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Abstract 

The present dissertation aims at bringing a further scientific contribution to the knowledge on 

oxygenated fuels properties and their ability of reducing mainly soot emissions in diesel engine 

combustion. The activity comprises two different phases. The first phase has been conducted at 

Istituto Motori, Italian National Research Council in Naples and focused on comparing performance 

and engine out emissions from conventional diesel and alternative fuels. The second part of this 

study has been, instead, carried on at the Aerothermochemistry and Combustion Systems 

Laboratory, ETH Zurich, Switzerland. Different oxygenated fuels have been investigated in a 

constant volume chamber with large optical access. In particular Poly(oxymethylene) dimethyl 

ethers (POMDME) with a CH3-O-(CH2-O)n-CH3 general molecular structure have been studied 

both in the constant volume chamber and a single cylinder “heavy duty” diesel engine. 

The use of oxygenated fuels or biodiesel from renewable sources in diesel engines is of 

particular interest because of the low environmental impact that can be achieved. The experimental 

investigation performed at Istituto Motori has provided results from a light duty diesel engine fueled 

with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The 

investigation has been performed on a turbocharged DI four cylinder diesel engine for automotive 

applications equipped with a common rail injection system. Engine tests have been carried out at 

2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and 

performing a parametric analysis on the effect of combustion phasing and oxygen concentration at 

intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel 

properties have a strong impact on soot emissions. Blends composed of diesel-gasoline or diesel-

butanol determined the maximum reduction in smoke emissions compared to the diesel fuel. No 

significant difference for NOx emissions was found between the investigated fuels highlighting that 

oxygen availability within the fuel may not produce an increase in NOX formation under late 

premixed combustion. 

Moreover, oxygenated fuels produced from methane-based products have been investigated at 

the ETH, Zurich. The different oxygenated fuels were investigated in a constant volume chamber 

with large optical accesses. In order to study the combustion evolution and soot formation and 

oxidation processes, optical techniques such as OH chemiluminescence and two dimensional two 

colour pyrometry (2D2CP) have been applied. Moreover, a fast particle spectrometer has been used 

at the chamber exhaust in order to analyse the soot emissions from the different investigated fuels. 

The investigation included the calculation of the kL factor, demonstrating a reduction of the soot 
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formation dominated phase when increasing the oxygenated fraction in the blend. Moreover, fuel jet 

images show a reduction of the soot formation area when increasing the oxygen content in the 

blend. The activity even focused on the analysis of soot emissions acquired by means of the fast 

particle spectrometer and results highlighted nearly smokeless combustion for pure oxygenated 

fuels and a non-linear soot emission reduction with increasing O2 content in the blend. In order to 

achieve a complete overview of the impact of oxygenated fuels on engine performance and exhaust 

emissions, a second investigation on a single cylinder “heavy duty” direct injection diesel engine 

has been performed. The comparison between the POMDME-diesel blends and conventional diesel 

has shown a significant reduction in soot emissions, up to almost 35% reduction with the 10% 

POMDME in diesel blend. Moreover no significant increase in NOx emissions was found when 

fueling the engine with the blends, highlighting as molecular oxygen is not crucial (at least in the 

percentages investigated in the present dissertation) for NOX increase even in a premixed plus 

diffusive combustion mode. 

The first introductory chapter of this thesis contains an overview of the problems connected to 

exhaust emissions from diesel engines, describes the most promising in-cylinder emission reduction 

techniques and illustrates the after-treatment systems that are nowadays necessary to fulfill the 

increasingly stricter emission regulations. The second chapter, instead, focuses on the different 

adopted experimental set-up and describes the applied optical techniques while results of the 

different activities are presented in chapter three. Finally, conclusion and outlook are reported in 

chapter four. 
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Chapter 1 

Introduction 

1.1 The diesel engine in the last decades 

The diesel engine technology has strongly developed in the last two decades allowing an 

increase of the efficiency and “fun to drive” through the adoption of new technologies. In particular, 

the adoption of the common rail injection system allowed an increase of injection pressure with 

benefits on spray atomization and fuel-air mixing and gave the possibility of an independent 

injection process with respect to engine speed and crank shaft position; moreover the introduction 

of multiple injections per cycle, coupled with the use of exhaust gas recirculation (EGR) allowed to 

significantly reduce exhaust emissions. As a result a continuous increasing trend of diesel 

penetration in the EU15 (European Union) + EFTA (European Free Trade Association) passenger 

car market has been registered over the last 25 years, as shown in figure 1.1. 

 
Figure 1.1: Diesel penetration in the EU15+EFTA as percentage of registered new cars [1] 

The share of new passenger cars by fuel type is, instead, reported in figure 1.2 with reference to 

the period 2011-2014. The diesel engine covers almost 54% of the entire market (data averaged 

over the four years) while petrol and alternative fuels (including pure electric, liquefied petroleum 

gas engines, natural gas vehicles, ethanol, biodiesel and plug-in hybrid vehicles) less than 44% and 

2.2% respectively. The possibility of achieving a 30% increase in fuel economy with respect to 

gasoline engines and the lower greenhouse emissions rendered the diesel engine more and more 

popular in the European community. 
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Figure 1.2: New passenger cars share in the EU over the years 2011-2014 [1] 

Conventional diesel combustion 

Diesel conventional combustion is characterized by a first premixed phase in which the fuel 

injected during the interval start of injection - start of combustion (this temporal range is the 

ignition delay) suddenly auto ignites producing a fast increase of in-cylinder pressure and 

temperature. The following diffusive phase is characterized by injected fuel “instantaneously” 

evaporating and auto igniting because of the extremely high temperatures at which the charge is by 

now arrived. During this phase, combustion speed is regulated by fuel evaporation and mixing with 

air and exhaust gas temperatures, because of the fuel that continues to be delivered and burnt till 

end of injection, continue to increase up to a maximum value. Finally, in a last phase, temperatures 

start to decrease and the last combustion reactions are completed. Conventional diesel combustion 

thus determines high in-cylinder temperatures (over 2000K) and, as a consequence, high production 

of NOX. Moreover, because of the diffusion combustion in which air to fuel local ratios range from 

very lean to very rich, relatively high values of soot emission, coming from the locally rich regions, 

are achieved. 

1.2 Exhaust emissions from diesel engines 

Internal combustion engines are one of the main sources of environmental pollution together 

with industries and home heating. Environmental pollution refers to the ensemble of the chemical, 

physical and biological agents which determine a modification of atmospheric natural 
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characteristics. The introduction of harmful substances in the atmosphere through the combustion 

process and exhaust emissions of internal combustion engines is therefore limited by environmental 

regulations. Table I.I shows the European Union emission standards for both diesel and gasoline 

passenger cars. From the introduction of Euro 1 in 1992 the regulations have become increasingly 

stricter and, with the introduction of Euro 6 in September 2014, more than 95% reduction is 

imposed with respect to Euro 1 limit with respect to soot emissions. In addition, starting from Euro 

5b, a limitation on particles number has been introduced in order to limit particles characterized by 

very small dimensions which do not significantly contribute to the total detected soot mass but are 

the most dangerous for human health being able to reach the innermost zone of the respiratory 

system [2]. The limitation expects a maximum number of non-volatiles particles (where non-

volatile particles are defined as ones having a diameter between 23 nm and 2.5 μm and sufficiently 

low volatility to survive a residence time of 0.2 s at 300°C) of 6.0e+11 per kilometer. These 

particles are counted using the particle number counter (PNC) which has a counting efficiency of 

50%±12% (cut-off size, d50%) for particles of 23 nm and more than 90% for 41 nm [3]. 

 
Table I.I: European Union emission standards for passenger cars [4] 

If the environmental regulations require a continuous improvement of both combustion process 

and after treatment systems on one hand, the increasing market demand for more fuel-efficient cars, 

shown in figure 1.3, force the optimization of combustion process on the other hand. 
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Figure 1.3: New passenger cars (in million units) in the EU by emission classes [1] 

In the following an overview of pollutants produced from diesel combustion, namely carbon 

monoxide CO, unburned or partially burned hydrocarbons, nitrogen oxides NOX, sulphur oxides 

SOX and particulate matter is presented. Carbon dioxide CO2, oxygen O2, water H2O and nitrogen 

N2 are found in the exhaust gases as well but are not classified as pollutants being natural 

components of the atmosphere. 

Carbon Monoxide CO 

Carbon monoxide is an extremely dangerous gas being odorless, tasteless and colorless. It is not 

present in nature because it reacts with oxygen to form carbon dioxide. Its production is related to 

the generic combustion reaction of a CHy hydrocarbon: 

2 2 2 2 2 2 2  3.785       8   3.7 5yCH nO nN aCO bCO cH O dH eO nN        

where 

22   2C O CO   with CO production 

2 2 2    2CO O CO  with CO oxidation in CO2 

are the reactions involved in carbon combustion. 

The first reaction is much faster than the second and takes place during the intermediate 

combustion stages. If oxygen availability is enough, the second reaction completes the process with 
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carbon dioxide formation. The factors that influence CO production, in addition to oxygen 

availability, are temperature and residence time [5]. This generally results in a higher CO 

production at low loads because of lower combustion temperatures. 

Unburned hydrocarbons HC 

Unburned hydrocarbons are consequence of incomplete combustion of fuel. They can be divided 

in two main groups: methanic and non-methanic (aromatics, alkanes, alkenes, alkynes). The air – 

fuel mixture in a diesel engine is known to be heterogeneous: this determines the formation of rich 

and lean regions. In locally rich regions fuel droplets may not be properly surrounded by oxygen to 

fully oxidize (over-rich mixture) while in lean regions the air to fuel ratio could be too high to ignite 

or ensure a complete combustion process (locally over-lean mixture). This over-mixed fuel could 

then be emitted as exhaust hydrocarbon emission if it does not burn during combustion and 

expansion [6]. Locally over-rich mixtures can be induced, for instance, by low fuel velocity or 

inadequate swirl penalizing the air-fuel mixing. They can result in incomplete combustion process 

as well as pyrolysis products (organic compound decomposition due to in-cylinder temperature) or 

unburned fuel moving through the valves in the exhaust. Due to pyrolysis, organic compounds not 

present in the fuel are found in the exhaust. Hydrocarbon emission are strongly dependent on engine 

load; idle and low loads, for instance, are known to be critical for the formation of hydrocarbons 

with respect to high loads where the increased temperatures enhance oxidation rate. Under-mixing 

is the mechanism characterizing the “sac volume”, fuel remaining trapped in the injector tip at the 

end of the injection process. It is characterized by a very slow evaporation and thus has a great 

chance to escape the combustion process. Thus the “sac volume” is considered to be another cause 

of high HC emissions. Hydrocarbon emission is even dependent on wall temperatures because of 

possible quenching of the flame and engine instability (induced, for instance, because of too late 

fuel injection) determining partial burning [7]. In addition, a minor source of HC emission is related 

to the thin film of lube oil on the cylinder wall which can absorb fuel hydrocarbons. These particles 

will be trapped in this film and may escape the combustion process. Finally, the influence of fuel 

composition on nature and quantity of hydrocarbon emissions has been studied to be a non-

negligible factor. For instance, methyl ester of soybean oil (biodiesel) has been investigated to 

reduce HC emissions [8]. Hydrocarbon emission is strictly correlated to combustion efficiency 

being it a fraction of fuel not undergoing to combustion and thus not contributing to generating 

work on the piston. 
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Nitrogen oxides NOX 

Nitrogen oxides are composed of nitric oxide (NO), predominant in the engine cylinder plus 

nitrogen dioxide (NO2) and nitrous oxide (N2O). The main source of nitrogen oxides is oxidation of 

atmospheric nitrogen; however if the fuel contains high amounts of nitrogen, even its oxidation 

becomes non-negligible. Since diesel engines are always working lean, the NOX production is 

higher than that from gasoline engines. NOX formation from atmospheric nitrogen (Thermal NOX), 

according to the extended Zeldovic mechanism, can be described with the following equations: 

1) 𝑁2 + 𝑂 = 𝑁𝑂 + 𝑁 

Because of the triple chemical bond of N2 (N≡N), the reaction requires high activation energy 

(E≈316
𝑘𝐽

𝑚𝑜𝑙
) thus high temperatures, above 2000K. 

2) 𝑁 + 𝑂2 = 𝑁𝑂 + 𝑂 

3) 𝑁 + 𝑂𝐻 = 𝑁𝑂 + 𝐻 

Significantly lower activation energy is required for reaction 2 and 3, taking place for temperatures 

over 300K.  

Thermal NOX are strongly influenced by combustion temperature, residence time and atomic 

oxygen concentration (figure 1.4). The critical time period for NOX formation is when burned gases 

reach their maximum temperatures. The gas fraction, burning in an early stage of combustion, is 

further compressed to higher temperatures while cylinder pressure increases, determining an 

increase in NO formation rate. Afterwards, as the burned gases expand during the expansion stroke, 

their temperature starts to decrease and the NO chemistry freezes [9]. 

To reduce thermal NOX in internal combustion engines, the most common techniques are EGR 

(combustion temperature is decreased by means of exhaust gas recirculation), stream reduction (in 

heavy duty marine engines; reduction of combustion temperature is achieved by injecting water in 

the combustion chamber which, evaporating, subtracts heat from the system) and air dilution (very 

lean combustion, λ>1.5, while the peak of NO emission is achieved with slightly lean combustion, λ 

around 1.1).  

NOX formation from fuel nitrogen (Fuel NOX) refers to the conversion of fuel bound nitrogen 

during combustion of certain coals and oils. The mechanism of Fuel NOX is not completely 

understood but it is assumed that during combustion certain compounds (such as pyridine and 

quinolone) undergo to thermal decomposition prior to entering the combustion zone. Ammonia 

(NH3), hydrocyanic acid (HCN) and cyanide radicals (C-N) are the precursors to NO formation. 
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Fuel NO are sensitive to air/fuel ratio but weakly dependent on temperature in contrast to the strong 

temperature dependence of NO formed from atmospheric nitrogen [9]. Fuel NO is formed more 

readily (occurring on a time scale comparable to that of combustion reactions) than thermal NO 

because the N-H and N-C bonds, which are very common in fuel-bound nitrogen, are much weaker 

than the triple bond in molecular nitrogen which must be broken for thermal NO formation[10]. 

Prompt NOx are formed by the reaction of atmospheric nitrogen with hydrocarbon radicals in 

fuel-rich regions of flames, which is subsequently oxidized to form NOx. Since the prompt NOx 

mechanism requires an hydrocarbon to initiate the reaction with nitrogen, it is much more prevalent 

in fuel-rich than in fuel-lean hydrocarbon flames [11]. Since the CH-N reaction requires a lower 

activation energy, with respect to the dissociation of molecular nitrogen, the prompt NOx formation 

mechanism results to be more significant at low temperatures. 

NOx are dangerous for human health. NO acts on hemoglobin while NO2 is responsible for 

breathing apparatus pathologies which may lead to death. Moreover, together with non-methanic 

hydrocarbons (NMHC), NOx are the main precursor of the ground level ozone (troposphere ozone) 

formation through complex and non-linear photochemical reactions in sunlight. 

As of the full phase-in of Euro 6 standard in the European Union (September 2015), all newly 

registered diesel passenger cars will have to meet a NOx emission limit of 80 mg/km over the 

European light-duty vehicle emission certification cycle (New European Driving Cycle, NEDC). 

While all diesel car manufacturers have managed to meet this requirement during the regulated 

laboratory test, it is widely accepted that the “real-world” NOx emissions of diesel passenger cars 

are substantially higher than the certified limit [12]. This has been one of the main drivers behind 

the recent amendment of the Euro 6 standard to require an on-road, real-driving emissions (RDE) 

test using portable emission measurement systems (PEMS). Once RDE testing will be legally 

enforced in 2017, passenger cars will have to demonstrate reasonably low emissions under real-

world use conditions (although some aspects, such as cold-start emissions and the effects of high-

load driving, will not be fully captured). In the short run, this should lead to more robust 

implementations of existing NOx control technologies especially in terms of engine after treatment 

calibration approaches but in some cases it could also have a significant impact upon the diesel car 

manufacturers hardware choices. In the long term, RDE should also deliver substantial 

improvements in urban air quality in Europe as fleet turnover makes pre-RDE diesel cars less 

prevalent [13]. 

 

 



Chapter 1 Introduction 

8 
 

Particulate Matter 

Particulate emissions are one of the main issues of DI diesel engines and are intensely studied by 

researchers because of their dangerousness for human health (considered to be carcinogen), as 

reported by the international agency for research on cancer. The Environmental Protection Agency 

describes the process of soot harming the human body: “Microscopic particles can penetrate deep 

into the lungs and have been linked to a wide range of serious health effects, including premature 

death, heart attacks, and strokes, as well as acute bronchitis and aggravated asthma among children” 

[14]. 

Particulate matter are separated in a soluble and an insoluble fraction is the combination of soot, 

a solid substance made almost entirely of carbon (insoluble fraction), and other materials in solid or 

liquid phase (e.g. evaporated engine lubricating oil [15]). Under ideal conditions, the combustion of 

hydrocarbons generates only carbon dioxide and water. These conditions are achieved if the oxygen 

content of the mixture is locally enough to completely convert the fuel; in this case a maximum in 

both heat release and chemical energy available for mechanical work are achieved [16]. In real 

combustion conditions, because of a local lack of oxygen, other products of incomplete combustion, 

such as hydrocarbons and soot are formed. Thus the process of soot formation takes place at high 

temperatures (>1600K) and in locally fuel-rich regions from unburned fuel which nucleates from 

vapor to solid phase. The transition from vapor or liquid phase hydrocarbons to solid soot particles 

comprises five consecutive processes, namely pyrolysis, nucleation, coalescence, surface growth 

and agglomeration plus oxidation which occurs concurrent to the others [17]. The general features 

of the processes involved in soot formation are schematically shown in figure 1.4 and explained in 

the following. 

 
Fig.1.4: soot formation process from gas phase to solid agglomerated particles [17] 

Fuel pyrolysis is the process through which an organic compound, altering its molecular 

structure at high temperatures, turns into unsaturated hydrocarbons (soot precursors), polyacetylens, 

polycyclic aromatic hydrocarbons (PAH) and acetylene (C2H2). Nucleation, instead, is the 

formation of particles from gas-phase reactants. These particles act as cores on which other mass 

will be added during the surface growth process (with the so called HACA process), characterized 

by gas-phase hydrocarbons absorption on the nucleated soot particles. The surface growth phase 

http://yosemite.epa.gov/opa/admpress.nsf/d0cf6618525a9efb85257359003fb69d/f51c2fdeda736ea285257a1e0050c45f%21opendocument
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determines, in this way, an increase of soot mass but not of particles number. Since the major 

fraction of soot mass is build up during this phase, the surface growth residence time strongly 

influences the total soot mass. The two processes affecting the number of particles are coalescence 

and agglomeration. Coalescence consists of particle collision, meaning that two particles combine 

to form a bigger one characterized by a spherical shape and the same mass of the two original 

particles. On the other hand agglomeration takes place when spherical primary particles 

agglomerate to form large groups of particles generally in long chain-like structures. Most primary 

particles are in the range 20-70 nm but after combustion the chain-like structures typically range 

from 100 nm to 2m [17]. The major fraction of formed soot, though, is not found in the engine 

exhaust as well, because of being oxidized by OH under fuel-rich and stoichiometric conditions and 

OH and O2 under lean conditions [18]. Oxidation takes place during the whole soot formation 

process and transforms carbon or hydrocarbons into combustion products. Once carbon is 

transformed into CO it will not have the possibility to evolve in a soot particle again. The oxidation 

process proceeds at the beginning of the expansion stroke until temperature drops below 1300K 

[19] and removes more than 90% of the total formed soot. Therefore the soot measured at the 

exhaust of an engine is given by the difference soot formation – soot oxidation.  

The principal physical parameters affecting soot formation and oxidation are temperature, pressure, 

fuel composition, fuel structure and air/fuel ratio. Reaction rates in both soot formation and 

oxidation are all enhanced by increasing temperature; thus it may be considered as the most 

important parameter affecting soot [17]. Maximum soot formation occurs for temperatures around 

2000K and local equivalence ratios above 2 as reported in figure 1.5. Since locally rich regions are 

responsible for soot formation, the addition of oxygen through fuel composition or mixing of fuel 

and air determines, at a fixed temperature, a reduction of this pollutant. Though, since oxygen is 

strictly correlated to temperature which has an exponential effect on both soot formation and 

oxidation processes, it is not trivial to evaluate whether the soot reduction is due to the direct effect 

of an oxygen increase or an increase in temperature due to increased oxygen. The present 

dissertation will deal with both premixed combustion and oxygenated fuels to reduce soot emissions 

in diesel engines. Composition and structure of the fuel are other important factors affecting soot 

because of the correlation between carbon in the fuel molecule and its tendency to soot. Both higher 

carbon percentages and C-C bonds enhance this tendency while hydrogen concentration, even 

though its effect is of minor importance (compared to oxygen), reduces soot formation and the 

aromatic content. Other parameters affecting soot formation are the combustion chamber geometry 

because of its impact on swirl and liquid fuel impingement, injection timing determining the 
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temperature at start of combustion and intake pressure affecting the amount of charge air entrained 

into the jet. 

 
Figure 1.5:-T map for diesel combustion [20] 

1.3 In-cylinder emission reduction techniques 

In the following a brief description of the influence of engine actuators on emissions are 

reported. The importance of in-cylinder combustion optimization, on the emission side, is correlated 

to the attempt of a maximum reduction of pollutants reaching the after-treatment systems in order to 

reduce their stress. 

Being the NO formation strongly temperature dependent, the correlation between local flame 

temperature and resulting NOX emissions has been widely studied [21]–[24] and several 

technologies which aim to reduce the this temperature have been introduced: 

 Exhaust gas recirculation system (EGR) which consists in re-introducing a fraction of 

exhaust gases in the intake in order to reduce the adiabatic flame temperature. Moreover 

oxygen availability is reduced as well and the specific heat of the reactants is increased 

[25]–[27]; EGR percentage is usually measured through the following equation: 

𝐸𝐺𝑅 =
𝐶𝑂2𝐼𝑛𝑡𝑎𝑘𝑒 − 𝐶𝑂2𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝐶𝑂2𝐸𝑥ℎ𝑎𝑢𝑠𝑡 − 𝐶𝑂2𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
∗ 100 [%] 

 Flame cooling through water evaporation (e.g. fuel water emulsion); 

 Miller Valve Timing [28] which allows a reduction of the reactant temperature 
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 Variable Valve Timing (VVT). 

The Miller valve timing process is characterized by an early closure of the inlet valve in order to 

expand the charge air before it is compressed (with a loss in efficiency of about 1.5% due to the loss 

of positive work, assuming positive scavenge pressure). In this way lower temperatures at end of 

compression are achieved [29]. In addition since the average cycle temperature is reduced, heat 

losses are decreased with the consequence of improved efficiency (up to 5%, which compensates 

the loss of efficiency from the earlier inlet valve closure [30]). On the other side a higher boost 

pressure is required to achieve the same power output (an early closure of the inlet valves reduces 

the volumetric efficiency) and ignition problems are encountered at low loads. Therefore the 

Variable Valve Timing technology represents a further improved solution because it allows to work 

at conventional intake valve timing at low loads and switch to Miller timing at high loads (though it 

results in an increase in complexity and cost with respect to Miller). This technology, characterized 

by a hydraulic system coupled to the cam shaft or an electromagnetic engine valve actuator, gives 

the possibility to control the inlet and exhaust valves events independently of crank shaft rotation, 

by changing the cam profile. As a result up to 15% fuel consumption reduction (and CO2 emission) 

and increase in torque output in a wide range of engine speed may be achieved [31].  

In addition the introduction of the common rail injection system for diesel engines has given the 

possibility of independently control the injection process with respect to the engine speed leading to 

a simultaneous reduction of soot and NOX. In fact diesel engines are usually characterized by 

presenting a trade - off NOX - soot, meaning that the decrease of the first (e.g. because of an 

increase in EGR) is followed by an increase of the second and vice versa, as shown in figure 1.6. 

The simultaneous adoption of EGR and enhanced air-fuel mixing, though, can lead to a denial of 

the mentioned trade-off trend. In fact the use of EGR permits a reduction in NOX while enhanced 

air-fuel mixing promotes oxidation and thus decreases soot formation. 
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Figure 1.6: NOX – Soot trade-off in conventional diesel combustion [32] 

The common rail injection system permits both an increase of engine performance and a 

reduction of exhaust emissions through the management of number of injections, injection timing 

and injection pressure. 

The increase in injection pressure (up to 2000 bar in modern injection systems) enhances the air-

fuel mixing because of the increased injected fuel velocity determining a higher air entrainment. On 

the other side, in order to avoid impingement of liquid fuel on cold surfaces (increases unburned 

hydrocarbons emissions) high injection pressures must be correlated with a suitable combustion 

chamber geometry, swirl flow and injection timing (determining the combustion phasing and thus 

the temperature at start of injection which affects the injected fuel evaporation). 

Modern electronic control units (ECU) are capable of managing several injections per cycle. The 

possibility of adopting multiple injection strategies allows improvements on emissions, fuel 

consumption and combustion noise. In addition, a better fuel distribution is achieved leading to a 

more efficient use of the charge air; thus the possibility to reduce soot emissions at medium engine 

loads allowing higher EGR rates [33]. Figure 1.7 shows a sketch of the different injections, namely:  

 Pilot  

 Pre  

 Main (usually one or two injection events, split main) 

 After  

 Post (from one to three injection events) 
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Figure 1.7: Sketch of the different injections 

The fuel being injected during the Pilot injection typically burns in a premixed way. In fact in-

cylinder temperatures are still low when the injection is activated thus a high ignition delay is 

detected. Pilot and Pre injections are generally used in cold start and low load conditions in order to 

increase the temperature at start of Main injection and promote its ignition. In addition these 

injections are very effective to reduce combustion noise. In fact they shorten the ignition delay of 

the fuel being injected during the Main event and thus its premixed combustion phase is reduced; as 

a consequence the rapid in-cylinder pressure rise, characteristic of the premixed combustion mode 

and directly correlated to combustion noise [34], is decreased as well. Pilot and Pre injections may 

also be effective in reducing NOX emissions because of the lower in-cylinder peak temperatures 

associated to the decrease of the Main injection premixed fraction; this circumstance, though, 

determines, an increase in soot emissions. The Main injection, with which the requested engine 

power output is achieved, can be activated as a unique event or splitted in two injections in order to 

enhance the air entrainment. In this case fuel efficiency results to be increased and engine out 

particulate and CO emissions are lowered while an increase in NOX emissions is noticed [35]. 

Furthermore, splitting the Main injection and changing the dwell time between the pulses gives the 

chance of modifying the shape of heat release rate and the combustion duration. In particular a 

splitted Main injection permits to keep the rate of heat release at a higher level for a longer time but 

with a lower peak value. As a result a more distributed heat release, which is believed to decrease 

soot emissions and increase fuel efficiency and NOX, is shown [35]. The After injection has the 

main role of reducing soot emissions because it allows a temperature rise after the Main combustion 

enhancing the oxidation process of formed soot. A further reason of the enhanced oxidation process 

is related to the additional turbulence induced by the After injection. Its capability in reducing 

engine out soot emissions is, though, strongly depending on injected mass, dwell time and local 

conditions of the charge [36]–[38] but may be of particular interest in conditions where EGR is 

requested. Finally, the Post injection which occurs late in the expansion stroke is usually activated 

in one to three injection events and its objective is an increase in temperature beneficial for the DPF 

(diesel particulate filter) regeneration. The injected fuel evaporates but does not burn because of the 

low temperature conditions near to bottom dead center, reaching the exhaust in vapor phase. The 
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vaporized fuel provides high hydrocarbon levels to the DOC (diesel oxidation catalyst) in which 

exothermic reaction occur permitting a heavy increase of temperature. The achieved high 

temperatures allow the soot particles within the DPF to be burned. Both DOC and DPF systems will 

be illustrated in the after-treatment systems section. A major concern when using Post-injection is 

that the fuel can impinge on the cylinder walls leading to dilution of the lubricating oil [39]. The oil 

dilution determines a decrease in viscosity with the risk of operating conditions conducive to wear 

and engine damage. In order to overcome this problem, different techniques such as the 

implementation of an HC vaporizer directly in the exhaust of the engine are currently under 

investigation [40], [41]. The HC vaporizer is proposed to replace the Post-injections by delivering 

the fuel directly in the exhaust. Its main concern, though, is related to the difficulties of fuel 

evaporation at low loads because of the cold environment in the exhaust prior to the DOC. 

Low temperature combustion 

Low temperature combustion (LTC) mechanisms aim to reduce NOX emissions by reducing in-

cylinder temperatures through the removal of the diffusive combustion phase [42]. The basic idea of 

LTC aims to achieve a unique combustion phase characterized by a global lean mixture and a low 

temperature (no flame) reaction in order to simultaneously reduce NOX and soot emissions. Charge 

dilution, through EGR activation, influences the local equivalence ratio prior to ignition due to 

lower O2 concentrations and flame temperature due to the insertion of inert gases (replacing a 

fraction of the reactant) with increased heat capacity. Affecting both  and T, charge dilution 

impacts the path representing the progress of combustion in the -T diagram (figure 1.8) and offers 

the chance to avoid both soot and NOX. However, as dilution is increased to the limits, HC and CO 

can significantly increase [43]. Figure 1.8 shows the local equivalence ratio versus temperature 

diagram in which the main combustion mechanisms capable of avoiding the main NOx and soot 

formation areas, HCCI and PCCI, are reported. 
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Figure 1.8: -T diagram with contours of different combustion mechanisms [17] 

There are mainly two possibilities of achieving a low temperature combustion mechanism [17]. 

The first one is related to an injection event taking place very early in the compression stroke where 

temperature is still too low for fuel auto ignition; as a consequence, achieving high ignition delays, 

charge air and fuel should have enough time to form a homogeneous mixture. This mechanism, 

known as Homogeneous Charge Compression Ignition (HCCI), has been widely studied (e.g. [44]–

[55]) and is primarily controlled by chemical kinetics. It allows a simultaneous reduction in NOx 

(decreasing in-cylinder temperatures with high EGR rates) and soot emissions by premixing the fuel 

with air to overall lean conditions (in order to avoid locally rich regions where soot is formed). 

HCCI combustion is flameless and spontaneously occurs at the entire cylinder volume. The 

homogeneously mixed charge in the combustion chamber is auto ignited during the compressing 

stroke as soon as the auto ignition temperature is reached. In fact a mixture of fuel and air only 

ignites if fuel concentration is within the ignition limits and the reactants temperature is sufficiently 

high. The ignition timing of HCCI combustion strongly depends on the initial conditions of the 

cylinder charge such as temperature, pressure, and composition [56] and is difficult to control. This 

means that the combustion mechanism is very sensitive to ambient conditions as well. A further 

crucial element for HCCI operation in diesel engines is related to wall impingement. In fact, since 

the injection event takes place in a low temperature environment, the injected low volatile diesel 

fuel could not evaporate fast enough to avoid wall wetting with a consequent increase in HC 

emissions and break specific fuel consumption [57]. If on one hand a simultaneous reduction of 

NOx and soot can be achieved, on the other hand, once the mixture ignites, combustion occurs very 
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fast yielding high in-cylinder pressure rise and, consequently, high noise and vibration emissions. 

The limitations in allowable pressure rise to avoid engine damage set a threshold for the 

equivalence ratio of about 0.3. Therefore HCCI can be typically operated lean making high-load 

conditions difficult to achieve. 

The second possibility, premixed charge compression ignition (PCCI), is to inject late (around 

TDC) in the cycle in order to increase ignition delay because of lower temperatures during the 

evaporation of injected fuel. The increased ignition delay results in the possibility of injecting the 

whole amount of fuel prior to start of combustion. In this way an enhanced mixing of the spray and 

the charge air is achieved thus reducing the locally rich regions responsible of soot formation. 

Achieving a high ignition delay is thus a key factor for PCCI combustion. In order to further 

increase this parameter, the use of EGR plus the adoption of fuels characterized by a low cetane 

number are extremely helpful. Several papers have been published on PCCI combustion mode and 

the techniques to achieve a premixed mode and reduce exhaust emissions [58]–[76]; some of the 

main conclusions are discussed in the following. 

In order to find out where and how partially premixed charge compression ignition (PPCCI) occurs 

a map that shows the changes in combustion characteristics with injection timing and EGR was 

created in [58]. The development from early injection PPCCI over conventional diesel combustion 

to late injection PPCCI has been studied. A comparison between ultra-high EGR early injection 

PPCCI and late injection PPCCI has been made and similarities have been ascertained. Moreover 

the authors studied the connection between combustion related parameters and emissions and 

suggest that mixing timing, cylinder pressure rate maximum and CA50 can be used as controlled 

outputs in a closed loop system with indirect control of emissions and efficiency. A low-

temperature, premixed combustion concept to achieve simultaneous reductions in the NOx and 

smoke emissions of a small DI diesel engine is proposed in [60]. The authors state that the 

combination of a low compression ratio, high injection pressure and EGR gas cooling can lead to 

more than 98% NOx reduction and less than 1 BSU smoke concentration in an operating region 

near to stoichiometric air-fuel ratio. Partially premixed compression ignition is investigated in [61] 

as well. The authors found that, in gasoline – diesel mixtures, an increased proportion of gasoline 

reduced smoke emissions at higher operating loads through an increase in charge premixing 

resulting from an increase in ignition delay and higher fuel volatility. Their results confirm that a 

combination of fuel properties, exhibiting higher volatility and increased ignition delay, would 

enable a widening of the low emission operating regime, but that consideration must be given to 

combustion stability at low loads. A study on dual mode combustion concept with premixed diesel 

combustion was conducted in [65]. The authors proposed dual mode combustion to promote the 
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practical implementation of premixed diesel combustion. Under high load operations, exhaust 

emissions reductions are achieved by conventional diesel combustion with an after treatment system 

(e.g.; DPF, DeNOx catalyst). Under low load operations, when after treatment systems are 

ineffective due to low exhaust temperatures, engine out exhaust emissions can be virtually reduced 

to zero using premixed diesel combustion. This approach results to be facilitated by "high turbulent 

mixing rates," small-hole nozzles, high injection pressure and injection timing near TDC. The 

importance of cetane number to achieve premixed combustion mode is studied in [66]. The authors 

state that in this combustion mode, where the injection event is separated from combustion, if the 

combustion phasing is the same for two of the tested fuels (an n-heptane fuel, two fuels in the diesel 

volatility range and three in the gasoline volatility range have been considered), their emissions 

behavior at a given condition will be similar regardless of the differences in volatility and 

composition. Thus PPCI operation with low smoke and NOx becomes much easier to be achieved 

with fuels in the gasoline auto - ignition range. However PPCI operation also leads to higher CO 

and HC and higher heat release rates at high loads. These problems can be significantly alleviated 

by managing the mixing through injector design and injection strategies (e.g. multiple injection). In 

[67] the authors investigated the use of gasoline in premixed combustion and found that, for a given 

set of operating conditions (intake pressure and temperature, EGR level, fueling rate), gasoline 

produces a much higher ignition delay compared to diesel, for a given phasing of heat release. This 

facilitates premixed combustion and can result in significantly lower smoke and NOX. The research 

activity conducted in [68] showed that a good fuel candidate to properly run partially premixed 

combustion from maximum load to idle is a fuel in the boiling point range of gasoline with an 

octane number of about 70. By combining this type of fuel with an appropriate EGR and λ 

strategy, it is possible to simultaneously achieve: very high efficiency, very low emissions and low 

maximum pressure rise rate in the whole load range without any drawback in combustion control. 

In [69] the authors propose a study on premixed LTC strategy with blends of diesel and gasoline. 

These blends are characterized by a low cetane number and thus produce a long ignition delay 

beneficial for in-cylinder air/fuel mixing. The authors state that while a conventional NOX - soot 

trade - off exists for pure diesel with respect to intake oxygen concentration, soot emissions become 

insensitive to it when gasoline proportion increases. Results of an experimental investigation 

demonstrating the potential of employing blends with low cetane number to simultaneously reduce 

NOX and smoke have been discussed in [70]. The authors state that because of the higher resistance 

to auto - ignition, blends of diesel and gasoline at different volume fraction may provide more time 

for the mixture preparation by increasing the ignition delay. The result produces the potential to 

operate under partially premixed low temperature combustion with lower levels of EGR without 
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excessive penalties on fuel efficiency. The major advantages of fuels characterized by higher 

resistance to auto ignition are related to smokeless conditions, improved NOx emissions at 

moderate injection pressure and earlier injection timings with respect to commercial diesel allowing 

a recovery on thermal efficiency. In [71] the authors investigated blends of 20% and 40% of n-

butanol in conventional diesel to achieve premixed combustion. The joint action of a longer ignition 

delay and the higher volatility of n-butanol - diesel blends promotes the dispersion of fuel vapor 

within the combustion chamber resulting in an almost smokeless combustion with the opportunity 

of operating at moderate injection pressures (100-120 MPa) and exhaust gas recirculation 

(O2int=19.5-19.0%). In addition, injection pressure is another parameter which has to be taken into 

account in order to enhance mixing of fuel and air. In fact increased injection pressure is found to 

enhance the early mixture formation process, resulting in increased heat release peak and generally 

decreased soot luminosity. The spatial distribution of soot luminosity is characterized by increased 

luminosity observed from the squish volume at the lower injection pressures [75]. 

1.4 After treatment systems 

In recent years the turbocharged diesel engine has become more popular for passenger cars and 

even sport vehicles because of its high torque, reliability and efficiency but sophisticated exhaust 

after treatment systems are required to comply with increasingly stricter emission standards. An 

effective solution to remove all the species of pollutant from a diesel engine is reported in figure 1.9 

and comprises a diesel oxidation catalyst (DOC) coupled with a diesel particulate filter (DPF), an 

injection system for urea and a selective catalyst reducer (SCR).  

 

Figure 1.9: Scheme of a complete diesel after treatment system 

The most common after treatment systems to reduce exhaust emissions from diesel engines, 

including the ones shown in figure 1.10, are described in the following. 

Diesel Oxidation Catalyst (DOC)  

Modern catalytic converters consist of a monolith honeycomb substrate, coated with a platinum 

group metal catalyst, packaged in a stainless steel container. The honeycomb structure with many 
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small parallel channels presents a high catalytic contact area to the exhaust gasses. As the hot gases 

pass through the catalyst, carbon monoxide, gas phase hydrocarbons and the soluble organic 

fraction (SOF) of diesel particulate matter are converted into harmless substances: carbon dioxide 

and water. The conversion takes place through the following reactions: 

𝐶𝑂 +
1

2
𝑂2 → 𝐶𝑂2 

𝐻𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛 + 𝑂2 → 𝐶𝑂2 + 𝐻2𝑂 

[𝑆𝑂𝐹] + 𝑂2 → 𝐶𝑂2 + 𝐻2𝑂  

Diesel exhaust gases contain a concentration of O2, necessary for the mentioned reactions to 

take place, in the range 3 - 17%, depending on the engine load. This means that high oxygen 

concentration conditions, as well as high temperature (catalyst activity increases with temperature), 

are favorable towards the exothermic conversion of CO and HC in CO2 and water. The conversion 

efficiency trends for CO and HC against temperature are given in figure 1.10. A minimum exhaust 

gas temperature of about 200°C is necessary for the catalyst to "light off" while, at temperatures 

above 400°C, conversion efficiency, still depending on the catalyst size and design, can be higher 

than 90%. 

 

Figure 1.10: Catalytic Conversion of Carbon Monoxide and Hydrocarbons [77] 
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Also the conversion of diesel particulate matter is an important function of the modern diesel 

oxidation catalyst. The catalyst exhibits a very high activity in the oxidation of the soluble organic 

fraction of diesel particulates with conversion values that may reach and exceed 80%. 

Diesel Particulate Filter (DPF) 

A diesel particulate filter (DPF) is a device designed to remove particulate matter from the 

exhaust gas of a diesel engine. Such filters are made of ceramic (cordierite, silicon carbide or 

sintered metals) honeycomb materials. Ceramic wall-flow filters are able to remove almost 

completely all particulates, including fine particulates with diameter of less than 100 nanometers 

(nm) with an efficiency of >95% in mass and >99% in number of particles over a wide range of 

engine operating conditions. The soot is removed by physical filtration using a honeycomb structure 

with the channels blocked at alternate ends. The exhaust gas is thus forced to flow through the walls 

between the channels and the particulate matter is deposited as a soot cake on the walls. The 

deposition of such particles determines an increase of the measured pressure difference between 

filter input and output and the continuous flow of soot would eventually block the filter with, as a 

consequence, problematic exhaust gas flow; therefore, when the pressure difference exceeds a 

threshold value, a “regeneration” of the filter is required. The regeneration consists of burning-off 

the collected particulates with consequent formation of water and CO2. In order to burn the 

particulates with oxygen, high temperatures are required at the DPF inlet. One of the most 

successful methods to achieve these temperatures and consequently start the DPF regeneration is to 

incorporate an oxidation catalyst (DOC) upstream the filter in order to take advantage of its 

exothermic reactions. In particular, the patented Continuously Regenerating Trap (CRT) system 

which is reported in figure 1.11, is composed of a platinum catalyst (which is also a normal 

converter for HC and CO) in front of the filter. The system takes advantage of the capability of 

nitrogen dioxide to burn soot at lower temperatures (around 270°C), typical of diesel exhaust. With 

the catalyst placed upstream the filter, the generated NO2 travels with the exhaust gas into the filter 

where it combusts the trapped soot in a “continuous” way. 
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Figure 1.11: Scheme of a Continuously Regenerating Trap [78] 

The system is also called "passive" because it does not require additional heat sources; on the other 

hand, being a non sulphur tolerant catalyst, it does require fuel with low sulfur content. Any 

application though, in which it cannot be guaranteed that the exhaust gas conditions will be suitable 

for a passively regenerating system, will require some active regeneration. Almost all active filter 

regeneration techniques operate by raising the temperature of the filter to around 600°C. This is the 

temperature at which the particulate matter (PM) collected in the filter, will combust in oxygen. In 

details, when the measured pressure difference between filter inlet and outlet exceeds a fixed value 

and a regeneration process is required, the engine ECU automatically activates a post injection 

strategy. The additional injections are activated late during the expansion stroke in order to 

determine only evaporation of the fuel (no combustion) which undergoes, in the DOC, exothermic 

reactions that produce the required temperature increase. The CRT system can form part of actively 

regenerated DPF systems in which the HC content of the exhaust stream is periodically enriched by 

in-cylinder post injection. Even in cases in which some active regeneration is necessary, it is 

desirable to maximize the amount of passive regeneration that can be achieved since it requires no 

additional energy and fuel. 

FAP 

Designed in 2000 by PSA Peugeot-Citroen, this particulate filter system is characterized by the 

necessity of using an additive to the diesel fuel called Eolys. It is composed of cerium oxide Ce2O3 

(also known as "glycerin") and allows particulates agglomeration with formation of macro-

molecules, easier to be trapped. This additive also allows to lower regeneration temperatures down 

to 450°C (against 600°C of the DPF with particulate matter combusted in oxygen) giving the 
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chance, in a wider range of operating conditions, to regenerate the filter without the need of post 

injections. The additive is stored in an additional tank (about five liters) located near to the main 

tank and is only refillable using special tools because of being quite corrosive thus requiring 

particular handling. It is automatically added (controlled by the engine ECU) to the diesel fuel at fill 

ups. 

Lean NOX Trap (LNT) 

The concept of NOX absorbers has been developed based on acid-base wash coat chemistry. It 

involves storage of NOX on the catalyst wash coat during lean exhaust conditions and release during 

rich operation and/or increased temperatures. Depending on the NOX release strategy they can be 

classified as “active” or “passive”. In active absorbers, stored NOx is periodically released, with a 

typical frequency of about once per minute, during a short period of rich air-to-fuel ratio operation, 

called NOX absorber regeneration. The released NOX is catalytically converted to nitrogen, in a 

process similar to that occurring over three-way catalysts (TWC) widely used in stoichiometric 

gasoline engines. On the other side passive NOX absorbers, a more recent and simpler variant of the 

technology, adsorb NOX during vehicle cold start and release it under high exhaust temperature 

conditions to be converted over a downstream NOX reduction catalyst. Hence, passive absorbers are 

not a stand-alone NOX control technology. 

LNT is an active NOX absorber. Under lean operating conditions extensive NOX accumulation 

occurs on the catalyst surface (made of alkali metals or alkaline earth metals e.g. barium) due to 

NOX adsorption in the form of nitrates or nitrites. The following equation represents adsorption of 

NO2 in the form of barium nitrate if barium oxide is used as storage material: 

𝐵𝑎𝑂 + 2𝑁𝑂2 +
1

2
𝑂2 → 𝐵𝑎(𝑁𝑂3)

2
 

Since the storage capacity is limited, the trap requires a periodical regeneration to prevent 

clogging. The regeneration can be carried on in two different ways: injecting an extra amount of 

fuel directly into the cylinder late during the expansion stroke or in the exhaust manifold by means 

of an additional injector. In both cases the aim is to consume the oxygen in excess in the exhaust 

line thus creating, for short intervals (2-5s), a rich mixture where nitrates NO3 species become 

thermodynamically unstable and decompose, producing NO or NO2, according to the equations: 

𝐵𝑎(𝑁𝑂3)2 → 𝐵𝑎𝑂 + 2𝑁𝑂 +
3

2
𝑂2 

𝐵𝑎(𝑁𝑂3)2 → 𝐵𝑎𝑂 + 2𝑁𝑂2 +
1

2
𝑂2 
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Finally under rich conditions, the nitrogen oxides are reduced by HC, CO and H2 to N2 over the 

reduction catalyst, in a conventional three-way catalyst process. One of the possible reduction paths 

is described by the following equation: 

𝑁𝑂 + 𝐶𝑂 →
1

2
𝑁2 + 𝐶𝑂2 

It is worth to underline that the actual chemical and physical processes are more complex and not 

fully explained by the mentioned equations [79]. Since the exhaust gas of a diesel engine, 

depending on the diesel quality, might contain small amounts of sulfur (S) coming from the fuel and 

lubricating oil, NOX absorbers also show some undesired reactivity with barium sulfate (BaSO4) 

production. This causes gradual saturation of the barium sites with sulfur and loss of activity 

towards the adsorption of NO2. BaSO4 can be thermally decomposed but sulfates of barium or other 

adsorbents are more stable than the corresponding nitrates and require higher temperatures to 

desulfate (above 600°C). For this reason, sulfur deactivation is a major problem in the development 

of NOX absorber systems and the periodical rich conditions required for denitration and desulfation 

increase fuel consumption up to 10% if compared to completely lean combustion mode. 

Selective Catalyst Reduction (SCR) 

Selective Catalytic Reduction (SCR) is one of the most cost-effective and fuel-efficient 

technologies available to reduce diesel engine emissions. This is designed to permit nitrogen oxides 

(NOX) reduction reactions to take place in an oxidizing atmosphere. The SCR system (figure 1.12) 

consists of a supply pump, a dosing system ran by the ECU, an injector mounted in the exhaust pipe 

and the SCR. 

 

Figure 1.12: Selective Catalyst Reduction system [80] 

The reductant source is usually automotive-grade urea, otherwise known as Diesel Exhaust Fluid 

(DEF). DEF is carried in an onboard tank which must be periodically replenished by the operator 
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based on vehicle operation. For light-duty vehicles, DEF refill intervals typically occur around the 

time of a recommended oil change, while DEF replenishment for heavy-duty vehicles and off-road 

machines and equipment will vary depending on the operating conditions. The injected urea 

solution, with chemical formula CO(NH2)2, reacts with the water contained in the exhaust gases 

through thermolysis in the engine exhaust line to produce the oxidizing ammonia according to the 

following reactions: 

𝐶𝑂(𝑁𝐻2)2 → 𝑁𝐻3 + 𝐻𝑁𝐶𝑂  

𝐻𝑁𝐶𝑂 + 𝐻2𝑂 →  𝑁𝐻3 + 𝐶𝑂2 

Once ammonia has been produced, it sets off further reactions converting nitrogen oxides (NO and 

NO2) into nitrogen, water and tiny amounts of carbon dioxide (CO2) mainly according to the 

following equations: 

4NO + 4NH3 + O2 → 4N2 + 6H2O 

6NO2 + 8NH3 → 7N2 + 12H2O 

The SCR technology alone can achieve a NOX reduction up to 90 percent and is often combined 

with a diesel particulate filter to achieve PM emission reductions as well. Temperature (reaction 

kinetics of NH3 with NOx is very sensitive to its variations) and amount of injected urea are the two 

main parameters which have to be precisely controlled in an SCR system. 

The introduced stricter emission limitations for NOx and particulates in mobile diesel 

applications may require the combinations of active after treatment systems like DPF, SCR with 

urea and LNT. The combination of these systems is currently being widely studied and several 

papers have been published. In [81] a combination of LNT+SCR enabling on-board synthesis of 

ammonia (LNT) which is then removed on the SCR catalyst, is proposed. The main application for 

this kind of system can be light-duty vehicles, where LNTs are already used and the low 

temperature deNOx is a main target. 

Diesel Particulate-NOx Reduction system (DPNR) 

The Diesel Particulate-NOX Reduction (DPNR) system from Toyota has the potential of 

simultaneously reducing NOX and PM. The system, shown in figure 1.13, is composed of a filter 

substrate made of cordierite (a special ceramic with excellent response properties to thermal shock). 
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Figure 1.13: Diesel Particulate – NOX Reduction system [82] 

The honeycomb structure filter forces the gas path through the structure walls in order to collect the 

particulates on its surface. Moreover the system comprises an exhaust port injector installed after 

the turbine and activated to start the filter regeneration process and temperature and pressure 

sensors at the DPNR inlet and outlet. The system features a newly developed, highly porous 

ceramic filter coated with a catalyst exclusively developed by Toyota which allows NOX storage 

and reduction. During conventional lean-burn combustion, particulate matter is oxidized using 

active oxygen created when NOX is temporarily stored inside the catalytic converter. In a second 

phase, the engine is switched to low-oxygen rich combustion mode through the activation of the 

exhaust port injection. In this condition the stored NOX is reduced producing more active oxygen 

available to further oxidize particulate matter inside the catalytic converter. Unlike other soot filters, 

it is a servicing-free system; this means that no periodic replacement of any component is scheduled 

during the entire vehicle life. In addition it doesn’t necessitate the use of any fuel additive. The only 

requirement, in order to achieve maximum efficiency and avoid a deterioration of the catalyst, is the 

use of diesel fuel with less than 10ppm of sulphur. 

1.5 Alternative fuels 

Biodiesel 

Biodiesels are ethylic or methyl esters of acids with long chain derived from a broad variety of 

resources such as vegetable oils (soybean, canola, sunflower, palm, cotton, mustard and algae), 

animal fats and waste cooking oil. It is rapidly biodegradable, non-toxic and, when used as a fuel 
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for vehicles, safer in the event of a crash because of its higher flash point (with respect to 

conventional diesel). A transesterification process is required to reduce the viscosity of the raw oil 

and produce biodiesel fuel for diesel engines [83]. A scheme of the raw oil to biodiesel conversion 

process is reported in figure 1.14. 

 

Figure 1.14: Raw oil or fats to Biodiesel process [84] 

The transesterification process is the reaction of a triglyceride (fat/oil) with an alcohol to form 

esters and glycerol. A triglyceride has a glycerin molecule with three long chain fatty acids 

attached. During the esterification process, the triglyceride is reacted with alcohol in the presence of 

a catalyst, usually a strong alkaline like sodium hydroxide. The alcohol reacts with the fatty acids to 

form the mono-alkyl ester (or biodiesel) and crude glycerol. In most production methanol, with 

production of methyl esters (figure 1.15) or ethanol, with production of ethyl esters are the used 

alcohols, base catalyzed by either potassium or sodium hydroxide. 

 

Figure 1.15: Chemical process for methyl ester biodiesel 
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The alcohol/catalyst mix is charged into a closed reaction vessel and the oil or fat is added. The 

system from here on is totally closed to the atmosphere to prevent the loss of alcohol. The reaction 

mix is kept at a temperature above the boiling point of the alcohol (around 160 °F) to speed up the 

reaction taking place. Excess alcohol is normally used to ensure total conversion of the fat or oil. 

Once the reaction is complete, the two major products are glycerin and the ester (biodiesel). They 

are characterized by two different density values and can therefore be gravity (or by means of a 

centrifuge) separated with glycerin moving to the bottom of the settling vessel. The excess alcohol 

in each phase, removed with a flash evaporation process or by distillation is then re-used. Water and 

alcohol are removed to produce 80-88% pure glycerin that is ready to be sold as crude glycerin. In 

more sophisticated operations, the glycerin is distilled to 99% or higher purity and sold into the 

cosmetic and pharmaceutical markets. Once separated from the glycerin, the biodiesel results in a 

clear amber-yellow liquid with a similar viscosity of the conventional diesel one. In some systems 

the biodiesel is distilled in an additional step to remove small amounts of color bodies to produce a 

colorless biodiesel. Prior to its use as a commercial fuel, the finished biodiesel must be analyzed 

using sophisticated equipment to ensure it meets any required specifications. It is important that a 

complete reaction took place and that glycerin, the catalyst and the alcohol are completely removed 

from the new-born fuel. 

In a 1912 speech Rudolf Diesel said: "The use of vegetable oils for engine fuels may seem 

insignificant today but such oils may become, in the course of time, as important as petroleum and 

the coal-tar products of the present time." Biodiesel is nowadays available at gas stations blended 

with conventional diesel. Current fuel standards allow up to 7 % (in volume) of FAME (Fatty-acid 

methyl ester). It has good lubricating properties, a cetane number comparable to low sulfur diesel 

and a calorific value of 37 MJ/kg which is about 10% less than conventional petrodiesel. It has a 

high boiling point (unfavorable for evaporation) and a significantly higher flash point (>130°C) 

than conventional diesel (64°C) which is unfavorable for the formation of an ignitable mixture in 

air. Moreover biodiesel is characterized by a higher density (~ 880 kg/m³) than diesel (~ 850 

kg/m³), contains no sulfur and PAH, doesn’t require changes to the engine structure and it is often 

used as an additive to Ultra-Low Sulfur Diesel (ULSD) fuel to aid with lubrication, as the sulfur 

compounds in petrodiesel provide much of the lubricity [85]. Table I.II summarizes the main 

properties of biodiesel from sunflower and cottonseed. 

https://en.wikipedia.org/wiki/Coal-tar
https://en.wikipedia.org/wiki/Calorific_value
https://en.wikipedia.org/wiki/Boiling_point
https://en.wikipedia.org/wiki/Ultra-Low_Sulfur_Diesel
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Table I.II: Main properties of biodiesel from sunflower and cottonseed with respect to 

conventional diesel [86] 

There is a wide agreement in the literature that biodiesel and its blends generally decrease the 

emissions of both CO and HC especially at high engine loads. Due to the lack of sulphur and PAHs, 

biodiesel usage decreases the carbon particulate emissions and increases the SOF (Soluble Organic 

Fraction), resulting in reduced visible smoke and opacity [87], [88]. The shift of PM toward higher 

SOF content, as well as the absence of sulphur, makes biodiesel compatible with diesel oxidation 

catalysts, which can maximize PM benefits. Therefore it appears that there is a potential to reduce 

gaseous and smoke emissions using biodiesel blends, when an engine and its auxiliary systems 

(injection system, EGR) have been optimized. The dynamic processes of injecting mineral diesel 

fuel and its mixtures with biodiesel, such as rapeseed and soybean, and their effects on diesel engine 

performance and emissions have been investigated in [89]. Blends of 50% in volume of rapeseed 

and soybean oils in diesel (RME50 and SME50) have been characterized in terms of fuel injection 

rate, spatial-temporal evolution of the jets and engine tests. The authors state that engine test bench 

analysis, performed at constant power output, highlighted a higher specific fuel consumption for the 

RME50 and SME50 compared to the diesel one mainly because of their lower energy content. 

Regarding emissions, the authors found similar levels of NOx and CO and reduced PM emissions 

with the diesel/biodiesel blends. In [90] rapeseed oil methyl ester (RME), neat and blended with 

diesel in different percentages, has been investigated on a multi-cylinder light-duty diesel engine 

which included the various latest technologies for low emission (e.g. common-rail injection system, 

cooled-EGR system, variable geometry turbocharger (VGT) and after treatment systems). The 

authors state that an NOx emission linear increase with increasing percentage of RME in diesel has 
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been dietected while an increase in oxygen content in the fuel caused a drastic reduction of engine-

out smoke emisson. In [91] the authors state that a modification of the engine is required when 

using biodiesel. In fact they found that biodiesel blending determined problems related to oil 

dilution in vehicles equipped with DPF. The authors investigated the effects of biodiesel blending 

on exhaust emission from commercial vehicles and found an increase in NOx emissions with 

particular reference to a vehicle equipped with urea-SCR system. Moreover, on one hand reduced 

PM emission from the vehicles not equipped with DPF has been achieved. On the other hand, 

though, PM emission from vehicles equipped with DPF increased because of an increase in SOF 

emission. 

n-Butanol 

Alcohol fuels are produced through biological mechanisms as well as petrochemical pathways, 

are characterized by molecular oxygen and less carbon than diesel, higher vapor pressures (leading 

to enhanced evaporative emissions) and low energy density. In addition they show a lower cetane 

number, which leads to increased ignition delay when used as alternative fuels in diesel engines. 

Alcohol fuels such as methanol (CH3OH), ethanol (C2H5OH), propanol (C3H7OH) and butanol 

(C4H9OH) can be used with fossil-based fuels in various percentages for diesel engines as a clean 

alternative fuel source. Besides, low percentages of alcohol in diesel fuel do not require any 

modification to the engine fuel system. Ethanol and methanol, though, show low solubility with 

diesel particularly at low temperatures and ethanol is characterized by low viscosity which leads to 

lubricity problems. On the other hand, the physical and chemical properties of butanol indicate that 

it has the potential to overcome the limitations brought by low-carbon alcohols like ethanol and 

methanol. It is much less evaporative and corrosive, releases more energy per unit mass (35.1 

MJ/kg vs 26.8 for ethanol and 19.9 for methanol), has a lower auto-ignition temperature and vapor 

pressure, a higher miscibility (no phase separation when blended with diesel) and cetane number 

(12, while CN=8 for ethanol and 3 for methanol) thus being more suitable as an additive for diesel 

fuel [92]. Butanol can be produced by fermentation of biomass, such as algae, corn, and other plant 

materials containing cellulose that could not be used for food and would otherwise be wasted. 

Butanol has four isomers, reported in table I.III, characterized by having the same amount of heat 

energy but different molecular structures. 
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n-butanol sec-butanol i-butanol t-butanol 

 

  
 

Table I.III: Different molecular structures of the four butanol isomers 

Table I.IV, instead, summarizes the main alcohol fuels properties with respect to conventional 

diesel and some of the main results concerning the use of alcohols are reported in the following. 

 

Table I.IV: Main alcohol fuels properties with respect to conventional diesel ones [93] 

An experimental study has been conducted in [93] to investigate the influence of n-butanol 

addition with multiple injections on engine performance and emissions. The authors adjusted the 

EGR rate to keep NOx emission at 2.0 g/kWh and different n-butanol volume ratios were blended 

in diesel. They achieved results showing a significant reduction in soot and CO emissions without a 

deep impact on BSFC and conclude that n-butanol oxygenated addition does not have a major 

influence on NOx and can further improve emissions if combined to an optimized triple-injection 

strategy. In [86] the authors tested a 70-30% diesel/bio-diesel and a 75-25% diesel/n-butanol blends 

with respect to conventional diesel and found that peak or cumulative values of NO emission 

increased for the two fuel blends compared with the neat diesel fuel case and that the increase in 

NO emission was greater for the bio-diesel blend compared with the n-butanol one. In addition the 

authors experienced a decrease in smoke emissions for the two fuel blends (with maximum 

reduction achieved with the n-butanol blend) due to the relative fuel-bound oxygen mass playing a 

key role. Different blends of n-butanol in diesel were investigated in [94], [95] and engine 
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performance plus exhaust emissions were analyzed. The smoke density was significantly reduced 

with the use of the butanol–diesel fuel blends with decreasing smoke values achieved increasing the 

percentage of butanol in the blend. Contrarily to results found in [86], the NOx emissions were 

found to be slightly reduced with the use of the butanol–diesel blends with increased reduction 

attained with increasing percentages of butanol in the blend. Moreover CO emissions were reduced 

while unburned hydrocarbons (HC) emissions were increased. Finally slightly increasing specific 

fuel consumption and marginally lower exhaust gas temperatures were found with the n-butanol 

blends. The authors conclude that n-butanol can be safely and advantageously used up to high 

blending ratios with conventional diesel because of reduced engine out emissions, noticeable 

thermal efficiency and high solubility. An important effect of n-butanol content in the fuel blends 

on engine performance and emissions has been even noticed in [96]. The authors investigated the 

performance and exhaust emissions of a single cylinder DI diesel engine at constant engine speed 

and four different engine loads. They conclude that n-butanol can be easily blended with diesel 

without phase separation and that its use determines a slight increase both in brake specific fuel 

consumption (because of the n-butanol inferior lower heating value) and in brake thermal 

efficiency. The authors even noticed that exhaust gas temperature, CO, smoke opacity and NOX 

emissions (contrarily to other publications) were reduced with respect to reference diesel fuel. On 

the other side an increase in HC emissions was found. 

Poly(oxymethylene)dimethilethers (POMDME) 

Several studies on the use of oxygenated fuels have shown a reduction of particulate matter and 

recommend the use of oxygenates to suppress the C-C bonds and therefore the soot precursor 

species [97]. However, some of them, e.g. Dimethyl ether (DME), are not appropriate for diesel 

engines because of their properties (e.g. vapour pressure and ability to produce methane). DME has 

been studied in several research centres [98]–[103] and if on one hand allows an almost smokeless 

combustion, on the other hand requires significant modifications to the fuel injection system in 

diesel engines because of its low viscosity, low lubricating capability and being in a gaseous state 

under atmospheric conditions (thus requires to be stored under pressure). DME shows poor 

solubility in diesel fuel blends and high vapor pressure. Therefore, oxygenates with higher viscosity 

and boiling point are definitely more attractive. Poly(oxymethylene) dimethyl ethers (POMDME or 

OME in abbreviated form) are characterized by a CH3-O-(CH2-O)n-CH3 general structure, with a 

mass fraction of oxygen within the molecule up to almost 50%. These fuels can be obtained from 

methanol in a process chain described in detail in [104]–[107]. The first fuel of the POMDME 

family is dimethoxymethane (DMM or OME1, POMDME with only one –O–CH2– group) which 



Chapter 1 Introduction 

32 
 

has been investigated both blended with commercial diesel and pure, still though with some fuel 

system modifications. DMM is still more volatile than diesel, having its boiling point at 42°C and 

therefore problems related to vapour lock may occur. In [108] the authors investigated a 15% DMM 

in diesel blend in a direct injection diesel engine and found great benefits in exhaust emission 

reduction. However they state that it is not possible to substitute this fuel into existing engines 

without modifications to fuel system. In [109] the same blend in several speed/load conditions was 

investigated and a PM reduction at any investigated operative point was found while no significant 

reduction in NOx emissions was noticed. In [110] the authors achieved ultra-low emission and 

efficient diesel combustion with pure DMM and a combination of high EGR plus a three-way 

catalyst. In [111] a pure OME1 fuel with additives to enhance viscosity, lubricity and cetane 

number was tested. Engine testing proved the possibility of a soot reduction without a 

corresponding increase in NOx emissions. However the authors found a growing output of methane 

near stoichiometric conditions. Because of the low cetane number (CN), high volatility and weak 

viscosity and lubricity of OME1, higher OMEs (n=3,4,5) are considered to be more suitable for 

application in a diesel engine as neat substance. In [104], for instance, the authors state that, due to 

their physical properties, POMDMEs with n ranging in between 2 and 5, can overcome the 

disadvantages given by DME and DMM, particularly regarding injection system modifications due 

to higher viscosities and higher boiling points. Table I.V reports the main properties of the 

POMDME family fuels. 

 CDF DME DMM POMDME 

 n=2 n=3 n=4 

Melting point (°C) - -141 -105 -70 -43 -10 

Boiling point (°C) 170 – 390 -25 42 105 156 201 

Viscosity (25°C) (mPa*s) 2.71 - 0.58 0.64 1.05 1.75 

Density liquid (25°C) (kg/l) 0.83 - 0.860 0.960 1.024 1.067 

Cetane number 55 55 29 63 70 90 

Oxygen content (wt%) - 34.7 42.1 45.3 47.1 48.2 

Table I.V: Physical properties of conventional diesel (CDF), DME, DMM and POMDMEs [104] 

The POMDMEs are characterized by the presence of activated methylene groups bounded to 

oxygen atoms (–O–CH2–) which leads to the formation of hydroperoxides in an early stage of the 

combustion. These hydroperoxides decompose into OH radicals which subsequently degrade soot 

precursors by oxidative processes. Their higher viscosities and boiling points allow the blending in 

diesel without modifications to the injection system. In addition POMDMEs show a good 
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miscibility with diesel (the optimal chain length for a POMDME-diesel blend is with n=3-4; for n=2 

a low flash point is shown while longer chains determine the risk of precipitation at low 

temperatures. This may clog filters or other parts of the fuel system) and because of their low vapor 

pressures, no pressurized tank or fuel system is needed. POMDMEs with n = 3–5 are characterized 

by a cetane number in the range 70-100, higher than diesel one (55). POMDMEs are therefore very 

attractive as alternative fuels for diesel engines [104]. As shown in table I.V, POMDMEs present an 

oxygen content in the range 42-53 wt%. This means that small amounts of this oxygenated in diesel 

could still allow a high heating value coming from the diesel, taking advantage at the same time, of 

the oxygen content coming from POMDME. Unfortunately POMDMEs are characterized by 

requiring an expensive production process, with respect to other oxygenates, because of a higher 

finishing grade. In the near future, though, an optimized production technology could decrease the 

cost facilitating, in this way, the possibility of a large scale production. 

In [104] the production process for POMDME is explained in detail; these oxygenates can be 

obtained from methanol in a process chain which is illustrated in figure 1.16. In a first process step 

formaldehyde is obtained by dehydrogenation of methanol. The trioxane process consists of the 

trimerisation of formaldehyde which is usually catalyzed by H2SO4 and a work up of the reactor 

outlet, for example by a pressure-swing distillation sequence. The preferred production method for 

methylal from formaldehyde and methanol is a heterogeneously catalyzed reactive distillation. 

Subsequently both formaldehyde based products trioxane and methylal are converted to 

POMDMEs. 

 

Figure 1.16: POMDME process chain [104] 

Just few papers on the use of pure or blended POMDME fuels have been published [112]–[116]. 

Pellegrini et al. state that, comparing a 7.5% POMDME in diesel blend with commercial diesel, at 

fixed NOx emission level, a significant reduction of PM is achieved. At the same time, though, 

higher PAH emissions were found, because of the higher EGR rate and lower exhaust gas 

temperature that reduced the DOC activity when operating with the oxygenated fuel. The authors 
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even noticed a reduction of the number of particles above 30 nm at engine speeds above 2000 rpm 

with POMDME. In addition a 3-4% power loss and increase in specific volumetric fuel 

consumption was found [115]. 

1.6 Structure and objective of the activity 

The present activity had, as main objective, the investigation of different oxygenated fuels 

properties on combustion evolution and achievable performance and exhaust emissions from diesel 

engines to bring a further scientific contribution in reducing in-cylinder emissions. The activity has 

been conducted in two phases that will be discussed in this dissertation. Each chapter will contain 

both phases, presented in different sections. 

The first part of the present study has been carried on at Istituto Motori, Italian National 

Research Council in Naples and focused on comparing performance and engine out emissions from 

conventional diesel and alternative fuels. In particular the experimental investigation has been 

performed on a light duty diesel engine, turbocharged DI four cylinder for automotive applications 

equipped with a common rail injection system. The engine has been fueled with different biodiesel 

in diesel blends, two gasoline - diesel mixtures and one butanol – diesel. Their results have been 

compared to conventional diesel ones. Even though no molecular oxygen content is present in the 

gasoline – diesel blends, they have been investigated because of the low cetane number of gasoline 

that is helpful to achieve a premixed combustion mode (PCCI), as reported in several previous 

works (e.g. [61], [66], [67]). In particular in [66], the authors state that in a PCCI combustion mode, 

where the injection event is separated from combustion, if the combustion phasing is the same for 

two of the tested fuels (the authors considered an n-heptane fuel, two fuels in the diesel volatility 

range and three in the gasoline volatility range), their emissions behavior at a given condition will 

be similar regardless of the differences in volatility and composition. PCCI has been studied 

because of its potential to increase the air-fuel mixing reducing, in this way, the locally rich regions 

in the combustion chamber responsible for soot formation. The effects of PCCI and molecular 

oxygen have been both investigated and will be discussed in the present dissertation with the aim of 

providing further knowledge on advantages introduced with oxygenated fuels, with the PCCI 

combustion mechanism and, particularly, with the combination of PCCI and different oxygenated 

and non – oxygenated (but with low cetane number) fuels. In this way the present activity tries to 

provide further understanding on whether specific fuel characteristics are exalted with PCCI to 

achieve the maximum exhaust emission reduction, with particular reference to particulate matter. 
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The second part of this study has been, instead, conducted at the Aerothermochemistry and 

Combustion Systems Laboratory, ETH Zurich, Switzerland. Different oxygenated fuels have been 

investigated in a constant volume chamber with large optical access. In particular 

Poly(oxymethylene) dimethyl ethers (POMDME) with a CH3-O-(CH2-O)n-CH3 general molecular 

structure have been studied focusing, with respect to combustion evolution, both on the fuels 

properties and the temperature at start of combustion. In order to study the combustion evolution 

and soot formation and oxidation processes, optical techniques such as OH chemiluminescence and 

two dimensional two color pyrometry (2D2CP) have been applied. Moreover soot emissions from 

the different investigated fuels have been analyzed by means of a fast particle spectrometer. The 

deeper knowledge of the oxygenated fuel effect on soot formation/oxidation processes provided by 

this activity has been then applied to a second investigation on a single cylinder “heavy duty” direct 

injection diesel engine. The aim of this final activity has been to achieve a complete overview of the 

impact of POMDME-diesel blends on engine performance and exhaust emissions. Great attention 

has been reserved to the analysis of the different engine out emissions: soot as well as nitrogen 

oxides, unburned hydrocarbons, carbon monoxide and carbon dioxide. 
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Chapter 2 

Experimental Procedure 

Introduction 

The different experimental facilities used during the present study and the investigated fuels are 

described in the following paragraphs. Moreover, paragraph 2.2 includes the theory and 

mathematical expressions allowing the calculation of the kL factor (proportional to the absorption 

coefficient per unit of soot cloud thickness and the flame thickness) used as an index of the in-

cylinder soot mass concentration. 

2.1 Automotive GM diesel engine 

The first part of the study has been conducted on a turbocharged, water cooled, 4-valve, 4-

cylinder DI diesel engine (figure 2.1) from General Motors, installed at the Istituto Motori – Italian 

National Research Council. 

 

Figure 2.1: Automotive four cylinder diesel engine test bench 
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Engine set-up 

The 95 hp engine fulfills Euro V emission standards and is equipped with an EGR system, a 

common rail injection system and 7 hole - 0.12 mm nozzle diameter solenoid injectors. It is 

characterized by a 1248 cm
3
 displacement (bore = 69.5mm, stroke = 82mm) and a compression 

ratio of 16.8:1. The INCA (Integrated Calibration and Measurement System) software has been 

used for the engine management (e.g. load, injection pressure and injection timing). This software 

gives the possibility of reading the ECU variables, managing its parameters, building up its 

calibration and acquiring results. Moreover, a piezo-quartz pressure transducer (±0.1% accuracy) to 

detect the in-cylinder pressure signal, several pressure and temperature sensors in different parts of 

the engine and a current probe to acquire the energizing current to the injector (pressure transducer 

and current probe only for cylinder number 2) have been installed. The intake air has been supplied 

to the engine at constant temperature (293 K) by means of an air handling unit (conditioning 

system); intake and exhaust O2 concentrations were checked by two O2 sensors. An eddy current 

dynamometer, capable of absorbing powers up to 190 kW and convert them (Joule effect) in heat 

dissipated through a water cooling system, has been connected to the engine. On the eddy-current 

dynamometer a force transducer has been installed in order to measure the engine torque. For the 

acquisition of the in-cylinder pressure signal and the energizing current to the injector an AVL 

Indimodul data recording system, integrated with the Indicom software which allows to calculate 

the instantaneous and cumulative heat release curves through the first law of thermodynamics, has 

been used. A sketch of the experimental set-up is shown in figure 2.2 while the accuracy of the 

main acquired quantities is reported in table II.I. 

 

Figure 2.2: Sketch of experimental engine set-up 
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Engine Speed ±1 rpm 

Torque ±1 Nm 

Air Mass Flow Rate ±1% 

Specific fuel consumption ±5% 

Table II.I: Accuracy of the main acquired quantities 

Exhaust emissions have been measured by means of the following analyzers: 

 an ABB Limas 11 for NOx exhaust emissions, belonging to the Non Dispersive Ultra 

Violet (NDUV) category. Its working principle is based on an ultraviolet ray source 

generating a beam of light passing through an optical filter (in order to select the 

specific wavelength exciting the molecules to be detected) and into the cell where the 

engine exhaust gas is inflated. The UV light passes through the gas and reaches a light 

absorption detector. Following the Beer – Lambert law, the energy absorption results to 

be proportional to the number of absorbing molecules. 

 an ABB Uras 14 for O2, CO and CO2 emissions. CO and CO2 are measured by means of 

a Non-Dispersive Infra-Red (NDIR) detector: each constituent gas in a sample absorbs 

some infra - red at a particular frequency. By shining an infra-red beam through a 

sample cell (containing CO or CO2) and measuring the amount of infra-red absorbed by 

the sample at the specific wavelength, a NDIR detector is able to measure the 

volumetric concentration of CO or CO2 in the sample. In addition O2 is measured by 

means of an electrochemical oxygen sensor. 

 an AVL 415 Smoke Meter (0.1% value resolution) for smoke measurements. The 

Smoke Meter uses the filter paper absorption method: the shades of gray imprinted on 

the paper are detected and associated to an FSN (filter smoke number) by means of a 

photoelectric meter. 

Investigated fuels 

The investigation focused on fuels characterized by molecular oxygen and/or a low cetane 

number in order to enhance premixing with air. The baseline diesel fuel has been the European low 

sulphur (max 10 ppm) commercial diesel with a cetane number of 52 and its results have been 

compared with: 

 an RME biodiesel fuel, denoted B100 

 a blend, denoted B30, composed of 70% baseline diesel and 30% RME by volume 

 a blend, denoted B60, composed of 40% baseline diesel and 60% RME by volume  

 a blend, denoted BU30, composed of 70% of diesel and 30% n-butanol by volume. 
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Further, two additional investigated blends were obtained by mixing diesel and gasoline (ON=95) 

in order to evaluate results coming from fuels with no molecular oxygen but characterized by a high 

ignition delay: 

 a first blend, denoted G30, composed of 70% baseline diesel and 30% gasoline by 

volume. 

 a second blend, denoted G60, composed of 40% baseline diesel and 60% gasoline by 

volume.  

Table II.II shows the main characteristics of the tested fuels. Their main differences are related to 

the cetane number, density, volatility and the net heat value, of particular interest for local mixing 

preparation, charge fuel distribution within the combustion bowl and thermal efficiency. 

FUEL PROPERTIES 

 Diesel B30 B60 B100 G30 G60 BU30 

Density@15°C [kg/m3] 

ASTM D4052 
840 853 866 883 810 780 828 

Viscosity@40°C [mm2/s] 

ASTMD445 
2.5 3.0 3.6 4.3 2 1.5 2.2 

Cetane Number 

ISO4264 
52 52.1 52.2 52.3 41.3 30.6 43.9 

Net Heat Value [MJ/kg] 42.9 40.9 39.3 37.1 43.1 43.2 39.9 

C content [%] 

ASTM D5291 
86 84 81.6 78.5 85.6 85 79.9 

H content [%] 

ASTM D5291 
12.7 12.1 11.6 10.8 13.5 14.2 13 

O2 content [%] 

ASTM D5291 
- 3.2 6.3 10.5 - - 6.5 

IBP [°C] 

ASTM D86 
160 209 257 322 - - 120 

Distillation 50% Vol. [°C] 

ASTM D86 
280 297 314 337 220 160 230 

Distillation 90% Vol. [°C] 

ASTM 5291 
338 340 341 343 328 317 328 

Table II.II: Main properties of the different fuels 

 

 

 

 



Chapter 2 Experimental Procedure 

40 
 

Operating conditions 

The experimental investigation conducted on the automotive 4 cylinder 4 valve DI diesel engine 

focused, with respect to the operating conditions, on exploring the effect of combustion phasing 

(CA50) and oxygen concentration at intake on engine out emissions and performance. Tests have 

been performed at 2500 rpm and 0.8 MPa BMEP, one of the operating points of the reference multi-

cylinder engine New European Driving Cycle (NEDC). The investigation has focused on a 

comparative report of the engine performance and emissions exploring a set of operating conditions 

(Table II.III) with commercial diesel and alternative fuels. 

CA50 

[cad atdc] 

O2 at intake 

[%] 

Inj. pressure 

[MPa] 

Boost pressure 

[MPa] 

18, 21 17, 19 140 0.16 

Table II.III: Operating conditions 

A single injection strategy has been chosen for the tests and the engine load has been fixed at 

the constant value of 0.8 MPa for the different investigated fuels (characterized by different energy 

content) by managing the injection duration. The combustion phasing (CA50) has been set, within 

0.1ca, by adjusting the start of injection (SOI) and its values have been chosen in order not to 

exceed the 2% of the IMEP coefficient of variation, selected as the engine stability limit. It is 

helpful to remark that with SOI it is intended the start of the energizing current to the solenoid 

injector and not the start of the actual fuel delivery. In fact, because of the hydraulic and electronic 

delays a lag between the timing of the energizing current to the solenoid and the actual fuel delivery 

from the nozzle is present; this value has been estimated from the instantaneous fuel flow rate 

measurements to be about 300 s (4.5 cad at 2500 rpm). 

2.2 Constant volume cell set-up 

Cylindrical constant volume chamber set-up 

The second phase of the activity has been carried on a cylindrical constant volume chamber 

(CCVC) with large optical accesses. Its air path contains an autoclave, a connecting inlet tube, the 

chamber itself (figure 2.3) and an exhaust tube while an external compressor is used to achieve 

suitable in-cell pressures before combustion. This is connected to an autoclave via a pressure 

control valve to reduce the pressure to a set point value. The autoclave is characterized by a 
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considerably larger volume compared to the cell body and feeds it via the connecting inlet tube as 

soon as a cycle is initiated. This pressure reservoir, the inlet tube and the chamber are equipped with 

pressure and temperature sensors as well as heating elements which allow temperatures up to 800 K 

within the chamber. Moreover, in order to emulate engine-like conditions at start of main injection 

combustion, a pilot injection can be applied to further increase, through its combustion, pressure 

and temperature values prior to the main injection event. 

 

Figure 2.3: Experimental apparatus (cell, optical set-up and particle spectrometer) [117] 

The fuel pressure is achieved by a pneumatic high pressure pump, which is able to generate fuel 

pressures up to 1600 bar, connected to a rail and a passenger car Bosch piezo injector (8 holes, 

0.108 mm nozzle diameter). In order to have optical access to the complete combustion volume, the 

originally cubic-formed vessel has been retrofitted with steel cylindrical walls, concentric to the 

axis of the injector. Due to the insertion of these cylindrical walls, the optical access is limited to the 

front window but allows a complete view of the combustion chamber. Because of heat losses 

(figure 2.4), the in-cell pressure trace presents a decreasing trend after the combustion event 

meaning that a variation of exhaust valve opening timing determines different values of gas 

pressure being released in the exhaust. Part of the exhaust volume is sampled and analyzed using a 

Cambustion DMS 500 fast particle spectrometer. 

Investigated fuels 

The investigated fuels, which main characteristics are reported in Table II.IV, have been: 

 Commercial diesel as the reference fuel; 

 Dimethoxymethane (OME1or DMM); 
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 OME2 (POMDME with n=2) pure and blended in diesel in different percentages (5, 30 

and 50% in volume, identified in the following with the abbreviations OME2-5%, 

OME2-30% and OME2-50% respectively); 

 A mixture of POMDME mainly comprising n=2,3,4 (abbreviated form: OME2/3/4, 

characterized by the following composition: 33.1 wt-% OME2, 37.9 wt-% OME3, 27.4 

wt-% OME4, 0.3 wt-% OME1, 1.2 wt-% Trioxane).  

The OME2 and OME2/3/4 fuels were synthesised from the educts Trioxane and DMM at the 

University of Kaiserslautern. Trioxane has been dissolved in DMM (2 kg per kg Trioxane), and 

dried ion-exchange resin Amberlyst 46 (of Rohm and Haas, 50 g per kg Trioxane) has been added 

as heterogeneous catalyst. The mixture has been stirred at ambient conditions for two days and then 

separated from the catalyst by filtration. The reaction product which comprises OME of varying 

chain length and residues of Trioxane has been fractionated in a batch still under reflux into the 

investigated fuels. Details on the formation reactions including a quantitative model of the chemical 

equilibrium and the reaction kinetics are given in [107]. 

FUEL PROPERTIES 

 Diesel DMM 
OME2-

5% 

OME2-

30% 

OME2-

50% 
OME2 OME3 OME4 

Density@25°C [kg/L] 0.84 0.85 0.85 0.88 0.9 0.96 1.03 1.07 

Viscosity@25°C [mPa s] 2.5 0.58 2.41 1.94 1.57 0.64 1.05 1.75 

Cetane Number 52 29 - - - 63 70-124 90-148 

Energy density [MJ/kg] 42.1 23.4 - - - <22 <22 <22 

O2 content [wt%] - 42.1 2.6 14.8 24.4 45.3 47.1 48.2 

Normal Boiling point [° C]  170-390 42 104 104 104 104 155 200 

Table II.IV: Main properties of the different fuels [106], [118]–[120] 

Operating conditions 

In order to operate in engine-like conditions, the cell has been preheated during the experiments 

by means of several electrical resistances which assured, before start of combustion, a constant 

temperature of around 713K for the cell walls. In addition, for any investigated condition and fuel, 

two injections have been activated, the first of them (pilot injection) with the only purpose of 

further increasing the cell temperature prior to start of main combustion. Moreover a modification 

of the dwell time has been performed in order to determine different temperatures at start of main 
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combustion. In fact, as shown in figure 2.4, the cell pressure, due to heat losses, is characterized by 

a decreasing trend (after the combustion process) over time. 

 

Figure 2.4: In cell pressure and energizing signal to the injector 

Different temperatures at start of main combustion (SOC), which lead to a modification in 

ignition delay and therefore premixed combustion fraction variation, have been investigated in 

order to evaluate, for the different fuels, their influence on soot formation. Considering the different 

fuels energy and oxygen content, a calibration of injection duration has been performed for each 

fuel to achieve the same injected energy (4.1 kJ per injection) and thus the same P=20 bar (figure 

2.4). The peak pressures from the main injection ranged between 73 bar at the highest T@SOC 

(1150K) and 62 bar at the lowest one (830K). 

Optical set-up 

The optical set-up (sketch in figure 2.5) that has been adopted for two dimensional two colour 

pyrometry (2D2CP) and OH-chemiluminescence measurements comprises two cycle resolved CCD 

cameras; a LaVision HSS6 has been used for the 2D2CP measurements while a LaVision HSS5, 

connected to an IRO image intensifier, has been adopted for OH-chemiluminescence acquisition.  

Chemiluminescence is a cheap and non-intrusive method for monitoring the combustion event in 

environments such as combustion engines. It is the radiation of flames emitted in the ultraviolet and 

visible bands. Most of this emission is caused by electronically excited intermediate species such as 

OH*, CH* or C2* formed during chemical reactions. In particular, the electronically excited state 
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OH* presents a peak of radiation at 310 nm. It is of interest trying to correlate this emission 

radiation to the heat release rate in order acquire information on the combustion evolution. 

The 2D2CP optical set – up comprises a system of lens and mirrors to split the light into two 

beams and filter it at two different wavelengths, as reported from Barro et al. in [117]: the emitted 

light from the cell window enters the system through a zoom lens with a variable focal length of f = 

18 - 125 mm. The diverging light beam is defocused (infinite focal length) with the f = 127 mm lens 

and progresses to the first dichroic beam splitter (cold mirror). Wavelengths below 700 nm are 

rejected and wavelengths above 700 nm transmitted. Afterwards the rejected beam passes through a 

640 nm bandpass filter with 2 nm full width at half maximum (FWHM) and the transmitted beam 

passes through a 740 nm bandpass filter with 4 nm FWHM. The redirection of the beams is 

accomplished with two adjustable precision mirrors. With a second dichroic mirror (hot mirror) the 

two beams are combined. A second camera lens with a focal length of f = 105 mm has been used to 

focus the beams precisely on the CCD-chip (charged coupled device) of the camera. The intensity 

of the incoming light can be adjusted with the aperture of the lens. 

Because of the 2D2CP set – up (as shown in figure 2.5) the second high speed camera, used for 

OH chemiluminescence acquisition, could not be set in front of the cell window. For this reason 

only the light coming from part of the cell could be reflected on the mirrors (filtering the light at 

309 nm) reaching the HSS5 camera. 
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Figure 2.5: Optical set-up for 2D2CP and OH chemiluminescence 

The 2D2CP technique allows calculating the kL factor which is used as a measure of the in-

cylinder soot mass concentration. It is equal to the absorption coefficient per unit of soot cloud 

thickness k (the law of Lambert-Beer demonstrates its proportionality to the soot volume fraction) 

times to the flame thickness L [121]–[123]. Assuming that the volume changes linearly with the 

flame thickness, kL provides a value which corresponds to the actual in-cylinder soot mass. If 

optical properties close to black body for black carbon and a homogeneous soot cloud containing 

only black carbon are assumed, the soot concentration must be proportional to the ratio of the 

optical properties of the soot cloud and the black body properties. It is worth to underline, though, 

that the kL-evolution provides a rough estimation of the in-cylinder soot mass evolution and thus 

information about the soot formation and oxidation processes. 
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kL factor 

In the following the algorithm used for the calculation of the kL value and the soot temperature 

is shown. Figure 2.6 reports the black body radiation for different temperatures and wavelengths 

and shows as the intensity of radiation increases for increasing black body temperatures and is 

characterized by a bell shape curve with respect to the wavelengths. 

 

Figure 2.6: Black body radiation [124] 

Knowing the intensity of radiation, the wavelength-specific black body temperature (TBB) can be 

derived for according to Planck's law (eq.1). 
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where: 

C1 = h*c (h is the Planck constant and c is the speed of light) 

C2 = h*c/kb, (kb is the Boltzmann constant). 

If a diffuse body x characterized by a temperature T and emitting an intensity of radiation i is 

considered, the apparent black body temperature (eq.2) is defined as the temperature of the same 

body x emitting the same intensity i but with black body properties (maximum emissivity:  = 1). 

Since the emissivity of a non-black body is below 1, the apparent black body temperature needs to 

be lower than the soot cloud temperature. 
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( , ) ( , )BBi T i T 
 (2) 

Considering equations 1 and 2, since the emissivity of a diffuse body (ε(λ) independent of the 

direction) is the ratio between its radiation and the ideal black body radiation (with the two bodies 

being at the same temperature), it can be written: 
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(3) 

The kL factor can be calculated using the wavelength – dependent correlation of a soot – containing 

flame emissivity (eq. 4) proposed by Hottel and Broughton in 1932 [125]: 

( ) 1

kL

e
 



   (4) 

where 

k is the absorption coefficient per unit of flame thickness 

L is the geometrical flame thickness along the optical axis 

α is an experimentally derived exponent: 1.39 in [125] and 1.38 in [126]. 

In their work the authors presented a proof of the possibility of determining both the true 

temperature and the total emissivity of a luminous flame from a pair of apparent temperatures 

obtained with an optical pyrometer, using color screens of two different effective wavelengths 

successively. 

Combining eq. 3 and 4 and solving for kL, it is possible to write: 
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Now, considering equation 5 for two different wavelengths 1 and 2 the following equation is 

obtained: 

https://en.wikipedia.org/wiki/Black_body
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After solving, for two different wavelengths, equation 1 for T (in this case T is the apparent black 

body temperature), TBB1 and TBB2 are calculated; this makes the soot cloud temperature T in 

equation 6 the only unknown. Once T is calculated, it can be inserted in equation 5 to derive kL. 

For the soot mass calculation, as reported in [123], using Kirchhoff's law to combine the 

approach of Hottel and Broughton and the law of Lambert-Beer [121], it can be written: 

( )
( ) 1 1 1 ext v

kL

C N L
e e

   



       (7) 

where 

τ is the transmissivity of the soot particle 

Cext is the extinction coefficient: area behind a single particle which cannot be reached by a 

parallel light source due to absorption, scattering and diffraction. This area is not equal to 

the geometrical cross section area, increasingly larger for very small particles. 

L is the geometrical flame thickness along the optical axis 

Nv is the particle number per unit of volume. 

Equation 7 can be simplified into: 

( )ext v

kL
C N L







 (8) 

Assuming: 

3

6
soot v soot v sootc f d N


   

 (9) 

where  

csoot is the soot concentration 

fv is the soot volume fraction 
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ρsoot is the soot density 

d is the soot particle diameter 

kL can be expressed as a function of the soot concentration: 

3
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 (10) 

or as equation 11, where the wavelength has been cancelled out, since the only remaining 

wavelength-dependent parameter is Cext(λ): 

sootkL c L
 

(11) 

As previously mentioned, with the assumption of a linear change of the cylinder volume with 

respect to the layer thickness L, equation 11 can also be expressed as a correlation between kL and 

the actual in-cylinder soot mass within the optical view field: 

sootkL f m 
 

(12) 

However, it is not trivial to find the factor f, since it is dependent on the actual soot particle size, the 

particle density and the extinction coefficient, which all change during the combustion cycle. 

Applying these algorithms for three different wavelengths (3-colour pyrometry) results in 3 soot 

temperatures and 3 kL evolutions which have to match in case of correct calibration. This means 

that the 3-colour pyrometry technique gives the possibility of a calibration check, which is not 

possible with only two colours. In order to apply the 3-colour pyrometry technique, a miniaturized 

optical light probe (OLP) developed through a collaboration between ETH Zurich, Kistler AG and 

Sensoptic AG [127], has been used. The OLP (figure 2.7) is an optical fiber allowing the light 

radiation coming from the cylinder to reach a light sensor after being amplified within a specific 

amplifier. Its dimensions are suitable to fit the probe in an engine glow plug bore. 
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Figure 2.7: Schematic overview of the 3 – colour – pyrometry method [123] 

The OLP features at its tip a sapphire lens maintained at 600°C during engine operation through an 

externally controlled heating system in order to avoid massive contamination of the lens from 

particulate matter. In fact to achieve a constant soot radiation signal, the lens, which permits a 140° 

viewing angle, must be kept as clean as possible. The light travelling through the optical fiber is 

filtered at three different wavelengths (680nm, 790nm, 903nm), with the intensity of each of them 

being recorded at every time step and amplified before the data acquisition system. At this point a 

wavelength calibration from the amplified voltage to a known uniformly emitted intensity is 

required. For this purpose a tungsten lamp, in combination with an integrating sphere (to cover the 

whole OLP view field) is used. Once the calibration has been successfully carried on, the 

wavelength specific black body temperature (TBB) can be derived for each wavelength (680nm, 

790nm and 903nm) according to Planck’s law (eq.1). In order to achieve an optimized calibration 

(minimum error between the 3 pairs of kL and temperature), an algorithm which tunes the 

calibration factors (between output voltage and intensity) has been applied. An example of the 

calibration procedure is reported in figure 2.8 showing temperature and kL values before calibration 

on the left hand side and the calibrated ones on the right hand side. 
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Figure 2.8: Auto – calibration procedure for temperature and kL value [117] 

Nevertheless there are several factors restricting the applicability of a miniaturized pyrometer. 

Firstly the soot radiation is only captured within the angle of view (140°) but spatially averaged 

over the complete view field, since the OLP contains only one photodiode per wavelength. 

Moreover the fraction of the total in-cylinder soot contributing to the signal depends on the 

installation position of the OLP and the presence of cold zones which determine a low soot 

radiation that might not be captured by the pyrometer. Regarding the soot particles, they are 

assumed to be monodisperse and spherical. This is based on the simplification that the soot primary 

particles are round and further agglomerations have a chain-like structure which does not change 

the surface to volume fraction. Furthermore, spatially inhomogeneous distribution of the soot can 

lead to an additional error while regions containing no soot at all determine a “dilution” of the 

averaged captured radiation intensity. 

Correlations between a characteristic kL-end value to the exhaust soot emission have been 

performed in [128], [129]. 

 

 

 

 

 



Chapter 2 Experimental Procedure 

52 
 

2.3 MTU-396 Single Cylinder Diesel Engine 

Engine set-up 

The last part of the present study has been conducted on an experimental single-cylinder DI diesel 

engine (figure 2.9) located at the ETH Zurich. It is based on a MTU 396 series engine and is 

equipped with a common rail injector system capable of injection pressures up to 1600 bar and an 8 

hole Ganser 218 solenoid injector. The engine is connected to a Zöller – Kiel AG B-300 AC 

dynamometer characterized by a maximum absorbable power of 260 kW and a maximum speed of 

7500 rpm. 

 

Figure 2.9: MTU-396 Single Cylinder Diesel Engine 

An external compressor able to supply pressurized air up to 5 bar is connected to the engine intake 

while a heating/cooling system allows conditioning the intake air in a 17 – 100°C temperature 



Chapter 2 Experimental Procedure 

53 
 

range. Moreover, the experimental engine, which main characteristics are reported in table II.V, is 

provided with an exhaust gas throttle allowing the exhaust gas back pressure management. 

Parameter Unit Value 

Number of Cylinders  1 

Bore mm 165 

Stroke mm 185 

Compression Ratio  13.7 

Speed Range rpm 800 – 2100 

Number of valves  4 (3 with extra access) 

Maximum in-cylinder pressure bar 155 

Table II.V: MTU – 396 single cylinder engine specifications 

Even though the original cylinder head configuration is a 4-valve design, in order to insert a water-

cooled sensor adaptor allowing the placement of an additional optical sensor, one of the two exhaust 

valves has been removed. The removal of an exhaust valve did not significantly deteriorate the 

cylinder scavenging because of the specific intake/exhaust configuration allowing an independent 

setting of inlet and exhaust pressure values. The engine management (e.g. load, injection pressure 

and injection timing) has been carried on using the dSpace software. A piezo-quartz pressure 

transducer (±0.1% accuracy) to detect the in-cylinder pressure signal, several pressure and 

temperature sensors in different parts of the engine and a current probe to acquire the energizing 

current to the injector are installed. For the acquisition of the in-cylinder pressure signal, intake and 

exhaust pressures and the energizing current to the injector a Trans AS data recording system has 

been used while the data post – processing has been carried on with Matlab. 

In order to investigate alternative fuels, which could be extremely expensive, not disposable in 

large amounts or aggressive towards some components (e.g. gaskets) of the engine high pressure 

pump (constructed at the ETH Zürich specifically for the MTU engine), an external fuel high 

pressure system has been conceived and assembled as part of the dissertation activity. The purpose 

of this system is to allow the engine warm-up phase (which requires quite a long time) with 

commercial diesel, switch to the alternative fuel once a stationary condition with the desired 

operating parameters has been achieved, perform the measurements and switch back to commercial 

diesel for the engine cooling down and shut off phases. 

A scheme of the whole system is shown in figure 2.10 while a picture of the engine with the 

external injection system is reported in figure 2.11. The external system consists of a tank for the 

alternative fuel, a dedicated fuel balance and a low pressure pump which sends the fuel to the high 
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pressure pump. This is an automotive derivate series production pump driven by a 3kW electric 

motor. The pressurized fuel is stored in a rail (automotive derivate as well) connected to the engine 

main rail. In between the engine high pressure pump, the external rail and the main rail, two NOVA 

pneumatic valves are installed. They are controlled by an electro-valve and allow the 

opening/closure of the diesel or alternative fuel line. In addition, two security valves are installed 

before the pneumatic ones in order to ensure the fuel discharge in case of over-pressure. 

 

Figure 2.10: Scheme of the engine plus external injection systems 

Moreover, a BIOTECH flow meter and two BURKERT three way electro-valves have been 

mounted on the injector return line. The flow meter, resistant to aggressive fuels, has the purpose of 

measuring the backflow from the injector in order to check its correct behavior over time. In case of 

unexpected behavior of the injector, the backflow would vary and this would be recognized by 

means of the flow meter. It outputs a frequency signal which is then transformed, through dSpace, 

in a flow rate. In addition, a mechanical security device (mounted on the injector) blocks the fuel 

line if a prefixed amount of injected fuel is exceeded (in case the injector tip would stuck in open 

position). The purpose of inserting the two three way electro-valves, instead, is connected to the 

need of connecting the injector return line to the diesel fuel balance, to the additional fuel balance or 

to a waste tank. The two valves are mounted in series so that the first sends the fuel to the diesel 
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balance or to the second valve which allows the connection to the second fuel balance (when the 

second fuel is being used and fuel consumption measurements are being taken) or to the waste tank. 

This reservoir is used to store the injector backflow in a first transient phase, after having switched 

fuels. In fact, once the fuel lines are switched by means of the pneumatic valves, the alternative fuel 

will be delivered to the main rail which is still, though, full of diesel. Depending on the operative 

conditions, a certain amount of time is required to replace all the diesel fuel with the alternative one 

in the main rail. During this time the exact composition of the fuel in the main rail is not known 

thus the return line cannot be connected to the fuel balance. 

In order to avoid pressure waves in the fuel high pressure pipes, fuels may only be switched 

once the pressure in the automotive rail is equal to the pressure in the main rail. The pressure 

regulation valves mounted on the automotive rail and high pressure pump are actuated through a 

PWM signal coming from dSpace. The whole external system, including a PID controller to achieve 

a desired rail pressure, the electro-valves actuation and the pneumatic valves has been built in 

Simulink and managed through dSpace. 

 

Figure 2.11: MTU-396 Single Cylinder Diesel Engine with external injection system 

The electric motor, the automotive high pressure pump and rail and the overpressure security 

valve are highlighted in figure 2.11 while the pneumatic valves, flow meter and three way electro-

valves on the injector return line are shown in figure 2.12. 
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Figure 2.12: Pneumatic valves, flow meter and the two three way electro-valves on the injector 

return line 

Exhaust emissions have been measured by means of the following analyzers: 

 An ECO PHYSICS CLD 82 for NOX exhaust emissions, belonging to the CLD 

category. Its working principle is based on the reaction between NO and O3 (ozone). 

This reaction produces photons which are detected by a photo multiplier tube (PMT). 

The CLD output voltage is proportional to NO concentration. 

 An ABB MultiFID14 for HC, belonging to the FID category. The sample gas is 

introduced into a hydrogen flame. Any hydrocarbons in the sample will produce, when 

they are burnt, ions which are detected using a metal collector. The current across this 

collector is thus proportional to the rate of ionisation which in turn depends upon the 

concentration of HC in the sample gas. 

 An ABB Uras 26 for CO and CO2 emissions. These emissions are measured by means 

of a Non-Dispersive Infra-Red (NDIR) detector: each constituent gas in a sample 

absorbs some infra - red at a particular frequency. By shining an infra-red beam through 
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a sample cell (containing CO or CO2) and measuring the amount of infra-red absorbed 

by the sample at the specific wavelength, a NDIR detector is able to measure the 

volumetric concentration of CO or CO2 in the sample.  

 An ABB Magnos 206 for O2 based on the magneto-mechanical measuring principle. It 

takes advantages of the paramagnetism distinguishing oxygen. Because of this physical 

property, oxygen molecules are attracted by a strong magnetic field which can be used 

in detection. Therefore a paramagnetic sensor is used to measure the oxygen 

concentration. It consists of two spheres arranged in the form of a dumbbell suspended 

in a symmetrical, non-uniform magnetic field. When the surrounding gas contains 

oxygen, the dumbbell spheres rotate out of the magnetic field by the relatively strong 

attraction of oxygen. A light beam focused on a mirror attached to the dumbbell reflects 

asymmetrically onto two photo diodes resulting in a voltage shift. The voltage 

difference produces a current used to drive the dumbbell back to the original position. 

The current flow required to maintain the null position is directly proportional to the 

oxygen concentration. 

 An AVL 415 Smoke Meter (0.1% value resolution) for soot measurements. The Smoke 

Meter uses the filter paper absorption method: the shades of gray imprinted on the paper 

are detected and associated to an FSN (filter smoke number) by means of a 

photoelectric meter. 

Investigated fuels 

The investigation focused on the comparison between the reference diesel fuel and two blends 

composed of 90% baseline diesel – 10% POMDME by volume and 95 % baseline diesel – 5% 

POMDME by volume respectively. The POMDME fuel (characterized by the following 

composition: 0.55 wt-% Methylal, 0.07 wt-% Methanol, 0.05 wt-% Ethanol, 41.51 wt% OME2, 

15.5 wt-% OME3, 27.52 wt-% OME4, 8.74 wt-% OME5, 4.58 wt-% OME6, 2.15 wt-% OME7 and 

0.33 wt-% Trioxane) presented an oxygen overall mass fraction of 0.46 g/g, an energy content 

below 22 MJ/kg and a density of 1012.96 kg/m
3
 at 25°C. At the same temperature of 25°C, instead, 

the commercial diesel density is 840 kg/m
3
. Therefore the two investigated blends, denoted in the 

following as 5% POMDME and 10% POMDME, are characterized by an oxygen mass fraction of 

2.74 and 5.44 wt-% respectively. 
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Operating conditions 

The experimental investigation conducted on the single cylinder MTU diesel engine focused on 

exploring the effect of fuel and oxygen concentration at intake on engine out emissions and 

performance. Tests have been performed at 1050 rpm and two BMEP values, 8 and 10.5 bar. Table 

II.VI reports the investigated operating conditions. 

SOI 

[cad atdc] 

O2 at intake 

[%] 

BMEP 

[bar] 

Intake Pressure 

[bar] 

Exhaust Pressure 

[bar] 

Injection pressure 

[bar] 

-12, -9, -6 15, 18 and 21 8 1.5 1 800 

-12, -9, -6 15, 18 and 21 10.5 2 1.5 1000 

Table II.VI: Operating conditions 

A single injection strategy has been chosen for the tests and, in order to fix the BMEP at the 

constant values of 8 and 10.5 bar for fuels characterized by different energy content, the duration of 

injection has been tuned for each fuel. The tuning has been conducted for the conditions without 

EGR and the same injection duration has then been kept for conditions with EGR. 
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Chapter 3 

Experimental Results 

The analysis of the experimental results is shown in the following discussing at first the 

comparison of different oxygenated blends with respect to commercial diesel in a premixed 

combustion mode in order to present which advantages are introduced with oxygenated fuels, which 

ones with the investigated innovative combustion mechanism and which benefits can be achieved 

combining the two aspects. Afterwards the investigation moves to the study of a specific 

oxygenated fuel family characterized by a high molecular oxygen content: the poly(oxymethylene) 

dimethyl ethers. These fuels, their properties and the benefits connected to their use are at first 

analyzed by means of optical techniques in a cylindrical constant volume chamber and, 

subsequently, in a diesel single cylinder engine in order to compare performance and exhaust 

emissions with respect to commercial diesel. 

3.1 Automotive Diesel Engine results 

Rate of heat release analysis 

The discussion of the achieved results is presented starting from the analysis of the 

instantaneous heat release traces, averaged on 250 cycles reported in figures 3.1 - 3.4. The figures, 

displaying the energizing current to the solenoid injector as well, demonstrate as for each 

investigated operating condition, a premixed combustion mode has been attained. Thus the 

discussion mainly focuses on the analysis of fuels characterized by different properties (such as 

cetane number, net heat value, fuel volatility and oxygen content) releasing energy, through a 

premixed combustion mode. The heat release computation has been performed with a simplified 

approach based on the first law of thermodynamics assuming constant gamma (Cp/Cv). The 

assumption allows calculating, from the cylinder pressure signal, the energy released with the 

combustion of the air/fuel mixture and this value includes the fraction that is then dissipated 

through heat losses. The values of rate of heat release (RoHR), reported in the following plots, have 

been calculated as kJ/m
3
deg, being for the specific engine 100kJ/m

3
deg = 31.2 J/deg. Results refer 

to four different operating conditions with two levels of oxygen at intake (17 and 19%) and two 

combustion phasings (CA50=18 and 21 cad atdc) being considered.
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Figure 3.1: Instantaneous rate of heat release traces for the investigated fuels at 

O2int=19%_CA50=18 
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Figure 3.2: Instantaneous rate of heat release traces for the investigated fuels at 

O2int=19%_CA50=21 
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Figure 3.3: Instantaneous rate of heat release traces for the investigated fuels at 

O2int=17%_CA50=18 
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Figure 3.4: Instantaneous rate of heat release traces for the investigated fuels at 

O2int=17%_CA50=21 

As illustrated in the figures above, the management of injection timing and EGR has allowed a 

combustion process characterized only by the premixed peak meaning that the whole amount of fuel 

is introduced in the combustion chamber prior to the start of combustion and allowing an enhanced 

air-fuel mixing. Once auto-ignition conditions are achieved, the entire injected fuel suddenly burns 

causing a high rate of heat release and a short premixed combustion duration (less than 10 cad). It is 

important to underline that the different fuel properties (cetane number, volatility and net heat 
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value) would have determined variability in combustion phasing with the consequent difficulty in 

comparing results from the investigated fuels. For this reason a management of the start of injection 

and injected fuel amount has been performed, achieving, for the different fuels, constant 

combustion phasing and BMEP values. 

Exhaust emission and performance results 

The main result that has to be discussed is the possibility of reducing smoke emissions with the 

adoption of a premixed combustion mode joint with the use of fuels characterized by the presence 

of molecular oxygen and/or low cetane number. With this purpose results of smoke emissions are 

shown in figure 3.5. In order to show the correlation between soot detected at the exhaust and 

cetane number, the different fuels on the x-axis are reported in a specific way (from the one 

characterized by the lowest CN value to the one with the highest). Results show that, for any tested 

fuel, an increase in oxygen at intake, associated with a retarded combustion phasing, determines the 

maximum reduction of smoke emissions. In fact almost smokeless combustion has been achieved 

for the O2=19%_CA50=21 cad atdc operating condition with the different fuels except commercial 

diesel (which determines the highest smoke emission values). 
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Figure 3.5: Smoke emissions from the different investigated fuels 

It is worth to point out that since results from figure 3.5 refer to a premixed combustion mode, 

in order to evaluate exclusively its potential in reducing soot emissions, the same 2500rpm, 0.8MPa 

BMEP and 19% O2 at intake operating condition with commercial diesel has been ran under default 

ECU settings. In this case a multiple injection strategy was activated with a diffusive combustion 
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mode determined and an FSN measured value of more than 1. This means that a significant 

reduction in soot emissions is already achieved with commercial diesel if a premixed combustion 

mode is achieved. As a general result, figure 3.5 indicates that the use of blends composed of diesel-

gasoline or -butanol, determines the maximum reduction in smoke emissions compared to the 

commercial diesel. In order to give an explanation of these trends, an analysis of fuels properties 

and combustion mechanisms has to be conducted. As reported on the x-axis of figure 3.5, G30, G60 

and BU30 show the lowest cetane number which determines a longer ignition delay thus an increase 

of the available time for air/fuel mixing before start of combustion. The correlation between cetane 

number and ignition delay is shown in figure 3.6 where the ignition delay values have been 

calculated as the interval between the start of energizing current to injector solenoid and CA10 

(crank angle degree corresponding to the 10% of total heat release). 
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Figure 3.6: Ignition delay vs fuel blends and CN for the different test conditions 

The figure shows a direct relation between ignition delay decrease and cetane number increase 

and its analysis actually allows to establish a correlation between soot reduction and available time 

for air-fuel mixing before auto-ignition. The comparison in figure 3.5 between commercial diesel 

and alternative fuels confirms that an increasing soot reduction may be achieved by: 

 adding molecular oxygen in fuel blends characterized by similar cetane numbers. This 

is the case of increasing the amount of biodiesel in the diesel – biodiesel blends 

 adopting fuel blends with lower amount of molecular oxygen but higher ignition delay, 

as for the comparison between BU30 (6.5% of oxygen in the molecule – CN = 43.9) 

and B100 (10.5% of oxygen in the molecule – CN = 52.3). 
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 adopting fuel blends with no molecular oxygen but extremely high ignition delay, as 

for G60 which provides the lowest soot emissions for any investigated operating 

condition. 

Moreover, with regard to BU30, it has to be pointed out that, in addition to its molecular 

oxygen which allows a reduction of the locally rich regions responsible for soot formation, its low 

initial boiling point enhances fuel evaporation which is beneficial for mixture homogeneity. 

Regarding biodiesel blends the reduction of aromatic compounds (-80% of Polycyclic Aromatic 

Hydrocarbons  with respect to commercial diesel [85]) further contributes to the lower smoke 

emissions compared to the mineral diesel in accordance to previous results reported in literature 

(e.g. [130]–[134]). 

As a result the investigation has given some indications in the direction of identifying three key 

factors mainly responsible for soot reduction in a premixed combustion mechanism. Firstly, the 

higher ignition delay allows a better air-fuel mixing leading to an enhanced homogeneous mixture. 

The increased mixture homogeneity determines a reduction of locally rich regions where the low 

availability of oxygen leads to decreased oxidation rates. Therefore a second key factor to reduce 

soot emissions has to be oxygen availability within the fuel molecule. In addition a low initial 

boiling point facilitates fuel evaporation leading to enhanced mixture homogeneity.  

Figure 3.7 reports results of NOX emissions for the different investigated fuels. As a general 

result, minor differences have been found between the investigated fuels at fixed operating 

conditions while a decrease of oxygen concentration at intake from 19 to 17% has led to a NOX 

reduction of about 60%. At O2=17%, a later combustion phasing further reduced NOX levels. In 

particular certain discordance is found in literature between authors (e.g. [130], [132], [134]) 

detecting higher NOX values with biodiesel (vs commercial diesel) and authors finding lower ones 

(e.g [131]). In the present activity no significant increase in NOX emissions, attributable to the 

biodiesel molecular oxygen (nor to the n-butanol one) has been detected. 
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Figure 3.7: NOX emissions from the different investigated fuels 

A similar trend, with respect to the other fuels, was also observed for G30 while G60 produced 

higher NOx levels for any tested condition. To explain this behavior in-cylinder temperature 

profiles have been reported in figure 3.8. The plot refers, as an example, to the 

O2=17%_CA50=21cad atdc test case highlighting the highest peak temperature, responsible of NOX 

increase, achieved with G60. 
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Figure 3.8: Combustion temperatures for the investigated fuels at O2int=17%_CA50=21 
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Finally, to highlight the operative conditions determining the maximum reduction of both NOX 

and particulate matter, NOX on the y-axis and FSN on the x-axis are reported in figure 3.9. The 

figure clearly shows as the best results correspond to the scatters in the bottom - left corner and that 

the maximum reduction of both soot and NOX is associated to diesel-gasoline blends operating at 

the CA50=21_O2=17 condition (blue scatters). 
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Figure 3.9: NOX Smoke trade-off for the different fuels 

It has been underlined that, for fuels characterized by different lower heating values, the 

injection timing has been tuned for each fuel and operative condition in order to keep a constant 

BMEP of 0.8MPa. The tuning results in the variation of break specific fuel consumption reported in 

figure 3.10. As expected, for any investigated fuel, because of lower temperatures during 

combustion an increase in BSFC is noticed at retarded combustion phasing (from 18 to 21 cad atdc) 

or decreased oxygen concentration at intake (from 19 to 17%). Increased BSFC means more fuel to 

be injected in order to keep a constant BMEP of 0.8MPa and thus a lower combustion efficiency. 

The lowest values of BSFC, for any operating condition, have been achieved with commercial 

diesel because of its high net heating value (NHV = 43 MJ/kg) while the highest ones have been 

obtained with B100. In fact, RME (B100) is characterized by a low NHV (~37 MJ/kg) thus a higher 

amount of fuel must be injected in order to achieve the same output power. As expected, results 

underlined as a combustion phasing plus EGR management is required in order to achieve a BSFC 

optimization. 



Chapter 3 Experimental Results 

67 
 

G30 G60 BU30 B30 B60 B100 Diesel

210

220

230

240

250

260

270

280

290

300

B
S

F
C

 [
g

/k
W

h
]

 CA50=18_O2=19   CA50=21_O2=19

 CA50=18_O2=17   CA50=21_O2=17

 
Figure 3.10: BSFC from the different fuels 

From the comparison of the investigated fuels net heating values, it is clear that a different 

amount of released energy may be expected from them. In order to give a further analysis of the 

different fuels behavior and show a comparison which could be considered fairer with respect to the 

different fuels, figure 3.11 reports thermal efficiency (TE) values. It has been calculated as  

TE =
1

BSFC ∗ NHV
 

and indicates how efficiently energy conversion is accomplished. In this case the maximum values 

are given by B60, B100 and commercial diesel, in particular for the O2=19%_CA50=18 cad atdc 

test case. It is interesting to highlight that, at reduced percentage of O2 at intake (17%), the B60 

blend provided the best result denoting the positive contribution given by the oxygen within the 

blend. 
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Figure 3.11: Thermal efficiency from the different fuels 

Combustion noise, evaluated as the peak value of the in-cylinder pressure trace first-derivative, 

is a further important parameter which has to be taken into account when comparing different fuels. 

Results are shown in figure 3.12 and the lowest values are achieved with G60, while the different 

biodiesel blends and BU30 gave the highest ones. Instead with regard to the operative conditions, 

the effect of combustion phasing retard and increased EGR (which contributes to prolong the 

ignition delay) determine a strong reduction of the combustion noise peak. This fact is related to the 

development of combustion mainly during the expansion stroke, leading to a softer in-cylinder 

pressure rise and lower peak. Although the combustion phasing retard may be an effective control 

factor for reducing the combustion noise peak, it is limited by poor cycle-to-cycle stability. It is 

worth to underline that the high values displayed in figure 3.12 are explained considering that a 

single injection strategy has been fixed for the investigation in order to better achieve a premixed 

combustion mode. One of the issues, though, related to this injection strategy linked to a PCCI 

mode, which determines a simultaneous ignition of the whole injected fuel, is indeed high 

combustion noise. 
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Figure 3.12: Combustion noise from the different fuels 

Finally figure 3.13 shows the correlation between combustion noise and the crank angle degree 

at which the maximum value of the in-cylinder pressure trace first-derivative is achieved. The 

figure strengthens the combustion noise reduction (highlighted by the direction of the arrows) 

associated to increased EGR and retarded combustion phasing. 
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3.2 Cylindrical constant volume chamber results 

The results presented in the first part of the activity have given some indications in the direction 

of associating an important role for soot reduction to the adoption of a premixed combustion mode 

thus to the available time for air/fuel mixing. In order to isolate the contribution of molecular 

oxygen with regard to soot reduction, the discussion is continued analyzing several highly 

oxygenated fuels in a diffusive combustion mode, which produces high soot levels. The 

investigation is conducted in an optically accessible constant volume chamber in order to apply 

optical techniques suitable for the study of combustion evolution and soot formation and oxidation 

processes. Moreover a fast particle spectrometer at the chamber exhaust is used in order to analyse 

the soot emissions from the different investigated fuels. Results are discussed in two sections: a first 

section for the optical results and a second section for exhaust measurements comparing the 

different oxygen content effect on soot emissions.  

Optical results 

The investigation focuses on the impact of different oxygen content on flame temperature and 

soot formation/oxidation processes through the 2D2CP technique with the calculation of the kL 

factor. The four investigated fuels, for this specific comparison, are OME2 pure (oxygen content: 

45.3% in mass), OME2-50%, OME2-30% and OME2-5%. The three blends present an oxygen 

content of about 24.4, 14.8 and 2.6% in mass respectively. Results from pure OME2 are not shown 

because no soot was optically detected for any investigated operating condition, meaning that the 

particulate matter from pure OME2, if any, is below the detection threshold of the technique. For 

each fuel four different temperatures at SOC (1150K, 1010K, 960K and 830K) have been 

considered. The results for the highest temperature at SOC are reported in figures 3.14 (rate of heat 

release and energizing signal to piezo injector) and 3.15 (kL factor and energizing signal to piezo 

injector). The energizing curves in figure 3.14 show longer injection duration for higher oxygen 

content of the blend to keep the total injected energy constant. The effect on the heat release rate 

results in a lower and later peak for higher oxygen content. However, the late-phase combustion 

after end of injection is apparently faster. 
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Figure 3.14: RoHR and energizing signal to the piezo injector (start at time 0) for OME2-50%, 

OME2-30% and OME2-5% at 1150K@SOC 

A first evidence from figure 3.15 is that increasing the oxygenated fraction in the blend, a 

massive reduction of the peak at end of the soot formation dominated phase is achieved. This first 

phase is followed by a second formation/oxidation phase in which soot formation and oxidation 

processes roughly cancel each other out. OME2-5% shows the shortest duration of this process 

because it is characterized by the shortest injection duration. Finally, during the third, oxidation 

dominated phase, temperatures rapidly decrease and flame luminosity falls below the minimum 

detectable value. The second peak, corresponding to the end of the balanced soot 

formation/oxidation phase, particularly showed by the OME2-30% blend, is correlated to a decrease 

in lift-off length which brings the flame luminosity backwards towards the injector tip with an 

increase of the soot formation area. The lift off length is affected by temperature and fuel oxygen 

content. In a constant volume chamber, with the lack of expansion, shorter lift off lengths with 

increasing injection durations are expected. This explains the presence of the peak corresponding to 

the end of the balanced soot formation/oxidation phase particularly for the blends, characterized by 

longer injection duration because of their lower energy content. 
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Figure 3.15: kL factor and energizing signal to piezo injector (start at time 0) for OME2-50%, 

OME2-30% and OME2-5% at 1150K@SOC 

Figure 3.16 and 3.17 display the results at the second temperature at SOC, 960K. This 

temperature determines still relatively high flame luminosity for the OME2-5%. The OME2-50% 

blend, instead, shows a significantly shorter soot formation + oxidation process with respect to the 

OME2-5% blend meaning that the increased oxygen content is determining an almost complete 

breakdown of soot formation. The different adiabatic flame temperature, number of C-C bonds and 

local air fuel ratio are all correlated to soot formation reduction, determining a non-linear relation 

between soot formation dominated phase decrease and fuel oxygen content increase. 
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Figure 3.16: RoHR and energizing signal to piezo injector (start at time 0 for OME2-50%, OME2-

30% and OME2-5% at 960K@SOC 

 

Figure 3.17: kL factor and energizing signal to piezo injector (start at time 0) for OME2-50%, 

OME2-30% and OME2-5% at 960K@SOC 
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Figure 3.18: RoHR and energizing signal to piezo injector (start at time 0) for OME2-50%, OME2-

30% and OME2-5% at 830K@SOC 

 

Figure 3.19: kL factor and energizing signal to piezo injector (start at time 0) for OME2-50%, 

OME2-30% and OME2-5% at 830K@SOC 

Finally figures 3.18 and 3.19 report RoHR and kL factor curves for the lowest temperature at 

SOC, namely 830K. In this condition the ignition delay for each of the three blends results to be 

higher thus leading to a high fraction of premixed combustion, as shown in the figure. In fact, in 

this case, a single high pressure peak for each of the three blends is noticeable. The higher amount 

of time provided to the air/fuel mixing process strongly contributes to further reduce the locally rich 
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regions in the combustion chamber. As a result, both OME2-50% and OME2-30% show no soot 

formation while only a very weak kL factor is still characterizing the OME2-5% blend. 

Therefore the analysis of figures 3.14 to 3.19 permits to highlight that a first key factor to 

decrease soot formation is related to the fuel oxygen content, independently from temperature. In 

[135] though, the authors state that fuel oxygen content becomes an important parameter only for a 

same chemical family while there is no absolute relationship between PM reduction and global fuel 

oxygen content when different chemical families of oxygenated fuels are considered. The authors 

compared different oxygenated compounds (ethers, acetals, polyacetals and carbonates) blended in 

diesel (5% in volume) and found a maximum reduction in PM emissions of less than 20%, with 

respect to a reference diesel fuel, for carbonates while ethers provided a reduction of less than 5%. 

In conclusion the authors found that the choice of the oxygenated compound is more important than 

only adding oxygen to diesel fuel. In comparison with [135], the present study provided results for 

an oxygenated compound characterized by no C-C bonds (each compound tested in [135] was, 

instead, characterized by several C-C bonds), fact that strongly reduces the tendency to soot. 

In addition the effect of a higher temperature at start of combustion is related to enhanced soot 

formation and oxidation processes. This results in higher kL peaks at end of the soot formation 

dominated phase and increased slope of the soot oxidation dominated phase. Finally a reduction of 

temperatures @ SOC determines an increase in ignition delay with higher premixed combustion 

fraction. As a consequence, an enhanced air-fuel mixing before start of combustion with reduction 

of locally rich regions and soot formation is achieved. 

For the same blends, at 1150K and 1010K @SOC, figures 3.20 and 3.21 show the evolution of 

one of the eight jets from the piezo injector. The evolution is seen in the image of the jet at 1.4 ms, 

2.2 ms and 3.5 ms after start of injection (SOI). These three timings represent an early phase of 

combustion, an instant around the maximum soot formation timing and a relatively late phase of 

combustion respectively. The images from the two blends are overlapped, subtracted from each 

other and contoured by a red line for the OME2-5% blend and a blue line for the OME2-50% one. 

This means that white areas within both the red and blue contours state an equal intensity from the 

two blends. At any timing after SOI, the OME2-50% blend shows a far smaller area of soot 

formation, perfectly overlapped only for the first two timings. In fact at 3.5 ms after SOI, the 

combustion process relative to the OME2-5% blend has spread at annulus shape giving no more 

chance to detect the fuel jet while for the OME2-50% blend it is still visible. This inequality is due 

to the different injection duration characterizing the two fuels. 
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Figure 3.20: Overlapping of fuel jet for OME2-5% (contoured in red) and OME2-50% (contoured 

in blue) at 1150K@SOC and 1.4, 2.2 and 3.5 ms after SOI 

 

Figure 3.21: Overlapping of fuel jet for OME2-5% (contoured in red) and OME2-50% (contoured 

in blue) at 1010K@SOC and 1.4, 2.2 and 3.5 ms after SOI 

The same scenario is shown in figure 3.21, which reports results for the 1010K at SOC operating 

condition. Same considerations stated for figure 3.20 are still valid in this last case. In addition a 

comparison between same timings and fuels from figures 3.20 and 3.21 allows to evaluate the effect 

of a lower temperature at SOC on soot formation. Each area contoured in red or blue in figure 3.21 
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is smaller than the corresponding one in figure 3.20 meaning that the kL factor is decreasing with 

lower temperatures. 

The following figures will show luminosity at 309±5 nm wavelength (OH-peak in the emission 

spectrum) results for pure OME2 and OME2 in diesel blends with the aim of following the 

evolution of combustion precursors. Each figure displays 4 images (representing only one quarter of 

the cell), one for each investigated fuel, at a specific temperature at SOC. The images in each figure 

are shown in clockwise layout from highest to lowest fuel oxygen content. Figure 3.22 reports the 

results for 1150K, figure 3.23 shows the 960K condition and figure 3.24 the 830K. In order to 

improve the images visibility, three different luminosity scales (count of all pixel is taken as unit) 

are selected for the three different temperatures at SOC. If the different scales are taken into 

account, it clearly appears how the luminosity at 309±5 nm wavelength is temperature dependent. 

In addition, the images from the blends (increasing brightness with lower percentage of oxygenated 

fuel) are characterized by a higher luminosity with respect to pure OME2. This effect is probably 

coming from soot (emitting all over the spectra) which emits even at 309 nm, covering, in this way, 

the OH signal. This means that the only fuel from which information on combustion precursors can 

be considered is the OME2 pure. This fuel in fact has shown a soot level below the 2D2CP 

detection sensitivity threshold. 

 

Figure 3.22: Luminosity at 309±5 nm – 1150K@SOC 
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Figure 3.23: Luminosity at 309±5 nm – 960K@SOC 

 

Figure 3.24: Luminosity at 309±5 nm – 830K@SOC 

For this reason a comparison between the integral of OH intensity and the rate of heat release 

over different temperatures at SOC is shown in the next two figures (3.25 and 3.26) only for pure 

OME2. The aim of this comparison is to investigate whether a temperature dependency trend may 

be associated to the variable detected gap between start of heat release and OH signal. Each figure 

displays the OH intensity curve in green, the RoHR in blue and the energizing signal to the piezo 

injector in red. It is worth to underline that a different scale for OH intensity has been set for figures 
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3.25 and 3.26 in order to achieve a better signal visibility. The comparison OH-RoHR shows as the 

delay between start of RoHR and start of OH signal increases with the decreasing temperatures at 

SOC. This means that moving towards a premixed combustion mode temperatures are too low to 

provide a visible OH signal in the earliest phase. For this reason, probably, OH signal appears with 

some delay and is no longer directly correlated to the RoHR signal, as it was instead at high 

temperatures @ SOC. 

Figure 3.25 shows two “hot” conditions (1150K and 1010K at SOC) in which a good 

correlation between RoHR and OH signal is noticeable. On the other hand, figure 3.26 shows two 

“cold” conditions (930K and 830K at SOC) in which an increasing delay of OH signal with 

decreasing temperature at SOC is observed. 

 

Figure 3.25: OH chemiluminescence 1150K and 1010K @ SOC for pure OME2 
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Figure 3.26: OH chemiluminescence 930K and 830K @ SOC for pure OME2 

Exhaust results 

In order to compare exhaust emissions results from the different investigated fuels, a 

Cambustion DMS 500 fast particle spectrometer has been used. For each fuel the exhaust emission 

values presented in the following are normalized to the one of commercial diesel at 1010K@SOC. 

Figure 3.27 reports normalized soot values vs fuel oxygen content of the investigated fuels at the 

operative condition of 1010K@SOC. Error bars have been inserted in the figure in order to take 

into account the relatively high values of cycle to cycle variation provided by the measurements. 

The figure shows as an increase in fuel oxygen content determines always a decrease in soot 

emissions. It is worth to underline as the soot emissions reduction is not linear with the oxygen 

content increase, as reported in [135]. In fact since the different investigated fuels are characterized 

by a different adiabatic flame temperature, number of C-C bonds and local air fuel ratio (parameters 

correlated to soot formation), a linear correlation soot reduction – oxygen content may not be 
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expected. Pure OME2 and OME2/3/4 basically show an almost smokeless combustion while still 

some soot mass is detected with OME1. 
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Figure 3.27: Normalized Soot Mass for the investigated fuels at 1010K @ SOC 

A remarkable result, though, is related to OME2-5%: a 2.6 % oxygen content in the blend 

already leads to a reduction of about 30% in soot mass. This result, higher than that provided from 

the 5% oxygenated compounds in diesel tested in [135], is probably explained because of the 

absence of C-C bonds in OME2, which reduces the tendency to soot leading to a higher PM 

reduction. 

Figure 3.28 reports the comparison of OME2, OME2/3/4 and the OME2 blends at different 

temperatures at SOC. The yellow arrows indicate the direction of soot reduction with respect to 

temperature at SOC. OME2 and OME2/3/4 lead to a reduction of more than 85% with respect to the 

reference diesel for any operating condition. The effect of temperature at start of combustion has to 

be analyzed in two different ranges: a slight trend (within the repeatability, error bar, of the 

measurements) towards higher exhaust soot with lower temperature is visible down to 960K. In 

fact, in accordance with literature, a decrease in temperature determines a decrease in soot 

formation on one hand but a slower oxidation process on the other hand [17]. As a result, an overall 

slight increase of soot detected at the exhaust is observed. A further decrease in temperature (960K 

to 830K), instead, determines, for all the investigated fuels, the transition towards a partially 

premixed combustion mode which permits a massive reduction in soot emissions due to reduced 

mass fraction burnt during diffusive combustion, as shown in the figure. It is worth to underline that 

no direct link may be established between the peak in soot emissions at exhaust (given by soot 
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formation – soot oxidation) described within figure 3.28 at 960K@SOC and the soot formation 

zone in the well-known -T diagram (i.e. in [20]). 

 

Figure 3.28: Normalized Soot Mass: OME2/3/4, OME2 pure and OME2 in diesel blends at 

different temperatures @ SOC 

Moreover, a comparison of particle concentration with respect to particle diameter for OME2-

5% and OME2 pure is reported in logarithmic scale in figure 3.29 which refers to a temperature at 

SOC of 1150K. In order to show the particle concentration of the two fuels on a single scale, a 

break on the y-axis has been introduced. The main difference which clearly appears comparing the 

two fuels is that the pure oxygenated fuel produces no particles bigger than 50 nm (diameter) while 

the combustion of OME2-5% shows a minor number of presumably volatile particles up to 20 nm 

(since no volatile particle remover was used) and larger particle agglomerations, up to 500 nm. This 

means that even for pure oxygenated fuels the first nucleation phase of the soot formation process 

takes place but the following agglomeration phase is strongly reduced. This effect is most probably 

due to the molecule oxygen content which could then oxidize the “new born” nucleation cores. In 

addition, as reported in [136] the larger particles from OME2-5% (bigger than 50 nm diameter) act 

as a sponge during the agglomeration phase thus reducing the total number of particles, even though 

the total mass is increased with respect to OME2 pure. Instead OME2 is characterized by volatile 

particles up to 20 nm and solid particles, in the range 20-50 nm, which determine most of the 

contribution to mass from it. It is worth to underline that no volatile particle remover has been used 

since their contribution to the total mass is very low. 
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Figure 3.29: OME2-5% and OME2 pure at 1150K @ SOC: particle concentration 

The discussed results demonstrated, among other, as a massive reduction of the soot formation 

dominated phase is achieved when increasing the oxygenated fraction in the blend and that an 

addition of just 5% of oxygenated fuel within commercial diesel permits a reduction in soot 

emissions of about 30%. With particular reference to the OME2/3/4 mixture, characterized by an 

oxygen content of 46.8%wt, the achieved soot reduction, with respect to commercial diesel, is more 

than 95%. Since this fuel is characterized by similar physical properties to diesel thus not requiring 

substantial modifications to the engine infrastructure, it could be therefore produced on industrial 

scale to be blended with conventional diesel. In this way the blend could to take the advantages of 

both fuels: diesel high energy content and OME2/3/4 strong capability of reducing soot formation. 

Since the presented activity provided a deeper knowledge of the oxygenated fuel effect on soot 

formation/oxidation process but not a complete overview of the impact of an industrial scale 

producible OME-diesel blend on a compression ignition engine, results of a further investigation 

conducted on a single cylinder “heavy duty” direct injection diesel engine are shown in the 

following. The aim is to examine achievable engine performance and exhaust emissions taking into 

account nitrogen oxides, unburned hydrocarbons, carbon monoxide and carbon dioxide as well. A 

10% OME2/3/4 in diesel blend is considered for the investigation. 
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3.3 MTU single cylinder engine results 

Exhaust emission and performance results 

Since fuels from the POMDME family (with n>2) are characterized by similar physical 

properties with respect to commercial diesel, thus not requiring substantial modifications to the 

engine infrastructure, an industrial scale production could be desirable to obtain blends with diesel. 

In this way they could take the advantage of diesel high energy content and POMDME capability of 

reducing soot formation. The experimental work conducted on the MTU single cylinder “heavy 

duty” direct injection diesel engine aimed at examining achievable engine performance and exhaust 

emissions. Results for the 8 bar BMEP condition are presented in a first section, while the 10.5 bar 

BMEP one is discussed in a second section. 

Figure 3.30 shows smoke results for the investigated fuels at BMEP=8 bar for the different O2 

contents at intake and start of injection. As expected, for any operating condition, a decrease in 

smoke emissions is noticed with decreasing EGR and increasing oxygen content of the blend. In 

addition, the figure reports the average soot reduction values (with respect to commercial diesel) 

obtained with 5% POMDME and 10% POMDME over the whole experimental campaign at 

BMEP=8 bar, 19.7 and 31.4% respectively. 
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Figure 3.30: Diesel, 5% POMDME and 10% POMDME - Smoke emissions @ BMEP=8bar 
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No significant difference in smoke emissions is detected, instead, for the different starts of 

injection, probably because of the comparable premixed - diffusive combustion mode ratio achieved 

over the selected SOIs. 

With respect to NOX emissions (figure 3.31), a similar behavior of the different fuels in 

operating conditions with EGR has been observed. This allows stating that the recirculation of 

exhaust gases determines the major variation of this pollutant and low NOX values are achieved 

even with fuels containing molecular oxygen. An increase in NOX emissions, especially with the 

10% POMDME, has been though detected under zero EGR operating conditions. 
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Figure 3.31: Diesel, 5% POMDME and 10% POMDME - NOX emissions @ BMEP=8bar 

In order to analyze the trade-off Soot NOX for the different investigated fuels, results are 

reported in figure 3.32. The condition allowing the best compromise between the two pollutant 

species is the intake O2=18% one. Within this condition, the figure clearly shows as the adoption of 

the oxygenated blends allows a reduction in soot associated with no significant increase in NOX, 

thus achieving a better trade-off. In order to further understand the behavior of the different 

investigated fuels for the intake O2=18% condition (being the most interesting one), heat release 

curves are shown in figure 3.33 for the SOI=-12 cad atdc case. The same considerations, though, 

are still valid for the other SOIs. The curves show a similar profile both in the premixed and 

diffusive combustion phase allowing to consider that the addition of the oxygenated fraction does 

not introduce deep modifications in the ignition delay, combustion behavior and combustion 

efficiency, as will be further discussed in the following. This explains the similar NOX emissions, 
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shown in figure 3.32 even though, the presence of molecular oxygen allows, for the blends, a 

reduction in smoke emissions. In addition, it is worth to observe from figure 3.33, as the final part 

of diffusive combustion (from 370 cad atdc) seems to be slightly faster for the blends. This fact has 

to be connected with the higher oxygen fraction which enhances the oxidation process. 
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Figure 3.32: Diesel, 5% POMDME and 10% POMDME – Smoke NOX trade off @ BMEP=8bar 

 

Figure 3.33: Diesel, 5% POMDME and 10% POMDME – Rate of heat release curves 

@BMEP=8bar, intake O2=18% and SOI=-12 cad atdc 
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The discussion continues proposing the analysis of products of incomplete combustion, namely 

unburned hydrocarbons and carbon monoxide, to observe weather oxygenated blends could lead to 

a worsening of combustion efficiency. Results are reported in figures 3.34 (HC) and 3.35 (CO). HC 

emissions show no clear trend associable neither to the particular fuel nor to the specific operating 

condition. Therefore the only conclusion that can be drawn from results in figure 3.34 is related to 

the fact that the investigated oxygenated fuels did not determine an average increase of HC with 

respect to commercial diesel. 
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Figure 3.34: Diesel, 5% POMDME and 10% POMDME - HC emissions @ BMEP=8bar 

On the other side CO emissions, shown in figure 3.35, display a clear increasing trend associated 

to higher EGR rates and retarded SOIs but, once more, not to the particular investigated fuel. In 

conclusion, it is possible to state that no significant decay of combustion efficiency, at least for the 

BMEP=8 bar condition, has been introduced operating the engine with the 5% POMDME nor the 

10% POMDME blends. 
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Figure 3.35: Diesel, 5% POMDME and 10% POMDME - CO emissions @ BMEP=8bar 

Results of break specific fuel consumption for the different investigated fuels are discussed in 

figure 3.36. The low energy content of the oxygenated fuels (less than 22 MJ/kg) determine, for the 

two investigated blends, a higher amount of fuel that has to be introduced in the system in order to 

achieve the same power output. Therefore, fuel economy could be the main reason for considering, 

in a hypothetical industrial scale production, 10% POMDME as a maximum percentage to be 

blended in commercial diesel. Figure 3.36 reports BSFC trends with respect to the different fuels 

and operating conditions as well as the average increment (with respect to commercial diesel) 

detected with 5% POMDME and 10% POMDME, 2.2 and 4 wt-% respectively (considering the 

whole experimental campaign at 8bar BMEP). In addition, an increase in BSFC is shown for any 

investigated fuel when retarding the start of injection from -12 to -6 cad atdc because of a lower 

efficiency due to a higher fraction of the combustion process taking place during the expansion 

stroke. Finally, an increase in BSFC, as expected, is even noticed with increased EGR rates. 
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Figure 3.36: Diesel, 5% POMDME and 10% POMDME – BSFC @ BMEP=8bar 

Moreover, in order to further discuss the behavior of the different fuels towards combustion 

efficiency, figure 3.37 reports values of CO2 measured at the exhaust. CO2 emissions, which give 

indications on the efficiency of the combustion process, range on similar values for the different 

fuels and SOIs. This confirms, as previously stated, that no decrease in combustion efficiency is 

introduced with the oxygenated blends while an increase in EGR leads to more CO2 detected at the 

engine exhaust. 
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Figure 3.37: Diesel, 5% POMDME and 10% POMDME – CO2 emissions @ BMEP=8bar 
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Experimental tests have been conducted, for the different fuels, with a fixed intake pressure and 

injection pressure while a slight variation in injection duration has been considered in order to keep 

the BMEP constant. Therefore, the presence of molecular oxygen in the 5% POMDME and 10% 

POMDME blends seems to be associable, for any operating condition, with an increase in oxygen 

detected at the engine exhaust (figure 3.38). As a conclusion, the higher oxygen availability 

provided by the blends, could allow operating at higher EGR levels, with respect to commercial 

diesel, still maintaining a constant value of oxygen detected at the exhaust. 
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Figure 3.38: Diesel, 5% POMDME and 10% POMDME – Exhaust O2 @ BMEP=8bar 

The second part of this section discusses the main results achieved at the higher investigated load 

condition, 10.5 bar BMEP. The discussion focuses on smoke, NOX and BSFC results while the 

other pollutants are not shown being still valid the observations discussed for the 8 bar BMEP load. 

As shown in figure 3.39, a reduction in soot emissions has been achieved, even at this higher load, 

for any operative condition when adopting the 5% POMDME and 10% POMDME blends. An 

average soot reduction (with respect to commercial diesel) over the whole experimental campaign 

at BMEP = 10.5 bar has been calculated for the two blends and the result shows that almost 35% of 

soot reduction is achieved with the 10% POMDME blend while more than 10% reduction is 

obtained with the 5% POMDME one. In addition, as discussed for the 8 bar BMEP load, still no 

significant difference in smoke emissions is detected for the different starts of injection. At 10.5 bar 

BMEP though, just a minor decrease in soot is noticed when moving from the 18% O2 at intake 

condition to the zero EGR one probably because of the effect of higher temperatures favorable for 
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soot oxidation. A further increase in EGR, though determines a massive increase in soot for any 

investigated fuel. In fact, the 15% O2 at intake condition determines a substantial reduction of 

combustion temperatures because of the high amount of inert gas introduced in the cylinder. As a 

consequence NOX emissions are almost completely removed, as shown in figure 3.40 but the soot 

oxidation phase is strongly affected with unacceptable soot values detected at the exhaust. 
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Figure 3.39: Diesel, 5% POMDME and 10% POMDME - Smoke emissions @ BMEP=10.5bar 
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Figure 3.40: Diesel, 5% POMDME and 10% POMDME - NOX emissions @ BMEP=10.5bar 
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Figure 3.40 demonstrates as, even at 10.5 bar BMEP, the investigated oxygenated fuels did not 

lead to significant increase in NOX emissions. 

A trade-off Soot NOX plot is shown, even for the 10.5 bar BMEP (figure 3.41), in order to 

clearly highlight the operating conditions providing the best results. Within the 18% O2 at intake 

condition, which clearly appears to be the best compromise for a reduction in both soot and NOX, 

the most retarded start of injection (-6 cad atdc) allows, for any investigated fuels, a further 

reduction in NOX probably because of the decrease in combustion temperature due to a higher 

fraction of the combustion process taking place during the expansion stroke. 
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Figure 3.41: Diesel, 5% POMDME and 10% POMDME - Smoke NOX trade-off 

@BMEP=10.5bar 

Finally results of break specific fuel consumption for the different investigated fuels are 

discussed in figure 3.42. Once more the lower energy content of the oxygenated fuels forces to 

increase the injected fuel amount in order to achieve a fixed power output value. An average 

increase of 2.3% and 4.3% has been calculated over the whole experimental investigation at 10.5 

bar BMEP for the 5% POMDME and 10% POMDME blends respectively. Despite the observed 

increase in break specific fuel consumption, no significant variation in CO2 at exhaust for the 

different fuels is found (figure 3.43), underlining, once more, as the use of the oxygenated blends is 

not negatively affecting combustion efficiency. 
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Figure 3.42: Diesel, 5% POMDME and 10% POMDME – BSFC @ BMEP=10.5bar 
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Figure 3.43: Diesel, 5% POMDME and 10% POMDME – CO2 emissions @ BMEP=10.5bar 
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Chapter 4 

Conclusions and Outlook 

Previous research on oxygenated fuels has shown the potential of reducing soot emissions from 

diesel engines. In this work, an experimental investigation conducted on several fuels and different 

combustion modes with the aim of providing further insight into the capability of fuel composition, 

molecular oxygen and combustion mode to contribute reducing mainly soot emissions has been 

presented. In the following, the observations from the experimental work are listed and commented. 

Finally, an outlook on how the investigation could be further enriched is proposed. 

Experimental observations 

The experimental investigation has been conducted on a modern automotive direct injection 

Diesel engine at 2500rpm and 0.8MPa BMEP (one of the NEDC operating conditions), exploring 

two combustion phasings (CA50=18 and 21 cad atdc) and two percentages of oxygen at intake (17 

and 19). Selecting a proper injection pressure and timing, a premixed combustion mode has been 

attained for any fuel and the analysis of the impact of physical and chemical properties, such as 

cetane number, net heat value, fuel volatility and oxygen content, on combustion evolution, engine 

performance and exhaust emissions has been carried on, allowing the following observations: 

 Fuel properties have a strong impact on soot emissions. Blends composed of diesel-

gasoline or diesel-butanol determined the maximum reduction in smoke emissions 

compared to the diesel fuel. This result allows to state that, under a premixed combustion 

mechanism with high ignition delay, because of a better air-fuel mixing, homogeneous 

mixture is enhanced and locally rich regions, responsible of soot formation, reduced.  

 No significant difference for NOX emissions has been found between the investigated 

fuels, operating at fixed O2 percentage at intake. This behavior shows that molecular 

oxygen may not lead to an increase in NOX formation under late premixed combustion.  

 Retarded combustion phasing associated with reduced oxygen percentage at intake 

determines a strong reduction in combustion noise, for any tested fuel. This result is 

attributable to the development of the combustion process mainly during the expansion 

stroke leading to a decrease of in-cylinder pressure rise and peak. 
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In order to isolate the contribution of molecular oxygen with regard to soot reduction, the 

experimental work has been continued within a cylindrical constant volume, temperature and 

pressure controlled cell, analyzing several highly oxygenated fuels belonging to the 

poly(oxymethylene)dimethilethers family. The fuels were: Dimethoxymethane (DMM or OME1), 

OME2, a mixture of OME2, OME3 and OME4 and several blends of OME2 in commercial diesel. 

The effect of increasing oxygen content on combustion and soot formation as well as oxidation 

processes has been studied for different temperatures at start of combustion. The activity has been 

conducted focusing on in-cell optical measurements in a first phase and exhaust emission analysis 

in a second phase. Results have been shown for different temperatures at start of combustion and 

demonstrate that: 

 A massive reduction of the soot formation dominated phase when increasing the 

oxygenated fraction in the blend is achieved. 

 2D-2-colour-pyrometry images gave the possibility of determining a specific area of soot 

formation showing its reduction with increasing oxygen content in the blend.  

 A strong dependency of in-chamber soot concentration on temperature at SOC is observed. 

In fact an increase in temperature determines enhanced soot formation (higher kL peaks at 

end of the soot formation dominated phase) and oxidation (increased slope of the soot 

oxidation dominated phase) processes. Instead lower temperatures lead to an increasing 

premixed combustion fraction with a consequent reduction of soot formation.  

 In-chamber flame luminosities of pure oxygenated fuels are extremely diminished in 

comparison with diesel fuel probably because of no contribution from soot radiation. 

Moreover a comparison between the integral of luminosity at 309 nm (OH intensity) and 

the rate of heat release over different temperatures at SOC showed that the correlation 

between start of OH signal and RoHR is dependent on temperatures @ SOC and premixed 

combustion fraction. This means that moving towards a premixed combustion mode, 

temperatures are too low to provide, in the earliest phase, a visible OH signal which is no 

longer directly correlated to the RoHR signal, as it instead at high temperatures @ SOC.  

 Pure oxygenated fuels are characterized by a nearly smokeless combustion and an increase 

of O2 content in blends is associated to a not linear soot reduction. In fact an addition of 

just 5% of oxygenated fuel within commercial diesel permits a reduction in soot emissions 

of about 30%. 

 Further soot reduction could be achieved if operating towards a premixed dominated 

combustion mode. 
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 Particulate matter in oxygenated fuels is characterized by far smaller dimensions with 

respect to those from commercial diesel combustion probably because of an oxidation 

effect on nucleation cores. 

With particular reference to the OME2/3/4 mixture, characterized by an oxygen content of 

46.8%wt, the achieved soot reduction, with respect to commercial diesel, has been more than 95%. 

Since this fuel is characterized by similar physical properties to diesel thus not requiring substantial 

modifications to the engine infrastructure, it could be produced on industrial scale to be blended 

with conventional diesel. In this way the blend could take the advantages of both fuels: diesel high 

energy content and POMDME strong capability of reducing soot formation. Therefore, being blends 

of POMDME in diesel of particular interest for the market, a 5% and a 10% POMDME in diesel 

have been selected for a further investigation conducted on a single cylinder “heavy duty” direct 

injection diesel engine. The experimental work aimed to examine achievable engine performance 

and exhaust emissions taking into account not only particulate matter but nitrogen oxides, unburned 

hydrocarbons, carbon monoxide and carbon dioxide as well. The main conclusions that can be 

drawn from the analysis of the experimental activity are listed in the following: 

 A reduction in soot emissions up to 34% has been detected with the 10% POMDME in 

diesel blend, investigating operating conditions with similar premixed – diffusive 

combustion mode ratios. 

 NOX emissions have not been significantly affected by the adoption of blends containing a 

percentage of oxygenated fuel up to 10%. 

 No significant decay in combustion efficiency has been detected operating the engine with 

the 5% POMDME and 10% POMDME blends. This result is confirmed by similar values, 

detected for the different investigated fuels, both in unburned hydrocarbons, carbon 

monoxide and carbon dioxide. 

 An increase in BSFC has been detected for any investigated fuel when retarding the start of 

injection from -12 to -6 cad atdc and with increased EGR rates because of a lower 

efficiency. In addition, with respect to the comparison commercial diesel – investigated 

blends, a 2.2% and a 4% increase in BSFC has been detected with 5% POMDME and 10% 

POMDME respectively. Therefore fuel economy could be the main reason for considering, 

in a hypothetical industrial scale production, 10% as a maximum percentage of POMDME 

to be blended in commercial diesel. 
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Outlook 

The experimental activity discussed in the present dissertation aimed to bring a further scientific 

contribution to the knowledge on oxygenated fuels properties and their ability of reducing mainly 

soot emissions in diesel engine combustion. Different fuels have been investigated and their impact 

on exhaust emissions evaluated. Even though the presence of molecular oxygen seems to be 

indisputably favorable for soot reduction at the exhaust of diesel engine, it is absolutely not trivial 

to determine which fuels and in which percentages could be blended in commercial diesel in order 

to obtain the maximum benefit in soot emissions without an unacceptable increase mainly in fuel 

consumption. In addition, the adoption of fuels with similar physical and chemical properties with 

respect to commercial diesel allows their use in existing engines without modifications in the 

injection system. Of course fuel economy plays a major role in considering alternative fuels 

production on industrial scale and therefore, even though they appear to be interesting for 

environment protection, further investigation should be carried on in order to determine, in the 

whole range of the engine operative conditions, weather the use of such fuels could be concretely 

proposed on the market. 
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Appendix A 

Nomenclature 

Symbol Description 

A/F 

BaSO4 

BMEP 

BSFC 

C 

CA50 

CCD 

C2H5OH 

C3H7OH 

C4H9OH 

CH3OH 

CH4N2O 

CN 

C-N 

CO 

CRT 

DEF 

DI 

DME 

DMM or OME1 

DOC 

DPF 

DPNR 

ECU 

EGR 

FAME 

FAP 

FSN 

FWHM 

H 

HCCI 

HCN 

H2O 

IMEP 

INCA 

LNT 

LTC 

Air to fuel ratio 

Barium sulfate 

Brake mean effective pressure 

Break specific fuel consumption 

Carbon 

Crank angle at which 50% of injected fuel is burnt 

Charged coupled device 

Ethanol 

Propanol 

Butanol 

Methanol 

Urea 

Cetane number 

Cyanide radicals 

Carbon oxide 

Continuously regenerating trap 

Diesel exhaust fluid 

Direct injection 

Dimethyl ether 

Dimethoxymethane 

Diesel oxidation catalyst 

Diesel particulate filter 

Diesel particulate-NOx reduction system 

Electronic control unit 

Exhaust gas recirculation 

Fatty-acid methyl ester 

Peugeot-Citroen particulate filter system  

Filter smoke number 

Full width at half maximum 

Hydrogen 

Homogeneous charge compression ignition 

Hydrocyanic acid 

Water 

Indicated mean effective pressure 

Integrated Calibration and Measurement System 

Lean NOX trap 

Low temperature combustion 
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Symbol Description 

N 

NDIR 

NDUV 

NEDC 

NH3 

NMHC 

NO 

NO2 

NOx 

O2 

OLP 

OME 

PAH 

PCCI 

PEMS 

PM 

POMDME 

5% POMDME 

10% POMDME 

RDE 

RME 

RME50 

RoHR 

SCR 

SME50 

SOC 

SOI 

SOF 

TBB 

TDC 

TE 

TWC 

ULSD 

VVT 

2D2CP 

 

Nitrogen 

Non-Dispersive Infra-Red  

Non Dispersive Ultra Violet 

New European driving cycle 

Ammonia 

Non-methanic hydrocarbons 

Nitrogen monoxide 

Nitrogen dioxide 

Nitrogen oxides 

Oxygen 

Optical light probe 

Oxymethilethers 

Polycyclic aromatic hydrocarbons 

Premixed charge compression ignition 

Portable emission measurement systems 

Particulate matter 

Poly(oxymethylene)dimethilethers 

5% Poly(oxymethylene)dimethilethers in diesel blend 

10% Poly(oxymethylene)dimethilethers in diesel blend 

Real-driving emissions 

Rapeseed methyl ether 

Blend of 50% in volume of rapeseed oils in diesel 

Rate of heat release 

Selective catalyst reduction 

Blend of 50% in volume of soybean oils in diesel 

Start of combustion 

Start of injection 

Soluble organic fraction 

Black body temperature 

Top dead center 

Thermal efficiency 

Three-way catalysts 

Ultra-low sulfur diesel 

Variable valve timing 

Two dimensional two colour pyrometry 

 



λ 



τ

Emissivity 

Relative air/fuel ratio 

Equivalence ratio 

Transmissivity 

 

https://en.wikipedia.org/wiki/Ultra-Low_Sulfur_Diesel
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