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Summary 

The aim of this thesis is to implement an integrated approach of potential fields 
data analysis, which combines the most employed inversion techniques (Li & 
Oldenburg, 1996; Pilkington, 1997; Zhdanov, 2002; Fedi et al., 2005) with 
multi-scale imaging methodologies (i.e. DEXP from Fedi (2007), or others 
(Fedi and Pilkington, 2012)). 

Such a complementary approach brings two focal benefits: on the one hand, a 
multi-scale analysis will provide us with valuable information, e.g. excess mass 
(magnetization intensity), source shape parameters and source depth, which we 
will use in the inversion algorithms. On the other hand, the imaging methods 
could be extended by defining a density/magnetization model based on various 
type of constraints (density/magnetization contrast, source compactness), as 
usual for inversion algorithms. 

Within the scope of this research work, the first above-mentioned aspect has 
been further investigated, in particular for data coming from “non-simple” 
sources; their multi-scale behaviour and characteristics have been first analysed 
and then transferred into the inversion domain.  

In order to estimate source properties in the multi-scale domain, we referred to 
the DEXP method (Fedi, 2007) among the imaging approaches, while to 
perform 2D constrained inversion, we pertained to Li & Oldenburg algorithm 
(1996), taking into account also the suggestions by Cella et al. (2012). 

We had to adjust both the reference inversion and the imaging methods we 
chose for this research work to make them suitable for the integration: first, 
constraints on source shape, depth and density/magnetization range had to be 
set in the inversion domain. More specifically, we used one of the outputs of the 
DEXP transform, called scaling exponent, as an inversion constrain. 

After defining a preliminary workflow, simple source magnetic anomalies have 
been synthetically generated to test the proposed approach; then, data caused by 
more complex sources have been analysed. Finally, some real data from the 
Bouguer gravity anomaly in the Campanian Plain (Italy) have been examined to 
have a further confirmation of the effectiveness of the method.   

Both tests on synthetic and real data showed that adding, as inversion 
constraints, source information retrieved by a multiscale analysis of the data has 
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a great potential to lead to well-constrained solutions with respect to the source 
depth and to the horizontal variations of the source-density/magnetization 
intensity distribution.   

Throughout the development of the main topic of this thesis, we have also 
expanded our research field inpecting the upward continuation transform of 
potential field data. We got involved in this issue because multi-scale imaging 
methods such as the continuous wavelet transform (Sailhac et al., 2003; Fedi et 
al., 2010; Fedi and Cascone, 2011), the DEXP transformation (Fedi, 2007) and 
the multiridge analysis (Cella et al., 2009) involve potential fields data available 
on a 3D volume, which in turn is generated by upward continuation of data 
measured at a single - flat or draped - surface. 

Fedi and Pilkington (2012) show that multiscale imaging techniques are highly 
influenced by the way the field is upward continued, apart from the depth-
weighting factor. 

Therefore, we defined an alternative approach to upward continue potential 
field data: the VOCO (Volume Continuation), which has important advantages 
above existing techniques and is suitable for all types of data continuation 
between surfaces in the space. VOCO has also been coupled with second order 
horizontal derivatives of gravimetric data to investigate on the estimate of the 
sources horizontal limits changing the field continuation height value.  

Papers regarding the VOCO approach will be introduced in the last chapter and 
attached at the bottom of this text.  
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Introduction 

Discovering and evaluating the potential of oil or gas deposits, or energy and 
environmental resources in general (i.e. minerals and water), requires the 
integration of information gathered from geology, drilling, seismology, EM, 
potential fields and others. The final goal, is, obviously, to gain a good estimate 
of the in place volumes and to plan the discovered resources production in the 
best way. 

Even if seismic reflection is still the primary exploration method of exploring 
for energy, the use of gravity and magnetic methods is continuously expanding, 
thanks to their successful contribution in deeper and more challenging 
environments, such as sub-salt structures and deep sea, to their smaller cost and 
to new powerful methods of analysis and modelling, which are indeed related to 
high-quality and high-resolution data. 

Moreover, information provided by inverting 3D sets of gravity and magnetic 
data can help to refine the targets and so to efficiently define and focus projects 
early on, in order to minimize the risk of investigation before the actual 
potential is defined.  

Additionally, these methods can be successfully, applied in the environmental 
and engineering areas of interest, to assess the size of existing issues and to 
mitigate consequences, for example forecasting polluting fluids movements and 
leading future drilling tests.  

Moreover, measured data, once have been analysed and interpreted, can be used 
as input to model various systems, to prevent future environmental and 
engineering critical situations.  

Two of the most valuable methods to gain relevant information from potential 
field data are inversion and multi-scale imaging methods 

The multi-scale method investigated in this work is the Depth from Extreme 
Points (DEXP) method (Fedi, 2007). The DEXP method is used in potential 
field in order to get a fast imaging of the source distribution and to have 
information about the depth to the source, the structural index, N, and the mass 
or magnetic moment modulus, respectively for gravity and magnetic data (Fedi, 
2007). In particular, this method fits in the framework of semi-automatic 
methods, as Euler Deconvolution method, used in potential field to estimate the 
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source position and N (Reid el al, 1990). N is a source-dependent parameter, 
which corresponds to the fall- off rate of the field with distance for many, but 
not all, ideal sources. A more general meaning of N is that it is the opposite of 
the homogeneity degree of the field.  

On the other hand inversion methods allow deriving the distribution of some 
physical properties of the earth rocks (density or magnetization intensity for 
gravity and magnetic fields data respectively) solving an inverse problem 
starting from measured data. 

In the first three sections of this thesis an overview of the key topics involved in 
this research work will be given: first a general introduction on potential fields 
theory, then the state of art on inversion theory and multi-scaling imaging 
techniques. 

Then the novel approach of multi-scale inversion of potential field data will be 
described, focusing on how multi-scale (even fractional) source-related 
information have been included in the inversion procedure. Several examples of 
single-source and multi-source synthetic data will be analysed, finally real data 
will be also inspected and conclusions settled.  
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1. Potential fields theory 

Gravitational and magnetic fields are both potential fields. In the mass free 
space, potential fields obey Laplace’s equation, which states that the sum of the 
rates of change of the field gradient in three orthogonal directions is zero 
(Kearey et al., 2002). In Cartesian coordinates, Laplace’s equation is: 
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where ϕ refers to a gravitational or magnetic field and is a function of (x, y, z). 

1.1. Gravity field 

The gravitational field is defined in terms of the gravitational potential U: 

r
MU γ

=      (1.2) 

Where γ is the Gravitational Constant, M is the mass of the Earth, and r is the 
distance from the centre of the Earth. 
The first derivative of U in any directions gives the component of gravity in that 
direction  (Kearey et al., 2002). 
The gradient of U is equal to the gravity g: 

Ug ∇=       (1.3) 

So the gravity field g is: 
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Where i, j, k represents unit vectors in the direction of the positive x, y, z axes 
respectively. The gradient of the gravity field g is: 
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In non “mass-free” space: 
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πγρ42 =∇=∇ Ug     (1.6) 

ρ is the density of mass distribution at the point considered. Equation 1.6 is 
Poisson’s equation and describes the potential at all points, even inside the mass 
distribution. Laplace’s equation (1.1) is simply a special case of Poisson’s 
equation valid for mass-free regions of space (Blakely 1996). 
Gravimeters measure the vertical component of g given by: 

z
gg z ∂

∂
=      (1.6b) 

Before the results of a gravity survey can be interpreted it is necessary to 
correct for all variation in the Earth’s gravitational field, which do not result 
from the differences of density in the underlying rocks. The observed gravity is 
the sum of the following components (Blakely, 1996):  

• attraction of the reference ellipsoid (theoretical gravity)  
• effect of elevation above sea level (free air effect)  
• effect of “normal” mass above sea level (Bouguer slab and terrain 

effects)  
• time-dependent variations (tidal and instrumental drift effects)  
• effect of moving platform (Eӧtvӧs effect)  
• effect of masses that support topographic loads (isostatic effects)  
• effect of crust and upper mantle density variations ("geology").  

Our goal is to isolate the last quantity, the effect of crustal and upper mantle 
density variations, from all other terms. This process is referred to as gravity 
reduction. The mean value of gravity at the Earth’s surface is about 9.8 ms-2. 
Variations in gravity caused by density variation in the subsurface are of the 
order of 100 μms-2. In honour of Galileo, the cgs unit of acceleration due to 
gravity (1 cms-2) is the Gal and its sub-units milliGal (1 mGal=10-3 Gals) 
(Kearey et al. 2002). The measurement of gravity gradients is often given in the 
Eötvös unit, which equals 10-4 mGal/m or 0.1 mGal/km. 

1.2. Magnetic field 

Magnetic fields can be defined in term of magnetic potentials in a manner 
similar to gravitational fields. For a single dipole of strength m the magnetic 
potential V at a distance r from the pole is given by: 
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where μ0 and μr are the free space magnetic permeability and the relative 
magnetic permeability of the medium separating the poles respectively (Kearey 
et al. 2002). 
Magnetic field can also be defined in terms of a force field which is produced 
by electric currents. This magnetizing field strength H is defined as being the 
field strength at the centre of a loop of wire of radius r through which a current 
I is flowing such that H=I/2r. 
Materials can acquire a component of magnetization in the presence of an 
external magnetic field. For low-amplitude magnetic fields, say on the order of 
the Earth's magnetic field, this induced magnetization is proportional in 
magnitude and is parallel (or antiparallel) in direction to the external field, that 
is: 

HM i χ=      (1.8) 

The proportionality constant χ is called the magnetic susceptibility (Blakely, 
1996). 
Susceptibility is in essence a measure of how susceptible a material is to 
becoming magnetized (Reynolds, 1997) and is dimensionless. 
The susceptibility χ is related to magnetic permeability  by the following 

equation: 

)1(0 χµµ +=      (1.9) 

where µ0 is the free space magnetic permeability. 
The magnetic permeability µ0 correlates the magnetic induction field B with 
magnetization H: 

HB µ=      (1.10) 

The relationship between M and H is not necessarily linear as implied by 
equation 1.8; χ may vary with field intensity, may be negative, and may be 
represented more accurately in some materials as a tensor. 
There are many kinds of magnetization (Blakely, 1996). 
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Diamagnetism, for example, is an inherent property of all matter. In 
diamagnetism, an applied magnetic field disturbs the orbital motion of electrons 
in such a way as to induce a small magnetization in the opposite sense to the 
applied field. Consequently, diamagnetic susceptibility is negative. 

Paramagnetism is a property of those solids that have atomic magnetic 
moments. 
Application of a magnetic field causes the atomic moments to partially align 
parallel to the applied field thereby producing a net magnetization in the 
direction of the applied field. Thermal effects tend to oppose this alignment, 
and paramagnetism vanishes in the absence of applied fields because thermal 
effects act to randomly orient the atomic moments. All minerals are 
diamagnetic and some are paramagnetic, but in either case these magnetizations 
are insignificant contributors to the geomagnetic field. 

There is, however, a class of magnetism of great importance to geomagnetic 
studies. 
Certain materials not only have atomic moments, but neighbouring moments 
interact strongly with each other. This interaction is a result of a quantum 
mechanical effect called exchange energy. Suffice it to say that the exchange 
energy causes a spontaneous magnetization that is many times greater than 
paramagnetic or diamagnetic effects. Such materials are said to be 
ferromagnetic. There are various kinds of ferromagnetic materials too, 
depending on the way that the atomic moments align. These include 
ferromagnetism proper, in which atomic moments are aligned parallel to one 
another; antiferromagnetism, where atomic moments are aligned antiparallel 
and cancel one another; and ferrimagnetism, in which atomic moments are 
antiparallel but do not cancel. At the scale of individual mineral grains, 
spontaneous magnetization of a ferromagnetic material can be very large. At the 
outcrop scale, however, the magnetic moments of individual ferromagnetic 
grains may be randomly oriented, and the net magnetization may be negligible. 
The magnetization of individual grains is affected, however, by the application 
of a magnetic field, similar to but far greater in magnitude than for 
paramagnetism. Hence, rocks containing ferromagnetic minerals will acquire a 
net magnetization, called induced magnetization and denoted by Mi, in the 
direction of an applied field H, where of course the Earth's magnetic field 
produces the same response in such materials, and the material is magnetic in 
its natural state. In small fields, with magnitudes comparable to the earth's 
magnetic field, the relationship between induced magnetization and applied 
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field is essentially linear, and the susceptibility χ is constant. Induced 
magnetization falls to zero if the rock is placed in a field-free environment. 
However, ferromagnetic materials also have the ability to retain a 
magnetization even in the absence of external magnetic fields. 
This permanent magnetization is called remanent magnetization, which we 
denote here by Mr. In crustal materials, remanent magnetization is a function 
not only of the atomic, crystallographic, and chemical make-up of the rocks, but 
also of their geologic, tectonic, and thermal history. In geophysical studies, it is 
customary to consider the total magnetization M of a rock as the vector sum of 
its induced and remanent magnetizations, that is: 

M = Mi + Mr = χH + Mr    (1.11) 

The relative importance of remanent magnetization Mr to induced 
magnetization Mi is expressed by the Koenigsberger ratio Q: 

i

r

M
MQ =     (1.12) 

These may be oriented in different direction and may differ significantly in 
magnitude. The magnetic effects of a rock arise from the resultant M of the two 
magnetization vectors. 
Magnetic anomalies caused by rocks are localized effects superimposed on the 
normal magnetic field of the Earth. Consequently, knowledge of the behavior of 
the magnetic field is necessary both in the reduction of magnetic data to a 
suitable datum and in the interpretation of the resulting anomalies. The 
magnetic field is geometrically more complex than the gravity field of the Earth 
and exhibits irregular variation in both orientation and magnitude with latitude, 
longitude and time (Kearey et al. 2002). 
Total-field magnetometers are usually the instrument of choice for airborne and 
shipborne magnetic surveys. As the name implies, total-field magnetometers 
measure the magnitude of the total magnetic field without regard to its vector 
direction. 
The total field T is given by: 

T= F + ΔF    (1.13) 

where and F is the geomagnetic field and ΔF represents the perturbation of F 
due to some crustal magnetic source. 
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The total-field anomaly is calculated from total-field measurements by 
subtracting the magnitude of a suitable regional field, usually the IGRF model 
appropriate for the date of the survey. 
If T represents the total field at any point, and F is the regional field at the same 
point, then the total-field anomaly is given by (Blakely, 1996): 

ΔT= |T| - |F|            (1.13b) 

If |F| >> |ΔF| the total field ΔT can be considered as the component of the 
anomalous field ΔF in the direction of F and thus it can be considered a 
harmonic function (e.g., Blakely, 1996). This condition is usually verified in 
crustal magnetic studies. 
The SI unit of magnetic field strength is the tesla (T). The tesla is too large a 
unit in which to express the small magnetic anomalies caused by rocks and 
therefore a subunit, the nanotesla (nT), is commonly used (1 nT=10-9T) (Kearey 
et al. 2002). 
The strength of F varies from about 25000 nT in equatorial regions to about 
70000 nT at the poles (Kearey et al. 2002). 
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2. Potential fields inversion 

The starting place in most inverse problems1 is a description of the data. Since 
in most inverse problems the data are simply a table of numerical values, a 
vector provides a convenient means of their representation. If N measurements 
are performed in a particular experiment, for instance, one might consider these 
numbers as the elements of a vector d of length N. Similarly, the model 
parameters can be represented as the elements of a vector m is of length M. 
 
data:    d = [d1, d2, d3, d4, . . . ,dN]T      

(2.1)  
model parameters:  m = [m1, m2, m3, m4, . . . , mM]T 
 
The basic statement of an inverse problem is that the model parameters and the 
data are in some way related. This relationship is called the model. Usually the 
model takes the form of one or more formulas that the data and model 
parameters are expected to follow. 
The simplest and best-understood inverse problems are those that can be 
represented with the explicit linear equation: 
 

A m = d      (2.2) 
  
The matrix A (with N x M dimension) is called kernel, this equation, therefore, 
forms the foundation of the study of discrete inverse theory. Many important 
inverse problems that arise in the physical sciences involve precisely this 
equation. Others, while involving more complicated equations, can often be 
solved through linear approximations (Menke, 1989).  
The simplest kind of solution to an inverse problem is an estimate mest of the 
model parameters. An estimate is simply a set of numerical values for the 
model parameters.  

One remedy to the problem of defining the quality of an estimate is to state 
additionally some bounds that define its certainty. These bounds can be either 
absolute or probabilistic. Absolute bounds imply that the true value of the 
model parameter lies between two stated values. When they exist, bounding 

1 Much of the content of this section follows the book by Menke (1989), which the reader is 
invited to consult for further details. 

12 
 

                                                 



values can often provide the supplementary information needed to interpret 
properly the solution to an inverse problem (Menke, 1989). 

2.1. Least-squares solution 

When the number of the data (N) is greater than the number of model 
parameters (M) the problem in eq. 2.2 is called overdetermined problem. 
The simplest of methods for solving this kind of problem is based on measures 
of the size, or length, of the estimated model parameters mest and of the 
predicted data dPR = A mest. 
One of the most common measures of length is the least squares method. 
For each observation one defines a prediction error, or misfit, ei = di

obs- di
pre. 

The least square solution is then the one with model parameters that leads to the 
smallest overall error E, defined as: 

∑
=

==
N

i
i

T eeeE
1

2     (2.3) 

The total error E (the sum of the squares of the individual errors) is exactly the 
squared Euclidean length of the vector e. 
Note that although the Euclidean length (Eq. 2.3) is one way of quantifying the 
size or length of a vector, it is by no means the only possible measure. 
Extending the least squares to general linear inverse problem we obtain the least 
square solution of the problem 2.2 (Menke, 1989): 

[ ] dAAAm T1T −
=     (2.4) 

2.2. Minimum length solution 

When the number of the data (N) is less than the number of model parameters 
(M) the problem in eq. 2.2 is called underdetermined problem. 
For these problems it is possible to find more than one solution for which the 
prediction error E is zero.  
To obtain a solution mest to the inverse problem, we must have some means of 
finding precisely one of the infinite solutions with zero prediction error E. To 
do this, we must add to the problem some information not contained in the 
equation A m = d. This extra information is called a priori information and can 
take many forms, but in each case it quantifies expectations about the character 
of the solution that are not based on the actual data (Menke, 1989). 
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The first kind of a priori assumption we shall consider is the expectation that 
the solution to the inverse problem is “simple,” where the notion of simplicity is 
quantified by some measure of the length of the solution. One such measure is 
simply the Euclidean length of the solution: 

∑
=

==
N

i
i

T mmmL
1

    (2.5) 

A solution is therefore defined to be simple if it is small when measured under 
the L2 norm. 
The problem we pose is to  

find the mest  

that minimizes ∑
=

==
N

i
i

T mmmL
1

  

subject to the constraint that e = d – A m = 0  

and we obtain the minimum length solution: 

[ ] dAAAm 1TT −
=     (2.6) 

2.3. Add a priori information 

There are many instances in which L = mTm is not a very good measure of 
solution simplicity. One may not want to find a solution that is smallest in the 
sense of closest to zero but one that is smallest in the sense that it is closest to 
some other value. The obvious generalization of eq. 2.5 is then (Menke, 1989): 

L = (m-m0)T(m-m0)    (2.7) 

Where m0 is the a priori value of the model parameters. 
Sometimes the whole idea of length as a measure of simplicity is inappropriate 
and then we can introduce a weighting matrix Wm that represents our a priori 
information. So the eq. 2.7 becomes: 

L = (m-m0)TWm(m-m0)   (2.8) 

By suitably choosing the a priori model vector m0 and the weighting matrix Wm 
we can quantify a wide variety of measures of simplicity. 

Weighted measures of the prediction error can also be useful. Frequently some 
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observations are made with more accuracy than others. In this case one would 
like the prediction error ei, of the more accurate observations to have a greater 
weight in the quantification of the overall error E than the inaccurate 
observations. To accomplish this weighting, we define a generalized prediction 
error and the eq. 2.3 becomes: 

eWeE d
T=      (2.9) 

where the matrix Wd defines the relative contribution of each individual error to 
the total prediction error (Menke, 1989). 
Now we can define the weighted least squares solution: 

[ ] dWAAWAm d
T1T

d
T −

=     (2.10) 

and the weighted minimum length solution: 

[ ] [ ]0
1T1

m
T1

m0 AmdAAWAWmm −+=
−−−    (2.11) 

If the equation Am = d is slightly underdetermined, it can often be solved by 
minimizing a combination of prediction error (E) and solution length (L), 
(E+μ2L). 
The damping parameter μ is chosen to yield a solution that has a reasonably 
small prediction error. 
The estimate of the solution is called weighted dumped least squares solution: 

[ ] [ ]0d
T1

m
2

d
T

0 AmdWAWAWAmm −++=
−μ   (2.12) 

which is equivalent to 

[ ][ ]0
1

d
2T1

m
T1

m0 AmdWAAWAWmm −++= −−− μ   (2.13) 

2.4. The problem of minimum length solution: depth-weighting fuction 

As we have just said in the previous paragraph, the minimum length solution 
can be defined as the solution for the underdetermined problem. This 
hypothesis on the solution is the first and the most common a priori information 
that can be used and in fact all three algorithm studied use this type of 
constraint.  
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This kind of minimization, without other constraints, provides solutions with 
model parameter values as close as possible to zero. Then, because the kernel 
decays with distance, the minimum length solution will be always concentrated 
near the surface.  

 
Figure 2.1 – 2D magnetization distribution (b) from minimum lenght inversion versus 2D 
magnetization distribution (c) from inversion with depth-weighting factor equal to 2. Both results 
are obtained inverting the magnetic anomaly in (a) generated by an infinite dipoles line placed at 15 
m depth with unitary vertical magnetization. 

In Fig. 2.1 we show a simple example of minimum length inversion of a 
magnetic field (Fig. 2.1a) generated by a synthetic model composed by an 
infinite dipoles line at x = 100m, and z = 15 m, with 1A/m magnetization. The 
3D source domain was discretized with 200x30 cells, each sized 1x1 m2. We 
assumed a vertical direction for both the inducing field and the magnetization 
vector.  
The minimum length solution is shown in Fig. 2.1b and, as predicted above, the 
density distribution is concentrate near the surface.  
This kind of density distribution does not depend on the characteristics of the 
observed data, but is a direct consequence of the supplied a priori information. 
To avoid this too strong influence of the minimum length hypothesis, we need 
to introduce more a priori information. Li and Oldenburg (1996) were the first 
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that studied this problem and introduced a depth-weighting function able to 
counteract the natural decay of the kernel in A: 

( )β
0

1
zz

wz +
=     (2.14) 

where z is the depth of each layer in the 3D model and the value of z0 depends 
upon the observation height and cell size (Oldenburg and Li, 2005). Li and 
Oldenburg propose to use for β a value equal to 3 in the magnetic case (Li and 
Oldenburg, 1996) and equal to 2 in the gravity case (Li and Oldenburg, 1998), 
assuming 3 and 2 as the rate decay of the magnetic or gravity field of a single, 
small, cubic cell. 
Oldenburg and Li (2005) later suggested that the exponent value used in a 
particular inversion could be chosen, by finding the best performance of 
different exponent values applied to trial inversions of synthetic data from 
forward models similar to the expected solution.  
In Fig. 2.1c we show the solution obtained using the depth-weighting function 
(eq. 3.1): the depth of the center is now correctly estimated.  

Cella et al. (2012) showed instead that the appropriate value of β must be 
related to N, the structural index of the source (Table 1), rather than to the 
power-law decay of the field generated by a single cell.  

Source N (grav) N (mag) 
Point mass or dipole sources, spheres 2+k 3+k 
Line or masses of dipols, infinite cylinder 1+k 2+k 
Semi-infinite plane, thin dike, sill 0+k 1+k 
Contact -1+k 0+k 

Table 1 – Structural Index (k = order of differentiation) 

The structural index may be, in turn, estimated with standard methods such as 
Euler Deconvolution or the study of the scaling function (Fedi, 2007; Florio et 
al., 2009; Barbosa et al., 1999; Fedi and Florio, 2006). In chapter 3 we will see 
in detail how to estimate the structural index from the scaling function and how 
it is connected to the DEXP imaging method.  
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2.5. Inhomogeneous depth-weighting 

Cella and Fedi (2012) showed that to obtain a correct estimate of depth to 
source in the inversion of undetermined problems it is necessary to use a depth-
weighting function as proposed by Li and Oldenburg (1996, 1998) with an 
exponent β equal to the correct structural index (N) of the source. 

We will now analyse the case of a field generated by sources with different 
structural indexes. This is a very important case, because it is the most common 
situation in real data. In this case, there is not a unique value for β allowing us 
to obtain a correct depth estimation for all sources. 
The results are computed using the inversion algorithm from Li and Oldenburg 
(2003), which will be described in more details in paragraph 2.6.  

In Fig. 2.2a a simple two source magnetic synthetic field is shown. The two 
sources are a infinite dipoles line (N=2), at x = 70 m and z = 15 m, with 1.5 
A/m intensity of magnetization and a vertical dyke (N=1) centered at x = 130m 
and z = 15 m (top of dyke) with with 0.5 A/m intensity of magnetization. The 
2D source domain was discretized as 200x30 cells, each sized 1x1 m2.  
The correct value to use as depth-weighting exponent β is 2 for the dipoles line 
source and 1 for the dyke.  
The inversion solution obtained using β =1 is shown in Fig. 2.2b while setting β 
=2 we obtain the result in Fig. 2.2c. Using β =2 we correctly estimate the 
dipoles line depth, but the depth to top of the dyke is too deep and the results 
overestimated. Vice versa, using β =1 a correct estimate of the depth to the top 
of the dyke is obtained, but the depth of the dipoles line is too shallow m and 
the results underestimated. 
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Figure 2.2 - 2D magnetization distribution (b) from inversion with depth-weighting factor equal to 1 
versus 2D magnetization distribution (c) from inversion with depth-weighting factor equal to 2. Both 
results are obtained inverting the magnetic anomaly in (a) generated by an infinite dipoles line 
placed at 15 m depth and a dike with top at 15 m depth, both with unitary vertical magnetization. 

To solve this problem different approaches could be used: 

- use of an average value of β (=N); 

If the difference of the structural indices is not very big, we can assign to β the 
average value of the estimated structural indices, NAV. For example we can 
invert the magnetic anomaly in Figure 2.2a using an average value of NAV=1.5 
between 2 and 1. By this approach the depth to sources are about -5 m and +5 m 
different from the depths (white dashed line) of the dipoles line and the dike 
respectively, then the depth is correctly estimated for both sources 
simultaneously (Figure 2.3). 
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Figure 2.3 - 2D magnetization distribution (b) from inversion of the magnetic anomaly in Fig. 2.2a 
with a medium depth-weighting factor between 1 and 2. The dashed white line marks the depth of 
the sources (depth of the dipoles line and top of the dike). 

- perform distinct inversions using different depth-weighting functions, 
one for each source with different N; 

If the difference of structural indices is greater than previous example, to limit 
the errors it is more convenient to perform distinct inversions using different 
values for the depth-weighting exponents and during the interpretation phase to 
consider as a valid solution only the portion of the model inverted with an 
exponent value consistent with the local structural index. This is basically the 
case we have already shown in Figure 2.2: so one should chose inversion result 
(b) for the field generated by a dike and inversion result (c) for the field 
generated by the dipoles line. 
 

- use of an inhomogeneous depth-weighting function that 
incorporates different values of  N 

The depth-weighting introduced by Li and Oldenburg (1996, 1998), allow us to 
use a single value of exponent β, constant in the source volume. We can also set 
up an inhomogeneous depth-weighting function, in which we can introduce 
different values of β in different portions of model: 

( ) 2/),,(

1),,( zyxz
zyxw β=    (2.15) 

For example if we consider again the synthetic field generated by a dipoles line 
and dyke (Fig. 2.2a), we could build a depth-weighting function with an 
exponent β that changes from 2 to 1 within the model. 
There may be cases in which this approach does not work very well, for 
example when the sources are too close to each other. In this case one could 
build an inhomogeneous depth-weighting function with a smooth variation both 
in the horizontal and in the vertical directions between the ideal depth-
weighting factors of the two sources.  
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Following Cella and Fedi (2012), who showed that it is necessary to use a 
depth-weighting function with an exponent β equal to the correct structural 
index (N) of the source, we will explore the possibility of extimating the 
structural index of a source as a function N(x,z) that is variable both in the 
horizontal and in the vertical direction. This is part of the integrated approach 
we will deal with in Chapter 4. 

2.6. Li and Oldenburg algorithm 

The algorithm we will use for all the inversion performed in this work is the Li 
and Oldenburg (2003) algorithm, which allows solving underdetermined 
problems, with the number of cells significantly larger than the amount of 
available data. The related objective function is able to built many different 
solution models that generate practically the same data. This goal is reached 
using appropriate weighting functions whose parameters are empirically 
selected, based on numerical modeling and qualitative analysis of typical 
gravity or magnetic anomalies. 

The solution is obtained by the following minimization problem (Oldenburg 
and Li, 2005):  

minimize φ = φd + μφm  
         (2.16) 
subject to mmin ≤ m ≤ mmax  

where mmin and mmax are vectors containing the lower and upper bounds on the 
model values, and m is the vector containing model values.  

The prior information that this algorithm allow to introduce might be:  

(a) knowledge of a background or reference model and  
(b) a general assumption that the structures should be smooth or that 
they have sharp edges (Oldenburg and Li, 2005). 

The algorithm uses the primal logarithmic barrier method with the conjugate 
gradient technique (CG) as the central solver. In the logarithmic barrier method, 
the bound constraints are implemented as a logarithmic barrier term. 

The objective function is given by (Gill et al. 1991): 
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 (2.17) 

where μ is the regularization parameter, λ is the barrier parameter. 
φd is the weighted data misfit and φm is the model objective function. The 
weighted data misfit is given by: 

 

   (2.18) 
where d are the predicted data, dobs are the observed data-vector and Wd is the 
inverse data covariance matrix. 

 (2.19) 
where m is the unknown model, m0 is a reference model and w(z) is the 
depthweighting function (equation 2.14): 

( )β
0

1
zz

wz +
=  

Li and Oldenburg propose to use for β a value equal to 3 in the magnetic case 
(Li and Oldenburg, 1996) and equal to 2 in the gravity case (Li and Oldenburg, 
1998), assuming these values as corresponding with the rate decay with 
distance of a single small cubic cell in magnetic and gravity field respectively. 
As explained in paragraph 2.4 the purpose of this function is to counteract the 
geometrical decay of the kernel with the distance from the observation location 
so that the recovered susceptibility is not concentrated near the observation 
locations. 
The terms ws, wx, wy, wz are spatially dependent weighting functions to input 
additional prior information about density or susceptibility model. In particular 
The weights wx,wy,wz, with or without a reference model, control the degree of 
smoothness of the solution along the three directions (Oldenburg and Li, 2005); 
finally αs, αx, αy and αz are coefficients controlling the importance of each term. 
The logarithmic barrier term forms a barrier along the boundary of the feasible 
domain and prevents the minimization from crossing over to the infeasible 
region. 
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The method solves a sequence of nonlinear minimizations with decreasing λ 
and, as λ approaches zero, the sequence of solutions approaches the solution of 
eq (2.17). 
Further details on how a numerical solution is obtained discretizing the model 
objective function can be found in Oldenburg and Li (1994). 
Instead of carrying out the full minimization at each iteration, it is common to 
take a Newton step for each value of λ and adjust the step length so that the 
updated model remains positive (Gill et al. 1991). The step length is also used 
to determine the decreased value of the barrier parameter λ for the next iteration 
(Li and Oldenburg, 2003). 
The barrier iteration continues until the value of λ is sufficiently small such that 
barrier term has a negligible contribution to the total objective function (eq. 
2.18) and the iteration stops when the objective function is changing less than 1 
per cent.  
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3. Imaging techniques for potential fields data: the DEXP method 

The Depth from Extreme Points method (DEXP, Fedi et al., 2007) is based on 
the explicit scaling of the upward continued field by a power law of the 
continuation height. The type of power law is either assumed or determined 
directly from the field data; this means that DEXP, unlike the inversion 
methods, does not require a priori information about the source of the anomaly. 
The method allows to obtain information about the position of the source, and 
its extension and shape.  
The DEXP method is a very stable method respect to noise and can be applied 
to the field and his derivatives through the following steps. 

• Continuation of the field 
Measured data has to be upward continued to create a 3D data volume; 
for the scopes of this work, only two-dimensional cases have been 
examined; so potential field data profiles have been upward continued 
using 1D upward-continuation algorithms to obtain a section. 

• Scaling the field 
The upward continued field is then scaled according to specific power 
laws. So, a 3D field originated by a source at r0, expressed by a function 
f(r-r0), is then scaled to have W(r-r0). 

• Estimating the source depth 
the source depth is then determined searching for the extreme points 
r(x,y,z) of W(r-r0). As will be shown the points r(x,y,z) are symmetrical 
to r0(x0,y0,z0). 

• Compute the excess mass 
the excess mass (or excess dipole moment intensity for the magnetic 
field) can be also computed, from the value of the scaled potential field 
at the extreme points.  

The final result will then be a depth distribution of extreme points, excess mass 
values, and scaling exponents. 
In this work I will pay particular attention to the scaling exponent and their 
dependence on the distance from the source both in the vertical and horizontal 
directions. 
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3.1. Theory of the DEXP method 

In this paragraph I will breafly show thetheoretical background of the DEXP 
method, following the demonstration given by Fedi (2007) for the gravity field 
of a pole source. 
The gravity field f1(r) due to an homogeneous sphere at r0(x0,y0,z0) with density 
M=1 and normalized by the gravity constant k, can be expressed as: 

3
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If the source is at r0(0,0,z0) and the field is measured at x=x0, y=y0 we have: 
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The scaling function can be defined as the derivative of the logarithm of the 
field f with respect to log (z): 
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For the above mentioned example of the gravity field, the scaling function τ1 is: 
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From the equation 3.4 we can see that τ1(z)  is singular at z=z0 in the source 
region , but at z=-z0 we have: 

τ1 (-z0) = -1      (3.5) 

it follows that 
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that can be written also as: 
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As we can see from this equation, the function zf1 has a maximum at z=-z0. This 
means that, scaling the gravity field with a power law of the altitude z and 
exponent equal to 1, we can have a scaled gravity field, Wg 
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Wg=f1z      (3.8) 

having a maximum at x=x0, y=y0 and z=-z0. Obviously, the maximum is due to 
the fact that we have assumed a positive density contrast. If we choose a 
negative density contrast we will have a minimum at the point r(x=x0, y=y0, z=-
z0). Moreover, instead to express the function Wg as function of r, we can 
express Wg as function of (x0,y0,z0). 
We can generalize the scaling function formula to any p-th order vertical 
derivative of the field fp, and to any kind of homogeneous source; in fact, 
starting from the p-th order derivative of the gravity field, of homogeneity 
degree n, 
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Where N=-n, we get 
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At z=-z0 we will have: 
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Hence, the general scaled function, Wp, having as extreme point the point x=x0, 
y=y0 and z=-z0, can be expressed as: 
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3.2. DEXP of simple sources 

We have described the DEXP transform for the field and its derivatives of a 
simple pole source. Obviously real sources generate a field that cannot be 
explained by something like a simple pole source, unless the field is measured 
at a great distance. So we could define real soruces as source distributions 
within finite volumes with arbitrary shapes (Fedi, 2007).  
But, in the majority of the cases, the source complexity can be semplified to 
semi-infinite volume-less shapes. For example we can see pipes, ridges, valleys, 
tunnels, volcanic necks as infinite cylinders. 
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These simple shape bodies are generally defined as one-point sources, meaning 
that we need the coordinates of just one singular point, i.e. the center or the 
edge, to define them (Stavrev, 1997; Fedi, 2007). 
The DEXP transformation properties for most one point sources have been 
widely defined by Fedi (2007) by the same approach used to compute the 
DEXP transformation for a pole-source.  

The following table displays the scaling exponent for the most common one 
point sources, adjacent to the source parameter involved in the well-known 
theory of Euler deconvolution (Reid et al., 1990, Stavrev, 1997), called the 
Structural Index both for gravity and magnetic anomalies. 

 n = 1 n = 2 
Source N SI N SI 
Point mass or dipole sources, spheres 1 2 1.5 3 
Line or masses of dipols, infinite horizontal and 
vertical cylinder, thin bottomless prism 

0.5 1 1 2 

Semi-infinite plane, thin dike, sill 0 0 0.5 1 

Table 3.1 - Scaling exponents ans structural indexes for the most common one point sources. 

 It is easy to note that the scaling exponent and the structural index for magnetic 
anomalies are connected by a clear relationship:  

Sn = 2 Nn     (3.13) 

since both SI and N are source parameters reflecting the type of source and the 
falloff rate of their fields. 
In paragraph 2.4 we have mentioned that the structural index plays an important 
role in potential field data inversion because it allows to choose the appropriate 
value of the depth-weighting function exponent β, rather than to the power-law 
decay of the field generated by a single cell (Fedi and Cella, 2012). We will 
focus now the attention on the scaling exponent of the DEXP function and how 
it can be assessed directly from the data. 

3.3. Determining the scaling exponent from the data 

In the introduction we said that the type of power law for scaling the data is 
either assumed or determined directly from the field data itself; among the 
possible approaches to get the scaling esponent estimate from data (see Fedi, 
2007) I will breafly describe the criterion of DEXP scaling-function intercept. 
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Starting from equation 3.10, we can arrange again the scaling function putting 
z=1/q: 

qz
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so, as q tends to 0 we have: 

pNpq +−=→ τ0lim     (3.15) 

Hence, the intercept of τp versus q will give an estimate of the structural index 
N plus the order of differentiation, and as we can note the estimation of N does 
not depend on the vertical position of the source z0. 

The DEXP multiscale approach will be analysed in more detail in the following 
chapter for simple and complex sources; for further technical details and 
examples please refer to Fedi (2007).  
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4. Potential fields data inversion constrained by multi-scale imaging 
information 

One of the principal difficulties with the inversion of the potential field data is 
the inherent non-uniqueness. In fact, by Gauss' theorem we know that there are 
infinitely many equivalent source distributions that can produce a measured 
field (Blakely, 1996).  

When the number of model parameters M is greater than the number of 
observations N, a unique solution for the inverse problem does not exist 
(underdetermined problem). This denotes an algebraic ambiguity and represents 
the most common problem in geophysics inversion. Thus we have two causes 
of ambiguity, both implying that there are infinitely many models that will fit 
the data to the same degree.  

To solve an undetermined problem and obtain a unique solution we need to add 
a priori information. Prior information takes numerous forms (geological, 
geophysical or mathematical) and a good inversion algorithm is able to 
incorporate this information into the inversion.  

In the following paragraphs I will show how information coming from imaging 
methods can be successfully used as constrain for inversion. 

Imaging techniques can provide a result similar to inversion algorithms, even if 
they do not incorporate yet compactiveness or non-negativity constraints; on the 
other hand these techniques are non-iterative, meaning less computational time 
respect to the inversion algorithms, moreover they are stable, as a consequence 
of the properties of upward continuation, that acts like a low pass filter with an 
intrinsic attenuation of the field when the depth increase.  

4.1. Integrating inversion algorithms and DEXP information 

As already mentioned in chapter 2, inversion algorithms allow reconstructing 
the distribution of some of the rocks’ physical properties (for example density 
or magnetization intensity, if talking about potential fields) in an indirect way, 
that is starting directly from the measured geophysical data. 

The parameterization of the solution model space assumes fundamental 
importance both in the inversion and imaging algorithms, as it strongly 
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influence the way the solution will be build and the type of constraints it will 
incorporate. 

This time we could start from Fredholm integral equations to describe the 
inverse gravity and magnetic problems, which are notoriously ill posed. 

For example, the inverse geomagnetic problem has the following formulation 
(Fedi et al, 2005): 

 

( ) ( ) ( )rrrrr TdMK ∆=∫
Ω

0
3

00,
   (4.1) 

 
where ΔT(r) is the magnetic field measured at (r) and M(r0) is the unknown 
magnetization distribution; the volume integral is calculated over Ω; while the 
kernel K(r, r0) inside the integral equation represent the field measure at a 
distance r from the centre of a magnetic dipole with intensity of magnetization 
equal to 1 and placed in r0. 
If we assume for simplicity, that the source magnetization direction is parallel 
to the main magnetic field, and that both are vertical, so that the magnetic 
anomaly is reduced to the pole, than the kernel K can be rewritten as:  
 

   (4.2) 

 
where z and z0 are the vertical components of r and r0, while ||||2 is the 
Euclidean norm of a vector. 
If we discretize the source volume Ω into N cells, following an Nx × Ny × Nz 
grid, ad we assume that each cell Ωj has a constant magnetization Mj, we can 
write the kernel K as a numeric matrix expression, solving equation (4.2) for 
each cell.  
For the geomagnetic inverse problem we will have ex × ey equations (one for 
each measured data location) and each equation will have Nx × Ny × Nz 
unknowns. That is a system of P×N linear equations: 

 
K m = d     (4.3) 

 
where P is the number of measured and N = Nx × Ny × Nz  are the unknowns. 
The coefficients matrix K is formed by the following elements:  
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i=1, …, P,  j=1, …,N;  (4.4) 

 
the data vector d is formed by P measurements Δ(ri), while the vector m is 
formed by N values of magnetization Mj .  Each of the element of the Kij can be 
calculated following equation 9.19 in Blakely (1996). 
We showed in paragraph 2.4 that if the number of unknowns N is greater than 
the number of data P, the system of equations has infinite solutions and is 
called undetermined.  
Among the infinite number of possible solutions the simplest is the minimum 
length one, which minimizes the euclidean norm of the solution; this means that 
the magnetization solution assumes the lowest possible value. This type of 
solution will necessarily be shallow, since newtonian potentials and their partial 
derivatives follow a decay law which is the inverse of the distance from the 
source.  
The minimum length solution can be expressed also in matrix form following 
Menke (1989):  

  
m = KT(KKT)-1d    (4.5) 

 
Cribb (1976) showed that, in the frequency domain, the solution to the magnetic 
continuous undetermined problem assumes the followinf formulation:  
 

  i=1,…., L   (4.6)  

 
where F denotes the Fourier transform operation, L is the number of layers of 
the solution space, mi and hi are the magnetization vector and the depth of the 
ith layer of the model space, k is the wave vector with components kx, ky, f e t 
are versors placed respectively in the direction of the inducing field and of the 
total magnetization, both of them do not vary in the investigated region; lastly 
V(k) can be expressed as: 

 

    (4.7) 
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The solution in the frequency domain (4.6) shows an interesting relation 
between the computed magnetization distribution mi and the upward continued 
magnetic field at an height equal to the depth of the hi level of the source 
model; indeed, exp(-|k|hi) denotes the upward continuation operator expression  
in the frequency domain (Blakely, 1996).   

Similarly, imaging methods allow obtaining a density (or magnetization 
intensity) 3D distribution, or to have an image of a quantity related to these 
distributions, wihout having to go through inversion alghorithms. 

Among the available imaging methods, the multi-scale ones have the advantage 
of being capable of studying the complexity of the Earth System varying the 
survey scale. The interest of the scientific community into the multi-scale 
methods applied to potential field data has rised during the last ten years, as a 
large amount of published research shows (Fedi et al., 2005; Fedi et al., 2010; 
Fedi, 2007; Fedi e Florio, 2006; Fedi e Pilkington, 2012; Fedi e Abbas, 2013). 
The immediacy of the application of multi-scale methods on potential field data 
comes from the evidence that these fields can be considered as the sum of the 
effects given by different sources placed at differents depths.  How these effects 
superimpose to each other is a complexity to solve analysing the contribute of 
each source at a different scale.  

As alreasy showed in detail in chapter 3, the DEXP method (Fedi, 2007), allows 
to have an estimate of the source body depth, density (in the gravity case, or 
magnetization intensity in the magnetic case) from maximum (or minimum) 
points of its field scaled according to a specific power law of the height of 
measurement. 

The DEXP approach suggests one more interesting connection with equation 
(4.6) since it relates the upward continued field to some of the properties of its 
source, for example the Structural Index SI (a parameter related to the source 
shape, see table xx) or the depth: 

 
Ω(r,zi) = |zi|N/2 d(r,zi)   i = 1,...,L (4.8) 

 
where Ω(r,zi) is the DEXP scaled field at height zi, r is the vector related to the 
coordinates [x,y], d(r,zi) is the field d upward continued at a height zi and |zi|N/2 
is the scale low, with the exponen N/2 depending on the source. 
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The depth of the source and the excess mass (or magnetization intensity) can be 
derived for each of the source looking at the position of the maxima (or 
minima) of the transformed field Ω  (Fedi, 2007). 

The DEXP transform can also be expressed in the frequency domain as follows: 
 

 i = 1,..., L  (4.9) 
 

Where  Ωi  is the DEXP transformed field at a certain height zi=-hi. 
Equations (4.6) e (4.9) can be combined together to get the following result: 

 

 i = 1,..., L   (4.10) 

 
In the magnetic case, and a similar expression in the gravimetric case. 
Equation (4.10) shows that the DEXP transformed field is directly connected to 
the magnetization model obtained from equation (4.5), where the solution to the 
continuous undetermined magnetic problem is expressed in matrix form. 
The weighting function hi

N/2 places the DEXP result at the correct depth of the 
source, apart from a constatnt, which gives the result the correct physical 
dimensions. 
 Figure 4.1 shows a comparison of a DEXP transformation and an inversion of 
the anomaly (Figure 4.1a) given by a mass line placed at 10km depth with 
infinite extension in the direction perpendicular to tha plane of the figure. 
The coordinates of the maximum of the DEXP transformed field (Figure 4.1c) 
give a correct estimate of the depth source; this is the same result we can obtain 
from an inversion (Figure 4.1b) algorithm without fixing any further constraint 
apart from the depth weigthing function (see paragraph 2.4) whose depth 
weigthing factor has been chosen following Cella et al. (2012). The absence of 
other type of constraints gives both the solution a shape not exactly reliable to 
the source body. 
The computing time is 8 seconds for DEXP e and 96 seconds for the inversion 
using Li and Oldenburg approach. 
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Figure 4.1 - Inversion vs DEXP transform. (a) Gravity anomaly given by a mass line placed at 10km 
depth with infinite extension in the direction perpendicular to tha plane of the figure. (b) Inversion 
of the gravity anomaly in (a), with depth-weighting factor equal to 2. (c) DEXP transforms of the 
field in (a).  

Imaging results can be combined with inversion algorithms in different ways: 

1. Source distributions can be converted into density (or magnetization 
intensity) and used as a-priori models for inverting or interpreting 
potential field data; 

2. Source-related information (i.e. the Structural Index or the source depth) 
can be transferred into the inversion algorithms as constraints to the 
final solution. 

To follow suggestion (1) the DEXP transformed field has to be converted in a 
density (or magnetization intensity) model, through equation (4.10), getting the 
following expression: 
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Equation (4.11) show that the minimum length solution mi, when multiplied by 
a depth-weighting function 2/N

ih corresponds to the DEXP transform  multiplied 
by the constant  4/V(k). To validate equation (4.11) dimensions, the DEXP has 
to be converted from field units  (mGal o nT) to density/magnetization intensity 
units (g or A/m) multiplying the result by a quantity having the same 

dimensions of the factor 2/N
ih , which is a length 2/Nl . 

Another interesting approach is the one described at point (2). 

The DEXP theory has been developed for fields coming from sources with 
integer N index (see Table 3.1); if this theory is generalized to the family of 
fields with non-integer N or with N varying as the distance from the source 
varies (Fedi et al., 2012), then the DEXP source-related information can be 
used to invert the field coming from any complex source. 

We have already mentioned in paragraph 3.2 that sources whose mass 
distribution can be concentrated in just one point (one-point sources), such as a 
mass point, a mass line, a contact, a sill, give potenatial fields, whose DEXPs 
allow to estimate an integer N index. For such sources N can be simply 
estimated for example with the criterion of DEXP scaling-function intercept 
(Fedi, 2007). Such approach supposes that N does not vary if the scale of study 
changes, so the value at the intercept can represent the real N of the source. 

See for example in Figure 4.2b the magnetic anomaly generated by a line of 
dipoles placed at 15 m depth, the scaling function exponent exponent assumes 
an integer value and does not vary with the scale of study, and so consequently 
does the index N(z) shown in Figure 4.2a. The DEXP scaled field in Figure 
4.2c has its maximum value in correspondence of the source depth. 
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Figure 4.3 – DEXP scaled field (c) of a magnetic anomaly (b) generated by a line of dipoles placed at 
15 m depth, the scaling function exponent assumes an integer value and does not vary with the scale 
of study, and so consequently does the index N(z) shown in (a).

 

If we examine the fields generated by complex sources (non one-point) the 
estimate of the scaling-factor N will be, first of all, a non-integer estimate, and 
will also be scale-variant, that is it will vary according to the field continuation 
height. 

Fedi et al. (2012, 2015) showed that such kind of fields, called inhomogeneous, 
can be studied in the framework of the multiscale methods, assuming that the 
standard homogeneous equation can be “relaxed” to a local homogeneity 
equation. To define the homogeneity property in terms of local homogeneity, 
they follow Olmsted (1991), who distinguished between homogeneous 
functions and locally homogeneous func- tions, and gave an extension and 
converse of Euler’s theorem (Eq. 15 in Fedi et al, 2015). 

Instead of using the local-homogeneity equation for the fields Fedi et al. (2015) 
propose to use at each position the local-homogeneity equation for the scaling 
function. Equations 3.3 and 3.10 can be riarranged as: 
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Where τ(z) is the scaling function, a dimensionless function of the altitude, 
which characterizes the scaling behaviour of a homogeneous field T; z is the 
altitude and z0 is the source depth. Equation 4.12 provides a convenient tool to 
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study the field across scales. The main advantage of using the scaling function 
arises from its independency on either physical constants or density.  

For a homogeneous field, the homogeneity degree n and the depth to the source 
z0 may be estimated from τ in a number of ways (Fedi and Florio, 2006). For 
instance, altitudes and depths have an arbitrary zero-level, so that they may be 
rescaled by a guess depth value ζ:  
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and z0 may be estimated as the value of ζ = z0 making τ the closest to a straight 
line with a zero-slope, whose intercept is n (see Fedi 2007, for additional 
details).  
Equation 4.13 can be computed at each scale z as:  
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where n(z), z0(z) are the local homogeneity-degree and depth to the source at 
each scale z, while τ(f) is instead computed directly from the field at the various 
altitudes.  

4.2. Integrated workflow  

We will first examine the case of the 2D2 magnetic anomaly given by a finite 
vertical cylinder, with unitary vertical magnetization, top base at 10 m and 
bottom base at 20 m depth, centered at x=100 m with unitary extension along 
the x direction, and infinite extension along the y direction, so it can be studied 
as a 2D source. Figure 4.4 shows the magnetic anomaly in (b), the upward 
continued field in (c), and the N(z) index extracted along the along a vertical 
profile crossing the maximum of the field in (a).  

 

2 The two-dimensional (2D) approach assumes that the source body causing the anomaly is 
infinitely long parallel to the strike of the data profile direction. 
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Figure 4.4 - The magnetic anomaly in (b) given by a finite vertical cylinder, with unitary vertical 
magnetization; the upward continued field in (c), and the N(z) index extracted along the along a 
vertical profile crossing the maximum of the field in (a).  

The values of N(z) coming from multiscale analysis can be used as weighting 
function rate decay in inversion algorithms, as showed by Cella and Fedi 
(2012), setting a weighting function which varies according to the depth of the 
solution model cells. 
The 2D source domain was discretized with 200x30 cells, each sized 1x1 m. 
We assumed a vertical direction for both the inducing field and the 
magnetization vector.  
Figure 4.5 shows the different magnetization distributions derived inverting the 
magnetic anomaly in Figure 4.4b using a depth-weighting factor equal to 1 
(semi infinite plane (Fig. 4.5a)), 1.5 (Fig. 4.5b), 2 (infinite cylinder), variable 
with depth (after Fig. 4.5d). Among the results from inversion with integer 
depth-weighting parameters, the most reliable result seems the one obtained 
with N=1, while using N=1.5 or N=2 the maximum of the distribution is placed 
too deep if compared with the true source depth. 
The inversion carried on setting a variable depth-weighting function (Fig. 4.5d), 
gives the most reliable distribution of the source, since the maxima of the 
distribution are confined in a depth range which agrees with the top and the 
bottom of the cylinder source (z top= 10 m and z bottom = 20 m).  

From now on, the results coming from inversion with scale-variant depth-
weighting factor will be compared with the results coming from inversion with 
depth-weighting parameter set equal to 1. 
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Figure 4.5 – Magnetization distribution derived inverting data in Figure 4.4b using different depth-
weighting parameters: 1 (in panel a), 1.5 (in panel b), 2 (in panel c) and depth-weighting index 
varying with z according to Fig. 4.4a (in panel d).   

The function N(z) can be extracted also along along vertical profiles not 
crossing the maximum of the field, leading to a N(x,z) function acting both in 
the vertical and in the horizontal direction of the source model domain.  
Figure 4.6 shows the N(z) profiles extracted along different positions on the 
anomaly profile: the N(z) function named ridge C comes from a profile along 
the maximum of the field, the N(z) function named ridge H comes from 
location x=150 m, the N(z) function named ridge F comes from a location on 
the right boundary of the anomaly. 
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Figure 4.6 – Estimates of the N(z) function at different x location along the magnetic anomaly in Fig. 
4.4b: ridge C is taken in correspondence of the centre of the anomaly; ridge H s taken at an 
intermediate distance from the maximum of the anomaly; ridge F is taken on the anomaly right 
border. 

This first-pass analysis on the variability of the N(z) function along the profile 
direction shows that the N indexes are quite different if we estimate N(z) in the 
surroundings of the source or away from it. Our next goal is then to analyse the  
impact of this variability on the depth-weighting function. 
In this testing stage, N(z) functions have been estimated along the profile 
keeping the sampling interval small, to better understand how fast it varies 
going aways from the field maximum. The results of the extractions all along 
the anomaly of Figure 4.4b are shown in picture 4.7.  
Since the magnetic anomaly is symmetrical respect to the center of the profile, 
N(z) functions have been estimated along only one of the sides of the anomaly, 
labels from 100 to 190 denote the position of the N(z) along the profile (N(z, x 
=100 m) is taken at the centre of the profile, while N(z, x =190 m) is taken on its 
western border. 
Figure 4.7(a) shows how N(z) varies gradually as the distance from the 
maximum of the anomaly is small; while from a certain point on, N(z) estimates 
become noisier and noisier (see Figure 4.7 (b) and (c)) and finally become 
regular again far away from the source.  
At a first sight N(z) seems to vary according to the distance from the source; in 
particular, plotting the N(z) estimates vesurs the distance to the source (i.e. 
distance from the maximum of the field) it is possible to link the noisy 
behaviour of N(z) function with the horizontal limits of the source.  
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Figure 4.7 - N(z) functions estimated along the right sides of the anomaly in Fig. 4.4b; labels from 
100 to 190 denote the position of the N(z) along the profile (N(z, x =100 m) is taken at the centre of 
the profile, while N(z, x =190 m) is taken on its western border. 

From this we can infer two main areas where the N(z) behaviour varies 
homogeneously:  

- a zone “inside” the source boundaries where N(z,x) can be sampled at 
regular intervals along the profile direction and then used directly to 
contrain the inversion 

- a zone “outside the source boundaries where N(z,x) has a noisy shape, 
until it become stable again at the borders of the profile; here the N(z,x) 
sampled at the profile border can be assigned to the whole noisy zone. 

The following picture compares the magnetization distributions coming from 
the inversion of the data shown in Figure 4.4b using a depth-weighting factor 
equal to 1in Figure 4.8a, variable with depth in Figure 4.8b, variable with depth 
and horizontal position in Figure 4.8c. 
The inhomogeneous depth-weighting fuction has been derived from the N(z) 
extracted from xn positions along the profile starting from x=100 m until  x= 
110 m, that is a region where the N(z) functions have a regular behaviour. For 
regions where N(z) is noisy we decided as a first choice, to assign the nearest 
regular N(z) function. 
The inversion carried on using the above mentioned depth-weighting 
distribution, varying both with depth and with position along the anomaly 
profile, gives the most reliable distribution of the source, allowing to have a 
more precise estimate both of the top and the bottom of the cylinder source 
(Figure 4.8c). 
The 2D source domain was discretized with 200x30 cells, each sized 1x1 m. 
We assumed a vertical direction for both the inducing field and the 
magnetization vector. 
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Figure 4.8 - Magnetization distribution derived inverting data in Figure 4.4b using different depth-

weighting parameters: 1 (in panel a), depth-weighting index varying with z according to Fig. 4.4a (in 
panel b), depth-weighting index varying both with x and z according to Fig. 4.7a-b-c-d (in panel c) 

Another option to build the inhomogeneous depth-weighting function could be 
to use the information given by the noisy N(z) as an “alarm bell” telling us that 
something is happening at that position. Since at this stage of the testing we 
know the sources which generate the field, we can easily find a connection 
between the N(z) noisy region and the boundaries of the source. 
Following this idea we run another inversion and the resulting magnetization 
distribution is shown in Figure 4.9. We set the depth-weighting function equal 
to the previous example where N(z) is regular, while we attribute to the noisy 
region the N(z) estimated at the profile borders.  
The result is a source distribution with an abrupt change clearly visible when 
the depth-weighting fuction switches from the “internal” estimate to the 
“external” one. 
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Figure 4.9 - Magnetization distribution derived inverting data in Figure 4.4b using different depth-
weighting parameters: 1 (in panel a), depth-weighting index varying with z according to Fig. 4.4a (in 
panel b), depth-weighting index varying both with x and z according to Fig. 4.7a-b-c-d (in panel c) 
modified following an “alarm bell” approach. 
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4.3. Synthetic examples 

In the following paragraph we will show the validity of the method for different 
2D3 magnetic synthetic anomalies generated by single sources with different 
horizontal limits, and multiple sources whose effects interfere on each other.  
For each of the following synthetic examples the 2D inversion source domain 
has been discretized with 200x30 cells, each sized 1x1 m.  
We have assumed for all the subsequent examples a vertical direction for both 
the inducing field and the magnetization vector. 

A finite vertical cylinder with unitary vertical magnetization, top base at 10 m 
and bottom base at 20 m, horizontal boundaries at 97 m and 103 m. 

We first applied the workflow to the anomaly (Figure 4.11a) generated by a 
finite vertical cylinder, whose extension in the x direction (along the anomaly 
profile) is not unitary. We have upward continued the field and extracted the 
N(z) functions along the profile through multi-scale analysis. As one can easily 
see from Figure 4.10, the N(z) function became unstable at x = 112 m. This 
information is useful for the construction of the depth-weighting function, since 
we can use the N(z) estimates from the centre of the anomaly (x = 100 m) until 
the limit of the unstable zone mentioned before (x = 111 m) and use this last 
stable estimate to cover the rest of the anomaly profile.   

 
Figure 4.10 – N(z) estimates for different position along the anomaly in Fig. 4.11a. Labels stand for 
the x position along the profile (refer to Fig. 4.11a). 

Figure 4.11c shows the results of the inversion carried on setting a depth-
weighting function which varies with both with z and x, while Figure 4.11b 

3 The two-dimensional (2D) approach assumes that the source body causing the anomaly is 
infinitely long parallel to the strike of the data profile direction. 
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shows the result of the same inversion with a depth-weighting factor equal to 1. 
It is clear from the comparison of the magnetization distributions that using a 
depth-weighting function varying in the x-z space allows to get a better 
definition of the horizontal and vertical extension of the source, while the 
maximum of the distribution is placed more towards the source center. 
As already mentioned in paragraph 4.1, note that the magnetic anomaly is 
symmetrical respect to the center of the profile, so the N(z) functions are shown 
only for the eastern side of the anomaly, these findings can be applied 
symmetrically to the western side.  

 
Figure 4.11 – (a) Magnetic anomaly of a finite vertical cylinder, with unitary vertical magnetization, 
top base at 10 m and bottom base at 20 m, horizontal boundaries at 97 m and 103 m; (b) 
magnetization distribution using different depth-weighting parameters: 1 (in panel a), depth-
weighting index varying with x and z according to Fig. 4.10. 

A finite vertical cylinder with unitary vertical magnetization, top base at 10 m 
and bottom base at 20 m, horizontal boundaries at 90 m and 110 m. 

Now we consider the anomaly (Figure 4.10a) generated by a finite vertical 
cylinder, whose extension in the x direction (along the anomaly profile) is 
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larger than the previous example. The N(z) functions estimated from the 
multiscale analysis are plotted in Figure 4.12. In this case the area where the 
N(z) can be labelled as stable, is larger than the previous example (from x=100 
to x = 115 m) . This issue confirm again our iphotesis that the boundaries of the 
source would cause some “noise effect” on N(z) estimates. In this case the 
depth-weighting function has been build using N(z) from x = 100 m to x = 114 
m. 
The considerations made for the N(z) functions on the east side of the profile 
have been extendend symmetrically to the west side since the anomaly is 
symmetrical. 

 
Figure 4.12 - N(z) estimates for different position along the anomaly in Fig. 4.13a. Labels stand for 
the x position along the profile (refer to Fig. 4.13a). 

Figure 4.13c shows the results of the inversion carried on setting a depth-
weighting function, which follows the estimates shown in Figure 4.12.  The 
same inversion result, but this time with a depth-weighting factor equal to 1 is 
shown in Figure 4.13b. Here again the advantages of using the information 
derived from multi-scale analysis can be clearly appreciated: a better definition 
of the horizontal and vertical extension of the source, and the maximum of the 
distribution placed quite at the source center. 
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Figure 4.13 - (a) Magnetic anomaly of a finite vertical cylinder, with unitary vertical magnetization, 
top base at 10 m and bottom base at 20 m, horizontal boundaries at 90 m and 110 m; (b) 
magnetization distribution using different depth-weighting parameters: 1 (in panel a), depth-
weighting index varying with x and z according to Fig. 4.12. 

A finite vertical cylinder with unitary vertical magnetization, top base at 10 m 
and bottom base at 20 m, horizontal boundaries at 80 m and 120 m. 

We could now inspect then the anomaly (Figure 4.15a) generated by a finite 
vertical cylinder, whose extension in the x direction (along the anomaly profile) 
is even larger than the two previous examples. The N(z) functions estimated 
from the multiscale analysis are plotted in Figure 4.14. In this case the area 
where the N(z) can be labelled as stable span from x = 100 m to x = 123 m). 
Here again we set the depth-weighting function using N(z) estimates from x = 
100 m to x = 122 m, and symmetrically on the left side of the profile. 
Figure 4.15c shows the results of the inversion where the depth-weighting 
function follows the estimates of N(z) shown in Figure 4.14.  The result of the 
inversion with a depth-weighting factor equal to 1 is shown in Figure 4.15b. 
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The magnetization intensity model, shown in Figure 4.15c, allow again to 
define better the horizontal and vertical limits of source. 

 
Figure 4.14 - N(z) estimates for different position along the anomaly in Fig. 4.15a. Labels stand for 
the x position along the profile (refer to Fig. 4.15a). 

 
Figure 4.15 – (a) Magnetic anomaly of a finite vertical cylinder, with unitary vertical magnetization, 
top base at 10 m and bottom base at 20 m, horizontal boundaries at 80 m and 120 m; (b) 
magnetization distribution using different depth-weighting parameters: 1 (in panel a), depth-
weighting index varying with x and z according to Fig. 4.14. 
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A couple of finite vertical cylinders with unitary vertical magnetization placed 
at x1=67 m and x2=134 m, top base at 10 m and bottom base at 20 m, width of 1 
m respect to their centre. 

We have applied the workflow to the anomaly (Figure 4.17a) generated by two 
finite vertical cylinders, whose extension in the x direction (along the anomaly 
profile) is unitary. Each source contribute does not interfere with the other, as 
we can clearly distinguish two maxima in the magnetic anomaly.  

The multi-source case is particularly interesting in the inversion domain, as we 
showed in chapter 2.5; usually one shuld set separate depth-weighting 
parameters for each source and maybe determine a threshold to switch from one 
to the other; the possibility to determine an N(z,x) function with a multi-scaling 
information would be really useful: we will see in the following example that 
this will guide the depth-weighting function setting in the zone between the 
sources. 

We have upward continued the field and extracted the N(z) functions along the 
profile through multi-scale analysis.  

Starting from x = 67 m, where the left source shows a maximum on the 
anomaly, and going towards the left border of the anomaly we have seen that 
N(z) function varies gradually, as we have already noticed for the single source 
case N(z) estimates are not shown in this case since they are redundant. The 
same behaviour has been sampled on the other side of the profile, going from x 
= 134 m to higher x values. 

In the zone between the two maxima of the field N(z) varies gradually again 
becoming noisy between x = 76 m and x = 79 m (Figure 4.16). 

 
Figure 4.16 - N(z) estimates for different position along the anomaly in Fig. 4.17a. Labels stand for 
the x position along the profile (refer to Fig. 4.17a). 
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Looking at the behaviour of the source index function we decided to assign the 
depth-weighting function as follows: 

- for x going from x = 56 m to x = 78 m we used the estimated N(z) 
function, evaluating the window extension on the basis of the 
interference zone between the two field maxima; 

- the depth-weighting function for the interference zone are derived from 
the correspondent undisturbed portion of the profile. 

The same choices have been done simmetricaly for the source on the right side.  

The result of the inversion performed with such a depth-weighting function is 
shown in Figure 4.17 (c), compared with the inversion result using an invariant 
depth-weighting factor for the whole model space. 

 
Figure 4.17 - (a) Magnetic anomaly of two finite vertical cylinders, with unitary vertical 
magnetization, top base at 10 m and bottom base at 20 m, placed at x1=67 m and xx=134 m; (b) 
magnetization distribution using depth-weighting parameters equal to 1 and depth-weighting index 
varying with x and z (c) according to Fig. 4.16. 
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A couple of finite vertical cylinders with unitary vertical magnetization placed 
at x1=95 m and x2=105 m, top base at 10 m and bottom base at 20 m, width of 1 
m respect to their centre. 

We have applied the workflow to the anomaly (Figure 4.17a) generated by two 
finite vertical cylinders, whose extension in the x direction (along the anomaly 
profile) is unitary. Each source contribute heavily interferes with the other, as 
we cannot distinguish two maxima on the magnetic anomaly.  
The multi-scale analysis reveals that at x = 100 m, where the field has its 
maximum, the N(z) function is noisy and become stable again at x = 102 m. 
From this point on it varies gradually up to x = 108 m. From x = 113 m on, the 
N(z) does not vary with the position along the profile. 

 
Figure 4.18 - N(z) estimates for different position along the anomaly in Fig. 4.19a. Labels stand for 
the x position along the profile (refer to Fig. 4.19a). 

The depth-weighting function has been set taking in account all the estimated 
N(z) from x = 102 on, while the noisy N(z) at x = 100 to 101 have been 
substituted with the nearest stable one, that is N(z, x = 102) and N(z, x = 98) 
respectively.  

The result of the inversion with depth-weighting varying both in z and x 
direction is shown in figure 4.19c: even if the magnetization distribution is 
smooth it is possible to distinguish two maxima in the distribution 
corresponding to the position of the two sources. 
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Figure 4.19 - (a) Magnetic anomaly of two finite vertical cylinders, with unitary vertical 
magnetization, top base at 10 m and bottom base at 20 m, placed at x1=95 m and xx=105 m; (b) 
magnetization distribution using depth-weighting parameters equal to 1 and depth-weighting index 
varying with x and z (c) according to Fig. 4.18. 

The magnetic anomaly shown in Figure 4.19a could be also generated by a 
single source; we have examined this ambiguous case analysing the magnetic 
field caused by a 2D prismatic source whose horizontal limits are at x = 88 m 
and x = 112 m, top depth at 10 m and bottom depth at 15 m, magnetization 
intensity equal to 0.15 A/m.  
The magnetic anomaly is shown in Figure 4.19bis (panel b) with a green dashed 
line while the anomaly caused by two interferent sources is shown in blue.    

 
The multiscale analysis result can be seen in Figure 4.19 bis (panel a): the N(z) 
functions show now a regular behaviour in the area between x = 100 m and x = 
102 m while in the previous case they showed a noisy shape; this confirms that 
the multiscale analysis could also help in the inspection of ambiguous cases. 
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The result of the inversion of the data in Fig. 4.19bis(b) are shown in Fig. 
4.19bis(c); we have set-up as usual a variable depth-weighting function 
following the results from Fig. 4.19bis(a). 

 
Figure 4.19bis – (a) Magnetic anomaly of a 2D prismatic source whose horizontal limits are at x = 88 
m and x = 112 m, top depth at 10 m and bottom depth at 15 m, magnetization intensity equal to 0.15 
A/m; (b) N(z) estimates for different position along the anomaly in Fig. 4.19bis(a): labels stand for 
the x position along the profile (refer to Fig. 4.19bis (b)). (c) magnetization distribution from 
inversion with depth-weighting index varying with x and z (c) according to Fig. 4.19bis(a). 

A couple of finite vertical cylinders with unitary vertical magnetization placed 
at x1=95 m and x2=105 m, top base at 15 m and bottom base at 25 m, width of 1 
m respect to their centre. 

We have tested the method on a couple of source with the same charachteristic 
of the previous example but increasing their depths. The resulting anomaly is 
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shown in Figure 4.21a. The sources contributes heavily interfere on each other, 
as only one maximum is distinguishable on the magnetic anomaly.  

The multi-scale analysis in the previous example showed noisy N(z) in 
correspondence of the anomaly maximum, now the same N(z) at x = 100-101 m 
are stable and can be used in the depth-weighting function. 

 
Figure 4.20 – N(z) estimates for different positions along the anomaly in Figure 4.21a. Labels stand 
for the x position along the profile, refer to Figure 4.21a. 

The result of the inversion with depth-weighting varying both in z and x 
direction is shown in figure 4.21c: here again the magnetization distribution is 
smooth, but in correspondence of its maxima it is possible to place the sources 
centres. 

54 
 



 
Figure 4.21 - (a) Magnetic anomaly of two finite vertical cylinders, with unitary vertical 
magnetization, top base at 15 m and bottom base at 25 m, placed at x1=95 m and xx=105 m; (b) 
magnetization distribution using depth-weighting parameters equal to 1 and depth-weighting index 
varying with x and z (c) according to Fig. 4.20. 

A couple of finite vertical cylinders with unitary vertical magnetization placed 
at x1=95 m and x2=105 m, and at different depths, width of 1 m respect to their 
centre. 

The case of the anomaly generated by two finite vertical cylinders can be made 
more interesting placing the sources at different depth.  

The multi-scale analysis results for the magnetic anomaly in Figure 4.23a is 
shown in Figure 4.22: the stable N(z) have been used for the depth-weighting 
fuction while the noisiest ones have not (for example N(z) at x = 105-106-107). 
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Figure 4.22 – N(z) estimates for different positions along the anomaly in Figure 4.23a. Labels stand 
for the x position along the profile, refer to Figure 4.23a. 

The results of the inversion are shown in Figure 4.23c: it is clear that inverting 
with a constant depth-weighting factor it is not possible to distinguish the two 
sources, maybe one could argue that the source has an asymmetric shape; while 
when we invert using a multi-scale derived depth-weighting two maxima are 
distinguishable in the magnetization distribution, and their position is 
comparable with the sources depth. 

 
Figure 4.23 - (a) Magnetic anomaly of two finite vertical cylinders, with unitary vertical 
magnetization, top base 1 at 5 m and top base 2 at 15 m, placed at x1=95 m and xx=105 m; (b) 
magnetization distribution using depth-weighting parameters equal to 1 and depth-weighting index 
varying with x and z (c) according to Fig. 4.22. 
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To inspect the behaviour of our approach in the presence of noise we have 
contaminated the magnetic field generated by a couple of finite vertical 
cylinders with independent Gaussian noise having a zero mean and a standard 
deviation of 10% of each data  plus 1% of the data maximum (Fig. 4.25a). 
The multi-scale analysis results for the magnetic anomaly in Figure 4.25a is 
shown in Figure 4.22. Most of the N(z) functions showed outlier values, but 
they all show a trend consistent with the one found in the noise-free case (Fig. 
4.22). So we have decided to smooth the noisy N(z) functions before using 
them for the depth-weighting fuction. 

 
Figure 4.24 - N(z) estimates for different positions along the anomaly in Figure 4.25a. Labels stand 

for the x position along the profile, refer to Figure 4.25a. 

The results of the inversion are shown in Figure 4.25c: as already said for the 
noise-free case, it is not possible to distinguish between the two sources 
inverting with a constant depth-weighting factor; while the inversion 
constrained by a multi-scale derived depth-weighting shows two maxima 
distinguishable in the magnetization distribution, with their position is 
comparable with the sources depth.  
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Figure 4.25 - (a) Magnetic anomaly contaminated with noise of two finite vertical cylinders, with 
unitary vertical magnetization, top base 1 at 5 m and top base 2 at 15 m, placed at x1=95 m and 
xx=105 m; (b) magnetization distribution using depth-weighting parameters equal to 1 and depth-
weighting index varying with x and z (c) according to Fig. 4.22. 

 
 A couple of prism, a shallower one and a deeper bigger one, with unitary 
vertical magnetization placed at x =100 m. 

As a further step, we analysed the anomaly generated by two prisms with 
unitary magnetization intensity, a smaller one, with edges at x = 99 m and x = 
101 m, put on top of a bigger one with edges at x = 90 and x = 110. This is the 
most difficult case bebause the field generated by the smaller source is masked 
by the one from the deepest one. 

The multi-scale analysis of the field is shown in Figure 4.26: the N(z) functions 
are stable from the maximum of the anomaly (x = 100 m) and start to be noisy 
at x = 108 m, just in the nearby of the bigger source horizontal limits. 
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Figure 4.26 - N(z) estimates for different positions along the righ side of the anomaly in Figure 4.25a. 
For the x position along the profile, refer to Figure 4.27a. 

Building a depth weighting function on the base of the N(z) estimates in Figure 
4.26 and inverting the data, we obtain the magnetization distribution shown in 
Figure 4.27 c. We can note that respect to the constant depth-weighting result, 
the distribution in Fig. 4.26c takes in account the contributes from both sources 
buti t is quite difficult to argue such correspondence with the sources limits. 
One suspicious issue could be the effect below the biggest source, which may 
syggest that more that one source is present.  
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Figure 4.27 - (a) Magnetic anomaly of two overlaid prisms, with unitary vertical magnetization, the 
smaller is placed at 5 m depth, the bigger is placed at 20 m depth; (b) magnetization distribution 
using depth-weighting parameters equal to 1 and depth-weighting index varying with x and z (c) 
according to Fig. 4.26. 
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4.4. Real data example: Pompei and Acerra Basins 

We have lastly applied the integrated method to the real case of the Campanian 
Plain Bouguer gravity data (southern Italy). The gravity field shown in Figure 
4.28 is a residual field after subtraction of a long-wavelength  trend (Rapolla et 
al., 1989). 

 
Figure 4.28 – The Bouguer gravity field of the Campanian area (Souther Italy), charachterized by a 
complex patter of lows, related to basins, and highs, mostly related to carbonate complexes exposed 
at the surface. 

The Campanian Plain is a Plio-Pleistocene tectonic depression, bounded to the 
northwest, northeast, and southeast by Mesozoic carbonate platforms and to the 
southwest, by the Tyrrhenian Sea. The maximum depth of the carbonate 
platforms in this area is of about 5 km, as reported by many autors (i.e. Ippolito 
et al., 1973). Overlying the carbonates are sediments of alluvial and volcanic 
origin. Quaternary volcanic areas, including the Somma-Vesuvius and the 
Phlegrean volcanic district, are also present in the area. 
The plain is characterized by a wide Bouguer anomaly low, which includes the 
area of the town of Naples, between Phlegrean Fields and Somma-Vesuvius 
(see for further details Florio et al., 1999).  
We applied the integrated imaging-inversion approach to the gravity field of the 
Campanian region without resorting to prefiltering. 

We have analysed a profile located along line PP’ in Figure 4.28, which crosses 
some of the shallow lows features of the map, corresponding to several basins, 
such as Acerra and Pompei. 
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As we already explained in section 3.2, complex sources like pipes, ridges, 
valleys, tunnels, volcanic necks, can be seen as infinite cylinders, and so can be 
considered as 2D sources. This could be the case of the gravity lows and highs 
recognisable on the profile in Figure 4.28a, which are definitely suitable 
candidates for our analysis. 

The multi-scale analysis of the field is shown in the following figure:  

 
Figure 4.29 - N(x,z) estimates for different positions (x axis) along the anomaly in Figure 4.28a.  

We first run an inversion setting a constant depth weighting factor equal to 2, 
which is typical of sources whose shape can be approximated by an infinite 
cylinder, as estimated also by Fedi (2007). Then we run a second inversion 
setting a variable depth weighting according to the multiscale N(z) estimates we 
made in Figure 4.29. In both cases the 2D inversion source domain has been 
discretized with 37x40 cells, each sized 1x1 km. We decided not to take in 
account N(z) estimates derived at x positions 8, 10, 15, 22, 34, 37, and we 
attribute to these position the closer stable N(z).  

The inversion results are show in Figure 4.30b for constant depth-weighting and 
in Figure 4.30c for variable depth weighting. In the second case there is an 
improvement in the resolution of the density contrasts distribution both in the 
horizontal direction and in the vertical direction: the minima related to the 
Pompei and Acerra basin are better separated and do not merge at a certain 
depth; while a local minimum is distinguishable ata depth of about 30 km, and 
can be maybe related to an unknoe deep source already identified in previous 
studies, as mentioned also by Fedi (2007). 
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Figure 4.30 -  (a) Bouger gravity anomaly along the profile PP’ shown in Fig. 4.26; (b) density 
contrasts inversion distribution using a depth-weighting parameter equal to 2 and a depth-
weighting index varying with x and z (c) according to Fig. 4.27. Shallow lows correspond to Acerra 
and Pompei basins, a relatively deep low marks a deeper source, while the shallow high eastwards 
correspond to the Sorrento Peninsula carbonate platform. 
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5. Abstracts of published papers 

The PhD research field has been enlarged also on the upward continuation 
transform of potential field data. This transformation is at the base of most 
multi-scale methods, which need potential fields data available on a 3D volume. 
Therefore, we defined an alternative approach to upward continue potential 
field data: the VOCO (Volume Continuation), which has important advantages 
above existing techniques and is suitable for all types of data continuation 
between surfaces in the space. The VOCO approach descriprion and testing on 
synthetic and real data is the subject of Paper I. 
Paper II instead concerns the combination of VOCO and second order 
horizontal derivatives of gravimetric data for the estimate of the sources 
horizontal limits with the field continuation height. 
Complete published papers I and II are enclosed at the end of this document. 

5.1. Paper I 

Volume Continuation of potential fields from the minimum-lenght 
solution: An optimal tool for continuation through general surfaces 

Daniela Mastellone, Maurizio Fedi, Simone ialongo, Valeria Paoletti 

Many methods have been used to upward continue potential field data. 
Most techniques employ the Fast Fourier transform, which is an 
accurate, quick way to compute level-to-level upward continuation or 
spatially varying scale filters for level-to-draped surfaces.  

We here propose a new continuation approach based on the minimum-
length solution of the inverse potential field problem, which we call 
Volume Continuation (VOCO). 
For real data the VOCO is obtained as the regularized solution to the 
Tikhonov problem. We tested our method on several synthetic examples 
involving all types of upward continuation and downward continuation 
(levelto-level, level-to-draped, draped-to-level, draped-to-draped). We 
also employed the technique to upward continue to a constant height 
(2500 m a.s.l.), the high-resolution draped aeromagnetic data of the 
Ischia Island in Southern Italy.  
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We found that, on the average, they are consistent with the 
aeromagnetic regional data measured at the same altitude. The main 
feature of our method is that it does not only provide continued data 
over a specified surface, but it yields a volume of upward continuation. 
For example, the continued data refers to a volume and thus, any surface 
may be easily picked up within the volume to get upward continuation 
to different surfaces. This approach, based on inversion of the measured 
data, tends to be especially advantageous over the classical techniques 
when dealing with draped-to-level upward continuation. It is also useful 
to obtain a more stable downward continuation and to continue noisy 
data. The inversion procedure involved in the method implies moderate 
computational costs, which are well compensated by getting a 3D set of 
upward continued data to achieve high quality results. 

Preliminary results shown in this paper have been also presented in one 
of the poster sessions of the 83rd SEG Annual Meeting, held in Houston 
(USA) in September 2013. 

5.2. Paper II 

Accurate evaluation of edges and dip of faults and contacts through 
the Volume Upward Continuation (VUC ) of gravity data 

Daniela Mastellone, Maurizio Fedi, Valeria Paoletti 

Several methods have been used to retrieve values of dip of faults by 
using lateral offsets of the zero-crossover point of the second horizontal 
derivative of upward-continued gravity profiles. The use of derivatives 
of potential fields represents a signal enhancement technique 
experimented since a long time. It allows the information content of the 
signal to be enhanced without implying any arbitrary assumption. Often, 
such methods are coupled with upward continuation, which is used to 
transform anomalies measured on one surface into those that would 
have been measured on some higher altitude surface. 

In this paper we demonstrate the efficiency of a new approach to 
upward continue potential field data, the Volume Upward Continuation 
(VUC), coupled with traditional horizontal derivative techniques. By 
using VUC it is immediate showing that upward continuation of the 
signal to higher altitudes yields information about progressively deeper 
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sectors of the discontinuity. In particular, looking at the position of the 
maxima of the horizontal derivative of the continued field, we can 
observe that they will be laterally shifted toward the dipping direction of 
the discontinuity, in a way proportional to the continuation height. 

We applied VUC followed by horizontal derivative to a gravity profile 
extracted from a gravity survey on the Venelin-Aksakov fault in 
Bulgaria, in order to get further information on the dipping direction of 
this structure. 

Preliminary results shown in this paper have been also presented in one 
of the poster sessions of the Geoitalia 2013 Meeting held in Pisa in 
September 2013. 
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6. Conclusions and future research 

In this thesis, we have studied in detail the relationship between potential field 
inversion algorithms (i.e. Li and Oldenburg, 2003), and multi-scale imaging 
techniques (Fedi, 2007): the aim of our work was to implement an integrated 
approach of potential fields data analysis using the benefits provided by both 
methods.  

We found that the information derived from the multi-scale analysis, such as 
source shape parameters, could be efficiently used in the inversion algorithms 
to improve the resolution and the depth estimate on the inversion solutions. The 
inversion constraint, which can take advantage of the source-shape multiscale 
information, is the depth weighting function. This function is necessary to 
counteract the natural decay of the data kernel with depth, so providing depth 
resolution to the inverse solution.  

Starting from Cella and Fedi (2012), we followed their idea of using a depth-
weighting function with an exponent β equal to the correct structural index (N) 
of the source, and we estimated the variability of this index in a 2D space, 
getting out an N(x,z) function.  

Once a preliminary workflow has been defined, we have tested it on magnetic 
anomalies generated by simple sources (a dipoles line, a dike, a cylinder) and 
by more complex sources (e.g. couple of sources whose effects interfere with 
each other on the overall data). As a further example we have also tested the 
workflow on some real data from the Bouguer gravity anomaly map of 
Southern Italy. 

We demonstrated the good performance of the integrated approach both for 
synthetic and real data; in particular, the results obtained from the test on real 
data show a good correspondence with the results obtained by Fedi (2007) for 
the same area.  

Considering the achieved results, we can state that source information retrieved 
by a multi-scale analysis of the data has a great potential to lead to well-
constrained solutions with respect to the source depth and to the horizontal 
variations of the source-density/magnetization intensity distribution.   

The foundings of this integrated approach could be further expanded for 
application in the 3-dimensional space, making this topic particularly 
interesting for future research.  

67 
 



Throughout the development of the main topic of this thesis, we have also 
expanded our research field defining an alternative approach to upward 
continue potential field data: the VOCO (Volume Continuation), which has 
important advantages above existing techniques and is suitable for all types of 
data continuation between surfaces in the space. VOCO has also been coupled 
with second order horizontal derivatives of gravimetric data to investigate on 
the estimate of the sources horizontal limits changing the field continuation 
height value.  

Results from this topic have been also subject for journal and conferences 
papers. 
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Appendix 

DEXP transform and N(x,z) function mathematical computation 

We have calculated analytically the gravimetric field, the DEXP transform and 
the N(z) function related to “finite vertical cylinder”-shape sources analysed in 
chapter 4.  

We have used the Symbolic Math Toolbox™, which provides functions for 
solving and manipulating symbolic math expressions and performing variable-
precision arithmetic. The computations are performed defining a special data 
type: symbolic objects, so integration, differentiation, simplification, equation 
solving, and other mathematical tasks can be performed increasing usual 
numeric capabilities. Symbolic results can be than converted to numeric results 
and plotted as shown in the following pictures. 
 
A finite vertical cylinder 
The gravity field of a finite vertical cylinder is a simple inhomogenous potential 
field (Fedi et al., 2012). For a cylinder extended from z01 to z02, the gravity field 
can be expressed as the difference between the fields of two infinite vertical 
cylinders, whose tops are placed respectively at z01 and z02. 

If we suppose that the sources have unitary density and radius, and that the 
gravitational constant is equal to 1 we can expresse the gravity field of the two 
infinite vertical cylinders as: 
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So the difference between the two can be expressed as: 
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Symbolic calculation of the gravity field of two infinite vertical cylynders, and 
of a finite vertical cylinder, which is the combination of the two, have been 
converted to numeric results and shown in Figure A1. 
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Figure A1 – (a) gravimetric anomaly of an infinite vertical cylinder with top placed at z = 10 (lenght 
units), (b) gravimetric anomaly of an infinite vertical cylinder with top placed at z = 20, (c) 
gravimetric anomaly of a finite vertical cylinder with top placed at z = 10 and bottom placed at z = 
20. 

In the same way we can compute the DEXP transform of a finite vertical 
cylinder, starting from the simple expressions of the DEXP of two infinite 
vertical cylinders: 

5.0
11 zVW ⋅=      (A.5) 

and     5.0
22 zVW ⋅=      (A.6) 

where z is the continuaton height and 0.5 is the scaling exponent from Table 
3.1, and then computing the difference between the two: 
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Figure A2 shows how equations A.5-7 can be converted into numerical results.  
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Figure A2 - (a) DEXP transform of the gravimetric anomaly of an infinite vertical cylinder with top 
placed at z = 10 (lenght units), (b) DEXP transform of the gravimetric anomaly of an infinite 
vertical cylinder with top placed at z = 20, (c) DEXP transform of the gravimetric anomaly of a 
finite vertical cylinder with top placed at z = 10 and bottom placed at z = 20. 

The N(x,z) function can be computed from the DEXP result as follows: 
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z
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and its numerical results is shown in Figure A3. 

 
Figure A3 – N(z) function from the DEXP transform of the gravimetric anomaly of a finite vertical 
cylinder with top placed at z = 10 and bottom placed at z = 2 
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Two finite vertical cylinders 

Starting from the gravimetric anomaly, DEXP transform and N(z) index of a 
finite vertical cylinder, we have re-arranged Equations A1-to-8 to calculate the 
field of two finite vertical cylinders following the well known principle of 
superposition. 

The symbolic results, converted to numeric results are shown in the following 
pictures. 

 
Figure A4 - (a) gravimetric anomaly of a finite vertical cylinder with top placed at z = 10 (lenght 
units), bottom placed at z = 20 and center placed at x = - 30, (b) gravimetric anomaly of a finite 
vertical cylinder with top placed at z = 10, bottom placed at z = 20  and center placed at x =  30, (c) 
gravimetric anomaly of two  finite vertical cylinders with tops placed at z = 10, bottoms placed at z = 
20 and centres places at x = -30 and x = 30 respectively. 
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Figure A5 - (a) DEXP transform of the gravimetric anomaly of a finite vertical cylinder with top 
placed at z = 10 (lenght units), bottom placed at z = 20 and center placed at x = - 30, (b) DEXP 
transform of the gravimetric anomaly of a finite vertical cylinder with top placed at z = 10, bottom 
placed at z = 20  and center placed at x =  30, (c) DEXP transform of the gravimetric anomaly of two  
finite vertical cylinders with tops placed at z = 10, bottoms placed at z = 20 and centres places at x = 
-30 and x = 30 respectively. 

 
Figure A6 - N(z) function from the DEXP transform of the gravimetric anomaly of two  finite 
vertical cylinders with tops placed at z = 10, bottoms placed at z = 20 and centres places at x = -30 
and x = 30 respectively. 

Two interferent finite vertical cylinders 

We have also calculated the gravimetric anomaly generated by two finite 
vertical cylinders, whose contribute heavily interferes with the other, as it is not 
possible to distinguish the sources-related maxima on the anomaly. 

The symbolic results, converted to numeric results are shown in the following 
pictures. 
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Figure A7 - (a) gravimetric anomaly of a finite vertical cylinder with top placed at z = 10 (lenght 
units), bottom placed at z = 20 and center placed at x = - 10, (b) gravimetric anomaly of a finite 
vertical cylinder with top placed at z = 10, bottom placed at z = 20  and center placed at x =  10, (c) 
gravimetric anomaly of two  finite vertical cylinders with tops placed at z = 10, bottoms placed at z = 
20 and centres places at x = -10 and x = 10 respectively. 

 
Figure A8 - (a) DEXP transform of the gravimetric anomaly of a finite vertical cylinder with top 
placed at z = 10 (lenght units), bottom placed at z = 20 and center placed at x = - 10, (b) DEXP 
transform of the gravimetric anomaly of a finite vertical cylinder with top placed at z = 10, bottom 
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placed at z = 20  and center placed at x =  10, (c) DEXP transform of the gravimetric anomaly of two  
finite vertical cylinders with tops placed at z = 10, bottoms placed at z = 20 and centres places at x = 
-10 and x = 10 respectively. 

 
Figure A9 - N(z) function from the DEXP transform of the gravimetric anomaly of two  finite 
vertical cylinders with tops placed at z = 10, bottoms placed at z = 20 and centres places at x = -10 
and x = 10 respectively. 

Two deeper interferent finite vertical cylinders 

The following pictures show, instead, the symbolic results, converted to 
numeric results, of the gravimetric anomaly generated by two deeper finite 
vertical cylinders, whose contribute heavily interferes with the other, as it is not 
possible to distinguish the sources-related maxima on the anomaly. 
 

 
Figure A10 -  (a) gravimetric anomaly of a finite vertical cylinder with top placed at z = 15 (lenght 
units), bottom placed at z = 25 and center placed at x = - 15, (b) gravimetric anomaly of a finite 
vertical cylinder with top placed at z = 15, bottom placed at z = 25  and center placed at x =  10, (c) 
gravimetric anomaly of two  finite vertical cylinders with tops placed at z = 15, bottoms placed at z = 
25 and centres places at x = -10 and x = 10 respectively. 
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Figure A11 -  (a) DEXP transform of the gravimetric anomaly of a finite vertical cylinder with top 
placed at z = 15 (lenght units), bottom placed at z = 25 and center placed at x = - 10, (b) DEXP 
transform of the gravimetric anomaly of a finite vertical cylinder with top placed at z = 15, bottom 
placed at z = 25  and center placed at x =  10, (c) DEXP transform of the gravimetric anomaly of two  
finite vertical cylinders with tops placed at z = 15, bottoms placed at z = 25 and centres places at x = 
-10 and x = 10 respectively 

 
Figure A12  - N(z) function from the DEXP transform of the gravimetric anomaly of two  finite 
vertical cylinders with tops placed at z = 15, bottoms placed at z = 25 and centres places at x = -10 
and x = 10 respectively. 

 
Two interferent finite vertical cylinders at different depths 

The case of two interferent finite vertical cylinders has been made harder to 
interpret placing the sources at different depth from each others.We have 
calculated  the gravimetric anomaly, DEXP transform and N(z) function also for 
this case. 
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Figure A13 -  (a) gravimetric anomaly of a finite vertical cylinder with top placed at z = 5 (lenght 
units), bottom placed at z = 15 and center placed at x = - 15, (b) gravimetric anomaly of a finite 
vertical cylinder with top placed at z = 15, bottom placed at z = 25  and center placed at x =  10, (c) 
gravimetric anomaly of the two finite vertical cylinders in (a) and (b). 

 
Figure A14 - (a) DEXP transformn of the gravimetric anomaly of a finite vertical cylinder with top 
placed at z = 5 (lenght units), bottom placed at z = 15 and center placed at x = - 15, (b) DEXP 
transformn of the gravimetric anomaly of a finite vertical cylinder with top placed at z = 15, bottom 
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placed at z = 25  and center placed at x =  10, (c) DEXP transformn of the gravimetric anomaly of 
the two finite vertical cylinders in (a) and (b). 

 
Figure A15 – N(z) function from the DEXP trasnform of the gravimetric anomaly of two finite 
vertical cylinders in Fig. A13(c). 
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Manymethods have been used to upward continue potential field data. Most techniques employ the Fast Fourier
transform, which is an accurate, quick way to compute level-to-level upward continuation or spatially varying
scale filters for level-to-draped surfaces. We here propose a new continuation approach based on the
minimum-length solution of the inverse potential field problem, which we call Volume Continuation (VOCO).
For real data the VOCO is obtained as the regularized solution to the Tikhonov problem. We tested our method
on several synthetic examples involving all types of upward continuation and downward continuation (level-
to-level, level-to-draped, draped-to-level, draped-to-draped). We also employed the technique to upward
continue to a constant height (2500 m a.s.l.), the high-resolution draped aeromagnetic data of the Ischia Island
in Southern Italy. We found that, on the average, they are consistent with the aeromagnetic regional data
measured at the same altitude. The main feature of our method is that it does not only provide continued data
over a specified surface, but it yields a volume of upward continuation. For example, the continued data refers
to a volume and thus, any surface may be easily picked up within the volume to get upward continuation to
different surfaces. This approach, based on inversion of the measured data, tends to be especially advantageous
over the classical techniques when dealing with draped-to-level upward continuation. It is also useful to obtain
amore stable downward continuation and to continue noisy data. The inversion procedure involved in themeth-
od implies moderate computational costs, which are well compensated by getting a 3D set of upward continued
data to achieve high quality results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Upward continuation is used to transform anomalies measured at a
surface into anomalies that would bemeasured at some higher altitude
surface. It can also be used to merge data at different altitudes, such as,
e.g., thosemeasured on irregular surfaces (i.e. in case of draped airborne
surveys) and to continue the whole dataset to a given surface
(e.g., Paoletti et al., 2004, 2005; Paterson et al., 1990; Pilkington and
Roest, 1992; Ridsdill-Smith, 2000). This transformation is also helpful
to enhance the effects of deep sources, as it attenuates the highest
frequency content of the signal, which is usually associated to shallow
sources. Finally, multiscale methods such as the continuous wavelet
transform (Fedi and Cascone, 2011; Fedi et al., 2010; Mauri et al.,
2010; Sailhac et al., 2009), the DEXP transformation (Fedi, 2007) and
the multiridge analysis (Cella et al., 2009) involve potential field data
available on a 3D volume, which in turn is generated by upward contin-
uation of data measured at a single – flat or draped – surface.

Upward continuation originates fromGreen's third identity (Blakely,
1996), which states that if U is a harmonic continuous function, with

continuous derivatives through a regular region R, then its value at
any point P within the harmonic region R, can be evaluated from its
behaviour on the boundary S:

U Pð Þ ¼ 1
4π
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where n is the outward normal direction, r the distance from P to the
point of integration on S. No information about the source is needed
except that it is not located within the region R.

In the following, we will describe the four types of performing up-
ward continuation: level-to-level, level-to-draped, draped-to-level and
draped-to-draped. The simplest case is the level-to-level upward
continuation, when the potential field data is measured on a constant
altitude surface z0 and continued to some higher altitude plane. The
process is defined by an integral formulation:
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where Δz N 0, and z is assumed negative outward. Eq. (2) is a convolu-
tion integral and can be solved via the Fourier transform and the convo-
lution theorem. The numerical implementation of this formula
obviously considers a finite-extent dataset and equally spaced data,
which leads to known types of errors for the continued data (Fedi
et al., 2012). Upward continued data can be calculated by convolution
in either the space domain or the Fourier domain. In this last domain,
the Fourier transform of the data is simply multiplied by the frequency
operator:

e− kj jΔz ΔzN0 ð3Þ

where k is the wavenumber vector. As said before, real data is discrete
and refers to a finite survey area. Thus, when using circular convolution
to calculate upward continuation in the frequency domain, aliasing
errors can affect the low-frequency content of upward continued data.
These errors can be reduced by performing the Fourier transform on a
larger dataset, which extends outside the survey area (Fedi et al.,
2012; Oppenheim and Schafer, 1975). The enlarged dataset may be
built utilizing data from other surveys or through extrapolation algo-
rithms: zero-padding and symmetric extension (Fedi et al., 2012), max-
imum entropy extension (Gibert and Galdéano, 1985) and others.

Eqs. (2) and (3) are strictly valid for level-to-level continuations;
however potential field literature is rich in algorithms performing
upward continuation between uneven surfaces. Among them, Cordell
(1985), Pilkington and Roest (1992) and Ridsdill-Smith (2000) devel-
oped algorithms for level-to-draped upward continuation. Whereas,
Xia et al. (1993), Meurers and Pail (1998), Fedi et al. (1999), Ridsdill-
Smith (2000) and Wang (2006) formulated upward continuation algo-
rithms for draped-to-level surfaces.

In this paper we define a new approach that performs upward con-
tinuation using the relation established by Cribb (1976) between the
minimum-length solution of the inverse potentialfield problem andup-
ward continuation. We call this method Volume Upward Continuation
(VOCO) as this approach has the advantage of generating the field as a
unique solution in a 3D volume, in which all four types of continuations
(level-to-level, level-to-draped, draped-to-level and draped-to-draped)
are naturally defined.

As known, inversion implies higher computational costs than stan-
dard continuation algorithms. They are however, well compensated by
the versatility of the method in providing from a single inversion, the
continuation along any desired surface inside the source volume and
by the high-quality of the continuation.

2. Volume Upward Continuation of potential fields

2.1. Theoretical background

As described in the following, the Volume Upward Continuation of a
magnetic field is computed by: i) inverting the magnetic anomaly to
obtain theminimum-length solution; and ii) converting themagnetiza-
tion volume into an upward continued field volume.

The inverse problem for potentialfields (e.g., Fedi et al., 2005) can be
formulated by the following integral:

f rð Þ ¼
Z

V

K r; r0ð ÞM r0ð Þdr30 ð4Þ

where f(r) is the potential field measured at the point r, M(r0) is the
unknown source distribution in the volumeΩ and K(r, r0) is the kernel.
In the case of themagnetic fieldwewill denote f=ΔT and consider K as
the field measured at a distance r given by a magnetic dipole with unit-
magnetization at the point r0.

The kernel K can be expressed as:

K r; r0ð Þ ¼ μ0
4π

∂2
∂n∂t

1
r−r0k k2

ð5Þ

where μ0 is the magnetic permeability of free space, t and n are
unit-vectors along the inducing field and magnetization vectors,
and ||r − r0||2 denotes the Euclidean norm of r − r0.

Discretizing the volume Ω in an Nx × Ny × Nz grid of blocks, as-
suming that the magnetization is a piecewise function constant in
each cell Ωj, we can write a linear system of equations, calculating
expression (5) in each cell. In this way we will get P= Nx × Ny equa-
tions (one for each measurement point). Every equation will then
have N = Nx × Ny × Nz unknowns leading to the linear system:

Km ¼ d ð6Þ

where K is the kernel coefficients matrix and d is the measured data
vector. The coefficient matrix K has elements given by the expression:

Ki j ¼
Z

Ω j

K r; r0ð Þdr30 i ¼ 1;…; P; j ¼ 1;…;N: ð7Þ

The simplest solution of such an under-determined inverse
problem is the one minimizing the Euclidean norm of the solution

m: ∑
N

i¼1
mij j2

 !1=2

. This is called minimum-length solution (Menke,

1989):

m ¼ KT KKT
' (−1

d: ð8Þ

In order to obtain an upward continued field volume, we can use the
relation shown by Cribb (1976). For a vertical direction of both the
inducing field and magnetization vectors, Cribb (1976) showed that
the Fourier transform of m could be simply expressed as:

F mi½ & ¼ 4e− kj jhi F d½ & i ¼ 1;…; L ð9Þ

where F denotes the Fourier transformation, L is the number of layers,
mi is the magnetization intensity vector of the ith layer, hi is its depth
and k is the wavevector with components kx, ky and (kx2 + ky2)1/2.
The important information contained in Eq. (9) is that the Fourier
Transform of the ith layer of themagnetization distributionmi is direct-
ly related to the upward continued field of d, to a distance equal to the
opposite of the layer depth: zi = −hi (Fedi and Pilkington, 2012).
Thus, we can obtain d by anti-transforming the second member of
Eq. (9):

dhi ¼
mi

4
i ¼ 1;…; L : ð10Þ

This shows that the field at the altitude zi=−hi differs only for a nu-
meric constant from the magnetization of the ith layer. We may there-
fore first compute the minimum-length solution (Eq. (8)), inserting
n = t = (0,0,1) in the kernel (Eq. (5)), then compute the Volume
upward Continuation (VOCO) through Eq. (10). This procedure may
therefore be viewed as an effective alternative to common techniques
of upward continuation of the magnetic field.

Note that for real data, a regularized solution may be preferable in
order to dampen the disturbing error-propagation of the data noise.
This may be accomplished not by minimizing the model norm (as in
the case of the solution in Eq. (8)), but using the Tikhonov regularization
that takes the form:

min
m

Km−dk k22 þ λ2 mk k22
n o

ð11Þ
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where λ is a regularization parameter. Eq. (11) can be solved efficiently
by iterative methods such as the conjugate gradient method and its
variants (CGLS, LSQR, etc.) (e.g. Hansen, 2010). By solving such regular-
ized problems, we can obtain a solution which is nearly that yielded by
Eq. (8) if the signal-to-noise ratio is high, or a more smoothed solution
when the signal-to-noise ratio is low. In the latter case, Eq. (10) should
be replaced by:

dhi≅
mi

4
i ¼ 1;…; L : ð12Þ

Note that the observation surfaces may be either flat or uneven to
handle the different cases: flat-to-flat, draped-to-flat, flat-to-draped
and draped-to-draped.

In the case of the gravity inverse problem starting from Eq. (4), we
will denote f(r) as the gravity field measured at point r, and K as the

gravity field measured at distance r, given by a pole with unit-density
at point r0. The kernel K will be expressed as:

K r; r0ð Þ ¼ γ
∂
∂z

1
r−r0k k2

ð13Þ

where γ is the gravitational constant. Similar to themagnetic field case,
the density distribution of theminimum-length solutionmay be used to
get a VOCO of the gravity field. In this case, according to Cribb (1976),
the anomalous density distribution is proportional to the upward
continuation of the vertical derivative of the observed data:

F mi½ & ¼ ke− kj jhi

πγ
F d½ & i ¼ 1;…; L ð14Þ

Fig. 1. VOCO flowchart. (a) Synthetic magnetic anomaly due to a horizontal dipole line located at 30m depth and with 1 A/mmagnetization intensity; (b)Magnetization model resulting
fromminimum-length inversion of the anomaly field in (a); (c) Volume Upward Continuation after transformation of themagnetizationmodel in (b); (d) Vertical section of the VOCO in
(c). The green dashed line shows a level at h=20mwhere a level-to-level continuation is extracted (see plot e). The red line shows a dipping level where a level-to-draped continuation is
extracted (see plot f); (e)–(f) Comparison between VOCO profiles (green and red lines) and the magnetic anomalies computed at the same levels (blue dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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where F denotes the Fourier transformation, L is the number of layers,
mi is the density vector of the ith layer, hi is its depth and k is the
wavevector with components kx, ky and (kx2 + ky2)1/2. Therefore the
ith layer of the density distribution mi is directly related to the upward
continued field of the vertical derivative of the data d, to a distance
equal to the opposite of the layer depth: z = −hi.

2.2. Method workflow

In order to show the applicability of the VOCO method, we tested it
in two simple cases: the level-to-level and level-to-draped upward
continuation of the magnetic anomaly of a horizontal dipole-line
(Fig. 1a). The source has unitary magnetization intensity and it is locat-
ed at 30 m depth. In both cases we employed Eq. (8) to perform the

minimum-length inversion to obtain a 3D magnetization model
(Fig. 1b). Then we applied Eq. (10) for every ith layer of the magnetiza-
tion domain to transform this volume into an upward-continued-field
volume (Fig. 1c). From this field volume, it is then possible to extract
any desired surface of data laying on either a flat surface or a draped
surface, by linearly interpolating data to find the values of the underly-
ing three-dimensional function VOCO at the points located at the
desired altitude.

In the level-to-level case, we extracted the ith layer corresponding to
the desired continuation altitude z=−hi (green line in Fig. 1d).Where-
as, in the level-to-draped case we extracted the field corresponding to a
dipping surface (red line in Fig. 1d).We note that the VOCO field obtain-
ed from the minimum-length solution, reproduces well the anomaly
computed at the same levels for both the level-to-level (Fig. 1e) and

Fig. 2. Level-to-draped upward continuation: (a) synthetic magnetic anomaly computed at h= 0m (from Ridsdill-Smith, 2000). PP′ is the profile along which we compared the perfor-
mance of VOCO and other methods; (b) Gaussian-shaped topographic surface; (c) synthetic draped magnetic anomaly computed over the topographic surface in (b); (d) VOCO of the
magnetic anomaly in (a) converted from the minimum-length solution along the topographic surface in (b), according to Eq. (10); (e) comparison among different level-to-draped
upward continuation algorithms along the PP′ profile: black line is data from the synthetic draped magnetic anomaly in (c); red line refers to data from the VOCO in (d); green line,
blue dots and magenta line refer to data computed by using the CHESS, TAY and WAV algorithms, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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the level-to-draped cases (Fig. 1f). We obtained, indeed, a RMSE =
0.0241 nT between the computed field (blue dots in Fig. 1e) and the
VOCO (green line in Fig. 1e) for the flat surface case, and a RMSE =
0.0393 nT between the computed field (blue dots in Fig. 1f) and the
VOCO (red line in Fig. 1f) for the dipping surface case.

3. Synthetic examples

3.1. Level-to-draped upward continuation

Here we tested the level-to-draped VOCO of a complex synthetic
magnetic anomaly and we compared it with the results from other
well-tested methods. The magnetic anomaly test in Fig. 2a, originally
generated by Ridsdill-Smith (2000) using a magnetization distribution
with a power-law decay (i.e., containing more energy at low frequen-
cies than at high frequencies), was draped over the Gaussian-shaped
topography in Fig. 2b, yielding the field shown in Fig. 2c. The major
field changes are in the central area where, due to the rapid altitude
increase of the draped surface, the field amplitude increases nearly to
zero. The VOCO (computed through Eqs. (8) and (10)) produced an ac-
curate upward continued field (see Fig. 2d) on the draped surface with
RMSE = 0.1818 nT. We obtained the VOCO anomaly from an inversion
of a volume of 128 × 128 × 30 cells in about 347 s using a couple of
Quad-Core Intel Xeon processors of 2.26 GHz speed each and a 32 GB
RAMmemory.

We compared the results of the continuation from the VOCO and
other algorithms along an E–W profile (PP′ in Fig. 2a). Fig. 2e shows
the VOCO anomaly field (red line; RMSE = 0.1818 nT) compared with
the computed draped anomaly (black line) and the anomalies produced
by other upward continuation algorithms briefly described here.

The Chessboard method (green line; RMSE = 0.3759 nT) (Cordell,
1985) uses a set of different level-to-level upward continuations to gen-
erate a 3D volume of data around the sampling points of the desired
continuation surface. Also cubic interpolation around values computed
on a set of 11 upward continuation levels.

The Taylor series method (blue dots; RMSE = 0.3756 nT)
(Pilkington and Roest, 1992) approximates the field on the draped
surface using 5 terms of the Taylor-series of the measured field. Such a
large number of terms are not always necessary in the Taylor-series
expansion as the higher-order derivative terms are generally too noisy
to be useful. However, we decided to include these terms to ensure
the accuracy of the result.

The upward continuation through the spatially-varying-scale filter
(WAV — pink line; RMSE = 0.6544 nT) defined in the wavelet domain
(Ridsdill-Smith, 2000) is performed using the Perrier 6 wavelet, n = 54
frequencies and k = 30 scales.

The computational efficiency of each of the methods is similar, but
the Taylor-series method can be made more efficient than the other
methods by reducing the number of iterations. Neither the Chessboard
filter, nor the wavelet methods can be made much faster without a sig-
nificant reduction in effectiveness.

The VOCO result has the lowest RMSE and provides a good tracking
of the original anomaly shape, especially in the central area where the
field changes the most. As mentioned, the method performs a level-
to-Volume upward Continuation. In this way, the user has the option
to choose one or multiple surfaces to extract from the volume after
viewingwhat it looks like, and thenmakes a choice driven by the specif-
ic purpose of the data analysis and/or interpretation.

3.2. Level-to-draped downward continuation

Downward continuation is essentially the inverse process of upward
continuation. It allows the calculation of the potential field on a new
surface that is located below the observation surface. The frequency
response of the level-to-level downward continuation filter is the
inverse of the one given in Eq. (3) for upward continuation:

e− kj jΔz Δz b 0 : ð15Þ

Thus, downward continuation behaves as a high-pass filter and the
filter amplitude increases exponentially with frequency. It is well

Fig. 3. VOCO applied to downward continuation: (a) magnetic data measured on a flat surface (FS) at 1000 m height. White rectangles outline the x–y prisms positions; (b) sketch of the
acquisition and continuation surfaces; (c) data computed on the topographic surface (TS) shown inplot b; d)–e) results of thedownward continuation on the TS surface fromWAV(d) and
VOCO (e).
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known that downward continuation is an extremely unstable field
transformation and any high-frequency noise component in the mea-
sured signal is exponentially amplified. We applied the VOCO method
to the downward continuation problem of a synthetic anomaly
(Fig. 3a), computed 1000 m above the ground (Fig. 3b). The source
model consists of three prismatic sources of different shapes (white out-
lines in Fig. 3a) placed at different depths so that their magnetic effects
mutually interfere. Table 1 defines the positions of the sources vertices,
and their depth and magnetization intensity. The inducing field and
magnetization are both vertical.

We decided to downward continue the data from the measurement
flat surface FS, located 1000 m above the ground, to a severely rugged
topographic surface TS located 200–600 m above the sea level. Fig. 3c–
e shows a comparison between the synthetic data computed on the to-
pographic surface TS (Fig. 3c) and the downward continuation results
from the wavelet (WAV, RMSE 7.3368 nT, Fig. 3d), and VOCO (RMSE
6.1294 nT, Fig. 3e) methods. Computation time for VOCO was about
1089 s for a volume model discretized in 48 × 48 × 35 cells using an
Intel Core 2 Duo processor of 2.4 GHz speed and a 4 GB RAM memory.

We are not including the results from the CHESS and TAY algorithms,
as we were not able to produce results comparable with WAV and
VOCO. Both the CHESS and TAYmethods indeed performed very poorly,
yielding to very noisy results even when a smoothing was applied. The
Chessboard results were calculated using from 11 to 100 continuation
levels and a sliding rule filter of orders from 1 to 5. For the Taylor meth-
od (Pilkington and Roest, 1992) we used up to 5 terms of the Taylor
series expansion and a low-pass smoothing with taper frequencies
ω0 = 0.123 and ω1 = 0.975 rad for the cosine roll-off filter.

Looking at themaps resulting from theWAVandVOCOmethods and
at their RMSE values we note that the WAV result is characterized by
topography-connected artefacts even when a smoothing factor is
added. On the other hand the VOCO field is the less affected by
topography-driven effects while also being capable of locating all
three sources.

Note that the WAV algorithm incorporates low-pass filtering tools
that attenuate the signal's high-frequency components and stabilize
the downward continuation operation. In the VOCO case, the down-
ward continued data is extracted froma3Dvolume converted intomag-
netic field units (Eq. (12)) from a magnetization volume which is the
solution of the Tikhonov regularized problem (Eq. (11)). As noted in
Section 2.1, this kind of inversion yields stable results optimized by a
suitable choice of the regularization parameter λ.

3.3. Draped-to-level upward continuation on a real topographic surface

We now show one more application of the VOCO method namely,
the case of field data measured on a draped surface (e.g., a topographic

Table 1
Source parameters for themagnetic anomaly in Fig. 3a. Depths are referred to the sea level
z = 0 m.

x1 (m) x2 (m) y1 (m) y2 (m) Depth (m) Magnetization intensity (A/m)

P1 375 875 125 150 −250 1
P2 250 375 500 625 −275 1
P3 750 1000 750 1000 −325 0.5

Fig. 4. Draped-to-level-upward continuation on a real topographic surface: (a) real topographic surface located in the area of Naples (Italy); (b) draped synthetic magnetic anomaly of a
prismatic source placed at 1 km depth with a magnetization intensity of 5 A/m; (c) minimum-length inversion solution; (d) synthetic magnetic anomaly computed at 600 m altitude;
(e) VOCO of the anomaly in (b), extracted at 600 m altitude; (f) WAV upward continuation at 600 m altitude of the anomaly in (b).
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surface) and continued to a constant level. This case is especially impor-
tant because typical imaging, inversion, differentiation, reduction to the
pole and other algorithms need data at a constant altitude surface (e.g.
Fedi et al., 2005; Paoletti et al., 2013a). To this end, we applied the
VOCO method (through Eqs. (8) and (10)) to data (Fig. 4b) generated
by a prismatic sourcewith 5 A/mmagnetization intensity on a real topo-
graphic surface located in the vicinity of Naples, Italy (Fig. 4a).

The source was placed at a depth of 1 km, centred in the block
volume and sized 0.3 km× 0.3 km× 0.3 km. Fig. 4c shows a vertical sec-
tion of the minimum length solution, fromwhichwe easily selected the
desired level of the draped-to-level upward continuation. The inversion
procedure was applied over a 64 × 64 × 30 block model; each sized
0.1× 0.1 × 0.05 km3. Note that we extended the source-volume in cor-
respondencewith its borders by addingmore blocks (we added 2 blocks
on each side of the grid, sized 0.5 km× 0.5 km× 0.05 km), to reduce bor-
der effects.

After converting the magnetization model into the upward continu-
ation domain (Eq. (10)) we represented the field at the selected level
z = −600 m (Fig. 4e). The result is very close to the true field (shown
in Fig. 4d), with RMSE = 0.0289 nT. Comparing this result with that

produced by using the WAV algorithm by Ridsdill-Smith (2000)
shown in Fig. 4f, we noted that some of the topographic effects still re-
main in the continued data, while the computed RMSE = 0.0441 nT is
about 50% higher than the previous one.

3.4. Draped-to-draped upward continuation

In the previous section we showed how VOCO supplies good results
in the draped-to-level upward continuation. The same approach is ad-
justable to perform a draped-to-draped upward continuation, by simply
selecting an uneven surface in the VOCO 3D model. We applied the
VOCO method (by using Eqs. (8) and (10)) to data generated by a
stack of 3D polygonal prisms arranged to form a “stair model” dipping
westward (Fig. 5c). The prisms' magnetization intensity is unitary,
thickness is 50 m, horizontal dimensions are 150 m × 250 m, and
depth ranges are from 75 m to 425 m. In Fig. 5b and d we show the
anomalies computed on the lower and upper surfaces of Fig. 5a,
respectively.

Fig. 5e shows the result of the VOCO of the data of Fig. 5b, extracted
from the upper surface; the computed RMSE with respect to the

Fig. 5. Draped-to-draped upward continuation: (a) acquisition and continuation surfaces. The lower surface is where the data are acquired, the upper one is where the data are upward
continued to, topography lies 50m below the lower surface; (b) magnetic anomaly of the dipping dike source in (c) computed on the lower surface; (d) magnetic anomaly computed on
the upper surface; (e) VOCO of the data in (b) extracted from the upper surface.
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observed data in Fig. 5d is 0.6239 nT.We note that VOCO performs rath-
er well for this case too.

4. Case history

We applied the VOCO method to the draped aeromagnetic map of
the Ischia Island (Southern Italy) (Fig. 6c) acquired at a constant clear-
ance of 300mover the island's topography (Paoletti et al., 2009). The re-
sults of the upward continuation of the Ischia draped data through
VOCO are then compared with the aeromagnetic regional data mea-
sured over the island at 2500 m a.s.l. by the National Geological Survey
andAGIP (AGIP, 1994). The island of Ischia is one of the volcanic fields of
the Phlegrean Volcanic District, a volcanic area of Southern Italy located
in the Campanian Plain. Ischia (Fig. 6a) is the emerged top of a large vol-
canic edifice rising ca. 1000m from the seafloor, located along a NE–SW
ridge. The island extends over a surface of about 42 km2 and is morpho-
logically dominated by Mt. Epomeo (787 m a.s.l.). It is the result of a
prominent resurgence phenomenon; while a valley is located in the
north-eastern sector of the island. The island is composed of volcanic
rocks (mostly trachytes and phonolites, and minor shoshonites and
latites), marine sediments and landslide deposits (e.g., Orsi et al., 1991).

The draped magnetic data of Ischia Island (Fig. 6c, Paoletti et al.,
2009) was acquired in October 2005 using a helicopter with a 300 m
line-spacing (N–S azimuth) and a 5 m sampling step along each flight
line (Fig. 6b). The survey was flown at a constant clearance of about
300m. The aeromagnetic dataset employed for the VOCOwas previous-
ly processed for spikes and gaps in data acquisition, GPS positioning,
Earth's magnetic field variations and IGRF removal. With respect to

the previous regional ones, the new detailed data allowed a more
enhanced definition of the island's and offshore anomalies (Paoletti
et al., 2008, 2013b).

Themagnetic anomalies correlate fairly well with themain volcano-
logical features of the island: the most prominent maxima of the field
are placed in correspondencewith lava deposits younger than 10 ka be-
fore present (B.P.), and the older (28 ka–18 ka B.P.) lava deposits on the
coast. Smaller anomalies are located over lavas older than 55 ka B.P. Mt.
Epomeo is characterized by a less prominent anomaly connected to the
tuffs of the area. With regard to the offshore areas, we observe only a
few relevant anomalies in the offshore area west of Ischia and two
others in the offshore area west of Procida. The lack of a clear magnetic
signature in the central sector of Ischia was interpreted by Paoletti et al.
(2009, 2013b). They explained the probable cause was due to the hy-
drothermal alteration phenomena of igneous materials constituting
the basement of the island and/or the presence of partially molten
areas inside the basement. The draped dataset was upward continued
through the VOCO algorithm by using the surface of acquisition located
300m above the topography. The inversion procedurewas applied over
a 54 × 54 × 30 block model with cells sized 0.3 × 0.3 × 0.15 km. Addi-
tional blocks were placed at themodel borders to reduce border effects.
Due to some noise in the data we preferred using Eq. (11) to obtain a
regularized solution. Then the magnetization model was converted
into VOCO magnetic data by using Eq. (12). Finally, the data were
extracted at a 2500 m a.s.l. (Fig. 7a).

The VOCO results of Fig. 7a were compared with a dataset extracted
over the same area from the aeromagnetic map of Italy. These regional
data were measured by AGIP in 1981 during a regional survey carried

Fig. 6.VOCO applied to the aeromagnetic datameasured at the Ischia Island, Southern Italy: (a) topography of the area; (b) geological setting of Ischia (Vezzoli, 1988)with overlapped the
flight lines of a high-resolution draped survey and a regional survey (AGIP, 1994); (c) magnetic map from the high-resolution survey.
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out at a flight altitude of 2500 m a.s.l. with a line spacing of 2000 m
(Fig. 7b). The AGIP data outlined a prominent magnetic anomaly in
the south western offshore of the island and a smaller anomaly in the
south-eastern area of the island. Whereas there is a decreasing trend
of the magnetic field both northward and southward. These features
are described in more detail in the VOCO map at 2500 m altitude
(Fig. 7a), due to the fact that the VOCO data was obtained from high-
resolution draped data with a spacing of about 1/6 of the AGIP dataset
spacing (see Fig. 6b). Despite a few differences in the two maps due to
the different survey layouts and detail, the datasets exhibit a rather
similar anomaly amplitude and pattern, showing that the VOCO yields
reliable results.

5. Conclusions

In this paper we proposed a new approach to upward continue
potential field data, which yields good results on all types of measure-
ments and continuation surfaces. Moreover, the method is also useful
for downward continuation, as a regularized inversion may be used to
obtain stable results, instead than the minimum-length solution. One
advantage of this novel approach is that the VOCO method yields a
Volume upward Continuation, and thus it may be used to extract in a
simple way, the continuation on any kind of surface, including multiple
levels. We may in fact define all four kinds of continuation problems
(level-to-level, level-to-draped draped-to-level and draped-to-draped) by
simply transforming the magnetization model into an upward contin-
ued 3D volume (Eqs. (10) and (12)) and by picking up the sought
surface from it. The real-case example from Ischia Island confirms
the effectiveness of this method, as the VOCO result computed at a
2500 m above sea level is in good agreement with the regional data
measured at the same altitude. Inversion obviously implies higher com-
putational costs than standard continuation algorithms, especially for
large-scale problems. Computational costs are however well compen-
sated by: a) the versatility of the method in providing, from a single
inversion, the continuation along any desired surface intersecting the
source volume; and b) the high-quality of the continuation of all four
kinds of upward continuation problems as well as the downward
continuation case.
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AccurATe evAluATion of edGes And diP of fAulTs And conTAcTs 
ThrouGh The volume uPwArd conTinuATion (vuc) of GrAviTy dATA
d. mastellone, m. fedi, v. Paoletti
DISTAR, Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Italy

Introduction. Several methods have been used to retrieve values of dip of faults by using 
lateral offsets of the zero-crossover point of the second horizontal derivative of upward-
continued gravity profiles. The use of derivatives of potential fields represents a signal 
enhancement technique experimented since a long time. It allows the information content of 
the signal to be enhanced without implying any arbitrary assumption. Often, such methods 
are coupled with upward continuation, which is used to transform anomalies measured on one 
surface into those that would have been measured on some higher altitude surface.

In this paper we demonstrate the efficiency of a new approach to upward continue potential 
field data, the Volume Upward Continuation (VUC), coupled with traditional horizontal 
derivative techniques. By using VUC it is immediate showing that upward continuation of 
the signal to higher altitudes yield information about progressively deeper sectors of the 
discontinuity. In particular, looking at the position of the maxima of the horizontal derivative 
of the continued field, we can observe that they will be laterally shifted toward the dipping 
direction of the discontinuity, in a way proportional to the continuation height.

We applied VUC followed by horizontal derivative to a gravity profile extracted from a 
gravity survey on the Venelin-Aksakov fault in Bulgaria, in order to get further information on 
the dipping direction of this structure. 

Upward continuation and horizontal derivatives. Upward continuation operator uses 
measurements of a field at one elevation, level or surface to determine the values of the field at 
a higher level.

Upward continued data can be calculated by convolution in either the space domain or the 
Fourier domain. In this last domain the Fourier transform of the data is simply multiplied by 
the frequency filter:
  (1)

where k is the wavenumber vector and Δz is the distance between the original surface and 
the final one. Real data are discrete and refer to a finite survey area; so, when using circular 
convolution to calculate upward continuation in the frequency domain, aliasing errors can 
affect the low frequency content of upward continued data. These errors can be reduced by 
performing the Fourier transform on a larger dataset, which spreads outside the survey area 
(Oppenheim and Schafer, 1975; Fedi et al., 2012), built with other surveys data or, through 
extrapolation algorithms (zero-padding, maximum entropy extension, symmetric extension). 

Upward continuation is mostly helpful to enhance the effects of deep sources, as it attenuates 
the highest frequency content of the signal, which is usually associated to shallow sources; or 
to trace the dipping direction of oblique discontinuities (e.g. faults) (Rapolla et al., 2002; Cella 
et al., 2000; Tatchum et al., 2011). 

The horizontal derivative method (Cordell and Grauch, 1985) represents one of the most 
used derivative approaches of potential fields, as it allows locating the horizontal position of 
the density or magnetization boundaries (Paul and Goodacre, 1984; McGrath, 1991; Rapolla et 
al., 2002; Cella et al., 2010; Stavred and Reid, 2010; Tatchum et al., 2011).

The expression for the horizontal derivative of a potential field M, in the space domain (x,y) 
is

  (2)

The horizontal derivative has its maxima in correspondence of the lateral boundaries 
of the source anomaly. This supplementary information cannot be, of course, straightaway 
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recognized from the original signal and can be really helpful to constrain geological models 
and guide the geological interpretation.

However, as suggested by Grauch and Cordell (1987) and Rapolla et al. (2002), the maxima 
of the horizontal gradient magnitude can be offset from a position directly above the geologic 
contacts, especially when contacts are not steep or when several contacts are close together; so 
this link between maximum points and edges position is consistent only in the case of vertical 
or sub-vertical discontinuities. For example Khattach et al. (2004) associated the horizontal 
gradient magnitude of the Bouguer gravity anomaly to the upward continuation of the field to 
characterize the faults of the Triffa basin in North Morocco.

However, in the presence of oblique surfaces, the maxima of the horizontal derivative are 
located in correspondence with the discontinuity at an intermediate depth (Grauch and Cordell, 
1987), without any information about the dipping direction.

Therefore, the efficacy of this simple method is good in the case of structural features 
typical of an extensional regime (normal faults, transform faults) or in the presence of dykes, 
volcanic conduits, plutonites, etc. On the contrary, the method is hardly usable when the 
structural setting is characterised by a compressive tectonic style (presence of inverse faults, 
transpressive faults, multiple thrust systems, etc.).

To overcome this issue many authors (i.e. Cella et al., 2000; Martelet et al; 2001; Rapolla et 
al., 2002; Tatchum et al., 2011; Fedi and Pilkington, 2012) propose to couple upward continuation 
with gradient: first upward continuing the data and then computing its horizontal derivative to 
see how its maxima shift with respect to the subsurface structure. In fact, the position of the 
maxima of the horizontal derivative of the continued field will be laterally shifted toward the 
dipping direction of the discontinuity, proportionally to the continuation level.

The DEXP method adds a third step to this procedure consisting in multiply the derived 
field with a scaling function (Fedi, 2007; Fedi and Pilkington, 2012).

The maxima of the horizontal derivative of the field continued at different levels can also 
be localized automatically (see for example Blakely and Simpson, 1986) to speed up the data 
analysis.

In this work we propose to follow this procedure, but taking in account the VUC method 
for upward continuation. One of the first advantages of using VUC instead of standard upward 
continuation algorithms is that edge effects are automatically encountered as long as the final 
result is built. Another important advantage occurs especially in the gravity case, where the 
VUC has an intrinsic connection also with the vertical derivative of the field. These two topics 
will be better clarified in the paragraph on VUC method.

Volume Upward Continuation. We propose a new approach to upward continue potential 
field data, based on the minimum-length solution of the inverse potential field problem. The 
method yields a volume upward continuation, and reveals to be advantageous over the classical 
techniques based on the Fast Fourier transform (Cordell, 1985; Pilkington and Roest, 1992; 
Blakely, 1996; Fedi et al., 1999; and Ridsdill-Smith, 2000) especially when dealing with 
truncated anomalies and when draped-to-level upward continuation is needed. 

This approach has the advantage of generating the field in the upward continuation domain 
(i.e., at many altitudes) as a unique solution in a 3D volume. Within this volume, all the three 
types of continuation (level-to-level, level-to-draped and draped-to-level) are naturally defined. 
In fact, the upward continued data volume can be immediately visualized and used to obtain 
the field on several surfaces of whatever kind (draped or level).

Due to this feature we will call this method Volume Upward Continuation (VUC). In the 
VUC the border effects, typical of upward continuation, are controlled in an optimal way: the 
upward continued data are in fact proportional to a least-square solution of the inverse problem.

Starting from the continuous inverse geomagnetic problem (e.g., Fedi et al., 2005) 
discretized over a volume Ω of N cells, each of them with constant magnetization mj, we can 
write a linear system of equations: 
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 Km=d (3)
where K is the kernel coefficients matrix and d is the measured data vector. This inverse 
problem is under-determined, as the unknowns are more than data, so it has infinite solutions. 
The simplest solution is that minimizing the Euclidean norm of the solution m:
 m = KT(KKT)-1d (4)

Cribb (1976) showed, for this solution, this remarkable equation in the frequency domain:

  (5)

where F denotes the Fourier transformation, L is the number of layers, mi is the magnetization 
intensity vector of the ith layer, hi is its depth, k is the wavevector with components kx, ky 
and (kx

2+ky
2)1 2, V(k)=(t.k)(n.k)/|k|2, with t and n unit-vectors along the inducing field and 

magnetization vectors. Therefore the ith layer of the magnetization distribution mi is directly 
related to the upward continued field of the data d, to a distance equal to the opposite of 
the layer depth: z=-hi. Anti-transforming the second member of Eq. (5) and assuming, for 
simplicity, magnetization and inducing field both vertical, we find:

  (6)

showing that  and  differ only for a numeric constant. 
Based on Eqs. (5) and (6) we therefore may use the minimum length solution as an effective 

alternative to common upward continuation techniques. 
In Fig. 1 we tested the VUC approach in two simple cases: level-to-level and level-to-draped 

upward continuation of the magnetic anomaly due to a horizontal dipole line located at 30 m 
depth. We observe that the field obtained from the minimum-length solution well reproduces 
the computed anomaly at the same altitude.

The result has been achieved following these steps: 
• inverting the magnetic anomaly to obtain the minimum-length solution;
• converting the magnetization volume to an upward continued field volume through Eq. 

(6);
• extracting the ith layer corresponding to the desired continuation altitude z=-hi (level-

to-level);
• or extracting the field corresponding to the desired draped surface (level-to-draped).
The most valuable advantage of the VUC method occurs when the field data are on a draped 

surface (e.g., a topographic surface) and are continued to a constant level. Some synthetic tests 
(Mastellone et al., 2013) shows that the VUC result, compared with that produced by using 
other continuation algorithms, can better avoid topographic effects in the continued data.

VUC is helpful also if the profile is severely truncated, and extrapolation is needed before 
performing upward continuation. In this case, one could obtain very different results, from 
several extrapolation algorithms. In this case VUC helps to circumvent the border effects by 
extending the source-volume with additional blocks at its borders. The border effects are better 
controlled, because of the constraint, inherent in the inversion process, that the predicted data 
must fit the measured data..

VUC in the gravity case: the role of the vertical derivative. In the gravity case the 
anomalous density distribution coming from a minimum-length inversion is proportional to the 
upward continuation of the vertical derivative of the observed data:

         (7)

where G is the gravitational constant, F denotes the Fourier transformation, L is the number 
of layers, mi is the density vector of the ith layer, hi is its depth, k is the wavevector with 
components kx, ky and (kx

2+ky
2)1 2. Therefore the ith layer of the density distribution mi is directly 
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related to the upward continued field of the vertical derivative of the data d, to a distance equal 
to the opposite of the layer depth: z=-hi.

So the resulting signal is a combination of a vertical derivative filter, which amplifies the 
high-frequency components of the data, and an upward continuation, which is, on the contrary, 
a low pass filter for definition.

This feature is interesting and has been investigated by many authors who tested the 
coupling of upward continuation and field derivatives.

The benefits of using the vertical derivative were documented by Fedi and Florio (2001): 
they showed that when the gravity fields of several sources interfere, it is more accurate to 
use the vertical derivative of the field rather than the field itself to determine the location of 
contacts of the sources. This is in part due to the vertical derivative being able to isolate the 
gravity effects of individual sources better than the Bouguer anomaly. Hence, the signatures of 
small-scale features that are not easily identified in Bouguer anomaly maps can be identified 
and mapped using the vertical derivative response. 

So from the horizontal derivative magnitude of the VUC response, it is possible to outline 
and differentiate vertical and dipping geological contacts as well as the direction of the dip; and 
also to separate multiple anomalies. 

The higher frequencies will be enhanced at the expense of lower frequencies; however, if 
the data contain noise or small errors, the coupled filter already inbuilt in Cribb’s relationship 
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[Eq. (7)] for gravity fields, by first suppressing the highest frequencies, (upward continuation), 
can help to remove that noise.

Case history: the Venelin-Aksakov fault (Bulgaria). The VUC method combined with 
horizontal derivative was applied to an anomalous gravity profile (Stavrev and Reid, 2010) in 
the area of the Dolna Kamchia depression (Bulgaria), across the Venelin-Aksakov fault, at the 
western bound of the depression. 

The Dolna (lower) Kamchia depression lies in Eastern Bulgaria along the lower course of 
the Kamchia river. This depression is elongated west to east and runs into the adjoining Black 
Sea shelf, according also to geophysical data. It belongs geologically to the most northeastern 
part of the Balkan orogenic system. The Venelin-Aksakov fault is the western bound of the 
depression.

An intense gravity gradient zone (see Figs. 5 and 6 in Stevrev and Reid, 2010) indicates a 
steep contact structure with north-to-south orientation. Exploratory wells west and east of the 
line of the gravity gradient zone indicate a considerable difference in the depth to the boundary 
between the low-density tertiary-upper Cretaceous layers and the denser lower Cretaceous and 
deeper sediment layers, the depth to high-density strata increases by a factor of 10, going from 
the western elevated horst structure to the eastern depression.

Core samples from wells in the Dolna Kamchia depression show also a significant difference 
in the density of tertiary-upper Cretaceous layers and lower Cretaceous-Jurassic-Triassic layers.

The analysed Bouguer gravity profile was extracted across the gradient axis of the gravity 
anomaly map shown in Fig. 2a and the geologic data available for the area strongly suggest that 
this is a contact of considerable depth extent.

We performed VUC on the anomaly gravity profile in Fig. 2b obtaining the vertical section 
showed in Fig. 2c. Then we calculated the horizontal derivative of the VUC result, following 
Eq. (2), and we extracted from the section profiles corresponding to increasing continuation 
heights (see Fig. 2d and the related key table).

For a vertical contact, the derivative maximum values, related to different continuation 
heights, are along the same vertical line, whereas for dipping contacts, the maxima gradually 
move in the direction of dip. 

Furthermore the absolute values of the horizontal derivative maxima decrease as the height 
continuation height increases, as one could obviously expect. In fact the resulting signal is 
related to progressively deeper sectors of the discontinuity, if increasing continuation heights 
are analysed.

In the case shown in Fig. 2c the position of the maxima slightly shifts in the direction of 
dipping, but the shape of the derivative function is skewed in the direction of dipping. This is 
in agreement with other geophysical and geological data, suggesting a steep and abrupt contact 
between tertiary-upper Cretaceous layers and lower Cretaceous-Jurassic-Triassic layers.

Conclusions. In this paper we introduce a new tool, the VUC (Volume Upward Continuation), 
for the well-known procedure of combining upward continuation and vertical and horizontal 
derivatives of potential field data. 

The VUC by itself yields good results especially in case of draped-to-level upward 
continuation and when dealing with the continuation of severely truncated anomalies. One 
advantage of the VUC tool is that it yields a volume upward continuation, and thus it may be 
used to extract in a simple way the continuation on any kind of surface and also to multiple 
levels. We may in fact define all the three kinds of continuation problems (level-to-level, level-
to-draped and draped-to-level) by simply picking up the sought surface on the inverted 3D 
magnetization model and then transforming the corresponding magnetization data into upward 
continued data, through Eqs. (5) and (6). So it can be usefully placed side by side to common 
upward continuation techniques.

In the gravity case, moreover, the VUC absorbs also the vertical derivative in its result, 
fulfilling a remarkable feature, already examined by many authors who tested its efficiency if 
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combined with horizontal derivatives also (Fedi and Florio, 2001; Florio et al., 2006; Tatchum 
et al., 2011). The VUC, when applied to a real field data example from the Venelin-Aksakov 
fault in Bulgaria, to locate fault edge and dipping direction, provides results in agreement with 
geological and geophysical studies already performed in the same area. 
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