It provides running processes with

secured and controlled access to physical resources, through a hardware abstrac-

tion, also known as Hardware Abstraction Layer (HAL), a uniform interface to the

underlying physical resources.

� Guest OS: it is the operating system running in a virtual environment. It has

access to physical resources that are dynamically allocated by the hypervisor or a

host OS.

� Virtual Machine: it is a software computer that, like a physical computer, runs

an operating system and applications.
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� Hypervisor or Virtual Machine Monitor: it provides the software layer that

allows the abstraction of physical resources, and it is in charge of mapping virtual

operations to physical operations.

Hypervisors can be implemented in two different ways, leading to two different types:

type 1 and type 2.

� Type 1 (native or bare metal): native hypervisor is designed to directly control

and monitor the hardware resources of the physical node and the guest OS. It runs

directly on physical hardware. Several guest OSs can be executed on top of this

hypervisor and a privileged one is used to administrate the machine and to control

other unprivileged guest OSs (see Figure 1.2). Examples of type 1 hypervisors are

Xen [6] and VMware ESXi [7].

Figure 1.2: Type 1 hypervisor

� Type 2 (hosted): this type of hypervisor does not execute directly on bare

hardware, but on top of an host OS; hence, it consists in a distinct software layer

that is added as a typical application, and it does not replace the OS that is

installed on the physical node (see Figure 1.3). A hosted hypervisor interacts with

hardware via the system calls of the host OS. The hosted hypervisors show lower

performance then the native ones. Examples of type 2 hypervisors are KVM [8],

VirtualBox [9], and VMware Workstation [10].
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Figure 1.3: Type 2 hypervisor

Hardware virtualization can be categorized as:

� Full virtualization: the VMs are an accurate reconstruction of a specific physical

platform, therefore no modification of the guest OS is required. In 2000s, Intel

and AMD introduced extensions to support full virtualization: VT-x and AMD-V

respectively.

� Paravirtualization: the VMM provides VMs with an optimized version of the

hardware physical resources. Therefore the guest OS is modified, making it aware

that it is running inside a virtual machine. There is the involvement of the hyper-

visor, which performs on behalf of the guest OS in the execution of critical system

calls. This approach is a way of virtualizing a non-virtualizable architecture and

it allows better performances because interactions between guest OSs and hyper-

visor are easier; moreover, with paravirtualization it is possible to avoid emulating

real I/O devices. Xen is an example of hypervisor that uses paravirtualization

approach.

� Hybrid approach - Paravirtualized drivers: like full virtualization, it allows

compatibility with unmodified guest OSs and easy implementation of hypervisor,

but guest OSs are extended with paravirtualized drivers, without modifying their

core (contrarily to normal paravirtualization). This hybrid approach allows better

I/O performance than full virtualization, while maintaining compatibility with

proprietary operating systems.
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Figure 1.4: Process level virtualization

1.1.2 Process Level Virtualization

Process level virtualization consists of platforms that directly execute applications rather

than guest OSs. It allows the deployment of applications through the execution of a VM

for each process: each application is built specifically to be compatible with a specific

process level virtual machine technology. An example of process level virtual machine

is the Java Virtual Machine (JVM), available on many platforms. Figure 1.4 shows

an example of process level virtualization, where two JVMs are executing applications

consisting of Java bytecode, on top of Linux kernel.

1.1.3 Operating System Level Virtualization

Figure 1.5: Operating system level virtualization

Operating system level virtualization concerns the kernel interface virtualization of an

OS [11]. Kernel is shared by different user space domains, running in parallel, with

each domain independent from the others. The user space domains must be compatible

with the underlying kernel. Figure 1.5 shows an example of operating system level

virtualization. This approach has some advantages: there is not a slow boot phase,
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because when a user space domain starts, the kernel is already running; finally, each

virtual machine is not required to have a full kernel loaded, because kernel is shared.

1.1.4 Resource Virtualization

1.1.4.1 Storage Virtualization

It is a process of obtaining a virtual storage from manifold network storage devices, each

one acting as a single storage device [12]. The fundamental idea is to group the phys-

ical storage systems, which are used by applications to dynamically meet their storage

requirements. The objective is to overcome the heterogeneity of storage systems and

to provide applications with a single point of access to shared memorization resources,

reducing the distance between applications and underlying storage systems by means

of an additional abstract administration layer, so that the representation of a datum

is decoupled from its physical storage. Storage virtualization allows administrators to

perform backup, recovery, archiving very easily and in a short time; storage can be lo-

cated anywhere and on any type of device, and replicated for dependability purposes.

The storage virtualization offers several advantages, such as: easy storage management;

optimized and logically centralized view of the storage environment, with easy accessi-

bility of required data; reclamation of storage space; lower number of storage devices

and therefore less energy usage; easy migration of data between different storage loca-

tions; replication, fail-over and disaster recovery. Amazon, for instance, creates up to

three copies in different data centers when storing data. There are also some disadvan-

tages, such as: problems in the interaction between different vendors; network system

highly complicated; the attack against a single server might compromise the whole net-

work. There are three types of storage virtualization, implemented according to the

infrastructural level [13]:

� Host-based: it is usually in the form of a Logical Volume Manager (LVM) on

a host, which groups more physical volumes into virtual volumes and provides

advanced features like snapshot and replication.

� Network-based: it is used to virtualize storage through a network connection

that will be used by users in order to access it via a specific protocol.
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� Controller-based: it consists of an intelligent storage array. This type of virtu-

alization can extend all the features of the controller to external memory devices.

1.1.4.2 Network Virtualization

It is a process of combining software and hardware network resources to create one or

more virtual networks from a single physical network. Therefore, multiple networks run

on the same network device, where each network is independent from the others and from

the underlying physical one. Network virtualization involves the splitting of available

bandwidth into separate smaller channels, so that network can be shared among different

devices. However, even though the bandwidth is shared, the separate channels can be

isolated from each other [14]. Technologies that have been used to implement network

virtualization are:

� Virtual Local Area Networks (VLANs): they allow a group of computers,

which are connected to a LAN switch, to be isolated at the layer 2 of the ISO/OSI

stack, by creating different and separated logical groups. VLAN has the follow-

ing advantages: transparency, because devices can be pooled in a single logical

network; security, because vulnerable systems can be hidden in a separate virtual

network.

� Virtual Private Networks (VPNs): they are private data networks that con-

nect remote sites and share a common physical network infrastructure. In these

networks, data privacy is obtained by using tunnelling protocols and security func-

tions.

� Asynchronous Transfer Mode (ATM) networks: they represented for a long

time an important aspect of the network virtualization, namely the connection

virtualization. The ATM virtual circuits are paths that provide isolation of shared

connecting resources, through the reservation of ATM nodes along specific routes.

� Tunnelling: a virtual logical topology, which is created above the physical one,

is referred to as Overlay Network. The nodes of an overlay network are connected

through virtual links that correspond to paths in the underlying network. This

type of logical networks is usually implemented at the application level: over-

lay networks have no geographical restrictions, and are flexible and adaptable to
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changes. Several organizations are adopting network virtualization based technolo-

gies in order to meld the data-link and Internet Protocol (IP) approaches. The

motivation is to be found in the typical data link technologies scaling issues: the

approach of creating virtual L2 networks across IP networks is often referred to as

“L2 over L3 tunnelling”, and it represents an abstraction layer between the physi-

cal and virtual networks. This technique tries to combine the benefits coming from

the two layers: the scalability, the fast convergence times and the bandwidth allo-

cation of L3 technologies, and the simplicity in the configuration of L2 networks.

L2 over L3 is obtained through encapsulation techniques, such as General Routing

Encapsulation (GRE), Virtual eXtensible LAN (VXLAN), or by using OpenFlow.

Network virtualization consists of three different roles [15]:

� Infrastructure provider: it owns physical resources and splits them into sev-

eral isolated virtual resources, composed of virtualized nodes and links, which are

supplied to the virtual network provider.

� Virtual network provider: it leases virtualized infrastructures from one or

more infrastructure providers, and combines them into complete virtual networks,

composed by interconnected virtual nodes and links. Afterwards, virtual networks

are sold to a virtual network operator.

� Virtual network operator: it uses the virtual network in order to offer and

operate services, which are implemented by a set of functions and protocols.

1.1.5 Advantages and Challenges

Virtualization is a growing field, and in high demand. The market for virtualization

has increased significantly over the past several years. While it does reduce costs and

space, several issues come along with this sudden growth. In this section, we will look

at details of some major advantages and challenges facing widespread virtualization.

1.1.5.1 Virtualization Advantages

For a provider of IT services, the use of virtualization techniques has a number of

advantages:
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� Flexibility: manifold virtual instances can run on a single physical machine and it

is possible to change their characteristics (RAM, hard disk) while they are running

[3].

� Availability: it is possible to keep the virtualized instances running even though

the physical node has to be shut down, i.e. for hardware upgrade or maintenance.

In this case, virtual machines can be temporarily migrated to another physical

machine. This ensures better availability of the services and makes it easier to

comply with Service Level Agreements (SLAs).

� Scalability: in case the capacity demand increases, a new physical node can be

added to the cluster. It is very easy to add or remove nodes.

� Hardware utilization: physical servers usually run with low utilization because

their operators employ oversized computing resources to cover peak usage; if virtual

machines are used, any load requirement can be satisfied from the resource pool

and VMs utilize hardware resources left idle by host OS [16].

� Security: by using multiple virtual machines, services are isolated. Indeed, each

service could run on a separate VM and if a service is compromised, the other ones

are unaffected.

� Cost: different virtual machines can be consolidated to run on a smaller number of

physical components. With consolidation, the same performance can be obtained

through a smaller footprint, and the costly expansion of an existing data center

might possibly be avoided.

� Adaptability to workload variations: it is possible to automate resource pool

management; VMs can be created and configured automatically as required.

� Energy consumption: the cost of energy required to make a server work is very

high. Consolidation reduces the number of physical components; this, in turn,

reduces the expenses for energy supply. Reducing power usage has the advantage

of both decreasing utility bills and increasing an organization’s compliance with

green initiatives. With the continued emphasis on slashing IT budgets generated

from the current economy, lowering utility bills is attractive.
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1.1.5.2 Virtualization Challenges

Some virtualization challenges are listed below:

� Limited Overhead: it depends on the flexibility and involves decreased perfor-

mance.

� Single point of failure: if organizations place all of their virtual resources onto

a single host server, it is important to plan virtual resource deployment so that

the failure of a single host server will not have catastrophic consequences.

� Isolation: full and complete isolation between virtualized resources on the same

hardware remains a very difficult problem, particularly in situations that require

sharing of information.

1.2 Evolution of Computing

Computing has evolved over time according to three distinct paradigms [17] [18]. The

mainframe computing was the first computing paradigm, popular during the 1960s up

to the 1970s. Processing power was condensed in a centralized system, a mainframe

computer with all functionalities and resources, accessed through simple terminals. The

second computing paradigm was the stand-alone computing, which consisted of powerful

PCs and workstations that executed a wide range of applications, connected together

through a Local Area Network (LAN) technology, according to a client-server configu-

ration. This reduced the time to access to a computational resource and it gave the

chance to work independently in a parallel way. Finally, network-centric computing was

developed in the 1990s and it enabled machines to access both to applications and data

on networked servers [19]. Dominant form of a network-centric computing is the Inter-

net computing, which has changed the way applications are developed and distributed,

going from a client-server to a web-based browser-server configuration without software

installation in client machines. This paradigm has improved the level of transparency

of the information between multiple groups within a company, and it has allowed the

exchange of data between companies.
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1.2.1 The Path to Cloud Computing

In this section, the major architectures that have been used to execute parallel and dis-

tributed applications, contributing to the creation of Cloud computing are investigated:

clusters and grids.

1.2.1.1 Cluster Computing

Cluster computing can be defined as “a type of parallel or distributed processing system

which consists of a collection of interconnected stand-alone computers working together

as a single, integrated computing resource” [20]. Physical nodes are connected through

a LAN in the execution of compute-intensive and data-intensive tasks that would be

not feasible to execute on a single computer. This network can be a typical Gigabit

Ethernet network, or a high speed interconnect such as InfiniBand or Myrinet. Clus-

ters are controlled by resource manager software, which assigns jobs to compute nodes,

tracks their status and shares the infrastructure between cluster users. Resource man-

agers contain queues to store jobs waiting for execution, and schedule jobs on available

resources according to constraints set by users and/or administrators. In the 1990s, the

Cluster-based solutions became very popular and they were massively used mainly for

high availability, load-balancing and performance purposes. A possible classification is

the following:

� High Availability Cluster (HAC): they are also called fail-over clusters and

implement the concept of redundancy [21]. High availability is achieved by having

multiple secondary servers that are exact replicas of a primary server, in order

to avoid a single point of failure. This solution guarantees fault tolerance that

is the ability of a system to operate gracefully even in the presence of any fault:

the fault in one component only affects the cluster’s power but not its availability.

In an active-passive configuration, only a single node is in active state, while the

remaining ones are in stand-by mode, ready to take over processing in case active

node fails. This solution ensures that the performance for the fail-safe workload is

the same before and after fail-over. In an active-active configuration, all nodes are

active and share the application processing tasks. If one node fails, the remaining

active nodes take over it. The active/active configuration is more cost-effective
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than the active/passive configuration, because of a better load distribution between

the nodes of the infrastructure, but it provides slower fail-over and possibly reduced

performance when a node fails.

� High Throughput Cluster/High Performance Cluster (HTC/HPC): they

have been used for a long time for scientific research and commercial activities;

they are intended for testing and running large codes, parallel-processing codes,

visualization and scientific applications. HPC systems let users execute a single

instance of parallel software over many processors, while HTC systems ensure the

execution of multiple independent software instances on multiple processors at the

same time.

� Load Balancing Cluster: they provide better performance by distributing work-

load among nodes in a cluster. Considering web servers, different queries are

handed to different nodes for processing, resulting in a faster overall response time.

Load balancing is accomplished by manifold techniques: a round-robin algorithm

or more complex algorithms that rely on feedback from the individual machines.

1.2.1.2 Grid Computing

Ian Foster is considered as one of the earlier proponents of Grid technology. He defined

a Grid as “a hardware and software infrastructure that provides dependable, consistent,

pervasive and inexpensive access to high end computational capabilities” [22]. Later,

Foster redefined the Grid as “a computing environment concerned with the coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual organiza-

tions”. He used an analogy to the electricity grid, where users could plug in and use

a (metered) utility service: if companies cannot generate their own power, they would

purchase that service from a third party capable of providing a steady electricity sup-

ply. The same should apply to computing resources: if a node could plug itself into a

grid of computers and pay only for the used resources, it would be a more cost-effective

solution for companies than buying and managing their own infrastructure. From the

technical point of view, Grid computing consists of virtualization and sharing of com-

puting and data resources among different physical domains. Grid computing has a

distributed nature, therefore computational nodes could be anywhere in the world: re-

sources are abstracted from the physical location and automatically allocated according
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to user’s computing needs, without interest in data location. The ensemble of resources

is able to work together cohesively because of defined protocols that control connectiv-

ity, coordination, resource allocation and security [23]. Grid environment allows service

oriented and flexible sharing of heterogeneous resources for compute intensive and data

intensive tasks, providing more computational capabilities and increasing efficiency and

scalability of the infrastructure. During the years, Grid has rapidly involved multiple

applicative domains, ranging from advanced networking to artificial intelligence. The

reason behind the constitution of a Grid-based infrastructure is the need for enterprises

to solve complex scientific problems, through coordinated resource sharing and collab-

orative problem-solving [24]. Another benefit of Grid computing is a more robust and

resilient infrastructure through decentralization, fail-over and fault tolerance. Ian Foster

proposed a simple check-list, according to which a grid system:

� Coordinates resources that are not subject to centralized control. A Grid integrates

computing resources that belong to different control domains (for example different

administrative units of the same company or different companies). Technologically,

this requirement addresses the issues of security, policy, payment and membership.

� Uses standard, open, general-purpose protocols and interfaces. General-purpose

protocols and a common standard for authentication, authorization, resource dis-

covery and resource access are needed, so that the system is able to execute generic

applications.

� Delivers non-trivial quality of service. It is important to support various Quality of

Service (QoS) parameters such as response time, throughput, availability, security

and co-allocation of multiple resource types to meet complex user demands.

One of the de facto standards for Grid computing implementation is the Globus Toolkit

[25], which defines protocols and the middleware layer to guarantee a controlled access

to the resources shared in a Virtual Organization: this is the combination of different

institutions, research centers and/or individuals that often have a unique goal and de-

fine a common set of sharing rules. The tasks addressed by Globus involve resources

discovery, provisioning, management, security and jobs scheduling. Broadly speaking,

there are four types of Grid:
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� Computational Grid: it is a set of resources combined to aggregate computa-

tional capacity. This type uses networks of computers as a single, unified comput-

ing resource, and it is suitable for high-throughput computing applications.

� Scavenging Grid: the politics of “scavenging” is applied; every time a machine

remains idle, it reports its state to the grid node responsible for the management

of the resources. This node usually assigns to the idle machine the next pending

task that can be executed in that machine.

� Data Grid: it is responsible for housing and providing access to data across

multiple organizations through a unified interface, and makes them available for

sharing and collaboration purposes. In data grids, the focus is on the management

of data that are being held in a variety of data storage facilities in geographically

dispersed locations.

� Service Grid: it is a set of distributed resources, each providing a specific function

that needs to be aggregated in order to collectively perform the desired services.

The architecture of a Grid system is often described in terms of layers, each providing

a specific function (see Figure 1.6):

Figure 1.6: Layered Grid architecture

� Fabric layer: it provides resources that are part of the Grid, such as computa-

tional resources, storage systems, electronic data catalogues and networking de-

vices.

� Connectivity layer: it consists in the core communication and authentication

protocols. For example, the Grid Security Infrastructure (GSI) [26] is a public



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 18

key–based protocol and it provides every grid transaction with a desired security

level.

� Resource layer: it includes APIs and Software Development Kits (SDKs) for

publication, discovery, negotiation, monitoring, control, accounting, and payment

concerning operations on shared resources. The Grid Resource Access and Man-

agement (GRAM) [22] is the protocol that assures the scheduling of computing

resources to users and it is also used for monitoring and control tasks.

� Collective layer: it implements a variety of sharing behaviours with directory

services, brokering services, programming systems, community accounting, autho-

rization services and collaborative services.

� Application layer: it is characterized by any user application that is deployed

on a Grid.

Grids are characterized by a geographical distribution of devices and a great amount

of available data: this enables the realization of complex experiments that would result

in very high costs for the single organization. Grid and Cloud computing paradigms

basically share the same underlying concept, which is the Utility Computing, namely a

service provisioning model through which computing resources are used by a customer

as needed. This has the objective of maximizing the utilization and bringing down the

relative costs. Anyway the two approaches are quite different in terms of purposes and

distribution of resources.

1.2.2 Cloud Computing Definition

Cloud computing describes a computing infrastructure depicted as a “cloud”, from which

users can access applications on demand [27]. The location of this infrastructure is

shifted to the network to reduce the costs and this model offers computing, storage and

software “as a service” [28]. A plenty of different definitions of this paradigm exists.

According to Wang: “Cloud computing is a set of network enabled services, providing

scalable, Quality of Service (QoS) guaranteed, normally personalized, inexpensive com-

puting platforms on demand, which could be accessed in a simple and pervasive way”

[29]. Markus Klems pointed out that “immediate scalability and resources usage opti-

mization are key elements for the Cloud. These are provided by increased monitoring,
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and automation of resources management in a dynamic environment” [30]. He also

defined Cloud computing from an economic point of view: “Building on compute and

storage virtualization technologies, and leveraging the modern Web, Cloud computing

provides scalable and affordable compute utilities as on-demand services with variable

pricing schemes, enabling a new consumer mass market” [31]. Carl Hewitt claimed that

“Cloud computing is a paradigm in which information is permanently stored in servers

on the internet and cached temporarily on clients that include desktops, entertainment

centers, table computers, notebooks, wall computers, handhelds, sensors, monitors, etc.”

[32]. According to Armbrust: “Cloud computing, the long-held dream of computing as

a utility has the potential to transform a large part of the IT industry, making soft-

ware even more attractive as a service” [33]. Tikotekar emphasized the presence of a

pay-per-use economic model: “Cloud is a pool of easily usable and accessible virtualized

resources (such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to optimum resource utilization. This pool of resources

is typically exploited by a pay-per-use model in which guarantees are offered by the in-

frastructure provider by means of customized SLAs” [34]. Buyya et al. also added that

“to reach commercial mainstream it is necessary to strengthen the role of SLAs between

the service providers and the consumers of that service” [35]. McFedries introduced the

concept of data center as “the basic unit of the Cloud offering huge amounts of comput-

ing power and storage by using spare resources”. National Institute of Standards and

Technology (NIST) defined the Cloud computing as “a model for enabling convenient,

on demand network access to a shared pool of configurable computing resources such as

networks, servers storage, applications and services that can be rapidly provisioned and

released with minimal management effort or service provider interaction. This Cloud

model promotes availability and is composed of five essential characteristics, three ser-

vice models, and four deployment models” [36]. A comprehensive definition of Cloud

is proposed in [37]: “Clouds are a large pool of easily usable and accessible virtualized

resources (such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited by a pay-

per-use model in which guarantees are offered by the infrastructure provider by means of

customized SLAs. The set of features that most closely resemble this minimum definition

would be scalability, pay-per-use utility model and virtualization”.
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1.2.3 Cluster, Grid and Cloud Computing: a Comparison

Cluster computing is just cooperation between computers in order to solve a task or a

problem. Grid computing is similar to Cluster computing: it combines resources from

different organizations to reach a common goal. The major difference is that a cluster

is homogeneous while grids are heterogeneous. Cluster computers have the same hard-

ware and operating system, therefore they act as a single machine, while Grid enables

the sharing and aggregation of geographically distributed autonomous resources, which

could have different operating systems and hardware. Moreover, grids are distributed

over a LAN or WAN, while clusters are normally gathered in a single location. An-

other difference lies in the way resources are handled. In case of Cluster, resources are

managed by a centralized resource manager, while in a Grid every node is autonomous

and acts like an independent entity. As introduced in Section 1.2.1.2, Cloud and Grid

computing are similar for managing sets of distributed computing resources and imple-

menting the more general model of Utility Computing, offering a common environment

for distributed resources, but there are some differences. Grid has the objective of using

large amounts of resources to solve very complex and computational expensive problems

in science and industry, while Cloud provides a platform to develop, test and deploy

Web-scale applications and services [31]; by using virtualization, Cloud provides an in-

frastructure useful to deploy services for users, offering customized, scalable and QoS

guaranteed computing environments. Grid has heterogeneous resources geographically

distributed, while Cloud provides service providers with resources they require, giving

the impression of a single dedicated resource. All resources constituting a Grid com-

puting infrastructure are predefined and predetermined, while Cloud computing releases

or augments dedicated resources dynamically, depending on the demand. Therefore, in

the Grid paradigm the focus is on the processes to share and schedule the utilization of

resources for different users; Cloud is fundamentally distinguished by the establishment

of a pay-per-use relation between a customer and a provider, oriented towards business

rather than academic resource management [38]. Table 1.1 compares different features of

Cluster, Grid and Cloud highlighting the similarities and differences between paradigms.
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1.2.4 The Future of Cloud Computing: Fog Computing

Cisco recently proposed a new computing paradigm called Fog Computing [39], which

extends the Cloud computing paradigm to the edge and runs generic application logic

on resources throughout the network. It is defined as “a highly virtualized platform that

provides compute, storage, and networking services between end devices (typically but

not exclusively located at the edge of network) and traditional Cloud Computing data

centers”. In [39], Fog computing consists of Fog servers near to wireless sensors and

mobile devices, in order to lighten their computational load and data processing. In

the Fog computing concept, users are served by computing nodes close to the network

edge (e.g., road side units in vehicular networks) to reduce latency and communication

overhead, with periodic updates from the remote Cloud [40]. Cloud becomes a problem

for latency-sensitive applications, because they require nodes in their proximity to sat-

isfy delay requirements; indeed, Cloud imposes a high communication latency because

of sending events from a user through the core network to the data centers [41]. In

contrast to the Cloud, introducing intelligence in the network allows Fog computing

resources to perform processing near the edge, reducing end-to-end latency; on the con-

trary, latency–tolerant and large–scope aggregation can still be efficiently performed in

the core of the network [42]. Fog is the appropriate platform for various critical Internet

of Things (IoT) applications and services, including connected vehicles and smart cities,

but also for Ubiquitous Computing (UC) approaches, by extending Cloud computing

services. The extension is motivated by [43]:

� Edge location, location awareness and low latency: Fog nodes provide services at

the edge of network, including latency-sensitive applications.

� Geographical distribution: Fog requires geographical distribution of resources in

contrast to the more centralized Cloud.

� Large-scale sensor networks, which communicate various data about the environ-

ment usually by wireless access.

� Very large number of nodes, because of geographical distribution.

� Support for mobility.

� Support real-time communications with mobile devices.
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Figure 1.7: Conceptual architecture of Fog and Cloud infrastructure

� Support heterogeneous devices and interoperability with different providers.

� Requirement of on-line analytic and interplay with the Cloud.

Fog computing plays an important role in at least three scenarios: Smart Connected

Vehicles (SCVs), Smart Grids (SGs), and Wireless Sensor and Actuator Networks

(WSANs). In particular, the characteristics of Fog computing make it the best plat-

form to support energy-constrained WSANs. To be efficiently useful in the above fields,

the Fog computing platform follows a multi-tier architecture. Figure 1.7 illustrates a

three-tier architecture, showing the interplay and complementary roles of Fog and Cloud.

The first tier (front-end) includes wireless sensors and mobile devices; the second tier

(near-end) includes IT products (e.g., PC, TV, set-top boxes, etc.) acting as prox-

ies between front-end devices and far-end servers. They are called Fog servers, which

offer computing capacity and storage capability to front-end devices, enhancing their

battery-life and performance, and reducing latency. The third tier (far-end) includes

Cloud servers located in data centers, which are used as repository for data that have a

long permanence; moreover, they are useful to make deductions and predictions, beyond

the capacity of Fog servers. A federation of both Clouds and Fogs can support highly

heterogeneous systems, where network-intensive operators are placed on distributed fog
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nodes and computational-intensive operators in the Cloud. However, developing appli-

cations using Fog computing resources is not trivial because it involves orchestrating

dynamic and heterogeneous resources at different levels of network hierarchy.

1.3 Anatomy of Cloud Computing

The Cloud computing enables the ubiquitous and on demand network access to a shared

set of configurable computing resources, which can be quickly acquired and released with

minimal effort and interaction with the service provider. Cloud computing reduces the

cost related to the delivery of services, while speeding up service deployment. It supports

several technologies such as server, storage and virtualization that brings together virtual

applications quickly. Cloud storage can be used to store and hold applications; moreover,

it is often combined with other Cloud services such as Cloud database, Cloud data

and Cloud security. Cloud computing has many advantages: enterprises do not need

buying a large number of hardware devices and they achieve economies of scale. There

are also critical problems such as security and performance in a public Cloud. On

the contrary, a private Cloud has some advantages compared to public Clouds: it is a

platform implemented within the corporate firewall and it provides more control over the

company’s data, ensuring security and quality of service. Private Cloud has weaknesses

too: it is difficult to ensure high performances and to provide flexible services. Hybrid

Cloud is a model combining both public Cloud and private Cloud models: it is designed

to quickly scale company’s needs and to handle peak-loads, extending private Cloud

with the resources of a public Cloud. Real-time scalable resources are accessible from

a Web browser by customers, which pay only for the used computing resources without

knowledge of the underlying technological infrastructure. Other advantages are: costs

of purchasing hardware and software are reduced; minimal time to provide resources;

simplicity of operation; novel and complex computing architectures; mechanisms for

disaster recovery. This results in reduced capital expenditure and reduced operational

costs. Therefore, Cloud technology is a great innovation opportunity for companies and

also for the research field.
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1.3.1 Cloud Computing Characteristics

The essential characteristics of Cloud environments are [44]:

� On demand and Self-service: users can automatically consume computing

capabilities according to their needs at any moment; moreover, they can customize

and personalize their computing environments.

� Multi-tenancy and Resource pooling: multi-tenancy is a “characteristic of a

software program that enables an instance of the program to serve different con-

sumers (tenants) whereby each is isolated from the other” [45]. The resources are

accessed independently from the location, so that the customer does not know their

physical or geographical location. Although resources are shared among multiple

users, customer gets to feel that he is the sole proprietor through his Cloud control

panel. Multi-tenancy model allows resources being dynamically assigned on the

basis of customer’s demands and needs, giving rise to another concept called re-

source pooling that allows for “Cloud providers to pool large-scale IT resources to

serve multiple Cloud consumers. Different physical and virtual IT resources are dy-

namically assigned and reassigned according to Cloud consumer demand, typically

followed by execution through statistical multiplexing” [45]. Cloud providers man-

age heterogeneous infrastructure resources, such as hardware, software, processing

servers and network bandwidth.

� Rapid elasticity and Scalability: resources can be rapidly, elastically and auto-

matically scaled, as demand rises or drops. The user is provided with the illusion

of being able to access unlimited resources. Resources can be scaled according

to different software configurations, hardware performance and geographical loca-

tions.

� Measured service: the resources requested by a customer should be measurable

according to a set of quantitative parameters in order to automatically control

and optimize their use through continuous measurement of performance indicators.

The measures should be available to the users via API for transparency purposes

and for allowing rapid modification of QoS requests. Besides, these measures are

useful to the provider in order to realize accounting and billing if there is an

economic deal.



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 26

� Broad network access: capabilities are available through a broadband network

and accessed with standard mechanisms, which promote their use by heterogeneous

platforms (mobile phones, tablets, laptops, workstations, etc.).

1.3.2 Cloud Delivery and Deployment Models

Figure 1.8: Cloud delivery model

Cloud infrastructures can be classified concerning the service and the deployment model

they implement. From the service model perspective, new XaaS services are gradually

taking the place of resources traditionally used [46]. These services are referred to as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS) (see Figure 1.8), made available to consumers as pay-per-use subscription services

[38]. This basic classification has been extended and it has assumed very different

granularities; hence, if any service X is offered by means of an universal access, in a

scalable and elastic way and in a pay-as-you-go basis, it is possible to use the term

XaaS. In detail:

� Infrastructure as a Service (IaaS): according to NIST, IaaS is defined as “the

capability provided to the consumer to provision processing, storage, networks, and

other fundamental computing resources where the consumer is able to deploy and

run arbitrary software, which can include operating systems and applications. The
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consumer does not manage or control the underlying Cloud infrastructure but has

control over operating systems, storage, deployed applications, and possibly limited

control of select networking components (e.g., host firewalls)”. This layer is also

known as Resource Cloud, since it represents the lowest level of abstraction. The

aim of the IaaS paradigm is to provide IT resources as services that are delivered

through the network, by hiding in such a way the sophistication of the underlying

infrastructure. Cloud users can manage virtual resources such as: CPU, memory,

storage, operating system. In this scenario, the main advantages of IaaS are the

elasticity and the pay as-you-go model: users can scale their infrastructure accord-

ing to their needs, dynamically resize the infrastructure depending on the load,

and pay only for resources that are actually used. This is different from traditional

systems where users have to size their infrastructure according to the peak load,

leading to wasted resources and increased expenses. IaaS allows users to have a

high degree of control over their infrastructure. They manage virtualized operat-

ing systems with administrative rights and can customize execution environments

as required, which eases the migration of existing applications and systems to IaaS

Clouds. Well-known IaaS platforms include Amazon EC2 [47], Rackspace [48], and

Science Clouds [49].

� Platform as a Service (PaaS): NIST defines PaaS as “the capability provided

to the consumer to deploy onto the Cloud infrastructure consumer-created or ac-

quired applications created using programming languages and tools supported by the

provider. The consumer does not manage or control the underlying Cloud infras-

tructure including network, servers, operating systems, or storage but has control

over the deployed applications and possibly application hosting environment config-

urations”. PaaS solutions provide a development platform and APIs to build and

run applications, by using programming languages, libraries, services and tools

supported by the provider. The platform is in charge of allocating resources to

applications and scaling them according to user demand. The consumer does not

handle the underlying Cloud infrastructure but he has control over installed appli-

cations and configuration settings of the host environment. Windows Azure [50],

Google App Engine [51], and Hadoop are some well-known PaaS platforms.

� Software as a Service (SaaS): SaaS has been defined by NIST as “the capa-

bility provided to the consumer to use the provider’s applications running on a
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Cloud infrastructure. The applications are accessible from various client devices

through a thin client interface such as a Web browser (e.g., web-based e-mail).

The consumer does not manage or control the underlying Cloud infrastructure in-

cluding network, servers, operating systems, storage, or even individual application

capabilities, with the possible exception of limited user-specific application config-

uration settings”. Software or application is provided to customers as a service,

without the need to install applications on customer’s PC; this reduces costs and

maintenance. SaaS solutions integrate hardware, development platforms and ap-

plications, providing a self-contained operating environment that is used to deliver

the entire user experience, including the content, its presentation and the business

logic. Cloud-based services are accessible regardless of the location and the type

of used devices. Prominent SaaS applications include Salesforce.com for CRM,

Google Docs for document sharing, and Web e-mail systems like Gmail, Hotmail,

and Yahoo! Mail.

Cloud services also differ in how their deployments are made available to users. Ac-

cording to this criteria, Clouds are classified in four types: private, public, hybrid and

community.

� Private Cloud: it is a Cloud infrastructure managed and used exclusively by

a single organization (e.g. a company or a laboratory). Before the emergence

of Cloud computing, many organizations already used virtualization in order to

manage their internal computing infrastructures. There is generally no billing

involved in these systems. Private Cloud is ideal for companies and organizations

that must comply with a series of regulations and desire to efficiently manage their

resources.

� Public Cloud: it is available to the general public, whether they are individuals

or organizations. The main requirement to access a public Cloud is to provide

a payment method (e.g. a credit card number) to be billed for resource usage.

This is the model followed by commercial Cloud providers like Amazon EC2 and

Rackspace.

� Hybrid Cloud: Cloud infrastructure is a composition of two or more deployment

models. For instance, a company can utilize a public Cloud to maintain service



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 29

levels in the face of rapid workload fluctuations, and a private Cloud to manage

sensitive data.

� Community Cloud: it is restricted to a limited set of users belonging to specific

organizations, or sharing a common goal. It may be owned or managed directly

by the organization, a third party or their combination. Scientific Clouds are an

example. This model shows similarities with grids, in which multiple organizations

share resources to reach a common goal.

1.3.3 Actors in Cloud Computing

Figure 1.9: Cloud Reference Architecture

The NIST Cloud Computing Reference Architecture [52] includes five participants (ac-

tors) for the Cloud domain. Figure 1.9 illustrates the actors and their responsibilities.

The reference architecture defines the actors as follows:

� Cloud Consumer: it is the entity that purchases and uses Cloud services from a

Cloud Provider or a Cloud Broker. It can be an individual or organization, which

establishes a business relationship with a provider.

� Cloud Provider: a person, organization or entity that provides Cloud based

services, manages resource allocation and control, and it is responsible for man-

aging physical infrastructure, resource provisioning, monitoring, business related

services and migration of services between Clouds. Cloud providers usually have
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a service catalogue from which the customer can select one or more services. The

relationship between provider and consumer is often sanctioned by SLA contracts.

Among the activities under its supervision there are:

– service deployment;

– service orchestration;

– Cloud services management;

– security and privacy.

� Cloud Auditor: a third party that can conduct independent assessment (eval-

uation and auditing) of Cloud services, in terms of security, privacy, availability

and performance of the Cloud implementation, to ensure that vendor operates as

expected and that security requirements are met. The focus is on how to monitor

the services, and to identify quantitative metrics for different kinds of measured

properties.

� Cloud Broker: it is an entity that manages selection, usage, performance and

delivery of Cloud services; moreover, it negotiates the relationship between con-

sumer and provider because of the management complexity of Cloud services. The

broker offers three capabilities:

– Service Intermediation: the broker interfaces with the provider and it is re-

sponsible of integrating and combining Cloud services, to enrich the service

offered by the provider and add some capabilities, such as strategic sourcing,

vendor management, service value management (QoS monitoring, reporting).

– Service Aggregation: the broker may aggregate multiple services offered by

the provider and ensures the interoperability and security of data between

systems. It provides them to the customer, acting as a reseller.

– Service Arbitrage: it is similar to aggregation, with the difference that services

are not fixed. Broker has the flexibility to choose services from multiple

agencies.

� Cloud Carrier: it provides access to consumers through network and other access

devices. Moreover, it provides connectivity and transport of Cloud services from

providers to consumers (e.g. an Internet Service Provider (ISP)). This role is

usually covered by network operators or telecommunication agencies. A provider
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usually sets up SLAs with a carrier to provide services consistent with the level of

SLAs offered to Cloud consumers.

A possible scenario involves the interaction between a consumer and a provider that

may be mediated by a broker. The consumer can request a particular service the broker

can actually deliver as a composition of multiple services offered by different providers

or by an individual provider. When the consumer decides to rely on a Cloud provider,

it establishes a SLA contract. In turn, the provider decides to sign a contract with a

carrier to ensure a specific quality of service. The auditor is the entity that has to make

sure everything that has been agreed between a consumer and a provider is actually

respected. The analysis of Cloud Computing solutions should be conducted by taking

into consideration several factors, benefits and risks: an economic analysis can also be

useful to compare the cost reduction with the adoption of a Cloud solution against the

on premise approach. The trade-off to be investigated lies in the economic benefit and

the achievable service level, in terms of reliability and performance, which is not easily

measurable and transparent to the consumer.

1.3.4 Cloud Computing Benefits

The common benefits associated with Cloud computing are explained in this section

[53].

Cost Efficiency

Saving money is the leading motivation for Cloud computing. It allows organizations to

reduce the costs of computer hardware and software, decreases the amount of personnel

necessary to manage data, and permits to save space and energy used to run computer

equipment. Moreover, Cloud computing diminishes the capital investment for project

start-ups. Sharing the processing resources among multiple users cuts down infrastruc-

ture costs. IT departments, thanks to Cloud computing, save money for application

implementations, maintenance and security, taking advantage at the same time from

economies of scale. They can increase hardware utilization percentage and reach mas-

sive capacities immediately, avoiding the investments in new infrastructures, the license

of new software or the training of additional personnel. Indeed, the Cloud provider can
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give to the companies support and expertise. In addition, Cloud also allows companies

to realize new opportunities to create enhanced services, saving time and money. Or-

ganizations only pay for the actual utilization (i.e. pay-as-you-go). The pay-as-you-go

model provides several benefits:

� Organizations reduce IT Capital Expenditure (CapEx) investments because these

costs are transferred to providers that spread them among their client base. This

is particularly useful because IT projects have a ramp up period that might last

one to six months, in which usage is low. Indeed, when companies spend capital

on equipment, they will consider the same CapEx for each month of the project,

regardless of the actual use. If companies invested less CapEx on equipment and

software, and moved that investment to the Cloud Operating Expenditure (OpEx),

they could have a better alignment of investments and costs in relation to the real

usage.

� Enhancement of the Return-On-Investment (ROI).

� IT maintenance, upgrade and support costs are transferred from Cloud consumers

to Cloud providers.

Scalability

The Cloud has an elastic nature that enables organizations to deploy solutions quickly;

resources are added on-demand and released if not necessary, responding to unexpected

growth in demand. Cloud computing solutions are so efficient in scaling up and down

that they permit to reach a competitive advantage by paying only for the IT resources

actually used.

Reduced Effort for IT Resource Management

Data and applications can be shared in the Cloud by each organization and its partners.

Companies can better handle the application life cycle when resources are greater and at

lower costs. Cloud computing also allows companies to gain market shares, to improve

services for customers and to focus on their core business.
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Flexibility

Cloud computing ensures much more flexibility than traditional IT methods. Cloud

services are based on flexible infrastructures that could change in relation to demand

fluctuations; therefore, resources can be quickly provisioned, de-provisioned, and/or re-

located to be employed in other parts of the system. This fast and elastic reply to busi-

ness requests gives organizations a competitive advantage in the marketplace. Moreover,

Cloud flexibility allows companies to fully-outsource all aspects of their infrastructure,

or outsource hardware while maintaining control of their IT infrastructure.

Efficiency

Another fundamental feature of Cloud computing is efficiency, achieved through scal-

ability, rapid and easy deployments, and only paying for the actual use of resources.

In this way, companies can save time and money in deploying their own IT infrastruc-

tures. Therefore, organizations can focus their energies on research and development,

and transfer the management of operational activities to the Cloud.

Agility

The ability to get applications to market very quickly is an important feature of Cloud

computing. It is achieved by using the most appropriate resources and maximizing cost

efficiency. Cloud computing improves time to service, removes the gap between business

and IT, and increases organizational agility.

Rapid Developments and Deployments

Applications and services can be developed more efficiently thanks to Cloud computing,

and the speed of deployment and testing cycles is higher; organizations could complete

within a short while activities that otherwise would take days, weeks or even months to

be realized.
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High Reliability

Organizations could reach a high level of business continuity and resiliency if they de-

ployed applications on high-performance Cloud computing platforms. When companies

use their own systems, they cannot obtain the same results without a considerable

expense in disaster recovery sites and replication of software. Cloud providers keep

redundant copies of client data at multiple Cloud data centers by means of advanced

computing platforms. Then, Cloud providers could safeguard consumers in case of local

physical disasters, accidental data loss or corruption, and malicious data destruction.

Improved Security

In most situations, Cloud providers are more experienced in security than in-house IT

departments thanks to security experts, compliance to standards and certifications. This

is a fundamental topic in Cloud environments and it will be detailed in the following

section.

Device and Location Independence

Users could access systems wherever they are and no matter what device they are using

thanks to the “location and device independence” of the Cloud, therefore increasing

end-user performances.

Energy Efficiency

Lots of companies do their best to make environmentally-responsible choices, and they

could reduce the use of energy, cooling and floor space thanks to Cloud computing.

Moreover, Cloud providers own technologically advanced data centers that are more

energy efficient, therefore allowing an effective reduction in power consumption and a

lower impact on environment.
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1.3.5 Cloud Computing Risks

This section presents a list of Cloud computing risks for Cloud users, as well as regulatory

and certification issues for Cloud providers [53].

SLA Management

The SLA defines the services acquired from Cloud providers in measurable terms. A SLA

can include service availability, measurements of performance, mean time to respond,

penalties if the Cloud provider does not follow the terms of the agreement, etc. When

a consumer and a provider set up an economic agreement, they cannot renegotiate SLA

parameters. The definition of the deal is not something immediate because sometimes

a service is offered by several providers. A technical problem consists in the monitoring

methods of SLA parameters like, for example, those concerning security. A major issue in

Cloud computing is that SLAs have some weaknesses: responsibility in case of incident,

penalties when the agreement is not satisfied, protection from legal risks are not clearly

defined.

Vendor Lock-in

Cloud consumers should take into account what could happen if the provider must be

changed, as a result of a worsening in the service quality or because of an unacceptable

growth of the costs when the contract is renewed. Many organizations are worried that

once they use Cloud services, the provider “locks in” their data and systems. The

providers that simplify data portability should be preferred, so that the change from a

provider to another one is easier. International standards should preserve the customer,

but the technological evolution of the Cloud has been so rapid that most of the providers

have developed their own solutions relying on ad-hoc protocols. Therefore, customers

are often forced to accept a non-standard solution and they have huge difficulties to

migrate to other providers.
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Migration Issues

In case of problems, it is fundamental to guarantee that Cloud data and services can

be moved to another provider. Therefore, a standardization of transfer processes is

fundamental.

Performance

Cloud infrastructures could potentially produce unpredictable performance problems

caused by the sharing of resources. The fluctuation of individual workloads can deter-

mine effects on available CPU, network and disk I/O resources.

Portability and Interoperability

Thanks to the portability, Cloud consumers can easily move data from a Cloud provider

to another one. In addition, the portability promotes the competition among different

providers. Finally, interoperability enables different systems to uninterruptedly commu-

nicate with each other.

Disaster Recovery

Cloud providers might place heavy restrictions on disaster recovery testing procedures.

Moreover, information could not immediately be identified properly in the event of a

disaster, because of the dynamic nature of Cloud computing.

Lack of Standards

Cloud consumers do not have standardized metrics to evaluate the security status of

their Cloud resources. This might cause troubles concerning security evaluation, audit

and accountability.
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Uncontrolled Viable Costs

A recurring problem in Cloud computing is represented by unpredictable costs, because

of its pay-as-you-go nature.

1.4 Cloud Security and Privacy Factors

In order to manage a company properly, IT systems and data are both essential and

they can be considered as fundamental resources. Hence, ensuring the confidentiality,

integrity and availability of systems and data is critical for companies [53]. The presence

of flaws in the IT security could have significant consequences on the organizations,

including economic damages, bad reputation and operational risks. Cloud computing,

compared to traditional IT environments, is responsible for new threats and weaknesses.

Security risks could involve different levels in the IT stack, and a wide set of technologies

and policies to safeguard applications, data and infrastructures. Cloud providers and

consumers share the risks related to security depending on the Cloud deployment and

service model. Sometimes, data require particular security measures (e.g. medical,

genetic, financial data). In such circumstances, users should carefully decide whether

it would be better to make use of Cloud services or to maintain in-house processing of

data, because of threats like accidental loss or unauthorized access.

1.4.1 Identity Management

A user digital identity is needed to manage the access of users to Cloud services: every

time they use a new Cloud service, they have to fill out an on-line form and provide

sensitive personal information. Entities may have multiple accounts associated with dif-

ferent service providers, or use multiple services offered by the same provider: a Cloud

user has to provide his personally identifiable information through multiple platforms,

which can be accessed by unauthorized parties if not properly protected. Therefore, an

IDentity Management (IDM) mechanism to protect private and sensitive information

related to users and processes is crucial in Cloud computing. The authentication among

heterogeneous Clouds that constitute a federation requires a high level of interoperability
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between different security technologies: interoperability issues range from the use of dif-

ferent identity tokens to different identity negotiation protocols. Also multi-jurisdiction

issues can complicate privacy mechanisms, because users often interact with services

that have to ensure user’s identity is protected from other services which, in turn, the

first services interact with. In other words, new IDM mechanisms for authentication

and authorization are required because data owners and providers are not in the same

trusted domain [54].

1.4.2 Security Policies

Even if resources are situated in the Cloud, however the management of an organization

is responsible for the introduction of adequate security policies, which must satisfy busi-

ness objectives. Security policies should include applicable rules and regulations, and

an appropriate control over data in the Cloud.

1.4.3 Data Control

When a company stores data at an external location, many problems might arise, such

as the loss of control over data, and the possibility that a Cloud provider gains access,

modifies or spreads data. An event of data loss or leakage could cause dramatic effects

on a company, including financial implications, compliance violations and legal ramifi-

cations. The loss of data could occur in many different ways such as: loss of an encoding

key, unauthorized parties gaining access to sensitive data, deletion or alteration of data

without a backup of the original content.

1.4.4 Privacy

The information stored in public, hybrid or community Cloud is usually shared amongst

several users. This causes problems about the possibility for government authorities or

competitors to gain access to data in the Cloud without prior consent of the owner. The

existence of a flaw in the confidentiality might lead to the disclosure of information to

unauthorized individuals or systems. The risks concerning privacy and confidentiality

depend on the terms of service, privacy rights and obligations, and on privacy policies

defined by the Cloud provider. Privacy issues in the Cloud are now discussed. First of all,
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information in the Cloud might have different legal locations simultaneously, therefore

determining different legal consequences. Furthermore, there is the risk that external

users might access data stored in the Cloud, for example: malicious Cloud providers such

as administrators in a SaaS environment, malicious Cloud consumers such as application

developers and testers in a PaaS environment, and malicious third-party users in an IaaS

environment. External attacks could be represented by remote software and hardware

attacks of Cloud applications and infrastructures. The most common security threats

involve phishing and software vulnerability exploitation. The purpose of an attacker is to

steal credentials, to manipulate data and to eavesdrop sensitive transactions. Providers

can take advantage of stronger authentication methods and of proactive monitoring to

identify unauthorized activities. Finally, laws could oblidge a Cloud provider to analyze

user data to detect any criminal activity.

1.4.5 Integrity of Services and Data

Integrity protects users from any accidental modification of data. Cloud providers should

therefore ensure data integrity (consistent and correct) in any situation (i.e. transfer,

processing, storage or retrieval). Some threats against data integrity are: cross-site

scripting, if the input contains JavaScript code that is wrongly executed by a victim’s

browser; command injection, if the input includes commands that are wrongly executed

via the operating system; SQL injection, if the input contains SQL code that is wrongly

executed in the database back-end. Moreover, improper defined security perimeters or

improper configuration of virtual machines and hypervisors might cause data integrity

problems if system resources are not successfully isolated. Finally, improper access

management procedures might cause unauthorized accesses or intentional damage to

data. APIs are the only available entry point for users to interact with Cloud platforms:

different security risks may occur if the exposed APIs have a flaw.

1.4.6 Availability of Services and Data

“Being available when necessary” is a significant performance indicator for any IT envi-

ronment. This allows to avoid service interruptions caused by hardware failures, system

upgrades, power outages and attacks. There are different concerns about availability in

the Cloud. First of all, turn to Internet for transferring data could determine availability
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and security problems related to Internet connection and bandwidth speed reduction.

Secondly, in a completely decentralized Cloud computing environment, the ability to

maintain a stable connectivity between untrusted components while being fault-tolerant

is particularly difficult. Moreover, there are some modifications that could cause nega-

tive effects, such as software or hardware changes to the existing Cloud services, tests

affecting other Cloud consumers or infrastructure changes made by the Cloud provider.

The denial-of-service attack might affect all Cloud service models. Its goal is to block

access to data and applications. Indeed, it makes resources unavailable, by stressing

system hardware. In this case, the consumer has to deal with a service outage and a

higher power consumption, which often means huge costs. Other risks include the in-

hibition of backup procedure testing because of data confidentiality; the consequences

upon recovery time may be remarkable when these processes are not tested. Lastly, the

availability of the systems could be influenced by single points of failure in the access

path to the Cloud.

1.4.7 Encryption

Inadequate encryption of data represents a significant risk in Cloud computing environ-

ments. The transfer of data over a network increases the risks of hijacking, leakage or

interception. Data leakage can also occur in case of vulnerabilities in the Cloud APIs.

A stronger access control, the encryption and protection of the data integrity, and an

effective key generation could prevent this type of threat. Furthermore, it is fundamen-

tal to define who manages the encryption or decryption keys (i.e. Cloud consumer or

provider), and whether or not the encryption technique being used is effective. Key

stores also represent a risk and they must be safeguarded in storage, in transit and in

backup. When key storage is improperly managed, all encrypted data could be com-

promised. Therefore, it is important to limit the access to key stores to authorized

entities.

1.4.8 Network Security

The introduction of physical data center allows attackers to access the VMs, data and

applications in the network from anywhere. The most common network security threats

in the Cloud are hacking and intrusion. The creation of a single virtual server hosting
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several VMs could determine several network related risks. For example, a new emerg-

ing risk is represented by mobile device attacks. Also, intrusion detection, firewalls and

other types of protections are weaker in the virtualized environment, making it possi-

ble for viruses and malicious software to attack VMs on the same VLAN. Unsafe or

compromised VMs can further serve as backdoors to the whole virtual environment.

1.4.9 Laws and regulations

To guarantee both internal and external data security, organizations must comply with

requirements, which are set by an industry or by a government body. In the Cloud

computing often an off-site location, outside the legal coverage of the organization, hosts

data and applications. In the case of public Clouds, if the provider moves sensitive data

on servers situated in countries that do not have the same privacy standards or copyright

laws, the customer should be properly informed. Indeed, these regulations could conflict

with the Cloud consumer’s legal or regulatory obligations in his/her home country. It

needs to be said that the employment of federated Clouds, as well as the exchange of

data between data centers in different countries, is considered to be the cause of the

worsening of this kind of problem. Therefore, wherever data are located, compliance

needs to be ensured. Lastly, Cloud computing introduces taxation issues both in the

Cloud provider’s and in the consumer’s country.

1.5 Green Cloud Computing

Green Computing is defined as “the study and practice of designing, manufacturing,

using and disposing of computers, servers, and associated subsystems, such as monitors,

printers, storage devices, and networking and communications systems efficiently and

effectively with minimal or no impact on the environment” [55]. Energy efficiency is

becoming increasingly important for Cloud data centers too; indeed, because of their

growing scale and wide use, energy consumption and carbon footprint have become a

great issue. The SMART 2020 report [56] provides an estimate of global emissions, which

will increase from 40 to 53 GtCO2 (Gigatons of CO2) by the year 2020. Information and

Communications Technology (ICT) sector accounts for 2 percent of the worldwide global

energy emissions, which could be halved through the extensive use of Cloud computing.
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In addition, ICT could contribute to decrease by 15 percent global emissions caused by

non-ICT processes. Cloud service providers need solutions to reduce carbon footprint

and to guarantee QoS constraints. The European Union has pointed out that emission

reductions of 15% - 30% are needed before year 2020 to limit the worldwide temperature

increase to less than 2 �. Cloud computing reduces costs, improves efficiency and creates

a more sustainable world, while maintaining performances at an appropriate level. The

following factors, related to Cloud computing, contribute to decrease carbon footprint

and reduce energy consumption costs:

� Dynamic provisioning: Cloud providers allocate resources on demand, reducing

the number of unused servers that are needed for a short period and are mostly

idle during the year; in traditional systems, computing resources are oversized to

cope with the worst case, in which energy demand reaches highest peaks. Cloud

computing allows to reduce waste, balancing supply and demand of resources.

� Multi-tenancy: Cloud providers assign the same resource to multiple companies

at a time, reducing the number of running servers and carbon emissions.

� Server utilization: an on-premise infrastructure runs with low utilization, with

no efficiency. On the contrary, virtualized hardware allows executing different

applications on the same server in an isolated environment. Therefore, there are

utilization levels up to 70 percent, impossible to achieve with on-premise resources.

� Data center efficiency: data centers use different methods such as water or

air-cooling, and advanced power management techniques to maximize energy effi-

ciency. Statistics show that Cloud data centers save electricity around 40 percent

more than traditional data centers.

To enhance energy efficiency in Cloud computing, it is important to study the distri-

bution of power in data centers. One major contributor to today’s data centers power

consumption is their physical infrastructure (e.g. power and cooling equipment), which

is used to support the IT equipment (e.g. compute, storage, network). Studies have

shown that physical infrastructure alone can amount to more then 50 percent of the

total data center power usage [57] (see Figure 1.10); servers consume 80 percent of the

total IT load and 40 percent of total data center power consumption. Companies like

Google, Facebook and eBay adopt the free cooling technique to lower the air temperature
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Figure 1.10: Data center power consumption

in data centers, by using naturally cool air or water instead of mechanical refrigeration.

Consequently, the power needed for cooling decreases, reaching 100 percent of energy

saving in areas where climate allows zero refrigeration. The awareness in the data cen-

ters energy consumption has become the main purpose of companies. The focus is on

how to lower power consumption costs and, on the other side, to maximize the system’s

efficiency. The objectives must be pursued during the initial phase of the system design,

in order to use techniques and models that increase the green benefits. This process

imposes new challenges to the system engineers: the design of the architecture must

involve green aspects regarding the interactions among the system components, the net-

work devices and the software stack. Among the objectives that are often pursued by

data center owners we can mention, on one side, the reduction of the operational costs,

manual maintenance and the carbon emissions, and on the other one, the increase of the

devices lifetime. Some of these purposes are addressed by the Data Center Infrastructure

Management (DCIM) layer, which tends to include all the assets and physical resources

in the traditional management procedures, such as IT asset life-cycle management and

facilities monitoring.

1.5.1 Motivations for Greening Cloud

To show transparency and corporate responsibility, the number of IT companies that

voluntarily disclose their carbon emissions along with efforts to be environment-friendly,

is in constant increase every year. These companies pursue green certifications for their

buildings and businesses, and provide integral reporting of their environmental impact
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every year. In general, carbon emissions are mainly disclosed for marketing, financial,

and governmental motivations: indeed, firms’ value decreases significantly if carbon

footprint is high or information about carbon emission rates are kept secret. From

the financial standpoint, a recent study [58] shows that the firm’s value decreases, on

average, by US$ 212,000 for every additional thousand metric tons of carbon emissions

produced. This result translates to a firm value penalty of US$ 1.4 billion. On the other

hand, governments are issuing taxes on carbon emissions, whose cost per ton of CO2 is

between 25 and 30 US$, with a financial impact on the companies leading to over US$

92.8 billion in annual costs to be paid by them.

1.5.2 Major Causes of Energy Waste

Among data center typical assets, there are critical equipments (also known as IT equip-

ments), which are necessary to the service delivery, and non critical equipments that are

essential to the correct operation of the first category of devices (e.g. power units, cool-

ing equipment and generators). Both the equipment types are very energy demanding

and they can be characterized by inefficiency: regarding the IT devices, reasons of a

poor energy efficiency can be found in the utilization of old servers and power supply

units that consume too much power, or in the unbalanced ratio between the physical

resources and the actual needs. Servers are one of the main power consumers in data

centers, as seen in Section 1.5. The most important causes are the following:

� Low server utilization: the number of servers is quickly increasing but most of

them are underutilized. Indeed, according to Natural Resources Defence Council

(NRDC) report [59], average server utilization was between 12% and 18% from

2006 and 2012, while consumption was between 60% and 90% of peak power.

By consolidating virtual servers on a smaller number of hosts, server utilization

increases, therefore the number of required servers and overall energy use will be

greatly reduced.

� Idle power waste: servers are idle about 90 percent of time [59], during which

they consume about 70 percent of peak power. Indeed, even when the server is not

loaded, energy is consumed to run OS and to maintain essential hardware devices.
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� Lack of a standardized metric: there is not a standardized metric of server

energy efficiency to enable scheduling algorithms to make decisions, maximizing

energy saving.

� Energy efficient solutions not widely adopted: small and medium sized data

centers are very inefficient compared to big Cloud farms.

1.5.3 Terminology

Two fundamental terms, namely power and energy, are defined. Electrical power is

defined as the rate at which electrical energy is transferred by a circuit. It is measured

in Watt or Joules per second. Electrical power is computed by multiplying the current

(I) with voltage (V ) (see Equation 1.1):

P = I × V (1.1)

Current represents the amount of electrical charge (i.e. number of coulombs) flowing

over the wire per second, referred to as Amperes (Amps). Voltage represents the change

in electrical potential energy per unit of charge on the wire. It is measured in joules per

coulomb. There is a direct relationship between I and V : the greater the voltage the

more current will flow. On the other hand, energy is a quantity typically measured in

Watt-seconds (Ws). It is defined as power consumed over a period of time (see Equation

1.2):

E(T ) =

∫ T

0
P (t) dt. (1.2)

Power is an instant value while energy is the integral of power over a period of time.

While the definition of power management and energy management appears clear in

theory, in practise the distinction between the mechanisms is often blurry as both terms

are used interchangeably. To quantify power consumption in Cloud computing, it is

possible to use power measurement techniques that measure actual power consumption

through monitoring tools.
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1.5.4 Power Measurement Techniques and Power Efficiency Metrics

Data center power measurement techniques allow to account for the data center power

consumption usage and efficiency. Power usage can be valued by means of direct, indi-

rect, or hybrid power measurements. Direct power measurements are typically performed

using hardware that is either embedded into the equipment (e.g. server) or externally

attached. Indirect power measurements are performed by estimating the power usage

using power models. They are useful because most servers in modern data centers are

not equipped with power measurement devices and VM power cannot be measured by

sensors. Finally, hybrid power measurements combine direct and indirect power mea-

surements.

In addition to power models, the first step towards being able to optimize the physical

infrastructures power usage and compare it with other data centers is the ability to mea-

sure their power efficiency. Therefore, in 2007 the Green Grid defined two data centers

efficiency metrics [60], namely Power Usage Effectiveness (PUE) and its reciprocal Data

Center infrastructure Efficiency (DCiE):

� Power Usage Effectiveness (PUE) [61]: it is defined as the ratio of the total

power entering the data center to the power used by the IT equipment (see Equa-

tion 1.3). It is a measure of how much energy is used by the computing equipment

in contrast to cooling and other overheads. For example, a PUE value of 2.0 means

that for every watt used to power IT equipment, an additional watt is required to

deliver the power and keep the equipment cool. In the ideal world, a PUE equals

to 1 is desirable. This would imply that all power going into the data center

is consumed by its IT equipment. Obviously, the reality looks different as some

power is required to support data centers physical infrastructure. Moreover, the

actual PUE heavily depends on the current IT infrastructure load and physical

infrastructure conditions [62]. For example, when the IT infrastructure is fully

utilized (≈ 99%), it will typically imply a higher IT equipment power usage thus

decreasing the data center PUE.



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 47

Modern data centers have a PUE close to 1.12 (e.g. Google1 data centers in the

second quarter of 2015).

PUE =
Total Facility Power

IT Equipment Power
(1.3)

� Data Centre infrastructure Effectiveness (DCiE): it is defined as the ratio

of the IT equipment power to the total data center power usage, and the result

is multiplied by 100 to capture what percentage of the power entering the data

center was consumed by the IT equipment (see Equation 1.4). It is the recipro-

cal of the PUE. For example, a PUE value of 3.0 corresponds to a DCiE of 33

percent, meaning that IT equipment was consuming 33 percent of the facility’s

power and this is very inefficient. Power entering the data center can be captured

by the utility meter. IT infrastructure power can be measured at the output of

an Uninterruptible Power Supply (UPS). UPS provides backup power to the IT

infrastructure during periods of power grid outages. It is plugged in between the

power grid and the IT infrastructure.

DCiE =
1

PUE
=

IT Equipment Power

Total Facility Power
(1.4)

Other useful metrics are:

� Data Center energy Productivity (DCeP) [63]: it is defined as the ratio of

useful work to the total energy consumed by the facility to produce this work (see

Equation 1.5). It is a measure of the productivity of the data center, in contrast to

the PUE and DCiE that do not take into account the useful work. The period of

time over which energy is measured is called assessment window. It should be no

shorter than about twenty times the mean run time of any of the tasks initiated

in the assessment window.

DCeP =
Useful Work Produced

Total Data Center Energy Consumed Producing this work
(1.5)

Total data center energy may be estimated based on a measured value of the total

energy consumption of the IT equipment multiplied by the current data center

1http://www.google.com/about/datacenters/efficiency/internal/

http://www.google.com/about/datacenters/efficiency/internal/
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PUE value. Decreasing PUE or equivalently increasing DCiE has the effect of

improving DCeP.

The Green Grid proposes the following equation for useful work (see Equation

1.6):

Useful Work =

M∑
i=1

Vi · Ui(t, T ) · Ti (1.6)

where:

– M is the number of tasks initiated during the assessment window;

– Vi is a normalization factor that allows the tasks to be summed numerically;

– Ti is 1 if task i completes during the assessment window and 0 otherwise;

– Ui(t, T ) is a time-based utility function for each task, where the parameter

t is the elapsed time from initiation to completion of the task, and T is the

absolute time of completion of the task.

� Carbon Usage Effectiveness (CUE) [64]: it is a rating of the quantity of CO2

emissions produced per unit of energy consumed in a data centre (see Equation

1.7).

CUE =
Total CO2 emissions caused by Total Data Center Energy

IT Equipment Energy
(1.7)

The denominator is the same value as the denominator of the PUE metric and

at the numerator there are the total carbon emissions caused by total data center

energy. The units of CUE metric are kilograms of CO2 per kilowatt-hour (kWh);

� Data Center Predictive Modeling (DCPM): it is the ability to forecast the

performance of a data center in the future, e.g. its energy use, energy efficiency or

cost.

1.5.5 Power Saving Policies in Cloud Computing

A plethora of works addressed the problem of reducing the energy consumption inside

a single data center. A solution is to exploit hardware counters to predict application

behaviour, reducing energy consumption up to 24 percent [65]. Authors in [66] propose

a framework for energy measurement and automatic decision making for resource al-

location, characterized by different steps: present real time energy consumption data
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to users; involve users in decisions; develop automatic resource allocation techniques to

have a trade-off between performance and energy consumption. Another solution con-

sists in consolidating the workload onto a reduced number of servers; in more detail, in

[67] authors formulate an Integer Linear Programming (ILP) problem where the decision

variable is the number of servers used to run the tasks, and the objective is to minimize

power consumption, the costs of running tasks and costs due to task migration. Also

the problem of task assignment to clusters of servers inside a data center is formulated

as an ILP problem, with the objective to minimize the number of used servers [68].

An additional energy reduction mechanism such as Dynamic Voltage Frequency Scaling

(DVFS) is considered in [69]. The key idea of DVFS is to reduce the CPU frequency and

voltage, and consequently power consumption, during periods of low utilization. The

dynamic power consumption of a CPU can be approximated as (see Equation 1.8):

P = C × f × V 2 (1.8)

where C is the switching capacitance, f the switching frequency, and V the supply

voltage. A linear reduction in voltage implies quadratic power saving. As this method

decreases the number of instructions the processor executes in running a program, the

program takes a longer time and the performance reduce; moreover, additional energy

is required to rise the frequency and voltage level back when required. In Section 1.5.2,

we said that servers are idle about 90 percent of time, during which they consume about

70 percent of peak power; DVFS acts at server level, therefore its power saving is low

compared to other methods.

Servers could be powered down or put into sleep mode when they are unused; this

technique is complex but efficient, and it was proposed to dynamically turn on and off

servers, achieving significant energy saving [70] [71] [72]. Important reduction in energy

consumption (≈ 25%) can be achieved by introducing virtualization in data centers and

consolidating VMs [73], to face the IT equipment under-utilization: it allows to drasti-

cally reduce the number of used servers and to avoid the commitment of a single server

to a dedicated activity. The different VMs of the virtual data center require guaranteed

bandwidth between them for communication. Authors in [74] presented a resource man-

agement framework that adopts dynamic VM migration and a consolidation algorithm

to minimize the number of active servers during low-demand periods. Dynamic opti-

mization and further workload consolidation into an even fewer number of server can be
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performed thanks to VM live migration. Live migration is a facility implemented by all

the hypervisors that enables the transfer of a running virtual machine from a source host

to a destination one, assuming a shared storage for the VM images, with almost neg-

ligible downtime for the applications. Thermal-aware algorithms to allocate resources

inside a single data center have also been proposed in the literature [75] [76], with the

aim of consolidating VMs onto servers in close proximity to each other, lowering cool-

ing costs. Energy-efficiency has also interested networking architecture and protocols

design. This task is also referred to as Green Networking : the usual approaches deal

with techniques for dynamically adapting network devices processing capabilities and

available bandwidth to meet traffic load and services requirements, or standby/wake-up

modes [77].

1.6 Research Challenges and Contributions

Computing has evolved over time according to different paradigms, along with an in-

creasing need for computational power. The first paradigm was the Mainframe Com-

puting, in which processing power was concentrated in a centralized system accessed

through simple terminals. The second paradigm was the Stand-Alone Computing, which

consisted of workstations that reduced the time to access to computational resources and

gave the chance to work in a parallel way; instead, Network Computing enabled users

to exploit distributed computing resources on networked servers, and changed the way

applications were distributed, going from a client-server to a web-based browser-server

paradigm. Afterwards, the exponential growth of science and engineering problems re-

quired large amounts of computational resources, and scientists relied heavily on parallel

and distributed computing to solve them. These computing paradigms worked by sepa-

rating problems in small tasks and solving them in parallel on clusters. In this context,

the Cluster Computing solutions became very popular: physical nodes were intercon-

nected through a LAN in the execution of compute-intensive and data-intensive tasks

that could not be executed on a single computer. An additional computing evolution

was triggered by the massive geographic distribution of very powerful computing re-

sources: Grid Computing emerged in the mid 90s. Grid computing enabled controlled

computing and data sharing among different physical domains. The reason behind the

constitution of a Grid-based infrastructure was the need for enterprises to solve complex



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 51

scientific problems, through coordinated resource sharing and collaborative problem-

solving. Modern computing paradigms basically share the same underlying concept of

Utility Computing, that is a service provisioning model through which a shared pool

of computing resources is used by a customer when needed. The objective of Utility

Computing is to maximize the utilization and bring down the relative costs.

Nearly a decade ago, the concept of Cloud Computing emerged as a virtualization tech-

nique where services were executed remotely in a ubiquitous way, providing scalable and

virtualized resources. The spread of Cloud Computing has been also encouraged by the

success of the virtualization, which is one of the most promising and efficient techniques

to consolidate system’s utilization on one side, and to lower power, electricity charges

and space costs in data centers on the other.

Over the last few years, the Information and Communications Technology (ICT) sector

has become a significant source of energy consumption and pollution. Indeed, ICT ac-

counts for 2% of the worldwide global energy emissions (equivalent to the global aviation

industry [78]), which will increase from 40 to 53 GtCO2 between 2002 and 2020. The

European Union has pointed out that emission reductions of 15 - 30% are needed before

the year 2020 in order to keep the worldwide temperature increase within the limit of

2 �. Several organizations are adopting virtualization and Cloud technologies with the

aim of reducing power consumption, creating a more sustainable world, and increas-

ing the overall resource efficiency, while maintaining performances at an appropriate

level. But this is not enough. In fact, the growth of Cloud computing and virtualiza-

tion techniques, fueled by an increasing demand for large-scale processing, has led to

the establishment of large scale data centers. However, these same data centers that

provide Cloud services, at the same time bring about a tremendous rise of electricity

consumption: data center energy consumption grew to an estimated 40 GW in 2013,

and it is expected to increase considerably by 2020. In the coming years, networks and

data centers will contribute to 25% of the ICT power consumption. According to a re-

port published by Greenpeace [79], the Cloud is comparable to a country with the sixth

highest power consumption in the world. This phenomenon occurs because current data

centers host lots of applications with dedicated servers, storage and network infrastruc-

tures, and therefore resources are vastly over-provisioned to meet the application service

goals. All these factors cause high power consumption.
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In addition to energy consumption, also carbon footprint of the Cloud infrastructures

is becoming a serious concern, since a lot of power is generated from non-renewable

sources. As a consequence, the environment is deeply impacted by more Greenhouse

Gas (GHG) emissions, since most of the data centers are still powered by either coal

or nuclear power plants. In this sense, a fundamental measure to be taken would be

to reduce the data center energy consumption when its utilization is low, so as to cut

down the Total Cost of Ownership (TCO) (the sum of initial CapEx added to ongo-

ing and long-term OpEx) and carbon footprint. Besides ensuring eco-friendly solutions,

Cloud service providers must take into account Quality of Service (QoS) constraints,

in order to satisfy SLAs in the presence of dynamic resource sharing and unpredictable

interactions across many applications. Such a discourse explains the recent growing

interest in green Cloud computing among the research community and ICT industry.

The aforementioned problems can be solved by designing energy-efficient resource allo-

cation solutions, according to which resources are assigned with the aim of satisfying

user requirements and optimizing energy consumptions. The whole problem of resource

allocation in Cloud while minimizing energy consumption and carbon footprint remains

a very challenging issue.

After having analyzed the main issues concerning the interaction of ICT and energy

consumption, another important dimension to be considered is the run-time orchestra-

tion of virtual resources in Cloud infrastructures. The service demands coming from

customers are rapidly growing, and Cloud providers deploy an even increasing number

of geographically distributed data centers, with consequent management challenges. Re-

quested services are becoming increasingly sophisticated since users need to deploy their

own applications with the topology they choose, while having the control on both the

infrastructure and the applications.

In this context, a Cloud service model that has gained a lot of attention over the past

years is commonly referred to as Infrastructure-as-as-Service (IaaS). In IaaS, the re-

sources (i.e. compute and storage) are provisioned on-demand by the Cloud providers

in the form of Virtual Machines (VMs). IaaS systems enable the joint deployment of

infrastructures and applications, and their realization requires a control platform for

orchestrating the provisioning, configuration, and management of the virtual resources

over physical hardware. Yet, since the orchestration process is complex and potentially
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error-prone if performed manually, the need for a tool that minimizes human interven-

tion in order to automatize resource configurations and to remain scalable is necessary.

Indeed, an easy configurable system allows to reduce costs and scale data center energy

consumption. From the Cloud provider’s perspective, however, building a system to

orchestrate resources is challenging, due to the growth of data centers, QoS constraints

and SLAs.

One last important dimension at which we are interested is to preserve priority services

in Cloud Computing. Cyber-attacks on Cloud systems pose high risks to Cloud service

provider infrastructures and customer data. Even if the administrators are unable to

isolate the attacker, solutions are needed in order to guarantee bandwidth and QoS

under a Denial of Service (DoS) attack.

In this thesis, we address the aforementioned problems and their multiple facets. We

investigate new energy-efficient models and algorithms, and introduce a Cloud-based

solution to preserve priority services in case of attacks. In Chapter 2, a novel energy-

aware resource orchestration framework for distributed Cloud infrastructures is intro-

duced, in order to manage both network and IT resources in a typical optical backbone.

We discuss the enabling technologies for the next-generation optical transport network

deployment, detailing the Generalized Multi-Protocol Label Switching (GMPLS) funda-

mentals in order to facilitate the computation of traffic engineered paths. Then, the Path

Computation Element (PCE) is presented, which is the key component of the proposed

architecture. The PCE provides functions of path computation in support of traffic engi-

neering in networks controlled by GMPLS. We provide a high-level system architecture

overview by focusing on the definition of the different layers of the whole infrastructure,

and introducing the main components of the resource orchestrator. Finally, a green

migration plan that is obtained by applying resource relocation algorithms is discussed.

In Chapter 3, the aforementioned resource management framework is used to offer re-

sources to service providers in the form of virtual infrastructures, while ensuring that

energy consumption and CO2 emissions are minimized. Service providers can easily de-

ploy services directly into the infrastructure of the network providers and invoke them

upon the customers’ requests, by meeting the Quality of Service (QoS) objectives of end-

users. This is what we call “resource orchestration”. Resource orchestration is supported

by a centralized software entity, named Virtual Resource Orchestrator (VRO), the aim



Chapter 1. Energy Efficiency and Security Issues in Cloud Computing 54

of which is to optimally allocate the resources needed to instantiate a requested virtual

infrastructure. The resource orchestrator is designed to adaptively adjust to varying

workloads so that high resource utilization and Quality of Service can be achieved. The

VRO is a resource allocation system that manages network and IT resources to achieve

energy-aware objectives and SLAs on shared virtualized infrastructures, and that also

performs distributed VM management. Particularly, the VRO integrates a power man-

agement mechanism that automatically detects overloaded and underloaded physical

machines, and consolidates VMs in order to release lightly utilized servers. In more de-

tail, we deal with the problem of reducing energy consumption and carbon footprint in

distributed Clouds while, at the same time, preserving SLAs and providing performance

guarantees in terms of minimum guaranteed bandwidth and maximum activation time

for switch interfaces, through dynamic reconfiguration of the network. Furthermore,

we propose a novel traffic-engineering algorithm that minimizes energy consumption

and CO2 emissions of networks connecting multiple distant data centers, based on en-

ergy cost and carbon footprint metrics. To evaluate the effectiveness of our proposal,

extensive simulations are conducted in a test scenario composed of eight data centers

connected through an optical backbone. Then, we have developed a framework for em-

ulating energy-efficient network environments and for automatically deploying these in

the Cloud, so that network providers can customize and automatically generate run-

ning testbed instances based on the customization. Finally, a prototype of the VRO

architecture has been implemented on a local testbed, and configured to experimentally

evaluate the proposed platform. The experimental results have proven our system to be

energy-efficient.

In Chapter 4, a Virtual Intrusion Detection System (VIDS) is developed. We discuss

related work about Cloud security. Then, a framework for a secure Cloud infrastructure

is proposed. It contributes to react to malicious attacks by implementing a real-time

traffic analysis, providing re-actions and using ubiquitous control systems, in order to

protect high-priority services. The VRO-based architecture has been proven to be flex-

ible enough to adapt to varying requirements and objectives in the management of

network infrastructures.



Chapter 2

A PCE-based Architecture for

Combined IT and Network

Orchestration

2.1 Context and Motivations

Nowadays, the Green Cloud is one of the most popular topics in ICT. The Green Cloud

research is focused on the development of new methodologies in order to minimize energy

consumption without affecting negotiated service levels. New Cloud infrastructures are

needed, which combine flexibility, Quality of Service (QoS), and energy savings.

In this chapter, we present a Green Cloud Enabler, which is an energy-aware resource or-

chestration framework for IaaS Cloud infrastructures; the Green Cloud Enabler combines

innovative methods and mechanisms useful to dynamically improve energy efficiency of

both network and IT components of multi-site Cloud infrastructures [80]. The objective

is to reduce energy consumption of Cloud (IT) and networking devices (ICT) by tak-

ing into account operational metrics collected from physical devices. The Green Cloud

Enabler is based on the standard Path Computation Element (PCE) architecture [81],

which is a scalable inter-domain/intra-domain centralized controller. Even if the research

community is actively working in the network power management area [82] [83], little

has been done to increase energy efficiency of all the resources involved in a multi-site

Cloud infrastructure; in fact, recent efforts aim at developing energy saving techniques

55
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addressed to each single device. Network power management usually concerns perfor-

mance and sleep states, which minimize power consumption when switches are on or

idle respectively. The performance states dynamically change the rate of links and their

associated interfaces. The sleep states quickly turn off network interfaces when they are

idle. Such solutions are useful in traditional ICT systems, while in Cloud infrastruc-

tures, Virtual Machine (VM) placement and dynamic VM scheduling algorithms are

also required to consolidate the computational load into a subset of physical resources,

in order to trigger power saving mechanisms. The problem of finding the right allocation

of VMs into a set of physical machines in Cloud data centers is equivalent to the mul-

tidimensional, multiple-choice and multi-constrained Bin Packing Problem (BPP) [84]:

“Given a set of virtual machines and a pool of physical hosts, each one described by a

multidimensional resource vector, the objective of the problem is to find the best map-

ping of the virtual machines to the physical hosts, maximizing resource efficiency usage”.

The problem is multi-dimensional because the mapping depends on a multidimensional

resource vector capturing the resources associated with both hosts and VMs, such as

CPU utilization, network bandwidth and RAM. Moreover, the opportunity of having

multiple choices is due to the fact that only one physical host for each available group

must be selected in order to allocate a VM. Finally, the bin packing is often subject to

multivariate constraints. An additional VM allocation problem is however enabled by

the live migration mechanism implemented by common hypervisors. The live migration

allows the transfer of a running VM from one physical machine to another, by assuming

a shared storage for the VM images, with a slight downtime for the applications. The

live migration makes possible to react to the fluctuating resource requirements of the

VMs. Today, live migration and consolidation are the most important techniques re-

lated to the efficient resource allocation in data centers [85], because the live migration

allows the reallocation of VMs on several physical hosts, thus maximizing the resource

utilization. For instance, when the demand is low and there is an inefficient utilization of

resources, several virtual machines can be consolidated into a lower number of physical

hosts, in order to turn off the idle devices, thus saving power consumption. However, an

aggressive consolidation might overload the hosts because the usage of resources begins

to saturate, leading to a slow-down of the application execution and to a higher power

consumption; these effects might have negative consequences on the QoS, thus violating

the Service Level Agreements (SLAs). Instead, when VMs request an increasing demand
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of resources, they might be migrated to physical hosts that have a lower load, thus pre-

venting SLA violations. Hence, the VM consolidation must find a trade-off between

power consumption and QoS [86]. A new variant of the VM allocation problem must

be addressed, which consists of choosing the set of migrations to be performed in order

to consolidate the VMs into fewer physical hosts, starting from the current allocation

of the virtual machines and taking into account QoS and load fluctuations. The aim

is to minimize energy consumption. In literature, several VM consolidation algorithms

have been proposed, but they are rarely integrated in realistic multi-site Cloud envi-

ronments. In this chapter, a novel energy-aware resource orchestration framework for

distributed Cloud infrastructures is discussed. The aim is to show how both network and

IT resources can be managed in a typical optical backbone while, at the same time, the

overall power consumption and carbon footprint are being minimized. Then, a Green

Migration Plan is proposed in order to orchestrate the resources by applying dynamic

consolidation algorithms.

2.2 Overview of Optical Transport Networks

This section reviews the enabling technologies for the next-generation optical transport

network deployment. The focus is then put on dynamic wavelength-routed optical trans-

port networks, specifically on those deployed according to the ITU-T ASON architecture

and provided with a GMPLS control plane, as defined by the IETF.

2.2.1 Architectures of Backbone Telecommunication Networks

In the past, backbone networks had a multi-layered architecture that was composed

of several layers with different technologies, in order to manage the increasing IP data

traffic demands while keeping traditional voice-centric traffic support. Because of the

Internet’s prominence and widespread of standard Ethernet for LANs, IP was utilized for

introducing and providing different services, becoming a service integration layer in the

next generation architecture of the network. IP packets transported application data,

but IP did not guarantee QoS, Traffic Engineering (TE) functionalities and reliability

mechanisms, which were capabilities provided by ATM; therefore, running IP over ATM
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Figure 2.1: Evolution of the backbone network architecture

was a solution that added to IP the missing features. Finally, Synchronous Optical NET-

working (SONET) and Synchronous Digital Hierarchy (SDH), responsible for network

resilience, were used as a transport layer to carry traffic over fiber, while Dense Wave-

length Division Multiplexing (DWDM) increased optical fiber capacity. Multi-layered

architectures have the following drawbacks:

� Resource utilization is not optimal because of the overhead caused by multiplexing

traffic coming from upper layers into flows of a lower layer, resulting in a 80%

utilization of lower layer links [87]. Moreover, only 50% of SONET/SDH capacity

is used to transport payload because of protection switching techniques, further

reducing the utilization factor.

� Every layer acts autonomously, increasing network management complexity and

network costs.

� The introduction of new services is very complex because of a different management

system for each layer.

� Overlapped functionalities.

The evolution of backbone telecommunication networks is shown in Figure 2.1. ATM

is gradually replaced by Multi-Protocol Label Switching (MPLS) and Generalized MPLS

(GMPLS); moreover, many tasks of SONET will be delegated to DWDM, resulting in

IP/GMPLS over DWDM with a thin layer (Thin SONET, Generalized Framing Proce-

dure (GFP), Digital Wrapper (DW) or 10 Gigabit Ethernet (10 GbE)) between them.

Transport network will also evolve from SONET rings, with Add-Drop Multiplexers
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Figure 2.2: IP connectivity in the transport network

(ADMs) interconnected through point-to-point links, to Optical Cross Connects (OXCs)

in a mesh configuration.

2.2.2 The Transport Network and the Internet

The current Internet backbone is composed of packet-switched IP networks that have au-

tonomous ownership, administration and management. To achieve global connectivity,

these networks use Border Gateway Protocol (BGP) to advertise IP address reachability

and choose routes across routing domains known as Autonomous Systems (ASs), which

are interconnected through network equipments (gateways or routers). IP networks

have automated control mechanisms that include routing and signalling protocols imple-

mented in each router, which is responsible for traffic routing and forwarding. Moreover,

management functions (configuration, monitoring and maintenance) are carried out by

highly qualified personnel. IP packets are physically transferred between routers in an

underlying network known as transport network. Transport networks currently support

different clients: IP networks, cellular networks, private networks and Public Switched

Telephone Networks (PSTNs). Over recent years, traditional voice services have moved

to IP as well as cellular data and voice; private networks are moving to packet-based

solutions too (e.g. Virtual Private Network). Therefore, in the near future the only

client for transport networks will probably be the Internet. Transport network includes

high-capacity wavelength division multiplexed fiber links terminated at the WDM line-

systems. A fiber link carries multiple optical signals by employing Wavelength Division
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Multiplexing (WDM). The WDM technology splits the optical transmission spectrum

into a number of non-overlapping wavelength (or frequency) bands, each one supporting

a single communication channel, which are transported within the same fiber. Differ-

ent WDM (e.g., Dense or Coarse) technologies can be found depending on the spacing

between the channels to be transmitted [88]. Each wavelength channel is capable of

carrying for example 10 or 40 Gbps, with 40, 80 or more wavelengths multiplexed per

fiber (see Figure 2.2). As the wavelength channels operate at such high line-rates, traffic

grooming is adopted. Traffic grooming is the process of grouping smaller traffic flows

into larger units, such that they can be processed as a single entity at a reduced cost [89].

This can be done for example via Time Division Multiplexing (TDM) switches. Trans-

port networks are not automated and they are exclusively intra-AS, therefore there is

not the equivalent of Internet’s inter-AS communication.

DWDM was not able to provide many characteristics of SONET/SDH, such as: fram-

ing, protection, restoration, Operation, Administration, Maintenance, and Provisioning

(OAM&P). As a result, ITU-T solved the problem by defining the Optical Transport

Network (OTN) architecture, combining the advantages of SONET/SDH and DWDM,

and introducing Forward Error Correction (FEC) [90]. In this kind of high bit-rate

core networks, although data transmission through the links was optical, data had to

be electrically processed at each node so that upper layers’ tasks (monitoring, QoS

providing, etc.) could take place. To do this, Optical-Electrical-Optical (O-E-O) conver-

sions were needed. Therefore, despite the improvements introduced by opaque networks,

the limitations of the electrical processing of the signal were an important bottleneck

for achieving a low-power/high bit-rate core network; as a result, the next step was

migrating the backbone towards All-Optical Networks (AONs), where the routing and

the processing took place in the optical domain. OTN and AON lacked the ability to

provide lightpaths automatically according to customer needs, hence ITU-T defined an

Automatically Switched Optical Network (ASON) model [91]. The ASON model has

been generalized for different transport technologies (not only for OTN), and defined as

Automatically Switched Transport Network (ASTN). In parallel to ITU-T, within the

GMPLS framework, IEEE has developed a model of the multi-layer network and of its

control plane protocols; the protocols are useful for implementing the ASON/ASTN

functionalities.
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2.2.3 Dynamic Optical Networks: the ASON Architecture

Figure 2.3: The ASON architecture

The ASON architecture is defined at a high level of abstraction, introducing three planes

(data, control and management) and showing their interactions (see Figure 2.3).

The ASTN/ASON extends the OTN with optical channel connections provided in a

fast and automatic way via control plane, in order to achieve dynamic connectivity.

Data plane includes optical switches and fibers, hence the transport network where the

transfer of user data takes place. Control plane provides intelligence to the network and

defines network topology through the propagation of control packets; it can be further

divided into:

� Signalling Plane: it consists of messages that explicitly reserve a path in the

network.

� Routing Plane: it consists of intra-AS routing protocols needed to build the

routing table.

In other words, the control plane regulates the way routers process packets. To this

end, the Optical Connection Controllers (OCCs) manage the optical switches located in

the data plane, allowing automated connection provisioning, maintenance and release.

Finally, the management plane deals with monitoring of devices (measuring throughput

and collecting information), and administration of the other planes; furthermore, the

management plane can be used to perform connection setup, supervision and tear-down
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of optical channels, in two different ways: manually configuring each network device

or contacting the control plane, which automatically manages path computation and

reservation. Signalling and routing requirements of the ASON/ASTN are satisfied by

GMPLS protocol suite.

2.2.4 The GMPLS Protocol Suite

The Generalized Multi-Protocol Label Switching suite [92] allows dynamic service provi-

sioning in transport networks, by creating an intelligent and automated “unified control

plane” to manage different switching regions. It is chosen to implement control plane

capabilities in the ASON. GMPLS is obtained by extending MPLS, a mechanism stan-

dardized by IETF [93], which uses a label-swapping scheme, rather than address match-

ing, to determine the next hop for a received packet: the packet is forwarded according

to the incoming label, which is then swapped by an outgoing label. In MPLS, routers

have a look-up table with a mapping between “incoming interface/incoming label to

outgoing interface/outgoing label” [93]. But in MPLS, only Packet Switched Capable

(PSC) interfaces could be managed; the interface identifiers are typically IP addresses,

since IP flows between two nodes are normally transported through a single link. How-

ever, in an optical network a huge number of fibers, each carrying tens of wavelengths,

can be deployed between two network elements. It is then clear that using IP addresses

to identify such a huge number of elements is not feasible. Therefore, in GMPLS the

notion of label can be generalized, and Time Division Multiplexing Capable (TDMC),

Lambda Switched Capable (LSC), or Fiber Switched Capable (FSC) interfaces can be

managed in addition to the PSC ones, with timeslots, lambda or wavelengths respec-

tively represented as a label. In other words, GMPLS allows the configuration of nodes

with different switching capabilities along a LSP.

Besides, by introducing TE capabilities, GMPLS enables the establishment of Label

Switched Paths (LSPs) that satisfy network constraints and user preferences, while avoid-

ing congested network elements and increasing the network resource efficiency [94]. A

Traffic Engineering Database (TED) repository at each node is provided to collect TE

information, so as to optimize path computation according to network resources.
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Unlike MPLS that manages both data and control plane, GMPLS operates only within

the control plane. GMPLS-based control plane deals with routing, signalling and re-

source management. For routing purposes, Open Shortest Path First (OSPF) and In-

termediate System to Intermediate System (IS-IS) protocols have been proposed, adding

extensions to support Traffic Engineering [95] [96]. In the context of ASON/GMPLS net-

works, the routing involves two main tasks: topological information dissemination and

path computation. The former is performed by the routing protocol (e.g., OSPF-TE)

and enables the latter, which is carried out by the route computation engine of the OCC.

To deal with signalling, the TE version of Resource reSerVation Protocol (RSVP) and the

Constraint-based Routed Label Distribution Protocol (CR-LDP) are proposed [97] [98].

RSVP-TE is responsible for setup, maintenance and tear-down of a LSP; routers ex-

change signalling packets to reserve resources. Finally, the Link Management Protocol

(LMP) is responsible for neighbour nodes discovery and link management tasks [99].

Ultimately, path computation is a key issue for TE in GMPLS networks, because it is

a very complex task in multi-layer networks. Hence, a cooperation between network

entities is required. Therefore, starting from a model where each OCC was provided

with an entity to compute routes, we are heading towards an architecture with a routing

entity within the control plane, named Path Computation Element, which monopolizes

route computation.

2.3 Path Computation Element

A Path Computation Element is defined in [81] as “an entity (component, application

or network node) and a control plane concept, which is capable of computing a network

path or route based on a network graph and applying computational constraints during

the computation”. The PCE provides functions of path computation in support of traffic

engineering in networks controlled by MPLS and GMPLS. In such networks, when a

LSP has to be signalled over a pre-computed path, a PCE performs complex route

computations on behalf of the head-end MPLS Label Switching Router (LSR), which

is termed Path Computation Client (PCC) (see Figure 2.4). In this way, the path

computation process is decoupled from path establishment and can be performed by

taking into account TE information and physical constraints [100]. Instead, a head-

end router has partial visibility of the network topology to destination (in complex
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Figure 2.4: The PCE architecture

multi-layer, multi-domain or multi-administrative network architecture) [101], so it can

calculate an end-to-end intra-domain path but not an inter-domain path.

The PCE-based inter-AS path computation can be performed after the AS chain to the

destination is known, by using efficient distributed algorithms and topology information

resulting from dissemination mechanisms [102]. In addition, PCE might not have full

topology visibility and, in this case, it is able to compute only a loose route. The

PCE supplies optimal routes and interacts with the control plane for the set-up of the

proposed paths upon receiving requests sent by a PCC, which could be another process

or a node, to determine the path from a source to a destination.

In order to execute this task, network state information is gathered into a TED: it

contains candidate paths and it is populated with intra-domain routing protocols (OSPF-

TE, IS-IS-TE) and BGP information (BGP routes available before winnowing the best

route) [100]. By employing information included in the local TED, the PCE identifies

primary and backup paths within a domain or an area, and it commonly considers

bandwidth requirements, as well as QoS and survivability characteristics.
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The PCE computes an inter-domain route, which is provided as Explicit Route Object

(ERO); the ERO is created and signalled [103]. Through EROs, it is possible to signal

a mix of strict and loose hops to be used in the path; in order to establish the LSP,

the ingress LSR uses RSVP-TE and encodes the path. A hop might also be a whole

AS and it is termed “abstract” node; given a specific domain, abstract and loose hops

correspond to a set of strict hops between the ingress AS Border Router (ASBR) and

the next hop ASBR [100].

The state of the network components is required for routing: the Interior Gateway

Protocol (IGP) distributes this information through Link State Advertisement (LSA).

The aim of a PCE-based model is to coordinate the establishment of LSPs among distinct

areas of a single domain or within a small group of domains, by means of heuristics

conceived to address path computation problems. According to the size, each domain

at the inter-domain level might include one or more PCEs to facilitate load sharing and

avoid single point of failures; for instance, large domains can be divided into manifold

areas, in each of which one PCE manages path computations. At least one PCE per

domain is required and it might be located in the same node of the PCC.

A path may be computed by a single PCE if it maintains enough topology and TE

information; when an individual PCE does not have sufficient TE visibility, PCEs can

cooperate to compute constrained end-to-end inter-domain paths, without sharing any

TE information with each other. In this way, the topology visibility issues are solved. In

particular, in a multi-domain scenario a PCE interrogates the PCEs of other domains,

acting in turn as a PCC. PCE-based model can be of two types [102]: peer-to-peer

or hierarchical. In the first case, PCEs of adjacent domains interact with the control

plane, collaborate to interchange routing information and they are sequentially queried

to determine the availability of the path. In the hierarchical approach [104], there is a

local PCE for each domain and a centralized global PCE, which computes paths after

receiving information from each domain. In the latter case, the drawback is the limited

scalability and the presence of a single point of failure.

A PCE Communication Protocol (PCEP) [105] was defined to specify both PCC-PCE

and PCE-PCE communications aimed at the computation of LSPs. When a new request

arrives, the PCC uses a discovery method to locate PCEs; then, the PCC locally stores

PCE capabilities to select one of them according to the specific computation. Finally,
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the PCC submits an inquiry to the selected PCE by using PCC-to-PCE communication.

The use of a PCE eliminates the need for every node within the network to compute

the path, and all link state information is sent only to the PCE. PCEs are particularly

useful when end-to-end constraints for protection or path diversity must be taken into

account. The deployment of a dedicated PCE will relax the processing power needed

by a network node to run constraint-based routing algorithms, and to implement highly

CPU-intensive optimization techniques. Moreover, the PCE eliminates the need for the

network nodes to maintain the memory demanding TED. By using the PCE, the LSRs

are released from intensive computations such as finding disjoint QoS paths.

This approach has two practical advantages. First, the PCE-to-PCE communications

provide a scalable path computation scheme, since the responsibility and “visibility”

of each PCE ends up in the corresponding AS. Second, the PCE supplies an appealing

approach to ISPs, since PCE hides network topology of downstream domains. Moreover,

the approach is simple because each PCE computes a segment of the LSP based on its

knowledge of the state of resources within its AS, and on the reachability information

obtained from BGP. Unfortunately, the major drawback of computing paths by segments

is that the resulting paths are likely to be far from optimal. The issue that remains wide

open is how to exploit the PCE-based model to compute high-quality primary and

backup LSPs across a small group of domains in a viable way, that is, without adversely

affecting scalability and confidentiality.

2.4 Green Cloud Enabler Architecture

The Green Cloud Enabler is a management infrastructure that orchestrates both network

and IT resources. This framework combines innovative methods and mechanisms useful

to dynamically improve energy efficiency of both network and IT components of multi-

site Cloud infrastructures; moreover, the Green Cloud Enabler guarantees flexibility and

QoS. A high-level overview of the system architecture is shown in Figure 2.5 [106] and

is made up of three layers: the Physical Layer (PHL), the Virtual Layer (VL), and the

Management Layer (ML). At the PHL, network nodes and physical servers are grouped

together to form a cluster; the physical machines host VMs. Each device is managed

by a Local Controller (LC), which is composed of Network Managers (NMs) and IT

Managers (IMs). The Network Managers are in charge of interact with network nodes,
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Figure 2.5: Green Cloud Enabler architecture

while the IT Managers communicate with servers and VMs. The VL provides scalability

to the system, and it is composed of a Domain Leader (DL) that manages a subset of

Domain Managers (DMs). Each Domain Manager oversees a group of Local Controllers

and virtual machines. Finally, the ML provides the user interface to the customers and

includes several Management Points (MPs). The Virtual Resource Orchestrator (VRO)

is a distributed control system that can selectively and simultaneously invoke Domain

Leaders, in order to assemble an end-to-end path and several computational resources.

The VRO will be described in Chapter 3.

When Local Controllers are powered on, they are assigned to Domain Managers accord-

ing to a round-robin algorithm. The Domain Leader is responsible for this assignment.

Moreover, the Domain Leader is also in charge of handling user’s resource deployment

requests; in detail, the Domain Leader distributes these requests among the Domain

Managers, and each VM will have an IP address at boot time. The assignment is done

by considering the current resource utilization of the Domain Managers, which is an

information stored in the Domain Leader database. The mapping between network/IT

resources and Domain Managers is one of the available “customer-side” information.

Therefore, by interacting with the suitable Domain Managers, users are able to send

power commands with the aim of controlling virtual machine operations: start (power

on), stop (power off), reset (reboot), suspend, live migration. The Local Controllers

are in charge of interact with network routers and physical servers, with the aim of

executing commands coming from the Domain Manager (see Figure 2.6). The map-

ping between network resources and Local Controllers is an information stored in the
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Figure 2.6: Interactions between Domain Leader, Domain Managers and Local Con-
trollers

Local Controller database. Moreover, Local Controllers monitor the resource utiliza-

tion of network devices and detect underloaded and overloaded hosts. Finally, resource

utilization data are sent by Local Controllers to the Domain Manager. Based on the

information received, the Domain Manager takes decisions about VM allocation and

consolidation (in order to solve host overload/underload problems), and computes the

appropriate network path in order to satisfy energy-efficient objectives. VM allocation

and consolidation decisions contribute to the creation of a Green Migration Plan, which

specifies the new mapping between network/IT resources and Local Controllers. Finally,

the Local Controllers interact with network routers and physical servers, with the aim

of executing commands that are received from the Domain Manager. Virtual machines

are periodically consolidated into a lower number of physical hosts, in order to turn off

the idle devices, thus saving energy consumption. Finally, the Domain Leader might

change over time; therefore, the Management Points are used to discover the current

active Domain Leader, and this information is sent to the client. In the next section,

the Domain Manager and its components are described.
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2.5 Cloud Power Monitor and Control

The Domain Manager includes two key elements of the Green Cloud Enabler architec-

ture: the Cloud Power Controller and the Cloud Power Meter.

2.5.1 Cloud Power Controller

The Cloud Power Controller (CPC), as part of the Domain Manager, is specialized in

complex VM migration and path computation strategies, while satisfying energy sav-

ing objectives. Therefore, by relying on information collected about resource state, the

CPC outputs a migration plan that takes into account the resource energy costs. In our

scenario, the CPC is based on the PCE standard architecture, and it uses path selec-

tion algorithms and VM consolidation strategies in order to minimize network energy

consumption.

A PCE, as stated in Section 2.3, is a functional element that cooperates with similar

entities and with network devices in order to compute the best path through multiple

domains, according to network constraints and green requirements. Our proposal as-

sumes that network and IT devices are able to provide PCEs with energy consumption

information. In this context, we consider the opaque Link State Advertisements (LSAs)

of the OSPF protocol [95] to distribute power consumption values of network resources.

The structure of a standard LSA packet is shown in Figure 2.7: the payload consists of

Type-Length-Value (TLV) objects.

Two types of top-level TLVs are defined: Router-Address-TLV (type 1) and Link-TLV

(type 2). New TLVs fields to the traditional Traffic Engineering extensions for OSPF-

TE have been added. In detail, the energy information is carried by setting up new

sub-TLVs inside the Link-TLV. In the sub-TLVs, the Type field is chosen in the range

(32768,32777), which is reserved for experimental uses. The Length field specifies the

extension of the Value field (in octets). The Value field is used to distribute energy

information. The new sub-TLVs include the following additional “resource markers”:

1. The resource type identifier: network or IT.

2. The power state of each resource. It is defined according to the standard approach

proposed in EMAN [107], which identifies 12 power states for a device.
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Figure 2.7: OSPF-TE LSA format

3. The energy consumption (expressed in kWh) of the resources.

4. The CO2 emissions of the resources (CO2/kWh), which depend on the energy

source type (dirty/green) used for powering them.

5. The transition time matrix, which consists of the time required to transit from a

resource state to another one.

6. The resource localization composed of geographic coordinates that univocally iden-

tify the position of a well-defined resource within the Cloud infrastructure (latitude

and longitude).

7. The resource utilization percentage (0-100%).

The flooding procedure follows the standard OSPFv2 flooding. After receiving a new

LSA, the node decides whether to forward the LSA or to discard it according to the

carried timestamp. If a node does not support the aforementioned sub-TLVs, the node

forwards the LSA to its neighbours. Once valid LSAs have been received, the Link State

Database (LSD) is updated. The PCE takes a routing decision that minimizes energy

consumption, by also taking into account both minimum guaranteed bandwidth and

maximum activation time for the node interfaces (as will be discussed in Chapter 3).
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2.5.2 Cloud Power Meter

In a complex Cloud infrastructure, resource monitoring allows to collect information

so as to take appropriate scheduling decisions. In order to orchestrate network and

IT resources, we introduce new resource markers indicating the power consumption,

CO2 emissions, power state, position and utilization of the resources within the Cloud

infrastructure. The Cloud Power Meter (CPM) is able to collect resource markers related

to both IT and network devices. The main components of the CPM are:

� Resource Power MAnager (RPMA): the RPMA is in charge of the power

management of IT and network resources. In particular, the RPMA sends the

following power commands: node shutdown, suspend to ram, suspend to disk,

suspend network port/channel.

� Resource Power MEter (RPME): the RPME monitors the Local Controller

utilization and computes the power consumption of each resource. This informa-

tion contributes to the creation of a Green Migration Plan.

2.6 Cloud Enabler Logic

This section introduces the Cloud Enabler logic, which consists of a Green Migration

Plan and several dynamic consolidation algorithms.

2.6.1 Related Work

The VM live migration is a key point of dynamic VM consolidation techniques. In-

deed, thanks to the live migration it is possible to dynamically consolidate VMs into the

minimum number of physical hosts, so that the idle servers can be turned off in order

to reduce the typical energy consumption of a Cloud-based data center. However, VM

migrations might create overhead by increasing the network traffic, and the load of both

source and destination physical machines. Therefore, it is important to take into account

QoS constraints, because an inadequate VM consolidation would degrade performance.

Several consolidation algorithms have been proposed in the literature that deal with the

problem of optimizing resource usage while reducing power consumption. In [108], two
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algorithms related to VM allocation and consolidation are combined in order to reach a

common objective that is the minimization of the data center energy consumption. Au-

thors propose an allocation algorithm that is based on an Integer Linear Programming

(ILP) model, and it aims at energy consumption reduction in the Cloud. The allocation

algorithm takes into account VM constraints, such as CPU, memory and storage. In-

stead, the migration algorithm aims at migration cost mitigation and it is designed as a

best-fit heuristic: the VMs are sorted in a decreasing order of energy consumption, and

the algorithm tries to allocate the most energy intensive VM into the server with fewer

residual resources. Then, idle servers are put into sleep mode. Hence, the migration

algorithm aims to minimize the number of running physical machines. Finally, the two

algorithms are merged together. The best-fit heuristic is compared with the optimal

allocation provided by a linear solver; simulations show that the convergence time of

the algorithms grows exponentially when the number of servers or the number of VM

requests increases, thus making the approach inadequate for large-scale data centers.

Murtazaev and Oh [109] present a consolidation algorithm that is specifically designed

to be used with live migration. Given an allocation scheme, the proposed algorithm

tries to reduce the number of active servers while minimizing the number of live migra-

tions. The physical nodes are sorted in decreasing order according to their utilization,

and then the VMs are sorted in decreasing order too, starting from the least loaded

server. Finally, the algorithm tries to reallocate the VMs from the least loaded server

to the most loaded one. The reallocation of a group of VMs is triggered only if their

migration allows to turn off the server, otherwise the VMs are left on it and the next

least loaded server is considered. Moreover, the idea of simultaneous migrations is intro-

duced in order to reduce the overall migration time. Authors compare their algorithm

to the Fist-Fit Decreasing (FFD) heuristic, and they show that the proposed approach

is able to consolidate VMs and to minimize the number of migrations. The algorithm

also considers RAM and CPU associated with VMs and servers. However, the time

complexity is very high and the algorithm is inadequate for large-scale data centers.

Moreover, the energy efficiency problem is not addressed. In [110], a dynamic consol-

idation algorithm in a virtualized environment is described; the algorithm is based on

a FFD heuristic. The future VM resource needs are predicted by considering their his-

tory: authors perform a trace analysis on commercial web servers in order to elaborate

a method that selects the most suitable servers on which the VMs can be reallocated.

The proposed algorithm minimizes the number of physical resources while providing
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SLA guarantees. However, the algorithm takes into account neither the current VM

placement nor energy-efficient approaches, and the inter-relationship between various

workloads is not specified. In [111], the VM consolidation is modelled as a Constraint

Satisfaction Problem (CSP), and it is solved by using constraint programming. A re-

source manager (called Entropy) for homogeneous clusters is introduced, which takes

into account the migration overhead, memory and CPU requirements. The proposed

approach assumes that VM demands are known in advance. Moreover, the VMs are

considered as static boxes: the objective is to avoid that the allocation of new demands

implicates the opening of a new box. The approach is compared to the FFD heuris-

tic: simulations have shown that Entropy is able to minimize the number of physical

machines and migrations. Marzolla et al. [112] present the V-MAN approach, which is

based on the Peer-to-Peer (P2P) paradigm. The proposed approach aims to solve the

consolidation problem. V-MAN uses a simple gossip protocol that allows neighbouring

servers to exchange messages about their state (i.e, the number of VMs running on each

server); then, VMs are migrated from the least loaded servers to the most loaded ones, so

that the idle servers can be switched to low-power mode. V-MAN proved to be scalable,

efficient and fault-tolerant by means of simulations. However, the proposed approach

only takes into account the number of VMs regardless of their resource needs, therefore

servers that have free resources always accept new VMs. This assumption is not realis-

tic. In [113], authors address the problem of the host overload detection by considering

a Markov chain model and a control algorithm. The algorithm aims to minimize the

Overload Time Fraction (OTF) that is the percentage of time during which the host is

overloaded. As a consequence, SLA violations and decreased performances are avoided,

and QoS requirements are satisfied. Moreover, an host is considered overloaded only

when necessary, in order to prevent superfluous migrations. The algorithm is effective

only when stationary workloads are taken into account. Then, authors assume a discrete

state space, which is represented as intervals of CPU utilization. The transition between

several states is described by a probability matrix. Simulation results obtained through

PlanetLab traces show that the proposed approach outperforms the best benchmark al-

gorithms. Dhiman et al. [114] present vGreen, an energy-efficient multi-tiered software

system; it manages VM scheduling across distinct physical nodes in a virtualized envi-

ronment. vGreen is implemented according to a client-server paradigm. Authors claim

that VM characteristics (memory accesses, instructions per cycle) must be taken into

account during a VM consolidation, in order to minimize power consumption. Therefore,
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vGreen tries to migrate VMs with similar characteristics to different hosts, because they

could create contention if hosted by the same server, thus reducing the performance. To

this end, two metrics that capture power and performance information related to VMs

are introduced: Memory accesses Per Cycle (MPC) and Instructions Per Cycle (IPC).

vGreen has been implemented on a real tested, and results show that this approach

improves both performance and energy savings by 20% and 15% compared to state of

the art policies. Finally, authors in [115] propose a framework for green Clouds in order

to model both VM allocation and consolidation. In particular, they present a Modified

Best-Fit Decreasing (MBFD) algorithm, which is an extension of the best-fit decreasing

heuristic, in order to achieve a power-aware VM allocation. Then, they describe adap-

tive threshold-based migration algorithms so as to optimize the VM allocation while

minimizing the number of migrations. Two static lower and upper thresholds are used

to detect underloaded and overloaded hosts; in the first case, when the host utilization

falls below the lower threshold, VMs are migrated from the underloaded server in or-

der to turn it off; instead, if the host utilization exceeds the upper threshold, the VMs

with the lowest usage of the CPU are migrated in order to avoid SLA violations. The

performance of the proposed approach is evaluated by using the CloudSim simulator.

2.6.2 Green Migration Plan

Network and IT resource orchestration requires a migration plan that specifies a new

mapping between resources and Local Controllers. The migration plan is achieved by

applying the resource relocation algorithms that will be discussed in Section 2.6.3. Mi-

grations can happen either sequentially or in parallel: in the first case, a VM is moved

from the source LC to the destination LC one at a time, while in the second case mul-

tiple VMs are migrated concurrently. Since modern hypervisors (e.g. KVM) support

parallel migrations, these are considered in our scenario. The resource orchestration

process consists of the following steps:

1. The Domain Leader, included in a Virtual Infrastructure Provider (VIP) manage-

ment system, starts an orchestration process in order to satisfy the requirements

of a customer.
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2. The Domain Leader selects the Domain Managers that will be responsible for

executing the orchestration process; each Domain Manager includes a Cloud Power

Controller and a Cloud Power Meter :

(a) The Cloud Power Meter collects resource markers related to both IT and

network devices.

(b) The Cloud Power Controller is concerned with VM migration and path com-

putation strategies, in order to minimize energy consumption.

3. The Domain Managers select the appropriate Resource Relocation Algorithms

(RRA) to satisfy customer’s requirements.

4. The RRA are executed according to overload and underload policies, and they

produce as output the Green Migration Plan (GMP), which gives instructions to

compute the best path through multiple domains, according to network constraints

and green management objectives. Moreover, the Green Migration Plan specifies

the new placement for the VMs.

5. The orchestration process is completed and the Local Controllers execute com-

mands that are received from the Domain Manager.

2.6.3 Resource Relocation Algorithms

The Cloud Power Controller takes as input the resource markers collected by the Cloud

Power Meter ; then, the CPC computes a Green Migration Plan by taking into account

the dynamic consolidation algorithms presented in [116], which will be discussed below.

In this section, we describe the techniques that will be used to relocate IT resources (vir-

tual machines), while for a more detailed discussion about the orchestration of network

equipment, the reader should refer to Chapter 3. The consolidation problem consists of

four steps:

1. Establishing when a host is overloaded so as to migrate VMs from it, in order to

reduce the load of the host;

2. establishing when a host is underloaded so as to migrate VMs from it, in order to

turn off the host;
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3. choosing the VMs that should be migrated from the overloaded and underloaded

hosts;

4. finding a new placement for the VMs to be migrated.

The Algorithm 1 summarizes the aforementioned consolidation problem. The VM place-

ment algorithm is invoked only when the list of VMs to be migrated from the overloaded

hosts is completed; then, the new placement of the VMs is added to the Green Migration

Plan.

Algorithm 1 VM Consolidation

Input: nodes list, VM list
Output: Green Migration Plan
for each node in nodes list do

if node is overloaded then
Select VMs to be migrated

end if
end for
Find a new placement for VMs
Add VMs to Green Migration Plan
for each node in nodes list do

if node is underloaded then
Select VMs to be migrated
Find a new placement for VMs
Add VMs to Green Migration Plan

end if
end for
return Green Migration Plan

2.6.3.1 Detection of Overloaded Hosts

In this section, four overload detection techniques are described. According to these

techniques, the upper utilization threshold dynamically adapts to the CPU utilization

of the host. In detail, the upper threshold is modified according to the deviation of the

CPU utilization: when the CPU is fully utilized, the deviation is higher, therefore the

upper threshold must be lowered.
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Median Absolute Deviation (MAD)

In order to dynamically adapt the upper bound, the Median Absolute Deviation (MAD)

is considered; it is an estimator of the statistical dispersion. MAD shows better perfor-

mance than the standard deviation; indeed, the standard deviation is heavily influenced

by values that are distant from the mean, therefore the outliers in a dataset have a

strong impact. Instead, by considering the MAD, the outliers are less relevant. Given

a dataset X1, X2, ..., Xn, MAD is defined as the median of the absolute deviations from

the dataset’s median:

MAD = mediani (|Xi −medianj (Xj)|) (2.1)

The upper utilization threshold T can be written as:

T = 1− η ·MAD (2.2)

where η is a calibration parameter that allows to regulate the trade-off between energy-

savings and SLA violations.

Interquartile Range (IQR)

The Interquartile Range (IQR) is the difference between the third and first quartiles:

IQR = Q3 −Q1 (2.3)

The upper utilization threshold T can be written as:

T = 1− η · IQR (2.4)

Local Regression (LR)

The Local Regression is used to build a curve that approximates the original data. It is

considered local because each smoothed value is determined by neighboring data points

defined within a span. The local regression describes a relation between a predictor
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variable xi and a response variable yi. We consider the following model:

yi = f(xi) + εi (2.5)

where f(x) is an unknown function, and εi represents random errors in the observations

of data. The Loess (LOcal regrESSion) method is used to estimate the function f . We

assume that f(x) can be locally approximated by a function that belongs to a simple

class of parametric functions (polynomials of degree 1 or 2). We now describe the

method used to achieve a Loess smoothed value for a target covariate x0. A Tukey’s

tricube function is considered:

T (u) =


(
1−

∣∣u3
∣∣)3 if |u| ≤ 1

0 otherwise

(2.6)

The weight sequence for the observations (xi, yi) is defined by the function wi(x0):

wi(x0) = T

(
∆i(x0)

∆(q)(x0)

)
(2.7)

where ∆i(x0) = |x0 − xi| is the Euclidean distance between xi and x0, and we suppose

that ∆(i)(x0) are the ordered values of these distances from smallest to largest. There-

fore, ∆(q)(x0) is the maximum of the distances computed by considering q observations

located around x0 (or the distance from x0 to the farthest predictor in its local window,

the q-th nearest neighbor).

The observations xi usually have different distances from x0, therefore a span for each

value x0 is defined in order to select the observations that must have a non-zero weight.

Hence, only the values located within a smoothing window
[
x0 −∆(q)(x0), x0 + ∆(q)(x0)

]
will be considered in order to estimate f(x0). ∆(q)(x0) is the size of the window and is

called bandwidth or span: ∆(q)(x0) is not fixed but depends on the target x0. A span

of α means that α · 100% of the values will be used for each interval.

Moreover, we suppose that f(x) is approximated by a polynomial of degree 1:

f(x) = y = a+ bx (2.8)
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In order to achieve the local regression estimate f̂(x0), we have to compute the values

of a and b that minimize:
n∑
i=1

wi(x0)(yi − a− bxi)2 (2.9)

By using this approach, it is possible to fit a trend polynomial to the last k = dq/2e

observations of the CPU utilization. Let x1, x2, ..., xk be the observations; for each new

observation xk, the proposed approach is used to estimate the next observation f̂(xk+1).

The Local Regression algorithm detects an overloaded host if the following inequalities

are satisfied:

η · f̂(xk+1) ≥ 1 ∪ xk+1 − xk ≤ tmax (2.10)

where η is the calibration parameter, while tmax is the maximum migration time allowed

for each VM allocated to the host.

Local Regression Robust (LRR)

The Local Regression approach shows some problems when there are outliers related

to heavy-tailed distributions. Therefore, a robust estimation method called bisquare

is proposed. The method begins with the aforementioned estimate f̂(x). Then, the

residuals ε̂i are computed:

ε̂i = yi − f̂(xi) (2.11)

The bisquare weight function is introduced:

B(u; b) =


(

1−
(
u
b

)2)2
if 0 ≤ |u| < b

0 if |u| ≥ b
(2.12)

Let m = median(|ε̂i|). New robust weights are computed:

ri = B(ε̂i; 6m) (2.13)

The local regression technique is repeated, but a new estimate f̂(xi) is computed with

the new weights riwi(x). By using this approach, a new estimate of the next observation

f̂(xk+1) is computed. The Local Regression Robust algorithm detects an overloaded host

if the inequalities 2.10 are satisfied.
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2.6.3.2 Selection of Virtual Machines

After having determined that an host is overloaded, it is necessary to select the VMs

that should be migrated from the host. In this section, four VM selection techniques

are described.

Minimum Migration Time (MMT)

This policy selects a VM to be migrated that requires the minimum amount of time

to complete a migration, compared to other VMs allocated to the host. The migration

time is the ratio of RAM used by the VM to available network bandwidth for the host.

A virtual machine i is selected if the following condition is satisfied:

∀j ∈Mh,
RAM(i)

BWh
≤ RAM(j)

BWh
(2.14)

where Mh is the set of VMs allocated to the host h, RAM(i) and RAM(j) are the

amount of RAM used by the VMs i e j respectively, while BWh is the available network

bandwidth for the host h.

Random Selection (RS)

This policy selects a VM to be migrated according to a uniformly distributed discrete

random variable X = U(0, |Mh|), where Mh is the set of VMs allocated to the host h.

Maximum Correlation (MC)

This policy selects a VM to be migrated that has the highest correlation of the CPU

utilization with other VMs. Indeed, according to Verma et al. [117], “The higher the cor-

relation between the resource usage by applications running on an over subscript server,

the higher the probability of the server being overloaded”. Let X1, X2, ..., Xn be random

variables that represent the CPU utilization of the n VMs allocated to a host, while Y

is the VM candidate to be migrated. We have to evaluate how strong is the correlation

between Y and n− 1 remaining random variables. Let X the augmented matrix of the
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n − 1 independent random variables, while y is the vector of the observations for the

variable Y :

X =


1 x1,1 · · · x1,n−1

...
...

. . .
...

1 xn−1,1 xn−1,n−1

 y =


y1

...

yn

 (2.15)

Let ŷ the vector of the predicted values of the variable Y :

ŷ = Xb b =
(
XTX

)−1
XTy (2.16)

The multiple correlation coefficient between observed values yi and predicted values ŷi

is:

R2
Y,X1,X2,...,Xn−1

=

∑n
i=1 (yi −mY )2 (ŷi −mŶ

)2∑n
i=1 (yi −mY )2∑n

i=1

(
ŷi −mŶ

)2 (2.17)

where mY and mŶ are the means of Y and Ŷ respectively. R2
Y,X1,X2,...,Xn−1

is evaluated

for each VM. A virtual machine i is selected if the following condition is satisfied:

∀j ∈Mh, R
2
i,X1,X2,...,Xi−1,Xi+1,...,Xn

≥ R2
j,X1,X2,...,Xj−1,Xj+1,...,Xn

(2.18)

where Mh is the set of VMs allocated to the host h.

Minimum Utilization (MU)

This policy selects a VM to be migrated that has the lowest CPU utilization.

2.6.3.3 Placement of Virtual Machines

The placement of virtual machines is modelled as a bin-packing problem: the physi-

cal machines are the bins, the VMs to be allocated are the items, the CPUs of the

nodes are the bin sizes, and the power consumption of the nodes is the price. The VM

placement problem is solved by using an extension of the Best-Fit Decreasing (BFD)

algorithm, namely the Power-Aware Best-Fit Decreasing (PABFD), which was proposed

by Beloglazov and Buyya [116]. The algorithm sorts the VMs according to their CPU

utilization in decreasing order, then each VM is allocated to the host in which the power

consumption increase would be the minimum.
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Algorithm 2 Power Aware Best-Fit Decreasing (PABFD)

Input: nodes list, VM list
Output: VM Allocation
VM list.sortDecreasingUtilization()
for each VM in VM list do

minPower ← MAX
allocatedNode ← NULL
for each node in nodes list do

if node has enough resources for the VM then
power ← estimatePower(node, VM)
if power < minPower then

allocatedNode ← node
minPower ← power

end if
end if

end for
if allocatedNode 6= NULL then

allocation.add(VM, allocatedNode)
end if

end for
return VM Allocation

2.6.3.4 Detection of Underloaded Hosts

The host with the least utilization is found. Then, all the VMs are migrated from this

host to other hosts only if the VM migration is useful to turn off the server, otherwise no

migration is activated. This process is repeated for all the hosts that were not considered

overloaded.



Chapter 3

Green Resource Management in a

VRO-based Infrastructure

3.1 Context and Motivations

The emergence of the Network Function Virtualization (NFV) paradigm allows network

service providers to extend their business models by combining the traditional service

portfolio with innovative Cloud computing services [118]. By relying on the virtualiza-

tion of resources, service providers can automate the highly dynamic delivery of virtu-

alized network services and create on-demand multiple isolated virtual infrastructures

for their customers. This concept, previously known as network virtualization [119],

has recently been further extended to include both communication and computational

resources. A Virtualized Network Function (VNF) is the virtualization of a network

function in legacy non-virtualized networks: network functions are decoupled from the

underlying hardware in order to reduce the dependence on dedicated physical resources,

and they run as software images by using standard virtualization technologies. In this

way, service providers can use a common physical infrastructure to deploy applications

and services by allocating virtual resources only when needed. NFV increases busi-

ness agility, reduces costs, enables faster service delivery and allows service providers to

react dynamically to changing market demands. The NFV Infrastructure is the total-

ity of all hardware and software components that build up the environment in which

VNFs are deployed, managed and executed. In this context, we use the term Virtual

83



Chapter 3. Green Resource Management in a VRO-based Infrastructure 84

Infrastructure (VI) to denote a set of computational resources (i.e., virtual machines

and virtual disk volumes) deployed in a number of distributed data centers and con-

nected by guaranteed-bandwidth virtual links [120]. The aim of creating such Virtual

Infrastructures is to provide a given service to a known and variable population of end

users. Network Function Virtualization is the best paradigm to implement the idea of

virtual and distributed service infrastructures. For this paradigm to be effective, in-

frastructure providers need more powerful management platforms to efficiently combine

management procedures for both communication and IT resources. As a matter of fact,

European Telecommunications Standards Institute (ETSI) has identified the necessity of

“a consistent management and orchestration architecture” as one of the challenges to be

addressed for successfully implementing NFV.

NFV orchestration has the following requirements:

� Dynamic configuration, provisioning and chaining of VNFs, in order to create

innovative services.

� Intelligent service placement by selecting the optimal location (network nodes,

data centers) for placing VNFs, and by using real-time analysis and performance

monitoring.

� Setting and enforcement of policies based on SLAs.

� Elastic scaling of services based on fluctuating demands.

� Creation, provisioning and monitoring of VNFs.

Hereinafter, we assume that the underlying networking infrastructure supports Gener-

alized Multi-Protocol Label Switching (GMPLS) [92], and conforms to the Path Compu-

tation Element (PCE) architecture [81]. GMPLS enables dynamic topology reconfigu-

ration, while PCE establishes LSPs as virtual TE links for the allocated virtual GMPLS

control plane. Such an infrastructure is able to automatically provision and operate

guaranteed-bandwidth network connections between given end-points (e.g., the Wide

Area Network (WAN) core routers of distributed data centers [121]). Based on this

assumption, we propose an architecture that assigns to a central management entity,

named Virtual Resource Orchestrator (VRO), the responsibility for optimally allocating

the resources needed to deploy a requested Virtual Infrastructure. Figure 3.1 shows how
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Figure 3.1: Creation of a virtual infrastructure on a VRO-based infrastructure

a VI request, issued by a Virtual Service User (VSU), is taken by a Virtual Infrastructure

Provider (VIP), which tasks VRO with deploying virtual machines, virtual volumes and

virtual links needed to build the Virtual Infrastructure. The resulting VI must satisfy a

set of requirements expressed in the initial VI request. Proper mechanisms (e.g., based

on transparent migration of VMs across data centers [122]) to provide recovery function-

alities for the created infrastructure could also be implemented, as proposed in [123].

As of today, the creation of a Virtual Infrastructure would be accomplished by stati-

cally allocating resources. This process is lengthy, costly, error-prone, and in the case of

long-term contracts there is a heavy underutilization of over-committed resources. The

purpose of the VRO is to translate a VI request into a number of coordinated network

planning and provisioning actions. Being solicited only when creating VIs, the VRO is

not subject to heavy load, as we expect only a few VI requests per hour to be processed.

Besides assuring contractual SLAs, the purpose of the VRO is to pursue optimization

objectives that are compatible with the requirements negotiated in the SLAs. The VRO

design has been derived by extending the standard PCE architecture.

One of the most important goals for the network management procedures is to minimize

energy consumption of IT and networking infrastructures; it has been estimated that

data centers accounted for 1.3% of worldwide electricity use in 2010, as they are one

of the major sources of energy consumption of the whole ICT sector [82]. Therefore,

finding a compromise between power consumption and the perceived Quality of Service

is one of the main objectives in Cloud data centers.

Several techniques to introduce energy-awareness in the resource management of virtu-

alized data centers have been proposed in literature. An energy reduction mechanism

such as Dynamic Voltage Frequency Scaling (DVFS) is considered in [69]. The key idea
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of DVFS is to reduce the CPU frequency and voltage, and consequently power con-

sumption, during periods of low utilization at the cost of a performance degradation;

this technique is particularly useful when used in conjunction with workload consoli-

dation [124]. In [125], the DVFS combined with communication overhead and leakage

power has been studied; in particular, the problem of simultaneous dynamic voltage scal-

ing of processors and communication links is addressed by the authors. Power aware task

scheduling algorithms for real-time embedded systems are developed, so as to achieve

37.4% of power reduction compared to scaling on processors alone.

Several approaches make use of proper task scheduling algorithms in order to reduce

energy consumption. In [126], authors present energy-efficient techniques to schedule

multiple real-time tasks (with uncertain execution time) in multiprocessor systems that

support DVFS, while meeting their deadline constraints, by combining intra- and inter-

task voltage scheduling. The authors perform an off-line analysis of the scheduling

problem by considering different execution profiles, assuming that the probabilistic dis-

tributions of tasks’ execution time are available; moreover, they emphasize the benefits

of inter-task DVFS to take advantage of slack time. Finally, they compute the optimal

voltage scheduling with the Earliest Deadline First (EDF) policy, by setting a job with

an imminent deadline as the highest-priority job. The drawback of this approach is that

the system model is homogeneous, and energy constraints are not considered.

Several techniques in order to minimize the network traffic caused by communications

between virtual machines have also been proposed. In [127], authors propose a de-

centralized affinity-aware migration technique, which takes into account the network

transmission traffic between each pair of VMs in order to find affinities and conflicts

between co-placed virtual machines. VM placement is dynamically adapted for opti-

mizing communications: virtual machines are migrated to the same physical location

when similarities are found, minimizing the communication cost between all the VMs.

This approach incorporates heterogeneity and dynamism in network topology, lowers

operational costs for Cloud providers and improves hosted application performance.

Energy-efficiency has also interested data center infrastructures and the Internet net-

work topology, which significantly contribute to the overall energy consumption of Cloud

computing. Indeed, according to [77], the energy consumption of communication net-

works will grow 2.5 times by 2018 compared to 2009. Different approaches in order
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to reduce network power consumption are available, and they can be classified into:

Re-engineering, Dynamic Power Scaling (DPS) and Sleeping/Standby. Re-engineering

aims to improve the design of network devices, optimizes their internal organization,

and reduces complexity levels, by introducing more energy-efficient technologies for net-

work device architectures. Novel technologies for network links are also considered.

DPS approaches are used to dynamically adjust packet processing and network interface

capacity of network/IT resources, in order to meet the current traffic loads; DPS in-

volves the use of dynamic voltage scaling and idle logic, with a trade-off between packet

routing performance and power consumption. Finally, Sleeping/Standby approaches are

designed to put unused network devices into stand-by mode, and wake them up only if

necessary. Saunders [128] claims that an increase in energy efficiency will result in an

increase of the aggregate energy consumption; this makes energy cheaper and leads to

economic growth, which in turn might involve an increase in energy demand. Therefore,

the CO2 emissions resulting from data centers must be reduced both by using and gen-

erating energy efficiently. Several approaches promote the use of green nodes, which are

powered by renewable energy sources [129] [130] [131].

In this chapter, we describe the VRO and its prototype implementation, with an ex-

perimental evaluation that shows how the VRO can be configured to pursue significant

energy savings, by combining green management procedures in data centers with a green

management of the geographical networking infrastructure [132].

3.2 Related Work

The concept of Virtual Infrastructures provided as a service is the basis of the emerging

Cloud computing paradigm. In this chapter, we refer to a scenario in which users have

control over the geographical location of their virtual machines; moreover, users are

provided with contractual guarantees regarding the geographical connectivity among

VMs located in different data centers. This scenario has been already studied in lit-

erature [120]. Virtual Infrastructures created on-demand might be Content Delivery

Networks (CDNs), as proposed in recent papers [133] [134]. We claim that NFV might

play a significant role in this context. As a matter of fact, ETSI envisions dynamic cre-

ation of on-demand Content Delivery Networks as a relevant use case for NFV in [135].
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Xia et al. [136] investigate the placement of Virtual Network Function (VNF) chains in

optical data centers, in order to minimize optical-electrical-optical (OEO) conversions.

VNF chaining is a carrier-grade process for continuous delivery of services based on net-

work function associations. Authors consider an optical backbone to interconnect several

pods, which are performance optimized data centers: modular containers with servers,

networking, storage, and cooling. OEO conversions are required because VNF chaining

within a pod is based on packet switching, while between pods optical technologies are

needed. These conversions are minimized by placing the VNFs of the same chain into

fewer pods, in order to reduce the inter-pod traffic. In [137], the authors discuss the

role of high-performance dynamic optical networks in Cloud computing environments.

Central to the proposed architecture is the coordinated virtualization of optical network

and IT resources of distributed data centers, enabling the composition of virtual infras-

tructures. During the composition process of the multiple coexisting but isolated virtual

infrastructures, the unique characteristics of optical networks are addressed and taken

into account. Several algorithms are evaluated over various network topologies and sce-

narios. The results provide a set of guidelines to data center infrastructure providers; in

this way, providers can effectively and optimally provide virtual infrastructure services

to users, and satisfy their requirements.

The use of virtualization at the edges of a network infrastructure has been proposed

in [138]. In the context of wireless-optical broadband access networks (named WOBAN),

the authors describe an architecture that places Cloud services (such as processing and

storage) in facilities located at the edges of a wireless access network. This approach

has multiple benefits: it offloads traffic over wireless links, reduces bottleneck from the

gateways of WOBAN, reduces delays, and it allows providers to implement location-

dependent Cloud services. Cloud network and resource orchestration requires complex

management procedures to guarantee performance, energy efficiency, security, robust-

ness and reliability. Furthermore, there are not so many accepted standards or open

source solutions for resource orchestration problems. Therefore, the problem of resource

management in virtualized data centers has been largely investigated in the last few

years [139]. In order to assess the effectiveness of novel resource management algo-

rithms, several simulation tools have been recently developed, such as CloudSim [140]

and GreenCloud [141].
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Defining the mapping of virtual resources to physical ones is commonly known as em-

bedding, and this problem has been extensively addressed in the context of network

virtualization in wide area networks [142] [143]. More recently, the same formulation

has been applied to the data center context [144]. Within a single data center, re-

source management procedures typically rely on live migration techniques for dynamic

relocation of VMs. In [145], authors provide some examples related to the dynamic

consolidation of virtual machines in a data center, determining which VMs should be

migrated from an overloaded host. In this context, authors design a VM selection pol-

icy, where not only the CPU utilization is considered, but also a variable that represents

the degree of resource satisfaction is defined in order to select the VMs. In addition, a

novel VM placement policy that prefers placing a migratable VM on a host that has the

minimum correlation coefficient is also presented. In [146], authors propose an effective

sequencing technique named CQNCR (read as sequencer) for determining the execution

order of massive VM migrations within data centers. Specifically, given an initial and

a target resource configuration, CQNCR manages VM migrations in order to efficiently

reach the final configuration with minimal time and impact on performance. Experi-

ments show that CQNCR can significantly reduce total migration time by up to 35%

and service downtime by up to 60%. Both solutions are very promising, but they do not

provide any support for network resource orchestration.

As pointed out in the introduction, energy efficiency is becoming an important objective

for IT and networking management. Readers may refer to [147] for an extensive analysis

of green management techniques in Cloud computing. At the beginning, the problem of

energy-efficient resource management in Cloud data centers was usually not combined

with networking management: green networking was usually considered as a distinct

issue to be addressed separately [148] [149]. For example, in [150] authors present a

survey to design an energy efficient IT infrastructure for Cloud services; they explain

the solutions that can be applied at data center and network level, allowing considerable

energy savings. They discuss the best practices for energy efficient data centers by

considering the power consumption associated with the operation, management and

maintenance of computing resources; in particular, they focus on hardware, power supply

and cooling of the infrastructure. From the perspective of network energy consumption,

authors discuss the solutions proposed in literature in order to increase power savings

for access and core networks, such as energy efficient packet forwarding, green routing,
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dynamic load balancing and lightpath-bypass strategies. The joint minimization of the

energy consumption of network and data centers is not considered.

Data centers that provide Cloud services are subject to an increasing demand of band-

width with a resulting need for network energy awareness; indeed, the bandwidth de-

mands of new applications are doubling every 18 months [151]. As a result, network en-

ergy efficiency has become one of the most important data center design concerns [152].

In [153], a new metric is defined, i.e. Network Power Effectiveness (NPE), which is

the ratio of the aggregate network throughput to the total network power consumption.

It represents the end-to-end bps per Watt (or bit per Joule) in data transmissions; this

parameter is very important for Cloud providers because it reflects the trade-off between

power consumption and network throughput in data centers.

The typical evaluation of the network efficiency (focused on network throughput) has

been revolutionized, stressing out the importance of the power consumption of the net-

work devices; therefore, there is a need for energy efficiency of the legacy networking

equipment, which will be used for many years [154]. Energy efficient protocols for

networking devices are emerging, such as IEEE 802.3az [155]: when packets are not

transmitted, a Low Power Idle (LPI) mode is used to reduce the energy consumption

of a link in Ethernet-based communications. In detail, when all packets in the transmit

queue are transmitted and the buffer becomes empty, the link switches to LPI mode.

Significant energy savings (around five TWh) are achieved compared to the traditional

approaches, and sleeping links are not deleted from the topology, maintaining network

reliability.

Green networking techniques can be classified into [151]:

� Consolidation: network load and traffic are consolidated on a subset of devices to

shut down underutilized ones, exploiting path diversity. In [156], network traffic

aggregation is considered in order to put idle links into sleep-mode. Authors

reported 22% of energy savings for link loads of 50%.

� Selective Connectedness: idle devices are put into Low Power Idle or sleep-

mode as transparently as possible. In [157], authors found that the arrival pattern

for the traffic in data centers can be characterized as a log-normal arrival process

having on-off periods, so it follows a heavy tailed distribution and it is highly
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volatile and bursty. Moreover, the average link utilization in the connections to

the aggregate switches is only 8% of the capacity for 95% of the time. Therefore,

the Selective Connectedness approach is useful in data center networks.

� Proportional Computing: energy is consumed proportionally to device utiliza-

tion. Proportional Computing methods can be mainly classified into: DVFS (see

Section 3.1) and Adaptive Link Rate (ALR). ALR methods reduce interface capac-

ity (data rate) as a function of network link load, with 85% of energy reduction

compared to fully active devices.

In [158], authors consider network topology along with network traffic demands with the

aim of reducing the total energy consumption associated with powered on switches and

paths. They propose a Network-Aware Virtual Machine Placement (NAVP) problem

and a greedy heuristic solution called VMFlow, in order to optimize VM placement and

routing of traffic demands. VM allocation occurs by considering servers with enough

resources to host a virtual machine, and subsequently the algorithm computes the path

that minimizes energy consumption. NAVP tries to consolidate as much traffic demands

as possible over the same set of network links, so as to reduce the total energy consump-

tion. This approach has some drawbacks: time-awareness and bandwidth guarantees

are not provided; moreover, power consumption of an element does not depend on its

utilization, and VM placement mapping is one-to-one (at most one VM is mapped to a

server). ElasticTree is proposed in [159] to save energy in data center networks. It is a

network-level energy optimizer that utilizes SDN to find a subset of links and devices to

serve the current traffic, and turns off the idle switches. Energy savings up to 50% are

estimated. However, in high performance networks this solution is not recommended

because of performance overhead.

Authors in [160] show that the energy efficiency of the wired Internet is lower than that

of a typical 802.11 wireless LAN. They propose to put network interfaces, links, switches

and routers that are idle into sleep-mode; then, routers wake up automatically when they

sense incoming traffic. An interface sends packets to its neighbours to communicate its

status. Finally, a traffic trace is analyzed to evaluate the accuracy of the approach.

Authors do not take into account the possibility of VM replacement enabled by live

migration. In [161], authors propose heuristics to turn off network links in a WAN

scenario, where several service and content providers cooperate in order to achieve an
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optimal allocation of network paths and computational resources, so as to minimize

energy consumption in case of performance constraints. In [162], data center network

architectures have been investigated; authors propose optimization techniques that can

be applied only at the design time of data centers, and not when they are running.

Authors in [162] address a flow assignment problem in a data center network by proposing

an offline formulation; they also develop an on-line path-consolidation algorithm to

reduce utilized paths and save energy, by dynamically turning off idle switches and links,

and by turning them on when network is over-utilized. Significant energy savings are

achieved compared to the ElasticTree algorithm. In [163], authors address the problem

of automatic mapping of virtual elements to physical ones in an acceptable time. They

present a technique to consolidate VMs and improve the utilization of physical hosts

in a data center; their heuristic is able to map virtual machines and links to physical

machines and paths, in order to have an optimal load balancing for the CPU utilization,

when there are constraints on hosts resources (memory, storage) and links (bandwidth,

latency). Network communication between VMs is optimized, but nothing is said about

energy efficiency.

Basmadjian et al. [164] describe power consumption prediction models of the most mean-

ingful ICT resources of data centers (servers, storage devices and network equipment).

These models are the rationale of energy optimization algorithms [165]: by applying

these policies, through the aforementioned prediction models, it is possible to decrease

by 20% energy consumption in a private Cloud data center. Authors propose a con-

trol loop for the energy optimization, which consists of three modules: Optimization,

Reconfiguration and Monitoring. The state of a data center is periodically monitored;

the Optimization module examines this state, then it ranks energy-saving configurations

with respect to their power consumptions, which are predicted by the Power Calcula-

tor module. Finally, once a configuration is chosen, the data center is reconfigured.

To validate these mechanisms, authors create an eight-node private Cloud based on a

Cloud controller (running on Red Hat Linux). This mechanism triggers optimization

algorithms every time a new virtual machine is created or terminated. The policies

are not clearly specified and an analysis is required to determine whether policies are

exhaustive. It is also interesting to investigate the case of federal data centers.

In [166], authors perform a survey about methods and technologies deployed for the
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energy-efficient operation of computer hardware and network infrastructures, particu-

larly in Cloud contexts; authors review the impact of energy-saving strategies for inte-

grated systems and Cloud management. Then, authors discuss energy aware scheduling

in multiprocessor and grid systems. Finally, they suggest to reduce software and hard-

ware energy costs, to improve load balancing and to consider the CO2 emissions resulting

from data centers. Savings of 20% can be achieved in server and network energy con-

sumptions. These policies only focus on a single part of the Cloud infrastructure, either

the network or the data center, but it would be interesting to combine them. The

authors indicate possible improvements, such as reducing energy consumption due to

communications. However, this method depends on the application involved.

Nonde et al. [167] propose an energy-efficient virtual network embedding approach in

Cloud networks by consolidating network and data center resources. A MILP framework

is presented for modelling their approach in an IP over WDM network, so as to minimize

the power consumption by reducing the number of activated nodes and links. Energy

savings of 60% compared to other approaches existing in literature are achieved. A

heuristic for real-time energy optimization is developed too. Finally, authors show the

effects of delay and location constraints on the node embedding problem; for example,

this happens when a service requires running applications on virtual machines in a given

fixed location (e.g., company headquarters or branch). They conclude that co-location

of virtual machines that belong to the same enterprise customer in a data center will

save power and costs. Very interesting is the involvement of the optical layer in the link

embedding problem.

In the last years, several works that analyze the joint minimization of the energy con-

sumption of network and data centers have been published. For example, in [168] au-

thors propose MILP-based optimization models to accommodate Cloud services with

minimum power consumption increase in the backbone network, while introducing min-

imum power consumption overhead at the data centers. In this chapter, we evaluate the

benefits deriving from an energy-aware management of both IT and network resources.
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Figure 3.2: VRO interaction with IT resources

3.3 Design, Operation and Implementation of a VRO

The flexible intra-domain and inter-domain architecture of the PCE, and the extensibil-

ity of the network control plane protocols (OSPF-TE and RSVP-TE) permit to define

a new class of network controllers, useful to configure both the network resources and

the virtual machines of a typical virtual infrastructure. In this context, we propose an

innovative controller, named Virtual Resource Orchestrator, for the provision of network

resources and the migration of virtual machines in virtualized infrastructures.

The VRO is a distributed control system that manages network and IT equipment,

and it configures the best mix of resources (i.e., links, virtual machines, disks, CPU)

by using appropriate configuration protocols and interfaces. VRO inherits the inter-

domain/intra-domain Path Computation Element logic related to routing protocols

(OSPF-TE) and signalling protocols (RSVP-TE). It monitors the network and IT re-

source state in real-time, and based on collected data it makes the appropriate decisions

during the virtual machine and network life cycles. The VRO implements several func-

tionalities that allow the reconfiguration of the network and IT infrastructure by taking

into account design constraints and objectives. For example, in a green Cloud envi-

ronment the VRO manages the migration of virtual machines and the configuration of

network infrastructures, minimizing the energy consumption of physical equipment.
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Figure 3.2 shows how the VRO interacts with an IT infrastructure made up of N dis-

tributed data centers. Such an interaction allows VIP to deploy virtual IT resources

by means of Cloud computing API (e.g., Apache jclouds1 or OpenStack4j2). Further-

more, the VRO collects information regarding the current level of utilization and power

consumption of physical resources available at each data center. By collecting this infor-

mation, the VRO is able to properly decide how the virtual resources should be deployed

on top of the available physical infrastructure.

Defining the mapping of virtual resources to physical ones is commonly known as em-

bedding problem; the VRO solves this optimization problem in two steps. In the first

step, the VRO decides in which geographical data center the VM has to be allocated.

In the second step, it selects the physical server where the VM has to be activated.

With regard to the first problem, the VI request might contain an explicit geographical

location that limits the available solutions; with reference to the second problem, we

assume that VM allocation is delegated to the data center scheduler. Finally, the VRO

has to decide the mapping of virtual links to networking infrastructure: the connectivity

problem between VMs and data center core routers is solved by data center scheduler,

while connectivity at geographical level is addressed starting from the solution presented

in [169].

The interaction between Virtual Resource Orchestrator and network elements is illus-

trated in Figure 3.3. The PCE is generally confined within the control plane to elaborate

explicit optimal routes (with related costs), which will be configured as GMPLS tun-

nels. The resulting route costs are Traffic Engineering indicators used by the network

administrator (carrier) to optimize the utilization of network resources. The interaction

between VRO and network elements is based on the OSPF-TE protocol.

We have implemented the VRO by extending some of the open source software com-

ponents that were originally developed within the DRAGON project [170], which is

supported by the National Science Foundation (NSF). In particular, we have added new

features to OSPF-TE/Quagga3 and RSVP-TE/KOM4 modules. The VRO could be em-

bedded in each network/IT device (distributed scenario) or held centrally on a distinct

node that supports the PCE (centralized scenario), in order to orchestrate resources

1https://jclouds.apache.org/
2http://www.openstack4j.com/
3http://www.quagga.net/
4http://www.isi.edu/div7/rsvp/release.html

https://jclouds.apache.org/
http://www.openstack4j.com/
http://www.quagga.net/
http://www.isi.edu/div7/rsvp/release.html
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Figure 3.3: VRO interaction with network elements

through multiple domains. In this thesis, a centralized computational model is selected.

VRO’s inter-domain communication and provisioning mechanisms are based on two pil-

lars: a link-state protocol for inter-domain topology exchanges, and a multi-constraint

path computation approach to determine suitable network routes.

3.3.1 VRO Functional Components

The VRO is a computational entity that enables network and IT resource orchestration

in order to provide virtualized network functions. The main components of the VRO

are:

� Cloud Broker/PCC modules. They are usually implemented on a Network

Management System (NMS). They request a “path and IT resource computa-

tion” to be performed by the proper PCE/RCE. The request is sent by using

the PCEP [105], and it includes information about the desired Virtual Infrastruc-

ture. For example, during the specification phase, the PCC might request virtual

resources that usually include end points (source and destination addresses), net-

work nodes and links, while the Cloud Broker might ask for a number of virtual

machines, OS images, IP address ranges.

� PCE module. It is specialized in complex path computation for satisfying the

requests received by a PCC. The PCE computes a path based on network state

information, network constraints and policies.
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� RCE module. The Resource Computation Element (RCE) module is specialized

in virtual machine placement for satisfying the requests received by a Cloud Broker.

� TED module. This repository stores information that will be sent to PCE and

RCE, such as topology information about nodes and links that connect them, node

and link status, virtual machine status, available hypervisor resources and network

constraints. In our model, the TED is created from traffic engineering information

distributed by the OSPF-TE routing protocol.

� Policy component module. It provides PCE and RCE with the policy that

impacts resource computation in response to a virtual infrastructure request. A

PCE/RCE might apply policies to decide what algorithm to use while performing

resource computations.

3.3.2 VRO Orchestration Process

The sequence diagram in Figure 3.4 shows the resource orchestration process performed

by VRO with the objective of minimizing the power consumption of the overall infras-

tructure. The resource orchestration workflow consists of the following steps:

1. Out-of-band TED synchronization. As described in Chapter 2 (see Section 2.2.4

and Section 2.5.1), OSPF-TE uses Link State Advertisements (LSAs) packets to

exchange information about network topology between routers; moreover, OSPF-

TE is properly extended to include energy information in the Value field, which is

contained in the payload of LSAs. Each router stores the received LSAs in the Link

State Database (LSD), where each LSA is an entry of the database. When an OSPF

router has just been connected to the network, an initial LSD synchronization

phase starts: a new neighbour is found and an OSPF router synchronizes its

LSD with that of the neighbours, so that they have the same LSA entries. After

this procedure was completed, the “asynchronous LSA flooding” mechanism (on

a fixed time basis) guarantees the LSD synchronization is maintained between the

routers whenever a change to the topology occurs. In our scenario, the TED stores

topology information about the GMPLS domain and its synchronization process

is not intrusive. Indeed, the VRO monitors the OSPF-TE traffic and places the

traffic engineering information into its TED by means of a stateful inspection
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Figure 3.4: VRO orchestration process

of OSPF-TE LSAs. At the end of the process, the TED will include optical

network topology information and energy-related data associated with nodes and

links, and resource (nodes, links and virtual machines) status. At the same time,

policies (existing traffic engineering constraints, bandwidth reservations, explicit

path inclusions/exclusions, objective functions) may be configured and managed

by a network operator, and interpreted in real time by the PCE/RCE.

2. In case of multiple VROs available to serve a particular Virtual Infrastructure

request, the Cloud Manager must select a VRO according to VRO’s capabilities.

Once the Cloud Manager has selected a VRO, a request/response protocol is re-

quired for the Cloud Manager to send the Virtual Infrastructure request to the

VRO, and for the VRO to send back the resource computation response. The

request is analyzed by the PCE/RCE by using current TED information.

3. Based on current TED information, the PCE computes traffic-engineered paths

while the RCE performs VM consolidation tasks. The resource computation re-

sponse is sent back to the Cloud Manager.
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Figure 3.5: Computational resource orchestration

4. The PCC sends a request to the head node of the physical infrastructure for

starting the resource reservation phase: the RSVP-TE protocol is responsible for

setup, maintenance and tear-down of computed paths. Finally, RCE orchestrates

the virtual machines through the involvement of a Parent Controller that resides

in each data center and solves VM placement optimization (see Figure 3.5). In

particular, a Child Controller is located on each physical server and it monitors

its current utilization. The Parent Controller collects the status of individual

servers from the Child Controllers and it sends data to RCE, which creates a

green migration plan. Finally, the Cloud Broker gives instructions to the Parent

Controller, which sends commands to hypervisors in order to migrate VMs [171].

The data considered during the resource orchestration process are

1. The resource type identifier: network or IT.

2. The power state of each resource. It is defined according to the standard approach

proposed in EMAN [107], which identifies 12 power states for a device.

3. The energy consumption (expressed in kWh) of the resources.

4. The CO2 emissions of the resources (CO2/kWh), which depend on the energy

source type (dirty/green) used for powering them.
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5. The transition time matrix, which consists of the time required to transit from a

resource state to another one.

6. The resource localization composed of geographic coordinates that univocally iden-

tify the position of a well-defined resource within the Cloud infrastructure (latitude

and longitude).

7. The resource utilization percentage (0-100%).

3.4 Experimental Assessment

In this section, we present a case study simulation aimed at showing how the VRO can be

used to take into account green management objectives in the orchestration of commu-

nication and computational resources. We envision a scenario where a number of WAN

core routers of geographically distributed data centers are interconnected by means of

a PCE-enabled networking infrastructure, which provides guaranteed-bandwidth paths

between routers.

3.4.1 Green Resource Management Problem

The problem to be addressed is twofold: from the network-side, a green management of

the geographical networking infrastructure must be pursued, in order to lower the energy

consumption and the CO2 emissions; from the IT-side, an energy efficient consolidation

of virtual machines in data centers needs to be reached. The innovative idea is to provide

an automatic control system for Cloud infrastructures, considered as the combination of

optical networks and IT resources.

The energy-efficient management of Cloud computing environments can be pursued

through green networking and virtual machine placement solutions, which might be

developed both in the context of intra and inter-datacenter networking architectures. In

this work, we specifically address two sub-problems: inter-datacenter green networking

and intra-datacenter VM placement.

In order to assess the overall energy consumption of the physical infrastructure, we

conduct a separate evaluation of both networking infrastructure and data center energy
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costs. The first part of the evaluation is carried out by using MATLAB [172] and it is

based on the network energy models discussed in [149] [169]; a novel traffic-engineering

algorithm that minimizes energy consumption and CO2 emissions of networks connecting

multiple distant data centers is implemented. The second part of the evaluation is based

on data center energy models taken from [116], and the simulations are implemented

in CloudSim [140]. In this work, we use CloudSim simulator as the main platform to

perform our tests. CloudSim offers several benefits ranging from simple configuration

of different VM scheduling policies, to fast evaluation of efficiency, performance and

reliability of several resource provisioning policies within a large heterogeneous Cloud

infrastructure.

The aim is to find energy-aware scheduling solutions for Cloud data centers. Indeed,

several studies demonstrate that the optimization of data center architectures, energy-

aware allocations and scheduling will lead to significant energy savings.

3.4.2 A Case Study Simulation

To conduct our evaluation, we consider a test scenario consisting of

� a network infrastructure composed of eight WAN routers connected by 15 bidirec-

tional links whose capacity is either 1-Gbps or 10-Gbps (see Figure 3.6);

� a computational infrastructure composed of 8 data centers, each one co-located

with a WAN router aimed at geographically extending layer 2 networks over mul-

tiple distant data centers.

The network topology assumed in our study is comparable with those adopted by midsize

Internet Service Providers for their backbone (e.g., Abilene Internet2 backbone consists

of 14 links and 11 nodes). It is assumed that a service provider makes a request for

an adequate number of resources to deploy healthcare applications in the Cloud. The

objective is to provide consumers with enough resources in order to use the provider’s

applications, which are deployed on a Cloud infrastructure. In particular, we consider

applications designed for specific needs of breast, prostate and liver Magnetic Resonance

Imaging (MRI) processing and analysis; applications are placed on one server and they

are accessible from various client devices through a thin client interface such as a web
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Figure 3.6: Use case scenario: network topology

browser. The most elementary request involves the allocation of two virtual machines,

each on a different data center, so that an application in one VM is used to capture

information sent from the other VM for data synchronization, providing benefits such

as increased availability and a better user experience across wider geographical areas.

Moreover, a network path is established between both VMs, and other pairs of virtual

machines (that will be turned on later) will share it. We set three constraints:

� To satisfy SLA demands between service provider and customers, the individual

request cannot be taken over by more than two data centers.

� Traffic load associated with each request is known.

� Data center’s computing power is limited.

For the sake of simplicity, we assume that an individual Virtual Infrastructure consists of

a variable number of virtual machine pairs, which must be deployed on two different data

centers in accordance with the first above-mentioned constraint (related to SLA). The

number of VM pairs is randomly selected between 2 and 14. Once activated, each pair

of VMs produces an expected traffic up to 100 Mbps from a source-VM to a destination-

VM. Let us clarify this last point with a simple example. A provider receives a request
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Figure 3.7: Traffic between VM pairs at time t = 60′

from a customer that implies the activation of four VMs to be satisfied; specifically, VMs

will be deployed on the source data center connected to node 1. At the same time, four

VMs will be deployed on the destination data center connected to node 6 for reliability

purposes, and a 400-Mbps traffic volume (100 Mbps between each source-destination

couple of VMs) will flow from data center 1 to data center 6. Therefore, traffic load

grows proportionally to VMs deployed.

For each VI, the VRO establishes a bidirectional network path between the two data

centers hosting the virtual machines. This path is assigned to a VI, hence its bandwidth

is shared between all the VMs belonging to the same VI. Since the number of commu-

nicating VM pairs is between 2 and 14, the bit-rate of the links ranges from 0.2 Gbps

(traffic generated by 2 VMs) to 1.4 Gbps (traffic generated by 14 VMs) (see Figure 3.7).

Each data center consists of 40 servers of two types, arranged into two racks (each rack

can accommodate up to 20 dedicated servers). The internal network of each data center

is organized according to a classical three-tier topology (consisting of access, aggregation

and core layers). In our simulations, we assume that two access switches, two aggregation

switches and one core switch are available in each data center. New power models have
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been added to the CloudSim power package, concerning the following real servers used

in the simulations:

� HP ProLiant MicroServer G7 N54L with AMD® Turion® II Neo N54L processor

(dual-core, 2.2 GHz, 2 MB, 15 W), RAM 8 GB;

� HP ProLiant DL320e Gen8 v2 with Intel® Core� i3 4150 (dual-core, 3.5 GHz, 3

MB, 54 W), RAM 8 GB.

Each server is equipped with 500 GB of storage and 1 Gbps of network bandwidth.

The values of MIPS (Million Instructions Per Second), PEs (Processing Elements), and

RAM of the VMs are chosen according to four Amazon Elastic Compute Cloud (EC2)

instances (see Table 3.1), and they have been faithfully reproduced in CloudSim.

Table 3.1: Amazon EC2 Characteristics Reproduced in CloudSim

Instance Type vCPU Memory Clock Speed

(GB) (GHz)

t2.micro 1 1 2.5

t2.small 1 2 2.5

t2.medium 2 4 2.5

m3.large 2 7.5 2.5

Each VM requires 10 GB of storage and 100 Mbps of network bandwidth. The Cloud

Broker, responsible for mediating negotiations between SaaS and Cloud providers, un-

dertakes on-line negotiations to deploy a number of VMs randomly selected from 2 to 14.

The Broker distributes cloudlets (tasks) among the VMs in which they will be hosted;

afterwards, virtual machines will process cloudlets. The cloudlet length (number of

instructions that the processor is going to execute) was set to 9 × 106 Million Instruc-

tions (MI); each task required 60 minutes of processor time with inter-arrival time of

5 minutes. Each VM has been randomly assigned a workload trace from the workload

data.

In the simulations, we assume that 12 different VI requests are consecutively sent to

the provider at 5-minute intervals. Each VI lasts 60 minutes (1 hour). Afterwards, all

the resources assigned to the VI are released and the infrastructure is terminated. We
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locate source-VMs in data centers connected to nodes 1, 6, 7, 8, while destination-VMs

are located in data centers connected to nodes 1, 2, 5, 6. Therefore, packets are sent

from nodes 1, 6, 7, 8 to nodes 1, 2, 5, 6 (see Table 3.2).

Table 3.2: Traffic Flow Characteristics

Start 5’ 10’ 15’ 20’ 25’ 30’ 35’ 40’ 45’ 50’ 55’ 60’

From → to 1→ 6 1→ 6 6→ 1 6→ 1 1→ 5 1→ 5 8→ 1 8→ 2 8→ 2 7→ 1 7→ 1 7→ 5

Bit rate [Gbit/s] 1.4 0.9 0.3 0.9 1.2 0.2 0.3 0.9 0.2 1.2 0.9 0.9

Figure 3.8 and Figure 3.9 show the number of VMs running on the eight data centers of

our scenario, throughout the whole simulation, assuming that all the data centers have

an initial load of 10 VMs. Traffic flows last for the whole duration of a VI. Hence, the

network load consists of 12 traffic flows, which start every 5 minutes and last 60 minutes.

This produces an increasing network load in the first hour and a decreasing load in the

second hour (see Figure 3.10).

Figure 3.8: Number of VMs per data center during simulations
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Figure 3.9: Total number of VMs during simulations

Figure 3.10: Overall network traffic during simulations
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3.4.3 Modeling of Network Power Consumption and CO2 Emissions

In our simulations, we consider a simple Optical Transport Network (OTN) that con-

sists of eight nodes interconnected by fifteen bidirectional links whose capacity is either

1-Gbps or 10-Gbps, with a given number of wavelengths for each link. When the optical

signal propagates through the fiber, it is attenuated because of absorption and scatter-

ing; moreover, signal is distorted and broadened due to dispersion mechanisms that limit

fiber bandwidth. The combined effect of attenuation and dispersion makes the signal

weaker and indistinguishable when it reaches its destination [173]. Therefore, a way of

amplifying the optical signal when it is transmitted over long distances (≥ 80 km) is

needed to regenerate its strength and shape, before the Signal to Noise Ratio (SNR) (or,

respectively, Bit Error Rate (BER)) becomes very small (or, respectively, high). This

can be done by using several methods. At the beginning, systems used electro-optic

methods, which required an optoelectronic module composed of an optical receiver, a

regeneration and equalization system, and an optical transmitter. These systems are

called regenerators and they require optical-electrical-optical signal conversions: the op-

tical signal is converted to an electrical one, amplified, and then converted back to an

optical signal that propagates along the fiber. The regenerators remove the noise from

the signal, so as to obtain a clean one. Electro-optic methods have several drawbacks:

they make the system more complicated, installation and maintenance costs are higher,

and they require a separate amplifier for each WDM channel. Later, optical amplifiers

were developed in order to replace the electro-optic regeneration systems. The opti-

cal amplifiers make O-E-O conversions unnecessary: signals can be amplified optically

without energy dispersion. Furthermore, optical amplifiers offer better performance than

regenerators. In our scenario, several optical amplifiers for each communication link are

considered; even with intermediate optical amplification, the length of such an optical

path is limited due to attenuation and increasing BER. As a result, optical paths ex-

ceeding a typical length of 1000 km will require a 3R regeneration in an intermediate

node, where 3R regenerators re-amplify, re-shape and re-time the signal.

Moreover, we suppose that real-time information about the energy sources currently

powering network devices is available. Several primary energy sources can be exploited

in order to produce the electrical energy needed to power telecommunication equip-

ment: fossil fuels (coal, oil, gas) and renewable energy (solar, wind, ocean, geothermal,
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biomass). Fossil-based sources are considered dirty because when they are burned to

make electricity, the carbon is released back into the atmosphere and it contributes to

the greenhouse effect. The greenhouse gases such as carbon dioxide make the tempera-

ture rise, and they contribute to global warming and pollution. In 2020, it is estimated

that fossil fuels will decrease from 83% to 76% of the world’s energy use, because of

the increasing demand for nuclear and renewable energy. Nuclear energy emits small

amounts of CO2, but it produces radioactive material. Nuclear is usually considered an-

other non-renewable energy source because the uranium and plutonium, which are the

elements most often used to fuel nuclear power plants, are non-renewable resources. In-

stead, the renewable energy is generated from natural sources and it is considered green

and environment friendly. While the non-renewable energy sources are limited and they

will soon run out, the renewable ones are constantly and sustainably replenished.

In the network model, several dirty and green energy sources that supply the network

devices (nodes, optical amplifiers and 3R regenerators) are considered. Moreover, we

assume that all the amplifiers on the same communication link have the same charac-

teristics (the static part of power consumption is the same), and they are powered by

the same energy source. Similar considerations apply to 3R regenerators. Therefore,

each node or link is characterized by a power consumption (that changes under different

loads), and it is assigned to an energy source. Hereinafter, the power consumption and

CO2 emissions of all the network components considered in our scenario are discussed.

3.4.3.1 Switch Power Consumption

A switch is characterized by a chassis, which is a frame/housing for mounting the circuit

components, and several line cards that provide interfaces to the network. The power

consumption of a generic switching node is dependent on its configuration and cur-

rent usage: switch type, number of ports, port transmission rate and employed cabling

solutions [174]. Therefore, switch power consumption can be written as [175]:

Psw = Pch +

conflc∑
i=1

(
n
conf ilc
lc · P conf

i
lc

lc

)
+

confif∑
j=1

(
n
confjif
if · P

confjif
if

)
(3.1)

where Pch is the power consumed by the chassis, conflc is the number of different line

card configurations (there is a configuration for each line card rate, e.g. l Gbps, 10 Gbps),
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n
conf ilc
lc is the number of line cards that operate at a specified rate i, P

conf ilc
lc is their power

consumption. Instead, confif is the number of different interface configurations (there

is a configuration for each interface rate, e.g. 10 Mbps, 100 Mbps, l Gbps), n
confjif
if

is the number of interfaces that operate at a specified rate j, P
confjif
if is their power

consumption. In detail, for a given configuration of line cards and interfaces:

Plc = PSlc
+ βlc ·

currRatelc
maxRatelc

(3.2)

where Plc is the line card consumption, PSlc
is the static part, βlc is the dynamic part

that scales with the rate, currRatelc is the current transmission rate of the line card

(it is the sum of the transmission rate of all its own interfaces), and maxRatelc is its

maximum transmission rate. Similarly:

Pif = xif ·
(
PSif

+ βif ·
currRateif
maxRateif

)
(3.3)

where Pif is the interface consumption, xif is a Boolean variable representing the in-

terface state (1 if the interface is turned on, 0 otherwise), PSif
is the static part of

interface power consumption, βif is the dynamic part of interface power that scales with

rate, currRateif is the current transmission rate of the interface, and maxRateif is its

maximum transmission rate. More generally, the Equation 3.1 can be written as:

Psw = P fixedsw + P propsw (3.4)

P fixedsw = Pch +

conflc∑
i=1

(
n
conf ilc
lc · P conf

i
lc

Slc

)
+

confif∑
j=1

n
conf

j
if

if∑
k=1

(
xkif · P

confjif
Sif

)
(3.5)

P fixedsw is the static part of power consumption and it is constant if the switch (and

all its interfaces and line cards) is powered on, P
conf ilc
Slc

is the static power of line cards

with configuration conf ilc, k is the number of interfaces that operate at a specified rate

j, xkif is a Boolean variable representing the state of each interface k that operates at

a specified rate j, and P
confjif
Sif

is the static power of the interfaces with configuration

conf jif .
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P propsw = P (ρ, c) = P (ρ)

=

conflc∑
i=1

nconf ilclc · βconf
i
lc

lc ·
currRate

conf ilc
lc

maxRate
conf ilc
lc



+

confif∑
j=1

n
conf

j
if

if∑
k=1

xkif · βconfjifif ·
currRatekif

maxRate
confjif
if

 (3.6)

P propsw is the dynamic part of power consumption. It depends on ρ, which is the switch

utilization, and c that is a coefficient related to the power consumption overhead induced

by routing protocols [176]. In our scenario, there is only a negligible increase of the power

consumption when OSPF-TE packets are temporarily exchanged between routers, thus

we can ignore the parameter c. Therefore, P propsw scales only with the network load.

Furthermore, we assume that an interface can be put into low-power mode independently

from the other interfaces on the same router or line card, and only when there is not

inbound and outbound traffic. Conversely, we suppose that low-power mode is not

available at line card and node level: indeed, even idle nodes are characterized by a

fixed power consumption.

3.4.3.2 Link Power Consumption

Each optical fiber requires optical amplifiers and 3R regenerators (see Section 3.4.3).

As previously stated, we assume that all the amplifiers on the same communication

link have the same characteristics (the static part of power consumption is the same);

similar considerations apply to 3R regenerators. The power consumption of a link can

be written as [169]:

Plink = PA + PR (3.7)

where Plink is the link power consumption, PA is the power consumption of the optical

amplification, and PR is the power consumption of the regeneration. In detail:

PA =

⌊
Llink
LAmax

+ 2

⌋
· xA · (PSA + γA) (3.8)
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Figure 3.11: Optical amplifiers on a fiber

where Llink is the length of the link, LAmax represents the maximum distance an optical

signal can cover without optical amplification (≈ 80 km), xA is a Boolean variable

representing the optical amplifier state (1 if al least a traffic demand passes through it,

0 otherwise), PSA is the fixed power of the optical amplifier, γA is the proportional power

of the amplifier. In our scenario, we suppose that γA = 0 because optical amplifiers

are able to amplify simultaneously all the available wavelengths on the link, regardless

of the traffic demands. A constant value (2) is added because each fiber requires at

least two optical amplifiers at the end points (see Figure 3.11). Ultimately, the power

consumption of an optical amplifier will be PSA if it is used by at least one lightpath,

zero otherwise. Therefore, Equation 3.8 becomes:

PA =

⌊
Llink
LAmax

+ 2

⌋
· xA · PSA (3.9)

The power consumption of the 3R regeneration can be defined as:

PR =

⌊
Llink
LRmax

⌋
· xR · (PSR + δR · currRateλ) (3.10)

where Llink is the length of the link, LRmax represents the maximum distance an optical

signal can cover without regeneration (≈ 1000 km), xR is a Boolean variable repre-

senting the regenerator state (1 if the regenerator is turned on, 0 otherwise), PSR is the

fixed power of the regenerator, δR is the proportional power (W/Gbps) required for

each wavelength that must be regenerated on the link l, and currRateλ is the current

transmission rate on the wavelength λ. A 3R regenerator for each wavelength of the link

is required. More generally, the Equation 3.7 can be written as:

Plink = P fixedlink + P proplink (3.11)

P fixedlink = P fixedA + P fixedR =

⌊
Llink
LAmax

+ 2

⌋
·
(
xA · PSA

)
+

⌊
Llink
LRmax

⌋
·
(
xR · PSR

)
(3.12)
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P proplink = P propR =

⌊
Llink
LRmax

⌋
· xR · δR · currRateλ (3.13)

where P fixedlink is the static part of link power consumption, while P proplink is the dynamic

part.

3.4.3.3 Network Power Consumption and Emissions

By considering the above-mentioned assumptions, the overall power consumption of the

network can be calculated by:

Pnet =

N∑
n=0

[Psw]n +

L∑
l=0

[Plink]l (3.14)

where Pnet is the network power consumption, N is the number of switches, [Psw]n is the

power consumption of the switch n, L is the number of links, and [Plink]l is the power

consumption of the link l. In particular:

Pnet = P fixednet + P propnet (3.15)

P fixednet =

=
N∑
n=0

[P fixedsw ]n +
L∑
l=0

[P fixedlink ]l

=
N∑
n=0

Pch +

conflc∑
i=1

(
n
conf ilc
lc · P conf

i
lc

Slc

)
+

confif∑
j=1

n
conf

j
if

if∑
k=1

(
xkif · P

confjif
Sif

)
n

+
L∑
l=0

{⌊
Llink
LAmax

+ 2

⌋
·
(
xA · PSA

)
+

⌊
Llink
LRmax

⌋
·
(
xR · PSR

)}
l

(3.16)
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P propnet =

=
N∑
n=0

[P propsw ]n +
L∑
l=0

[P proplink ]l

=

N∑
n=0


conflc∑
i=1

nconf ilclc · βconf
i
lc

lc ·
currRate

conf ilc
lc

maxRate
conf ilc
lc



+

confif∑
j=1

n
conf

j
if

if∑
k=1

xkif · βconfjifif ·
currRatekif

maxRate
confjif
if



n

+
L∑
l=0

{⌊
Llink
LRmax

⌋
· xR · δR · currRateλ

}
l

(3.17)

Therefore, the overall network power consumption can be spit into the static part P fixednet ,

and the dynamic part P propnet .

Finally, the overall carbon footprint of the network during T hours can be calculated as:

Γnet =

∫ T

0

[(
N∑
n=0

ϕn · [Psw]n

)
+

(
L∑
l=0

ϕl · [Plink]l

)]
dt (3.18)

where Γnet is the total carbon footprint (g CO2), ϕn represents the mean CO2 emissions

of the switch n (g CO2/kWh), and ϕl represents the mean CO2 emissions of the link l

(g CO2/kWh). The possible values of ϕn and ϕl are shown in Table 3.3 [169].

Table 3.3: CO2 Emissions

Energy Source Renewable Mean Value (g CO2/kWh)

Solar, Wind, Hydro-electric Yes 0

Nuclear No 20

Geothermal Yes 107

Biomasses Yes 180

Natural gas No 370

Fuel No 880

Coal No 980
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3.4.4 Cost Function

Routing is implemented in the proposed network graph by using a constrained shortest-

path Dijkstra’s algorithm. Our goal is to take routing decisions in order to minimize

both power consumption and CO2 emissions, by also taking into account both minimum

guaranteed bandwidth and maximum activation time for the switch interfaces (QoS

constraints). The time required for on/off switching is often ignored. We claim that

complex network infrastructures require an energy-aware control plane, which should be

able to quickly reconfigure the network by taking into account both energy efficiency

objectives and QoS constraints.

Routes are selected by considering a weighting function cij that is associated with each

link (i, j), and it represents the link cost from the point of view of both its CO2 emissions

and power consumption. Therefore, link cost is evaluated as follows:

cij = cPij + cΩ
ij + cUBij + cTij (3.19)

where cij is the edge cost function of the link (i, j), cPij is the power cost function of

the link, cΩ
ij is the carbon cost function of the link, while cUBij and cTij are respectively

available bandwidth cost and interface activation time cost on link (i, j). In particular:

cUBij =


0 UBij ≥ Bmin

∞ else

(3.20)

cTij =


0 TONij ≤ TONMAX

∞ else

(3.21)

where:

� UBi,j : available bandwidth of the link (i, j);

� Bmin: minimum guaranteed bandwidth of the link (i, j);

� TONi,j : time required to activate the interfaces connected to link (i, j);

� TONMAX : maximum activation time allowed for the path.
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If an edge has available bandwidth lower than the minimum guaranteed bandwidth, or

the time required to activate its interfaces is greater than the maximum time allowed,

the link must have an infinite cost and will be removed from the network. Therefore,

the edge cost function given by Equation 3.19 can be defined as a linear combination of

power consumption and CO2 emissions:

cij = α · cPij + (1− α) · cΩ
ij (3.22)

where cPij and cΩ
ij are normalized in order to be compared. The parameter α ∈ [0, 1]

allows to assign different weights to the power efficiency and carbon cost functions,

according to the provider’s aims. In this way, two different objectives are considered

together by assigning them a specific weight, according to their influence. The first term

cPij associated to the power consumption of the link (i, j) can be defined as:

cPij = Pi + Pj + PAij + PRij (3.23)

where Pi and Pj represent respectively the power consumption increase of the interfaces i

and j, because in Dijkstra’s algorithm the per-link cost function (also called incremental

function) is used to increase the cost of the arc. Instead, PAij and PRij are respectively the

incremental per-link power-related costs of the optical amplification and 3R regeneration

on the link (i, j). The power consumption increase associated with the interface i of a line

card n is obtained by summing two contributions (see Equation 3.2 and Equation 3.3):

Pi =

[
xif · PSif

+ βif ·
currRateif
maxRateif

]
i

+

[
βlc ·

currRatelc
maxRatelc

]
n

(3.24)

where xif is a Boolean variable representing the interface state (1 if the interface is

turned on, 0 otherwise), and PSif
is the constant amount of power that is required to

turn on the interface i. This term is taken into account only if the interface i had been

previously put into low-power mode, otherwise PSif
is equal to 0. βif is the dynamic

amount of interface power that scales with rate, currRateif is the current transmission

rate of the interface i, and maxRateif is its maximum transmission rate. Similarly, βlc

is the dynamic amount of line card power that scales with rate, currRatelc is the current

transmission rate of the line card n, and maxRatelc is its maximum transmission rate.

PSlc
is the constant amount of power that is required to turn on the line card n, and it

is equal to zero because we suppose that low-power mode is not available at line card
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level, therefore working line cards are never turned off. The power consumption increase

related to the optical amplification is (see Equation 3.9)

PAij =

⌊
Llink
LAmax

+ 2

⌋
· xA · PSA (3.25)

where
⌊
Llink
LAmax

+ 2
⌋

is the number of amplifiers on link (i, j), xA is a Boolean variable

representing the optical amplifier state (1 if al least a traffic demand passes through it,

0 otherwise), PSA is the fixed power of the optical amplifier. PAij is taken into account

once for each link, that is when the first wavelength of the link (i, j) is allocated to

a lightpath and optical amplifiers have to be activated for the first time, otherwise its

value will be zero in the computation of the power increase because amplifiers have been

already turned on. The power consumption increase related to the 3R regeneration is:

PRij =

⌊
Llink
LRmax

⌋
· (xR · PSR + δR · currRateλ) (3.26)

where
⌊
Llink
LRmax

⌋
is the number of regenerators on link (i, j), xR is a Boolean variable rep-

resenting the regenerator state (1 if the regenerator is turned on, 0 otherwise), PSR is the

fixed power of the regenerator, δR is the proportional power (W/Gbps) required for each

wavelength that must be regenerated on the link l, and currRateλ is the current trans-

mission rate on the wavelength λ. Therefore, the incremental per-link power-related

cost of the regeneration is different from the optical amplification one, because 3R re-

generators operate for single wavelength. Equation 3.23 can be written as:

cPij =

[
xif · PSif

+ βif ·
currRateif
maxRateif

]
i

+

[
βlc ·

currRatelc
maxRatelc

]
n

+

[
xif · PSif

+ βif ·
currRateif
maxRateif

]
j

+

[
βlc ·

currRatelc
maxRatelc

]
m

+

⌊
Llink
LAmax

+ 2

⌋
·
(
xA · PSA

)
+

⌊
Llink
LRmax

⌋
· (xR · PSR + δR · currRateλ) (3.27)

Finally, the carbon cost function cΩ
ij of the link (i, j) can be defined as:

cΩ
ij = Ωi + Ωj + ΩA + ΩR (3.28)
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where Ωi,Ωj ,ΩA,ΩR are respectively the carbon footprint increases (g CO2) of interfaces

i and j, optical amplifiers and 3R regenerators on link (i, j). In detail:

Ωi = Ei · ϕi =

∫ T

0

([
xif · PSif

+ βif ·
currRateif
maxRateif

]
i

+

[
βlc ·

currRatelc
maxRatelc

]
n

)
· ϕi dt

(3.29)

Ωj = Ej · ϕj =

∫ T

0

([
xif · PSif

+ βif ·
currRateif
maxRateif

]
j

+

[
βlc ·

currRatelc
maxRatelc

]
m

)
· ϕj dt

(3.30)

ΩA = EA · ϕA =

∫
T

0


⌊

Llink
LAmax

+2

⌋
∑
a=1

(
xA · PSA · ϕa

)
 dt (3.31)

ΩR = ER · ϕR =

∫
T

0


⌊

Llink
LRmax

⌋
∑
r=1

[
(xR · PSR + δR · currRateλ) · ϕr

]
 dt (3.32)

where Ei, Ej , EA, ER are respectively the energy consumption increases (kWh) of inter-

faces i and j, optical amplifiers and regenerators, which can be calculated by integrating

the aforementioned power consumption increases. Moreover, ϕi, ϕj , ϕA, ϕR are respec-

tively the mean CO2 emissions (g CO2/kWh) of interfaces i and j, optical amplifiers and

regenerators on link (i, j). ϕa, ϕr are respectively the mean CO2 emissions of amplifier

a and regenerator r. The constrained shortest-path Dijkstra’s algorithm runs in real-

time by using the information contained in the Traffic Engineering Database (TED),

and by considering the locally specified constraints on the link attributes; each time

a VI request with QoS requirements is submitted to the provider and a traffic flow is

successfully routed in the network between two nodes, the network status (decreased

residual bandwidth and interface activation time) is updated and it is flooded between

the neighbours by means of the OSPF-TE extension discussed in Section 3.3.2. Once the

TE LSAs are flooded throughout the network, the aforementioned edge cost function

is recomputed. Moreover, the edge cost functions of different links change according

to power consumption and CO2 emissions. The routing algorithm uses link weights to

compute the best path, in order to minimize power consumption or carbon footprint, or

their combination. The cost of a path P from a source node S to a destination node D

is the sum of the costs of all its edges:

Csd =
∑

(i,j)∈P

cij (3.33)
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3.4.5 Energy-aware Network Management Results

The aforementioned energy model and the routing algorithm have been implemented

in MATLAB, and the simulations have been performed on the case study infrastruc-

ture described in Section 3.4.2 (see Figure 3.6). This infrastructure is composed of eight

core routers of geographically distributed data centers interconnected by 15 bidirectional

links whose capacity is either 1-Gbps or 10-Gbps. Optical amplifiers and 3R regenerators

are located on each link at every 80 km and 1000 km intervals respectively; moreover,

each link requires two additional amplifiers at the end points. To consider a significant

distribution of several energy sources, we refer to the U.S. Energy Information Adminis-

tration (EIA) Energy Mapping System5, shown in Figure 3.12, where energy sources are

located throughout the country and can be displayed according to geographic, satellite,

topographical, and street map views. We suppose that the eight data centers are spread

all over the U.S. and that the data centers are co-located at eight different generation

sources, so that they will use power produced locally (see Figure 3.13). Data centers will

be powered by locally available renewable or alternative energy sources. In our scenario,

data centers are located in eight cities whose availability of local energy sources may be

inferred from the aforementioned U.S. Energy Map (see Table 3.4). Therefore, to eval-

uate the carbon footprint of nodes and links, we refer to Table 3.4 in order to know the

energy sources currently powering them, while the corresponding mean CO2 emissions

are listed in Table 3.3 (see Section 3.4.3.3). The distances between the aforementioned

cities are shown in Figure 3.14, where the lengths (km) of the fifteen bidirectional links

of the illustrated network topology are specified.

Table 3.4: Data Center Locations and Available Energy Sources

Data Center City Available Energy Source

1 Inyokern (California) Geothermal

2 Nucla (Colorado) Coal

3 Earth (Texas) Natural gas

4 Arnold (Nebraska) Fuel

5 Des Moines (Iowa) Biomasses

6 Welch (Minnesota) Nuclear

7 Hardin (Montana) Hydro-electric

8 Munster (Indiana) Biomasses

5http://www.eia.gov/state/maps.cfm/

http://www.eia.gov/state/maps.cfm/
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Figure 3.14: Length of the communication links expressed in km

To evaluate the power consumption of network nodes we refer to a simplified energy

model of the Alcatel-Lucent Multiservice Switch 1850 TSS-320, shown in Table 3.5.

In detail, the equipment considered for each node is shown in Table 3.6. The power

demands of amplifiers and regenerators are reported in Table 3.7 [177].

Table 3.5: ALU-1850 TSS-320 Optical Switch

ID # Description MaxRate Static power Dynamic power
[Gbps] [W] [W]

Node TSS160C
Chassis 221,0 0,0

1,1 Line Card 1 2x10Gbps 20,0 30,0 20,0
1,1,1 Interface 1 SFP 1x10Gbps 10,0 20,0 10,0
1,1,2 Interface 2 SFP 1x10Gbps 10,0 20,0 10,0
1,2 Line Card 2 SFP 2x10Gbps 20,0 30,0 20,0
1,2,1 Interface 1 SFP 1x10Gbps 10,0 20,0 10,0
1,2,2 Interface 2 SFP 1x10Gbps 10,0 20,0 10,0
1,3 Line Card 1 SFP 10x1Gbps 10,0 30,0 20,0
1,3,1 Interface 1 SFP 1x1Gbps 1,0 5,0 5,0
1,3,2 Interface 2 SFP 1x10Gbps 1,0 5,0 5,0
1,3,3 Interface 3 SFP 1x1Gbps 1,0 5,0 5,0
1,3,4 Interface 4 SFP 1x10Gbps 1,0 5,0 5,0
1,3,5 Interface 5 SFP 1x1Gbps 1,0 5,0 5,0
1,3,6 Interface 6 SFP 1x10Gbps 1,0 5,0 5,0
1,3,7 Interface 7 SFP 1x1Gbps 1,0 5,0 5,0
1,3,8 Interface 8 SFP 1x10Gbps 1,0 5,0 5,0
1,3,9 Interface 9 SFP 1x1Gbps 1,0 5,0 5,0
1,3,10 Interface 10 SFP 1x10Gbps 1,0 5,0 5,0



Chapter 3. Green Resource Management in a VRO-based Infrastructure 122

Table 3.6: Nodes Equipment

Node ID Line card Number of Interfaces maxRate [Gbps]

Node 1
1 1 10,0
2 1 10,0
3 1 1,0

Node 2
1 2 1,0
2 2 10,0
3 1 10,0

Node 3
1 3 1,0
2 2 10,0

Node 4
1 2 1,0
2 2 10,0
3 1 10,0

Node 5
1 2 1,0
2 2 10,0
3 1 10,0

Node 6
1 1 10,0
2 1 10,0

Node 7 1 2 1,0
2 1 10,0

Node 8 1 2 10,0

Table 3.7: Power Consumption of Optical Amplifiers and 3R Regenerators

Device Fixed power(W) Proportional power (W/Gbps)

Optical amplifier 15 0

3R regenerator 285 3

The constrained shortest-path Dijkstra’s algorithm computes network paths by taking

into account both the power consumption of network devices and energy sources that are

used for powering them. The objective is to minimize the power consumption and CO2

emissions within the whole network. This is a multi-objective optimization problem in

which two distinct objective functions are considered, namely the power consumption

and the Greenhouse Gas (GHG) emissions, which are combined into a single total cost

function. As shown in Equation 3.22, the edge cost function can be expressed as a

linear combination of two link costs related to the objective functions, which are prop-

erly weighted. The weights can be tuned in order to reach the desired trade-off. At

the beginning, one optimization objective is considered at a time, in order to evaluate

separately the contribution of the individual objective functions to the multi-objective

optimization problem, without taking into account trade-off situations. In detail, two

extreme cases are discussed: the optimization of both power consumption (α = 1) and

carbon footprint (α = 0). These limiting cases allow to obtain the lower bound of the

objective function values, when the objective functions do not affect each other. Here-

inafter, the results of the proposed energy model are discussed, with focus on the power

consumption, GHG emissions, and average path length (hop count) resulting from the
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Figure 3.15: Power consumption for the Green, Min CO2, Min Hops, Worst-Case
approaches

Green Routing Algorithm (Green, α = 1) and Minimum Emission Algorithm (Min CO2,

α = 0). The results are compared to those obtained by using the Shortest Path Algorithm

(Min Hops), and to the Worst-Case. Green and Min CO2 minimize power consump-

tion and GHG emissions respectively, by taking into account both minimum guaranteed

bandwidth and maximum activation time for the switch interfaces (QoS constraints).

Instead, Min Hops selects the shortest path between source and destination by minimiz-

ing the number of hops; moreover, Min Hops only considers the bandwidth constraint,

assuming that each switch port can wake up quickly. Finally, the Worst-Case represents

the case of today’s networks in which devices are constantly powered on at full capacity

but they are highly under-utilized most of the time. The Min Hops and Worst-Case

approaches do not take into account energy-related parameters when computing network

paths.

In Figure 3.15, we compare the overall power consumption resulting from the Green,

Min CO2, Min Hops, and Worst-Case approaches, under the same load conditions. As

expected, the lowest power consumption is achieved by the Green strategy, in which the

cost function depends solely on the power consumption increases of network devices.
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The energy savings achieved by using the Green approach are 35% compared to Min

CO2, 47% compared to Min Hops, and 68% with respect to the Worst-Case. Instead,

the energy savings achieved by using the Min CO2 approach are 19% compared to

Min Hops, and 55% with respect to the Worst-Case. The Min CO2 algorithm selects

longer paths in order to prefer nodes and links that are powered by renewable energy

sources; therefore, when the traffic load increases, the power consumption resulting from

the Min CO2 strategy rises more quickly compared to the Green algorithm, because

there will not be enough green energy sources, and the Min CO2 is forced to select

paths that are longer and more energy intensive. Indeed, when 0 6 T 6 30 min.

the energy savings achieved by the Min CO2 and Green approaches are quite similar,

instead when 30 6 T 6 60 min. their distance grows. The Min Hops approach is

more power consuming than Green and Min CO2 algorithms for the entire duration of

the simulations (except for T ≤ 10 min, T ≥ 115 min), demonstrating that energy-

aware algorithms are able to reduce power consumption even at high traffic loads. As a

general trend, the higher the bit-rate, the higher the power consumption; this happens

because when traffic flows require less bandwidth, they can be routed over more energy-

efficient paths, while flows that are more bandwidth-demanding must be routed over

high capacity paths, so that the degrees of freedom are lower.

Figure 3.16: Source to destination paths chosen by green routing algorithm
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Figure 3.16 shows the set of links used by source-to-destination paths that are chosen by

the Green algorithm to process the twelve traffic demands: this set is made up of fewer

links than those selected by the Min Hops approach (in which source-to-destination

paths use all links). High path redundancy and low link utilization provide unique op-

portunities for power-aware traffic engineering. When there are multiple paths between

the same source-destination pairs, and the traffic volume on some paths is low, it is pos-

sible to concentrate traffic on a lower number of paths. Switches having idle interfaces

can turn them off for energy savings.

Figure 3.17: GHG emissions for the Green, Min CO2, Min Hops, Worst-Case ap-
proaches

In Figure 3.17, the total carbon footprint resulting from the Green, Min CO2, Min

Hops, and Worst-Case approaches is compared under the same load conditions. The

lowest GHG emissions are achieved by the Min CO2 strategy, in which the cost function

depends entirely on carbon footprint increases of the network devices. Therefore, besides

reducing power consumption, the Min CO2 algorithm achieves remarkable CO2 savings

by choosing network nodes and links that are powered by green energy sources. The

CO2 savings achieved by using the Min CO2 approach are 9% compared to Green,

14% compared to Min Hops, and 33% with respect to the Worst-Case. Instead, the
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CO2 savings achieved by using the Green approach are 8% compared to Min Hops,

and 29% with respect to the Worst-Case. The Min CO2 approach is more power

consuming compared to the Green algorithm, but this power produces lower emissions,

being generated by greener energy sources. When the network traffic is low, the Min

CO2 algorithm achieves remarkable CO2 savings compared to the Green algorithm; this

happens because Min CO2 selects longer paths in order to prefer nodes and links that

are powered by renewable energy sources. Instead, when the traffic load increases, the

distance between Min CO2 and Green decreases because green energy sources will not be

enough anymore, and the Min CO2 is forced to select link and nodes that are powered by

dirty sources. Hence, at high loads, the power consumption minimization also implies the

GHG emission reduction. The Min Hops approach produces more carbon dioxide than

Green and Min CO2 algorithms for the entire duration of the simulations, demonstrating

that energy-aware algorithms are able to reduce GHG emissions even at high traffic loads.

Figure 3.18: Number of hops for the Green, Min CO2, Min Hops approaches

Figure 3.18 shows the average path length that is achieved by using the proposed algo-

rithms. As expected, the Min Hops algorithm allows to obtain the lowest hop count.

The Green approach tries to minimize the power consumption and this involves an in-

crease in the average path length compared to the Min Hops algorithm. Indeed, idle



Chapter 3. Green Resource Management in a VRO-based Infrastructure 127

links are avoided with respect to the busy ones, so that the average number of hops in-

creases. Finally, the Min CO2 strategy always tries to avoid dirty nodes while selecting

longer paths than Min Hops; moreover, Min CO2 chooses longer paths with respect to

the Green algorithm too. This happens because power consumption is additive, so that

for each traversed node and link the overall power consumption increases, while GHG

emissions are not additive because green nodes do not produce emissions when they are

traversed by network paths. Therefore, Min CO2 always tries to avoid network devices

that are powered by dirty energy sources, while increasing the average length path. The

average hop count number is 2.1 for the Min Hops approach, while Green e Min CO2

algorithms have an average path length of 2.8 e 3.4 hops respectively. Therefore, the

proposed energy-aware algorithms reduce power consumption and GHG emissions, while

showing only a marginal increase for the number of routing hops compared to the Min

Hops approach.

In a multi-objective optimization problem, there are different objectives that are defined

on a set of feasible decision variables, which must be properly allocated in order to

provide an optimal solution for the given problem. Generally, there is not a single ideal

solution that is an optimal value for every objective function at the same time. In

particular, when there are several objectives, their concurrent optimization might create

problems due to the conflicting relationship among the objective functions: “There will

always be a certain amount of sacrifice in one objective to achieve a certain amount

of gain in the other” [178]. Therefore, a new problem is how trade-offs between the

objectives must be found, resulting in the so called best compromise solution. These

solutions can not be found only by applying mathematical methods, but typically a

Human Decision Maker (HDM), who is an expert in the domain of the problem, chooses

the best compromise solutions from the results of a Pareto optimization, in order to

achieve a trade-off between different objective functions. A Pareto optimal solution is

one in which the value of an objective cannot be improved without degrading the value

of at least one of the other objectives at the same time. Therefore, the decision maker

has the task of identifying his preferred solution from a set of Pareto optimal solutions.

In our scenario, the HDM is the network operator. He can assign different weights to

the objective functions by tuning the α parameter in order to reach the desired trade-

off. Hence, after evaluating the contribution of the individual objective functions to the

multi-objective optimization problem, now we discuss the possible trade-offs.
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Three distinct scenarios are considered, by assigning the following weights:

1. α = 0.25 (Green−/Min CO2+)

2. α = 0.50 (Green=/Min CO2=)

3. α = 0.75 (Green+/Min CO2−)

In the first case (Green−/Min CO2+), the objective of GHG minimization has a higher

relative weight, while in the third case (Green+/Min CO2−) the power minimization

objective is privileged. Finally, in the second case (Green=/Min CO2=) the aforemen-

tioned objectives are equally weighted in order to balance GHG emissions and power con-

sumption. As shown in the following figures, the trade-off results are comprised between

the graphs that have been previously reported for the Green and Min CO2 algorithms,

because limiting cases have defined the bounds of the objective function values. As

expected, the lowest power consumption is achieved by Green+/Min CO2−, while the

most power intensive strategy is Green−/Min CO2+ (see Figure 3.19 and Figure 3.20).

In detail, the energy savings achieved by the Green−/Min CO2+, Green=/Min CO2=,

and Green+/Min CO2− strategies are 6%, 24% and 32% respectively, compared to

the Min CO2 approach. Regarding the GHG emissions, the lowest emitting strategy

is Green−/Min CO2+, while the worst performance is shown by Green+/Min CO2−

(see Figure 3.21 and Figure 3.22).

In detail, the CO2 savings achieved by the Green+/Min CO2−, Green=/Min CO2=,

and Green−/Min CO2+ strategies are 2%, 4.4% and 5.7% respectively, compared to

the Green approach. Finally, the average path length obtained by Green−/Min CO2+

is higher than Green+/Min CO2− (see Figure 3.23 and Figure 3.24).

In detail, the Green+/Min CO2−, Green=/Min CO2=, and Green−/Min CO2+ have

an average path length of 2.9, 3.1, and 3.3 respectively. Therefore, when the objectives

are equally weighted (Green=/Min CO2=), the best compromise is achieved; in par-

ticular, the energy savings obtained by Green=/Min CO2= are quite similar to those

obtained by Green+/Min CO2−, and higher than Green−/Min CO2+. Indeed, in the

Green−/Min CO2+ approach, the continuous selection of green nodes will lead to in-

creased power consumption. In conclusion, the Green=/Min CO2= strategy is the most

tempting when an operator has to plan energy-efficient and eco-sustainable networks.
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Figure 3.19: Power consumption for the Green, Min CO2, trade-off approaches

Figure 3.20: Power consumption for the trade-off approaches
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Figure 3.21: GHG emissions for the Green, Min CO2, trade-off approaches

Figure 3.22: GHG emissions for the trade-off approaches
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Figure 3.23: Number of hops for the Green, Min CO2, trade-off approaches

Figure 3.24: Number of hops for the trade-off approaches
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3.4.6 Modeling of Data Center Power Consumption

To enhance energy efficiency in Cloud computing, it is important to study the distri-

bution of power in data centers. The main source of power consumption in current

data centers is their physical infrastructure (e.g. power and cooling systems), which

is used to support the IT equipment (e.g. compute, storage, network). Indeed, phys-

ical infrastructure alone can amount to more then 50% of the total data center power

usage. Servers consume 80% of the total IT load and 40% of total data center power

consumption. Several studies identify the CPU utilization as the dominant source of

energy consumption for a server [179] [166].

3.4.6.1 Server Power Consumption

According to [180] [181], the relationship between server power consumption and CPU

utilization is approximately linear:

Pserver[u(t)] = k · Pmax + (1− k) · Pmax · u(t) (3.34)

where Pmax is the maximum power consumed when the server is fully utilized, k is the

fraction of power consumed by an idle server (≈ 70%), and u(t) is the CPU utiliza-

tion that depends on time because of time-variant workloads. Instead, Fan et al. [182]

proposed an empirical non-linear model of server power consumption:

Pserver[u(t)] = Pidle + (Pmax − Pidle) · [2u(t)− ur(t)] (3.35)

where Pidle is the static consumption due to the elementary physical components, r is a

calibration parameter that minimizes the square error. Beloglazov et al. [115] state that

the proposed models can accurately predict the power consumption of a server with an

error below 5% for the linear model, and an error below 1% for the empirical model.

Therefore, in our simulations we consider the empirical model with the suggested value

r = 1.4.
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3.4.7 VM Consolidation Algorithms

Energy efficiency is a primary concern in data centers, which consume large amounts of

electrical power leading to high costs and CO2 emissions. Virtualization is a key com-

ponent to reduce energy consumption, consolidating servers to one physical node in the

form of VMs; however, this is not enough to solve energy issues, because during off-peak

hours, many physical nodes run much below their average load. Several algorithms have

been proposed to consolidate VMs into fewer servers, in order to switch off idle nodes

and decrease energy consumption and cooling costs. Therefore, dynamic consolidation

allows Cloud providers to optimize resource utilization by dynamically adjusting the

number of active nodes to match resource demands, and by using live migration within

a single data center, while providing required QoS for their customers.

VM allocation takes place in two steps: admission of a new VI request for VM provi-

sioning, and dynamic VM consolidation. Dynamic consolidation of VMs consists of:

� host overload and underload detection by considering dynamic heuristics;

� VM selection, i.e. determination of VMs to be migrated from overloaded and

underloaded hosts (that will be shut down);

� new placement for VMs to be migrated.

In this context, we present a comparative analysis of the energy efficient VM consolida-

tion algorithms discussed in Chapter 2 (see Section 2.6.3). We run a set of simulations

by means of CloudSim tool, and we estimate the overall data center energy consumption.

We consider five methods to detect host overloading/underloading, based on the idea of

setting upper and lower utilization thresholds for hosts, and keeping the total utilization

of the CPU between these thresholds. The methods are:

1. Interquartile Range (IQR). It is a dynamic utilization threshold. It is a measure

of statistical dispersion, being equal to the difference between the third and first

quartiles.

2. Local Regression (LR). It is considered local because each smoothed value is

determined by neighboring data points defined within a span. A regression weight
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function is defined for the data points contained within the span, and weights are

given by a tricube weight function.

3. Local Regression Robust (LRR). It makes LR process resistant to outliers.

4. Median Absolute Deviation (MAD). It is a dynamic utilization threshold. The

upper threshold decreases when the CPU utilization increases, in order to prevent

SLA violations.

5. Static Threshold (THR). This policy has a single utilization threshold that

determines if a host is overloaded.

Four different VM selection policies were used:

1. Minimum Migration Time (MMT). This policy selects the VM that requires

the minimum time to complete a migration, compared to other VMs allocated to

the host.

2. Random Selection (RS). The VM to be migrated is chosen according to a uni-

formly distributed discrete random variable.

3. Maximum Correlation (MC). The selected VM has the highest correlation of

the CPU utilization with other VMs.

4. Minimum Utilization (MU). The VM with the lowest CPU utilization is se-

lected.

Finally, VM placement can be studied as a bin-packing problem, where bins are physical

nodes and items are VMs [116]. In our simulations, MMT, RS, MC and MU selection

policies are combined with MAD, IQR, LR, LRR and THR methods.

3.4.8 Energy-aware VM Consolidation Results

In a first set of experiments, we assumed IQR as host overloading detection policy and

compared the four VM selection policies (MMT, RS, MC and MU). All the combina-

tions will be compared in turn with Non Power Aware (NPA) and DVFS policies for

benchmarking purposes. According to the NPA approach, all the hosts consume the

maximum power throughout the whole simulation, while DVFS only applies a linear
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relationship between the power consumption and the CPU utilization, without dynamic

optimization of the VM allocation. Figure 3.25a shows the overall energy consumption,

measured over 5-minute intervals, in the different simulated scenarios. The amount of

energy consumed in each interval follows the computational load, hence it first increases

and reaches its maximum after one hour, then it decreases. Nonetheless, Figure 3.25a

shows that the four selection policies lead to different energy consumptions.

Figure 3.26 compares the different energy consumptions achieved by using the four se-

lection policies, showing the energy consumed over 2-hours by the eight data centers;

finally, the four combinations are compared in turn with NPA and DVFS. Similar sim-

ulations were run to evaluate the other four host overload/underload detection policies

(LR, LRR, MAD, and THR). The results of the evaluation are shown in Figure 3.25b,

Figure 3.25c, Figure 3.25d, and Figure 3.25e respectively.

Figure 3.26 reports the overall energy consumption in all the simulated scenarios. In

particular, it shows that the following combinations achieve significant energy savings:

LR-RS, LRR-RS, MAD-MC, and THR-MMT. In more detail, the THR-MMT policy

achieves the best energy savings: 88.4% energy reduction compared to NPA policy and

36.1% energy reduction compared to DVFS policy. A comparison between non-green

(NPA) approach, DVFS and all the green strategies is shown in Figure 3.27.

Finally, Figure 3.28 shows the comparison between non-green (NPA) and green IT strate-

gies, where the green strategy is the result of an arithmetic mean between all the twenty

combinations previously investigated. On average, dynamic consolidation policies on a

large heterogeneous Cloud infrastructure guarantee 87.4% energy savings with respect

to NPA, and 30.6% energy savings compared to DVFS. In conclusion, a Cloud infras-

tructure increases the energy consumption of the transport network, but data centers

remain the most power hungry elements of a Cloud system [141]. Therefore, VM allo-

cation and consolidation are combined in order to reach a common objective that is the

minimization of the data center energy consumption. By consolidating the VMs, fewer

racks and routers are employed, without compromising the SLAs previously negotiated

between customers and vendor. Consequently, idle routers and cooling equipment can

be turned off in order to reduce the energy consumption.
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(a) IQR (b) LR

(c) LRR (d) MAD

(e) THR

Figure 3.25: Host overloading/underloading detection policies combined with selec-
tion policies
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Figure 3.26: Energy consumption combining all detection and selection policies

Figure 3.27: Comparison between non-green (NPA), DVFS and all green IT strategies
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Figure 3.28: Comparison between non-green and green (calculated as arithmetic
mean) IT strategies
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3.5 Prototype Implementation

In this section, we describe the prototype implementation of the VRO architecture: we

have reproduced on a testbed the network topology considered in Section 3.4.2. The

testbed is implemented by means of five servers: a VMware ESXi server that is dedi-

cated to Network Address Translation (NAT) and Dynamic Host Configuration Protocol

(DHCP) services (based on pfSense), while an OpenStack environment is deployed on

the other four servers. The OpenStack platform hosts ten virtual machines: eight Linux

VMs are dedicated to the implementation of the virtualized network infrastructure, and

the other two VMs include a software (DRAGON RCE) to compute green network paths.

Below, some key features and the structure of the considered OpenStack platform and

DRAGON architecture are briefly explained. Then, we present a Cloud management

platform where resource management strategies are achieved by using object oriented

API, so that the IaaS Cloud layer can be exploited to create virtualized testbeds. In this

way, network administrators are able to manage testbed components and configure them

in easy way through automatic approaches. Moreover, administrators can run testbeds

for application deployment and optimization, with the objective to reproduce real oper-

ational environments in-house. Finally, the proposed platform has been experimentally

evaluated.

3.5.1 OpenStack

OpenStack is an open IaaS platform. It provides a set of services that could be organized

in a totally distributed and scalable manner. When this project began, in 2010, it was

called OpenStack Austin and it has been characterized by several releases (Liberty is the

12th and the latest one). OpenStack proposes a series of services that use asynchronous

communications to send and receive messages. The services are:

� OpenStack Compute (Nova) is a service that permits to create a series of

virtual instances and it has the responsibility of the network configuration for

each of them. The whole life-cycle of the instances within the Cloud infrastructure

is controlled by Nova. Nova is agnostic to the hypervisor that guarantees the

virtualization of services, interacting with it through the exposed APIs. Nova has

some subcomponents:
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Figure 3.29: OpenStack Services

– Nova-Network manages the configuration of the virtual network of the VMs;

it allocates IP addresses and it is able to create different networks (flat-based,

VLAN-based, etc.).

– Nova-API is the interface to the outer world and it is employed by users to

interact with the Cloud infrastructure. This service also enables to handle

virtual appliances from Amazon, by using the Elastic Compute Cloud (EC2)

APIs. This interface is designed as a RESTful web server, and through a

message queue-based protocol it can communicate with the other compo-

nents of the infrastructure. In detail, asynchronous request-response calls are

employed, while callbacks are used as a trigger, which is activated when the

output for a particular request is available.

– Nova-scheduler operates as a dispatcher of the Nova-API calls for the deploy-

ment of a VM. Through an algorithm based on configurable parameters, the

scheduler chooses a compute server from a pool of available resources.

– Nova-Compute is a service that controls the entire life-cycle of a virtual ap-

pliance by interacting with the hypervisor.

� OpenStack Object Storage (Swift) is used to store objects and it provides fail-

over and redundancy features. An object is a storage entity with meta-data that
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describe and represent it. The files loaded in the object storage are not compressed

or encrypted. Swift could be used to store and retrieve files, back up data or as an

archive for the development of applications that need an integration with a storage

system. The functions implemented by Swift include:

– backup e scalability;

– redundancy;

– data container;

– secure storage for a large number of objects.

One of the fundamental components of Swift is the container that manages a series

of objects stored in a particular structure. It could be considered as a folder in a

file system, even if the containers cannot be nested. Before starting uploading a

file, it is necessary to create a container. The object component is responsible for

searching, storing and deleting objects. The users interact with the Proxy by using

the exposed APIs. It receives requests to change meta-data, upload files or create

containers. The information about the physical location of the objects stored in

Swift is located in the Ring. Finally, the Account is the server that handles the

list of containers.

� OpenStack Image Service (Glance) is another service that permits to search,

store and retrieve original VM images. Glance can use a particular interface with

the Amazon storage solution (S3), or it can be used with the Object Storage to

stock images. In addition, Glance can employ the following methods to store

images:

– the local filesystem (default);

– OpenStack Object Store;

– S3 storage;

– HTTP (read-only).

� OpenStack Volume (Cinder) is used to create further volume partitions, which

can be added on the fly and exposed through the iSCSI protocol [183] to the VMs.

These volumes are allocated as block storage resources and can be connected to

the virtual machines as a secondary storage, or they can be employed as the root

storage to boot instances. A snapshot could be considered as a read-only copy of
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a volume at a given point in time, which can be created starting from a volume

currently in use. A volume is requested via Cinder, which adds a logical volume

into a specific group. Then, the volume is attached to an instance through an

iSCSI session with the compute node.

� Dashboard (Horizon) provides users with a web-based platform to access and

manage all the implemented services. It can be used to mount volumes, manage

instances, manipulate containers, create a key pair etc. The main features available

through Horizon are:

– Volume Management: creating snapshots and volumes;

– Object Store Manipulation: create, delete objects and containers;

– Instance Management: view console logs, connect through VNC, terminate

or create instances, etc.;

– Manage users, quotas and usage for project;

– Image Management: delete or edit images;

– User Management: assign roles, create users etc.;

– Access and Security Management: assign floating IPs, manage key-pairs, cre-

ate security groups, etc.

� Keystone provides authentication and authorization processes for all the Open-

Stack services. Authentication establishes if a specific request is actually coming

from the user who requested the service. There are two different types of authen-

tication: the first one relies on the account (username-password), while the second

one is based on token. Through the authorization procedure, an authenticated

user can access to a specific service. This service also handles the user manage-

ment functionalities by tracking users and what they are allowed to do. An user

can be assigned different roles in different tenants, which can be considered as an

organization, group or project. Keystone includes a token and a service catalogue

that provides information about the endpoints of the services that can be accessed

from a user.

� Network (Neutron) manages the creation of a network for the virtual appli-

ances and it also could substitute Nova-network service. Its structure is modular,

because Neutron allows to use a particular plugin that specifies the interface with

a networking driver.
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3.5.2 DRAGON

Establishing inter-domain paths is not trivial, because of the number of parameters in-

volved, the diversity of network infrastructures and the proper configurations that must

be done at both sides of the connection. Nowadays, configuring a lightpath across mul-

tiple domains is a lengthy process that needs to be automated, in order to make it scal-

able [184]. The Dynamic Resource Allocation in GMPLS Optical Networks (DRAGON)

project concerns the dynamic provisioning of network resources; multi-domain TE paths

are established by using a distributed control plane across heterogeneous network tech-

nologies, in response to end-user requests [185]. The main objective is to support e-

Science applications with deterministic (defined and guaranteed service levels) network

resources to link computational clusters, storage arrays, etc [186]. The DRAGON con-

trol plane architecture is able to provide connections on heterogeneous networks by using

GMPLS, also providing wrappers for network equipment that do not support it. The

key architectural components are (see Figure 3.30):

Figure 3.30: VRO interaction with IT resources

� Virtual Label Switch Router (VLSR): in order to ensure end-to-end auto-

mated provisioning, VLSR provides a mechanism to include non-GMPLS devices

that do not have native GMPLS protocols. VLSR translates GMPLS events into
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device specific commands (SNMP, TL1, CLI), allowing dynamic reconfiguration

of non-GMPLS equipment. A non-GMPLS device is converted to a VLSR by

adding a UNIX-PC that runs a GMPLS-based control plane stack, which consists

of OSPF-TE and RSVP-TE protocols. VLSR acts as a proxy agent for non-

GMPLS network devices and enables the control of Ethernet, TDM and optical

switches via GMPLS.

� Network Aware Resource Broker (NARB) and Resource Computation

Element (RCE): NARB enables routing, path computation and signalling across

multiple different domains. It plays the part of a local Autonomous System and

acts as a path computation engine that is queried by end-systems to have informa-

tion about the availability of TE paths. The RCE is a stand-alone subcomponent

of the NARB and it performs path computation tasks. NARB is also concerned

with inter-domain routing by exchanging topology information to enable path com-

putation. This exchange is based on the actual topology discovered by using the

OSPF-TE protocol, or on an abstract view of the domain topology, which allows

providers to hide the real topology of their domains (minimizing external updates).

In the last case, path computation accuracy is highly reduced. The NARB makes

use of algorithms to compute paths according to multiple constraints. This com-

ponent first computes a path based on an abstract topology, and then a more

accurate path is obtained through coordination of NARBs located in multiple do-

mains. NARB/RCE has the following VLSR related features:

– Dynamic resource state collection via OSPF-TE, and resource management;

– domain topology abstraction and advertisement via OSPF-TE;

– constraint-based path computation;

– inter-domain routing.

� Application Specific Topology Builder (ASTB): it receives requests from

end-systems for establishing Application Specific Topologies (a set of LSPs related

to an application domain). Moreover, the ASTB utilizes NARB services to eval-

uate the availability of the individual LSPs requested, mapping them to specific

topologies.

� Client System Agent (CSA): it is a software running on the end-system that

terminates the data plane link of the provided service. In this context, a client is
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any system that requests network services. In case of complicated topologies, CSA

queries the local ASTB.

GMPLS TE information is advertised via OSPF-TE protocol, which sends LSAs to all

the routers within the same area. Each router stores information in a local TED, learns

network topology and uses Shortest Path First (SPF) algorithm to calculate the shortest

path between that node and every other. If the TED includes constraints for Authen-

tication, Authorization, Accounting (AAA) and scheduling, other than TE constraints,

it is called 3D TED. The combination of path computation and 3D TED provides the

3D RCE, used by DRAGON to implement policy-based provisioning. For the GMPLS

routing, the DRAGON project has extended the open-source ZEBRA software (adding

TE extensions for OSPF), while for the GMPLS signalling, they have extended KOM

RSVP (adding TE extensions for RSVP).

3.5.3 Network Management Application

Infrastructure providers need more powerful platforms to efficiently combine manage-

ment procedures for both communication and IT resources. They have to ensure that

the resources are able to scale with a growing number of participating services and that

QoS requirements are met. Moreover, providers must face the problem of energy-efficient

resource management in a system where the allocation decisions are subjected to energy

consumption constraints. The above-mentioned characteristics can only be verified by

testing the network and IT resources at runtime and in a multitude of realistic scenarios;

however, resources must be deployed in these different designated environments to get

meaningful test results. Unfortunately, it is often impossible to perform multiple tests

at the same time during the running phase because the test infrastructure does not offer

suitable resources.

To solve these issues, we have developed a framework for emulating energy-efficient

network environments and for automatically deploying these in the Cloud. Network

providers can customize and automatically generate running testbed instances based on

the customization. By using the OpenStack APIs, we intend to automate the creation,

deployment, and management processes of virtual machines in a Cloud environment, de-

pending on Virtual Infrastructure requests issued by a Virtual Service User. OpenStack
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nodes will host multiple virtual machines that can be allocated to different overlay ex-

perimental networks, according to a specific topology chosen by the user. In this way, a

reliable and rapid communication over high-speed optical networks between data centers

is achieved. Network providers can utilize our application program to create multiple

paths with different criteria. A criteria could be a path with minimum end-to-end delay

or a more energy-efficient path with increased latency. In other words, our framework

can be used to generate customizable testbeds that enable simulations of GMPLS-based

network scenarios, heading towards dynamic on-demand resource allocation and service

provisioning. Several VLSRs, implemented by means of virtual Ethernet switches and

DRAGON software, provide traffic engineered paths. On a higher plane, the proposed

system provides users with a fully customizable testbed, in order to perform advanced

experiments related to the distributed computing. Furthermore, by using the Cloud as

a platform, we provide a cost-efficient way to setup arbitrarily large testbed instances

on-demand.

A typical system usage scenario consists of three steps:

1. Users interact with a user friendly and intuitive GUI, in order to communicate

with an OpenStack environment for testbed customization and network design.

Two sets of JAVA APIs for graphics programming are used: AWT and Swing,

which provide a huge set of reusable GUI components.

2. The system creates an infrastructure to provide and run flexible testbeds on-

demand.

3. Our system deploys multiple DRAGON virtual machines according to different

overlay networks, with a specific topology chosen by the user (not available with

the traditional OpenStack dashboard).

The software libraries that have been used in order to develop our system are:

� OpenStack4j6 2.0.2: an open source Cloud library that allows to exploit Open-

Stack APIs by using Java language, so that it is possible to interact with OpenStack

services from within our system.

6http://www.openstack4j.com/

http://www.openstack4j.com/
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� Jung7 2.0.1: a free and Java-based open source software library that is used

for the analysis, manipulation, and the visualization of graphs and networks. It

enables users to create directed and undirected graphs, and relations among the

graph nodes.

After describing via XML the variables that affect the topology of the virtualized infras-

tructure, our application loads the XML topology document for the target OpenStack

environment. Then, the XML is used to create configuration files that will be uploaded

onto DRAGON virtual machines. The steps to be undertaken in order to obtain the

above-mentioned files will now be detailed.

3.5.3.1 XML Format for Network Topology Representation

A network topology is made up of the interconnection of links and nodes:

� Node: virtual machine that runs on top of OpenStack. It represents a VLSR,

implemented by using Ubuntu OS and DRAGON software. A GRE tunnelling

mechanism is available: for each node, more tunnels can be configured. The

configuration of a GRE tunnel involves creating a tunnel interface, which is a

logical interface called “endpoint”.

� Link: connection between two nodes. A tunnel interface is created in the node to

support a connection. The tunnels behave as virtual point-to-point links that have

two endpoints identified by the tunnel source and the tunnel destination addresses.

We have defined a customized XML format to represent the above-mentioned network

topology information. The topology element contains information about network topol-

ogy and it is composed of two sub-elements: nodes and links (see Figure 3.31). A nodes

element contains a list of node elements, which have two attributes:

� id: a unique identifier of the node (integer).

� type: it identifies the role of the node in the topology (head, transit or tail).

Transit nodes are dedicated to the implementation of the virtualized network in-

frastructure, while head and tail nodes include a special version of the DRAGON

7http://jung.sourceforge.net/

http://jung.sourceforge.net/
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RCE, in order to compute green network paths and cover the VRO functionalities.

Head and tail nodes are mandatory, and they are respectively connected to the

source and destination (transit) nodes of the virtualized network infrastructure.

The node element contains the endpoints sub-element, which is a list of endpoint elements

that have three attributes:

� id: a unique identifier of the endpoint (integer).

� pwrCons: power consumption of the tunnel interface.

� status: the power state is defined according to the standard approach that models

the different power levels of a device, as proposed in EMAN [107].

Figure 3.31: Example of XML topology element
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Figure 3.32: A taxonomy of topology elements

Finally, a links element is a list of link elements. Each link element contains the following

attributes:

� id: a unique identifier of the link (integer).

� metric: it is the cost of an interface in OSPF. This cost indicates the overhead

required to send packets across that interface. The cost of an interface is inversely

proportional to the bandwidth of that interface.

A link joins two nodes and more precisely, two interfaces on two nodes. Therefore,

the link element contains the following sub-elements: nodeId1 and nodeId2 identify the

terminal nodes of the link, while epId1 and epId2 identify the terminal endpoints of the

link (see Figure 3.32).

3.5.3.2 Generating DRAGON Configuration Files

We use W3C libraries to parse the XML topology file and map the elements into Java

objects; by reading XML file, we also obtain an adjacency matrix that shows the con-

nectivity of the network, and its related graph. In Figure 3.33, we present an example
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of very simple network with three nodes and two links. A Java object is generated from

each network element; in Figure 3.34 there is an example of Java object related to the

link element. Each node is configured with an interface exclusively dedicated to the

exchange of control plane messages (GRE interface), and another one for exchanging

routing messages (LGRE interface): GRE and LGRE objects are associated with each

link, as shown in Figure 3.34. Source and destination addresses of a GRE tunnel are

part of the same subnet.

Figure 3.33: An example of simple topology

Figure 3.34: Parsing XML topology
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Finally, the following configuration files for each virtual machine are created:

� init.sh: this script creates connections with neighbouring virtual machines;

� ospfd.conf : VM credentials, router ID and its switching capabilities are defined.

In addition, also power consumption information for each interface is specified

(interface status, power consumption and transition time);

� rsvpd.conf : GRE tunnel interfaces are specified;

� zebra.conf : LGRE tunnel interfaces are defined.

The user interface of the application is shown in Figure 3.35: after reading the XML file,

an adjacency matrix that shows the connectivity of the network and its related graph is

displayed (see Figure 3.36). The “Generate Files” button allows to configure DRAGON

virtual machines according to a specific topology chosen by the user.

Figure 3.35: GUI of network management application

Figure 3.36: Network topology graph
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Figure 3.37: Logical view of testbed environment

3.5.4 Testbed Setup

The testbed consists of five physical machines (see Figure 3.37):

� VMware ESXi8 dedicated server: it is a type 1 hypervisor that gets installed

on top of the physical server. ESXi abstracts processor, memory, storage and

networking resources into multiple virtual machines. To deploy virtual machines

and perform administrative tasks, we use vSphere Client in order to manage the

host. In particular, we create and deploy three VMs on ESXi host: pfSense, Fuel

Master and Ubuntu. Each VM has a specific purpose:

– PfSense VM: this VM is equipped with pfSense9, a customized FreeBSD

distribution. It is an open source implementation of a virtual firewall and

a router. PfSense is installed on a dedicated virtual machine and requires

8https://www.vmware.com/products/esxi-and-esx/overview
9https://www.pfsense.org/

https://www.vmware.com/products/esxi-and-esx/overview
https://www.pfsense.org/
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at least two network interfaces to operate as a firewall: it permits selected

messages to flow into and out of the network. In particular, pfSense allows

to setup port forwarding so that users can access services from outside of

our private network. PfSense uses a file, called config.xml, which stores the

configuration of all services available in the host.

– Fuel Master VM: it hosts Mirantis Fuel10, an open source tool that allows

the automated deployment and management of an OpenStack environment,

which typically is a time-consuming, complex and error-prone process. It

provides both a command-line and a GUI, enabling hardware discovery, OS

provisioning, service setup, cluster management, and other features. Fuel

acts as a DHCP server for the node servers that are configured for booting

from a network server by using the Preboot Execution Environment (PXE).

In this way, Fuel deploys Ubuntu 14.04 and OpenStack Juno services to four

servers. In detail, our OpenStack environment consists of a Controller node

and three Compute nodes, which will be described below.

– Ubuntu VM: this VM is equipped with the application that has been de-

veloped in order to create overlay networks between virtual machines. VMs

are configured according to a specific topology.

� One server as Controller node: it is the control node for the OpenStack environ-

ment and it is responsible for running the management services. The Controller

node runs all Nova services, except nova-compute.

� Three servers as Compute nodes: they represent the hosts on which we deploy

virtual machines.

The testbed consists of five servers HP ProLiant MicroServer G7 N54L 704941-421 with

the following configuration:

� 8 GB DDR3 RAM;

� HP NC360T PCI Express Dual Port Gigabit NIC;

� HP MicroServer Remote Access Card.

10https://www.mirantis.com/products/mirantis-openstack-software/

https://www.mirantis.com/products/mirantis-openstack-software/
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Each physical machine has three Ethernet ports, which accept cables with RJ45 con-

nectors, and an Intelligent Platform Management Interface (IPMI) port, which allows

to access, monitor, diagnose and manage the machine from a remote site. Five switches

NETGEAR GS108T are utilized to support the following network configuration plan

(see Figure 3.38):

� External Network (blue color): two ESXi server’s ports (Ethernet and IPMI)

are connected to a switch, so that we can remotely access to the host. In detail,

the External Network allows access to pfSense (port 7777), ESXi (port 80) and

Fuel Master (port 8000) interfaces.

� Administrative (PXE) Network (red color): it is used for PXE boot of Cloud

servers and OpenStack installation.

� Public Network (yellow color): it provides virtual IPs for endpoints by which

users can connect to the APIs of OpenStack services. This network is isolated

from other networks in the OpenStack environment for security reasons. Public

Network addresses can be divided into two groups:

– Public range: these addresses can be used to communicate with the cluster

and its VMs from outside of the cluster.

– Floating IP range: these IPs are assigned to the VMs, allowing them to

communicate with the outside world.

� Private Network (green color): it is used for the communication between each

tenant’s VMs. The VLAN range used for private networks is configured by using

the Fuel GUI.

� Management Network (green color): it is responsible for the exchange of mes-

sages between Controller, Compute and Storage nodes.

� Storage Network (green color): it separates tenant storage traffic from other

messages.

The Fuel node is connected only to External, Administrative and Public networks, while

the other nodes are connected to all networks but one (External Network).
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Figure 3.39: Topology of the virtualized infrastructure

3.5.5 Testbed Results

Figure 3.39 depicts the topology of a virtualized infrastructure where several VLSRs,

implemented by means of virtual Ethernet switches and DRAGON software, provide

traffic engineered paths. This infrastructure includes ten virtual machines, which are

deployed on the Compute nodes of the OpenStack environment, and GRE tunnels that

interconnect the VMs. Tunnelling provides a means for encapsulating packets inside a

routable protocol via virtual interfaces.

The topology of the virtualized infrastructure consists of:

� head node (node 0), where a special version of the DRAGON RCE is configured

to cover the VRO functionalities;

� transit nodes (1, 2, 3, 4, 5, 6, 7, 8), which act as intermediary nodes and implement

OSPF-TE and RSVP-TE functionalities;

� tail node (node 9) representing the destination node of the topology.
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Figure 3.40: GRE tunnels between virtual switches

The VRO computes the best path connecting source-destination pairs of a VI, by consid-

ering the cost of the links and the energy consumption of the nodes. The VLSR and the

(NARB)/RCE DRAGON components on each node of the transport network topology

are configured. The VLSR allows to control Ethernet switches via the GMPLS control

plane, making them capable of label switching. Connections between different nodes

and interfaces of the topology are created by configuring several GRE tunnels, where

routing and signalling messages pass through. Each node is configured with an interface

exclusively dedicated to the exchange of control plane messages (GRE interface), and

another one for exchanging routing messages (LGRE interface) (see Figure 3.40 and

Table 3.8). On each node a local interface (local interface) is also configured in order to

allow communications between nodes.

The testbed is designed to operate in the following way: ten virtual switches are first

deployed and the DRAGON components are executed. Once the infrastructure has been

created, a script is executed in order to build a LSP packet, with the aim of establishing

a path from the head node 0 to the tail node 9. The link costs can have two different

types of values, according to a Green Path (GP) metric or a Shortest Path (SP) metric,

depending on the test that we want to perform. By default, the algorithm computes

the best path by minimizing the distances (SP metric). If we want to calculate the path

that guarantees the minimum power consumption, we should activate the GP metric.
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By issuing a command at the DRAGON shell, we may switch from SP metric to GP

metric. More in depth, the GP metric (MGP ) is computed by referring to Equation 3.36:

MGP =

[
xif · PSif

+ βif ·
currRateif
maxRateif

]
i

+

[
βlc ·

currRatelc
maxRatelc

]
n

+

[
xif · PSif

+ βif ·
currRateif
maxRateif

]
j

+

[
βlc ·

currRatelc
maxRatelc

]
m

+

⌊
Llink
LAmax

+ 2

⌋
·
(
xA · PSA

)
+

⌊
Llink
LRmax

⌋
· (xR · PSR + δR · currRateλ) (3.36)

The power consumption of nodes and links are computed by referring to Table 3.5,

Table 3.6, and Table 3.7 that have been previously discussed. Moreover, the lengths

(km) of the fifteen bidirectional links of the illustrated network topology are specified

in Figure 3.14. The SP metric is computed by considering the well-defined cost of an

interface in OSPF (cost = 100000000/bandwith in bps). The bandwidth values are

taken from Table 3.2. We first use SP metric (i.e. not minimizing power consumption)

in order to establish a path from node 0 to node 9. In details, the LSP status summary

displays the hops that are traversed by packets in order to reach the destination (see

Figure 3.41a). The path followed by the LSP packets is the following: the head node

creates the packet; through routing interface lgre, the head node forwards the LSP

towards the interface of the node 3. The above-mentioned node receives the packet and

places it on the output interface. Finally, the packet arrives at node 5. The resulting

path 0-1-3-8-9 is shown in Figure 3.42a.

Now we analyze the results of the same test performed with GP metric. In Figure 3.41b

we show the output of the show lsp command at the DRAGON shell. The path followed

by the LSP packets is the following: the head node creates the packet and sends it

to node 1; through routing interface lgre (MGP = 4.5), the node 1 forwards the LSP

towards the interface of the node 2 (MGP = 4.5). This node places the packet in outgoing

on the node 2 interface (MGP = 3.6). Therefore, the packet is received by the node 4

interface (MGP = 3.6), which places it on the output interface (MGP = 3.6). The packet

is received by the node 5 interface (MGP = 3.6), which places it on the output interface

(MGP = 4.5). Finally, the packet arrives at the node 8 interface (MGP = 4.5), which

forwards the LSP to the tail node. The path 0-1-2-4-5-8-9 is shown in Figure 3.42b. This

experiment shows that our implementation is able to setup a path through geographic

network nodes, and this path minimizes the overall power consumption of the WAN

infrastructure.



Chapter 3. Green Resource Management in a VRO-based Infrastructure 160

(a) Without power constraints

(b) With power constraints

Figure 3.41: Resulting path
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(a) Without power constraints

(b) With power constraints

Figure 3.42: Network Topology calculation



Chapter 4

Security Management in a

PCE-based Infrastructure

4.1 Context and Motivations

Over the latest years, the interest in Cloud computing has rapidly increased due to

the flexibility and availability of the computing resources at a lower cost [27] [187].

The Cloud deployment model should be selected with the awareness that moving from

private to public solutions, the control over data is gradually lost. It is possible that

some information may require special security measures due to its intrinsic nature (e.g.

health, genetic, financial data). In such cases, due to risks like unauthorized accesses,

consumers should carefully decide whether it is recommendable to use the Cloud services

or to preserve an in-house processing of such data types.

From small business to enterprise solutions, fully integrated security is often based on

perimeter access control technologies, while Cloud services are outsourced to third-party

Cloud providers and many companies share the same infrastructure within the public

Cloud. In other words, because of fixed infrastructures gradually replaced by Cloud

networks, security perimeters are no longer physical but virtual [188].

Moreover, customers should know whether data will remain in the physical availability

of the provider, or if the service is designed on technologies provided by a third-party

provider. The use of virtual resources makes Cloud exposed to attacks: eavesdroppers

162
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can access secret information, violating confidentiality; hackers can directly attack the

Cloud domain to delete messages, inject erroneous messages or impersonate a node,

violating integrity of data. Compromised nodes, in turn, can launch attacks to other

nodes within a network. Because any centralized entity is vulnerable to several types

of security threats in the Cloud, a security solution must be based on the principle of

distributed trust where one provider cooperates with some others [189] [190].

In this chapter, a focus on a Virtual Intrusion Detection System (VIDS) will be provided,

which contributes to face security problems in the Cloud by implementing a real-time

traffic analysis, providing re-actions and using ubiquitous control systems [191]. The

traffic monitoring is a fundamental part of the network security: the idea is to define

a distributed traffic analyzer that provides a real-time feedback, and shares the results

between neighbouring nodes. A method based on the standard protocols of the GMPLS

suite to react to malicious attacks will be introduced in this section as well.

4.2 Related Work

Cloud computing services require complicated management procedures in order to guar-

antee performance, security, robustness and reliability. Furthermore, there are not so

many accepted standards or open source solutions for Cloud management and monitor-

ing technologies. Different Cloud deployment models (public, private, community and

hybrid) need different solutions about monitoring: public Clouds have geographically

distributed resources, requiring large investments in monitoring and scalability, while in

private Clouds resources are accessible within a private organization.

In this regard, in [192] authors give examples related to password management, backup

policies and repair time. They propose a four-step process for defining Cloud-specific

security service levels to make SLAs more auditable. There are open questions about the

need to improve QoS through security SLA specifications and metrics, and to provide an

architecture for both monitoring and management of security SLAs. They also analyze

security in SLAs, focusing on measurable security metrics combined with a monitoring

and controlling architecture.

In [193] authors propose the Grid and Cloud Computing Intrusion Detection System

(GCCIDS), to cover the attacks that network and host cannot detect, by using an audit
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system that monitors each node and alerts the others when the probability of an attack

is high; therefore, each node contains IDS, which includes two components: Analyzer

and Alert Systems. The Event Auditor monitors message exchange between nodes and

captures system logs. Based on the data received from Event Auditor, the IDS service

makes use of two intrusion detection techniques:

� Behaviour-based method, to control if user actions match usual behaviour profiles

(this technique detects unknown attacks);

� knowledge-based method, which verifies security policy violations (this technique

detects known attacks).

An Artificial Neural Network (ANN) to detect unknown attacks is used, and it requires

lots of training samples as well as conspicuous time for detecting intrusions effectively.

In order to reduce training time of ANNs, fuzzy logic can be used. Authors developed

a prototype to evaluate the proposed architecture, using a middleware called Grid-M:

a higher level of security and a lower rate of false positives and false negatives are

achieved. Analysis is individually performed on each node, resulting in a lower data

transmission between nodes and a decreased complexity of the system. GCCIDS has

the following weaknesses: it can only detect specific intrusions, without preventing new

types of attacks or creating an attack database. Furthermore, this approach works for

intrusions at the middleware layer only (PaaS), therefore it is necessary to evaluate the

possibility of extending the discussion to IaaS.

In [194] the authors propose a generic Cloud monitoring architecture for private Clouds;

it is characterized by three levels and it is simple, modular and extensible. Infrastructure

layer is composed of heterogeneous resources: services, hardware, network and available

software; integration layer separates infrastructure details and monitoring information

required by Cloud users; view layer provides interface through which monitoring infor-

mation is analyzed. In order to validate the proposed architecture, authors developed a

Private Cloud Monitoring System called PCMONS. It mainly works at the integration

layer, by retrieving, gathering and preparing relevant information for the visualization

layer. In previous works, we note the absence of a distributed infrastructure and the

inability to detect new types of attack. In this context, we propose a novel architecture,
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Figure 4.1: A simplified representation of an IaaS infrastructure

where a distributed traffic analyzer supervises, on top of a Cloud domain, computa-

tional resources and log messages in order to perform the related security corrections in

real-time, using a closed-chain IDS.

4.3 Architecture of a Secure Cloud Infrastructure

In this chapter, we focus on IaaS service model because it guarantees the highest level

of control over the infrastructure. Virtualization is a fundamental enabler to IaaS and

it is commonly defined as a technology that introduces a software abstraction layer

between the hardware and the operating system, and applications running on top of it

[4]. This abstraction layer is called hypervisor, which provides a compatible, uniform

view of underlying hardware, and hides the physical resources of the computing system

from the operating system, making machines from different vendors with different I/O

subsystems look the same. This means that it is possible to run multiple virtual machines

with different operating systems in parallel on the same hardware.

IaaS Cloud delivery model provides an interface for instantiating VMs from system

images. Figure 4.1 offers a simplified representation of an IaaS infrastructure that shows

different Cloud domains, each of which abstracts completely heterogeneous physical

resources (network and IT) from operating systems and applications using virtualization.

Each Cloud domain contains a particular VM that provides a range of VM-related

management tasks (activation, deletion, migration, monitoring, etc.). In this scenario,

Cloud provider has total control over physical infrastructure, and has admin rights for
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Figure 4.2: Example of a secure Cloud infrastructure

hypervisor and VM manager; moreover, it has no control over guest OS, middleware

and application layer. Conversely, Cloud subscriber has admin rights for application

deployed, middleware and guest OS, and it can make requests to hypervisor; moreover,

it has not control over hardware. In this context, we need a distributed security system

that works on a different layer than VM manager and hypervisor ones. Therefore,

for each Cloud domain we define a trusted security perimeter that is controlled by a

closed-chain IDS. We propose an architecture where the Cloud middleware orchestrates

the local management system of each domain, exposing a secure API (see Figure 4.2);

the API allows to exchange information to modify the status of each VM, relying on

information collected about security state.

4.4 The Virtual Intrusion Detection System

The Virtual Intrusion Detection System (VIDS) is a relatively new and innovative idea

in the Cloud security domain. It provides active alarms and performance reports about

Cloud network, it analyzes the data in near real time and provides automatic re-action

after a security issue (e.g. secure routing in Cloud networks defined at runtime). The

proposed architecture enhances the IDS basic principles by introducing a set of func-

tionalities, which allow the reconfiguration of the Cloud infrastructure in a smart and

secure way. Below, component modules of the VIDS architecture are described (see

Figure 4.3):
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Figure 4.3: Conceptual model of the VIDS

� Analysis module: it reviews data from network and IT devices, providing an

overall picture of the logical flow of incoming events, useful to the decision module

to correct decisions in an automatic/adaptive way. The analysis module works

with a preconfigured schema provided by the management module, and it conducts

analysis considering already processed data related to previous events logged by

the monitoring module. Several methods to find recursive patterns in the large

amount of data collected by IDS in log files are available. In the VIDS context,

the analysis module implements two different methods:

– Signature detection: it represents the simplest way to analyze IDS data. The

characteristics of previous attacks are identified, recorded into a database,

and compared with information related to possible new attacks, in order to

detect them.

– Anomaly detection: it represents the most sophisticated technique. The nor-

mal behaviours of the host or the network that is under protection are learned

and recorded into a database. After that, the analysis module tries to de-

tect variations between the current behaviours and the information in the

database.

� Decision module: it collects data from analysis module and takes decisions

about real-time actions to be done, in order to solve anomalies related to network

intrusions.

� Action module: it represents the actuator that solves security issues in a Cloud

domain.

� Monitoring module: it captures intrusion and login attempts. Each event is

time-stamped and stored in a database. A complete correlation map is created by

using raw data captured by the monitoring module.
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Figure 4.4: Conceptual model of distributed VIDS

� Management module: it properly configures and updates the VIDS connected

to the Cloud infrastructure.

4.5 Distributed VIDS in the Cloud

The conceptual model of the Virtual IDS can be centralized or distributed. The cen-

tralized VIDS is a combination of individual sensors, which collect and forward network

data to the central management system, where data of a well-defined Cloud network do-

main is stored and processed. Distributed VIDS, instead, includes more virtual devices

that cooperate in order to perform both the data gathering and reporting functions. We

propose a distributed VIDS based on a traffic analyzer that collects computational re-

sources and log messages within a Cloud domain, in order to make the necessary security

corrections in real-time.

In the proposed architecture in Figure 4.4, each node is responsible for locally detect-

ing security issues, but neighbouring nodes can collaboratively monitor a broader area.

VIDS instances run independently and monitor local activities, sharing hardware and

software resources and implementing a closed-chain control system: they detect intru-

sions from local traces and react properly.
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4.6 Prototype of a Cloud VIDS

Our objective is to design a flexible framework that ensures a high network protection

from malicious attacks. Monitoring is mandatory to constantly check the performance of

the system and guarantee that the required QoS levels are being met under the current

security settings. The threat level of the network is based on the events reported by

VIDSs or other entities (or both), such as firewalls and VIDSs of other collaborating

networks. In other words, VIDS monitors network intrusions or malicious attacks to

determine a number of threat levels ranging from low to severe. Based on the defined

secure Cloud infrastructure and VIDS model, we have implemented a prototype of Cloud-

based VIDS. Its main components are:

� Security monitor: it implements the monitoring module of the VIDS model. It

was developed extending the OpenStack Telemetry service (Celiometer) [195].

� Security manager: it implements the management module of the VIDS model.

It was developed extending the OpenStack Identity service (Keystone).

� Security controller: it implements the analysis-decision-action modules of the

VIDS model. It was developed extending the DRAGON suite.

The implementation of the VIDS involves the control plane architecture, both in terms of

protocol extensions and security constraints management. We introduce an architecture

where logical modules involved are:

� PCC module, which performs the request of a path computation that has to be

solved by the proper PCE. The information is sent by using the PCEP. The re-

quest includes information about the requested connection (source and destination

addresses, security constraints). The Virtual IDS integrates the PCC component

and sends requests to the PCE module.

� PCE module, which computes a path based on the network state information and

security costs.

� Traffic Engineering Database is the repository where routing information retrieved

by the PCEs is stored. It is related to available network resources such as network
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Figure 4.5: Virtual IDS secure path computation

topology, nodes and links status, connectivity, available bandwidth and security

costs.

� Policy component provides PCE with the set of constraints that should be applied

during the path calculation (security metric).

The network control plane might be embedded in the network element or not. In the

last case, the signalling module and the routing module interact with the management

interface of the network element, by turning RSVP and OSPF frames in secure man-

agement frames. The sequence diagram in Figure 4.5 shows the secure path calculation

process, initiated by the Virtual IDS (PCC). The computation workflow follows these

steps:

1. Off-line, with respect to the normal data exchange, a synchronization phase is

started for populating the part of the database used for determining the correct

route of the data over the network. This step is divided in two independent actions:
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� Security Policy setup, used to configure the policy and security constraints

that involve the area of the network under analysis.

� Security policy distribution, used to distribute network security information.

2. Once VIDS receives a service request, it chooses the PCE that is able to satisfy

the request. The request is analyzed by the PCE by using the security information

that is contained in the TED (acquired in step 1).

3. Based on the information received, the PCE calculates a new path.

4. The head node of the chain starts the RSVP reservation phase.

Figure 4.6 shows the computation of the transmission path with low level of security, or

with the security controller disabled, while Figure 4.7 shows the alternative transmission

path, calculated for high-security purposes. Results are achieved by considering the

prototype implementation of the VRO architecture discussed in Chapter 3.

Figure 4.6: Low-security path

Figure 4.7: High-security path
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Conclusions

Computing has evolved over time according to different paradigms, along with an in-

creasing need for computational power. Modern computing paradigms basically share

the same underlying concept of Utility Computing, that is a service provisioning model

through which a shared pool of computing resources is used by a customer when needed.

The objective of Utility Computing is to maximize the resource utilization and bring

down the relative costs. Afterwards, the Cloud Computing paradigm emerged as a re-

sult of the growth and confluence of several approaches and technologies, such as Utility

Computing, virtualization, service orientation, and distributed computing. As the popu-

larity of the Cloud Computing has grown over the past few years, several different service

and deployment models have emerged with the aim of meeting the needs of distinct user

categories. In particular, the Infrastructure as a Service (IaaS) model has become the

mainstream in the commercial world; the IaaS includes the key components for Cloud

IT and its aim is to provide users with the highest level of management control and

flexibility over IT resources.

IaaS systems enable the joint deployment of infrastructures and applications, and their

realization requires a control platform for orchestrating the provisioning, configuration,

and management of the virtual resources over physical hardware. Yet, since the orches-

tration process is complex and potentially error-prone if performed manually, the need

for a tool that minimizes human intervention in order to automatize resource configu-

rations and to remain scalable is necessary. Indeed, an easy configurable system allows

to reduce costs and scale data center energy consumption. From the Cloud provider’s
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perspective, however, building a system to orchestrate resources is challenging, due to

the growth of data centers, QoS constraints and SLAs. Therefore, the management

problem of network and IT resources has generated a lot of interest among the research

community and ICT industry.

Due to the success of the Cloud Computing paradigm, in the last few years there has

been a remarkable growth in the number of data centers, which represent one of the

leading sources of increased business data traffic on the Internet. They store increasing

amounts of data while offering also a wide variety of services. Furthermore, in order to

increase performance and reliability, as well as to support the growing service demands

from customers, Cloud providers are now building additional geographically distributed

data centers with high-speed backbone networks interconnecting them. An effect of

the growing scale and the wide use of data centers is the dramatical increase of power

consumption, with significant consequences both in terms of environmental and opera-

tional costs. Moreover, the network communication between interconnected VMs might

involve additional network elements (switches and links), which means a higher con-

sume of energy. In addition to energy consumption, also carbon footprint of the Cloud

infrastructures is becoming a serious concern, since a lot of power is generated from

non-renewable sources. Hence, energy awareness has become one of the major design

constraints for Cloud infrastructures. In order to face these challenges, a new generation

of energy-efficient and eco-sustainable network infrastructures is needed. In this regard,

several approaches have been promoted in order to reduce CO2 emissions resulting from

data centers. One of these approaches, for instance, is the use of green nodes that are

powered by renewable energy sources.

In this thesis, a novel energy-aware resource orchestration framework for distributed

Cloud infrastructures is discussed. The aim is to explain how both network and IT

resources can be managed while, at the same time, the overall power consumption and

carbon footprint are being minimized. A high-level overview of the system architecture

is proposed and is made up of three layers: the Physical Layer, the Virtual Layer, and

the Management Layer. At the Physical Layer, network nodes and physical machines

(hosting VMs) are organized in clusters. Each device is controlled by a system ser-

vice that is referred to as Local Controller, which monitors network devices and detects

overload/underload anomaly situations. The Virtual Layer provides scalability to the
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system and it is composed of a Domain Leader that manages a subset of Domain Man-

agers. Finally, the Management Layer provides the user interface to customers. VMs

and network devices are periodically monitored, and resource utilization information

is transferred to the corresponding Domain Manager by the Local Controllers. Based

on the information received, the Domain Manager takes decisions about VM allocation

and consolidation (in order to solve host overload/underload problems), and computes

the appropriate network path in order to satisfy energy-efficient objectives. VM alloca-

tion and consolidation decisions contribute to the creation of a Green Migration Plan,

which specifies the new mapping between network/IT resources and Local Controllers.

Virtual machines are periodically consolidated into a lower number of physical hosts,

in order to turn off the idle devices, thus saving energy consumption. The migration

plan is achieved by applying several resource relocation algorithms, which are evaluated

according to their performance.

Afterwards, the aforementioned resource management framework is used to offer re-

sources to service providers in the form of virtual infrastructures, while ensuring that

energy consumption and CO2 emissions are minimized. The problem we addressed is

twofold: from the network-side, a green management of the geographical networking

infrastructure must be pursued, in order to lower the energy consumption and the CO2

emissions; from the IT-side, an energy efficient consolidation of virtual machines in data

centers needs to be reached. The optical network infrastructure is assumed GMPLS-

enabled, because the Generalized Multi-Protocol Label Switching (GMPLS) is a good

solution for providing enhanced traffic engineering facilities within backbone networks.

Then, an extension to the standard Path Computation Element (PCE) architecture

has been proposed, with the aim of assigning to a centralized entity, named Virtual

Resource Orchestrator (VRO), the responsibility of optimally allocating the physical

resources needed to instantiate a requested Virtual Infrastructure. The PCE provides

functions of path computation in support of traffic engineering in networks controlled

by GMPLS. The OSPF-TE routing protocol within the GMPLS framework has been

properly extended to include energy-related information, such as the carbon footprint

and the energy consumption associated with nodes and links. Furthermore, based on en-

ergy cost and carbon footprint metrics, a constrained shortest-path Dijkstra’s algorithm

that minimizes energy consumption and CO2 emissions of networks connecting multiple

distant data centers has been implemented. We have presented an extensive evaluation



Conclusions 175

conducted by simulations. These simulations show how the VRO can be configured to

pursue green management objectives and to obtain appreciable energy savings while, at

the same time, preserving contractual SLAs related to minimum guaranteed bandwidth

and maximum activation time of a network path. This is a multi-objective optimization

problem in which two distinct objective functions are considered, namely the power con-

sumption and the Greenhouse Gas (GHG) emissions, which are combined into a single

total cost function.

The simulations have been conducted in a test scenario composed of eight geographically

distributed data centers interconnected through an optical backbone. We have supposed

that the eight data centers are spread all over the U.S. and that the data centers are

co-located at eight different generation sources, so that they will use power produced

locally. At the beginning, one optimization objective is considered at a time, in order to

evaluate separately the contribution of the individual objective functions to the multi-

objective optimization problem, without taking into account trade-off situations. We

have compared the overall power consumption and carbon footprint resulting from the

Green, Min CO2, Min Hops, and Worst-Case approaches, under the same load condi-

tions. As expected, the lowest power consumption is achieved by the Green strategy, in

which the cost function depends solely on the power consumption increases of network

devices. The energy savings achieved by using the Green approach are 35% compared

to Min CO2, 47% compared to Min Hops, and 68% with respect to the Worst-Case.

Instead, the lowest GHG emissions are achieved by the Min CO2 strategy, in which

the cost function depends entirely on carbon footprint increases of the network devices.

The CO2 savings achieved by using the Min CO2 approach are 9% compared to Green,

14% compared to Min Hops, and 33% with respect to the Worst-Case. Moreover, the

proposed energy-aware algorithms have shown only a marginal increase for the number

of routing hops compared to the Min Hops approach. Finally, the possible trade-offs

have been discussed: when the objectives are equally weighted, the best compromise has

been achieved.

A performance evaluation of several energy efficient VM consolidation algorithms has

also been conducted by using CloudSim tool. Dynamic resource provisioning policies

on a large heterogeneous Cloud infrastructure have proven to be able to minimize data

center energy consumption. In more detail, THR-MMT policy achieves the best energy

savings by using a single utilization threshold in order to determine if a host is overloaded,



Conclusions 176

and by selecting the VM that requires the minimum time to complete a migration,

compared to other VMs allocated to the host. Then, a prototype of our framework

has been implemented, which is able to configure GMPLS-enabled network nodes and

Cloud-enabled data centers with the aim of providing Virtual Infrastructures.

Finally, we propose a solution for Cloud security based on a Virtual Intrusion Detection

System (VIDS). We have presented a novel architecture that considers the basic princi-

ples of Cloud computing, virtualization and GMPLS, and applies them to the intrusion

detection systems. The Cloud infrastructure supports a distributed architecture of ubiq-

uitous VIDSs administrated by different stakeholders, where each VIDS follows a set of

cooperation rules to form complex security services. Based on the defined architecture,

we have implemented a prototype of the Cloud-based IDS. In conclusion, the VRO-based

architecture has been proven to be flexible enough to adapt to varying requirements and

objectives in the management of network infrastructures.
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dovrà servire non soltanto a me, ma soprattutto agli altri per convincersi che nessuno
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ner, and Jochen Stößer, editors, Designing E-Business Systems. Markets, Ser-

vices, and Networks, volume 22 of Lecture Notes in Business Information Pro-

cessing, pages 110–123. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-01255-

6. doi: 10.1007/978-3-642-01256-3 10. URL http://dx.doi.org/10.1007/

978-3-642-01256-3_10.

[32] C. Hewitt. ORGs for Scalable, Robust, Privacy-Friendly Client Cloud Computing.

IEEE Internet Computing, 12(5):96–99, September 2008. ISSN 1089-7801. doi:

10.1109/MIC.2008.107. URL http://dx.doi.org/10.1109/MIC.2008.107.

[33] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A

Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley, Feb 2009. URL http://www.eecs.

berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[34] A. Tikotekar, G. Vallée, T. Naughton, H. Ong, C. Engelmann, S. L. Scott, and

A. M. Filippi. Effects of Virtualization on a Scientific Application Running a

Hyperspectral Radiative Transfer Code on Virtual Machines. In Proceedings of

the 2Nd Workshop on System-level Virtualization for High Performance Comput-

ing, HPCVirt ’08, pages 16–23, New York, NY, USA, 2008. ACM. ISBN 978-

1-60558-120-0. doi: 10.1145/1435452.1435455. URL http://doi.acm.org/10.

1145/1435452.1435455.

[35] R. Buyya, C. S. Yeo, and S. Venugopal. Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services As Computing Utilities. In

Proceedings of the 2008 10th IEEE International Conference on High Performance

Computing and Communications, HPCC ’08, pages 5–13, Washington, DC, USA,

2008. IEEE Computer Society. ISBN 978-0-7695-3352-0. doi: 10.1109/HPCC.

2008.172. URL http://dx.doi.org/10.1109/HPCC.2008.172.

http://dx.doi.org/10.1109/HPCC.2008.38
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://dx.doi.org/10.1007/978-3-642-35016-0_2
http://dx.doi.org/10.1007/978-3-642-01256-3_10
http://dx.doi.org/10.1007/978-3-642-01256-3_10
http://dx.doi.org/10.1109/MIC.2008.107
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://doi.acm.org/10.1145/1435452.1435455
http://doi.acm.org/10.1145/1435452.1435455
http://dx.doi.org/10.1109/HPCC.2008.172


Bibliography 184

[36] P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Computing.

Technical report, Gaithersburg, MD, United States, 2011.

[37] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A Break in the

Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev., 39(1):

50–55, December 2008. ISSN 0146-4833. doi: 10.1145/1496091.1496100. URL

http://doi.acm.org/10.1145/1496091.1496100.

[38] R. Buyya, R. Ranjan, and R. N. Calheiros. InterCloud: Utility-oriented Federation

of Cloud Computing Environments for Scaling of Application Services. In Pro-

ceedings of the 10th International Conference on Algorithms and Architectures for

Parallel Processing - Volume Part I, ICA3PP’10, pages 13–31, Berlin, Heidelberg,

2010. Springer-Verlag. ISBN 3-642-13118-2, 978-3-642-13118-9. doi: 10.1007/

978-3-642-13119-6 2. URL http://dx.doi.org/10.1007/978-3-642-13119-6_

2.

[39] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog Computing and Its Role in

the Internet of Things. In Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1519-7. doi: 10.1145/2342509.2342513. URL http://

doi.acm.org/10.1145/2342509.2342513.

[40] I. Stojmenovic. Machine-to-Machine Communications With In-Network Data Ag-

gregation, Processing, and Actuation for Large-Scale Cyber-Physical Systems. In-

ternet of Things Journal, IEEE, 1(2):122–128, April 2014. ISSN 2327-4662. doi:

10.1109/JIOT.2014.2311693.
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[65] G. L. Tsafack Chetsa, L. Lefèvre, J. M. Pierson, P. Stolf, and G. Da Costa.

Exploiting performance counters to predict and improve energy performance of

http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf
http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
https://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
https://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/carbon-footprint-stomps-value-v5.pdf
https://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/carbon-footprint-stomps-value-v5.pdf
https://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/carbon-footprint-stomps-value-v5.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://www.eni.com/green-data-center/it_IT/static/pdf/Green_Grid_DC.pdf
https://www.eni.com/green-data-center/it_IT/static/pdf/Green_Grid_DC.pdf
http://www.apcmedia.com/salestools/NRAN-72754V/NRAN-72754V_R2_EN.pdf?sdirect=true
http://www.apcmedia.com/salestools/NRAN-72754V/NRAN-72754V_R2_EN.pdf?sdirect=true
http://www.thegreengrid.org/~/media/WhitePapers/WhitePaper13FrameworkforDataCenterEnergyProductivity5908.ashx?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/WhitePaper13FrameworkforDataCenterEnergyProductivity5908.ashx?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/WhitePaper13FrameworkforDataCenterEnergyProductivity5908.ashx?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/CarbonUsageEffectivenessWhitePaper20101202.ashx
http://www.thegreengrid.org/~/media/WhitePapers/CarbonUsageEffectivenessWhitePaper20101202.ashx
http://www.thegreengrid.org/~/media/WhitePapers/CarbonUsageEffectivenessWhitePaper20101202.ashx


Bibliography 187

HPC systems. Future Generation Computer Systems, 36:87 – 298, 2014. ISSN

0167-739X. doi: http://dx.doi.org/10.1016/j.future.2013.07.010. URL http:

//www.sciencedirect.com/science/article/pii/S0167739X13001556.

[66] G. Da Costa, M. D. de Assunção, J. Gelas, Y. Georgiou, L. Lefèvre, A. Org-
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