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I leave Sisyphus at the foot of the mountain! One always 
finds one's burden again. But Sisyphus teaches the higher 
fidelity that negates the gods and raises rocks. He too 
concludes that all is well. This universe henceforth without 
a master seems to him neither sterile nor futile. Each atom 
of that stone, each mineral flake of that night filled 
mountain, in itself forms a world. The struggle itself 
toward the heights is enough to fill a man's heart. One 
must imagine Sisyphus happy. 

 
Albert Camus.  
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Summary 
The alarming diffusion of multidrug-resistant pathogens represents a serious threat to 
human health and economy. To counteract this phenomenon two main strategies has 
been pursued: the research of novel therapeutic targets and the identification of 
novel drugs exploiting natural products. The first strategy is focused principally on the 
identification of genes involved into bacterial virulence mechanism, to “disarm” 
pathogens. Dissecting and validating the pathogenicity determinants of human 
pathogens have been facilitated by the use of non-vertebrate host models such us 
Caenorhabditis elegans. The second strategy aims at the utilization of the huge 
potential of secondary metabolites produced by microorganims focusing on bacteria 
living in extreme environments such as the oceans, the poles and the deserts. 	
In this research project we applied these two approaches with special emphasis on 
pathogens belonging to the Burkholderia cepacia complex Bcc and parasite 
nematodes. To this aim we exploited the versatility of C. elegans as versatile model 
system and the potential of psychrophilic microorganisms as source of novel 
bioactive compounds. The first part of the project was focused on establishing an 
infection model between a selected panel of strains belonging to Bcc and the 
nematode C. elegans. With this aim, two different toxicity tests were performed to 
monitos host mortality by accumulation in the intestine or by toxins production. A 
Virulence Ranking scheme was defined based on the percentage of surviving worms. 
Our results suggested that only the cystic fibrosis isolated strains possessed 
profound nematode killing ability to accumulate in worms’ intestines. We also, 
investigated the role of host transporer during the infection. For this analysis a 
complete set of isogenic nematode single Multidrug Resistance associated Protein 
efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity 
assays. We demonstrated that disabling host transporters genetically (C. elegans 
knock out mutants) or chemically (efflux inhibitors) enhanced nematodes mortality, 
suggesting a role in toxin-substrate recognition for some of the tested transporters. 
The work performed has provided useful information on Bcc pathogenicity and it 
achieved the development of a suitable platform for dissecting Bcc virulence factors 
and for drug discovery and validation of anti-Bcc molecules. The second part of the 
project was focused on the identification of new bioactive compounds targeting Bcc 
strains and parasite nematodes. To achieve this goal a biodiscovery pipeline was 
developed starting with isolation of cold-adapted bacteria from sediments collected 
from Antarctica and Tibet. The isolates were first evaluated for their antimicrobial and 
anthelmintic activity with cell-based assays. Antimicrobial capability was evaluated 
using the cross-streaking experiments targeting human pathogens, while for the 
anthelmintic activity, we assayed isolates ability to survive and kill the nematodes C. 
elegans that was used as model helmint. Positive isolates to primary screening were 
grown in liquid cultures to produce crude extracts in order to perform secondary 
assays. Positive extracts were then fractionated using Solid Phase Extraction, and 
HPLC, and pure bioactive compounds were identified with LC-MS and NMR. With 
this strategy, we achieved the isolation of 3 Rhamnolipids, two of which were new, 
embedded with high (MIC < 1 µg/mL) antimicrobial activity against Bcc strains. We 
found also one positive extract able to kill the nematodes and a second one that 
completely inhibit the growth of Francisella tularensis an opportunistic human 
pathogen, at the concentration of 25 µg/mL. LC-MS analysis of this fraction revealed 
the presence of 16§-hydroxycrambescidin, a known alkaloid with unreported 
antimicrobial activity. 
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Riassunto 
 
Negli ultimi decenni la problematica dei patogeni Multi-Drug Resistant (MDR) ha 
raggiunto un livello di rischio drammatico. Attualmente, diversi antibiotici usati di 
routine, sono diventati totalmente inefficaci per combattere questo tipo di infezioni, 
aumentando i costi per la sanità pubblica e soprattutto il numero di decessi. Esiste un 
elevatissimo numero di batteri MDR, soprattutto in ambienti ospedalieri (le cosiddette 
infezioni nosocomiali) che rendono difficili da eradicare anche le più comuni infezioni. 
Il problema ha proporzioni mondiali e non è limitato ai soli batteri, ma anche a funghi, 
virus e parassiti. Tra questi ultimi, sono prominenti i nematodi parassiti, che causano 
gravissimi danni a popolazioni umani e bestiame, soprattutto in paesi del terzo 
mondo, e per questo motivo la ricerca antielmintica è tristemente molto limitata. 
Attualmente gli studiosi stanno percorrendo due differenti strategie per risolvere 
questo problema: la prima è la ricerca di nuove target terapeutici; la seconda 
riguarda l’identificazione di nuovi farmaci sfruttando il potenziale delle “sostanze 
naturali”.  
La ricerca di nuovi target terapeutici è mirata alla ricerca di bersagli molecolari, che 
non vadano ad inibire funzioni vitali dei patogeni come i normali antibiotici 
(replicazione DNA, sintesi della parete cellulare), in quanto questa strategia aumenta 
la pressione selettiva e stimola l’evoluzione dei patogeni MDR. Da questo punto di 
vista, i geni coinvolti nei meccanismi di patogenesi rappresentano una valida 
alternativa. Inibire i meccanismi di virulenza renderebbe i patogeni incapaci di creare 
danni all’organismo e di essere poi eliminati dal sistema immunitario del paziente. Un 
altro vantaggio di questo approccio è la possibilità di identificare e validare 
direttamente geni che agiscono in vivo. Per questi motivi la ricerca di nuovi fattori di 
virulenza dipende strettamente dall’impiego di sistemi modello di infezione in vivo, 
utilizzando organismi semplici e non vertebrati, come ad esempio il nematode 
Caenorhabditis elegans.  
La ricerca di nuove “sostanze naturali” prevede invece lo sfruttamento dell’immenso 
potenziale biosintetico dei microorganismi presenti in Natura. I prodotti da sostanze 
naturali sono ancora oggi la principale fonte di nuovi farmaci, rappresentando i due 
terzi degli antibatterici messi in commercio o in clinical trial, degli ultimi 20 anni. Oggi, 
l’interesse scientifico è concentrato sui batteri definiti “estremofili”, che abitano gli 
ambienti con le più estreme condizioni ambientali (gli oceani, i poli e le aree fredde, i 
deserti). Per sopravvivere in questi ambienti i microorganismi hanno sviluppato 
diverse strategie, tra cui la produzione di metaboliti secondari con attività 
antimicrobica, pertanto questi batteri hanno un altissimo valore biotecnologico. 
 
L’obiettivo di questo progetto di ricerca è stata l’applicazione di approcci 
biotecnologici per contrastare il fenomeno dei patogeni MDR, con particolare enfasi 
per batteri appartenenti al Burkholderia cepacia complex (Bcc), un gruppo di 
patogeni verso il quale l’interesse è cresciuto notevolmente negli ultimi anni, e verso i 
nematodi parassiti. In questa progetto un ruolo fondamentale è stato acquisito dal 
nematode C. elegans, sistema modello estremamente versatile grazie alle sue 
caratteristiche peculiari (sistema molto semplice, ciclo vitale veloce, possibilità di 
screening su larga scala) e da batteri “cold-adapted” che sono stati utilizzati come 
fonte di nuovi composti bioattivi. Il progetto è stato quindi diviso in due principali 
sezioni: una riguardante l’utilizzo di C. elegans come sistema di infezione modello 
utilizzando batteri appartenenti al Bcc al fine di creare una piattaforma per screening 
e target validation; la seconda concentrata sul “drug discovery” utilizzando batteri 
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isolati da ambienti estremi come l’Antartide e ghiacciai tibetani, utilizzando in questo 
caso C. elegans come bersaglio e sistema di valutazione. 
 
Parte 1: Utilizzo di C. elegans come sistema di infezione modello 
per batteri appartenenti al Bcc e studio del ruolo degli “host 
transporter” nell’infezione 
 
Per mettere a punto il modello di infezione, sono stati selezionati 18 ceppi 
appartenenti al Bcc, che rappresentano i ceppi di riferimento di ognuna delle 18 
specie che compongono il complex. Questi ceppi provengono da pazienti affetti da 
fibrosi cistica (CF) oppure da fonti ambientali (suolo, radici) Per testare la loro 
patogenicità verso il nematode C. elegans, sono stati utilizzati due differenti test di 
tossicità definiti “Slow killing Assay” (SKA) e “Fast killing Assay” (FKA). I test si 
basano sul differente mezzo di coltura utilizzato per la crescita dei patogeni. Lo SKA 
viene effettuato utilizzando, come terreno, il Nematode Growth Medium (NGM), e 
permette di osservare la morte dei nematodi a causa di una colonizzazione 
intestinale da parte delle Burkholderie. Il FKA viene invece eseguito su un terreno ad 
alta osmolarità definito PGS (Peptone, Glucosio, Sorbitolo), che causa un elevato 
assorbimento di molecole dal mezzo di coltura e permette di osservare la morte dei 
vermi a causa delle produzione di tossine prodotte dai patogeni. Per confermare che 
la virulenza delle Bcc verso i nematodi dipendesse effettivamente dalla 
colonizzazione intestinale o dalla produzione di tossine, sono stati eseguiti degli 
appositi esperimenti, utilizzando osservazioni al microscopio e test su piastra. Una 
volta messo a punto il modello di patogenicità questo è stato utilizzato per effettuare 
uno studio sul ruolo degli “host transporter”, cioè delle pompe di flusso dell’ospite, 
durante il processo infettivo. A questo scopo, sono stati selezionati 7 ceppi di C. 
elegans, ognuno dei quali singolo mutante per una specifica pompa di membrana 
appartenente alla famiglia delle Multi-Drug Resistance Protein (MRPs), della 
superfamiglia dei trasportatori ATP-Binding-Cassette (ABC). Per confermare poi il 
coinvolgimento delle MRP durante l’infezione da Bcc, sono stati effettuati esperimenti 
di tossicità tra le Bcc e i nematodi wild type aggiungendo al mezzo di coltura inibitori 
dei trasportatori di membrana, per osservare l’effetto di una inibizione chimica degli 
inibitori sulla sopravvivenza dei nematodi. 
 
 
Risultati conseguiti  
 
La patogenicità dei ceppi di Bcc è stata valutata attraverso i due test di patogenicità 
(SKA e FKA). Per entrambi i test, i nematodi sono stati sincronizzati allo stadio 
larvale L4 e poi posti su piastre contenenti NGM o PGS su cui erano stati cresciuti 
per 24 ore a 37°C vari ceppi di Bcc. Le piastre sono state poi incubate a 20°C e la 
conta dei nematodi vivi è stata effettuata ogni 24 ore. Per definire la virulenza dei 
ceppi, è stata stabilità una scala di patogenicità basata sulla percentuale dei 
nematodi sopravvissuti dopo 3 e 2 giorni di incubazione, per SKA e FKA 
rispettivamente. In base ai risultati ottenuti i nematodi sono stati divisi in quattro 
differenti gruppi. Un ceppo di Bcc è stato considerato non virulento (“Virulence 
Ranking” VR=0), quando la percentuale dei vermi sopravvissuti variava da 100 a 
80%; VR=1 corrispondeva ad una percentuale di vermi morti tra il 79 e il 50%; VR= 2 
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tra 49 e 6%; infine il VR è stato considerato 3 quando la percentuale di vermi 
sopravvissuti era inferiore al 5%.  
Lo SKA ha mostrato una elevata variabilità nella patogenicità. Solamente due ceppi 
(B. metallica e B. stabilis) sono stati in grado di eliminare completamente tutti i 
nematodi dopo 3 giorni di incubazione. Circa la metà delle Bcc ha invece mostrato 
una patogenicità intermedia, mentre ben 7 ceppi su 18, si sono rivelati totalmente 
innocui verso C. elegans. Riguardo il FKA, 5 ceppi di Bcc hanno ottenuto un VR=3 
risultando effettivi nell’uccidere il 100% dei nematodi in 2 giorni, mentre solamente 2 
ceppi non hanno mostrato alcuna virulenza. Il confronto tra i due test ci rivela che i 
ceppi isolati da pazienti affetti da FC sono mediamente più infettivi su SKA rispetto ai 
ceppi di origine ambientale. In particolare tre ceppi di Bcc (B. ambifaria, B. cepacia 
and B. pyrrocinia) hanno ottenuto VR=3 su FKA e VR=0 su FKA. Questa evidenza 
suggerisce che la produzione di tossine (osservata su FKA) sia un meccanismo di 
patogenicità piuttosto diffuso tra le varie Burkholderie, mentre solo i ceppi FC hanno 
sviluppato diversi tratti che gli consentono di infettare e colonizzare l’ospite.  
Per valutare la colonizzazione intestinale i due ceppi con VR=3 per lo SKA (B. 
metallica e B. stabilis) sono stati utilizzati per infettare C. elegans, dopodiché i 
nematodi sono stati ispezionati al microscopio. Ceppi di Bcc non infettivi (B. 
pseudomultivorans, VR=0) ed E. coli OP50 sono stati utilizzati come controlli. Dopo 
solo 24 ore, gli intestini dei nematodi infettati da ceppi virulenti apparivano totalmente 
deformati e colonizzati dai patogeni rispetto a quelli dei nematodi cresciuti sui 
controlli. Osservazioni a vari intervalli di tempo hanno dimostrato che l’accumulo 
aumenta col passare del tempo fino a provocare la morte dei nematodi.  
Per confermare la produzione di tossine è stato invece effettuato il “Toxin diffusion 
assay”. In questi esperimenti, i ceppi di Bcc col massimo punteggio per il FKA (B. 
contaminans, B. cepacia, B. ambifaria, B. metallica and B. stabilis) sono stati 
cresciuti su filtri di carta con un cut-off di 0,22 um su piastre PGS. Dopo 24 ore di 
incubazione i filtri  sono stati rimossi e i nematodi sono stati posti sul solo agar 
condizionato. I risultati hanno mostrato che già dopo solo 4 ore di incubazione, più 
del 50% dei nematodi esposti all’ agar condizionato apparivano paralizzati e incapaci 
di muoversi sulla piastra. Dopo 24 ore, per la maggioranza dei ceppi testati, circa il 
70% dei nematodi era morto. Al contrario, vermi posti su piastre condizionate da E. 
coli, non presentavano alcuna paralisi.  
È stato poi valutato il ruolo dei trasportatori MRP nell’infezione da Bcc, utilizzando 
ceppi di C. elegans knock-out per sette specifici MRP. I sette mutanti sono stati 
quindi ritestati contro tutte i 18 ceppi di Bcc, utilizzando nuovamente il FKA e lo SKA, 
al fine di osservare differenze di patogenicità tra questi mutanti e il ceppo wild-type di 
C. elegans. Sono state riscontrate alcune differenze suggerendo un effetto specifico 
per ogni Burkholderia. Sono stati identificati però alcuni dati significativi: i mutanti 
mrp-5 e mrp-2 hanno mostrato un elevato aumento della mortalità da parte di almeno 
8 ceppi di Bcc su 18, indicando un’importante ruolo dei rispettivi trasportatori MRP 
nell’infezione. Al contrario, i mutanti mrp3 e mrp-4 non hanno mostrato alcun 
aumento della mortalità suggerendo una diversa specificità di substrato tra i vari 
trasportatori. Sono stati poi effettuati esperimenti di tossicità con inibitori delle MRP, 
al fine di dimostrare un aumento della mortalità dei nematodi inibendo le pompe MRP 
sia geneticamente (mutanti knock-out) che con composti chimici. I 5 ceppi di Bcc che 
hanno mostrato aumento della mortalità contro i mutanti (B. ambifaria, B. arboris, B. 
cepacia, B. dolosa, B. pyrrocinia) sono stati testati nuovamente contro il ceppo wild-
type di C. elegans  in presenza di 3 inibitori (Lasalocid, Mometasone e Verapamil). I 
risultati hanno indicato un aumento della mortalità dei nematodi in presenza degli 
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inibitori, validando l’importanza di questi MDR nel processo infettivo. È quindi 
probabile che queste proteine abbiano un ruolo attivo pompando all’esterno delle 
cellule tossine o altre molecole tossiche prodotte dai ceppi di Bcc. È importante 
notare che i trasportatori MDR utilizzati hanno omologhi nell’uomo e soprattutto 
condividono meccanismi di attivazione con il Cystic Fibrosis Transmembrane 
conductance Regulator (CFTR), pompa di membrana la cui mutazione è la causa 
della FC. Quindi, l’identificazione di molecole effettori di virulenza, che siano substrati 
delle pompe MRP potrebbe essere un promettente punto di partenza per lo sviluppo 
di nuove terapie. In questa prima parte sono stati quindi ottenuti promettenti risultati e 
informazioni sulla patogenicità del Bcc ed inoltre è stata messa a punto una 
piattaforma per identificare fattori di virulenza e validare nuovi farmaci contro questi 
patogeni. 
 
 
Parte 2: Identificazione di nuove molecole bioattive contro batteri 
patogeni e nematodi parassiti, da batteri cold-adapted. 
 
La seconda parte di questo progetto è stata focalizzata sulla ricerca di nuove 
molecole bioattive contro batteri patogeni e nematodi parassiti. Per raggiungere gli 
obiettivi preposti è stata sviluppata una “biodiscovery pipeline” in sei diverse fasi a 
partire dalla raccolta di campioni ambientali fino alla purificazione e validazione dei 
nuovi composti. La prima fase ha riguardato la raccolta di campioni da ambienti 
estremi e freddi del pianeta quali l’Antartide e ghiacciai tibetani. Questi sedimenti 
sono stati utilizzati per la seconda fase, ovvero l’isolamento di batteri cold-adapted. 
Per isolare questi batteri estremofili sono stati utilizzati due appositi mezzi di coltura: 
il Marine Broth, per i sedimenti Antartici prelevati a -46m di profondità nel Mare di 
Ross; e il terreno PYG (Peptone, estratto di lievito, Glucosio) per i sedimenti tibetani, 
isolati dai ghiacciai Karuola e Midui a 5200 e 4800 metri di altitudine. I sedimenti 
sono stati aggiunti a una soluzione salina, mescolati per creare una miscela 
omogenea, successivamente diluita e piastrata sui differenti terreni. Per selezionare 
batteri “cold-adapted”, le piastre sono state incubate a 4°C per circa due settimane, 
dopodiché le colonie presenti sono state selezionate e conservate. Gli isolati batterici 
così ottenuti sono stati utilizzati per la terza fase, ovvero gli screening primari per 
identificare batteri in grado di avere un effetto antagonista nei confronti di batteri 
patogeni o di C. elegans, che è stato utilizzato come sistema modello per i nematodi 
parassiti. A questo scopo sono stati utilizzati vari saggi: il “cross-streaking assay” per 
determinare potenziale attività antimicrobica utilizzando ceppi appartenenti al Bcc; il 
“nematode grazing assay” e il FKA e il SKA sono stati invece effettuati per 
identificare potenziale attività antielmintica. Una volta identificati potenziali isolati 
produttori di molecole bioattive, questi batteri sono stati cresciuti in liquido variando il 
mezzo di coltura e altre condizioni di crescita per stimolare la produzione di 
metaboliti secondari. I mezzi di coltura esausti sono stati poi estratti con solventi 
organici o specifiche resine al fine di creare una libreria di estratti da testare 
attraverso appositi saggi contro i target stabiliti (quarta fase). Per valutare l’attività 
antimicrobica si è utilizzato il test della concentrazione minima inibente (MIC), mentre 
per l’attività antielmintica è stato messo a punto un saggio di tossicità crescendo i 
nematodi in liquido. Gli estratti positivi per l’attività antimicrobica o elmintica sono 
stati poi prodotti in larga scala per effettuare una purificazione guidata da attività 
biologica (quinta fase). Gli estratti sono stati quindi frazionati inizialmente utilizzando 
la procedura della estrazione in fase solida (SPE) e le frazioni sono state poi 
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saggiate per la loro attività. Le frazioni attive così identificate sono state poi 
ulteriormente purificate tramite HPLC, al fine di ottenere composti puri e identificare 
le molecole biologicamente attive. L’ultimo step ha riguardato la determinazione della 
struttura dei composti tramite l’utilizzo di NMR e spettrometria di massa. Infine, i 
composti attivi contro le Burkholderie sono stati testati in vivo, utilizzando il modello 
di infezione, Bcc-C. elegans sviluppato nella prima parte di questo progetto. 
 
 
Risultati conseguiti 
 
Le procedure di isolamento utilizzate hanno permesso l’isolamento di 24 ceppi 
batterici cold-adapted dai sedimenti antartici (definiti BTN) e 11 ceppi da quelli 
tibetani (ceppi MD e KRL). I batteri sono stati inizialmente caratterizzati da un punto 
di vista filogenetico per determinare il genere, dopodiché sono stati utilizzati 
identificare composti ad attività antimicrobica ed antielmintica.  
 
Antimicrobici.  
Per la determinazione dell’attività antimicrobica è stato utilizzato il “cross-streaking 
assay”. Questo saggio permette di osservare attività antagonista su piastra tra un 
batterio “tester” (gli isolati cold-adapted) e dei batteri “target” (ceppi del Bcc isolati da 
pazienti CF). I ceppi tester sono stati fatti crescere sulla metà di una capsula Petri e 
sono stati incubati per diversi giorni per permettere la crescita dei batteri e la 
produzione di metaboliti secondare. I batteri target sono stati poi strisciati 
perpendicolarmente allo striscio dei target e il sistema è stato incubato nuovamente. 
La mancata crescita dei patogeni implica la produzione di molecole antimicrobiche 
da parte dei batteri “cold-adapted”. Con questa tecnica sono stati individuati diversi 
ceppi potenzialmente produttori di antimicrobici. La maggior parte dei ceppi antartici 
si è mostrata in grado di inibire la crescita delle Burkholderie, mentre solo 5 ceppi 
tibetani hanno dato risultati positivi al test.  
Tutti i batteri selezionati sono stati poi utilizzati per produrre estratti al fine di 
effettuare i saggi MIC in liquido contro ceppi Bcc e altri patogeni. Per questi saggi, i 
batteri sono stati incubati in piastre multiwell da 96 pozzetti in presenza dei vari 
estratti a diverse concentrazioni e la loro crescita è stata valutata misurando 
l’assorbanza a 600 nm dopo 24 ore di incubazione a 37°C. Gli estratti prodotti dai 
batteri tibetani non hanno mostrato significativa attività antimicrobica, con l’unica 
eccezione dell’estratto del ceppo MD3 che ha inibito la crescita del batterio patogeno 
Francisella tularensis, alla concentrazione di 0,1 mg/mL. Gli estratti ottenuti dai ceppi 
antartici invece hanno mostrato un discreta inibizione contro i batteri patogeni, ma 
solo l’estratto del ceppo BTN1 è riuscito a inibire quasi totalmente tutti i ceppi Bcc 
testati alla concentrazione di 1 mg/mL.  
I ceppi MD3 e BTN1 sono stati quindi selezionati per la purificazione dei composti 
bioattivi. Il frazionamento del ceppo MD3 tramite SPE utilizzando un gel di silice 
(normal phase) ha permesso di individuare diverse frazioni biologicamente attive. 
L’analisi di queste frazioni utilizzando la spettrometria di massa ha permesso di 
identificare un composto maggioritario presente in tutte le frazioni attive. Questo 
composto è stato individuato come 16§-hydroxycrambescidin 359, molecola già 
isolata ma la cui attività antimicrobica contro F. tularensis non era mai stata descritta 
in precedenza. Ulteriori studi (la purificazione e identificazione tramite NMR dei 
singoli composti presenti nelle frazioni) permetteranno di confermare questi dati. La 
purificazione dell’estratto del ceppo BNT1 ha portato all’identificazione di 3 mono-
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ramnolipidi (di cui 2 descritti per la prima volta) con una promettente attività 
battericida contro ceppi del Bcc, con valore di MIC minori di 10 µg/mL contro B. 
cenocepacia. Questi composti sono stati testati in vivo, sfruttando il modello di 
infezione Bcc-C. elegans. I nematodi sono stati posti a contatto con i ceppi Bcc per 
24 ore, dopodiché i vermi così infettati sono stati posti nei pozzetti di piastre multiwell 
contenenti terreno di coltura e i composti isolati dal ceppo BTN1. I vermi sono stati 
incubati per 48 ore a 20°C per osservare la capacità dei ramnolipidi di curare i 
nematodi infettati ed aumentare la percentuale di sopravvivenza rispetto a nematodi 
infettati a cui non erano stati aggiunti i ramnolipidi. I risultati hanno mostrato che i 
ramnolipidi non sono tossici per C. elegans ma non sono stati in grado di curare 
l’infezione dai ceppi di Bcc in vivo. L’utilizzo dell’antibiotico Trimetoprim, ha invece 
aumentato la percentuale di nematodi sopravvissuti confermando ad ogni modo la 
validità del sistema messo a punto per testare i molecole anti-Bcc. 
 
Antielmintici 
Per identificare attività antielmintica, gli isolati “cold-adapted” sono stati sottoposti 
inizialmente al “nematode grazing assay”. I vari isolati sono stati cresciuti su piastre 
NGM come singole colonie e sono stati incubati in presenza di C. elegans. Le colonie 
di cui i nematodi non si sono nutriti (colonie “not-grazed”) sono state individuate 
come potenziali produttori di composti antielmintici. I due ceppi così individuati (isolati 
tibetani MD4 e KRL4) sono stati poi sottoposti ai tox test sviluppati nella prima parte 
di questo progetto di ricerca (FKA e SKA). Da questi test è risultato che la morte dei 
nematodi in presenza dei due ceppi avveniva sul FKA ma non con lo SKA, quindi 
dipendeva dalla produzione di composti antielmintici.  
Gli estratti dei due batteri sono stati testati in liquido incubando larve L4 di C. elegans 
ai vari pozzetti di piastre multiwell contenenti terreno di coltura e i vari estratti a 
diverse concentrazioni per 3 giorni a 20°C. La conta dei nematodi sopravvisuti è 
stata quindi effettutata ogni giorni. L’estratto intracellulare prodotto dal batterio KRL4 
ha mostrato promettente attività nematocida uccidendo circa l’80% dei nematodi 
dopo 3 giorni alla concentrazione di 5 mg/mL. L’estratto è stato quindi sottoposto a 
frazionamento una procedura SPE con una resina C18 (reverse phase) utilizzando 
un sistema acqua/metanolo come fase mobile. La frazione di KRL4 eluita al 25% di 
concentrazione di metanolo si è rivelata in grado di eliminare completamente i 
nematodi alla concentrazione di 1 mg/mL. L’analisi chimica effettuata su questa 
frazione suggerisce che l’attività possa dipendere da peptidi, ma ulteriori studi 
saranno necessari per purificare il composto bioattivo e confermare la sua natura 
chimica.  
 
In conclusione, in questa seconda parte di progetto è stata utilizzata con successo 
una valida procedura di Bioprospecting per l’identificazione di composti bioattivi. 
Grazie a questa procedura sono stati individuati diversi composti e estratti attivi 
contro patogeni e C. elegans, sottolineando quindi l’importanza dei batteri cold-
adapted come promettente fonte di nuovi molecole attive. 
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1. The rise of Multi-drug resistance pathogens  
 

In the last decades, humanity has experienced the hazardous phenomenon of 
multidrug-resistant (MDR) pathogens. Commonly used antibiotics gradually became 
ineffective to cure infections in community and hospital setting, increasing mortality 
and morbidity, causing longer hospitalization period and rising social health costs [1, 
2]. There are high percentages of antibiotic resistance in bacteria that cause common 
infections (e.g. urinary tract infections, pneumonia, bloodstream infections) in all 
regions of the world. MDR in bacteria is defined as non-susceptibility to one or more 
antimicrobials on three or more antimicrobial classes, while strains that are non-
susceptible to all antimicrobials, are classified as extreme drug-resistant strains [3]. A 
high number of hospital-acquired infections are caused by highly resistant bacteria 
such as methicillin-resistant Staphylococcus aureus (MRSA) and other gram-
negative strains like ESKAPE pathogens group (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, 
Pseudomonas aeruginosa, and enterobacteriaceae), so called to emphasize their 
capability to “escape” from common antibacterial treatments [4]. It is estimated that, 
in the only USA every years, MRSA infections cause more than 10,000 deaths, with 
an annual cost of 3-4 USD Billion (14,000 $ per patient). MDR issue is worldwide and 
is considered a major healthcare problem in the 21st century [5]. Keeping in view the 
seriousness of this problem, the World Health Organization (WHO) has recently held 
the World Antibiotic Awareness Week (16-22 November 2015) as a way to attract 
the public opinion interest. 
The explanation of this dramatic situation relies on the combination of different 
factors. One reason relies on the incredible evolutionary capability of pathogens to 
adopt new strategies to survive and to spread these strategies through genetic 
material exchange. Even though the evolution of resistant strains is a natural 
phenomenon, the use and misuse of antimicrobial drugs has significantly accelerated 
the emergence of MDR strains. Poor infection control practices, inadequate sanitary 
conditions and inappropriate food handling encouraged the further spread of 
antimicrobial resistance.  
To quote Dr. Charles Penn, chairman of WHO's Guidelines Review Committee:  
“Antibiotics are very often prescribed for no useful purpose. Too many antibiotics are 
prescribed for viral infections such as colds, flu and diarrhea. Unfortunately, these 
public misconceptions are often perpetuated by media and. For example, through the 
use of generic terms such as 'germs' and 'bugs.”[6] 
Anyway, one primary reason for MDR’s rise is the astonishing decline in antibiotic 
discovery. Antibiotic innovation has experienced between the 40s and the 50s of the 
last century its golden age. These 20 years were extremely productive and led to the 
discovery and marketing of almost all the antibiotic classes used nowadays. 
Surprisingly no new classes of antimicrobials were developed in the thirty-seven 
years between the introduction of nalidixic acid (1962) and linezolid (2000) and all 
antimicrobials that entered the market during this time period were modifications of 
the existing molecules. “Innovation gap” is the expression that has been used to 
describe the lack of novel structural classes introduced to the antibacterial 
armamentarium since 1962 (Figure 1) [7].  
After 1962, we assisted to a disengagement of the big pharma industries from 
pursuing antibiotics research for motivation mainly non-scientific and not health-
related, but purely economical. The development of new antimicrobial agent had 
become a more complex, costly and lengthy process. On an average, research and 
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development of anti-infective drugs takes around 15-20 years and can cost more 
than $1 billion dollars [8]. The politics of the regulatory authorities, like the US Food 
and Drug Administration (FDA) have also contributed to the problem by failing to 
approve drugs endowed with non-inferior properties.  
 

 
Figure 1. Antibiotic development in the XX century[9]. The upper panel report the introduction of the 
antibiotics in the market while in the lower panel is reported the year when antibiotic resistance was 
first observed. 
 
 
Numerous agencies and professional societies have tried to draw attention to the 
lack of new antibiotics, especially for MDR Gram-negative pathogens. Since 2004 
repeated calls for reinvigorating pharmaceutical investments in antibiotic research 
and development have been made by the Infectious Diseases Society of America  
(IDSA) and several other distinguished societies [10].  
Resistance to common drugs is not limited to bacteria but also to fungi, viruses and 
especially parasites. Among parasites a prominent role is played by nematodes. The 
nematodes, or roundworms, comprise a large number of human and domestic 
animals pathogens. Gastrointestinal nematodes, such as the blood-sucking 
Haemonchus contortus, are major parasites of ruminants that cause substantial 
economic losses to livestock production worldwide. Anthelmintic chemotherapy is 
limited to three major chemical classes: the benzimidazoles, imidazothiazoles and 
macrocyclic lactones. Inevitably, drug resistance has emerged in human and 
livestock pathogenic helminths against each class [11, 12]. No new anthelmintic 
class has reached the market during the past 25 years with the exception of the 
cyclodepsipeptides represented by emodepside, which is indicated for livestock use 
only. Despite the huge threat of parasitic worms, anthelmintic drug discovery is the 
poor relation of the pharmaceutical industry [13]. The simple truth is that these 
diseases are common in underprivileged tropical countries, which have no resources 
or infrastructures to invest in research. Most of the diseases linked to parasite are 
called “neglected diseases”, and pharmaceutical industry is not very interested in. 
This situation has been exacerbated by the incredible success of ivermectine as drug 
over the last 20 years [14]. Nonetheless, the rising of the anthelmintic resistance in 
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human and animals has underlined the huge necessity of regenerating antiparasites 
drug discovery [15]. 
The MDR situation has posed a serious challenge to our society. If proper and 
resolute measures will not be applied, humanity may fall in a pre-antibiotic era. In the 
last decade, scientists have been following two strategies to counteract MDR: i) the 
research of novel therapeutic targets and ii) the identification of novel drugs 
exploiting natural products.  
 
 
2. Strategies to fight MDR pathogens 
 
Research of novel therapeutic targets 
Antibiotics have generally been discovered for their ability of inhibiting bacterial 
growth (bacteriostatic) or killing them (bactericidal). In any case, they inhibit vital 
function of bacteria, such as DNA replication, cell wall synthesis and protein 
synthesis. Although antibiotics targeting cellular viability are very effective, they 
impose a high and specific selective pressure promoting MDR strains evolution. 
Thus, there is the need to develop drugs with novel mechanisms of action, exploting 
novel targets [9]. A possible solution may be targeting genes involved in 
pathogenesis. For decades, researchers have studied pathogenesis mechanisms 
and they have discovered and elucidated many involved genes. Targeting bacterial 
virulence or disrupting the interaction between the host and the pathogen are 
attractive options that are increasingly being explored. Thus, efforts to develop anti-
virulence therapies are geared at “disarming” the pathogen by inhibiting virulence 
factors that can cause direct harm to the host. The bacteria are eventually cleared by 
the host immune response. The interest on this field has grown in the last years and 
some promising targets have already been identified. One is related to the inhibition 
of toxic function. Many pathogens produce toxins, which are proteins that perturb 
host cell functions and may ultimately result in host cell death. Much effort has been 
concentrated on inhibiting the effects of the three proteins that comprise anthrax 
toxin: lethal factor (LF), edema actor (EF) and protective antigen (PA). Merck has 
identified a compound, called hydroxymate that inhibits LF protease activity and 
promotes cellular survival in a macrophage cytotoxicity assay [16]. Interfering with 
toxin delivery mechanisms appeared as well to be a potential way to inhibit virulence. 
This principle has already been applied for treatment of the disease caused by 
Clostridium difficile using Cholestyramine, which binds the clostridial toxins, 
preventing their delivery and blunting their toxic effects [17]. A more recent 
application of this principle is prevention of toxins delivery by inhibiting bacterial 
secretion systems. There has been interest in targeting the type III secretion system 
(T3SS) common to Yersinia spp., Pseudomonas aeruginosa, pathogenic Escherichia 
coli, Shigella spp., Salmonella spp. and Chlamydia spp. The T3SS is a syringe-like 
apparatus that facilitates the injection of bacterial effectors from these species 
directly into the host cytosol [18]. Chemical screening for inhibitors of the T3SS in 
Yersinia pseudotuberculosis identified acylated hydrazones of different 
salicylaldehydes [19, 20]. Disrupting the mechanisms regulating virulence expression 
is also a very attractive target. Decades of studies on virulence regulation have 
identified many different regulatory steps that could be targeted. Most efforts have 
focused on interfering with quorum sensing (QS) a mode of bacterial communication 
used by multiple bacterial species to regulate secondary metabolites processes such 
as bioluminescence, antibiotic synthesis, biofilm formation and virulence factor 
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expression, as a function of population density [21]. In many Gram-negative bacteria, 
QS is mediated by acylhomoserine lactone molecules (AHLs) synthesized and 
recognized by quorum sensing circuits composed of LuxI and LuxR [21]. Thus, one 
could prevent AHL-mediated quorum sensing by inhibiting the enzymes that 
synthesize QS molecules. Alternatively, one could inhibit quorum sensing by 
interfering with the concentration of the AHL signalling molecules through 
degradation. For example, Gram-positive Bacillus species produce acylhomoserine 
lactonase, an enzyme that hydrolyses the lactone ring of AHLs, thereby rendering 
them unable to mediate signalling [22, 23]. Tobacco plants engineered to express 
AHL-lactonase show an enhanced resistance to Erwinia carotovora proving the 
effectiveness of this system. 
It is still soon to know if these targets can be used as therapeutic target to develop 
drugs. So far, the exact therapeutic role of antimicrobials that target virulence is yet 
unclear. Anyway, this system can offer different advantages.	A potential (though yet 
unproven) benefit of this approach is that new antimicrobials aimed at inhibiting 
virulence rather than growth may impose weaker selective pressure for the 
development of antibiotic resistance relative to current antibiotics. Another principal 
benefit is the possibility of targeting genes acting in vivo, rather than in vitro. It is 
known that in vitro and in vivo bacterial gene functions are distinct [9]. The 
environment within a host is unlikely to be the same as the artificial ones induced in a 
laboratory, and therefore the genes required for viability will likely differ [24]. Instead, 
targeting virulence genes requires the use of whole-organism infection models, using 
in vivo conditions. Dissecting and validating the pathogenicity determinants of human 
pathogens have been facilitated by the use of non-vertebrate host models Drosophila 
melanogaster, Galleria melonella, and especially Caenorhabditis elegans.	
 
Identification of novel drugs exploiting natural products 
Drug discovery is defined as the process in which new candidate medications are 
discovered. Natural products remain the best sources of drugs and drug leads, and 
this remains true today despite the fact that during the past 2 decades 
pharmaceutical companies have deemphasized natural products research in favour 
of High Throughput Screening (HTS) of combinatorial libraries. Nevertheless, Natural 
products represent the largest source of new antibiotic molecules, representing about 
two-thirds of new antibacterial therapies approved between 1980 and 2010 [25, 26]. 
Natural products represent the richest source of novel molecular scaffolds and 
chemistry. No one can predict, in advance, the details of how a small molecule will 
interact with the myriad of targets that we now know drive fundamental biological 
processes. Microbial natural products have several advantages favouring their 
consideration in drug discovery and development as they can be produced by large-
scale fermentation and the producer microorganisms can be engineered to 
overproduce the desired natural products hence to solving the supply bottleneck. 
Also, metabolic pathways engineering can easily produce natural product analogues. 
The vast, untapped, ecological biodiversity of microbes holds great promise for the 
discovery of novel natural products, thereby improving the odds of finding novel drug 
leads. It is estimated that only 1% of the microbial community has been cultivated in 
laboratories, implying that the majority of microbial natural products still remains 
hidden [27]. 
Today, the discovery of novel natural products is a hot spot in biotechnology and it 
has become a multidisciplinary field that bring together biologists, microbiologists, 
geologists and chemists. The development of new cultivating techniques, the 
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expression of gene clusters in model heterologous hosts, and a serious effort and 
innovative approaches in novel microbial strain collection, identification, and 
classification, will be pivotal for the uncovering and exploitation of this Nature’s 
treasure. 
 
Bioprospecting of extreme environments 
The methodical search in nature for novel bioactive compounds is defined 
bioprospecting. The term “bioprospecting” was coined by Thomas Eisner, a chemical 
ecologist who wrote an article in 1989 entitled “Prospecting for nature’s chemical 
riches” [28]. Later on, the Convention on Biological Diversity (CBD) Secretariat 
defines bioprospecting as “the exploration of biodiversity for commercially valuable 
genetic and biochemical resources” [29]. 
A prospecting program includes collection of the material, screening to protect 
intellectual property interests and the eventual development of a commercial process 
or new products, which may include modification of the chemical structure to 
increase efficacy. Bioprospecting may also include downstream testing and the 
development of other substances derived from the initial discovery.  
Bioprospecting has been applied with great success to extreme environments. There 
are some areas of the planet, once thought of as insurmountable physical and 
chemical barriers to life, which are now known to be niche habitats populated by 
‘extremophiles’, organisms that require extreme environmental conditions for 
survival. Extreme environments have “environmental parameters showing values 
permanently close to lower or upper limits known for life in its various forms”. Such 
environments range from terrestrial and marine hot springs (temperatures >100°C), 
polar environments (high latitudes; low temperatures), the deep-sea (depths 
>1000m; high pressures) to the deep biosphere (sub-seafloor; extremely low in 
nutrients). Explorations to these extreme environments have discovered a myriad of 
bacterial communities that have evolved novel bioactive compounds through their 
physiological adaptations to environmental stressors. In recent years, bioprospecting 
applied to marine environment has led to the development of a wide variety of 
marine-derived compounds, especially secondary metabolites with unique biological 
activities [30] and high potential for biotechnological and pharmaceutical applications. 
So far, several antibacterial [31], antifungal [32] and antiviral [33] compounds have 
been isolated from marine organisms. One of the best examples is anthracimycin, a 
new broad-spectrum antineoplastic antibiotic produced by a marine-derived 
actinomycete [34]. This molecule shows significant activity against Bacillus anthracis, 
the causative agent of anthrax, and several Gram-negative bacteria. 
 
Natural products from cold-adapted microorganisms 
Cold environments are arguably the most widespread on our planet and in our solar 
system. Due to their location and characteristics, extremophilic organisms are difficult 
and expensive to access and study. The significant expenses involved have led to a 
number of public/private partnerships in which private companies finance public 
research expeditions, which then pass samples to the companies for commercial 
research.  
Many microorganisms populate Arctic and Antarctic regions (and the bacteria that 
can survive in these environments are known as cold-adapted bacteria [35]. Cold-
adapted bacteria can be classified into two groups based on their temperature 
tolerance: (i) psychrophiles, which can grow at temperatures not exceeding approx. 
20°C, and (ii) psychrotrophs (or psychrotolerants), that tolerate a broader range of 



	

15	

temperatures—between 0 and 30°C [36]. The diversity, biology and ecology of 
psychrophilic or psychrotolerant bacteria have been extensively studied in recent 
years. Both groups of microorganisms share basic molecular and physiological 
characteristics, which permit their survival in extremely cold environments: (i) 
increased fluidity of cellular membranes, (ii) the ability to accumulate compatible 
solutes (e.g. glycine, betaine and trehalose), (iii) the expression of cold shock, 
antifreeze and ice-nucleating proteins, as well as (iv) the production of cold-active 
enzymes [35, 37]. So far, cold-adapted organisms have received little attention both 
in basic and applied research and only recently their large potential for 
biotechnological applications has been recognized, but these studied are mainly 
focused on the cold-adapted enzymes [38]. Anyway, recent studies have proven that 
psychrophilic bacteria may be a promising source of bioactive compounds useful 
against MDR pathogens. These researches have shown that bacteria from Antarctica 
belonging to genus Pseudoalteromonas, produce a variety of bioactive compounds, 
able to inhibit the growth of different strains belonging to the Bcc [39, 40]. These 
strains demonstrated also interesting anti-biofilm activity against various pathogens 
including, S. aureus and P. aeruginosa [41, 42]. These results, despite preliminary, 
emphasise the importance of cold environments as source of new drugs, and 
certainly, encourage scientific and economic interests in those areas. 
 
3. Caenorhabditis elegans: a versatile model host and tool for 
antimicrobial drug discovery  
 
The nematode Caenorhabditis elegans is a widespread multicellular organism, a self-
fertilizing hermaphrodite with a rapid generation time. Adults can reach the maximum 
length of 1 mm, and in optimal condition, they can produce about 300 genetically 
identical progeny in 3 days, allowing the cultivation of nematodes and the rapid 
establishment of homogenous populations. In laboratory conditions C. elegans can 
be easily propagated on agar plates or liquid media using the E. coli strains OP50. At 
20°C, the development proceeds from embryo through four distinct larval stages (L1-
L4) to gravid adults hermaphrodites in approximately 72 hour (Figure 2). Because 
they are transparent, the internal development of all C. elegans cells and organs can 
be easily monitored using light microscopy [43, 44]. The nematode has been the 
subject of intense study for more than four decades. Nowadays C. elegans is 
probably the most diffused host model in science. The availability of a fully 
sequenced genome [45], the well-developed tools for genetic manipulation and the 
rapid development of techniques (RNA interference, microarray, robotic machinery 
for HTS) made C. elegans an optimal candidate for all sort of scientific application. 
Moreover, because of their small size, C. elegans nematodes can be placed in 96- or 
384-well plates for high-throughput screenings and there are decreased ethical 
concerns involved in their use compared to mammals.  
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Figure 2. Life cycle of C. elegans 
 
 
C. elegans as host model of infection 
In the last years, it has been observed that C. elegans can be infected and killed by 
many human pathogens, many of which of clinical relevance [46]. A prominent 
example is the human opportunistic pathogen Pseudomonas aeruginosa, which was 
the first microorganism shown to be able to infect and kill C. elegans. In a ground-
breaking work, the Ausubel laboratory showed that many of the bacterial genes 
required for full virulence in the nematode were also important in other model 
systems [47, 48]. This first work has led to numerous in vivo large-scale screens for 
bacterial virulence factors. There are copious examples for the usefulness of the 
nematode to model virulence and antimicrobial efficacy in S. aureus [49], E. coli [50] 
and a variety of Gram-negative bacteria including the biological pathogens B. 
pseudomallei and Burkholderia cenocepacia [51, 52]. In many cases, these studies 
have demonstrated that virulence factors involved in the killing of C. elegans are also 
required for pathogenesis in mammals. These findings, combined with the peculiar 
useful features of the nematode (ease of culture and the possibility of automated 
handling) opens up new avenues for the development of novel therapies that target 
specific virulence mechanisms.  
 
C. elegans in Drug Discovery 
The set-up of an infection system model between C. elegans and a pathogen has 
significant implication for the discovery and validation of new bioactive antimicrobial 
compounds. The nematode system can help in detecting compounds, which act by 
blocking virulence factors of pathogens, and compounds that have an immune 
modulator effect on the host. 
The use of the nematode system is especially precious as it also allows detection of 
molecules that enhance immune defences in vivo. This sort of drug candidate has 
been found in compound library screenings assaying the effect of drugs on C. 
elegans survival after a bacterial infection. In the first pioneering screening, a liquid-
based assay in 96-well microtiter plates was developed to test the effect of synthetic 
compounds and natural extracts to cure C. elegans following Enterococcus faecalis 
infection [53]. In this screen, 16 compounds and nine extracts were shown to 
promote C. elegans survival. The most important finding was that several of this 
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compounds had essentially no effect on bacterial growth in vitro, so they would not 
have been identified using a classical approach. This assay has been improved, 
miniaturized and fully automated (Figure 3). An important improvement involved the 
application of a fluorescent dye that simplify the discrimination between live and dead 
worms. With this newer high-throughput screen, close to 40,000 compounds and 
extracts were tested, allowing the identification of 28 novel antimicrobials [54]. 
Interestingly, the in vivo effective dose of many of the compounds identified was 
significantly lower than the minimum inhibitory concentration (MIC) needed to inhibit 
E. faecalis in vitro. The system has then been exploited against other bacteria, and 
especially against fungi, such as Candida albicans. In a first screening, more than 
one thousand compounds with known bioactivity were assayed, leading to the 
identification of 15 compounds able to prolong worms survival after C. albicans 
infection. Among the compounds identified in the screen, caffeic acid phenethyl ester 
and the fluoroquinolone agent enoxacin also exhibited marked antifungal activity in a 
mouse model of candidiasis, demonstrating the relevance of these approaches [55].  
 
 

 
 

Figure 3. Automatized HTS system for the detection of antimicrobial compounds using C. elegans. 
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The C. elegans host system may be also used for the discovery of new anthelmintics. 
Parasitic nematodes are very hazardous and complex to manipulate in laboratory 
condition (especially because they cannot live without their host). In fact, C. 
elegans is sensitive to the majority of anthelmintic drugs that are used against 
parasitic worm infections of humans and livestock. C. elegans, in this case represent 
a valid alternative as “lab-friendly” model, despite the many differences with 
parasites, especially from a genomic point of view. Anyway, it is probably safe to 
conclude that C. elegans is no more dissimilar to parasitic nematodes than each 
individual species of parasite is to another [56]. The use of C. elegans allows the 
application of powerful molecular genetic approaches and it has been extensively, 
and successfully, exploited as a model system to define molecular components of 
signalling pathways that underpin nematode physiology [57]. There is a large body of 
literature describing the study of bioactive compounds in C. elegans and the proposal 
to use it for the study of anthelmintics precedes the publication of the C. elegans 
genome sequence by nearly 20 years [58, 59]. These studies generally hinge on the 
ability of a drug to elicit a significant, ideally quantifiable, change in the worm's 
growth, development, metabolism, and/or behaviour. Pharmacokinetic considerations 
include the method and duration of drug exposure. A recent study published in 
Nature, seems to have finally proved the usefulness of the C. elegans as model 
system for anthelmintic discovery. In this paper more than 67,000 compounds were 
subjected to a primary high-throughput automatized screening against C. elegans to 
find molecules with anthelmintic activity. The 267 positive hits were then tested 
against due parasites: Cooperia onchophora and Haemonchus contortus. This 
second test performed on a small scale, revealed that 103 compounds out of 267 
(38%) were able to kill the two parasites, demonstrating the value of C. elegans as a 
model system for the discovery of useful nematocide molecules [60].  

In conclusion, C. elegans characteristics made it a unique and incredible model for 
the antimicrobial drug discovery, as well as to untangle the molecular mechanisms 
that control resistance and susceptibility to disease. 

 

4. The Burkholderia cepacia complex 
 
In the last decades, bacteria belonging to Burkholderia cepacia complex (Bcc) have 
been acquired relevance as emerging Multihost MDR Pathogens. 
The Bcc occupies a critical position among Gram-negative multi-drug resistant 
bacteria. It consists of at least, 20 closely related species inhabiting different 
ecological niches, including plants and animals [61-65]. Bcc multi drug and pandrug-
resistant opportunistic human pathogens cause problematic lung infections in 
immune-compromised individuals, including cystic fibrosis (CF) patients. The two 
most clinically relevant species are B. cenocepacia and B. multivorans, accounting 
for >85% of all Bcc infections in CF patients [66-68]. Bcc members are naturally 
resistant to antibiotics including cephalosporins, β-lactams, polymyxins and 
aminoglycosides, rendering Bcc infections challenging to eradicate [69, 70].  
Although, Bcc had a low rate infection in CF patients worldwide, the clinical outcome 
of these infections is highly variable and so far unpredictable. After colonization with 
a Bcc strain, few patients experience an asymptomatic carriage, while the majority 
experiences an increased decline of pulmonary function, associated with chronic 
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infection and exacerbation episodes. During the interaction with the CF host, several 
virulence factors such extracellular lipases, metalloproteases and serine proteases 
are thought to play critical roles for the success of the pathogen [71]. Another 
important feature of Bcc is their ability to form biofilms. A recent study has proven 
Bcc bacteria in biofilms appeared to be more resistant to antibiotics than planktonic 
cells, contributing to persistence in the CF lung [72]. Currently, the eradication of 
infections caused by Bcc bacteria is very difficult and often impossible, due to their 
intrinsic resistance to the vast majority of clinically available antimicrobials. A study 
about the characterization of antimicrobial resistance profiles of Bcc isolates, 
revealed that 55% of the isolates were MDR [73].  
Despite the tremendous progresses on Bcc taxonomy, knowledge of their virulence 
pathogenicity mechanisms remains far to be elucidated. The knowledge of those 
aspects will be critical for the development of new strategies. Multidisciplinary 
approaches using genomics and proteomics, together with genetics and models of 
infection, will certainly reveal, in the near future, novel and interesting targets for the 
development of new strategies to fight Bcc and closely related bacteria. 
 
 
5. Aims of the project 
 
The aim of this project was to apply biotechnological strategies to counteract the 
rising phenomenon of MDR pathogens, with special emphasis against Bcc and 
parasite nematodes, exploiting the versatility of C. elegans as model system and the 
potential of psychrophilic microorganisms as source of novel bioactive compounds. 
The project is divided into two principal sections: 
 
Section 1: 
This part (Chapter 1) was focused on establishing an infection model between a 
selected panel of strains belonging to Bcc and the nematode C. elegans. The 
pathogenicity of these strains has been evaluated using different toxicity tests and 
principal infection mechanism of Bcc strains has been observed. Moreover, Bcc 
strain virulence has been profiled exploiting a panel of C. elegans mutants with 
impaired ABC transporters. The work performed has provided useful information on 
Bcc virulence and it achieved the development of a suitable platform for dissecting 
Bcc virulence factors and for drug discovery and validation of anti-Bcc molecules. 
 
Section 2: 
The second part of the project (Chapters 2-3) was focused on the identification of 
new bioactive compounds targeting Bcc strains and parasite nematodes. 
Psychrophilic strains isolated from Antarctica and Tibet, were initially evaluated for 
their potential as drug producers against Bcc and the nematode C. elegans. Positive 
strains to primary screening were grown in liquid media, which were used for 
extraction with organic solvents. Then, pure compounds were obtained using 
bioassay-guided purification. Finally pure compounds were tested against the 
respective targets and evaluated in vivo against C. elegans. 
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CHAPTER 1 
 
Investigating the role of the host 
multidrug resistance associated 
protein transporter family in 
Burkholderia cepacia complex 
pathogenicity using a 
Caenorhabditis elegans infection 
model 
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ABSTRACT  
 
This study investigated the relationship between host efflux system of the non-
vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex 
(Bcc) strain virulence. This is the first comprehensive effort to profile host-
transporters within the context of Bcc infection. With this aim, two different toxicity 
tests were performed: a slow killing assay that monitors mortality of the host by 
intestinal colonization and a fast killing assay that assesses production of toxins. A 
Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel 
members, based on the percentage of surviving worms. According to this ranking the 
18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated 
strains possessed profound nematode killing ability to accumulate in worms’ 
intestines. For the transporter analysis a complete set of isogenic nematode single 
Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux 
inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile 
of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two 
distinct groups. Disabling host transporters enhanced nematode mortality more than 
50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the 
most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, 
whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a 
different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the 
assays resulted in substantially increased (>40% on average) mortality of wild-type 
worms.  
 
 
 
Keywords: Burkholderia cepacia complex (Bcc), non-vertebrate hosts, 
Caenorhabditis elegans virulence, pathogenicity, multidrug resistance, ABC 
transporters 
___________________________________________________________________ 
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1.1 Introduction 
 
 The Burkholderia cepacia complex (Bcc) occupies a critical position among Gram-
negative multi-drug resistant bacteria. It consists of at least 20 closely related species 
inhabiting different ecological niches, including plants and animals [1-5]. Bcc multi 
drug and pandrug-resistant opportunistic human pathogens cause problematic lung 
infections in immune-compromised individuals, including cystic fibrosis (CF) patients 
[6-8]. Bcc members are naturally resistant to antibiotics including cephalosporins, β-
lactams, polymyxins and aminoglycosides, rendering Bcc infections challenging to 
eradicate [9,10]. There is an imminent need to develop new Bcc antimicrobial 
therapeutic strategies. Dissecting virulence and pathogenicity determinants as well 
as identifying novel therapeutic targets may be proven promising approaches. A 
major part of these tasks can be advanced by the exploitation of the non-vertebrate 
host models Drosophila melanogaster, Galleria mellonella, and Caenorhabditis 
elegans. Model hosts have been used to evaluate microbial virulence traits involved 
in mammalian infections and the efficacy of antimicrobial compounds [11-16]. The 
free-living nematode C. elegans is a widespread multicellular organism that is a self-
fertilizing hermaphrodite with a rapid generation time. C. elegans has been proven 
cost-effective, ethical, reproducible and genetically powerful infection model despite 
the obvious reported technical limitations (nematodes have lower optimal growth 
temperatures when compared with human pathogens; occurrence of host specific 
virulence factors) [15,17-19]. In fact, there is an extensive body of literature for the 
utility of the nematode to model infection with a variety of Gram-negative bacteria 
including Escherichia coli, Burkholderia pseudomallei, B. cepacia complex and 
Pseudomonas aeruginosa [20-23]. The C. elegans-Bcc studies in the last decade 
have shed some light on the complex-nematode interaction, correlating genotypic 
characteristics of the pathogen with phenotypic changes in the host. These efforts 
have identified specific virulence factors: the auto inducer dependent Acyl-
HomeSerineLactone (aidA), the phenazine biosynthesis regulator (Pbr), and the host 
factor phage Q, (hfq) [16,24-33]. 
Recent studies have underlined the importance of efflux systems in infection within 
the content of host-pathogen interaction [34-36]. The host efflux capability is 
considered part of a basic defence mechanism. For example the B. pseudomallei 
infection stimulates the overproduction of the ATP Binding Cassette (ABC) 
transporter pgp-5 in C. elegans [37]. However, the partition of host transporters in the 
infection process has never been studied in depth. Bcc members produce a variety of 
metabolites and toxins, potential host efflux substrates. Furthermore, exploring the 
role of host transporters in pathogenicity may facilitate the design of appropriate tools 
for toxin identification. Multidrug Resistance associated Proteins (MRPs) are 
members of the ABC efflux transporter family with broad substrate specificity for the 
transport of endogenous and xenobiotic anionic substances found in Bacteria, 
Archaea and Eukarya [38-41]. MRPs play important roles in nematode physiology 
such as control resistance to anthelmintic (ivermectine) and heavy metals (arsenic) 
[42-44]. This study emphasizes the contribution of the host MRP efflux subfamily to 
Bcc virulence, employing a panel of 18 strains representing the up-to-date different 
acknowledged species and a fully functional seven single C. elegans mutant set 
impaired in MRPs. A Virulence-Ranking (VR) scheme based on comparing host 
survival rates in two different assays was developed. This scheme provides the tool 
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for a detailed study on the effect of the MRP transporter family on Bcc virulence 
using as well as selected efflux inhibitors.  
 
1.2 Materials and Methods 
 
Bacterial strains, nematode strains and growth conditions 
C. elegans Wild-type (WT) Bristol N2, NL147 (mrp-1(pk89) X), RB1713 (mrp-
2(ok2157) X), RB1028 (mrp-3(ok955) X), VC712 (mrp-4(ok1095) X), VC1599 (mrp-
5(ok2067)/szT1 X), RB1070 (mrp-6(ok1027) X) and RB1269 (mrp-8(ok1360) III) 
strains were obtained from the Caenorhabditis Genetic Centre (CGC). For strain 
VC1599, due to ok2067 mutation lethality in homozygosis, all the experiments were 
performed assaying heterozygotes worms. All mutants presented identical 
phenotypic traits in respect to WT: normal larval development (eggs reaching adults 
state in 72 h as indicated on standard table (www.wormbook.org)), non-impaired 
reproduction, and survival rate at 100% when fed with E. coli. Mutant mpr-5 in 
heterozygosis also aligned to those parameters. All strains were recovered from 
frozen stocks, and routinely kept on NGM (Nematode Growth Medium) plates seeded 
with E. coli OP50 as a food source [45]. The panel of Bcc strains used in this work 
belongs to the Bcc collection at the University of Gent, Belgium, and is listed in Table 
1. Bcc and E. coli OP50 cells were routinely grown in Luria-Bertani broth (LB) (10 g/L 
Bacto-tryptone, 5 g/L Yeast extract, 10 g/L NaCl) at 37 °C.  
 
Nematode Toxicity Assays 
Slow Killing Assay (SKA) was performed against the C. elegans WT strain N and 
MRP-mutants. 2.5-cm-diameter plates containing 3 ml of NGM agar (Peptone 2.5 
g/L, NaCl 2,9 g/L, Bacto-Agar 17 g/L, CaCl2 1 mM, Cholesterol 5 µg/mL, KH2PO4 25 
mM, MgSO4 1 mM) were seeded with 50 µl of the overnight Bcc cultures, normalized 
to an OD600, of 1.7 and incubated for 24 h at 37 °C to allow the formation of a 
bacterial lawn. This was the standard bacterial growth condition unless otherwise 
stated. C. elegans WT strain and MRP-mutants were synchronized by bleaching 
treatment [46], and 30-40 worms at larval stage 4 (L4), were transferred to each plate 
and incubated at 20 °C for three days. The plates were scored for living worms every 
24 h.  
Fast Killing assay (FKA) was carried out in 2.5-cm-diameter plates containing 3 ml of 
Peptone Glucose Sorbitol (PGS) agar medium [25] (Peptone 12 g/L, Glucose 12 g/L, 
Sorbitol 27.25 g/L, NaCl 12 g/L, Bacto-Agar 17 g/L, CaCl2 1 mM, Cholesterol 5 
µg/mL, KH2PO4 25 mM, MgSO4 1 mM). Plates were prepared as described above for 
the SKA. Then, L4 worms from WT strain and MRP-mutants were collected from 
NGM plates, washed with M9 medium (Na2HPO4·7H2O 12.8 g/L, Na2HPO4 
(anhydrous) 6 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, NH4Cl 1 g/L) and 30-40 L4 worms 
were spotted onto the bacterial lawn. The plates were then incubated at 20 °C and 
scored for living worms every 24 h. In both assays, E. coli OP50 was used as a 
negative control. A worm was considered dead when it no longer responded to touch. 
For statistical purposes, 5 replicates per trial were carried out with a unique egg 
preparation. The incubation time was set at 2 days. A pathogenicity scheme (VR) 
was established by comparing the "infectivity" towards nematodes between E. coli 
OP50 and Bcc isolates.  
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Microscopy analysis 
40-60 WT L4 worms were grown on NGM plates seeded with Bcc or E. coli OP50 
propagated in standard growth conditions. Plates were incubated at 20 °C, and after 
4 and 24 h, the nematodes were inspected using a Zeiss Axioskop microscope 
equipped with Differential Interference Contrast (DIC) employing 10x, 20x, 40x, 63x 
and 100x objectives and 10X eyepiece. Images were collected with a Zeiss Axiocam 
MR digital camera. 
 
Toxin Diffusion assay  
Bcc or E. coli OP50 cells were grown under standard growth conditions and spread 
on sterile 0.22 mm Millipore Nitrocellulose (Darmstadt, Germany) filter disk located 
onto 2.5-cm-diameter PGS plates [25]. After overnight incubation at 37 °C, the filter 
together with the bacterial lawn was removed and the plates were allowed to cool to 
room temperature. 30-40 hypochlorite-synchronised WT L4 nematodes were spotted 
onto the conditioned agar. Paralysation and mortality of the worms were detected at 
4 and 24 h. The experiments were performed in triplicate, and data reported are 
mean values ± SD. 
 
Statistical analysis and clustering 
All the Kaplan-Meier survival curves were analyzed using the Graph-pad Prism 5 
software. Comparisons vs. control for both the C. elegans and inhibitor experiments 
were performed using Fisher’s exact test to account for possible non-Normality in the 
data. In particular, as it was observed that replicate means of C. elegans percent 
mortality correlated extremely well to pooled percent mortality (R2 > 0.99 in all 
cases), counts of C. elegans that were alive and dead after 72 h were used to 
populate the various 2x2 tables onto which the Fisher’s exact test was applied. 
Bonferroni-Holm correction of p-values was used to account for the multiple 
comparisons performed. 
Mutant clustering analysis was performed using hierarchical clustering via Ward’s 
method. Clusters were fixed using a consistency threshold of 1.1, resulting in 
cophenetic coefficient (correlation between cluster and metric distance) of at least 
0.80. 
 
Transporter Inhibitor assays 
The MRP transporter inhibitors mometasone furoate, lasalocid A sodium, verapamil 
hydrochloride were purchased from Sigma-Aldrich, Saint Louis, MO. Compounds 
were dissolved in DMSO and spread onto NGM plates in different concentration 
ranges: 25-100 µM (mometasone and verapamil) and 125-500 nM  (lasalocid). 
DMSO (0,5% w/v) was used as control. Subsequently, Bcc strains (grown in standard 
conditions) were spotted onto the plates that were incubated overnight at 37 °C. After 
the incubation 30-40 WT L4 worms were spotted onto the bacterial lawn. The plates 
were then incubated at 20 °C for 3 days and scored for living worms every 24 h. The 
experiments were performed in triplicate, and the data reported are mean values. 
 
 
1.3 Results and Discussion 
 
Killing of C. elegans by Bcc strains 
To evaluate Bcc virulence determinants and properties, two different assays were 
performed: i) SKA, performed on a low osmolarity medium (NGM), assigned to 
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correlate worms mortality with intestinal bacterial accumulation/colonisation [24,25]; 
ii) FKA carried out on a high osmolarity medium (PGS) to demonstrate the secretion 
of bacterial toxins and evaluate their capacity to paralyse and kill the nematodes 
[24,25]. A VR was established for the Bcc strains under investigation by comparing 
the "infectivity" against nematodes between E. coli OP50 and Bcc isolates. The VR 
ranges from 0 to 3 (see Fig. 1) and was based on the percentage of surviving worms 
after the period of observation, which was set at 3 days. A Bcc strain was considered 
to be non-pathogenic (VR=0) when no symptom of disease was observed during the 
course of nematodes infection and the percentage of live worms at the conclusion of 
the period of observation ranged from 100 to 80%; VR=1 corresponded to a 
percentage of alive worms between 79 to 50%; VR=2 corresponded to a percentage 
of alive worms between 49 to 6%; finally, the VR was considered 3 when the 
percentage of surviving worms was ≤ 5%. 
 
 
 
 

  
Figure 1: Kaplan-Meier survival plots for L4 N2 worms fed with exemplifying Bcc strains for different 
VR grown on PGS medium. Worms fed on: B. metallica (VR 3; black line; n = 113; 0% survival at day 
2); B. seminalis (VR 2; blue line; n=150; 34% survival at day 2); B. dolosa (VR 1; redline; n=198; 69% 
survival at day 2); B. multivorans (VR 0; green line; n=120; 93% survival worms). n: Number of worms 
at day 0. All p-values, comparing each survival curve between them, resulted to be < 0.0001, 
calculated with "Log-rank (Mantel-Cox) Test" with the Graph-pad Prism 5 software. 
 
 
SKA performed against WT L4 worms revealed diverse pathogenicity capabilities 
among the 18 Bcc representatives [Table 1]: 
i) 2 Bcc strains (B. metallica, B. stabilis) displayed high nematocide activity (VR 3). 
No viable nematodes were detectable in the plates after 3 days of incubation at 20 
°C. 
ii) Half of the Bcc strains exhibited VR between 1 and 2, showing an intermediate 
toxicity towards C. elegans. 
iii) Seven Bcc strains (B. ambifaria, B. cepacia, B. dolosa, B. pseudomultivorans, B. 
pyrrocinia, B. lata and B. multivorans) were unable to kill worms, and the whole 
population was viable (VR=0).  
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Nematodes killed in the lawn of bacteria took on a ghostly and hollow “shell-like” 
appearance about 48 h after the L4 were first introduced, and their shells induced by 
B. ubonensis, B. metallica and B. stabilis were defined as “chalk-mark ghosts”. This 
shape is characteristic of organisms lacking a discernible internal cell structures. 
Often the ghosts eroded to a mere outline. 
 

Species Strain Source  SKA FKA 
Burkholderia cepacia LMG 1222 Onion 0 3 
Burkholderia multivorans LMG 13010 CF 0 0 
Burkholderia cenocepacia LMG 16656 CF 2 2 
Burkholderia stabilis LMG 14294 CF 3 3 
Burkholderia vietnamiensis LMG 10929 Soil 1 0 
Burkholderia dolosa LMG 18943 CF 0 1 
Burkholderia ambifaria LMG 19182 Soil 0 3 
Burkholderia anthina LMG 20980 Soil 2 1 
Burkholderia pyrrocinia LMG 14191 Soil 0 2 
Burkholderia ubonensis LMG 20358 Soil 2 1 
Burkholderia latens LMG 24064 CF 1 1 
Burkholderia diffusa LMG 24065 CF 2 2 
Burkholderia arboris LMG 24066 Soil 1 1 
Burkholderia seminalis LMG 24067 CF 2 2 
Burkholderia metallica LMG 24068 CF 3 3 
Burkholderia lata LMG 22485 Soil 0 1 
Burkholderia contaminans LMG 23361 AI 1 3 
Burkholderia pseudomultivorans LMG 26883 CF 0 1 
 
Table 1. Burkholderia cepacia complex used in this work and VR relative to the different killing assays. 
Abbreviations: Soil = Soil rhizosphere, AI = Animal Infections, CF = Cystic Fibrosis patients 
VRs: 
0 = 100 % > Survival worms > 80% (dark green) 
1 = 79 % > Survival worms > 50% (pale green) 
2 = 49% > Survival worms > 6% (yellow) 
3 = 5 % > Survival worms > 0% (red) 
 
The pathogenicity of the 18 Bcc strains was then assessed on FKA. Data obtained 
are summarised in Table 1. Nematodes death on FKA appeared to be a rapid 
process as they loose locomotor functions, as shown by the quick onset of lethargy. 
Motility visibly decreased after exposure for 4 h, and the rate of foraging was similarly 
affected in the same time frame. In FKA, five strains (B. ambifaria, B. cepacia, B. 
contaminans, B. metallica, B. stabilis) demonstrated deep killing ability (VR=3) 
against C. elegans and only two strains (B. multivorans and B. vietnamiensis) were 
completely ineffective in killing worms. For the highly active strains, almost 100 % 
mortality occurred in 24 h, while on SKA 3 days are required for complete killing (Fig. 
2). Nine out of 18 Bcc strains have previously been characterized using SKA [30,47]. 
The VR of 7 strains (B. anthina, B. ubonensis, B. vietnamiensis, B. cenocepacia B. 
dolosa B. ambifaria, B. cepacia) are consistent with the previously reported SKA 
ranking. The same comparison revealed a variation for B. pyrrocinia and B. stabilis, 
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which were found as more and less virulent, respectively. This variability may be due 
to ranking differences, as the experimental conditions were very reproducible. This is 
the first report for an indicative pathogenicity ranking for 8 Burkholderia species, 
recently added to Bcc, (B. latens, B. diffusa, B. arboris, B. seminalis, B. metallica, B. 
pseudomultivorans, B. lata, B. contaminans). B. metallica, B. stabilis (both isolated 
from CF patients) were the most virulent in both assays (Fig. 2B-C). The comparison 
of data obtained in the FKA and SKA revealed that, on average, strains isolated from 
CF patients appeared more virulent than environmental isolates on SKA. In 
particular, three Bcc strains (B. ambifaria, B. cepacia and B. pyrrocinia) exhibited 
high nematocide activity in the FKA, whereas they were unable to kill the worms in 
the SKA (VR 0 and 1). Therefore we can assume that toxin production is a common 
virulence mechanism for Bcc members, while CF isolates might have acquired 
different pathogenic traits that allow them to infect and colonize hosts, as already 
proposed by Pirone et al. [48]. The only exception is represented by B. multivorans, 
and B. pseudomultivorans. These two strains are CF isolates, but were non-virulent 
towards nematodes. This evidence likely rely in the limitation of the nematode host 
model, once more indicating that virulence factors are not universal for all hosts [15].  
 

  
Figure 2: Kaplan-Meier survival plots for L4 stage WT worms fed with: E. coli OP50 (solid lines), Bcc 
strains on NGM (dashed lines), Bcc strains on PGS (dotted lines). n: Number of worms at day 0. A) 
The pathogenicity of Bcc strain B. cepacia on SKA (n = 93) was compared with the ability on FKA (n = 
184). B) The pathogenicity of Bcc strain B. metallica on SKA (n = 80) was compared with the ability on 
FKA (n = 113). C) The pathogenicity of Bcc strain B. stabilis on SKA (n = 87) was compared with the 
ability on FKA (n = 161). p-values were calculated between survival curves on FKA and SKA of each 
bacteria, and resulted to be < 0.0001 calculated with "Log-rank (Mantel-Cox) Test" with the Graph-pad 
Prism 5 software. 
 
Bacterial intestinal accumulation  
The two Bcc strains with VR=3 in the SKA (B. stabilis and B. metallica) were then 
assessed for their ability to accumulate in the C. elegans intestine. Worms grown in 
standard condition were inspected using a compound microscope at different 
incubation times to evaluate the bacterial accumulation in the intestinal lumen. 
Bcc colonization of nematode occurred rapidly. After 4 h of incubation, worms fed 
with E. coli OP50 showed a thin intestinal lumen (Fig. 3A-B), whereas, when spotted 
onto B. metallica layer, worms already presented deformed intestines (Fig. 3E). After 
24 h nematodes displayed a full intestinal lumen packed with bacteria (Fig. 3F). 
These data confirmed that Bcc with high VR were able to accumulate within the 
entire nematode intestine and therefore slow-killing may resemble an infection-like 
process. On the contrary, nematodes exposed to the strain B. pseudomultivorans, 
which exhibited a low pathogenicity (VR=0 on SKA), under the same experimental 
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conditions presented a healthy intestine with the presence of bacterial cells only in 
the first part of the intestine (Fig. 3C-D). This finding may signify that: i) even non-
pathogenic Bcc strains were able to pass intact through the pharynx and occupy the 
intestine; ii) the accumulation of the Bcc in the whole nematode gut, especially in the 
last part of the intestine, might be responsible for the worm’s death [24]. 
 

  
 
Figure 3: The ability of Bcc strains to accumulate in C. elegans intestinal lumen was evaluated with 
microscopy analysis. Red arrows indicate the nematodes intestine. A) Intestinal lumen of one L4 stage 
WT worm after 4 h of incubation on NGM plate spotted with E. coli OP50, and B) after 24 h of 
incubation on the same plate. C) Intestinal lumen of one L4 WT after 4 h of incubation on NGM plate 
spotted with B. pseudomultivorans (VR 0 on SKA, and D) after 24 h of incubation on the same plate. 
E) Intestinal lumen of one L4 WT after 4 h of incubation on NGM plate spotted with B. metallica (VR 3 
on SKA, and F) after 24 h of incubation on the same plate. 



	

35	

 
Toxin Diffusion assay 
To evaluate the contribution of diffusible secreted factors (toxins and/or other 
virulence chemical signalling molecules) to the rapid kinetics of killing on FKA, we 
performed the toxin diffusion assay [25]. These experiments were carried out on a 
reduced panel consisting of the five Bcc strains possessing the highest nematocide 
activity on FKA (B. contaminans, B. cepacia, B. ambifaria, B. metallica and B. 
stabilis). Results shown in Fig. 4 revealed that a high percentage of worms were 
paralyzed after 4 h of incubation on plates, even if they were not in contact with the 
bacteria. In particular, only 30% of the worms placed on B. ambifaria plates were still 
mobile and active, whereas the remaining nematode population appeared paralysed. 
On the contrary, worms spotted on plates containing E. coli conditioned agar did not 
present any paralysis or mortality. Among the tested Bcc strains, B. ambifaria was 
the most active toxin producer. Indeed, after 24 h of incubation only 20% of the total 
number of nematodes was still moving on B. ambifaria plates (Fig. 4). In the case of 
B. stabilis, it was observed that paralyzed worms at 4 h were able to move again and 
survive. One plausible explanation for this variation might be related to low stability of 
the diffusible toxins/virulence determinants produced by those strains that require 
constant production.  
Interestingly, when the toxin filter assay was performed on NGM medium, no 
paralysis or mortality was detected. This experiment confirms that FKA rapid killing 
kinetics revealed a role for diffusible toxins as a main component of the infectious 
process.  
 
 
 
 
 

  
Fig. 4: Secreted compounds or toxins mediate fast killing. Data reports paralysis and mortality at 4 
and 24 h of worms plated on PGS medium plates treated with Bcc strains or E. coli grown on a sterile 
disk. Data represent mean values of three independent experiments and SD values are reported. P-
values were calculated between sample (Bcc) and control (OP50) at the corresponding time, and were 
always < 0.05. 
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Thomson and Dennis demonstrated the production by Bcc strains of a haemolytic 
toxin required for full virulence, synthesized by a non-ribosomal peptide synthase 
(NRPS) pathway, typical of a complex secondary metabolite [49]. They screened a 
panel of Bcc strains including B. cenocepacia, B. stabilis, B. pyrrocinia and B. 
vietnamiensis for the presence of this gene cluster. A NRPS cluster was identified in 
B. pyrrocinia and B. stabilis with VR=3 on FKA. Moreover, Bcc strains are known to 
produce toxins with demonstrated antifungal activity like the cyclic peptides 
occidiofungins (burkholdines) [50]. Therefore, we cannot a priori exclude the 
possibility that a peptide might represent the toxin active towards C. elegans.  
 
Killing of MRPs knock-out C. elegans mutants by Bcc member strains 
The nematode-Bcc pathogenicity ranking system developed was investigated for its 
ability to detect and map genotype-specific host responses. We obtained access to a 
complete, seven MRPs knock-out nematode mutant set, mrp-1(pk89), mrp-
2(ok2157), mrp-3(ok955), mrp-4(ok1095), mrp-5(ok2067), mrp-6(ok1027) and mrp-
8(ok1360), impaired in the corresponding ABC membrane transporters.  
These knock-out mutants exhibited identical phenotypic attributes with the WT. The 
18 Bcc representative strains were profiled against the 7 mutants in both SKA and 
FKA. Control mortality was calculated to be the number of dead worms divided by the 
number of total worms. Pooled mortality counts (alive vs. dead) for each mutant were 
tested against the WT using Fisher’s Exact test. Statistically significant (Bonferroni-
Holm corrected p-value < 0.05) differences from WT are shown in Table 2. The 
mortality rates calculated were highly variable suggesting a Bcc strain-specific effect 
towards the MRP C. elegans mutants. Some trends were detected: mrp-5 and mrp-2 
had increased mortality rate for several Bcc strains in both SKA and FKA. 
Specifically, 8 Bcc strains in SKA and 9 in FKA showed increased killing towards 
mrp-5, while 8 strains in SKA and 8 in FKA appeared more virulent against mrp-2. C. 
elegans mutants mrp-3 and mrp-4 displayed lower killing rates when incubated with 
several Bcc strains. In particular, mutant mrp-4 exhibited decreased mortality to 8 
Bcc species in SKA and to 7 strains in FKA. Regarding the Bcc strains, on SKA B. 
ambifaria displayed increased virulence towards the whole mutant set, with mortality 
rate compared to the WT higher than 75% and 71% towards, mrp-5 and mrp-6 
respectively. B. arboris demonstrated an increased pathogenic effect towards mrp-1, 
mrp-2, mrp-6, mrp-8, while B. dolosa was more lethal against mrp-2, mrp-5, mrp-6, 
mrp-8 mutants. On FKA, B. lata and B. multivorans were the most pathogenic strains 
with increased mortality rate against all mutants, while B. diffusa was more virulent 
against 6 mutants, and B. arboris against 5 mutants. 
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      Significant Changes in % Mortality 

Strain WT  Mortality 
FKA mrp-1 mrp-2 mrp-3 mrp-4 mrp-5 mrp-6 mrp-

8 
B. ambifaria 95 NS -27 NS NS NS NS NS 
B. anthina 42 45 50 NS NS 58 NS NS 
B. arboris 28 70 72 21 NS NS 72 72 
B. cenocepacia 64 NS 31 NS -45 NS 27 NS 
B. cepacia 100 -19 NS NS -19 NS -15 -18 
B. contaminans 94 NS NS -17 -16 NS NS NS 
B. diffusa 69 NS NS NS NS NS NS -26 
B. dolosa 31 33 NS 59 NS 48 49 NS 
B. latens 42 NS NS -34 NS 38 NS -28 
B. metallica 100 NS NS -13 -17 NS NS -10 
B. 
pseudomultivorans 20 NS NS NS NS 50 NS NS 

B. pyrrocinia 70 NS 21 -44 -35 26 NS 29 
B. seminalis 64 NS NS -44 -31 NS NS NS 
B. stabilis 100 -9 -47 NS NS -10 -63% -

77% 
B. ubonensis 52 NS 41 NS -24% 38 NS 32 
B. vietnamiensis 14 NS 40 -12% NS 57 61 35 
B. lata 18 38 64 27 42 70 54 53 
B. multivorans 7 33 22 21 34 62 28 45 
Strain WT  Mortality 

SKA mrp-1 mrp-2 mrp-3 mrp-4 mrp-5 mrp-6 mrp-
8 

B. ambifaria 6 61 67 30 28 75 71 58 
B. anthina 91 9 NS -27 -24 NS NS NS 
B. arboris 46 53 54 -35 NS NS 50 51 
B. cenocepacia 81 NS NS NS -77 -65 -24 -54 
B. cepacia 9 81 75 NS NS 78 62 45 
B. contaminans 47 30 26 49 NS NS NS NS 
B. diffusa 88 NS NS NS -25 NS NS NS 
B. dolosa 13 NS 25 NS NS 61 61 28 
B. latens 22 NS 43 -19 -19 46 NS 42 
B. metallica 100 NS NS -14% -8% NS NS NS 
B. 
pseudomultivorans 11 NS NS NS NS 30 NS NS 
B. pyrrocinia 5 53 61 NS NS 64 57 46 
B. seminalis 69 28 NS -50 -67 NS NS NS 
B. stabilis 100 -90 -58 NS NS -55 -60 -84 
B. ubonensis 83 -60 NS -28 -36 NS NS NS 
B. vietnamiensis 46 -44 -39 -43 -44 -34 50 -41 
B. lata 10 NS NS NS NS 52 NS NS 
B. multivorans 3 NS 22 NS NS 35 41 NS 

Table 2. MRP knock-out C. elegans mutants mortality expressed as percentage of dead worms and 
comparison between the mutants and the WT. Mutant mrp-5 was tested as heterozygote, due to 
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lethality of the mutation in homozygosis. Statistical significant differences appear highlighted, with 
negative values (blue) indicating statistically significant reductions in mortality from WT, and with 
positive values (red) indicating statistically significant increases in mortality from WT. NS= Not 
significant difference. 
 
 
The complete set of killing results for each Bcc strain generated a unique killing 
profile in each MRP mutant. To determine whether these profiles constitute a 
coherent mutant classification pattern, a hierarchical clustering of significant effect 
sizes vs. each strain (Ward’s method, Consistency Threshold 1.1) was performed. 
This analysis showed different patterns for mrp-3 and mrp-4 when compared with the 
rest of MRP-phenotypes in both FKA and SKA. However, mrp-3 and mrp-4 share low 
sequence identity/similarity among them (data not shown), suggesting that these two 
transporters do not have similar substrate specificity or function. These MRP-
phenotypes were grouped consistently and differentiated from the rest of single 
knock out strains (Fig. 5). This pattern could justify the diverse phenotypic response 
to Bcc of the MRP knock-out mutants, indicating variation in substrate profile 
specificity for the 7 MRP efflux systems. The clustering patterns of the other 
transporters suggest distinct substrate specificity, in agreement with the low degree 
of sequence identity/similarity shared among them (data not shown). Nevertheless, 
we can assume that toxins and small molecules are MRP-related substrates, and 
these transporters play a fundamental role in Bcc defence, with the exception of mrp-
3 and mpr-4. 
 
  
 

 
 
Figure 5: Hierarchical Clusterings. Ward’s method with a consistency threshold 1.1 used to cluster 
mutants based on significant changes in pathogenicity.  
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Inhibitor experiments 
The Bcc pathogenicity ranking system was used to facilitate testing for a distinct 
MRP-efflux system substrate profile within the content of infection. Disabling efflux 
pumps genetically (knock-outs) or chemically (small molecules-inhibitors) should 
have a similar toll on increasing nematode mortality. A pilot analysis was performed 
utilizing the Bcc strains that exhibited increased C. elegans susceptibility in 
numerous efflux knock-outs on SKA (B. ambifaria, B. arboris, B. cepacia, B. dolosa, 
B. pyrrocinia) and the well-characterized mammalian MRP-efflux inhibitors 
mometasone furoate, lasalocid A and verapamil [51]. All compounds did not affect 
Bcc or C. elegans viability at the concentration used for the assay (Figure S1). The 
compounds were spread in concentration ranges onto NGM plates to perform SKA 
and DMSO (0.5 %) was used as a growth control. Control mortality was calculated to 
be the number of dead worms divided by the number of total worms. Comparison to 
solvent control of pooled mortality counts was done using Fisher’s Exact test; results 
were considered significant if Bonferroni-Holm corrected p-values were less than 
0.05. Statistically significant differences from the WT are shown in Table 3. 
Reduction in mortality from the controls was not observed. The inhibitor use in the 
infection system, provided a statistically significant increase of mortality in the 
presence of at least one inhibitor compared to DMSO controls for 3 Bcc strains, 
whereas B. pyrrocinia and B. ambifaria killing rates were not affected. 
In particular, the presence of mometasone (100 µM), B. arboris, B. cepacia and B. 
dolosa enhanced virulence against nematodes with mortality rate of 40% higher than 
the control. Lasalocid (500 nM) caused an increase in the percentage of dead worms 
of 34% and 48 % with B. cepacia and B. dolosa, respectively. Verapamil (100 µM) 
enhanced killing only for B. arboris, with a killing rate of 35% higher than the control. 
These results demonstrated that the inhibitor driven MRP transporter inactivation 
results in increased mortality at least for two inhibitors, of the nematodes to Bcc 
strains, supporting the role of these transporters in Bcc infection. Verapamil has been 
characterized as a competitive inhibitor in ABCB1 malignant cell overexpression [52] 
as wells as a potent ABCC family inhibitor [53]. It is also involved in inhibiting C. 
elegans P-gp1, which is involved in nematode resistance to ivermectine [54]. The 
present experimental setup differs as it explores verapamil against a number of 
targets simultaneously not by isolating transporters of interest. This analysis 
suggests that verapamil very likely works, but the number of interactions leading to a 
weaker phenotype should be investigated further.  
 

    Significant Changes in % Mortality 

Strain Control  
Mortality Verapamil Mometasone Lasalocid 

    100 
µM 

50 
µM 

25 
µM 

100 
µM 

50 
µM 

25 
µM 

500 
nM 

250 
nM 

125 
nM 

B. cepacia 17 NS NS NS 45 NS NS 34 NS NS 

B. arboris 20 35 NS 27 45 NS NS NS NS NS 

B. dolosa 32 NS NS NS 44 29 NS 48 38 NS 

Table 3. Effect of ABC inhibitors during C. elegans- Bcc infection on SKA.Nematodes mortality 
expressed as percentage of dead worms and compared between samples with inhibitors and control 
with DMSO (0,5%). Statistical significant differences appear highlighted (red). NS= Not significant 
difference 
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1.4 Conclusions  
 
The major aim of this work was to inquire the role of host transporters in the 
infection developing a nematode virulence ranking system focusing in well-
recognized Bcc strains. It is common knowledge that every bacterial species includes 
member-strains with different pathogenic characteristics. However, the key purpose 
was to build the model using type strains of each of the 18 currently known Bcc 
species, a combination of two different killing assays (SKA and FKA), and a set of 
nematode mutants impaired in MRP efflux transporters. We focused on type strains 
due to the extensive information known, as many Bcc genomes have been 
completely sequenced and more will be soon become available. To define Bcc 
virulence we established a VR scheme, based on the percentage of surviving worms. 
Both nematocidal assays revealed different pathogenicity profiles for the Bcc 
species. Strains with high score in the VR system were able to accumulate in the 
nematodes intestine and produce virulence factors, on SKA and FKA, respectively. 
Only Bcc CF isolates accumulate within worms, an observation that correlates well 
with the apparent differences in virulence factors between environmental and CF 
isolates. This VR scheme was applied to profile Bcc pathogenesis in seven MRP 
impaired C. elegans mutants. MRPs are implicated in distinct nematode cellular 
processes: MRP1 is involved in heavy metal tolerance and ivermectine resistance 
[42,43]; MRP4 is central in early-stage differentiation [55]; MRP5 acts as a 
fundamental heme exporter into embryonic development [56]. Results showed 
increased nematode mortality for several C. elegans mutants grown in the presence 
of specific Bcc strains compared to WT nematodes. In particular mrp-2 and mrp-5 
were the most susceptible mutants with increased mortality respectively in 13 and 11 
different Bcc strains in the two assays, suggesting an active role of these two efflux 
transporters in host defense. However strain mpr-5 was tested only in heterozygosis 
and this could have affected survival rate. Cluster analysis consistently grouped and 
separated mrp-3 and mrp-4 mutants in both assays from the other MRP-phenotypes. 
This pattern suggested different substrate specificity for these MRP transporters. To 
further explore the role of MRP transporters in host defense, inhibitor experiments 
were carried out on a selected panel of the five most "infectious" Bcc strains against 
the MRP knock-out mutants (B. ambifaria, B. arboris, B. cepacia, B. dolosa, B. 
pyrrocinia). These strains were tested against the WT nematodes in the presence of 
three well-characterized MRP-inhibitors, with a broad inhibitory activity against MRP 
transporters [51]. These results suggested that chemically disabling of the MRPs 
resulted in increased C. elegans susceptibility to Bcc strains. The use of 
mometasone and lasalocid in the infection system increased killing rate when 
incubated with B. cepacia and B. dolosa, while verapamil showed a mild effect for B. 
arboris. In conclusion, this study provided tools to correlate microbial pathogenicity 
with the host transporters, and highlighted specific efflux systems with a central role 
in Bcc virulence.  
It is worth noting that MRPs share components of a conserved activation mechanism 
with the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)[57,58]. 
Therefore, identification of bacterial signalling molecules with substrate specificity in 
recognizing MRPs CFRT-like efflux transporters involved in host response could be a 
starting point for the development of novel therapeutic strategies. 
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1.6 Supplementary material 
 
S1 Figure. Bcc strain growth in the presence of inhibitors. 
 
For the Bcc strain growth curves in the presence of inhibitors, one single colony of 
each Bcc strain was placed in a tube containing 3 mL of LB broth. The tubes were 
then incubated at 37°C overnight in agitation. The overnight cultures were used to 
inoculate 250 mL flasks containing 50 mL of LB broth plus the inhibitors at an initial 
concentration of 0.01 OD600/mL. For each strain, a set of 5 flasks was employed: 1) 
Verapamile 100 µM; 2) Mometasone 100 µM; 3) Lasalocid 500 nM; 4) DMSO 0.5% 
v/v; 5) control (no inhibitor or DMSO). The flasks were incubated at 37°C in agitation 
at 220 rpm. 
Bacterial growth was monitored following OD600 for 36 hours every 2 hours. The 
experiments were performed in duplicate and the data reported represent mean 
values. Error bars were omitted for clarity. 
Results proved that the inhibitors did not interfere with Bcc growth at the 
concentration used in our assays. as The growth curves obtained for each strain are 
very similar with no viable effect in growth by any inhibitor. 
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Antimicrobial activity of monoramnholipids 
produced by bacterial strains isolated from Ross sea 
(Antarctica) 
 

 

Abstract  
	
Microorganisms living in extreme environments represent a huge reservoir of novel 
antimicrobial compounds and possibly of novel chemical families. Antarctica is one of 
the most extraordinary places on Earth and exhibits many distinctive features. 
Antarctic microorganisms are well known producers of valuable secondary 
metabolites. Specifically, several Antarctic strains have been reported to inhibit 
opportunistic human pathogens strains belonging to Burkholderia cepacia complex 
(Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc 
compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and 
used to isolate 25 microorganisms, which were phylogenetically affiliated to three 
bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing 
and analysis of 16S rRNA genes. They were then subjected to a primary cell-based 
screening to determine their bioactivity against Bcc strains. Positive isolates were 
used to produce crude extracts from microbial spent culture media, to perform the 
secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-
guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally 
resolved the purified bioactive compounds. With this strategy, we achieved the 
isolation of 3 Rhamnolipids, two of which were new, embedded with high (MIC < 1 
µg/mL) and unreported antimicrobial activity against Bcc strains.  
 
 
 

Keywords: Antimicrobials; rhamnolipids; cold-adapted bacteria, 
bioprospecting, Burkholderia cepacia complex 
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2.1 Introduction 

The alarming rise of Multi-Drug Resistance (MDR) bacteria in the last decades has 
highlighted the need for novel antimicrobial compounds and for effective drug 
discovery approaches [1, 2]. Natural products are the largest source of new antibiotic 
molecules, representing about two-thirds of new antibacterial therapies approved 
between 1980 and 2010 [3, 4]. Bioprospecting for natural products from unexplored 
natural environments, such as the marine environment is considered a promising 
strategy to identify novel compounds. It is increasingly recognized that a huge 
number of natural products and novel chemical entities exist in these environments, 
but the overwhelming biological diversity of these environments has so far only been 
explored to a very limited extent [5, 6]. The Antarctic environment, as well as having 
incredibly low temperatures, possesses other diverse traits that may have helped to 
shape the unique way in which Antarctic bacteria have evolved. This extreme 
environment contains hyper-salinity that exists in sea ice brine channels, a lack of 
free water due to freezing temperatures, as well as low nutrient availability. Unique 
light conditions also exist due to the high latitude of the region. Several studies have 
shown that Antarctic bacteria harvested from Antarctic corals and sponges are 
promising source of new antimicrobial compounds [7-14]. Specifically, several 
Antarctic strains belonging to the genus Pseudoalteromonas, Psychrobacter, 
Pseudomonas, and Arthrobacter, were able to inhibit the growth of several strains 
belonging to the Burkholderia cepacia complex (Bcc) [11, 14]. Further studies 
demonstrated that the antimicrobial activity relies (at least in part) on the production 
of Volatile Organic Compounds (VOCs)[12, 13, 15]. The Bcc consists of at least 20 
closely related species inhabiting different ecological niches such as water, soil, 
plants rizosphere, and plants and animals [16-18]. Bcc are also opportunistic human 
pathogens that cause lung infections in immune-compromised individuals, including 
cystic fibrosis (CF) patients [19]. In one-third of infected individuals it causes the 
“cepacia syndrome” – a form of septic shock, which involves the lungs essentially 
shutting down resulting in fatality [20-22]. Bcc bacteria have showed to be very 
resilient and incredibly difficult to combat as they are resistant to almost all known 
antimicrobial agents and can survive under the most extreme conditions [23]. In this 
publication we report a complete biodiscovery pipeline aiming at the identification of 
novel anti-Bcc compounds, starting from the isolation of bacteria from Antarctic sub-
sea sediments. Bacteria were tested for their antimicrobial potential and a bioassay-
guided purification was performed that yielded 3 bioactive compounds active against 
Bcc. Structures were then elucidated and 2 compounds have not been reported 
previously. 

2.2 Materials and methods 

Isolation of bacterial strains 
The Antarctic bacterial strains used in this study were isolated from environmental 
samples collected at -20 m of depth (sub-sea sediments) near the Mario Zucchelli 
Station, Baia Terranova, Ross sea, Antarctica (74.6936° S, 164.1117° E). 1 gr of 
sediments was mixed with 20 mL of M9 salts solution (KH2PO4 3.0 g/L, Na2HPO46.0 
g/L, NaCl 0.5 g/L, NH4Cl 1.0 g/L) in a 50 mL Falcon tube and gently mixed; the 
supernatant was serially diluted in sterile M9 buffer and plated on PYG medium 
(Peptone 5.0 g/L, Yeast extract 4.0 g/L, Glucose 1.0 g/L, CaCl2 0.2 g/L, MgSO4.7H2O 
0.4 g/L, K2HPO4 1.0 g/L, KH2PO4 1.0 g/L, NaHCO310.0 g/L NaCl 2.0 g/L and 17 g/L). 
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After 15 days of incubation 24 visible colonies were picked, grown in liquid PYG and 
stored at -80°C.  
 
Target strains and growth conditions 
Bcc strains used in this work are listed in Table 2 ans Table S1. Bcc and S. aureus 
6538P were routinely grown on Luria-Bertani broth (LB) (Tryptone 10 g/L, Yeast 
extract 5 g/L, NaCl 10 g/L) at 37 °C. BTN isolated Antactic strains were routinely 
grown in TYP medium (Bacto-tryptone 16 g/L, 16 g/L Yeast extract, 10 g/L NaCl) and 
Marine Broth (MB) at 21 °C. To allow bacterial growth on solid media, 17 g/L of 
bacteriological agar were added to each medium. 
 
RAPD analysis 
Typing of bacterial isolates was performed using the Random Amplified Polymorphic 
DNA (RAPD) technique performed on cell lysates [24-26]; to this purpose, Antarctic 
bacterial colonies grown overnight at 21°C on MA plates were suspended in 25 µl of 
sterile distilled water, heated to 95°C for 10 min, and cooled on ice for 5min. RAPD 
analysis was carried out in a total volume of 25µl containing 1X Reaction Buffer, 300 
µM MgCl2, 200 µM of each deoxynucleoside triphosphate, 0.5 U of Polytaq DNA 
polymerase (Polymed, Florence, Italy), 10 µM of primer 1253 (5’ GTTTCCGCCC 3’) 
or primer AP5 (5’ TCACGCTGCG 3’) and 2 µl of lysate cell suspension [26]. PCR 
were performed using MasterCycle Personal Thermal Cycler (Eppendorf, Hamburg, 
Germany). After incubation at 90°C for 1 min and 95*C for 1.5 min, the reaction 
mixtures were cycled 45 times through the following temperature profile: 95°C for30 
s, 36°C for 1 min, and 75°C for 1 min. Samples were then incubated at 60°C for 10 
min, and finally at 5° C for 10 min. Amplification products were then stored at -20°C. 
Reaction products were analyzed by agarose (2.5 % w/v) gel electrophoresis in TAE 
buffer containing 0.5 µg/ml (w/v) of ethidium bromide.  
 
Phylogenetic affiliation of BTN strains 
Two µl of each cell lysate were used for the amplification via PCR of 16S rRNA 
genes. PCR were carried out in a total volume of 50 µl containing 1X Reaction Buffer, 
150 µM MgCl2, 250 µM of each deoxynucleoside triphosphate, and 2.0 U of Polytaq 
DNA polymerase and 0.6 µM of primer P0 (5’ GAGAGTTTGATCCTGGCTCAG) and 
P6 (5’ CTACGGCTACCTTGTTACGA)[27]. The reaction conditions used were: 1 
cycle (95° C for 90 s), 30 cycles (95° C 30 s, 50° C 30 s, and 72° C 1 min), with a 
final extension of 10 min at 72 °C. Amplicons corresponding to the 16S rRNA genes 
(observed under UV light, 312 nm) were excised from the gel and purified using the 
“QIAquick” gel extraction kit (QiAgen, Chatsworth, CA) according to manufacturer’s 
instructions. Direct sequencing was performed on both DNA strands using an ABI 
PRISM 310 Genetic Analyzer (Applied Biosystems, Forster City, CA) and the 
chemical dye terminator [28]. Each 16S rRNA gene sequence was submitted to 
GenBank and assigned the accession number shown in Table 1. BLAST probing of 
DNA databases was performed with the BLASTn option of the BLAST program using 
default parameters [29]. Nucleotide sequences were retrieved from RDP databases. 
The ClustalW program was used to align the 16S rRNA gene sequences obtained 
with the most similar ones retrieved from the databases [30]. Each alignment was 
checked manually, corrected, and then analysed. The evolutionary history was 
inferred using the Neighbor-Joining method according to the model of Kimura 2-
parameter distances [31, 32]. The percentage of replicate trees where the associated 
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taxa clustered together in the bootstrap test (1000 replicates) is shown next to the 
branches [33]. 
 
Cross streaking 
Cross-streaking experiments were carried out as previously described [11]. Petri 
dishes with or without a septum separating two hemi-cycles were used. Plates with a 
central septum allowed the growth of tester and target strains without any physical 
contact. Antarctic strains (tester strains) were grown on MA for four days at 21°C; 
then they were streaked on TYP and incubated at 21°C for four days. Bcc strains 
(target strains) were perpendicularly streaked to the initial streak and plates were 
further incubated at 21°C for two days and at 37°C for two additional days. The 
experiments were conducted in parallel with a positive control to verify the viability of 
Bcc cells. 
	
Extract preparation 
A single colony of a bacterial isolate was used to inoculate 3 mL of liquid TYP media 
in sterile bacteriological tube. After 48 h of incubation at 21°C at 200 rpm the pre-
inoculum was used to inoculate 100 mL of TYP medium in a 500 mL flask, at an 
initial cell concentration of 0.01-OD600/mL. The flasks were incubated up to 5 days at 
21°C at 200 rpm. The cultures were then centrifuged at 6800 x g at 4°C for 30’, and 
the exhausted culture broths were collected and stored at -20°C. The exhausted 
culture broths were subjected to organic extraction using 3 volume of ethyl acetate in 
a 500 mL separatory funnel. The organic phase collected was evaporated using a 
Laborota 4000 rotary evaporator (Heidolph, Schwabach, Germany), and the extracts 
were weight, dissolved in 100% DMSO at 50 or 100 mg/mL and stored at -20°C. 
 
Minimal inhibitory concentration assay (MIC) 
To evaluate the antimicrobial potential of Antarctic extracts, samples were placed into 
each well of a 96-well microtiter plate at an initial concentration of 2% (v/v) and 
serially diluted using LB medium. Wells containing no compound represented the 
negative control. DMSO was used as control to determine the effect of solvent on cell 
growth. A single colony of a Bcc strain was used to inoculate 3 mL of liquid LB media 
in sterile bacteriological tube. After 6-8 h of incubation, growth was measured by 
monitoring the absorbance at 600 nm and about 40000 CFU were dispensed in each 
well of the prepared plate. Plates were incubated at 37°C for 24h and growth was 
measured with a Cytation3 Plate Reader (Biotek, Winoosky, VT) by monitoring the 
absorbance at 600 nm. 
 
Minimal bactericidal concentration (MBC) assay 
To determine the MBC, the dilution representing the MIC and two of the more 
concentrated test product dilutions were plated on LB agar plates and enumerated to 
determine CFU/ml. An aliquot of the positive control was plated and used to establish 
a baseline concentration of the microorganism used. 
 
Purification of ethyl-acetate crude extract 
Crude extract of 3L BTN1 fermentation, prepared as described above, was subjected 
to fractionation using Chromabond SPE C18 column cartridges (Macherey-Nagel, 
Duren, Germany) The sample was dissolved in methanol and loaded on the top of 
the column. Elution was performed at step increasing methanol concentration (25%-
50%-100%-100%+TFA). HPLC separations were carried out using a VP 250/10 
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Nucleodur C18 HTec, 5 µm, (Macherey-Nagel Duren, Germany) connected to a 
Ultimate 3000 HPLC Chromatograph with a Ultimate 3000 Diode Array detector and 
in-line degasser (Dionex, Sunnyvale, CA). Detection was achieved on-line through a 
scan of wavelengths from 200 to 400 nm. 
 
NMR- LCMS experiments  
NMR data, both 1D and 2D were recorded on a spectrometer (Bruker, Billerica, MA) 
at 600 and 150 MHz for 1H and 13C respectively using an ID cryoprobe in methanol-
d4 as solvent. Chemical shifts are reported in parts per million (δ/ppm) downfield 
relative to residual CD3OD at 3.31 ppm for protons and 49.0 ppm for carbons. High-
resolution mass spectrometry and fragmentation data were recorded using a LTQ 
Orbitrap system (ThermoScientific, Whaltman, MA) coupled to an 1290 Infinity HPLC 
system (Agilent, Santa Clara, CA). The following conditions were used: capillary 
voltage 45 V, capillary temperature 320°C, auxiliary gas flow rate 10-20 arbitrary 
units, sheath gas flow rate 40-50 arbitrary units, spray voltage 4.5 kV, mass range 
100-2000 amu (maximum resolution 30,000). Optical rotation measurements were 
recorded using a Perkin Elmer, Model 343 Polarimeter at 589 nm (Perkin Elmer, 
Whaltman, MA). The UV spectrum was recorded on a UV-Vis spectrophotometer 
model S10 (Spectromlab, Barcelona, Spain). The IR was recorded on a PerkinElmer 
FTIR Spectrum Two instrument (Perkin Elmer, Whaltman, MA). 
 
Worms rescue experiments 
In order to evaluate the antimicrobial effects of the isolated ramnolipids in vivo, a 
procedure was set-up using the nematode Caenorabditis elegans. C. elegans strain 
KU25 pmk-1(km25) was chosen for it susceptibility to pathogens [34]. This mutant 
was obtained from the Caenorhabditis Genetic Centre (CGC), and routinely kept on 
Nematode Growth Medium (NGM Peptone 2.5 g/L, NaCl 2,9 g/L, Bacto-Agar 17 g/L, 
CaCl2 1 mM, Cholesterol 5 µg/mL, KH2PO4 25 mM, MgSO4 1 mM) plates seeded 
with E. coli OP50 as a food source [35]. Nematodes were infected by two Bcc strains 
using Slow Killing Assay developed in a previous work [36].  2.5-cm-diameter plates 
containing 3 ml of NGM agar were seeded with 50 µl of the overnight Bcc cultures, 
normalized to an OD600, of 1.5 and incubated for 24 h at 37 °C to allow the formation 
of a bacterial lawn. C. elegans worms were synchronized by bleaching treatment 
[37], and 30-40 worms at larval stage 4 (L4), were transferred to each plate and 
incubated at 20 °C for 24 h. The infected worms were then collected from the plates 
and washed three times with M9 buffer supplemented with the antibiotic Trimetoprim 
50 µg/mL to kill Bcc strain in solution. The worms were then transferred into a 24-
multiwell plate containing M9 buffer, E. coli as a food source and Compound 2 (the 
novel rhamnolipid with the lowest MIC against B. cenocepacia and B. metallica) at 
concentration of 50 µg/mL to evaluate its in vivo activity. Trimetoprim at 50 µg/mL 
and wells without any addiction were used as control. The worms were incubated at 
20°C for 2 days and survival count was performed daily. The experiments were 
performed in triplicate, and data reported are mean values ± SD. 

2.3 Results and Discussion 

Isolation of bacteria, typing and phylogenetic analysis 
Psychrophilic Antarctic bacteria were isolated from sediments on PYG minimal 
medium. After 15 days of incubation at 4°C, 25 visible colonies where picked and 
grown in liquid PYG at 15 °C for 48 hours in agitation, and glycerol stab were stored 
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at -80°C.In order to check whether the 25 bacterial isolates represented either the 
same or different strains, a RAPD analysis was carried out using the primers 1253 
(5’-GTTTCCGCCC-3’) and AP5 (5’-TCACGCTGCG-3’). AP5. 
 

Genus Strains RAPD profile Accession number  

Pseudomonas 

BTN1 

1 

KT989002  

BTN6 KT989003  

BTN7 KT989004  

BTN8 KT989005  

BTN9 KT989006  

BTN10 KT989007  

Psychrobacter 

BTN3 2 KT989009  

BTN19 3 KT989019  

BTN20B 
4 

KT989021  

BTN24 KT989022  

BTN21 5 KT989025  

BTN23 6 KT989024  

BTN2 7 KT989008  

BTN11 8 KT989011  

BTN5 9 KT989010  

BTN20A 4 KT989020  

BTN15 10 KT989015  

BTN13 11 KT989012  

BTN14 12 KT989013  

BTN17 13 KT989017  

BTN16 14 KT989016  

BTN18 15 KT989018  

BTN12 16 KT989014  

BTN22 17 KT989023  

Arthrobacter BTN4 18 KT989001  
 
Table 1. List of the strains used in this work, for each strain are reported the genus and the RAPD 
haplotype. 
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The RAPD profiles obtained were then compared among them; the comparative 
analysis obtained with primer 1253 revealed that the 25 Antarctic isolates were split 
into 18 different RAPD group (hereinafter RAPD haplotypes), most of which 
represented by just 1 bacterial isolate as summarized in Table 1. Two groups 
embedding more than one isolate were identified: group 1 (RAPD haplotype 1) 
including strains BTN1, BTN6, BTN 7, BTN8, BTN9 and BTN10 and group 4 
(embedding isolates BTN20A, BTN20B, and BTN24). These data were completely 
confirmed by the RAPD analysis performed with primer. The phylogenetic affiliation 
of bacterial isolates was performed through the 16S rRNA genes amplification and 
analysis. To this purpose the 16S rRNA genes were PCR amplified and the 
nucleotide sequence of the amplicons determined. Each sequence was used as a 
query in a BLAST search to retrieve the most similar ones. Sequences were then 
aligned using the program ClustalW and the alignment was used to construct the 
phylogenetic trees shown in Figure S1, revealing that: 
 

i) As expected on the basis of the sharing of RAPD profiles, the six strains 
exhibiting the same RAPD profile (RAPD haplotype 1) share the same 16S 
rRNA gene sequence and clustered together joining the species 
Pseudomonas azotoformans. 

ii) Strain BTN4 was affiliated to the genus Arthrobacter. 
iii) All the other strains were affiliated to the genus Psychrobacter and, according 

to the different RAPD profile they exhibited, joined different Psychrobacter 
clades. The three strains (BTN20A, BTN24 and BTN 20B) sharing the same 
RAPD profile (RAPD haplotype 4), joined the same Psychrobacter cluster. 

  
Cross-streaking experiments  
In order to check the ability of Antarctic bacteria to inhibit the growth of Bcc strains, 
cross-streaking experiments were performed using representative of each RAPD 
haplotype as test strain. We used as targets a panel of 84 different Bcc strains 
belonging to 17 known species (see Table S1). Most of the strains had a clinical 
origin. Data obtained are summarized in Table S1, revealing that all BTN strains are 
able to completely inhibit the growth of Bcc strains. In order to check whether this 
anti-Bcc activity was due VOCs synthesis, a further cross-streaking experiment was 
performed using Petri dishes with a central septum, which physically separates the 
tester (Antarctic) from the target strains. To perform this analysis we selected the 17 
Bcc type strains listed in Table S2, which are highlighted in red. Data obtained are 
reported in Table 2 and revealed that the inhibitory power of the BTN strains 
decreased in the presence of the central septum. This finding suggested that BTN 
strains synthesize a combination of volatile and soluble molecules and that the Bcc-
inhibitory activity likely might rely principally on the soluble fraction. Thus, we decided 
to concentrate our efforts on the soluble molecules for this study. 
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Bcc Strain S 
BTN strain  

1 2 3 5 11 13 14 4  12  15  16  17  18  19  20 
a 

 20 
b  21  22  23 C+ 

B. ambifaria  
LMG 19182 

W - - - - - - - - - - - - - - - - - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. anthina  
LMG 20980 

W - - - - - - - - - - - - - - - - - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. vietnamensis 
LMG10929 

W - - - - - - - - - - - - - - - + - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. cenocepacia 
 LMG 16656 

W + - + + - +- - - - - - + + - + + - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. cepacia 
 LMG 1222 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. contaminas 
 LMG 23361 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. diffusa   
LMG 24065 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. dolosa  
 LMG 18943 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. lata  
LMG 22485 

W + + + + + + + - + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. latens 
 LMG 24064 

W - - + + + - - - - + + + + - + + - - + + 

N - - - - - - - - - - - - - - - - - - - + 

B. metallica 
 LMG 24068 

W + + + + + + + +- + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. multivorans 
 LMG 13010 

W - + + + + + + - + + + + + + + + +- + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. pseudomultivorans 
LMG 26883 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. pyrrocinia 
 LMG 14191 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. seminalis 
 LMG 24067 

W - + + + +- + + - + - + +- + + + - + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. stabilis  
 LMG 14294 

W + + + + +- + + +- + + + +- +- +- + - + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. uborrensis 
 LMG 20358 

W - - + + + + + - + + + + + - + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

 
Table 2: Growth of Bcc strains in cross-streaking experiment carried out using Petri dishes either with 
(W) or without (N) a central septum (S). Symbols: +, growth; +, reduced growth; -, no growth. 
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Extracts antimicrobial assay 
Eight of the most active Antarctic strains belonging to the three different genera 
(Pseudomonas, Psychrobacter, and Arthrobacter) were selected and used to 
produce extracts, which were then tested against a reduced panel of Bcc type-strains 
isolated from CF patients. The MIC assays were carried out as described in Materials 
and Methods. Table 3 reports the antimicrobial activity as percentage of Bcc growth 
inhibition in the presence of each extract at a concentration of 1 mg/mL. 
 
 

  Pseudomonas Psychrobacter Arthrobacter 

Species Strain BTN 1 BTN 2 BTN 15 BTN 3 BTN 19 BTN 21 BTN 5 BTN 4 

B. diffusa LMG 24065 100 ± 0 75 ± 3 77 ± 3 43 ±7 45 ± 11 70 ± 4 77 ± 9 63 ± 3 

B. metallica LMG 24068 92 ± 4 70 ± 5 71 ± 3 32 ± 2 30 ± 3 53 ± 5 77 ± 4 64 ± 9 
B. 

cenocepacia LMG 16656 100 ± 0 78 ±2 87 ± 1 84 ± 6 64 ± 4 45 ± 1 84 ± 2 57 ± 1 

B. latens LMG 24064 100 ± 0 53 ±11 75 ± 2 55 ± 6 43 ± 3 65 ± 2 56 ± 3 41 ± 2 

B. seminalis LMG 24067 100 ± 0 43 ±6 67 ± 5 73 ± 8 45 ± 6 78 ± 11 40 ± 3 56 ± 3 

 
Table 3: Antimicrobial activity of BTN cell extracts reported as % of inhibition of Bcc strains treated 
with 1 mg/mL of BTN extracts. . 
 
 
Data obtained revealed that the extracts were differentially active against the 
selected Bcc strains. Three Antarctic bacterial strains, i.e. BTN2, BTN15, and BTN5, 
were able to inhibit at least three of the five Bcc strains more than 70 % of growth. 
However, the extract from Pseudomonas BTN1 exhibited the best anti-Bcc activity; 
indeed, it was able to almost completely inhibit the growth of all the target strains at 
the concentration used. For this reason, this strain was selected for further scale-up 
and extract purification. 
 
Bioassay-guided purification of BTN1 extract 
Pseudomonas sp. BTN1 strain was grown in 3L TYP medium for 5 days at 20°C, 
then the culture broth was extracted with ethyl acetate. Subsequently, the crude 
extract (1 g) was fractionated with a SPE C18 Cartridge. Elution was performed 
stepwise with an increasing methanol concentration. The 4 eluted fractions were 
collected, dried and dissolved in DMSO to perform bioassay at a stock concentration 
of 50 mg/mL. The fraction eluted at 100% methanol was shown to be the most active 
one against B. cenocepacia LMG 16656 with a MIC of 50 µg/mL and was subjected 
to HPLC separation. HPLC chromatograms extracted from 200 to 400 nm presented 
11 different peaks, which were separated, dried and dissolved in DMSO at a stock 
concentration of 10 mg/mL to perform MIC assay. Data obtained revealed promising 
inhibitory activity against B. cenocepacia strain LMG 16656 of three compounds, 
hereinafter referred to as Compound 1, 2 and 3, respectively.  
 
Compound structure elucidation  
The molecular formula of compound 1 was established as C28H52O9 by HRESIMS 
(555.35141 Δ 0.92 ppm [M+Na]+. Dereplication of this compound based on 1D, 2D 
NMR and LCMS data indicated that the primary structure of 1 was similar to a known 
rhamnolipid [38], but differed in terms of the relative configuration of the sugar 
moiety. The relative configuration of the sugar unit of compound 1 was identified as 
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β-L-rhamnopyranose as compared to α-L-rhamnopyranose for the known compound 
based on analysis of coupling constants and proton chemical shifts and by 
comparing with literature values [39]. 
The molecular formula of Compound 2 was established as C28H50O9 by high-
resolution electrospray ionization mass spectrometry (HRESIMS) (553.33429 Δ -0.75 
ppm [M+Na]+) and subsequent dereplication suggested it was new. The molecular 
formula suggested 4 degrees of unsaturation. The 1H, 13C NMR data (Table 1) in 
CD3OD of 2 revealed one ester (δC 173.4 ppm), one carboxylic acid group (δC 
171.40) ppm, two olefinic carbons (δC 132.8, 123.7 ppm), and an anomeric carbon 
(δC 98.47 ppm) of a sugar unit. This analysis accounted for 3 of the double bond 
equivalents, suggesting that the sugar unit was present as a ring. The structure was 
elucidated based on 2D NMR correlation experiments. Data clearly showed three 
distinctive spin systems. There were COSY correlations observed between the 
anomeric proton and the adjacent protons of the sugar unit. There was a strong 
observed COSY correlation between the methyl group at δH 1.27 ppm and the proton 
at δH 3.38 ppm placing the methyl group at position C5. The proposed structure was 
fully supported by HMBC correlations (Table 4) indicating that compound 2 is a 
rhamnolipid with the A and B chains having 10 and 12 carbons respectively, and a 
single unsaturation at position B5. The sugar moiety in compound 2 was identified as 
β-L-rhamnopyranose based on the chemical shift of the anomeric proton, δH 4.86 
ppm as compared to δH 5.11 ppm for α-L-rhamnopyranose sugars, and similarities of 
proton chemical shifts with β-L-rhamnopyranose sugars (Ref). Because of overlap of 
the water peak and the anomeric proton in the 1H NMR spectrum of 2 in CD3OD it 
was remeasured in DMSO-d6. It showed the anomeric proton as a broad singlet 
suggesting that the sugar was linked in an equatorial position to the lipid chain giving 
rise to a very small coupling constant with H-2 (3J(1,2). All the other coupling 
constants (3J(2,3, 3.5 Hz), (3J(3,4, 9.5 Hz), (3J(4,5, 9.8 Hz) agreed with the published 
data for β-L-rhamnopyranose sugars [39]. 
 
 

 
 
Figure 1. Structures of the 3 rhamnolipids isolated from Pseudomonas BTN1.  
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The molecular formula of compound 3 was established as C30H54O9 by HRESIMS 
581.36490 Δ 1.72 ppm [M+Na]+. Based on 1D and 2D NMR data compound 3 was 
similar to 2, the difference being an additional C2H4 unit. However, careful 
interpretation of the data indicated that both the lipid chains A and B were C12 
carbons with a single unsaturation at position B7 instead of C10 and C12 carbons 
and an unsaturation position at B5 in 2. The relative configuration of the sugar unit 
was similar to that of compound 2 based on analysis of chemical shifts and proton 
coupling constants. 
 
    2       3       

  
Positi
on 

dC/pp
m 

dH/ppm (m, J 
in Hz) 

COSY 
1H-1H 

HMBC 
H®C 

dC/pp
m 

dH/ppm (m, J 
in Hz) 

COSY 
1H-1H 

HMBC 
H®C 

A 1 173.4       175.5       

  2 38.9 
2.58, dd, 7.1, 
6.0 A3 A1 40.9 

2.55, m; 2.53, 
m A3 A1 

  3 71.1 
5.27, quintet, 
6.70 A2, A3 A1, A2 72.7 5.29, quintet A2, A4 A1, A2 

  4 33.8 1.64, m A3 A3 34.9 1.63, bm A3 A3 
  5 24.9 1.35, overlap     26.0 1.35, overlap     
  6 29.3 1.31, overlap     30.5 1.37, overlap     
  7 29.3 1.31, overlap     30.1 1.32, overlap     
  8 31. 6 1.31, overlap     29.8 1.33, overalap     
  9 22.3 1.33, overlap A10 A10 30.2 1.36, overlap A10 A10 
  10 13.1 0.92, m A9 A9 32.7 1.31, overlap A9 A9 
  11         23.4 1.33, overalap     
  12         14.1 0.92, m     
B 1 171.4       172.3       

  2 39.5 
2.53, dd, 8.0, 
7.09 B3 B1 41.0 

2.59, m; 2.50, 
m B3 B1 

  3 72.9 
4.16, quintet, 
5.76 B2, B4 B1, B5 74.8 

4.10, quintet, 
5.87 B2, B4 B1, B5 

  4 30.4 2.39, m B3, B5 B3, B5 33.5 1.58, bm B3,B5 B3, B5 

  5 123.7 5.40, m B4, B6 
B3, B4, 
B6, B7 25.7 1.43, overlap B4, B6   

  6 132.8 5.55, m B5, B7 B5, B8 27.8 2.08, overlap B5, B7   
  7 27.1 2.08, quartet B6 B5, B6 130.0 5.37, m B6, B8 B8, B9 
  8 29.3 1.31, overlap     131.2 5.39, m B7 B7 
  9 28.9 1.33, overlap B7   32. 7 1.31, overlap B8   
  10 31.6 1.31, overlap     32.7 1.31, overlap     
  11 22.3 1.33, overlap   B12 23.4 1.33, overlap B12   
  12 13.1 0.92, m   B11 14.1 0.92, m B11   
C 1 98.5 4.86, overlap C2 B3, C2 100.0 4.80, d, 1.44 C2 B3, C2 

  2 71.2 
3.77, dd, 3.45, 
1.70 C1, C3 C3, C4 72.4 

3.76, dd, 3.42, 
1.66 C1, C3 C3, C4 

  3 70.9 
3.64, dd, 9.46, 
3.46 C2, C4 C5 71.9 

3.66, dd, 9.70, 
3.46 C2, C4 C5 

  4 72.7 
3.38, dd, 9.81, 
9.78 C3,C5 C3 73.8 

3.35, dd, 9.94, 
8.84 C3, C5 C3 

  5 68.7 3.67, m C4, C6 C4, C6 69.8 3.68, m C4, C6 C4, C6 
  6 16.7 1.27, d, 6.22 C5 C5 17.6 1.27, d, 6.33 C5 C5 
Table 4. NMR data of 2 and 3 in CD3OD. a150 MHz; b600 MHz 
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Compound 2.  [α]D -53.4° (c 0.001 MeOH; UV(MeOH) λmax (log ε) 202 (3.55) nm; IR 
(film) υmax 3361, 2925, 2855, 1735, 1671, 1575, 1455, 1380, 1314, 1207, 1161, 
1126, 1037, 983, cm_1; 1H, 13C, HMBC NMR data see Table 1; HRESIMS m/z 
553.33429 Δ -0.75 ppm [M+Na]+ calculated for C28H50O9. 
 
Compound 3. [α]D +49.3° (c 0.001 MeOH. UV(MeOH) λmax (log ε) 202 (3.78) nm; IR 
(film) υmax 3387, 2926, 2855, 1667, 1587, 1402, 1316, 1204, 1130, 1072, 1049, 983  
cm_1; 1H, 13C, HMBC NMR data see Table 1; HRESIMS m/z 581.36490 Δ 1.72 ppm 
[M+Na]+ calculated for C30H54O9. 
 
Antimicrobial activity of BTN1 pure compounds 
The three monorhamnolipids isolated from strain BTN1 were tested against a 
selected panel of Bcc strains isolated from CF patients and S. aureus. MIC and MBC 
values are reported in Table 5. It is worth noticing that the 3 compounds have 
identical MIC and MBC values indicating a bactericidal effect against the target 
bacteria, as reported for several natural biosurfactants [40, 41]. Compounds 2 and 1 
were the most active compounds as they were effective against all the tested stains, 
with the only exception of B. diffusa. Specifically, compounds 2 and 1 had the lowest 
MBC values against B. cenocepacia (3.12 µg/mL) and S. aureus (respectively 3.12 
and 1.56 µg/mL). Compounds 3 had antimicrobial effect only against S. aureus with a 
MBC value of 100 µg/mL, while resulted to ineffective towards Bcc strains. 
Rhamnolipids (RLs) are well-known secondary metabolites synthesized by members 
of different Gram-negative species, particularly from bacteria belonging to the genus 
Pseuedomonas. They perform several potential functions in bacteria: as powerful 
biosurfactants they are involved in the uptake and biodegradation of poorly soluble 
substrates and are essential for surface motility and biofilm development [42]. 
Recently, they have emerged as potential antimicrobials against a broad range of 
pathogens such as Staphylococcus, Mycobacterium, and Bacillus, and significant 
activity against a number of Gram-negative species, including Serratia marcescens, 
Enterobacter aerogenes, and Klebsiella pneumoniae [43-45]. RLs act like synthetic 
surfactants and their proposed mechanism of action consists of intercalation into 
biological membranes and destruction by their permeabilising effect leading to cell 
death [46]. 
 
 

 
Table 5. MIC and MBC values of the 3 mono-rhamnolipids isolated in this study. 
 
 
 
 
 

Antimicrobial activity (µg/mL) 
 B. 

cenocepacia  
LMG 16656 

B. metallica 
LMG 24068 

B. seminalis 
LMG 24067 

B. diffusa 
LMG 24065 

B. latens 
LMG 24064 

S. aureus 
6538P 

 MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 

C1 3.12 3.12 50 50 12.5 12.5 >200 >200 12.5 12.5 1.56 1.56 
C2 3.12 3.12 25 25 3.12 3.12 200 200 12.5 12.5 3.12 3.12 
C3 200 200 >200 >200 >200 >200 >200 >200 >200 >200 100 100 
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In vivo evaluation of RLs 
In order to evaluate the in vivo antimicrobial activity of the isolated RLs, a “rescue 
procedure” was set-up using the nematode C. elegans. The worms were infected 
using B. cenocepacia LMG 16656 and B. metallica LMG 24068, whose colonization 
of worms had been previously observed [36]. The infected worms were then placed 
in the presence of Compound 2 or the antibiotic trimethoprim as a control, in a 24-
multiwell plate. Worms placed into wells containing DMSO 0.5% were used as a 
comparison. Toxicity of Compound 2 towards C. elegans was evaluated incubating 
Compound 1 (50 µg/mL) with KU25 not-infected worms. The plate was incubated for 
2 days and count of the surviving worms was performed. Results proved that the 
antibiotic treatment of Trimetoprim is able to increase the percentage of surviving 
worms after the infection compared to DMSO control. Specifically, the percentage of 
surviving worms in the presence of Trimentoprim is 40% for B. metallica and 25% for 
B. cenocepacia, higher than the DMSO controls. 
 

 
Figure 2. In vivo proof of activity of Compound 1 and Trimetoprim (TMP). Results are reported as 
percentage of surviving worms after two days of incubation. Experiments were performed in triplicate 
and results reported are mean valued and standard deviation. 
 
 
 
The treatment with Compound 2, instead, did not result into an increase of 
nematode survival rate, as the percentage of surviving worms after 2 days of 
incubation in the presence of Compound 2 are comparable with the DMSO control. 
However, results also proved that the compounds are not toxic to the nematodes. 
There are different explanations that can explain the lack of in vivo activity, related to 
RLs uptake buffer/solvent effects and interfering with the mechanism of action. 
Another reason may be also due to the poor RLs solubility in water system, which 
can results in a reduced availability of the compounds. Generally, the lethal dose of 
compound may be also 10-20 times higher than the in vitro calculated values. 
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Chemical synthesis experiments aimed at increasing the solubility of these 
compounds may be a solution to increase their in vivo activity. 

2.4 Conclusions 

Exploiting a bioassay-driven purification approach, 3 RLs (one of which was novel) 
with antimicrobial activity against Bcc strains, were isolated from Pseudomonas sp. 
BTN1, recovered from Antarctic sediments. RLs represent a promising class of 
biosurfactants as antimicrobials or in combination with antibiotics. A recent study 
suggested the use of RLs as an additive in the formulation of antibiotic and 
other antimicrobial agents for enhancing the effectiveness of chemotherapeutics [47]. 
Moreover, the possibility of RLs production by the fermentation of organic waste 
(such us waste oils), make this products economically appealing [48]. To the best of 
our knowledge, this is the first report of antimicrobial activity of RLs against Bcc 
strains, and it prompts future studies aimed at RLs exploitation as drugs to 
counteract these hazardous opportunistic human pathogens.  
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2.6 Supplementary material 
 
Figure S1: Phylogenetic trees (using the complete deletion option) of the 
Arthrobacter (A), Pseudomonas (B) and Psychrobater (C) genera. 
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Figure S2. Edited-HSQC NMR spectrum of compound 2 in CD3OD 
 

 
 
 
Figure S3.  COSY NMR spectrum of compound 2 in CD3OD 
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Figure S4. 1H NMR spectrum of compound 2 in DMSO-d6 at 400 MHz 
 
 

 
 
 
Figure S5.  Edited-HSQC spectrum of compound 3 in CD3OD at 600 MHz 
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Figure S6.  COSY NMR spectrum of compound 3 in CD3OD at 600 MHz 
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CF FCF 7 + - - - - + - - - - - - - - - - - - - - 

CF FCF 8 + - - - - + - - - - - - - - - - - - - - 

CF FCF 9 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
10 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
11 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
18822 + - - - - - - - - - - - - - - - - - - - 

Env LMG 
17588 + - - - - - - - - - - - - - - - - - - - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 
cenocepacia 

CF FCF 
12 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
13 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
14 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
15 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
16 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
17 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
18 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
19 + + - - + - - - - + - + + - + - + - - + 

CF FCF 
20 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
21 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
22 + - - + - - + + - - + - - - - - - - - - 

CF FCF 
23 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
24 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
25 + + - - - - - - - - - - - - - - - - + - 
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CF FCF 
26 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
27 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
28 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
29 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
30 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
31 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
16654 + - - - - - - - - - - - - - - - - - - - 

CF C 
5424 + - - - - - - - - - - - - - - - - - - - 

CF CEP 
511 + - - - - - - - - - - - - - - - - - - - 

Env 
MVP

C 
1/16 

+ - - - - - - - - - - - - - - - - - - - 

Env 
MVP

C 
1/73 

+ - - - - - - - - + - - - - - - - - - - 

CF LMG 
24506 + - - - - - - - - - - - - - - - - - - - 

Env LMG 
19230 + - - - - - - - - - - - - - - - - - - - 

Env LMG 
19240 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
32 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
33 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
34 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
36 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
37 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
38 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
39 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
21462 + - - - - - - - - - - - - - - - - - - - 

B. stabilis 
CF FCF 

40 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
41 + - - - - - - - - - - - - - - - - - - - 

B. 
vietnamensis CF FCF 

42 + - - - - - - - - - - - - - - - - - - - 

B. dolosa 
CF LMG 

18941 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
18942 + - - - - - - - - - - - - - - - - - - - 

B. 
ambifaria 

Env MCI 7 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
19467 + - - - - - - - - - - - - - - - - - - - 

B. anthina 
Env LMG 

16670 + - - - - - - - - - - - - - - - - - - - 

CF LMG 
20983 + - - - - - - - - - - - - - - - - - - - 

B. 
pyrrocinia 

CF FCF 
43 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
44 + - - - - - - - - - - - - - - - - - - - 
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Table S1. Cross- streaking experiments of BTN isolates against a wide panel of Bcc 
strains. The Bcc strains highlighted in red correspond to type strains.Symbols: +, 
growth; +, reduced growth; -, no growth; C+, positive controls, i.e. Bcc strains grown 
in the absence of the tester strain(s). Abbreviations: Ps, Pseudomonas; Ar, 
Arthrobacter; CF, Cystic Fibrosis; Env; environmental 
 
 
 
 

CF FCF 
45 + - - - - - - - - - - - - - - - - - - - 

CF FCF 
46 + - - - - - - - - - - - - - - - - - - - 

Env 
MVP

C 
1/26 

+ - - - - - - - - - - - - - - - - - - + 

Env 
MVP

C 
2/77 

+ - - - - - - - - + - - - - - - - - - - 

CF LMG 
21824 + - - - - - + + - + - - - - - - + - - + 

B. lata 
CF LSED 

4 + - - - - - - - - - - - - - - - - - - - 

Env LMG 
6991 + - - - - + + + - + - - - - + - - - - + 

B. 
ambifaria Env LMG 

19182 + - - - - - - - - - - - - - - - + - - - 

B. anthina Env LMG 
20980 + - - - - - - - - - - - - - - - - - - - 

B. 
cenocepacia CF LMG 

16656 + - - - - - - - - - - - - - - - - - - - 

B. cepacia Env LMG 
1222 + - - - - - - - - - - - - - - - - - - - 

B. 
contaminas AI LMG 

23361 + - - - - - - - - - - - - - - - - - - - 

B. diffusa CF LMG 
24065 + - - - - - - - - - - - - - - - - - - - 

B. dolosa CF LMG 
18943 + - - - - - - - - - - - - - - - - - - - 

B. lata Env LMG 
22485 + - - - - - - - - - - - - - - - - - - - 

B. latens CF LMG 
24064 + - - - - - - - - - - - - - - - - - - - 

B. 
metallica CF LMG 

24068 + - - + - - + + + + + + - - - - - - - - 

B. 
multivorans CF LMG 

13010 + - - + - - - - - - - - - - - - - - - - 
B. 

pseudomulti
vorans 

CF LMG 
26883 + - - + - - - - - - - - - - - - - - - - 

B. 
pyrrocinia Env LMG 

14191 + - - + - - - - + + - + - - - - - - - - 

B. 
seminalis CF LMG 

24067 + - - - - - - - - - - - - - - - - - - - 

B. stabilis CF LMG 
14294 + - - - - - - - - - - - - - - - - - - - 

B. 
uborrensis Env LMG 

20358 + - - + - - - - - - - - - - - - - - - - 

B. 
vietnamensis Env LMG 

10929 + - - - - - - - - - - - - - - - - - - - 
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CHAPTER 3 
 
Bioprospecting for novel bioactive 
compounds exploiting cold-adapted 
bacteria isolated from Tibetan 
glaciers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

76	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

77	

 
 
 
 
 
 
 
 
Bioprospecting for novel bioactive compounds exploiting 
cold-adapted bacteria isolated from Tibetan glaciers 
 
 
 
 
Abstract 
 
 
 
The alarming rise of multidrug resistance pathogens led to scientific community to 
search for novel drug. Extreme environments hide an extraordinary microbial 
community, whose biotechnological potential still need to be fully evaluated. In this 
work we explored the capability of microorganisms isolated from Tibet as drug 
producers. 11 cold-adapted isolates were isolated using sediments collected from 
two different glaciers. The strains were evaluated for their anthelmintic and 
antimicrobial activity. For the anthelmintic activity, we assayed strains ability to 
survive and kill the nematode Caenorhabditis elegans that was used as model 
helmint. Antimicrobial capability was evaluated using the cross-streaking experiments 
targeting human pathogens. Positive isolates to primary screening were used to 
produce crude extracts to perform secondary assays in liquid experiments. We found 
one positive extract able to kill the nematodes and a second one that completely 
inhibit the growth of Francisella tularensis, an opportunistic human pathogen. 
Positive extracts were subjected to a preliminary fractionation and active fractions 
were identified used to perform chemical profiling. The most active antimicrobial 
fractions (MIC against F. tulerensis: 25 µg/mL) revealed the presence of 
dikepiperazines, and especially of 16§-hydroxycrambescidin, an alkaloid first with 
unreported antimicrobial activity compound.  
 
 
 
 
 

Keywords: Antimicrobials; anthelmintic; Tibetan glaciers, cold-adapted 
microorganism. 

 
___________________________________________________________________ 
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3.1 Introduction 
 
Multi-Drug Resistance (MDR) pathogens represent a huge threat to human being [1]. 
This problem has been worsened because of the recent antibiotic crisis. The number 
of the antibiotic released has dramatically decreased since 1962 [2]. Resistance to 
common drugs is not limited to bacteria but is now common also to parasites [3, 4]. 
No new anthelmintic class has reached the market during the past 25 years, but the 
principal problem is that anthelmintic drug discovery is not a priority of 
pharmaceutical industry as third-world country are mainly endangered by these 
pathogens [5]. Scientific community is deeply focused on the discovery of new drugs 
to counteract this threat. The bioprospecting of natural products is considered the 
richest source of novel molecular scaffolds and chemistry. This approach has led to 
the exploitation of the most extreme places on Earth. The reasons of this choice 
relies in the evidence that microorganisms inhabiting those places, face with harsh 
conditions and this high selective pressure may have led to the synthesis of potential 
bioactive compound. Cold adapted bacteria have proven their potentiality as potential 
antimicrobial producers against MDR human pathogens [6-9]. However, the majority 
of these studies are principally focused on bacteria isolated from the Poles. 
Bioprospecting for antimicrobials from Alpine environments has been investigated so 
far to a very limited extend [10, 11]. Nonetheless, glaciers are known to be a 
reservoir of microbial life where biomolecules and microorganism can be preserved 
for long term under extreme constant environmental conditions [12]. The Qinghai-
Tibet Plateau, often called the ‘world’s roof’ or ‘the third pole’, is located in the 
southwest of China and is the highest and largest region with permafrost in the world. 
These conditions make these are a unique alpine ecosystem, sensitive to changes in 
climate and surface conditions [13]. Here we explore the antimicrobial and 
anthelmintic potential of cold-adapted bacteria isolated from Tibetan Glaciers in the 
Qinghai-Tibet Plateau. Bacteria were isolated form environmental soil and screened 
for antagonistic activity against a panel of MDR pathogens and for their capability to 
kill C. elegans in appropriated assay. Positive strains were further processed, and a 
bioassay-guided strategy was performed to purify the active compounds. 
	
3.2 Materials and methods 
 
Isolation of Tibetan psychrophilic strains 
Tibetan strains used in this work were isolated from Midui Glacier and Karuola 
glaciers located on the Qinghai-Tibet Plateau China at 5000 meters above sea level, 
and are listed in Table 1. For the isolation, 1 gr of sediments was mixed with 20 mL 
of M9 salts solution (KH2PO4 3.0 g/L, Na2HPO46.0 g/L, NaCl 0.5 g/L, NH4Cl 1.0 g/L) 
in a 50 mL Falcon tube and gently mixed; the supernatant was serially diluted in 
sterile M9 buffer and plated on PYG medium (Peptone 5.0 g/L, Yeast extract 4.0 g/L, 
Glucose 1.0 g/L, CaCl2 0.2 g/L, MgSO4.7H2O 0.4 g/L, K2HPO4 1.0 g/L, KH2PO4 1.0 
g/L, NaHCO310.0 g/L NaCl 2.0 g/L and 17 g/L agar). After 15 days of incubation 13 
visible colonies were picked, grown in liquid PYG or LB and stored at -80°C.  
 
Bacterial strains and growth conditions 
Bcc strains used in this work are listed in Table 1. Bcc strains, B. pseudomallei Bp82, 
E. coli K12 and E. coli OP50 were routinely grown on Luria-Bertani broth (LB) 
(Tryptone 10 g/L, Yeast extract 5 g/L, NaCl 10 g/L) at 37 °C. Francisella tularensis 
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strains LVS tolC was propagated on Chocolate agar plates (BD, Rutherford, NJ), and 
grown in liquid MH, modified as descripted before at 37 °C [14, 15]. Tibetan strains 
were routinely grown in liquid PYG or TYP medium (Tryptone 10 g/L, Yeast extract 5 
g/L, NaCl 10 g/L) at 20°C.	
 
Maintenance of nematodes 
The C. elegans strain N2 Bristol (wild type) was purchased from the Caenorhabditis 
Genetic Center (CGC), University of Michigan, USA. The nematodes were 
propagated on Nematode Growth Medium (NGM, 2,5 g/L Peptone, 2,9 g/L NaCl, 17 
g/L Bacto-Agar, 1 mM CaCl2, 5 µg/mL Cholesterol, 25 mM KH2PO4 and 1 mM 
MgSO MgSO4.) or PGS (12 g/L Peptone, 12 g/L Glucose, 27,25 g/L Sorbitol, 12 g/L 
NaCl, 17 g/L Bacto-Agar, 1 mM CaCl2, 5 µg/mL Cholesterol, 25 mM KH2PO4 and 1 
mM MgSO4) agar plates, supplemented with E. coli OP50 as carbon source, and 
incubated at 20°C [16]. 
 
Nematodes Grazing assay 
The nematodes grazing assay was performed modifying an existing protocol [17]. 
Briefly, the psychrophilic strains, were picked from agar plates and spotted on 10 cm 
squared-plates containing agar NMG and allowed to grow for 5 days at 20°C. At day 
5, two hundreds L4-stage nematodes were added in different point of the plate next 
to each colony with a multichannel pipette. The plates were stored at room 
temperature and checked every 24 h. A clone was considered positive if the colony 
was not grazed after 5 days of incubation with C. elegans.   
 
Nematode Toxicity Assays 
Positive isolates from grazing assay were further investigated singularly for their 
ability to kill the nematodes. Slow Killing Assay (SKA) in 2.5-cm-diameter plates 
containing 3 ml of NGM agar, while Fast Killing assay (FKA) was carried out in 2.5-
cm-diameter plates containing 3 ml of PGS agar medium [18]. For both assays, the 
plates were seeded with 50 µl of the cold-adapted bacteria liquid cultures, and then 
incubated for 48 h at 20 °C to allow the formation of a bacterial lawn. C. elegans was 
synchronized by bleaching treatment [16], and 30-40 worms at larval stage 4 (L4), 
were transferred to each plate and incubated at 20 °C for seven days. The plates 
were scored for living worms every 48 h. E. coli OP50 was used as a negative 
control. A worm was considered dead when it no longer responded to touch. For 
statistical purposes, 5 replicates per trial were carried out with a unique egg 
preparation.  
 
Cross streaking 
Cross-streaking experiments were carried out as previously described [6, 19]. Petri 
dishes with or without a septum separating two hemi-cycles were used. Plates with a 
central septum allowed the growth of tester and target strains without any physical 
contact. Tibetan strains were grown on PYG for four days at 20°C; then they were 
streaked on PYG and incubated at 20°C for four days. Bcc strains (target strains) 
were perpendicularly streaked to the initial streak and plates were further incubated 
at 20°C for two days and at 37°C for two additional days. The experiments were 
conducted in parallel with a positive control to verify the viability of Bcc cells. 
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Preparation of crude extracts 
A single colony of a bacterial isolate was used to inoculate 3 mL of liquid media in 
sterile bacteriological tube. After 48 h of incubation at 21°C at 200 rpm the pre-
inoculum was used to inoculate 100 mL of TYP medium or PYG in a 500 mL flask, at 
an initial cell concentration of 0.01-OD600/mL. The flasks were incubated up to 5 days 
at 20°C at 220 rpm. The cultures were then centrifuged at 6800 x g at 4°C for 30’, 
and the exhausted culture broths were collected and stored at -20°C. The exhausted 
culture broths were subjected to organic extraction. Organic extractions were 
performed using 3 volume of ethyl acetate in a 500 mL separator funnel. In 
alternative, extractions with 3 different resins (XAD7, XAD16, HP20) were performed. 
For the resin extractions, samples were incubated with the resin (5g resin/ 100mL 
broth), which was then collected after 4 hours of incubation at room temperature, 
washed with distilled water and eluted with methanol. The organic phase collected 
was evaporated using a Laborota 4000 rotary evaporator (Heidolph, Schwabach, 
Germany), and the extracts were weight, dissolved in 100% DMSO at 50 or 10 
mg/mL and stored at -20°C.  
 
Nematode Liquid toxicity assay 
To test the effect of crude extracts or compounds on C. elegans viability a liquid 
toxicity assay has been set-up. The assay has been performed in 24-well plates. 
Each well contained a 400 µL solution of M9 buffer, 5 µg/mL Cholesterol, and E. coli 
OP50 at the concentration of 0.5 OD/mL as carbon source. Extracts or compounds at 
different concentration were then added to each well. 1% DMSO was also added as 
control to evaluate solvent effects on nematodes. C. elegans was synchronized by 
bleaching treatment [16], and 30-40 L4 worms were transferred to each well and 
incubated at 20 °C up to seven days. The wells were scored for living worms every 
24 h. A worm was considered dead when it no longer responded to touch. For 
statistical purposes, 3 replicates per trial were carried out with a unique egg 
preparation.  
 
Minimal inhibitory concentration assay (MIC) 
To evaluate the antimicrobial potential of Antarctic extracts, samples were placed into 
each well of a 96-well microtiter plate at an initial concentration of 2% (v/v) and 
serially diluted using LB medium. Wells containing no compound represented the 
negative control. DMSO was used as control to determine the effect of solvent on cell 
growth. A single colony of a Bcc strain was used to inoculate 3 mL of liquid LB media 
in sterile bacteriological tube. After 6-8 h of incubation, growth was measured by 
monitoring the absorbance at 600 nm and about 40000 CFU were dispensed in each 
well of the prepared plate. Plates were incubated at 37°C for 24h and growth was 
measured with a Cytation3 Plate Reader (Biotek, Winoosky, VT) by monitoring the 
absorbance at 600 nm. 
 
Chemical purification 
Crude extracts of 3L fermentation of selected strains, prepared as described above, 
were subjected to fractionation using Chromabond SPE C18 column cartridges 
(Macherey-Nagel, Duren, Germany). Samples were dissolved in water and loaded on 
the top of the column. Elution was performed at step increasing methanol 
concentration (25%-50%-100%-100%+TFA). In alternative, fractionation was 
performed using Chromabond SPE Silica column cartridges (Macherey-Nagel, 
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Duren, Germany), with a normal phase protocol. Samples were dissolved in 
chloroform and loaded on the top of the column. The elution was performed 
increasing methanol concentration. HPLC separations were carried out using a VP 
250/10 Nucleodur C18 HTec, 5 µm, (Macherey-Nagel Duren, Germany) connected to 
an Ultimate 3000 HPLC Chromatograph with a Ultimate 3000 Diode Array detector 
and in-line degasser (Dionex, Sunnyvale, CA). Detection was achieved on-line 
through a scan of wavelengths from 200 to 400 nm. 
 
Chemical profiling 
High-resolution mass spectrometry and fragmentation data were recorded using a 
LTQ Orbitrap system (ThermoScientific, Whaltman, MA) coupled to a 1290 Infinity 
HPLC system (Agilent, Santa Clara, CA). The following conditions were used: 
capillary voltage 45 V, capillary temperature 320°C, auxiliary gas flow rate 10-20 
arbitrary units, sheath gas flow rate 40-50 arbitrary units, spray voltage 4.5 kV, mass 
range 100-2000 amu (maximum resolution 30,000). Optical rotation measurements 
were recorded using a Perkin Elmer, Model 343 Polarimeter at 589 nm (Perkin 
Elmer, Whaltman, MA). The UV spectrum was recorded on a UV-Vis 
spectrophotometer model S10 (Spectromlab, Barcelona, Spain). The IR was 
recorded on a PerkinElmer FTIR Spectrum Two instrument (Perkin Elmer, Whaltman, 
MA). 
 
Philogenetic analysis  
Psychrophilic bacteria colonies grown overnight at 20°C on MA or LB plates were 
suspended in 25 µl of sterile distilled water, heated to 95°C for 10 min, and cooled on 
ice for 5min. Two µl of each cell lysate were used for the amplification via PCR of 
16S rRNA genes. PCR were carried out in a total volume of 50 µl containing 1X 
Reaction Buffer, 150 µM MgCl2, 250 µM of each deoxynucleoside triphosphate, and 
2.0 U of Polytaq DNA polymerase and 0.6 µM of primer P0 (5’ 
GAGAGTTTGATCCTGGCTCAG) and P6 (5’ CTACGGCTACCTTGTTACGA)[20]. 
The reaction conditions used were: 1 cycle (95° C for 90 s), 30 cycles (95° C 30 s, 
55° C 30 s, and 72° C 2 min), with a final extension of 10 min at 72 °C. Amplicons 
corresponding to the 16S rRNA genes (observed under UV light, 312 nm) were 
excised from the gel and purified using the “QIAquick” gel extraction kit (QiAgen, 
Chatsworth, CA) according to manufacturer’s instructions. Direct sequencing was 
performed on both DNA strands using an ABI PRISM 310 Genetic Analyzer (Applied 
Biosystems, Forster City, CA) and the chemical dye terminator. BLAST probing of 
DNA databases was performed with the BLASTn option of the BLAST program using 
default parameters [21]. Nucleotide sequences were retrieved from RDP databases. 
The ClustalW program was used to align the 16S rRNA gene sequences obtained 
with the most similar ones retrieved from the databases [22]. Each alignment was 
checked manually, corrected, and then analysed.  
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3.3 Results and discussion  
	
Identification of potential anthelmintic producers bacteria 
The 11 Tibetan strains isolated from the two Tibetan glaciers (Table 1) were 
evaluated for their ability as anthelmintic producers.  
 
Strain code Tibetan Glacier 
MD 1 Midui Glacier (4800 m above sea level) 
MD2 Midui Glacier (4800 m above sea level) 
MD3 Midui Glacier (4800 m above sea level) 
MD4 Midui Glacier (4800 m above sea level) 
MD5 Midui Glacier (4800 m above sea level) 
KRL1 Karuola Glacier (5200 m above sea level) 
KRL2 Karuola Glacier (5200 m above sea level) 
KRL3 Karuola Glacier (5200 m above sea level) 
KRL4 Karuola Glacier (5200 m above sea level) 
KRL5 Karuola Glacier (5200 m above sea level) 
KRL5 Karuola Glacier (5200 m above sea level) 
Table 1. List of the Tibetan isolates from the two Tibetan glaciers 
 
 
To this aim, the 11 isolates were spotted on a NGM agar plates and allow to grow as 
colony. After the incubation, L4 worms were spotted on the plates, which was further 
incubated to allow the worms graze the colonies. After 5 days we observed that only 
two colonies were not grazed by worms, as shown in Figure 1.  
 

 

Figure 1. Nematode grazing assay. After five days of incubation only 2 colonies remain untouched. 
The two colonies are highlighted by a red circle and are MD4 (white colony, left) and KRL4 (yellow 
colony, right). 
 
 
These colonies corresponded to isolate MD4, from Midui glaciers sediments and 
isolate KRL4 from Karuola glaciers. Apparently those two strains produced some 
secondary metabolites that prevented them from being grazed by the nematodes. 
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Strains KRL4 and MD4 were then selected for further investigation performing SKA 
and FKA. The two Tibetan strains were grown on two different media (NGM and 
PGS) and incubated at 20°C. After two days of incubation L4 worms were spotted on 
the plates and surviving count was performed. As shown in Figure 2, nematodes 
were able to survive when placed on bacteria grown on NGM plates. On the contrary, 
when spotted on PGS plates, nematodes are slowly killed. On MD4, only 10% of the 
worms are still alive after 100 hours (FIG. 2A). Nematodes placed on KRL4 present a 
similar surviving curve, but with a lower killing rate than MD4. In fact, worms 
population is reduced to 10% after 11 days (Fig 2B). PGS medium is considered a 
high osmolarity medium, which causes the absorption of compounds from agar 
including potential secondary metabolites produced by the Tibetan strains.  
 

 

Figure 2. Surviving curves on N2 worms on MD4 (A) and on KRL4 (B) 
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Cross-streaking experiments  
In order to check the ability of Tibetan also as potential antimicrobial producers, 
cross-streaking experiments were performed to evaluate their ability to inhibit 
pathogens growth. We used as targets a panel different Bcc strains with clinical 
origin. Data obtained are summarized in Table 2, revealing that some of the Tibetan 
strains were able to inhibit the growth of Bcc strains. Strains MD3 and KRL4 were 
the most active strains and were able to inhibit all the Bcc tested, while MD1, MD4, 
and KRL4 prevented the growth of 6,4 and 6 strains respectively. In order to check 
if this anti-Bcc activity was due to volatile organic compounds synthesis (VOCs), a 
further cross-streaking experiment was performed using Petri dishes with a central 
septum, which physically separates the tester (Tibetan) from the target strains. Data 
obtained are reported in Table 2 and revealed that Tibetan strains inhibitory 
capabilities decreased in the presence of the central septum. This finding suggested 
that active Tibetan strains synthesize a combination of volatile and soluble 
molecules and that the Bcc-inhibitory activity likely relies principally on the soluble 
fraction. Thus, we decided to concentrate our efforts on the soluble molecules for 
this study. 
 

  
Septum 

B. 
metallica 

LMG 
24068 

B. 
seminalis 

LMG 
24067 

B. 
arboris 
LMG 

24066 

B. 
diffusa 
LMG 

24065 

B. 
ambifaria 

LMG 
19182 

B. 
contaminans 
LMG 23361 

B. 
latens 
LMG 

24064 

B. 
cenocepacia 
LMG 16656   

MD1 
Y + - + + - + + + 

N +/- - + +/- - - - + 

MD2 
Y + + + + + + + + 

N + + + + - + + + 

MD3 
Y + - + + - + + + 

N +/- - - - - - +/- - 

MD4 
Y + + - + + + + + 

N + + +/- - - - + + 

MD5 
Y + + + + +/- + + + 

N + + + + + + + + 

KRL1 
Y + + + + + + + + 

N + + + - + + + + 

KRL2 
Y + + + + + + + + 

N + + + + + - +/- + 

KRL3 
Y + - + + - + + + 

N +/- +/- +/- +/- - - +/- - 

KRL4 
Y + - + + + - + + 

N +/- +/- +/- + + - - - 

KRL5 
Y + + + + + + + + 

N + + + - + + + + 

KRL6 
Y + + + + + + + + 

N + + + + + + + + 

Table 2. Inhibitory activity of Tibetan strains against Bcc strains. Y: plate with septum; N: plate 
without septum; +: growth of Bcc strains; -: inhibition of Bcc growth; +/-: partial inhibition of Bcc strains. 
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Anthelmintic activity of Tibetan bacteria extracts  
Once established the anthelmintic potential of the Tibetan strains MD4 and KRL4, 
crude extracts were produced from these strains. Initially, we focused our attention 
on the exhausted culture broths, which were processed using ethyl acetate and the 
resin HP20. Crude extracts were weighted, dissolved in DMSO and tested for the 
ability of killing nematodes using a liquid assay. L4 synchronized worms were 
deployed into the wells of a 24-well plates containing M9 medium supplemented with 
cholesterol and OP50 and the extracts. DMSO at 1% was used as control to verify 
the effect of the solvents on nematodes growth. Surprisingly, no extract showed 
significant anthelmintic effect after 3 days of incubation. We then decided to analyze 
the extracellular content of the Tibetan strains. To this aim, bacterial pellets of the 
strains were collected and subjected to sonication. Then, this lysate was centrifuged 
and the supernatant was extracted with ethyl acetate and HP20 resin to generate 
crude extracts. The intracellular extracts were then tested in liquid assay. Results are 
shown in Figure 3. 

	 	
Figure 3. Anthelmintic activity of extracellular (A) and intracellular (B) extracts of strains MD4 and KRL4. Activity 
is expressed as the percentage of surviving worms after 3 days of incubation in the presence of extracts. 
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Concerning MD4, we did not find extracts showing anthelmintic activity compared to 
controls (1% DMSO and No addition wells), at any concentration assayed after 3 
days, as shown in Figure 3A. Instead, we observed a significant effect on nematodes 
viability of the HP20 extract of strains KRL4, compared to controls (Fig. 3B). 
Specifically, at 5 mg/mL concentration only 20% of worms population were still alive 
after 3 days, while 37% of nematodes survived at 2.5 mg/mL suggesting a dose-
response effect. Surprisingly, active extract was obtained only with HP20 resin and 
not with ethyl acetate, denoting a polar nature of the anthelmintic compound.  
	
Antimicrobial activity of Tibetan extract 
The 5 Tibetan strains (KRL3, KRL4, MD1, MD3 and MD4) displaying antimicrobial 
activity against Bcc strains, were used to produce crude extracts. Bacteria were 
growth in small-scale volume (100 mL) in TYP medium and after the fermentation, 
exhausted culture broths were extracted with ethyl-acetate (specific for organic 
compounds), XAD7 resin (specific for peptides) and XAD16 resin (broad range of 
polarity). This small extracts library was tested against a panel of human pathogens 
in Liquid MIC experiments. Results are summarized in Table 3, and were reported 
as percentage of inhibition of the strains in the presence of extracts at 100 µg/mL.  
 

    F. tularensis 
LVS tol-C 

B. pseudomallei 
BP82 

B. cenocepacia 
LMG 16656 

B. metallica 
LMG 

24068 

E. coli  
K12 

KRL3 

Et. Ac 15 9 35 0 1 

XAD7 10 6 21 9 0 

XAD16 16 5 27 10 0 

KRL4 

Et. Ac 15 0 34 0 5 

XAD7 9 17 29 8 0 

XAD16 14 1 28 10 0 

MD1 

Et. Ac 19 5 33 0 6 

XAD7 13 8 28 9 0 

XAD16 17 0 25 8 0 

MD4 

Et. Ac 22 2 10 6 0 

XAD7 10 5 25 13 0 

XAD16 17 6 20 1 0 

MD3 

Et. Ac 100 2 21 5 1 

XAD7 8 5 18 0 0 

XAD16 5 1 0 0 0 
Table 3. Antimicrobial activity of tibetan extracts library, expressed as percentage of target growth 
inhibition in the presence of extracts at 100 µg/mL. 
	
	
	
The extracts did not show significant antimicrobial activity against all the targets, with 
the only exception of the Ethyl Acetate extract from strain MD3, which was able to 
completely inhibit the growth of F. tularensis LVS tol-C strain. The absence of 
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significant inhibition in the presence of MD3 XAD7 and MD3 XAD16 extracts 
suggests that the active compound is a small organic compound.  
 
Fractionation of KRL4 and MD3 active extracts 
Active strains KRL4 and MD3, for anthelmintic and antimicrobial activity, respectively, 
were then selected for further analysis. The bacteria were grown in large scale (3 L) 
and processed to generate crude extracts. The extracts were then fractionated in 
order to attempt a preliminary purification of the bioactive compounds. Intracellular 
extracts from strain KRL4 was fractionated using a C18 column Cartridge with a 
water/methanol system. The extract was dissolved in water and loaded on the top of 
the column. Elution was performed at step, increasing the methanol concentration 
(25%-50%-100%). Fraction were collected, dried and dissolved in DMSO to perform 
liquid assay against L4 nematodes. As shown in Figure 4, fraction 25% Methanol, 
was the most active fraction with no nematodes alive at 1 mg/mL and only 22% of 
surviving worms at 0.5 mg/mL after 3 days of incubation. Fractions eluted at 50 and 
100% of methanol, have a lower effect on nematodes viability (60% and 80% of 
surviving worms, respectively), thus confirming the polar nature of the bioactive 
anthelmintic compound produced by strains KRL4. 
 
 

 
Figure 4. Anthelmintic activity of KRL4 SPE fractions. Data report percentage of surviving worms in 
the presence of the different fractions after 3 day of incubation at 20°C. 
 
 
Ethyl Acetate extracts of strains MD3 was instead fractionated performing a flash 
column chromatography with silica (normal phase) with a methanol/chloroform 
system. The sample was dissolved with chloroform and loaded onto the column and 
the elution was performed at step increasing the methanol concentration up to 15% 
of methanol, then a final wash with 100% methanol was performed. Eluted fraction 
were then dried and dissolved in DMSO to perform antimicrobial assay against F. 
tularensis. Results are summarized in Table 4 and report antimicrobial activity as the 
percentage of inhibition of the target with the different fractions at different 
concentration. It is possible to observe a clear peak of inhibition from fraction #2 to 
fraction 6#, eluted between 0 and 6% methanol. Fraction #3 was eluted at 3% 
methanol and was the most active fraction with a MIC between 50 and 25 µg/mL. 
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Fraction % 
Methanol 

100 
µg/mL 

50 
µg/mL 

25  
µg/mL 

12.5 
µg/mL 

6.25 
µg/mL 

3.12 
µg/mL 

#1 Flow 
though 90 48 40 48 46 32 

#2 0 %-2% 100 95 56 22 24 25 
#3 3% 100 100 88 28 0 4 
#4 4% 100 100 34 0 0 0 
#5 5% 100 100 57 42 32 22 
#6 5.5% 100 66 54 52 47 33 
#7 6%-7% 67 48 44 39 37 28 
#8 7%-11% 76 31 14 0 -6 0 
#9 11%-14% 56 9 0 0 0 0 

#10 100% 
wash 21 17 20 23 26 15 

Table 4. Antimicrobial activity of MD3 fractions expressed as percentage of growth inhibition of F. 
tularensis when incubated the different fraction at different concentrations.  
 
Chemical profiling of strain MD3 active fractions 
The most active fractions produced from flash silica chromatography were submitted 
for a chemical profiling using LC-MS. This analysis revealed the presence of different 
compounds, especially diketopiperazines. Nonetheless, a major compound present 
in all the active fractions had m/z = 375.2125 and from MS2 fragmentation pattern 
was tentatively identified as 16§-hydroxycrambescidin 359. This compounds is 
Batzelladine alkaloid and was first isolated from a carribean sponge [23]. This 
compound has been reported for antiviral activity but not for antimicrobial. However, 
further purification and NMR experiments are required to confirm these results. 
 

 
 
 
Figure 5. Molecular formula and chemical properties of 16§-hydroxycrambescidin 359. 
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Phylogenetic analysis  
The phylogenetic affiliation of bioactive producers strains MD3 and KRL4 was 
performed through the 16S rRNA genes amplification and analysis. To this purpose 
the 16S rRNA genes were PCR amplified and the nucleotide sequence of the 
amplicons determined. Each sequence was used as a query in a BLAST search to 
retrieve the most similar ones. This analysis proved that strain MD3 belongs to the 
genus Pseudomonas, and to the mandelii species. Bacteria belonging to this species 
are psychrophiles and are well-studied for their biotechnological potential [24-26]. 
Strain KRL4 was instead assigned to the Exiguobacterium genus, gram-positive 
psychrophilic bacteria. The strain has a low (less than 94%) sequence similarity with 
species E. antarcticum and E. soli and it is probably a new species. Bacteria 
belonging to this genus have already been observed as antimicrobial producers [27]. 
 
3.4 Conclusions 
 
The aim of this work was to evaluate the potential of cold-adapted bacteria isolated 
from Tibetan glaciers as source of bioactive compounds. Applying an assay-based 
biodiscovery pipeline, we found two strains producing active metabolites against C. 
elegans and F. tularensis. Extracts from these two strains were purified and active 
fractions were identified and subjected to chemical profiling. The analyses performed 
on strain KRL4 (anthelmintic producer) active fractions, revealed the presence of 
peptides, but further analysis will be needed to identify the active molecule. 
Concerning strain MD3, its purified fraction was able to inhibit F. tularensis with a 
MIC between 50 and 25 µg/mL. This bacterium is a hazardous human pathogen 
causing tularemia, endemic in North America [28]. LC-MS analysis of the active 
fraction revealed the presence of diketopiperazines and of a batzellamine alkaloid: 
16§-hydroxycrambescidin 359. This compound was first isolated from a marine 
sponge, thus this finding is curious. We could explain that with the established 
evidence that several metabolites once attributed to sponges are actually produced 
by bacteria [29, 30],	and this may be the case of 16§-hydroxycrambescidin 359, but 
further studies are required to prove this hypothesis.  
Nonetheless, this work confirms the promising potential of alpine microorganisms and 
prompts future efforts aiming at a large-scale exploitation of this resource of natural 
products.  
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Abstract The special features of cold-adapted lipolytic biocatalysts have made their use
possible in several industrial applications. In fact, cold-active enzymes are known to be able
to catalyze reactions at low temperatures, avoiding side reactions taking place at higher
temperatures and preserving the integrity of products. A lipolytic gene was isolated from the
Arctic marine bacterium Rhodococcus sp. AW25M09 and expressed in Escherichia coli as
inclusion bodies. The recombinant enzyme (hereafter called RhLip) showed interesting cold-
active esterase activity. The refolded purified enzyme displayed optimal activity at 30 °C and
was cold-active with retention of 50 % activity at 10 °C. It is worth noting that the optimal pH
was 11, and the low relative activity below pH 10 revealed that RhLip was an alkaliphilic
esterase. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C6), displaying
optimal activity with the butyrate (C4) ester. In addition, the enzyme revealed a good organic
solvent and salt tolerance. These features make this an interesting enzyme for exploitation in
some industrial applications.
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Introduction

Esterases (EC 3.1.1.1) are hydrolytic enzymes that catalyze the hydrolysis of esters into
alcohol and acid. They generally differ from lipases (EC 3.1.1.3) regarding the substrate
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specificity. By now, it is well recognized that esterases catalyze the hydrolysis and the
synthesis of short-chain esters (less than 10 carbon atoms), while lipases act on substrates
with long chains of carbon atoms (more than 10) [1]. These enzymes belong to theα/β-hydrolase
superfamily and possess a highly conserved catalytic triad formed by Ser, His, and Asp [2].
Lipolytic enzymes are employed in a wide range of industrial applications including the food
industry and detergent production as well as biocatalysts for chemical synthesis [3]. In particular,
cold-active lipolytic enzymes are extremely appealing for industrial uses. It is generally
accepted that cold-active biocatalysts have a more flexible structure [4] compared to mesophilic
and thermophilic counterparts, and this high flexibility enables increased complementarity
between active site and substrates, resulting in high specific activity at low temperatures [5]. Thus,
the use of cold-adapted biocatalysts can minimize undesirable side reactions taking place at
higher temperatures and allow reactions involving heat-sensitive substrates [6]. These properties
are important for exploitation in the food industry, where the preservation of the nutritional
value and flavor of the food is fundamental. Furthermore, thanks to their relatively low
thermostability, these enzymes can often easily be inactivated.

Therefore, bioprospecting, looking for cold-active lypolitic enzymes from Arctic regions,
has become an active and expanding discipline. In fact, organisms living in an extremely cold
habitat have adopted several strategies to survive and thrive in these challenging environments,
and these include the expression of enzymes able to efficiently catalyze reactions at temper-
atures close to 0 °C [7].

In this paper, we present the purification and characterization of a cold-active esterase from
the marine psychrophilic actinobacterium Rhodococcus sp. AW25M09. This bacterium was
isolated from the intestines/stomach of an Atlantic hagfish (Myxine glutinosa) captured on the
cold seafloor during sampling performed in Hadsel Fjord, North Norway. Its genome was
recently published [8]. The lip3 gene was selected for its unique amino acid sequence and its
homology with other lipases/esterases. The gene was amplified by PCR then cloned and
recombinantly expressed in Escherichia coli, and the protein, aggregated as inclusion bodies,
was refolded and extensively characterized.

Materials and Methods

Isolation of a Lipolytic Gene

The genome of the cold-adapted Rhodococcus sp. AW25M09 has been sequenced and has
been deposited at DDBJ/EMBL/GenBank under accession number CAPS00000000. The
genome was analyzed using the Artemis [9] with the aim to identify new genes encoding
for esterases and lipases to be expressed in E. coli. Sequence analysis revealed an open reading
frame (ORF) of 1,056 bp, the lipR lipolytic gene that encodes for a protein of 352 amino acids.

lipR Gene Cloning

Rhodococcus sp. AW25M09 was grown in Marine 2216 broth (Difco, Sparks, USA) at 20 °C,
and the genomic DNAwas purified with Sigma’s GenElute Bacterial Genomic Kit according to
themanufacturer’s instruction andwas used as template for the lipR gene amplification by PCR.

Two primers containing NdeI and NotI restriction sites were designed: 5′-AATACATATG
TACCGCAGCAACGACTCCAACG-3′ and 5′-AATAGCGGCCGCGCAGTTGGACGGTG
CAGGCACT-3′.
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PCR was performed by using Mastercycler personal (Eppendorf, New York, USA). The
reaction conditions used were as follows: 1 cycle (94 °C for 3 min), 30 cycles (94 °C for 30 s,
60 °C for 30 s, and 72 °C for 1 min), and a final cycle of 72 °C for 7 min. The amplified PCR
product of 1,056 bp was cloned into pET-22b expression vector previously digested by NdeI
and NotI restriction enzymes (New England BioLabs, Ipswich, MA, USA) including an in-
frame C-terminal fusion purification 6×His-Tag. E. coli DH5-α competent cells were first
transformed through the ligation reaction, and the construct was verified by bidirectional DNA
sequencing. The isolated plasmid was then used to transform E. coli strain BL21(DE3)
competent cells.

RhLip Recombinant Production in E. coli Cells

E. coli BL21(DE3) carrying pET-22b-lipR vector was grown in a shake flask containing Luria
Bertani broth (LB) medium supplemented with 100 μg/mL ampicillin at 37 °C for 16 h.
Growing culture was diluted to a cell density of about 0.05 OD600 in a 1-L shake flask
containing 200 mL of LB medium supplemented with 100 μg/mL ampicillin. RhLip induction
was performed when the culture density reached 0.5–0.6 at OD600 by the addition of filter-
sterilized isopropyl-β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.1 mM.
Culture was carried out at constant agitation (220 rpm) at 20 °C for 16 h post-induction. Cells
were then harvested by centrifugation at 6,000 rpm for 20 min at 4 °C, divided into 0.5-g
aliquots, and frozen at −20 °C.

RhLip Purification and Refolding from Inclusion Bodies

The bacterial pellet (0.5 g) was frozen and thawed twice, and resuspended in 4 mL of Tris-
EDTA (TE) buffer (20 mM Tris-HCl pH 8.0, 5 mM EDTA pH 8.0), and 0.6 mg of
lysozyme and 0.75 g sucrose were added to the suspension; the suspension was incubated
at 37 °C. After 30 min, 4 mL ice-cold TE buffer was added to the suspension and the
suspension was incubated for 30 min at 37 °C; then, cells were subjected to sonication.
Sonicated cells were centrifuged at 6,700 rcf for 20 min at 4 °C; then, the pellet was
washed with 4 mL TE buffer and centrifuged and washed with 2 mL of 20 mM Tris-HCl
pH 8.0. The extract was finally centrifuged for 10 min at 4 °C at 10,000 rcf. The pellet was
resuspended in 10 mL of 6 M urea, 20 mM Tris-HCl pH 8.0, 15 mM β-mercaptoethanol,
and 5 mM EDTA pH 8.0 at 4 °C with gentle shaking for 2 h. The insoluble material was
removed by centrifugation at 15,000 rcf for 30 min at 4 °C. Renaturation of the supernatant
containing the RhLip was achieved by a 30-fold dilution of the denaturant in 20 mM Tris-
HCl pH 8.0, 500 mM arginine, 0.6 mM GSH, and 12 mM GSSG, and the solution was
concentrated to about 10 mL using an Amicon ultrafiltration cell (Millipore, Billerica,
USA) equipped with a 10-kDa membrane and abundantly dialyzed against 20 mM Tris-
HCl pH 8.0. The protein was finally aliquoted and stored at −20 °C in the presence of 20 %
glycerol.

Electrophoretic Analysis

Electrophoretic runs were performed with a Mini-Protean II cell (Bio-Rad, Hercules, CA)
unit at room temperature. Twelve percent SDS-PAGE was made as described by Laemmli
[10]. Marker XL-OPTI Protein 2.8 (ABM, Richmond, BC, Canada) was used as molecular
weight standard.
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RhLip Determination of pH and Temperature Optima

The esterase activity was monitored at 348 nm (the pH-independent isosbestic point of p-
nitrophenol and p-nitrophenoxide ion) with pNP-pentanoate (100 μM) as substrate. The
kinetic measurements were performed at 25 °C, and the buffers used were 0.1 M Na-
phosphate over the pH range of 7.0–7.5, 0.1 M Tris-HCl over the pH range of 7.5–9.5, and
0.1 M CAPS over the pH range of 9.5–12.0. The assays were carried out in duplicate or
triplicate, and the results were the means of two or three independent experiments. Due to the
high self-degradation rate of the pNP-esters at high pH values, all further characterizations
were performed at pH 10.0. The dependence of activity on temperature was studied over the
range of 10–60 °C, with pNP-pentanoate (100 μM) as substrate, in a reaction mixture 0.1 M
CAPS pH 10.0, containing 3 % acetonitrile (standard conditions).

RhLip Thermostability

The thermal stability of RhLip was studied over the range of 5–50 °C. Pure enzyme (0.2 mg/
mL in a 0.1 M CAPS buffer pH 10.0) was incubated in tubes at different temperatures.
Aliquots were withdrawn after 30, 60, 90, and 120 min and assayed at 30 °C in standard
condition described above, using pNP-pentanoate as substrate.

RhLip Esterase Activity

The time course of the esterase-catalyzed hydrolysis of pNP-esters was followed by
monitoring of p-nitrophenoxide production at 405 nm, in 1-cm path-length cells with a
Cary 100 spectrophotometer (Varian, Mulgrave, Australia). Initial rates were calculated
by linear least-squares analysis of time courses comprising less than 10 % of the substrate
turnover. Assays were performed at 30 °C in a mixture of 0.1 M CAPS pH 10, 3 %
acetonitrile, containing pNP-esters (100 μM). Stock solutions of pNP-butanoate (C4),
pNP-pentanoate (C5), and pNP-hexanoate (C6) (Sigma-Aldrich, MO, USA) were pre-
pared by dissolving substrates in pure acetonitrile. Assays were performed in duplicate,
and the results were the mean of two independent experiments. One unit of enzymatic
activity was defined as the amount of the protein releasing 1 μM of p-nitrophenoxide/min
from pNP-esters. The absorption coefficient used for p-nitrophenoxide was 19,000 at
30 °C and pH 10.

Kinetic Measurements and Analysis

Initial velocities versus substrate concentration data were fitted to the Michaelis-Menten
equation using the software GraphPad Prism version 5.00 (GraphPad software, La Jolla,
USA). The concentration of pNP-butanoate and pNP-pentanoate ranged from 0.05 to 2 mM,
while pNP-hexanoate were varied from 0.1 to 1 mM. Assays were done in duplicate and the
results were the mean of two independent experiments. The kinetic experiments were per-
formed using acetonitrile as solvent.

Effect on Enzymatic Activity by Organic Solvents, Detergents, Metals, and NaCl

Enzyme activity was evaluated in the standard assay (0.1 M CAPS pH 10, 3 % acetonitrile,
30 °C) using pNP-pentanoate as substrate. The activity was measured using an increasing
concentration of the solvents such as acetonitrile, dimethyl sulfoxide (DMSO), diethyl ether,
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and dimethyl formamide (DMFA) from 0 to 20 % (v/v) in the assay mixture. Results were
reported as relative activity with respect to the value measured without solvents.

The effect of detergents on enzymatic activity of RhLip was evaluated by incubating
0.1 mg/mL of pure protein in the presence of 5 mM Triton X-100, Tween-20, and Tween-
80 at 5 °C for 1 h. The residual enzymatic activity was measured in the standard condition as
described above. Preferences for metal cations were analyzed by adding them separately to
0.1 mg/mL of pure protein at a final concentration of 5 mM and equilibrate at 5 °C for 1 h. The
residual enzymatic activity was then measured in the standard condition as described above.
The effect of NaCl on enzymatic activity was evaluated by increasing the salt concentration in
a range of 0–1 M at 30 °C in standard assay conditions.

Modeling of RhLip

The three-dimensional model of RhLip was performed by a comparative modeling strategy
using the structure of Candida antarctica lipase A as template (CAL A, PDB code 3GUU).
The sequence alignment was calculated by the CLUSTALW program [11]. The
MODELLER 9v11 program [12] was used to build 100 full atom models of RhLip
structure setting 4.0 Å as root mean square deviation (RMSD) among initial models and
by full model optimization. Structure validation was carried out using the pictorial
database PDBsum [13]. The structure of the generated model was uploaded to the
PDBsum server, and structural analyses, including PROCHECK plots [14], were generat-
ed. Moreover, the Z score of the RhLip model and C. antarctica lipase A (CAL A)
structure was calculated by the web server WhatIf [15]. The Z score expresses how well
the backbone conformations of all residues correspond to the known allowed areas in the
Ramachandran plot. Furthermore, the solvent-accessible surface areas (SASAs) of RhLip
model and CAL A structure were calculated using the POPS algorithm [16].

Molecular Dynamics

Molecular dynamics (MD) simulations were performed with GROMACS software package
(v4.5.5) [17]. The model was inserted in a dodecahedron box filled with SPC216 water
molecules using GROMOS43a1 all-atom force field. Simulations were carried out at different
pH values. Imposing different protonation states according to the number of titratable groups
reproduced neutral and basic pH conditions. The simulations were carried out by adding 26
sodium ions to have a value of zero for the net electrostatic charge of the system. The systems
were subjected to several cycles of energy minimizations and position restraints to equilibrate
the protein and the water molecules around the protein. Particle mesh Ewald (PME) algorithm
was used for the electrostatic interactions with the cutoff of 1 nm. The time step was 2 fs, and
the temperature was kept constant at 300 K using a modified Berendsen thermostat with a time
constant of 0.1 ps. The simulation time for each dynamic was 10 ns. GROMACS routines
were used to analyze the trajectories in terms of RMSD, RMSF, and gyration radius.

Results and Discussion

Purification and Refolding from Inclusion Bodies

In this work, we present a biochemical characterization of a new alkaliphilic esterase from
Rhodococcus sp. The lip3 gene was cloned into a pET-22b expression vector, and the
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construct was transferred into E. coli BL21(DE3) calcium competent cells. Several
expression conditions were investigated, but IPTG induction of E. coli cells resulted in
the accumulation of recombinant RhLip as inclusion bodies (IB). The induction at 20 °C
was effective in producing the highest amount of RhLip compared to the other contami-
nant proteins. The IBs were purified and the protein refolded as described in the “Materials
and Methods” section. According to the structural analysis, two disulfide bridges were
detected, and the refolding protocol was optimized by adding GSSG (oxidized glutathi-
one) and GSH (reduced glutathione) to the refolding solution. Using this protocol, about
8 mg of pure enzyme was obtained from 0.5 g of E. coli cell pellet.

Purity of the protein preparation was evaluated by SDS-PAGE analysis. As shown in Fig. 1,
a single band was observed with an apparent mass of about 38 kDa.

RhLip Functional Characterization

The dependence of RhLip activity in the function of pH was estimated using pNP-
pentanoate as substrate (Fig. 2a). The absorption of p-nitrophenol changes at different
pH values because of variations in equilibrium between p-nitrophenol and p-
nitrophenoxide. In this work, we monitored the release of p-nitrophenol at 348 nm, that
is, the isosbestic point of p-nitrophenol and p-nitrophenoxide. The maximum activity of

Fig. 1 SDS-PAGE (12 % acrylamide) of RhLip after the denaturation-refolding procedures. Lane 1, purified
RhLip; lane 2, molecular weight marker
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RhLip was recorded at pH 11 in 0.1 M CAPS, and the relatively low activity between pH 7
and pH 9 suggests that the enzyme was a highly alkaliphilic esterase. Other alkaliphilic
esterases have been identified from genomic and metagenomic sources so far [18] includ-
ing two other cold-active esterases with optimal pH >10 [19–21]. The relationship
between RhLip activity and temperature was evaluated in the range of 10–60 °C using
pNP-pentanoate as substrate (Fig. 2b). The apparent maximal activity was recorded at
30 °C, and the activity detected at 10 °C remained approximately the 50 % of the
maximum activity.

The RhLip thermal stability was evaluated in the range of 5–50 °C. Enzyme samples
were incubated at any given temperature for different lengths of time, and the residual
activity was recorded at 30 °C. This study demonstrated that RhLip presented a typical
behavior as other psychrophilic enzymes, showing a low kinetic stability at temperature
higher than 30 °C [22, 23].

In fact, as shown in Fig. 2c, we observed a very low decrease in activity after 2 h of
incubation at 5, 10, and 20 °C, while when the temperature increased up to 30 and 40 °C, we
noted a significant decrease in activity. After 2 h of incubation at 50 °C, only 20 % of
enzymatic activity was still recorded.

Kinetics Studies

We investigated the activity of RhLip toward different synthetic substrates by using several
pNP-esters with different acyl chain lengths. Activity was assessed in the presence of 0.1 M
CAPS pH 10 instead of the optimum pH buffer (0.1 M CAPS pH 11) due to the instability of

Fig. 2 a Effect of pH on the esterase activity. b Effect of temperature on the esterase activity. c Thermostability
of RhLip, at various temperatures, such as 5 °C (black circles), 10 °C (black squares), 20 °C (black up-pointing
triangles), 30 °C (black down-pointing triangles), 40 °C (black diamonds), and 50 °C (white circles). The
enzyme was incubated in 0.1 M CAPS pH 10.0 at the indicated temperatures and times. The residual activity was
measured at 30 °C using pNP-pentanoate as substrate
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the various substrates at alkaline pH value. All the characterization was also performed at
30 °C and in the presence of 3 % acetonitrile. Concerning the affinity values, we observed that
Km values decrease when acyl chain length increases, and this suggests that RhLip possesses a
high affinity with longer aliphatic chain substrates. Instead, the Kcat and Kcat/Km values show
the opposite behavior: in our standard conditions, the enzyme displays the highest Kcat and
Kcat/Km on pNP-butanoate with values of 1.63 s−1 and 2.16 s−1 mM−1, respectively (Table 1).
The biochemical characterization of the recombinant enzyme revealed pNP-butanoate (C4) as
the preferred substrate, and the hydrolytic activity significantly decreased as the chain length
increased above C8, with very little activity toward pNP-tetradecanoate (C14) (data not
shown), suggesting that the enzyme was an esterase and not a lipase.

Effect on Enzymatic Activity by Organic Solvents, Detergents, Metals, and NaCl

The effect of the presence of water-miscible solvents on RhLip enzymatic activity on pNP-
pentanoate at 30 °C in 0.1 M CAPS pH 10.0 was investigated. For all the solvents tested,
except DMFA, we observed a similar behavior as shown in Fig. 3a. The increasing concen-
tration of organic solvent in the assay mixture enlarged RhLip catalytic activity up to a critical
concentration, and further addition of solvents led to a gradual protein inactivation. These
results are coherent to what were observed for other esterases belonging to hormone-sensitive
lipase protein family, as demonstrated by Mandrich and coworkers [24].

We reported the best enzymatic activation (more than 200 % of the relative activity) in the
presence of 5 % diethyl ether. This behavior has been explained in literature as the ability of
the organic solvents to stabilize ionic intermediates in the case of aprotic solvents [25]. RhLip
was incubated in the presence of various denaturants or metal ions for 1 h, and the residual
activity was measured using pNP-pentanoate as substrate at 30 °C. The resulting values are
summarized in Table 2, which demonstrated that few tested compounds had an inhibitory
effect on RhLip activity, although at various extents. The strongest inhibitory effect was
observed in the presence of Ca2+ ions suggesting the absence of a Ca2+-binding motif
sequence. A similar effect of enzymatic inactivation was detected in the presence of Tween-
80. On the contrary, a strong activation was observed by incubating the RhLip in the presence
of Tween-20 and EDTA. Tween 20 was more easily hydrolysed than Tween-80, indicating that
the chain length may play an important role on substrate specificity [26].

The effect of the presence of NaCl on RhLip enzymatic activity was evaluated on pNP-
pentanoate in 0.1 M CAPS pH 10.0 at 30 °C. We observed an improved activity with the
highest concentration of 1 M NaCl (Fig. 3b). A similar behavior may be explained as the
ability of salt to enhance the hydrophobic interaction between enzyme and substrate [27].

Table 1 Kinetic parameters

Km (mM) Kcat (1/s) Kcat/Km (1/s*mM)

pNP-butanoate 0.753±0.098 1.63±0.19 2.16±0.25

pNP-valerate 0.691±0.090 0.69±0.09 0.99±0.11

pNP-caproate 0.276±0.036 0.14±0.01 0.45±0.04

All parameters were calculated at 30 °C, in 0.1 M CAPS pH 10.0, containing acetonitrile at a final concentration
of 3 %
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RhLip Model

The three-dimensional modeling of RhLip was performed by a homology modeling
approach using the C. antarctica lipase A (PDB ID: 3GUU) structure as template. The
CAL A structure was chosen due to sequence identity of 30 % between the RhLip
sequence and the template. The multiple alignments between RhLip and the best scoring
templates are shown in Fig. 4. Starting from the alignment of RhLip sequence with the
reference structure, a set of 100 all-atom models was generated. The best model (Fig. 5a)
was selected in terms of energetic and stereochemical quality. In details, it had 89.2 % of

Fig. 3 a Effect of organic solvents on the esterase activity. Enzyme activity was evaluated in the presence of
increasing concentration of acetonitrile (black squares), diethyl ether (black up-pointing triangles), DMSO (black
down-pointing triangles), and DMFA (black diamonds). The relative activity was measured at 30 °C in 0.1 M
CAPS pH 10.0 using pNP-pentanoate as substrate. b Effect of NaCl on the esterase activity. Enzyme activity was
evaluated in the presence of increasing concentrations of NaCl. The relative activity was measured at 30 °C in
0.1 M CAPS pH 10.0 with pNP-pentanoate as substrate
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residues in most favored regions of the Ramachandran plot according to PROCHECK
program and a WhatIf Z score of 0.050. These values, compared with those of the template
structure, i.e., Z score=−1.181 and 88.6 % of residues in most favored regions of the
Ramachandran plot, indicated that the quality of the model was really high. The RhLip
model showed an alpha-beta structure characterized by 13 α-helices (H3, H5–H16), three
310 helices (H1, H2, and H4), and nine beta-strands (B1–B9), corresponding to 39.6 and
14.5 % of the sequence, respectively. RhLip secondary structures are represented in Fig. 6.
RhLip was stabilized by two disulfide bonds as well as the template structure (Cys47–
Cys224, Cys299–Cys351). The SASAs of RhLip model and CAL A structure calculated
by POPS algorithm showed a hydrophobic area of 61.23 % and a hydrophilic area of
38.77 % for RhLip, while a hydrophobic area of 49.83 % and a hydrophilic area of
50.17 % for CAL A. Hydrophobicity of the surface exposed to the solvent is an important
feature of lipases and esterases because these classes of enzymes work at the interface
between a polar and an apolar phase. Structural analysis was carried out by analyzing the
most conserved residues of RhLip multiple alignment (Fig. 7). Ser137, Asp283, and
His323 form the catalytic triad of RhLip (Fig. 5b). These three amino acids are located
in three different loops connecting three strands to three α-helices. In particular, Ser137 is
within a conserved motif (GTSXGG), and the presence of the glycines gives some
flexibility at this area. The side chain atoms NE2 and ND1 of H323 make two h-bonds
(2.69 and 3.19 Å) with the side chain atom OG of S137 and the side chain atom OD2 of
D283. These bonds hold together the members of the catalytic triad. Moreover, carbonyl
oxygen of His323 makes a hydrogen bond (2.58 Å) with the hydroxyl group of Tyr136,
another conserved residue located in a strand of beta-sheet B. This bond further helps this
β-strand to keep close to the catalytic triad.

Molecular Dynamics

Since the three-dimensional model accurately described the structural organization of this
protein, we tried to have a more dynamic view of its structure. We have subjected the best
RhLip model to molecular dynamics simulations in order to evaluate its stability. These
studies were made at neutral as well as at alkaline pH because the sequence of this protein

Table 2 Effect of various
compounds on RhLip activity

The residual activity was measured
in 0.1 M CAPS pH 10.0 with pNP-
pentanoate at 30 °C

Compounds (5 mM) Relative activity (%)

No addition 100

CaCl2 40.77±2

CuCl2 101.94±9

MgCl2 124.27±17

LiCl2 130.10±1

EDTA 195.14±6

Tween-20 151.46±15

Tween-80 0

Triton X-100 98.06±10

�Fig. 4 Multiple sequence alignment among RhLip sequence and other four templates, which demonstrated to
display the best score. The intensity of blue color is proportional to the identity percentage. The conservation
level of residues and the consensus is also shown
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shows many positively and negatively charged residues sensitive to pH changes. The
RhLip model reached a stable equilibrated state after 6 ns simulation at both pH levels; in
fact, the related RMSD values (Fig. 7a), computed by superposing the various structures
obtained during the simulations and the initial structure at time zero, were almost constant
in the remaining simulation time. However, we noted that the fluctuations observed at
alkaline pH levels in the first 3–4 ns were slightly more severe in comparison with the
simulation computed at neutral pH (Fig. 7b). This behavior highlighted a different way for
the protein to reach an equilibrium state compared to the results at neutral pH. Then, in
order to compare the overall size of the two systems at different pH levels, we computed
the gyration radius concerning all atoms of 346 residues (Fig. 8). The gyration radius trend
showed a quite similar evolution in the simulations, and practically, no variation in
molecule compactness was observed.

Finally, the superposition of the RMS fluctuations at neutral and alkaline pH revealed that
the residues with a high degree of flexibility fell in the loop region. This was due to the high
presence of charged residues in these regions that, at neutral and alkaline pH, behaved
differently. This suggests the important functional role played by these flexible loops in
RhLip at structural as well as at functional levels.

Fig. 5 a Graphical representation of RhLip and CAL A (PDB ID: 3GUU) structures. Alpha helices are shown in
orange, 3–10 helices are shown in red, and beta-strands are shown in blue. b Graphical representation of RhLip
catalytic triad. Hydrogen bond length is displayed in angstroms
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Conclusion

The present study shed light on a new lypolitic cold-adapted enzyme, which was demonstrated
to possess interesting features and various potential applications, as additive for detergent
production and biocatalyst for regio- and stereoselective reactions in chemical synthesis [6].
The recombinant enzyme was successfully purified from the inclusion body and characterized.
RhLip was revealed to be an extremely alkaliphilic and cold-adapted esterase. As other
psychrophilic enzymes, RhLip showed a low thermostability at temperature higher than
30 °C, and this heat lability can be exploited in several applications, especially in the food
industry. In this case, an industrial process catalyzed by an esterase can be easily stopped by a
little increase in temperature, preserving food integrity and flavor.

The enhanced catalytic activity in tested organic solvents could make it useful for some
industrial purposes such as production of chemicals, biopolymers, and fuels [28]. RhLip also
showed an improved activity in the presence of 1 M NaCl. This evidence could be useful for
industrial application of food processing in the presence of a high concentration of salt. The
analysis of the RhLip model revealed some structural features of the catalytic site of this
enzyme, showing the three-dimensional arrangement and the interactions between residues of

Fig. 6 RhLip secondary structure representation. Helices are labeled from H1 to H15. Beta-strands are labeled
according to the beta-sheet they belong (a or b). Turns are labeled with β or γ. The disulfide bridge is represented
in yellow
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Fig. 7 a Trend of root–mean–square deviation (RMSD) for RhLip structure at pH 7 (black) and at pH 11 (red)
during the molecular dynamic simulations. b Trend of gyration radius at pH 7 (black) and at pH 11 (red)

Fig. 8 Root mean square fluctuations at neutral (black) and alkaline (red) pH at the end of the molecular
dynamic simulations
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the catalytic triad. Moreover, results of MD simulations highlighted that the protein seems to
be quite stable at neutral as well as at alkaline pH. Further developments of this study could be
directed to identify potential targets for site-directed mutagenesis to improve protein stability
and catalytic activity.
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a  b  s  t  r  a  c  t

Crude  protein  extracts  of Novosphingobium  sp.  PP1Y,  a microorganism  isolated  from  polluted  marine
waters  in Pozzuoli  (Italy),  were  analyzed  for the  presence  of  glycosidase  activities.  Particular  attention
was  devoted  to  a !-L-rhamnosidase  activity  able  to  hydrolyze  several  flavonoids  of  interest  for  the  phar-
maceutical  and  food  industries.  This  activity  had  an  alkaline  pH  optimum  and  a moderate  tolerance  to the
presence  of  organic  solvents,  appealing  features  for its  possible  biotechnological  uses. An increase  of  the
!-L-rhamnosidase  activity  in PP1Y  crude extracts  was  induced  by  adding  naringin  to  the  growth  medium,
suggesting  the  possibility  to  use material  from Citrus  industrial  waste  to  induce  the  glycosidase  activity
expressed  by strain  PP1Y  and  produce  simultaneously  high-added-value  molecules  from  the  hydrolysis  of
their  flavonoids.  In order  to investigate  on  the  enzymatic  mechanism  of PP1Y  !-L-rhamnosidase  activity,
hydrolysis  products  of  PNP-!-L-rhamnopyranoside  were  analyzed  by 1H-NMR  experiments.  The kinetic
behaviour  clearly  indicated  an  inverting  mechanism  of hydrolysis  for this  novel  enzymatic  activity.

© 2014  Elsevier  B.V. All  rights  reserved.

1. Introduction

Biocatalysis represents nowadays a versatile and valuable tool
for industrial biotechnologies. The use of enzymes as biocatalysts
can have significant benefits compared to conventional chemical
technologies, for achieving high reaction selectivity, higher reac-
tion rate, improved product purity, and a significant decrease in
chemical waste production. A wide variety of chemical substances
is already produced in industrial processes through the use of
enzymes [1,2].

Within this framework, !-l-rhamnosidases [E. C. 3.2.1.40] have
attracted great attention in the last decade due to their application
as biocatalysts in a variety of food, pharmaceutical and chemical
industrial processes [3].

!-l-Rhamnosidases (from now on indicated as !-RHAs) are a
class of glycosyl hydrolases that specifically cleave terminal !-l-
rhamnose from a large number of natural products, which include
flavonoids, some terpenyl glycosides [4,5] and many other natural
glycosides containing a terminal rhamnose, such as glycopeptides
antibiotics and glycolipids [6]. These enzymes have recently been

∗ Corresponding author. Tel.: +39 0818675070; fax: +39 0818041770.
E-mail address: atramice@icb.cnr.it (A. Tramice).

the focus of an increasing scientific interest. As an example, the use
of !-RHAs to improve the bioavailability, and thus the biological
activity, of flavonoids beneficial for human health as direct drugs
or as nutritional supplements, has been reported [3].

Moreover, l-rhamnose has a central role in the organic synthesis
as a chiral intermediate of pharmaceutically important compounds.
Its production using the enzymatic activity of !-RHAs in hydrolysis
reactions of glycosylated compounds that might be recovered from
waste material of food processing industry (e.g. citrus peel), repre-
sents an interesting and useful biotechnological application these
glycosidases [7].

Fungi are the main source of !-RHAs. However, these enzymes
have been isolated also from animal tissues, such as the liver of both
the marine gastropod Turbo cornutus [8] and pig [9], and from plants
such as Rhamnus daurica [10] and Fagopyrum esculentum [11].

Bacteria represent a yet unexplored reservoir of !-RHAs, which
might show novel interesting properties. An analysis of several !-
RHAs isolated from various microbial sources reveals, for example,
that one of the main differences found between fungal and bacte-
rial enzymes is their optimal pH, with the fungal enzymes showing
more acidic pH optima compared to bacterial counterparts, for
which neutral and alkaline optimal pH values have generally been
reported. This characteristic suggests different potential applica-
tions for fungal and bacterial enzymes, making bacterial !-RHAs

http://dx.doi.org/10.1016/j.molcatb.2014.04.002
1381-1177/© 2014 Elsevier B.V. All rights reserved.
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suitable in biotechnological processes requiring good activity in
more basic solutions such as the production of l-rhamnose by
hydrolysis of naringin or hesperidin, compounds whose solubility
strongly increases at higher pH values [3,12].

Despite the very limited number of bacterial !-RHAs that has
been described so far, data in literature suggest that this enzymatic
activity is widely distributed over a diverse range of ecological
niches. !-RHAs have been detected and characterized in the human
intestinal bacterium Bacteroides JY-6 [13], in cold-adapted Pseu-
doalteromonas species and Ralstonia pickettii isolated in the sea
water of sub Antarctic environment [14], also in soil bacteria such as
Bacillus sp. GL1 [15,16], Sphingomonas paucimobilis FP2001 [17] and
Sphingomonas sp. R1 [18] and finally in wine strains of Oenococcus
oeni [19].

!-RHAs from Lactobacillus species were identified and investi-
gated for their potential biotechnological use to de-rhamnosylate
flavonoids present in frequently consumed food commodities [20].

Moreover, !-RHAs genes have been cloned and expressed from
thermophilic bacteria such as Clostridium stercorarium [21] and
from the bacterium PRI-1686, which is a member of the phylum
of Thermomicrobia [22].

Recently, the crystal structure of Streptomyces avermitilis
!-l-rhamnosidase (SaCBM67) was reported [23]; its structure pre-
sented a novel catalytic carbohydrate-binding module and resulted
different from the only two structures of !-l-rhamnosidases
(GH78) previously reported: the BsRhaB isolated from Bacillus sp.
GL1 [24] and the putative !-l-rhamnosidase BT1001 from Bac-
teroides thetaiotaomicron VPI-5482 [25].

It goes without saying that the biotechnological potential of bac-
terial !-RHAs, whose structural, functional and molecular biology
aspects have not been sufficiently investigated, is strictly related
to the acquisition of new information on the enzymatic systems
isolated from new bacterial sources.

Recently, Novosphingobium sp. PP1Y, an organic solvent-
resistant, biofilm-forming marine microorganism, was  isolated
from the surface waters of a docking bay in the harbour of Poz-
zuoli (Naples, Italy), an area heavily polluted with hydrocarbons
[26]. The analysis of its genome, confirmed the presence of several
genomic features of interest for the biotechnological potential of
this microorganism, and more specifically for its exploitation as a
source of enzymes active on carbohydrates. Strain PP1Y shows in
fact a unique abundance among Sphingomonadales of genes encod-
ing for glycosyl hydrolases (53 orfs) [27], which are distributed
among 27 different families. This prompted our interest in investi-
gating the presence of !-RHA activities in the crude protein extract
of strain PP1Y.

In this work, cell extracts obtained from Novosphingobium sp.
PP1Y cells grown in minimal medium were tested for the presence
of glycosidase activities; in particular !-RHA and "-glucosidase
activities were detected and partially characterized.

This !-RHA activity was successfully used in bioconversion
studies of flavonoidic compounds, thus suggesting its potential use
as an eco-friendly tool to modulate the biological and pharmacolog-
ical properties of these molecules. It was further demonstrated by
1H-NMR experiments that !-RHA activity from Novosphingobium
sp. PP1Y functioned with an inverting mechanism, in agreement
with the enzymatic mechanism already proposed for other !-RHAs
previously described.

2. Materials and methods

2.1. General

Novosphingobium sp. PP1Y was isolated as previously reported
[26]. All reagents were purchased from Sigma-Aldrich and used

without any further purification. Silica gel, reverse-phase silica
gel C-18 and TLC silica gel plates were from E. Merck (Darmstadt,
Germany). All other chemicals were of analytical grade. Compounds
on TLC plates were visualized under UV light or charring with !-
naphthol reagent.

TLC solvent systems used were (A) EtOAc:MeOH:H2O, 70:20:10
and (B) EtOAc:AcOH:2-Propanol:HCOOH:H2O, 25:10:5:1:15.

1H-, 13C- and 2D-NMR spectra were acquired by the NMR  Service
of the Istituto di Chimica Biomolecolare of the National Research
Council of Italy (C.N.R.-Pozzuoli, Naples, Italy) and recorded on a
Bruker DRX-600 spectrometer, equipped with a TCI CryoProbeTM,
fitted with a gradient along the Z-axis, and on other Bruker
instruments with fields at 400 and/or 300 MHz. Samples for NMR
analysis were dissolved in the appropriate solvent; spectra in D2O
were referenced to internal sodium 3-(trimethyl-silyl)-(2,2,3,3-
2H4) propionate (Aldrich, Milwaukee, WI); for other solvents
downfield shift of the signal of the solvent was used as internal
standard.

In the bioconversion studies followed by 1H-NMR experiments,
reported in paragraph 2.8 and 2.9, the selected signals integral
values of products and reagents resulted affected by an error in
integration (<5%) which depended upon instrument optimization.

Protein concentration was routinely estimated using the Bio-
Rad Protein System [28]; bovine serum albumin was used as
standard.

2.2. Bacterial growth

Novosphingobium sp. PP1Y was routinely grown in minimal
medium. Potassium phosphate minimal medium (PPMM) con-
tained 20 mM potassium phosphate pH 6.9, 1 g/L NH4Cl and
100 mM NaCl. After autoclaving, 5 mL  of a trace element solution
was added to each litre of cooled PPMM.  The trace element solu-
tion contained in a 0.92% solution of HCl: 30.1 g/L MgSO4, 4.75 g/L
FeSO4 × 7H2O, 5.4 g/L MgO, 1.0 g/L CaCO3, 0.72 g/L ZnSO4 × 7
H2O, 0.56 g/L MnSO4 × H2O, 0.125 g/L CuSO4 × 5 H2O, 0.14 g/L
CoSO4 × 7 H2O, 0.03 g/L H3BO3, 0.004 g/L NiCl2 × 6 H2O, 0.006 g/L
Na2MoO4 × 2H2O. When using PPMM as growth medium, 0.4%
(w/v) of glutamic acid, prepared in deionized water and steril-
ized by filtration with a 0.22 #m Millipore membrane, was used
as unique carbon and energy source and added to the autoclaved
media. Cultures were incubated at 30 ◦C with orbital shaking
(220 rpm).

Bacterial growth was  monitored by measuring the optical
density at 600 nm (OD600). A pre-inoculum in rich medium was pre-
pared by transferring 50 #L from a glycerol stock stored at −80 ◦C
to a 50 mL  Falcon tube containing 12.5 mL  of sterile LB medium. LB
was prepared according to Sambrook et al. [29]. The pre-inoculum
was allowed to grow at 30 ◦C for at least 14 h at 220 rpm and then
used to inoculate 1 L of a preparative growth in PPMM medium at
an initial cell concentration of 0.01–0.02 OD600/mL. Cells were usu-
ally harvested after 24 h at a final optical density of ca. 1 OD600/mL.
It is worthy to note that, when following the growth for more than
24 h, the formation of flocks was  observed, thus hampering a correct
estimation of the turbidity of the cell suspension.

2.3. Preparation of Novosphingobium sp. PP1Y crude protein
extract

Cell cultures were harvested by centrifugation at 5,524 × g for
30 min  at 4 ◦C. Cell pellets were suspended in 25 mM MOPS at pH
7.0 and disrupted by sonication (30′ total, 30 s ON and 30 s OFF) in
an ice-water bath. Cell suspension was  centrifuged at 17,418 × g at
4 ◦C for 60 min. The soluble fraction obtained after centrifugation
was filtered on a 0.45 mm Millipore membrane, divided in aliquots
and stored at −80 ◦C. When used for the screening of glycosidase
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Table  1
Evaluation of different substrates bioconversion by using glycosidase activities in
the crude extract of Novosphingobium sp. PP1Y cells.

Substratesa Crude extract of PP1Y cells grown in PPMM medium

Hydrolysisb Transglycosylationc

3 h 24 h 3 h 24 h

PNP-!-d-Glcp + + − +/−
PNP-!-d-Glcp +  ++ + ++
PNP-!-d-Galp +/−  + − +/−
PNP-!-d-Galp  + ++ + ++
PNP-!-d-Manp − − − −
PNP-"-d-Manp − − − −
PNP-!-d-Xylp  − − − −
PNP-!-d-Xylp +  ++ +/− +
PNP-!-l-Fucp − − − −
PNP-!-d-Fucp  + ++ + ++
PNP !-d-NAGp − − − −
PNP "-d-NAGp +/− + +/− +/−
PNP-"-l-Rhap ++ +++ − +/−
PNP-!-l-Araf − − − −

Note: −/+: percentage of products below 10%; +: 10–30% of products; ++: 30–70% of
products; +++: percentage of products higher than 70%.

a Araf, arabinofuranose; Fucp, fucopyranose; Galp, galactopyranose; Glcp, glu-
copyranose; Manp, mannopyranose; NAGp, N-acetylglucosaminopyranose; Rhap,
Rhamnopyranose; Xylp, xylopyranose.

b Hydrolysis products were analyzed by comparing Rf values with appropriate
standards in TLC solvent system A.

c Due to self-transglycosylation reactions, products showed positive UV
absorbance and lower Rf than the corresponding aryl substrates in the selected TLC
solvent system A.

activities (Section 2.4), the soluble fraction was  dialyzed against
20 mM potassium phosphate at pH 7, and then divided in aliquots
and stored at −80 ◦C. PP1Y crude extracts were assayed for their
total protein content.

Without any different indication, all experiments reported in the
following sections, were performed using a crude extract obtained
from a 2 L culture of PP1Y cells grown in PPMM medium and with
a protein concentration of 3.72 mg  total protein/mL. Cells were
recovered after 24 h at an optical density of 1.02 OD600/mL.

2.4. Glycosidase activities screening

PP1Y crude protein extract, prepared as described in the previ-
ous paragraph, was tested for the presence of glycosidase activities
by using several pNP-!- and pNP-"-substrates (Table 1) at a 20 mM
concentration in 0.6 mL  of 50 mM Na-phosphate buffer pH 7, at
35 ◦C and under magnetic stirring. All reactions were carried out
using 4.42 mg  of total protein/mmol of reagent. Reactions were
monitored over time (0–24 h) by TLC analysis (system solvent A).

Moreover, hydrolysis reactions with maltose, lactose, cellobiose,
sucrose, raffinose, laminaripentaose, laminarin, curdlan, "-glucan
from barley, xylan from birch wood, pullulan, amylopectin and
starch as substrates were carried out using crude extracts of PP1Y
cells grown in PPMM.  Each substrate (10 mg)  was suspended in
1 mL  of 50 mM  Na-phosphate buffer pH 7, containing 41.6 #g of
total protein/mL of reaction mixture. Reactions were performed at
35 ◦C. Hydrolysis products were monitored by TLC analysis (system
solvents A and B).

Flavonoidic substrates such as naringin, diosmin, rutin, hes-
peridin, neohesperidin dihydrochalcone, quericitrin, were tested.
To this purpose, a 2 mM solution of each compound prepared in
a final volume of 1 mL  of 50 mM Na-phosphate buffer pH 7 was
incubated at 35 ◦C in the presence of 100 #L of PP1Y crude extract
obtained from cells grown in PPMM (3.72 mg  of total protein/mL)
for 24 h. Reactions were checked over time by TLC analysis (solvent
system A).

Rutinose hydrolysis was also investigated. In this case, 0.5 mL  of
a solution containing 6 mM rutinose, 0.25 mL  of PP1Y crude extract
in 50 mM of Tris/HCl buffer at pH 8.5 was  incubated at 35 ◦C under
magnetic stirring and monitored by TLC analysis (solvent system
A) for 24 h.

In all experiments, TLC standard solutions of pure reagents and
products were used for comparison.

2.5. ˛-l-rhamnosidase activity assay

!-RHA activity was  determined using p-nitrophenyl-!-l-
rhamnopyranoside (pNPR) as substrate. The assay was  performed
in 0.5 mL  of 50 mM potassium acetate buffer pH 5.5, containing a
variable amount of PP1Y crude extract and pNPR at a final concen-
tration of 0.28 mM.  The assay mixture was incubated for 30 min
at room temperature; afterwards, 0.5 mL  of a 1 M sodium carbon-
ate solution were added and the sample absorbance was recorded
spectrophotometrically at 405 nm (ε405 = 0.0182 #M−1cm−1). One
milliunit of enzymatic activity was  defined as the amount of
enzyme that releases 1 nmol of p-nitrophenol per min.

2.6. Induction of ˛-l-rhamnosidase activity

To evaluate the possible influence of naringin on the expres-
sion of the intracellular !-rhamnosidase activity of the strain PP1Y,
we compared the specific activity in cell extracts obtained from
growths in PPMM to which increasing concentrations of naringin
were added. To this purpose, four 250 mL-Erlenmeyer flasks were
prepared, each containing 250 mL  of PPMM medium and 0.4% glu-
tamic acid as unique carbon and energy source. Variable amounts
of naringin were added to autoclaved media, in order to have final
concentrations of 0.1–0.2–0.3 mM.  The four flasks were inoculated
with an overnight culture of PP1Y in LB, as described in paragraph
2.2. The initial cell concentrations in the flasks were comparable
and in the range 0.02–0.04 OD600/mL.

2.7. Influence of pH and organic solvents on ˛-l-rhamnosidase
and ˇ-glucosidase activities

In experiments of pH monitoring, 2 mM  solutions of naringin
were prepared in HCl/KCl, Na-acetate, Na-phosphate, Tris/HCl, Na-
carbonate buffers, in order to cover the pH range between 2.2 and
10.9 (Table 2). 100 #L of PP1Y crude extract were added to 0.5 mL
of each solution and incubated at 35 ◦C under magnetic stirring.
Reactions were checked every 20 min  by TLC analyses (solvent sys-
tem A) and naringin consumption was evaluated by using solutions
of pure naringin, narigenin, rhamnose and glucose as chromato-
graphic standards. Blank reactions at different pHs were performed
to evaluate the chemical degradation of the flavanone glycoside,
occurring preferentially in strongly basic conditions.

Similarly, solutions of 2 mM naringin in 50 mM Tris/HCl buffer
pH 8.5 containing 1, 10 and 50% v/v of DMSO or CH3CN (Table 2)
were placed under constant agitation at 35 ◦C in the presence of
200 #L of PP1Y crude enzymatic extract (0.74 mg total protein)/mL
of reaction. As previously reported, reactions were monitored by
TLC analysis (solvent system A).

2.8. Stereochemical course of ˛-l-rhamnosidase activity in
hydrolysis reactions

To the purpose, 800 #L of a 6 mM pNPR solution prepared
in 50 mM Tris/HCl buffer pH 7 was  freeze-dried, re-suspended
three times in D2O and re-freeze-dried to exchange the 1H atoms
involved in labile linkages for 2H ones. A similar procedure of proton
isotope exchange was  applied to 200 #L of PP1Y crude extract. Just
prior to the 1H-NMR experiment, the previously exchanged pNPR
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Table  2
The influence of pH and organic solvents presence on naringin hydrolysis by !-RHA
activity in PP1Y crude protein extract.

pH values Naringin hydrolysis

Time (min)

60 120 140 180

2.2 − − − −
3.6  − − − −
5.4  − − − −
5.9  − − − −/+
6.1  − −/+ −/+ +
7.2  −/+ + ++ ++
8.1  − ++ ++ ++
8.3  + ++ +++ +++
8.5  + +++ +++ +++
8.8  + ++ +++ +++
9.1a − − + +
9.9a − − + +
10.9a − − + +

%  of organic solvent
DMSO 1% + ++ ++ +++
DMSO 10% + + ++ +++
DMSO 50% − − − −
CH3CN 1% − − − −/+
CH3CN 10% − − − −
CH3CN 50% − − − −

Note: − no hydrolysis; −/+: percentage of hydrolysis below 10%; +: 10–30% of hydrol-
ysis; ++: 30–70% of hydrolysis; +++: percentage of hydrolysis higher than 70%.

a In these conditions a partial chemical degradation of naringin was observed
which was suggested by the presence on TLC, along with the disappearance of the
substrate, of a product more polar than naringin and the absence of rhamnose and
glucose spots, thus confirming the absence of an enzymatic hydrolysis.

solution was dissolved in 0.75 mL  of D2O, equilibrated at 35 ◦C in a
NMR  tube inside the spectrometer probe, and an initial spectrum of
solution without enzyme was recorded (T0). The aliquot of freeze-
dried crude extract was suspended in 50 #L of D2O and added to the
solution. Starting from that moment (T0 with enzyme), the stereo-
chemical course of hydrolysis was followed by recording 1H-NMR
spectra at close intervals during the incubation time (from 0 to
60 min).

A 6 mM  solution of free rhamnose dissolved in 50 mM Tris/HCl
buffer pH 7 was treated and monitored by 1H-NMR experiments as
previously reported.

2.9. Bioconversion studies followed by 1H-NMR analyses

pNPR, naringin, rutin and neohesperidin dihydrochalcone
bioconversions were performed and compared by 1H-NMR spec-
troscopic analyses.

In particular, 11.4 #mol  of each substrate were dissolved in
1.9 mL  of Na-phosphate buffer (50 mM,  pH 8.5 or pH 7) contain-
ing 1 mL  of PP1Y crude extract. Reactions were incubated at 35 ◦C,
under constant magnetic stirring for 3 h. Aliquots of 380 #L were
withdrawn from each reaction at different time intervals from 0
to 173 min. Enzymatic reactions were stopped by boiling at 100 ◦C
for 2 min  and samples were freeze-dried. Collected aliquots were
dissolved in MeOD or D2O, as for pNPR, and analyzed by 1H-NMR
experiments. These reactions were also monitored by TLC analy-
sis (system solvent A). These reactions were also monitored by TLC
analysis (system solvent A).

2.10. Prunin production

The reaction was performed using 2 mL  of PP1Y crude extract
which were previously lyophilized and then resuspended in a 1 mL
solution of Na-phosphate buffer (50 mM,  pH 8.5) containing 10%
of DMSO. 72.5 mg  of naringin (0.125 mmol) were added and the

sample was  incubated at 35 ◦C, under magnetic stirring. Reaction
was stopped after 72 h by heating the sample at 100 ◦C for 2 min
and prunin was  isolated by silica gel purification with EtOAc:MeOH
9:1 (v/v) as mobile phase. 1D and 2D NMR  analyses confirmed its
structure.

3. Results and Discussion

3.1. Glycosidase activities screening

Glycosidase activities in crude protein extract of Novosphingob-
ium sp. PP1Y cells collected after a 24 h growth in PPMM medium
(Section 2.2) were preliminary investigated for their hydrolytic and
transglycosylation potentials, as described in Section 2.4. Reaction
products were analyzed over time by TLC analysis using solvent
system A Section 2.1, and the results were reported in Table 1.
Data indicated that !-l-rhamnosidase and "-glycosyl hydrolases
activities resulted the most abundant ones. After 3 h, 30–70% of
PNP-!-l-Rhap and 10–30% of PNP-"-d-Glcp, PNP-"-d-Galp, and
PNP-"-d-Xylp were hydrolyzed. Hydrolysis reactions were allowed
to proceed for 24 h. At this time, an almost complete conversion of
PNP-!-l-Rhap was observed.

Transglycosylation reactions resulted more interesting by using
PNP-"-glycosides as substrates, suggesting a better attitude
of "-glycosyl hydrolases to transfer monosaccharidic units in
self-condensation reactions than the !-l-rhamnosidase activity;
aryl-"-oligosaccharides were present in the reaction media up to
24 h.

Polysaccharides and oligosaccharides were also tested as pos-
sible substrates for the enzymatic activities present in PP1Y crude
extracts. Products formation was  monitored by TLC analysis (sys-
tem solvents A and B, Section 2.1), using pure compounds as
chromatographic standards. After 24 h of reaction, curdlan and
laminarin were only slightly consumed whereas laminaripentaose
resulted the best hydrolyzed oligosaccharide, resulting in the major
production of glucose; cellobiose, instead, was not a good substrate
(data not shown).

!-glucans like pullulan, amylopectin, starch and maltose were
partially or almost totally hydrolyzed to glucose, maltose or larger
oligosaccharides, suggesting the possible presence of !-glucanase
activities (data not shown).

These preliminary data confirmed the biotechnological poten-
tial of PP1Y strain as a source of a wide array of enzymatic activities
that can be used for the modification of carbohydrates and glyco-
conjugates.

3.2. Hydrolytic behaviour of PP1Y crude extract enzymes on
flavonoids: description, pH dependence and tolerance to organic
solvents

The simultaneous presence in PP1Y crude extract of !-RHA and
"-glucosidase activities prompted us to investigate the possibil-
ity to hydrolyze selected flavonoidic compounds, having in their
chemical structure both !-rhamnose and "-glucose units, such as
naringin, diosmin, rutin, hesperidin, neohesperidin dihydrochal-
cone and quericitrin (Fig. 1). It is worth to note that chemical
modification of these compounds, which are endowed with ther-
apeutic potential [12] is important to modulate their biological
activity.

In the reaction conditions reported in Section 2.4, after 3 h of
incubation, complete conversion of naringin, rutin and neohes-
peridin dihydrochalcone was detected by TLC analysis (system
solvent A, Fig. 2): spots of rhamnose, glucose and the corresponding
aglycone were observed for each reaction.
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Fig. 1. Chemical structure of flavonoidic compounds used as substrates. Chemical shift values of signals that are integrated in bioconversion reactions are reported.

On the other hand, diosmin, hesperidin and quericitrin were
not hydrolyzed; after 24 h as observed by TLC investigations (sys-
tem solvent A) rhamnose and glucose spots, at Rf 0.56 and 0.3
respectively, were absent on TLC plates of diosmin and hesperidin

reactions. Quericitrin was so poorly consumed (yield below 3%) that
its hydrolysis was  considered negligible; indeed, a very scarce pres-
ence of quercetin and rhamnose, at Rf 0.88 and 0.56 respectively,
was observed.
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Fig. 2. Flavonoids hydrolysis followed by TLC (system solvent A). TLC standard
solutions at a concentration of 2 mM were used. Nar: naringin, R-nar: naringin
reaction; rut: rutin, R-rut: rutin reaction; neohe: nehoesperidin dihydrochalcone;
R-neohe: nehoesperidin dihydrochalcone reaction; glu: glucose, rha: rhamnose; es:
enzymatic solution.

These data gave some indication on the substrate preference of
the !-RHA activity expressed by strain PP1Y under our experimen-
tal conditions.

Diosmin and hesperidin (Fig. 1), which contained the rutinose
disaccharide (!-l-Rhamnopyranosyl-(1 → 6)-"-d-glucopyranose)
linked to the phenolic portion of the molecules, were not
hydrolyzed. Rutin, whose rutinoside portion was  linked to the
quercetin 3-enol position, was instead converted. Under similar
reaction conditions, flavonoids with the neohesperidose disac-
charide 2-O-(6-deoxy-!-l-mannopyranosyl)-"-d-glucopyranose)
linked to the phenolic portion (naringin and neohesperidin dihy-
drochalcone) were completely transformed.

These data suggested that the !-RHA activity was able to
hydrolyze both !,1-2 and !,1-6 interglycosidic linkages. Most of
the !-RHAs reported in literature are mainly active on !-1, 2 gly-
cosidic linkages, to a smaller extent on !-1,6 linkages, and even
less on other glycosidic bonds [30]. Interestingly, the enzymatic
activity expressed by strain PP1Y was specific for !,1-2 intergly-
cosidic bonds when the disaccharide unit of rutinose was  linked
to the phenolic hydroxyl groups. In fact, diosmin and hesperidin,
which shared the presence of a !,1-6 interglycosidic bond in the
disaccharide units linked to a phenolic site, were not hydrolyzed.
The !,1-6 interglycosidic bond was instead hydrolyzed when the
rutinose unit was linked to 3-enol position of rutin. This hydrolytic
behaviour might be a consequence of a different steric effect deriv-
ing from the attachment of the disaccharidic units to different sites
of the aglycons [3].

Free rutinose disaccharide was  also examined as a possible sub-
strate, resulting in a very low yield of products (data not shown),
thus suggesting the importance of the aromatic portion of the
flavonoidic moiety in the recognition mechanism of the enzymes
involved.

Moreover, quercitrin, the quercetin 3-!-l-rhamnoside, in which
l-rhamnose is directly linked to the aglycon, was  not hydrolyzed.
It should be noted that a marked preference for the of PNP-!-l-
Rhap (from now on indicated as pNPR) in comparison to quercitrin,
robonin or rutin has been reported also for other characterized !-
RHAs [3].

The solubility of flavonoids (typically polyphenols) is pH-
dependent and generally increases in alkaline media, which are
often not compatible with the enzymatic activities used in bio-
processes. Using naringin as the most water-soluble available
flavonoid (0.5 g/L at 20 ◦C) [31], the influence of pH and organic sol-
vents on the hydrolytic behaviour of the enzymes present in PP1Y
crude extracts was investigated.

Results of these experiments were reported in Table 2. A higher
yield of naringin hydrolysis products was  obtained at alkaline pH
values ranging from 7.2 to 8.8 (Na-phosphate and Tris/HCl buffers)
and an optimum pH value of 8.5 was determined. In this case, after
3 h of reaction, substrate spots were absent on TLC plates, thus
suggesting a substrate complete depletion.

Within a reaction time of 3 h, TLC analyses of reaction systems in
the pH range 8.2–8.8 showed the presence of a product with an Rf
value higher than that of naringin. Free glucose and the narigenin
aglycone were almost absent.

These data suggested the occurrence at these basic pH values of
a marked decrease of the "-glucosidase activity, which should be
responsible for the production of free glucose and narigenin agly-
cone, and the permanence of the !-RHA activity. This hypothesis
was confirmed by the concomitant accumulation of a compound
which was identified as prunin (Fig. 1), the de-rhamnosylated
product of naringin, a molecule of biotechnological importance
endowed with anti-inflammatory and antiviral activity against
DNA/RNA viruses [32,33].

It is worth to note that bacterial !-RHAs having a pH optimum
value at 8–8.5 have not been often reported in literature [30].

Prunin structure (Fig. 1) was confirmed by a 2D NMR  spectro-
scopic investigation. The presence of the "-glucose residue was
established by the value of the anomeric position signal in 13C NMR
spectrum (in MeOD) at 101.25 ppm which resulted correlated in
HSQC spectrum to the diastereoisomeric anomeric protons H-1′ at
5.01 (J = 6.90 Hz), and 4.99 (J = 6.90 Hz) ppm. The following signals
(in ppm): C-2′ 74.66 (H-2′: 3.48), C-3′ 77.82 (H-3′: 3.47), C-4′ 71.16
(H-4′: 3.41), C-5′ 78.28 (H-5′: 3.42), C-6′ 62.34 (H-6′-H-6′′: 3.90,
3.72) confirmed the glucose structure of prunin saccharidic portion.
Aglycone structure was  confirmed by the 13C spectrum signals at
80.69 ppm (C-2), 44.19 ppm (C-3), 166.98 and 167.05 ppm (C-7, the
glycosylation site), 129.12 ppm (C-2′′-C6′′), 116.33 ppm (C-3′′-C5′′)
and in 1H-NMR spectrum by the proton signals at 7.35 ppm (H-
2′′-H6′′) and 6.85 ppm (H-3′′-H5′′). The other signals in the spectra
were in agreement with data previously reported [34]. The increase
of the !-RHA activity present in PP1Y protein extracts observed at
alkaline pH values was  also confirmed by the pNPR bioconversion
study followed by NMR  analysis reported in Section 3.3.

The pH variation is not the unique strategy that has been used to
overcome the poor hydrosolubility of flavonoids; the use of water-
miscible organic co-solvents, in fact, has also been suggested [31].
However, it should be noted that this strategy has several draw-
backs, such as toxicity problems derived from the use of an organic
solvent in a bioprocess, and the possible decrease in the enzymatic
activities employed [35].

In this study, the influence of the presence of organic solvents
on the hydrolysis of naringin was  evaluated by TLC analysis of
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reaction mixtures containing from 1 to 50% v/v DMSO or CH3CN
(Table 2). After 90 min, in the presence of 1% and 10% of DMSO,
naringin was almost totally consumed and traces of prunin were
detected, suggesting a tolerance of the !-RHA activity to the pres-
ence of organic solvents along with a detrimental effect of DMSO
on the "-glucosidase activity, as free glucose was  almost absent in
the reaction mixtures.

Finally, in the presence of either 50% DMSO or any concentration
of CH3CN, de-rhamnosylation and de-glucosylation reactions did
not proceed even after 10 h.

Using the apparent best experimental conditions reported in
Table 2 (pH value of 8.5 and 10% DMSO), and starting from a 125 mM
naringin solution (Section 2.10), prunin was produced with a yield
of 32.1%, corresponding to a final concentration of 0.02 M and an
amount of 17.4 mg  of recovered product.

Furthermore, free l-rhamnose was produced as a secondary
product at a concentration of 6 g/L. The yield of products obtained
in this experiment was comparable to that reported for a recombi-
nant !-RHA from Clostridium stercorarium used for the hydrolysis
of citrus peel waste naringin [7] and to other similar processes [30].

3.3. Bioconversion experiments followed by NMR

To confirm and better detail the observations on the substrate
preference of the !-RHA activity in Novosphingobium sp. PP1Y
crude protein extracts described in the previous paragraph, bio-
conversion reactions of pNPR, naringin, rutin and neohesperidin
dihydrochalcone were performed using PP1Y cell extracts (Section
2.9), and monitored over time by 1H-NMR.

Based on diagnostic signals of reagents and products for each
reaction, substrate conversions were calculated by measuring the
percentage ratio between the integrals of diagnostic signals of the
products and the sum of the integration values of selected signals
of reagents and final products. Results were reported in Fig. 3.

The highest yield of bioconversion in a shortest time was
obtained with rutin. After 20 min  76.2% of the substrate was  con-
sumed. At the same time, 30–35% of pNPR, 26% of naringin, and 7%
of neohesperidin dihydrochalcone were transformed.

After 173 min, naringin and neohesperidin dihydrochalcone
reached bioconversions yields (95.6 and 86%, respectively) similar
to rutin (89.4%). Under these conditions, 3.1–3.3 g/L of flavonoids
were converted to products and, although the flavonoidic sub-
strates were not totally hydrolyzed to aglycone, free l-rhamnose
was released into the reaction media at a concentration of about
0.77–0.86 g/L.

It should be added that pNPR bioconversion was performed not
only at pH 8.5 but also at pH 7, looking for a possible pH influence on
PP1Y !-RHA activity (see Section 3.2). In the experiment in which
naringin was used as a substrate, the reaction course was  evalu-
ated by comparing in 1H-NMR spectra the integral values of two
aromatic protons singlets (Fig. 1) H6–H8 in ring B at 6.19 ppm and
6.28 ppm, which were attributed a value of 2, to the integration of
the corresponding protons of the final product narigenin (aglycon)
at 5.78 and 5.8 ppm. 1H-NMR spectra in MeOD of naringin, narin-
genin and prunin (H6–H8 signals at 6.22–6.24, respectively) of pure
solutions confirmed the identity of narigenin integrated signals.

When rutin was used as substrate, aromatic proton signal H6
of the reagent at 6.18 ppm was selected as reference for the inte-
gration (Fig. 1). As for the reaction products, an aromatic signal at
6.13 ppm, which increased over time, was selected for evaluating
rutin bioconversion.

After 10 min  of reaction, the anomeric proton of "-glucose in
rutin at 5.07 ppm (d, J = 7.61 Hz) almost disappeared (72% of con-
version) and an anomeric proton signal at 5.035 ppm (d, J = 8.07 Hz),
possibly corresponding to the "-anomeric proton of quercetin 3-"-
glucoside, appeared; anomeric signals of free glucose were absent.

On the other hand, in 1H-NMR spectra at 173 min, anomeric
protons region was  more crowded with signals due to the pres-
ence of free glucose (!-proton at 5.13 ppm J = 3.91 Hz; "-proton at
4.50 ppm, J = 7.8 Hz) and a signal at 5.023 ppm of free rhamnose
!-proton (with the "-anomeric proton overlapped by the solvent
residual water signal).

These data suggested a fast hydrolysis of the interglycosidic link-
age inside the rutinose unit (!-l-Rha-(1 → 6)-"-d-Glu) with the
production of free rhamnose at the beginning of the reaction, as
confirmed by the presence of a further methyl signal at 1.27 ppm
after 10 min  of reaction, corresponding to protons at position 6 of
free rhamnose, and the subsequent release of flavonol quercetin
and glucose.

The Neohesperidin dihydrochalcone bioconversion was eval-
uated by 1H-NMR using the aromatic signals at 6.049 ppm,
corresponding to two  overlapped aromatic protons H2 and H6
(Fig. 1) linked to the saccharidic portion, as the reagent reference
signals, with a integral value of 1, and a signal at 6.077 ppm, belong-
ing to the reaction product.

An evaluation of the anomeric signals in the range 4.45:5.2 ppm
of 1H-NMR experiment showed, after 173 min of reaction, the pres-
ence of the !-proton signal of linked rhamnose at 5.28 ppm and the
anomeric signal of "-glucose at 5.065 ppm (d, J = 7.63 Hz) which
belonged to the substrate, the !- and "-anomeric protons sig-
nals of free glucose at 5.13 ppm (d, J = 3.81 Hz) and 4.50 ppm (d,
J = 7.63 Hz) respectively. Moreover, an intense signal at 5.03 ppm
of the !-anomeric proton of free rhamnose, a signal at 4.95 ppm
(d, J = 7.31 Hz) almost as intense as the previous signal, which was
partially covered by residual H2O signal in MeOD,  corresponding
to "-glucose H1 signal of neohesperidin dihydrochalcone without
rhamnose were also observed. On the contrary, the free rhamnose
"-anomeric signal was totally overlapped by residual H2O signal in
MeOD.

The high intensity of the !-anomeric proton of free rhamnose
and the scarce presence of anomeric signals of free glucose, led us to
suppose that the main reaction product was  the de-rhamnosylated
neohesperidin dihydrochalcone.

In experiments using pNPR as substrate, the integral value of
aromatic proton signal at 7.23 ppm was  set to 1 and the signal of p-
nitrophenol at 6.69 ppm produced by the hydrolysis of glycosidic
linkage was  selected for the assessment of pNPR bioconversion.
This bioconversion was performed at two pH values; as reported in
Fig. 2, after 60 min, the conversion of pNPR was  of about 61% at pH
7, whereas at higher pH it reached 97%, thus confirming the trend of
the experiments in which naringin was  used as substrate described
in Section 3.2.

3.4. Induction of ˛-RHA activity in PP1Y cell extracts

!-RHA activity can be specifically induced by several flavonoids
[36,37] among which naringin is of particular interest because this
compound can be abundantly recovered in citrus solid wastes.
These wastes are quite interesting because they can be used either
as an energetic source for growing microorganisms, due to their
content in carbon and other nutrient components, and/or as a
specific inducer for the biosynthesis of glycosidases due to the pres-
ence of flavonoids. It goes without saying that the use of citrus
waste as starting material in bioconversion processes is an advan-
tage for industrial companies because, among others, it decreases
the expenses for waste disposal. The possible role of naringin as
an inducer of the !-RHA activity [37] in PP1Y protein extracts
was investigated using PP1Y cells grown in PPMM medium sup-
plemented with naringin at different initial concentrations up to
0.3 mM,  as described in detail in Section 2.6.
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Fig. 3. Bioconversions of naringin !, rutin !, neohesperidin dihydrochalcone —, p-nitrophenyl-!-l-rhamnopyranoside at pH 7 " and 8.5 #.

The effect of naringin could not be evaluated at concentrations
higher than 0.3 mM due to its poor solubility under the experimen-
tal conditions used.

The effect of naringin could not be investigated at concentra-
tion values higher than 0.3 mM due to its poor solubility under the
experimental conditions used. Results were reported in Fig. 4 and
confirmed that naringin acts as an inducer leading, at a concentra-
tion of 0.3 mM,  to a maximum 5-fold increase of the !-RHA activity
(15.2 mU/mg) detected in the crude extract of PP1Y cells. These
data encourage a future biotechnological use of PP1Y strain and of
its !-RHA activity for the use of agro-industry vegetable residues.

3.5. Stereochemical course of ˛-RHA activity in hydrolysis
reactions

To shed light on the type of enzymatic mechanism of PP1Y
!-RHA activity, hydrolysis products of pNPR were analyzed by
recording 1H-NMR spectra over time. The integration of the
anomeric proton signals of reagent and products was investigated;
the analysis was  performed taking into account that the anomeric
proton of free rhamnose shows peaks at 5.06 ppm (!-anomeric
form) and 4.83 ppm ("-anomeric form). Results were reported in
Fig. 5, where the reaction time-dependent changes in amplitude
of H-1 signals from substrate, !-1(S) (5.68 ppm), and products,

Fig. 4. !-RHA specific activity in the cell extract of strain PP1Y is expressed as
mU/mg  of total proteins (Y-axis). Specific activity is reported as a function of the
concentration of naringin initially added to the growth medium.

!-1(P), and "-1(P), were plotted as % of total anomeric (H-1) signals.
At t0, the only !-anomeric proton signal present was  that of pNPR
at 5.68 ppm (!-1 (S)). During the first minutes of reaction a signal
at 4.83 ppm, corresponding to the "-l-Rhap anomeric proton ("-1
(P)), appeared only slightly earlier than the appearance of a further
signal at 5.06 ppm, corresponding to the !-l-Rhap anomeric proton
(!-1 (P)).

These signals increased in intensity over time, while the
anomeric signal of pNPR decreased concomitantly, as it is evident
from Fig. 5. NMR  analysis did not gave evidence for the onset of
mutarotation equilibration during the first minutes of reaction.

Later in the incubation, mutarotation of the initially released "-
l-Rhap increased the ratio between the intensities of the !- and
"-anomer protons signals. After 7 min, at a conversion percentage
of 7.5%, the relative intensities of the !- and "-anomer resonances
(calculated from peaks integration) were in a ratio of about 1:3
(25% of the !- and 75% for the "-anomer). After 20 min, at a con-
version percentage of 29%, the !-/"-anomer ratio was of about 1:2
(32% of the !- and 68% for the "-anomer). After 60 min, at a con-
version percentage of 61.5%, the !/" ratio value increased to about
1:1. This ratio was kept constant also after 80 min, when the inte-
gration values showed that the yield of pNPR consumption was  of

0
10
20
30
40
50
60
70
80
90
100

2 7 10 12 20 40 60 80

pe
rc

en
ta

ge
   

%

time  (min)

PNP-αα- Rha hyd rolys is

Fig. 5. % of total anomeric signals in p-nitrophenyl-!-l-rhamnopyranoside hydrol-
ysis  reaction: signals from substrate, !-1(S) ", and products, !-1 (P) #, and "-1 (P)
!,  are plotted as % of total anomeric (H-1) signals.



V. Izzo et al. / Journal of Molecular Catalysis B: Enzymatic 105 (2014) 95–103 103

about 86%, and was maintained up to 18 h, thus representing the
equilibrium value of the ratio between both anomeric forms of l-
rhamnopyranose. A solution of free rhamnose used in the same
experimental conditions and monitored by 1H-NMR reached the
mutarotational equilibrium after 1–2 min  and the concentrations
ratio of !- and "-rhamnose was 1:1.

The kinetic behaviour suggested by these experiments for PP1Y
!-RHA activity was an inverting mechanism of hydrolysis in which
"-rhamnose was formed from the !-rhamnose via a single dis-
placement mechanism and was then spontaneously converted by
mutarotation to the !-anomeric form.

4. Conclusions

Bacterial glycosyl hydrolases are the focus of an increasing num-
ber of researches because of their key role in fundamental biological
processes and their biotechnological applications. Here, the atten-
tion was focused on a novel !-RHA activity from Novosphingobium
sp. PP1Y, which resulted interesting for its alkaline pH optimum
and moderate tolerance to organic solvents.

This !-RHA was used, even without any further purification of
PP1Y crude protein extract, for the bioconversion of flavonoids use-
ful for the food and pharmaceutical industries. However, a future
detailed biochemical characterization of this enzyme is now cru-
cial for a better understanding of its effective biotechnological
potential.
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The enormous potential in diversity of the marine life is still not fully exploited due
to the difficulty in culturing many of the microorganisms under laboratory conditions.
In this mini-review we underlined the importance of using an omics technique, such
as metagenomics, to access the uncultured majority of microbial communities. We
report examples of several hydrolytic enzymes and natural products isolated by functional
sequenced-based and function- screening strategies assisted by new high-throughput
DNA sequencing technology and recent bioinformatics tools. This article ends with an
overview of the potential future perspectives of the metagenomics in bioprospecting novel
biocatalysts and bioactive compounds from marine sources.
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MARINE ENVIRONMENT
Marine environment is the largest aquatic ecosystem on the
planet and it is estimated to be one of the most important
sources of biodiversity in the world (Zhao, 2011; Felczykowska
et al., 2012). Marine ecosystems have peculiar characteristics that
result from the unique combination of several physical factors.
These habitats allow the growth of a multitude of organisms,
such as bacteria, algae, sponges, fungi, and fishes, which are
able to face with these harsh conditions. In particular, certain
microorganisms are able to live in the cold sea of Arctic and
Antarctic regions, and these species growth under high pres-
sure and low temperatures, at different pH and salinity, or in
seas characterized by high level of pollutions (Norway, Red Sea).
For their particular features, many of these microorganisms are
used in a wide range of biotechnological applications, provid-
ing novel bioactive compounds (Faulkner, 2001) and biocatalysts
for modern industries (Kennedy et al., 2011; De Pascale et al.,
2012).

However, most of the marine biodiversity is still unexplored,
because of the difficulties in reproducing marine microenviron-
ment in laboratory. In fact, it has been estimated that less than
0.1% of all microbes in the oceans today has been discovered so
far (Simon and Daniel, 2009) and therefore it is clear we have
explored just a minimal part of the vast potential of the ocean
in terms of natural product discovery.

For these reasons most of the marine bioma remained so far
uncultured, therefore the marine treasure still remains in the
abysses.

Metagenomics, with its culture-independent principle, offers
novel opportunities for studying marine biodiversity and its
biotechnological application.

Herein, we analyzed the state of the art of marine
metagenomics, focusing on the discovery and application of novel
enzymatic biocatalysts and bioactive compounds as well as the
novel technological improvement in the field.

BIOPROSPECTING
Marine bioprospecting is aimed to search novel organisms or
genes. Sediments and biota sampling is generally carried out in
less explored regions, such as at extreme depths, on the high seas
or on the deep seabed, specifically around sub-marine trenches,
cold seeps, and hydrothermal vents. Bioprospecting in the oceans
has been potentiated by the integration of high-throughput
DNA sequencing methods to evaluate marine biodiversity. Such
genomic data can provide a useful starting point to identify
new enzymes involved in the biosynthesis of secondary metabo-
lites (Arrieta et al., 2010; Abida et al., 2013). Genomics and
biotechnology are examples of modern approaches to expand our
knowledge of the processes influencing the diversity of life in the
oceans (Huete-Perez and Quezada, 2013).

METAGENOMIC APPROACH
CULTURE-INDEPENDENT METHOD
Many organisms require special growth parameters (physical and
chemical) that are hard or even impossible to reproduce in the
laboratory (Pace, 2009). In addition the interdependence with
other organisms in Nature is a crucial point to be considered
when culturing microorganisms under unnatural conditions.
This is the reason why more than 70 bacterial phyla have no
cultured representatives.

Although the cultivation success rate certainly can be
improved (Tyson and Banfield, 2005), there are recent
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approaches that microbiologists are employing to convert
currently unculturable bacteria into cultured isolates in labora-
tory, as the capillary-based system of cells culturing based on
porous hollow-fiber membranes (Stewart, 2012). To explore this
vast source of genetic diversity, omics techniques are currently
used.

Metagenomics is an extremely powerful omics technique. It
refers togenetic analysis of microorganisms by direct extraction
method and cloning of DNA recovered from mixed combina-
tion of organisms collected from Nature (Handelsman, 2004).
Metagenomics may be focused on gene clusters or genes encod-
ing enzymes and on the discovery of biocatalysts for synthesis and
production of secondary metabolites like bioactive compounds
(Wong, 2010). Three categories of environments are often con-
sidered: (1) highly diverse environments (e.g., soil and seawater),
(2) naturally or artificially enriched environments for the target
gene/biocatalyst, or (3) extreme environments.

SCREENING, SEQUENCING, AND DATA ANALYSIS OF METAGENOMIC
LIBRARIES
Screening of metagenomic libraries can be divided in sequence-
based screening and function-based screening; in the sequence-
based screening PCR amplifications are used to identify target
genes from conserved regions of known genes, while the function-
based screening is often carried out using robotic systems looking
for a well-defined phenotype.

The screening may be often considered a drawback for a
successful metagenomic approach due to the sensitivity of agar
plate-based screening and faint signals. Furthermore, the expres-
sion of the target genes may be considered the major bottleneck
due to the choice of an adequate expression vector and a suitable
recombinant host.

However, over the last years some of these issues have been
solved thank to the continuous progresses in robotic machinery
and sequencing technologies.

A crucial connection from the screening to the data analysis is
represented by the development of new sequencing systems. This
new platform concept consists on sequencing of a dense array of
amplified DNA fragments through iterative cycles of enzymatic
manipulation and imaging-based data collection (Shendure and
Ji, 2008). More recent technologies, the so-called “third genera-
tion sequencing technologies,” involve sequencing of individual
molecules, the single-cell sequencing (Xu et al., 2009). Third gen-
eration sequencing technologies, based on fluorescence detection,
have already been launched (Xu et al., 2009; Metzker, 2010).

One example is the Next-generation Sequencing Simulator
for Metagenomics (NeSSM), which is a fast simulation system
for high-throughput metagenome sequencing (Jia et al., 2013).
The large number of metagenomic information obtained by
the sequencing platforms must be processed and suitable data-
analysis tools are required. Bio-informatics software tools have
been developed in order to manage enormous datasets (reads-
or contigs-). Examples are the metagenome analyzer MEGAN,
a recently software tool able to analyze the taxonomic content
of large metagenomic datasets of short DNA fragments obtained
through 454 sequencing (Huson et al., 2007). Another recent
ultrafast program, named Kraken, is a highly accurate program to

assign taxonomic labels to metagenomic DNA sequences (Wood
and Salzberg, 2014) and the newest Meta-QC-Chain provides
an useful and high-performance QC (quality control) tool for
metagenomic data (Zhou et al., 2014).

MARINE PRODUCTS
ENZYMES
Oceanic microorganisms have to face extreme environmental
conditions such as low temperature, high salinity, and extreme
pressures and they have evolved special metabolites to survive
and proliferate during the evolution. Thus, the general life con-
ditions are reflected into the enzymes that potentially may endow
of unique properties.

Metagenomics resulted in being very effective in the discov-
ery of novel extremozymes, isolated from extreme marine envi-
ronments (Table 1). Cold-adapted enzymes represent a class of
extremozymes and compared to their mesophilic or thermophilic
homologs, can be up to 10 times more active at low and moderate
temperatures (Cipolla et al., 2012; Karan et al., 2012).

These enzymes are already being used in many biotechnologi-
cal applications providing economic benefits and energy savings.
As a result of their high activity at mild temperatures or fast heat-
inactivation, a lower concentration of the enzyme is required to
reach a given activity reducing the costs of enzyme preparation.
Also, they can minimize undesirable chemical reactions that can
occur at higher temperatures (Cipolla et al., 2012). These proper-
ties are of particular relevance for the food and feed industry to
avoid spoilage and change in nutritional value and flavor of the
original heat-sensitive substrates and products (Cavicchioli et al.,
2011; Florczak et al., 2013).

It has been demonstrated that cold-adapted enzymes possess
peculiar structural features that confer them a flexible configu-
ration. Comparative genome analyzes suggested that this typical

Table 1 | Extremozymes through marine metagenomic approach.

Enzymes Source References

Esterase Seashore sediments Jeon et al., 2009a
Lipase Deep-sea Jeon et al., 2009b
Esterase Intertidal zone Fu et al., 2013
Alkaline
phospholipase

Tidal flat sediments Lee et al., 2012

Glycoside
hydrolase

Baltic sea Wierzbicka-Wos et al.,
2013

Phospholipase Hot spring Tirawongsaroj et al., 2008
Esterase Deep-sea

hydrothermal field
Zhu et al., 2013

Glycoside
hydrolases

Hydrothermal vent Wang et al., 2011

Fumarase Marine water Jiang et al., 2010
β-glucosidase Hydrothermal spring Schroder et al., 2014
Laccase Marine water Fang et al., 2012
Esterase
(salt-tolerant)

Tidal flat sediment Jeon et al., 2012

Esterase Red Sea brine pool Mohamed et al., 2013
Mercuric
reductase

Red Sea brine pool Sayed et al., 2014
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features of psychrophilic enzymes are most probably due to
a combination of changes in the overall amino-acid composi-
tion, by which psychrophilic proteins lose their rigidity and gain
increased structural flexibility enhancing catalytic function at low
temperatures (Liszka et al., 2012; De Pascale et al., 2012).

Lipase and esterase are prominent industrial enzymes, being
employed in the food, laundry, textile, pulp and paper industries,
production of biodiesel, and in the synthesis of fine chemicals.
Furthermore, they are very easy to detect from a functional agar
screening by using synthetic substrates (Jeon et al., 2009a,b).

A metagenomic library screening of an Arctic intertidal zone
allowed the isolation of a novel cold active esterase called Est97
(Fu et al., 2013). The recombinant enzyme demonstrated to retain
almost the 60% of relative activity at 20◦C and a very low ther-
mostability, suggesting its utilization in cold biotransformation.
Metagenomic techniques also allow the isolation of other classes
of enzymes, in fact, a phospholipase A with lipase activity (after
called MPlaG) is the first obtained from a metagenomic library
from tidal flat sediments on the Korean west coast. It shown a
maximum activity at 25◦C and also presented specific catalytic
properties against olive oil and phosphatidylcholine, which means
that MPlaG is a lipid-preferred phospholipase (Lee et al., 2012).

A monomeric cold-active glycoside hydrolase family 1 enzyme,
named BglMKg, was identified from metagenomic library of
Baltic Sea water sample. This enzyme is characterized by a
wide range of enzymatic activities including β-galactosidase,
β-fucosidase, and β-glucosidase activities and, it demonstrated
to be stable below 30◦C, in the range from pH 6.0 to 8.0. The
results of the kinetic studies revealed that BglMKg more effi-
ciently hydrolyzed β-glucosidase substrates than β-galactosidase
(Wierzbicka-Wos et al., 2013). The β-galactosidases are mainly
implied in dairy industry because they are able to specifically
hydrolyze the lactose into galactose and glucose.

Apart from the cold-adapted enzymes, the oceans host many
other classes of microorganism (and therefore of enzymes) in
specific and extreme ecological niches. Thermophilic and hyper-
thermophilic microorganisms, halophiles, and barophiles possess
biocatalysts with relevant biotechnological applications (Bruins
et al., 2001), showing stability and catalytic efficiency in the
presence of high temperature, high salt concentration, and high
pressure.

Novel thermostable biocatalysts have also been isolated
through metagenomic approach. Several classes of enzymes
have been identified and characterized: lipolytic enzymes
(Tirawongsaroj et al., 2008; Zhu et al., 2013), glycoside hydro-
lases (Wang et al., 2011), fumarase (Jiang et al., 2010), and
β-glucosidase (Schroder et al., 2014). Interesting, salt-tolerant
enzymes have also been discovered. Fang and coworkers discov-
ered a novel bacterial laccase, with alkaline activity, whose activity
is enhanced by chloride addiction (Fang et al., 2012). A group
of Korean researcher was able to identify salt-tolerant esterases
belonged to a new subfamily, through metagenomics (Jeon et al.,
2012).

Bioprospecting in polluted and contaminated seas can lead
to the isolation of enzymes that also display tolerance for high
concentration of heavy metals. Mohamed et al. (2013) isolated a
novel esterase from a metagenomic library from a Red Sea brine

pool. This esterase combined a thermophilic activity with high
resistant to several heavy metals, making this enzymes appeal-
ing for applications in bioremediation (Mohamed et al., 2013).
Similarly, a novel mercuric reductase was, again, discovered from
samples collected from Red Sea. This enzyme showed enhanced
catalytic activity in presence of high temperature, high salt, and
heavy metals concentrations (Sayed et al., 2014).

BIOACTIVE COMPOUNDS
Compounds from marine environments
The oceans may be considered a vast “container” of natural prod-
ucts that could be exploited in medicine. Marine macro/micro
organisms, during the evolution, acquired the capability to
produce secondary metabolites with unique biological activity
(Imhoff et al., 2011). These compounds have found a wide range
of applications as antibacterial (Teasdale et al., 2009; Plaza et al.,
2010), antifungal (Nishimura et al., 2010), antimalarial, antipro-
tozoa (Dos Santos et al., 2011), and antiviral (Cheng et al.,
2010), as well as being active in diseases related to the cardio-
vascular, immune, and nervous systems (Asolkar et al., 2009;
Sakurada et al., 2010; Mayer et al., 2013). Metagenomics revealed
to be a very powerful tool also for the exploitation of bioac-
tive compounds from marine bacterial communities, since it
is extremely hard to isolate and cultivate symbiotic bacteria of
marine macroorganisms, e.g., sponges that has been recently indi-
cated as promising source of novel compounds, in particular as
anticancer, by a large body of literature (Schirmer et al., 2005;
Kennedy et al., 2007).

Compounds from sequence-based screening
The continuous progress in sequencing technology (e.g., pyrose-
quencing), the bioinformatic tools and the acquired informa-
tion on bacterial gene clusters that produce natural compounds,
such as the Non-Ribosomial Peptide Synthases (NRPS), and the
Polyketide synthases (PKSs) (Fischbach and Walsh, 2006; Fieseler
et al., 2007; Hochmuth and Piel, 2009) contributed in making the
sequence-based screening a valid approach for the drug-discovery
of novel bioactive compounds (Table 2). A first success of this
approach was in 2002 by using beetles (Piel, 2002), and it gave
the input to perform metagenomic on the marine sponges. The
first work employing this strategy on sponges dates back 2004
and were performed again by Piel et al. (2004). They isolated
and identified several putative PKS clusters from a highly com-
plex metagenome of the marine sponge Theonella swinhoei. The
total DNA was extracted, cloned in cosmids and the library was
screened by using appropriate PCR primers. With this strat-
egy, the authors isolated the PKS and NRPS clusters responsible
for the production of onnamides and theopederins, a group of
polyketides with clear antitumoral activity. The isolated genes
resulted belonging to bacterial symbionts, due to the absence of
introns and the presence of Shine-Dalgarno sequences. Between
2004 and 2007 the Haygood research group was able to iden-
tify, through metagenomic approach, the putative bryostatin PKS
gene cluster. In a previous work (Davidson et al., 2001), the
researchers identified a 300 bp fragments of a β-ketoacyl-synthase
(KSa) involved in the production of bryostatin, that was used
as a probe for the screening of a metagenomic library enriched
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Table 2 | Natural products discovered through metagenomic approach.

Compound Source Type of screening References

Onnamide A Theonella swinhoei, bacterial symbiont Sequence-based screening Piel et al., 2004
Bryostatin Bugula neritina, bacterial Symbiont Sequence-based screening Hildebrand et al., 2004
Minimide Didemnum molle, microbiome Sequence-based screening Donia et al., 2011
Apratoxin A Lyngbya bouillonii Sequence-based screening Grindberg et al., 2011
Patellamides Lissoclinum patella Function-based screening Long et al., 2005
Zn-coproporphyrin III Discodermia calyx Function-based screening He et al., 2012

with DNA of Candidatus Endobugula sertula, a bacterial symbiont
of the marine bryozoans Bugula neritina. This screening led to
the identification of a 65 kb cluster responsible for the bryostatin
production (Hildebrand et al., 2004; Sudek et al., 2007).

Donia and co-workers showed the validity of metage-
nomics also for ribosomal peptides. In their work (Donia
et al., 2011), they described the isolation and identification
of a novel cyanobactin peptide that was called “minimide”
from environmental DNA extracted from dotting colonies of
Didemnum molle, an ubiquitous ascidian that inhabits diverse
tropical marine habitats. The biosynthetic pathway was iso-
lated by PCR screening, identified, cloned and the optimiza-
tion of the recombinant expression in E. coli was FINALLY
performed.

The recent advances of the genomics contributed to provide
novel tools for developing of new metagenomic strategies. The
single cell-genomics helped to reduce the metagenomic complex-
ity. A single cell can now be isolated from complex microbial mix-
tures and the genome amplified for sequencing or PCR screening
(Kvist et al., 2007). This approach, combined with metagenomic
screening, led the isolation apr gene cluster that proved to be
responsible for the biosynthesis of the antitumor natural product
apratoxin A (Grindberg et al., 2011).

Compounds from function-based screening
The principal advantage of the function-based screening is that it
does not require information regarding the biosynthetic origin of
the compounds.

The functional approach has proven its validity thank to
the work of Long and collaborators in 2005 (Table 2). In this
study, a metagenomic BAC library was obtained from bacterial
DNA extracted from the ascidian Lissoclinum patella. The library
was then screened searching for clones producing patellamides
compounds. The authors identified the recombinant-producing
clones and performed the optimization of the heterologous
expression in E. coli (Long et al., 2005). In a similar way, a Japanese
group in 2012 developed a rapid and efficient functional screen-
ing for the detection of natural compounds. The 250.000-fosmid
library, prepared using microbiome DNA from marine sponge
Discodermia calyx, was rapidly screened on agar plates using a
color selection to identify red E. coli clones that indicated the pro-
duction of phorphyrin. These procedures led the isolation two
positive clones that were then cultured in large scale and analyzed.
The red pigments were then isolated and structurally elucidated
(He et al., 2012). Despite these two successes, the functional
screenings displayed several drawbacks, among the others the

poor expression of interesting genes in heterologous host strains.
However, this problem was addressed by the use of more suit-
able bacterial strains belonging to Streptomyces, Pseudomonas,
and Bacillus genera (Ekkers et al., 2012) or by setting up of spe-
cific heterologous expression systems in E. coli (Yuzawa et al.,
2012). Other liability of this strategy regards the few number of
positive clones obtained in a screening and the missing of an
easy and quick screening techniques for analyzing a huge amount
of samples. However, there is an incessant development of new
screening strategies (Ballestriero et al., 2010; Owen et al., 2012) as
well as new approaches to improve the effectiveness of screenings
(Penesyan et al., 2013), that will make functional screening more
feasible in the future.

CONCLUSION
In this paper, we highlighted the importance of metagenomics
for marine bioprospecting. Metagenomics allows the study and
the biotechnological implementation of the marine biodiversity,
proved by the huge number of novel biocatalysts and compounds
discovered in the last 10 years. It is expected that metagenomics
will acquire further interest, despite improvements of culturing
techniques. Our suggestion is validated by the rapid advance-
ment in the methods and tools, especially in sequencing and
bioinformatic analysis.

As evidence of the metagenomics strength and validity, cur-
rently new interdisciplinary projects, aiming at the marine ecosys-
tem access from a biotechnology point of view, have been funded
in the EU FP7. Many of these projects are focused on the iden-
tification of new marine microbial strains from extreme envi-
ronments to discovery novel products in the following industry
sectors: health, personal care and nutrition. So far, the interest
in the exploitation of the marine environment is still growing, as
demonstrated by the large number of EU calls recently launched
over the EU Horizon 2020 Framework.
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A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of
the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357
amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est
belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Esche-
richia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters
with carbon chain from 2 to 8. The optimal esterase activity was at 408C and pH 8.0 and
the enzyme retained its activity towards some miscible organic solvents such as polyethylene
glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the
H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indi-
cated that the esterase had a wide denaturation temperature range and flexible loops that
would be beneficial for H9Est performance at low temperatures while retaining heat-
resistant features. VC 2015 American Institute of Chemical Engineers Biotechnol. Prog.,
31:890–899, 2015
Keywords: metagenomic, esterase, salt-tolerant, cold-tolerant

Introduction

Lipolytic enzymes including esterases (EC 3.1.1.1) and
lipases (EC 3.1.1.3) are carboxylic ester hydrolases that cata-
lyze the cleavage and formation of ester bonds. Esterases
hydrolyze small ester-containing molecules that are at least
partly soluble in water, while lipases display maximal activ-
ity towards water-insoluble long-chain triglycerides.1 Both
esterases and lipases belong to the a/b hydrolase superfam-
ily and have a common Ser-Asp/Glu-His catalytic triad or a
catalytic Ser-His dyad.2 Based on amino acid sequence
homology and physiological functions, Arpigny and Jaeger
classified all bacterial lipolytic enzymes into eight families.1

Recently, new families (families IX-XV) that diverge from
the original eight were established for the most newly dis-
covered bacterial lipolytic enzymes.3

Esterases possess useful features such as stability in
organic solvents, broad substrate specificity, stereoselectiv-
ity, regioselectivity, and no requirement for cofactors.4,5

They are useful in organic chemical synthesis, for producing
enantiopure pharmaceuticals and agrochemicals, and in the
degradation of natural materials and industrial pollutants.6,7

Many efforts have been made to screen and isolate novel
microbial lipolytic enzymes with different characteristics.
Metagenomics is a new and rapidly developing field aimed
at accessing novel genes and biocatalysts from environmen-
tal samples for biotechnological applications.8 Lipolytic
enzymes have been identified from metagenomic DNA libra-
ries9 prepared from environmental samples such as
soils,10–12 activated sludge,13 marine sediments,14,15 marine
sponges,16,17 pond water,18 lake water,19,20 and hot springs.21

Exploring extreme environments may be a promising strat-
egy for the discovery of novel biocatalyst with unusual
properties. Compared with mesophilic and thermophilic
counterparts, the interest and advantage of the biotechnologi-
cal use of cold-tolerant lipolytic enzymes reside in high spe-
cific activity at low temperatures and their rapid inactivation
at higher temperatures.22

In this study, we describe the construction of a metage-
nomic library from a glacier soil sample from Tibet, China.
Glaciers are known to be a reservoir of microbial life where
biomolecules and microorganism can be preserve for long
term under extreme constant environmental conditions.
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A novel esterase gene was isolated from the library using
a function-based screening method.

According to the sequence analysis, the esterase was simi-
lar to bacterial family IV esterases, with conserved sequence
motifs, specifically an oxyanion hole formed by residues
HGGG ahead of the catalytic serine.

We describe the biochemical characterization of the
deduced esterase (hereafter called H9Est), which was
expressed in Escherichia coli and characterized for substrate
specificity, optimum pH and temperature, thermal stability,
and effect of solvents and salts. The structure of H9Est was
also described to better understand the structure-function
relationships of this catalyst for industrial development.

Material and Methods

Bacterial strains, plasmids, and growth conditions

E. coli DH5a, BL21 (DE3), and EPI300-T1R (Epicentre,
Madison, WI) were used as hosts and grown in Luria-
Bertani (LB) medium at 378C. The fosmid pCC2FOS (Epi-
centre), and pUC118 (Takara, Dalian, China) and pET28a
(Novagen, Madison, WI) were used as vectors to construct
the metagenomic library, subcloning library and expression
plasmid with H9Est gene, respectively. Ampicillin (100
lg mL21), kanamycin (50 lg mL21), and chloramphenicol
(12.5 lg mL21) were used to select for vectors pUC118,
pET28a, and pCC2FOS, respectively.

Metagenomic library construction and screening for
lipolytic activity

A soil sample was collected from the Karuola glacier (gla-
cier natural landscape area 90819.230 E, 28890.710 N,) located
on the Tibetan Plateau, China, 5200 m above sea level. No
specific permission was required for taking a small amount
of soil in this area for scientific research. We took about
50 g soil sample near the glacier and did not damage the
glacier, nor the activity endanger any protected species. The
sample was stored on ice during transport and at 2808C in
our laboratory until DNA extraction. DNA was extracted
using the sodium dodecyl sulfate (SDS) lysis method
described by Zhou et al.23 The crude DNA preparation con-
taminated with humic compounds was purified in 0.8% low-
melting-point agarose gel. Electrophoresis was carried out
twice at 30 V overnight at 48C. Size-fractionated DNA was
recovered by GELase enzyme (Epicentre) and purified by
chloroform extraction and isopropanol precipitation.

The metagenomic library from Karuola glacier soil was
constructed using the CopyControl Fosmid Library Produc-
tion Kit (Epicentre) according to the manufacturer’s instruc-
tions. Purified fragments of environmental DNA (36–48 kb)
blunt ends were repaired and ligated to the CopyControl vec-
tor pCC2FOS to form recombinant fosmid mixtures that
were then packaged with lambda packaging extracts and
infected E. coli EPI300-T1R.

LB agar medium supplemented with 12.5 lg mL21 chlor-
amphenicol was used to select for recombinant cells. E. coli
recombinant clones were maintained in 96-well microtiter
plates with 20% glycerol (final concentration) at 2808C. For
lipolytic activity screening, clones were replicated with a 96-
pin replicator onto LB agar medium containing 1% tributyrin
and 12.5 lg mL21 chloramphenicol. Cells were grown at

378C for 48 h and colonies with a clear hydrolysis halo were
selected.

Subcloning and sequence analysis of the esterase gene

Fosmid DNA from a positive clone was extracted by alka-
line lysis methods as described by Sambrook et al.24 and
digested with Hind III. Purified DNA fragments were ligated
into Hind III-linearized pUC118 and transformed into E. coli
DH5a. LB agar medium with 100 lg ml21 ampicillin and
1% tributyrin was used to select the secondary library. One
positive recombinant, pUC118-H9Est was purified for DNA
sequencing. The open reading frame (ORF) was identified
via the ORF Finder program of the National Centre for Bio-
technology Information. Similar ORFs were identified by
protein homology using complete nonredundant protein data-
bases (www.ncbi.nlm.nih.gov) and the BLAST program.25

Multiple sequence alignment was performed using ClustalW
(default parameters). Phylogenetic analysis was conducted
with the neighbor-joining method with 500 bootstrap replica-
tions using MEGA version 5.0.26

Expression and purification of the recombinant esterase

The H9Est gene (GenBank accession number KF994924)
was amplified by PCR using the following primers: forward
primer 50-GCGGGATCCATGACTGTGAATCCTC-30 with
Bam HI site underlined and reverse primer 50-
GCGGAGCTCGGACTATTTTTGTCCCAG-30 with Sac I
site underlined thus adding to the sequence N-terminal and
C-terminal His tags. Purified PCR products were inserted
into pET28a and a recombinant plasmid pET28a-H9Est was
transformed into E. coli BL21 (DE3). Expression of
recombinant protein was induced with IPTG (1 mM) after
3 h of incubation at 378C to OD600 0.6–0.8. Cells were har-
vested by centrifugation after overnight growth with IPTG at
258C and resuspended in 50 mM Tris-HCl buffer (pH 8.0).
After ultrasonic disruption, cell debris was removed by cen-
trifugation (15,500g, 20 min, 48C). The esterase was purified
by nickel affinity chromatography with a His-Bind Purifica-
tion kit (Novagen) according to the manufacturer’s instruc-
tions. Protein concentration was measured using the Bio-Rad
Protein Assay system, with BSA as a standard. SDS-PAGE
was performed using 5% stacking and 10% resolving gels.

Biochemical characterization of purified H9Est

Esterase standard activity was measured by monitoring
hydrolysis of p-nitrophenyl butyrate (Sigma, St. Louis, MO)
in 50 mM Tris-HCl buffer (pH 8.0) at 408C. Reaction mix-
tures (1 ml) contained 0.5 mM substrate. The amount of p-
nitrophenol liberated during the reaction was monitored con-
tinuously at 405 nm in a DU800 spectrophotometer (Beck-
man Coulter Inc., Fullerton, CA, USA) with a temperature
control module. One unit of enzyme activity was defined as
the amount of enzyme that released 1 lmol of p-nitrophenyl
from p-nitrophenyl ester per min. Substrate specificity was
determined using pNitroPhenyl-esterified (pNP-ester) sub-
strates with different carbon chain lengths: pNP-acetate (C2),
pNP-propionate (C3), pNP-butyrate (C4), pNP-caproylate
(C8), pNP-decanoate (C10) and pNP-palmitate (C16). The
kinetic parameters KM and kcat were calculated in 50 mM
Tris-HCl (pH 8.0) at 408C with pNP-butyrate as substrate.
Kinetic analysis by curve fitting (Hyperbola) used GraphPad
Prism 5.0 (GraphPad Software). Optimum temperature was
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determined in the range of 10–808C. The thermal stability of
H9Est was studied over 10–508C. Pure enzyme aliquots (0.2
mg mL21) in 100 mM Tris-HCl pH 8.0 were incubated in
1.5 mL tubes at indicated temperatures. Aliquots were with-
drawn at 20, 40, 60, 80, 100, and 120 min and assayed at
408C using pNP-butyrate as substrate. Optimum pH was
determined in the range 3.0–10.0 using buffers 50 mM citric
acid-sodium citrate (pH 3.0–6.0), 50 mM Phosphate buffered
saline (pH 6.0–8.0), 50 mM Tris-HCl (pH 8.0–9.0), and
50 mM Gly-NaOH (pH 9.0–10.0). The effect of NaCl was
evaluated by increasing the salt concentration from 0 to
2.5 M at 408C using standard conditions mentioned above.
Results were reported as activity relative to values measured
without NaCl. The effects of metal ions and inhibitors on
enzyme activity were measured by adding metal ions and
inhibitors (final concentrations at 1 mM) to standard enzyme
assay mixture. H9Est activity in buffers without additions
was used as 100%. Enzyme activity was evaluated in
increasing concentrations of the organic solvents acetonitrile,
dimethyl ether, dimethyl sulfoxide (DMSO), diethyl ether,
dimethyl formamide (DMFA) and polyethylene glycol (PEG
200) from 0 to 20% (v/v). Results were reported as activity
relative to values measured without solvents. Data reported
considered by mean values of triplicate 6 SD. P-value
between sample and referring controls were calculated with
“T test” with the Primer software.

Circular dichroism (CD)

CD spectra were measured on a J-810 spectropolarimeter
(Jasco, Tokyo, Japan) equipped with a F25 temperature con-
troller (Julabo, Seelbach, Germany). Molar ellipticity per
mean residue, [h] in deg cm2 dmol21, was calculated using the
equation [h] 5 [h]obs mrw (10 l C)21, where [h]obs is the ellip-
ticity measured in degrees, mrw is the mean residue molecular
weight (111.5 Da), C is the protein concentration in g mL21,
and l is the optical path length of the cell in cm. Far-ultraviolet
(UV) measurements (190–260 nm) were carried out from 20
to 908C using a 0.1 cm optical path length cell and a protein
concentration of 2.44 1026 M. Pure protein was suspended in
20 mM Na-phosphate buffer at pH 8.0.

CD spectra, recorded with time constant 4 s, 2 nm band-
width, and scan rate 20 nm min21 were averaged over at
least three scans. Baseline was corrected by subtracting the
buffer spectrum. Thermal denaturation curves were recorded
from 20 to 908C and by monitoring the CD signal at
222 nm. All curves were recorded with a scan rate of
0.58C min21.

H9Est modeling

H9Est was modeled using four templates: an acetyl ester-
ase from Salmonella Typhimurium (3GA7 PDB entry), a car-
boxylesterase from Sulfolobus tokodaii (3AIN), an esterase
in the hormone-sensitive lipase (3FAK) subfamily, and a
hyperthermophilic carboxylesterase from the archaeon
Archaeoglobus fulgidus (1JJI). The use of several templates
improved the quality of the generated model by introducing
more constraints. Similarity extended along all sequences
with the exception of the N-terminal portion of H9Est.
Therefore, modeling was limited to the H9Est region
between residues 38 and 355. To generate the three-
dimensional model, multiple alignments between H9Est and
sequences of the four templates from HHpred server27 were

submitted to the comparative structural modeling program
Modeller 9v11.28 The modeling algorithm was set to gener-
ate 100 models. To select the best model, structure valida-
tion was carried out by PDBSum pictorial database (http://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/). A full set of
Procheck structural analyses29 was carried out to evaluate
the stereochemical quality of the generated structures. The
Z-score of the H9Est model was calculated using the web
server WhatIf.30 The solvent-accessible surface area of the
H9Est model was calculated by the POPS algorithm.31 The
molecular graphics software VMD32 was used to display the
model.

Molecular dynamic (MD)

MD simulations were performed with GROMACS soft-
ware (v4.5.5).33 The model was inserted in a cubic box filled
with SPC216 water molecules using a GROMOS43a1 all-
atom force field. Simulations were carried out by adding 26
sodium ions for a value of zero for the system net electro-
static charge. The system was subjected to several cycles of
energy minimizations and position restraints to equilibrate
the protein and water molecules around it. The time step
was 2 fs and the temperature was kept at 300 K. Simulation
time was 20 ns. GROMACS routines were used to analyze
trajectories for root-mean square deviation (RMSD), root-
mean squared fluctuations (RMSF) and gyration radius.

Results

Sequence analysis of H9Est

A metagenomic library of 10,000 clones was constructed
using DNA isolated from Karuola glacier soil. DNA insert
sizes determined by Bam HI restriction were 35–45 kb with
an average size of 38 kb. Approximately 380 Mb of cloned
DNA was stored in the fosmid library. By functional screen-
ing, five esterase-positive clones were identified. However,
only one positive recombinant, pUC118H9, was obtained
after subcloning the positive fosmids. Sequence analysis of
the insert revealed an ORF (H9Est) of 1071 bp, encoding a
polypeptide of 357 amino acids with a deduced molecular
mass of 39.9 kDa and pI 8.67.

A homology search revealed that H9Est was similar to
several noncharacterized hypothetical esterases (67%–99%
amino acid sequence identity) from the recently annotated
whole-genome sequences of several Acinetobacter species.
The closest match to characterized proteins was an esterase
from Acinetobacter lwoffii (AAM34295, 66.9% identity).
Phylogenetic analysis (Figure 1) revealed that H9Est clus-
tered with family IV lipolytic proteins and was similar to
family IV members of known structure: 30.8% identity to a
carboxylesterase from S. tokodaii (BAB65028), 29.8% iden-
tity to a lipase from Pseudomonas sp. B11-1 (AAC38151),
29.4% identity to an alpha/beta hydrolase from Alicycloba-
cillus acidocaldarius (ACV59879) and 29.1% identity to a
carboxylesterase from A. fulgidus (AAB89533). Multiple
sequence alignments of H9Est with the closest structure-
resolved lipolytic enzymes were performed (Figure 2).
Alignments revealed that H9Est contained the three con-
served sequence motifs of the family IV: the oxyanion hole-
forming residues HGG, the pentapeptide GDSAG signature
motif with a serine catalytic nucleophile, and a C-terminal
conserved HGF motif. The putative catalytic triad residues
D294, H324 and the catalytic nucleophile S200 were also
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identified. Thus, H9Est from glacier soil was in family IV of
bacterial lipolytic enzymes, a family with amino acid
sequence similarity to the mammalian hormone-sensitive
lipase.1

Characterization of H9Est

The esterase H9Est gene was expressed in E. coli and
purified. The molecular mass of H9Est by SDS-PAGE was
approximately 40 kDa (Figure 3), the weight as calculated
from the amino acid sequence.

H9Est displayed hydrolytic activity towards short chain p-
nitrophenyl esters with maximal activity for pNP-C4 with a
specific activity of 0.15 U mg21 under standard assay condi-
tions. H9Est showed specific hydrolytic activities of 0.04
U mg21 against pNP-C2 and 0.08 U mg21 against pNP-C3
and pNP-C8, but no detectable activity towards pNP-C10 or
pNP-C16, confirming that H9Est was an esterase rather than
a lipase. The initial reaction velocities of H9Est obeyed
Michaelis-Menten kinetics. KM with pNP-C4 was 0.125 mM,
kcat was 4.237 s21, and kcat/KM was 33.799 s21 mM21.

H9Est activity was detected from pH 4.0 to 9.0 with maxi-
mum activity at pH 8.0 (Figure 4a). The enzyme retained
about 80% of maximum activity at pH 9 with a marked
decrease above pH 9. The temperature range of H9Est activ-
ity was 108C to 708C with an optimum at 408C (Figure 4b).
The enzyme retained at least 20% of maximum activity at
108C and 10% of the maximum activity at 708C. Thermal
stability experiments revealed that H9Est was stable at tem-
peratures lower than 308C. H9Est had a 222 min half-life at
10!C and a 152 min half-life at 208C. The half-life was 72
min at 30!C and 5 min at 408C. As shown in Figure 4c, little
decrease in activity was observed after 2 h of incubation at
10, 20, or 308C. At 408C, activity substantially decreased.
After 2 h at 408C, only 5% of enzymatic activity remained.
H9Est did not catalyze reactions after 60 min at 508C.

The effect of NaCl on H9Est activity was evaluated in
standard conditions. We observed a substantial increase in
the catalytic activity at 1 M NaCl. Higher concentrations of
salt gradually decreased H9Est activity, but 60% relative
activity remained at 2.5 M NaCl (Figure 4d) indicating good
tolerance to high salinity.

The means and standard deviations of the effects of chem-
icals on enzyme activity are shown in Table 1. Ag1 severely
inhibited H9Est activity while K1, Ca21, Mg21, Fe21, and
Fe31 significantly enhanced activity. H9Est activity was
inhibited by phenylmethanesulfonyl fluoride (PMSF), sug-
gesting it was a serine esterase as predicted by the Ser cata-
lytic residue. The addition of 1 mM dithiothreitol (DTT) did
not influence the enzymatic activity, suggesting that the cys-
teine was not involved in the catalytic activity.

The effect of organic miscible solvents on H9Est enzy-
matic activity was evaluated at standard conditions. We
observed a similar behavior in the presence of all tested sol-
vents except for polyethylene glycol (Figure 5). Increasing
the concentration of organic solvents in the assays led to
gradual H9Est inactivation, while the enzyme shown high
stability in the presence of polyethylene glycol. In fact 20%
polyethylene glycol, the relative retained activity was still
90%.

H9Est model

H9Est three-dimensional homology modeling used the
structures of an S. Typhimurium acetyl esterase (PDB ID:
3GA 7), an S. tokodaii carboxylesterase (3AIN), an esterase
in the subfamily of hormone-sensitive lipases (3FAK) and an
A. fulgidus hyperthermophilic carboxylesterase (1JJI) as tem-
plates. These structures were chosen because they showed
substantial structural homology to H9Est as calculated by the
HHpred server, despite a low sequence identity of about
30%. The best model (Figure 6a) was selected for energetic
and stereochemical quality. In the model, 91.9% of the resi-
dues were in the most favored regions of the Ramachandran
plot according to the PROCHECK program provided with
PDBSum and the model had a WhatIf Z-score of 0.634.
These values, when compared with values for the template
structures, indicated a good quality model. The H9Est model
displayed an alpha-beta structure with ten alpha helices cov-
ering 41.5% of the sequence, three 310 helices (3.1%) and
ten beta strands forming two sheets (17%).

As shown in Figure 6b, the catalytic triad of H9Est was
formed by S200, D294 and H324; the substrate-binding
pocket were formed by G127, G128, A129, D199, S200,
A201, N204. The three amino acids forming the catalytic
triad were located in three different loops connecting three
strands to three helices. S200 was within a conserved motif
that included substrate-binding residues; the presence of gly-
cine gave flexibility to this area.

SASA analysis of H9Est model by the POPS algorithm
revealed an exposed surface that was more hydrophobic than
hydrophilic (59 vs. 41%). This result suggested that the
enzyme could adapt to hydrophobic environments such as
organic solvents.

Molecular dynamics

To evaluate the stability of the modeled structure, we sub-
jected the best H9Est model to MD simulations. The model
reached a stable equilibrated state after 7 ns of simulation;
the related RMSD values that measure changes in the three-
dimensional structure over time (Figure 7a) were constant in
the remaining simulation time. To study variations in the
overall size of the system, we computed the gyration radius
for all atoms of 346 residues (Figure 7b). The gyration
radius trend was similar to the evolution observed in the

Figure 1. Phylogenetic analysis of H9Est with homologs based
on conserved sequence motifs of bacterial lipolytic
enzymes.

A phylogenetic tree was constructed using the neighbor-joining
method in MEGA 5.0. Protein sequences were retrieved from
GenBank (http://www.ncbi.nlm.nih.gov/). Scale bar, number of
amino acid substitutions per site.
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RMSD graph with no relevant variation in molecule com-
pactness after 7 ns of simulation. Superposition of RMS fluc-
tuations (Figure 7c) revealed that the residues with a high
degree of flexibility were in the loop region. This was

expected for the three residues of the catalytic triad located
in loops. Thus, after initial adaption in the first 7 ns, the
H9Est structure was unaltered during the MD simulation and
the overall stability of H9Est was maintained.

Figure 2. Multiple alignments performed by ClustalW, of H9Est and the five best-scoring templates of known three-dimensional struc-
ture.

Blue color scale indicates the conservation level of aminoacids; the most conserved residues are shown in dark blue. Red triangles and red boxes
highlight catalytic triad aminoacids within conserved motifs.
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CD of H9Est

The dominant species of H9Est protein was analyzed by
CD. In the spectra (Figure 8a), the maximum between 198 and
195 nm and the two minima centered at 208 and 222 nm indi-
cated both a and b secondary structure elements, in line with
the predicted structure. Molar ellipticity decreased as tempera-

ture increased, providing evidence for local unfolding of the
protein. Thermal denaturation curves at 20–908C recorded the
molar ellipticity at 222 nm (Figure 8b). Far-UV CD spectra at
908C were typical of random coil. As shown in Figure 8b,
thermal denaturation occurred from 35 to 808C, with a denatu-
ration temperature around 608C.

Discussion

Using a metagenomic library, we identified a family IV
esterase, H9Est, from a Tibetan glacier soil sample. Family
IV lipolytic enzymes have been identified from other meta-
genome libraries and exhibit diverse biochemical

Figure 3. The expression and purification of H9 esterase.

(lane M: Marker, Fermentas SM0671; lane 1: negative control:
not induced E. coli BL21DE3 cells, lane 2: crude enzyme, lane
3: Ni-NTA column purification for the first time, lane 4: Ni-
NTA column purification for the second time).

Figure 4. Biochemical features of purified esterase H9Est.

(a) Effect of pH on H9Est activity. Enzyme activity was measured at different pH values at 408C using pNP-C4 as substrate. (b) Effect of tempera-
ture. Enzyme activity was determined with p-nitrophenyl butyrate as a substrate after 2 min at indicated temperatures and pH 8.0. (c) Thermostability
of H9Est at: 108C (•), 208C (W), 308C (!), 408C ("), 508C (#). The enzyme was incubated in 50 mM Tris-HCl (pH 8.0) at the indicated tempera-
tures and times. Residual activity was measured at 408C using pNP-C4 as substrate. (d) Effect of NaCl on H9Est activity. Enzyme activity was eval-
uated in NaCl up to 2.5 M. Residual activity was measured at 408C using pNP-C4 as substrate. 100% relative activity corresponds to 0.15 U mg21.

Table 1. Effects of Chemicals on Enzyme Activity

Inhibitor Residual activity (%)

None 100.0
Ag1 6.5 6 0.5
Ca21 114.5 6 5.8
Mg21 137.9 6 5.1
Fe21 137.8 6 10.9
Fe31 140.5 6 9.3
K1 137.0 6 4.4
Li1 83.9 6 5.3
Cu21 67.4 1 6.6
Zn21 32.3 6 4
SDS 2.9 6 0.9
EDTA 88.4 6 6.3
DTT 86.4 6 4.4
PMSF 10.2 6 1.5

All data resulted to be statically significant (P value< 0.05).
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characteristics. Examples include cold-adapted esterases
from mountain soil, Arctic sediments and marine sedi-
ment,34–36 thermophilic esterases from hot springs,37 and
alkaliphilic esterase from soil metagenomic libraries.38

Tibetan glaciers areas are constantly cold and could be a
good reservoir of novel enzymes active at low temperatures.
H9Est is the first characterized esterase from a Tibetan gla-

cier and it catalyzed hydrolysis of substrates with short-chain
esters at 10–708C with maximum at 408C, retaining 20% of
activity at 108C and 10% of activity at 708C. Thermal stabil-
ity analysis further indicated that this esterase had behaviors
of a cold-adapted enzyme when compared to previous
research articles.39–41

These features of cold adaptation could be related to the
structural flexibility of H9Est. Our three-dimensional model

Figure 5. Effect of organic solvents on esterase activity.

Enzyme activity was evaluated in presence of increasing concen-
trations of acetonitrile (•), DMSO (W), methanol (!), dimethyl-
formamide (DMFA; "), diethyl ether (#), and polyethylene
glycol ($). Residual activity was measured at 408C using pNP-C4
as substrate; 100% relative activity corresponds to 0.35 U mg21.

Figure 6. H9Est 3D-model representation.

(a) Orange, a helices; violet, b-strands; red, 310 helices. (b)
Yellow, H9Est catalytic triad (S200, D294, and H324); red,
substrate binding pocket. The image was obtained with VMD
software.

Figure 7. H9Est MD simulation.

(a) Root mean square deviation trend during MD simulation.
X-axis, time in ns; y-axis, root mean square deviation in nm.
H9Est reached an equilibrated state after 7 ns of MD simula-
tion. (b) Gyration radius trend during MD simulation. X-axis,
time in ns; y-axis, radius of gyration in nm. H9Est reached an
equilibrated compactness after 7 ns of MD simulation. (c) Root
mean square fluctuations at end of MD simulation. X-axis,
number of amino acid residues; y-axis, root mean square fluctu-
ation in nm. Peaks, amino acid chain zones with higher fluctua-
tion during the MD simulation.
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and MD simulations revealed that the residues with greater
fluctuations fell in a loop region, giving H9Est an increased
flexibility. This structural feature was probably the reason
for the activity H9Est at low temperatures42 and suggested
an important function for the flexible loops. CD analysis
showed that molar ellipticity gradually decreased with
increasing temperature as reported for other psychrophilic
enzymes.43 Local folding of the protein structure was
retained at 358C to 808C. This wide denaturation temperature
range could indicate different denaturation states that
occurred during denaturation, as proposed by D’Amico
et al.44 In addition to its temperature-related properties,
H9Est was active and stable over broad range of NaCl con-
centrations, despite originating from a non-saline environ-
ment. H9Est esterase activity increased with increasing NaCl
concentration from 0 to 1.0 M NaCl and retained over 60%
residual activity in the presence of 2.5 M NaCl. This result
could be explained as salt enhancement of the hydrophobic
interactions between enzyme and substrate until the ions in
solution bound the charged residue in the active site, leading
to decreased activity.

The high tolerance of salinity might classify H9Est as a
halotolerant enzyme. So far, only a small number of ester-
ases have been found to be halophilic. Metagenome-derived
halotolerant enzymes include EstK7 from tidal flat sedi-
ments,45 DHAB from a deep sea hypersaline anoxic basin,46

Lpc53E1 and EstHE1 from marine sponges17 and EstA from
South China Sea surface water.47

The amino acid sequence of H9Est showed 67%–99%
identity to hypothetic proteins from several cultured Acineto-
bacter spp., but relatively low similarity to the known pro-
teins (less than 67% identity). Acinetobacter spp. has been
isolated from clinical specimens and environmental sources
such as soil, cotton, activated sludge and wetlands.48 High
H9Est identity to all lipolytic enzymes from Acinetobacter
spp. suggested that H9Est originated from an Acinetobacter
species in Tibetan glacier soil.

The closest characterized protein to H9Est was an esterase
(EstA) from A. lwoffii (66.9% identity).49 EstA exhibited opti-
mal activity at pH 8.0 and 378C, similar to the activities
detected for H9Est. But, H9Est showed different behavior from
EstA in the presence of metal ions. Ca21, Mg21 and Fe21

enhanced H9Est activity. Conversely, EstA was strongly inhib-
ited by Ca21, Mg21, Fe21, Cu21, Zn21, Mn21, and Co21.50

Esterases are often used in biotransformation of water-
insoluble substrates carried out in the presence of organic
solvents.51–53 H9Est was not sensitive to some miscible
organic solvents, retaining more than 60% activity in the
presence of methanol or polyethylene glycol. H9Est typically
displayed preference or tolerance towards high salinity buf-
fers and was stable in the presence of Ca21, Mg21, Fe21

and Fe31. With these features, H9Est could be a candidate
for industrial applications in organic synthesis reactions.
Directed evolution studies to improve the catalytic activity
are in progress and might help elucidate the relationship
between the protein structure and its function.

Conclusions

In the present work, a halotolerant esterolytic enzyme was
isolated and identified by functional screening from a glacial
soil metagenome. The enzymatic activity profile over a wide
range pH, temperature, salt and, nevertheless in the presence
of organic solvent and metal ions, make this biocatalyst use-
ful for future applications in basic research and biotechno-
logical processes.

Acknowledgments

This article was supported by the CNR-CAS Cooperation
Agreement 2011–2013 entitled: Discovery of new extremo-
zymes and their potential use in biotechnology. This work
was also supported by Ministry of Sciences and Technology
(MOST) of China Grants (973 Programs: 2011CBA00800
and 2013CBA733900), Chinese Academy of Sciences
(Knowledge Innovation Program, KSCX2-EW-G-3).

Literature Cited

1. Arpigny J, Jaeger K. Bacterial lipolytic enzymes: Classification
and properties. Biochem J. 1999;343:177–183.

2. Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S,
Derewenda ZS. A novel variant of the catalytic triad in the
streptomyces scabies esterase. Nat Struct Biol. 1995;2:218–223.

3. Charbonneau DM, Beauregard M. Role of key salt bridges in
thermostability of G. Thermodenitrificans EstGtA2: Distinctive
patterns within the new bacterial lipolytic enzyme family XV.
PLoS One. 2013;8:e76675

Figure 8. CD spectra of H9Est.

(a) CD spectra in Na-phosphate buffer at different temperatures. X-axis, wavelength in nm; y-axis, molar ellipticity. Spectra became flatter as tem-
perature increased, indicating progressive unfolding of H9Est secondary structures. (b) Thermal denaturation of H9Est. X-axis, temperature in Cel-
sius; y-axis, molar ellipticity at 222 nm. Increase in molar ellipticity indicated progressive protein denaturation.

Biotechnol. Prog., 2015, Vol. 31, No. 4 897



4. Bornscheuer UT. Microbial carboxyl esterases: classification,
properties and application in biocatalysis. FEMS Microbiol Rev.
2002;26:73–81.

5. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. GDSL fam-
ily of serine esterases/lipases. Prog Lipid Res. 2004;43:534–552.

6. Panda T, Gowrishankar BS. Production and applications of
esterases. Appl Microbiol Biotechnol. 2005;67:160–169.

7. Manco G, Nucci R, Febbraio F. Use of esterase activities for
the detection of chemical neurotoxic agents. Protein Pept Lett.
2009;16:1225–1234.

8. Steele HL, Jaeger KE, Daniel R, Streit WR. Advances in recov-
ery of novel biocatalysts from metagenomes. J Mol Microbiol
Biotechnol. 2009;16:25–37.

9. L!opez-L!opez O, Cerd!an ME, Gonz!alez Siso MI. New extremo-
philic lipases and esterases from metagenomics. Curr Protein
Pept Sci. 2014;15:445–455.

10. Sang SL, Li G, Hu XP, Liu YH. Molecular cloning, overexpres-
sion and characterization of a novel feruloyl esterase from a soil
metagenomic library. J Mol Microbiol Biotechnol. 2011;20:196–
203.

11. Berlemont R, Spee O, Delsaute M, Lara Y, Schuldes J,
Schuldes J, Simon C, Power P, Daniel R, Galleni M. Novel
organic solvent-tolerant esterase isolated by metagenomics:
Insights into the lipase/esterase classification. Rev Argent Micro-
biol. 2012;45:3–12.

12. Khan M, Jithesh K, Mookambikay R. Cloning and characteriza-
tion of two functionally diverse lipases from soil metagenome.
J Gen Appl Microbiol. 2013;59:21–31.

13. Liaw RB, Cheng MP, Wu MC, Lee CY. Use of metagenomic
approaches to isolate lipolytic genes from activated sludge. Bio-
resour Technol. 2010;101:8323–8329.

14. Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J,
Ashforth EJ, Zhang L, Zhu B. Novel lipolytic genes from the
microbial metagenomic library of the south china sea marine
sediment. FEMS Microbiol Ecol. 2010;72:228–237.

15. Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, Wu M. Identi-
fication and characterization of novel esterases from a deep-sea
sediment metagenome. Arch Microbiol. 2012;194:207–214.

16. Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh
M, Matsunaga T, Takeyama H. Isolation and characterization of
a GDSL esterase from the metagenome of a marine sponge-
associated bacteria. Mar Biotechnol (NY). 2010;12:395–402.

17. Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD. Isola-
tion, identification and biochemical characterization of a novel
halo-tolerant lipase from the metagenome of the marine sponge
haliclona simulans. Microb Cell Fact. 2012;11:72

18. Ranjan R, Grover A, Kapardar RK, Sharma R. Isolation of
novel lipolytic genes from uncultured bacteria of pond water.
Biochem Biophys Res Commun. 2005;335:57–65.

19. Rees HC, Grant S, Jones B, Grant WD, Heaphy S. Detecting
cellulase and esterase enzyme activities encoded by novel genes
present in environmental DNA libraries. Extremophiles. 2003;7:
415–421.

20. Mart!ınez-Mart!ınez M, Alcaide M, Tchigvintsev A, Reva O,
Polaina J, Bargiela R, Guazzaroni ME, Chicote A, Canet A,
Valero F, Rico Eguizabal E, Guerrero Mdel C, Yakunin AF,
Ferrer M. Biochemical diversity of carboxyl esterases and
lipases from lake arreo (spain): A metagenomic approach. Appl
Environ Microbiol. 2013;79:3553–3562.

21. Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Thongaram T,
Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L.
Novel thermophilic and thermostable lipolytic enzymes from a
thailand hot spring metagenomic library. J Biotechnol. 2008;
133:42–49.

22. Suresh Kumar P, Mrinmoy G, Pulicherla KK, Sambasiva Rao
KRS. Cold Active enzymes from the marine psychrophiles: Bio-
technological perspective. Adv Biotech. 2011;10:43-45.

23. Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of
diverse composition. Appl Environ Microbiol. 1996;62:316–322.

24. Sambrook J, Russell D. Molecular cloning: A laboratory man-
ual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
Press; 2001.

25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic
local alignment search tool. J Mol Biol. 1990;215:403–410.

26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar
S. Mega5: Molecular evolutionary genetics analysis using maxi-
mum likelihood, evolutionary distance, and maximum parsi-
mony methods. Mol Biol Evol. 2011;28:2731–2739.

27. Soding J, Biegert A, Lupas AN. The HHpred interactive server
for protein homology detection and structure prediction. Nucleic
Acids Res. 2005;33:W244–248. 24

28. Sali A, Blundell TL. Comparative protein modelling by
satisfaction of spatial restraints. J Mol Biol. 1993;234:779–
815.

29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PRO-
CHECK: A program to check the stereochemical quality of pro-
tein structures. J Appl Crystal. 1993;26:283–291.

30. Vriend G. WHAT IF: A molecular modeling and drug design
program. J Mol Graphics. 1990;8:52–56.

31. Cavallo L, Kleinjung J, Fraternali F. POPS: a fast algorithm for
solvent accessible surface areas at atomic and residue level.
Nucleic Acids Res. 2003;31:3364–3366.

32. Humphrey W, Dalke A, Schulten K. VMD: visual molecular
dynamics. J Mol Graphics. 1996;14:33–38.

33. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS
4: algorithms for highly efficient, Load-balanced, and scalable
molecular simulation. J Chem Theory Comput. 2008;4:435–
447.

34. Ko KC, Rim SO, Han Y, Shin BS, Kim GJ, Choi JH, Song JJ.
Identification and characterization of a novel cold-adapted ester-
ase from a metagenomic library of mountain soil. J Ind Micro-
biol Biotechnol. 2012;39:681–689.

35. Jeon JH, Kim JT, Kang SG, Lee JH, Kim SJ. Characterization
and its potential application of two esterases derived from the
arctic sediment metagenome. Mar Biotechnol (NY). 2009;11:
307–316.

36. H€ardeman F, Sj€oling S. Metagenomic approach for the isolation
of a novel low-temperature-active lipase from uncultured bacte-
ria of marine sediment. FEMS Microbiol Ecol. 2007;59:524–
534.

37. Rhee JK, Ahn DG, Kim YG, Oh JW. New thermophilic and
thermostable esterase with sequence similarity to the hormone-
sensitive lipase family, cloned from a metagenomic library.
Appl Environ Microbiol. 2005;71:817–825.

38. Choi JE, Kwon MA, Na HY, Hahm DH, Song JK. Isolation and
characterization of a metagenome-derived thermoalkaliphilic
esterase with high stability over a broad pH range. Extremo-
philes. 2013;17:1013–1021.

39. De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del
Vecchio P, de Pascale D. The hormone-sensitive lipase from
psychrobacter sp. Ta144: new insight in the structural/functional
characterization. Biochimie. 2010;92:949–957.

40. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P,
Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D,
Hoyoux A, Lonhienne T, Meuwis MA, Feller G. Cold-adapted
enzymes: from fundamentals to biotechnology. Trends Biotech-
nol. 2000;18:103–107.

41. Seo S, Lee YS, Yoon SH, Kim SJ, Cho JY, Hahn BS, Koo BS,
Lee CM. Characterization of a novel cold-active esterase iso-
lated from swamp sediment metagenome. World J Microbiol
Biotechnol. 2014;30:879–886.

42. Feller G, Gerday C. Psychrophilic enzymes: molecular basis of
cold adaptation. Cell Mol Life Sci. 1997;53:830–884.

43. Fu J, Leiros HK, de Pascale D, Johnson KA, Blencke HM,
Landfald B. Functional and structural studies of a novel cold-
adaptedesterase from an arctic intertidal metagenomic library.
Appl Microbiol Biotechnol. 2013;97:3965–3978.

44. D’Amico S, Marx JC, Gerday C, Feller G. Activity-stability
relationships in extremophilic enzymes. J Biol Chem. 2003;278:
7891–7896.

45. Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, Lee JH.
Identification of a new subfamily of salt-tolerant esterases from
a metagenomic library of tidal flat sediment. Appl Microbiol
Biotechnol. 2012;93:623–631.

46. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN,
Martins Dos Santos VA, Yakimov MM, Timmis KN, Golyshin
PN. Microbial enzymes mined from the urania deep-sea hyper-
saline anoxic basin. Chem Biol. 2005;12:895–904.

898 Biotechnol. Prog., 2015, Vol. 31, No. 4



47. Chu X, He H, Guo C, Sun B. Identification of two novel ester-
ases from a marine metagenomic library derived from South
China sea. Appl Microbiol Biot. 2008;80:615–625.

48. Anandham R, Weon HY, Kim SJ, Kim YS, Kim BY, Kwon
SW. Acinetobacter brisouii sp. Nov., isolated from a wetland in
Korea. J Microbiol. 2010;48:36–39.

49. Kim HE, Lee IS, Kim JH, Hahn KW, Park UJ, Han HS, Park
KR. Gene cloning, sequencing, and expression of an esterase
from acinetobacter lwoffii I6C-1. Curr Microbiol. 2003;46:291–
295.

50. Kim HE, Park KR. Purification and characterization of an ester-
ase from acinetobacter lwoffii I6C-1. Curr Microbiol. 2002;44:
401–405.

51. Hern!andez-Rodr!ıguez B, C!ordova J, B!arzana E, Favela-Torres
E. Effects of organic solvents on activity and stability of lipases
produced by thermo tolerant fungi in solid-state fermentation.
J Mol Catal B: Enzym. 2009;61:136–142.

52. Zaks A, Klibanov AM. Enzymatic catalysis in non-aqueous sol-
vents. J Biol Chem. 1988; 263:3194–3201.

53. Rocha JMS, Gil MH, Garcia FAP. Effects of additives on the
activity of a covalently immobilised lipase in organic media.
J Biotech. 1998;66:61–67.

Manuscript received Jan. 23, 2015, and revision received Mar. 23,
2015.

Biotechnol. Prog., 2015, Vol. 31, No. 4 899



RESEARCH ARTICLE

Investigating the Role of the Host Multidrug
Resistance Associated Protein Transporter
Family in Burkholderia cepacia Complex
Pathogenicity Using a Caenorhabditis
elegans Infection Model
Pietro Tedesco1,2, Marco Visone1, Ermenegilda Parrilli2, Maria Luisa Tutino2,
Elena Perrin3, Isabel Maida3, Renato Fani3, Francesco Ballestriero4, Radleigh Santos5,
Clemencia Pinilla5, Elia Di Schiavi6,7, George Tegos5,8,9*, Donatella de Pascale1*

1 Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, I-80131, Naples, Italy,
2 Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples Federico
II, Via Cintia, I-80126, Naples, Italy, 3 Laboratory of Microbial and Molecular Evolution, Department of
Biology, University of Florence, Via Madonna del Piano, I-50019, Sesto Fiorentino, Florence, Italy, 4 School
of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South
Wales, Sydney, 2052, New South Wales, Australia, 5 Torrey Pines Institute of Molecular Studies, Port
St. Lucie, FL, United States of America, and San Diego, CA, United States of America, 6 Institute of
Bioscience and BioResources, National Research Council, via P. Castellino 111, I-80131, Naples, Italy,
7 Institute of Genetics and Biophysics, National Research Council, via P. Castellino 111, I-80131, Naples,
Italy, 8 Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of
America, 9 Department of Dermatology, Harvard Medical School, Boston, MA, United States of America

* d.depascale@ibp.cnr.it (DdP); gtegos@tpims.org (GT)

Abstract
This study investigated the relationship between host efflux system of the non-vertebrate
nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain viru-
lence. This is the first comprehensive effort to profile host-transporters within the context of
Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay
that monitors mortality of the host by intestinal colonization and a fast killing assay that
assesses production of toxins. A Virulence Ranking scheme was defined, that expressed
the toxicity of the Bcc panel members, based on the percentage of surviving worms.
According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cys-
tic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in
worms’ intestines. For the transporter analysis a complete set of isogenic nematode single
Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibi-
tors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 iso-
genic C. elegansMRP knock-out strains functionality was classified in two distinct groups.
Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7
mutants when compared to wild type. In particularmrp-2 was the most susceptible pheno-
type with increased mortality for 13 out 18 Bcc strains, whereasmrp-3 andmrp-4 knock-
outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The
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use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on aver-
age) mortality of wild-type worms.

Introduction
The Burkholderia cepacia complex (Bcc) occupies a critical position among Gram-negative
multi-drug resistant bacteria. It consists of at least 20 closely related species inhabiting different
ecological niches, including plants and animals [1–5]. Bcc multi drug and pandrug-resistant
opportunistic human pathogens cause problematic lung infections in immune-compromised
individuals, including cystic fibrosis (CF) patients [6–8]. Bcc members are naturally resistant
to antibiotics including cephalosporins, β-lactams, polymyxins and aminoglycosides, rendering
Bcc infections challenging to eradicate [9,10]. There is an imminent need to develop new Bcc
antimicrobial therapeutic strategies. Dissecting virulence and pathogenicity determinants as
well as identifying novel therapeutic targets may be promising approaches. These tasks may be
advanced by the exploitation of the non-vertebrate host models Drosophila melanogaster, Gal-
leria mellonella, and Caenorhabditis elegans. Model hosts have been used to evaluate microbial
virulence traits involved in mammalian infections and the efficacy of antimicrobial compounds
[11–16]. The free-living nematode C. elegans is a widespread multicellular organism that is a
self-fertilizing hermaphrodite with a rapid generation time. C. elegans has been proven cost-
effective, ethical, reproducible and genetically powerful infection model despite the obvious
reported technical limitations (nematodes have lower optimal growth temperatures when com-
pared with human pathogens; occurrence of host specific virulence factors) [15,17–19]. In fact,
there is an extensive body of literature for the utility of the nematode to model infection with a
variety of Gram-negative bacteria including Escherichia coli, Burkholderia pseudomallei, B.
cepacia complex and Pseudomonas aeruginosa [20–23]. The C. elegans-Bcc studies in the last
decade have shed some light on the complex-nematode interaction, correlating genotypic char-
acteristics of the pathogen with phenotypic changes in the host. These efforts have identified
specific virulence factors: the auto inducer dependent Acyl-HomeSerineLactone (aidA), the
phenazine biosynthesis regulator (Pbr), and the host factor phage Q, (hfq) [16,24–33].

Recent studies have underlined the importance of efflux systems in infection within the con-
tent of host-pathogen interaction [34–36]. The host efflux capability is considered part of a
basic defence mechanism. For example the B. pseudomallei infection stimulates the overpro-
duction of the ATP Binding Cassette (ABC) transporter pgp-5 in C. elegans [37]. However, the
partition of host transporters in the infection process has never been studied in depth. Bcc
members produce a variety of metabolites and toxins, potential host efflux substrates. Further-
more, exploring the role of host transporters in pathogenicity may facilitate the design of
appropriate tools for toxin identification. Multidrug Resistance associated Proteins (MRPs) are
members of the ABC efflux transporter family with broad substrate specificity for the transport
of endogenous and xenobiotic anionic substances found in Bacteria, Archaea and Eukarya [38–
41]. MRPs play important roles in nematode physiology such as control resistance to anthel-
mintic (ivermectine) and heavy metals (arsenic) [42–44]. This study emphasizes the contribu-
tion of the host MRP efflux subfamily to Bcc virulence, employing a panel of 18 strains
representing the up-to-date different acknowledged species and a fully functional seven single
C. elegansmutant set impaired in MRPs. A Virulence-Ranking (VR) scheme based on compar-
ing host survival rates in two different assays was developed. This scheme provides the tool for
a detailed study on the effect of the MRP transporter family on Bcc virulence using as well as
selected efflux inhibitors.
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Materials and Methods
Bacterial strains, nematode strains and growth conditions
C. elegansWild-type (WT) Bristol N2, NL147 (mrp-1(pk89) X), RB1713 (mrp-2(ok2157) X),
RB1028 (mrp-3(ok955) X), VC712 (mrp-4(ok1095) X), VC1599 (mrp-5(ok2067)/szT1 X),
RB1070 (mrp-6(ok1027) X) and RB1269 (mrp-8(ok1360) III) strains were obtained from the
Caenorhabditis Genetic Centre (CGC). For strain VC1599, due to ok2067mutation lethality
in homozygosis, all the experiments were performed assaying heterozygotes worms. All
mutants presented identical phenotypic traits in respect to WT: normal larval development
(eggs reaching adults state in 72 h as indicated on standard table (www.wormbook.org)),
non-impaired reproduction, and survival rate at 100% when fed with E. coli. Mutant mpr-5
in heterozygosis also aligned to those parameters. All strains were recovered from frozen
stocks, and routinely kept on NGM (Nematode Growth Medium) plates seeded with E. coli
OP50 as a food source [45]. The panel of Bcc strains used in this work belongs to the Bcc col-
lection at the University of Gent, Belgium, and is listed in Table 1. Bcc and E. coli OP50 cells
were routinely grown in Luria-Bertani broth (LB) (10 g/L Bacto-tryptone, 5 g/L Yeast extract,
10 g/L NaCl) at 37°C.

Nematode Toxicity Assays
Slow Killing Assay (SKA) was performed against the C. elegansWT strain N and MRP-
mutants. 2.5-cm-diameter plates containing 3 ml of NGM agar (Peptone 2.5 g/L, NaCl 2,9 g/L,
Bacto-Agar 17 g/L, CaCl2 1 mM, Cholesterol 5 μg/mL, KH2PO4 25 mM, MgSO4 1 mM) were
seeded with 50 μl of the overnight Bcc cultures, normalized to an OD600, of 1.7 and incubated
for 24 h at 37°C to allow the formation of a bacterial lawn. This was the standard bacterial
growth condition unless otherwise stated. C. elegansWT strain and MRP-mutants were syn-
chronized by bleaching treatment [46], and 30–40 worms at larval stage 4 (L4), were trans-
ferred to each plate and incubated at 20°C for three days. The plates were scored for living
worms every 24 h.

Fast Killing assay (FKA) was carried out in 2.5-cm-diameter plates containing 3 ml of
Peptone Glucose Sorbitol (PGS) agar medium [25] (Peptone 12 g/L, Glucose 12 g/L, Sorbitol
27.25 g/L, NaCl 12 g/L, Bacto-Agar 17 g/L, CaCl2 1 mM, Cholesterol 5 μg/mL, KH2PO4

25 mM, MgSO4 1 mM). Plates were prepared as described above for the SKA. Then, L4
worms fromWT strain and MRP-mutants were collected from NGM plates, washed with M9
medium (Na2HPO4!7H2O 12.8 g/L, Na2HPO4 (anhydrous) 6 g/L, KH2PO4 3 g/L, NaCl
0.5 g/L, NH4Cl 1 g/L) and 30–40 L4 worms were spotted onto the bacterial lawn. The plates
were then incubated at 20°C and scored for living worms every 24 h. In both assays, E. coli
OP50 was used as a negative control. A worm was considered dead when it no longer
responded to touch. For statistical purposes, 5 replicates per trial were carried out with a
unique egg preparation. The incubation time was set at 2 days. A pathogenicity scheme (VR)
was established by comparing the "infectivity" towards nematodes between E. coli OP50 and
Bcc isolates.

Microscopy analysis
40–60 WT L4 worms were grown on NGM plates seeded with Bcc or E. coli OP50 propagated
in standard growth conditions. Plates were incubated at 20°C, and after 4 and 24 h, the nema-
todes were inspected using a Zeiss Axioskop microscope equipped with Differential Interfer-
ence Contrast (DIC) employing 10x, 20x, 40x, 63x and 100x objectives and 10X eyepiece.
Images were collected with a Zeiss Axiocam MR digital camera.
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Toxin Diffusion assay
Bcc or E. coli OP50 cells were grown under standard growth conditions and spread on sterile
0.22 μmMillipore Nitrocellulose (Darmstadt, Germany) filter disk located onto 2.5-cm-diame-
ter PGS plates [25]. After overnight incubation at 37°C, the filter together with the bacterial
lawn was removed and the plates were allowed to cool to room temperature. 30–40 hypochlo-
rite-synchronised WT L4 nematodes were spotted onto the conditioned agar. Paralysation and

Table 1. Burkholderia cepacia complex used in this work and VR relative to the different killing assays.

Species Strain Source SKA FKA

Burkholderia cepacia LMG 1222 Onion 0 3

Burkholderia multivorans LMG
13010

CF 0 0

Burkholderia cenocepacia LMG
16656

CF 2 2

Burkholderia stabilis LMG
14294

CF 3 3

Burkholderia vietnamiensis LMG
10929

Soil 1 0

Burkholderia dolosa LMG
18943

CF 0 1

Burkholderia ambifaria LMG
19182

Soil 0 3

Burkholderia anthina LMG
20980

Soil 2 1

Burkholderia pyrrocinia LMG
14191

Soil 0 2

Burkholderia ubonensis LMG
20358

Soil 2 1

Burkholderia latens LMG
24064

CF 1 1

Burkholderia diffusa LMG
24065

CF 2 2

Burkholderia arboris LMG
24066

Soil 1 1

Burkholderia seminalis LMG
24067

CF 2 2

Burkholderia metallica LMG
24068

CF 3 3

Burkholderia lata LMG
22485

Soil 0 1

Burkholderia contaminans LMG
23361

AI 1 3

Burkholderia
pseudomultivorans

LMG
26883

CF 0 1

Abbreviations: Soil = Soil rhizosphere, AI = Animal Infections, CF = Cystic Fibrosis patients
VRs
0 = 100% > Survival worms > 80%
1 = 79% > Survival worms > 50%
2 = 49% > Survival worms > 6%
3 = 5% > Survival worms > 0%

doi:10.1371/journal.pone.0142883.t001
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mortality of the worms were detected at 4 and 24 h. The experiments were performed in tripli-
cate, and data reported are mean values ± SD.

Statistical analysis and clustering
All the Kaplan-Meier survival curves were analyzed using the Graph-pad Prism 5 software.
Comparisons vs. control for both the C. elegans and inhibitor experiments were performed
using Fisher’s exact test to account for possible non-Normality in the data. In particular, as it
was observed that replicate means of C. elegans percent mortality correlated extremely well to
pooled percent mortality (R2 > 0.99 in all cases), counts of C. elegans that were alive and dead
after 72 h were used to populate the various 2x2 tables onto which the Fisher’s exact test was
applied. Bonferroni-Holm correction of p-values was used to account for the multiple compari-
sons performed.

Mutant clustering analysis was performed using hierarchical clustering via Ward’s method.
Clusters were fixed using a consistency threshold of 1.1, resulting in cophenetic coefficient
(correlation between cluster and metric distance) of at least 0.80.

Transporter Inhibitor assays
The MRP transporter inhibitors mometasone furoate, lasalocid A sodium, verapamil hydro-
chloride were purchased from Sigma-Aldrich, Saint Louis, MO. Compounds were dissolved in
DMSO and spread onto NGM plates in different concentration ranges: 25–100 μM (mometa-
sone and verapamil) and 125–500 nM (lasalocid). DMSO (0,5% w/v) was used as control. Sub-
sequently, Bcc strains (grown in standard conditions) were spotted onto the plates that were
incubated overnight at 37°C. After the incubation 30–40 WT L4 worms were spotted onto the
bacterial lawn. The plates were then incubated at 20°C for 3 days and scored for living worms
every 24 h. The experiments were performed in triplicate, and the data reported are mean
values.

Results and Discussion
Killing of C. elegans by Bcc strains
To evaluate Bcc virulence determinants and properties, two different assays were performed: i)
SKA, performed on a low osmolarity medium (NGM), assigned to correlate worms mortality
with intestinal bacterial accumulation/colonisation [24,25]; ii) FKA carried out on a high
osmolarity medium (PGS) to demonstrate the secretion of bacterial toxins and evaluate their
capacity to paralyse and kill the nematodes [24,25]. A VR was established for the Bcc strains
under investigation by comparing the "infectivity" against nematodes between E. coliOP50 and
Bcc isolates. The VR ranges from 0 to 3 (see Fig 1) and was based on the percentage of surviv-
ing worms after the period of observation, which was set at 3 days. A Bcc strain was considered
to be non-pathogenic (VR = 0) when no symptom of disease was observed during the course of
nematodes infection and the percentage of live worms at the conclusion of the period of obser-
vation ranged from 100 to 80%; VR = 1 corresponded to a percentage of alive worms between
79 to 50%; VR = 2 corresponded to a percentage of alive worms between 49 to 6%; finally, the
VR was considered 3 when the percentage of surviving worms was" 5%.

SKA performed against WT L4 worms revealed diverse pathogenicity capabilities among
the 18 Bcc representatives [Table 1]:

i. 2 Bcc strains (B.metallica, B. stabilis) displayed high nematocide activity (VR 3). No viable
nematodes were detectable in the plates after 3 days of incubation at 20°C.
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ii. Half of the Bcc strains exhibited VR between 1 and 2, showing an intermediate toxicity
towards C. elegans.

iii. Seven Bcc strains (B. ambifaria, B. cepacia, B. dolosa, B. pseudomultivorans, B. pyrrocinia,
B. lata and B.multivorans) were unable to kill worms, and the whole population was viable
(VR = 0).

Nematodes killed in the lawn of bacteria took on a ghostly and hollow “shell-like” appear-
ance about 48 h after the L4 were first introduced, and their shells induced by B. ubonensis, B.
metallica and B. stabilis were defined as “chalk-mark ghosts”. This shape is characteristic of
organisms lacking a discernible internal cell structures. Often the ghosts eroded to a mere
outline.

The pathogenicity of the 18 Bcc strains was then assessed on FKA. Data obtained are sum-
marised in Table 1. Nematodes death on FKA appeared to be a rapid process as they loose
locomotor functions, as shown by the quick onset of lethargy. Motility visibly decreased after
exposure for 4 h, and the rate of foraging was similarly affected in the same time frame. In
FKA, five strains (B. ambifaria, B. cepacia, B. contaminans, B.metallica, B. stabilis) demon-
strated deep killing ability (VR = 3) against C. elegans and only two strains (B.multivorans and
B. vietnamiensis) were completely ineffective in killing worms. For the highly active strains,
almost 100% mortality occurred in 24 h, while on SKA 3 days are required for complete killing
(Fig 2).

Nine out of 18 Bcc strains have previously been characterized using SKA [30,47]. The VR of
7 strains (B. anthina, B. ubonensis, B. vietnamiensis, B. cenocepacia B. dolosa B. ambifaria, B.
cepacia) are consistent with the previously reported SKA ranking. The same comparison
revealed a variation for B. pyrrocinia and B. stabilis, which were found as more and less

Fig 1. Kaplan-Meier survival plots for L4 N2 worms fed with exemplifying Bcc strains for different VR grown on PGSmedium.Worms fed on: B.
metallica (VR 3; black line; n = 113; 0% survival at day 2); B. seminalis (VR 2; blue line; n = 150; 34% survival at day 2); B. dolosa (VR 1; redline; n = 198; 69%
survival at day 2); B.multivorans (VR 0; green line; n = 120; 93% survival worms). n: Number of worms at day 0. All p-values, comparing each survival curve
between them, resulted to be < 0.0001, calculated with "Log-rank (Mantel-Cox) Test" with the Graph-pad Prism 5 software.

doi:10.1371/journal.pone.0142883.g001
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virulent, respectively. This variability may be due to ranking differences, as the experimental
conditions were very reproducible. This is the first report for an indicative pathogenicity rank-
ing for 8 Burkholderia species, recently added to Bcc, (B. latens, B. diffusa, B. arboris, B. semina-
lis, B.metallica, B. pseudomultivorans, B. lata, B. contaminans). B.metallica, B. stabilis (both
isolated from CF patients) were the most virulent in both assays (Fig 2B and 2C). The compar-
ison of data obtained in the FKA and SKA revealed that, on average, strains isolated from CF
patients appeared more virulent than environmental isolates on SKA. In particular, three Bcc
strains (B. ambifaria, B. cepacia and B. pyrrocinia) exhibited high nematocide activity in the
FKA, whereas they were unable to kill the worms in the SKA (VR 0 and 1). Therefore we can
assume that toxin production is a common virulence mechanism for Bcc members, while CF
isolates might have acquired different pathogenic traits that allow them to infect and colonize
hosts, as already proposed by Pirone et al. [48]. The only exception is represented by B.multi-
vorans, and B. pseudomultivorans. These two strains are CF isolates, but were non-virulent
towards nematodes. This evidence likely rely in the limitation of the nematode host model,
once more indicating that virulence factors are not universal for all hosts [15].

Bacterial intestinal accumulation. The two Bcc strains with VR = 3 in the SKA (B. stabilis
and B.metallica) were then assessed for their ability to accumulate in the C. elegans intestine.
Worms grown in standard condition were inspected using a compound microscope at different
incubation times to evaluate the bacterial accumulation in the intestinal lumen.

Bcc colonization of nematode occurred rapidly. After 4 h of incubation, worms fed with E.
coli OP50 showed a thin intestinal lumen (Fig 3A and 3B), whereas, when spotted onto B.
metallica layer, worms already presented deformed intestines (Fig 3E). After 24 h nematodes
displayed a full intestinal lumen packed with bacteria (Fig 3F). These data confirmed that Bcc
with high VR were able to accumulate within the entire nematode intestine and therefore slow-
killing may resemble an infection-like process. On the contrary, nematodes exposed to the
strain B. pseudomultivorans, which exhibited a low pathogenicity (VR = 0 on SKA), under the
same experimental conditions presented a healthy intestine with the presence of bacterial cells
only in the first part of the intestine (Fig 3C and 3D). This finding may signify that: i) even
non-pathogenic Bcc strains were able to pass intact through the pharynx and occupy the

Fig 2. Kaplan-Meier survival plots for L4 stageWTworms fed with: E. coli OP50 (solid lines), Bcc strains on NGM (dashed lines), Bcc strains on
PGS (dotted lines). n: Number of worms at day 0. A) The pathogenicity of Bcc strain B. cepacia on SKA (n = 93) was compared with the ability on FKA
(n = 184). B) The pathogenicity of Bcc strain B.metallica on SKA (n = 80) was compared with the ability on FKA (n = 113).C) The pathogenicity of Bcc strain
B. stabilis on SKA (n = 87) was compared with the ability on FKA (n = 161). P-values were calculated between survival curves on FKA and SKA of each
bacteria, and resulted to be < 0.0001 calculated with "Log-rank (Mantel-Cox) Test" with the Graph-pad Prism 5 software.

doi:10.1371/journal.pone.0142883.g002
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Fig 3. The ability of Bcc strains to accumulate inC. elegans intestinal lumen was evaluated with microscopy analysis. Red arrows indicate the
nematodes intestine.A) Intestinal lumen of one L4 stageWT worm after 4 h of incubation on NGM plate spotted with E. coliOP50, andB) after 24 h of
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intestine; ii) the accumulation of the Bcc in the whole nematode gut, especially in the last part
of the intestine, might be responsible for the worm’s death [24].

Toxin Diffusion assay. To evaluate the contribution of diffusible secreted factors (toxins
and/or other virulence chemical signalling molecules) to the rapid kinetics of killing on FKA,
we performed the toxin diffusion assay [25]. These experiments were carried out on a reduced
panel consisting of the five Bcc strains possessing the highest nematocide activity on FKA (B.
contaminans, B. cepacia, B. ambifaria, B.metallica and B. stabilis). Results shown in Fig 4
revealed that a high percentage of worms were paralyzed after 4 h of incubation on plates, even
if they were not in contact with the bacteria. In particular, only 30% of the worms placed on B.
ambifaria plates were still mobile and active, whereas the remaining nematode population
appeared paralysed. On the contrary, worms spotted on plates containing E. coli conditioned
agar did not present any paralysis or mortality. Among the tested Bcc strains, B. ambifaria was
the most active toxin producer. Indeed, after 24 h of incubation only 20% of the total number
of nematodes was still moving on B. ambifaria plates (Fig 4). In the case of B. stabilis, it was
observed that paralyzed worms at 4 h were able to move again and survive. One plausible
explanation for this variation might be related to low stability of the diffusible toxins/virulence
determinants produced by those strains that require constant production.

Interestingly, when the toxin filter assay was performed on NGMmedium, no paralysis or
mortality was detected. This experiment confirms that FKA rapid killing kinetics revealed a
role for diffusible toxins as a main component of the infectious process. Thomson and Dennis
demonstrated the production by Bcc strains of a haemolytic toxin required for full virulence,
synthesized by a non-ribosomal peptide synthase (NRPS) pathway, typical of a complex sec-
ondary metabolite [49]. They screened a panel of Bcc strains including B. cenocepacia, B. stabi-
lis, B. pyrrocinia and B. vietnamiensis for the presence of this gene cluster. A NRPS cluster was
identified in B. pyrrocinia and B. stabilis with VR = 3 on FKA. Moreover, Bcc strains are
known to produce toxins with demonstrated antifungal activity like the cyclic peptides occidio-
fungins (burkholdines) [50]. Therefore, we cannot a priori exclude the possibility that a peptide
might represent the toxin active towards C. elegans.

Killing of MRPs knock-out C. elegansmutants by Bcc member strains
The nematode-Bcc pathogenicity ranking system developed was investigated for its ability to
detect and map genotype-specific host responses. We obtained access to a complete, seven
MRPs knock-out nematode mutant set,mrp-1(pk89),mrp-2(ok2157),mrp-3(ok955),mrp-4
(ok1095),mrp-5(ok2067),mrp-6(ok1027) andmrp-8(ok1360), impaired in the corresponding
ABC membrane transporters.

These knock-out mutants exhibited identical phenotypic attributes with the WT. The 18
Bcc representative strains were profiled against the 7 mutants in both SKA and FKA. Control
mortality was calculated to be the number of dead worms divided by the number of total
worms. Pooled mortality counts (alive vs. dead) for each mutant were tested against the WT
using Fisher’s Exact test. Statistically significant (Bonferroni-Holm corrected p-value< 0.05)
differences fromWT are shown in Table 2. The mortality rates calculated were highly variable
suggesting a Bcc strain-specific effect towards the MRP C. elegansmutants. Some trends were
detected:mrp-5 andmrp-2 had increased mortality rate for several Bcc strains in both SKA and

incubation on the same plate.C) Intestinal lumen of one L4WT after 4 h of incubation on NGM plate spotted with B. pseudomultivorans (VR 0 on SKA, andD)
after 24 h of incubation on the same plate. E) Intestinal lumen of one L4WT after 4 h of incubation on NGM plate spotted with B.metallica (VR 3 on SKA, and
F) after 24 h of incubation on the same plate.

doi:10.1371/journal.pone.0142883.g003
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FKA. Specifically, 8 Bcc strains in SKA and 9 in FKA showed increased killing towardsmrp-5,
while 8 strains in SKA and 8 in FKA appeared more virulent againstmrp-2. C. elegansmutants
mrp-3 andmrp-4 displayed lower killing rates when incubated with several Bcc strains. In par-
ticular, mutantmrp-4 exhibited decreased mortality to 8 Bcc species in SKA and to 7 strains in
FKA. Regarding the Bcc strains, on SKA B. ambifaria displayed increased virulence towards
the whole mutant set, with mortality rate compared to the WT higher than 75% and 71%
towards,mrp-5 and mrp-6 respectively. B. arboris demonstrated an increased pathogenic effect
towardsmrp-1,mrp-2,mrp-6,mrp-8, while B. dolosa was more lethal againstmrp-2,mrp-5,
mrp-6,mrp-8mutants. On FKA, B. lata and B.multivorans were the most pathogenic strains
with increased mortality rate against all mutants, while B. diffusa was more virulent against 6
mutants, and B. arboris against 5 mutants.

The complete set of killing results for each Bcc strain generated a unique killing profile in
each MRP mutant. To determine whether these profiles constitute a coherent mutant classifica-
tion pattern, a hierarchical clustering of significant effect sizes vs. each strain (Ward’s method,
Consistency Threshold 1.1) was performed. This analysis showed different patterns formrp-3
andmrp-4 when compared with the rest of MRP-phenotypes in both FKA and SKA. However,
mrp-3 andmrp-4 share low sequence identity/similarity among them (data not shown), sug-
gesting that these two transporters do not have similar substrate specificity or function. These
MRP-phenotypes were grouped consistently and differentiated from the rest of single knock
out strains (Fig 5). This pattern could justify the diverse phenotypic response to Bcc of the
MRP knock-out mutants, indicating variation in substrate profile specificity for the 7 MRP
efflux systems. The clustering patterns of the other transporters suggest distinct substrate speci-
ficity, in agreement with the low degree of sequence identity/similarity shared among them
(data not shown). Nevertheless, we can assume that toxins and small molecules are MRP-
related substrates, and these transporters play a fundamental role in Bcc defence, with the
exception ofmrp-3 andmpr-4.

Fig 4. Secreted compounds or toxins mediate fast killing.Data reports paralysis and mortality at 4 and 24 h of worms plated on PGSmedium plates
treated with Bcc strains or E. coli grown on a sterile disk. Data represent mean values of three independent experiments and SD values are reported. P-
values were calculated between sample (Bcc) and control (OP50) at the corresponding time, and were always < 0.05.

doi:10.1371/journal.pone.0142883.g004
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Inhibitor experiments
The Bcc pathogenicity ranking system was used to facilitate testing for a distinct MRP-efflux
system substrate profile within the content of infection. Disabling efflux pumps genetically

Table 2. MRP knock-out C. elegansmutants mortality expressed as percentage of dead worms and comparison between the mutants and theWT.
Mutant mrp-5 was tested as heterozygote, due to lethality of the mutation in homozygosis. Statistical significant differences appear highlighted, with negative
values indicating statistically significant reductions in mortality fromWT, and with positive values indicating statistically significant increases in mortality from
WT.

Significant Changes in % Mortality

Strain WT Mortality FKA mrp-1 mrp-2 mrp-3 mrp-4 mrp-5 mrp-6 mrp-8

B. ambifaria 95 NS -27 NS NS NS NS NS

B. anthina 42 45 50 NS NS 58 NS NS

B. arboris 28 70 72 21 NS NS 72 72

B. cenocepacia 64 NS 31 NS -45 NS 27 NS

B. cepacia 100 -19 NS NS -19 NS -15 -18

B. contaminans 94 NS NS -17 -16 NS NS NS

B. diffusa 69 NS NS NS NS NS NS -26

B. dolosa 31 33 NS 59 NS 48 49 NS

B. latens 42 NS NS -34 NS 38 NS -28

B. metallica 100 NS NS -13 -17 NS NS -10

B. pseudomultivorans 20 NS NS NS NS 50 NS NS

B. pyrrocinia 70 NS 21 -44 -35 26 NS 29

B. seminalis 64 NS NS -44 -31 NS NS NS

B. stabilis 100 -9 -47 NS NS -10 -63% -77%

B. ubonensis 52 NS 41 NS -24% 38 NS 32

B. vietnamiensis 14 NS 40 -12% NS 57 61 35

B. lata 18 38 64 27 42 70 54 53

B. multivorans 7 33 22 21 34 62 28 45

Strain WT Mortality SKA mrp-1 mrp-2 mrp-3 mrp-4 mrp-5 mrp-6 mrp-8

B. ambifaria 6 61 67 30 28 75 71 58

B. anthina 91 9 NS -27 -24 NS NS NS

B. arboris 46 53 54 -35 NS NS 50 51

B. cenocepacia 81 NS NS NS -77 -65 -24 -54

B. cepacia 9 81 75 NS NS 78 62 45

B. contaminans 47 30 26 49 NS NS NS NS

B. diffusa 88 NS NS NS -25 NS NS NS

B. dolosa 13 NS 25 NS NS 61 61 28

B. latens 22 NS 43 -19 -19 46 NS 42

B. metallica 100 NS NS -14% -8% NS NS NS

B. pseudomultivorans 11 NS NS NS NS 30 NS NS

B. pyrrocinia 5 53 61 NS NS 64 57 46

B. seminalis 69 28 NS -50 -67 NS NS NS

B. stabilis 100 -90 -58 NS NS -55 -60 -84

B. ubonensis 83 -60 NS -28 -36 NS NS NS

B. vietnamiensis 46 -44 -39 -43 -44 -34 50 -41

B. lata 10 NS NS NS NS 52 NS NS

B. multivorans 3 NS 22 NS NS 35 41 NS

NS = Not significant difference

doi:10.1371/journal.pone.0142883.t002
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(knock-outs) or chemically (small molecules-inhibitors) should have a similar toll on increas-
ing nematode mortality. A pilot analysis was performed utilizing the Bcc strains that exhibited
increased C. elegans susceptibility in numerous efflux knock-outs on SKA (B. ambifaria, B.
arboris, B. cepacia, B. dolosa, B. pyrrocinia) and the well-characterized mammalian MRP-efflux
inhibitors mometasone furoate, lasalocid A and verapamil [51]. All compounds did not affect
Bcc or C. elegans viability at the concentration used for the assay, (S1 Fig) The compounds
were spread in concentration ranges onto NGM plates to perform SKA and DMSO (0.5%) was
used as a growth control. Control mortality was calculated to be the number of dead worms
divided by the number of total worms. Comparison to solvent control of pooled mortality
counts was done using Fisher’s Exact test; results were considered significant if Bonferroni-
Holm corrected p-values were less than 0.05. Statistically significant differences from the WT
are shown in Table 3. Reduction in mortality from the controls was not observed. The inhibitor
use in the infection system, provided a statistically significant increase of mortality in the pres-
ence of at least one inhibitor compared to DMSO controls for 3 Bcc strains, whereas B. pyrroci-
nia and B. ambifaria killing rates were not affected.

In particular, the presence of mometasone (100 μM), B. arboris, B. cepacia and B. dolosa
enhanced virulence against nematodes with mortality rate of 40% higher than the control.
Lasalocid (500 nM) caused an increase in the percentage of dead worms of 34% and 48%

Fig 5. Hierarchical Clusterings.Ward’s method with a consistency threshold 1.1 used to cluster mutants based on significant changes in pathogenicity.

doi:10.1371/journal.pone.0142883.g005

Table 3. Effect of ABC inhibitors duringC. elegans- Bcc infection on SKA. Nematodes mortality expressed as percentage of dead worms and com-
pared between samples with inhibitors and control with DMSO (0,5%). Statistical significant differences were reported.

Significant Changes in % Mortality

Strain Control Mortality Verapamil Mometasone Lasalocid

100 μM 50 μM 25 μM 100 μM 50 μM 25 μM 500 nM 250 nM 125 nM

B. cepacia 17 NS NS NS 45 NS NS 34 NS NS

B. arboris 20 35 NS 27 45 NS NS NS NS NS

B. dolosa 32 NS NS NS 44 29 NS 48 38 NS

NS = Not significant difference

doi:10.1371/journal.pone.0142883.t003

Role of MRPs in Bcc Pathogenicity UsingC. elegans as Infection Model

PLOS ONE | DOI:10.1371/journal.pone.0142883 November 20, 2015 12 / 17



with B. cepacia and B. dolosa, respectively. Verapamil (100 μM) enhanced killing only for B.
arboris, with a killing rate of 35% higher than the control. These results demonstrated that
the inhibitor driven MRP transporter inactivation results in increased mortality at least for
two inhibitors, of the nematodes to Bcc strains, supporting the role of these transporters in
Bcc infection. Verapamil has been characterized as a competitive inhibitor in ABCB1 malig-
nant cell overexpression [52] as wells as a potent ABCC family inhibitor [53]. It is also
involved in inhibiting C. elegans P-gp1, which is involved in nematode resistance to ivermec-
tine [54]. The present experimental setup differs as it explores verapamil against a number of
targets simultaneously not by isolating transporters of interest. This analysis suggests that
verapamil very likely works, but the number of interactions leading to a weaker phenotype
should be investigated further.

Conclusions
The major aim of this work was to inquire the role of host transporters in the infection devel-
oping a nematode virulence ranking system focusing in well-recognized Bcc strains. It is com-
mon knowledge that every bacterial species includes member-strains with different pathogenic
characteristics. However, the key purpose was to build the model using type strains of each of
the 18 currently known Bcc species, a combination of two different killing assays (SKA and
FKA), and a set of nematode mutants impaired in MRP efflux transporters. We focused on
type strains due to the extensive information known, as many Bcc genomes have been
completely sequenced and more will be soon become available. To define Bcc virulence we
established a VR scheme, based on the percentage of surviving worms. Both nematocidal assays
revealed different pathogenicity profiles for the Bcc species. Strains with high score in the VR
system were able to accumulate in the nematodes intestine and produce virulence factors, on
SKA and FKA, respectively. Only Bcc CF isolates accumulate within worms, an observation
that correlates well with the apparent differences in virulence factors between environmental
and CF isolates. This VR scheme was applied to profile Bcc pathogenesis in seven MRP
impaired C. elegansmutants. MRPs are implicated in distinct nematode cellular processes:
MRP1 is involved in heavy metal tolerance and ivermectine resistance [42,43]; MRP4 is central
in early-stage differentiation [55]; MRP5 acts as a fundamental heme exporter into embryonic
development [56]. Results showed increased nematode mortality for several C. elegansmutants
grown in the presence of specific Bcc strains compared to WT nematodes. In particularmrp-2
andmrp-5 were the most susceptible mutants with increased mortality respectively in 13 and
11 different Bcc strains in the two assays, suggesting an active role of these two efflux transport-
ers in host defense. However strain mpr-5 was tested only in heterozygosis and this could have
affected survival rate. Cluster analysis consistently grouped and separatedmrp-3 andmrp-4
mutants in both assays from the other MRP-phenotypes. This pattern suggested different sub-
strate specificity for these MRP transporters. To further explore the role of MRP transporters
in host defense, inhibitor experiments were carried out on a selected panel of the five most
"infectious" Bcc strains against the MRP knock-out mutants (B. ambifaria, B. arboris, B. cepa-
cia, B. dolosa, B. pyrrocinia). These strains were tested against the WT nematodes in the pres-
ence of three well-characterized MRP-inhibitors, with a broad inhibitory activity against MRP
transporters [51]. These results suggested that chemically disabling of the MRPs resulted in
increased C. elegans susceptibility to Bcc strains. The use of mometasone and lasalocid in the
infection system increased killing rate when incubated with B. cepacia and B. dolosa, while
verapamil showed a mild effect for B. arboris.

In conclusion, this study provided tools to correlate microbial pathogenicity with the host
transporters, and highlighted specific efflux systems with a central role in Bcc virulence.
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It is worth noting that MRPs share components of a conserved activation mechanism with
the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)[57,58]. Therefore, identifi-
cation of bacterial signalling molecules with substrate specificity in recognizing MRPs CFRT-
like efflux transporters involved in host response could be a starting point for the development
of novel therapeutic strategies.

Supporting Information
S1 Fig. Bcc strain growth in the presence of inhibitors. For the Bcc strain growth curves in
the presence of inhibitors, one single colony of each Bcc strain was placed in a tube containing
3 mL of LB broth. The tubes were then incubated at 37°C overnight in agitation. The overnight
cultures were used to inoculate 250 mL flasks containing 50 mL of LB broth plus the inhibitors
at an initial concentration of 0.01 OD600/mL. For each strain, a set of 5 flasks was employed:
1) Verapamile 100 μM; 2) Mometasone 100 μM; 3) Lasalocid 500 nM; 4) DMSO 0.5% v/v; 5)
control (no inhibitor or DMSO). The flasks were incubated at 37°C in agitation at 220 rpm.
Bacterial growth was monitored following OD600 for 36 hours every 2 hours. The experiments
were performed in duplicate and the data reported represent mean values. Error bars were
omitted for clarity. Results proved that the inhibitors did not interfere with Bcc growth at the
concentration used in our assays, as the growth curves obtained for each strain are very similar
with no viable effect in growth by any inhibitor.
(DOC)
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Abstract:  
 

Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial 

compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places 

on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers 

of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit 

opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we 

applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea 

OPEN ACCESS 



Mar. Drugs 2015, 13 2 
 

 

sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were 

phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) 

via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based 

screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce 

crude extracts from microbial spent culture media, to perform the secondary screening. Strain 

Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. 

Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, 

we achieved the isolation of 3 Rhamnolipids, two of which were new, embedded with high (MIC < 1 

µg/mL) and unreported antimicrobial activity against Bcc strains.  

 

Keywords: Antimicrobials; Ramnholipids; Antarctic; Bcc; microorganisms 
 

 

1. Introduction 

The alarming rise of Multi-Drug Resistance (MDR) bacteria in the last decades has highlighted the 

need for novel antimicrobial compounds and for effective drug discovery approaches [1, 2]. Natural 

products are the largest source of new antibiotic molecules, representing about two-thirds of new 

antibacterial therapies approved between 1980 and 2010 [3, 4]. Bioprospecting for natural products 

from unexplored natural environments, such as the marine environment is considered a promising 

strategy to identify novel compounds. It is increasingly recognized that a huge number of natural 

products and novel chemical entities exist in these environments, but the overwhelming biological 

diversity of these environments has so far only been explored to a very limited extent [5, 6]. The 

Antarctic environment, as well as having incredibly low temperatures, possesses other diverse traits 

that may have helped to shape the unique way in which Antarctic bacteria have evolved. This extreme 

environment contains hyper-salinity that exists in sea ice brine channels, a lack of free water due to 

freezing temperatures, as well as low nutrient availability. Unique light conditions also exist due to the 

high latitude of the region. Several studies have shown that Antarctic bacteria harvested from Antarctic 

corals and sponges are promising source of new antimicrobial compounds [7-14]. Specifically, several 

Antarctic strains belonging to the genus Pseudoalteromonas, Psychrobacter, Pseudomonas, and 

Arthrobacter, were able to inhibit the growth of several strains belonging to the Burkholderia cepacia 

complex (Bcc) [11, 14]. Further studies demonstrated that the antimicrobial activity relies (at least in 

part) on the production of Volatile Organic Compounds (VOCs)[12, 13, 15]. The Bcc consists of at 
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least 20 closely related species inhabiting different ecological niches such as water, soil, plants 

rizosphere, and plants and animals [16-18]. Bcc are also opportunistic human pathogens that cause 

lung infections in immune-compromised individuals, including cystic fibrosis (CF) patients [19]. In 

one-third of infected individuals it causes the “cepacia syndrome” – a form of septic shock, which 

involves the lungs essentially shutting down resulting in fatality [20-22]. Bcc bacteria have showed to 

be very resilient and incredibly difficult to combat as they are resistant to almost all known 

antimicrobial agents and can survive under the most extreme conditions [23]. In this publication we 

report a complete biodiscovery pipeline aiming at the identification of novel anti-Bcc compounds, 

starting from the isolation of bacteria from Antarctic sub-sea sediments. Bacteria were tested for their 

antimicrobial potential and a bioassay-guided purification was performed that yielded 3 bioactive 

compounds active against Bcc. Structures were then elucidated and 2 compounds have not been 

reported previously. 

2. Results and Discussion 

2.1 Isolation of bacteria, typing and phylogenetic analysis 

 

Psychrophilic Antarctic bacteria were isolated from sediments on PYG minimal medium. After 15 

days of incubation at 4°C, 25 visible colonies where picked and grown in liquid PYG at 15 °C for 48 

hours in agitation, and glycerol stab were stored at -80°C. 

In order to check whether the 25 bacterial isolates represented either the same or different strains, a 

RAPD analysis was carried out using the primers 1253 (5’-GTTTCCGCCC-3’) and AP5 (5’-

TCACGCTGCG-3’). The RAPD profiles obtained were then compared among them; the comparative 

analysis obtained with primer 1253 revealed that the 25 Antarctic isolates were split into 18 different 

RAPD group (hereinafter RAPD haplotypes), most of which represented by just 1 bacterial isolate as 

summarized in Table 1.  Two groups embedding more than one isolate were identified: group 1 

(RAPD halpotype 1) including strains BTN1, BTN6, BTN 7, BTN8, BTN9 and BTN10 and group 4 

(embedding isolates BTN20A, BTN20B, and BTN24). These data were completely confirmed by the 

RAPD analysis performed with primer AP5. 
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Genus Strains RAPD profile Accession number  

Pseudomonas 

BTN1 

1 

KT989002  

BTN6 KT989003  

BTN7 KT989004  

BTN8 KT989005  

BTN9 KT989006  

BTN10 KT989007  

Psychrobacter 

BTN3 2 KT989009  

BTN19 3 KT989019  

BTN20B 
4 

KT989021  

BTN24 KT989022  

BTN21 5 KT989025  

BTN23 6 KT989024  

BTN2 7 KT989008  

BTN11 8 KT989011  

BTN5 9 KT989010  

BTN20A 4 KT989020  

BTN15 10 KT989015  

BTN13 11 KT989012  

BTN14 12 KT989013  

BTN17 13 KT989017  

BTN16 14 KT989016  

BTN18 15 KT989018  

BTN12 16 KT989014  

BTN22 17 KT989023  

Arthrobacter BTN4 18 KT989001  
 
Table 1: list of the strains used in this work, for each strain are reported the genus and the RAPD 
haplotype. 
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The phylogenetic affiliation of bacterial isolates was performed through the 16S rRNA genes 

amplification and analysis. To this purpose the 16S rRNA genes were PCR amplified and the 

nucleotide sequence of the amplicons determined. Each sequence was used as a query in a BLAST 

search to retrieve the most similar ones. Sequences were then aligned using the program ClustalW and 

the alignment was used to construct the phylogenetic trees shown in Figure S1, revealing that: 

 
i) As expected on the basis of the sharing of RAPD profiles, the six strains exhibiting the same 

RAPD profile (RAPD haplotype 1) share the same 16S rRNA gene sequence and clustered 

together joining the species Pseudomonas azotoformans. 

ii) Strain BTN4 was affiliated to the genus Arthrobacter. 

iii) All the other strains were affiliated to the genus Psychrobacter and, according to the different 

RAPD profile they exhibited, joined different Psychrobacter clades. The three strains 

(BTN20A, BTN24 and BTN 20B) sharing the same RAPD profile (RAPD haplotype 4), joined 

the same Psychrobacter cluster. 

  
2.2 Cross-streaking experiments  
 
In order to check the ability of Antarctic bacteria to inhibit the growth of Bcc strains, cross-streaking 

experiments were performed using representative of each RAPD haplotype as test strain. We used as 

targets a panel of 84 different Bcc strains belonging to 17 known species (see Table S1). Most of the 

strains had a clinical origin. Data obtained are summarized in Table S1, revealing that all BTN strains 

are able to completely inhibit the growth of Bcc strains. In order to check whether this anti-Bcc 

activity was due VOCs synthesis, a further cross-streaking experiment was performed using Petri 

dishes with a central septum, which physically separates the tester (Antarctic) from the target strains. 

To perform this analysis we selected the 17 Bcc type strains listed in Table S2, which are highlighted 

in red. Data obtained are reported in Table 2 and revealed that the inhibitory power of the BTN strains 

decreased in the presence of the central septum. This finding suggested that BTN strains synthesize a 

combination of volatile and soluble molecules and that the Bcc-inhibitory activity likely might rely 

principally on the soluble fraction. Thus, we decided to concentrate our efforts on the soluble 

molecules for this study. 
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Bcc Strain S 
BTN strain  

1 2 3 5 11 13 14 4  12  15  16  17  18  19  20 
a 

 20 
b  21  22  23 C+ 

B. ambifaria LMG 19182 
W - - - - - - - - - - - - - - - - - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. anthina LMG 20980 
W - - - - - - - - - - - - - - - - - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. vietnamensis LMG10929 
W - - - - - - - - - - - - - - - + - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. cenocepacia LMG 16656 
W + - + + - +- - - - - - + + - + + - - - + 

N - - - - - - - - - - - - - - - - - - - + 

B. cepacia LMG 1222 
W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. contaminas LMG 23361 
W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. diffusa  LMG 24065 
W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. dolosa  LMG 18943 
W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. lata LMG 22485 
W + + + + + + + - + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. latens LMG 24064 
W - - + + + - - - - + + + + - + + - - + + 

N - - - - - - - - - - - - - - - - - - - + 

B. metallica LMG 24068 
W + + + + + + + +- + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. multivorans LMG 13010 
W - + + + + + + - + + + + + + + + +- + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. pseudomultivorans LMG 
26883 

W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. pyrrocinia LMG 14191 
W + + + + + + + + + + + + + + + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. seminalis LMG 24067 
W - + + + +- + + - + - + +- + + + - + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. stabilis  LMG 14294 
W + + + + +- + + +- + + + +- +- +- + - + + + + 

N - - - - - - - - - - - - - - - - - - - + 

B. uborrensis LMG 20358 
W - - + + + + + - + + + + + - + + + + + + 

N - - - - - - - - - - - - - - - - - - - + 

 
Table 2: Growth of Bcc strains in cross-streaking experiment carried out using Petri dishes either with 
(W) or without (N) a central septum (S). Symbols: +, growth; +, reduced growth; -, no growth. 
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2.3 Extracts antimicrobial assay 
 
Eight of the most active Antarctic strains belonging to the three different genera (Pseudomonas, 

Psychrobacter, and Arthrobacter) were selected and used to produce extracts, which were then tested 

against a reduced panel of Bcc type-strains isolated from CF patients. The MIC assays were carried out 

as described in Materials and Methods. Table 3 reports the antimicrobial activity as percentage of Bcc 

growth inhibition in the presence of each extract at a concentration of 1 mg/mL. 

 
 

  Pseudomonas Psychrobacter Arthrobacter 

Species Strain BTN 1 BTN 2 BTN 15 BTN 3 BTN 19 BTN 21  BTN 5 BTN 4 

B. diffusa LMG 24065 100 ± 0 75 ± 3 77 ± 3 43 ±7 45 ± 11 70 ± 4 77 ± 9 63 ± 3 

B. metallica LMG 24068 92 ± 4 70 ± 5 71 ± 3 32 ± 2 30 ± 3 53 ± 5 77 ± 4 64 ± 9 

B. cenocepacia LMG 16656 100 ± 0 78 ±2 87 ± 1 84 ± 6 64 ± 4 45 ± 1 84 ± 2 57 ± 1 

B. latens LMG 24064 100 ± 0 53 ±11 75 ± 2 55 ± 6 43 ± 3 65 ± 2 56 ± 3 41 ± 2 

B. seminalis LMG 24067 100 ± 0 43 ±6 67 ± 5 73 ± 8 45 ± 6 78 ± 11 40 ± 3 56 ± 3 

 
Table 3: Antimicrobial activity of BTN cell extracts reported as % of inhibition of Bcc strains treated 
with 1 mg/mL of BTN extracts. . 
 
Data obtained revealed that the extracts were differentially active against the selected Bcc strains. 

Three Antarctic bacterial strains, i.e. BTN2, BTN15, and BTN5, were able to inhibit at least three of 

the five Bcc strains more than 70 % of growth. However, the extract from Pseudomonas BTN1 

exhibited the best anti-Bcc activity; indeed, it was able to almost completely inhibit the growth of all 

the target strains at the concentration used. For this reason, this strain was selected for further scale-up 

and extract purification. 

 
2.4 Bioassay-guided purification of BTN1 extract 
 
Pseudomonas sp. BTN1 strain was grown in 3L TYP medium for 5 days at 20°C, then the culture 

broth was extracted with ethyl acetate. Subsequently, the crude extract (1 g) was fractionated with a 

SPE C18 Cartridge. Elution was performed stepwise with an increasing methanol concentration. The 4 

eluted fractions were collected, dried and dissolved in DMSO to perform bioassay at a stock 

concentration of 50 mg/mL. The fraction eluted at 100% methanol was shown to be the most active 

one against B. cenocepacia LMG 16656 with a MIC of 50 µg/mL and was subjected to HPLC 

separation. HPLC chromatograms extracted from 200 to 400 nm presented 11 different peaks, which 

were separated, dried and dissolved in DMSO at a stock concentration of 10 mg/mL to perform MIC 
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assay. Data obtained revealed promising inhibitory activity against B. cenocepacia strain LMG 16656 

of three compounds, hereinafter referred to as Compound 1, 2 and 3, respectively.  

 
2.5 Compound structure elucidation  
 
The molecular formula of compound 1 was established as C28H52O9 by HRESIMS (555.35141 Δ 0.92 

ppm [M+Na]+. Dereplication of this compound based on 1D, 2D NMR and LCMS data indicated that 

the primary structure of 1 was similar to a known rhamnolipid [24], but differed in terms of the relative 

configuration of the sugar moiety. The relative configuration of the sugar unit of compound 1 was 

identified as β-L-rhamnopyranose as compared to α-L-rhamnopyranose for the known compound 

based on analysis of coupling constants and proton chemical shifts and by comparing with literature 

values (ref). 

 

The molecular formula of Compound 2 was established as C28H50O9 by high-resolution electrospray 

ionization mass spectrometry (HRESIMS) (553.33429 Δ -0.75 ppm [M+Na]+) and subsequent 

dereplication suggested it was new. The molecular formula suggested 4 degrees of unsaturation. The 
1H, 13C NMR data (Table 1) in CD3OD of 2 revealed one ester (δC 173.4 ppm), one carboxylic acid 

group (δC 171.40) ppm, two olefinic carbons (δC 132.8, 123.7 ppm), and an anomeric carbon (δC 98.47 

ppm) of a sugar unit. This analysis accounted for 3 of the double bond equivalents, suggesting that the 

sugar unit was present as a ring. The structure was elucidated based on 2D NMR correlation 

experiments. Data clearly showed three distinctive spin systems. There were COSY correlations 

observed between the anomeric proton and the adjacent protons of the sugar unit. There was a strong 

observed COSY correlation between the methyl group at δH 1.27 ppm and the proton at δH 3.38 ppm 

placing the methyl group at position C5. The proposed structure was fully supported by HMBC 

correlations (Table 4) indicating that compound 2 is a rhamnolipid with the A and B chains having 10 

and 12 carbons respectively, and a single unsaturation at position B5. The sugar moiety in compound 2 

was identified as β-L-rhamnopyranose based on the chemical shift of the anomeric proton, δH 4.86 

ppm as compared to δH 5.11 ppm for α-L-rhamnopyranose sugars, and similarities of proton chemical 

shifts with β-L-rhamnopyranose sugars (Ref). Because of overlap of the water peak and the anomeric 

proton in the 1H NMR spectrum of 2 in CD3OD it was remeasured in DMSO-d6. It showed the 

anomeric proton as a broad singlet suggesting that the sugar was linked in an equatorial position to the 

lipid chain giving rise to a very small coupling constant with H-2 (3J(1,2). All the other coupling 

constants (3J(2,3, 3.5 Hz), (3J(3,4, 9.5 Hz), (3J(4,5, 9.8 Hz) agreed with the published data for β-L-

rhamnopyranose sugars (ref). 
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Figure 1. Structures of the 3 rhamnolipids isolated from Pseudomonas BTN1.  

 

The molecular formula of compound 3 was established as C30H54O9 by HRESIMS 581.36490 Δ 1.72 

ppm [M+Na]+. Based on 1D and 2D NMR data compound 3 was similar to 2, the difference being an 

additional C2H4 unit. However, careful interpretation of the data indicated that both the lipid chains A 

and B were C12 carbons with a single unsaturation at position B7 instead of C10 and C12 carbons and 

an unsaturation position at B5 in 2. The relative configuration of the sugar unit was similar to that of 

compound 2 based on analysis of chemical shifts and proton coupling constants. 

 

    2       3       

  Position δC/ppm 
δH/ppm (m, J in 
Hz) 

COSY 
1H-1H 

HMBC 
H→C δC/ppm 

δH/ppm (m, J in 
Hz) 

COSY 
1H-1H 

HMBC 
H→C 

A 1 173.4       175.5       
  2 38.9 2.58, dd, 7.1, 6.0 A3 A1 40.9 2.55, m; 2.53, m A3 A1 

  3 71.1 
5.27, quintet, 
6.70 A2, A3 A1, A2 72.7 5.29, quintet A2, A4 A1, A2 

  4 33.8 1.64, m A3 A3 34.9 1.63, bm A3 A3 
  5 24.9 1.35, overlap     26.0 1.35, overlap     
  6 29.3 1.31, overlap     30.5 1.37, overlap     
  7 29.3 1.31, overlap     30.1 1.32, overlap     
  8 31. 6 1.31, overlap     29.8 1.33, overalap     
  9 22.3 1.33, overlap A10 A10 30.2 1.36, overlap A10 A10 
  10 13.1 0.92, m A9 A9 32.7 1.31, overlap A9 A9 
  11         23.4 1.33, overalap     
  12         14.1 0.92, m     
B 1 171.4       172.3       

  2 39.5 
2.53, dd, 8.0, 
7.09 B3 B1 41.0 2.59, m; 2.50, m B3 B1 

  3 72.9 
4.16, quintet, 
5.76 B2, B4 B1, B5 74.8 

4.10, quintet, 
5.87 B2, B4 B1, B5 
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  4 30.4 2.39, m B3, B5 B3, B5 33.5 1.58, bm B3,B5 B3, B5 

  5 123.7 5.40, m B4, B6 
B3, B4, 
B6, B7 25.7 1.43, overlap B4, B6   

  6 132.8 5.55, m B5, B7 B5, B8 27.8 2.08, overlap B5, B7   
  7 27.1 2.08, quartet B6 B5, B6 130.0 5.37, m B6, B8 B8, B9 
  8 29.3 1.31, overlap     131.2 5.39, m B7 B7 
  9 28.9 1.33, overlap B7   32. 7 1.31, overlap B8   
  10 31.6 1.31, overlap     32.7 1.31, overlap     
  11 22.3 1.33, overlap   B12 23.4 1.33, overlap B12   
  12 13.1 0.92, m   B11 14.1 0.92, m B11   
C 1 98.5 4.86, overlap C2 B3, C2 100.0 4.80, d, 1.44 C2 B3, C2 

  2 71.2 
3.77, dd, 3.45, 
1.70 C1, C3 C3, C4 72.4 

3.76, dd, 3.42, 
1.66 C1, C3 C3, C4 

  3 70.9 
3.64, dd, 9.46, 
3.46 C2, C4 C5 71.9 

3.66, dd, 9.70, 
3.46 C2, C4 C5 

  4 72.7 
3.38, dd, 9.81, 
9.78 C3,C5 C3 73.8 

3.35, dd, 9.94, 
8.84 C3, C5 C3 

  5 68.7 3.67, m C4, C6 C4, C6 69.8 3.68, m C4, C6 C4, C6 
  6 16.7 1.27, d, 6.22 C5 C5 17.6 1.27, d, 6.33 C5 C5 

 
Table 4. NMR data of 2 and 3 in CD3OD. a150 MHz; b600 MHz 
 
Compound 2.  [α]D -53.4° (c 0.001 MeOH; UV(MeOH) λmax (log ε) 202 (3.55) nm; IR (film) υmax 

3361, 2925, 2855, 1735, 1671, 1575, 1455, 1380, 1314, 1207, 1161, 1126, 1037, 983, cm_1; 1H, 13C, 

HMBC NMR data see Table 1; HRESIMS m/z 553.33429 Δ -0.75 ppm [M+Na]+ calculated for 

C28H50O9. 

 

Compound 3. [α]D +49.3° (c 0.001 MeOH. UV(MeOH) λmax (log ε) 202 (3.78) nm; IR (film) υmax 

3387, 2926, 2855, 1667, 1587, 1402, 1316, 1204, 1130, 1072, 1049, 983  cm_1; 1H, 13C, HMBC NMR 

data see Table 1; HRESIMS m/z 581.36490 Δ 1.72 ppm [M+Na]+ calculated for C30H54O9. 

 

2.6 Antimicrobial activity of BTN1 pure compounds 
 
The three monorhamnolipids isolated from strain BTN1 were tested against a selected panel of Bcc 

strains isolated from CF patients and S. aureus. MIC and MBC values are reported in Table 5. It is 

worth noticing that the 3 compounds have identical MIC and MBC values indicating a bactericidal 

effect against the target bacteria, as reported for several natural biosurfactants [25, 26]. Compounds 2 

and 1 were the most active compounds as they were effective against all the tested stains, with the only 

exception of B. diffusa. Specifically, compounds 2 and 1 had the lowest MBC values against B. 

cenocepacia (3.12 µg/mL) and S. aureus (respectively 3.12 and 1.56 µg/mL). Compounds 3 had 

antimicrobial effect only against S. aureus with a MBC value of 100 µg/mL, while resulted to 

ineffective towards Bcc strains. Rhamnolipids (RLs) are well-known secondary metabolites 
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synthesized by members of different Gram-negative species, particularly from bacteria belonging to 

the genus Pseuedomonas. They perform several potential functions in bacteria: as powerful 

biosurfactants they are involved in the uptake and biodegradation of poorly soluble substrates and are 

essential for surface motility and biofilm development [27]. Recently, they have emerged as potential 

antimicrobials against a broad range of pathogens such as Staphylococcus, Mycobacterium, and 

Bacillus, and significant activity against a number of Gram-negative species, including Serratia 

marcescens, Enterobacter aerogenes, and Klebsiella pneumoniae [28-30]. RLs act like synthetic 

surfactants and their proposed mechanism of action consists of intercalation into biological membranes 

and destruction by their permeabilising effect leading to cell death [31]. 

 
 

 
 
Table 5. MIC and MBC values of the 3 mono-rhamnolipids isolated in this study. 
 

3. Experimental Section  

3.1 Isolation of bacterial strains 
 
The Antarctic bacterial strains used in this study were isolated from environmental samples collected 

at -20 m of depth (sub-sea sediments) near the Mario Zucchelli Station, Baia Terranova, Ross sea, 

Antarctica (74.6936° S, 164.1117° E). 1 gr of sediments was mixed with 20 mL of M9 salts solution 

(KH2PO4 3.0 g/L, Na2HPO46.0 g/L, NaCl 0.5 g/L, NH4Cl 1.0 g/L) in a 50 mL Falcon tube and gently 

mixed; the supernatant was serially diluted in sterile M9 buffer and plated on PYG medium (Peptone 

5.0 g/L, Yeast extract 4.0 g/L, Glucose 1.0 g/L, CaCl2 0.2 g/L, MgSO4.7H2O 0.4 g/L, K2HPO4 1.0 g/L, 

KH2PO4 1.0 g/L, NaHCO310.0 g/L NaCl 2.0 g/L and 17 g/L). After 15 days of incubation 24 visible 

colonies were picked, grown in liquid PYG and stored at -80°C.  

 

3.2 Target strains and growth conditions 

Antimicrobial activity (µg/mL) 

 B. cenocepacia  

LMG 16656 

B. metallica 

LMG 24068 

B. seminalis 

LMG 24067 

B. diffusa 

LMG 24065 

B. latens 

LMG 24064 

S. aureus 

6538P 

 MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 

C1 3.12 3.12 50 50 12.5 12.5 >200 >200 12.5 12.5 1.56 1.56 

C2 3.12 3.12 25 25 3.12 3.12 200 200 12.5 12.5 3.12 3.12 

C3 200 200 >200 >200 >200 >200 >200 >200 >200 >200 100 100 
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Bcc strains used in this work are listed in Table 2 ans Table S1. Bcc and S. aureus 6538P were 

routinely grown on Luria-Bertani broth (LB) (Tryptone 10 g/L, Yeast extract 5 g/L, NaCl 10 g/L) at 37 

°C. BTN isolated Antactic strains were routinely grown in TYP medium (Bacto-tryptone 16 g/L, 16 

g/L Yeast extract, 10 g/L NaCl) and Marine Broth (MB) at 21 °C. To allow bacterial growth on solid 

media, 17 g/L of bacteriological agar were added to each medium. 

 

3.3 RAPD analysis 

 

Typing of bacterial isolates was performed using the Random Amplified Polymorphic DNA (RAPD) 

technique performed on cell lysates [32-34]; to this purpose, Antarctic bacterial colonies grown 

overnight at 21°C on MA plates were suspended in 25 µl of sterile distilled water, heated to 95°C for 

10 min, and cooled on ice for 5min. RAPD analysis was carried out in a total volume of 25µl 

containing 1X Reaction Buffer, 300 µM MgCl2, 200 µM of each deoxynucleoside triphosphate, 0.5 U 

of Polytaq DNA polymerase (Polymed, Florence, Italy), 10 µM of primer 1253 (5’ GTTTCCGCCC 3’) 

or primer AP5 (5’ TCACGCTGCG 3’) and 2 µl of lysate cell suspension [34]. PCR were performed 

using MasterCycle Personal Thermal Cycler (Eppendorf, Hamburg, Germany). After incubation at 

90°C for 1 min and 95*C for 1.5 min, the reaction mixtures were cycled 45 times through the 

following temperature profile: 95°C for30 s, 36°C for 1 min, and 75°C for 1 min. Samples were then 

incubated at 60°C for 10 min, and finally at 5° C for 10 min. Amplification products were then stored 

at -20°C. Reaction products were analyzed by agarose (2.5 % w/v) gel electrophoresis in TAE buffer 

containing 0.5 µg/ml (w/v) of ethidium bromide.  

 

3.4 Phylogenetic affiliation of BTN strains 

 

Two µl of each cell lysate were used for the amplification via PCR of 16S rRNA genes. PCR were 

carried out in a total volume of 50 µl containing 1X Reaction Buffer, 150 µM MgCl2, 250 µM of each 

deoxynucleoside triphosphate, and 2.0 U of Polytaq DNA polymerase and 0.6 µM of primer P0 (5’ 

GAGAGTTTGATCCTGGCTCAG) and P6 (5’ CTACGGCTACCTTGTTACGA)[35]. The reaction 

conditions used were: 1 cycle (95° C for 90 s), 30 cycles (95° C 30 s, 50° C 30 s, and 72° C 1 min), 

with a final extension of 10 min at 72 °C. Amplicons corresponding to the 16S rRNA genes (observed 

under UV light, 312 nm) were excised from the gel and purified using the “QIAquick” gel extraction 

kit (QiAgen, Chatsworth, CA) according to manufacturer’s instructions. Direct sequencing was 

performed on both DNA strands using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems, 
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Forster City, CA) and the chemical dye terminator [36]. Each 16S rRNA gene sequence was submitted 

to GenBank and assigned the accession number shown in Table 1. BLAST probing of DNA databases 

was performed with the BLASTn option of the BLAST program using default parameters [37]. 

Nucleotide sequences were retrieved from RDP databases. The ClustalW program was used to align 

the 16S rRNA gene sequences obtained with the most similar ones retrieved from the databases [38]. 

Each alignment was checked manually, corrected, and then analysed. The evolutionary history was 

inferred using the Neighbor-Joining method according to the model of Kimura 2-parameter distances 

[39, 40]. The percentage of replicate trees where the associated taxa clustered together in the bootstrap 

test (1000 replicates) is shown next to the branches [41]. 

 

 

3.4 Cross streaking 

Cross-streaking experiments were carried out as previously described [11]. Petri dishes with or without 

a septum separating two hemi-cycles were used. Plates with a central septum allowed the growth of 

tester and target strains without any physical contact. Antarctic strains (tester strains) were grown on 

MA for four days at 21°C; then they were streaked on TYP and incubated at 21°C for four days. Bcc 

strains (target strains) were perpendicularly streaked to the initial streak and plates were further 

incubated at 21°C for two days and at 37°C for two additional days. The experiments were conducted 

in parallel with a positive control to verify the viability of Bcc cells. 

3.5 Extract preparation 

 

A single colony of a bacterial isolate was used to inoculate 3 mL of liquid TYP media in sterile 

bacteriological tube. After 48 h of incubation at 21°C at 200 rpm the pre-inoculum was used to 

inoculate 100 mL of TYP medium in a 500 mL flask, at an initial cell concentration of 0.01-OD600/mL. 

The flasks were incubated up to 5 days at 21°C at 200 rpm. The cultures were then centrifuged at 6800 

x g at 4°C for 30’, and the exhausted culture broths were collected and stored at -20°C. The exhausted 

culture broths were subjected to organic extraction using 3 volume of ethyl acetate in a 500 mL 

separatory funnel. The organic phase collected was evaporated using a Laborota 4000 rotary 

evaporator (Heidolph, Schwabach, Germany), and the extracts were weight, dissolved in 100% DMSO 

at 50 or 100 mg/mL and stored at -20°C. 

 

3.6 Antimicrobial assays 
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3.6.1 Minimal inhibitory concentration assay (MIC) 

 

To evaluate the antimicrobial potential of Antarctic extracts, samples were placed into each well of a 

96-well microtiter plate at an initial concentration of 2% (v/v) and serially diluted using LB medium. 

Wells containing no compound represented the negative control. DMSO was used as control to 

determine the effect of solvent on cell growth. A single colony of a Bcc strain was used to inoculate 3 

mL of liquid LB media in sterile bacteriological tube. After 6-8 h of incubation, growth was measured 

by monitoring the absorbance at 600 nm and about 40000 CFU were dispensed in each well of the 

prepared plate. Plates were incubated at 37°C for 24h and growth was measured with a Cytation3 Plate 

Reader (Biotek, Winoosky, VT) by monitoring the absorbance at 600 nm. 

 

3.6.2 Minimal bactericidal concentration (MBC) assay 

 

To determine the MBC, the dilution representing the MIC and two of the more concentrated test 

product dilutions were plated on LB agar plates and enumerated to determine CFU/ml. An aliquot of 

the positive control was plated and used to establish a baseline concentration of the microorganism 

used. 

 

3.7 Purification of ethyl-acetate crude extract 

 

Crude extract of 3L BTN1 fermentation, prepared as described above, was subjected to fractionation 

using Chromabond SPE C18 column cartridges (Macherey-Nagel, Duren, Germany) The sample was 

dissolved in methanol and loaded on the top of the column. Elution was performed at step increasing 

methanol concentration (25%-50%-100%-100%+TFA). HPLC separations were carried out using a VP 

250/10 Nucleodur C18 HTec, 5 µm, (Macherey-Nagel Duren, Germany) connected to a Ultimate 3000 

HPLC Chromatograph with a Ultimate 3000 Diode Array detector and in-line degasser (Dionex, 

Sunnyvale, CA). Detection was achieved on-line through a scan of wavelengths from 200 to 400 nm. 

 

3.8 NMR- LCMS experiments  

 

NMR data, both 1D and 2D were recorded on a spectrometer (Bruker, Billerica, MA) at 600 and 150 

MHz for 1H and 13C respectively using an ID cryoprobe in methanol-d4 as solvent. Chemical shifts are 

reported in parts per million (δ/ppm) downfield relative to residual CD3OD at 3.31 ppm for protons 

and 49.0 ppm for carbons. High-resolution mass spectrometry and fragmentation data were recorded 
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using a LTQ Orbitrap system (ThermoScientific, Whaltman, MA) coupled to an 1290 Infinity HPLC 

system (Agilent, Santa Clara, CA). The following conditions were used: capillary voltage 45 V, 

capillary temperature 320°C, auxiliary gas flow rate 10-20 arbitrary units, sheath gas flow rate 40-50 

arbitrary units, spray voltage 4.5 kV, mass range 100-2000 amu (maximum resolution 30,000). Optical 

rotation measurements were recorded using a Perkin Elmer, Model 343 Polarimeter at 589 nm (Perkin 

Elmer, Whaltman, MA). The UV spectrum was recorded on a UV-Vis spectrophotometer model S10 

(Spectromlab, Barcelona, Spain). The IR was recorded on a PerkinElmer FTIR Spectrum Two 

instrument (Perkin Elmer, Whaltman, MA). 

 

4. Conclusions 

Exploiting a bioassay-driven purification approach, 3 RLs (one of which was novel) with antimicrobial 

activity against Bcc strains, were isolated from Pseudomonas sp. BTN1, recovered from Antarctic 

sediments. RLs represent a promising class of biosurfactants as antimicrobials or in combination with 

antibiotics. A recent study suggested the use of RLs as an additive in the formulation of antibiotic and 

other antimicrobial agents for enhancing the effectiveness of chemotherapeutics [42]. Moreover, the 

possibility of RLs production by the fermentation of organic waste (such us waste oils), make this 

products economically appealing [43]. To the best of our knowledge, this is the first report of 

antimicrobial activity of RLs against Bcc strains, and it prompts future studies aimed at RLs 

exploitation as drugs to counteract these hazardous opportunistic human pathogens. 
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