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1.1 The bacterial cell 

Bacteria are prokaryotic unicellular microorganisms having a very simple cellular organization. 

Generally, they are organized in multicellular forms with distinctive morphologies (coccus, bacillus, 

spirillum and filamentous) which constitute the colonies. Bacterial cell display a general architecture 

formed by the following components: 

Nucleoid: a region of the bacterial cell where is localized the nucleic material; all processes of 

transcription and replication of DNA take place in the cytoplasm. 

Cytoplasmatic membrane: is formed by a phospholipid bilayer, where are immersed transport 

proteins and enzymes involved in the biosynthesis of phospholipids. Its structure is not static, but in 

continuous moving to allow the permeability of membrane for the afflux of diverse molecules. 

Cell wall: indispensable structure surrounding the cytoplasmatic membrane. It protects bacterial cells 

from external stresses as  pressure, temperature and salt concentration. Cell wall composition is 

variable according to the bacterial strains. 

Capsule: homo/hetero-polysaccharides, possessing many biological functions. Frist of all, capsule 

mediates the bacterial adhesion and colonization to the host cell and can be considered a virulence 

factor because it is able to trigger innate immunity response. 

Flagella: organs designated to bacteria locomotion. The bacterial flagellum is mainly composed by 

the flagellin protein, a strong elicitor of innate immunity in both mammalian and plant organisms. 

 

Figure 1.1: Gram-negative bacteria structure 

 

The prokaryotes are divided into two family: Archaebacteria and Eubacteria structurally, 

functionally and genetically different.1 The first group mainly involves extremophiles able to live in 

extreme conditions of pH, temperature, pressure and show characteristics similar to the eukaryotic 

system. Eubacteria are in turn divided into Gram-positive and Gram-negative, based upon the cell 

                                                           
[1] Madigan M., Artinko M.A., Parker J., Biology of microorganism, 2003, (Ed.: T. Brock) Pearson education international, New York. 
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reaction to the Gram staining protocol. Gram-positive bacteria show thick and nearly uniformly dense 

cell wall. Conversely, cell envelope of Gram-negative bacteria are more complex, and include a cwll 

wall and a second outer membrane.2 

 

1.2 Bacterial cell wall 

The main component of bacterial cell wall is peptidoglycan (PGN). PGN is composed of 

carbohydrate chains of β-(1-4)-linked N-acetyl glucosamine and N-acetyl muramic acid cross 

linked by a peptide stem of L and D amino acids.3.4 

Gram-negative bacteria display a thin PGN layer, about 5-10% of cell wall and meso-diaminopimelic 

acid, m-DAP,  is a component of the  peptide chain. Conversely, Gram-positive bacteria exhibit a 

thick PGN layer, composing around 95% of bacteria cell wall, and containing lysine as third amino 

acid residue. 

In Gram-negative bacteria, the absence of a thick PGN layer is compensated by the presence of a 

second membrane, called outer membrane, containing lipopolysaccharides and phospholipids. The 

chemical structure of these macromolecules is strain dependent. 

 

 

 

 

Figure 1.2: Structure and differences between bacteria’s cell wall membrane. 

 

 

 

                                                           
[2] Staley J.T., Gunsalus R. P., Lory S., Perry J.J., Microbial Life, 2007, second edition , chapter 4.  
[3]Dziarski R., CMLS, 2003, 60, 1793-1804. 
[4] Guan R., Mariuzza A.R., TRENDS in Microbiology, 2007, 15, 126-134. 
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1.3 Lipopolysaccharides 

The lipopolysaccharides, LPSs, are glyco-conjugates composing the  outer membrane of gram-

negative bacteria, having a pivotal role in the structural and mechanical support of outer membrane.  

LPSs cover around 75% of the bacterial surface5 and, due to its location, mediate host-bacteria 

interactions like adhesion, recognition, pathogenesis, symbiosis.6 LPSs are also crucial in triggering 

the innate immune system in the hosts7 

LPS are characterized by a common structural motif consisting of three different domains: 

Lipid A is the hydrophobic portion of the LPS that is capable to anchor the macromolecule to the 

bacterial outer membrane and represents the endotoxic principle of LPS.8 

Core oligosaccharide is a saccharide portion covalently linked to the lipid A; is oftendivided into 

two regions: the inner core, and the outer core. 

O-antigen is the hydrophilic domain of LPS and is composed by a polysaccharide.6  

In order to understand the molecular basis of bacterium– host interaction, it is important to elucidate 

the full structure of LPS and to know how bacterium modifies its LPS structure to reply the continuous 

environmental changes. It has been already demonstrated that a complete structure of LPS is required 

to establish a disease (pathogens) or to produce a beneficial outcome (symbiont) in host-microbe 

interaction.5 

 

                                                           
[5] Lerouge I., Vanderleyden J., FEMS microbiology reviews, 2001, 26, 17-47. 
[6] Konig H., Herald C., Varma A., Prokaryotic cell wall, chapter 4, 133-154. 
[7] Alexander C., Rietschel E.T., J.endoxin Res., 2001, 7, 167-202. 
[8] Wollenweber H.W., Schlecht S., Luderiz O., Rietschel E.T., Eur. J. Biochem, 1983, 130, 167-171. 
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Figure 1.3.1: General architecture of lipopolysaccharides 

 

1.3.1 O-antigen: structure and function 

The O-antigen, also known as O-chain, is the hydrophilic portion of LPS exposed on the bacterial 

surface. It can be homo- or hetero-polymeric, linear or branched, build up to 50 identical repeating 

units consisting of one to eight sugars. 

The O-antigen region is can also contain unusual monosaccharides or non-carbohydrate substituents, 

thus increasing its structural heterogeneity.9 

During the early stage of host invasion, bacteria use variation mechanisms to mask themselves to the 

host and escape the immune response, through the change of the length of polysaccharide region or 

primary structure of the whole LPS structure.10,11,12  

                                                           
[9] Silipo A. et al, Angew. Chem. Int. Ed., 2011, 50, 12610 –12612. 
[10] Lukacova M., Barak I., Kazar J., European society of clinical microbiology and infectious disease, 2007, 14, 200-206. 
[11] Jansson P.E., Brade H., Morrison D.C., Opal S., Vogel S., Endotoxin in Health and Disease, 1999, New York, 155-178. 
[12] Whitfield C. Annu Rev Biochem, 2006, 75, 39-68. 
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The O-chain is important not only for bacterial interactions with immune system, but has also a 

protective role.   

 

 

 

Figure 1.3.2: The structure of Bradyrhizose 

 

 

1.3.2 Core Oligosaccharide  

Core oligosaccharide is typically composed up to fifteen residues and can be divided in inner core 

and outer core regions. The inner core consists of typical monosaccharides, such as heptoses13 (L-

glycero-D-mannoheptose or D-glycero-D-mannoheptose) and Kdo (3-deoxy-D-manno-octulosonic 

acid), a monose marker of Gram-negative bacteria that connects the core oligosaccharide to lipid A 

backbone. The outer core is usually constituted by neutral carbohydrates as uronic acids and 

aminosugars. It is the most exposed portion, often branched, and it is characterized by a higher 

structural variability than the inner core.  

 

1.3.3 Lipid A: structure and activity 

 

The lipid A represents the hydrophobic domain of LPS, responsible of the anchorage of the 

macromolecule on the bacteria outer membrane. Its general structure is formed by a 2-amino-2-

deoxy-D-glucopyranose (D-GlcpN, glucosamine) -(1→6) disaccharide phosphorylated at position 

1 and 4’ and acylated by 3- hydroxy fatty acid residues, called ―primary fatty acid, linked with ester 

bonds at positions 3 and 3’ and with amide bonds at positions 2 and 2’ of the disaccharide skeleton. 

These fatty acids can be further acylated at hydroxyl position with secondary fatty acids, usually no 

hydroxylated and with different length. 

                                                           
[13] De Soyza A., Silipo A., Lanzetta R., Govan J.R., Molinaro A., Innate Immun.,2008, 14, 127-144. 



15 
 

The first lipid A structure elucidation was achieved from E. coli and S. enterica LPS in 1983.14(Fig. 

1.3.3) 

Despite the lipid A has a general architecture, often displays subtle structural variations  often strain 

dependent, as as  different acylation and phosphorylation  patterns  

E.coli lipid A (A) 

 

 

Figure 1.3.3: Lipid A structure from E. coli 

 

1.4 Communication  system among plant: pathogenesis and symbiosis 

The natural ecosystem is founded on plants, animals, and humans coexistence. This cohabitation 

results in countless interactions with beneficial and pathogenic organisms. Very close relationships 

have evolved in host-specific symbioses, usually beneficial for both partners. In most cases, 

symbiosis derives from metabolic complementation between the host and microbe, in which one 

partner provides missing nutrients to the other. Moreover, microbes can contribute in many ways to 

host development by synthesizing hormone-like compounds15 and affecting host immunity16. The 

symbiotic associations can be facultative or obligate, that is due to the absent biosynthetic pathways 

in the host cell, essential for free living of bacteria. 

In plants, obligate symbiosis is more rare, on the contrary, facultative mutualistic interactions are 

more common as fungal-plant and Rhizobium-legume interactions. 

                                                           
[14] Wollenweber H.W., Schlecht S., Luderiz O., Rietschel E.T., Eur. J. Biochem., 1983, 130, 167-171. 
[15] Shin S.C. et al, Science, 2011, 334, 670–74. 
[16] Moreira L.A. et al, Cell., 2009,139,1268–78. 
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Plants innate immune system is the line of defense against external attack of pathogen 

microorganisms. As in mammals, plants immunity has acquired the ability to recognize specific 

molecular structures, known as MAMPs (Microbe Associated Molecular Patterns),17 indispensable 

for the microbial life; responsible for MAMPs recognition are PRRs receptors (Pattern Recognition 

Receptors). Flagellin, lipopolysaccharides and peptidoglycan are all MAMPs and their structures and 

molecular affinity to the receptors precisely modulated host immune responses. 

During the infection, there is a consequent activation of the immune system, with the development of 

necrotic tissues caused by Hypersenitive response (HR). During HR there is a rapid decline of 

bacterial proliferation and a suppression of pathogen growth, protecting in this way the plant from 

infection. The plant response is accompanied by rapid cell death in the site of the infection and follows 

a rapid necrosis of plant tissue representing the final stage of resistance, when stress signals request 

strong defensive responses. 

LPS can be responsible of suppression and this phenomenon is well known with the name of LIR 

(localized induced resistance). The mechanism of activation of LIR is strictly connected to LPS 

structure. In fact, several studies demonstrated that the minimum requirement for activity is having 

the lipid A-core region, minimum structure able to trigger the immune response.18 

It is possible that the effects of LPS in HR prevention and in triggering basal defense may allow the 

plants to express resistance without devastation of tissue.19 

Generally, lipid A and the core oligosaccharide, are able to elicit the defense-related genes PR1 and 

PR2 preventing HR in A.thaliana. Although LOS stimulate the gene transcription in two temporal 

phases, the core oligosaccharide induced only the earlier phase and lipid A induced only the later 

phase. 

Thus, the O-chain fraction should not have a specific role in plant pathogenesis suggested by finding 

of rough type LPS isolated from diseased plants. Conversely, mutants for biosynthesis of inner or 

outer core showed reduced virulence degree and they are no longer able to survive in vivo owing to 

chemical and physical stress. 

On the other hand, in the natural ecosystem exist plants, which are able to directly interact with 

various microorganisms in a mutually beneficial way. One of the most studied relationship between 

plant and microorganisms is represented by Rhizobia species, which fix nitrogen in ammonia. 

Nitrogen is an essential source for plant life, because it is always required to biosynthetize nucleotides 

                                                           
[17] Shazia N.A. et al., Molecular Plant Pathology, 2009, 10, 375–387. 
[18]Dow M.J., Newman M-A., von Roepenack E., Annu. Rew, Phytopathol. 2000, 38,241-261. 
[19] Dow M.J., Molinaro A., Cooper R.M., Newman M-A., In Microbial Glycobiology Structures, 
Relevance and Applications. 
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and amino acids. Indeed, bacteria species belonging to Rhizobia are used as biofertilizers in order to 

decrease the environmental impact due to pesticides commonly used in agriculture field. 

From the biological point of view, the symbiotic process is based on two main mechanisms: NF-

dependent and NF-independent process (Nod Factor (NF).. In the first, plant signals as flavonoids, 

polyphenol compounds like apigenin and narigenin, are perceived by bacteria, that induce the 

transcription of Nod genes and resulting in the transduction of lipochitooligosaccharides, known as 

Nod Factor (NF). These last molecules are perceived by plant that in turn activate pathways leading 

to nodules organogenesis on the plant root.20 Instead, the NF-independent process depends on 

production of cytokine–like receptor compounds followed by plants epidermidis lesions that likely 

directly by-pass the early NF-signaling pathway and trigger the nodule organogenensis. 

The strategy chosen by bacteria depends on host plant and in any case lead to specific organs on root, 

termed nodules. Recently data show that in two strain of Bradyrhizobium (BTAi1 and ORS278) the 

canonical nod-ABC genes responsible for the biosynthesis of the nod factors are absent although 

bacteria are still able to induce the nodule formation in plants as Aeschyomene sensitive and 

Aeschyomeneindica.21 This finding suggest the existance of alternative strategies, used by bacteria, 

to establish the symbiosis and actually there are many studies in progress in order to understand which 

molecular patterns are involved in this nod factors independent mechanism. 

Many publications revealed that LPS is essential for diverse stages of symbiosis such as nodules 

invasion, physiological adaptation and stress resistance.22 As in the animal innate immune system, 

also in plants, the recognition of the lipid A moiety may be at least responsible for many of the effects 

of LPS in plants.23 

  

                                                           
[20] Oldroyd J.E.D., Downie J.M., Annual Rew. Plant Biol.,2008, 59, 519-546. 
[21] Giraud E., Xu L., Chaintreuil C., Gargani D., Gully D., Sadowsky J.M., Applied and Environmental Microbiology, 2013, 2459–2462. 
[22] Silipo A. et al, Glycobiol., 2010,20, 406-419. 
[23] Dow M., Molinaro A., Cooper R.M., Newman M-A., Microbialglycosylatedcomponents in plant disease. 
In:MicrobialGlycobiology: Structures Relevance and Applications, 2009, (Eds.: Moran A., Brennan P., Holst O.), Elsevier, 803–820. 
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2.1 Extraction and purification of lipopolysaccharides 
 
The first step to evaluate the structure and function of glyco-conjugates from  the bacterial cell 

envelope is  their extraction  Two different approaches are used for a selective extraction from intact 

cells: PCP (phenol/chloroform/petroleum ether 5/8/2) extraction,24 more useful for selective isolation 

of lipooligosaccharide (LOS) or rough-type LPS, and phenol/water extraction suitable for smooth-

type LPSs isolation.25  The determining factor of the extraction is the distribution of the hydrophilic 

portion (O-antigen) of LPS in the aqueous phase, instead the hydrophobic portion of LOS is better 

disperded in organic phase of PCP. 

Usually the LPS once extracted undergoes an enzymatic treatment /nuclease (DNAse and RNAse) 

and protease) to get rid of  nucleic acids and proteins released during the extraction. . To check the 

purification degree of the extracted phases, the LPS or LOS molecules are then analyzed by 

polyacrylamide SDS electrophoresis gel (PAGE) and stained with silver nitrate.26 

The presence of LPS is confirmed by a typical ladder-like profile on the gel at high molecular masses, 

on contrary LOS is evaluated by a dark region at low molecular masses on the bottom of the gel. 

 

2.2 Structural analysis of LPS  

The most common procedure to isolate the major components of LPSs is a mild acid hydrolysis, 

which lead to cleavage of the ketosidic linkage between Kdo and non-reducing glucosamine of the 

lipid A.  

 

 

                                                           
[24] Galanos C., Luderitz O., Westphal O., Eur. J. Biochem., 1969, 9, 245-249. 
[25] Westphal O., Jann K., Methods Carbohydr. Chem., 1965, 5, 83-91. 
[26] Kittelberger R., Hilbink F., J. Biochem. Biophys. Methods, 1993, 26 (1), 81-86. 
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Figure 2.1: Structure of lipid A from E.coli (blue), where glucosamine II is linked by Kdo residue (black). The 

ketosidic linkage is highlighted by the green spot. 

 

 

After the acid treatment, the insoluble portion, the lipid A, is removed through centrifugation. This 

linkage is very labile due to several reasons: 

The absence of a whichever electron withdrawing group at position adjacent to anomeric C-3 favors 

the formation of the reaction intermediate oxonium carbocation. 

The conversion from chair to half-chair conformation is fastened by the presence of non substituted 

carbons (less eclipsed interactions in changing conformation. 

The presence of an axial hydroxyl group at C-5 contributes to a steric energy release in the formation 

of intermediate carbocation. 

This methodology leads to formation of a Kdo reducing unit with a various conformations (α and β 

anomers of pyranose and furanose rings, condensed or anhydro forms) that can render the study of 

the oligosaccharide by NMR spectroscopy particularly difficult.  

Thus, typically, the procedure to determine the primary structure of the core oligosaccharide portion 

is based on de-lipidation of the lipid A by means of alkaline treatment, consisting in adding anhydrous 

hydrazine to the LOS in order to remove ester-linked fatty acids followed by a hydrolysis in alkaline 

condition with KOH solution to cleave the amide-linked lipids.27  

When the sample, contained poly/oligo-saccharide, is ready for chemical analysis, we can implement 

ad hoc procedures, which allow to determine their primary structure.  

 

 

                                                           
[27] Holst O., Methods Mol. Biol., 2000, 145, 345 –353. 



21 
 

the quali-quantitative composition of sugar residues 

the absolute configuration of each monosaccharide 

the ring closure of monosaccharide 

the glycosilation points of each monosaccharide 

the anomeric configuration of the linkages 

the monosaccharide sequence 

the location of non-carbohydrates substituents 

Additional information on the nature and sequence of monosaccharides can be obtained from diverse 

treatment such as acetolysis, Smith degradation and -elimination.  

 

2.2.1 Chemical analysis of LPS  

Chemical analyses are very useful to obtain preliminary information about composition of 

glycoconjugates. 

The sample is previously chemical derivatized in volatile compounds and then analysed to Gas-

Chromatographer coupled with Mass-Spectrometer (GC-MS). There are numerous methods for the 

identification of monosaccharide composition as well as glycosilation positions, thus the appropriate 

choice of the derivatization method can highlight specific features of the sugar residues within the 

native LPS/LOS structure. 

In order to elucidate the compositional analysis of LPS/LOS, dry sample is treated with MeOH/HCl 

to obtain O-methyl-glycosides, which are later derivatized as per acetylated O-methyl-glycosides 

(MGA) and finally analyzed via GC-MS. 

Comparison of the retention times and the fragmentation pattern with standards allow to the 

identification of the monosaccharide residues. Quantification analysis can then be obtained by using 

an internal standard, that usually is per-acetylated inositol.  

A further protocol, based on chemical derivatization, is used for distinction between enantiomers with 

determination of their absolute configuration. The enantiomerically pure alcohol as 2-(+)-octanol or 

2-(+)-buthanol is used to obtain O-octyl glycosides, thus the absolute configuration of each 

monosaccharide residues can be determined.28  The comparison of retention times with standards 

derivatized with racemic mixture of 2-octanol or 2-butanol allows to determine the final absolute 

configuration for each monosaccharide. 

Instead, the determination of ring size and the glycosylation positions are performed via methylation 

analysis.29 

                                                           
[28] Leontein K., Lonngren J., Methods Carbohydr. Chem., 1978, 62, 359-362. 
[29] Hakomori S., J. Biochem., 1964, 55, 205-208. 
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The procedure consists in a double methylation of the polysaccharide with CH3I and a successive 

hydrolysis, then the sample is reducted over night with NaBD4 and finally acetylated.and  analysed 

via GC-MS; the fragments observed in the mass spectra are diagnostic for specific substitution 

patterns  

The reduction of the carbonyl function with sodium borodeuteride discriminates the fragments 

originated from the reduced position (even masses) form those originated from the last position (odd 

masses). Information obtained from these chemical analyses helps and confirms the interpretation of 

subsequent NMR and MS experiments. 

Chemical analysis can be useful to determinate also the fatty acid composition in LPS and LOS. 

Even fatty acid can be derivatized as methyl-ester can be easily analyzed on GC-MS.30  

 

Figure 2.2.1: Isolation and compositional analysis of LPS 

 

 

2.2.2 NMR spectroscopy 

 

NMR spectroscopy represents among the  most useful techniques in the structural characterization of 

carbohydrates.31 

The region of 1H NMR spectrum can be divided in different part:  

The region between 5.5 and 4.6 ppm relative to the anomeric protons signals  

The region between 4.6 and 2.6 ppm where the ring proton signals are located  

The region between 2.5 and 1.0 ppm that is typical of the deoxy positions signals  

Furthermore, from a 13C NMR spectrum it is possible to obtain information about:  

104-105 ppm : anomeric carbon atoms involved in a glycosidic linkage  

80-60 ppm : oxymethylene or carbinolic carbon atoms  

60-45 ppm : carbon atoms linked to nitrogen  

                                                           
[30] Rietschel E.T., Eur. J. Biochem., 1976,64, 423-428. 
[31] Silverstein R. M., Webster F.X., KiemleJohn D. J., Wiley & Sons, 2005. 
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~ 30 ppm : aliphatic methylene carbons of deoxy-sugar residues  

20-17 ppm : methylene carbon atoms of 6-deoxy-sugar residues and of acetyl residue  

In 2D NMR, indeed, a combination of homo- and hetero-nuclear experiments (such as DQF-COSY, 

TOCSY, NOESY, 1H,31P-HSQC, 1H,13C-HSQC, 1H,13C-HMBC) are required in order to assign all 

the spin systems, to determine the glycosylation position and the nature of non-carbohydrate 

substituents.  

In sugar having the H-2 axial (glucose, galactose), a 3JH1,H2 around 8 Hz is indicative of an -

configuration, whereas below 3 Hz of an - configuration. Sugars with the H-2 equatorial (mannose) 

show both 3JH1,H2below 3 Hz. The 1JC1,H1values are also indicative of the anomeric configuration of 

pyranose rings, a 1JC1,H2 below 165 indicates -anomer, whereas above 170 Hz it indicates the 

presence a -anomer. The down-field shift of carbon resonances (glycosylation shift) prove the 

positions of glycosylation. 

NOESY and ROESY together spectra are very useful in confirming the intra-residue assignment and 

the anomeric configuration (e.g. gluco or manno configuration). In fact, in -configured sugar is 

visible NOE contact between H-1 and H-3 and H-1 and H-5, whereas in -configured H-1 gives NOE 

effect only with H-2. In addition, inter-residual NOE contacts, together with the long range 

correlations present in HMBC experiments, are crucial to understand the sugar sequence in the 

saccharide chain. 

 

 

 

 

 

 

Figure 2.2.2:Intra-residual (blue) and inter-residual (red) NOE contacts. 
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2.2.3 Mass spectrometry 

 

Mass spectrometry is a complementary method for structural analysis of lipopolysaccharides and 

lipooligosaccharides. The most used techniques are MALDI (Matrix Assisted Laser Desorption 

Ionisation), ESI (Electro Spray Ionisation).  

Generally, for carbohydrates, MALDI and ESI MS spectra are performed in negative ion mode, due 

to the presence of the hydroxyl groups that can lose a proton and acquire a negative charge; even if 

spectra in positive ion mode are also performed as in case of Bradyrhizobiums lipid A.  

In MALDI technique, the methodology consists in a soft ionization of a sample that is suspended in 

a specific matrix that helps the analyte in ionization step. The matrix has double role: the protection 

of the sample from the laser energy and the capacity to form single charged ions. 

In case of LOS, the use of high laser power settings in MALDI spectra permits to obtain fragments 

derives from the cleavage of the labile ketosidic linkage of the Kdo. In the deriving spectra three 

regions of signals can be observed, the one of the lipid A, the core oligosaccharide and the intact 

LOS. In LPS, instead, the spectra displays an information on the size of the repeating unit. 
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Plant pathogens 
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Chapter III 

Structural characterization of O-chain of LPS 

isolated from Burkholderia gladioli pv. 

cocovenenans 
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3.1 Burkholderia gladioli pv. cocovenenans 
 

Burkholderia spp. are ubiquitous Gram-negative, motile, obligate aerobic rod-shaped bacteria that 

have the unique ability to adapt to and survive in many different environments. Burkholderia gladioli 

pv. cocovenenans, (BGC) isolated from cultures of the mucoralean fungus Rhizopus 

microsporusvar.oligosporus, plays a key role in the context of plant disease, agriculture and food 

processing. The Rhizopusmicrosporus group consists of various taxa, which are responsible of toxin 

production, pathogenesis32,33 and several lethal intoxications.34R. microsporus var. oligosporus is 

traditionally used to prepare fermented foods such as tempe, a typical Indonesian dish, however, its 

consumption has occasionally led to severe intoxications due to the presence of bacterial 

contaminants in the fungal starter culture.35 Among these, BGC36 is responsible for producing the 

polyketide bongkrekic acid,37 a respiratory toxin that causes hyperglycaemia followed by 

hypoglycaemia, which may cause death of consumer.38,39 Bongkrekic acid is an unsaturated 

tricarboxylic acid, which inhibits oxidative phosphorylation by blocking the mitochondrial adenine 

nucleotide translocator.4041 In addition, several studies demonstrated that also the azapteridine 

toxoflavin and other complex polyketides, enacyloxins, may contribute to the toxic properties of 

contaminated tempe.42 

To gain insights into the recognition events at the basis of bacteria-fungi symbiotic relationships,43 

we performed a structural analysis of the lipopolysaccharide (LPS in particular focusing on the 

structure of the O-specific side chain, which may have a role in the infection? process above 

described. 

The O-specific polysaccharide, also named O-chain, is a highly variable portion, in the genus 

Burkholderia generally composed of deoxy- or amino-sugars, and further bearing unusual residues 

and/or non-saccharidic substituents.44 The number of residues in the repeating unit goes from 2 to 8 

monoses and can reach high molecular masses (up to 60000 Da).  

                                                           
[32] Walther G., et al., Persoonia2013, 30, 11–47. 
[33] Tintelnot K., Nitsche B., Mycoses, 1989, 32, 115–8. 
[34] Buckle K.A., Kartadarma E.K., J Appl Bacteriol,1990, 68, 571–6. 
[35] Garcia R.A., Hotchkiss J.H., Steinkraus K.H., Food Addit.Contam., 1999, 16, 63–69. 
[36] Coenye T., Holmes B., Kersters K., Govan J.R., Vandamme P., Urakami et al., Int J. Syst. Bacteriol.,1999, 49, 1, 37–42. 
[37] Moebius N., Ross C., Scherlach K., Rohm B., Roth M., Hertweck C., Chem. Biol.,2012, 21,19(9),1164-74. 
[38] de Bruijn J., Frost D.J., Nugteren DH., Gaudemer A., Lijmbach G.W.M., Cox H.C., Tetrahedron, 1973, 29, 1541–7. 
[39] K. Scherlach, K. Graupner, C. Hertweck, Annu. Rev. Microbiol., 2013, 67, 375-97.  
[40] Henderson P.J., Lardy H.A., J. Biol. Chem., 1970, 245, 1319–26. 
[41] Rohm B., Scherlach K., Hertweck C., Org. Biomol. Chem., 2010,7,8(7),1520-2. 
[42]  Ross C., Opel V., Scherlach K., Hertweck C., Mycoses, 2014, 3,48-55. 
[43] Uzum Z., Silipo A., Lackner G., De Felice A., Molinaro A., Hertweck C., Chembiochem., 2015,9,16(3),387-92. 
[44] Ieranò T. et al Chemistry. 2009, 20, 15(29), 7156-66. 
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The LPS was purified after bacterial cell extraction and then characterized through chemical analysis 

and 2D NMR spectroscopy. Moreover, the spatial arrangements of the polymer was evaluated by a 

combined approach of NMR spectroscopy, molecular mechanics (MM) and dynamic (MD) 

calculations to investigate the conformational space available to the sugar units.  

The study of the conformational features of the O-chain region of LPS can improve the understanding 

of molecular shape of bacterial external surface that deeply influences bacterial invasion and 

virulence. 

 

Results and Discussion 

 

3.2 Structural isolation and purification of LPS from Burkholderia gladioli pv. 

cocovenenans 

 

LPS of Burkholderia gladioli is obtained by a phenol/water extraction; the water phase, in which the 

LPS was abundant, is submitted to enzymatic treatment followed by an extensive dialysis.  

The recovered phase is further purified using gel permeation chromatography, the total 

lipopolisaccharide fraction was detected by SDS-PAGE. On the latter was visible the typical ladder-

like motif of LPS at high molecular weight. 

 
Figure 3.2.1: SDS-PAGE 13.5% on total extract derives from phenol/water extraction. 1. LPS from E. coli standard; 2. 

Water phase; 3. Phenol phase  

 

3.2.1 Preliminary chemical analysis 

Compositional analysis of the LPS fraction showed the presence of 2-O-methyl-D-galactose 

(Gal2Me), L-rhamnose (Rha), and 3-O-methyl-L-rhamnose (L-acofriose, Aco) as carbohydrate 

components. Fatty-acid analysis detected (R)-3-hydroxyhexadecanoic acid [16:0(3-OH)] with an 

amide linkage, and (R)-3-hydroxytetradecanoic acid [14:0(3-OH)] and hexadecanoic acid [16:0] with 

ester linkages. To study the O-chain, a complete deacylation was carried out. The absolute 

configuration of each monosaccharide unit was assigned on the basis of 2-O-octyl glycoside 
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derivatization using GC–MS, and comparison with appropriate standards. The results of this analysis, 

taken together with the results of methylation analysis of the delipidated LPS, showed the presence 

of 2-substituted- L-Rhap, 4-substituted-D-Galp, 4-substituted-D-Gal2Mep,and 2-substituted-L-

Acop. 

 

3.3 Full characterization of O-chain from LPS of Burkholderia gladioli pv. 

cocovenenans wild type 

 

3.3.1 NMR Analysis 

 

The de-O-acylated product is then studied by NMR spectroscopy. 2D NMR experiments (DQF-

COSY, TOCSY, ROESY, NOESY, 1H,13C HSQC, 1H,13C HSQC-TOCSY, and 1H,13C HMBC) 

were performed to assign all spin systems; the anomeric configuration of each monosaccharide was 

attributed on the basis of the 3JH-1,H-2 coupling constant values obtained by DQF-COSY, whereas the 

relative configuration of the sugar residues was assigned on the basis of the 3JH,H ring coupling 

constants; finally, the intra-residue pattern of dipolar correlations gave further confirmation of the 

anomeric configurations. 

The 1H NMR spectrum of the O-chain moiety is shown in Figure 3.3.1. 

 

 
Figure 3.3.1: 1H NMR spectrum (600 MHz) of the O-chain fraction from Burkholderia gladioli pv. cocovenenans. The 

low-intensity signals in the anomeric region at 5.00 and 4.97 might be related to the core oligosaccharide region or to 

minor components, and are not assigned. 

 

The anomeric region of the 1H NMR spectrum (Figure 3.3.1) contained several signals (A–G, Table 

3.3.1) that corresponded, as demonstrated below, to two tetrasaccharide repeating units. 
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Table 3.3.1: 1H and 13C NMR chemical shifts (ppm) of the O-antigen from B. gladioli X [→2)-α-Rha-(1→2)-α-Aco-

(1→2)-α-Rha-(1→4)--Gal2Me-(1→]n and Y [→2)-α-Rha-(1→2)-α-Aco-(1→2)-α-Rha-(1→4)--Gal-(1→]n. The 1H 

and 13C chemical shifts for the methoxy groups are at δ= 3.44/56.9 ppm and δ= 3.55/60.4 ppm,respectively. 

 

 

Spin systems C/D and E (Figures 3.3.1, 3.3.2, and 3.3.3) were identified as 2-substituted α-rhamnose 

residues due to the scalar correlations, evident in the TOCSY spectrum, of the ring protons with 

Unit 1 2 3 4 5 6 

A 5.14 4.35 3.53 3.47 3.67 1.24 

2- -Aco 100.72 73.18 79.41 70.2 69.3 16.5 

 1JCH176.9 Hz  O-CH3 3.44/56.9    

B 5.11 4.327 3.53 3.47 3.67 1.24 

2- -Aco 100.72 73.18 79.41 70.2 69.3 16.5 

 1JCH176.9 Hz  O-CH3 3.44/56.9    

C 5.04 4.19 3.78 3.43 3.67 1.24 

2- -Rha 99.37 77.46 69.3 71.3 69.3 16.5 

 1JCH175.6 Hz      

D 5.03 4.15 3.76 3.40 3.66 1.24 

2- -Rha 99.37 77.8 69.3 71.3 69.3 16.5 

 1JCH175.6 Hz      

E 4.78 3.98 3.85 3.44 4.11 1.21 

2--Rha 101.13 77.6 69.2 72.2 69.2 16.3 

 1JCH174.9 Hz      

F 4.49 3.2 3.69 3.94 3.69 3.69 

4--Gal-2OMe 101.7 80.2 71.14 77.2 75.2 60.5 

 1JCH164.8 Hz O-CH3 3.55/60.49     

G 4.42 3.51 3.69 3.94 3.60 3.60 

4--Gal 102.6 70.3 71 77 75 60.5 

 1JCH164.8 Hz      
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methyl signals resonating in the shielded region of the spectrum. Their α-anomeric configuration was 

established on the basis of the 1JC,H values (see Table 3.3.1), and of the intra-residual NOE correlation 

of 1-H with 2-H. Their manno configuration was assigned by evaluation of the 3JH,H coupling 

constants. 

Spin systems A and B corresponded to 2-substituted acofriose residues, as deduced by the downfield 

shift of C-3 of A/B (δ=79.4 ppm, Table 3.3.1), by the NOE correlation of 2-H and 3-H of A/B with a 

methoxy group resonating at δ= 3.44 ppm, and by the long-range correlation present in the HMBC 

spectrum of A/B (3-H/C-3) with the methoxy group. (Figure 3.3.2-3.3.3). 

The final spin systems, F and G (1-H at δ= 4.49 and4.42 ppm, Figure 3.3.1) were identified as 4-

substituted 2-O-methyl--galactose and 4-substituted--galactose, respectively. 

The galacto configuration was assigned on the basis of the low3J3-H,4-H and 3J4-H,5-H coupling 

constants. The -anomeric configuration was inferred from the 1JC,H values, and was confirmed by 

the intra-residue correlations of 1-H with 3-H and 5-H in the NOESY spectrum. Furthermore, the 

downfield shift of C-2 of F (δ= 80.2 ppm, Table 3.3.1), and the long-range correlation in the HMBC 

spectrum of 2-H and C-2 of F with a methoxy group at 3.55/60.4 ppm were all proof of O-methylation 

at the 2-positionof residue F (Figure 3.3.2). 

 

 

 
Figure 3.3.2: HMBC (black) and HSQC (grey) spectra of the O-chain fraction from Burkholderia gladioli pv. 

cocovenenans. 
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The sequence of the sugar residues in the repeating unit was determined by NOESY and HMBC 

experiments. Downfield shifts of the carbon resonances identified the glycosylated positions: C-2 of 

residues A, B, C, D, and E, and C-4 of residues F and G, which was in full agreement with the 

methylation analysis. 

Analysis of the inter-residue correlations in the HMBC spectrum revealed the presence of two 

polysaccharide repeating units. Thus, spin system E was glycosylated at O-2 by both residues A and 

B, as proved by the long-range correlations A (1-H/C-1)–E(2-H/C-2) and B(1-H/C-1)–E(2-H/C-2) 

(Fig. 3.3.3), and by the corresponding NOE contacts. This indicates the coexistence of two different 

polysaccharides. Spin system A was in turn glycosylated at O-2 by residue C, while spin system B 

was substituted at O-2 by residue D (Fig. 3.3.2-3.3.3, see HMBC and NOE contacts). Spin system D 

was in turn glycosylated at O-2by residue G, as shown by the long-range and NOE correlations 

between G(1-H/C-1) and D(2-H/C-2) (Figures 3.3.2 and3.3.3). Similarly,α-rhamnose residue C was 

glycosylated at O-2 by residue G (Figures 3.3.3 and 3.3.4). Residues F and G were both glycosylated 

by residue E at O-4, as indicated by long-range correlations and NOE contacts (Figures 3.3.2 and 

3.3.3).  

To summarize, the pattern of long-range correlations derived from the HMBC spectrum, and of NOE 

dipolar correlations showed that the O-chain isolated from BGC was characterized by the coexistence 

of two polysaccharide repeating units X and Y, which differed in the non-stoichiometric methylation 

at position O-2 of the -galactose residue.45 

 

                                                           
[45]De Felice A.,Silipo A., Scherlach K., Ross C., Hertweck C., Molinaro A., Eur. J. Org. Chem.,2016, 748–755. 
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Figure 3.3.3: A section of ROESY (black) and TOCSY (grey) spectra of the O-chain 

fraction from Burkholderia gladioli pv. cocovenenans. 

 

Definitely, the polysaccharide displayed two species reported here below: 
 

 

Species X 
 C                    A                     E               F 
[→2)--Rha-(1→2)--Aco-(1→2)--Rha-(1→4)--GalMe-(1→]n 
 

 
 

Species Y 
D                    B                     E            G 
[→2)--Rha-(1→2)--Aco-(1→2)--Rha-(1→4)--Gal-(1→]n 

 

 

3.3.2 Conformational analysis: Molecular Mechanic and Dynamic calculations on the 

O-chain moiety 

 

In order the gain information on the solution conformation of the two polysaccharide repeating units, 

we firstly built the potential energy surfaces for each disaccharide connected by a glycosidic linkage; 

 represents the torsion angle about H1-C1-O-CX’ whereas  about C1-O-CX’-HX’. For both 

repeating units the following disaccharides Gal2Rha or GalMe2Rha, Rha2Aco, Aco2Rha 

and Rha4Gal or Rha4GalMe were constructed and subjected to calculations using MM3* force 

field to provide a first estimation of the conformational regions energetically accessible. The resulting 

adiabatic energy maps indicating global and local minima are reported in Fig. 3.3.4. All glycosidic 

torsions adopted exo-anomeric conformations in the main energetic minima, the presence of the O-
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methyl group at position 2 of the galactose unit did not affect the resulting adiabatic map. A certain 

flexibility around angle was evident for the 12) glycosidic units.46 

For both polymers, a dodecasaccharide fragment containing three repeating units was built from the 

global minima of the energy maps and the conformational behavior was studied by using molecular 

dynamic simulation: 

 
A1E14F12C1A2E24F22C22A3E34F32C3    Dodecasaccharide X 
 



B1E14G12D1B2E24G22D2B3E34G32D3 Dodecasaccharide Y  
 

 

The initial structures were extensively minimized and trajectory coordinates were sampled every ps; 

10,000 simulations were performed in GB/SA water solvation model as implemented in MacroModel 

(MMOD). Trajectories and  scatter plots of the different glycosidic linkages, together with the 

population of each conformational family are shown in Fig. 3.3.5. 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.4:  Relaxed energy maps for the disaccharide fragments composing the O-polysaccharide from Burkholderia 

gladioli 

 

 

 

                                                           
[46]Clément M.J. , Imberty A., Phalipon A., Pérez S., Simenel C., Mulard L.A., Delepierre M., J. Biol. Chem.,2003, 278 (48), 47928–
47936. 
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 A)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 B) 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.5: Scatter plots ofvs. ψ values for the disaccharide fragments that compose the two O-chain sequences, a) 

species X and b) species Y. 
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Table 3.3.2: Experimental (from NOESY experiments) and calculated (from MD calculations) 

interresidue proton–proton distances {1-H–X′-H distances [Å] for a (1→X′) linkage} for oligomers 

built with two and three repeating units. The experimental values were obtained as described in the 

experimental part by applying the isolated spin-pair approximation. 

 

 

 

MD results showed that trajectories remained in the broad low energy regions previously predicted 

by the MM calculations and all glycosidic linkages mainly adopted values in accordance with 

the exo-syn anomeric conformation, in agreement with the MM results and the experimental data. 

The simulation showed a higher flexibility for the -(12) linkages involving -manno configured 

sugar moieties and for the -(12) linkage of the -Gal→Rha units. Conversely, the examination of 

MD data showed the existence of a rather compact energy well for the -(14) glycosidic linkages 

(linkages E→4F for species X, E→4G for species Y). The computational models obtained from the 

MD data were then compared to the experimental results. Ensemble average inter-proton distances 

for each molecule were extracted from dynamic simulations and translated into NOE contacts 

according to a full-matrix relaxation approach. The corresponding average distances obtained for the 

simulation from r-6 values were compared to those collected experimentally (Table 3.3.2). A. 

satisfactory agreement was observed between the calculated and the experimental values.  

 

Specie X    

 
Experimental 

(Obs. NOE) 
Pentasaccharide 

Dodecasaccharide 

Gal-2Rha 2.55 2.55±0.28 2.55±0.28 2.55±0.26 2.54±0.26 

Rha-4Gal  2.77 2.76±0.35 2.79±0.32 2.76±0.32 2.75±0.33 

Aco-2Rha  2.57 2.54±0.30 2.55±0.27 2.58±0.27 2.54±0.28 

Rha-2Aco 2.58 2.47±0.31 2.58±0.30 2.60±0.30 2.48±0.30 

Specie Y    

 
Experimental 

(Obs. NOE) 
Pentasaccharide 

Dodecasaccharide 

Gal-2Rha 2.56 2.57±0.28 2.55±0.28 2.55±0.26 2.55±0.26 

Rha-4GalOMe  2.77 2.82±0.339 2.79±0.32 2.76±0.32 2.78±0.32 

Aco-2Rha  2.56 2.54±0.30 2.54±0.27 2.58±0.27 2.56±0.28 

Rha-2Aco 2.57 2.46±0.30 2.58±0.31 2.60±0.29 2.46±0.30 
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Given the good flexibility around the glycosidic linkages of both O-chain structures, as expected both 

polysaccharides adopted a variety of three-dimensional shapes in rapid interchange. Snapshots of the 

most representative conformers of O-chain species X and Y are depicted in Figure 3.3.6 a and 3.3.6 

b; both adopted a helicoidal shape even though with a different extensions, more constricted in case 

of dodecasaccharide X and more extended in case of dodecasaccharide Y. 

 

 

A) 
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B) 

 
Figure 3.3.6. View of representative structures and Connelly surfaces of the conformers 

for species X and Y. 

 

 

3.4 Structural characterization by MALDI mass spectrometry of LPS and the 

lipid A 

The intact LPS and lipid A were analyzed by MALDI mass spectrometry to gain further 

information on lipid A in both conditions. This first approach is very useful as it allows 

the study of intact molecules47,48 without any chemical manipulation, thus preventing 

the loss (either by alkaline or acid treatment) of labile groups (e.g., phosphate, acetyl), 

typically present on LPSs.  The complete LPS undergo to negative-ion MALDI mass 

spectrometry showed, in addition to the molecular ions related to the native LPS 

mixture (m/z 3400-4000), fragments between m/z 1400 and 2300. 

                                                           
[47] Sturiale L., Garozzo D., Silipo A., Lanzetta R., Parrilli M., Molinaro A., Rapid Communications in Mass Spectrometry, 2005,19, 
1829–1834. 
[48] Sturiale L., Palmigiano A., Silipo A., Knirel Y.A., Anisimov A.P., Lanzetta R., Parrilli M., Molinaro A., Garozzo D., J. Mass 
Spectrom., 2011, 46, 1135-1142.   



39 
 

The MALDI-TOF mass spectrum of the Burkholderia gladioli LPS (Fig. 3.4.1) 

obtained in the linear negative mode contained three distinct clusters of ions, 

corresponding to lipid A fragments, core fragments and intact LPS, respectively. 

 
 

 
 

Figure 3.4.1: MALDI TOF MS analysis of total from Burkholderia gladioli; Negative-ion mass spectrum showing both 

LPS molecular ions and their ion fragments, attributable to the core oligosaccharides and to the reported lipid A 

structure. 

 

The chemical structure of lipid A from B. gladioli was also analyzed after mild acetic acid hydrolysis. 

Penta-acylated lipid A species (m/z 1670.5) includes two N-linked C16:3OH residues of and two 

C14:3OH O-linked residues of as primary acyl groups and one secondary residue of C14 fatty acid. 

The tetra-acylated form (m/z 1444.3) is present in equal amounts and lacked one residue of C14:3OH. 

A characteristic feature of this LPS is the presence of significant amount of tetra- and penta-acylated 

lipid A species (m/z 1494.44 and 1721.54, respectively), bearing one residue of 4-amino-4-

deoxyarabinose (Ara4N) attached to one of the phosphate groups. 

Frequently, acetic treatment partially induce cleavage of the phoshpate group on lipid A backbone. 

In particular, MALDI MS (Fig. 3.4.2) revealed the presence of ion cluster at m/z 1364.34 and 1590.43 

corresponding to mono-phosphorylated tetra and penta-acylated lipid A species. 
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Figure 3.4.2: MALDI MS spectrum in negative ion mode dispalys pattern of the mono-phosphorylated, tetra and penta-

acylated lipid A moiety obtained by acetate buffer hydrolysis 

 

 

3.5 Conclusions 

 

The LPS O-chain structure of B. gladioli pv. cocovenenans HKI 10521 (DSM 11318) consists of a 

mixture of two repeating units/polymers characterized by a tetrasaccharide (Figure 3.3.6 a and b) with 

the galactose unit non-stoichiometrically methylated at position O-2.  

A combined approach based on NMR spectroscopy and MD simulation was used to study the 

conformational properties of the two O-polysaccharides. The data indicated a limited flexibility of 

the α-(1→4) glycosidic linkage, and a remarkable flexibility of the (1→2) glycosidic linkages. The 

surfaces of the two dodecasaccharides were built according to the Connelly method to gain additional 

information about the overall shape of these species. The two species adopted comparable shapes 

with a helicoidal extension. The existence of two repeating units implies different three-dimensional 

shapes giving rise to structures with different packings and extension. 

The NMR spectroscopic data did not give clear evidence as to whether the O-chain structure is a 

mixture of two different O-chain polymers or whether it was a single polymer with a blockwise 

repeating unit organization. The presence of two different O-antigens for Burkholderia LPSs is 

common, especially for plant-associated bacteria.49,50  

                                                           
[49] De Castro C., Molinaro A., Lanzetta R., Silipo A., Parrilli M., Carbohydr. Res., 2008, 343, 1924–1933. 

[50] Silipo A. et al., Glycobiology, 2010, 20, 406–419. 



41 
 

However, it is very rare for other bacterial LPSs. Most of the monosaccharide residues found in O-

chains are 6-deoxysugars, either rare monosaccharide residues or more typically rhamnose and 

fucose. This is also true of the O-antigens reported here: both repeating units contain L-rhamnose and 

3-O-methyl-L-rhamnose. The non carbohydrate appendages and the deoxysugars help to confer a 

hydrophobic character to bacterial cell surface, which is probably important in its interaction with 

eukaryotic plant cells. In fact, it has been shown that the O-antigens from different planta associated 

bacteria have a pivotal role in the context of the innate immune response of the host to the bacterial 

cell. The O-antigen can either suppress the immune response (as for symbiosis), or trigger it 

(pathogenesis).51,52 

  

                                                           
[51] Seltmann G., Holst O., The Bacterial Cell Wall, 2001, Springer, Heidelberg, Germany,  

[52] Alexander C., Rietschel E.T., J. Endotoxin Res., 2001, 7, 167–202. 
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Chapter IV 

Determination of O-antigen structure from 

Gram-negative bacterium Burkholderia 

fungorum 
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4.1 Burkholderia fungorum 

 

Burkholderia fungorum strain DSM 17061 is a Gram-negative bacterium isolated 

respectively from an oil refinery discharge and rhizosphere of hybrid poplar. It is rod-

shaped, strictly aerobic, catalase positive and oxidase negative. It is capable of 

transforming polycyclic aromatic hydrocarbon (PAHs), which are an extended class of 

organic compounds containing two or more condensed aromatic rings. Their molecular 

stability and hydrophobicity are among the prominent factors that contribute to the 

persistence of these pollutants in the environment.53 Preliminary studies carried out on 

Burkholderia fungorum strain has revealed that this bacterium plays a key role in 

phytoremediation of organic contaminants. Infact, the inoculation of B. fungorum into 

hybrid poplar planted in non-contaminated soil could cause a negative e effect on 

biomass index, whereas inoculated plants in contaminated soil, result to have a better 

tolerance against toxic effects of PHAs.54 Recently, many studies have been focusing 

on microbe-assisted phytoremediation, where the presence of endophytic micro-

organisms enhances plants growth.55,56 

Thanks to the study of the LPS structure disposed on the bacteria’s outer membrane57,it 

was possible to explain the elementary mechanism of plant pathogen recognition. 

 

Results and Discussion 

 

4.2 Structural characterization of LPS from Burkholderia fungorum 

 

The bacterial pellet was extracted with a phenol/water solution 90%, and the LPS was 

obtained in water phase. From preliminary chemical analysis, the water phase resulted 

to be abundant in nucleic acid and proteins as well, so we proceeded with enzymatic 

                                                           
[53] Cerniglia C.E., Biodegradation, 1992, 3, 351–368. 
[54] Andreolli M. et al, Chemosphere, 2013, 92, 688-694. 
[55] GermaineK.J., KeoghE., RyanD., DowlingD.N., FEMS Microbiol. Lett., 2009, 296, 226–234. 
[56] SoleimaniM. et al. Chemosphere, 2010, 81,1084–1090. 
[57] Silipo A., De Castro C., Lanzetta R., Parrilli M., Molinaro A.,  Lipopolysaccharides. In: Prokaryotic Cell WallCompounds - Structure 
and Biochemistry. 2010, König, H., Claus, H., Varma A., Eds.; Springer, Heidelberg. 
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treatment followed by a consecutive ultracentrifugation. The obtained product, resulted 

to contain pure LPS, which was the subject of the following chemical analysis. 

 

Figure 4.2.1: SDS-PAGE 13.5% on total extract derives from phenol/water extraction. 1. Water phase; 2. Phenol phase 

 

4.2.1 Preliminary analysis 

The compositional analysis of LPS fraction showed the presence of a huge amount of L-rhamnose 

(Rha) and L-xylose (Xyl) as carbohydrate components whereas fatty acids analysis detected (R)-3-

hydroxyhexadecanoic acid [16:0(3-OH)] in amide linkage and (R)-3-hydroxytetradecanoic [14:0(3-

OH)] acid and hexadecanoic acid [16:0] in ester linkage. With the purpose of isolating and 

characterizing the O-chain structure, a mild acid hydrolysis on pure LPS was performed. On the 

supernatant, containing the O-polysaccharide, was performed a swift chemical analysis to determine 

monosaccharides composition and then the same sample was treated with 2-octanol to assign the 

absolute configuration of each monosaccharide using GC-MS compared with appropriate standards. 

Linkage analysis performed on the free O-polysaccharide revealed the presence of 2-substituted-L-

Rhap; 4-substituted-L-Rhap; 2,3-substituted-L-Rhap and terminal-L-Xylp.  

 

4.3 NMR characterization of O-polysaccharide isolated from LPS of Burkholderia 

fungorum wild type 

Mono and bi-dimensional NMR were performed on the supernatant of acetic acid product. The 

anomeric configuration of each monosaccharide unit was assigned on the basis of the 3JH-1,H-2 and1JC,H 

coupling constant values, whereas the values of the vicinal 3JH,H ring coupling constants allowed the 

identification of the relative configuration of each sugar residue. The region of spectrum that goes 

from 5.30-4.30 ppm contained several anomeric signals. Actually, some of them were due to the O-

polysaccharide and the others belonged to by-products of the acid hydrolysis reaction. The intense 

signals shown in (Figure 4.3.1) were part of the O-chain (A-G, table 4.3.1) and they matched, as 
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demonstrated below, with tetrasaccharide-repeating units with a non-stoichiometric terminal xylose 

as appendage. 

 

 

Figure 4.3.1:1H NMR spectrum (400 MHz) of the O-chain fraction fromBurkholderia fungorum.  

 

Spin system A H-1/B H-1at 5.20/100.9 and 5.14/102 ppm (Fig. 4.3.2 and tab. 4.3.1) were identified 

as 2-substituted α-rhamnose residue on the basis of scalar correlation between ring protons and methyl 

group resonating at low value of chemical shift. The residue A/B displayed an -anomeric 

configuration established from the 1JC-H values and the intra-residual NOE contact of H-1 with H-2, 

even the manno configuration was assigned by evaluation of 3JH,H coupling constants.  An additional 

α-manno-configurated spin systems was C (H-1/C-1 at 4.92/101.9), which was identified as 4-

substituted-α-rhamnose for the chemical shift value of C-4 at downfield region of spectrum. (Figure 

4.3.2 and table 4.3.1) 
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Table 4.3.1: 1H and 13C NMR chemical shifts (ppm) of O-antigen from B. fungorum. 

Unit 1 2 3 4 5 6 

A 
5.20 3.97 3.85 3.44 3.85 1.24 

2- -Rha 100.9 78.3 69.8 71.9 69.0 16.7 

 1JCH 176.9 Hz      

B 
5.14 4.01 3.89 3.44 3.78 1.24 

2- -Rha 102.0 78.3 69.8 71.9 69.2 16.7 

 1JCH 176.9 Hz      

C 
4.91 4.08 3.84 3.55 3.74 1.22 

4- -Rha 101.9 69.5 69.9 82.5 67.5 16.7 

 1JCH 175.6 Hz      

D 
4.89 4.07 3.84 3.55 3.74 1.22 

4--Rha 102.0 69.5 69.9 82.5 67.5 16.7 

 1JCH 175.6 Hz      

E 
4.79 4.11 3.68 3.44 3.44 1.28 

2,3--Rha 100.1 79.3 76.1 71.2 71.9 16.8 

 1JCH 174.9 Hz      

F 
4.69 4.04 3.60 3.44 3.44 1.27 

3--Rha 101.1 70.4 79.5 71.2 71.9 16.8 

 1JCH 164.8 Hz O-CH3  3.55/60.49     

G 
4.42 3.31 3.38 3.58 3.18/3.93  

-Xyl 104.5 73.5 75.3 69.3 64.9  

 1JCH 164.8 Hz      
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Figure 4.3.2: HSQC (grey) and HMBC (black) spectra of O-polysaccharide isolated from B. fungorum.  

 

Instead, spin system E was assigned as 2,3-substituted -rhamnose residue, as deduced by high 

glycosylation shift at position C-2 and C-3 respectively at 79.3 and 76.1 ppm. (Fig. 4.3.2 and tab. 

4.3.1). These data were also confirmed by linkage analysis. Residue E was glycosylated at O-3 and 

O-2 respectively by residues A and G as shown by inter-residual NOE contact between A1-E3 and 

G1-E2 and in turn residues C/D was glycosylated at O-4 by residue F/E respectively. (Figure 4.3.3)  

The last spin system G H-1/C-1 at 4.42/104.5 ppm corresponded to a terminal β-xylose residue, as 

suggested by chemical analysis. The anomeric signal gave all long range correlations with protons 

ring and both H-5 resonating at 3.92/3.17 ppm peculiar for methylene group of a pentose residue. 

(Fig. 4.3.3) All data proved the presence of the β-gluco-configurated monosaccharide.  
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Figure 4.3.3: A section of NOESY (black) and TOCSY (grey) spectra of the O-chain fraction from Burkholderia 

fungorum.  

 

The sequence of the sugar residues in the repeating unit were determined by NOESY and HMBC 

experiments, which were allowed to determine the following O-polysaccharide structures (Figure 

4.3.4): 

                                              A                          E                         D 

 X [→2)--Rha-(1→3)--Rha-(1→4)--Rha-(1→]n 

                                                                  2 

 

            1)--Xyl G 

 

 

 B                 F                      C 

                             Y  [→2)--Rha-(1→3)--Rha-(1→4)--Rha-(1→]n 

 

 

Figure 4.3.4: Structures of the O-chain isolated from Burkholderia fungorum 
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4.4 Structural characterization by MALDI mass spectrometry of LPS and the 

lipid A 

As previously discussed (paragraph 3.4 section I), lipid A was characterized by a combination of 

chemical analysis and MALDI mass spectrometry. The lipid A fraction under review was recovered 

by a mild acid hydrolysis. Chemical analyses showed the presence of 6-substituted-GlcN and 

terminal-GlcN, both in D-configuration and a further residue, terminal-4-amino-4-deoxy-arabinose, 

with L-configuration. The negative ion MALDI spectrum is reported in Fig. 4.4.1. In analogy with 

lipid A structures from Burkholderia,58also this specie has the classical -(1→6)-GlcNp carbohydrate 

backbone phosphorylated at the -anomeric position of the reducing GlcN and at O-4 of the non-

reducing -GlcN. At these phosphate groups were attached through a phosphodiester linkage to -

Ara4N residues. Ion peaks at m/z 1012.8 and 1670.6 were identified as tri-acylated and penta-acylated 

lipid A respectively, possess in ester linkage two 14:0 (3-OH) and one 14:0 residues, and in amide 

linkage two 16:0 (3-OH) residues. Instead, at m/z 1444.3corresponded to a minority species of tetra-

acylated lipid A, that carried a less C14:3OH respect to the LApenta specie. In addition to the signals 

attributable to the lipid A, in MALDI spectrum are detected also core and total LPS signals.  

 

 

 

 

                                                           
[58] De Soyza A., Silipo A., Lanzetta R., Govan J.R., Molinaro A.,Innate Immunity, 2008, 14,127-144. 
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Figure 4.4.1: MALDI TOF MS analysis of total LPS from Burkholderia fungorum; Negative-ion mass spectrum 

showing both LPS molecular ions and their ion fragments, attributable to the core oligosaccharides and to the reported 

lipid A structure. 

 

 

In summary, MS analysis of the intact LPS completed and confirmed the previous structural 

hypotheses and allowed the full assignment of the lipid A structure from Burkholderia fungorum 
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Chapter V 

Elucidation of LPS structure isolated from 

Pantoea ananatis strain M408 
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5.1 Pantoea ananatis strain M408 

 
Pantoea ananatis is a natural ubiquitous Gram-negative bacterium. In many cases, bacteria are 

associated with plants and they are responsible of positive effects on the growth promotion. However, 

several Pantoea strains, among which strain M408, cause plant diseases in maize and rice, the most 

abundant product farmed in Europe.59 

Maize is not only the most used source of methanol and biomass for direct burning, but has an 

agricultural significance for the fodder production for animals nutrition and grains for human 

consumption. The occurrence of bacterial pathogens of maize is reported from different parts of the 

world. 60,61 Some pathogenic tests confirm that P. ananatis stimulate a hypersensitivity reaction, 

producing brown lesions and necrotic tissue on leaves of maize.62 

In order to elucidate the recognition at molecular level between plant-bacteria, it is pivotal to 

investigate structure of lipopolysaccharide (LPS), the major component of the outer membrane of 

Gram-negative bacteria, and in particular the polysaccharides portion, exposed on the bacterial 

external surface.63 

 

5.2 Structural characterization of LPS from Pantoea ananatis strain M408 
 

P. ananatis M408 was grown in TSB medium.64 The lipopolysaccharide was extracted by the hot 

phenol–water method and then purified by enzymatic treatment. The LPS was found in the water 

phase as confirmed by SDS-PAGE showing the characteristic ladder LPS profile (Figure 5.2.1). A 

further purification by ultracentrifugation was conducted to remove glucan contaminant and 

afterward, the hydrolysis under mild acidic conditions of LPS released the O-antigen and lipid A 

sediment. The latter was removed by centrifugation and the supernatant was loaded onto a size 

exclusion chromatography on TSK50 column (Toyopearl HW-50). 

 

                                                           
[59 ]Krawczyk K., Kamasa J.,Zwolinska A.,Pospieszny H. J., Plant Pathol., 2010, 92 (3), 807-811. 
[60] Cother E. J. et al Austr.PlantPathol., 2004, 33, 495–503. 
[61] Coutinho T.A. et al PlantDis., 2002, 86, 20–25. 
[62] Goszczynska T., Botha W.J., Venter S.N.,Coutinho T.A.,Plant Dis., 2007, 91, 711–718. 
[63] Silipo A., De Castro C., Lanzetta R., Parrilli M., Molinaro A.,Lipopolysaccharides. In: Prokaryotic Cell Wall Compounds - Structure 
and Biochemistry. König, H., Claus, H., Varma A., Eds.; Springer, Heidelberg, 2010 
[64] Lisowicz F., et al OchronaRoslin, 1995, 39, 10-11. 
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Figure 5.2.1: SDS-PAGE of the LPS isolated from Pantoea ananatis after enzymatic treatment.1) LPS from E.coli; 2) 

water phase  

 

5.2.1 Preliminary analysis 

 

The polysaccharide moiety underwent GC-MS analyses as acetylated O-methyl glycosides derivative 

and revealed the presence of rhamnose and galactose as major components. Their absolute 

configuration was established by using O-octyl glycoside derivatives in which it was possible to find 

rhamnose in L-configuration and galactose in D-configuration. Linkage analysis revealed the 

presence of terminal galactose, 2-substituted rhamnose and 2,3-di-substituted rhamnose. The 

polysaccharide obtained was fully characterized by 2D NMR spectroscopy. 

 

5.3 NMR characterization of O-chain isolated from LPS of Pantoea ananatis 

strain M408 

 
The O-antigen was studied by 2D NMR (Tab. 5.3.1). From the 1H NMR spectrum (Fig. 5.3.1), the 

presence of five different spin systems was evident. Four of them, labeled A, B, C and D, were typical 

manno-pyranose rings on the basis of small vicinal 3J1,2 and3J2,3 coupling constants of about 2 Hz and 

3.2 Hz respectively and of large 3J3,4 and 3J4,5 around 10 Hz. These data, together with chemical 

analyses, suggested that the O-chain portion was mainly constituted by a differently substituted Rhap 

chain.  
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Figure 5.3.1:1H NMR spectrum (600 MHz) of the O-chain fraction from Pantoea ananatis M408. 

 

The α-anomeric configuration of all of these four residues was assigned on the basis of their H-5 and 

C-5 chemical shift.65 

Spin system E (H-1/C-1) at 4.42/106.3 ppm was identified as terminal β-Galp residue. The galacto 

configuration was established by the low values of 3J3,4 and 3J4,5 coupling constants, while the β-

anomeric configuration of E was inferred by anomeric resonances and by 1JC,H values and also 

confirmed by the intra-residue correlations of H-1 with H-3 and H-5 in the ROESY spectrum. 

Furthermore, the 13C resonances showed a non-substituted monosaccharide, as also confirmed by 

linkage analysis.  

Spin system D (H-1/C-1) at was identified as a 2,3-substituted Rhap as confirmed by a relevant 

glycosylation shift of C-2 and C-3, respectively at 75.8 and 81.4 ppm (see Tab.5.3.1 and Fig. 5.3.2).  

 

 

 

 

                                                           
[65] Lipkind G. M., Shashkov A. S., Knirel Y. A., Vinogradov E. V., Kochetkov N. K.,Carbohydr. Res., 1988, 175, 59-75. 
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Table 5.3.1:1H and 13C NMR chemical shifts (ppm) of O-antigen isolated from Pantoea ananatis. All rhamnose 

residues are in L-configuration, while the galactose residue is in D-configuration. 

 

Residue D was in turn glycosylated at O-2 by residues B (H-1/C-1) at 5.22/98.7 ppm and at O-3 by 

E (H-1/C-1) at 4.42/106.3 ppm, which respectively were identified as 2-substituted Rhap and t-Galp 

(see Tab. 5.3.1), as shown by inter-residual NOE contact between B1-D2 and E1-D3 (Fig. 5.3.3). 

Likewise, residue A (H-1/C-1) at 5.28/99.1 ppm and residue C (H-1/C-1) at 5.20/99.2 ppm were both 

identified as 2-substituted Rhap residues as shown by the downfield displacement of 13C chemical 

shift of both C-2, respectively at 74.4 and 76.7 ppm (see Fig. 5.3.2). 

 

 

Figure 5.2.2: 1H NMR and HSQC (black) spectra the O-chain fraction from Pantoea ananatis M408 

Residue 1 2 3 4 5 6 

A 5.28 4.03 3.96 3.54 3.79 1.26 

2--Rha 99.1 74.4 69.9 69.7 70.1 17.5 

B 
5.22 3.95 4.00 3.50 3.76 1.20 

2--Rha 
98.7 76.4 69.8 69.7 70.1 16.8 

C 
5.20 3.92 4.01 3.53 3.75 1.21 

2--Rha 99.2 76.7 69.9 69.7 70.3 15.5 

D 5.14 4.32 4.06 3.55 3.74 1.21 

2,3-α-Rha 99.5 75.8 81.4 71.0 70.0 16.5 

E 4.42 3.57 3.81 3.72 3.62 3.63/3.72 

t-β-Gal 106.3 72.7 68.8 70.0 75.5 60.8 
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Residue A was in turn glycosylated by residue C at O-2 and was linked at O-2 of B residue. In fact, 

by means of ROESY experiment, the NOE contacts between C1-A2, A1-B2 and D1-C2 (see Fig. 

5.3.3) were identified.  

 

 

Figure 3: ROESY and TOCSY spectra (black and grey respectively) of the O-chain fraction from Pantoea ananatis 

M408. 

 

All of the above data confirmed the presence of a linear tetrasaccharidic rhamnose chain carrying a 

galactose as appendage, as shown below.  

 

   D                       C                      A                      B 

    [    2)-L-α-Rha(1    2)-L-α-Rha(1    2)-L-α-Rha(1    2)-L-α-Rha(1    ]n 

                                             3 

 

                                            1)-D-β-Gal E 
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In conclusion, the structure of the LPS O-antigen from P. ananatis M408 was established by a 

combination of chemical and NMR analyses. It is built up of a tetrasaccharide rhamnose chain to 

which is linked a single branching galactose residue. The rhamnose chains are quite common moieties 

of Gram negative bacterial LPS especially those associated with plants,66,67,68,69and we deem that LPS 

O-antigen plays a major role in bacteria plant association, either positive or negative. 

 

5.4 Mass spectrometry on LPS and lipid A portion 

A negative ion mode MALDI spectrum was performed on the crude lipid A, obtained as pellet after 

acetic acid hydrolysis. The spectrum in negative ion mode (Fig. 5.4.1) showed clearly abundant 

molecular ion at m/z 1279.84 and several minor ion cluster at m/z 1506.03, 1716.22 and 1798.17; 

which corresponded respectively to tetra-acylated lipid A, penta and hexa-acylated lipid A. The 

detected molecular mass of tetra-acylated lipid A (L1) suggested the following composition: two 

glucosamine residues, one C12:0, three C14:3OH and one phosphate group. A second specie (L2)at 

m/z 1359.80 showed the mass increment of 79.96 uma respect to (L1), which is attributable to 

additional phosphate group on the backbone. Therefore, L2results to be a bis-phosphorylated lipid A 

specie. 

A second ion cluster was also detectable in a mass range between 1450-1550, the ion peak at m/z 

1506.03 is associated to penta-acylated lipid A (L3) shaped by two glucosamine, four C14:3OH, one 

C12:0 and one phosphate substituent, otherwise the lipid A composition is altered in terms of fatty 

                                                           
[66] De Felice A. et al Eur. J. Org. Chem.,2016, 748–755. 
[67] Silipo A. et alGlycobiol., 2010,20, 406-419. 
[68] Molinaro A., Newman M. A., Lanzetta R., Parrilli M.,Eur. J. Org. Chem.,2009, 5887-5896. 
[69] De Castro C., Molinaro, A., Lanzetta R., Silipo A., Parrilli M., Carbohyd. Res., 2008, 343, 1924-1933. 
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acids distribution(two glucosamine, three C14:3OH, one C14:2OH,one C12:3OH, one C12:O and one 

phosphate group). 

Moreover, mass difference of 226.19 uma in mass spectrum between (L1) and (L3) disclosed the 

presence of one C14:3OH more in lipid A structure; and in addition the hexa-acylated specie detected 

at m/z 1798.17 carrying a further C14:3OH and C14:0. As tetra-acylated lipid A (L2), also hexa-

acylated lipid A displayed mass loss of 79.96 uma, attributable to mono-phosphorylated lipid A (L4). 

Both losses of phosphate groups depended on mild acid treatment on LPS, because these groups were 

generally acid labile substituents. 

 

Figure 5.4.1:a) Mass spectrum on the crude lipid A obtained after acetic acid buffer hydrolysis; b) 

MS/MS spectrum on bis-phosphorylated lipid A hexa-acylated. 

 

To bypass this inconvenience the complete LPS was undergo to mass spectrometry analysis. 

Adjusting of laser intensity was possible to cleave the labile linkage between lipid A and Kdo, so in 

the linear spectrum (Fig. 5.4.2 a) was already clearly visible a division between lipid A signals around 

1200-1800 and total LPS signals around 3500-4000. (Fig. 5.4.2 b) 
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Once identified the ion cluster of intact LPS, was performed also a MS/MS experiment in order to 

distinguished precisely lipid A portion and saccharide portion of LPS and propose a structure 

hypothesis of oligosaccharide portion. (Fig. 5.4.2 c) 

 

 

 

 

 

Figure 5.4.2:a) Mass linear spectrum of whole LPS; b) zoom region of mass spectrum at high masses; c) MS/MS 

spectrum on the complete LPS. 

 

Core OS turns out to be formed by two hexoses, one N-acetyl-hexosamine, three heptoses, three kdo, 

two uronic acid, one phosphate group. It was evident that the lipid A structure above reported, was 

comparable with E.coli lipid A. as expected since Pantoea ananatis M408 belong to 

Enterobacteriaceae 
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Section II 

Plant symbionts 
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Chapter VI 

Structural elucidation of LPS from 

Bradyrhizobia bacteria 
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6.1 Introduction 

 
Bradyrhizobium species are Gram-negative nitrogen-fixing bacteria capable to establish a mutualistic 

symbiotic relationship with plants of Leguminosae genus. As a consequence of the endosymbiotic 

process, bacteria, most commonly Rhizobiaceae, cause the development of root nodules in which 

they can fix atmospheric nitrogen into ammonia available as energy for nucleotide building blocks 

biosynthesis. 

Generally, legume plants sticked by bacteria belongs to Aeschynomene genus and they cannot survive 

in absence of Rhizobia (as Mesorhizobium, Sinorhizobium, and Azorhizobium), therefore they have 

been largely used in agriculture system to enhance the natural nitrogen sources avoiding the use of 

chemical fertilizer.70 

The molecule that effectively carry out an important role during the interaction with the legume host 

is the lipopolysaccharide (LPS) disposed on the bacterial surface.71,72 

Among the three regions constituting the LPS, the lipid A, the core oligosaccharide and the O-antigen 

side chain, the last one directly enters in contact with the host plant during the symbiotic interaction 

and it is the most variable among the bacteria. This structural diversity of the O-antigen region could 

modulate or suppress the plant defense reactions, in order to facilitate the establishment of the 

symbiosis.73Interestingly, it has been described that the LPS O-antigen of photosynthetic 

BradyrhizobiumBTAi1 is a homo-polymer built up on a unique bicyclic -(1  7)-linked 

monosaccharide that had never been described before in nature, named bradyrhizose.74 

Furthermore, it has been shown that this Bradyrhizobium O-antigen does not trigger the innate 

immunity in different plant families, including the host plant A. indica.  

In fact, recently data show that in two strain of Bradyrhizobium (BTAi1 and ORS278) the canonical 

nod-ABC genes, and thus the nod factor, are absent although bacteria are still able to induce the 

nodule formation in plants as Aeschyomene sensitive and Aeschyomene indica.75 

This finding overturns the previous hypothesis and suggests an alternative strategy, where bacteria 

have evolved a modification in non-immunogenic O-antigen structure to avoid the induction of the 

plant immune system in order to facilitate the establishment of the symbiosis. 

Actually, there are many studies in progress in order to understand which molecular patterns are 

involved in this nod factors independent mechanism. 

                                                           
[70] OgutcuH., AdiguzelA., GulluceM., KaradayiM., SahinF.,Romanian Biotechnological Letters, 2009, 14, 4294-4300. 
[71] Fraysse N., Couderc F., Poinsot V.,Eur J Biochem.,2003,270(7), 1365–80. 
[72] Lerouge I., Vanderleyden J., FEMS Microbiol Rev., 2002, 26(1), 17–47. 
[73] Carlson R.W., Forsberg L.S., Kannenberg E.L., Subcell.Biochem., 2010,53, 339–86. 
[74] Silipo A., et al., AngewChemInt Edit., 2011, 50(52),12610–2. 
[75] GiraudE., XuL., ChaintreuilC., GarganiD., GullyD., Michael SadowskyJ., Applied and Environmental Microbiology, 2013, 2459–
2462. 
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Overall, the plant immune system, as in mammals, has acquired the ability to recognize the molecular 

structures of MAMPs, but their receptors recognition happens into the plasma membrane.  

The plant immune response is usually followed by a necrosis of plant tissues, termed Hypersensitive 

Response (HR) thanks to whom the plant contains the infection. Around the infection site, there is a 

sudden cellular death and a simultaneous reduction in the number of viable bacteria, which represents 

the final stage of resistance. From previous studies,76 LPS from plant symbiont results to be involved 

in suppression of innate immunity, preventing the HR by means of a “localized induced resistance” 

(LIR), which consists in the production of antimicrobial compounds as peroxidase and cationic 

peptides.  The structural requirements of LPS to provoke LIR are still under studying, but much 

progress has done in recent years. 

From biological point of view the symbiotic process is based on two main mechanisms (Fig. 6.1): 

using NF-dependent and NF-independent process. In the first, several plant signals as flavonoids, 

polyphenol compounds, like apigenin and narigenin, were perceived by bacteria NodD proteins, that 

induce the transcription of Nod genes and they are resulting in transduction of 

lipochitooligosaccharides, known as Nod Factor (NF). These last molecules are able to activate a 

LysM-RLK kinase enzyme, which is in turn involved in phosphorylation of calcium channel. The 

increment of intracellular calcium concentration enhanced the formation of calcium-calmodulin 

complex, which it could be recognized by cytokine receptors that translocated in the nucleus and 

activated the transcription of symbiotic genes that lead to nodules organogenesis on the plant root.77 

Instead, the NF-independent process depends on the production of several cytokine–like receptors 

compounds after plants epidermidis lesions and they might directly by-pass the early NF-signaling 

pathway and finally trigger the nodule organogenensis.78 

Therefore, NF-dependent and independent bacteria are able anyway to set up right conditions to give 

rise to symbiosis. 

A key role during the symbiosis also took place from lipid A. Despite the general architecture of lipid 

A is conserved among individuals belongings to the same family, the lipids A isolated from several 

strains as Rhizobia turn out to be different for: nature of glycidic backbone, being substituted non 

stochiometrically with phosphate or with other residues; high fatty acids distribution with acyl chain 

in various length and in some case they also displayed an hepta-acylayted lipid A due to a triterpenoid 

lipid, termed hopanoid, which may has a pivotal role in regulation of cellular homeostasis. 

It is obvious that in most cases, symbiosis derives from metabolic complementation between the host 

and microbe, in which one partner provides missing nutrients for the other. Moreover, microbes can 

                                                           
[76] SequeiraL., HillL.M., Physiol. Plant Pathol.,1974, 4, 447-455. 
[77] OldroydJ.E.D., DownieJ.M., Annual Rew. Plant Biol., 2008, 59, 519-546. 
[78] GiraudE. et al. Science, 2007,  316, 1307-1312. 
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contribute in many ways to host development by synthesizing hormone-like compounds79and 

affecting host immunity.80The symbiotic associations can be facultative or obligate due to many 

absent biosynthetic pathways. In plants, obligate symbiosis is effectively rare, on the contrary, 

facultative mutualistic interactions are more common as the fungal-plant and the Rhizobium-

Aeschynomene interactions.  

Since that time, the Rhizobia genus have generated a considerable interest for their new properties; 

the principal goal of the this PhD project was the extraction, structural analysis and also biological 

activity studies of several Rhizobium LPS and in particular lipids A isolated from 

Bradyrhizobiastrains. 

 

 

Figure 6.1: Activation systems during symbiosis process, which lead to nodule formation. 

 

 

 

 

 

 

                                                           
[79] Shin S.C.et al., Science, 2011, 334, 670–74. 
[80] MoreiraL.A.et al.,Cell., 2009, 139,1268–78. 
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Results and Discussion 

 

6.2 Purification and characterization of LPS from Bradyrhizobium sp ORS 285  

 

Bradyrhizobia belong to the slow growing bacteria group. Thus, during the growth there is a high 

risk of contaminations by other bacteria that grow quickly.  The bacterial pellet submitted to analysis 

were ORS 285 (Br1) and ORS 285 rfaL (Br2) mutant, which produced respectively LPS and LOS. 

It was performed a usual hot phenol/water protocol, followed by enzymatic treatment and 

ultracentrifugation in order to remove all contaminants. The SDS-PAGE analysis disclosed the 

presence of typical ladder pattern for Br1 and a sticked spot at low molecular masses for Br2 (Fig. 

6.2). This was the first confirmation of the selective production of LPS and LOS from two strains. 

Then oligosaccharide fractions were studied via MALDI mass spectrometry and NMR spectroscopy 

after a selective acetic acid hydrolysis and a further purification of species by means of exchange ion 

chromatography. 

 

Figure 6.2: SDS-PAGE gel scan of the LPS of ORS 285 wt (1), O-antigen mutant (2). The black box shows the 

canonical high molecular weight band of Br1 LPS (with the O-antigen). Br2 mutant strain displayed LPS lacking the 

complete O-antigen region with low molecular weight. 

 

6.2.1 Chemical analysis and preliminary results 

 

To confirm that the selected mutants were affected in the O-antigen-synthesis, we compared the LPS 

GC-MS profile of Br1 and Br2. As shown in (Fig 6.2.1 a-c), ion peaks belonging to bradyrhizose (ion 

peaks from 25 to 32min) present in spectrum of WT LPS were not observed in the mutant LPS. 

Further, the compositional analysis indicate that the LPS of the selected mutant completely lack the 

O-antigen region and only display sugar residues belonging to the core region. 
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Figure 6.2.1: GC-MS chromatogram of LPS from ORS285wt(a) and ∆rfal(c).The inset reasumes the compositional 

analysis, between 25-30 min ion peaks belonging to Bradyrhizose were present. On the right the mass spectrum (b) and 

fragmentation pattern of one of the ion peaks belonging to Bradyrhizose, (numebered as 10)is also shown. 

The mutant LPS (c) does not display O-antigen region at about 30 min retention time. 

 

 

Since the O-antigen structure of wt strain Br1 was already reported as a homo-polymer repeating unit 

of bradyrhizose, the most of the project was spent in determination of oligosaccharide core.  

On the crude LOS (Br2) was performed a permethylation analysis, that revealed the presence of 3-

substituted-D-4-O-Methyl-mannose, 7-substituted heptose, 3-substituted-D-glucose, 3-substituted-

D-mannose, 5-substituted-Kdo ant terminal N-methyl-hexosammine. 

The absolute configuration of all residues were determined from GC-MS analysis comparing the 

peracetylated octil-glycosides standards and they result to be D. 

Nevertheless, the structure of core is currently under studying. 

In parallel, also the lipid A portion isolated from both Br1 and Br2 strain was analyzed, using mass 

spectrometry in positive ion mode. From previous results, it was evident that both strains displayed 

the same ion distribution reconductable to the same lipid A species. 

The first information on the lipid A structure were obtained from positive-ion MS spectrum 

performed on the intact lipid A in which we identified an heterogeneous mixture of peaks, that 

differed for the long chain fatty acid distribution on the sugar backbone. 

Based on the compositional analyses we assigned the peak at m/z 2595.7(Fig. 6.2.2) to a hexa-acylated 

species with the following composition: 
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two residues of GlcN3N 

two residues of Man 

one unit of GalA 

two C14:0 (3-OH) 

one C12:0 (3-OH) 

one C12:1 

one C30:0 (2,29-OH) 

one C26:0 (25-OH) 

Moreover, it was possible to detect a new ion cluster at m/z 2271.6 that corresponded to hexa-acylated 

lipid A lacking the disaccharide mannose residue, which usually labile linked to the rest of molecule. 

The presence of two residues of mannose in mass spectra confirmed that they were both linked to the 

non reducing DAG of the lipid A saccharide backbone while the GalA unit was located on reducing 

DAG.  

Furthermore, the molecular ion that represented the hexa-acylated lipid A was also useful to identify 

the fatty acid distribution on each DAG residue of sugar backbone.  In fact, the peaks at m/z 

2129.36corresponded to penta-acylated lipid A fragments, lacking a residue of C30:0 (29-OH), this 

suggested that the last fatty acid was in ester linkage, more labile respect to amide-linked fatty acids.  

A third ion group localized at m/z 3106.2 in MALDI spectrum of crude lipid A (Fig. 6.2.2) 

corresponding to an equivalent structure of m/z 2595.7 (LA hexa), but with a difference in mass of 

512.4. This last peak was attributable to a hepta-acylated specie carrying a macromolecule, named 

hopanoid, that confers unusual feature to the lipid A. Further investigations were done in order to 

identify the chemical structure, variation and biological relevance of this residue. 
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Figure 6.2.2: MALDI mass spectrum of crude lipid A obtained after mild hydrolysis in acetate buffer. 

 

 

 

6.3 Biological significance of O-antigen portion 
 

Bradyrhizobium bacteria, as discussed above, display a unique LPS O-antigen composed of a new 

sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic 

character. To check this hypothesis, were isolated mutants affected in the O-antigen synthesis by 

screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. 

Five mutants were selected and found to be mutated in two genes, rfaL, encoding for a putative O-

antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase (Fig. 6.3.1).  

 

 

Figure 6.3.1: Identification of ORS285 mutants affected in the O-antigen synthesis in genomic context of 

Bradyrhizobium strains 
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As confirmed by chemical analysis the LPS of these mutants result to be completely lack the O-

antigen region. However, no effect of the mutations could be detected on the symbiotic properties of 

the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not 

required for the establishment of symbiosis with Aeschynomene. 

This kind of mutation can lead to a sweeping change of the colonies aspect, it has been reported that 

the removal of the O-antigen region could alter the sensitivity of some mutants to various stresses.81,82 

This higher sensitivity can compromise the success of the symbiotic interaction because all along the 

process the bacteria has to cope with various stressful conditions such as acidic pH, high osmolarity, 

reactive oxygen species, and peptide antibiotics.(Fig. 6.3.2) 

 

 

Figure 6.3.2:The lack of O-antigen has no impact on the free life of ORS285. F) Hydrogen peroxide (H2O2), hydrogen 

chloride (HCl) and sodium dodecyl sulfate (SDS) resistance of ORS285 (black bar), rfal(grey bar) and gdh (white bar) 

mutants, as determined by disk diffusion assays; H) Polymyxin B resistance of ORS285 (black bar), rfal (grey bar) and 

gdh (white bar) mutants, as determined by Etest (Etest1bioMérieux) on YM medium. 

 

The mutant displayed a similar growth than the WT-strain. We also analyzed the ability of the mutant 

to cope with various stressors, acid (HCl), oxidant (H2O2) and detergent (Sodium dodecyl sulfate) 

using disk diffusion assays and also the number of the nodules on the plant root, focusing on the 

nitrogenase activity (ARA). 

However, similarly, no significant difference was observed between the mutant and the WT-strain. 

(Fig. 6.3.3) 

Altogether, these data suggest that the O-antigen region does not play an important role in the ability 

of the ORS285 strain to cope with various stressful conditions. 

 

 

                                                           
[81] Berry M.C., McGhee G.C., Zhao Y., Sundin G.W.,FEMS Microbiol.Lett.,2009,291(1), 80–7. 
[82] Xu L.L., Wang Q.Y., Xiao J.F., Liu Q., Wang X., Chen T., et al., Arch Microbiol., 2010,192(12),1039–47. 
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Figure 6.3.3:O-antigen minus mutants of ORS285 are not affected in their symbiotic properties with Aeschynomene 

legumes.(A-C) Colony morphotypes of ORS285 (A), rfal (B) and gdh (C) mutants. Quantification of acetylene 

reduction activity (ARA) and number of nodules per plant inoculated with ORS285 (black bars), rfal (grey bars) or gdh 

(white bars) mutants in A. afraspera (C) and A. indica (D). 

 

 

Various hypothesis have been proposed to clarify the effect of deletion of the O-antigen region during 

interaction process between photosynthetic Bradyrhizobium strains and Aeschynomene. 

First, the core oligosaccharide that becomes in these mutants the most external part susceptible to 

enter directly in contact with the host cell is also non-immunogenic. Second, the photosynthetic 

bradyrhizobia are coated with other non-immunogenic surface polysaccharides, such as EPS, KPS 

and/or cyclic glycans that mask the LPS antigenic epitopes. They are several examples indicating that 

such surface polysaccharides play also an important role in the establishment of the rhizobium-

legume symbiosis either by suppressing the plant immunity or by masking some surface antigens or 

by acting directly as a symbiotic signal.83,84,85 

Finally, we cannot exclude that the photosynthetic bradyrhizobia produce unknown non-Nod 

signal(s) that besides triggering the symbiotic process, suppress the plant innate immunity, such as 

proposed for Nod factors.86,87 

  

                                                           
[83] Fraysse N., Couderc F., Poinsot V.,Eur J Biochem., 2003, 270(7), 1365–80. 
[84] Carlson R.W., Forsberg L.S., Kannenberg E.L.,Subcell. Biochem., 2010, 53, 339–86. 
[85] Kawaharada Y., Kelly S., Nielsen M.W., Hjuler C.T., Gysel K., Muszynski A., et al. Nature, 2015,523(7560), 308–12. 
[86] Gourion B., Berrabah F., Ratet P., Stacey G., Trends Plant Sci., 2015, 20(3), 186–94. 
[87] Liang Y., Cao Y., Tanaka K., Thibivilliers S., Wan J., Choi J., et al. Science, 2013, 341(6152), 1384–7. 
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Section III 

Role of lipid A in Bradyrhizobium strains 
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6.4 Structure and function of Bradyrhizobium lipid A 
 

In the following section we focused on the study of lipids A isolated from Bradyrhizobium strains 

with the aim to correlate the peculiar structure never described before to their function and 

biosynthetic pathways. 

Despite the general architecture of lipid A is conserved among individuals belongings to the same 

family, the lipids A isolated from several strains as Rhizobia turn out to be different for: nature of 

glycidic backbone, being substituted non stochiometrically with phosphate or with other residues; 

high fatty acids distribution, the presence of Very Long Chain Fatty Acids (VLCFA),in some strain 

for the presence of hepta-acylated strains carrying a triterpenoid lipid, termed hopanoid, which may 

has a pivotal role in regulation of cellular homeostasis. 

To better understand how bacteria resist stresses encountered during the progression of plant-microbe 

symbioses, we focus on the peculiar lipid A structures and their substituents, which contribute to 

hydrophobicity and stability of bacterial outer membrane.  

Bradyrhizobium lipid A structure is formed by a skeleton of -(1→6)-linked 2,3-diamino- 2,3-

dideoxy-D-glucopyranose (DAG) carrying an -GalpA on the vicinal DAG and an -(1→6) Manp 

disaccharide on the distal DAG unit, substituted by a heterogeneous blend of lipid chains in terms of 

lengths and distributions. The number of carbon atoms in VLCFA is more variable each strain. Most 

of all are linear, mono or dimethyl branched-chain fatty acids built up of 26 to 34 carbon atoms.88 

VLCFAs can span out the entire outer membrane and play a crucial role in its stabilization. 

Furthermore, in Bradyrhizobium lipid A the two secondary VLCFAs were substituted by a 

hopandiolic acid and by an acetyl group. 

All together these properties allowed to determine a novel lipid A skeleton, which we named HoLA 

(Hopanoid-Lipid A). 

 

6.5 Hopanoids 

Hopanoids are a big class of compounds, which belong to pentacyclic triterpenoid lipids, functional 

homolog of cholesterol in mammal cells. Hopanoids interact with glycolipids in bacterial outer 

membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with 

sphingolipids in eukaryotic plasma membranes.89 

The principal features contributing to lipids order are: the rotational freedom of motion and lateral 

packing of lipids within the bilayer. In general, sterols ordering provide the basis for membrane lateral 

                                                           
[88] Choma A., Komaniecka I., Acta Biochim. Pol., 2011, 58, 51–58. 
[89] Sáenz J.P., Grosser D., Bradley A.S., Lagny T.J., Lavrynenko O., Broda M., Simons K., Proc Natl Acad Sci U S A., 2015,  112(38), 
11971-6. 
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segregation and promote a fluid, mechanically robust plasma membrane. Hopanoids are often used 

by geobiologists as biomarkers, to evaluate bacteria distributions from early days to recent modern 

ecosystems and were also found in nitrogen-fixing bacteria especially in Frankia, which were among 

the best hopanoid producers.90 

Hopanoids are biosynthesized by bacteria via cyclization of squalene-hopene cyclase to yield the C30 

hydrocarbon compound and a following enzymatic addition of small molecules may shape hopanoids 

with a side chains variable in number of carbon atom. (Fig 6.5.1) 

 

Figure 6.5.1: Biosynthetic pathway of hopanoid molecules and derivatives. 

 

The deletion of hopanoid synthesis is non-lethal for bacteria, but hopanoid-deficient mutants have 

been shown to exhibit increased sensitivity to antibiotics and various stress conditions, including 

variation in pH, temperature, and osmotic pressure.91,92 

                                                           
[90]Berry A.M., Moreau R.A., Jones A.D., Plant Physiol., 1991, 95, 111-11. 
[91] Welander  P.V. et al.,J.Bacteriol., 2009,  191(19), 6145–6156. 
[92] Kulkarni G., Wu C-H., Newman D.K, J. Bacteriol., 2013, 195(11), 2490–2498. 
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It is not understood until now exactly how hopanoids are linked to resistance and tolerance to stress, 

but understanding the role of hopanoids in shaping membrane properties would provide an important 

step toward bridging this gap. 

Within this frame, we produced, isolated and analyzed lipid A from mutant Bradyrhizobium strains 

with mutations in genes controlling the pivotal biosynthetic step of hopanoid moiety and the 

attachment of VLCFA to the lipid A, in order to deeply understand how they contribute to the lipid 

A’s functions in symbiotic process.  

 

Results and Discussion 

 

6.6 Isolation and characterization of lipid A from BTAi1 wt, hopanoid minus 

mutant Btai1shc and their complemented mutants 

The bacterial pellets were extracted and purified with an enzymatic treatment followed by 

ultracentrifugation to remove nucleic acid traces and -glucan contaminants respectively. An acetic 

acid hydrolysis on LPS was performed to obtain the lipid A as precipitate, in turn further purified93. 

 

6.6.1 MALDI mass spectrometry on lipid A  from Bradyrhizobium Btai1 wild type 

The lipid A isolated from Btai1 wild type strain was analyzed via MALDI mass spectrometry in 

positive ion mode. The spectrum revealed the presence of three ions cluster at m/z 2128.42, 2594.93 

and 3135.36, which respectively corresponded to penta, hexa and hepta-acylated lipid A. The most 

abundant ion cluster belongs to a hexa-acylated specie formed by two DAG residues, two Manp and 

one GalAp, which constituted the sugar backbone. The proximal DAG residue is linked by one 

C12
:3OH and one C14:3OH through amide linkage, whereas the distal DAG displayed an amide 

linkage with one unsaturated fatty acid residue C12:1 and a further C14:3OH. 

The second fatty acid intorn was characterized from the presence of one C32:O (2, 31-OH) linked by 

the C12:3OH, while the C14:3OH carrying a C26:25OH fatty acid and both are in ester linkage, more 

labile than amide. Thus, it was possible to detect in the mass linear spectrum also a penta-acylated 

lipid A without the secondary fatty intorn region. Moreover, a small ion cluster at high m/z with 

difference of 512.4 respect to hexa-acylated specie confirmed the presence of hepta-acylated lipid A 

carrying a hopanoid molecule. (Fig 6.6.1). The definitive information on the certain presence of 

hopanoid molecule was recovered from MS/MS experiment on the crude lipid A.  

                                                           
[93] Silipo A., Vitiello G., Gully D., Sturiale L., Chaintreuil C., Fardoux J., Gargani D., Lee H.I., Kulkarni G., Busset N., Marchetti R., 
Palmigiano A., Moll H., Engel R., Lanzetta R., Paduano L., Parrilli M., Chang W.S., Holst O., Newman D.K., Garozzo D., D'Errico G., 
Giraud E., Molinaro A., Nat Commun., 2014, 5, 5106. 
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Figure 6.6.1: a) fragmentation pattern of hopanoid moiety; b) linear mass spectrum in positive ion mode of lipid A of 

Btai1 wt; c) MS/MS spectrum of hepta-acylated lipid A with precursor ion at m/z 3135 

 

6.6.2 Lipid A from Btai1shc (hopanoid minus mutant) 

With the same approach we analyzed the lipid A from Btai1shc (hopanoid minus mutant). 

MALDI mass spectrum  (Fig. 6.6.2) highlighted the complete absence of hepta-acylated lipid A due 

to the lacking of gene encoding for squalene-hopene-cyclase, a key enzyme in the biosynthesis of 
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hopanoids, responsible for the cyclization of the linear squalene into the pentacyclic 

triterpenoid.94(see biological effect in 6.7.2). 

Since the shc gene coding an enzyme for hopanoid biosynthesis, we wanted to clarify the role of shc 

gene cluster in the covalent attachment of hopanoid to the lipid A both for NF-dependent and NF-

independent Bradyrhizobia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6.2: Reflectron MALDI TOF mass spectrum of the lipid A from BradyrhizobiumBTAi1Δshc 

showing the complete absence of the HoLA species. All the molecular ions were detected as 

di-sodiated ion adducts. 

 

Genome sequence analysis of photosynthetic Bradyrhizobium strains, as Bradyrhizobium BTAi1 and 

ORS 278 wild type, revealed the presence of only one shc gene, which, in contrast to the non-

photosynthetic strains, as Bradyrhizobium japonicum, was not surrounded by other genes involved in 

hopanoid biosynthesis. 

To confirm the hypothesis that, shc gene is pivotal in the hopanoid biosynthesis in both Bradyrhzobia 

strains, Dr. Giraud and his group prepared complemented mutants between Btai1shc and shc gene 

from Bradyrhizobium ORS 278 and Bradyrhizobium japonicum, which belongs respectively to Nod-

independent and Nod-dependent Bradyrhizobia.(Fig. 6.6.3) 

                                                           
[94] Siedenburg G., Jendrossek D.,Appl. Environ. Microbiol., 2011, 77, 3905–3915. 

LA 
hexa
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Figure 6.6.3: Phylogenetic tree of Bradyrhizobium strains. 

 

 

 

6.6.3 MALDI mass spectrometry on complemented strains Bradyrhizobium Btai1shc with shc 

from B. japonicum and/or ORS 278 

 

From these mutant strains were isolated lipid A and extensively analyzed their structure using 

MALDI mass spectrometry. Both complemented strains displayed the same blend of ion distribution 

of Bradyrhizobium Btai1 wt lipid A formed by: 

two DAG 

two Man 

one GalA 

two C14:3OH 

one C12:3OH 

one C12:1 

one C26:25OH 

one C32:O (2,31-OH) 
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An additional feature, detectable from mass spectra (Fig.6.6.4) was the presence of small traces of 

hepta-acylated species bearing a second hopanoid. Based on  MS data, we were able to assign the full 

lipid A structures. 

 

 

Figure 6.6.4: a) Mass spectrum of Bradyrhizobium Btai1shc complemented with shc from ORS 278; b) Mass 

spectrum of Bradyrhizobium Btai1shc complemented with shc from B. japonicum; c) Complete structure of lipid A 

from both complemented strains overlapped to wt lipid A structure 

 

This findings suggested that lipid A biosynthesis preceded its attachment to a hopanoid moiety using 

squalene-hopene-cyclase, which is encoded only from shc gene. So, the synthesis of LA covalently 

linked by hopanoids is not related to an unusual shc enzyme, hypothetically present in in 

photosynthetic Bradyrhizobia NF-dependent strain, but probably a gene cluster exists responsible of 

transcription of a ligase in both NF-dependent and NF-independent Bradyrhizobia strains responsible 

for the linkage of hopanoid moieties and not discovered yet. 
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6.7 Biological features of Bradyrhizobium outer membrane 

 

Is well known that, hopanoids act as membrane condensers, thus increasing bacterial resistance to 

various abiotic stresses. 95,96,97 The absence of hopanoids in the membranes could destabilize its 

regular arrangement and therefore have a profound impact on BTAi1 physiology. 

Biological assays showed the effect of the shc mutation on the growth of BTAi1 in both rich and 

minimal media. As shown in Fig. 6.7.1 a-b, the growth rate of the mutant was markedly lower than 

that of the WT strain in both media.  Further, we were also interested in evaluating the ability of 

BTAi1shc mutant to cope with various stressors. We tested oxidative, acid and detergent stresses 

using disk diffusion assays. Saline/osmotic stress was evaluated by comparing bacterial growth rates 

in the presence of increasing concentrations of NaCl. The data obtained (Fig. 6.7.1 c-d) showed that 

the BTAi1shc mutant was more sensitive than the WT strain to all stressors tested. 

Instead, from morphological point of view, no significant differences were observed between plants 

inoculated with WT and mutant strains, the number of nodules per plants and the nitrogenase activity 

measured by the acetylene reduction assay (ARA) were comparable (Fig. 6.7.2 a-b). This indicated 

that the shc mutation had no effect on the ability of the bacteria to establish a symbiotic relationship. 

From cytological analysis of nodules using transmission electronic microscopy (TEM) was 

determined also a nodule degeneracy (Fig. 6.7.2 e,f) and their up regulation during the symbiosis 

providing the nitrogen request.(Fig. 6.7.2 c-d) 

All data reported suggest that hopanoids play an important role in the physiology of BTAi1 

membrane. 

                                                           
[95] Welander, P. V. et al.,J. Bacteriol., 2009, 191, 6145–6156. 

[96] Bosak T., Losick R. M., Pearson A. Proc. Natl Acad. Sci., 2008,105, 6725–6729. 

[97] Malott R. J., Steen-Kinnaird B. R., Lee T. D., Speert D. P., Antimicrob. Agents Chemother., 2012, 56, 464–471. 
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Figure 6.7.1: (a, b) Representative growth curves of BTAi1 (black square), BTAi1shc 

(white square) and complemented BTAi1shc+shc (grey square) strains cultivated in rich (a) or minimal medium (b). 

(c) Hydrogen peroxide (H2O2),hydrogen chloride (HCl) and sodium dodecyl sulfate (SDS) resistance of BTAi1 (black 

bar), BTAi1shc (white bar) and complemented BTAi1shc+shc(grey bar) strains, as determined by disk diffusion test 

(d) NaCl resistance of BTAi1 (black bar), BTAi1shc (white bar) and complemented BTAi1shc+shc (grey bar) 

strains. 

 

 

Figure 6.7.2: a) Nodulation kinetics of Bradyrhizobium BTAi1 and BTAi1shc strains on A. evenia plants. b) The 

occurrence of acetylene-reducing activity (ARA) in A. evenia plants inoculated with Bradyrhizobium BTAi1 and 

BTAi1shc mutant. c-d) Aspect of the nodules elicited by the WT strain BTAi1 and the BTAi1shc mutant 

respectively. e-f)Transmission electron micrographs of nodules elicited by the WT strain and the BTAi1shc mutant. 

Insets in e,f show a detail of the cell wall ultrastructure of bacteroids. 
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Section IV 

Chemistry of Very Long Chain Fatty Acids 
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6.8 Role of VLCFAs as major components of Bradyrhizobium lipid A: analysis of 

mutant strains ORS2784679 and ORS2784680 
 

 Bradyrhizobium  lipid A is made up of very long chain fatty acids (VLCFA, from 26 to 32 carbon 

atoms.98,99,100) typical component of Rhizobia 101. 

The presence of very long chain fatty acids is an hallmark not only of Rhizobia and Bradyrhizobia 

strains, but also of other of lipid A isolated from mammalian pathogens such as Brucella abortus,102 

Legionella pneumophila and Bartonella henselae. 

Given the peculiar lipid A structure from Bradyrhizobia strains (Fig. 6.8.1) we studied the chemistry 

of VLCFA and their role in symbiosis. Several experiments were performed on mutants for VLCFAs 

biosynthesis, in order to identify the gene cluster responsible of elongation of the acyl-chains of lipid 

A and how the latter can bear the hopanoid moiety. The mutant strains are lacking  in genes encoding 

for the specialized acyl carrier protein AcpXL103,104 and LpxXL.105,106. They are required for VLCFA 

building and for the transferring of VLCFA from the AcpXL-VLCFA conjugate complex directly to 

the lipid A. 

 

 

Figure 6.8.1: a) General scheme of VLCFA biosynthesis; b) Genome region in which are highlighted the specific 

mutated genes in order to obtain Brado4679 (red point) and Brado4680 (green point) mutants 

                                                           
[98] Corsaro M.M., De Castro C., Molinaro A., Parrilli M., Recent Res. Devel. Phytochem., 2001, 5, 119–138. 
[99] de Maagd R.A. et al, J. Bacteriol., 1989, 171, 1143–1150. 
[100] Choma A., Sowinski P.,Eur. J. Biochem., 2004,271, 1310–1322. 
[101] Gudlavalletti S.K., Forsberg L.S., J. Biol. Chem., 2003, 278, 3957–3968. 
[102] Moreno E. et al.,J. Bacteriol. 1990,172, 3569–3576.  
[103] BrozekK.A. , Carlson R. W., Raetz C. R. H., J. Biol. Chem., 1996,  271, 32126–32136. 
[104] Vedam V. et al., J. Bacteriol., 2003, 185,1841–1850. 
[105]  BasuS.S., Karbarz M. J., Raetz C. R. H., J. Biol. Chem., 2002,  277, 28959–28971. 
[106] Ferguson G.P. et al, Mol. Microbiol., 2005, 56, 68–80. 
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VLCFA may have biological significance concerning rhizobium/legume symbiosis and 

pathogen/plant and animal pathogenesis. The gene likely responsible for the production of the 

specialized acyl carrier protein, LpxXL, has been mutated in Bradyrhizobium ORS 278 (Brado4679 

the name of the mutant strain), where the bacterium  is able to begin symbiotic process with 

Aschynomene legume plants. 

The structural analysis, performed on both lipid A mutants, revealed the importance of the role of 

LpxXL protein (Brado4679) required for VLCFA transport on the lipid A structure; furthermore as 

displayed by biological data, Brado4679, lacking one of VLCFA, is not able to start a normal 

symbiotic mechanism with plant. On contrary, Brado4680 conserving its lipid A structure can 

establish, as the other Bradyrhizobium strains like Btai1 and ORS 278, a mutualistic relationship with 

the legumes. 

 

Results and Discussion 

 

6.8.1 Preliminary analysis 

Bacterial pellet of Brado4679 and Brado4680 were extracted with phenol/water method. The LPS 

were isolated and undergo to acetic acid treatment in order to obtain the lipids A. 

 

6.8.2 Structural determination of lipid A of ORS2784679 and ORS2784680 (Brado4679 and 

Brado4680) via MALDI mass spectrometry 

 

From the structural point of view, lipid A isolated from Brado4679 displayed a pentasaccharide sugar 

backbone alike BTAi1, substituted by 3-hydroxy primary fatty acids and one unsaturated fatty acid 

chain of 12 carbon atoms.  The primary fatty acid is ester linked by a C:30 (2,29-OH) fatty acid as 

revealed by mass spectrum Fig. 6.8.2 a, the last further substituted by bacteriohopane of 35 carbon 

atoms, which corresponds to hepta-acylated lipid A overmethylated at position C-2 of the hopane 

ring. To confirm the presence of a methylated hopanoid moiety, a MS/MS spectrum was performed 

on the precursor ion of hexa-acylated lipid A species at m/z 2668.87. The MS/MS spectrum (Fig. 

6.8.2 b) revealed a loss of 526 uma, attributable to methylated hopanoid and then the loss of C30:2OH 

in ester linkage. Unlike the wild type strain, the lipid A revealed the absence of one of VLCFA 

(C26:25OH), which would confirm the mutation on Brado4679gene and the change in behavior of 

lipid A in the symbiotic process. (see biological test 6.9.1) 



84 
 

 

Figure 6.8.2:a) mass spectrum of Bradyrhizobium ORS278b) MS/MS spectrum on hexa-acylated lipid A, 

revealed the presence of overmethylated hopanoid moiety. 

 

 

All data collected, allowed us to reach the following lipid A structure (Fig. 6.8.3): 

 

 

 

 

 

Figure 6.8.3: Complete lipid A structure isolated from Brado4679 
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We also analyzed lipid A produced from Brado4680, in order to elucidate the role of a second gene 

cluster thought to be involved in VLCFA biosynthesis. 

The mass analysis displayed the usual acylation patter of Bradyrhizobium lipid A, no differences have 

been detected. Penta-, hexa-, hepta-acylated lipid A were present, containing two DAG, two Man 

residues, one GalA, two C14:3OH, one C12:3OH and C12:1 in amide linkage; one C12:O and 

VLCFA (C26:25OH, C30:29OH), hopanoic acid were also present in ester linkage (Fig. 6.8.4) 

 

Figure 6.8.4: Mass spectrum of other mutant Brado4680 

 

6.9 Biological evaluation of Brado4679 

The lipid A of most symbionts, often containing VLCFAs,107 are capable to adapt their hydrophobic 

unwieldy chains in the inner leaft of outer membrane, increasing the degree of membrane packing. 

From the last studies, VLCFA result to be important not only for chemical-physic properties conferred 

to the total membrane, but they may be important for pathogenesis and symbiosis of several 

organisms. 

Genes involved in the synthesis of the Rhizobium VLCFA lie in a six-gene cluster on the chromosome 

and are widely conserved among bacteria that synthesize VLCFA.108 In their genome, AcpXL is a 

                                                           
[107] Bhat U. R., Carlson R. W., Busch M., Mayer H., Int. J. Syst. Bacteriol., 1991, 41, 213–217. 
[108] Vedam V. et al., J. Bacteriol., 2006, 188, 2126–2133. 
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specialized acyl carrier protein109,110,111on which the VLCFA is built, and LpxXL112,113is required for 

the transfer of VLCFA from the AcpXL-VLCFA conjugate to the lipid A (Fig. 6.9.1 a). These genes 

are specific to VLCFA synthesis. Rhizobium strains that contain single mutations in the acpXL, 

fabF1XL, and fabF2XLgenes114 do not synthesize VLCFA and produce lipid A which lacks VLCFA. 

These results show that the genes required for general fatty acid synthesis 115do not compensate for 

the loss of genes required for VLCFA in vivo. 

Here, the mutations were done at expense of particular genome region. 

From biological point of view, the mutation Brado4679, with the consequent loss of one of 

VLCFA, leads to a negative effect on free symbiotic life of ORS2784679 more sensitive to 

various stress as shown in Fig. 6.9.1. 

 

 

Figure 6.9.1: a) Optical density during the mutants growing; b) Disk diffusion test on mutants using several stressors. 

 

It was also evaluated the nitrogenase activity performed by bacteria at nodule level. The ARA assays 

revealed a comparable activity between wt ORS278 and ORS278 4680, instead the mutant ORS278 

 4679, displayed a strong reduction in nitrogenase activity, which corresponded to a  limitate 

capacity to start the symbiotic process. (Fig.6.9.2) 

 

                                                           
[109] Brozek K. A., Carlson R. W., Raetz C. R. H.,J. Biol. Chem., 1996, 271, 32126–32136. 
[110] Sharypova L. A., Niehaus K., Scheidle H., Holst O., Becker A.,J. Biol. Chem., 2003, 278, 12946–12954. 
[111] Vedam V. et al., J. Bacteriol., 2003, 185, 1841–1850. 
[112] Basu S. S., Karbarz M. J., Raetz. C. R. H., J. Biol. Chem., 2002, 277, 28959–28971. 
[113] Ferguson G. P., Datta A., Carlson R. W., Walker G. C., Mol. Microbiol., 2005, 56, 68–80. 
[114] Vanderlinde E. M. et al.,Microbiology, 2009, 155, 3055–3069. 
[115] White S. W., Zheng J., Zhang Y.-M., Rock. C. O., Annu. Rev. Biochem., 2005, 74, 791–831. 
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Figure 6.9.2: ARA assay to test nitrogenase activity in constructed mutants 

 

 

To sum up, we showed that Brado4679 (lpxXL) has an important role in the free life of the bacteria 

and it is necessary for the establishment of a successful symbiosis. We also demonstrated that gene 

lpxXL is involved the grafting of the only one of the two VLCFA. On the contrary, Brado4680 not 

coding for lpxXL and/or acpXL proteins, because the mutation has no real effect in the lipid A 

structure, as showed by MALDI spectrum (Fig. 6.8.4), so Brado4680 gene is not necessary for the 

symbiotic process. 
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Section V 

Hopanoids 
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6.10 Structure variations on hopanoid moiety have impact on the symbiosis 

process 

To proceed our work performed on unusual lipid A isolated from Bradyrhizobium strains, we 

characterized also the lipid A from two mutants bacteria belonging to Bradyrhizobium diazoefficiens, 

B. japonicum hpnH and B. japonicum hpnP, which produce lipid A lacking the side chain and the 

methyl group on the C-2 position of hopanoid ring, respectively.  

In order to evaluate if the following modifications on the lipid A structure are indispensable for the 

establishment of symbiosis, we performed structural determination using mass spectrometry coupled 

biological evidences. 

Our results showed that C35 hopanoids are necessary for symbiosis only with the host Aeschynomene 

afraspera but not with soybean. The last mutation hpnH induce a drastic modification in bacterial 

morphology and physiology due to a less rigid membrane resulting from the absence of free or lipid 

A-bound C35 hopanoids or the accumulation of the C30 hopanoid diploptene. 

So, the study of hopanoid mutants in plant symbionts, thus provides an opportunity to gain insight 

into host-microbe interactions during later stages of symbiotic progression, as well as the micro-

environmental conditions for which hopanoids provide a fitness advantage. 

 

6.11 Results and Discussion 

Genes predicted to encode the C-2 methylase, hpnP116or the first enzyme catalyzing the extension of 

C30 hopanoids, hpnH were mutated117 

WT and hpnP mutant lipid A are composed of a mixture of penta- to hepta-acylated species (Fig. 

6.11.1 a), differing for the presence of one C30:(2,29OH) and an hopanoid resisue; whereas hpnH 

mutant lipid A is mainly hexa-acylated (see Fig. 6.11.1 b). In WT and hpnP mutant hepta-acylated 

species, a C35 hopanediolic acid is ester linked to hexa-acylated lipid A, and traces of a second 

hopanoid substitution are also detected at m/z 3636; conversely, the hpnH mutant is missing any 

lipid A-bound hopanoids and displayed a single ion cluster at m/z 2624. 

All experimental data confirmed the occurring of mutations on the hpnH and hpnP genes. 

                                                           
[116] Welander P.V. et al.,Proc. Natl. Acad. Sci. U S A, 2010, 107, 8537– 8542. 
[117] Welander P.V., Doughty D.M., Wu C.H., Mehay S., Summons R.E., Newman D.K., Geobiology, 2012, 10, 163–177. 
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Figure 6.11.1: a) MALDI-MS analysis of lipid A from hpnP mutant is composed of a mixture of penta-acylated 

and hexa-acylated species; b) MALDI-MS analysis of lipid A from hpnH mutant lipid A is mainly hexa-acylated. 

 

6.12 Biological assays 

Then mutant strains underwent investigations to check maintenance of membrane rigidity, if stressed 

by various substances (Fig.6.12.1 a-b), different growth conditions at diverse temperature (Fig. 6.12.1 

c), and also if the side chain play a role in the establishment of symbiosis. (Fig. 6.12.1 d) 

The results showed that membranes of all strains were less rigid at higher temperature. In particular, 

the hpnP mutant membrane was as rigid as the WT membrane at both temperatures, whereas 

thehpnH mutant displayed a decreasing of membrane rigidity respect to wt. 

Thus, C35 hopanoids are important for maintaining membrane rigidity in B. diazoefficiens. 
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Figure 6.12.1: a -b) Growth of B. diazoefficiens strains under stress as measured in stressor gradient plates by disc 

diffusion assays with 10% SDS, 5.5 M H2O2, and 2 M HCl; c) Growth of the WT(circles), the hpnP mutant (squares), 

and the hpnH mutant (triangles) was monitored as optical density at 600 nm (OD600) in PSY at 30°C, PSY at 37°C  

and microaerobic PSY with 0.5%O2 at 30°C; d) Quantification of acetylene reduction activity (ARA) in plants 

inoculated with WT or hpnH or hpnP mutant. 

 

 

The mutants mentioned above displayed also different growing in various conditions; For instance, 

at 30°C and 37°C the growth of WT and the hpnP mutant is equivalent, instead is lower for hpnH 

(Fig. 6.12.1 c). These results suggest that C35 hopanoids are important for growth at ambient 

temperature and in aerobic conditions. 

Hopanoids have been shown to contribute to stress tolerance in diverse organisms.118,119,120 

To test this hypothesis, w echallenged hpnP and hpnH mutants with a variety of stressors that are 

relevant during the initiation and progression of symbiosis, such as hypoxia, acidic pH, high 

                                                           
[118] Kulkarni G., Wu C.H., Newman D.K., J. Bacteriol., 2013, 195, 2490 –2498. 
[119] Silipo A. et al.,Nat. Commun., 2014, 5, 5106. 
[120] Welander P.V, Hunter R.C., Zhang L., Sessions A.L., Summons R.E., Newman 
D.K., J. Bacteriol, 2009, 191, 6145–6156.  
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osmolarity, reactive oxygen species, and peptide antibiotics.121,122 In almost case, the mutant hpnH 

revealed an high oversensitive to all stressors. (Fig. 6.12.1 a-b)  

Nevertheless, there is not real impact on the nitrogenase activity respet to wt during symbiotic 

process. (Fig. 6.12.1 d) 

So, hopanoids formed by 35 carbon atoms are required for symbiotic life of Bradyrhizobiumstrains 

and make membrane resistant. 

In the future, it will be interesting to clarify how and where the presynthetized hopanoid, required for 

symbiosis, binds VLCFA during the biosynthesis of the whole lipid A. 

  

                                                           
[121] Gibson K.E., Kobayashi H., Walker G.C., Annu. Rev. Genet., 2008, 42, 413– 441. 
[122] Czernic P. et al., Plant. Physiol., 2015, 169(2), 1254-65. 



93 
 

 

 

 

 

 

 

 

 

 

Chapter VII 

Characterization O- side chain from 

Rhodopseudomonas strains 
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7.1 Rhodopseudomonspalustris BIS A53 
 

Rhodopseudomonas palustris is a purple photosynthetic bacterium that able to dwell both in soil and 

water. Actually, it develops the ability to sense and adapt to environmental changes and can grow in 

a wide variety of habitats and conditions, like swine waste lagoons, earthworm droppings, marine 

coastal sediments and pond water.  

R. palustris exhibits a surprising versatility and can switch between any of the four different metabolic 

states: photoautotrophic, photoheterotrophic, chemoautotrophic and chemoheterotrophic. This 

versatile metabolic nature has received significant attention in recent years due to the potential 

implications as bacterium suitable for biotechnological and industrial applications: industrial waste, 

inorganic and organic compounds including green plant-derived, pollutants and aromatic compounds, 

can be degraded by R. palustris and converted into either biomass or biofuel.123 

The versatile nature of R. palustris and its ability to adapt to various environments prompted us to 

focus the attention on its membrane characteristics. Bacterial surfaces are highly decorated with 

saccharidic motifs responsible for mediating cell–environment interaction.124,125 The peculiarities of 

R. palustris and therole likely played by cell wall components conveyed our efforts in defining the 

structure of membrane glyco-conjugates. In particular, we focused our attention on 

lipopolysaccharides (LPSs). 

The O-chain of LPS is the portion more exposed to the selective pressures of the outer environment 

and to modifications induced by external stimuli; among its various roles, the most important appears 

to be protective, acting as a defensive barrier.  

In detail, we have investigated the structural and conformational features of the O-chain region of 

LPS isolated from R. palustris strain BisA53. We showed that this strain produces a polymer based 

on a tri-saccharide repeating unit characterized by D-rhamnose, 3-deoxy-D-lyxo-2-heptulosaric acid 

(Dha), and a novel C-branched monosaccharide, the 4-amino-4,6-dideoxy-3-C-methyl-2-O-methyl- 

-L-glucopyranose. This latter, to the best of our knowledge, has been found for the first time in 

Nature, thus, its absolute configuration has been determined by a combination of 2D NMR 

spectroscopy and molecular mechanics and dynamics.126,127 

Moreover, a conformational study was executed on the whole polymer with the aim of evaluating its 

spatial arrangements by the same combined approach. 

                                                           
[123] Larimer F. W., Chain P., Hauser L., Lamerdin J., Malfatti S., Do L., et al.,Nature Biotechnology,2004,22, 55–61. 
[124] Raetz C. R., & Whitfield C., Lipopolysaccharide endotoxins. Annual Review ofBiochemistry, 2002, 71, 635–700. 
[125] Silipo A., De Castro C., Lanzetta R., Parrilli M., & Molinaro A. Lipopolysaccharides., 2010 In H. König, H. Claus, & A. Varma 
(Eds.), Prokaryotic cell wall compounds– structure and biochemistry 133–154. 
[126] Lipkind G. M., Shashkov A. S., Mamian S. S., &Kochetkov N. K.,).,Carbohydrate Research,1988,181, 1–12. 
[127] Jimenez-Barbero J., de Castro C., Evidente A., Molinaro A., Parrilli M., &SuricoG.,European Journal of OrganicChemistry, 
2002,1770–1775. 
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Results and Discussion 

 

7.2 Preliminary data 

 
From dried cells were extracted LPS using hot phenol/water protocol. The SDS-PAGE analysis 

showed that LPS was of smooth type, according to the presence of high molecular weight species in 

the upper part of the gel (data not shown). 

Chemical analysis of LPS fraction showed the presence of D-rhamnose, 3-deoxy-D-lyxo-2-

heptulosaric acid (Dha) and of a 4-amino-4,6-dideoxy-3-C-methyl-2-O-methyl-Hexp. 

The absolute configuration of rhamnose and DHA was determined by GLC of the acetylated (S)-2-

octyl glycosides and comparison with authentic standard whereas for the new monosaccharide residue 

this was established by NMR and MD approach. Methylation analysis showed the presence of 3-

substituted D-Rhap; 5-substituted D-Dhap; 3-substituted 4-amino-4,6-dideoxy-3-C-methyl-2-O-

methyl-Hexp. 
 

7.3 NMR analysis 

 
In order to isolate the O-chain, a mild acid hydrolysis was performed and the water soluble 

polysaccharide was purified by gel-permeation chromatography (PS1) and underwent NMR analysis; 

however, since PS1 gave evidence of non stoichiometric O-acylation, we decided to simplify the 

NMR analyses by a O-deacylation performed with anhydrous hydrazine; the obtained O-deacylated 

polysaccharide (PS2) was further purified and characterized by full 2D NMR analysis. The1H NMR 

spectrum of the PS2 product is shown in Fig. 7.3.1. 

A combination of homo- and heteronuclear 2D NMR experiment (DQF-COSY, TOCSY, ROESY, 

NOESY, 1H–13C HSQC, 1H–13CHMBC) was executed to assign all the spin systems and to define 

the saccharidic sequence.  
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Figure 7.3.1:1H NMR spectrum of PS2 product. Signals are as attributed in Table 7.3.1 

 

The anomeric configuration of each monosaccharide unit was assigned on the basis of 3JH-1,H-2 and 

1JCH coupling constants, whereas the values of the vicinal 3JH,H ring coupling constants allowed the 

identification of the relative configuration of each sugar residue. 

Residue C (Table 7.3.1 and Fig. 7.3.1) was recognized as -rhamnose as indicated by the scalar 

correlations, in the TOCSY spectrum, of the ring protons with C-6 methyl signal (Fig. 7.3.2). The 

manno-configuration was established by3JH-1,H-2and3JH-2,H-3(both below 2 Hz),3J3,4(3 Hz) and3JH-4,H-

5(9 Hz), the -anomeric configuration was assigned by the1JCHcoupling constant value of 175.9. 

Because of the absence of the anomeric proton signal, spin system of Dha B was assigned starting 

from the diastereotopic H-3 methylene protons (Tab. 7.3.1 and Figs.7.3.1 and 7.3.2), resonating in a 

shielded region at 1.78 and 2.20 ppm (H-3ax and H-3eq, respectively). The lyxo-configuration of the 

Dha was deduced from the coupling constants3JH3ax,H4of 12.7 Hz, indicative of the axial position of 

H-4, and of 3JH5,H6< 1 Hz, corresponding to an equatorial disposition of H-5 in a5C2 chair 

conformation. The -anomeric configuration of Dha was assigned on the basis of previously 

published data.128,129 

                                                           
[128]Birnbaum G. I., Roy R., Brisson J. R., & Jennings H. J.,Journalof Carbohydrate Chemistry,1987,6, 17–39. 
[129]Vinogradov E. V., Müller-Loennies S., Petersen B. O., Meshkov S., Thomas-Oates J. E., Holst O., et al., European Journal of 
Biochemistry,1997,247(1), 82–90. 
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Spin system A (Table 7.3.1) was identified as a 4-amino-4,6-dideoxy-3-C-methyl-2-O-methyl- -

glucose (3-C-methyl-2-O-methyl-4-amino--quinovose (further on abbreviated as 3-methyl-2-O-

methyl-Qui4N).  The -anomeric configuration of A was supported by3JH-1,H-2and1JC,Hcoupling 

constant values of 2 Hz and 173.9 Hz, respectively (Table 7.3.1). The 2-O-methyl group was 

univocally located at C-2 A on the basis of the downfield shift of C-2 A (80.3 ppm, Table 7.3.1), by 

the long range correlations present in the HMBC spectrum of C-2 A with the proton signals of 

methoxy group and confirmed by the NOE contact of this latter with H-2 A. 

The anomeric proton signal of A at 5.04 ppm correlated exclusively with H-2; a second spin system 

was present, involving scalarly correlated proton signals from position 4 to position 6. 

The3JH-4,H-5coupling constant value of 10.7 Hz was used to establish the relative axial configuration 

of both H-4 and H-5 protons (Table 7.3.1, Figs. 7.3.2 and 7.3.3); the scalar correlation of both H-4 

and H-5 with a downfield methyl signal were indicative of the nature of 6-deoxysugar of A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.3.1: 1H and 13C NMR chemical shifts (ppm) of PS2 measured in D2O 

[→3)-C-(1→3)-A-(1→5)-B-(2→]n  

Unit 1 2 3 4 5 6 7 

A 
5.04 3.60 ----- 3.93 4.09 1.10  

3-α-Sug 96.9 80.3 77.6 54.9 65.5 16.9  

  
O-CH3 

3.41/58.3 
CH3 1.37/16.9 

Acetyl C=O 173.64, CH3 

1.97/22.0 
  

 

 

1JCH 

173.9 

Hz 

3JH1,H2 2 Hz  3JH4,H5 10.7 Hz   

 

B ---- ----- 2.2/1.78 4.26 4.25 4.88 ---- 

5-α-DHA 177.3 99.0 34.9 65.0 75.9 73.9 175.8 

   
3JH3ax,H4 12.7 Hz; 

3JH3aeq,H4 1 Hz 
 

3JH5,H6<1 

Hz 
  

C 4.80 3.89 3.82 3.40 3.61 1.18  

3-α-Rha 93.1 68.6 72.5 70.6 68.9 16.9  

 

1JCH 

175.9 

Hz 
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Furthermore, the HSQC spectrum (Fig. 7.3.3) showed a correlation of H-4 A with a nitrogen bearing 

carbon signal at 54.9 ppm that, together with the down-field shift of H-4 proton resonance, was 

diagnostic of N-acyl group at this position. In fact, the presence of the amino group was also 

confirmed by the long range correlation in the HMBC spectrum, of H-4 A with the carbonyl carbon 

of the acetyl group and of this latter with a methyl group. The long range correlations in the HMBC 

spectrum (Fig. 7.3.3) were useful to completely identify residue A. In particular, the long range 

correlations of a quaternary carbon with H-1, H-2 and H-4 A were indicative of the presence of a 

quaternary carbon at position C-3 of residue A. 

The substitution of C-3 A by a methyl group was identified by its long range correlations with the 

singlet methyl at 1.37/16.9 ppm (Fig. 7.3.3). By NOE correlations found in the NOESY spectrum, 

the relative configuration of monosaccharide A was also established. 

Actually, the axial orientation of CH3on C-3 was endorsed by the intra-residual NOE with the syn-

axial proton H-5 at 4.09 ppm (Fig. 7.3.2); likewise, the intra-residue NOE contacts between H-2 and 

H-4 indicated their syn-diaxial orientation. To summarize, the3JH,H ring coupling constant values, 

NOE and HMBC correlations suggested a gluco-configuration for residue A, a 3-C-methyl-4-amino-

-quinovose carrying a methyl group at position O-2.The downfield shift of carbon resonances 

identified the glycosylated positions: O-3 of residues A and C and O-5 of B, in full agreement with 

the methylation analysis. The sequence of this repeating unit was defined by the long-range scalar 

correlations found in the HMBC spectrum and the inter-residual NOE contacts. 

Residue A was glycosylated at O-3 by -rhamnose C, as suggested by the long range scalar 

correlation H-1 C/C-3 A and the NOE contact of H-2 A with H-1 C (Figs. 7.3.2 and 7.3.3). Residue 

C was in turn glycosylated at its O-3 by B residue, as attested by the long range contact of B-2 with 

C-3; eventually, residue B was substituted at its C-5 by residue A as attested by the NOE between H-

1 A and H-5 B (Fig.7.3.2)and by the corresponding long range contacts.  
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Figure 7.3.2: ROESY (black) and TOCSY (gray) spectra related to PS2 product. The main inter-residual correlations 

used to assign, together with the HMBC spectrum, the sugar backbone, are indicated; key intra-residual NOE 

correlations are also indicated.  

 

 
 

Figure 7.3.3: HSQC (gray) and HMBC (black) spectra of PS2 product; the key inter-residual and intra-residual long-

range correlations are indicated. 
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Thus, all data were in agreement with the primary structure reported below (Fig.7.3.4) 

[→3)--D-Rha-(1→3)--Sug-(1→5)--D-Dha-(2→]n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.3.4: Structure of the O-polysaccharide from R. palustris BisA53. 

 

7.4 Conformational studies of polysaccharide 

 
In order to determine the absolute configuration of the 3-C-methyl-2-O-methyl-Qui4N (residue A), 

we have used a protocol based on NOE data and computational approach. Lipkind et al. demonstrated 

that main structural factors determining the preferred conformation in disaccharides, and therefore 

the corresponding NOEs, are the configuration of the glycosidic linkage, the nature of the sugar, the 

position of glycosylation and the absolute configuration of the constituent residues. Taking into 

account this above, and given that the absolute configuration of the other two residues B and C was 

known, we measured and compared the NOE-derived key inter-proton distances with those predicted 

for models taking in account the two possible absolute configurations of residue A (L and D). 

The first step was the building of the potential energy surfaces for each disaccharide connected by a 

glycosidic linkage; Φ represents the torsion angle about H1-C1-O-CX’ whereas about C1-O-CX’-

H’; five distinct disaccharide entities were constructed considering the above determined repeating 

unit: [→3)-C-(1→3)-A-(1→5)-B-(2→]n and the two possible absolute configurations of residue A, 

drawn with both D and L configuration (ALand AD) and subjected to extensive calculations using 

MM3*force field to build the potential energy surfaces for both disaccharides whose relative 

orientation is defined by Φ and  torsion angles around the glycosidic linkage. 

The resulting adiabatic energy maps indicating global minima are reported in Fig. 7.4.1 
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v  

Figure 7.4.1: a) Relaxed energy maps for the disaccharide fragments composing the O-polysaccharide from R. palustris 

BisA53; the two maps for A1 → B5 linkage differ in the absolute configuration of A residue. The positions of global 

and major local minima in the maps are indicated. b) View of representative structures of A1→B5 disaccharides 

differing in the absolute configuration of A; key protons for the definition of the absolute configuration of A are 

indicated (see text). 
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Figure 7.4.2:View of representative structures and Connelly surface of PS2 species built with four repeating units; a) 

the two dodecasaccarides [C1→ 3AD1→ 5B1]4and b)[C1→ 3AL1→ 5B1] differ for the absolute configuration of A 

residue. 

 

Molecular mechanic calculations furnished an estimation of the conformational regions energetically 

accessible and predicted the existence of slightly different minima for the glycosidic linkages 

involving A residue: the global minimum was located at Φ/ 17/24for A1L→ B5, and at Φ/ 55/35 

for A1D→ B5 (Fig. 7.4.1); as the glycoside linkage involving C and A residues, in C1 → A3L the 

global minimum was located at Φ/−46/−42 while in C1 → A3D  two energetically comparable 

minima were present, located at −38/78and −45/−38. Starting subsequently, two oligomers containing 

two and four repeating units and differing for the absolute configuration of A residue were built from 

the minima of the energy maps and the conformational behavior was studied by using molecular 

dynamic simulation:  

 

C1→ 3AL1→ 5B1→ 3C2→ 3AL2→ 5B2→ 3C3→ 3AL3→ 5B3→ 3C3→ 3AL3→ 5B3 

C1→ 3AD1→ 5B1→ 3C2→ 3AD2→ 5B2→ 3C3→ 3AD3→ 5B3→ 3C3→ 3AD3→ 5B3 

 

The initial structures were extensively minimized and trajectory coordinates were sampled every ps; 

5000 simulations were performed in GB/SA water solvation model as implemented in MacroModel 

(MMOD). 

A first analysis of MD results showed that torsion angles remained in the broad low energy regions 

previously predicted by the MM calculation, although C → 3AD torsional most selected the minimum 

around −45/−38 (see Fig. 7.4.1) The computational models obtained from the MD were then 

compared to the experimental results. Ensemble average inter-proton distances for each saccharide 

entity were extracted from dynamic simulations and translated into predicted NOEs by a full-matrix 
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relaxation approach. The corresponding average distances obtained for the simulation from (r−6) 

values and predicted for both the hexasaccharides built with residue A in D and L configuration were 

compared to those collected experimentally (Table7.4.1). 

A comparison of the simulated and measured distances allowed us to evaluate the absolute 

stereochemistry of residues A, that resulted to be L for which case an excellent agreement was found 

between calculated and experimental data. In detail, the key NOEs and derived distances considered 

for the definition of the absolute configuration of A were those of H-1 C with H-2 A (strong) and of 

H-1 C withH-2 A (medium), only predictable with L configuration of A (Table 7.4.1, Figs. 7.3.2, 

7.4.1), in which the H-1 and H-2of the -rhamnose C point toward and H-2 A and far from H-4 A(the 

side of the sugar ring of A residue containing H-2 and far from the side containing H-4); as a further 

confirmation, a mild-strong NOE contact also with A2-OCH3was present in the NOESY spectrum. 

In case of a D configuration, NOE effects of H-1 and H-2 C with H-4 A were expected and conversely, 

the NOE of H-1/H-2 C with H-2 A would have been absent (Table 7.9.1; Fig. 7.3.2). 
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Table 7.4.1: Experimental (from NOESY experiments) and calculated (from MD calculations) inter-proton distances 

for oligomer built with two and four repeating units 

 

The effect of the different relative orientation of A and C rings could be in turn translated into a 

different three-dimensional arrangement of the two above oligomers (Figs. 7.4.2), built with four 

repeating units and differing for the absolute configuration of A. The shape of the dodecasaccharide 

 

 
Experimental 

100 ms 

Experimental 

200 ms 

Observed 

NOE  

Hexasaccharide - 

Calculated D 

Hexasaccharide-

Calculated L 

A1-B5 2.79 2.85 Strong 2.85±0.29 2.80±0.27 2.74±0.26 2.75±0.27 

C1-A2 2.89 2.99 Strong 4.45±0.12 4.20±0.44 3.16±0.37 3.16±0.27 

C2-A2 3.40 3.35 Medium 4.49±0.25 4.60±0.35 3.57±0.41 3.53±0.28 

C1-A4 ----- ------- Absent 3.43±0.24 3.64±0.49 4.26±0.44 4.37±0.15 

C2-A4 ----- ------- Absent 3.79±0.25 4.00±0.30 4.31±0.31 4.35±0.24 

 

 Dodecasaccharide -  Calculated L  Dodecasaccharide - Calculated D 

A1-B5 2.75±0.27 2.75±0.26 2.75±0.26 2.75±0.25 A1-B5 2.84±0.27 2.83±0.27 2.84±0.27 2.82±0.27 

C1-A2 3.16±0.26 3.16±0.25 3.17±0.24 3.15±0.26 C1-A2 4.37±0.12 4.37±0.15 4.38±0.22 4.00±0.44 

C1-A4 4.37±0.14 4.37±0.14 4.37±0.13 4.3±0.13 C1-A4 3.38±0.25 3.37±0.28 3.38±0.25 3.76±0.44 

C2-A2 3.50±0.28 3.53±0.27 3.54±0.25 3.53±0.27 C2-A2 4.50±0.28 4.49±0.28 4.50±0.27 4.69±0.28 

C2-A4 4.32±0.24 4.35±0.22 4.36±0.22 4.35±0.23 C2-A4 3.84±0.22 3.81±0.24 3.83±0.27 4.00±0.35 
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showed the differences in the conformational and spatial arrangement. The oligomer with A residue 

in D configuration gave rise to a more compact and pace structure while the oligomer with A in L 

configuration assumed a more extended conformation with a helicoidal disposition. 

The O-chain isolated from Rhodopseudomonas Bis A53 consisted of a novel tri-saccharide repeating 

unit made up of rhamnose, non stoichiometrically acetylated at O-2, and Dha, both D configured, and 

of a novel monosaccharide, a derivative of 4-amino-l-quinovose, branched by a methyl group at 

carbon 3 and carrying a methoxy group at O-2; its absolute configuration was defined by using an 

NMR-based molecular mechanics approach: [→3)--D-Rha-(1→3)--L-Sug-(1→5)--D-Dha-(2→]n 

The combined NOE-based molecular dynamics approach allowed a satisfactory description of both 

3D structures; a complete study of the O-chain highlighted a significant level of hydrophobicity since 

it was constituted by three deoxy-sugars variously decorated by acetyl and methyl groups, acting as 

shield of hydroxyl and amino groups and thus further increasing the polysaccharide hydrophobic 

character. 

 

 

 

 Fig. 7.4.3: View of representative structures and Connelly surface of PS1; the preferential disposition of the 

acetyl groups of the rhamnose units is highlighted (light grey). 
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Chapter VIII 

Experimental methods 

  



106 
 

8.1 Bacterial growth 

 

8.1.1 Burkholderia strains 

Pure cultures of Burkholderia were grown in Tryptic Soy Broth supplemented with 10 g L-1glycerol 

(TSB) or MGY medium (M9 minimal medium supplemented with 1.25 g L-1 yeast extract and 10 g 

L-1 gycerol) at 30 °C. For production of biomass, 18.5 L TSB media were inoculated with1.5 L B. 

gladioli pre-culture (OD600 = 1.4) and grown for 3 days under constant stirring (300rpm) at 30 °C in 

a fermentor (final OD600 = 3.5). Biomass was harvested by centrifugation andwashed twice with 

sucrose solution (300 mM) and lyophilized. 

8.1.2 Pantoea ananatis 

P. ananatis was routinely grown at 28 °C in TSB medium. For the isolation of bacterial 

polysaccharides, 1 L of TSB liquid medium was inoculated with 1 mL of early stationary phase 

cultures of P. ananatis and incubated on an orbital shaker at 180 rpm for three days at 28 °C. After 

incubation, the cells were harvested by slow-speed centrifugation. Bacterial pellets were washed three 

times with 0.9% (w/v) NaCl, and then freeze-dried. 

8.1.3 Bradyrhizobium strains 

Bradyrhizobium sp. BTAi1 and ORS278 were grown in Arabinose-Gluconate [HM salts + 0.1% 

Larabinose, 0.1% gluconate and 0,1% of yeast extract] medium [AGM].  

The specific composition of medium expressed in g/l is reported in the following table. 

 

 

The pH was adjusted to 6.6 with addition of NaOH 4M. The growth was performed in three days at 

30 °C with shaking (100 rpm). The broth culture was centrifuged, the cells were washed with water, 

ethanol, acetone and etilic ether and finally freeze-dried. 
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8.2 LPS and LOS extraction 

Dried cells were extracted three times with a mixture of aqueous 90% phenol/chloroform/petroleum 

ether (2:5:8 v/v/v, 10 ml/g dry cells).130 After removal of the organic solvents under vacuum, the LOS 

fraction was precipitated from phenol with water, washed first with aqueous 80% phenol, and then 

three times with cold acetone, each time centrifuged, and lyophilized. 

LPS extraction was subsequently performed extracting the cells with a mixture of 90%phenol/water 

1:1 at 68°C (20 ml/g dry cells), according to the conventional hot phenol-water procedure.131 The 

water and the diluted phenol phase were dialysed against water (14-12kDa molecular weight cut-off). 

After dialysis, the extract was centrifuged and lyophilized. 

The extracts were digested with DNase, RNase and Proteinase K, dialysed and freeze-dried again. 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed as  

described on all the fraction obtained. LPS and LOS are screened with a 13,5%-polyacrylamide gels 

were stained with silver nitrate according to the described procedure.132 

 

8.3 Isolation of lipid A and oligo(OS)/polysaccharide(PO) fraction 

8.3.1 Isolation of PO from Burkholderia gladioli 

LPS was treated with anhydrous hydrazine (1 mL), stirred at 37 °C for 90 min, cooled, poured into 

ice-cold acetone (20 mL) to allow its precipitation. Precipitated was centrifuged (3000 g, 30 min), 

washed with ice-cold acetone, dried, dissolved in water, and lyophilized.  

Other aliquots of LPSs were hydrolyzed in 1% acetic acid (100°C, 3h) in order to obtain the lipid A 

fraction. It was purified according to Que and co-workers procedure.133 

8.3.2 Isolation of PO from Burkholderia fungorum 

The O-polysaccharide chain from B. fungorum LPS was obtained by acetic acid hydrolysis 1% 

(100°C, 3 h). Lipid A fraction was precipitated from aqueous solution centrifuging at 4 °C, 8500 g, 1 

h. As for LPS, the supernatant (6 mg) was purified by gel-permeation chromatography on a Biogel 

P-10 column (flow: 12 mL h-1)(Bio-Rad, Hercules, CA), using water as eluent.  

8.3.3 Isolation of polysaccharide from Pantoea ananatis 

Afterward the hydrolysis under mild acidic conditions of LPS released the O-antigen and lipid A 

sediment. The latter was removed by centrifugation and the supernatant was loaded onto a size 

exclusion chromatography on TSK50 column (Toyopearl HW-50), using ammonium bicarbonate 

50mM as eluent. 

                                                           
[130] Galanos C., Lüderitz O., Westphal O., Eur. J. Biochem., 1969,9, 245-249. 
[131] Westphal O., Jann K., Meth. Carbohydr. Chem., 1965,5, 83–91. 
[132] Kittelberger R., Hilbink F., J. Biochem. Biophys. Meth.,1993, 26, 81-86. 
[133] Que N.L.S., Lin S., Cotter R.J., Raetz C.R.H.,J. Biol. Chem., 2000, 275, 28006-28016. 
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8.3.4 Isolation of polysaccharide and lipid A fractions from Bradyrhizobium species 

In order to obtain polysaccharide fraction, (10 mg) of LPSs were hydrolyzed in 1% acetic acid 

(100°C, 5h) in order to obtain the lipid A fraction. So, adequate amounts of chloroform and methanol 

were added to the hydrolysate to obtain chloroform/methanol/hydrolysate2:2:1.8 (v/v/v), and the 

mixture was vigorously shaken, then centrifuged. The chloroform phase, containing the lipid A, was 

collected and washed twice with the water phase from a freshly prepared two-phase Bligh/Dyer 

mixture [chloroform/methanol/water, 2:2:1.8 (v/v/v)]. The organic phases were collected and dried. 

 

8.4 Chemical analysis 

Around 500 g of LPS, were generally utilized for sugar and fatty acid analysis. 

Monosaccharide analyses were realized by means of GC-MS of acetylated O-methyl glycosides 

derivatives, obtained after methanolysis (2M HCl/MeOH, 85°C, 18 h) and acetylation with acetic 

anhydride in pyridine (85°C, 30 min).The absolute configuration of the monosaccharides was 

obtained according to the published method.134 

The ring size and the attachment points were determinated by a methyilation analysis.  

The sample was firstly methylated with CH3I/NaOH in DMSO. After this treatment a 

chloroform/water extraction was performed, the organic phase was evaporated and hydrolysed with 

4 M trifluoroacetic acid (100°C, 3h), carbonyl reduced with NaBD4, acetylated with acetic anhydride: 

pyridine (1:1, v/v) and analysed by GC-MS. 

Fatty Acids were revealed as their Methyl Esters derivatives. Total fatty acids content was determined 

after strong hydrolysis of Lipid A, first with 4 M HCl (100°C, 4 h) and subsequently with 5 M NaOH 

(100°C, 30 min). Fatty acids were then extracted with chloroform, methylated with diazomethane and 

analysed by GC-MS. 

 

8.5 Mass spectrometry 

8.5.1 Burkholderia strains 

MALDI mass spectra of native LOSs samples were performed in linear-mode on a Perspective 

(Framingham, MA, USA) Voyager STR instrument, equipped with delayed extraction technology. 

Ions formed by a pulsed laser beam (nitrogen laser, λ 337 nm) were accelerated by 24 kV and detected 

in negative-ion (LOSs) and in positive-ion polarity (Lipid A moieties).  

Sample preparation: the native LOSs required specific preparations as described in details.135 

                                                           
[134] Leontein K., Lönngren J.,Meth. Carbohydr. Chem., 1978,62, 359- 362. 
[135] Sturiale L., Garozzo D., Silipo A., Lanzetta R., Parrilli M., Molinaro A. Rapid. Commun. MassSpectrom., 2005, 19, 1829-1834. 
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Briefly, a few aliquot of sample was first desalted with cation exchange beads (Dowex 50WX8, 

Sigma-Aldrich) in the ammonium form, prior to crystallization on the MALDI plate. A thin film 

composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose (trans-blot membrane, 

BioRad) was used as matrix. MS analyses of Lipid A species were performed by dissolving the 

samples obtained after acetate buffer hydrolysis in CH3Cl/CH3OH (50:50). Such samples were 

finally mixed in a 1:1 (v/v)ratio with the matrix solution [THAP, 75 mg mL-1 

inCH3OH/trifluoroacetic acid/CH3CN (7:2:1)],deposited onto the MALDI plate and left to 

crystallize at room temperature. 

8.5.2 Bradyrhizobium species 

Mass spectrometry of the native, was performed on a 4800 Proteomics analyzer MALDI time-of-

flight/time-of-flight mass spectrometer (Applied Biosystems, Framingham, MA) in reflector mode, 

in positive polarity. Compounds were dissolved in CHCl3/CH3OH (50:50, v/v) at a concentration of 

1mg/ml. Matrix solution was prepared by dissolving trihydroxyacetophenone (THAP) in CH3OH/ 

0.1% trifluoroacetic acid/CH3CN (7:2:1, by volume) at a concentration of 75 mg/ml. One microliter 

of the sample/matrix solution (1:1, v/v) was deposited onto a Opti- TOFi384 well plate and allowed 

to dry at room temperature. Mass spectra, resulting from the sum of 1250 laser shots, were obtained 

with a resolution higher than 10,000 (as the ratio between the mass of the peak and its full width at 

half maximum intensity) and with mass accuracy below 100 ppm. 

 

8.6 NMR analysis 

All NMR spectra were carried out using a Bruker DRX-600 equipped with a cryogenic probe. 1Dand 

2D 1H-NMR spectra on oligo-/polysaccharides were recorded in D2O. ROESY and NOESY spectra 

were measured using data sets (t1xt2) of 4096x512 points with mixing times between 100 ms and 

400 ms. Double quantum filtered phase sensitive COSY experiments were performed using data sets 

of 4096x800 points; total correlation spectroscopy experiments (TOCSY) were performed with a 

spinlock time of 100 ms, using data sets (t1xt2) of 4096x512 points. In all homonuclear experiments 

the data matrix was zero-filled in the F1 dimension to give a matrix of 4096x2048 points and was 

resolution enhanced in both dimensions by a cosine-bell function before Fourier transformation. 

Coupling constants were determined on a first-order basis from 2D phase sensitive double quantum 

filtered correlation spectroscopy (DQF-COSY).136,137 Heteronuclear single quantum 

coherence(HSQC) and heteronuclear multiple bond correlation (HMBC) experiments were measured 

in the1H-detected mode via single quantum coherence with proton decoupling in the 13C domain, 

                                                           
[136] Piantini U., Sørensen O.W., Ernst R.R., J. Am. Chem. Soc., 1982, 104, 6800-6801. 
[137] States D.J., Haberkorn R.A., Ruben D.J., J. Magn. Res.,1982, 48, 286-292. 
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using data sets of 2048x256 points. Experiments were carried out in the phase-sensitive mode 

according to the described method. 138 

A 60 ms delay was used for the evolution of long-range connectivity in the HMBC experiment. In all 

heteronuclear experiments the data matrix was extended to 2048x1024 points using forward linear 

prediction extrapolation.139 

 

8.7 Conformational analysis and MD simulations on B. gladioli O-chain 

Molecular mechanics calculations were carried out using the MM3* force field as included in 

MacroModel8.0. A dielectric constant of 80 was used. For each disaccharide structure, both and 

ψwere varied incrementally using a grid step of 18°. Each (,ψ) point of the map was optimized using 

2000 P–R (Polak–Ribiere) conjugate gradients. The molecular dynamic simulations were run using 

the MM3* force field; bulk-water solvation was simulated using the MacroModel generalized Born 

GB/SA continuum solvent model. All simulations were run at 300 K. Structures were initially 

subjected to an equilibration time of 300 ps, then a10000 ps molecular dynamic simulation was 

performed with a dynamic time-step of 1.5 fs, and a bath constant t of 0.2 ps, with the SHAKE 

protocol for the hydrogen bonds. Trajectory coordinates were sampled every 2 ps, and a total of 5000 

structures were collected for every simulation.140,141 

Ensemble average interproton distances were calculated using the NOEPROM program,142using the 

isolated spin-pair approximation as described.143 

Coordinate extractions were carried out with the program SuperMap, supplied with the NOEPROM 

package, and data were visualized with ORIGIN software. 

Solvent-accessible surfaces were calculated with the Surface utility of Macromodel, and with the 

Molecular Surface displays of the Chem3D package. 

 

 

 

 

 

 

                                                           
[138] de Beer R., van Ormondt D., NMRBasic Princ. Prog., 1992, 26, 201-248. 
[139] Hoch J.C., Stern A.S. In Hoch J.C. and Stern, A.S. (Eds.) NMR data processing. Wiley Inc. New York, 1996, 77-101. 

[140] Mari S., Sanchez-Medina I., Jimenez-Barbero J., Bernardi A., Carbohydr.Res.,2007, 342, 1859–1868. 

[141] Bernardi A. et al.,Chem. Eur. J., 2002, 8, 4598–4612. 

[142] Asensio J.L., Jimenez-Barbero J., Biopolymers, 1995, 35, 55–75. 

[143] Corzana F. et al.,J. Am. Chem. Soc., 2007, 129, 2849–2865. 
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8.8 Biological assay 

8.8.1 Construction of the BTAi1shc mutant and complementation.  

Our collaborators to create theBTAi1shc mutant, the complete shc gene was deleted and replaced 

by the kanamycin resistance (KnR) gene by double crossover recombination as described below. The 

KnR gene was under the control of its own promoter and no termination sequence was introduced 

downstream this gene. A 2,331-bp shc gene fragment including 99-bp upstream and 177-bp 

downstream regions was amplified using the primers SHCFW (5’-

CGCTACGGCCAGTTGATTGGATTT-3’) and SHCRV (5’-

TGCATCCGAAGCTCAGGACAATGA-3’ and cloned into pGEM-Teasy vector (Promega Corp., 

Madison, WI, USA). The resulting plasmid was named pGEM-T::shc. The Not I fragment sized ca. 

2.4 kb digested from pGEMT::shc was ligated with NotI-digested pJQ200SK58 that is not replicable 

in Rhizobium species, and which contains a counter selectable sacB marker, resulting in pJQ::shc. 

This pJQ::shc was introduced into DH5 (pKD78), which has Red recombinase gene controlled by 

araBAD promoter, by electroporation. The kanamycin-resistance gene was amplified from pKD4 144 

using the primersPS1 (5’-GTGTAGGCTGGAGCTGCTTC-3’) and PS2 (5’-

CATATGAATATCCTCCTTAG-3’). Using the PCR product as a template, the kanamycin-

resistance genewas re-amplified with two 60-bp primers PSHC1 and PSHC2, which have 40-

bplinkers homologous to both bordering regions of the shc gene at 5’ ends of PS1 andPS2.  

The sequences of PSHC1 and PSHC2 are 5’-

GCCCTGCAATCGACGGTGCGCGCGGCGGCGGATTGGCTGAGTGTAGGCTGGAGCTGCT

TC-3’ 

and5’GTACATGCCGTAGCGGAGCATGAAGGCGCGGGACAATTCCCATATGAATATCCTC

CTTAG-3’, respectively. The consequent PCR product was introduced into DH5a (pKD78/pJQ::shc) 

and the  Red recombinase was induced. 

The resulting plasmid named pShc::Km was transferred into BTAi1 by triparental mating145 and the 

shc gene replacement in sucrose-resistant clones was confirmed using PCR. 

For complementation of the mutant, the complete shc gene was cloned down stream of the nptII 

promoter into the pMG103-npt2-GFP plasmid146harbouringa streptomycin/spectinomycin-resistance 

gene. For this, the streptomycin/spectinomycin-resistance gene was first liberated from pHRP315147 

byBamHI digestion and cloned into the corresponding site of pMG103-npt2-GFP; the shc gene 

                                                           
[144] Datsenko K. A. &Wanner B. L., Proc. Natl Acad. Sci. USA, 2000, 97,6640–6645. 

[145] Lee H. I., Lee J. H., Park K. H., Sangurdekar D. & Chang W. S., Appl. Environ. Microbiol., 2012,78, 2896–2903. 

[146] Bonaldi K. et al.,Mol. Plant Microbe Interact.,2010,23, 1537–1544. 

[147] Parales R.E., Harwood C.S.,Gene, 1993,133,23–30. 
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amplified using the primers SHC-BTAi1-F (5’-

GGCGGAGATCTTCCCTATAGGGCGGGGTGAATTC-3’) and SHC-BTAi1-R (5’-

CCGTCACTAGTCGCGCGACGGGATGGCTCGCAATG-3’) was then cloned into the BglII/SpeI 

sites located downstream of the nptII promoter. 

8.8.2 Plant cultivations and symbiotic analysis.  

A. evenia seeds were surface-sterilized by immersion in sulphuric acid under shaking during 40min. 

Seeds were abundantly washed with sterile distilled water and incubated overnight in sterile water. 

Seeds were then transferred for 1 day at 37 C in darkness on 0.8% agar plate for germination. 

Plantlets were then transferred on the top of test tubes covered by aluminium paper for hydroponic 

culture in BNM. Plants were grown in closed mini green house in a 28 °C growth chamber with a 16-

h light and 8-h dark regime and 70% humidity. Seven days after transfer, each seedling was inoculated 

withn1ml of cell suspension resulting from a 5-day-old bacterial culture washed in BNM and adjusted 

to reach an optical density of one at 600 nm. For nodulation and nitrogen fixation kinetics at different 

times post inoculation (6, 8, 10, 12 and19 days), five plants were taken to count the number of nodules 

on the roots and to analyse the nitrogenase activity by ARA. For this, each plant was placed into125-

ml glass vials sealed with rubber septa. Air (12.5 ml) was removed from each vial, to which 12.5 ml 

of acetylene was then injected. Gas samples (1 ml) were with drawn after 3 h of incubation at 25 °C 

and the ethylene produced was measured using gas chromatography. 

8.8.3 Transmission electron microscopy 

Microscopic observations were performed on three to five nodules originating from different plants 

per condition. For this, the nodules were fixed in a 4% glutaraldehyde, 0.1M cacodylate buffer (pH 

7.2), post fixed in 1% osmium tetroxide, dehydrated using a series of acetone washes and embedded 

in TAAB 812 epon resin. Ultrathin sections (60 nm) were mounted oncollodion carbon-coated copper 

grids, contrasted using uranyl acetate and lead citrate and examined at 80 kV with a TEM (Jeol 100CX 

II). 
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Conclusions 
 

The natural ecosystem is based on coexistence of plants, animals, and humans. This cohabitation 

results in countless interactions between beneficial and pathogenic organisms; very close 

relationships have evolved in host-specific symbioses, which are usually beneficial for both partners. 

In most cases, symbiosis derives from metabolic complementation between the host and microbe, in 

which one partner provides missing nutrients to the other. Moreover, microbes can contribute in many 

ways to host development by synthesizing hormone-like compounds and affecting host immunity. 

On the contrary, some microorganisms, as pathogens, are able to trigger immune response in the host 

cell creating lesions on tissues and eventually lead to death of the host.  

 

Within this frame, my PhD project in these three years was focused on studying the role of bacterial 

glyco-conjugates in the activation or suppression of immune response in plant cells.  

Glyco-conjugates represent a very heterogeneous group of biomolecules, which includes 

lipopolysaccharides (LPS), peptidoglycan (PGN), glycolipids and glycoproteins. LPSs, in particular, 

are pivotal in mediating many processes within host-bacteria interaction like adhesion, recognition, 

pathogenesis, symbiosis. Therefore, to understand the molecular basis of bacterium–host interaction, 

it was important to elucidate the structure of LPS and to identify how bacterium modifies the LPS in 

response to different environments. It has been already demonstrated that a correct structure of LPS 

is required to establish a disease (pathogens) or to produce a beneficial outcome (symbiont) in host-

microbe interaction. 

A part of this PhD thesis was focused on isolation, purification and characterization of LPS from 

plant pathogen bacteria while a second, considerable part of the project thesis was center on the study 

of bacteria LPS and in particular of the lipid A, involved in Aeschynomene legume symbiotic process. 

 

As for plant pathogen bacteria, the LPS from two plant pathogens, namely Burkholderia fungorum 

and Burkholderia gladioli pv. cocovenenas was isolated, purified and characterized. The isolated O-

chains were characterized with a combination of chemical, spectrometric and spectroscopic 

approaches, which allowed to define new O-polysaccharide structures, which had a novel structural 

features. 

In case of B. gladioli, a distinctive feature of the O-chain is the presence of methylated sugar residues 

contributing to create a hydrophobic shield, as also confirmed by conformational studies showing 

three-dimensional shapes with a different packing and extension. Such chemical features determine 

the physico-chemical properties of the bacterial envelope and might contribute to the ability to adapt 

the membrane surface to the host. Even for Burkholderia fungorum the O-antigen is formed by a 
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rhamnose chain non stochiometrically substituted by xylose. It conserved both the right 

hydrophobicity to interact with cell host and with the production of diverse polysaccharides, 

substituted and non- substituted by xylose, bacteria mask themselves from attack of immune system 

of the host cell. 

 

A consistent portion of PhD project has been devoted to the study of lipid A from several 

Bradyrhizobium strains, conducted throughout the entire PhD project with aim of understanding the 

biosynthetic pathway of lipid A constituents and of hopanoid moeities covalently attached to 

Bradyrhizobia lipid A, that seems crucial for the bacterial life. 

Almost all Bradyrhizobium strains ,displayed a very unusual lipid A, containing two very long chain 

fatty acids to which a hopanoid moiety is covalently linked and also a peculiar sugar backbone 

including two diammino glucose residues.  

The typical acylation pattern of Bradyrhizobium lipids A seems to be a strategy for bacteria to strictly 

control fluidity and rigidity of outer membrane depending on environmental changes. 

The presence of a hopanoid molecule covalently attached to lipid A (we named HoLA, standing for 

Hopanoid-Lipid A) had never been described in any LPS including those from non-photosynthetic 

Bradyrhizobium strains. For these reasons, via MALDI mass spectrometry the full architecture of 

lipid A from mutants for the hopanoids and/or very long chain fatty acids biosynthesis was studied 

Moreover, the O-antigen region isolated from several Bradyrhizobium strains have revealed also an 

important role in the suppression of innate immunity. 

Previous studies have demonstrated that Bradyrhizobium strain Btai1 and also ORS 285 

biosynthesizes a LPS with a peculiar homopolymeric O-specific chain constituted by an unusual 1,7-

linked sugar, named Bradyrhizose. Despite Bradyrhizobium strains display a very heterogeneous and 

peculiar composition of O-antigen portion, previous studies demonstrated that the O-specific side 

chain was not pivotal in establishment of early stage of symbiotic process, because the LPS mutants 

lacking the O-chain and with a progressive truncation until core region had the minimal structure 

requested to trigger immune responses as LIR (localized induced resistance).Thus, we proceed in 

analysis of the structure of the core oligosaccharide, which disclose a very unusual structure never 

found before from LPS of several mutants lacking the O-chain, with the final aim to explain their role 

throughout the symbiotic process.  

 

I also isolated and characterised the O-polysaccharide structure from the phylogenetically close 

bacterium Rhodopseudomonas palustris strain BisA53, which displayed a novel saccharide structure 

formed by a repeating unit of  [→3)--D-Rha-(1→3)--Sug-(1→5)--D-Dha-(2→]n 
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