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Summary

In the last decade the use of Unmanned Aerial Vehicles has exponentially grown espe-
cially due to recent research progresses. Thanks to their fast navigation ability these kind
of platforms are particularly suitable for different service applications such as the building
inspection, the surveillance, the remote manipulation and others. As consequences, the
use of these platforms in service robotics is becoming an attractive field and a cutting-
edge research topic, and it has been able to attract the attention of several international
research groups. In such a scenario, the European project SHERPA (FP7-ICT-600958),
under which this thesis has been partially developed, intends to develop a mixed ground
and aerial heterogeneous robotic platform leaded by a human operator to assist him in
Search & Rescue missions in alpine scenarios. Moreover, different other research projects
aim to use UAVs in service robotics applications such as the remote non-destructive ma-
terial analysis or cooperative assembly and building construction via aerial manipulation.
Those are the cases of European research projects AIRobot and ARCAS respectively. In
this thesis, a hierarchical control architecture suitable for Aerial Robotic Platforms able
to perform service tasks autonomously and in closed loop with a human operator is pre-
sented. In this context, the problem of controlling a robot has been addressed at different
level of abstraction in order to integrate High-level functionalities needed to interact in an
intelligent way with a human operator, with Middle-level autonomous action execution
activities and Low-level control functionalities. In particular, in the High-level module
the attention has been focussed on selecting and commanding a robot in a multi-robot
system in order to enable a more effective and natural interaction with the use of multi-
modal voice and gestures commands combination. In the Middle-level module the action
planning & execution problem has been addressed proposing different methodologies for
autonomous and semi-autonomous action execution relying on Mixed-Initiative interac-
tion. Finally the Low-level control problem of a Vertical Take off and Landing VToL
UAV has been addressed. In this context, the proposed architecture allow the robot to
stabilize and track desired trajectories in a robust way through the compensation of ex-
ternal unmodeled disturbances. In addition a hybrid visual servoing with a hierarchical
task composition control framework is presented in order to allow the UAV eventually
equipped with a light manipulator, to interact in a intelligent way with the environment in
which it operates via aerial manipulation.
In detail, the outline of this thesis is organized as follows.
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• Chapter 1 is a general introduction underlining the need to make a robot autonomous
and able to interact with human operators and operate in unstructured scenarios to
cope with service robotics and industrial applications requests. The research project
that motivates this work are then introduced.

• Chapter 2 addresses the problem of Human-Robot-Interaction between a human
operator and a multi-flying robot system in hazardous and hostile environment sup-
ported by multi-modal interaction.

• Chapter 3 introduces novel approaches for autonomous and semi-autonomous ac-
tion execution relying on Mixed-Initiative interaction in unstructured and cluttered
environment considering sliding autonomy between the human operator and the
autonomous system of the UAV.

• Chapter 4 is focussed on the Low-level control of VToL UAV platforms presenting
novel methodologies for robust stabilization and desired trajectories tracking and
aerial manipulation with the use of visual servoing techniques.

• Chapter 5 contains conclusion, remarks and proposals for possible developments.
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Chapter 1

Introduction

The term robot derives from the term robota which means executive labour in Slav lan-
guages. As well, robotics is commonly defined as the science studying the intelligent
connection between perception and action [95]. These two last definitions show how
perfectly a robot fits into the above human being’s desires: these last, besides, can be ac-
complished if and only if the three fundamental laws introduced by Asimov are respected.
These laws established rules of behaviour to consider as specifications for the design of a
robot, and they are namely:

• A robot may not injure a human being or, through inaction, allow a human being to
come to harm.

• A robot must obey the orders given by human beings, except when such orders
would conflict with the first law.

• A robot must protect its own existence, as long as such protection does not conflict
with the first and the second law.

Over the course of centuries, human beings tried to design and to build new machines
first to help themselves in the execution of several tasks, and then to completely replace
themselves, especially in the most dangerous works. In a short time, this desire about
having machines in substitution of human being in physical activities has been caught
up as well by the desire to substitute him in decision making tasks. Nowadays, robots
are widely used in industrial applications for such works where human being would have
more risk for his life, more cost per hour and more stress for his body. The connotation of
a robot for industrial applications is that of operating in a structured environment whose
geometrical characteristics are mostly known a priori.

Hence, operating in scarcely structured or unstructured environments – where the ge-
ometrical characteristics are not known a priori –, even with or in cooperation with hu-
mans, it is not possible without robots with a marked characteristics of autonomy. The
expression advanced robotics usually refers to this framework, in which the ability in de-
cision making tasks plays a relevant role. Advanced robotics is still a young discipline
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CHAPTER 1. Introduction

and therein several researchers are motivated to investigate solutions which could be the
answer to the growing need of autonomous robots for domestic and service applications,
but also for new industrial requests.

Therefore, robotic systems of the next decade will be, potentially, a part of everyday
life as helpers and elder care companions, assisting surgeons in medical operations, inter-
vening in hazardous or life-critical environments for search and rescue operations and so
on. Personal and service robots will thus be found in all domains of our future life, and
they represent not only a hope for a more convenient world but also a massive new market
for leading-edge technology industry and significant business opportunities, especially for
industries. Only a few of the technologies required to build functional personal and ser-
vice robots already exist at the component level and markets for these products are getting
gradually into place. Continuous research and development efforts are required to com-
bine the different technologies, create new products and services, enhance the existing
ones for a wide range of possible applications.

Unmanned Aerial Vehicle represents a relatively new kind of robotic system that re-
cently has been used in different robotic applications. These kind of platforms are capa-
ble of flying without the presence of a on-board human operator, both via remote tele-
operation and autonomous guidance. In particular, the Rotary Wing UAV (RW-UAV) is
the category of UAV where the flying system is composed by different rotor blades (dif-
ferent configuration exits, from 3 to 16 rotors) that revolve around a fixed mast. The most
important skill of these kind of robots is their capacity to hover and perform agile ma-
noeuvring that makes rotary wing UAVs well suited to applications like inspections and
all the application where precision manoeuvring and the ability to maintain a visual on
a single target for extended periods of time is required. In addition, research progresses
make possible to plug a light manipulator downward the UAV platform in order to per-
form aerial manipulation tasks. Obviously the autonomous execution of tasks by means
of UAV platforms is strictly related to the possibility to controlling and commanding it in
an easy way.

In the followings two projects that motivates this work are presented:

1.1 Arcas Project

The ARCAS project (Fig. 1.1) proposes the development and experimental validation of
the first cooperative free-flying robotic system for assembly and structure construction in
order to provide integrated and consolidated scientific foundations for flying robot percep-
tion, planning and control. In particular, ARCAS will produce a framework for the design
and development of cooperating flying robots for assembly operations. The integration
of these functionalities has the aim to pave the way for new applications and services in
aerial and space robotics. The building of platforms for the evacuation of people in rescue
operations, the installation of platforms in uneven terrains for landing of manned and un-
manned VTOL aircraft, the cooperative inspection and maintenance and the construction
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of structures, are some examples of aerial robotics’ potential.

Figure 1.1: The ARCAS project.

The detailed scientific and technological objectives are:

• New methods for motion control of a free-flying robot with mounted manipulator
in contact with a grasped object as well as for coordinated control of multiple co-
operating flying robots with manipulators in contact with the same object (e.g. for
precise placement or joint manipulation);

• New flying robot perception methods to model, identify and recognize the scenario
and to be used for the guidance in the assembly operation, including fast generation
of 3D models, aerial 3D SLAM, 3D tracking and cooperative perception;

• New methods for the cooperative assembly planning and structure construction by
means of multiple flying robots with application to inspection and maintenance
activities;

• Strategies for operator assistance, including visual and force feedback, in manipu-
lation tasks involving multiple cooperating flying robots.

The achievement of the research objectives within ARCAS will have an important impact
toward the achievements of robust and versatile behaviour of artificial systems in open-
ended environments providing intelligent response in unforeseen situation.

The main contribution of this thesis to the ARCAS project is related to the Low-
level control of the robot (composed by the UAV system coupled with its manipulator
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arm). In this context, a novel hybrid visual servoing with a hierarchical task-composition
control framework for aerial manipulation allowing the robot to physically interact with
the operating environment is presented. In addition, a passivity-based control enhanced
with an estimator for unmodeled dynamics and external wrench acting on the robot and
based on the momentum of the system has been implemented in order to compensate the
disturbances effect, such as the movement of the UAV manipulator during the flight.

1.2 Sherpa project

Figure 1.2: The SHERPA project.

The goal of SHERPA project (Fig. 1.2) is to develop a mixed ground and aerial robotic
platform to support Search & Rescue operations in a real-world and hostile environment
like the alpine scenario. The technological platform and the alpine rescuing scenario are
the occasion to address a number of research topics about Artificial Intelligence cogni-
tion and Low level control. What makes the project potentially very rich from a scientific
viewpoint is the heterogeneity and the capabilities to be owned by the different actors of
the SHERPA system: the human rescuer is the busy genius, working in team with the
ground vehicle, as the intelligent donkey, and with the aerial platforms, i.e. the trained
wasps and patrolling hawks. Indeed, the research activity focuses on how thebusy genius
and the SHERPA animals interact and collaborate with each other, with their own features
and capabilities, toward the achievement of a common goal. A mix of advanced control
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and cognitive capabilities characterize the SHERPA system, aiming to support the res-
cuer by improving his awareness of the rescue scene even in tough environments and with
the genius often busy in the rescuing activity (and thus unable to supervise the platform).
Thus emphasis is placed on robust autonomy of the platform, acquisition of cognitive ca-
pabilities, collaboration strategies, natural and implicit interaction between the genius and
the SHERPA animals, which motivate the research activity. Five benchmarks, inspired by
real-world scenarios, drive the research and motivate demonstration activities on realistic
testing sites planned during the project.

The main contribution of this thesis to the SHERPA project if framed in the multi-
modal human-robot interaction context in order to allow the busy genius to interact in an
easy and natural way with the robots of the SHERPA platform. In this context, novel
methodologies to command a single robot in a multi-robot system using a multi-modal
combination of voice, gestures are presented. In addition, Mixed-Initiative interaction has
been experimented to enhance the autonomous or semi-autonomous action Planning &
Execution of the robot.
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Chapter 2

Human-Robot-Interaction

Human-robot interaction is the study of interactions between humans and robots. It is
a multidisciplinary field with contributions from human-computer interaction, artificial
intelligence, robotics, natural language understanding, and social sciences. With recent
progresses in the robotics field and the advent of intelligent robots, human-robot interac-
tion has gained importance as a research topic. This interaction has been deemed nec-
essary to design and build effective robot systems which include human users. In this
context, this chapter is mainly focussed on the problem of the interaction of a human op-
erator with a heterogeneous multi-flying robot team in hazardous and hostile environment
in which the human operator must be able to lead the robotic team in the execution of
Search & Rescue missions. To interact with a heterogeneous multi-robot team the human
operator must be able to select and command a desired robot in an efficient way during the
execution of a collaborative task. In the followings the proposed approaches to support
the human operator in selecting and commanding phases are presented.

2.1 Robot Selection Problem

In this context, a system suitable for human multi-robot interaction that supports the oper-
ator in the robot selection process is presented. The proposed framework allows a human
to issue commands the to a robotic team without an explicit robot selection, in so enabling
a more fluent and effective interaction. This work is framed in the operative context of
the SHERPA project, which proposes the deployment of a robotic platform for Search
& Rescue in an alpine scenario and assumes the presence of a human rescuer that can
orchestrate the robots operations with multimodal commands. Implicit robot selection
is mainly motivated by fast communication and the difficulties to distinguish different
robots of similar shape in a hazardous environment and in adverse weather conditions. In
the proposed approach, each robot of the team can evaluate the probability to be referred
in an incomplete command, considering its actual capabilities along with geometrical and
contextual information. In order to facilitate the collaboration between a human operator
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and a multi-robot system, the robot ability to interpret non verbal cues and react accord-
ingly is a crucial issue, in particular when complex interactive tasks are to be executed
[139]. In this paper, a framework for implicit selection of robots in human multi-robot
interaction is presented. Specifically, we will address a robot selection problem, in which
the human operator must designate a particular robot of interest as the selected one in
order to assign a task. We propose an approach where the human operator can omit to
explicitly indicate the intended robot in task assignment, because the robotic team is able
to infer the candidate that best match the operator’s intention. Our work is framed in the
context of SHERPA project [138] whose goal is to develop a mixed ground and aerial
robotic platform for search and rescue operations in an alpine environment. A sketch of
SHERPA scenario is depicted in Figure 2.1. In this domain a human rescuer leads a team
of heterogeneous robots in the search of survivors after an avalanche. The robotic team is
mainly composed of aerial vehicles (in this paper we will assume quadcopters) equipped
with different types of sensors in order to assist the human operator in the rescue mission.
In this context, the human operator is not fully dedicated to the control of the robots, but
he is involved in the rescue operations too. In order to enable more effective and natu-
ral the interaction with the robots, the human operator is endowed with wearable devices
(gesture control armband, headset, etc...) and mobile devices (tablet) that allows him
to orchestrate the team operations using voice and gestures commands, while receiving
back relevant audio/video information about the mission. As for the robotic platforms,
we will mainly refer to electrical flying robots whose main limitation is the battery dura-
tion. In order to address this issue, the robotic team includes a ground rover that works as
a docking station for the drones supporting both landing and battery recharging. In this
scenario, depending on the battery charge, we have a continuous reconfiguration of the ac-
tive members of the robotic team and their actual capabilities. Selecting and commanding
individual robots in this setting, without the support of specialized user interface, could
represent a challenge. For this reason, we propose a method in which the human operator
is able to select the desired robot in a non verbal and implicit manner. Specifically, we
propose a method in which each available robot can evaluate the probability to be the one
designated by the human for the execution of a command. The single robot evaluation
process rely on a multi-layered architecture in which a Dynamic Bayesian Network is de-
ployed to infer the human intentions form the state of the robots and a learned contextual
and geometrical information. Finally, in order to train the system and test its effectiveness,
we defined a simulated interaction scenario where a human operator is to lead a group of
drones in a search mission in alpine scenario.

2.1.1 Motivation

We consider the following motivational scenario. The human operator is involved in a res-
cue mission after an avalanche in adverse weather conditions and decides to exploit the
fast flying capabilities of the UAVs to retrieve important information by scanning quickly
a large area. In order to accomplish this mission, the robot responsible of the scanning
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Figure 2.1: A sketch of the SHERPA scenario [138]

must be properly selected and this is usually performed by selecting the desired robot us-
ing vocal keywords such as the code-name or the id of the desired robot (e.g Red Wasp or
Wasp Zero). However, the hard operative domain caused by the adverse weather condi-
tions or the hazardous environment along with the limited time to accomplish the rescue
mission affect the psychophysical state of the rescuer and his cognitive capacity. More-
over, even thought the human operator is co-located with the robotic team, the similar
shape of different robots could make difficult for him to select the desired robot using
verbal communication without running into misunderstanding on the correct robot id, in
so provoking the selection of robot with different capabilities or resources or in different
location. Furthermore, the operative environment presents different unmodelled sound
noise sources such as the wind, the propeller of the robots or the helicopters used for
the transportation of the rescuer or the victims. This could even increase the failure rate
of the automatic speech recognition algorithm affecting the effectiveness of the overall
interaction system.

2.1.2 Related Work

Unmanned Aerial Vehicles (UAVs) are extensively employed in several service applica-
tions such as in industrial building inspection [140][141], surveillance, remote sensing
and many others. Related to our scenario, in [142] and [143] Search & Rescue opera-
tions are supported by the UAVs demonstrating the benefits that they can provide to this
domain. In [144] a mixed-initiative system for the supervision of multiple drones suitable
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for Search & Rescue mission in alpine scenario is presented. In [145] an ad-hoc user
interface has been designed to interact with a multi-robot system composed of very large
groups of robots. Another approach to robot selection problem is presented in [146]. In
this work, a solution that rely on face engagement is proposed where eye contact between
the human and the robot is used to select a robot to command. Approaches of this kind
are not feasible in our outdoor domain, because of the distance between the operator and
the robot and the low visibility conditions. In addition, in our scenario the human opera-
tor can command a robot even beyond line-of-sight fly. From a different perspective, in
Multi Robot Task Allocation (MRTA), the robot selection is obtained considering a fea-
sible assignment of tasks to the robot that optimizes some objective [147]. Notice, that
our aim instead is to select the robot that best matches the human operator intention, even
when this selection is far from an optimal choice. Probabilistic graphical models like
Dynamic Bayesian Network (DBN) [148][149] has been widely deployed in human robot
interaction. In this context, several works focus on activity recognition and human action
anticipation performed by humans in order to estimate the plan or intention [150][151]. In
contrast, in our approach the DBN is used to provide an estimation of the human intention
regarding the selection of a robot among a group of possible candidates.

2.1.3 Implicit Robot Selection

In this section we describe the implicit robot selection process. Given the set of all the
available robots R = {r1,r2, ...,rn}, AR(t) ⊆ R represents the set of the active robots in
the rescue mission at time t. The robot i ∈ R is endowed with the set of capabilities
Ki ⊆ K, where K = {k1,k2, ...,k j} is the set of all the available capabilities, and its state
is represented by the pair si =< bi, fsi >, where b is the battery level and fs is the flying
status of the robot. Let C = {c1,c2, ...,ck} be the set of all possible commands the human
operator can invoke. Given a command c j ∈C that requires the set K j of capabilities to be
properly executed, the probability for the robot i∈AR(t) to be the referred in the command
c j is P(ri) = P(ri | c j). As previously stated, in our approach each robot of the team is
able to estimate this probability when a command is requested by the operator. In order
to perform this estimation process, we endow the robots with the Intention Estimation
System depicted in Figure 2.2 that is to estimate the probability P(r) fusing different
kind of data. Specifically, upon receiving the new command c j, the estimator calculates
three different factors α , β and γ associated with, respectively, Capability, Geometrical
and Contextual information. The final probability value is defined as P(r | c j) = w1α +

w2β +w3γ , where w1, w2 and w3 are empirically estimated weights.
In the scenario considered in this paper, we mainly focus on navigation and multimedia
commands, such as take-off, land, go along a direction, stop, rotate, explore, take-a-
picture and start/stop recording a video. In addition, in order to assist the human operator
in the rescue mission, the robot can be equipped with a camera, a camcorder or an ARVA1

1The Appareil de Recherche de Victimes en Avalanche is an instrument commonly used to find victims of
avalanches.
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Figure 2.2: The Intention Estimation System architecture

sensor. Finally, we define three different operative states of the robot: idle, hovering and
flying if the robot is, respectively, hold on the ground, flying but not employed in any
mission or navigating toward a destination point.

Capability Reasoning

Each robot should be capable of evaluating its own ability to perform a possible command
(e.g. a take-a-picture command should be referred a robot equipped with a camera). For
this purpose, the robot estimates an α value taking into account its equipment (capabili-
ties) and the available power (resources). As for the capabilities, each robot r estimates
a probability P(Kr | c) that a given command c refers to its set of capabilities Kr. In the
second case, the robot estimates a probability P(Br | c) that a given command refer to
robot r with an estimated power charge Br after the execution of c, this allows the robot
to evaluate the command assuming that the human is aware about the associated energy
consumption.

Geometrical Reasoning

This module assesses geometrical relationships between the commands and the poses (po-
sition and orientation) of the human and the robot. For instance, the robots in the human
field of view could have a higher probability to be selected for specific commands. In
order to discover these relationships, we collected a domain specific training set (see Sec-
tion 2.1.4), where, for each command we consider the orientation of the operator with
respect of the selected robot and the absolute distance between the two. Specifically, two
different probabilistic values β1 = P(dist(h,r) | c) and β2 = P( f ow(h,r) | c) are evalu-
ated by the robot, where dist(h,r) and f ow(h,r) are, respectively, the distance and the
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orientation of the human with respect to the robot. The overall β value is calculated as a
weighted and normalized sum of β1 and β2.

Contextual Reasoning

This layer represents the core of the Intention Estimation System. At this level, the proba-
bility value is calculated exploiting of a Dynamic Bayesian Network (DBN). A Bayesian
Networks N is a triplet (V , A, P) where V is a set of random variables, A is a set of
arcs and P = P{(v | πv) : v ∈ V}, G = (V,A) and P represents, respectively, a directed
acyclic graph and the set of conditional probabilities of all variables given their parents.
Similarly, a DBN captures the development of the network over time steps. The pro-
posed DNB, illustrated in Figure 2.3, allows the robot to infer on the operator’s intention
given the contextual information represented in the nodes of the network. In particular,
the probability density of the robot r over the command c is calculated considering only
the contextual information cont(r) as P(cont(r) | c) from the P(cont(r)t | cont(r)t−1,c)
provided by the network. The proposed network (see Figure 2.3) in composed of the
following nodes:

• Status node: the robot operative state, its battery level, and the time elapsed from
last received command.

• Command node: the last received command;

• Robot node: This node represents the probability that the robot is selected by the
operator.

Figure 2.3: Dynamic Bayesian Network. In orange the command node, in green the status
nodes and in blue the robot node.

Here, the contextual information is defined by status and command nodes, while the
Robot node estimates the probability of a robot to be the selected. Notice, that the con-
textual nodes assume discretized values.
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2.1.4 Architecture

The overall system architecture is depicted in Figure 2.4 and defines the interface between
a heterogeneous team of robots and the human operator. The Human Operator interacts
with the Robot Selection module via a set of multi-modal commands generated by the
Multimodal HRI module on the base of the input provided by the human operator via
a combination of voice and gestures [154]. Upon received a new command, the Robot
Selection module is responsible for contacting all the active robots of the team in order
to collect their probability estimation of being selected and then select the one with the
higher value. Finally, to produce the estimation of the operator’s intention, each robot
exploits the Intention Estimation System described in the previous section. Notice that, in
our approach, we assume that each robot evaluates its own probability of being selected,
neglecting the status of the other robots. We deliberately decided this simplified setting
to better handle the continuous change of robots involved in the rescue mission.

Notice that in our framework, implicit selection is not mandatory, and the human
operator can always directly refer to a particular robot in an explicit manner using its code
name. Moreover, in order to minimize the errors, once all the estimated probabilities have
been collected from the robots, the Selector module uses two parameters τ1 and τ2 to
identify and manage ambiguous selections. In particular, τ1 provides a threshold on the
probabilities for selectable robots, while τ2 represents a minimum difference between the
two best generated results needed to define a selection. When τ1 and τ2 are not satisfied,
the selection is considered ambiguous and an explicit interaction with the operator can
be started to disambiguate the human intention. Using text-to-speech technology, the
Multimodal HRI can ask the human operator to choose among the most probable robots.
The values of τ1 and τ2 are set by means of the learning process described in the next
section.

2.1.5 Training & Testing

In order to train and test the proposed system, different simulated interaction scenarios
have been set up (see Figure 2.6). The simulated environment reproduces typical scenar-
ios of our domain, while the operator can navigate the scene in a first person perspective
and control a group of maximum 6 drones. In this context, a tester can perform different
tasks interacting with the simulator with command-line interface to send commands using
a joypad to navigate the environment. The drones are differently coloured and the user
can refer to them using code names based on colors (e.g. Red Drone). In order to get
information about the status of the robot and the environment, the user can exploit a basic
user interface shaped as a non-invasive map displayed in a corner of the monitor. This
interface is intended to substitute the human operator’s tablet used in real world scenario.
An example of this interface is depicted in Figure 2.5, where the battery level, the fly-
ing state and the capabilities of the drones are illustrated for the user situation awareness
while the drones are represented on the map as coloured spheres. Moreover, the streams
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Figure 2.4: System architecture

of the drones’ on-board camera can be inspected. In the following, we discuss the system
training and evaluation.

Training

In the training session, we generate the training sets needed by the Intention Estimation
System. For this purpose, three mission scenarios has been defined considering different
situations. In the first scenario, represented in Figure 2.6a, the user was asked to land the
drones on different landing zones represented by the red flat squares in the figure. Both
the initial position of the drones and the landing zones are located close to the operator’s
initial position in order to encourage the user to use commands for line-of-sight naviga-
tion. In the second scenario, depicted in Figure 2.6b, the drones are all equipped with an
on-board camera and the mission of the users is bring the robots in a landing zone located
in a farther place with respect to the previous scenario. The aim here is to force the oper-
ator to use the on-board camera of the drones in order to avoid obstacles, such as wood or
mountains, and follow them during the navigation. Finally in the last scenario, depicted
in Figure 2.6c, the operator must command the robots over a mountain and use the drone
on-board camera to acquire pictures or videos of a predefined area. In this context, the
end of a training session is determined by the discharging of the batteries of the drones.
In the training phase, we involved 7 different users already expert of the system. Once
the Intention Estimation System trained, another training session is needed the adapt the
τ1 and τ2 thresholds. This is obtained by asking the testers to execute another training
session in which they validate the framework by accepting or rejecting the results of the
selection process.
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Figure 2.5: User interface for the user situation awareness.

2.1.6 Case Study

The effectiveness of the proposed system has been evaluated involving a group of 10
testers (8 men), who were asked to perform a mission in the simulation scenario depicted
in Figure 2.6d that combine the scenarios introduced in the training phase. Indeed, here,
both navigation by sight and exploration with multimedia data acquisition tasks are con-
sidered. Specifically, the goal of the user is to both bring an arbitrary number of robots to
a landing zone and to use the capability of the drones to explore a predefined searching
area. During the test, the user is asked to confirm the correctness of the selection process
results for each command. This way, we can collect the True Positive (tp), False Positive
(fp) and True Negative (tn). The performances of the system are then reported in terms
of Precision, Recall, Accuracy, Sensitivity, and Specificity, with the standard definition,
i.e. Precision = t p

t p+ f p , Recall = t p
t p+ f n while Sensitivity and Specificity are the tp and tn

rates, respectively. Moreover, our aim is to assess both the Intention Estimation System
and the overall system. Therefore, we designed two different test cases, with or with-
out the thresholds check. The results of both tests are reported in Table 2.1 and in Table
2.2, respectively. In the first test case, in the case of a wrong robot selection, tester can
also assess the system error as fair alternative of the intended selection, i.e. the selected
drone is different form the intended one, but the user considers it as an equivalent choice.
The percentage of these mistakes is reported under the sm entry in Table 2.1. Instead,
in the second case, we consider in the percentage interactions needed to disambiguate a
selection (dialogue entry in Table 2.2).

Table 2.1: Intention estimation system results

Precision Recall Accuracy Sensitivity Specificity sm
79% 79% 88% 79% 20% 31%

The presented results shows that the intention estimator is able to correctly select the

15



CHAPTER 2. Human-Robot-Interaction

Figure 2.6: Simulated environment for system training and testing.

Table 2.2: System results

Precision Recall Accuracy Sensitivity Specificity dialogue
91% 91% 95% 91% 8% 36%

intended robot with a satisfactory performance. The enhanced performances in Table 2.2,
show that, as expected, the dialogue system used in the second test case enhances the
precision of the selection process. On the other hand, a high percentage of the selection
errors in the first test case are considered not relevant by the user.

2.2 Multimodal HRI with Multiple Drones

In order to enable the robot control a command must be easily generated by the human
operator. For this purpose, we present a multimodal interaction framework suitable for
a human rescuer that operates in proximity with a set of co-located drones during search
missions. Differently from typical human-drone interaction settings, here the operator is
not fully dedicated to the drones, but involved in search and rescue tasks, hence only able
to provide sparse, incomplete, although high-value, instructions to the robots. This op-
erative scenario requires a human-interaction framework that supports multimodal com-
munication along with an effective and natural mixed-initiative interaction between the
human and the robots.
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2.2.1 Introduction

A multimodal interaction framework suitable for human-UAVs interaction in search and
rescue missions is presented in this paper. This work is framed in the context of the
SHERPA project [138] whose goal is to develop a mixed ground and aerial robotic plat-
form supporting search and rescue (SAR) activities in a real-world alpine scenario. One
of the peculiar aspects of the SHERPA domain is the presence of a special rescue op-
erator, called the busy genius, that should cooperate with a team of aerial vehicles in
order to accomplish the rescue tasks. Differently from typical human-UAVs interaction
scenarios [21, 10], in the place of a fully dedicated operator we have a rescuer which
might be deeply involved in the SAR mission, hence only able to provide fast, incom-
plete, sparse, although high-value, inputs to the robots. In this context, the human should
focus his cognitive effort on relevant and critical activities (e.g. visual inspection, pre-
cise maneuvering, etc.), while relying on the robotic autonomous system for specialized
tasks (navigation, scan, etc.). Moreover, the human should operate in proximity with the
drones in hazardous scenarios (e.g. avalanche), hence the required interaction is substan-
tially dissimilar to the one considered in other works where the human and co-located
UAVs cooperate in controlled indoor conditions. In this paper, we present the multimodal
and mixed-initiative interaction framework we are currently designing for this challeng-
ing and novel domain. The multimodal interaction should allow the operator to commu-
nicate with the robots in a natural, incomplete, but robust manner exploiting gestures,
vocal, or tablet-based commands. Currently, we are manly focusing on a gesture- and
speech-based interaction suitable for accomplishing navigation and search tasks in coor-
dination with a set of drones operating in the scene. In order to communicate with the
robots, we assume the human equipped with light and wearable devices, such as a headset
(speech) and the Myo Gesture Control Armband2 (gestures). Notice that, vision-based
interaction/recognition methods are not appropriate in our context. In this domain, we
introduce a set of multimodal commands and communication primitives suitable for the
accomplishment of cooperative search tasks. In the proposed framework both command-
based and joystick-based interaction metaphors can be exploited and smoothly combined
to affect the robots behavior. The proposed framework permits different kinds of inter-
actions, from precise vocal commands (e.g. the operator can ask the robot to “rotate 3
o’clock” or “go up 3 meters”), to deictic communication where speech and gestures are
combined (e.g. the operator can say “go there” while pointing). Moreover, while a robot
is executing a task, the human can exploit gestures in joystick-based metaphor to adjust
the generated trajectory or to directly teleoperate the selected drones. Indeed, the inter-
preted human interventions are continuously integrated within the robotic control loop by
a mixed-initiative system that can adjust the drone behaviors according to the operator
intentions. In order to test the framework and the associated interaction modalities, we
introduce a test-bed where a human operator can orchestrate the operations of simulated
drones to search for lost people in an alpine scenario. This case study is used to discuss

2https://www.thalmic.com/en/myo/
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the functioning and the effectiveness of the proposed interaction system.

2.2.2 Search and Rescue Missions with Multiple Drones

We assume a human operator involved in SAR tasks in an alpine environment with the
support of a set of co-located drones (see Fig. 2.7). The mission goal is to find a set of
missing persons in a specified area with loose time constraints. In particular, we refer to
a winter scenario where the probability of survival decreases dramatically with the time.
Moreover, we focus on the search phase of the rescue mission where the rescuer and
the drones are already in the operative area. During the search, the operator can issue
verbal and/or gestural commands to the drones which are used to extend the rescuers
perception by streaming video or images taken with their on-board cameras. We assume
a restricted search area of few square kilometers (1 to 10) with a short mission time (less
than 15 minutes). As for the drones, we assume a set of small quadrotors with standard
specification (flight time 25 min., max. airspeed 15 m/s, max. climb rate 8 m/s, etc.)
equipped with standard sensors including an onboard camera used by the operator to
remotely inspect the environment. In order to communicate with the drones, we assume
the following (light and low-cost) human equipment: a tablet with a user interface, a
headset to vocally communicate, and a Thalmic Myo Armband device, endowed with
Eight Steel EMG and 9 DOF IMU, for gesture-based interaction and teleoperation.

Figure 2.7: An illustration of the SHERPA winter scenario.

2.2.3 Mixed-Initiative Multimodal Interaction

In the domain illustrated above, the operator should interact with the robots in a rapid,
concise, and natural manner, exploiting verbal and non-verbal communication. More-
over, since the human is not fully dedicated to the drones, the robotic system should sup-
port different control modes sliding form an autonomous behavior to direct teleoperation,
passing through the mixed-initiative mode, where the user can execute some operations
while relying on the autonomous control system for the remaining ones.
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2.2.4 Multimodal Mixed-Initiative Interaction Architecture

The operator should be capable of interacting with the system using different modalities
(gestures, speech, tablet, etc.) at different levels of abstraction (task, activity, path, trajec-
tory, motion, etc.). These continuous human interventions are to be suitably and reactively
interpreted and integrated in the robotics control loops providing a natural and intuitive
interaction. The HRI architecture designed to accomplish these requirements is illustrated
in Fig. 3.19 whose components are detailed below.

Figure 2.8: The overall HRI architecture

The Multimodal Interaction Module interprets the operator commands/intentions in-
tegrating inputs from multiple communication channels. For instance, either speech- or
gesture-based commands may be used to stop a drone, while vocal commands in combina-
tion with deictic gestures can be used to specify navigational commands (e.g. “go-there”)
to the co-located drones. Notice that commands can be given at different levels of ab-
straction, from task assignments to direct teleoperation, combining different modalities.
On the other hand, beyond line-of-sight control, the human can receive feedback from the
drones via a tablet interface, the headphones, and the armband.

Once interpreted, the multimodal human commands are managed by the Mixed-Initiative
Control module that interacts with the Single Robot Supervisor and Multirobot Supervi-
sors mediating between the human and the robotic initiative. Indeed, commands can be
provided to both single or multirobots, while vague instructions are to be completed and
instantiated by the robots supervisory systems according to the operational context. Fol-
lowing a mixed-initiative planning approach [27], the human interventions are integrated
into continuous planning and execution processes that reconfigure the robotic activities
according to the human intentions and the operative state.

2.2.5 Multimodal Interaction

We employ a multimodal interaction framework that exploits a late fusion approach [89]
where single modalities are separately classified and then combined (see Fig. 2.9), this ap-
proach permits to introduce new modalities (e.g. tablet-based interaction) in an extensible
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Table 2.3: List of primitive commands with modalities

Command Modalities
Take-Off speech
Continue speech/gesture

Land speech
Rotate #o’clock speech/gesture and speech

Selection #Drone-Id speech/gesture and speech
Faster speech/gesture
Slower speech/gesture

Rotate Clockwise speech/gesture
Rotate Anti-clockwise speech/gesture

Brake speech/gesture
Go #Direction speech/gesture/gesture and speech

Search Expanding speech/gesture
Search Parallel Track speech/gesture
Search Creeping Line speech/gesture

Switch gesture

and modular manner.
In this work, we mainly focus on commands suitable for interacting with the set of co-

located drones during navigation and search tasks. In particular, we are concerned with
speech- and gestures-based communication with the drones suitable for the following
purposes:

• Selection: in order to select single or groups of robots involved in the action, both
speech (e.g. “all hawks take off”, “red hawks land”) and gestures (e.g. “you go
down”) can be used in combination. Specific names (e.g. “red hawk”, “blue hawk”,
etc.) can identify drones, while deictic gestures (pointing) can be used to select not
only drones, but also targets (e.g. “you go there”).

• Motion: a set of commands are used for navigation. Motion directives can be
coupled with voice directives. For example, a rotation command (gesture) can be
associated with the final orientation (voice) of the drone, while during a move-
ment command (gesture) the operator can specify the exact distance to be covered
(voice). When these values are not explicitly provided, default ones are assumed.

• Search: a set of commands are used to select the search pattern used to scan an
area with a helicopter search [76], i.e. search-expanding, search-parallel-track and
search-creeping-line (see Fig. 2.10). Those patterns can be invoked either vocally
or by means of specific gestures.
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Figure 2.9: Multimodal Interaction System

• Switch: meta level commands allow the operator to change the interaction mode,
e.g. from command-based to joystick-like interactive control and viceversa.

Figure 2.10: Parallel track (Left), Expanding (Center) and Creeping line (Right) search
patterns

Table 2.3 summarizes the overall set of primitive commands that we have introduced
in our domain. These can be invoked and flexibly combined in a multimodal manner
using speech, gestures, or speech and gestures together. In the following, we provide
details about the adopted methods for speech/gesture recognition and fusion.

Speech recognition we rely on Julius3, a two-pass large vocabulary continuous speech
recognition (LVCSR) engine. A suitable grammar has been defined to parse the com-
mands of the users. A N-best list of possible interpretations is continuously provided in
output.

3http://julius.osdn.jp/enindex.php
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Gestures recognition The proposed gesture recognition system exploits the Thalmic
Myo Armband. This device permits to detect and distinguish several poses of the hand
(see Fig. 2.11) from the electrical activity of the muscles of the arm where the band is
weared. In addition, the band is endowed with a 9 DOF IMU that permits motion capture.
Therefore, both hand poses and movements can be detected and used for robot control.
In our framework, the position of the hand is used to enable/disable control modalities
(switch commands), while the movements of the hand are to be interpreted as gestures.
Specifically, in this work we introduce the following intuitive switching strategy: when
the hand is closed (Fig. 2.11, right) the command-based gesture interpretation is enabled,
when the hand is open (Fig.. 2.11, left) the joystick-like control is active. As far as the

Figure 2.11: Different poses of the hand recognized by Thalmic Myo Armband.

hand poses are concerned, we directly rely on the built-in Myo Armband classifier. In-
stead, a robust gesture recognition system based on the armband acceleration measures
requires an independent classification method. The main advantage of our method is that
few examples are needed for training, while ensuring a robust user-dependent application.
Since in our scenario we assume the presence of a trained operator (the busy genius) with
a tailored recognition system, this approach is satisfactory. On the other hand, continuous
recognition is not supported: the classifier needs the start and the end of the executed
gestures. However, as already mentioned, we can exploit the hand pose detected by the
Myo Armband to enable and disable the classifier, indeed we assume that the samples of
a gesture are stored and classified only when the hand is closed (switch command). Once
the samples of an executed gesture are collected, the gesture classification process works
as follows. Initially, two transformations are deployed to filter the acceleration signal
generated by the input device. The first one removes noise from the acceleration samples.
The second filter allows a uniform sampling independently of the execution speed of the
gesture. For this purpose we linearly interpolate m points in order to transform the in-
put signal into a m-pla of samples 〈~a1, . . . ,~am〉 of fixed size with equal distance between
them. After this phase, a third transformation makes the gesture invariant from the ac-
tual position of the arm of the operator and compensates the gravity force. Specifically,
each sample is modified as: ~a

′
i = RW

S ~ai−~g, with RW
S the rotation matrix from the sensor

reference frame S to the world frame W and ~g the gravity acceleration vector. This way,
each gesture G can be associated with a uniform m-pla of samples. Given a training set Ts

that collects a set of m-ple for each gesture type, the gesture classification can be directly
obtained form an Euclidean distance in the 3D space. Specifically, given the performed
gesture G, for each gesture Gi ∈ Ts, we can define a score si = ||G−Gi||. The best scores
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for each gesture type defines the N-best list of matches for the executed gesture. Since we
need a reliable classifier, we improved the robustness of the classifier in two ways. First
of all, for each executed gesture we generate not only one m-pla, but a set of m-ple repre-
senting possible slides of the gesture samples within a time window (see Fig. 2.12). The
best match is then used to rank the gesture with respect to the training set. In the second
place, a secondary evaluation that takes into account the orientation of the executed ges-
ture is performed when the difference between the last 2-best values is below a suitable
threshold. If this is the case, the gestures are ranked again by improving the values of the
gestures whose average orientation is closer to the average orientation of the performed
gesture.

As for the dataset, we defined 14 different types of gestures (with 10 trials for each
type) for both navigation commands and search strategy requests. We evaluated the ges-
ture recognizer by performing 30 trials of each gesture (randomly generated to avoid the
learning effect). In Table 2.5, we report the Precision, Recall, and Accuracy for the ges-
tures of the training set.

Figure 2.12: Gesture matching at different time (start, middle, end) of the sliding window.
Dashed and solid curves represent the recognized and executed gesture respectively.

Multimodal Fusion The fusion module combines the results of vocal and/or gesture
recognition providing the command interpretation. We deploy a late fusion approach that
exploits the confidence values generated by the separated (speech and gestures) classifiers.
In order to integrate the classifiers outcomes, the two channels are to be first synchronized.
We assume that the first channel that becomes active (speech or gesture) starts a time in-
terval (about 1 sec in our setting) during which any other activity can be considered as
synchronized. This way, a vocal command provided during the execution of a gesture, or
immediately, after can be fused (or a gesture after a vocal command). When this is the
case, contextual rules are used to disambiguate the conflicting commands or to combine
vocal and gesture inputs using the information contained in both the channels. In the first
case, or when an explicit rule is not available to disambiguate, the N-best values provided
by the speech and gesture recognizers are compared and the interpretation with the max-
imum value is selected. In the second case, if the classification results are compatible,
these are combined according to simple rules (e.g. navigation gesture towards a certain
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Table 2.4: Gesture classification results

Gesture Precision Recall Accuracy
Brake 93.3% 96.5% 94.9%

Go Ahead 96.6% 90.6% 93.4%
Go Backward 100% 100% 100%

Go Down 100% 88.3% 93.5%
Go Left 73.3% 100% 86.2%

Go Right 96.6% 85.3% 90.4%
Go Up 100% 96.7% 98.3%

Rotate Anti-Clockwise 100% 96.7% 98.3%
Rotate Clockwise 83.3% 100% 91.38%

Search Creeping Line 80% 82.7% 82.4%
Search Expanding 96.6% 85.3% 90.4%

Search Parallel Track 96.6% 90.6% 93.4%
Faster 96.6% 82.9% 88.9%
Slower 66.6% 90.9% 79.9%
Average 91.4% 91.9 % 91.7 %

Table 2.5: Multimodal classification results

Precision Recall Accuracy
Average: 96.95% 96.4% 96.3%

direction combined with a vocal indication of a distance is interpreted as Go to #distance).
In Table 2.5, the average classification results - collected by rerunning the classifier evalu-
ation considering the fusion of speech and gestures - show the improvement in robustness
due to multimodal disambiguation. Overall, the reliability and the latency of the multi-
modal interaction system seems compatible with a natural and effective interaction.

2.2.6 Mixed-Initiative Interaction

The operator is allowed to interact with the drones at any time at different levels of ab-
straction with different interaction metaphores. In this work, we focus on navigation and
search activities, hence our main concern is on path/trajectory level interaction. In this
context, we introduced two main interaction metaphores: command-based and joystick-
based. In the first case the robots are considered as agents to be coordinated by the
operator multimodal commands, in the second case the operator can directly teleoperate
a drone using his/her open hand as a virtual joystick. Here, the hand position is used to
switch between these two control modes: hand-closed for gestural commands, hand-open
for trajectory adjustments and teleoperation. For instance, the human may ask a drone the
execution of a task (e.g. “blue hawks go there”), and once the execution starts, use the
hand-open mode to manually correct the trajectory. A complete teleoperated control can
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be obtained once the current command execution has been stopped by a brake command.

Path and Trajectory level interaction The navigation commands introduced so far are
associated with drone movements to be suitably planned and executed. We deploy a RRT ∗

algorithm [37] for path planning, while trajectory planning is based on a 4-th order spline
concatenation preserving continuous acceleration. Following the approach in [14], during
the execution, the human is allowed to on-line adjust the robot planned trajectory without
provoking replanning (open-hand mode). Specifically, the planned robot position a(t)
can be deviated into a mixed trajectory m(t) = a(t)+h(t), by the h(t) human contribution
defined as follows

h(t) =

{
h(t−1)+human(t) if mixed = ON
h(t−1)+Λ(t) otherwise

That is, when the mixed-initiative is active the control reference human(t) generated by
the operator -via gestures or voice- increases the current displacement h(t); otherwise,
when the human intervention is released, the deviated trajectory is smoothly driven back
towards the planned one by a linear function Λ(t). On the other hand, similarly to [14],
if the human deviation goes outside a context-specific workspace, a replanning process
starts and the autonomous system generates another path and another trajectory to reach
the next waypoint. A vibro-tactile feedback on the armband provides the operator with
the perception of the robot deviation with respect to the planned trajectory.

2.2.7 Case Study

The effectiveness of the multimodal interaction framework proposed in this work has
been tested in a simulated environment of an alpine scenario (see Fig. 2.14, left). We
used Unity 3D to simulate a set of drones equipped with an onboard camera. A tablet user
interface (see Fig. 2.14, right) allows the operator to monitor the robots position on a map,
while receiving video streams for the cameras of the drones on multiple windows; the one
associated with the selected drone has a bigger size. In this scenario, a set of victims
is randomly positioned within the environment. The mission goal is to find a maximum
number of missed persons within a time deadline. When a missed person appears in the
field of view of a drone camera, the operator can use the tablet interface to mark his/her
position.

Experimental set-up As an pilot study, we designed an experimental set-up with the
aim of reproducing a similar setting in the real world. Preliminary experience with our real
drones suggested to start form an initial configuration with 2 or 3 UAVs per operator. We
focus on a winter scenario, where the rescuers operate under time pressure in a restricted
area, therefore we defined a 120×120 m with the goal of searching for 6 missing persons
in a maximum time of 6 minutes. The target user is a trained operator, hence we involved
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Figure 2.13: Simulated alpine scenario testbed.

a group of 5 expert users (4 males, 1 female). Each subject was asked to perform 3 runs
of a mission. For each trial we collected the following data:

• detected persons: number of discovered victims;

• time to detect: mean time needed to find a victim;

• selection time: time spent while monitoring and controlling a drone;

• operative mode: time spent per drone for each operative mode (autonomous, mixed-
initiative, teleoperation);

• interaction type: modality used to invoke commands (voice, gesture, voice and
gestures, etc.).

Figure 2.14: Simulated environment (left), tablet interface (right).

Results In Table 2.6, we report the victims found (mean values) using 2 and 3 drones
along with the mean, maximum, and minimum time (sec) needed to find a victim. We fur-
ther detail the user performance in Table 2.7 where we illustrate the success rate in finding
n (of 6) victims along the mean time (sec) needed. We can observe that the overhead of
monitoring and controlling 3 drones seems here compensated by better performances in
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search, indeed the 3 drones search outperforms the 2 drones one (5.6 vs. 3.9 victims
found, with two-tailed p < .0001), while the mean time needed to find the n-th victim
(e.g. 96,6 vs. 249,6 sec. to find the first 3 victims, two-tailed p < .0001) is also con-
siderably reduced. Table 2.8 shows how the operators balance the time (sec) dedicated
to the 3 drones during the tests. Here, we consider: maximum (max), minimum (min),
middle (mid) time dedicated to a drone, and the time spent monitoring all the drones (all).
The averages of these values and the associated selection percentage, shows a satisfactory
balance. Interestingly, the time dedicated to all the drones is not negligible, indeed all
drones are selected during parallel operations (e.g. “all hawks take off”) or to inspect all
the cameras at the same time during a high-level scan.

Table 2.6: Mission results: victims found and time to find a victim

Victims Time
avg min max std avg min max std

2 Drn 3.9 3 5 0.65 217.4 60 350 18.3
3 Drn 5.6 4 6 0.61 157.6 45 350 17.1

Table 2.7: Mission details: time to find n victims

2 Drn 1 2 3 4 5 6
Succ. % 100 100 100 80 20 0

Time avg 85.8 122.7 249.6 296 333.3 –
std 15.7 22.8 24 13.8 15.2 –

3 Drn 1 2 3 4 5 6
Succ. % 100 100 100 100 93.3 46,6

Time avg 59 64.3 96.6 166.9 235.5 324.2
std 6.98 6.13 12.3 25.2 32.5 19.8

We can also analyze whether the multimodal interaction is actually exploited. For this
purpose, Figure 2.15 (left) illustrates the distribution of the commands for each modal-
ity. Interestingly, we can observe that the gesture-based commands are frequently used
to orchestrate the operations of the drones during the search, both as single gestures, or
in combination with vocal instructions (used either to complete or to reinforce a com-
mand), while purely vocal interactions are less frequent. Finally, in Figure 2.15 (right) we
compare the precentage of time spent by the drones in the operative modes (autonomous,
teleoperated, mixed-initiative). Here, we can observe that during the tests (3 drone cases)
each drone mainly operates in the autonomous mode, with a minor percentage of time
spent in interactive adjustments (joystick-based interaction), while the direct teleopera-
tion is a rare control modality. The dominance of the autonomous mode allows the user
to sporadically interact with the drones as required in the SHERPA scenario. Overall,
this preliminary evaluation suggests that the proposed multimodal interaction framework
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Table 2.8: Drone Selection: time dedicated to the drones

Max Mid Min All

Time avg 108 92.16 80.64 75.6
std 17.9 16.3 17.6 31.6

Select. % 30 25.6 22.4 22

is effective in the 3 drone configuration, indeed, the user monitoring and control effort
during search mission seems well balanced among the drones, while both the multimodal
interaction and the autonomous control mode seem exploited as expected.

Figure 2.15: Interaction type (left) and operative modes (right)
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Autonomous and
semi-autonomous action
execution

An important skill of robots that operates in service robotics tasks is the ability to perform
assigned tasks with a different level autonomy. This means that the robot is itself responsi-
ble of the execution of a commanded action, decomposing the task in different sub-tasks
in which, the accomplishment of all sub-tasks lead the robot to accomplish the entire
mission. We will refer to this phase as Planning & Execution. In case of cluttered and
unknown environment, as the one considered in typical service robotics applications, the
presence of a human operator in the loop of the action execution process could be really
important. For this purpose, in this thesis different approached to the Planning & Exe-
cution phase that rely on Mixed-Initiative interaction are presented. In Mixed-Initiative
interaction applications either the computer or the human can take initiative and decide
what to do next, in order to achieve better results in the overall mission accomplishment.
In the followings three different approaches for the autonomous and semi-autonomous
action execution by means of flying robots are presented.

3.1 Aerial service vehicles for industrial inspection: task
decomposition and plan execution

In this paragraph a high level architecture designed for an Aerial Service Vehicle (ASV)
operating in close interaction with the external environment is presented. This work is
framed within the The AIRobots project [121] whose aim is to develop a new generation
of unmanned service helicopters, equipped with sensors and end-effectors, and capable
not only to fly, but also to achieve robotic tasks in proximity and in contact with the
surface (e.g. site inspections, simple manipulations, etc.).
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Figure 3.1: Robotic Platform: ducted-fan ASV

In our scenario, the autonomous system should orchestrate a new set of operations
like wall approach, docking, undocking, wall scanning etc.. These operations represent
different operative modes, each associated with a different controller with specific control
laws and performance the high-level control system should be aware of. Each switch from
one operative mode to the other should be suitably prepared and planned to keep smooth
control trajectories. Since the system flies close to the obstacles in cluttered and unknown
environments, fast planning engines are required to generate (or to adjust) trajectories in
real-time. On the other hand, the system should be able to regulate the trade off between
fast planning and accurateness of the generated trajectories depending on the operative
mode and the context. Moreover, since the system operates with the man in the loop, the
planning/executive system should be able to manage sliding autonomy, from autonomous
to teleoperated mode, depending on the humans’ interventions. This applicative domain is
challenging and novel and has not been investigated in depth in the UAV literature which
is mainly focused on free flight tasks and simultaneous localization, mapping, and path
planning problems [124, 128, 137]. Few high-level architectures for UAV can be found
in literature [125], but none of these addresses the complexity of the operative domain
proposed in this section.

3.1.1 System Requirements and Architecture

The applicative scenario described so far requires a high-level control system with fol-
lowing features:

• The air vehicle operates in close interaction with the environment, hence reactive,
adaptive, and flexible planning/replanning capabilities are needed;

• Both autonomous and human-in-the-loop control modalities should be supported to
allow human interventions and teleoperation;

• High-level control strategies should be defined taking into account the low-level
operative modes and constraints.

In particular, the high-level system should orchestrate the activations of a set of low-level
controllers, modeled as hybrid automata [134], switching to the appropriate controller
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according to the operative mode and the task (see Fig. 3.2) feeding the selected controller
with suitable data (e.g. state and references).

Figure 3.2: Interaction between the high level system and the low-level controllers (left); the high
level control system is composed of high-level and low-level supervisory systems.

To match these requirements we proposed the layered architecture depicted in Fig. 3.2.
Here, two layers are distinguished: the high-level supervisory system is responsible for
user interaction, task planning, path planning, execution monitoring, while the low-level
supervisory system manages the low-level execution of control primitives setting the con-
trollers and providing control references. This architecture is detailed in Fig. 3.3.

Figure 3.3: High Level Architecture: high level, low level, and reactive level modules are respec-
tively in blue, green, and gray

The User module (US) allows us to specify high-level goals (e.g. Inspect(p)) or lower
level tasks (e.g. TakeO f f ) or to directly teleoperate. Each task/goal is delivered to the
TP which expands a task into an abstract plan composed of macro-actions. This plan

31



CHAPTER 3. Autonomous and semi-autonomous action execution

is then sent to the Plan Supervisor (PS) for high-level execution. Each task or macro-
action can be interrupted and pre-empted by new tasks provided by the user, provoking
task replanning. The PS generates, for each macro-action in the high-level plan, a set
of micro-actions to be executed by the Primitive Supervisor (PR). Each macro-action
is further decomposed into a sequence of micro-actions which are endowed with detailed
information about the associated geometrical paths. The PR exploits the Control Manager
(CM) to select the low-level controller responsible for the micro-action execution. Finally,
the PR generates the control trajectory passing it to the Trajectory Supervisor (TS) to
generate control references at a suitable frequency. The PR exploits concatenations of
fifth-order polynomials to provide smooth trajectories between waypoints [131] while
ensuring the velocity and tolerance constraints. When a micro-action fails, the PS can
either call the PP to generate an alternative path or call the TP to generate a different
plan of macro-actions. Furthermore, it can be interrupted by the Path Monitor (PM)
which checks for trajectory deviations and unexpected obstacles. Finally, the operator can
always switch to a manual control mode, in this case the TS should monitor the trajectory
provided by the Teleman. Once the autonomous control is restored, a replanning process
is needed to recover the execution of the current task.

3.1.2 Task Planning and Executive Control

The high-level executive system coordinates task decomposition and plan monitoring. It
relies on a PRS engine that manages a BDI-like execution cycle [135] and hierarchical
task decomposition. The high-level executive system responds to events generated by the
US, PS, or TP itself by committing to handle one pending goal, selecting a method from a
plan library, managing the hierarchical decomposition to extract/update the macro-actions
plan. Once a plan is generated, the PS should manage the actual execution of each macro-
action providing the action results to the TP module. During this execution process, user
interventions are treated in a uniform way: at any time the user can interrupt/suspend
the current task, or the execution of alternative tasks can be invoked. In this case, the
executive system reacts by replanning from the current state: it selects alternative methods
and generates an alternative plan. This enables mixed initiative task planning [122].

3.1.3 Path Planning and Replanning

The Path Planner expands each macro-action into a set of micro-actions representing a
path that respects geometric and operative constraints. The path generation algorithm
is based on a Rapidly-exploring Random Tree (RRT) algorithm [130] which is particu-
larly suitable in highly unstructured and dynamic domains. In this work, the RRT algo-
rithm generates collision-free paths composed of sequences of waypoints (x,y,z,θ), where
(x,y,z) is a point and θ is the yaw. More specifically, it generates a path as a sequence of
(x,y,z) points in a 3D search space (3D grid map), while the yaw θ is obtained as the
direction pointing towards the next waypoint. The generated path should satisfy a set of
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additional control, safety, and temporal constraints: Maximum angle for pitch and yaw;
Minimal distance from the obstacles (this parameter is also associated with the operative
mode and the accuracy of the selected controller); Maximum Time for the path generation
processes, if the algorithm cannot find a feasible path before the timeout, it should pro-
vide the best partial path. Moreover, that RRT path planner can generate several solutions
to refine the path, until one of the following conditions are satisfied: timeout, i.e. the
available time for path planning expires; interrupt, i.e. a replanning request or an exoge-
nous event interrupts plan generation; cost threshold, i.e. as soon as the current path cost
is below a suitable threshold, the generated plan is considered as satisfactory. The path
planning refinement process is illustrated in the Algorithm 1 where the path generation
process is iterated until the current generated path is not satisfactory. If the timeout occurs
before the generation of the first solution, the solveRT T function generates the path that
arrives closer to the target.

initialize(path,time);
while ((time < timeout)∧ (preempted = f alse)∧ (pathCost ≥ threshold)) do

newPath← solveRRT(qinit ,qgoal ,timeout);
if C(newPath)< path then

path← newPath;
pathCost ←C(newPath);

end if
end while
return path

The path cost is defined as follows:

c(path) =clng(path) · plng + cang(path) · pang+

cway(path) · pway + cobs(path) · pobs + cunk(path) · punk
(3.1)

where the pi are suitable weights and ci are defined as follows. clng(path) is a cost associ-
ated with the path length; cang(path) represents the cost associated with angular (yaw and
pitch) variations, by minimizing this cost a straight path should be preferred to a path with
angular turns; cway(path) counts the generated waypoints and allows us to minimize the
segments in the path; cobs(path) is associated with obstacle proximity and penalizes paths
close to obstacles; cunk(path) penalizes paths through -or close to- unexplored cells. Once
a path is generated, the path planner defines a set of constraints cst = (ms,md,et) asso-
ciated with each generated segment. Roughtly, for each segment, we set the maximum
speed ms directly proportional to the obstacle minimal distance mo along the correspond-
ing segment; ms is also associated with a proportional error et, therefore we set md as
mo-et (if this value is not positive, the speed limit is lowered). These constraints cst are
also accessible to the human operator which can manually reset them. Note, that cst are
just rough limits used by the CM and the PR to select the right controller and to generate
the trajectory associated with the path.

Path replanning is managed with different strategies depending on the time available
for path generation. The urgency associated with the replanning activity depends on the
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Figure 3.4: (left) Brake to avoid collision; (center) Escape path to avoid the obstacle; (right)
Replan a new path generated to reach the target.

position of the collision point pobs and the estimated time to collision tttc. This one is
estimated by considering the obstacle distance dobs along the trajectory and the mean
velocity vmean along the path. Given the time to collision tttc, we introduce two thresholds
Tb < Te used to distinguish the following three cases:

• Brake. If tttc ≤ Tb then the obstacle is too close for replanning, hence the PS directly
sends a Brake command to the PR to stop the robot in hovering (Fig. 3.4 up-left).

• Escape. If Tb < tttc ≤ Te, the PP is invoked by the PS to find an escape path that
allows the robot to avoid the obstacle; the escape trajectory represents a fictituos
detour that provides the planner with additional time to generate the new path on-
the-fly (Fig. 3.4 up-right).

• Replan. If tttc > Te then the time is sufficient for safe replanning, hence the PS calls
the PP to replan, on-the-fly, a trajectory from a suitable deviation point along the
previous path (Fig. 3.4 down).

The PP is called in the case of Escape and Replan. In the case of Escape, the path
planning task is simple: it is to select a close and safe target point qtarget in the free space,
far enought to enable safe on-the-fly replanning, and to generate a path to reach it (Fig.
3.4 right). That is, Escape provides a path that not only permits to avoid the obstacle, but
also provides the time for replanning a new path to the goal. The interesting case is the
third one, where the path planning process should find an alternative path that connects
the old trajectory with a new one while the robot is flying. The replanning algorithm is
illustrated in Algorithm 2. Given the target qgoal , the old path pathold , the collision point
qobs, and the tttc time, the replanning process first estimates the time needed to replan trp

(estimatedRepTime); then it selects a waypoint wprp, along the old path pathold , from which
it is possible to safely calculate the deviation pathnew from pathold (selectDeviationWP);
finally, upon setting a suitable threshold (setThreshold), the replanning process calls RRT -
refine to generate the new path pathnew from the deviation waypoint wprp to the target qgoal .
pathnew should allow the PR to generate a new trajectory connecting the old one with a
smooth deviation from wprp.
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qc← getPosition();
trp← estimatedRepTime(qc, qgoal , pathold , qobs);
wprp← selectDeviationWP(qc, qobs, pathold , trp);
threshold← setThreshold(wprp, qgoal , trp, tttc);
pathnew← Refine RRT(wprp , qgoal , threshold, trp);
return pathnew

To select the deviation waypoint wprp we defined the following strategy. Given the esti-
mated time needed to replan trp, we estimate the robot position qpr at time trp (assuming
that it keeps following the old path pathold during replanning), if there exists a waypoint
wp in pathold that follows prp and precedes qobs (keeping a suitable range the we assume as
maxRange), then we select wp as the deviation waypoint wprp, otherwise, qrp is on the path
segment that intersects the obstacle, hence we select wprp as the point qm in the middle of
the segment that connects qrp and a point q′obs which is at maxRange distance from qobst .
In Fig. 3.4 (center), we find an example of replanning from a waypoint after the collision
detection (left).

3.1.4 3D Mapping

The environment for mapping and path planning is a 3D grid-map of cells which is run-
time generated given the robot pose and the 3D point clouds extracted from the cameras.
We deploy the well known pin-hole camera model [127]. Pose estimation of the UAV is
needed to identify the 3D position of the projected camera points in the world reference
frame. Our pose is either obtained by using libviso2 [126] coupled with a Kalman filter
or, alternalively, by directly deploying an optitrack motion capture system. Given the
pose, the associated point cloud map should be suitably processed into a 3D occupancy
grid. This is obtained by discretizing the vehicle’s workspace with elementary cubes of
equal size. In our case, we employed a vehicle of 50×50×20 cm hence, we used cubes
of 10 cm. For each cube we stored: the number of inliers (3D triangulated points) fell
into the cube volume, the last camera position which an inlier had been collected, and the
state of the cube. The number of inliers represents the number of different points from
which the same obstacle has been detected. The last camera position is required in case
of hovering, to avoid that the same image feature generates dome wrong inliers, while it
is possible that the same outlier is achieved from different points of view. Each cell can
be associated with one of the following values: f ree, occupied, obstacle, target, ignored or
unknown. Initially each cube is set to f ree. When a 3D point is detected to belong to a given
cube, the value of the corresponding cube is set to occupied. When the number of points
inside a cube reaches a given treshold, the state is set to obstacle. On the other hand, when
a target is identified, the corresponding cube is set to target. Moreover, from each position
that had generated a valid target view point, all the cubes laying along the optical rays
are set to ignored. For wide environments, a sparse representation of the occupancy grid
map is associated with a spatial/temporal vanishing criterion. This determines whether
an occupancy cube is sill reliable or if it has to be discarded (depending on the distance
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travelled by the vehicle or on the time last after its previous update). In fact, due to the drift
of the vehicle pose estimation, obstacles which have been observed a long time before or
far from the current position cannot be considered reliable anymore in the current map
representation, therefore they should be refreshed. With these solutions the reliability and
scalability of the map representation can be suitably tuned.

3.1.5 Experimental Results

In this section, we present experimental results on planning, replanning, and obstacle
avoidance, both in real-world scenarios and in simulated environments.

Real-world planning and execution. Our architecture has been tested in a real scenario
of dimension 400× 400× 300 cm3 considering the two environments depicted in Fig. 3.5
(up and down). In the two testing scenarios, the task was the following: inspect a target
point in pose (380,350,50,90) from the pose (40,40,50,0) with maximum and minimum
speed set at 0.3m/s and 0.1m/s respectively. The obstacles are detected on the fly and
this can provoke task/path replanning, escape, or brake. For each scenario, we executed
each test 10 times collecting mean, max, min, and standard deviation (STD) of: time spent
during planning (Tp), time spent in replanning (Tr), number of replanning episodes (Nr),
length of the executed path (Lp), and total time for execution (including replanning time)
(Te). For computation and simulation we used an Intel Core Duo, 1.40GHz, 3GB ram,
Ubuntu 10.04. The high-level architecture was developed in ROS. As for 3D mapping,
we used cameras ueye with hardware synchronized images, compressed on-board using
atom 1.6 GHz, and sent to a ground station. The stereo images are streamed at around
15 Hz at the ground station. The vision algorithm can track around 120 image features
correspondences on 4 images working at the streaming frequency. Each camera provides
images with resolution of 752×480 and an angle of view of around 50◦.

Figure 3.5: Replanning: generated and executed path (left) real platform during plan execution
(right).
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Test 1 Test 2
Mean STD Max Min Mean STD Max Min

Tp 0.075 0.014 0.08 0.04 0.017 0.002 0.03 0.01
Tr 0.614 0.41 1.20 0.01 0.067 0.04 0.11 0.005
Te 60.5 10.12 75 42 49.9 8.18 60 40
Lp 14.4 1.54 18 12 13.18 1.11 15 11

Table 3.1: Planning and execution results (in seconds) in the real scenario.

Res/Env LL LH HL HH
Mean STD Mean STD Mean STD Mean STD

Tp 0.21 0.11 0.39 0.03 0.25 0.10 0.31 0.14
Tr 0.12 0.03 0.07 0.01 0.20 0.04 0.23 0.03
Te 308.39 3.1 211.88 2.4 718.57 5.2 720.45 7.6
Lp 79.09 13.76 78.04 9.63 86.79 12.65 85.24 13.12
Nr 0.9 0.21 0.3 0.12 3.4 1.71 2.5 1.10

Table 3.2: Planning and execution results(time in seconds, length in meters)

Tab. 2 reports the results for the two scenarios (Test 1 and Test 2 in Fig. 3.5). For
both these settings, initially, the obstacles are not visible, hence the generated plan is
simple and planning time is low (Fig. 3.5 (left)). Once the obstacles are discovered on
the fly, replanning is needed to adjust on-line the trajectory. Replanning and execution
time are slightly higher in the first scenario which is more complex. Instead, Tr seems
negligible when compared with Te. The final trajectory length (Te) is similar in both the
settings and comparable with the distance between the starting and target point, hence the
final trajectory seems not affected by the continuous replanning process. In these tests,
Tp and Tr are mainly due to path and trajectory planning (task planning is negligible).
We never experienced brake or escape episodes. Overall, the system task/path planning
performance seems compatible with the operative scenario requirements.

Simulated planning and execution. We tested our planning and execution system in
simulated environments. To test continuous replanning, we considered a larger space
of dimension 100× 100× 50 m3 with 4 and 9 obstacles. To decouple replanning from
map bulding, we assumed a know map associated with a visibility horizon (not visible
obstacles are detected on the fly causing replanning). For each test, the task was to inspect
a target point in pose (90,90,5,90) starting from hovering in the pose (5,5,5,0) (in meters);
the robot maximum and minimum velocity was set at 0.5m/s and 0.1m/s respectively.
By changing the visibility horizon (green cells in Fig. 3.5) of the planner (15 or 25 m) and
the complexity of the environment (4 or 9 obstacles) we obtained 4 scenarios. Tab. 3.2
collects means and STD of 10 tests for each entry (time and length are in sec. and m, LL,
HL, etc. are for Low complexity and Low visibility, High complexity and Low visibility).
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Physical Inspection Visual Inspection
Mean STD Max Min Mean STD Max Min

Tp 0.798 0.012 0.019 0.009 0.734 0.47 1.25 0.42
Tm 0.324 0.17 1.07 0.12 0.329 0.22 0.57 0.3
Tpp 0.473 0.27 0.71 0.14 0.405 0.07 0.49 0.39

Table 3.3: Physical inspection and visual inspection

Here, we can see that Tp increases with the obstacles (HL,HH) and decreases with short
visibility (LL,HL). Indeed, in these cases the planning problem is simpler. However, short
visibility is associated with additional replanning time which, in turn, decreases with the
number of obstacles. The lower the replanning time, the lower is the execution time
and the shorter the executed path. A similar effect is due to visibility: short visibility
causes frequent replanning events (Nr) and longer paths (Lp) and execution times (Te).
Furthermore, the variance is enhanced with short visibility that enhances the uncertainty.
In these tests, the task planning time is usually negligible (Tp and Tr mainly due to path
and trajectory). Also in this case, we never experienced brakes or escapes.

Simulated inspection. As for operations closer to the surface, we considered two typi-
cal inspection scenarios: physical (Pi) and visual inspection (Vi). In both these cases the
system has to move in a pose which faces a vertical surface hovering at a close and fixed
distance (approach), in this case 50 cm. As for Pi (see Fig. 3.6, left), the robot executes
a docking maneuver (docking) and slides (keeping the contact) along a linear trajectory
(p-inspect) of 225 cm. In the case of Vi, an inspection trajectory (v-inspect) should be
planned and executed. Here, the goal is to scan a 150×100 cm2 surface with step 50 cm
distant 50 cm from the wall (see Fig. 3.6, right).

In Tab. 3.3, we collect the results of 10 tests for each scenario considering planning
time (Tp) divided in trajectory (Tm) and path planning (Tpp) time (task planning is negli-
gible). For each test and scenario, both path and task planning times are compatible with
the operative scenario requirements.

Figure 3.6: Physical inspection (left) and visual inspection (right)
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3.2 A Mixed-Initiative Control System for an Aerial Ser-
vice Vehicle supported by force feedback

In this section, a mixed-initiative control framework for unmanned aerial vehicles (UAVs)
that enables sliding autonomy is proposed. An autonomous system that can plan and ex-
ecute robotic tasks is considered while a human operator plays the role of a supervisor
providing interventions when necessary. In this context, the force feedback is used to pro-
vide the feeling of the deviation between the real position of the robot and the one planned
by its autonomous system. The higher the distance between the robot and the planned tra-
jectory, the higher should be the force that the system provides to the human to bring
the robot back to the planned path. The purpose is to provide the human operator with a
direct perception of the displacement from the planned trajectory and to give an intuitive
feeling about the direction to command in order to get back to the planned trajectory. We
tested the system at work in virtual and real environments considering simple navigation
tasks to be achieved in a mixed initiative control mode. We compared the performance of
human operators with the proposed feedback enabled and disabled. The collected results
show the effectiveness of the proposed approach.
Robot control based on haptic devices has been widely investigated in the human-robot
interaction (HRI) literature. Force feedback has been used for precise remote control
of manipulators [109] or to support obstacle avoidance during teleoperation [110][115].
Haptic interfaces have also been proposed to make the user able to perceive the presence
of virtual objects in an augmented reality setting [111]. Analogously, in [112] artificial
force fields are used supporting mobile robot navigation in virtual environments. More
closely related to our approach, in [111] an event-based direct control with force feedback
has been proposed to represent the difference between the actual velocity of the robot and
the desired one in ground mobile robot navigation. Haptic feedback methods supporting
the teleoperation of a unmanned helicopter are presented in [113], with the focus on col-
lision avoidance. In [114] a novel haptic framework is proposed to teleoperate multiple
UAVs, where an operator can remotely command some UAVs while haptically perceiving
the state of the other ones.
The proposed framework is deployed in the Aerial Service Robotics (ASV) [106] domain.
In this context, UAVs should perform not only typical navigation operations (like take-
off, hover, waypoint fly, land, etc.), but also tasks in proximity and in contact with surface
(e.g. docking, undocking, sample picking, wall inspection, etc.). In this domain the robot
operates in cluttered environments, in proximity and in contact with the surfaces, hence
both autonomous and teleoperated control should be provided. Indeed, even tough the
low-level control of the robot is robust and able to estimate and compensate exeternal
disturbances [119], the human can help the robot in managing difficult/unexpected events
and manipulation tasks, while the robot can autonomously plan sequences of tasks, map,
localize, and navigate across the environment. The system should enable a docile and
smooth sliding from an autonomous mode to a teleoperated one and vice-versa. For this
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purpose, we propose a framework that combines mixed-initiative planning [120] and hap-
tic feedback.

3.2.1 HRI Control Architecture

We assume the HRI control architecture (see Figure 3.20) divided into two layers: the
High-level Supervisory Control layer (HLS) is responsible for user interaction, and task/path
planning and execution monitoring, while the Low-level Supervisory Control (LLS) layer
manages the low-level execution of the action primitives. The operator interacts with
both the HLS and LLS: at HLS he can activate high-level tasks through the User Inter-
face module, while at the LLS the teleoperation module allows the human operator to
directly control the robot movements. If the human provides high-level goals to the HLS,
the system works in the autonomous mode deploying planning and execution engines to
achieve the tasks. On the other hand, if the system is in the teleoperated mode, the human
can directly and exclusively control the vehicle. The proposed HRI system allows us to
combine these two control modalities enabling to smoothly slide from fully autonomous
control to fully teleoperated control and vice versa. In the following a detailed description
of these control modalities is provided.

Figure 3.7: Supervisory System and Mixed Initiative Control

Planning and execution At the higher level of abstraction, the operator can specify
the task the robot has to perform. This task is decomposed into a set of operations and
commands that are sent to the low-level supervisory system that controls the robot actua-
tors. The robot executive system structured as a Belief-Desire-Intention (BDI) architecture
[117]. This module relies on a PRS engine and is responsible for goal management, task
decomposition tracking the current high-level environmental and executive state while
managing any interrupts of the active plan. Indeed, the operator can interact at any time
by sending new goals or interrupting the current action execution. Once the plan is gen-
erated, its execution is managed by the Plan Supervisor that exploits the Path Planner to
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generate a path between two points in a limited interval of time. In our framework, the
path generation algorithm is based on a version of the Rapidly-exploring Random Tree
(RRT) algorithm [130]. The generated path should satisfy a set of additional control,
safety, and temporal constraints (e.g. planning and execution timeouts). The low-level
Primitive Supervisor receives from the Plan Supervisor a list of micro actions associated
with a sequence of waypoints, each tagged with constraints, i.e.: minimal distance from
obstacles and maximum velocity. These constraints along with the micro operations are
then used by the Control Manager to select the right controller (e.g. trading-off velocity
and precision). Given the controller and the waypoints, the Trajectory Planner can then
generate and monitor the control trajectory. Since the robot operates in cluttered unknown
environments and in proximity of the surfaces, the generated trajectory is to be continu-
ously monitored generating replanning or recovering depending on the time available to
react [107][152].

Trajectory Planner The trajectory planner generates a trajectory in terms of position,
velocity, acceleration, and jerk processing all the waypoints and constraints generated by
the path planner. The trajectory is generated exploiting a 4-th order spline concatenation
method that preserves continuous acceleration. In the proposed architecture this trajectory
can be directly modified by the human interventions, i.e. the trajectory planner can be
continuously invoked to adjust the current trajectory. In Figure 3.8 is shown an example of
position, velocity and acceleration generated by the trajectory planner in which multiple
trajectory replanning have been invoked.

Human-in-the-loop The human operator is involved in both the high-level and low-
level control loop. At the lower level of interaction, he can interact with the robot through
a remote controller either by direct teleoperation or by adjusting the planned trajectory
followed by the robot. In this latter case, the human and the autonomous control data have
to be suitably integrated. Figure 3.9 shows the scheme of the mixed-initiative control.

We assume that, in the mixed initiative mode, the operator controls the robot in ve-
locity. Therefore, the remote controller generates a relative position command hC that
is added to aC, generated by the autonomous planner. These functions are described as
follow:

• aC(t) : the position command (xt ,yt ,zt ) at time t generated by the autonomous sys-
tem;

• hC(t) : the relative position command (xmt ,ymt ,zmt ) at time t, generated by the hu-
man operator.

The hC function is calculated as follows:

hC(t) =

{
hC(t−1)+ joypad(t) if mixedControl = ON
hC(t−1)+Λ(t) otherwise,
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Figure 3.8: Grountrouth, position, velocity and acceleration executed trajectory

where joypad(t) represents the data generated by the human operator through the remote
controller at time t, (x jt ,y jt ,z jt ), and Λ(t) is a linear function that increases or decreases
the value of hC(t) to drive the hC(t) towards the one provided by the autonomous con-
trol. In the mixed-initiative mode, autonomous and human contributions are composed
to obtain only one position command. Therefore, the human interventions can move the
robot away from the planned trajectory in the direction indicated by the remote controller
(see Figure 3.10 le f t). When the operator releases the remote controller, the autonomous
mode is enabled and the robot is gradually brought towards the planned trajectory fol-
lowing the Λ function. During the teleoperation, the human operator can feel the force
feedback through the remote controller. This force represents the state of the robot in
terms of direction and distance from planned path.

The human operator can move the robot within a spherical region centered in the
current autonomously planned position (green globe in Figure 3.10 le f t). This sphere
represents the time-varying workspace of the user operator. When the robot is controlled
in the autonomous mode, if an obstacle falls into the planned trajectory, the control sys-
tem of the robot generates another path to reach the destination point (replanning). An
analogous replanning process is started when the human operator moves the robot out
of this confidence region. In this case, the autonomous system generates another path to
reach the next waypoint.
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Figure 3.9: Mixed-Initiative control scheme.

Figure 3.10: (Left )Deviation from the planned path, (Right) force feedback idea.

3.2.2 Force Rendering

The human operator interacts with the robot through a 3-DOF hapitc interface. During the
mixed-initiative interaction mode, the operator receives a tactile feedback in response to
the movement direction of the robot. This feedback is continuously calculated taking into
account both the remote controller position and position of the robot with respect to the
planned trajectory. The basic idea is that the force feedback should provide the feeling of
the deviation between the real position of the robot and the one planned by its autonomous
system. The higher the distance between the robot and the planned trajectory, the higher
should be the force that the system provides to bring the robot back to the planned way.
When a suitable threshold is reached the old plan is broken and a new one generated.

In our setting, the force feedback is a force vector in the 3D space updated with a
frequency of 100Hz. The total feedback is a combination of two types of forces: the
logical force, which is calculated according to the distance of the robot from the planned
path, and the collision preventing force that helps the human operator to avoid obstacles
in the environment. The final rendered force is given by the sum of these components.

Logical Force The logical force is calculated according to the distance of the robot from
the planned trajectory. In particular, the distance value is calculated considering the point
where the robot should be at that time along the trajectory. The higher the displacement
from the planned trajectory, the higher is the stiffness of the remote controller. When
the robot is aligned with the trajectory the force should be at zero, while, the maximum
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stiffness should be provided when the robot reaches the maximum allowed distance. More
specifically, the application point is the logical position of the haptic device in the robot
reference system, while the endpoint of the force vector is the point on the planned path.
This endpoint provides the direction vector.

Let ~fl ∈ R the force vector sent to the haptic device, this is defined by the function:
~fl = g(~xp,~xr) where g is a function of two parameters: ~xr, representing the position of
the robot reached by teleoperation, and ~xp, the position of the robot according to the
planning system. Specifically,~xp = (x1p ,x2p ,x3p),~xr = (x1r ,x2r ,x3r). The i-th component
of the force vector is given by: fi = k(δ ) · (x̂ip − x̂ir) where k(δ ) is a function of δ and
δ = ||~xp−~xr||:

k(δ ) = kmax ·
(

1
1+ e−((δ−w1)/w2)

− 1
1+ ew1/w2

)
. (3.2)

In particular k(δ ) is a sigmoidal function, where δ is the distance of the robot from the
planned trajectory, and kmax, w1, w2 are:

• kmax is the maximum value of the stiffness applied by the haptic controller;

• w1 defines the position of the inflection point of the sigmoidal function;

• w2 defines the growth rate of the sigmoidal function.

The relationship between the distance and the stiffness of the controller is shown
in Figure 3.11, that contains two different graphics. In the right one, the green curve
represents how far (in meters) is the robot from the planned path. In the left one, the blue
curve represents the corrisponding stiffness of the grip of the controller under the human
touch.
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Figure 3.11: Stiffness with respect to time.

Figure 3.10 (right) illustrates our force feedback concepts. In this case, the UAV
follows a planned path while the human operator moves it along eight directions inside
the workspace (dashed circle); this movement creates a displacement between the real
robot position and planned one increasing the force feedback.
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Figure 3.12: Real and corrected distance from the planned path with respect to time.

Replanning If a human operator moves the robot outside the allowed workspace, a
replanning phase is invoked. In this case, the force feedback should present a discontinuity
from a maximum value (maximum allowed displacement) to zero (the old path is erased
while the new one starts form the current pose). The associated abrupt change of the force
feedback is smoothed by assuming a linear decrease of the distance between the position
of the robot and the planned trajectory (see Figure 3.12).

Collision-preventing Force The collision-preventing force is computed according to
the robot direction and the distances of the obstacles. In this case, the force vector moves
the robot away from obstacles, but close to the planned trajectory. For this purpose, in
addition to the Logical force we introduce another force component that should suggest
to the human operator the best way to avoid the obstacles keeping the robot in trajectory.
We assume that a force feedback is provoked only if an obstacle is detected inside the
robot workspace. The force associated with a single obstacle is the vector ~fobi ∈ R3

defined as follows. Let di be the Euclidean distance between the i-th obstacle and the
robot: di = ||xr−xob||, where~xr is the position of the robot while xob is the position of the
obstacle. Let δ (xp,xr) be the Euclidean distance between the position of the robot xp and
the planned point on the trajectory ~xr. The force generated by the i-th obstacle is given
by:

~fobi =−ρ(di) · δ (xp,xr) · d̂obi ,

where d̂obi is the unit vector pointing from the robot to the i-th obstacle and the function
ρ(di) is defined as ρ(di) = e−dirw , with rw radius of the spherical workspace.
For n obstacles in the workspace, the force vector sent to the haptic controller is given by:

~fob =
∑

n
i=1

~fobi

∑
n
i=1 ρ(di)

.

Therefore, the total force sent to the haptic controller is a composition of the logical forces
and the collision-preventing force, as shown below:
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~ftot = α ·~fl +(1−α) ·~fob where 1≤ α ≤ 0

3.2.3 Implementation

We implemented a control system for a generic UAV. The haptic device we used is the
consumer 3D touch Novint Falcon, with 3-DOF and programmable under linux operating
system. In Figure 3.13 we illustrate the main components of the implemented mixed-
initiative framework. The system is implemented in C++ programing language, using
ROS2 as high-level middleware software. In particular, we have used the ROS package
hector-quadrotor [116] that allows us to develop a Cartesian controller for an UAV, and
Gazebo3 as dynamics simulator.

Figure 3.13: Mixed-initiative planning and execution with force feedback.

Figure 3.14 illustrates how the force vector f (left) is applicate to the hatpic device
(right). Here, Pp is the point where the robot should be in the planning path, while Rp

is the real position of the robot. The vector ~f is calculated with respect to the distance
between Rp and Pp points. Once calculated, the force vector ~f can be applied to the haptic
device which pushes the grip of the controller suggesting the operator to move the robot
from the Rp point to the Pp point.

3.2.4 Experiments

We tested the effectiveness of the proposed system both in a virtual environment and in a
real scenario.

In the following, we detail and discuss each test case.

Simulated tests We designed 3 scenarios (see Figure 3.15) where the user has to move
from a starting position to a destination point following a planned trajectory; along the

2http://www.ros.org/
3http://gazebosim.org/
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Figure 3.14: Force feedback on the haptic device.

path we introduced some deviation opportunities (marked as blue balls) and the user task
is to reach the destination point avoiding obstacles and trying to pass through the maxi-
mum number of target waypoints. In this setting, we can assess the operator performance
with and without the assistance of the mixed initiative system. We involved a group of
20 students and each subject was asked to repeat the experiment 3 times in the virtual 3D
environment, both in teleoperation and with the support of the mixed initiative system.
Every user performed the test in different order, counterbalancing the experiments with
and without force feedback in order to address the problem of learning effect. Moreover,
there was a break after each single test performance.

Figure 3.15: Simulated test scenarios.

Corridor scenario The first scenario simulates a corridor with a linear segment of 14
meters as a planned path and 7 landmarks to be reached, as depicted in Figure 3.15(left).
For each test, we measured the following variables:

• Score: number of reached landmarks.

• Distance: minimal distance of the robot from the walls.

• Length: length of the executed path.

• Time: time to reach the goal position.
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In Table 3.4 we compare the values collected with and without the use of the force
feedback illustrating for each entry, the minimum, the maximum, the mean value, and the
standard deviation. In addition, we report the results of the t-test (2-tailed), to show the
significance of the data.

Table 3.4: Corridor scenario

Score Min Max Mean Std t-test
Forces 5 6.6 6.06 0.5 0.0002285

No forces 3 6.3 5.19 0.8
Distance m. Min Max Mean Std t-test

Forces 0.8 1.3 1.01 0.1 <.0001
No forces 0.4 0.9 0.68 0.13

Path Length m. Min Max Mean Std t-test
Forces 19 20 19.3 0.32 0.0423755

No forces 18.6 21 19.6 0.62
Nav. time sec. Min Max Mean Std t-test

Forces 68 72.4 69.9 1.3 0.089711
No forces 68 71.6 69.4 0.9

Planar scenario The second scenario is depicted in Figure 3.15(center). Here, the robot
has to autonomously execute a circular path, while the human operator can deviate from
the predefined trajectory in order to reach the greatest number of target waypoints. Fur-
thermore, since a large deviation could break the planned path inducing a replanning
activity, we also considered the number of replanning episodes. Indeed, path replanning
activity should be minimized to minimize computation, deviations, and to keep a simple
executed trajectory. In this experiment we collected the following variables:

• Score: number of landmarks that the user reaches.

• Replan: number of replanning episodes.

• Length: length of the total executed path.

• Time: time to complete the test.

In this environment we introduced twelve landmarks, each at the same altitude of the
generated path. This coplanar positioning of targets allows the operator to reach the target
without the need of changing its altitude. Analogously to the previous test, the minimum,
maximum, and mean value for each variable and for each user are depicted in Table 3.5.
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Table 3.5: Planar Scenario

Score Min Max Mean Std t-test
Forces 7.6 10.6 9.27 0.8 <.0001

No forces 4 7 5.4 1.16
Re-planning Min Max Mean Std t-test

Forces 0 0.9 0.24 0.3 <.0001
No forces 0 2 1.1 0.59

Path Length m. Min Max Mean Std t-test
Forces 27 32 28.68 1.42 0.07625

No forces 26.6 32.3 29.8 1.2
Nav. time sec. Min Max Mean Std t-test

Forces 97.6 101 98.9 1.1 0.05846
No forces 98.5 103.6 100.6 1.45

Non-planar scenario Likewise the previous scenario, in this test the robot executes a
circular path in the environment illustrated in Figure 3.15(right). However, in this case
the waypoints are not positioned at the same altitude therefore it is difficult for the user to
teleoperate the robot with the visual feedback only.

Table 3.6: Non-planar scenario

Score Min Max Mean Std t-test
Forces 7.6 10 8.98 0.66 <.0001

No forces 4 6.6 4.8 0.82
Re-planning Min Max Mean Std t-test

Forces 0 0.6 0.13 0.2 <.0001
No forces 0 2.3 1.4 0.52

Path Length m. Min Max Mean Std t-test
Forces 25.5 31.3 28.3 1.8 0.004773

No forces 25.3 30.3 27.52 1.51
Nav. time sec. Min Max Mean Std t-test

Forces 97 101.3 97.98 1.22 0.000102
No forces 95.3 105.3 98.97 2.44

Real Scenario We tested the system in an indoor Arena endowed with an OptiTrack
motion tracking system. The vehicle platform is an Asctec Pelican quadrotor producted
by Ascending Technologies with standard sensors equipment. In this context, the initial
trajectory was a linear path of 3.5 meters, navigated in both directions with a movement
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of 7.0 meters. Analogously to the previous test cases, the user tasks is to reach some tar-
gets outside the planned trajectory. In particular, we introduced two virtual landmarks at
different heights, which becomes visible to the operator when the robot distance becomes
less then 1.2 meters.

In this experiment, we involved a group of 3 students and each of them executed the
test 2 times. Analogously to the non-planar case, the results in Table 3.7 supports the
hypothesis that the force feedback allows us to enhance the score and to reduce replan-
ning. In addition, for one of these experiments we reported in Figure 3.17 the planned and
commanded position data generated by the autonomous system and the mixed-initiative
module, respectively.

Figure 3.16: PRISMA Flight Arena

Table 3.7: Real Scenario

Score Min Max Mean Std t-test
Forces 1.5 2 1.8 0.28 0.014004

No forces 0 1 0.5 0.5
Re-planning Min Max Mean Std t-test

Forces 0 0.5 0.16 0.28 0.0425
No forces 1 3 2.16 1.04

Path Length m. Min Max Mean Std t-test
Forces 7.8 9.5 8.86 0.92 0.1869505

No forces 8.6 10.8 9.7 1.1
Nav. time sec. Min Max Mean Std t-test

Forces 46 51 48.6 2.51 0.037178
No forces 54 77 65 11.53
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Figure 3.17: Real scenario trajectories

3.2.5 Result analysis

For each scenario, the score of the system endowed with the force feedback is greater than
the no-force one. This is more evident in the second and in the third scenario of the sim-
ulated environment. In these cases, the replanning episodes are also less frequent, while
navigation time and path lengths seem not affected. These results suggest that the system
endowed with force feedback allows the operator to better assess how to deviate from
trajectories without breaking the plan (replanning episodes). The effect of this support
seems emphasized in the non-planar environment. In this case, the haptic feedback works
as a sort of sensory substitution: it provides a direct sensation of the displacements which
cannot be easily estimated in the virtual 3D environments. This seems confirmed by the
fact that the help of the haptic assistance is attenuated in the planar environment and not
evident in the corridor scenario. The same results has been noticed in the real scenario.
Finally, the t-test values show the significance of the collected data.

3.3 Mixed-Initiative Planning and Execution for Multi-
ple Drones in Search and Rescue Missions

3.3.1 Introduction

We present a mixed-initiative system for multiple drones suitable for search and rescue
activities in a real-world alpine scenario. This work is framed within the SHERPA project
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[138]. Differently from typical human-multidrones interaction scenarios [21, 81, 43, 10,
59], in this work we assume a human operator that is co-located with the robots and
not fully dedicated to their supervision and control. In this context, the human level of
involvement in supporting the robots behavior is not ensured: as a member of the rescue
team involved in the search and rescue activities, the human operator might be capable
to directly operate the robots, or involved in a specific task, hence only able to provide
sketchy and sparse inputs. This scenario requires a framework that supports adjustable
autonomy, from explicit teleoperation to a complete autonomy for the robots, and an
effective and natural mixed-initiative interaction between the human and the robots [75].

The framework presented in this work should allow a single human operator to su-
pervise and orchestrate the operations of a set of UAVs by means of a natural multi-
modal communication (using gestures, speech, joypad, tablet interface, etc.) supported
by adjustable autonomy. In the proposed approach, we assume a high-level supervisory
system that can compose and execute structured robotic tasks while the human rescuer
can provide interventions when necessary. These interventions range from abstract task
assignments for the multi-drone system (e.g. new areas to explore, search strategies def-
inition, paths to follow, etc.) to navigation adjustments (e.g. deviations from planned
paths or trajectories) or precise maneuvering of single robots (e.g. inspection of clut-
tered environments). More specifically, the proposed human-robot interaction framework
combines a multimodal interaction module with a layered mixed-initiative supervisory
system. The latter is composed of a multirobot supervisory system interacting with sin-
gle robot supervisors. For each supervisor, the executive control cycle is managed by a
BDI (Belief Desire Intention) system that orchestrates task planning, switching, decom-
position, and execution. The robotic activities are represented as hierarchical tasks which
are continuously instantiated and supervised by the executive system depending on the
environmental events and the human requests. In this setting, the operator is allowed
to continuously interact with the supervisory systems at different levels of abstraction
(from high-level tasks assignment/switching to path/trajectory adjustments) while these
human interventions are interpreted, monitored, and integrated exploiting the planning
and execution control loops. Indeed, following a mixed-initiative planning and execu-
tion approach, these interventions can be associated with system reconfigurations which
are managed by replanning activities [27, 18, 94, 11]. However, in our setting, different
planning/replanning engines are strictly intertwined in order to address mission, path, and
control constraints [16]. In order to evaluate the effectiveness of the proposed system, we
designed a simulated rescue and search case study where a human operator interacts with
a set of UAVs in order to accomplish typical searching tasks [76, 9] in an alpine scenario.

3.3.2 Search and Rescue Mission with UAVs

Following standard guidelines for search and rescue [77, 20, 76] and theory of optimal
search [97], we assume the following search phases for the rescue mission: (1) define the
search area for the targets; (2) define sub-areas for assignment of search pattern; (3) assign
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specific search patterns to cover each sub-area; (4) define a sequence for the search pat-
terns execution; (5) execute the chosen sequence of patterns, marking the positions of the
victims found. During the execution of the mission each of these steps can be dynamically
rearranged by the human expert depending on the context. In particular, the human ex-
perts should be able to refine the search areas and the associated priority value depending
on the development of the mission and the new information gathered. Analogously, if the
exploration is supported by UAVs, these areas can be dynamically assigned/reassigned to
robots. For this purpose, we introduce some primitives to set exploration paths and areas
and the associated search methods (see Table 3.8). In our setting, a search path is repre-
sented by a set of waypoints p = {(x1,y1), . . . ,(xn,ym)} in the 2D map, instead, a search
area is specified by a center and a radius a = 〈(x,y),r〉 (more complex search areas can
be easily included). Search areas and paths are also associated with a priority value Pi de-
pending on the estimated probability of finding targets in that area. The search areas can
be assigned with an exploration method that instantiates one of the search patterns sug-
gested by the NATO search and rescue manual for helicopter search [76] (here extended
to drones as in [9]):

• Sector Search (SS): that covers the center of the search area and permits a view of
the search area from many angles (Figure 3.18, A).

• Parallel Track Search (PTS): used for a uniform search coverage if the search area
is large and the approximate location of the survivor is known (Figure 3.18, B).

• Creeping Line Search (CLS): used when the search area is narrow and the probable
location of the survivor can be on either side of the search track (Figure 3.18, C).

• Expanding Square Search (ESS): used when the search area is small and the position
of the survivor is known within a close limit (Figure 3.18, D).

In our setting, we assume that each pattern can be instantiated by assigning an area
of search and a specific step of expansion (or an angle in the case of SS). We introduce
a cost function Ca(a,sp,u) that estimates the cost of the search pattern sp applied to the
search area a for the drone u, analogously a cost function Cp(p,u) is to assess the cost of
a search path p for the drone u. In this context, once a set of search areas A = {a1, . . . ,an}
and search paths P = {p1, . . . , pm} have been specified by the human expert (step (1) and
(2)), that human operator should interact with the autonomous system in order to assign
and instantiate the exploration tasks to the drones (step (3) and (4)) and then monitoring
and orchestrating the execution (step (5)). Notice that these search assignments may be
rearranged depending on the current state of the mission and the drones along with their
capabilities.

3.3.3 HRI Architecture

The human operator should interact with the robots in a simple and intuitive manner, fo-
cusing the cognitive effort on relevant and critical activities (e.g. visual inspection, precise
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Figure 3.18: Exploration strategies for two drones searching the environments.

maneuvering, etc.) while relying on the robotic autonomous system for routinized oper-
ations and behaviors (task decomposition, path planning, waypoint navigation, obstacle
avoidance, etc.). In this context, the robotic architecture must be capable of managing
different control modes: Autonomous, i.e. the robot can plan and execute a complex task
without the human support; Manual, i.e. each robot can be directly teleoperated by a hu-
man; Mixed-Initiative, i.e. the user can execute some operations, while the autonomous
system reacts or reconfigures itself accordingly. For this purpose, we designed a modu-
lar architecture suitable for supervising and orchestrating the activities of both groups of
robots and single robots. The operator should be capable of interacting with the system
using different modalities (joypad, gestures, speech, tablet, etc.) at different levels of ab-
straction (task, activity, path, trajectory, motion, etc.). These continuous human interven-
tions should be suitably and reactively integrated in the robotics control loops providing
a natural and intuitive interaction.

The architecture of the HRI system presented in this section is depicted in Figure 3.19;
in the following we illustrate each component.

Multimodal Interaction. The multimodal module allows the operator to interact with
the robots using speech, gestures, joypad, tablet, etc.. The integration of different modal-
ities permits a natural, flexible, and robust communication between the human and the
system. The speech modality is used to control the robot both in mixed-initiative and
manual control. We focused on instructions concerning movement, selection, and explo-
ration commands (a subset of these can be found in Table 3.9 and Table 3.8). Gesture-
based communication (e.g. pointing, directional signals, etc.) may be used to complete
navigational commands with deictic communication (e.g. go-there) during proximity in-
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Figure 3.19: The overall HRI architecture.

teraction with the co-located drones. Joypad-based control is mostly used to manually
teleoperate the robots or to adjust the execution of specific tasks. For instance, the op-
erator is allowed to modify the robot speed, orientation or elevation through the joypad,
without changing the robot task. A display/tablet allows the operator to keep the states
of the robot, its current task and textual/graphical feedback on the environment and the
operative state. Some informations, like quick notifications, may be sent to headphones,
while more complex data have to be displayed. For example, a suitable map of the en-
vironment is used to select the areas and path to explore and the waypoints to reach (see
Figure 3.23). Informations coming from the different channels have to be integrated to
produce a single interpretation for a task, command, or query; for this purpose, we rely
on a multimodal interaction framework based on a late fusion approach [89].

Multi Robot Supervisory System. The Multi Robot Supervisory System (MRS) is to
delegate tasks to the Single Robot Supervisory System (SRS) and monitor their execution
with respect to multi-robot integrity, resource, and mission constraints. In particular, in
our context the MRS should complete and delegate the abstract, incomplete, and sketchy
tasks provided by the operator. For example, the operator may only specify a set of areas
to be explored without specific assignments for the single drones or assign a task that
cannot be accomplished by a drone, given its current state and equipment. In particular,
for each robot the MRS should track the pose, the tasks, subtasks, and actions under exe-
cution and power/battery information. Particular tasks are also associated with additional
information, like the path followed or the particular region a robot is monitoring. On the
other hand, the robots have to make decisions alone without continuously asking confir-
mations or details to the human. For this reason, the system should be able to delegate and
monitor simple, but abstract commands, like ScanArea and SearchPath, which are then
decomposed in detailed subtasks. Complex delegation system for UAVs are provided in
the literature (e.g. [43]), since in this work our focus is on mixed-initiative human-robot
interaction, we will rely on a simple, but reactive MRS managed by a BDI (Belief Desire
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Intention executive system) [117] executive system (see Figure 3.20, upper layer), imple-
mented by a PRS engine, that interacts with a hierarchical task planner [25, 74]. Notice
that the BDI paradigm is particularly suited for our mixed-initiative system because it
provides a flexible, reactive, and adaptive executive engine that is also intuitive for the
human.

Single Robot Supervisory System. The SRS can continuously receive tasks from both
the MRS and the Operator. The interaction with the latter is mediated by the Mixed Ini-
tiative Control (MIC) module that supervises the coherence of the human behavior with
respect to the robotic behavior at different levels of abstraction (multi/single-agent task,
path, trajectory); moreover, it manages the communication between the robots and the hu-
man (e.g. task accepted/refused, task accomplished, failures notifications, human decision
request, etc.). This communication should be suitably filtered depending on the task and
the human operative state, for this purpose the deployment of a multimodal dialogue man-
ager is envisaged [54], however, in this work we will assume a simpler approach where
the notifications are provided to the user in a rule-based fashion (depending on the task
and the current state of the operator). The SRS (see Figure 3.20, second and third layer)
is subdivided into two layers: the High-level Supervisory Control layer (HLS) which is
responsible for user interaction, goal management, task/path planning and execution mon-
itoring, while the Low-level Supervisory Control (LLS) layer that manages the low-level
execution of the action primitives. Analogously to the MRS, also the HLS is orches-
trated by a BDI-based executive system interacting with a hierarchical task planner for
task decomposition. In this case, the executive system interacts also with a path planner
to instantiate navigation commands and search strategies. (more details are provided in
the section about mixed-initiave planning and execution). The executive engine provides
goal management, task decomposition tracking the current high-level environmental and
executive state. Moreover, it manages any interrupts of the active plan. In this setting, the
operator can interact at any time by sending new goals or interrupting the current action
execution. Once a complete plan is generated, its execution is managed by the Plan Su-
pervisor. The low-level Primitive Supervisor receives from the Plan Supervisor a list of
micro actions associated with a sequence of waypoints, each tagged with constraints, i.e.:
minimal distance from obstacles and maximum velocity. These constraints along with the
micro operation are then used by the Control Manager to select the right controller (e.g.
trading-off velocity and precision). Given the controller and the waypoints, the Trajectory
Planner can then generate and monitor the control trajectory.

3.3.4 Mixed Initiative Planning and Execution

In the architecture presented above, the human is allowed to continuously interact with
the system at different levels of abstraction. The system supports smoothly sliding from
fully autonomous control to fully teleoperated control and vice versa; this interaction is
integrated into a continuous planning and execution process that reconfigures the robots
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Figure 3.20: Multi Robot and Single Robot Supervisory Systems.

activities according to the human intentions and the operative state. In the following, we
provide some details about this process.

Task level interaction. At the higher level of abstraction, the operator can specify the
high-level tasks the robot has to perform. Each task is hierarchically represented and can
be decomposed into a set of operations and commands that are sent to the lower-level
supervisory system. The executive cycle of both the MRS and SRS are managed by a
PRS engine that provides goal management and task decomposition; moreover it tracks
the current high-level environmental and the executive state handling any interrupts of the
active plan. The operator is integrated in this loop and can interact at any time by sending
new goals, changing tasks, or interrupting the current action execution. Depending on
the task, the executive system can also call a Hierarchical Task Planner to complete or
optimize the task decomposition process. In particular, we rely on the Human Aware Task
Planner (HATP) framework [74], a SHOP-like Hierachical planner [78] that can explicitly
represent the human interventions. Note that the hierarchical planning paradigm - in
combination with the BDI framework - is particularly suited for this domain since it allows
the user to monitor and modify the plan at different abstraction levels (task, activity, path,
trajectory, motion, etc.) supporting both situation awareness and an intuitive interaction
with the generated plan structure. In our setting, the HATP planner is mainly invoked
for the resolution of abstract tasks like, e.g. ExploreMap, ScanAreas(A), SearchPath(P),
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Figure 3.21: Example of a hierachical plan where the MRS task decomposition is then
refined by the SRSs.

etc. (a list of possible tasks/subtasks in our domain can be found in Table 3.8). Each task
can be further specified with the explicit assignment of the parameters, e.g. the robot r
and the area a to be scanned can be explicitly provided (i.e. ScanArea(r,a)) along with the
p search pattern (i.e. ScanArea(r,a, p)). Notice that, if the UAV is not explicitly defined
by the operator, the MRS system should generate the assignments trying to maximize
the overall mission reward (see Figure 3.21); otherwise, the task can be directly provided
to the SRS of a specific robot, in this case the MSR should only check for constraints
violations. In the HATP, each operation Aa

k for a robot a can associated with a duration Da
k

and a cost function Cctxt
k . For instance, in our scenario, the estimated cost of scanning an

area a with the search pattern sn for a robot u, evaluated in the current context, is the sum
of the cost of reaching the area Cr(u,a) and the cost of scanning it Ca(a,sp,u) minus the
reward gathered for the area exploration which is proportional to the associated priority
Pa. As far as multi-robot constraints are concerned, HATP allows us to define specific
social rules associated with a cost for their violation 〈Sk,Pctxt

k 〉. In our domain, we only
penalize plans where robots explore the same areas or paths and unbalanced distributions
of the search effort for the available drones. Therefore, each plan P is associated with a
cost:

Cost(P) = Σai∈PCctxt
ai

+Σsk∈PPctxt
sk

,

where ai is an action of the plan P, sk is a social rule. In this context, the planner should
provide a feasible plan P associated with the minimal cost obtained before a specific time-
out. Indeed, the executive system invokes the planner providing a latency; if a solution
cannot be generated within the planning latency a default task is executed to recover from
the plan failure. In our case, the timeout is defined by context- and task-based rules, for
instance if a robot is landed or hovering the planning latency can be extended (up to 5
sec. in our tests), instead, during the flight it can be reduced (max 1 sec. in our tests),
otherwise, if the mission time or the energy is below a suitable threshold only a reac-
tive recovery behavior is allowed. More complex policies can be easily introduced and
assessed.
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Task Description
SetSearchArea Add/delete/modify a search area
SetSearchPath Add/delete/modify a search path
SetSearchPattern Change the exploration method
SearchPath Search along the path
ScanArea Scan the area with a pattern
ExploreMap Explore the map
GoTo Move towards a direction or an area
AbortMission abort the overall mission

Table 3.8: List of mission level tasks.

Command Description
Up Take off or increase of the altitude
Land Move the robot to the ground
Down Decrease the altitude
Left Move the robot to the left
Right Move the robot to the right
Forward Move the robot ahead
Backward Move the robot to the back
Away Move the robot away from the target
Closer Move the robot towards the target
Faster Increase the speed of the robot
Slower Decrease the speed of the robot
Go Move the robot to a specific position
Rotate Rotate the robot with a specific angle
Switch On/Off Turn on/off the UAV engines
Brake The robot brakes

Table 3.9: List of navigation commands.
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Path and Trajectory level interaction. The primitive tasks introduced above (e.g. Explore(a,u, p),
GoTo(a), etc.) are associated with drone movements to be suitably planned and executed.
We deploy an RRT ∗ algorithm [37] for the generation of obstacle-free paths in the 3D
space. Given the waypoints and constraints (proximity of the obstacles) provided by the
path planner, a trajectory planner generates a trajectory in terms of position, velocity,
acceleration, and jerk. The trajectory is generated exploiting a 4-th order spline concate-
nation method that preserves continuous acceleration. In the proposed architecture, this
trajectory can be directly modified by the human interventions, i.e. the trajectory plan-
ner can be continuously invoked to adjust the current trajectory. Indeed, in the mixed-
initiative mode, autonomous and human contributions are composed to obtain only one
position command. This way, the human interventions can move the robot away from the
planned trajectory. However, when the human intervention is released the autonomous
mode is enabled and the robot is gradually brought towards the planned trajectory with-
out the need of replanning. More specifically, we assume that, in the mixed initiative
mode, the operator can control the robot in velocity. In this setting, the human generates a
relative position command hC(t) = (xmt ,ymt ,zmt ) that is added to the aC = (xt ,yt ,zt ) which
is generated by the trajectory planner. The hC function is calculated as follows:

hC(t) =

{
hC(t−1)+human(t) if mixed = ON
hC(t−1)+Λ(t) otherwise

where human(t) represents the control reference generated by the human operator (through
the joypad, gestures, voice, etc.) at time t while Λ(t) is a linear function that increases
or decreases the value of hC(t). It is used to drive the hC(t) towards the one provided by
the autonomous control when the joypad is released (see [14] for an analogous approach).
Moreover, we assume that the human operator can move the robot within a spherical re-
gion centered in the current planned position (see Figure 3.22). This sphere represents
the context-dependent workspace of the user operator. A replanning process (analogous
to the one used for obstacle avoidance) is started when the human operator moves the
robot out of this sphere. In this case, the autonomous system generates another path and
trajectory to reach the next waypoint. Additional details can be found in [14]. Note that
path and trajectory replanning can also elicit task replanning if the conditions associated
with the execution of the current tasks are not valid anymore (e.g. preconditions, energy,
resource, and time constraints); these consistency conditions are continuously assessed
by the PRS executive systems (single and multi-robot).

In Table 3.9, we can find some examples of commands that the operator can provide
to the system in a multimodal manner (joypad, speech, gestures, etc.) to interact with
the robots or to directly controlling them. Note that these commands can be sketchy and
context-dependent, for instance, if the robot is in idle state the Up is for take off, otherwise
it will increase the UAV altitude. The navigational commands (left, right, forward, back-
ward) are robot dependent (e.g. left moves the robot to the left side of its camera) and can
be abstract (the actual movement can be instantiated by the system) or more specific (e.g.
left 1m). The faster/slower commands change the robot speed during the execution of a
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Figure 3.22: Spherical envelope for trajectory adjustments without replanning.

command (they have no effect if the robot is idle); each invocation of these commands
will increase/decrease the actual speed to a given percentage up to a limit value. The
go command moves the robot towards a specific location associated either to coordinates
stored on the map or to a symbolic location (either already provided in the map or marked
by the operator during the mission execution).

3.3.5 Simulation and Evaluation

A simulated alpine scenario has been defined with different configurations in order to
evaluate the system performance. In this section, we illustrate the scenario and some
initial tests we carried out in order to assess the system at work during a typical search
and rescue mission in the three modalities: manual control, mixed initiative, and fully au-
tonomous. In this setting, we started to consider only joypad and tablet based interactions.

Platform. We assume a set of simulated quadrotors with the specification of the Asctec
Pelican (flight time 20 min., max. airspeed 16 m/s, max. climb rate 8 m/s, max. payload
650 g, etc.) equipped with standard sensors. The overall software system has been devel-
oped in ROS under linux uduntu 12.04. The environment has been simulated using the
Unity3D game engine.

Environment. The simulated scene, depicted in Figure 3.23, includes several situations
in which an hiker might have lost its way. We considered both summer and winter fea-
tures. The scene comprises missed hikers and some associated items, either lost by the
hikers or irrelevant objects. These objects can help the operator in the search operations
(clues), but also divert him/her away from the right direction.

Test and scenario description. The performance of the system has been evaluated con-
sidering three control modalities. In the first test the system works in the autonomous
mode, lacking any interaction with the operator. In the second test case, the operator
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Figure 3.23: Specification of search paths and areas in a simulated environment (tablet
interface). The red segments are possible paths followed by missed hikers, darker areas
are associated with a higher priority value.

Figure 3.24: Simulated environment: starting point (base) for the two drones in our tests.
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Figure 3.25: User interface during the simulated mission in the mixed initiative mode.
The camera streaming of the controlled drone is full screen, the other drone camera and
the environmental map are the smaller windows on the right. Text messages for the two
drones are illustrated at the bottom.

may only use the joypad, while the high-level supervisory system is disabled both at the
multi-robot and at the single robot level. In this scenario, when one of the robots is not
directly operated it waits in the hovering state. In the third case, the operator is supported
by the overall system and can work in the mixed initiative control mode. The main aim
here is to illustrate the mixed initiative framework at work in a typical rescue scenario
comparing its performance with respect to the ones obtained in the other two modalities.
In Figure 3.23, we illustrate the map provided to the user at the beginning of each test:
it represents the search environment where paths, areas, and likelihood values of finding
survivors are represented. The interface employed for the tests is depicted in Figure 3.25,
here the video streaming of the controlled robot is full screen, while smaller windows
show the video streaming of the other robot and the environmental map with the robots
positions. Messages from each robot are also provided though the interface; the informa-
tion available to the user during the tests depends on the control mode as illustrated in
Table 3.10.

Each test starts with the robots positioned in a fixed point and should end in that
position (see Figure 3.24). During the tests, we assumed a perfect positioning system and
a perfect object/human detection system when the target is in the camera field of view
(50-degree) within a range of 30m.

In the autonomous case, we assume that the mission is planned by the MSR-level task
planner at the start and then reactively adjusted by the autonomous system during the
exploration, depending of the detected objects. When a relevant object is detected, the
robot is to replan in order to explore the surrounding area with a predefined scan path.
Analogously, when the battery power falls below a suitable threshold, the robot should
replan in order to come back to the initial position.
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Test Type Autonomous Manual Mixed-Initiative
Information
available

- Num. of survivor
- Loc. of areas

- Num. of survivor
- Loc. of areas

- Num. of survivor
- Loc. of areas

Messages
Shown - None

- Time elapsed
- Battery warning
- Survivor conf.

- Salient object
- Survivor alert
- Exploration start/end
- Time elapsed
- Failure request.

Control - Autonomous - Teleoperated - Mixed-Initiative

Table 3.10: Information available to the user during the tests.

In the teleoperated mode, the robots are directly controlled through a tablet and a
joypad used to define direction, speed, orientation of the robot and of the camera. During
the tests, the user receives only two messages: the confirmation of the effective survivor
sighting and a warning about the battery level, if it drops below a fixed threshold.

In the mixed initiative scenario, the user can interact with the MRS and SRS during the
mission using the tablet and the joypad. The graphical information provided by the tablet
interface is similar to the one of the teleoperated case, but additional textual information
is provided (see Table 3.10). Analogously to the autonomous mode, also in this case
the mission is planned in advance, but the human is allowed to provide interventions at
the plan and the trajectory level. On the other hand, the system alerts the operator when
salient clues are detected by a robot. The operator can then inspect the clues and decide
whether to check the area. The operator can always inspect the current operative and
environmental state: including robots position, speed, state, task, plan. These notices can
be supplied through different channels, like audio notifications or messages on a tablet.
In this setting we decided for the text notification on the tablet.

Test set-up. In our tests, we considered the scenario depicted in Figure 3.23 to be ex-
plored by 2 robot. The mission goal is to find 15 persons within 10 minutes. The testing
area is a simulated environment of 160×140 m2 with 9 areas to be explored and 9 paths.
9 clues (one for victims) and 21 irrelevant objects (distractors) are randomly distributed
on the environment. We defined 3 different dispositions of survivors and objects within
the scene. In the first case (test A), all the targets are located inside the areas and paths
with a uniform distribution. In the second (test B) and third case (test C), the 66% and
13% of the targets is located inside the areas/paths with a uniform distribution, while the
remaining are uniformly positioned in the rest of the scene. Each target can be associated
with 1 clue which is positioned within a range of 20m. In the teleoperation and mixed-
initiative modes, each modality has been executed 12 times, by 4 users (3 tests for each
mode after 2 session of training).
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Targets Min Max Mean Std t-test
Mixed-Initiative 12 14 12.00 0.84 0.1009915Autonomous 11 12 11.25 0.5
Survivors Min Max Mean Std t-test
Mixed-Initiative 12 14 12.00 0.84 0.0001655Teleoperation 6 8 7 0.71

Table 3.11: Mixed-initiative mode vs. automous and teleoperated mode (test A).

Targets Min Max Mean Std t-test
Mixed-Initiative 11 12 11.40 0.55 0.034469Autonomous 7 13 9.20 2.28
Survivors Min Max Mean Std t-test
Mixed-Initiative 11 12 11.40 0.55

<.0001Teleoperation 4 7 5.8 1.3

Table 3.12: Mixed-initiative mode vs. automous and teleoperated mode (test B).

Targets Min Max Mean Std t-test
Mixed-Initiative 7 9 7.80 0.84

<.0001Autonomous 2 3 2.6 0.55
Survivors Min Max Mean Std t-test
Mixed-Initiative 7 9 7.80 0.84

<.0001Teleoperation 3 5 3.6 0.89

Table 3.13: Mixed-initiative mode vs. automous and teleoperated mode (test C).
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Figure 3.26: Percentage of success in target detection with respect to the control modali-
ties.

Results. In Figure 3.26, we illustrate the percentage of survivors found in the three con-
trol modalities with respect to the different test cases (A, B, C). As expected, the teleoper-
ated mode is not effective, indeed not only the parallel search of the two drones cannot be
exploited in this case, but also the lack of task/path guidance reduces the overall situation
awareness, hence the number of correct detections is significantly lower than in the other
modes. On the other hand, since we assume a reliable human/object detection system,
the autonomous mode is very effective when the initial hypothesis is accurate. In this
case, the two robots can find about 80% of survivors, scanning all the areas. However, the
success rate rapidly drops when the initial hypothesis becomes less accurate; indeed, the
autonomous system is not flexible enough to diverge from the planned activities. Instead,
the mixed-initiative mode seems more effective than the autonomous mode for each of
the test cases and this advantage seems emphasized when the initial hypothesis becomes
wrong. Indeed, in the worst case, the mixed-initiative mode behaves significantly better
(57.78%) than the autonomous (32.25%) and the teleoperated ones (24.12%). The signif-
icance of these results is illustrated in the Tables 3.11, 3.12 and 3.13 where we compare
the mixed-initiative, autonomous, and teleoperated results for each of the 3 tests cases.
The comparison of the mixed-initiative performance in the three testing scenarios can be
found in Table 3.14.

In the mixed-initiative mode, we also analyzed the human interventions for the dif-
ferent cases. In Table 3.15 we can observe that, as expected, the percentage of the time
spent in teleoperation (joypad usage) increases with the complexity of the domain, in-
deed, when the initial hypotheses are wrong the user should intensify the interventions
diverging from the planned activities. This is directly correlated with the increment of
the low-level interventions (e.g. trajectory corrections or teleoprated search) and task re-
planning episodes. The latter can be directly invoked by the user or indirectly elicited by
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Rescue Missions

Targets Min Max Mean Std t-test
Mixed-Initiative (test A) 13.2 12 12.00 0.84 0.0019205Mixed-Initiative (test B) 11 12 11.40 0.55
Survivors Min Max Mean Std t-test
Mixed-Initiative (test B) 11 12 11.40 0.55

<.0001Mixed-Initiative (test C) 7 9 7.80 0.84
Survivors Min Max Mean Std t-test
Mixed-Initiative (test A) 13.2 12 12.00 0.84 0.000459Mixed-Initiative (test C) 7 9 7.80 0.84

Table 3.14: Mixed-Initiative performance w.r.t. the accuracy of the initial hypothesis.

external events (e.g. object detection) or constraint violations (e.g. low energy, resource
conflicts, etc.). Note that the high-level interventions seem more sparse because are usu-
ally associated with strategic decisions (e.g. new areas to be explored). Notice also that
since the operator can easily provide direct adjustments during the mixed-initiative mode
without provoking replanning, the time spent in teleoperation remains high for each of
the cases analysed in Table 3.15.

Test A Test B Test C

Joypad usage (%) Mean 30.67% 43.07% 53.04%
Std 1.53 2.64 2.34

Low Level Int. Mean 5.4 6.4 6.8
Std 1.34 2.19 1.92

Task Replanning Mean 10.0 12.0 13.8
Std 0.83 1.87 3.49

Table 3.15: Human interventions and task replanning episodes during the 3 test scenarios
in the mixed initiative mode.
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Chapter 4

Low Level Control

In this Chapter the Low-level control problem of an UAV is addressed. If in higher levels
of the architecture the goal is to select which action perform, at this layer the aim is to
define how to do that action, calculating the low-level control input to send to the robot.
Since we are mainly interested to UAV platforms, we could consider these input as the
position or velocity of the UAV reference frame or directly the propeller velocities. In the
followings two approaches to low-level control of a single UAV are presented. In the first
approach, the UAV is equipped with a 6-DOF arm to allowing aerial manipulation, that is
a key task for service robotics field. In this approach a vision based method method for
aerial grasping and plugging of structured bars. In the second method a robust position
control method that allow the quadrotor to react to external unmodeled disturbances is
presented. This approach is particularly interesting for our alpine domain, in which the
continuous and variable wind of the environment make the platform difficult to control.

4.1 Hybrid Visual Servoing with Hierarchical Task Com-
position for Aerial Manipulation

4.1.1 Introduction

In the last years new application domains in the field of aerial service robotics have been
addressed by researchers from different disciplines, e.g. surveillance, inspection, agri-
culture, delivering, etc. Sophisticated prototypes have been developed with the capac-
ity to physically interact with the environment [61]. The modeling and control of an
unmanned aerial vehicle (UAV) able of interacting with the environment to accomplish
simple robotic-manipulation tasks have been proposed in [63], which is based on a force-
position control law designed through a feedback linearizing technique.

With the improvement of the batteries and the miniaturization of motors and servos,
new high-performance UAV prototypes endowed with a robot arm —called unmanned
aerial manipulators (UAMs)— have been designed. A control algorithm which is able to
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exploit all the degrees of freedom (DoFs) of a UAM is proposed in [32], where the execu-
tion of tasks with physical interaction with the environment has been achieved. However
the employed UAM is completly actuated only along one direction and has no redun-
dancy. In [50, 48] the dynamic model of a UAM and a Cartesian impedance control have
been designed providing a desired relationship between external wrench and the system
motion. However, redundancy is exploited in a rigid way. Aerial manipulation tasks exe-
cuted with a UAM endowed with a 2-DoFs robot arm have been presented in [39], where
an adaptive sliding-mode controller has been adopted. A control solution considering
valve turning with a dual-arm UAM has been proposed in [41]. In these works no vision
and redundancy are employed for the task execution.

The use of vision for the execution of aerial robotic tasks is a widely adopted solution
to cope with unknown environments. In [66, 71] new image-based control laws endowing
a UAM with the capability of automatically positioning parts on target structures have
been proposed, where the system redundancy and underactuation of the vehicle base have
been explicitly taken into account. A task-oriented control law for aerial surveillance has
been proposed in [93], where a camera is attached to the end-effector of the robot arm to
perform visual servoing towards a desired target. However in these sections redundancy
is employed in a rigid way and the interaction between dependent tasks is not considered.

In this section a hybrid image- and position-based visual servoing via a hierarchical
task-composition control is presented for the control of a UAM. The presence of redun-
dancy in a UAM system allows combining a number of subtasks with a new hierarchical-
task formulation. Different subtasks can be designed both in the Cartesian space, e.g.
obstacle avoidance, manipulation tasks, and in the image space of the camera, e.g. field-
of-view constraints, as well as in the arm joint space, e.g. center-of-gravity balancing,
joint-limits avoidance, manipulability, etc. Moreover, the underactuation of the aerial ve-
hicle base has been systematically taken into account within a new recursive formulation.
A number of practical tasks have been designed requiring only few DoFs to be accom-
plished, hence allowing an accurate profiling of the system behavior. The study of the
task Jacobian singularity and a smooth task activation mechanism are also presented.

With respect to our previous work [12], a new advanced formulation is derived with
the capability to guarantee decoupling of independent tasks (not only orthogonal as in
the previous work), the stability analysis of the new proposed control law is discussed
together with the derivation of all the task Jacobian matrices (in [12] the Jacobian matrices
of the uncontrollable variables are missing), and finally both simulation and experimental
results are provided to evaluate the effectiveness of the new proposed control law.

4.1.2 Reference frames and camera model

Let ob ∈R3 and Rb ∈ SO(3) be the position and rotation matrix, respectively, of the body
reference frame {B : Ob−xbybzb}, which is fixed with the UAV base, with respect to the
inertial reference frame {I : O− xyz} (see Fig. 4.1). The triple φ = (ϕ,ϑ ,ψ) of Euler
roll-pitch-yaw angles is considered for the representation of the vehicle orientation, which
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Figure 4.1: Reference frames.

in matrix form can be expressed as Rb(φ).

A standard VToL UAV, e.g. a quadrotor, is an underactuated system with only 4 DoFs.
In fact, the linear motion of the vehicle is generated by modifying the attitude, and thus the
total propeller thrust generates a linear acceleration in the desired direction. Therefore,
the roll and pitch rotations are constrained by imposing a desired linear motion.

A robot arm with ν DoFs attached to the UAV base is considered. Let q=
[
q1 . . . qν

]>
be the arm joint vector describing the arm configuration, where qi is the ith joint variable,
with i = 1, . . . ,ν , and let {E : Oe− xeyeze} be the reference frame fixed with the arm
end-effector (e.g. gripper). Notice that, by considering the DoFs of the vehicle base, even
if a VToL UAV is an underactuated system, the addition of enough DoFs of the robot
arm can generate a task-redundant system (n = 4+ν total DoFs), e.g. with respect to the
positioning of the gripper.

Finally, the vehicle base is endowed with a downward looking camera. Without loss
of generality, the camera reference frame is considered coincident with B. The pin-hole
camera model is employed, i.e. by denoting with pb =

[
xb yb zb

]> the position of an
observed point P expressed with respect to B (see Fig. 4.1), the optical projection of P
onto the normalized image plane of the camera determines the so-called image feature
vector s:

s =
[

X
Y

]
=

1
zb

[
xb

yb

]
. (4.1)
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4.1.3 Object pose estimation

We assume that m known visual markers are attached to the target object. Let {T :
Ot − xtytzt} be a reference frame fixed with the object, and ot

j and Rt
j, with j = 1, . . . ,m,

be the known position and rotation matrix, respectively, of the reference frame attached
to the jth marker in T .

By using a visual tracker [26, 2], the pose of any visible marker can be measured with
respect to the camera. Then, the pose of the target object can be reconstructed from the
measurement of each visible marker as follows:

ob
t = ob

j −Rb
j
>

ot
j (4.2)

Rb
t = Rb

jR
t
j
>
. (4.3)

However, if more markers are simultaneously visible, a more robust and accurate solution
can be achieved by combining the available information. Each marker contour is divided
in several points (e.g. the corners and the middle points of the edges). Assuming the
3D model of the marker is known, we define the 3D coordinates of each contour point l
relative to its marker frame as p j

l . Then, each 3D point of a marker is associated to the
corresponding object frame T with

pt
l = Rt

j p j
l +ot

j . (4.4)

Once all contour correspondences are associated to the object frame, a Perspective-n-
Point method [46] is used to obtain the camera pose with respect to the object. A RANSAC
outlier rejection mechanism is integrated to remove point correspondences resulting from
imaging artifacts that might be inconsistent with the computed transformation [28].

4.1.4 Dynamic task priority control

The kinematic redundancy in the system allows control of the UAM end-effector by si-
multaneously achieving a number of secondary tasks. Indeed, redundancy means that
the same gripper pose can be reached with several, even infinite, system configurations.
Hence, the system can be suitably reconfigured by using internal motions, i.e. without
affecting the gripper pose, to satisfy mechanical constraints (e.g. arm joint limits) and
several subtasks (e.g. field of view, arm manipulability, robot-arm center of gravity con-
trol).

Let x =
[
o>b φ> q>

]> be the system state vector, and ωb =
[
ωx ωy ωz

]> the
angular velocity of the body frame. To easily address the system under actuation we
extract from x only the controlled variables in the new vector Notice that the angular
velocity ϖ can be measured with a standard onboard inertial measurement unit (IMU)
under the assumption of a classical time-scale separation between the attitude controller
(faster control loop, e.g. up to 1 kHz) and the velocity controller (slower control, in our
case at camera frame rate of 25 Hz).
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Moreover, let σ0 = f0(x) ∈ Rµ0 be the variables of a configuration-dependent main
task; hence the following differential relationship holds:

σ̇0 =
∂ f0(x)

∂x
ẋ = J0(x)υ + J0(x)ϖ , (4.5)

where J0(x) ∈ Rµ0×n and J0(x) ∈ Rµ0×2 are the main task Jacobian matrices of the con-
trolled and uncontrolled state variables, respectively. By inverting (4.5) and considering a
regulation problem of σ0 to the desired value σ∗0 , hence by defining σ̃0 = σ∗0 −σ0 as the
main task error, the following velocity command can be considered:

υ
∗ = J†

0 (Λ0σ̃0− J0ϖ), (4.6)

where Λ0 ∈ Rµ0×µ0 is a positive-definite gain matrix, and J†
0 is the generalized inverse of

J0, which has been assumed to be full-rank. By substituting (4.6) into (4.5), the following
exponentially stable error dynamics is achieved

˙̃σ0 =−Λ0σ̃0. (4.7)

In case of µ0 < n a second lower-priority subtask σ1 = f1(x) ∈Rµ1 can be added with
the following command:

υ
∗ = J†

0 Λ0σ̃0 +(J1N0)
†
Λ1σ̃1− J0|1ϖ , (4.8)

with J1 the Jacobian matrix of the second subtask, which is assumed to be full-rank, and

J0|1 = (J1N0)
†J1 +(In− (J1N0)

†J1)J0|0, (4.9)

where N0 = In− J†
0 J0 is the projector onto the null space of J0, with In the n-dimension

identity matrix, J0|0 = J†
0 J0, Λ1 ∈ Rµ1×µ1 is a positive definite gain matrix. The Jaco-

bian matrix J0|1 allows the compensation of the variation of the ϖ . Notice that ma-
trix J1N0 is full-rank only if the two tasks are orthogonal (J1J†

0 = Oµ1×µ0 ) or indepen-
dent (not orthogonal and rank(J†

0 )+ rank(J†
1 ) = rank([J†

0 J†
1 ])). See [4] for more details.

Substituting (4.8) into (4.5) and by noticing that N0 is idempotent and Hermitian, hence
(J1N0)

† = N0(J1N0)
†, the dynamics of the main task (4.7) is again achieved and so the

exponential stability is proven. To study the behavior of the secondary task σ1 we can
differentiate the subtask variables as follows

σ̇1 =
∂ f1(x)

∂x
ẋ = J1(x)υ + J1(x)ϖ . (4.10)

Then, by substituting (4.8) and by assuming that the tasks are at least independent, the
following error dynamics is achieved

˙̃σ1 =−J1J†
0 Λ0σ̃0− J1(J1N0)

†
Λ1σ̃1 +

(
J1J†

0 J0 + J1(J1N0)
†(J1− J1J†

0 J0)− J1

)
(4.11)
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ϖ =−J1J†
0 Λ0σ̃0−Λ1σ̃1, (4.12)

where we used the property J1(J1N0)
† = Iµ1 . Finally the dynamics of the error system

can be written as follows [ ˙̃σ0
˙̃σ1

]
=

[
−Λ0 Oµ0×µ1

−J1J†
0 Λ0 −Λ1

][
σ̃0
σ̃1

]
, (4.13)

that is characterized by a Hurwitz matrix, hence the exponential stability of the system is
guaranteed. Moreover, we can notice a term representing the coupling effect of the main
task on the secondary task. In case of orthogonal tasks this term is zero, i.e. ˙̃σ1 =−Λ1σ̃1,
and the behavior of the main and that of the secondary tasks are decoupled.

By generalizing (4.8) to the case of η prioritized subtasks, the following general ve-
locity command can be formulated:

υ
∗ = J†

0 Λ0σ̃0 +
η

∑
i=1

(JiN0|...|i−1)
†
Λiσ̃i− J0|...|η ϖ , (4.14)

with the recursively-defined compensating matrix

J0|...|η = (Jη N0|...|η−1)
†Jη

+(In− (Jη N0|...|η−1)
†Jη)J0|...|η−1,

(4.15)

where N0|...|i is the projector onto the null space of the augmented Jacobian J0|...|i of the
ith subtask, with i = 0, . . . ,η−1, which are respectively defined as follows

J0|...|i =
[
J>0 · · · J>i

]> (4.16)

N0|...|i = (In− J†
0|...|iJ0|...|i). (4.17)

The previous stability analysis can be straightforwardly extended to the general case of η

subtasks.
The hierarchical formulation (4.14) guarantees that the execution of all the higher-

priority tasks from 0 (main task) to i− 1 will not be affected by the ith subtask and by
the variation of the uncontrolled state variables. In other words, the execution of the
ith task is subordinated to the execution of the higher priority tasks present in the task
stack, i.e. it will be fulfilled only if suitable and enough DoFs are available, while the
complete fulfillment of the main task, instead, is always guaranteed. However, with this
new formulation for all reciprocally annihilating or independent tasks, a fully decoupling
of the error dynamics is guaranteed.

The task composition and priority can be modified at runtime as needed, i.e. by ac-
tivating or deactivating subtasks as well as by changing the priority order of the current
active tasks already present in the task stack. However, in order to avoid discontinuity of
the control input, a smooth transition between different task stacks has to be considered.
This goal can be achieved by adopting a time-vanishing smoothing term when a new task
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stack is activated. Without loss of generality, we suppose that the transition phase starts at
t = 0, i.e. the rth task stack has to be deactivated and substituted by the new one (r+1)th.
During the transition the velocity command is computed as follows:

υ
∗(t) = υ

∗
r+1(t)+ e−

t
τ (υ∗r (0)−υ

∗
r+1(0)), (4.18)

where τ is a time constant determining the transition phase duration, and υ∗k is the velocity
command corresponding to the kth task stack. When t becomes sufficiently greater than
τ , the rth task stack is fully removed and a new transition can start. Notice that the
smoothing term e−

t
τ (υ∗r (0)−υ∗r+1(0)) is bounded and exponentially vanishing, hence it

will not affect the stability of the proposed control law. The time constant τ has to be
smaller than the inverse of the maximum eigenvalue of the gain matrices Λi to ensure a
short transient time response in comparison with the nullifying time of the task errors σ̃i.

4.1.5 Hybrid visual servoing and system behavior control for aerial
manipulation tasks

In this section several elementary tasks useful for the composition of an aerial manipu-
lation (grasping/plugging) task by exploiting visual measurements will be proposed. Be-
sides tasks allowing the control of the gripper pose with respect to the observed objects,
tasks able to guarantee the camera FoV constraint, to minimize the effect of the motion
of the arm on the vehicle positional stability, and that addresses the issue of the joint me-
chanical limits are proposed. These tasks are not all orthogonal and/or independent but
they are essential for the specific mission purposes. The priority of the proposed tasks
can be arranged on the basis of the desired behaviour, even if some general constraints
have to be considered. For example, the FoV constraint is essential because the loss of the
observed object from the camera image will determine the failure of the whole mission
(depending on the available camera optics, this problem could be less significant). On the
other hand, the constraint on the joint limits is very invasive because it affects all the arm
joints. For this reason it is advisable to move this task initially to the lower priority and
increase it only when some joint limits are being approached.

4.1.6 Gripper position and orientation

Let o∗e be the desired position of the gripper, e.g. suitable to perform the object grasp-
ing in the considered case study. This value can be computed by combining the pose
measurement of the target object provided by the visual system, with the desired relative
displacement of the gripper with respect to the target object in the grasping configura-
tion. The corresponding position error is defined as ep = o∗e−oe, and the task function is
chosen equal to its square norm, yielding

σp = e>p ep, (4.19)
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where the desired task variable is σ∗p = 0 (i.e. σ̃p =−σp). The corresponding task Jaco-
bian matrix is

Jp = 2e>p
[
I3 S(Rbob

e)ız Jq,P
]
, (4.20)

where S(·) is the skew-symmetric matrix representing the vectorial product, ız =
[
0 0 1

]>,
and

Jq =

[
Jq,P
Jq,O

]
=

[
Rb O3
O3 Rb

]
Jb

q , (4.21)

with Jb
q (q) the arm Jacobian matrix with respect to B, with Jq,P and Jq,O (3×ν)-matrices.

The corresponding task Jacobian matrix of the uncontrolled state variables is

Jp = 2e>p S(Rbob
e)
[
ıx ıy

]
, (4.22)

where ıx =
[
1 0 0

]>, ıy =
[
0 1 0

]>.
Notice that if oe is also measured by using visual markers attached to the gripper, the

camera calibration error and the arm direct kinematics error will not affect the grasping
accuracy in a similar way as in an image-based approach. Moreover, with the proposed
choice of σp, only one DoF is required to execute this subtask, because only the norm of
ep will be nullified, i.e. the motion of the gripper during the transient is constrained on
a sphere of radius ‖ep‖. However, the corresponding task Jacobian Jp becomes singular
when ep → 0. Nevertheless, in the task composition the generalized-inverse J†

p is mul-
tiplied by σp. Hence, if Jp is full-rank, its determinant goes to zero only linearly when
ep→ 0, but σp goes to zero squarely.

Let {ηe,epsilone} and {η∗e ,ε∗e } be the unit quaternions corresponding to Re and to its
desired value R∗e , respectively. The corresponding orientation error can be expressed as

eo = ηeε
∗
e −η

∗
e εe−S(ε∗e )εe. (4.23)

The task function is chosen equal to

σo = e>o eo, (4.24)

with the desired task variable σ∗o = 0 (i.e. σ̃o = −σo), while the corresponding task
Jacobian matrix is

Jo = 2e>o
[
O3 ız Jq,O

]
. (4.25)

The Jacobian matrix of the uncontrolled state variables is

Jo = 2e>o
[
ıx ıy

]
. (4.26)

Remarks similar to the position case concerning the number of required DoFs, the
singularity of the task Jacobian matrix, and the direct visual measurement of the gripper
orientation can be repeated straightforwardly.
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4.1.7 Camera field of view

Let sc ∈R2 be the image feature vector of the projection of the observed markers centroid
ob

c =
[
xb

c yb
c zb

c
]> onto the normalized image plane, i.e.

sc =

[
Xc
Yc

]
=

1
zb

c

[
xb

c
yb

c

]
. (4.27)

The FoV subtask consists in constraining sc within a maximum distance with respect
to a desired position s∗c in the normalized image plane (e.g. the center of the image) by
moving the vehicle base, i.e. the camera point of view (notice that we assumed the camera
mounted on the vehicle base). Without loss of generality, any point of the observed target
can be chosen to be controlled in the image. To achieve this goal, the following task
function is considered:

σc = e>c ec, (4.28)

where ec = s∗c − sc, and the desired task variable is σ∗c = 0 (i.e. σ̃c = −σc), while the
corresponding task Jacobian is

Jc =
[
2e>c LpR>b 2e>c LoR>b ız O1×ν

]
, (4.29)

where

Lp =
1
zb

c

[
−1 0 Xc
0 −1 Yc

]
, (4.30)

Lo =

[
XcYc −(1+X2

c ) Yc
1+Y 2

c −XcYc −Xc

]
. (4.31)

Finally, the Jacobian of the uncontrolled state variables is

Jc = 2e>c LoR>b
[
ıx ıy

]
. (4.32)

Notice that only one DoF is required to accomplish this subtask. In fact, the distance
of ob

c with respect to the desired optical ray corresponding to s∗c is controlled. However,
the corresponding task Jacobian matrix Jc is singular when ec → 0, but since it is not
strictly required to accomplish the main mission that the target object is exactly in the
desired position of the image (e.g. the center), this subtask can be activated only when σc

exceeds a safety threshold.

4.1.8 Center of gravity

The weight of the robot arm can generate an undesired torque on the vehicle base de-
pending on the configuration. In particular, the arm motion statically perturbs the system
attitude and position when the center of gravity (CoG) of the arm pg is not aligned with
the CoG of the vehicle base along the gravitational line of action ιz. Without loss of gen-
erality, the CoG of the vehicle base is assumed to be in Ob. Hence, by denoting with
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eg =
(
(pg−ob)

>ιz
)

ιz− (pg−ob) the error between the desired and the current position
of the arm’s CoG, the designed task function is defined as follows:

σg = eg
>eg, (4.33)

with the desired task variable σ∗g = 0 (i.e. σ̃g = −σg). The corresponding task Jacobian
matrix can be computed from the corresponding Jacobian represented. In fact, pb

g is only
a function of the arm joint configuration defined as

pb
g =

1
m

ν

∑
i=1

mi pb
gi, (4.34)

where mi and pb
gi are the mass and the position of the CoG of the ith arm link, respectively,

and m = ∑
ν
i=1 mi.

The CoG of a partial chain of links can be represented, with respect to B, from the
link j to the end-effector, yielding

rb
g j =

1
m

Rb
j

ν

∑
i= j

mi pb
gi, (4.35)

where Rb
j is the rotation matrix between the jth arm link and B. Finally, the differential

relationship between pg and the arm joint configuration is

ṗb
g = Jb

g q̇, (4.36)

where Jb
g ∈ R3×ν is the CoG Jacobian expressed in B and defined as follows

Jb
g =

[
jb
g1 · · · jb

gν

]
, (4.37)

with jb
gi the ith joint Jacobian formulated from the partial CoG as follows

jb
g j =

∑
ν
i= j mi

m
S(Rb

j ız)r
b
g j. (4.38)

Finally, the corresponding task Jacobian is defined as

Jg = 2e>g
[
O1×3 S(Rb pb

g)ız RbJb
g
]
, (4.39)

Notice that only one DoF is required and similar considerations as in the previous
tasks definitions on the singularity of the Jacobian matrix when eg→ 0 can be done.

4.1.9 Joint-limits avoidance constraint

A possible solution to avoid mechanical joint limits is to make attractive the central
position of the joint ranges. Let eq = q∗ − q be the corresponding error, where q∗ =
qL +

1
2 (qH −qL), with qL =

[
q1L . . . qνL

]> and qH =
[
q1H . . . qνH

]> the vectors
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of the low and high joint limits, respectively. The corresponding square distance can be
used as a task function to push the system to reach a safe configuration as follows

σl = eq
>

Λleq, (4.40)

where Λl is the following weighting matrix needed to normalize the control action with
respect to the joint range

ΛL = diag{(q1H −q1L)
−2 . . . (qνH −qνL)

−2}. (4.41)

The desired task variable is σ∗l = 0 (i.e. σ̃l =−σl), and the corresponding task Jacobian
matrix is

Jl =
[
O1×4 −2ΛLeq

>] . (4.42)

Notice that the uncontrolled state variables do not affect this subtask, i.e. the correspond-
ing Jacobian is the null matrix.

Due to the higher priority tasks, some joint could reach anyway its limit. However,
when a joint is approaching a mechanical limit, the corresponding component of the task
function can be extracted from the previous subtask to form a new isolated subtask that
can be activated on the top of the task stack. With this policy, if mechanically viable, the
system will reconfigure its internal DoFs to achieve all the remaining subtasks until the
dangerous condition will disappear and the original priority will be restored.

4.1.10 Simulation results

The proposed approach has been tested in the simulator developed in the ARCAS project
(www.arcas-project.eu), which is based on GAZEBO physics engine (http://gazebosim.org)
(see Fig. 4.2). A quadrotor with a weight of 5 kg and endowed with a downward look-
ing camera at 25 Hz and a 6-DoFs robot arm plus a gripper has been employed. The
camera has been positioned 50 cm ahead the vehicle base with an inclination of 30 deg
with respect to the vertical axis in a way to observe the grasping manoeuvre without self-
occlusion. The target object is a bar endowed with two visual markers at the ends. A
UAM velocity control has also been employed [67, 72].

The assigned task is composed of two phases:

• approaching phase — the UAM starts from a distance of about 125 cm and has to
move the gripper to a pre-grasping pose at 10 cm over the grasping pose;

• grasping phase — once the intermediate pose has been reached with an error less
than a suitable threshold (2 cm for the position and 2 deg for the orientation), the
target pose is moved towards the final grasping pose in 10 s; the closing of the grip-
per is then commanded when the final pose has been reached with a good accuracy
(1 cm for the position and 1 deg for the orientation).

Four task-stack configurations have been simulated:
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Figure 4.2: Results of the simulated grasping task (case 1) in magenta, case 2) in red, case
3) in green, case 4) in blue): a) norm of the position error ‖ep‖; b) norm of the orientation
error; c) norm of the FoV error ‖es‖ with a 20± 2 cm activation/deactivation threshold;
d) norm of the CoG error ‖eg‖; e) minimum distance from the joint limits normalized to
the joint range; f) the GAZEBO simulator. The vertical lines indicate the conclusion of
the approaching phase, while the end of each trajectory indicates the grasping time.

1. only main tasks for position and orientation control (Section 4.1.6) active;

2. as case 1) plus FoV subtask (Section 4.1.7);

3. as case 2) plus CoG subtask (Section 4.1.8);

4. as case 3) plus joint limits subtask (Section 4.1.9).

The achieved results are shown in Fig. 4.2 with different colors for the four con-
sidered control behaviors. A dashed vertical line is employed to highlight the end of the
approaching phase and the starting of the grasping phase. Notice that the approaching and
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the grasping phases in all the considered case studies have different durations depending
obviously on the selected control behavior, i.e. the active tasks stack.

Figure 4.2a shows the time history of the position error in norm during the task ex-
ecution for each case study. For all cases, a smooth nullification of the pose error is
observed. In particular, during the approaching phase the position error decreases almost
linearly due to the saturation of the maximum vehicle cruise velocity (10 cm/s in these
case studies). Figure 4.2b shows the time history of the norm of the orientation error. The
initial orientation is only a few degrees far from the final grasping pose, hence the error
goes under the threshold in few seconds in all the case studies. Notice how the behavior
of both the position and orientation errors are similar in all the cases coherently with the
hierarchical task combination adopted in the proposed formulation, i.e. the activation of
subtasks cannot affect the behavior of the higher priority tasks.

Figure 4.2c shows the results achieved with the activation of the camera FoV subtask.
In detail, this subtask is dynamically activated and deactivated by comparing the error
norm with a double threshold, i.e. with a suitable hysteresis (20±2 cm) to avoid chatter-
ing phenomena. By taking into account the camera pose with respect to B, the desired
position of the image features centroid has been chosen equal to s∗c =

[
0,−0.1

]>. The
achieved results show how except for case 1), i.e. when this subtask is activated, the FoV
error is improved without affecting the movement of the gripper.

Figure 4.2d shows the time histories of the error in norm of the CoG subtask. For
the chosen initial arm configuration the distance of the CoG with respect to the vehicle
gravitational axis is 7.6 cm. In cases 1) and 2) this distance remains almost constant,
while when the CoG subtask is active, i.e. for cases 3) and 4), the behavior is always
improved without affecting the tasks with a higer priority in the stack.

Finally, in the last case study 4) also the joint-limits avoidance constraint is activated.
Differently with respect to the previous cases, as it is shown in Fig. 4.2e (zero indicates
the reaching of a joint limit, while 0.5 indicates that all joints are in the middle of the joint
range), the task is not completely fulfilled, even if a clear increase of the distance with
respect to the closest joint limit is guaranteed. This behavior is mainly due to the conflict
with other subtasks that have a higher priority in the tasks stack. As described before, it is
possible to increase the priority of this task in the stack when a joint limit is excessively
close in a way to guarantee mechanical safety at the expense of other tasks.

4.1.11 Experimental results

The UAM employed for the experimental tests has been developed in the ARCAS project.
It is a multi-rotor aircraft with eight rotors in coaxial configuration with a 105 cm tip-to-
tip wingspan, height of 50 cm, 13-inches propellers, and a total mass of 8.2 kg including
batteries and the 6-DoFs robotic arm (see Fig. 4.3). The employed autopilot has been
developed by CATEC (www.catec.aero) and allows also the control of the robot arm. A
model-based design methodology [92] established on MATLAB/SIMULINK code gen-
eration tools has been adopted. The UAM has been endowed with an i7 ASCTEC MAS-
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Figure 4.3: Bonebraker UAM employed during the experiments (top), and images from
the onboard camera during the approaching phase (bottom-left) and at the plugging instant
(bottom-right).

Figure 4.4: Reference frames following Denavit-Hartenberg convention.

TERMIND on-board for costly computing code, such as image processing. A motion
capture system running at 100 Hz has been used as the positioning system, while the at-
titude is measured with the onboard IMU. A 6-DoFs manipulator [17] running at 50 Hz
is attached below the vehicle base. The robotic manipulator direct kinematic model is
obtained by using the well known Denavit-Hartenberg convention (see Fig. 4.4 and Ta-
ble 4.1).

A high-definition camera running at 14 Hz has been positioned as in the simulation
case study. The calibration of the vision system has been divided in two steps. First,
the camera intrinsic parameters are obtained with several views of a calibration pattern
(i.e. a chessboard). Secondly, the extrinsic parameters are obtained using the motion
capture system to precisely localize the platform body frame (B) and an object in the
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Table 4.1: Arm Denavit-Hartenberg parameters.

Link i θi di ai−1 αi−1
1 θ1 0 0 0
2 θ2 0 -L2 π/2
3 θ3 +π/2 0 L3 0
4 θ4 L4 0 π/2
5 θ5 0 0 −π/2
6 θ6 L6 0 π/2

Figure 4.5: Norm of the object position errors with respect to the ground-truth during
grasping (a) and plugging (c) maneuvers. The corresponding orientation errors are shown
in (b) and (d).

scene (which corresponds to a marker). By knowing the pose of the camera attached to
the quadrotor body frame, we can trivially obtain the frame transformation between the
camera and the object. However, the estimation of the error between the camera and the
optical frames is also required. The marker detector is employed estimating the marker
pose with respect to the optical frame. Then, a pose average of the difference between the
camera and the optical frames is computed with respect to the object.

Figure 4.5 shows the error between the detected bar and the ground truth poses during
grasping and plugging tasks.

The experimental task consists in plugging a bar endowed with two clipping systems
at the ends into a fixed base1, as shown in the bottom part of Fig. 4.3. As for the simulated

1Several grasping and plugging experiments of different type of bars are shown in the video attached to this
section.
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case studies, the mission has been decomposed into two steps: the approaching phase, to
move the bar over the plugging base at a distance of 5 cm, and the final plugging phase.
During this latter phase the FoV task is turned off because the constraint is always satisfied
by the system mechanical configuration and the adopted optics. The task requires high
accuracy both in position and orientation, i.e. about 1 cm for the position and 1 deg for
the orientation, that has to be guaranteed stable in time to avoid undesired collisions. To
cope with this requirement, the bar and the plugging base have been endowed with visual
markers. Hence, the positioning error has been computed by using the measurements of
the bar and of the base mitigating the effects of the calibration errors.

The achieved results are shown in Fig. 4.6. Figures 4.6a and 4.6b show the time
history of the norm of the position and orientation errors, respectively. The vertical dashed
line indicates the end of the approaching phase and the beginning of the plugging phase.
The plugging instant corresponds with the end time of the plots. One can observe how the
initial errors are quite high because the system starts from a distance of about 40 cm from
the goal position, and with a significant orientation error too, however for both errors the
target accuracy has been reached in a fast and stable way.

The time history of the norm of the FoV error ‖es‖ is shown in Fig. 4.6c, from which
one can observe how this subtask is suitably executed, hence the system is able to prevent
the loss of the visual markers from the camera FoV.

The CoG subtask has been employed with an activation/deactivation threshold of 15±
2cm. However, it is never activated because the high-priority FoV subtask determines arm
configurations already compatible with the CoG subtask. In fact, the alignment error of
the CoGs is lower than 4 cm.

Finally, Figure 4.6d shows the minimum distance computed over all the arm joints
from the corresponding joint limits normalized to the joint range (zero indicates the reach-
ing of a joint limit, while 0.5 indicates that all joints are in the middle of the joint range).
Even if this is the lower priority task, a safety distance of more than 20% of the joint
ranges, in the worst case, is always preserved.

Introduzione low level

4.2 Passivity-based Control of VToL UAVs with a Momentum-
based Estimator of External Wrench and Unmodeled
Dynamics

4.2.1 Introduction

Service robotics applications are day by day making more use of VToL UAVs to pursue
different actions. From passive tasks like inspection [141, 60], surveillance and monitor-
ing [80], remote sensing and so on, such aerial vehicles are now beginning to be employed
in active tasks like grasping [86] and manipulation [7, 31, 41, 42, 51, 47, 65, 70, 83, 85,
98, 103]. This change of perspective requires the UAV to operate in changing and un-
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Figure 4.6: Experimental results of the plugging task: a) norm of the position error ‖ep‖;
b) norm of the orientation error; c) norm of the FoV error ‖es‖; d) norm of the CoG
error ‖eg‖ with a 15±2 cm activation/deactivation threshold; e) minimum distance from
the joint limits normalized to the joint range. The vertical dotted lines indicate the time
instant when the approaching phase is concluded, while the each trajectory ends at the
plugging time.
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structured scenarios. To this purpose, the controller has to deal with unknown parameters
(i.e., the battery charge level), the transportation of unknown payloads, aerodynamic ef-
fects that are usually neglected during the control design phase, and the interaction with
the environment.

In this section, a passivity-based control of VToL UAVs is presented. The classical
hierarchical architecture separating the (fast) rotational and the (slow) translational dy-
namics [79] is employed. The controller ensures a closed-loop mechanical impedance
behaviour for the translational part of the VToL UAV, while the rotational part does not
rely upon exact cancellation of nonlinearities, conferring in this way robustness to the
attitude part. The collision identification technique based on the momentum of the sys-
tem proposed in [22] has been suitably modified in this context to play as an external
wrench and unmodeled dynamics estimator. The estimation is taken into account by the
controller to compensate forces and moments arising from wind, aerodynamics effects
not taken into account in the model, external wrench caused by a robotic arm attached
to the vehicle’s base during aerial manipulation tasks, unknown carried payloads, phys-
ical interactions, and so on. The residual errors between the estimated external wrench,
the unmodeled dynamics and the real ones are seen as perturbations in the closed-loop
system. As long as the closed-loop system bandwidth –tunable through the control gains
on the basis of the available robotic platform and the controller sample time– is able to
cope with such time-varying residual errors, the overall performance benefits from the
proposed architecture as theoretically and experimentally evaluated.

As far as authors know, the novelty of this section is the combination of a passivity-
based control for VToL UAVs together with an external wrench and unmodeled dynamics
estimator, a rigorous stability proof under certain assumptions, and the consequent ex-
perimental validation. As a result, the aerial platform is able to perform tasks without a
precise knowledge about the dynamic parameters and the external disturbances: this is
absolutely useful in the forthcoming aerial service robotics applications, e.g. aerial ma-
nipulation, where interaction with the environment is required. Moreover, with respect to
the current state of the art in which adaptive and integral actions are employed to cope
with the aforementioned problems, less parameters have to be tuned in the proposed ar-
chitecture, where instead the gains assume precise physical meanings.

The outline of the section is as follows. Next section presents the related work. The
dynamic model of a quadrotor is presented in Section 4.2.3. The momentum-based exter-
nal wrench and unmodeled dynamics estimator is revised in Section 4.2.5. The control is
introduced in Section 4.2.6. The stability proof of the proposed controller combined with
the compensation of the estimated terms is addressed in Section 4.2.7. Performed experi-
ments are described in Section 4.2.11. Conclusion and future work are finally provided.

4.2.2 Related work

Regarding aerial manipulation, two approaches can be in principle thought to control an
aerial manipulator (UAV with an attached robotic arm endowed with a gripper). The for-
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mer approach considers the UAV and the robotic arm as a unique entity, and thus the
controller is designed on the basis of such complete dynamic model [51, 47, 40]. The
latter approach considers instead the UAV and the robotic arm as two separate and in-
dependent systems: the effects of the arm on the aerial vehicle are then considered as
external disturbances and viceversa. This might be useful in case the dynamics of the
arm is not enough to compensate the UAV position error and/or in case the arm does
not allow torque control (i.e., servomotors) [91]. The here presented section is oriented
towards the latter approach: it has been thus considered the control of the single UAV
subject to external disturbances and time-varying parameters. Therefore, many different
approaches address problems related to the stabilization and tracking of desired trajecto-
ries with a VToL UAV. The most widely used controller takes into account a hierarchical
architecture [79, 57] highlighting a time-scale separation between the translational (slow
time-scale) and angular (fast time-scale) dynamics of the aerial vehicle. Other approaches
rely upon backstpping [56], impedance [33] and optical flow [49] techniques. However,
in general, a precise knowledge of system dynamics is required to perform a feedback
linearization of both fast and slow time-scale parts of the system. Hence, several of
the above mentioned controllers implement an integral action to resist against external
disturbances and cope with unknown and time varying parameters. Recently, adaptive
controls have been employed to counteract such disturbances [85, 88, 5, 6, 23, 13]. A
nonlinear force observer has been introduced in [104] to estimate disturbances applied
to a quadrotor. A sliding mode observer has been instead employed in [55] to impose
more robustness on the closed-loop system. Since passivity-based controllers do not rely
on the exact compensation of the considered model, they are expected to be more robust
with respect to parameters uncertainties. Port-Hamiltonian methods have been developed
in [104, 58, 105], a passive backstepping in [34], and passivity-based attitude controls
in [24, 30], in particular without angular velocity measurement in [53, 101].

In this section, the passivity-based control proposed in [96, 8] is adapted to be suit-
able for a VToL UAV system as described in Section 4.2.6. Moreover, a compensation
of external wrench and unmodeled dynamics is here introduced to further reduce aerody-
namic effects and external disturbances. A similar architecture has been introduced by the
authors in [90] where an impedance controller is instead employed without providing a
rigorous stability proof. Under certain assumptions, this issue is overcome by the current
section.

4.2.3 Modeling

The most popular configurations of VToL UAVs employed in the above defined scenar-
ios are the quadrotor and the hexarotor, which are platforms equipped with four or six
propellers, respectively, aligned in the same direction. Hence, these aerial vehicles are
underactuated mechanical systems having six degrees of freedom but only four indepen-
dent control inputs. Without loss of generality, in the remainder of this section, the chosen
VToL UAV is a quadrotor.
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Figure 4.7: Quadrotor and related frames. In black, the inertial frame Σi. In red, the body
frame Σb. In blue, the propellers speed and the label of each motor.

Define a world-fixed inertia reference frame Σi and a body-fixed reference frame Σb

placed at the UAV’s center of mass (see Fig. 4.7). The absolute position of the UAV with
respect to Σi is denoted by pb =

[
x y z

]T. Using the roll-pitch-yaw Euler angles, ηb =[
φ θ ψ

]T, the attitude of the UAV is defined by the rotation matrix Rb(ηb) ∈ SO(3),
expressing the rotation of Σb with respect to Σi, given by [95]

Rb(ηb) =

cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ

 ,
where s× and c× are abbreviations for sine and cosine, respectively.

Let ṗb and ωb denote the absolute translational and angular velocities of the UAV,
respectively, while ṗb

b and ωb
b describe the absolute translational and angular velocities of

the aerial vehicle expressed in Σb, respectively. Denoting with η̇b the time derivative of
ηb, the following equations hold [95]

ṗb = Rb(ηb)ṗb
b, (4.43a)

ωb = Tb(ηb)η̇b, (4.43b)

ω
b
b = Rb(ηb)

T
ωb = Q(ηb)η̇b, (4.43c)

where Tb(ηb) is the (3× 3) transformation matrix between the time derivative of ηb and
the correspondent ωb, while Q(ηb) = Rb(ηb)

TTb(ηb) maps the time derivative of ηb into
the UAV angular velocity expressed with respect to Σb. The detailed expression of Q(ηb)

is

Q(ηb) =

1 0 −sθ

0 cφ cθ sφ

0 −sφ cθ cφ

 ,
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with a singularity at θ =±π/2.
The dynamic equations related to the UAV can be retrieved by using the Newton-Euler

formulation [36]

mp̈b
b =−mS(ωb

b )ṗb
b +mRb(ηb)

Tg+ f b
b + f b

u (·), (4.44a)

Ṙ(ηb) = R(ηb)S(ωb) (4.44b)

Ibω̇
b
b =−S(ωb

b )Ibω
b
b + τ

b
b + τ

b
u (·), (4.44c)

where p̈b
b is the absolute translational acceleration of the UAV expressed with respect to

Σb; m is the mass of the vehicle; Ib is the (3× 3) constant inertia matrix of the UAV
expressed with respect to Σb; ω̇b

b is the absolute angular acceleration of the UAV ex-
pressed with respect to Σb; S(·) denotes the skew-symmetric matrix; g =

[
0 0 g

]T is
the (3×1) gravity vector with g = 9.81m/s2; f b

b and τb
b are the (3×1) forces and torques

input vectors, respectively, expressed in Σb; f b
u (·) and τb

u (·) are two (3×1) vectors denot-
ing unknown forces and moments, respectively, acting on the vehicle –aerodynamic and
buoyancy effects, flapping dynamics [82], parametric uncertainties, imbalances caused by
batteries and/or on-board sensors, motion of a robotic arm (or moving sensors, e.g. a laser
scanner on a pan-tilt mechanism) mounted on the aerial platform, wind gusts, interaction
with the environment, etc.– and whose dependencies on (ṗb, p̈b,ω

b
b , ω̇

b
b ,R(ηb), t), where

t denotes the time variable, have been omitted for brevity.
The detailed expressions of both the input forces f b

b and torques τb
b depend on the

configuration of the considered aerial vehicle. Most of the VToL UAVs are underactuated
systems with six degrees of freedom and four main control inputs. Hence, many UAVs
can be characterized by three input control torques τb

b =
[
τφ τθ τψ

]T and one input

control force f b
b =

[
0 0 u

]T, where u denotes the thrust perpendicular to the propellers
rotation plane. In the quadrotor case of Fig. 4.7, the relationship between the thrust, the
control torques, and the squared propellers speed w2

i , with i = 1, . . . ,4, is [56]

u = ρu(w2
1 +w2

2 +w2
3 +w2

4), (4.45a)

τφ = lρu(w2
2−w2

4), (4.45b)

τθ = lρu(w2
3−w2

1), (4.45c)

τψ = cw2
1− cw2

2 + cw2
3− cw2

4, (4.45d)

where l is the distance between each propeller and the center of mass of the quadrotor,
ρu > 0 and c > 0 are the thrust and drag factors, respectively. It is worth noticing that
many aerodynamics effects are neglected through this representation. However, in case
of hovering, or at least low-speed motions, the relationships in (4.45) can be considered
as a valid approximation [79].

Folding (4.43) and the relative time derivatives into (4.44), and considering the ex-
pression of f b

b yield the following dynamic model, useful for control design purposes,
expressed with respect to Σi, and representing a wide range of VToL UAVs configura-
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tions:

mp̈b = mg−uRb(ηb)i3 + fu(·), (4.46a)

M(ηb)η̈b =−C(ηb, η̇b)η̇b +Q(ηb)
T

τ
b
b + τu(·), (4.46b)

where i3 =
[
0 0 1

]T; M(ηb) = Q(ηb)
TIbQ(ηb) is the (3× 3) symmetric and positive

definite inertia matrix (provided that θ 6=±π/2), and C(ηb, η̇b) =QTS(Qη̇b)IbQ+QTIbQ̇
is the (3× 3) Coriolis matrix, in which the dependencies have been dropped and Q̇(ηb)

represents the time derivative of Q(ηb).
Mentioning that only Euclidean norms are taken into account in the remainder of the

section, the following assumptions are considered.

• Assumption 1. The aerial vehicle does not pass through the singularities. The
allowable configuration space for the yaw-pitch-roll angles ηb is thus Qη = {ηb ∈
R3|θ 6= π/2+ kπ, k = . . . ,−1,0,1, . . .}.

• Assumption 2. Unknown forces fu(·) and moments τu(·) depend only on the time
variable t and they are continuously differentiable and bounded with respect to it.
Therefore, the following inequalities hold

‖ fu‖ ≤ B1 < ∞, (4.47a)

‖ ḟu‖ ≤ B2 < ∞, (4.47b)

‖ f̈u‖ ≤ B3 < ∞, (4.47c)

‖τu‖ ≤ B4 < ∞, (4.47d)

‖τ̇u‖ ≤ B5 < ∞, (4.47e)

‖τ̈u‖ ≤ B6 < ∞, (4.47f)

where Bi, with i = 1, . . . ,6, are positive constants.

It is also worth to recall the following property.

• Property 1. Considering the expression in (4.46b), the following property holds [95]

η̇
T
b
(
Ṁ(ηb)−2C(ηb, η̇b)

)
η̇b = 0, (4.48)

where Ṁ(ηb) represents the time derivative of M(ηb). If the Coriolis matrix is
represented through the Christoffel symbols, then for any arbitrary (3×1) vector v
the following quadratic form holds

v̇T (Ṁ(ηb)−2C(ηb, η̇b)
)

v̇ = 0.

4.2.4 Discussion about the employed assumptions

The impact of the employed assumptions, made to simplify the control design, is deeply
analysed in the following.
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Assumption 1 is restrictive only from a mathematical point of view. The singularity
about the pitch angle is related to the employed angular representation and it is not a
physical singularity; moreover, notice that a pitch angle of±π/2 does not happen because
acrobatic manoeuvres (i.e., death loops) are not within the goals of this work, the initial
conditions are chosen far from that singularity condition and the controller will be shown
to be stable. In addition, since only two points in the configuration space are not allowed,
this case might also be handled from a practical point of view during the implementation
of the programming code. It goes without saying that a non minimal representation for the
rotations might be in principle employed, i.e. unit quaternions [102, 100, 99]. The related
control laws guarantee almost global asymptotic stability 2. In any case, both Euler angles
and quaternions representations suffer of the so-called unwinding phenomenon [64] if the
control laws are not properly designed. In this section, through the use of Assumption
1, the problem is related to the yaw angle 3. Nevertheless, the concept about the hybrid-
dynamic path-lifting algorithm proposed in [64] can be easily implemented as a solution
for both Euler angles and quaternions representations.

With reference to Assumption 2, notice that the motivations about neglecting the de-
pendence of the unknown forces and moments from the aerial vehicle’s angular attitude,
angular velocity and translational accelerations are taken from [36]. The independence of
fu and τu from p̈b and ω̇b

b can be justified since, in general, the density of the body of the
aerial platform is much more relevant than the one of the environment fluid. The inde-
pendence from ωb

b is better justified when the unknown generalized forces apply near the
aerial vehicle’s center of mass and the motion reaction forces resulting from the rotation
of the aerial platform can be neglected with respect to the ones produced by eventual lin-
ear movements. The independence from ṗb is the most restrictive one since it is supposed
that the aerial vehicle moves very slowly and for almost all the task it is in hovering. Such
an assumption is much more justified in aerial manipulation tasks. However, on the one
hand, such condition simplifies the derivation of the control law and its stability proof; on
the other hand, during experimental validation in Section 4.2.11, the hovering condition
is overcome and the performance of the control law is evaluated despite the employed
assumption. The independence from the vehicle’s attitude Rb(ηb) is valid when the aero-
dynamic forces do not depend on the aerial platform orientation. This happens essentially
on the basis of the vehicle’s shape. In case of VToL UAVs such assumption is thus very
reasonable due to the the fact that lift forces are not so sensitive with respect to the at-
tack angles. In conclusion, thanks to Assumption 2, the unknown forces and moments are
only time depending and their boundedness is not so much restrictive, but instead properly
physically justified as underlined in [36].

2In the unit quaternion case, the problem is that, roughly speaking, different quaternions may represent the
same physical attitude of the related rigid body [99].

3As an example, defining the yaw angle between [0,2π] and stabilizing the yaw around 0, it may happen
that for some values of the yaw around 0 the controller tries to make an undesired complete rotation of the aerial
vehicle.
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4.2.5 Momentum-based estimator of external wrench and unmod-
eled dynamics

The (6×1) generalized momentum vector of the system (4.46) can be defined as

q =

[
mI3 O3
O3 M(ηb)

][
ṗb
η̇b

]
, (4.49)

where In and On are (n×n) identity and zero matrices, respectively. From the expressions
of M(ηb) and C(ηb, η̇b) and from Property 1, it is possible to prove that the following
expression holds

Ṁ(ηb, η̇b) =C(ηb, η̇b)+C(ηb, η̇b)
T. (4.50)

By using (4.46) and (4.50), the time derivative of the generalized momentum vector (4.49)
is

q̇ =

[
−uRb(ηb)i3 + fu(t)+mg

Q(ηb)
Tτb

b + τu(t)+C(ηb, η̇b)
Tη̇b

]
. (4.51)

The goal of the proposed estimator is to achieve a linear relationship between the
dynamics of the estimated external wrench, unmodeled effects and the real ones. Hence,
in the Laplace’s domain, such relationship has the following expression[

f̂u(s)
τ̂u(s)

]
= G(s)

[
fu(s)
τu(s)

]
, (4.52)

where s is the complex variable in the Laplace’s domain, f̂u and τ̂u are the (3× 1) vec-
tors of the estimated unknown forces and moments, respectively, while G(s) is a (6× 6)
diagonal matrix of transfer functions in which the i-th element, with i = 1, . . . ,6, has the
following expression

Gi(s) =
ω2

n,i

s2 +2ζiωn,1s+ω2
n,i
, (4.53)

where wn,i and ζi are the desired natural frequency and damping of the designed estimator,
respectively, for the i-th component.

In order to get (4.53) component-wise in (4.52), the expression of the estimated exter-
nal wrench and unmodeled dynamics r(t) =

[
f̂ T
u τ̂T

u

]T
in the time domain is defined as

follows

r(t) = K1

(∫ t

o
−r(σ)+K2

(
q(σ)−

∫ t

0

(
r(σ)+

−
[

−uRb(ηb)i3 +mg
Q(ηb)

Tτb
b +C(ηb, η̇b)

Tη̇

])
dσ

)
dσ

)
, (4.54)

where it is assumed that 4 q(0) = r(0) = ṙ(0) = 0, while K1 = diag{K1,1,K1,2} and K2 =

diag{K2,1,K2,2} are (6×6) positive definite diagonal matrices, in which Ki, j, i, j = {1,2},
4This condition means that, in the practice, the estimator has to start before the take-off of the UAV.
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is a (3×3) positive definite diagonal matrix. Considering (4.46) and (4.51), the dynamics
of (4.54) is

r̈+K1ṙ+K1K2r = K1K2

[
fu
τu

]
, (4.55)

that in Laplace domain is equivalent to the 6 transfer functions in (4.52). Once the natural
frequencies and the damping factors in (4.53) have been designed, the components of the
gains K1 and K2 in (4.54) can be computed as follows

k1,ik2,i = ω
2
n,i

k1,i = 2ζiωn,i

where i = 1, . . . ,6, and k1,i and k2,i are the i-th elements of K1 and K2, respectively.
Notice that, in ideal case,

ζi→ 1
ωn,i→ ∞

=⇒ r(t) =
[

f̂u
τ̂u

]
≈
[

fu
τu

]
,

where i = 1, . . . ,6, which means that the gains should be taken as large as possible in the
practice.

The quantities required to compute r are the UAV orientation ηb and the related time
derivative η̇b, the vehicle translational velocity ṗb, the commanded input torques τb

b , the
thrust u and the knowledge about the UAV inertia matrix Ib and mass m. The quantities ηb

and η̇b can be retrieved by the on-board IMU sensor, while ṗb can be estimated by using
GPS and/or visual data [68, 69]. The thrust u and the input torques τb

b are given by the
passivity-based controller (see Section 4.2.6). The UAV inertia Ib and mass m should be
instead known a-priori. Notice that no inversion of the inertia matrix M(ηb) is required,
and also no knowledge about the absolute position pb of the UAV is needed. Moreover,
notice that, with respect to [22], a second-order transfer function has been considered
to better weaken the effects of high-frequencies noise (e.g., introduced by both the IMU
sensor and the estimation of ṗb) that overcomes the selected bandwidth designed through
the choice of wn,i, with i = 1, . . . ,3. Notice that with small modifications to (4.54), it is
possible to reach a transfer function in (4.52) of the desired order.

4.2.6 VToL UAVs passivity-based control

The time scale separation highlighted in the classical hierarchical controllers [79, 57] is
traduced in a inner-outer loop control architecture. Namely, the inner loop is devoted to
control the fast time-scale angular part, while the outer loop tackles the slow time-scale
position tracking part. Because of the underactuation of the system, only 4 components
can be provided by an external planner. Since pb and ψ are flat outputs for the sys-
tem (4.46) [29], the planner gives as inputs to the controller the desired position trajectory
of the UAV, described by the (3×1) vectors pd , ṗd and p̈d , and the desired yaw trajectory,
described by ψd , ψ̇d and ψ̈d . Hence, the desired pitch and roll components are implicitly
computed on the basis of the planned UAV position and yaw.
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Figure 4.8: Block scheme of the proposed control architecture. In red, the corresponding
equations in the section related to each block.

For the inner loop, let ηd =
[
φd θd ψd

]T be the (3×1) vector of the UAV desired
attitude with η̇d and η̈d its time derivatives. Define the following (3×1) reference vector
for the attitude velocity

η̇r = η̇d− eη , (4.56)

where eη = ηb−ηd is the (3×1) angular tracking error and ν > 0 a coupling parameter.
The following passivity-based control input can be then defined for the inner loop

τ
b
b =Q(ηb)

−T (M(ηb)η̈r +C(ηb, η̇b)η̇r− τ̂u

−Dovη −Koeη) , (4.57)

where Do and Ko are (3×3) positive definite diagonal gain matrices, ėη = η̇b− η̇d , η̈r =

η̈d − ėη and vη = ėη + eη . Considering (4.46b), notice that no cancellation of dynamic
model terms is performed through (4.57).

The outer loop has then to provide the desired thrust and the reference values of the
pitch and roll angles. Define a (3× 1) virtual input acceleration vector µ devoted to the
position tracking part and that will be designed in the following. It should be possible to
retrieve the thrust and the desired attitude angles values for the inner loop from the virtual
control input µ . For this reason, it is imposed that

µ =− u
m

Rb(ηd)i3 +g+
1
m

f̂u, (4.58)

representing the desired acceleration vector with respect to Σi, in which the magnitude
is the thrust u produced by the propellers, while the orientation is given by the desired
UAV attitude. Properly designing mu, inverting (4.58) it is then possible to retrieve the
desired values for the thrust and the attitude angles that are in turn exploited as references
for the inner control loop. Therefore, let ep = pb− pd , ėp = ṗb− ṗd , ëp = p̈b− p̈d and
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ëη = η̈b− η̈d be the (3× 1) tracking errors, and let f̃ = fu− f̂u be the estimated force
error. Replacing both ηb = ηd + eη and fu = f̂u + f̃ in (4.46a), recalling (4.58), yields

p̈b = µ +
u
m

δ (ηd ,eη)+
1
m

f̃ , (4.59)

where δ (ηd ,eη) =
[
δx δy δz

]T is the following (3×1) interconnection vector

δ =

sφd sψd − sφ sψ − cφ cψ sθ + cφd cψd sθd
cψ sφ − cψd sφd + cφd sθd sψd − cφ sθ sψ

cθd cφd − cθ cφ

 , (4.60)

with φ = eφ +φd , θ = eθ +θd and ψ = eψ +ψd . The virtual control input µ can now be
chosen as

µ = p̈d−
1
m
(Dpėp +Kpep) , (4.61)

where Dp and Kp are two (3×3) positive definite diagonal gain matrices.
Folding (4.57) and (4.61) into (4.46b) and (4.59), respectively, yields the following

closed-loop equations

mëp +Dpėp +Kpep = uδ (ηd ,eη)+ f̃ , (4.62a)

M(ηb)v̇η +(C(ηb, η̇b)+Do)vη +Koeη = τ̃, (4.62b)

where v̇η = ëη + ν ėη and τ̃ = τu− τ̂u. The right side of equation (4.62a) acts like an
external force on the first subsystem and depends on both the UAV attitude error and
the estimated unknown forces error. The right side of equation (4.62b) is the residual
of the estimated moments and acts as a disturbance on the second subsystem. Thus, the
expressions in (4.62) establish passive relationships between the reconstruction errors of
generic unknown disturbances and the tracking errors. In particular, for equation (4.62b),
as underlined in [84], there exists a passive mapping between τ̃ and vη , at least in hovering
case.

• Remark 1. Notice that the relationship in (4.62a) is equivalent to a generalized
mechanical impedance reacting to the external disturbance given by (uδ (ηd ,eη)+

f̃ ) with the same mass m of the aerial vehicle, and with a stiffness and damping that
are programmable through the choice of the gain matrices Kp and Dp, respectively.

• Remark 2. The gains that have to be tuned in the proposed controller are namely:
K1 and K2 for the estimator; Kp and Dp for the UAV translational part; ν , Ko and
Do for the angular one. A discussion about how to choose ν is done in [19], while
the physical meanings of Kp and Dp are given in Remark 1. Ko and Do might have
similar meanings of programmable stiffness and damping of a torsional spring. The
translational part is the slowest one due to the time-scale separation and because it
depends on the attitude error. Hence, once the desired stiffness Kp and damping
Dp have been chosen, it is possible to retrieve the closed-loop bandwidth of the
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controlled system. Then, the natural frequency and damping factor of the estimator
can be tuned on the basis of this choice. In particular, they have to be at least
larger than those designed for the UAV translational part so as not to weaken the
closed-loop designed performance.

To recap, the proposed architecture is depicted in the block scheme of Fig. 4.8. After
computing the position tracking errors ep and ėp, and knowing the feedforward accelera-
tion p̈d , the virtual control input µ can be computed as in (4.61). The desired thrust u and
the reference pitch and roll can be computed by inverting (4.58) as follows [79]

u = m
√

µ̄2
1 + µ̄2

2 +(µ̄3−g)2, (4.63a)

φd = sin−1
(

m
µ̄2 cosψd− µ̄1 sinψd

u

)
, (4.63b)

θd = atan2(µ̄1 cosψd + µ̄2 sinψd , µ̄3−g) , (4.63c)

where µ̄ =
[
µ̄1 µ̄2 µ̄3

]T
= µ−(1/m) f̂u, with f̂u given by (4.54), while the desired yaw

ψd is given by the planner. A second-order low-pass digital filter should be employed to
reduce noise and compute both first and second derivatives of ηd [79], so as to get η̇d and
η̈d , and hence compute in turn the attitude tracking errors eη and ėη . The control input
vector τb

b is computed as in (4.57), in which τ̂u is given by (4.54). Having both the thrust
u and the actuation torques τb

b , the squared propellers speeds w2
i of the VToL UAV, with

i = 1, . . . ,4, are computed by inverting (4.45).

• Remark 3. Notice that in case µ̄ = µ−(1/m) f̂u = g, equation (4.63b) is indetermi-
nate. This exact condition is very difficult to happen in the practice but it can not be
a priori excluded. From a physical point of view, such numeric singularity means
a desired acceleration for the UAV equal to the gravity: this can be achieved with
a zero thrust, i.e. turning off the propellers as it is evident from (4.45a). When the
propellers are turned off, any values for the pitch and the roll are not reachable since
the control is obviously not in action. In the practice, such a particular and uncom-
mon condition can be nonetheless easily managed from a software point of view
once the thrust is calculated as in (4.63a). It is worth remarking that no problems
happened during the experiments, some of which are described in Section 4.2.11.

• Remark 4. Although it is of less interest, the passivity-based approach here pro-
posed can be employed also without considering the compensation of external
wrench and unmodeled dynamics, i.e. neglecting the term τ̂u in (4.57) and with
µ̄ = µ in (4.63). As highlighted in [3], the use of integral/adaptive actions, as well
as of external disturbances observers, might in some cases worsen and not improve
the controller performance. Therefore, in the reminder of the section and during
the experiments, it will be checked under which conditions the compensation of the
estimated terms improves the performance of the sole passivity-based controller.
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4.2.7 Stability proof

This section is devoted to show the stability of the whole control scheme made up by
the momentum-based estimator of external wrench and unmodeled dynamics, and the
passivity-based controller. It is worth mentioning that only marginal stability can be en-
sured since perturbation terms on the right sides of (4.62) might be nonvanishing. More-
over, it is also shown how adding the compensation of the estimated terms may help in
reducing the asymptotic bounds of the closed-loop systems.

Let x1 =
[
eT

p ėT
p
]T and x2 =

[
eT

η ėT
η

]T be two (6× 1) vectors denoting the state
of the closed-loop system equations (4.62a) and (4.62b), respectively, which can also be
arranged in the following way

ẋ1 = α1(m,x1,Kp,Dp)+β1(u,m,ηd ,eη , f̃ ), (4.64a)

ẋ2 = α2(ν ,x2,ηb, η̇b,Ko,Do)+β2(ηb, ãu), (4.64b)

where

α1 =

[
ėp

−(1/m)Dpėp− (1/m)Kpep

]
,

α2 =

[
ėη

−M−1 (ν ėη +(C+Do)vη +Koeη)

]
,

β1 =

[
03

(u/m)delta+(1/m) f̃

]
,

β2 =

[
03

M−1ãu

]
,

in which dependences have been dropped and 0n is the (n× 1) null vector. Let define
the nominal systems as the closed-loop equations (4.64) without the perturbation terms
β1(u,m,ηd ,eη , f̃ ) and β2(ηb, ãu)

ẋ1 = α1(m,x1,Kp,Dp), (4.65a)

ẋ2 = α2(ν ,x2,ηb, η̇b,Ko,Do). (4.65b)

The following further assumption is considered.

• Assumption 3. The planned translational acceleration norm is bounded as

p̈d ≤ ‖ p̈d‖max = B7. (4.66)

Two main theorems will be employed in the following.

Theorem 1. Consider the generic perturbed system

ẋ = f (t,x)+g(t,x). (4.67)
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Let x = 0 be a globally exponentially stable equilibrium point of the nominal system

ẋ = f (t,x). (4.68)

Let V (t,x) be a Lyapunov function of (4.68) satisfying the following inequalities

γ1‖x‖2 ≤V (t,x)≤ γ2‖x‖2, (4.69a)
∂V
∂ t

+
∂V
∂x

f (x)≤−γ3‖x‖2, (4.69b)

‖∂V
∂x
‖ ≤ γ4|x‖, (4.69c)

where V (t,x) is defined in [0,∞)×D = {‖x‖< ∞} and γi > 0, with i = 1, . . . ,4. Suppose
the perturbation term in (4.67) satisfies the uniform bound

‖g(t,x)‖ ≤ ∆ < ∞, (4.70)

for all t ≥ t0. Then, for all ‖x(t0)‖ < ∞, the solution x(t) of the perturbed system (4.67)
satisfies

‖x(t)‖ ≤ ξ e−ρ(t−t0)‖x(t0)‖, ∀t0 ≤ t < ti, (4.71a)

‖x(t)‖ ≤ B, ∀t ≥ ti, (4.71b)

for some finite time ti, where

ξ =

√
γ2

γ1
, ρ =

(1− ε)γ3

2γ2
, B =

∆γ4

εγ3

√
γ2

γ1
,

with ε < 1.

Proof. See [38], Lemma 5.2.

Theorem 2. Consider a generic perturbed system like (4.67). Let x = 0 be a globally
exponentially stable equilibrium point of the nominal system (4.68). Let V (t,x) be a
Lyapunov function of (4.68) satisfying inequalities (4.69). Suppose the perturbation term
in (4.67) satisfies the following inequality

‖g(t,x)‖ ≤ Γ1(t)‖x‖+Γ2(t), (4.72)

where both Γ1(t) and Γ2(t) are nonnegative and continuous terms for all t ≥ t0. Moreover,
Γ2(t) has to be also bounded for all t ≥ t0, while Γ1(t) must satisfy the following inequality∫ t

t0
Γ1(t)dt ≤ b1(t− t0)+b2, (4.73)

for some nonnegative constants b1 and b2, with

b1 <
γ1γ3

γ2γ4
. (4.74)
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Then, for any initial condition of the state x(t0), the solution of the perturbed system (4.67)
satisfies the following bound

‖x(t)‖ ≤ b3, (4.75)

with

b3 = max
{

ξ
γ2

γ1
‖x(t0)‖,

ξ γ4

2ργ2
b4

}
,

where

ξ = e
γ4b2
2γ1 ,

ρ =
1
2

(
γ3

γ2
−b1

γ4

γ1

)
,

b4 = sup
t≥t0

Γ2(t).

Proof. See [38], Lemma 5.7.

By exploiting the two theorems introduced above, a two-steps procedure is employed
to prove the stability of (4.64). First, the stability of (4.64b) is verified and the ultimate
bound is found for the solution x2(t), with t ≥ t0 and t0 ≥ 0 a generic starting time instant.
Then, the stability of (4.64a) is verified considering also the interconnection with the
angular closed-loop equation (4.64b) given by eη . However, before starting with these
proofs, the boundedness of the errors of the momentum-based estimator is provided.

4.2.8 Boundedness of the external wrench and unmodeled dynamics
estimation errors

A bound for the error of the momentum-based estimator of the external wrench and un-
modeled dynamics is provided in this subsection. The detailed analysis is carried out for
the estimated moments: a similar procedure is valid for the estimated forces.

Since ãu = auu− âuu, the following equations hold

âuu = auu− ãu, ˙̂auu = ȧuu− ˙̃au, ¨̂auu = äuu− ¨̃au. (4.76)

Equation (4.55) can be written in the following way for what concerns the moments’ part

¨̂auu +K1,2
˙̂auu +K1,2K2,2âuu = K1,2K2,2auu, (4.77)

and substituting (4.76) into (4.77) yields

¨̃au+K1,2
˙̃au+K1,2K2,2ãu = äuu +K1,2ȧuu, (4.78)

which is the considered perturbed systems representing the evolution of the error estimate
of the unknown moments. The right side term in (4.78) denotes a disturbance against the
convergence of the error estimate to zero. For sole constant unknown moments auu, the
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right side term in (4.78) vanishes, meaning a perfect estimate. Otherwise, due to delay
introduced by the estimation dynamics in (4.55), the error remains anyway bounded as
proven by the following corollary.

Corollary 1. The error r̃ =
[
ãuT f̃ T

]T
is bounded while estimating unknown pertur-

bations satisfying (4.47). In particular, considering xτ =
[
ãuT ˙̃au

T
]T

, the following
ultimate bound holds

‖xτ(t)‖ ≤ ξ1e−ρ1(t−t0)‖xτ(t0)‖, ∀t0 ≤ t < t1, (4.79a)

‖xτ(t)‖ ≤ B8, ∀t ≥ t1, (4.79b)

for some positive constants ξ1, ρ1 and B8 defined in the proof. Moreover, in case of

constant unknown forces fu and moments auu, the equilibrium points x f =
[

f̃ T ˙̃f
T
]T

=

06 and xτ = 06 are globally exponentially stable.

Proof. See 4.2.13.

From (4.79) it is possible to have

‖ãu‖ ≤ B9 = max{ξ1‖xτ(t0)‖,B8}, (4.80)

for all t ≥ t0, which represents the ultimate bound for the moments estimation error.
Therefore, since the proof in 4.2.13 is performed for the estimated moments but the same
procedure holds for the estimated forces, it is possible to conclude that

‖ f̃‖ ≤ B10, (4.81)

with B10 > 0 depending on B2 and B3 (see (4.47b)-(4.47c)).

• Remark 5. Taking into account the proof in 4.2.13, if the unknown moments auu

are constants, the right side term in (4.78) vanishes. Hence B5 = B6 = 0⇒ B8 =

‖ãu‖= 0, for all t ≥ t1.

4.2.9 Stability of the closed-loop equation (4.64b)

As shown by the following corollary, the closed-loop equation (4.64b) is stable for bounded
perturbations and exponentially stable for constant unknown moments.

Corollary 2. Under the given assumptions, considering the dynamic model of a generic
VToL UAV for the angular part (4.46b), the designed control law (4.57) and the compen-
sation of the estimated moments in (4.54), the state error x2, whose dynamics is given by
the closed loop system (4.64b), is ultimately bounded as

‖x2(t)‖ ≤ ξ2e−ρ2(t−t0)‖x2(t0)‖, ∀t0 ≤ t < t2, (4.82a)

‖x2(t)‖ ≤ B11, ∀t ≥ t2, (4.82b)

for some positive constants ξ2, ρ2 and B11 defined in the proof. In particular, in case of
constant unknown moments auu, the equilibrium point x2 = 06 is exponentially stable.
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Proof. See 4.2.13.

The following remark concludes the analysis.

• Remark 6. As underlined in Section 4.2.8, when only constant unknown moments
auu are present, the norm ‖ãu‖ goes asymptotically to zero. Hence, B9 is zero
as well as B11 for all t ≥ t2. Therefore, the closed-loop system (4.64b) becomes
exponentially stable.

4.2.10 Stability of the closed-loop equation (4.64a)

As shown by the following corollary, the closed-loop equation (4.64a) is stable for bounded
perturbations and exponentially stable for constant unknown moments and forces.

Corollary 3. Under the given assumptions, considering the dynamic model of a generic
VToL UAV for the translational part (4.46a), the designed control law (4.61) and the com-
pensation of the estimated unknown forces in (4.54), the state error x1, whose dynamics
is given by the closed loop system (4.64a), is ultimately bounded as

‖x1(t)‖ ≤ B17, (4.83)

with B17 a finite positive bound given in the proof. In particular, in case of constant
unknown forces fu and moments auu, the equilibrium point x1 = 06 is exponentially stable.

Proof. See 4.2.13.

4.2.11 Experiments

4.2.12 Set-up and technical details

Experiments have been performed by using an Asctech Pelican quadrotor. Both the con-
troller and the estimator have been implemented onboard at 100 Hz on an ATOM CPU
with a patched RTAI real-time kernel UBUNTU OS. An OptiTrack motion-capture sys-
tem has been employed to track both the position and translational velocity of the quadro-
tor. A ground station made up of a personal computer with UBUNTU OS is in charge of
the WiFi communication between the OptiTrack system and the quadrotor as well as for
the operator telemetry.

The mass m and the inertia Ib of the vehicle that have been considered in the con-
troller are 1.2 kg and diag(3.4,3.4,4.7) ·10−3 kgm2, respectively. The vehicle parameters
in (4.45) are l = 0.21 m, ρu = 1.8 ·10−5 Ns2/rad2 and c = 8 ·10−7 Nms2/rad2.

Following Remark 2, the gains of the controller have been tuned as follows: Kp =

diag(25,25,100), Dp = diag(10,10,20), for the translational part; Ko = diag(625,625,225),
Do = diag(50,50,30) for the angular part. The factor ν has been set to 100. Regarding
the estimator, instead, the natural frequency and the damping factor have been tuned to
7 rad/s and 1, respectively, for all the force and moment components.
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Figure 4.9: Case study A, position, attitude norm errors, commanded propeller velocity
with and without compensation. Force and moments estimation in the case of compensa-
tion

4.2.13 Case studies

Several case studies are considered in the following. The hovering and tracking per-
formance of the passivity-based control are shown. It will be highlighted how the sole
passivity-based control (see Remark 4) is able to perform all the tasks with a good ac-
curacy, but that the compensation is crucial when unmodelled dynamics terms and un-
expected situations become relevant. A video of the presented case studies and other
different situations can be found in the multimedia attachment5.

Case study A

In this first case study, the quadrotor tracks three times a given circular trajectory with a
constant speed of 0.5 m/s. The circle is planned in the x,y plane at a constant altitude
of 1 m from the ground by choosing three different points. The resulting radius is about
0.83 m. After the take-off, the quadrotor reaches the first point of the circle and then
executes the planned trajectory. At the end, the landing operation is commanded. In the
following analysis represented in Fig. 4.9, the take-off, the landing and the first-point
reaching phases are not shown.

The comparison between the norms of the position error in the case of the passivity-
based control with and without the compensation of the external wrench and unmodeled
dynamics and the attitude error norms are depicted in Fig. 4.9. It is possible to notice
how the sole passivity-based control is able to successfully track the circle. The average
position error norm is about 5 cm which could be acceptable in several practical tasks.

5Also available at: http://youtu.be/iHKtHF0LF-w
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Figure 4.10: Left: quadrotor with the attached pendulum. Right: quadrotor in front of the
fan.

However, the performance is substantially improved by using the information provided by
the estimator of unknown forces and moments: the norm of the position error decreases
to less than 2 cm. From Fig.s 4.9-4.9 it is possible to notice that small uncertainties are
present. For instance, the considered inertia Ib might be inaccurate and the estimated force
along the z axis might be an indicator about either a missing amount in the considered
mass of the Pelican or that the commanded thrust is not perfectly equal to the actual
one. The commanded propellers inputs in the two considered cases are represented in
Fig.s 4.9-4.9.

Case study B

In this second case study, the same circular trajectory of the previous situation is con-
sidered. However, an external load has been physically added and not considered in the
controller. In particular, after the take-off, a pendulum has been attached, through a hook
(see Fig. 4.10), to the bottom of the quadrotor and far from the vertical axis of the vehicle
of about 15 cm. The pendulum has a mass of about 0.15 Kg and a length of 0.21 m.

The effect of the additional load is visible in Fig.s 4.11-4.11, where now the estimated
force reflects the presence of the additional mass of the pendulum. Moreover, comparing
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Figure 4.11: Case study B, position, attitude norm errors, commanded propeller velocity
with and without compensation. Force and moments estimation in the case of compensa-
tion

Fig. 4.9 with Fig. 4.11 it is possible to notice the effect of the oscillations of the pendulum
during the circular trajectory resulting in the presence of significant unknown moments.
These disturbances affect the performance of the controller. Namely, in the sole passivity-
based control, the average position error norm is about 9 cm (see Fig. 4.11), while the
average attitude error norm is about 10 degrees (see Fig. 4.11). However, in any case,
such control exhibits robust properties in presence of unmodelled and unpredicted effects.
The performance is increased by exploiting the compensation provided by the estimator
as it possible to see in Fig.s 4.11-4.11. The commanded propellers inputs are represented
in Fig.s 4.11-4.11.

Case study C

In this last case study, the quadrotor is subject to an external disturbance caused by a fan
(see Fig. 4.10). This last is placed at about 1.1 m from the ground and at a distance of
about 20 cm from the aerial vehicle in the x,y-plane. The quadrotor takes off at a height
of about 0.6 m, then it reaches the altitude of 1.8 m passing in front of the fan. Then, it
decreases again its altitude to 0.6 m (passing again through the wind flow generated by the
fan) and finally goes in front of the fan at 1.1 m from the ground, simulating a persisting
disturbance. After few seconds, the landing action is commanded. Each rectilinear path
along the z axis is performed at a constant speed of 0.5 m/s. The take-off and the landing
phases are neglected in the plots of Fig. 4.12.

Again, in general, by looking at Fig.s 4.12-4.12, it is possible to notice that the sole
passivity-based control is stable even in the presence of both time-varying and constant
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Figure 4.12: Case study C, position, attitude norm errors, commanded propeller velocity
with and without compensation. Force and moments estimation in the case of compensa-
tion

disturbances: the performance is poor and can be recovered exploiting the compensation
provided by the estimator. Fig.s 4.12-4.12 show the estimated forces and moments in the
compensation case. It is possible to notice the first passage in front of the fan at about 20 s.
Notice that the estimated forces are expressed with respect to Σi and the fan is aligned to
the x axis of the inertial frame. The second passage in front of the fan is at about 25 s.
Afterwards, the quadrotor stays in front of the fan from the time instant at 31 s until the
landing command is given. At that point, it is possible to notice that the estimated forces
are almost constant (about 0.8 N along the x axis), while the estimated moments wave due
to small oscillations of the aerial platform caused by small turbulent aerodynamic effects
on the UAV. This last causes also a small estimated force along z axis. The commanded
propellers inputs are represented in Fig.s 4.12-4.12.

Proof of Corollary 1

Proof. Considering Theorem 1, the nominal system associated to (4.78) is

ατ(xτ) = ¨̃au+K1,2
˙̃au+K1,2K2,2ãu = 06. (4.84)

The origin xτ = 06 of the linear system (4.84) is globally exponentially stable since (4.84)
is a second-order differential linear equation with K1,2 and K2,2 positive definite matrices.
Therefore, the following function

V1(xτ) =
1
2

xT
τ P1xτ , (4.85)
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is a Lyapunov function for (4.84), in which P1 is a (6× 6) positive definite symmetric
matrix solving the following equation

P1A1 +AT
1 P1 +Lambda1 = O6, (4.86)

for any (6× 6) definite positive symmetric matrix Lambda1, with A1 the linear matrix
associated to (4.84), depending on K1,2 and K2,2. Through this choice of V1(xτ), the
bounds in (4.69) are verified as follows [38]

γ1 = λ P1
, γ2 = λ P1 , γ3 = λ Λ1

, γ4 = 2λ P1 , (4.87)

where λ . and λ . are the maximum and minimum eigenvalues, respectively, of the associ-
ated matrix.

Taking into account (4.47e) and (4.47f), the bound in (4.70) of the perturbation term
äuu +K1,2ȧuu is satisfied with

∆ = λ K1,2B5 +B6, (4.88)

for all t ≥ t0.
Then, considering (4.71), for all ‖xτ(t0)‖ < ∞, the solution xτ(t) of the perturbed

system (4.78) satisfies (4.79) for some finite time t1, depending on (4.88) and ‖xτ(t0)‖,
where

ξ1 =

√
λ P1

λ P1

, ρ1 =
(1− ε1)λ Λ1

2λ P1

,

with ε1 < 1 and

B8 =
2λ P1(λ K1,2B5 +B6)

ε1λ Λ1

√
λ P1

λ P1

. (4.89)

The same procedure can be applied for the estimated forces.

It is worth noticing that B8 can be decreased trough a proper choice of the gains K1,2

and K2,2 and of the matrix Lambda1.

Proof of Corollary 2

Proof. Theorem 1 is taken into account for the demonstration. In order to show that
x2 = 06 is a globally exponentially stable equilibrium point of the nominal closed-loop
equation (4.65b), the inequalities in (4.69) have to be satisfied [38]. Therefore, consider
the following candidate Lyapunov function inspired by [19]

V2(t,x2) =
1
2

xT
2 P2x2, (4.90)

Thanks to Sylvester’s criterion, it is possible to verify that the quadratic form in (4.90)
is positive definite and vanishes only when x2 = 06. Inequality (4.69a) is then proved with
γ1 =

1
2 λ P2

and γ2 =
1
2 λ P2 . In order to verify (4.69b), the following inequality holds

∂V2

∂ t
+

∂V2

∂x2
α2(ν ,x2,ηb, η̇b,Ko,Do)≤−xT

2 Lambda2x2,
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with

Lambda2 =

[
νKo +ν2Do O3

O3 Do

]
.

It is possible to easily check that Lambda2 is positive definite and then (4.69b) is verified
through γ3 = λ Λ2

. Finally, inequality (4.69c) is proved with γ4 = λ P2 .
Taking into account (4.80), the uniform bound in (4.70) is proved as follows

‖β2(ηb, ãu)‖ ≤ λ M−1‖ãu‖ ≤ λ M−1B9 < ∞. (4.91)

Then, considering (4.71), for all ‖x2(t0)‖ < ∞, the solution x2(t) of the perturbed
system (4.64b) satisfies (4.82) for some finite amount of time t2 ≥ t1, depending on (4.91)
and ‖x2(t0)‖, where

ξ2 =

√
λ P2

λ P2

, ρ2 =
(1− ε2)λ Λ2

λ P2

,

with ε2 < 1 and

B11 =
λ P2λ M−1B9

ε2λ Λ2

√
λ P2

λ P2

. (4.92)

The following two remarks conclude the proof.

• Remark 7. As highlighted in Remark 4, it is not ensured in principle that the com-
pensation of estimated generalized forces improves the performance of the sole
passivity-based controller. In order to check whether the compensation is conve-
nient or not, the case where the estimations are not employed is considered. In such
a case, the perturbation term in (4.64b) appears to be

β
′
2(ηb,auu) =

[
03

M(ηb)
−1auu

]
.

Corollary 2 still holds, but now inequality (4.91), which is necessary to prove hy-
pothesis (4.70), is modified as follows

‖β ′2(ηb)‖ ≤ λ M−1‖auu‖ ≤ λ M−1B4 = ∆
′ < ∞,

where (4.47d) has been taken into account. On the one hand, in case only con-
stant unknown moments auu are present, estimated, and compensated, ∆′ is always
greater than 0, since B4 > 0, while B9 in (4.91) is zero from Remark 6. Hence,
B′11 > B11 = 0: the bound with the compensation is less than the case without the
compensation meaning that the performance of the controller is improved when a
feedback of the unknown moments estimation is provided in (4.57). On the other
hand, when time-varying unknown moments auu are present, estimated, and com-
pensated, B11 <B′11⇐⇒ λ M−1B9 <∆′, meaning that compensation of the estimated
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moments is convenient in (4.57) when B9 < B4. This is in general verified when
auu is slow-time varying and thanks to a proper choice of both estimator bandwidth
and matrix Lambda1 in (4.86).

• Remark 8. Notice that inequality (4.82b) might be used to verify that the controller
maintains the selected Euler angles in a singularity-free zone (see Assumption 1).
Nevertheless, the mathematical derivation is cumbersome due to the complicated
expression of B11 in (4.92). Experiments performed in Section 4.2.11 seem anyway
very promising from this point of view.

Proof of Corollary 3

Proof. Theorem 2 is taken into account for the demonstration. The nominal closed-loop
system (4.65a) has a unique exponentially equilibrium point x1 = 06, since (4.65a) is a
linear system with an associated (6×6) state matrix A2(x1) which is Hurwitz, since m > 0
and both Kp and Dp are positive definite diagonal matrices. Therefore, the following
function

V3(x1) =
1
2

xT
1 P3x1, (4.93)

is a Lyapunov function for (4.65a), in which P3 is a (6× 6) positive definite symmetric
matrix solving the following equation

P3A2 +AT
2 P3 +Lambda3 = O6, (4.94)

for any (6× 6) definite positive symmetric matrix Lambda3. Through this choice of
V3(x1), inequalities (4.69) are verified with the following choice of the bounds [38]

γ1 = λ P3
, γ2 = λ P3 , γ3 = λ Λ3

, γ4 = 2λ P3 . (4.95)

Taking into account (4.47a), (4.58), (4.61), (4.66), (4.81) and the equation f̂u = fu− f̃ ,
it is possible to give the following ultimate bound to the thrust

|u|= m‖p̈d−g− 1
m

Dpėp−
1
m

Kpep−
1
m

f̂u‖

≤ B12 +B13(‖ep‖+‖ėp‖)

≤ B12 +B13
√

2‖x1‖, (4.96)

where B12 = B1 +m(g+B7)+B10 and B13 = max{λ Kp ,λ Dp}. The ultimate bound for
the term delta(ηd ,eη) in β1(u,m,ηd ,eη , f̃ ) is

‖delta(ηd ,eη)‖ ≤ B14‖eη‖, (4.97)
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with B14 > 0. By recalling (4.60) and exploiting the following general relationships

sin(a+b) = sin(a)+2sin(b/2)cos(a+b/2)

cos(a+b) = cos(a)−2sin(b/2)sin(a+b/2)

|sin(a)| ≤ |a|, |sin(a)| ≤ 1, |cos(a)| ≤ 1
n

∏
i=1
|ai| ≤

1
2

n

∑
i=1
|ai|, for |ai| ≤ 1,

inequality (4.97) can be verified providing first a bound to |δx|, |δy| and |δz| and then

considering ‖delta(ηd ,eη)‖=
√

δ 2
x +δ 2

y +δ 2
z . Notice that |sin(a)| ≤ |a| and |sin(a)| ≤ 1

are employed with arguments eϒ and eϒ +ϒd , respectively, with ϒ = {φ ,θ ,ψ}. Hence,
taking into account (4.81), (4.96) and (4.97), the following ultimate bound can be written
for the perturbation term β1(u,m,ηd ,eη , f̃ )

‖β1‖ ≤
1
m
(B10 +B13B14

√
2‖eη‖‖x1‖+B12B14‖eη‖). (4.98)

Comparing (4.72) and (4.98), it is possible to recognize that Γ1(t) = (B13B14
√

2/m)‖eη‖,
while Γ2(t) = (1/m)(B10 +B12B14‖eη‖). Notice that both Γ1(t) and Γ2(t) are nonnega-
tive and continuous terms for all t ≥ t0. Moreover, Γ2(t) is bounded for all t ≥ t0 since

Γ2(t) =
B10 +B12B14‖eη‖

m
≤ B10 +B12B14B15

m
,

in which (4.82) has been considered, with B15 = max{ξ2‖x2(t0)‖,B11}. In order to ver-
ify (4.73), denoting with Y = (B13B14/m)

√
2, the following inequality holds for Γ1(t)

Y
∫ t

t0
‖eη‖dt = Y

(∫ t2

t0
‖eη‖dt +

∫ t

t2
‖eη‖dt

)
≤ Y (ξ2B16‖eη(t0)‖+B11(t− t2))

< Y (ξ2B16‖eη(t0)‖+B11(t− t0)) (4.99)

where B16 = (1/ρ2)eρ2t0 (e−ρ2t0 − e−ρ2t2). Hence, inequality (4.73) is verified with b1 =

Y B11 > 0 and b2 =Y B16ξ2‖eη(t0)‖. Notice that b2 is always positive and bounded. There-
fore, taking into account (4.73) and (4.99), fixing the desired gains Kp and Dp, noticing
the dependency from the mass of the vehicle m and the bound B11, it is then always pos-
sible to choose a matrix Lambda3 such that inequality (4.74) is verified.

Then, considering (4.75), for any initial condition of the state x1(t0), the solution of
the closed-loop system (4.64a) satisfies (4.83) with

B17 = max

{
ξ3

λ P3

λ P3

‖x1(t0)‖,
ξ3λ P3

ρ3λ P3

B18

}
,
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where

ξ3 = e
−Y λP3

−B16ξ2‖eη (t0)‖
λP3 ,

ρ3 =
1
2

(
λ Λ3

λ P3

−2Y B11
λ P3

λ P3

)
,

B18 = sup
t≥t0

Γ2(t).

The following remark concludes the analysis.

• Remark 9. Notice that if only constant unknown moments auu are present, es-
timated, and compensated, then B11 is zero from Remark 6. As a consequence,
b1 = 0 for all t ≥ t2. Inequality (4.74) is thus verified for any value of Lambda3,
Kp and Dp, while x1(t)’s bound in (4.83) depends only on B10, which is due to the
force estimation process. Therefore, if only constant unknown forces fu are present,
estimated, and compensated, then B10 = 0 thanks to a similar consideration as in
Remark 6, and x1(t) goes asymptotically to zero. Furthermore, similar considera-
tions can be done as in Remark 7 to show that compensation of estimated forces is
convenient.
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Conclusions and future works

A brief recap about the methods presented in this thesis and the achieved results will be
the object of the current chapter. Proposals for future research directions will be discussed
as well.

5.1 Main Results
In this thesis an architecture to control an Unmanned Aerial Vehicle at different level of
abstractions and operating in human robot teams has been presented. The main motivation
of this work can be found in the SHERPA project, an European founded project whose
goal is to develop a heterogeneous mixed flying and ground robotic team lead by a human
operator to perform Search & Rescue operations in alpine scenario. In this context, the
hard operative conditions caused by the hazardous environment and the adverse weather
conditions and the limited amount of time needed to successfully complete the rescue
mission make necessary endow the robot of different intelligent and autonomous skills to
simplify the role of the human operator in the robot commanding an controlling phases.
The proposed architecture has been split in three different layers:

• High-level: at this level the human operator must be able to select and command in
a natural and easy way one of the robot of the team. In this context, the main re-
sult can be considered in the field of the Human-Robot Interaction. In particular, a
system that supports human multi-robot interaction during the execution of collab-
orative interactive tasks by facilitating the robot selection process is presented. In
the proposed approach the human operator is able to implicitly designate the robot
responsible for the execution of a command, because each robot of the team can
estimate the probability of being involved in the task from its current status and the
operative context. An automatic selection process mechanism that uses human in-
tention estimation for the robot selection has been designed. To estimate the human
intention a three layer architecture has been proposed to fuse different kind of in-
formation such as the robot capabilities, geometrical and contextual information. In
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addition, to allow the selection and commanding phase a multimodal human-robot
interaction framework suitable for a rescuer that cooperates with a set of drones
while searching for missing persons in an alpine scenario is presented.

• Middle-level: this module considered the autonomous and semi-autonomous ac-
tion execution in service robotics. In this context, a system that combines a set of
Artificial Intelligence methods, such as HTN planning, BDI execution, RRT path
planning/replanning is proposed, showing its performance and feasibility in a in-
dustrial plant inspection case study. In addition, Mixed-Initiative Interaction tech-
niques in Planning & Execution phase are investigated in order to better assist the
human operator. For this purpose, a mixed initiative control system for SAVs that
combines continuous mixed initiative planning and haptic feedback is presented.
The proposed framework allows the operator to adjust the planned trajectory (or to
force replanning) receiving a force feedback associated with the feeling of the robot
displacement with respect to the generated path (and to the presence of obstacles).
Moreover, the force feedback gives an intuitive perception of the action to take in
order to get back to the autonomous mode and the planned trajectory.

• Low-level: in the low-level layer of the architecture the actuation control input for
the single UAV is generated in order to perform the command decided in the higher
levels. For this purpose a method for react in a robust way to external unmodeled
disturbances is presented. This case fit perfectly our domain due to the variable
wind conditions in high altitude mountains. In particular, a momentum-based esti-
mator of external wrench and unmodeled dynamics has been employed to control a
VToL UAV together with a passivity-based control. The algorithm permits to suc-
cessfully perform hovering and tracking tasks with a good accuracy. The robustness
of the control has been tested in presence of unmodeled dynamic parameters and
external disturbances. However, even if the stability of the controller is preserved,
the performance might be poor in this last case. For this reason, the presence of
an estimator of forces and moments becomes crucial in presence of uncertainties.
Finally, a hybrid servoing framework for the autonomous interaction of an UAV
equipped with a multi-DOF arm for aerial manipulation tasks is presented.

5.2 Proposals for the future

Likewise performed in the previous section of this chapter, the directions for future re-
searches can be also analysed from different point of view.
For what concerting the Human-Robot Interaction of the human operator with the robots
of the team, the proposed methods is only evaluated in a simulated environment, for this
purpose, due to the promising results already obtained, an experimentation on real world
scenario must be performed.
Regarding the Low-level proposed methodologies, future work will be focused on prob-
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lems related to outdoor scenarios: in particular, the effects on introducing an estimated
translational velocity rather than using the one provided by a visual tracker. Finally, fu-
ture work will be focused on a more deep integration between the different levels of the
proposed architecture, namely between the High-level modules and the Low-level ones in
order to endow the Planning & Execution phase with different heterogeneous kind of in-
formation in order to increase the awareness of the robot with respect its internal situation
and allow better autonomous action execution performance.
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