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Introduction

The present work has been performed at the Institute of Biostructure and 

Bioimaging (IBB) of the National Research Council (CNR) in cooperation with the 

Institute of Optics (INO) with a joint research project on “Detection of ionizing 

Radiation by means of intrinsic OPtical fiber Sensors” (DROPS). The research 

activity has been supported by investigators working at the Departments of 

Advanced Biomedical Sciences and of Physics of Federico II University. 

The rationale of the research activity lies on the Radiation Therapy (RT) 

optimization issue. As advances in Radiotherapy technology have increased the 

complexity of a radiotherapy treatment, accurate dose monitoring must be 

performed, and organ response to the interaction of ionizing radiation must be well 

understood, in predicting and optimizing the effects of radiotherapy treatments. 

The research activity focuses on two topics of the optimization problem: 

 development of new optical fiber sensor dosimeters and investigation of 

standard dosimeters for small field and in vivo dosimetry; 

 dose optimization to the organs at risk. 

The modern techniques usually use small fields or composite fields consisting 

of a multitude of small fields (<1 x 1 cm2 or smaller). Conventional reference 

dosimetry is usually based on the absorbed dose to water calibration at 10x10 cm2 

fields as described in the standard dosimetry protocols. A standard protocol for 

small field dosimetry currently does not exist. Hence, adapted clinical reference 

dosimetry methods and appropriate dosimeters are required to establish an 

adequate quality assurance program to guarantee a standard of quality in novel 

technique applications. 

The goal of DROPS is to realize a passive detector for ionizing radiation based 

on optical fiber sensor technology suitable for radiation dosimetry in a dose range 

relevant to clinical practice. 

The presence of a radiation field significantly affects the fiber physical 

properties as well, introducing a modification of the optical signal itself. One of the 

effects of radiation exposure is well known to be an increase in optical transmission 

loss. Also, a correlated change of average refractive index occurs in the optical 
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waveguide, which can be exploited to extract the desired information. At the same 

time, immunity to electromagnetic interference, intrinsic safety, mechanical 

simplicity and small size as well as multiplexing and embedding capability make 

optical fiber sensors, in principle, ideal dosimeters. 

The modern radiation treatments improves the dose conformality and the dose 

escalation to the target, however radiation induced toxicities to the surrounding 

healthy tissues remain major dose-limiting factors. The ultimate goal of 

radiotherapy treatment planning is to find a treatment that will yield a high tumor 

control probability (TCP) with an acceptable normal tissue complication 

probability (NTCP). In this framework, radiobiological models play an essential 

role and NTCP modeling may help to minimizes side effects for individual patients. 

Traditionally radiotherapy outcomes have been modelled using information about 

the dose distribution and the fractionation. Most well-known and accepted models 

for predicting toxicity after radiation treatment are based only on dose-volume 

parameters. Our basic idea is to perform “clinical” radiation biology studies 

through the development of robust predictive NTCP models. In the era of 

personalized evidence-based medicine, a data-driven multivariable modeling 

approach for prediction of radio-induced complication may represent a more 

effective and powerful approach to improve outcomes prediction.  

In the general framework of RT treatment optimization, aim of the present 

research was to analyze the feasibility of developing a new generation of dosimeters 

based on passive optical fiber sensor. In addition, thermoluminescent dosimeters 

(TLDs), were evaluated for non-conventional treatment modalities, such as the 

Intraoperative Electron Radiation Therapy characterized by high dose-per-pulse 

electron beams. Lastly, multivariable NTCP predictive models for different cancer 

patients and organ at risks were developed and validated. 

The structure of the thesis can be summarized as follow: 

Chapter 1 describes the emerging radiotherapy techniques and the state of the 

art of the dosimeters for small field and in vivo dosimetry. Dosimetric aspects of 

non-conventional beams are discussed with a specific focus on water equivalence 

of the dosimetric material. In order to elucidate the relationship between radiation 

dosimetry and radiation therapy, the basic principles of treatment planning 

algorithms and the equations describing NTCP models are presented. 

The aim of the Chapter 2 is to present the physical basis for ionizing radiation 

detection using Fiber Bragg Grating (FBG) sensors.  
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Chapter 2 provides an overview of the theory of the photosensitivity of the 

optical fiber sensor. Particularly, the main intrinsic and extrinsic defects and the 

theories proposed to explain photosensitivity of Ge-doped silica are illustrated. 

The Chapter 3 is focused on the materials and methods description. It is 

structured in two sections: the first part presents the characteristics of FBG sensors 

and resonant cavities and the experimental set up for the irradiation and 

interrogation of the sensors, the second part presents the computational 

approaches to estimate the complication probability in the normal tissue organs 

using open source software packages and in-house made code packages.  

The Chapter 4 shows the results and the discussions of the research activity. The 

first part describes the investigation of different dosimeters. The water equivalency 

assessment of the new optical fiber sensor has been performed modelling the 

interaction of ionizing radiation with fiber material. The radiological properties 

have been carried out, including electron density, photon interaction probabilities, 

mass attenuation and energy absorption coefficients and the effective atomic 

number. The results concerning the response of the optical fiber sensor to the 

irradiation with photon beam at different dose levels are presented. Finally the 

TLD-100 dose-response curves, obtained in high dose-per-pulse electron beams 

are reported. The second part presents the multivariable NTCP models developed 

for several patient cohorts, organ at risks and complications developed after 

radiation treatment. 

On the base of the obtained results, the most relevant conclusions, as well as the 

future perspectives, are illustrated. 



 

 
 

CHAPTER 1 

Radiation Therapy Optimization

The rationale of the research activity will be given in this Chapter with an 

overview on the modern radiotherapy techniques and on the physical aspects of 

dose measurement. 

The theoretical background of dose calculation for a radiotherapy prescription 

and the current models used to optimize and to evaluate a treatment planning 

will be discussed. 

1.1 Background  

In applications of ionizing radiation to problems related to medicine it is 

important to measure the amount of delivered radiation. In diagnostic procedures, 

such as x-ray examinations, nuclear medicine, CT scans, PET, and in radiation 

therapy, this measurement aims both at the optimization of image quality and 

radiation protection.  

The evaluation of accuracy and precision of determination of absorbed dose is a 

very important component of any physical quality assurance program in radiation 

therapy for cancer. One of the aspects of an efficient treatment of cancer is the 

calibration of the clinical accelerator machines (reference dosimetry), but also 

accurate radiation beam shaping and measurement of dose delivered to the patient 

(relative and in-vivo dosimetry) must be taken into account.  

An active area of research consists in treatment optimization taking into 

account the almost infinite variety of treatments possible with modern computer-

controlled medical accelerators [1]. While the use of dosimetry based on biological 

response is the long term goal, practical clinical dosimetry today is based on the 

quantity of absorbed dose and its accurate measurement represents one of the 

major responsibilities of medical physicists. 
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Due to the development of new techniques in radiotherapy, such as Intensity 

Modulated Radiation Therapy (IMRT), Stereotactic Radiotherapy and 

Hadrontherapy, there is a growing need to more reliably measure the absorbed 

dose. 

In vivo dosimetry is used to control the total accumulated dose in cases where 

the treatment planning system is less accurate, such as in the build-up region and 

in risk organs in the head and neck region. Small changes in absorbed dose could 

result in a significant change in the probability of cure and/or complications. The 

recent developments in radiotherapy delivery techniques have substantially 

increased the use of non-standard fields. A non-standard field is defined as a field 

with a size smaller than the lateral range of charged particles (small field) or 

whenever non-equilibrium conditions exist [2].  

With the accepted need for accurate delivery of dose, development of novel 

instrumentation and more reliable techniques that ensure accurate dose 

measurements is of primary importance. In this context a new generation of optical 

fiber-based dosimeter would transmit dose information through optical fibers. 

Such sensors are immune to electromagnetic interference, which can be a serious 

issue for many electronic dosimeters. The ability of remotely monitor radiation is 

an additional advantage as the sensor can be placed at a long distance from the 

readout electronics. Also, optical fiber sensors can be multiplexed so that a single 

reading unit can control several sensors. Thanks to their mechanical nature and 

very small size, fibers lend themselves to the realization of miniature radiation 

detectors with different geometries without perturbing the dose measurement. 

1.2 Emerging radiotherapy techniques 

Modern external radiotherapy techniques are designed to improve the dose 

conformality and the dose escalation to the target. Some examples are summarized 

below. 

Intensity modulated radiotherapy (IMRT): is a technique which uses the multi-

leaf collimators (MLC) on a linear accelerator to vary the radiation beam intensity 

around a target field. The shape of the radiation beams may change hundreds of 

times during the course of treatment, together with the intensity of the beams and 

the direction from which they are delivered. IMRT permits the delivery of high 

radiation dose to the target while minimizing it to other sensitive organs by 

focusing multiple beams on the tumor. Each of these beams has a number of small 
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sub-beams or segments whose intensities are varied according to the treatment 

plan [3-5]. IMRT treatments can be delivered with the MLC operating in one of 

three basic modes: 

 segmented MLC (static IMRT) in which the fields are delivered with a 

sequence of small segments or subfields, each subfield with a uniform 

intensity. The techniques is also referred to as step and shoot, implying that 

the beam is only turned on when the MLC leaves are stationary in each of 

the prescribed subfield positions; 

 dynamic MLC mode in which the intensity modulated fields are delivered 

in a dynamic fashion with the leaves of the MLC moving during the 

irradiation of the patient. For a fixed gantry position the opening formed 

by each pair of opposing MLC leaves is swept across the target volume 

under computer control with the radiation beam turned on to produce the 

desired fluence map; 

 intensity modulated arc therapy (IMAT) in which the sliding window 

approach is used as the gantry rotates around a patient. 

Intraoperative radiotherapy (IORT): this technique delivers in a single session 

a radiation dose of the order of 10 - 20 Gy to a surgically exposed internal organ, 

tumor or tumor bed. Thus IORT combines two conventional modalities of cancer 

treatment, surgery and radiotherapy. Typically, when surgical resection of a tumor 

mass is finally attempted, not all the tumor can be removed without significant 

morbidity. To improve local regional control, a large dose of radiation is delivered 

during the surgical procedure, helping kill microscopic disease and preserving 

more healthy tissue. 

Stereotactic external beam irradiation (SEBI): is a technique that uses small, 

highly-collimated photon beams to irradiate tumor target with high geometric 

precision and dosimetric accuracy. This technique is most commonly used for 

tumors in the brain or spinal column, in the lung, liver, pancreas and kidney. 

It is divided into two categories: 

 stereotactic radiosurgery: the total dose is delivered in a single session; 

 stereotactic radiotherapy: like in standard radiotherapy, the total dose 

is delivered in multiple fractions, typically in a maximum of five 

sessions using higher doses of radiation with each session. Instead, a 

focused high-intensity beam of radiation is used to target the tumor. 
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1.3 Dosimetry of small photon field 

The photon fields used in the conventional RT are commonly referred to as 

standard or large fields. Their sizes are larger than 5 x 5 cm2. In modern 

radiotherapy narrow high-energy photon beams are increasingly used. There is no 

clear consensus definition as to what constitutes a small field. At present a small 

field is generally defined as having dimensions smaller than the lateral range of the 

charged particles that contribute to the deposited dose at a point along the central 

axis. According to these criteria, field sizes of less than 3 x 3 cm2 are considered to 

be small for a 6 MV photon beam. 

In order to apply these modern RT techniques with high precision and in a 

trusted manner, accurate measurements of the dose characteristics of such beams 

(percentage depth dose, beam profiles, output factors) are required as input to the 

treatment planning system. Small photon beam measurements are problematic 

mainly due to the presence of high dose gradients and nonexistence of lateral 

electronic equilibrium in narrow photon beams. It has been proposed that good 

practice is to use and compare several types of dosimeters. To that end, a large 

number of investigators have used air and liquid ionization chambers, 

radiographic and Gafchromic films, diamond detectors, plastic scintillators, TLDs 

(ThermoLuminescent Dosimeters), MOSFETs (Metal Oxide Semiconductor Field 

Effect Transistors), radiophotoluminescence glass plates, polymer gels, and silicon 

diodes for measuring small field profiles analyzing the advantages and 

disadvantages of each dosimeter. In addition, Monte Carlo simulations have often 

used for theoretical verification of experimental results. The available dosimetry 

equipment along with their typical uses and response characteristics are listed in 

Appendix A, Table A1 [6]. 

To our knowledge, no single detector, fulfils all the requirements. Moreover, the 

dosimeters used for dose measurements in small filed, should ideally exhibit 

certain characteristics such as (i) being tissue-equivalent and not perturbing the 

radiation beam, (ii) exhibiting energy, dose rate, and directional independence of 

response, (iii) having small sensitive volume and ability for high spatial resolution 

measurements, and (iv) overcoming the positioning problems that are usually 

present in small field dosimetry. 

Usually, the dose profiles for fields smaller than 5 mm in diameter change 

drastically over off-axis distance as small as 1 mm. Thus, the resolution of the 
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detector used will have a great impact on both the central axis and off-axis dose 

measurements. 

There are two different approaches to solving this problem: (i) we either need a 

detector with a well-known geometry or (ii) we need a detector with a very small 

size, at least 6 to 7 times smaller than the field size. Evidently, it is difficult to 

manufacture a detector small enough and accurate at the same time when, for 

example, the field size is as small as 2 mm in diameter. However, if the exact 

geometry of the detector sensitive volume is known, it is possible to perform a 

deconvolution procedure that is very suitable for off-axis measurements. Several 

extensive studies on dose profile deconvolution have been conducted [7, 8]. 

The property of water-equivalence of the measuring material is related to the 

radiation properties, since water is the most commonly used phantom material, 

similar to the human body tissue. Having a water-equivalent detector is important, 

because the concept of the charged particle equilibrium (CPE) does not apply to 

small photon fields in a lateral direction. In order to illustrate the importance of 

this concept, let us take a closer look at how the radiation dose gets deposited in 

the phantom when small photon beams are used. 

When a high-energy photon enters a medium, there are four main types of 

interactions with a certain probability: photoelectric effect, coherent scatter, 

incoherent (Compton) scatter, and pair production. The radiation dose deposited 

is as a result of two-step process: after the interactions, a significant part of the 

incident photon energy might be transferred to an electron that thereafter will be 

set in motion. This electron will then ionize the medium over its track by electron-

electron Coulomb interactions. 

The radiation dose deposited is expressed as follow: 

 

                                                                        𝐷 = ϕ (
�̅�

𝜌
)                                                            (1.1) 

 

where ϕ is the electron fluence at the point-of-interest and (
�̅�

𝜌
) is the restricted 

mass stopping power averaged over the electron energy spectrum. 

The restricted mass stopping power is defined as: 

 

                                                                    (
�̅�

𝜌
) =

1

𝜌
 
Δ𝐸

Δ𝑥
                                                             (1.2) 
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where 𝜌 is the density of the medium and Δ𝐸 is the energy transferred to low-

energy electrons that deposit this energy locally, over a small distance Δ𝑥. 

For large photon fields, the assumption is made that the number of electrons 

that stop inside a small volume Δ𝑉 is equal to the number of electrons set in motion 

by photons inside the same volume (Figure 1.1). Thus, the electrons can be 

considered as continuously moving through the medium, instead of stopping and 

being set in motion. This assumption actually underlines the concept of CPE. The 

electron fluence is constant when this concept applies. 

 

 

Figure 1.1. Charged particle equilibrium: number of electrons stopped in a small volume is equal to 

the number of electrons set in motion by photons in the same volume. 

Generally, the detectors and the phantoms are made of different materials. 

According to Eq. (1.1) the relationship between the dose delivered to the detector, 

𝐷𝑑, and the dose delivered to the medium, 𝐷𝑚𝑒𝑑, is: 

 

                                                             𝐷𝑚𝑒𝑑  = 𝐷𝑑 (
�̅�

𝜌
)

𝑑

𝑚𝑒𝑑

(𝜙)𝑑
𝑚𝑒𝑑                                        (1.3) 

 

where  

        (
�̅�

𝜌
)

𝑑

𝑚𝑒𝑑

=
(

�̅�

𝜌
)

𝑚𝑒𝑑

(
�̅�

𝜌
)

𝑑

 

       (𝜙)𝑑
𝑚𝑒𝑑 =

𝜙𝑚𝑒𝑑

𝜙𝑑
 

The dose to the phantom (medium) is calculated by multiplying the dose to the 

detector by two correction factors: restricted stopping power ratio and the electron 

fluence perturbation factor for the two materials: medium and detector. The 



Chapter 1                                                                                 Radiation Therapy Optimization 
 
 
 

 
7 

restricted stopping power ratio accounts for the difference in the energy deposited 

by an electron per unity track length in the two difference materials. The electron 

fluence perturbation factor corrects for the difference in the electron fluence.  

Under condition of CPE, the two factors are constant as given photon energy, so 

that, even if they are not established, relative measurements may be carried out 

without adversely affecting the reliability of measurements results. For very small 

fields, the field size is usually smaller than the electron range in the phantom 

material. In this situation a very important difference appears when comparing an 

electron moving in a lateral direction in a very small field to an electron moving in 

the same fashion in a large field (Figure 1.2). When an electron moving laterally in 

a large photon field approaches the point where it will stop, another electron will 

be set in motion by a photon in the vicinity of this point. In a very small field, many 

electrons will be able to reach points outside the photon beam where no photon-

electron interaction occurs, and the electron fluence will change with the increase 

in the off-axis distance. Thus there will be no CPE in a lateral direction, leading to 

the conclusion that the correction factors defined in Eq. (1.3) will vary causing 

difficulties not only for absolute measurements, but even for relative dosimetric 

measurements. In order to overcome this obstacle and to obtain reliable results 

one would therefore need either a phantom-equivalent detector with both 

correction factors to one or else a detector whose correction factors are precisely 

known. 

 

 

Figure 1.2. Electrons moving in lateral direction in large and very small photon fields. 

At the frontier of Ionizing Radiation (IRs) monitoring optical fiber sensors have 

emerged in the recent years. Immunity to electromagnetic interference, intrinsic 

safety, mechanical simplicity and small size as well as multiplexing and embedding 

capability make optical fiber sensors, in principle, ideal dosimeters. The majority 
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of existing optical fiber detectors are extrinsic sensors, where fibers mainly serve 

to transmit light from the sensor’s head, whether it be a thermoluminescent solid, 

diode, or scintillating medium. 

In this thesis a different approach for detection of IRs down to clinical dose 

levels was exploited: the optical fibers sensors are totally passive, based on special 

Bragg-grating cavity reflectors which are particularly sensitive to radiation-

induced effects in the silica material. Because the interaction properties play a 

fundamental role in the radiation effect as well as in the performance of a 

dosimeter, prior to perform experimental dose measurements the sensors have 

been characterized with respect the peculiarities of interaction of ionizing radiation 

with the material. 

1.4 In vivo dosimetry 

In vivo dosimetry is a suitable tool to detect errors in radiotherapy, to assess 

clinically relevant differences between the prescribed and delivered doses and to 

document doses received by individual patients. The primary goal of in vivo 

dosimetry, however, is Quality Assurance (QA) of the radiotherapy process.  

There is no general consensus among radiotherapy centers on the cost 

effectiveness of in vivo dosimetry, and until recently its routine implementation 

was not widespread. Arguments are made that most treatments are carried out in 

a correct manner and that only a small fraction of patients actually benefit from 

rectifying errors, because very few are detected. However, a recent series of major 

accidents in radiotherapy, which would have been prevented if in vivo dosimetry 

systems had been in place, has strengthened the reasoning in favor of in vivo 

dosimetry. It is now more broadly considered that preventing the severe 

consequences of serious errors justifies the effort and costs of in vivo dosimetry 

programs. This has generated an increasing interest among radiotherapy centers 

in the methodology for in vivo dosimetry. 

The IAEA (International Atomic Energy Agency) initiated a coordinated 

research project (CRP) entitled “Development of Procedures for In vivo Dosimetry 

in Radiotherapy” in 2005 [9]. The emphasis of the CRP was on patient dose studies, 

both evaluating the clinical value of in vivo dosimetry and comparing different 

techniques for in vivo dosimetry in a clinical setting. 

Many different types of dosimeters have been investigated for in-phantom or in 

vivo dose measurements in diagnostic radiology, including ionization chambers, 
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metal-oxide semiconductor field-effect transistor dosimeters, thermoluminescent 

dosimeters, optically stimulated luminescence dosimeters, films and diodes. With 

the exception of the ionization chamber, each of the before mentioned dosimeters 

suffers from a critical limitation, either the need to interrogate, or read, the 

dosimeter to retrieve dose information or large size to achieve adequate sensitivity. 

During this interrogation, no dose information is collected, and so accurate real-

time monitoring of accumulated radiation dose is not possible. 

While the ionization chamber is not subject to the same limitation, the size of 

chamber necessary for rapid, reproducible and accurate dose measurement 

prohibits its use for in-phantom or in vivo dose measurements in diagnostic 

radiology. Thus, new forms of dosimetry are required to accurately measure 

accumulated dose in clinically relevant settings. 

Actually MOSFET, diodes and TLDs are the well-established methods used for 

in vivo dosimetry.  

MOSFET it is relatively new in radiotherapy being introduced into radiation 

therapy dosimetry in the early 1990s [10, 11]. MOSFETs are particularly useful in 

high dose gradient radiation fields because of their small size. This feature provides 

a good spatial resolution of measurements, especially important in IMRT, 

radiosurgery and brachytherapy. MOSFETs offer some other advantages for 

clinical dosimetry such as the possibility of real time readout, simple 

instrumentation and robustness. In addition, dual MOSFET dual voltage 

dosimeters are temperature independent, which is an advantage in clinical 

dosimetry. MOSFETs also allow for permanent dose storage, since there is little 

fading of the signal with time. However, MOSFETs have a limited lifetime, which 

depends on the thickness of the silicon oxide layer and the mode they are used in. 

TL detectors have the advantage of being highly sensitive under a very small 

volume and not to have to be connected to an electrometer with an unwieldy cable. 

Their major disadvantage which is the time required for readout can be 

considerably decreased by a good choice of the equipment and a good 

methodology. Thanks to the modern automated readers TLD results may now be 

obtained within some 15 minutes after irradiation. Even with the multichannel 

electrometers presently available for diode dosimetry, the number of sites to be 

explored may sometimes become too large (e.g. for dose evaluation at different 

places in large fields as applied in TBI or total skin irradiation). Thanks to the very 

high number of detectors available and to the absence of cables TLD offers 

attractive possibilities. 
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Due to the limited size of the detectors and therefore their excellent spatial 

resolution, another typical application of TLD is the exploration of zones of 

possibly high dose gradient. It is then possible to study e.g. field junction zones by 

juxtaposing on the patient’s skin a number of TLD chips, or a number of small 

containers to be filled with TLD powder. Dose distributions at the entrance or exit 

surfaces of the 2 adjacent fields may then be derived with a high spatial resolution. 

Thanks to their tissue-equivalence TLD are also of interest for measurements 

outside the field, because, despite the spectral variations with in-field positions, 

the calibration factor derived at the beam axis may still be used with a reasonable 

accuracy. 

Although, TLDs are a well-established technique for in vivo dose verification, 

very few works have been published about the dose evaluation during electron 

irradiation [12-14]. 

Diode dosimeters, which belong to the category of semiconductor detectors, are 

comparable to ionization chambers but are generally used without external bias 

voltage and are more sensitive for the same detection volume. Diodes score better 

than TL dosimeters with respect to immediate response, share the advantage of 

absence of high voltage, but are inferior with respect to presence of a cable, 

response variation as a function of accumulated dose, dose-rate, temperature and 

energy. 

1.5 Treatment planning dose calculation  

In order to elucidate the relationship between radiation dosimetry and radiation 

therapy, the basic principles on which treatment planning algorithms are based are 

briefly described. The radiation dose delivered to an arbitrary point (a point-of-

interest) in a phantom or a patient is calculated by multiplying the dose to a certain 

point, called a reference point, with a coefficient, which related the dose at a 

reference point to the dose at the point-of-interest. We need to know both the 

absolute dose delivered to the reference point and the relationship between this 

dose and the dose to the point-of-interest to perform this calculation.  

Conventional reference dosimetry is usually based on the absorbed dose to 

water calibration at 10 x 10 cm2 fields as described in the protocols AAPM TG-51 

defined by the American Association of Physicists in Medicine and IAEA TRS-398 

defined by the Atomic Energy Agency [15, 16]. 
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Dose measurements with ionization chambers rely on the assumptions of cavity 

theory [17]. When the size of the cavity is smaller than the range of charged 

particles originated in the medium, the cavity is treated as non-perturbing. In such 

a situation, the dose to the medium is related to the dose to the air in the cavity by 

the stopping power ratios of medium to air. Under electronic equilibrium, cavity 

theory describes a method to calculate the dose (D) in a medium based on 

measured charge in the cavity: 

 

                                                           𝐷𝑡 =  (
𝑄

𝑚
) (

�̅�

𝑒
) (

𝑆

𝜌
)

𝑎

𝑡

                                                     (1.4) 
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𝑟
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𝑆

𝜌
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𝑎

𝑡
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𝑟𝑒𝑓

𝑟

                           (1.5) 

 

where Q is the detector reading of charge, m is mass of the air in an ion chamber, 

𝑊

𝑒
 is ionization potential of air, 𝑟 is the field dimension, ref is reference field size 

and (
𝑆

𝜌
)

𝑎

𝑡
is the mass collision stopping power ratio of tissue (𝑟) to air (𝑎). All the 

parameters in Eq. (1.5) are energy dependent; hence, the dose in small field 

compared to the reference or calibrated field (10 x 10 cm2) is uncertain due to 

spectral variations. 

The measured ionization readings 𝑄(𝐸, 𝑟) are influenced by many factors as 

shown below: 

 

                                       𝑄(𝐸, 𝑟) = 𝑄𝑚 𝑃𝑖𝑜𝑛 𝑃𝑟𝑒𝑝𝑙 𝑃𝑤𝑎𝑙𝑙 𝑃𝑐𝑒𝑐 𝑃𝑝𝑐𝑓                                    (1.6) 

 

where 𝑄𝑚  is the measured reading, 𝑃𝑖𝑜𝑛 is the ion recombination, 𝑃𝑟𝑒𝑝𝑙  is the 

replacement correction factor, 𝑃𝑤𝑎𝑙𝑙 is wall correction factor,  𝑃𝑐𝑒𝑐 is the central 

electrode correction factor, and 𝑃𝑝𝑐𝑓 is the perturbation correction factor as 

described in TG-21 [15]. Usually the ratio of these correction factors as shown in 

Eq. (1.5) is ignored in routine clinical practices where CPE exists, but they cannot 

generally be ignored for small fields, as noted by Seuntjens and Verhaegen and 

Sauer and Wilbert [18, 19].  
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Linac is adjusted in such way that the maximum dose rate delivered over the 

central axis of the radiation beam for field size of 10 x 10 cm2 and a source-surface 

distance (SSD) of 100 cm is 1 cGy/1 Monitor Unit (MU). One monitor unit 

corresponds to a given amount of electrical charge collected by the monitor 

ionization chamber embedded in the linac treatment head.  

Central axis dose distributions inside the patient or phantom are usually 

normalized to 𝐷𝑚𝑎𝑥 = 100 % at the depth of dose maximum dmax and then referred 

to as the percentage depth dose (𝑃𝐷𝐷) distributions. The 𝑃𝐷𝐷 depends on four 

parameters: depth in phantom 𝑑, field size 𝐴, source-surface distance 𝑆𝑆𝐷 = 𝑓, and 

photon beam energy ℎ𝜈. The 𝑃𝐷𝐷 is thus defined as follow: 

 

                                                       𝑃𝐷𝐷(𝑑, 𝐴, 𝑓, ℎ𝜈) = 100 𝑥 
𝐷𝑄

𝐷𝑃
                                          (1.7) 

 

Point 𝑄 is an arbitrary point at depth d on the beam central axis; point P represents 

the specific dose reference point at 𝑑 = 𝑑𝑚𝑎𝑥  on the beam central axis. 

In modern radiotherapy, the treatments are mostly done using isocentric 

setups, which means that the center of the Planning Target Volume (PTV) is placed 

at the linac isocenter. Another approach is the so called source-axis-distance (𝑆𝐴𝐷) 

setups. The function used for this purpose is the Tissue Maximum Ratio (𝑇𝑀𝑅), 

defined as 

 

                                                               𝑇𝑀𝑅(𝑑, 𝐴𝑄 , ℎ𝜈) =
𝐷𝑄

𝐷𝑄𝑚𝑎𝑥

                                          (1.8) 

 

where 𝐷𝑄 is the dose in phantom at arbitrary point 𝑄 on the beam central axis and 

𝐷𝑄𝑚𝑎𝑥
 is the dose in phantom at depth 𝑑𝑚𝑎𝑥 on the beam central axis. 

A typical algorithm for calculating the dose to a certain point-of-interest is given 

in the block diagram in Figure 1.3. It is necessary to obtain very precise data in 

order to calculate a dose distribution with very low uncertainties. 
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Figure 1.3. Basic treatment planning algorithm. The RDF (Relative Dose Factor) is defined as the 

ratio of the dose at P in phantom for field size A to the dose at P in phantom for a 10 x 10 cm2 field. 

The Off-Axis Ratio (𝑂𝐴𝑅) function shows how the dose changes in lateral direction with respect to 

the dose delivered to the point on the central axis at the same depth.  

1.6 Treatment planning evaluation and optimization 

In radiotherapy, a large dose of radiation is released to a tumor and the 

effectiveness of the treatment depends on delivering the dose with an accuracy of 

3% or better in some situations [20]. The dose-response curve in radiation therapy 

is quite steep in certain cases, and there is evidence that a 7 - 10% change in the 

dose to the target volume may result in a significant change in tumor control 

probability [21]. 

As shown in Figure 1.4, the tumor control probability (TCP) (curve A) and the 

normal tissue complication probability (NTCP) (curve B) are sigmoid curves.  
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Figure 1.4. The principle of therapeutic ratio. Curve A represents the TCP, curve B the probability 

of complications. 

Today the treatment planning is not based upon optimization of TCPs and 

NTCPs, but rather upon meeting physical dose and volume constraints. The 

QUANTEC (QUantitative ANalysis of normal Tissue Effects in the Clinic) 

summarizes the available 3D dose–volume/outcome data [22, 23] to update and 

refine the normal tissue dose/volume tolerance guidelines provided by the classic 

“Emami” paper [24]. A summary of organ-specific dose/volume/outcome data, 

based on the QUANTEC reviews, is included in Appendix B, Table B.1. 

The scientific community agrees on the point that the treatment planning 

evaluation and optimization would be more effective if they were biologically and 

not dose/volume based [25]. Furthermore, to properly use NTCP and TCP models, 

new protocols need to be written and established which allow for greater treatment 

customization based on the anatomical details of each patient’s case. On the other 

hand the era of modern radiotherapy has opened the way for patient-specific, 

individualized treatment planning decision, improving the predictive capability of 

NTCP models. 

Early NTCP models, like the Lyman-Kutcher-Burman (LKB) [1, 26-28] and the 

Relative Seriality (RS) model [29], involve only dose-volume parameters of a single 

organ at risk (OAR). However, the risk of complications may depend on more 

factors than only dose to a single organ, both dosimetric and clinical (e.g. organ 

volume, hormonal therapy, age, gender, diabetes, smoking, chemotherapy, clinical 

stage). For example, radiation-induced lung toxicity may be related to radiation 

dose to both the lung and the heart [30-33]. In the recent years multivariable 
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logistic modelling of radiotherapy outcomes, including dose-volume and clinical 

factors, have been developed demonstrating the improved predicted power respect 

to the traditional models [34-38].  

The LKB model is probably the most well know method for predicting NTCP for 

a radiotherapy treatment plan. The model was developed by Lyman for heavy 

charged particle beams where partial volumes of homogenous dose could be 

achieved and adapted for conventional radiotherapy through the histogram 

reduction work of Kutcher et al. [27, 28], and parameter values of Emami et al. [24] 

and Burman et al. [27].  

In the LKB model the interrelation of the variables can be described by the 

following equation: 

 

                                                       𝑁𝑇𝐶𝑃𝐿𝐾𝐵 = ∫ 𝑒𝑥𝑝 (
−𝑢2

2
) 𝑑𝑢                                       (1.9)

𝑡

−∞

 

 

                                                                𝑡 =
𝑔𝐸𝑈𝐷 − 𝐷50

𝑚𝐷50
                                                      (1.10) 

 

                                                            𝑔𝐸𝑈𝐷 =  (∑ 𝑣𝑖

𝑖

𝑑
𝑖

1
𝑛)

𝑛

                                               (1.11) 

 

where D50 is the value of the dose corresponding to the 50% probability to induce 

normal tissue complication, the parameter m is inversely proportional to the slope 

of dose-response curve, the parameter n can assume values in the range 0 - 1 and 

accounts for volume effect of the organ, 𝑣𝑖 is the relative volume that receives the 

dose 𝑑𝑖, the sum is over all the bins of DVH. 𝑔𝐸𝑈𝐷 stands for ‘generalized 

equivalent uniform dose’, a concept introduced by Nimierko [39] to take into 

account the heterogeneous dose distributions: the gEUD is the dose that, if given 

uniformly to the entire organ, is believed to yield the same complication rate as the 

true dose distribution. 

The RS model is based on Poisson model of cell survival to evaluate non-

uniform irradiation of OARs from fractionated radiotherapy. A new parameter 

called the “relative seriality” or “s” parameter is used to take into account the 

complex structural and functional organization of OARs as well as of tumor tissues. 

In the RS model the probability of a complication after irradiation of a relative 

volume 𝑣𝑖 at a dose 𝐷𝑖 is given by: 
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                                              𝑁𝑇𝐶𝑃𝑅𝑆 = {1 − ∏[1 − 𝑃(𝐷𝑖)𝑠]𝑣𝑖

𝑖

}

1 𝑠⁄

                                (1.12) 

 

                                                         𝑃(𝐷𝑖) = 2
−𝑒𝑥𝑝[𝑒𝛾𝑠(1−

𝐷𝑖
𝐷50

)]
                                             (1.13) 

 

where 𝑃(𝐷𝑖) is the probability of complication due to the irradiation of the relative 

volume 𝑣𝑖 at the dose 𝐷𝑖 described by an approximation of Poisson statistics. 

The model contains three parameters (𝐷50, 𝜈, s), 𝐷50 has the same meaning as for 

the LKB model, 𝛾 is a slope parameter which affects the steepness of the sigmoid 

shape dose-response curve, and s assumes values in the range 0 - 1, large values of 

s indicate a serial structure while small values indicate a parallel structure. 

The typical sigmoidal relationship between dose and response endpoint 

supports use of a logistic regression model: 

 

                                                  𝑁𝑇𝐶𝑃𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 =  
1

1 + 𝑒−𝑔(𝑥)
                                                  (1.14) 

 

with  

 

𝑔(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛                                                                               (1.15) 

 

where 𝑥1, 𝑥2 … 𝑥𝑛 represent different input variables and 𝛽0, 𝛽1, … 𝛽𝑛 are the 

corresponding regression coefficients determined by maximizing the probability 

that the data gave rise to the observations. 

The power of the NTCP logistic model is the possibility of including clinical 

patient-specific factors along with dosimetric parameters of the OARs involved in 

a radiation treatment. Multivariable approach potentially can points out 

physiological interaction of several organs and their contributions in affecting 

specific organ’s functions. 



 
 

CHAPTER 2 

Radiation effects on optical fiber 

This chapter focuses on the interaction of ionizing radiation with optical fiber 

which leads to a variety of physical processes that principally can be used for 

radiation detection and measurement of the radiation dose. We describe the 

model of energy deposition that, thought radiation damage processes, gives rise 

to defect points. 

In this framework the most widely investigated models of explanation of the 

fiber photosensitivity are presented. In addition the fiber Bragg grating principle 

for temperature, strain and dose sensing is illustrated. 

2.1 Photosensitivity of optical fiber 

When optical fibers are subjected to radiation, whether it consists of high energy 

light, X-rays, 𝛾-rays, neutrons or high energy cosmic particles, their optical 

properties change due to the interaction of the radiation in the fiber core and in the 

cladding material. The main effects result from electronic processes: electrons are 

excited to leave their normal (bound) position, changing the physical and chemical 

properties of silica glass. The property of a medium to have its refractive index 

permanently changed by a modification of its physical or chemical properties 

through UV light exposure is known as photosensitivity. 

Photosensitivity was first observed in germanium-doped silica fiber by Hill and 

co-workers in 1978 at the communication Research Centre in Canada [10, 40]. 

They described a permanent grating written in the core of the fibers by the argon 

ion laser line at 488 nm launched into the fiber. This particular grating had a very 

weak index modulation, which was estimated to be of the order of 1026 resulting 

in a narrow-band reflection filter at the writing wavelength. Photosensitivity in 

optical fibers remained dormant for several years after its discovery by Hill et al. 
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[41] mainly due to limitations of the writing technique. However, a renewed 

interest has risen with the demonstration of the side writing technique by Meltz et 

al. almost ten years later [42]. 

Progress in optical fiber photosensitivity research developed rapidly after the 

discovery of the possibility to write a periodic variation of the optical refractive 

index into the core of the optical, named Fiber Bragg Grating (FBG), illuminating 

the core from the fiber’s side with the interference pattern of two beams of coherent 

UV radiation. At now optical fiber sensors have been successfully used for 

temperature, strain, pressure and acceleration monitoring. 

The reflection wavelength of the FBG (Bragg wavelength) depends on the 

grating characteristics (period, modulation) and is influenced by the ambient 

conditions such as strain and temperature. The parameters influencing the optical 

fiber’s response to ionizing radiation include: 

 fiber composition and fabrication method; 

 type of radiation, dose-rate, total dose; 

 optical wavelength and power; 

 temperature; 

 thermal treatment and irradiation history; 

 time elapsed between exposure and measurement 

2.2 Point defects in optical fiber 

Amorphous silica is the principal building material for glassy fiber waveguides. 

The SiO2 network is built with SiO4 tetrahedra joined at the corners so that each 

Si-atom is bound to four O - atoms and each O atom is the bridge between two Si-

atoms. The angles defining the relative spatial orientation of each pair of connected 

tetrahedra are statistically distributed between 120° and 180°, according to 

Continuous Random Network (CRN) models , the first of which was introduced by 

Zachariasen in 1932 [43]. 

An illustrative picture of an amorphous silicon dioxide network is shown in 

Figure 2.1. Due to the high Si-O bond energy (4.5 eV), the crystalline quartz is 

resistant to chemical weathering and to corrosion. 
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Figure 2.1. Three-dimensional schematic of a pure fragment of the regular silica structure. The 

structure is defined by several parameters; the Si-O bond length (d), the tetrahedral angle (𝜑), the 

inter-tetrahedral bond angle (𝛼), and the bond torsion angles (𝛿1, 𝛿2) [44]. 

The interaction of the radiation with the fiber material is a complex process with 

quite a number of dependencies on parameters related to the fiber fabrication 

process, operating environment and radiation type. Irradiation, mechanical stress, 

change of temperature, and the presence of impurities may cause the formation of 

defects and/or lead to the transformation of the existing defects to other types of 

defect. 

The presence of defects in the silica matrix can dramatically change its 

structural, electrical, and optical properties. Defects can be distinguished in 

intrinsic, when they are due to a variation of the basic silica elements (silicon or 

oxygen) and extrinsic, if they are related to presence of impurities in the silica 

matrix (H, Ge, P, etc.). Extrinsic defects due to the presence of impurities (Cl, H 

and so on) are always present in variable concentration in the material. Many 

aspects regarding the nature of the defects and their correlated properties are still 

controversial and not yet completely understood. Quite a lot of defect types have 

been discussed in the literature and many reproduction models have been 

proposed for each one according to extensive experimental and theoretical studies 

[45, 46]. 

To provide a background for the experimental study, the following section of the 

chapter is devoted to review the current understanding of the main defects in the 

silica network. 
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2.2.1 Intrinsic point-defects 

The silicon dangling bond, or E’ center, is the most widely investigated oxygen 

deficient defect. It consists of a silicon atom with six electron in three pairs and one 

unpaired electron, generally denoted by the symbol ≡ Si•: the symbol ( ≡ ) 

represents three bonds to oxygen atoms, (•) represents one unpaired electron 

(Figure 2.2). E’ defect was observed for the first time in the 1956 by R. A. Weeks 

using electron paramagnetic resonance (EPR) spectroscopy [47, 48]. The 

formation efficiency of E’ defects strongly depends both on the content of the 

hydroxyl radicals (OH) in the glass and on the irradiation energy. It was shown by 

Hanafusa [49] and Hibino [50] that E’ defects also exist in non-irradiated optical 

fibers. 

 

 

Figure 2.2. Generic E’ center. The yellow atom is silicon, the blue ones are oxygens. 

The oxygen deficient centers (ODC) are formed when an oxygen is missing or 

removed from its Si-bonding position. The literature describes two models for the 

ODCs: neutral oxygen vacancy ODC(I) indicated as ≡ Si-Si ≡  and the twofold 

coordinated silicon ODC(II) denotes as = Si••. The ODC(I) gives rise to strong 

optical absorption bands around 7.6 eV while ODC(II) shows a relatively weak 

absorption band with peak at 5.03 eV. The ODC (I) represents one of the essential 

defects in all silicon dioxide modifications in a form of simple oxygen vacancies; 

here two Si atoms could relax and make a silicon bonding (relaxed oxygen vacancy 

≡ Si-Si ≡ ) or stay in unstable interaction condition and form an unrelaxed oxygen 

vacancy ( ≡ Si∙∙∙Si ≡ ) which each one of them could be a precursor for the other, 

(see Figure 2.3, and both are considered as a key role in many defect-type 

generations and transformations in the silica matrix. 
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Figure 2.3. Schematic illustration of the transformation between ODC(I) and ODC(II) visualizing 

two possible models for the ODC(II), the unrelaxed oxygen vacancy and the twofold coordinated 

silicon. The yellow atom is silicon, the blue ones are oxygens. 

The oxygen dangling bond or Non Bridging Oxygen Hole Center (NBOHC) can 

be visualized as the oxygen part of a broken bond and it is denotes as ≡ Si-O• 

(Figure 2.4). The intense absorption bands at 4.8 and 6.8 eV, make NBOHC the 

defect that more influences the transmission of silica in the ultraviolet and 

vacuum-ultraviolet spectral ranges. It has been postulated that the NBOHC arises 

when hydrogen atoms are liberated radiolytically from one member of a pair of OH 

groups in wet silica (high OH group) [51]. 

 

 

Figure 2.4. A model of atomic structure of the non-bridging oxygen hole center (NBOHC) showing 

the possible generating processes of NBOHC in wet silica. The yellow atom is silicon, the blue ones 

are oxygens, and the red ones are hydrogens. 

Peroxy bridge (POL) is a “wrong” oxygen-oxygen bonds denoted as                    

≡ Si-O-O ≡ Si. The experimental evidence of this defect is only indirect but 

calculation put the energy absorption band at around 6.4 - 6.8 eV. POL was initially 

suggested to be the main precursor of the Peroxy radical (POR) defects, a silicon 

atom linked to an oxygen molecule denoted as ≡ Si-O-O• (see Figure 2.5) [52]. 
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Figure 2.5. Models presenting the suggested atomic structure of a peroxy bridge (POL) and its role 

in producing peroxy radical (POR) structure in silica matrix. The yellow atom is silicon, the blue 

ones are oxygens, and the red ones are hydrogens. 

Other oxygen excess related defects are the interstitial oxygen molecule and the 

interstitial ozone molecules (Figure 2.6). 

Finally, the self-trapped hole (STH) may be the first defect to form under the 

influence of ionizing radiations. Its principal characteristic is the capture of a hole 

on a 2p orbital from a doubly linked oxygen atom [53]. 

 

 

Figure 2.6. Main interstitial atomic and molecular oxygen as well as ozone model in SiO2. The 

yellow atom is silicon, the blue ones are oxygens. 

2.2.2 Extrinsic point-defects 

Among the impurities present in silica fibers, hydrogen, germanium (Ge), 

phoshore (P) and fluorine (F) are the most diffuse. Ge, P and F are very important 

dopants in fiber technologies. Since Ge and Si are isoelectronic elements, it is 

qualitatively expected that many Ge-related point defects are structurally identical 

to Si-related centers apart from the substitution of Si with Ge [54]. 

Starting from the comparison between a Ge-doped silica glass and a pure silica 

glass, it possible to show that defects related to germanium are predominant on 

the intrinsic ones [55]. This property implies an UV absorption from two to three 
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order of magnitude more intense in germanosilicate glasses, even before 

irradiation exposure [56], as compared to pure silica. The scientific interest for 

germanosilicate glass increased even more after experimental discovery of the 

property of photosensitivity of this material.  

The most common extrinsic defects in Ge-doped silica are the GeE’ center and 

the Germanium Electron Centers (GECs) in the structural model of Ge(1) or Ge(2). 

The microscopic structure of GeE’ defect is denoted as ≡ Ge•. It’s structurally 

identical to the E' center apart from substitution of Si with Ge and show an 

absorption band at 6.2 eV - 6.4 eV. Germanium Electron Center Ge(1), denoted as 

≡ GeO4•, and Ge(2) denoted as = Ge•, are electron traps, constituted by an electron 

trapped on a tetracoordinated Ge atom with a Si or Ge atom in the adjacent 

tetrahedron, respectively. An absorption band at 4.4 eV - 4.6 eV has been attributed 

to Ge(1) center and an absorption band at 5.8 eV was assigned to Ge(2) center [55, 

57, 58]. 

Finally there are the Oxygen-Deficiency Center (GeODC(II)) in the structural 

model of the two fold coordinated Ge or Germanium Lone Pair Center (GLPC), that 

is a dicoordinate germanium atom with a lone pairs denoted as = Ge•• and in the 

structural model of the neutral oxygen vacancy (NOV) denoted as ≡ Ge···Si. Several 

studies have shown that a contribution to the photosensitivity is due to the 

variation of the UV optical absorption spectra associated with the GLPC [59-61]. 

This defect is characterized by an absorption band at 5.1 eV [60]. The reader is 

referred to [44, 62, 63] for a more comprehensive review of both the nature and 

the molecular structure of radiation-induced point defects in pure and doped 

glassy silica. 

2.3 Interaction of the radiation with matter  

The energy of photon considered in medical application is in the range of 

nominal energy 6 - 20 MeV. Compton scattering is the main interactions process 

for low - and medium - Z elements in a certain energy range, typically between 0.05 

and 5 MeV. Therefore considering the nature of the optical materials involved for 

optical fibers and FBG (typically low atomic numbers such as Si, O, Ge) the main 

interaction for these photons occurs thought Compton scattering: the incoming 

photon ejects an electron from an atom and a photon of lower energy is scattered 

from the atom. Since electrons are charged they can also yield immediate 

ionization through elastic or inelastic scattering processes. A material exposed to 
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energetic radiation thus experiences a cascade of effects leading to modifications 

of the electronic and atomic structure. The photon interaction with the matter 

depends on the incoming photon energy and the atomic number Z of the shielding 

material. 

In radiotherapy, the quantity of interest is the dose to water (or to tissue). As no 

dosimeter is water or exactly tissue equivalent for all radiation beam qualities, the 

energy dependence is an important characteristic of a dosimetry system, so it 

requires energy correction within the quality range of therapeutic beams in use. 

The beam penetration range in a material is often characterized by the water 

equivalent thickness, which measures the thickness of liquid water needed to stop 

the ion beam in the same manner that a certain thickness of the given material. A 

proper evaluation of the water equivalent properties of materials has to take into 

account the main effects in the energy deposition of the beam. Therefore, for a 

precise comparison of the materials and liquid water measurements, the water 

equivalent thickness of the materials must be accurately determined. 

The intensity I(x) of a narrow monoenergetic photon beam, attenuated by a 

target material of thickness (x) is given as: 

 

                                                  𝐼(𝑥) = 𝐼0 exp[−𝜇𝑚(ℎ𝜈, 𝑍) 𝜌𝑥]                                         (2.1) 

 

where 𝐼0 is the original intensity of the unattenuated beam and 𝜌 is the density of 

the target material of thickness (x). Similarly 𝜇𝑚(ℎ𝜈, 𝑍) is the mass attenuation 

coefficient, which depends on the photon energy ℎ𝜈 and atomic number (Z) of the 

target material. More precisely the probability for a photon to undergo any type of 

interaction with an attenuator depends the 𝑍𝑒𝑓𝑓 of the attenuating material. 

In general, the photoelectric effect predominates at low photon energies, the 

Compton effect at intermediate energies, and the pair production at high photon 

energies. 

The total mass attenuation coefficient 𝜇𝑚 is given as a sum of mass attenuation 

coefficients for the individual photon interactions: 

 

                                                         
𝜇

𝜌
=  

𝜇𝑃𝐸

𝜌
+  

𝜇𝑅

𝜌
+  

𝜇𝐶

𝜌
+  

𝜇𝑃𝑃

𝜌
                                           (2.2) 

 

Figure 2.7 and Figure 2.8 show the regions of relative predominance of the three 

most important individual effects with ℎ𝜈 and 𝑍𝑒𝑓𝑓 as parameters [64]. 
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Figure 2.7. The diagram presents the regions of relative predominance of the three main forms of 

the photon interaction with matters. Border lines indicate the transition of absorption coefficients 

of the material at different energy regions [64]. 

 

 

Figure 2.8. Dependence of the mass attenuation coefficients, 𝜇𝑚(ℎ𝜈, 𝑍) of the water equivalent soft 

tissue (𝑍𝑒𝑓𝑓 = 7) on the energy of the incident photons [64]. 

Several works have been carried out on the mass attenuation coefficients, 

effective atomic number and effective electron density for different types of 

material of dosimetric interest [65-67].  
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2.4 Radiation damage process: dose calculation as function of 

interaction parameters 

It is possible to distinguish two classes of radiation damage processes, the 

knock-on and the radiolysis [68, 69]. 

In the knock-on processes the projectile particles of the incident beam interact 

directly with the atoms of the material causing displacements (for example, 

vacancy-interstitial Frenkel pair) or site distortions. Two kinds of knock-on 

processes are generally considered: the elastic, that conserves the total kinetic 

energy, and the inelastic, in which some of the projectile kinetic energy is lost in 

electronic transitions (excitation, ionization) or nuclear reactions [69]. In order to 

create defects by displacements, it is necessary that the projectile gives sufficient 

energy to the target atom to break its bonds and to prevent that the knocked-on 

atom is recaptured from its neighboring atoms. The value of this energy for a given 

atom in the matrix is called displacement energy Td, and it has been estimated that, 

in SiO2, Td
O ~ 10 eV and Td

Si ~ 20 eV, for O and Si displacements, respectively, 

assuming a Si-O bond energy of ~ 5 eV [70, 71].  

In radiolytic processes the irradiation primarily changes the state of an electron 

but no stable ionic or atomic defects are initially formed [68, 69]. The energy 

absorbed appears in the form of electrons in a normally empty conduction band 

and holes in the normally occupied valence bands, or in the form of excitons 

(electron-hole pairs bound to each other) at some site of the material. These 

excitations could be considered as a first step and are followed by other processes 

that lead to stable electronic states. A significant fraction of these electron-hole 

pairs recombine radiatively or are separately trapped on impurities, on pre-

existing defects or on radiation-induced defects, or are absorbed in non-radiative 

processes involving phonons. Finally, if the electron-hole pair recombines non-

radiatively and its energy is focused on an atom it may be converted into kinetic 

energy of the latter (as for example an ion repelled by electrostatic forces), resulting 

in bond ruptures or in the creation of vacancy-interstitial pairs. 

The effects of the irradiation are quantified by the energy deposited in the 

material. To determine this energy it is useful to start introducing the scattering 

differential cross section 𝜎𝐸(𝜃, 𝑇). Independently from the collision event (knock-

on, radiolisys), 𝜎𝐸(𝜃, 𝑇) is the probability density that a projectile particle, with 

incident energy E, transfers an energy from 𝑇 to 𝑇 + 𝑑𝑇 to the target and is 

deflected of an angle in the range from 𝜃 + 𝑑𝜃, with respect to its incident direction 
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[68]. From the differential cross section it is possible to derive the energy 

transferred to the target per unit length (−
𝑑𝐸

𝑑𝑥
). Considering that during a collision 

a projectile can transfer energy 𝑇, the average energy transfer over a range 𝛿𝑟  in the 

target material is 

 

                                          〈𝑇〉 = 𝑁 𝛿𝑟  ∬ 𝑇 𝜎𝐸(𝜃, 𝑇)𝑑𝜃 𝑑𝑇                                             (2.3)

𝜋 𝑇𝑚𝑎𝑥

0 𝑇𝑚𝑖𝑛

 

 

where N is the number of scattering centers per unit volume, 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the 

maximum and the minimum energy transferred, respectively, and 𝛿𝑟 is small 

enough to account for a single collision. 

Therefore the average energy loss 〈Δ𝐸1〉 of a projectile over a range 𝛿𝑟 equals -

〈𝑇〉, and the energy transferred to the target per unit length (stopping power) is: 

 

                                          (−
𝑑𝐸

𝑑𝑥
) =  

〈Δ𝐸1〉

𝛿𝑟
= 𝑁 ∬ 𝑇 𝜎𝐸(𝜃, 𝑇)𝑑𝜃 𝑑𝑇

𝜋 𝑇𝑚𝑎𝑥

0 𝑇𝑚𝑖𝑛

                        (2.4) 

 

The deposited energy, that is the absorbed dose, in a target of thickness x, is 

given by  

 

                                                          𝐷 =  
𝜙 Δ𝑡

𝑥
 ∫ |

𝑑𝐸

𝑑𝑥
|

𝑥

0

 𝑑𝑥                                                     (2.5) 

 

where 𝜙 Δ𝑡 is the fluence of projectile particles (particles per unit area). 

In the presence of composite targets, like SiO2, the energy loss is determined, in 

first approximation, as the sum of the energy losses of each constituent (Si and O) 

weighted by their mass fractions (0.47 and 0.53 for Si and O, respectively). In 

general it is worth to note that not all the deposited energy gives rise to point 

defects as a great quantity is loosed in radiative and non-radiative processes. 

2.5 Fiber Bragg gratings 

Since the discovery of photosensitivity in optical fibers there has been great 

interest in the fabrication of Bragg gratings within the core of a fiber. A FBG is a 
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periodic modulation of the refractive index along the fiber length which is formed 

by the exposure of the core to an intense optical interference pattern. The ability to 

inscribe intracore Bragg gratings in these photosensitive fibers has revolutionized 

the field of telecommunications and optical fiber based sensor technology. Over 

the last few years, the number of researchers investigating fundamental, as well as 

application aspects of these gratings has increased dramatically [72]. The core 

region has a higher refractive index than the surrounding cladding material, which 

is usually made of silica. Light is therefore trapped in the core by total internal 

reflection at the core-cladding boundaries and is able to travel tens of kilometers 

with little attenuation in the 1550 nm wavelength region. The Ge doping of silica is 

widely used to realize different optical devices [73-76] and one of the most 

important consequences of Ge doping is the variation of the refractive index of the 

material [77], a property used to realize optical fiber for telecommunication. The 

doping of the core with Ge increases the refractive index of this part with respect 

to that of the cladding allowing the light to be banded inside the core region [78]. 

However the most important effects of the Ge doping, which have attracted the 

researcher attention on the GeO2-SiO2 are its photosensitivity. Changing the 

elemental composition of the glass can significantly alter the radiation sensitivity 

of an optical fiber. Pure SiO2-core fiber have the lowest radiation sensitivity and 

represent the best choice of fiber for transmitting optical information in high-

radiation environments. Several authors have investigated the possibility to use 

doped optical fiber sensors in nuclear environments for high dose levels 

measurements and for dose verification in clinical radiotherapy with the photon 

[79-83] as well as with the electron and the proton beams [82, 84, 85]. Much of 

these works presented the potential use of fiber optic as plastic scintillation 

dosimeters and very few as FBG based dosimeters [83, 85, 86]. FBG sensors are 

largely employed in civil engineering as strain and/or temperature sensors, for 

remote structural monitoring [87-90]. The physical principle of FBG sensor is 

based on the property to reflect a specific frequency of light while transmitting all 

others according to the following equation:  

 
                                                                       𝜆𝐵 =  2 𝑛 Λ                                                            (2.6) 

 
𝜆𝐵 is the Bragg wavelength, 𝑛 is the effective refractive index of the fiber core, and 

Λ is the spacing between the gratings, known as the grating period. 
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In Figure 2.9 is illustrated the principle of the fiber Bragg grating sensor: when 

a broad-spectrum light beam is sent to an FBG, reflections from each segment of 

alternating refractive index interfere constructively only for the Bragg wavelength. 

 

 

Figure 2.9. Illustration of the physical principle of a uniform Bragg grating. 

2.5.1 Fiber Bragg grating strain- and temperature-sensor 

Fiber optical sensor technology for strain and temperature measurements has 

increasingly come into focus over the past decade. FBG sensors can measure very 

high strain (> 1000 µm/m) and are therefore very well suited to highly stressed 

composite constructions. On the other hand FBG temperature sensors offers a high 

sensitivity, as well as other important advantages, such as real-time processing, 

long term stability, electromagnetic interference immunity, and multiplexing 

capability.  

The Bragg grating resonance, which is the center wavelength of light back 

reflected from a Bragg grating depends on the effective index of refraction of the 

core and the periodicity of the grating (Eq. (2.6)). 

By partially differentiating the two variables that are independent of each other 

we obtain, for small variations, according to the total differential: 

 

                                    Δ𝜆𝐵 = 2 [Λ 
𝑛

𝜕𝑙
+ 𝑛

𝜕Λ

𝜕𝑙
] Δ𝑙 + 2 [Λ 

𝜕𝑛

𝜕𝑇
+  𝑛 

𝜕Λ

𝜕𝑇
 ] ΔT                      (2.7) 

 

The first term in Eq. (2.7) represents the strain effect on an optical fiber. This 

corresponds to a change in the grating spacing and the strain-optic induced change 

in the refractive index. 
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The above strain effect term may be expressed as: 

 

                                                                      
∆𝜆𝐵

𝜆𝐵
= (1 − 𝑝𝑒)𝜖𝑧                                                  (2.8) 

 

where 𝑝𝑒  is an effective strain-optic constant defined as: 

 

                                                  𝑝𝑒 =  
𝑛2

2
 [𝑝12 − 𝜈(𝑝11 − 𝑝12)]                                               (2.9) 

 

where 𝑝11 and 𝑝12 are components of the strain-optic tensor, 𝑛 is the index of the 

core, and 𝜈 is the Poisson’s ratio. For a typical optical fiber 𝑝11 = 0.113, 𝑝12 =

0.252, 𝜈 = 0.16 and 𝑛 = 1.482. Using these parameters and the above equations, 

the expected sensitivity at ~ 1550 nm is a 1.2 pm change as a result of applying 1 𝜇𝜖 

to the Bragg grating. 

The second term in Eq. (2.7) represents the temperature effect on an optical 

fiber. A shift in the Bragg wavelength due to thermal expansion changes the grating 

spacing and change the index of refraction. This fractional wavelength shift for a 

temperature change Δ𝑇 may be written as [72]: 

 

                                                            ∆𝜆𝐵 = 𝜆𝐵 (𝛼Λ + 𝛼𝑛) Δ𝑇                                              (2.10) 

 

where 𝛼Λ = (
1

Λ
) (

𝜕Λ

𝜕𝑇
) is the thermal expansion coefficient for the fiber 

(approximately, 0.55 x 10-6 for silica). The quantity 𝛼n = (
1

n
) (

𝜕n

𝜕𝑇
) represents the 

thermo-optic coefficient and it is approximately equal to 8.6 x 10-6 for the 

germanium-doped silica-core fiber. Clearly, the index change is by far the 

dominant effect. From Eq. (2.10), the expected sensitivity at a ~ 1550 nm Bragg 

grating is approximately 13.7 pm/°C. 

2.5.2 Fiber Bragg grating dose-sensor 

Radiation-induced Bragg wavelength shift due to refractive index change. 

Several authors have investigated the effects of radiation on an optical fiber sensor 

to exploit the possible use as temperature and/or radiation sensors [86, 91]. 

Analogously to changes of the grating pitch by mechanical action, energy transfer 
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from the ionizing radiation to the fiber modifies the index value and thus translates 

into a Bragg wavelength shift.  

The immunity to electromagnetic interference, intrinsic safety, mechanical 

simplicity and small size as well as the possibly high sensitivity and multiplexing 

capabilities make FBG sensors a real alternative for standard nuclear 

instrumentation. Quite recently, a first evidence of optical-wavelength-shift 

sensing of gamma rays by fiber Bragg-grating has been reported in the literature 

only for non-clinical dose levels (100 kGy) [86]. Krebber et al. observed a 

continuous increase of Δ𝜆𝐵 with the radiation dose at high dose levels without 

saturation up to 100 KGy for all FBGs investigated [86]. In this thesis the response 

of dosimeters based on FBG technology in the energy and dose levels of clinical 

interest was investigated. 

The radiation dose (D) dependence of 𝜆𝐵 can be derived from Eq. (2.6) as 

follows: 

 

                                                           
1

𝜆𝐵
 
𝑑𝜆𝐵

𝑑𝐷
 =  

1

𝑛
 
𝜕𝑛

𝜕𝐷
+  

1

Λ
 
𝜕Λ

∂D
                                          (2.11) 

 

The first term gives the radiation-induced refractive index change, Δ𝑛, the 

second term denotes the change of the grating period with the dose, i.e. the 

coefficient of the radiation-induced linear expansion of the fiber. This coefficient is 

quite small for SiO2 (1 x 10-7 Gy-1) [92] and could be neglected. 

Therefore the Eq. (2.11) can be approximatively transformed into  

 

                                                                        
Δ𝜆𝐵

𝜆𝐵
 =  

Δ𝑛

𝑛
                                                         (2.12) 

 

Using this relation and the refractive index values for the respective 

wavelengths, one can calculate the radiation-induced change of the refractive 

index. 

2.6 Mechanism of photoinduced refractive index change 

Bragg gratings have been written in many types of optical fibers using various 

methods, however, the mechanism of index change is not fully understood. Several 

models have been proposed for the photoinduced refractive-index change. The 
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only common elements in these theories is that the germanium-oxygen vacancy 

defects, Ge-Si or Ge-Ge (the so-called “wrong bonds”) are responsible for the 

photo-induced index changes. 

In 1989, Meltz et al. [42] showed that a strong index of refraction change 

occurred when a germanium-doped fiber as exposed to UV light close to the 

absorption peak of a Germania-related defect at a wavelength range of 240 - 250 

nm. The fact that the change of the index of refraction in a germanosilicate optical 

fiber is triggered by a single photon at ~ 240 nm, which is well below the band gap 

at 146 nm, implies that the point defects in the ideal glass tetrahedral network are 

responsible for this process. Defects in optical fibers first attracted attention 

because of the unwanted absorption band associated with them, which caused 

transmission losses. Normally the defects are caused by the fiber drawing process, 

and ionizing radiation as described in the previous paragraphs. 

The radiation induced defect centers were identified and characterized by 

electron spin resonance spectroscopy. The creation of defect bands are centered at 

195, 213, and 281 nm. The photosensitivity phenomenon, which is a basis for the 

fabrication of fiber gratings, is commonly ascribed to two essential physical 

mechanisms: creation of color centers and structural transformations. Both 

effects are well established. However, there is no general agreement about which 

mechanism dominates in the case of Ge-doped silica fibers. 

The analysis of the color-center contribution assumes a rather straightforward 

application of the Kramers–Kronig relations. The model, known as “color center 

model”, proposed the breaking of the GeO defect resulting in a GeE’ center with the 

release of an electron, which is free to move within the glass matrix until it is 

retrapped. 

The Kramers-kronig relationship is given as: 

 

                                                         𝜖𝑟(𝜆) = 1 + ∫
𝜖𝑖(𝜆)

𝜆′ − 𝜆
 𝑑𝜆′                                              (2.13) 

 

Relates the real and imaginary parts of the dielectric constant                                      

𝜖 = 𝜖𝑝 + 𝑖𝜖1 = (𝑛 + 𝑖𝑘)2 where 𝑛 is the refractive index and 𝑘 is the absorption 

index. 

The relationship arises from the causality condition for the dielectric response 

and demonstrates that the index change produced in the infrared/visible region of 
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the spectrum by the photoinduced processing results from a change in the 

absorption spectrum of the glass in the UV/far-UV spectral region. 

The Eq. (2.13) can be explicated as follow: 

 

                                            Δ𝑛(𝜆) =
1

2𝜋2
+ ∫

∆𝛼 (𝜆)

1 − (𝜆 𝜆′⁄ )2

∞

0

 𝑑𝜆                                        (2.14) 

 

∆𝛼 is an increase of attenuation, Δ𝑛 is the change of the refractive index, 𝜆 is the 

wavelength for which the refractive index is calculated and 𝜆′ is the centre 

wavelength of an absorption band. 

Since the radiation-induced attenuation strongly depends on the wavelength of 

the transmitted light, with a minimum at about 1100 nm, a moderate increase 

towards the far infrared and a strong increase towards shorter wavelengths [93], 

the choice of the FBG with a specific sensitivity is recommended according to the 

application. In this model, UV exposure changes the material properties of the 

glass and introduces new electronic transitions of defects (color centers). The 

underlying premise of the color center model is that the photosensitive effect arises 

from localized electronic excitations of defects. The wrong-bond defects, which 

initially absorb the light, are transformed to defects that are more polarized by 

virtue of the fact that their electronic transitions occur at longer wavelengths or 

have stronger transitions. According to the color center model, the refractive index 

at a point is related only to the number density and orientation of defects in that 

region and is determined by their electronic absorption spectra. 

A structural rearrangement of the atoms of the silica matrix is the base of the 

predicting model known as “compaction effects” [91, 94, 95]. It is well known that 

radiation exposure of vitreous silica can cause changes in the physical properties 

such as density [93]. The detailed origin of this density change has never been quite 

clear, but the compaction effect has been so universally observed in vitreous silica 

that it appears to be an inherent property of the material. 

The theoretical basis of the relationship between reflective index and mass 

density is embedded in the Lorentz–Lorenz, which relates macroscopic 

optical/electrical properties (dielectric constant and refractive index) to the 

corresponding microscopic molecular properties (e.g., molecular polarizability). 

Lorentz–Lorenz relation for the refractive index (n) is the following [96]: 
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(𝑛2 − 1)

(𝑛2 + 2) 
=  

𝛼𝜌

3
                                                       (2.15) 

 

where 𝜌 is the number density of the material molecules, 𝛼 is the mean molecular 

polarizability. 

In terms of the mass density 𝜌𝑚, which is related to the number density by 

𝜌𝑚 = (𝑀 𝑁𝐴⁄ ) 𝜌, the Lorentz–Lorenz relation becomes 

 

                                                               
(𝑛2 − 1)

(𝑛2 + 2) 𝜌𝑚
=  

𝑁𝐴 𝛼

3 𝑀
                                                (2.16) 

 

where 𝑁𝐴 is the universal Avogadro’s number and 𝑀 is the molecular weight of the 

chemical element of the material. 

In general, the dose dependence of compaction in vitreous silica obeys a power 

law [94]: 

 

                                                                       
Δ𝜌𝑚

𝜌𝑚
= 𝐴′𝐷𝑐                                                        (2.17) 

 

where 𝐷 is the absorbed radiation dose, 𝐴′ and 𝑐 are constants. The dose exponent 

𝑐 is found to be dependent on the nature of the radiation source and the effect of 

radiation on silica. For example, 𝑐 is close to 1 for knock-on (atomic displacement) 

radiation (neutron, He+, or D+, etc.) [97] and is about 272 for ionizing radiation   

(𝛾-ray [97-99]), e-beam [97, 100] and ultraviolet (UV) radiation [101-103]. 

The phenomenon of compaction of silica after irradiation suggest a bond 

rearrangement leading to a decrease in the volume of the system and a refractive 

index variation accordingly, results both from trivial organizational events and 

from bond rupture followed by re-formation of bonds. To explain the photoinduced 

changes in glass network structure further interesting theories have been 

proposed, but none of them provide a structural interpretation that is consistent 

across glass families and explains the wide range of photoinduced property 

variations because of the complex dynamic of the phenomenon. The models are 

discussed in depth in the review article [72]. 

 

 



 

 
 

CHAPTER 3 

Materials and methods

The purpose of the present chapter is to give a detailed description of the 

instruments and methods for the experiments and the data processes performed. 

For a better readability, the chapter has been divided into two sections: the 

first dedicated to the TLDs and optical fiber sensors, the second devoted to the 

statistical method to perform optimization of NTCP models. 

Part I 

TLDs and FBGs characterization 

3.1 Linear accelerators 

The irradiation experiments were performed using the linear accelerators 

installed at the University of Naples Federico II. 

The Siemens Primus accelerator provides a 6 MV photon beam and the 

NOVAC7 accelerator provides four levels of nominal energy: 3, 5, 7 and 9 MeV1 

electron beams. Below are presented an overview of the equipment of the 

accelerators and a description of the dosimetric aspects. 

                                                        
1 Conventionally, the energy of diagnostic and therapeutic gamma-and X-rays is expressed in 

kilovolts or megavolts (kV or MV), whilst the energy of therapeutic electrons is expressed in terms of 
megaelectronvolts (MeV). In the first case the energy value is numerically equal to the voltage used 
by a linear accelerator to produce the photon beam. 

https://en.wikipedia.org/wiki/Gamma_rays
https://en.wikipedia.org/wiki/X-rays
https://en.wikipedia.org/wiki/Kilovolt
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/Megaelectronvolt
https://en.wikipedia.org/wiki/Linear_accelerator
https://en.wikipedia.org/wiki/Photon
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3.1.1 Primus Siemens accelerator 

The Primus Mid Energy (Siemens, Germany) accelerator is installed at the 

Radiation Oncology Department (Figure 3.1). This accelerator can delivered 

photon beams with nominal energy of 6MV, operating with a dose rate of                       

2 Gy/minute for a field size of 10 x 10 cm2 and a dose-per-pulse rate in the range of 

0.15 mGy/pulse. 

Two ionization chambers are installed in the beam axis to monitor the radiation. 

The unit of their signal is the monitor unit (MU). The usual definition is that 100 

MU comply to the dose of 1 Gy in the dose maximum in water with a source-

surface-distance (SSD) of 100 cm. 

The accelerator is equipped with a magnetron which provides the high power 

radiofrequency wave, necessary to accelerate the electrons in the waveguide. The 

photon beam is collimated by focusing so-called Y-jaws and a focusing multileaf 

collimator (MLC) made of tungsten to create an individual field geometry. The 

MLC is constituted of two block of tungsten each of 29 leaves. The dimension of 

the projection of each leaf of the 27 central leaves is of 1 cm at the isocenter, while 

the dimension of the two external leaves is 6.5 cm.  

 

 

Figure 3.1. Primus Mid Energy; Siemens. 

The energy spectrum (Figure 3.2) of the photons emitted by the accelerator 

presents an average energy of 1.6 MeV2. 

                                                        
2 In medical linear accelerators, electrons, boiled out of a cathode, strikes a target of a high Z 

material such as tungsten. The electron energy is converted into a spectrum of X-ray energies with 
maximum energy equal to the incident electron energy. The average photon energy of the beam is 
approximately one-third of the maximum energy. 
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It’s interesting to note that the knowledge of the spectra is useful for accurate 

three-dimensional treatment planning but also in other applications, including the 

design of filters and beam modifying devices and determination of factors to 

convert ionization chamber measurements to dose. 

 

 

Figure 3.2. Energetic spectrum of Siemens PRIMUS linear accelerator. The values on vertical axis 

are the number of photons per unit of energy. The maximum energy is 6 MeV, the average energy 

with which photons are emitted is 1.6 MeV. 

An important dosimetric characteristic of clinical photon beams is the 

Percentage Depth Dose profile (PDD) that represents volumetric and planar 

variations in absorbed dose. It relates the ‘absorbed dose’ deposited by a radiation 

beam into a medium as it varies with depth along the axis of the beam. The dose 

values are divided by the maximum dose, yielding a plot in terms of percentage of 

the maximum dose. In Table 3.1 are reported the depth dose values measured on 

central beam axis. 

The PDD curve in Figure 3.3 shows the maximum at the depth of 2 cm and it is 

characterized by an entrance dose value of about the 40% of the maximum while 

at the depth of 16 cm dose value reached the 50% of the maximum value.  

Table 3.1. Dose level depth of Primus Mid Energy photon beam. 

Energy 
Depth 100% 

isodose (cm) 

Depth 90% 

isodose (cm) 

Depth 80% 

isodose (cm) 

Depth 10% 

isodose (cm) 

6 MV 2 5 8 30 

https://en.wikipedia.org/wiki/Absorbed_dose
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Figure 3.3. PDD curve in water for a 10 × 10 cm2 field size and SSD = 100 cm for the Primus Mid 

Energy photon beam. 

3.1.2 NOVAC7 accelerator 

Novac7 (ENEA-Hitesys, Italy) is a robotic mobile intraoperative electron beam 

unit installed at the General Surgery Department. It has been designed as a very 

agile, movable making it possible to perform the Intraoperative electron radiation 

therapy (IEORT) treatment without any transport of the patient from the operating 

room to the radiotherapy bunker and without moving the patient from his position 

on the surgical bed. The accelerator is moved by a six axis robotic arm. 

The dose is delivered to the patient’s surgical breach, through a scattered 

electron beam collimated by plexiglas applicators (the diameter varies from 40 to 

120 mm) attached to the radiating head (Figure 3.4). The applicators length is        

80 cm, excluding the 100 mm applicator that is 100 cm long.  

The most important Novac7 dosimetric characteristic is the very high dose-per-

pulse ranging from 2.5 to 12 cGy/pulse, up to 100 times greater than the doses per 

pulse produced by a conventional accelerator (0.1 – 0.6 mGy/pulse). Dose-per-

pulse rates can be obtained by varying the applicator’s diameter and energy [104]. 

The duration of the pulse is of 4 s and the pulse repetition rate is of 5 Hz. The high 

dose-per-pulse reduces the irradiation time during the surgery (typically 10 Gy are 

delivered in less than 1 minute). The energy choose depends on the depth of the 

tumor to treat. 
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Figure 3.4. Novac7 (ENEA-Hitesys) accelerator. 

In Figure 3.5 are represented the percentage depth dose curves for each energy 

and 100 mm diameter applicator.  

 

 

Figure 3.5. PDD curves for each energy and 100 mm diameter applicator. 

In Table 3.2 are reported the depth dose values for each couple energy-

applicator, measured on central beam axis with SSD of 100 cm. 
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Table 3.2. Depth dose values at each energy and applicator. Conventionally the energies are 

denoted as A (3 MeV), B (5 MeV), C (7 MeV), D (9 MeV). The Rx denotes the value of the water depth 

corresponding to a dose reduction of x% respect to the maximum dose value released at the depth 

R100. 

Energy    Applicator (mm) 

         

A 
(3MeV) 

   40 50 60 70 80 100 

 R100 (mm) 8.8 8.8 8.6 8.8 8.8 8.8 

 R50 (mm) 18.9 19 18.6 18.8 18.7 18.7 

 R90 (mm) 13 13.1 12.8 13 13 13 

 R80 (mm) 14.7 14.9 14.6 14.8 14.8 14.8 

 R30 (mm) 21.5 21.6 21.2 21.5 21.4 21.4 

     

B 
(5 MeV) 

   40 50 60 70 80 100 

 R100 (mm) 9.8 10.2 10 10 10.4 10 

 R50 (mm) 22.3 22.3 22 22 22 22.1 

 R90 (mm) 15.2 15.5 15.3 15.3 15.4 15.3 

 R80 (mm) 17.3 17.6 17.4 17.4 17.5 17.4 

 R30 (mm) 25.1 25.3 24.9 24.9 24.9 25 

     

C 
(7 MeV) 

   40 50 60 70 80 100 

 R100 (mm) 11.6 11.8 12.4 11.9 12.2 12.2 

 R50 (mm) 26.5 26.6 26.5 26.2 26.2 26.2 

 R90 (mm) 18.3 18.5 18.6 18.6 18.6 18.4 

 R80 (mm) 21 21.2 21.2 21.1 21.1 20.9 

 R30 (mm) 29.9 30 29.9 29.5 29.5 29.6 

     

D 
(9 MeV) 

   40 50 60 70 80 100 

 R100 (mm) 13.2 13.4 12.4 13 13.8 13 

 R50 (mm) 31.3 31.6 31.2 31 30.7 30.6 

 R90 (mm) 21.5 21.9 21.6 21.6 21.5 21.4 

 R80 (mm) 24.6 24.9 24.6 24.6 24.3 24.2 

 R30 (mm) 35.4 35.7 35.2 35 34.7 34.6 

         
 

It can be observed that the release of the maximum dose occurs at depths very 

similar for both electrons and photons. However, while the dose of electrons is 

released in a few cm from the entry point, the dose of photons is released at greater 

depths. These data confirms that the electrons are the most suitable particles to 

give the required dose of radiation directly to the tissues displayed during surgery, 

thus protecting the underlying healthy tissues. 
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3.2 Experimental setup for the use of TLDs 

During this thesis a batch of 40 TL dosimeters has been calibrated and tested 

under photon and electron beam accelerators.  

There are different types of TLD to lithium fluoride doped with magnesium and 

titanium, denominated TLD 100, TLD 600 and TLD 700; they differ in the 

percentage isotope of lithium, respectively: 

 6Li 7.5% and 7Li 92.5% for the TLD 100; 

 6Li 95.6% 6Li and 7Li 4.4% for the TLD 600; 

 6Li 0:01 6Li and 7Li 99.99% for 700 TLD 700. 

The thermoluminescence dosimeters used in this work are the LiF:Mg,Ti (TLD-

100) (Harshaw Chemical Company) chips with nominal dimensions of                        

3.2 × 3.2 × 0.89 mm3. 

TLD-100 is the most widely used TLD in routine personal dosimetry, 

environmental monitoring, space dosimetry and clinical dosimetry. This 

popularity is due to its approximate tissue equivalence (effective atomic number of 

8.2, similar to 7.4 for tissue); low signal fading (5 - 10% per year), wide linear 

response range (10 μGy – 10 Gy); and high sensitivity for very low dose 

measurements [105, 106]. 

The main physical and dosimetric characteristic of TLD 100 are reported in 

Table 3.3. 

Table 3.3. Physical and dosimetric characteristics of TLD 100. 

Characteristic LiF (TLD 100) 

Size (mm3) 3.1 x 3.1 x 0.89 

Weight (mg) 24 

Density (g/cm3) 2.64 

Effective atomic number 8.2 

Emission spectrum (nm) Range 350 - 600 

Peak 400 

Number of dosimetric peaks 3 

Temperature of the main peak of the 

glow curve (°C) 

195 

Maximum temperature for reading (°C) 300 

Doping elements Mg, Ti 

Thermal fading  5 to 10% per year 

Linear response range  10 μGy – 10 Gy 
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Thermoluminescence dosimetry is based upon the ability of imperfect crystals 

to absorb and store the energy of ionizing radiation, which upon heating is re-

emitted in the form of electromagnetic radiation, mainly in the visible wavelength. 

A basic TLD reader system consists of a planchet for placing and heating the TLD, 

a photomultipler (PMT) to detect the thermoluminescence light emission and 

convert it into an electrical signal linearly proportional to the detected photon 

fluence and an electrometer for recording the PMT signal as a charge or current. 

The charge is correlated to the absorbed dose received by the TL material. Heating 

and light collection are performed in the readout system Harshaw model 3500 

manual TLD reader, installed at the Department of Physics of the University 

Federico II (Figure 3.6). TLDs have been read at 300 °C using a heating rate of       

10 °C/s, to optimize the TL signal-to-background ratio in the high-temperature 

region. A continuous nitrogen flow was used to reduce chemoluminescence and 

spurious signals not related to the irradiation [107]. 

 

 

Figure 3.6. TLD Reader, 3500 model (Harshaw Company). 

The TL signal as a function of temperature (or of time if this parameter is 

correlated with temperature) is of a complex nature and is called glow curve. It 

consists of different TL peaks, each peak corresponding to a different energy state 

in the crystal. The software WinREMS (Windows Radiation Evaluation and 

Management System) allows to visualize the value of the charge (nC) as a function 

of the temperature, that is the glow curve, for the current TLD. 

After readout, the TL material is either entirely in its original state, and in this case 

it is just ready for re-use, or it requires a special heating treatment called annealing  

in order to restore it to its original state. 
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In Figure 3.7 is reported an example of glow curve of a TLD 100 of our batch. 

 

 

Figure 3.7. Glow curve of a TLD 100, the x-axis indicates the channel number, the y-axis indicates 

the current intensity (nA) of the signal detected by the PMT. The blue area is the TL response. 

In the present work prior to each irradiation, TLDs were annealed in air at      

400 °C for 1 hour, followed by a 2 hours annealing at 100 °C and by rapid cooling 

to room temperature [108] in a dedicated oven (Figure 3.8). 

 

                   

Figure 3.8. Oven used to the TLD annealing. 

The irradiation experiments of the TLD were performed using 5, 7 and 9 MeV 

electron beams. An additional reference irradiation experiment was performed by 

a 6 MV photon beam to obtaining a TLD dose-response curve to be used as a 

benchmark for the performed method of analysis.  
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3.2.1 Sensitivity and calibration factor 

Some variations in sensitivity within a batch of TL dosimeters is unavoidable. 

Several methods can be used to limit the effect of these variations when the 

dosimeters are in common use. The best method consists of irradiating all the 

dosimeters in the same geometrical conditions, to read them out and to attribute 

to each of them a sensitivity factor: 

 

                                                                             𝑆𝑖 =  
𝑅𝑖

�̅�
                                                             (3.1) 

 

where 𝑅𝑖 is the TL readout from dosimeter number i and �̅� the mean of all values 

of 𝑅𝑖. 

This sensitivity factor expresses the response variation of each individual 

dosimeter around the mean. Although this mean may vary from irradiation to 

irradiation, 𝑆𝑖 should remain constant because all dosimeters are subject to the 

same variations. Sensitivity factors should be checked periodically to take into 

account a possible loss of material occurring when TL dosimeters are not handled 

carefully. 

A proper calibration with a secondary dosimeter provides the conversion factor 

of electric charge to dose units according to: 

 

                                                                         𝐹𝑐 =
�̅�

𝐷𝑟𝑒𝑓
                                                             (3.2) 

 

where �̅� is the average response of the TLD irradiated at the reference dose value 

𝐷𝑟𝑒𝑓. 

3.3 Fiber Bragg Grating 

In this thesis Corning® SMF-28TM Single-Mode 6 mol% Ge-doped silica-core 

optical fibers have been investigated. Below some optical and geometry 

specifications have been reported:  

Core Diameter = 8.2 µm 

Numerical Aperture = 0.14 

Refractive index difference = 0.36% 
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Effective Group Index of Refraction = 1.4677 at 1310 nm, 1.4682 at 1550 nm 

Coating Diameter = 245 ± 5 µm 

Cladding Diameter = 125.0 ± 0.7 µm 

Coating-Cladding Concentricity < 12 µm 

Operating Wavelength = 1200 nm ≤ λ ≤ 1600 nm 

The refractive index profile and spectral attenuation of a typical fiber are 

illustrated in Fig. 3.9. 

 

 

Figure 3.9. Refractive index profile (left panel) and a spectral attenuation (right panel) of a typical 

fiber. 

The PS-FBG is written in a single mode optical fiber over a length of about 1 cm 

and it behaves as a localized high-quality optical resonator with a sensitive volume 

of only 6 x 10‒ 4 mm3 (the effective volume interacting with the radiation).  

3.4 Physical characterization of optical fiber material 

The photon interaction with the matter depends on the incoming photon energy 

[109] and the atomic number Z of the material. This interaction can be represented 

by physical quantities such as mass attenuation (
𝜇

𝜌
)  and energy-absorption (

𝜇𝑒𝑛

𝜌
) 

coefficients, effective atomic number 𝑍𝑒𝑓𝑓 and effective electron density (𝑁𝑒). 

The mass attenuation coefficient is a measure of the average number of 

interactions between incident photons and matter, that occur in a given mass-per-

unit area thickness of the substance encountered [109]. Present-day interest in the 

mass energy-absorption coefficient (
𝜇𝑒𝑛

𝜌
) is reflected in its use in the 
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recommendations and protocols of numerous organizations concerned with the 

standardization and traceability of radiation dosimetry. 

The other important quantity - called “the effective electron number or electron 

density” - is defined as the electrons per unit mass of the absorber [110]. Several 

works have been carried out on the mass attenuation coefficients, effective atomic 

number and effective electron density for different types of materials [111-114]. In 

1982 Hubbell published tables of mass attenuation coefficients and the mass 

energy-absorption coefficients for 40 elements and 45 mixtures and compounds 

over energy range from 1 keV to 20 MeV. These tables, although widely used, 

should now be replaced by the Hubbell and Seltzer tabulation for all elements          

(Z = 1 - 92) and 48 additional substances for dosimetric interest [115]. 

Berger and Hubbell developed the theoretical tables and computer program 

(XCOM)3 for calculating attenuation coefficients for elements, compounds and 

mixtures for photon energies from 1 keV to 100 GeV [116-118]. This well known 

and much used program was transformed to the Windows platform by Gerward et 

al. [119] and the Windows version is being called WinXCom. 

In this work the total and partial mass attenuation (
𝜇

𝜌
) and mass energy-

absorption coefficients (
𝜇𝑒𝑛

𝜌
) were derived for all the constituent elements of the 

fiber material using the computer code “XCOM” at photon energies in the range 

between 1 keV and 20 MeV. The mentioned physical quantities were calculated in 

relation to the water, for the compound “fiber” according to the Bragg’s rule. The 

effective atomic number was derived and compared to that of the water presented 

in the literature reference. 

The mass attenuation coefficients is given by 

 

                                                            (
𝜇

𝜌
)

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

= ∑ 𝑤𝑖

𝑖

 (
𝜇

𝜌
)

𝑖

                                         (3.3) 

 

where: 

                                                        
3 Tables and graphs of the photon mass attenuation coefficient μ/ρ and the mass energy-

absorption coefficient μen/ρ are presented for all of the elements Z = 1 to 92, and for 48 compounds 
and mixtures of radiological interest. The tables cover energies of the photon from 1 keV to 20 MeV. 
The μ/ρ values are taken from the current photon interaction database at the National Institute of 
Standards and Technology, and the μen/ρ values are based on the new calculations by Seltzer [69]. 
These tables of μ/ρ and μen/ρ replace and extend the tables given by Hubbell in the International 
Journal of Applied Radiation and Isotopes 33, 1269 (1982). 

http://www.nist.gov/pml/data/xraycoef/ 
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𝑤𝑖 = Weight fraction of element in the compound 

(
𝜇

𝜌
)

𝑖
= Mass attenuation coefficient for individual element in the compound 

The effective atomic number 𝑍𝑒𝑓𝑓 of a material consisting of different elements can 

be obtained by the relation [120]: 

 

                                                                         𝑍𝑒𝑓𝑓 =
𝜎𝑎

𝜎𝑒𝑙
                                                            (3.4) 

 
where 𝜎𝑎and 𝜎𝑒𝑙 represent the total atomic cross section and total electric cross 

section, respectively. 

They can be obtained via the total mass attenuation coefficients [115, 120]: 

 

                                                           𝜎𝑎 =

(
𝜇
𝜌)

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

𝑁𝐴  ∑
𝑤𝑖
𝐴𝑖

𝑖

                                                           (3.5) 

 

                                                           𝜎𝑒𝑙 =
1

𝑁𝐴
∑

𝑓𝑖𝐴𝑖

𝑍𝑖

𝑛

𝑖

 (
𝜇

𝜌
)

𝑖

                                                    (3.6) 

 

where: 

𝑁𝐴 = Avogradro’s number 

𝐴𝑖 = Atomic weight of constituent element of the compound 

𝑓𝑖 = The number of atoms of element i relative to the total number of atoms of 

all elements in the compound 

𝑍𝑖 = The atomic number of the ith element in the compound 

The effective atomic number is closely related to the electron density 𝑁𝑒, which 

is expressed in number of electrons per unit mass. For a chemical element, the 

electron density is given by 𝑁𝑒 = 𝑁𝐴 𝑍 𝐴⁄ . This expression can be generalized to a 

compound, and one has 

 

                                                        𝑁𝑒 = 𝑁𝐴

𝑛 𝑍𝑒𝑓𝑓

∑ 𝑛𝑖𝑖 𝐴𝑖
= 𝑁𝐴

𝑍𝑒𝑓𝑓

〈𝐴〉
                                             (3.7) 

 

where 〈𝐴〉 is the average atomic mass of the compound. 
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It can be shown that the electron density is given by 

 

                                                                          𝑁𝑒 =
𝜇 𝜌⁄

𝜎𝑒
                                                            (3.8) 

 

where 𝜇 𝜌⁄  is the total mass attenuation coefficient of the compound, and 𝜎𝑒 is the 

electronic cross section given by Eq. (3.6). 

3.5 Methods and apparatus for interrogating optical fiber sensors 

The interrogation approach of FBG is based on laser-frequency stabilization and 

heterodyne detection techniques that lead to high signal-to-noise ratio and enable 

fast and active reading. The laser is frequency locked to a cavity mode using a 

Pound-Drever-Hall scheme [121]. By scanning the fiber temperature and 

monitoring the laser wavelength, the thermo-optic response is retrieved. A picture 

of the experimental apparatus is shown in Figure 3.10a and the relative sketch in 

Figure 3.10(b). 

A 10 mW DFB Er-fiber laser emitting around 1560 nm (Koheras AdjustikTM, 

Birkerød, Denmark) is phase modulated at 72 MHz by an all-fiber electro-optic 

modulator. After modulation two sidebands are generated and overlapped to the 

laser carrier. This triplet enters the first port of a fiber circulator and then injects 

the FBG-cavity. When the cavity is on resonance, the sidebands are reflected back 

by the first FBG and interfere with the carrier resonating into the cavity. The whole 

reflected field beam exits the second port of the circulator and is detected by a fast 

(2 GHz) InGaAs photodetector whose output beats with the RF signal in a mixer 

yielding a dispersive error signal (Figure 3.12(b)). 

The detector signal is demodulated with the 72 MHz modulation signal in a 

radiofrequency mixer, yielding an error signal, centered around the cavity mode, 

which is filtered and amplified by a servo system. The servo signal is finally fed 

back to the laser current, in order to lock its frequency to a cavity mode. The FBG 

cavity is inserted into a thermally controlled chamber and its temperature is 

carefully monitored by a high sensitivity (1 mK) negative temperature coefficient 

(NTC) resistor placed in contact with the fiber (Figure 3.11). Once the laser is locked 

to the cavity, the chamber temperature is slightly varied (by less than 1 °C) around 

the ambient temperature (25 °C). The cavity transmitted light is collected by a high 
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resolution (minimum 𝛿𝜆 = 4𝑥10−4 𝑛𝑚) lambda-meter (Burleigh, WA-1500) that 

measures the center wavelength of the resonating cavity mode in real-time. 

The center resonance of one PS-FBG cavity is shown in Figure 3.12(a) (in 

transmission) along with part of the power modulation due to the FBG envelope 

curve during a wide sweep of the laser current. A zoom of the same resonance in 

reflection is plotted with the corresponding Pound-Drever-Hall (PDH) error signal 

(Figure 3.12(b)). 

 

 

 

 

Figure 3.10. Picture (a) and the sketch (b) of the experimental apparatus. The sketch describes the 

interrogation unit where a laser is used to actively track the PS-FBG resonator by a frequency 

locking technique. At the same time, a wavelength meter provides a measurement of the wavelength 

shift due to IRs delivered to the fiber that is temperature controlled in an insulated chamber. 
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Figure 3.11. Picture of the negative temperature coefficient (NTC) resistor placed in contact with the 

fiber. 

 

 

 

 

Figure 3.12. Center resonance of one PS-FBG cavity (a) (in transmission) along with part of the 

power modulation due to the FBG envelope curve during a wide sweep of the laser current. (b) A 

zoom of the same resonance in reflection (red line) is plotted with the corresponding Pound-Drever-

Hall (PDH) error signal (blue line). 
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Part II 

Tools and procedures for NTCP 

optimization

3.6 Planning in the radiation therapy treatment  

For NTCP modeling different patient cohorts were evaluated. For all patients, 

the RT treatment plans were planned in XIO Treatment Planning System (XiO 

4.64, Elekta CMS). 

The radiotherapy treatments were guided by Radiation Therapy Oncology 

Group (RTOG) and International Commission on Radiation Units and 

Measurements (ICRU) protocols for the dose-homogeneity and conformality 

conditions in the tumor targets, and the dose-volume constraints in the critical 

organs. RT was administered with 6 - to 20 - MV photon beams from a linear 

accelerator in daily fractions (range 1.5 - 2 Gy) for a total number that depends by 

the prescription dose to specific targets Treatment planning was based on 

computed tomography (CT). The delineation of PTV and OARs was performed 

according to the RTOG guidelines [122-124] and reviewed by the same radiation 

oncologist. The prescription dose was specified at the center of the PTV and the 

field weightings were adjusted to achieve 95% of prescription dose to 95% of the 

PTV. The radiotherapy plans have been evaluated thought the visualization of 

dose-volume histograms (DVHs).  

3.7 Computational environment for data extraction and analysis 

For each patient the treatment plan was recovered from tapes archives. After 

de-archiving, 3D treatment plans were imported into a custom treatment plan 

analysis system CERR (A Computational Environment for Radiotherapy 

Research), an open source, freely available general treatment plan analysis package 
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based on Matlab developed and maintained by the School of Medicine and Siteman 

Cancer Center, Washington University, St. Louis. In combination with CERR the 

tool DRESS (Dose REsponse Explorer System)/Matlab, provides an environment 

for analyzing treatment outcomes. 

CERR capabilities for radiotherapy treatment response modelling include the 

following: 

1. the ability to convert the widely available AAPM/RTOG treatment planning 

format into a MATLAB cell-array data object, facilitating manipulation; 

2. a treatment plan data architecture which is self-describing, compact, easily 

manipulable, and extendable; 

3. the ability to manipulate treatment plans within a powerful data analysis 

and programming environment, for example for dose-volume-outcomes 

analyses; 

4. visual plan review tools (axial, sagittal, and coronal viewers); 

5. the source code is supplied, allowing users to modify it and use it as a 

template for their own projects; 

6. the ability to link external programs in other languages; 

7. CERR can be used for sharing and reproducing radiation therapy treatment 

planning research results. CERR is highly useful for defining and 

generating new candidate variables. New structure field names can be 

added dynamically or permanently. New components of arbitrary data type 

can be stored and accessed without disturbing system operation. 

In this thesis we used CERR to provide the input data format to DREES, based 

on Matlab’s human-readable data structures. The internal database structure is 

called ddbS (for DREES database structure). There are currently two reserved key 

words in this structure; ddbS.dvh (reserved to automate processing of different 

dose–volume histograms), and ddbS.outcomes (reserved to identify endpoints). 

The dvh field can take on any extension, which will be treated by the software as a 

different dose–volume histogram type (e.g., dvh lung and dvh heart). The 

outcomes field is reserved for the observed complication in NTCP (e.g., discrete 

grades 0 – 5 post-radiation pneumonitis in lung cancer) or tumor control in TCP 

(e.g., 0: failure or 1: local control in tumor). Dose–volume metrics are internally 

derived from the dvh of interest by the software (or directly imported dose data), 

which include mean dose, maximum dose, minimum dose, Vx (percentage volume 

receiving at least x Gy), Dx (minimum dose to x% highest dose volume) and GEUD 
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(generalized equivalent uniform dose). The increment parameter ‘x’ in Dx/Vx and 

exponent a in GEUD are assigned interactively by the user. Clinical factors such as 

age, gender, ethnicity, stage, chemo administration are extracted from the fields of 

the ‘ddbS’ structure and populated directly into the software menu’s list of 

variables.  

DREES provides many radiotherapy outcome modelling features, including: 

1. combined modelling of multiple dose–volume variables (e.g., mean dose, 

max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term 

regression modelling. Multi-metric models are phenomenological and 

depend on the parameters available from the collected clinical and 

dosimetric data (i.e., data driven) [125]; 

2. manual or automated selection of logistic or actuarial model variables using 

bootstrap statistical resampling; 

3. estimation of uncertainty in model parameters; 

4. performance assessment of univariate and multivariate analyses; 

5. graphical capabilities to visualize NTCP or TCP prediction versus selected 

variable models using various plots. 

In this work DREES tool was used for multi-metric modelling while in house-

written Matlab scripts were run to perform LKB and RS models. In the following 

sections we’ll focus on the methods for data-driven modelling which requires a pre-

processing and manipulation of clinical and dosimetric data. The algorithm to fit 

the analytic NTCP model parameters is reported in Appendix C. 

3.7.1 Maximum likelihood method 

Multi-metric technique can be used to model NTCP or TCP depending on the 

nature of the observed output and endpoint selection [34]. 

The currently implemented multivariate method is based on logistic regression 

(see Eqs. (1.4)-(1.5)). Mathematically, the relationship between the predictive 

variables (e.g., dose–volume metrics and clinical factors) and the observed data is 

represented with an additive sigmoidal model, where the model coefficients are 

determined by Maximum Likelihood (ML) method that is, maximizing the 

probability that the data give rise to the observations [126-128]. 

In order to apply this method first a function is constructed, called the log-

likelihood function (LLH), defined as: 
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                           𝐿𝐿𝐻(𝛽) = ∑ ln(𝑁𝑇𝐶𝑃(𝑥𝑖

𝑦(𝑖)=1

)) + ∑ ln(1 − 𝑁𝑇𝐶𝑃(𝑥𝑖

𝑦(𝑖)=0

))                (3.9) 

 

𝑥𝑖 is the vector of the input variable values used to predict the 

probability 𝑁𝑇𝐶𝑃(𝑥𝑖), 𝛽 is the vector of the set of model coefficients, 𝑦(𝑖) is the 

binary outcome. 

Numerically, the set of nonlinear likelihood equations are solved using an 

iterative weighted least-squares method [129]. The parameters’ uncertainties are 

estimated by using Wald’s statistic [126, 127]. 

Analytic models are based on dose-volume variables (see Eqs. (1.9)-(1.12)). The 

LLH function was numerically maximized by the Nelder-Mead Simplex Method 

(Matlab implementation: FMINSEARCH function) using an in-house developed 

library for Matlab. Ninety five percent confidence intervals for parameters 

estimates were obtained using the profile likelihood method [130]. Following this 

method, each parameter belonging to the set (𝐷50, 𝑚, 𝑛)𝐿𝐾𝐵 or equivalently to the 

set (𝐷50, 𝛾, 𝑠)𝑅𝑆 was varied around its Maximum Likelihood Estimation (MLE) 

[131-133] (optimum LLH) while the other 2 parameters were fixed at their ML 

estimate. The 95% confidence bounds were determined reducing the maximum 

LLH by one half of the x2 inverse cumulative distribution function associated with 

a 95% confidence level, so as to obtain the iso-likelihood contours in each Cartesian 

plane of the parameters space (𝐷50, 𝑚, 𝑛), or equivalently, of the (𝐷50, 𝛾, 𝑠) space. 

In correspondence to the parameters values belonging to the iso-likelihood 

contours, a bundle of NTCP curves was calculated and the 95% confidence region 

for the model fit was thus estimated. In terms of the LKB model parameters the 

expression of LLH (see Eq. (3.9)) becomes: 

 

 𝐿𝐿𝐻(𝐷50, 𝑚, 𝑛) = ∑ ln(𝑁𝑇𝐶𝑃(𝐷50, 𝑚, 𝑛

𝑦(𝑖)=1

)) + ∑ ln(1 − 𝑁𝑇𝐶𝑃(𝐷50, 𝑚, 𝑛

𝑦(𝑖)=0

))(3.10) 

3.7.2 Variable candidates and best model selection 

The model building methodology has several steps. First it is desirable to test 

any variable, simple or derived, that may potentially add to the prognostic value of 

the model. Clinical factors include, for example, diabetes, surgery, chemotherapy, 

age, patient performance status, etc. Dosimetric factors may include Vx values (the 

percentage volume that received a dose greater or equal to x Gy, e.g. V20), Dx values 
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(minimum dose given to the hottest x% volume) mean dose. To facilitate initial 

data exploration, was used a graphical display that refer to as the “self-correlation” 

display. The Figure 3.13 shows an example of the self-correlation matrix for the 

prostate data sets. Each color matrix element represents the magnitude of the 

Spearman’s rank correlation coefficient between two variables.  

 

 

Figure 3.13. The self-correlation matrix for dosimetric and clinical factors that may affect 

gastrointestinal disorders. Note the significant intercorrelations between many Vx values (volume 

area receiving greater than x Gy) below 65 Gy. 

Constructing the logistic model requires selection of the best combination of 

variables, without trying all possible combinations of relevant variables (which is 

too computationally expensive). First, starting from the self-correlation matrix the 

number of Dx, Vx and clinical variables under consideration was pruned to leave 

only variables between which inter-variable Spearman correlations were less than 

a 0.85 to avoid overfitting. Within the framework of a given set of candidate 

variables and sequential forward selection, we need a reliable method of 

determining when the model has reached maximum predictive power. An optimal 

model order was defined by automating forward step regression and computing 

average prediction performance on cross-validation. There are several empiric 

methods for selecting model order, including several approaches derived from the 

bootstrap principle. In brief, the bootstrap assumes that a good approximation for 

a new data set drawn from the same population can be constructed by randomly 

sampling original data points and adding them to a “replicate” bootstrap data set. 

Any data point may be selected multiple times. The sampling process continues 



Chapter 3                                                                            Materials and Methods/Part II 
 
 
 

 
56 

until the replicate set has as many data points as the original data set. By repeating 

the model fitting process on the replicate set, parameter estimate variance and 

model stability can be assessed. An apparent weakness of the bootstrap is that each 

replicate, on average, contains only 63% of the original data points (Many of the 

included points are duplicated once or more). A bootstrap replicate is therefore not 

as descriptively powerful as the original data set. Many bootstrap replicates 

(multiple times the data’s sample size) should be generated to achieve convergence 

to the right model order, which would make it computationally too expensive in 

this case. 

Another attractive empiric alternative is the cross-validation leave-one-out 

method (LOO-CV) (also known as the “jackknife”). In this technique, the model is 

refit to modified data sets a number of times equal to the number of data points. 

For each refit, a different data point is left out. We use this by then tabulating the 

model prediction for the data point left out These predictions are ranked, and 

Spearman’s coefficient is computed as usual. The main advantage of this over the 

bootstrap-based methods is that nearly all the original data are used to build the 

model. LOO-CV therefore minimizes the bootstrap problem of weakening the 

validity of the fitted parameters as a result of using a smaller, less powerful data 

set. If the model varies significantly between runs (say, because two different 

variables have a significant likelihood of being chosen), the LOO-CV method may 

not lead to a reliable Spearman’s value. In practice, nearly optimal model order 

implies relatively stable models between runs. In our tests, model instability 

between leave-one-out runs was not an important issue. However, the results tend 

to be noisier than the bootstrap case. This would lead one to think of the bootstrap 

approach as a smoothed LOO-CV. 

The robustness of the variable sets selected was tested by cataloging the 

frequency of variable sets selected based on model refitting of bootstrap datasets 

[34]. Further details for this data-mining method to select variables and define 

models are described in [34, 134]. In summary the modeling process consists of a 

2-step process. In the first step, the model size (number of variables significantly 

predictive) is estimated by bootstrapping, and in the second step regression 

coefficients are estimated by using forward selection on multiple bootstrap 

samples, the most frequent model being the optimal one. An example for 

automated data modelling is given in Figure 3.14. 
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Figure 3.14. Automated multi-metric model determination for heart valve dysfunction generated by 

DREES. (a) Model order selection using leave-one-out cross-validation. The model order is 

determined to be 3. (b) The parameters for the order 3 model are determined by forward selection 

and bootstrapping. Similar models are coalesced and the model frequencies for the top five models 

are shown. 

3.7.3 Model comparison 

Model predictive power was quantified by use of Spearman’s rank correlation 

coefficient, and the area under the curve (AUC) of receiver operating characteristic 

(ROC) curve was used to evaluate the discriminating ability of model fits. A ROC 

graph is a plot of the true positive fraction (sensitivity) versus the false positive 

fraction (1-specificity) for a continuum of threshold values. An example of ROC 

curve is reported in Figure 3.15. The ROC curve was created by plotting the fraction 

of true positives out of the total actual positives (TPR = true positive rate or 

sensitivity) vs. the fraction of false positives out of the total actual negatives        

(FPR = false positive rate or 1-specificity), at various probability threshold settings. 

The discrimination value on the ROC curve was determined by Youden’s J statistic 

that is the difference between the TPR and the FPR. Maximizing this indicates an 

optimal cut-off point. ROC curve results of different NTCP models were compared 

using a Z test. Statistics was performed using SPSS Statistics 18 and MedCalc 

(MedCalc, Mariakerke, Belgium). 
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Figure 3.15. A ROC curve: the true positive rate (Sensitivity) is plotted in function of the false 

positive rate (100 - Specificity) for different cut-off points. Each point on the ROC curve represents 

a sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect 

discrimination (no overlap in the two distributions) has a ROC curve that passes through the upper 

left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper 

left corner, the higher the overall accuracy of the test. 



 
 
 

 
 

CHAPTER 4 

Results and Discussions

The purpose of the present chapter is to give a detailed description of the 

results and discussions of the two topics of the research activity. The study 

concerning the water equivalency investigation of the fiber sensor will be shown. 

Among the parameters representing radiation interaction with materials, we are 

particularly interested in the “effective atomic number”, the most convenient 

parameter for representing X-ray and gamma ray interactions, since it allows 

many characteristics of material to be visualized with a number. The procedures 

of the photo-induction experiments with two FBGs sensors and with a resonant 

cavity will be describe, showing their capability to detect biomedical dose levels. 

Furthermore in this chapter will be reported the dose response of well-

established dosimeters, the TLDs, irradiated with non-conventional accelerator 

beam, such as high dose-per-pulse electron beam. Finally data-driven logistic 

Normal Tissue Complications Probability models compared with the classical 

models for different patient cohorts, organs at risk and end-points will be 

presented. 
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Part I 

Dosimeter characterization and 

experiments

4.1 Water equivalency investigation of optical fiber sensor 

The optical fiber sensors studied herein have been 6 mol% Ge-doped silica 

optical fibers. Elemental weight fractions of water, and both core and cladding of 

the fiber are showed in Table 4.1. The calculated radiological properties have 

included electron density Ne, effective atomic number Zeff, mass attenuation and 

energy absorption coefficients. 

Table 4.1. Elemental composition and fractional weight (wk) for the core and cladding of the fiber 

and water. 

Material wO wSi wGe wH 

Core 0.4944 0.4340 0.0716 - 

Cladding 0.5326 0.4674 - - 

Water 0.8881 - - 0.1119 

 

The amount of oxygen in core and cladding is lower than that in water by 

approximately 44.3% and 44.0% respectively. In addition, both core and cladding 

contain silicon and no hydrogen and the core contains germanium too. The content 

of silicon in the core is 7.1% lower than in the cladding.  

The electron density and the effective atomic number aren’t constant for a 

material but a parameter varying with photon energy depending on the interaction 

processes involved.  

Figure 4.1 shows the calculated fractional interaction probabilities for core, 

cladding and water over the energy range 1 KeV - 20 MeV. 
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Figure 4.1. Fractional interaction probabilities for core, cladding and water. 

As indicated in Figure 4.1, photoelectric absorption is the dominant interaction 

process for energies up to 30 KeV for water and up to 40 KeV and 50 keV for 

cladding and core respectively. Over the photon energy range 1 KeV - 30 KeV, the 

maximum relative difference in the photoelectric absorption fractional interaction 

probabilities of cladding is 44.6% and of core is 51.2% compared to water. These 

differences can be attributed to the strong dependence of photoelectric absorption 

on atomic number (approximately Z3). 

As energy increases, the difference in the photoelectric absorption fractional 

interaction probabilities of the core and cladding with water increases and reaches 

up to about 95% and 82% for core and cladding, respectively at 100 - 150 KeV. 

However, Compton scattering dominates over photoelectric absorption in 

attenuating photons at these energies. As Figure 4.1 shows, Compton scattering 

becomes the dominant interaction process for the core, cladding and water above 

50 KeV and it remains the dominant interaction up to 20 MeV. 

The average ratio in the energy range 100 KeV - 20 MeV between the total 

interaction probabilities of core and cladding with water assessed at the values of 

3.5 ± 0.3 and 3.2 ± 0.3 respectively as showed in Figure 4.2. 
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Figure 4.2. The interaction probability ratio between fiber materials and water. In the inset, the 

interaction probability ratio over the energy range 100 KeV - 20 MeV. 

Figures 4.3a-b shows mass attenuation coefficients and the mass energy 

absorption coefficients ratio of the fiber materials relative to water for photon 

energies 1 KeV - 20 MeV.  

For energies lower than 100 KeV, the mass attenuation coefficients of both the 

core and cladding reaches to 7.1 and 3.5 times that of water, respectively. Similarly 

the mass absorption coefficient reaches to 9 and 4 times that of water, for core and 

cladding respectively. Over this energy range photoabsorption dominates and due 

to the Z3 dependence, despite the lower amount of oxygen, the presence of high 

atomic number elements in the core and cladding (germanium and silicon) may be 

responsible for this discrepancy compared to water. 

As energy increases, Compton scattering becomes more important and for 

energies higher than 100 KeV the relative difference between the mass attenuation 

and absorption of fiber material and water falls to less than 10%. In the energy 

range 100 KeV - 20 MeV the ratios of the relative mass attenuation and energy 

absorption coefficients remains fairly constant. 

In particular the average mass attenuation coefficient ratios in this energy range 

for core and cladding are 0.96 ± 0.09 and 0.9 ± 0.1, respectively. 

The average mass energy absorption coefficient ratios in the energy range        

100 KeV - 20 MeV for core and cladding are 1.0 ± 0.3 and 0.97 ± 0.11, respectively. 

The very close agreement in mass attenuation coefficients over the energy range 

1 KeV - 20 MeV can be explained by considering that for the low effective atomic 

number considered here, virtually all the energy transferred is deposited locally in 
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collisions, with only a negligible amount lost to bremsstrahlung radiation at the 

highest energies. 

 

 

 

 

Figure 4.3. Mass attenuation coefficients (a) and the mass energy absorption coefficients (b) ratio 

of the fiber materials relative to water. In the inset, the mass attenuation coefficients and the mass 

energy absorption coefficients ratio over the energy range 100 KeV - 20 MeV. 

The values of effective electron density Ne as a function of photon energy in the 

range between 1 keV to 20 MeV, has been calculated using Eq. (3.8) and showed in 

Figure 4.4. The behaviour of the electron density and of the effective atomic 

number as a function of the photon energy, reflects the interaction properties of 

the fiber material, descripted above. 

The average values of electron density of core and cladding over the energy 

range 1 KeV - 20 MeV resulted to be 3.1 ± 0.1 and 3.03 ± 0.03, respectively. 
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Figure 4.4. Effective electron density as a function of photon energy. 

Using the mass attenuation coefficients by the Eqs. (3.4)-(3.6) the effective 

atomic number of Zeff for the core and cladding at photon energies in the range 

between 1 keV to 20 MeV have been calculated and the results have been displayed 

in Figure 4.5. 

 

 

Figure 4.5. Effective atomic number as a function of photon energy. The straight line corresponds 

to the value of Zeff =10. 

 

The average values of the effective atomic number of core and cladding over the 

energy range of radiation therapy application 100 KeV - 6 MeV were 10.6 ± 0.3 and 
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100 KeV - 6 MeV were 10.6 ± 0.3 and 10.04 ± 0.06, respectively. 

Finally we provided a single effective atomic number for the optical fiber sensor 

Zeff as average value of core and cladding, weighed on the radius size. 

The average value of the effective atomic number of the optical fiber sensor 

resulted to be: 

 
Zeff = 10.1 ± 0.4 

 
Since a large Zeff generally corresponds to inorganic compounds and metals, a 

small Zeff ≤ 10 is an indicator of the organic substances. Considering that the Zeff of 

water reported in literature is 7. 417 [135], we concluded that for a large range of 

energies of interest in radiation therapy, sensor can be considered water 

equivalent. 

4.2 Detecting ionizing radiation with optical fiber sensors down to 

biomedical doses 

The sensor was irradiated by the accelerator beam at different dose levels. 

Before the irradiation, the beam output (Gy/UM) of the linac was verified 

according to the recommendations of international protocol [16] using a Farmer 

chamber type (PTW type 30001, Freiburg, Germany). The chamber was connected 

to a PTW UNIDOS model E T10008–80361 electrometer. The set up was shown in 

Figure 4.6. 

 

 

Figure 4.6. Picture of the set up for the measurement of the Primus Siemens accelerator output. 

PTW Farmer 3006 chamber was placed in a water equivalent slab phantom at 5 cm depth with a 1 

cm backscatter slab. The photon beam was delivered setting 100 MU, 10 x 10 cm2 square field, 100 

cm of source to isocenter distance. 
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The fiber was placed in the water equivalent slab phantom at 5 cm depth with a 

5 cm backscatter slab (Figure 4.7) and irradiated at different dose levels in 

controlled and reproducible conditions (10 x 10 cm2 square field, source to 

isocenter distance 100 cm). 

Figures 4.8a-b show the pictures of the fiber and the accelerator during an 

irradiation section.  

 

 

Figure 4.7. Frontal (a) and (b) lateral perspective of the experimental setup for the irradiation of 

the optical fiber: the fiber is placed in a water equivalent PMMA slab phantom at 5 cm depth with 

a 5 cm backscatter slab.  

 

    

Figure 4.8. (a) Picture of the experimental set up for the irradiation with (b) a zoom on the phantom 

with the fixed fiber. 

4.2.1 FBGs sensors response 

A first sensor (PS-FBG-1) was irradiated with 10-Gy increments, up to 30 Gy. 

For this sensor, we initially used a closed box without active temperature control. 

After each irradiation step, the wavelength shift of the center resonance was 
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measured as described in the previous chapter. A net wavelength shift was 

measured when the laser was re-locked to the resonance, for a given temperature 

(Figure 4.9). The temperature of the whole fiber was then changed by a heat source 

in the box over a range of about 1 K, in order to check whether the wavelength shift 

was a false effect due to thermal drifts in the sensor between subsequent 

measurements. 

The corresponding variation of the wavelength with the temperature showed a 

linear trend, although with relatively large experimental point dispersion along the 

fit lines, likely due to thermal instabilities. Nevertheless, by linear fitting of 

experimental data, we obtained an average measurement uncertainty on the 

thermos-optic response, i.e., the slope of the curves, of about 1.5 pm/K (4% relative 

error). 

 

 

Figure 4.9. Experimental evidence of the radiation effect on the fiber sensor PSFBG-1. Besides a 

wavelength shift, the irradiation steps cause a large change of the thermo-optic response (the 

thermo-optic response is indicated for each fit line). As a result, the slope of the wavelength vs 

temperature fit line is amplified by about a factor 10 after 30 Gy [136]. 

A second sensor (PS-FBG-2) was irradiated at smaller doses with steps of 1 Gy. 

The sensor was fabricated with a higher envelope reflectivity and thus slightly 

different spectral features with respect to the previous one. In this way, the center 

mode linewidth was made much narrower (~ 10 times) in order to maximize the 

laser frequency stability while it was locked to the PS-FBG peak, thus improving 

the resolution when measuring the temperature response. In this case, a fine 

temperature control was devised relying on a highly insulated oven-controlled 

chamber. 
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In order to check the system reproducibility, three repeated measurements of 

the wavelength shifts vs temperature were made before irradiation (Figure 4.10). 

We noted that the thermo-optic response of PS-FBG-2 was significantly larger than 

that of the previous sensor. This behavior originates from the higher reflectivity of 

this grating. 

The thermo-optic response values obtained from the three measurements were 

consistent within two standard deviations (reproducibility ~ 2%). A reduction of 

the wavelength fluctuations along the curves can also be appreciated, owing to the 

improved temperature control. 

 

 

Figure 4.10. Reproducibility test of the thermo-optic response curve for the higher-reflectivity PS-

FBG-2 resonator. It is worth noting that its narrower cavity mode exhibits a temperature response 

about 16 times larger than for PS-FBG-1 [136]. 

Thermo-optic response of PS-FBG-2 after irradiation is shown in Figure 4.11.  
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Figure 4.11. Wavelength shift for the irradiation steps and thermo-optic response for subsequent 

irradiations with low doses (PS-FBG-2) [136].  

However, the curve offsets of the thermo-optic responses are not consistent with 

the incremental dose delivered. On the contrary, the thermo-optic response as a 

function of the accumulated dose shows clear evidence of the effect of the radiation 

on the fiber. 

It’s important point out the linear dependence as shown in Figures 4.12a-b. The 

figures show a linear trend of the radiation-induced thermo-optic response change 

versus the dose, with a coefficient of 0.00185 ± 0.00006 nm/K/Gy for the first 

sensor and 0.0063 ± 0.0006 nm/K/Gy for the second one. 

Dividing the dose response coefficient by the average value of the uncertainty 

on the single measurement of the thermo-optic response (1 pm/K), we obtained a 

final resolution of 160 mGy for the second sensor. 
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Figure 4.12. Thermo-optic responses as a function of the radiation dose for FBG-1 (a) and FBG-2 

(b). 

4.2.2 Ge-doped optical fibers inserted in resonant cavities 

We investigate the effect of IR on germanosilicate optical fibers, that is, on a 

piece of Ge-doped fiber enclosed between two fiber Bragg gratings (FBGs). With 

respect to the previous FBG-based IR dosimeters, here the sensor is only the bare 

fiber without any special internal structure as shown in Figure 4.13. 
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Figure 4.13. Irradiation of a Ge-doped optical fiber enclosed between two FBGs with gamma rays 

from a 6 MV clinical linear accelerator. 

The fiber thermo-optic response was measured before irradiation and after 

exposure to gamma rays with consecutive doses of 5 Gy, 10 Gy and 20 Gy.  

Figure 4.13a shows a graph of the cavity mode wavelength as function of the 

fiber temperature before irradiation. The data points are well approximated by a 

line whose angular coefficient m is the cavity thermo-optic coefficient. From a 

linear fit of the curve we obtained: 

 

m = 0.0183 ± 2 × 10−4 nm/K 

 

Figures 4.14b–d show the thermo-optic response measured after each dose, 

where a dependence of the slope of the curves on the dose is evident.  
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Figure 4.14. Wavelength of the laser locked to a cavity mode as function of the fiber temperature 

before irradiation (a) and after exposure to consecutive doses of 5 Gy, 10 Gy and 20 Gy (b–d). By a 

linear fit of the curves, we obtain the thermo-optic coefficient for each dose[137]. 

The thermo-optic response for doses of 5 Gy, 10 Gy and 20 Gy were presented 

in Table 4.2. 

Table 4.2. Thermo-optic response for 5, 10 and 20 Gy dose irradiation and Standard Error (SE). 

Dose (Gy) Thermo-optic response ± SE (nm/K) 

5 0.0222 ± 0.0006 

10 0.0242 ± 0.0006 

20 0.0267 ± 0.0009 

 

In Figure 4.15, the value of the thermo-optic response versus the dose delivered 

to the fiber is plotted. The curve exhibits an exponential behavior, showing the 

beginning of sensor saturation for doses above 10 Gy. From a single exponential 

fit, we obtained a saturation constant of about 9.6 Gy. Approximating the start of 
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the exponential curve with a straight line, we obtained a linear trend with an 

angular coefficient of 0.0011 nm/K/Gy. 

 

 

Figure 4.15. Thermo-optic response versus the dose delivered to the fiber. Saturation of the sensor 

response starts for doses higher than 10 Gy [137]. 

Dividing this coefficient by the average value of the uncertainty on the single 

measurement of the thermo-optic response (0.0004 nm/K) we obtained a final 

detection limit of 360 mGy. 

4.3 The portable unit design 

Before considering a new dosimeter technology, it is necessary to demonstrate 

that it provides reliable performance under clinical conditions. Indeed once the 

characterization of effects of ionizing radiation on FBGs and in-fiber resonators as 

a function of dose have been performed, the interrogation setup is developed 

selecting properly-doped fiber sensors. 

The upgrade of the investigation consisted in developing a laser-based 

interrogation set up for active tracking of FBG and/or fiber resonator peaks in real-

time dose measurements. Furthermore, the electronics and the optical equipment 

have been made as compact as possible via a deep optimization and engineering 

process. The interrogation setup was designed in a usable clinic dosimeter as 

shown in Figure 4.16. 



Chapter 4                                                                             Results and Discussion/Part I 
 
 
 

 
74 

  

Figure 4.16. Pictures of the portable reading unit (a) with a zoom on the optic bank (b). 

4.4 LiF:Mg,Ti (TLD-100) response to photon beam and high dose-per-

pulse electron beam 

Purpose of the experiment was to investigate thermoluminescent dosimeters 

(TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In 

an IOERT treatment, a large single radiation dose is delivered with a high dose-

per-pulse electron beam (2 – 12 cGy/pulse) during surgery. 

LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron 

beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For 

each energy, the TLDs were irradiated in the dose range of 0 – 10 Gy in step of 2Gy. 

Regression analysis was performed to establish the response variation of 

thermoluminescent signals with dose and energy. 

4.4.1 Individual calibration of the thermoluminescent dosimeters  

TLDs were individually identified by a code and as first step irradiated in the 

same geometrical conditions to obtain the individual sensitivity (see Eq. (3.1)). Any 

dosimeter with a relative sensitivity value greater that ± 10% of the mean value has 

been rejected. TLDs were placed at source source-to-axis distance (SAD) of 100 

cm, at a depth of 5 cm in the equivalent water phantom and irradiated with a beam 

size of 10 x 10 cm2 and a total dose of 2 Gy (Figure 4.17). As in the previous fiber’s 

experiment before the irradiation, the beam output of the linac was verified, 

besides ionization chamber measurements were performed during any TLDs 

irradiation experiment to check the accuracy of the delivered dose (Figure 4.18). 

The individual sensitivity correction factor for all forty TLDs are shown in 

Figure 4.19. 
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Figure 4.17. Experimental set up used to irradiate the TLDs with the 6 MV photon beam of clinic 

linear accelerator Primus Siemens. 

 

 

Figure 4.18. Individual sensitivity correction factor for all forty TLDs. 

The Si values range between 0.95 and 1.05. All values were included in the range 

of ± 10% of mean value, and none of TLDs was rejected.  

To have a back-up measurements of the delivered dose, 2 MOSFETs were 

calibrated in the configuration set up illustrated in Figure 4.19 and the measures 

of the ionization chamber were recovered. 
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Figure 4.19. Configuration set up for the determination of MOSFETs calibration. The MOSFETs 

were fixed at 5 cm of depth in the PMMA phantom. The blue cable is the Farmer chamber, type 

30001. 

The absorbed dose calculated by the TPS at 5 cm of depth in the PMMA 

phantom was 94.8 cGy and so the calibration factors for the two MOSFETs 

resulted: 

 

𝐹𝐶1
= 3.0 ± 0.9 

𝑚𝑉

𝑐𝐺𝑦
 

𝐹𝐶2
= 3.0 ± 1.3 

𝑚𝑉

𝑐𝐺𝑦
 

4.4.2 Irradiation of the TLDs 

Groups of 9 TLDs were housed in a cavity on purpose shaped in a slab of 

plexiglass and inserted in the equivalent water phantom (Figure 4.20). As a first 

step, the TLDs were irradiated with 6 MV photon beam. The irradiation was 

performed with the same experimental setup and procedure described for TLDs 

calibration. 

Each group was irradiated with a single dose value between 2 and 10 Gy in steps 

of 2Gy. In each measurement session, a group of 9 TLDs was not irradiated to 

measure the background signal. Measurements from single TLD were corrected for 

the corresponding Si value. 

Before each set of irradiation with different electron beam energy, the beam 

output (Gy/UM) was verified using an Advanced Markus chamber type (PTW type 

34045, Freiburg, Germany) according to the protocol previously described in 

[104]. 
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Figure 4.20: Cavity shaped in a slab of plexiglass (on the left) and configuration set up of irradiation 

of the TLDs with MOSFETs and ionization chamber before putting PMMA slab phantom above (on 

the right). 

After the TLDs were irradiated with the electron beams (5 – 7 - 9 MeV) produced 

by Novac7. The TLDs were irradiated at the depth of maximum dose of each 

electron energy (Table 4.3).  

Ionization chamber measurements were performed during any TLDs 

irradiation experiment to check the accuracy of the delivered dose (Figure 4.21). 

Table 4.3. Electron beams characteristics. 

Energy (MeV) Applicator (mm) Dose-per-pulse (cGy/pulse) Rmax (mm) 

5 100 2.6 8 

7 100 2.7 11 

9 100 3.1 13 

 

          

Figure 4.21. Experimental setup used to irradiate the TLDs with the 5, 7 and 9 MeV electron beams 

of intra-operative linear accelerator Novac7. 
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For each dose-energy measurements, the mean response and standard error for 

the TLD’s group were calculated. For all beams, regression analysis was performed 

on TLD response as a function of delivered doses. 

The goodness of the fit was evaluated by the R2 coefficient. To identify the model 

that best fits the experimental data the F-test was applied. A p value less than 0.05 

was considered statistically significant. Statistical analysis was performed with 

MedCalc (MedCalc Software bvba, Ostend, Belgium) and OriginLab (OriginLab 

Corporation, Northampton, Massachusetts). 

The dose-response of TLDs for 6 MV photon beam was depicted in Figure 4.22. 

The results from regression analysis show very high R2 values for both linear and 

the quadratic models (respectively, R2 = 0.9995 and R2 = 0.9997). The F-test 

approved the linear model has the best model (p = 0.169).  

 

 

Figure 4.22. TLDs dose–response curve for doses between 0 Gy e 10 Gy at 6 MV photon beam. The 

solid line represents the linear fit, the dot line the polynomial fit [138]. 

The TLD dose-response at 5 MeV electrons was depicted in Figure 4.23a. The 

linear model has an R2 = 0.974 while the quadratic model has an R2 = 0.999. For 

the 7 MeV and 9 MeV electron beams (Figure 4.23b-c) the R2 coefficients were 

0.994 and 0.996 for the linear models and 1.0 and 0.999 for the quadratic models, 

respectively. 

The quadratic fit for electron beams were illustrate on the same graph in Figure 

4.23d for comparison. 
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Figure 4.23. TLDs dose–response curve for doses between 0 Gy e 10 Gy at a) 5 MeV electron beam, 

b) 7 MeV electron beam, and c) 9 MeV electron beam. The dot lines represent the linear fit, the solid 

lines represent the quadratic fit. In d) the comparison between all curves is reported. The dot line 

represents the quadratic fit of 5 MeV, the solid line the quadratic fit of 7 MeV and the dash line the 

quadratic fit of 9 MeV [138]. 

The best-fit regression coefficients for photon and electron beams were reported 

in Table 4.4. 

Table 4.4. Photon and electron beams best-fit regression coefficients for the dose-response models 

[138]. 

Model Linear Quadratic 

Equation y = A + B1 D y = A + B1 D + B2 D2 

Energy  Coefficient SE Adj. R2  Coefficient SE Adj. R2 

6 MV A 9.77E-4 9.93E-6 0.9995 A 9.77E-4 9.93E-6 0.9996 

 B1 (Gy-1) 6.33 0.02  B1 (Gy-1) 6.09 0.05  

     B2 (Gy-2) 0.03 0.01  

5 MeV A 0.002 2.39E-04 0.9744 A 0.002 2.39E-4 0.9992 

 B1 (Gy-1) 5.43 0.11  B1 (Gy-1) 4.23 0.19  

     B2 (Gy-2) 0.26 0.03  

7 MeV A 0.002 2.39E-04 0.9937 A 0.002 2.39E-4 0.9999 

 B1 (Gy-1) 5.27 0.09  B1 (Gy-1) 4.38 0.24  

     B2 (Gy-2) 0.18 0.05  

9 MeV A 8.37E-4 1.33E-04 0.9962 A 8.37E-4 3.4E-06 0.9993 

 B1 (Gy-1) 5.09 0.04  B1 (Gy-1) 4.44 0.11  

      B2 (Gy-2) 0.13 0.02  
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Part II 

NTCP modelling

4.5 Multivariate and classical normal tissue complication probability 

modeling 

The predictive models derived by an optimization process will be presented in 

the present section, for different patient cohorts and outcomes. Table 4.5 shows an 

overview on the multivariable NTCP models, described in detail below. 

Table 4.5. Implemented multivariable (MV) NTCP models. N is the number of patient included in 

the patient cohort, n identifies the number of patients that developed complications. 

Outcome 
Patient cohort 

(n/N) 
MV Model 

GI toxicity 

(RTOG G1-2) 
Prostate (21/84) 

3-variable: 

V65, Acute GI* tox, 

antihypertensive/anticoagulants 

Severe Acute Skin 

toxicity 

(RTOG G3 vs. G0-2) 

Breast (11/140) 
2-variable: 

S30
ƚ, psoriasis 

Hypothyroidism HLǂ (22/53) 
3-variable: 

V30(cc)¶, thyroid volume, gender 

Valvular heart 

damage 
HL (27/90) 

3-variable 

heart + lung variables 

Lung fibrosis HL (18/115) 

3-variable: 

2 competing models: heart + lung 

variables 
ǂHL=Hodgkin Lymphoma. 
*GI=gastrointestinal. 
ƚS30=relative skin surface receiving at least 30 Gy. 
¶V30 (cc)=absolute thyroid volume receiving at least 30 Gy. 
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4.5.1 Radiation-induced hypothyroidism 

Fifty-three patients treated with sequential chemo-radiotherapy for Hodgkin’s 

lymphoma (HL) at the Radiation Oncology department of the University “Federico 

II“ of Naples, were retrospectively reviewed for radiation-induced hypothyroidism 

(RHT) events. Clinical information along with thyroid gland dose distribution 

parameters were collected and their correlation to RHT was analyzed by 

Spearman’s rank correlation coefficient (Rs). 

A total median dose of 32 Gy (range 30 – 36 Gy) in 20 daily fractions of 1.5 – 

1.8 Gy was planned.  

The thyroid gland volume, the minimum (Dmin), maximum (Dmax) and mean 

doses (Dmean), the absolute volume of thyroid and the percentage of thyroid volume 

exceeding 10, 20 and 30 Gy (Vx (cc) and Vx (%), respectively) were calculated from 

the dose volume histograms. In addition, the “residual X Gy thyroid volume”, 

defined as the difference between the thyroid gland volume and Vx (cc), was 

calculated.  

We separately analyzed two sets of candidate predictors: set 1 includes the 

clinical variables, plus Dmin, Dmax, Dmean and Vx (%), and set 2 includes the same 

variables as set 1 but Vx was expressed as absolute volume, Vx (cc). 

The cross-correlation matrixes for the variables belonging to set 1 and set 2, 

respectively, are shown in Figures 4.24a-b. For both set of variables, a strong 

multiple correlation (i.e. Rs > 0.85) between dosimetric parameters was found. 
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Figure 4.24. The cross-correlation matrixes for the variables belonging to set 1 (a) and to set 2 (b). 

The colorbar represents the Spearman’s rank correlation coefficient value. NTCP: normal tissue 

complication probability, Vx (%): percentage of thyroid volume exceeding X Gy; Vx (cc): absolute 

thyroid volume exceeding X Gy [139]. 

After applying the selection criteria to avoid overfitting to set 1, V30 (%) and Dmax 

resulted to be the dosimetric parameters that should be included in the 

multivariate analysis along with clinical variables. Similarly, for set 2, V30 (cc), Dmax 

e Dmean were selected along with clinical variables. 

In set 1, a two-variable model was suggested as the optimal order by bootstrap 

method. Figure 4.25a shows the five most frequently selected models within the 

bootstrapped subpopulations. The optimal model (Rs = 0.615, p < 0.001) includes 

gender (female = 0, male = 1) and V30 (%) (model 1). According to this model, the 

risk of RHT increases as V30 (%) increases, and it is higher for female patients. 

Conversely, in set 2, a three-variable model was suggested as the optimal order by 
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bootstrap method. Figure 4.25b shows the five most frequently selected models 

within the bootstrapped subpopulations. 

The optimal model (Rs = 0.630, p < 0.001) includes gender, V30 (cc) and thyroid 

gland volume (model 2). The best-fitted regression coefficients for the two models 

are given in Table 4.6. As for model 1, the risk of RHT increases as V30 (cc) increases 

and it is higher for female patients; in addition the risk decreases with larger 

volume of thyroid gland. Model 2 NTCP surfaces for males and females are 

represented in Figure 4.26. 

 

 

 

 

Figure 4.25. The five most frequently selected models by bootstrap sampling technique: (a) variable 

set 1; (b) variable set 2. NTCP: normal tissue complication probability, Vx (%): percentage of thyroid 

volume exceeding X Gy; Vx (cc): absolute thyroid volume exceeding X Gy [139]. 
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Table 4.6. Best-fitted model parameters and 95% confidence intervals for model 1 and model 2. 

 Parameter Estimated coefficient Std Error p-value 

Model 1     

 gender -2.32 0.83 0.0062 

 V30 (%) 0.0379 0.011 0.00093 

 constant -1.83   

Model 2     

 gender -2.21 0.85 0.011 

 V30 (cc) 0.265 0.09 0.0021 

 thyroid volume (cc) -0.268 0.11 0.011 

 constant 1.94   

 

 

 

Figure 4.26. Model 2 NTCP surfaces for males and females as a function of V30 (cc) and thyroid 

volume (cc) [139]. 

The obtained models were then compared using the AUC (Table 4.10) of the 

ROC curves depicted in Figure 4.27a-b. As expected, no difference in performance 

was found between model 1 and model 2 (p = 0.76) for our cohort of patients 

(Figure 4.27a). 

Applying model 1 and model 2 to the external case-control cohort of breast 

cancer patients [136], we obtained the ROC curves showed in Figure 4.27b. In this 

case, model 1 fails to predict RHT (AUC = 0.568. 95% CI 0.328 - 0.741) while model 

2 has a high performance (AUC = 0.914. 95% CI 0.768 - 0.984). This result can be 

ascribed to the fact that, unlike our patients, the external cohort is characterized 
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by large inter-individuals and inter-groups variation in thyroid volumes. Therefore 

the model 2, where V30 is expressed as absolute volume coupled with the thyroid 

volume, results to be more effective in RHT prediction. 

 

 

Figure 4.27. ROC curves for model 1, model 2, and Boomsma model [140]: (a) on Hodgkin’s 

lymphoma dataset (b) on external breast cancer dataset. 

4.5.2 Gastrointestinal toxicity after external beam radiotherapy for 

localized prostate cancer 

Data on 57 consecutive patients with localized prostate adenocarcinoma treated 

with radiation therapy at the Radiation Oncology department of the University 

“Federico II” of Naples were retrospectively reviewed. All clinical information as 

cardiac comorbidities, diabetes, previous abdominal surgery, smoking history, 

hormonal therapy, and drugs prescription were retrieved from medical records.  

A total dose of 66 Gy to seminal vesicles and 76 Gy to the prostate gland with 

daily fractions of 2 Gy (5 times per week) was planned.  

Rectum dosimetric parameters were extracted from the dose-volume 

histograms (DVH) for modeling. Dosimetric parameters included: the maximum 

(Dmax) and mean doses (Dmean), the percentage volume exceeding 20 - 75 Gy (Vx) in 

increment of 5 Gy. 

Acute GI treatment toxicity (toxicity present during radiotherapy and in the first 

3 months thereafter), and late GI toxicity (follow-up > 3 months) was evaluated by 

physicians according to Radiation Therapy Oncology Group/European 
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Organization for Research and Treatment of Cancer (RTOG/EORTC) criteria 

[139]. At a median follow-up of 30 months, 37% (21/57) patients developed acute 

grade ≤ 2 GI events while 33% (19/57) were diagnosed with grade ≤ 2 GI late 

events. 

Figure 4.28a shows the cross-correlation matrix for clinical and dosimetric 

variables. A strong multiple correlation between dosimetric parameters was found. 

Accordingly, these highly correlated variables were not included in the multivariate 

analysis. 

A three-variable model was suggested as the optimal order by bootstrap 

method. Figure 4.28b shows the five most frequently selected models within the 

bootstrapped subpopulations. The optimal model (model 1) includes V65, 

antihypertensive and/or anticoagulant (AH/AC) drugs use and previous acute 

toxicity. 

The Spearman’s rank correlation coefficient of the model is 0.47 (p < 0.001) and 

the AUC of the corresponding ROC curve is 0.79. The best-fitted regression 

coefficients are given in Table 4.7. According to this model, the risk of late GI 

toxicity of grade G1 or G2 increases as V65 increases, it is higher for patients 

experiencing previous acute toxicity and it is lower for patients who take AH/AC 

drugs. 

In Table 4.10 the regression coefficients for the logistic model based on V65 only 

(model 2) are also reported. The result of ROC analyses was a discrimination value 

for V65 of 29.3%. 



Chapter 4                                                                            Results and Discussion/Part II 
 
 
 

 
88 

 

Figure 4.28. Cross-correlation matrix (a) and the five most frequently selected models by bootstrap 

sampling technique (b). The lateral bar represents the Spearman’s rank correlation coefficient 

value. NTCP: normal tissue complication probability; HT: hormonal therapy; PSA: prostate 

specific antigen; AC/AH: antihypertensive/anticoagulants; RT: radiation therapy; Vx (%): 

percentage of rectum volume exceeding X Gy [141]. 
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Table 4.7. Best-fitted regression coefficients for NTCP models and odds ratios4 (OR). 

 Parameter Estimated coefficient SE p-value OR 

Model 1      

 V65 (%) 0.028 0.017 0.092 1.03 

 Antihypertensive/anticoagulants -1.442 0.669 0.031 0.24 

 Acute GI toxicity 1.458 0.669 0.029 4.30 

 constant -1.283    

Model 2     
 

 V65 (%) 0.033 0.016 0.036 1.03 

 constant -1.702    

 

In Figure 4.29 the comparison is reported among the ROC curves obtained 

applying model 1, model 2 and LKB model. The AUC values were 0.79, 0.69 and 

0.68, respectively. For the LKB model we used the parameters reported by 

Gulliford et al. [142] for GI toxicity of Grade 1 and Grade 2 for nonbleeding 

endpoints.  

 

 

Figure 4.29. Comparison of receiver operator characteristic (ROC) curves obtained applying three-

variable NTCP model (model 1), V65-based NTCP model (model 2) and LKB NTCP model [37]. 

                                                        
4 Odds ratio: a measure of association between an exposure and an outcome. The OR represents 

the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome 
occurring in the absence of that exposure. 
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Ninety-five percent confidence intervals for parameters estimates were 

obtained using the profile likelihood method [130]. Following this method, each 

parameter belonging to the set (D50, m, n) was varied around its ML estimate 

(optimum LLH) while the other two parameters were fixed at their ML estimate.  

The 95% confidence bounds were determined reducing the maximum LLH by 

one half of the χ2 inverse cumulative distribution function associated to 95%, so 

as to obtain the iso-likelihood contours in each Cartesian plane of the parameters 

space (D50, m, n).  

In correspondence to the parameters values belonging to the iso-likelihood 

contours, a bundle of NTCP curves was calculated and the 95% confidence region 

for the model fit was thus estimated [21]. 

In order to perform an internal validation of the fitting results and to test the 

fit robustness, the bootstrap method was here employed to determine the spread 

in ML estimation of NTCP parameters. The bootstrap resampling method works 

by refitting the NTCP model using the ML estimation to many pseudo-datasets 

which are created by subsampling the input data set (20000 bootstrap resample 

runs with a number of folds of 80). 

In the recent work [38] we extended the sample size with an additional dataset 

up to 84 patients in order to: 1) fit the LKB model deriving the parameters for 

specific rectal toxicity; 2) validate the multivariate model on an extended cohort of 

patients and compare its predictive power with the LKB model. Of 84 patients 25% 

(21/84) had developed acute GI toxicity while 36.9% (31/84) late GI toxicity. 

Among cases of late rectal morbidity, 31% (26/84) were G1 and 9.5% (8/84) were 

G2. 

The optimal NTCP parameters values for LKB model resulted to be D50 = 87.3 

Gy (95% CI 75.9 - 102.2 Gy), m = 0.37 (95% CI 0.26 - 0.64), n=0.10 (95% CI 0.02 

- 0.26) and the corresponding value of log-likelihood is LLH=-46.3. Ninety-five 

percent confidence intervals for parameters estimates were obtained using the 

profile likelihood method: each parameter belonging to the set (D50, m, n) was 

varied around its ML estimate (optimum LLH) while the other two parameters 

were fixed at their ML estimate.  

The 95% confidence bounds were determined reducing the maximum LLH by 

one half of the χ2 inverse cumulative distribution function associated to 95%, so 

as to obtain the iso-likelihood contours in each Cartesian plane of the parameters 

space (D50, m, n).  
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In correspondence to the parameters values belonging to the iso-likelihood 

contours, a bundle of NTCP curves was calculated and the 95% confidence region 

for the model fit was thus estimated [143]. In order to perform an internal 

validation of the fitting results and to test the fit robustness, the bootstrap method 

was here employed to determine the spread in ML estimation of NTCP 

parameters. The bootstrap resampling method works by refitting the NTCP 

model using the ML estimation to many pseudo-datasets which are created by 

subsampling the input data set (20000 bootstrap resample runs with a number 

of folds of 80). 

Figures 4.30a-c illustrate the iso-likelihood contours in each Cartesian plane 

of the parameters space (D50, m, n). In Figure 4.30.d the bundle of NTCP curves 

corresponding to the 95% confidence interval region for the model fit is plotted. 

To test the fit robustness we performed a bootstrap method. 

The mean and the standard deviation of LKB NTCP model parameters 

obtained for bootstrap samples are D50 = 87 Gy (SD = 6 Gy), m = 0.37 (SD = 0.08), 

n = 0.10 (SD = 0.03). The mean values of m and n parameters are close to the 

exact fit to the whole patient cohort. Accordingly to the multivariable model 

presented in [135], the risk of G1-2 late GI toxicity increased as V65 increased, 

and it was higher for patients experiencing previous acute toxicity and lower for 

patients taking antihypertensive and/or anticoagulant drugs. The model 

exhibited a good predictive performance (AUC = 0.79). When applied to the 

present extended dataset, the logistic NTCP performance is still good with an 

AUC value of 0.75 (95% CI 0.613 - 0.891). 

For comparison, the ROC curves are showed in Figure 4.31 and AUC and Rs 

values of the multivariate logistic and LKB models are reported in Table 4.8.  
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Figure 4.30. Likelihood estimation values plotted as a function of rectum LKB parameters. a) m and 

D50 for fixed value of n = 0.10; b) D50 and n for a fixed value of m = 0.37; c) n and m for a fixed value 

of D50 = 87.3 Gy; d) NTCP bundle curves showing 95% confidence interval region fit for the model. 

Blue points represent the results of bootstrap resample runs [141]. 

 

 

Figure 4.31. ROC comparison. Logistic regression model vs. LKB model for gastrointestinal toxicity 

[141]. 
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Table 4.8. AUC values of ROC curves and Spearman’s correlation coefficient (Rs) of LKB and logistic 

NTCP models with 95% confidence intervals. 

Model AUC Rs 

LKB 0.60 (0.442, 0.736) 0.133 

Logistic 0.75 (0.613, 0.891) 0.378 

4.5.3 Multivariate Normal Tissue Complication Probability 

Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma 

Survivors 

Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin 

lymphoma (HL) were retrospectively reviewed for radiation-induced 

asymptomatic heart valvular defects (RVD). 

A total median dose of 32 Gy (range, 30 - 36 Gy) in 20 daily fractions of               

1.5-1.8 Gy was planned. Dosimetric parameters for heart, cardiac chambers, and 

total lung were extracted from the dose/volume histograms for modeling. 

Dosimetric parameters included the maximum (Dmax) and mean (Dmean) doses and 

the percentage volume exceeding X Gy (Vx) in increments of 5 Gy. We corrected 

the dosimetric parameters for diverse dose fractions using an α/β ratio5 of 2 for the 

cardiac structures and of 4 for the lung.  

Figure 4.32a shows the cross-correlation matrices for representative variables 

for the whole heart and for each chamber. A 3-variable model was suggested as the 

optimal order by the bootstrap method. Figure 4.32b shows the 5 most frequently 

selected models within the bootstrapped subpopulations. 

The optimal model (Rs = 0.573, p < .001) includes Dmax, heart volume, and lung 

volume (model 1). According to this model, the NTCP for RVDs increases with Dmax 

and with heart volumes, and it decreases with larger lung volumes. 

The AUC was 0.83 (95% CI 0.71 - 0.92) and the discrimination value was 0.33. 

 

                                                        
5 α/β ratio describes the curvature of a cell survival curve. It is the dose where cell killing due to 

the linear and quadratic components are equal. It enters in the definition of the biologically effective 
dose (BED) aimed to indicate quantitatively the biological effect of any radiotherapy treatment, 
taking account of changes in dose-per-fraction or dose rate and total dose. 
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Figure 4.32. (a) Whole heart cross-correlation matrix. (b) The 5 most frequently selected models by 

bootstrap sampling technique. Color bar represents the Spearman’s rank correlation coefficient 

value. Black boxes represent negative correlation coefficient values. Dma = maximum dose; NTCP = 

normal tissue complication probability; Vx (%) = percentage of volume exceeding X Gy. *Variables 

included in the multivariate analysis [143]. 

With regard to the left chambers, by analyzing left-sided RVD, the optimal order 

model was again based on 3 variables. For both the atrium (model 2, Rs = 0.539,   

p < .001) and the ventricle (model 3, Rs = 0.557, p < .001), the best model includes 

the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung. 

The best-fitted regression coefficients and the odds ratios (ORs) are given in Table 

4.9. 

The AUC for model 2 and model 3 were 0.84 (95% CI 0.71 - 0.92) and 0.82 (95% 

CI 0.70 - 0.91), with discrimination values of 0.22 and 0.20, respectively. There are 

no differences in the prediction capabilities of all 3 models (z < 0.13, p > .89). 
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Table 4.9. Best-fitted regression coefficients for NTCP models and odds ratios for the heart (model 

1), the left atrium (model 2), and the left ventricle (model 3). 

Model Parameter Estimated coefficient  SE 
p 

value 
OR 

Model 1      

 Dmax (Gy) 0.1430 0.0751 .043 1.150 

 Heart volume (cc) 0.0095 0.0036 .020 1.010 

 Lung volume (cc) -0.0017 0.0006 .011 0.998 

 constant -5.65    

Model 2      

 Left atrium V30 (%) 0.0219 0.0086 .011 1.022 

 Left atrium volume (cc) 0.0871 0.0363 .016 1.091 

 Lung volume (cc) -0.0016 0.0006 .028 0.998 

 constant -3.58    

Model 3      

 Left ventricle V30 (%) 0.0346 0.0152 .023 1.035 

 Left ventricle volume (cc) 0.0366 0.0131 .009 1.037 

 Lung volume (cc) -0.0018 0.0006 .005 0.998 

 Constant -2.26    

 

The models’ NTCP surfaces for the whole heart, the left atrium, and the left 

ventricle are represented in Figure 4.33. 
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Figure 4.33. Whole heart (WH) normal tissue complication probability (NTCP) surfaces as a 

function of maximum dose (Dmax) and heart volume (a) or lung volume (b) [143]. 

Successively we extended the patient data set up to 90 to test the predictive 

power of traditional LKB and the RS NTCP models for the induction of 

asymptomatic RVDs using. 

We proceed by fitting the NTCP model parameters first from heart dose-volume 

parameters, and separately lung dose-volume parameters (Table 4.10). The mean 

and standard deviations of LKB and RS NTCP model parameters obtained with 

maximum likelihood estimation for bootstrap samples are shown in Table 4.11. 
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Table 4.10. Parameters estimates and 95% confidence intervals of LKB and RS NTCP models for 

heart and lung DVHs fitting. For each model the Spearman’s correlation coefficient (Rs), the area 

under the receiver operator characteristic curve (AUC) and the log-likelihood (LLH) values are 

provided. 

LKB D50 (Gy) m n Rs AUC LLH 

heart 32.8 

(25.9, 44.7) 

0.66 

(0.41, 1) 

0.16 

(0.10, 0.89) 

0.27 0.67 

(0.56, 0.78) 

-51.6 

lung 33.2 

(31.3-35.5) 

0.19 

(0.13-0.32) 

0.01 

(0.01-0.03) 

0.28 0.69 

(0.58, 0.78) 

-49.7 

RS D50 (Gy) γ s Rs AUC LLH 

heart 32.4 

(22.7, 48.5) 

0.42 

(0.24, 0.62) 

0.99 

(0.0-1.0) 

0.25 0.66 

(0.55-0.76) 

-52.3 

lung 24.4 

(22.3, 26.7) 

2.12 

(0.3-3.8) 

0.99 

(0.67-1.0) 

0.26 0.66 

(0.55-0.76) 

-51.1 

 

Table 4.11. Summary of mean and standard deviations of LKB and RS NTCP model parameters 

obtained with maximum likelihood estimation for bootstrap samples. 

LKB D50 (Gy) SD (Gy) m SD n SD 

heart 36.1 5.5 0.67 0.11 0.11 0.12 

lung 33.9 1.4 0.22 0.03 0.01 0.02 

RS D50 (Gy) SD (Gy) γ SD s SD 

heart 32.7 3.1 0.43 0.07 0.99 0.06 

lung 24.3 0.83 2.16 0.56 0.99 0.04 

 

It’s interesting to note that, independently of the organ chosen as the model 

input, namely heart DVHs or lung DVHs, we obtain similar prediction 

performances. Of note, we observed a serial behavior of the lung when using heart 

toxicity as endpoint. This result is different from the generally accepted parallel 

architecture, with a large volume effect, of the lungs when NTCP models were fit to 

radiation pneumonitis as endpoint. As a consequence, we can hypothesize a 

different mechanism of damage and a different contribution of lung irradiation to 

the heart toxicity potentially due to the difference in patho-physiology, although 

still unknown. 

Given the good results obtained by applying the LKB model to lung DVHs we 

exploited the influence of combined heart-lung irradiation on RVD performing a 

multivariate logistic regression modeling with the least absolute shrinkage and 

selection operator (LASSO). In addition to heart irradiation factors, clinical 

variables, along with left and right lung dose-volume histogram statistics, were 
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included in the analysis. Prognostic factors frequently selected (more than 

100/500 model fits) by LASSO, included mainly heart and left lung dosimetric 

variables along with their volume variables. The averaged cross-validated 

performance was AUC-Cross Validation = 0.685 and Rs = 0.293. The overall 

performance of a final NTCP model for RVD obtained applying LASSO logistic 

regression to the full dataset was satisfactory (AUC = 0.84, Rs = 0.55, p < 0.001).  

Interestingly, applying LASSO, we showed, the importance of jointly 

considering left lung irradiation and left lung volume size in the prediction of 

subclinical radiation-related heart disease resulting in RVD [144].  

4.5.4 Modeling the risk of radiation-induced lung fibrosis: irradiated 

heart tissue is as important as irradiated lung 

The results reported in the previous section assessed the importance of lung 

irradiation in the development of heart damage. At this point, naturally, we 

through to investigate the mutual interaction of the two organs in the radiation 

induced complications [30, 145].  

In the present study clinical and dosimetric records of 148 HL patients from an 

inter-institutional dataset (117 patients treated at University Federico II of Naples 

and 31 patients at S. Camillo-Forlanini Hospital in Rome) were retrospectively 

reviewed. Baseline and follow-up evaluations consisted of history and physical 

examination along with periodic total body CT scans. A diagnosis of RILF was 

based on the presence of radiological lung density changes evaluated on follow-up 

CT scans using the planning CT as baseline comparison. Fourteen out of 148 (9.5%) 

patients had lung disease at baseline. Thirteen out of 148 (8.8%) experienced 

toxicity after CHT but before the beginning of RT. We excluded these patients from 

further evaluations. Six patients were further excluded from analysis because dose 

maps were not available. Finally 115 patients resulted eligible. DVH and dose-

mass-histogramm6 (DMH) metrics were extracted for modeling: the minimum 

dose to x% highest dose volume (Dx); the percentage volume or mass receiving at 

least x dose (Vx or Mx); the absolute volume or mass receiving at least x dose (AVx 

or AMx).  

                                                        
6 Dose–mass histogram is an important tool for evaluation of treatment plans for organs with 

variable densities. It describes better the dose distribution delivered to lung since its shape does not 
change during the breathing cycle. 



Chapter 4                                                                            Results and Discussion/Part II 
 
 
 

 
99 

At a median time of 13 months (range 9 - 83), 18/115 patients (15.6%) developed 

radiological changes on CT (i.e. any grade of RILF). Nine patients were 

symptomatic: 4 patients were diagnosed with severe symptomatic fibrosis showing 

dense radiographic changes (Grade 3), 5 cases developed grade 2 RILF (two slight 

radiological changes with severe cough and three moderate symptomatic fibrosis 

with patchy radiographic appearances). Nine patients developed slight CT 

radiological changes without symptoms (Grade 1). 

DMHs and DVHs were generated for all patients and all analyzed organs. As 

expected, there is a well-marked difference between the DMH and DVH of a 

heterogeneous organ such as the lung compared with a slight difference observed 

for the heart (Figures 4.34a-d). 

 

 

Figure 4.34. Dose-mass density function (DMH/DVH) for the lung (a) and heart (b) for one 

representative patient. Horizontal lines represent median (P50), 2.5th percentile and 97.5th 

percentile. Distribution of the means of dose-mass density functions for the lung (c) and for the 

heart (d) calculated for all patients. For both distributions, at the 0.05 level, the data were 

significantly drawn from a normally distributed population (Kolmogorov-Smirnov normality test) 

[146]. 

The Atlas of Complication Incidence (ACI) method was adopted for reporting 

toxicity and dose-volume data [147]. For each organ, ACI maps and the associated 
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probabilities maps for RILF endpoint were generated, as described by Jackson et 

al., using all patients DMH and DVH (Figure 4.35). The probability maps exhibit 

areas at high risk for RILF (true complication rate ≥ 20%) at different dose-volume 

or dose–mass combinations, both in the low dose and in high dose regions. 

 

    

    

Figure 4.35. Probability maps of RILF incidence obtained using total lung DVH and DMH (upper 

panel) and using heart DVH and DMH (inferior panel). Iso-probability lines are calculated for a 

tolerance rate of 20%. The top-right most line, corresponding to the value 0.8, marks the edge of 

the area of no DVHs/DMHs data. 

To derive the best NTCP multivariable model, as a first step, univariate logistic 

regression analysis for each candidate prognostic (clinical and dosimetric) variable 

was performed by Spearman’s rank correlation coefficient (Rs). Only the variables 

most highly correlated with RILF (Rs > 0.18) were included in the subsequent 

analysis. Highly inter-correlated variables (correlation ≥ 0.85) were further 

removed keeping only the variables with the higher correlation with RILF to avoid 

a collinearity problem. 
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Subsequently, we applied multivariate logistic regression methods for NTCP 

models with the bootstrapping approach in a manner of forward feature selection, 

and bootstrap resampling to test selection stability.  

The bootstrap method suggested a 3–variable model as the optimal one for 

RILF prediction (Figure 4.36a). 

The two models most frequently selected (selection frequency 44.3% vs. 42.3%) 

by bootstrap sampling included as common features age and heart M30, in 

combination with left lung V5 (model 1, AUC = 0.78, Rs = 0.35, p < .001) or, 

alternatively, the total lung D2% (model 2, AUC = 0.80, Rs = 0.38, p< .001) as shown 

in Figure 4.35b. Selected variables, regression coefficients and odds ratios (ORs) 

for both models are given in Table 4.12 along with the models’ performance 

measures. 

 

 

Figure 4.36. Multivariate bootstrap model order estimation and model selection frequency for the 

three most selected models. 
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Table 4.12. Best-fitted regression coefficients and odds ratios (OR) for NTCP model 1 and model 2 

Performance measures for each model are reported. 

 Model 1 

Parameter Estimated coefficient SE p-value OR 

Age .062 .022 .006 1.064 

Heart M30 (%) .026 .009 .004 1.027 

Left lung V5 (%) .027 .016 .094 1.027 

Constant -5.51    

Performance      

Rs .347 

AUC (95% CI) .78 (.65-.91) 

Discrimination value .20 

 

 Model 2 

Parameter Estimated coefficient SE p-value OR 

Age .068 .023 .003 1.070 

Heart M30 (%) .022 .010 .026 1.022 

Lung D2% (Gy) .115 .084 .171 1.122 

Constant -8.148    

Performance      

Rs .376 

AUC (95% CI) .80 (.69-.91) 

Discrimination value .18 

4.5.5 Dose-surface analysis for prediction of severe acute radio-

induced skin toxicity in breast cancer patients 

We evaluated 140 consecutive BC patients undergoing conventional three-

dimensional conformal 3DCRT after breast conserving surgery in a prospective 

study assessing severe acute radiation-induced skin toxicity (RIST). The acute 

RIST was classified according to the RTOG scoring system. Dose-surface 
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histograms (DSHs) of the body-structure in the breast region were extracted as 

representative of skin irradiation. 

NTCP modeling by Lyman-Kutcher-Burman (LKB) and by multivariate logistic 

regression using resampling techniques was performed. Models were evaluated by 

Spearman Rs coefficient and ROC area. By the end of RT, G3 RIST was found in 11 

of 140 (8%) patients. Using DSHs for LKB model of RIST severity (RTOG G3vsG2-

1), parameter estimates were TD50 = 39 Gy, n = 0.38 and m = 0.14 [Rs=0.25, area 

under the curve AUC = 0.77, p = 0.003]. On multivariate analysis the most 

predictive model of RIST severity was a 2-variable model and included the skin 

receiving ≥ 30 Gy (S30) and psoriasis [Rs = 0.32, AUC = 0.84, p < .001]. 

In Figure 4.37 we reported the ROC curves of the two models, the values of the 

parameters for LKB model and the best fit coefficients for logistic model were 

reported in Table 4.13. We obtained similar good prediction performances for both 

NTCP modeling approaches as shown by Rs and AUC values and by ROC curves. 

Logistic regression model including a dosimetric factor and psoriasis as a clinical 

variable has a slightly better performance. However, the difference between the 

AUC values has not statistical significance at the Z-test. 

In conclusion, we found that the calculation of DSHs represents an extremely 

valuable tool to take into account the dose received by the skin. Robust NTCP 

models for skin toxicity can be derived using the body DSHs of the irradiated area. 

A good prediction performance for acute RIST was obtained using a data-driven 

multivariate model including breast skin S30 and psoriasis. 

 

 

Figure 4.37. ROC curves for LKB and logistic models. 
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Table 4.13. NTCP models: parameters estimates and 95% confidence intervals of LKB model and 

best-fit coefficients for logistic model with odds ratios. Performance measures for LKB and logistic 

NTC models. 

NTCP model    RS p-value AUC 95% CI 

LKB    0.25 <0.001 0.77 0.62-0.92 

Parameter Value 95% CI     

TD50 39.0 37.1-41.4     

m 0.14 0.10-0.17     

n 0.38 0.31-0.44     

Logistic        

Parameter Coefficient SE p-value 

 

valu

e 

OR 

Psoriasis 2.68 0.74 <0.001 14.54 

S30 (%) 0.18 0.08 0.026 1.20 

Constant -15.54 5.75 0.007  
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Conclusions and perspectives

The work described in this thesis focused on dosimetric optimization in 

radiation therapy. Precise dose detection as well as risk prediction of radiation 

induced side effect has a key role in the success of a radiotherapy treatment. 

As first step we investigated the use of optical fiber sensors as radiation 

dosimeters. In particular, we investigated the effect of ionizing radiation on 

germane-silicate optical fibers. The interaction process between ionizing radiation 

and the sensor material was modelled and the physical quantities involved in the 

interaction identified. The water equivalency property, over the energy range of 

clinical interest, was assessed by the calculation of the effective atomic number of 

the fiber materials. Our results demonstrate that the optical fiber sensor can be 

considered radiologically water equivalent for dosimetry in the clinical dose levels. 

After the assessment of the radiological properties of optical fiber material, we 

investigated the response of the passive fiber-optic sensors based on Fiber Bragg-

Gratings to gamma-rays, generated by a 6 MV medical linear accelerator in the 

dose level range of 0 - 30 Gy. The interrogation of the optical fiber sensors revealed 

that the effect of the exposure to ionizing radiation is a change of both the refractive 

index and thermo-optic response of the fiber grating itself. In particular, the 

variations of the thermo-optic coefficient showed a linear trend as a function of the 

dose. Exploiting this effect, an ultimate detection limit of 160 mGy was 

demonstrated. We then extended the investigation on passive optical fiber 

dosimetry exploiting the detection response of an optical fiber resonator formed by 

two identical FBGs. The thermo-optic response for doses in the range of 5-20 Gy 

showed an evident dependence of the slope of the curves on the dose. The 

experiment has been performed with a 2-cm long fiber providing a detection limit 

of 180 mGy/cm, but, in principle, longer fibers can be used to increase the 

irradiated length and thus the sensitivity. This configuration opens the way to a 

new class of very sensitive, cheap and disposable dosimeters based on doped fibers. 

The fiber could be irradiated alone and then placed within a fiber cavity made up 

of two FBGs or a fiber-loop. The sensitive fiber could reach harsh and hardly 

accessible regions in a minimally invasive manner, such as in medical settings or 
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industrial equipment. On the contrary, a grid of fibers could be placed over large 

areas, embedded in large structures or underground, e.g., in environmental 

monitoring and radioprotection applications. The results of the investigation has 

demonstrated the great potential of optical fiber sensors in radiation therapy 

procedures as well as in radiation monitoring and protection in medicine, 

aerospace, and nuclear power plant. Thanks to their properties, such optical fiber 

detector could be also applied for real time internal in-vivo dosimetry. When 

special radiation treatment technique are employed, as the Intraoperative Electron 

Radiation Therapy (IOERT) using high energy and high dose-per-pulse electron 

beams, dose-rate independent dosimeters are necessary. In this framework, in 

order to check in-vivo dosimetry capabilities of optical fiber sensors is necessary 

to compare their performance with dosimeters currently adopted for in-vivo 

dosimetry. Thermoluminescent dosimeters (TLDs) are routinely used in standard 

external beam radiotherapy but their employment in IOERT has not been 

completely investigated yet. Consequently, thermoluminescent response of TLD-

100 to IOERT electron beams was first investigated. Our study proved that the TLD 

dose response in high dose-per-pulse electron beams has a parabolic behavior for 

doses under 10 Gy demonstrating TLD-100 may be useful detectors for IOERT 

patient dosimetry if a proper calibration is provided. 

The accuracy of the verification of the delivered dose is strictly linked to clinical 

efficacy of radiotherapy treatments. However, the optimization of radiation 

treatment also requires the improving of the balance between the tumor control 

probability (TCP) and the normal tissue complication probability (NTCP), i.e. 

maximizing tumor control while maintaining tissue complications at an acceptable 

level. In the present work different toxicity endpoints were considered with the aim 

of establishing NTCP models for radiation induced side-effects. We evaluated the 

radiation induced effects on organs-at-risk such as thyroid, heart, lung and rectum. 

Applying advanced machine learning technique, we developed multivariable NTCP 

logistic models which take into account relationships among different patient-

related (i.e. age, gender, assumption of drugs, organ volumes) and dosimetric 

factors. The predictive performance of the data-driven multivariable models 

resulted to be higher than that obtained with classical models based only on organ 

dose distribution. These results confirm the importance of considering both 

dosimetric and patient specific clinical factors in the prediction of radio induced 

complications. Interestingly, the study of heart valve dysfunction in Hodgkin 

lymphoma survivors, besides the heart dosimetric parameters and cardiac 
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volumes, establishes the statistical importance of the lung volume size in the risk 

prediction. We found that the risk decreases as the lung volume increases 

supporting the hypothesis of a reserve capacity in the lung (functional reserve) 

together with a cardiac effect indirectly caused by lung irradiation. This result 

suggested us to explore the impact of heart irradiation on the risk of pulmonary 

complications. Considering lung fibrosis as outcome we obtained a multivariable 

model including a dose/volume parameter of the heart. Our results suggest that 

both heart and lung irradiation plays a fundamental role in the risk of developing 

valvular disease as well as lung fibrosis. Radiation-induced fibrosis of the lung and 

its vessels may affect cardiac functions. A heart-lung interaction in radio-induced 

toxicity to cardiopulmonary system have been evidenced and an indirect effect of 

the chest irradiation on the cardiovascular system has been recognized. Multi-

organ interaction in affecting organ diseases, suggests the need to consider the 

normal tissue complication modelling a complex process involving multiple 

biological pathways and systems. 

The obtained results pave the way to further studies. In the perspective of using 

optical detectors for in-vivo dosimetry in real time, we planned to perform on line 

reading with a portable reading unit with photons and electron beams. In order to 

re-use the optical fiber dosimeter after reaching the saturation level, an 

appropriate annealing process to re-generate the optical fiber sensors will be 

investigated. 

Furthermore, to better clarify the relationship between organs (lung and heart) 

in the development of radiation induced toxicity, larger datasets and innovative 

image-based approaches will be considered. A further purpose of our research is to 

overcome the limit of current DVH-based models for toxicity prediction. Due to 

lack of spatial information of the DVH, these models are not able to correlate the 

treatment outcome with the spatial dose distribution. We plan to propose a new 

framework using a voxel-based approach to investigate the relationship between 

local dose and toxicity. This promising approach provide the way forward for 

complex voxel-based toxicity models based on more accurate inter-individual 

matching. 

 

 

 

 



 

 
 

Appendix A 

Table A1. Overview of dosimetry systems [6] http://dx.doi.org/10.6028/jres.118.021. 

Dosimeter type Applications Advantages Possible Disadvantages 
Absorbed Dose 

Range 
Uncertainty Physical Resolution 

Air-filed 
Ionization 
Chambers 

 Radiation machine 
characterization 
(commissioning) 

 Absolute dose 
calibration (cGy/min, 
cGy/MU) 

 Quality Assurance (QA) 

 Provides measurements traceable to 
Primary Standard Dosimetry Lab (PSDL) 
and Accredited Dosimetry Calibration 
Labs (ADCL) 

 Excellent reference class instruments. 
Reproducibility of the order of 0.5% or 
better 

 High precision and accuracy  

 Large selection of active volumes, 
vendors and models commercially 
available  

 Charge to dose corrections well 
understood  

 Dose rate independent  

 Energy dependence between 50 keV 
and 2 MeV is relatively constant  

 Instant readout 

 Waterproof models available 

 High voltage and cables required 
(up to 1000 V) 

 Relatively large volume of some 
models 

 Fragile – must be handled with care 

< 0.001 Gy to 
>1000 Gy 

1% to 5% 
≈ 1mm to 5mm  
depending on 
physical air volume 

Radiographic 
Film 

 Imaging 

 Qualitative and 
quantitative Dosimetry 

 Measurements in solid 
water and 
anthropomorphic 
phantoms 

 Superb 2D spatial resolution 

 Measurement of planar dose 
distributions 

 Dose rate independent 

 Variety of film types with broad range 
of linear response to irradiation 

 Good measurements of radiation field 
size and flatness and symmetry 

 Darkroom for processing required 

 Processing complex to control 

 For identical irradiation conditions 
response varies between film types 
and batches 

 Dose calibration against ion 
chamber required 

 Energy dependence 

 Sensitive to visible light 

 Not reusable 

 Great care in processing and batch 
calibration if used for dose 
calibration 

0.1 – 5 Gy 2% to 5% 

Capable of sub-
millimeter 
resolution 
depending on the 
properties of the 
reading device 

Radiochromic 
Film 

 Imaging 

 Qualitative and 
quantitative Dosimetry 

 Measurements in solid 
and liquid water and 
anthropomorphic 
phantoms 

 Self-processing 

 Insensitive to visible light 

 Tissue equivalent 

 Energy independent 

 Dose rate independent 

 Super 2D spatial resolution 

 Measurement of planar dose 
distributions 

 Good measure of radiation field size 
and flatness and symmetry 

 Relatively easy to read with current 
flatbed scanners 

 For identical irradiation conditions 
response varies between film types 
and batches 

 Dose calibration against ion 
chamber required 

 Not reusable 

 Great care handling film and 
scanner if used for dose calibration 

 When flatbed scanners are used, 
well defined protocols must be 
followed to disable the scanner 
imaging optimization features 

0.1 – 200 Gy 1% to 5% 

Capable of sub-
millimeter 
resolution 
depending on the 
properties of the 
reading device 

Thermo-
luminescent 

Detectors (TLD) 

 In vivo dosimetry 

 Measurements in 
anthropomorphic and 
slab phantoms 

 Intercomparisons 
between centers 

 Small size – point dose measurements 

 Multiple measurements points in a 
single irradiation 

 Various forms and compositions 
available 

 Reusable after thermal annealing 

 Time consuming calibration 

 Delayed readout 

 Elaborate care for accurate readout 

 Signal erased during readout 

 For identical irradiation conditions 
response varies within the same 
batch 

 Light sensitivity 

 Fading – signal loss over time for 
some materials 

0.0005 to 200 
Gy 
Supralinear 
range 
> 5 Gy 

1.5% to 5% 
(w/93% 
confidence) 

Typically limited to 
2 mm to 5mm 
resolution 
depending on the 
physical size 
detector 

Optically 
Stimulated 

Luminescent 
Detectors 

(OSLD) 

 In vivo dosimetry 

 Measurements in 
anthropomorphic and 
slab phantoms 

 Intercomparisons 
between centers 

 Moderate size – point dose 
measurements 

 Multiple measurement points in a 
single irradiation 

 Fast readout 

 Multiple readouts possible 

 Dose rate independent 

 Sensitivity to light – light-tight 
requirement prior to readout 

 Supralinear response at high doses 

 Limited selection of vendors 

 Not recommended for dose 
calibration 

 Energy dependence 

0.005 – 10 Gy 
1.1% to 
3.7% 

Typically limited to 
2 mm to 5mm 
resolution 
depending on the 
physical size 
detector 

Silicon Diodes 

 In vivo dosimetry 

 Small field dosimetry 

 Detector arrays 

 Relative dosimetry 
(depth dose, profiles, 
output) 

 Moderate size – point dose 
measurements 

 Instant readout 

 Great sensitivity relative to ion 
chambers 

 No external bias voltage 

 Connecting cables required 

 Variability of calibration with 
temperature 

 Directional dependence 

 Special care needed for constancy 
of response 

 Cannot be used for dose calibration 

 Changes in sensitivity with high 
dose accumulation 

0.005 – 10 Gy 3% to 5% 

Capable of ≈ 0.5 
mm resolution 
while maintaining 
adequate sensitivity 

Metal Oxide 
Semiconductors 

Field Effect 
Transistor 
(MOSFET) 

 In vivo dosimetry 

 Small field dosimetry 

 Detector arrays 

 Small size – point dose measurements 

 Multiple measurements points in a 
single irradiation 

 Great sensitivity compared to ion 
chambers 

 Fast readout 

 Calibration needed for every 
dosimeter 

 Energy dependence 

 Temperature dependence 

 Directional dependence 

 Not to be used for dose calibration 

0.005 – 10 Gy 3% to 5% 

Capable of ≈ 0.5 
mm resolution 
while maintaining 
adequate sensitivity 

Diamond 
Detectors 

 In vivo dosimetry 

 Small field dosimetry 

 Relative dosimetry 
(depth dose, profiles, 
output) 

 Small size – point dose measurements 

 Tissue equivalent 

 High sensitivity 

 Resistance to radiation damage 

 Bias voltage and cables required 

 Require pre-irradiation 

 Variability among dosimeters 

 Not recommended for dose 
calibration 

 Hard to obtain 

0.005 – 10 Gy 1.3% to 3% ≈ 5 mm 

Alanine – 
Electron 

Paramagnetic 
Resonance 
Detectors 

 In vivo dosimetry 

 Measurements in 
anthropomorphic and 
slab phantoms 

 Intercomparisons 
between centers 

 Tissue equivalent 

 Readout non-destructive 

 No fading 

 Dose readout requires special 
equipment or must be done by a 
primary laboratory 

10 – 150000 
Gy 

1.5% to 4% ≈ 0.2 mm to 5 mm 

Gel Dosimetry 
Detectors 

 Measurements in 
complex geometries 

 Intercomparisons 
between centers 

 Tissue equivalent 

 Gel acts as both phantom and 
dosimeter 

 True 3D dose distribution 

 Complex preparation and 
evaluation 

 Post-irradiation diffusion of ions 
and polymerization 

 limited accuracy and 
reproducibility 

 Not to be used for dose calibration 

0.005 – 10 Gy 5% to 10% Typically tens of cm 



 

 
 

Appendix B 

Table B1. QUANTEC Summary Table-Dose/Volume/Outcome Data for Several Organs Following Conventional Fractionation. 

Organ Endpoint 
Dose (Gy), or 
dose/volume 
parameters 

Rate 
(%) 

Volume segmented 

Irradiation type 
(partial organ 

unless otherwise 
stated)  

Brain Symptomatic necrosis 

Dmax <60  <3 

Whole organ 3D-CRT Dmax = 72 5 

Dmax = 90 10 

Brain stem 
Permanent cranial neuropathy or necrosis 
 

Dmax <54 <5 

Whole organ 

Whole organ 

D1–10 cc * ≤59 <5 3D-CRT 

Dmax <64 
Point dose <<1 cc 

<5 3D-CRT 

Optic nerve/ 
chiasm 

Optic neuropathy 

Dmax <55 <3 

Whole organ 
Given the small size, 
3D-CRT is often 
whole organ 

Dmax 55–60 3–7 

Dmax >60 
>7-
20 

Spinal cord Myelopathy 

Dmax = 50 0.2 

Partial organ 3D-CRT Dmax = 60 6 

Dmax = 69 50 

Cochlea 
Sensory neural hearing loss  
(hearing at 4 kHz) 

Mean dose ≤45 <30 Whole organ 
Given the small size, 
3D-CRT is often 
whole organ 

Parotid 
Long term parotid salivary function reduced 
to <25% of pre-RT level 

Mean dose <25 (for 
combined parotid 
glands)** 

<20 
Bilateral whole parotid 
glands 

3D-CRT 
Mean dose <20 (for 
single parotid 
gland)** 

<20 
Unilateral whole parotid 
gland 

Mean dose <39 (for 
combined parotid 
glands)** 

<50 
Bilateral whole parotid 
glands 

Pharynx 
constrictors 

Symptomatic dysphagia and aspiration Mean dose <50 <20 Pharyngeal constrictors Whole organ 



 

 
 

Larynx 
 

Vocal dysfunction (with chemo, based on 
single study)  

Dmax <66 <20  

Whole organ 3D-CRT 
Aspiration (with chemo, based on single 
study) 

Mean dose <50 <30 

Edema (without chemo, based on single 
study in patients without larynx cancer) 

Mean dose <44 <20 

V50 <27% <20 

Lung Symptomatic pneumonitis 

V20 ≤ 30% (for 
combined lung) 

<20 

Whole organ 
 

3D-CRT 

Mean dose = 7 5 

3D-CRT (excludes 
purposeful whole 
lung irradiation) 

Mean dose = 13 10 

Mean dose = 20 20 

Mean dose = 24 30 

Mean dose = 27 40 

Esophagus 

Grade ≥3 acute esophagitis Mean dose <34 5–20 

Whole organ 3D-CRT 
Grade ≥2 acute esophagitis 

V35 <50% <30 

V50 <40% <30 

V70 <20% <30 

Heart 
Pericarditis (based on single study) 

Mean dose <26 <15 
Pericardium 

3D-CRT V30 <46% <15 

Long-term cardiac mortality V25 <10% <1 Whole organ 

Liver 
Classic 
RILD ***  

Excluding patients with pre-
existing liver disease or HCC 

Mean dose <30-32 <5 

Whole liver –GTV 

3D-CRT or whole 
organ 

Mean dose <42 <50 3D-CRT 

In patients with Child-Pugh A 
preexisting liver disease or HCC, 
excluding hepatitis B reactivation 
as an endpoint 

Mean dose <28 <5 
3D-CRT or whole 
organ  

Mean dose <36 <50 3D-CRT 

Kidney 
 
(Non-TBI)  
 

Clinically relevant renal dysfunction 

Mean dose <15–18 <5 

Bilateral whole kidney  
 

Bilateral whole 
organ or 3D-CRT 

Mean dose <28 <50 
Bilateral whole 
organ 

V12 <55% (for 
combined kidney) 
V20 <32% 
V23 <30% 
V28 <20% 

<5 3D-CRT 

Stomach Ulceration D100* <45 <7 Whole organ Whole organ 



 

 
 

Small bowel 
Grade ≥ 3 acute toxicity (with combined 
chemotherapy) 

V15 <120 cc <10 

Individual small bowel 
loops (not the entire 
potential peritoneal 
space) 

3D-CRT 

V45 <195 cc <10 
Entire potential space 
within peritoneal cavity 

Rectum  
 
(Prostate 
cancer 
treatment) 

Grade ≥ 2 late toxicity 
Grade ≥ 3 late toxicity 

V50 <50% 
<15 
<10 

Whole organ 3D-CRT 

Grade ≥ 2 late toxicity 
Grade ≥ 3 late toxicity 

V60 <35% 
<15 
<10 

Grade ≥ 2 late toxicity 
Grade ≥ 3 late toxicity 

V65 <25% 
<15 
<10 

Grade ≥ 2 late toxicity 
Grade ≥ 3 late toxicity 

V70 <20% 
<15 
<10 

Grade ≥ 2 late toxicity 
Grade ≥ 3 late toxicity 

V75 <15% 
<15 
<10 

Bladder 
Grade ≥ 3 
late 
RTOG 

Bladder cancer treatment:  Dmax <65 <6 

Whole organ 3D-CRT Prostate cancer treatment: 
 

V65 ≤50 % 
V70 ≤35 % 
V75 ≤25 % 
V80 ≤15 % 

 

Penile bulb Severe erectile dysfunction 

Mean dose to 95% 
of gland <50 

<35 

Whole organ 3D-CRT 
D90*<50 <35 

D60-70 <70 <55 
 

Vx is the volume of the organ receiving ≥ x Gy. 
*Dx = minimum dose received by the “hottest” x% (or x cc's) of the organ. 
**Severe xerostomia is related to additional factors including the doses to the submandibular glands. 
***Classic Radiation induced liver disease (RILD) involves anicteric hepatomegaly and ascites, typically occurring between 2 weeks and 3 months after therapy. 
Classic RILD also involves elevated alkaline phosphatase (more than twice the upper limit of normal or baseline value). 
HCC - hepatocellular carcinoma 

 

Clinically, these data should be applied with caution. Clinicians are strongly advised to use the individual QUANTEC articles to check the applicability 

of these limits to the clinical situation at hand. They largely do not reflect modern IMRT. 

http://www.redjournal.org/issues?issue_key=S0360-3016%2810%29X0002-5  

 

http://www.redjournal.org/issues?issue_key=S0360-3016%2810%29X0002-5


 

 
 

Appendix C 

In Figure C.1 we reported the algorithm for the calculation of the LKB and RS NTCP model parameters with a brief description of 

the main functions. 

 

 

Figure C1. Algorithm for data manipulation and for computation of LKB and RS NTCP model parameters. The start point is the CERR data extraction from 

DICOM plans to .ddbs database. Once the parameters have been generated by the bootstrap or LOO method. a .xls file is returned by the function NTCP_print 

containing the NTCP values for each patient.
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