
DOTTORATO DI RICERCA 
in 

SCIENZE COMPUTAZIONALI E INFORMATICHE 
 

Ciclo XVIII 
 
 

Consorzio tra Università di Catania, Università di Napoli Federico II, 
Seconda Università di Napoli, Università di Palermo, Università di Salerno 

 
SEDE AMMINISTRATIVA: UNIVERSITÀ DI NAPOLI FEDERICO II 

 
 

 
 
 

 
                                                         TERESA RADICE 
 
 
                                            ON SOME REGULARITY RESULTS  
                              OF JACOBIAN DETERMINANTS AND APPLICATIONS 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

TESI DI DOTTORATO DI RICERCA 
 
 
 
 
 



Contents

Introduction i

1 Functional spaces 1
1.1 Decreasing rearrangement . . . . . . . . . . . . . . . . . . . . 1
1.2 Lorentz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Lorentz-Zygmund spaces . . . . . . . . . . . . . . . . . . . . . 8
1.4 Orlicz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 BMO-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Maximal function 21
2.1 Maximal function . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Maximal function in Lorentz-Zygmund spaces . . . . . . . . . 26
2.3 Maximal function in Orlicz spaces . . . . . . . . . . . . . . . 30
2.4 Maximal function in BMO spaces . . . . . . . . . . . . . . . . 31
2.5 Maximal operator on distributions . . . . . . . . . . . . . . . 32

3 Jacobian 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Regularity result . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Div-curl fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Div-curl fields coupled by the distortion inequality . . . . . . 42

4 ∞-Laplacian 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Divergence factors and integrating fields . . . . . . . . . . . . 45
4.3 The p-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 The p-harmonic equation in the plane . . . . . . . . . . . . . 48
4.5 Divergence factors for ∞-Laplacian . . . . . . . . . . . . . . . 50
4.6 Basic examples . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 The conjugate functions . . . . . . . . . . . . . . . . . . . . . 54

1



2 CONTENTS

4.8 Analysis of W 1,2-solutions . . . . . . . . . . . . . . . . . . . . 56

5 Div-curl couple of arbitrary sign 59
5.1 Some definitions and examples. . . . . . . . . . . . . . . . . . 59
5.2 Another example . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Nondivergence elliptic equations 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Hodge decomposition . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 A higher integrability result . . . . . . . . . . . . . . . . . . . 76
6.5 A priori estimate . . . . . . . . . . . . . . . . . . . . . . . . . 81



Introduction

In recent years Jacobians of mappings of finite distortion have been studied
intensively and have proven to be fundamental tools in the calculus of varia-
tions, PDEs and nonlinear elasticity. Some of their rather special properties
were already visible in the “div-curl ”lemma of Murat [Mu] and Tartar [Ta].
This lemma initiated the theory of “compensated compactness ”. Because of
its wide application and theoretical significance the subject has been greatly
expanded.
Before presenting our results, we would like to make a few general com-
ments. One way to look at the compensated theory is to consider it as one
consequence of the study of oscillations in nonlinear partial differential equa-
tions, arising from Continuum Mechanics, Physics or Differential Geometry.
It is far beyond the scope of this work to discuss the reasons for such a
study but we would like to mention at least that it is natural for the issue
of the existence of global (generalized) solutions for many nonlinear systems
of interest. It is quite obvious that, in such a study, a fundamental role
should be played by weakly continuous nonlinear quantities. The compen-
sated compactness theory has identified classes of such nonlinear quantities.
The terminology stems from the fact that compensations arise in nonlinear
quantities as J(u) = det(∇u), compensations which in turn allow the weak
continuity or the compactness. Indeed, we shall show that these nonlinear
quantities have an improved regularity. This improved regularity has many
applications and recently there have been considerable advances in this field.
In particular, it is a useful tool to apply to divergence and nondivergence
elliptic equations.
It is worth pointing out that the starting point in the theory of the regular-
ity of the Jacobian is the celebrated result due to S. Müller [M] that for an
orientation preserving mapping f ∈ W 1,n

loc (Ω,Rn), J belongs to the Zygmund
space L log L (K) for any compact K ⊂ Ω.
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ii INTRODUCTION

The following estimate, proved by T. Iwaniec and C. Sbordone in [IS]∫
K
J(x, f) dx 6 c(n,K)

∫
Ω

|Df(x)|n

log
(
e+ |Df(x)|

|Df(x)|Ω

) dx

when K is any compact subset of Ω and |Df |Ω denotes the integral mean of
|Df | over Ω, can be viewed as dual to Müller’s result.
At this point it became clear that the improved integrability property of the
Jacobian could be observed in Orlicz-Sobolev spaces near W 1,n

loc (Ω,Rn). To
illustrate, we mention the inequality by H. Brézis, N. Fusco and C. Sbordone
[BFS] :∫

K
J(x, f) log1−α

(
e+

|J(x, f)|
|J |K

)
dx 6 c(n,K)

∫
Ω

|Df(x)|n

logα
(
e+ |Df(x)|

|Df(x)|Ω

) dx

for α ∈ [0, 1], which was then extended to all α ∈ R by L.Greco [1].
As a matter of fact, under the above hypothesis of Iwaniec and Sbordone,
the Jacobian is even slightly higher integrable.
Indeed G. Moscariello in [MO] proved that J(x, f) lies in L log log Lloc(Ω).
Subsequently, L.Greco,T.Iwaniec and G.Moscariello proved that if |Df(x)|n ∈
L P(Ω) with P a log-convex function and if J > 0 then J ∈ L Ψ

loc(Ω) where
Ψ(t) = P(t) + t

∫ t
0
P(s)
s2 ds.

However these results are only a part of more general spectrum about esti-
mates of Jacobians.
In this spirit following the results above, we can realize that it is quite nat-
ural to study the Jacobians in more general spaces (see [GIOV] , [G2]).
As suggested in [BFS] it is interesting to study the regularity of the Jacobian
when Df belongs to Lorentz spaces. It appears that to get positive results
one cannot rely only on these spaces but it is forced to encode the theory in
the Lorentz-Zygmund spaces (see Chapter 3).
It is also possible to extend this study to the couple (B,E), B : Ω → Rn,
E → Rn, of vector fields on Ω, such that divB = 0 and curlE = 0, having the
scalar product 〈B,E〉 nonnegative. In this case we obtain results of higher
integrability for the scalar product 〈B,E〉. Let us remark that if A(x) is a
symmetric matrix and we consider the equation divA(x)∇u = 0 we obtain a
couple taking B = A(x)∇u and E = ∇u (see Chapter 3). Another example
of operator in divergence form is given in Chapter 4.
R. Coifman, P.L. Lions, Y. Meyer and S. Semmes in a famous paper “Com-
pensated compactness and Hardy spaces”studied the regularity of the map-
pings with Jacobian of arbitrary sign and as a consequence of couple (B,E),
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belonging to Lebesgue spaces, where divB = 0 and curlE = 0 whose scalar
product is of arbitrary sign. Following this idea, we study analogous regu-
larity properties of couple in the framework of Lorentz spaces (see Chapter
5).
Finally, the last chapter (see Chapter 6) is devoted to study nondivergence
elliptic equations.
In 1963 Miranda [M] proved that if the coefficients lie in W 1,n then the
Dirichlet problem {

Lu = h

u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω)

is well posed. Here Ω is bounded open set in Rn and h ∈ L 2(Ω). This result
is optimal in the category of L p-spaces. Indeed, for aij ∈ W 1,n−ε, ε > 0,
the uniqueness fails.
Somewhat later an improvement of Miranda’s result was given by Alvino
and Trombetti [AT]. They assume that ∂aij

∂xs
lay in the Marcinkiewicz space

L n
weak and, the constants in the weak type inequality for ∂aij

∂xs
are sufficiently

small.
Here, we develop a theory for elliptic equations with bounded coefficients
having sufficiently small BMO-norm and we find a higher integrability of
the solution. More delicate is the case of unbounded coefficients and the
main result is the following L 2 log L estimate

‖∇2u‖L 2 log L (Rn) 6 c(n)‖h‖L 2 log L (Rn).

We notice that our assumption, the BMO-norm of the coefficients aij to
be sufficiently small, is weaker than the smallness condition for the L n

weak

norm of their derivatives ∂aij

∂xs
which allows the authors in [AT] to obtain

their existence and uniqueness theorem in W 2,2∩W 1,2
0 of the solution to the

Dirichlet problem
Lu = h ∈ L 2.
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Chapter 1

Functional spaces

1.1 Decreasing rearrangement of a function

Although the Lebesgue spaces L p, (1 6 p 6 ∞) play a primary role in many
areas of mathematical analysis, there are other classes of Banach spaces of
measurable functions that are also of interest. The larger classes of Orlicz
spaces and Lorentz spaces are of intrinsic importance.
From now on, let us consider Rn or its subsets, endowed with the structure
of measurable space of Lebesgue. Let Ω be a measurable subset of Rn and
denote its measure by |Ω| and with M(Ω), or simply M the set of the real
measurable functions on Ω a.e. finite. We will identify two functions equal
a.e. Let |Ω| > 0.

Definition 1.1.1. The distribution function µf of a function f ∈M(Ω) is
given by

µf (λ) = |{x ∈ Ω : |f(x)| > λ}|, λ ≥ 0.

Let us remark that µf depends only on the absolute value |f | and so it may
assume the value +∞.

Definition 1.1.2. Two functions f, g ∈M(Ω) are said to be equimeasurable
if they have the same distribution function, that is µf (λ) = µg(λ) for all
λ ≥ 0.

In the following proposition we list some properties of the distribution func-
tion.

Proposition 1.1.3. Suppose f, g, fn, (n = 1, 2...), belong to M(Ω) and let
a ∈ R \ {0}. The distribution function µf is nonnegative, decreasing and

1



2 CHAPTER 1. FUNCTIONAL SPACES

right-continuous on [0,∞). Furthermore,

|g| 6 |f | a.e ⇒ µg 6 µf ;

µaf (λ) = µf (λ/|a|), (λ > 0);

µf+g(λ1 + λ2) 6 µf (λ1) + µg(λ2), (λ1, λ2 > 0);

|f | 6 lim inf
n

|fn| a.e. ⇒ µf 6 lim inf
n

µfn ;

in particular,
|fn| ↑ |f | a.e. ⇒ µfn ↑ µf .

Many integral expressions for a function f ∈ M(Ω) may be written
throughout a distribution function µf .

Lemma 1.1.4. Let us consider an absolutely continuous function Φ : [0,∞) →
[0,∞) and f ∈M(Ω). If Φ is monotone, i.e. Φ′µf ∈ L 1(0,∞), for all t > 0∫

|f |>t
Φ(|f(x)|) dx = Φ(t)µf (t) +

∫ ∞

t
Φ′(ρ)µf (ρ) dρ

we will use the convention 0 · ∞ = 0. Furthermore if Φ(0) = 0 we have∫
Ω

Φ(|f(x)|) dx =
∫ ∞

0
Φ′(ρ)µf (ρ) dρ.

For example, if Φ(t) = tp with p > 0,∫
Ω
|f(x)|p dx = p

∫ ∞

0
ρp−1µf (ρ) dρ.

Definition 1.1.5. Suppose f ∈ M(Ω). The decreasing rearrangement of a
function f is the function f∗ : [0,∞) 7→ [0,∞] defined by

f∗(t) = inf{λ : µf (λ) 6 t}

Here we use the convention that inf ∅ = ∞. Thus, if µf (λ) > t for all λ > 0,
then f∗(t) = ∞. If |Ω| <∞, the distribution function µf is bounded by |Ω|
and so f∗(t) = 0 for all t > |Ω|. In this case we may regard f∗ as a function
on the interval [0, |Ω|]. Notice also that if µf happens to be continuous and
strictly decreasing then f∗ is the inverse of µf .
Furthermore we can remark that f∗(t) can be expressed as follows:

f∗(t) = sup{λ ≥ 0 : µf (λ) > t}.
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Example. In dimension n = 1, let us consider Ω =]0,∞[ and f(x) = 1−e−x.
The distribution function is infinite in [0, 1[ and equal to zero in [1,∞[.
Hence f∗(t) = 1, ∀t > 0.

In the following proposition we list some properties of the decreasing re-
arrangement

Proposition 1.1.6. Suppose f, g and fn, (n = 1, 2...), belong to M(Ω)
and let a ∈ R \ {0}. The decreasing rearrangement f∗ is a nonnegative,
decreasing, right-continuous function on [0,∞). Furthermore

|g| 6 |f | a.e. ⇒ g∗ 6 f∗;

(af∗) = |a|f∗;

(f + g)∗ (t1 + t2) 6 f∗(t1) + g∗(t2), (t1, t2 > 0);

|f | 6 lim inf
n

|fn| a.e. ⇒ f∗ 6 lim inf
n

f∗n

in particular,
|fn| ↑ |f | a.e. ⇒ f∗n ↑ f∗;

(|f |p)∗ = (f∗)p, 0 < p <∞; (1.1)

if µf (λ) <∞ then f∗(µf (λ)) ≤ λ, if f∗(t) <∞ then µf (f∗(t)) 6 t.

Next theorem shows that a function f and its decreasing rearrangement
have the same norm in L p.

Theorem 1.1.7. Let f ∈M(Ω). If 0 < p <∞, then∫
Ω
|f(x)|p dx = p

∫ ∞

0
λp−1µf (λ) dλ =

∫ |Ω|

0
f∗(t)p dt

Furthermore, in the case p = ∞

ess sup
x∈Ω

|f(x)| = inf{λ > 0 : µf (λ) = 0} = f∗(0)

In particular if f is defined on [0,∞[, f∗ is nonnegative, decreasing, right-
continuous and equimeasurable with f .

It is possible to generalize (1.1) taking a function Φ : [0,∞[→ [0,∞[, in-
creasing and left-continuous on ]0,∞[, we have:

[Φ(|f |)]∗ = Φ(f∗).
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Trivially Φ(f∗) is decreasing and right-continuous and equimeasurable with
Φ(|f |).

Proposition 1.1.8. Let f ∈M(Ω). For all t ∈ [0, |Ω|], we have∫ t

0
f∗(τ) dτ = sup

{∫
F
|f |dx : F ⊂ Ω measurable, |F | 6 t

}
(1.2)

Furthermore if Ω has finite measure, the supremum of (1.2) is the maximum.

It is worth to point out that the decreasing rearrangement does not nec-
essarily preserves sums or products of functions, there are nevertheless some
basic inequalities that govern these processes.
This is due to an elementary inequality of Hardy and Littlewood. The
inequality involves finite sequences (a1, a2, ..., an) and (b1, b2, ..., bn) of non-
negative real numbers, and asserts that

n∑
j=1

ajbj 6
n∑

j=1

a∗jb
∗
j , (1.3)

where (a∗j )
n
j=1 and (b∗j )

n
j=1 denote respectively the sequence of elements aj

and bj arranged in decreasing order.
It will be convenient to regard such sequence (aj)n

j=1 as a simple function f =∑n
j=1 ajχ[j−1,j) defined on the interval [0,∞). In this case the rearrangement

f∗ of f is just the simple function f∗ =
∑n

j=1 a
∗
jχ[j−1,j) corresponding to the

rearranged sequence (a∗j )
n
j=1. The inequality (1.3) will be seen as a special

case of the more general inequality established in the theorem below

Theorem 1.1.9. If f, g ∈M(Ω) then∫
Ω
|fg| dx 6

∫ ∞

0
f∗(s) g∗(s) ds (1.4)

An immediate consequence of the Hardy-Littlewood inequality (1.4) is
that ∫

Ω
|fg̃| dx 6

∫ ∞

0
f∗(s) g∗(s) ds

for every function g̃ on Ω equimeasurable with g. If g is a characteristic
function of a set Ω of positive measure t the Hardy-Littlewood inequality
(1.4) becomes:

1
|Ω|

∫
Ω
|f | dx 6

1
t

∫ t

0
f∗(s)ds, f ∈M(Ω)
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So the average of |f | over any set of measure t is dominated by the corre-
sponding average of f∗ over the interval (0, t). Notice that the latter average
is also maximal among all averages of f∗ taken over sets of measure t, this is
an immediate consequence of the fact that f∗ is decreasing. For this reason
the function on the right-hand of (1.4) is called maximal function.

Definition 1.1.10. We will denote by f∗∗ the maximal function of f∗ de-
fined by

f∗∗(t) =
1
t

∫ t

0
f∗(s) ds, t > 0

Let us remark that there is a certain subadditivity of the maximal operator.

(f + g)∗∗ 6 f∗∗ + g∗∗

Furthermore we have the following properties:

Proposition 1.1.11. Suppose f, g and fn, (n = 1, 2, ...), belong to M(Ω)
and let a ∈ R.
Then f∗∗ is nonnegative, decreasing and continuous on (0,∞). Furthermore

f∗∗ ≡ 0 ⇔ f = 0 a.e.;

f∗ 6 f∗∗;

|g| 6 |f | a.e. ⇒ g∗∗ 6 f∗∗;

(af)∗∗ = |a|f∗∗;

|fn| ↑ |f | a.e.⇒ f∗∗n ↑ f∗∗.

1.2 Lorentz spaces

We collect here some definitions and results related to Lorentz spaces whose
proofs are contained in [BR] and[BS].

Definition 1.2.1. Let Ω ⊂ Rn a measurable set and suppose 0 < p, q 6 ∞.
The Lorentz space L p,q = L p,q(|Ω|) consists of all f ∈M(Ω) for which

[f ]L p,q = [f ]p,q =

 {
∫∞
0 [t

1
p f∗(t)]q dt

t }
1
q , 0 < q <∞;

sup
0<t<∞

t
1
p f∗(t), q = ∞.

(1.5)

is finite.
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Let us remark that in general [ ]p,q is not a norm,in fact the triangular
inequality is not verified. Instead, if we replace f∗ with f∗∗ in the definition
above we obtain a norm that we denote by ‖ ‖L p,q or ‖ ‖p,q.

Definition 1.2.2. Let us suppose 1 < p 6 ∞ and 0 < q 6 ∞; for f ∈M(Ω)
we set

‖f‖L p,q = ‖f‖p,q =

 {
∫∞
0 [t

1
p f∗∗(t)]q dt

t }
1
q , 0 < q <∞;

sup
0<t<∞

t
1
p f∗∗(t), q = ∞.

(1.6)

is finite.

Lemma 1.2.3. For 1 < p 6 ∞ and 1 6 q 6 ∞, [ ]p,q and ‖ ‖p,q are
equivalent.

It is easy to prove this assertion by the Hardy inequality.

Lemma 1.2.4. (G.H. Hardy). Let Ψ be a measurable nonnegative func-
tion on ]0,∞[ and consider −∞ < ν < 1. If 1 6 q <∞, we have{∫ ∞

0

(
tν
∫ t

0
Ψ(s) ds

)q
dt

t

} 1
q

6
1

1− ν

{∫ ∞

0
(tνΨ(t))q dt

t

} 1
q

(1.7)

and{∫ ∞

0

(
t1−ν

∫ ∞

t
Ψ(s)

ds

s

)q dt

t

} 1
q

6
1

1− ν

{∫ ∞

0
(t1−νΨ(t))q dt

t

} 1
q

(1.8)

with evident modification if q = ∞.

Proof. Let us suppose 1 < q <∞. Writing Ψ(s) = s
ν
q′ s

− ν
q′ Ψ(s) and apply-

ing the Hölder inequality we have∫ t

0
Ψ(s) ds 6

(∫ t

0
s−ν ds

) 1
q′
(∫ t

0
s

νq
q′ Ψ(s)q ds

) 1
q

=

= (1− ν)−
1
q′ t

−ν
q′ −

1
q

(∫ t

0
sν(q−1)Ψ(s)q ds

) 1
q

Hence, by an interchange in the order of integration,∫ ∞

0

(
tν
∫ t

0
Ψ(s) ds

)q
dt

t
6 (1− ν)1−q

∫ ∞

0
tν−2dt

∫ t

0
sν(q−1)Ψ(s)q ds =
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= (1− ν)1−q

∫ ∞

0
sν(q−1)Ψ(s)q ds

∫ ∞

s
tν−2 dt.

For the conclusion of the proof, it is necessary to perform the integration
over t and considering the 1

q -th roots, we obtain (1.7). If q = 1, it is sufficient
to change the order of integration. If q = ∞ it is sufficient to apply Hölder
inequality. With the same arguments it is possible to prove inequality (1.8).

To prove the lemma below it is sufficient to apply relation (1.7) with
ν = 1

p .

Lemma 1.2.5. If 1 < p 6 ∞ and 1 6 q 6 ∞, we have

[f ]p,q 6 ‖f‖p,q 6 p′[f ]p,q

for all f ∈M(Ω), where p′ = p
(p−1) .

The triangular inequality is a consequence of the subadditivity of f →
f∗∗.

Theorem 1.2.6. If 1 < p <∞ and 1 6 q 6 ∞ or if p = q = ∞, L p,q with
the norm ‖ ‖L p,q is a Banach space (see [BR]).

Definition 1.2.7. If 1 6 p < ∞ the Lorentz space L p,∞ is also called
Marcinkiewicz space or weak-L p space.

Definition 1.2.8. The Marcinkiewicz space L p,∞(Ω) weak-L p(Ω),(p > 1),
where Ω ⊂ Rn is an open set, may be defined according the norm

‖f‖L p,∞ = sup
E⊆Ω

|E|
1
p

∫
E
|f | dx.

The following result shows that for a fixed p, the Lorentz space L p,q

increases when q increases.

Proposition 1.2.9. Let us suppose 0 < p 6 ∞ and 0 < q 6 r 6 ∞. There
exists a constant c, depending only on p, q and r, such that

[f ]p,r 6 c [f ]p,q

for all f ∈M(Ω) and therefore L p,q ⊂ L p,r.

The inclusion relations between the Lorentz spaces L p,q when is the
first exponent to change are the same of these of the Lebesgue space and
are dependent from the measure of Ω. The second exponent doesn’t matter.
For example, if |Ω| <∞, 0 < p 6 r 6 ∞ and 0 < q, s 6 ∞, it happens that
L r,s ⊂ L p,q.
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Theorem 1.2.10. Suppose 1 < p <∞, 1 6 q <∞. The dual of the Banach
space L p,q can be identified (up to equivalence of norms) with L p′,q′, where
1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

As in L p spaces we can obtain a Sobolev inequality also for Lorentz
spaces (for more details see [A]).

Theorem 1.2.11. Let be u(x) a function sufficiently regular, with compact
support; for all p ∈ [1, n[ and for all r ∈ [1, p] we have:

‖u‖q,r 6 C ′‖Du‖p∗,r

with p∗ = np
(n−p) and

C ′ =
{Γ(1 + n/2)}1/n

√
π

p

n− p
(1.9)

and (1.9) is the best constant possible.

1.3 Lorentz-Zygmund spaces

Throughout this section Ω will denote a bounded domain in Rn and for
simplicity, let us assume |Ω| = 1. By a measurable function on Ω we shall
mean an equivalence class of measurable functions on Ω which differ only
on a subset of measure zero.

Definition 1.3.1. When 1 6 q, p 6 ∞ and −∞ < α 6 ∞, the Lorentz-
Zygmund space L p,q(log L )α on Ω consists of all (classes of) measurable
functions f on Ω for which the functional

‖f‖L p,q(log L )α = ‖f‖p,q;α =

 (
∫ 1
0 [t

1
p (1− log t)αf∗(t)]q dt

t )
1
q 0 < q <∞,

sup
0<t<1

[t
1
p (1− log t)αf∗(t)] q = ∞.

(1.10)
is finite.

Moreover if 1 < p 6 ∞, 1 6 q 6 ∞ and −∞ < α < ∞, then the
functional

f →
(∫ 1

0
[t

1
p (1− log t)αf∗∗(t)]q

dt

t

) 1
q

(with evident modification if q = ∞) defines a norm in L p,q(log L )α which is
equivalent to the quasinorm (1.10). In particular L p,q(log L )α is equivalent
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to a Banach space, see [BR] for more details.
It will be useful to observe that since log 1

t and (1− log t) are asymptotically
the same at t = 0, we have

‖f‖p,q;α ∼
(∫ 1

0

[
t

1
p

(
log

1
t

)α

f∗(t)
]q
dt

t

) 1
q

(1.11)

provided only that the integral converges at t = 0, i.e., provided α+ 1
q > 0.

It is clear that for α = 0 we return to the Lorentz space L p,q.

Moreover in the special case p = q and −∞ < α < ∞ it is easy to ver-
ify that f ∈ L p,p(log L )α if and only if it belongs to the Orlicz-Zygmund
space L p(log L )α, i.e. ∫

Ω
|f |p logα(e+ |f |) dx <∞.

Various inclusion relations among the Lorentz Zygmund spaces hold.

Theorem 1.3.2. Suppose 1 6 p 6 ∞, 1 6 a, b 6 ∞ and −∞ < α, β < ∞
then

L p,a(log L )α ⊆ L p,b(log L )β

whenever

1. a 6 b and α ≥ β;

2. a > b and α+ 1
a > β + 1

b .

see ([BR]) for more details.

It is trivial to prove by the simple definition of Lorentz-Zygmund space
the following lemma

Lemma 1.3.3. Let us assume f > 0,

f ∈ L p,q(log L )β ⇒ f r ∈ L
p
r
, q
r (log L )βr

Proof. Let us simply apply Definition 1.3.1:

‖f r‖ p
r

q
r
,βr =

(∫ 1

0
[t

r
p (f∗(t))r(1− log t)βr]

q
r
dt

t

) r
q

= ‖f‖r
pq,β .
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Theorem 1.3.4. Suppose 1 < p < ∞, 1 6 q < ∞, −∞ < α < ∞ .
Then the dual of the Banach space L p,q(log L )α can be identified (up to
equivalence of norms) with L p′,q′(log L )−α, where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1.

Let us consider the case p = q = 1.

Lemma 1.3.5. The dual of the Zygmund space L (log L )α is given by the
Zygmund L∞(log L )−α.

Definition 1.3.6. When 0 < p <∞ and −∞ < α <∞, the Zygmund space
L p(log L )α consists of all measurable functions f on Ω for which∫

Ω
[|f(x)| logα(2 + |f(x)|)]p dx <∞

If α > 0, the Zygmund space Exp 1
α

consists of all measurable functions f
on Ω for which there is a constant λ = λ(f) > 0 such that∫

Ω
exp[λ|f(x)|]

1
αdx <∞

Definition 1.3.7. If 0 < p < ∞ and −∞ < α < ∞ then a measurable
function f on Ω belongs to the Zygmund space L p(log L )α if and only if(∫ 1

0
[(1− log t)αf∗(t)]p dt

) 1
p

< ∞

If α > 0 then a measurable function f on Ω belongs to the Zygmund space
Exp

1
α if and only if

sup
0<t<1

(1− log t)−αf∗(t) < ∞

Let us observe that a comparison with Definition 1.3.1 shows that

L∞,∞(log L )−α = Exp
1
α , α > 0

In view of the forthcoming chapters we now state the following propositions

Proposition 1.3.8. Suppose 1 < p, q <∞, 1 6 a, b <∞, −∞ < α, β <∞.
If f ∈ L p,a logα L , g ∈ L q,b logβ L with 1

p + 1
q = 1, 1

a + 1
b = 1

c , γ = α+ β

then fg ∈ L 1,c logγ L .
Furthermore, we obtain the following estimate

‖fg‖L 1,c logγ L 6 ‖f‖L p,a logα L ‖g‖L q,b logβ L (1.12)
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Proof. By Definition 1.3.1, we have

‖fg‖L 1,c logγ L =
(∫ 1

0
[tf∗(t)g∗(t)(1− log t)γ ]c

dt

t

) 1
c

=
(∫ 1

0

(
t

1
p f∗(t)

)c (
t

1
q g∗(t)

)c
(1− log t)γcdt

t

) 1
c

=
(∫ 1

0

[
f∗(t)t

1
p (1− log t)α 1

t1/a

]c [
g∗(t)t

1
q (1− log t)β 1

t1/b

]c

dt

) 1
c

(1.13)

Applying Hölder inequality to (1.13), with conjugate exponents a+b
b and

a+b
a and setting c = ab

a+b , the above term can be estimate by the following
espression
[∫ 1

0

(
f∗(t)t

1
p (1− log t)α 1

t1/a

)a

dt

] b
a+b

(∫ 1

0

(
g∗(t) t

1
q (1− log t)β 1

t1/b

)b

dt

) a
a+b


a+b
ab

= ‖f‖L p,a log L α ‖g‖L q,b log L β

Let us consider, now, the case p = a = ∞
Proposition 1.3.9. If p = a = ∞, 1 < b < ∞, −∞ < α, β < ∞,
α + β = γ. Let us suppose f ∈ L∞(log L )α and g ∈ L 1,b(log L )β, then
fg ∈ L 1,b(log L )γ.

Proof. Using Definition 1.3.1 and by elementary calculation

‖fg‖L 1,b(log L )γ =
(∫ 1

0
[t f∗(t)g∗(t)(1− log t)γ ]b

dt

t

) 1
b

=
(∫ 1

0

[
t g∗(t) (1− log t)β

]b
[f∗(t) (1− log t)α]b

dt

t

) 1
b

6

(∫ 1

0

[
t g∗(t) (1− log t)β

]b dt
t

) 1
b
(

sup
0<t<1

f∗(t) (1− log t)α

)
6 ‖g‖L 1,c(log L )β ‖f‖L∞(log L )α

Corollary 1.3.10. Suppose α > 0,−∞ < β < ∞ and γ = α + β. If
f ∈ L∞(log L )α and g ∈ L (log L )β then fg ∈ L logγ L .
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1.4 Orlicz Spaces

An Orlicz function is a continuously increasing function

P : [0,∞) → [0,∞),

P(0) = 0, lim
t→∞

P(t) = ∞,

though in most of our applications P will be convex, in this case we call
it a Young function. The Orlicz space, denoted by L P(Ω), consists of all
measurable functions f on Ω such that∫

Ω
P(k−1|f |) < ∞, for some k = k(f) > 0 (1.14)

L P(Ω) is a complete linear metric space with respect to the following dis-
tance function :

distP(f,g) = inf
{
k > 0

∫
Ω
P
(
k−1|f − g|

)
6 k

}
.

There is also a homogeneous nonlinear functional on L P(Ω) called the Lux-
emburg functional:

‖f‖LP = inf
{
k > 0;

∫
Ω
P(k−1|f |) 6 P(1)

}
(1.15)

in the case when P is a Young function, the expression ‖ ‖P is a norm and
L P(Ω) becomes a Banach space.
As a first example, if we put P(t) = tp, 0 < p < ∞ then the space L P(Ω)
coincide with the usual Lebesgue space L p(Ω). Note that L p(Ω) is a Ba-
nach space only when p > 1.
The Zygmund spaces, denoted by L p logα L (Ω), correspond to the Orlicz
function P(t) = tp logα(a + t) with 1 6 p < ∞, α ∈ R and suitable large
constant a.
The defining function P(t) = tp logα(e+ t), 1 6 p <∞ is a Young function
when α > 1− p and there we have the following estimate

‖f‖L p log−1 L 6 ‖f‖p 6 ‖f‖L p log L

and

‖f‖L p log L 6

[∫
|f |plog

(
e+

|f |
‖f‖p

)] 1
p

6 2 ‖f‖L p log L
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For p > 1 and α > 0 the non-linear functional

[[f ]]p,α =
[∫

Rn

|f |p logα

(
e+

|f |
‖f‖p

)] 1
p

is comparable with the Luxemburg norm, given at (1.15).
The following estimates are straightforward

‖f‖L p log−1 L 6 ‖f‖L p 6 ‖f‖L p logα L 6 [[f ]]p,α 6 2‖f‖L p logα L

(1.16)
We have the Hölder-type inequalities

‖fg‖L c logγ L 6 Cαβ(a, b)‖f‖L a logα L · ‖g‖L b logβ L

whenever a, b > 1 and α, β ∈ R are coupled by the relationships

1
c

=
1
a

+
1
b
,
γ

c
=
α

a
+
β

b

Another important example is the exponential class defined with the Orlicz
function et − 1.

Hölder’s inequality for Zygmund spaces will be quite important. It takes
the form

‖ϕ1...ϕk‖L p logα L 6 c ‖ϕ1‖L p1 logα1 L ... ‖ϕk‖L pk logαk L

where p1, p2, ..., pk > 1 ; α1, α2, ..., αk ∈ R and 1
p = 1

p1
+ 1

p2
+ ... + 1

pk
,

α
p = α1

p1
+ α2

p2
+ ...+ αk

pk
.

The constant here does not depend on the functions ϕi ∈ L pi logαi L .
Another important case arises when we take any Young function Φ and set

P(t) =
1
p
Φ(tp), Pi =

1
pi

Φ(tpi) i = 1, 2, ..., k

1
p = 1

p1
+ ...+ 1

pk
. Then we have

P(t1, t2, ... tn) =
1
p

Φ(tp1
1 ...t

pk
k )

6
1
p

Φ
(
ptp1

1

p1
+ ... +

ptpk
k

pk

)
6

1
p1

Φ(tp1
1 ) + ... +

1
pk

Φ(tpk
k )
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= P1(t1) + ... Pk(tk)

A pair of Orlicz function (P,Q) are called Hölder conjugate couple, or Young
complementary functions, if we have Hölder inequality∣∣∣∣∫

Ω
〈f, g〉

∣∣∣∣ 6 CP,Q ‖f‖P ‖g‖Q

for f ∈ L P(Ω) and g ∈ L Q(Ω).
If we take as Hölder conjugate couple P(t) = t log(e+ t) and Q(t) = et − 1
defining the Zygmund and exponential classes, respectively. We have the
following estimate ∣∣∣∣∫

Ω
〈f, g〉

∣∣∣∣ 6 4 ‖f‖L log L ‖g‖Exp.

In view of the same homogeneities on each side we can assume Luxemburg
norm equal 1. From the definition of these norms we find∫

Ω
|f | log(e+ |f |) = log(e+ 1)

and ∫
Ω
(e|g| − 1) = e− 1

Then we have the elementary inequality

|f ||g| 6 |f | log(1 + |f |) + e|g| − 1 (1.17)

to conclude that
∫
Ω |f ||g| 6 4 as desired.

To define the dual space, we must assume a doubling condition on P.

P(2t) 6 2βP(t)

for some constant β > 1 and all t > 0.

Theorem 1.4.1. Let (P,Q) be a Hölder conjugate couple of Young func-
tions with P satisfying a doubling condition. Then every bounded linear
functional defined on L P(Ω) is uniquely represented by a function g ∈
L Q(Ω) as

f → 〈f, g〉
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Without a doubling condition the dual of L P(Ω) does not have a nice
description.
If we consider the Hölder conjugate couple

P(t) = t log
1
α (e+ t) Q(t) = et

α − 1

with α > 0, we find that the dual to L log
1
α L (Ω) is the exponential class

Expα(Ω) = L Q(Ω), but not conversely.

Theorem 1.4.2. Let P be an Orlicz function (not necessarily a Young
function) satisfying a doubling condition. Then the space C∞0 (Ω) is dense
in the metric space L P(Ω).

For simplicity, we write Exp(Ω) for Exp1(Ω) as this space will be fre-
quently used.
Thus Exp(Ω) is the dual space to the Zygmund space L log L (Ω).
We can identify the space Expγ with L∞ log L − 1

γ . In this way Proposition
1.3.9 becomes:

Theorem 1.4.3. If 1 6 b < ∞, −∞ < γ < ∞. Let us suppose f ∈ Expγ

and g ∈ L 1,b(log L )
1
γ , then fg ∈ L 1,b.

L log L and Exp have traditionally be regarded as more general Orlicz
spaces, it is neverthless the case that can also be regarded as more general
types of Lorentz spaces.

1.5 BMO-spaces

In this section we will examine the space BMO of functions of bounded
mean oscillation.
Our discussion begins in a local context of a fixed cube Q0 in euclidean space
Rn. If Ω is any measurable set of finite positive measure |Ω| and f is an

integrable function, let us recall that fΩ =
∫

Ω
f(x)dx indicates the integral

mean of f over Ω.

Definition 1.5.1. If f is integrable over Q0, the sharp function f ]
Q0

of f
relative to Q0 is defined by

f ]
Q0

(x) = sup
x∈Q⊂Q0

∫
Q
|f(y)− fQ| dy,
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where the supremum extends over all cubes Q that contain x and are con-
tained in Q0.

The sharp function f ]
Q0

measures locally, at the point x, the average
oscillation of f from its mean value over cubes containing x.

Definition 1.5.2. For a fixed cube Q0 ∈ Rn we will denote by BMO(Q0)
the class of functions f , such that

‖f‖∗,Q0 = sup
Q⊂Q0

∫
Q
|f(x)− fQ| dx (1.18)

is finite, where the supremum taken over all cubes Q ⊂ Q0.

It is clear that (1.18) does not define a norm since it vanishes on constant
functions. However it is easy to verify that BMO(Q0) is a Banach space
under the norm

‖f‖BMO(Q0) = ‖f‖∗,Q0 + ‖f‖L 1(Q0)

Lemma 1.5.3. (John-Nirenberg lemma). Let Q0 be a fixed cube in Rn.
Then there is a constant c such that

[(f − fQ)χQ]∗ (t) 6 c ‖fχQ‖∗,Q log+

(
6|Q|
t

)
, (t > 0),

for all f ∈ BMO(Q0) and all subcubes Q of Q0; equivalently,

|{x ∈ Q : |f(x)− fQ| > λ}| 6 6|Q|exp
{

−λ
c‖fχQ‖∗,Q

}
holds for all λ > 0.

Corollary 1.5.4. Suppose 1 6 p <∞.Then an integrable function f on Q0

belongs to BMO(Q0) if and only if

‖f‖BMOp(Q0) = ‖f‖L 1 + sup
Q⊂Q0

{
1
|Q|

∫
Q
|f(y)− fQ|p dy

} 1
p

is finite. In fact, there is a constant c such that

‖f‖BMO(Q0) 6 ‖f‖BMOp(Q0) 6 c‖f‖BMO(Q0)
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The fact that BMO-functions have singularities whose rate of growth
is at most logarithmic identifies them as members of the Zygmund class
Exp(Q0). Thus we have the following continuous embeddings, (0 < p <∞),

L∞(Q0) ↪→ BMO(Q0) ↪→ Exp(QO) ↪→ L p(Q0)

There is an observation we wish to make. Only BMO(Q0) in the above
embeddings fails to be rearrangement invariant. Hence, the inclusions per-
sists if BMO(Q0) is replaced by the rearrangement-invariant hull, that is,
the space of all BMO-functions and all equimeasurable rearrangement of
BMO-functions.

Let us introduce W (Q0) the rearrangement-invariant hull of BMO(Q0).

Definition 1.5.5. Denote by W = W (Ω) the set of all measurable function
f on Ω for which f∗ is everywhere finite and for which the functional

‖f‖W = sup
t>0

[f∗∗(t)− f∗(t)]

is finite

The following theorem holds

Theorem 1.5.6. Let Q0 be a cube in Rn. Then W (Q0) is the rearrangement-
invariant hull of BMO(Q0), that is, a function f belongs to W (Q0) if and
only if f is equimeasurable with some function g in BMO(Q0).

Corollary 1.5.7. The following inclusions hold for (0 < p <∞),

L∞(Q0) ↪→ BMO(Q0) ↪→W (Q0) ↪→ Exp(QO) ↪→ L p(Q0)

Definition 1.5.8. A locally integrable function f is said to be of bounded
mean oscillation on Rn, in symbols f ∈ BMO(Rn), iff

‖f‖∗ = sup
Q

∫
Q
|f(y)− fQ| dy (1.19)

is finite, where the supremum extends over all cubes Q in Rn.

It is clear that (1.19) does not define a norm since ‖f‖∗ = 0 whenever
f is constant. However, by factoring out the constant functions, that is
considering the quotient space BMO/C, we have the following result
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Proposition 1.5.9. BMO/C is a Banach space under ‖ ‖∗

As on a cube Q0, also in Rn John-Nirenberg lemma holds.

Corollary 1.5.10. (John-Nirenberg lemma) There is a constant c =
c(n) such that the estimate

[(f − fQ)χQ]∗ (t) 6 c ‖f‖∗ log+

(
6|Q|
t

)
(t > 0),

holds for all f ∈ BMO(Rn) and all cubes Q of Q0; equivalently,

|{x ∈ Q : |f(x)− fQ| > λ}| 6 6|Q|exp
{

−λ
c‖f‖∗

}
holds for all λ > 0.

Before providing a more detailed background, let us observe that clearly
L∞(Rn) ⊂ BMO(Rn), and for f ∈ L∞(Rn) we have

‖f‖∗ 6 2 ‖f‖L∞

and it is interesting to remark the following equivalences.
Denote

‖f‖′∗ = sup
Q

inf
c∈R

∫
|f(x)− c| dx, ‖f‖′′∗ =

∫
Q

∫
Q
|f(x)− f(y)| dx dy.

Then
‖f‖′∗ 6 ‖f‖∗ 6 ‖f‖′∗; ‖f‖∗ 6 ‖f‖′′∗ 6 2‖f‖∗.

This means, that in the definition of the BMO-class one can use the mean

oscillation inf
c∈R

∫
|f(x)− c| dx or

∫
Q

∫
Q
|f(x)− f(y)| dx dy.

One reason for the importance of BMO is that it arises as the range of
certain singular operators, acting in L∞. While BMO contains L∞, the
fundamental John Nirenberg lemma shows that it is “slightly ”larger than
L∞.
A consequence of Definition (1.5.8) is the stronger condition

sup
Q

∫
Q
|f(x)− fQ|2 dx 6 A ‖f‖2

∗ < ∞
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which is a corollary of an inequality of John-Nirenberg about functions of
bounded mean oscillation. Their inequality is as follows

|{x ∈ Q : |f(x)− fQ| > α}| 6 exp−cα/‖f‖∗ |Q|, for every α > 0.

We observe that if f ∈ BMO then
∫

Rn

|f(x)
1 + |x|n+1

dx < ∞, and more pre-

cisely ∫
Rn

|f(x)− fQ

1 + |x|n+1
dx 6 A ‖f‖∗

where Q is the cube whose sides have length 1, and is centered at the origin.
There is another delicate observation to make. Bounded functions lie in
BMO(Rn), but they are not dense. For example g(x) = log |x| lies in
BMO(Rn) but cannot be locally approximated by bounded functions near
the origin. Also the C∞0 functions on Rn lie in BMO and they too are not
dense. However, their closure in BMO(Rn) is the space VMO(Rn), those
functions of vanishing mean oscillation.

Let us define the VMO(Ω) space as follows

Definition 1.5.11. Let Ω be an open subset of Rn. We shall say that a
locally integrable function f has vanishing mean oscillation on Ω and write
f ∈ VMO(Ω) if

lim
|Q|→0

1
|Q|

∫
Q
|f − fQ| = 0

uniformly for cubes Q contained in Ω.

There is an observation we wish to make. It is possible to replace balls by
cubes in the above definition yield the same spaces with comparable norms.
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Chapter 2

Maximal function

In this chapter we will introduce the Hardy-Littlewood maximal operator
and we will discuss some techniques related to it.

2.1 Definition and some properties of the maximal
function

Definition 2.1.1. Let f be a locally integrable function on Rn. The Hardy-
Littlewood maximal function Mf of f is defined by

(Mf)(x) = sup
x∈Q

∫
Q
|f(y)| dy, (x ∈ Rn)

where the supremum extends over all cubes Q containing x (here, as through-
out, cubes will be assumed to have their sides parallel to the coordinate axes).
The operator M : f →Mf is called the Hardy-Littlewood operator.

The maximal function takes into account the local, opposed to the point-
wise, behavior of f . It provides the magnitude of f amenable to differen-
tiation and integration theory. Quantitative measurement of magnitude is
most naturally made by expressing the functions as members of L p and
L p,q logα L .

The following properties hold:

1. Mf(x) is measurable in fact {x such that Mf(x) > t} is open.

2. M is sublinear. In fact

M(f + g) 6 Mf +Mg, M(λf) = |λ|Mf

21
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3. f ∈ L 1 ⇒Mf ∈ L 1

We have e.g. that for f = χ[0,1], Mf behaves as 1
x /∈ L 1.

It is worth to underline in this chapter the relevance of Theorem 2.1.9 (see
[BR] for more details). To give a complete proof of it it is necessary to
show some preliminary results. We would like to estimate the size of Mf
for integrable f .

Lemma 2.1.2. If f ∈ L∞ then ‖Mf‖L∞ 6 ‖f‖L∞ .

It will be useful for the sequel to recall the two following theorems

Theorem 2.1.3. Suppose f belongs to M(Ω).Then

inf
f=g+h

{‖g‖L 1 + t‖h‖L∞} =
∫ t

0
f∗(s) ds = tf∗∗(t),

for all t > 0.

Theorem 2.1.4. If f belongs to L 1(Rn), then

t (Mf)∗(t) 6 4n‖f‖L 1 , (t > 0). (2.1)

If g = Mf the estimate (2.1) shows that the areas of the rectangles lying
below the graph of g∗ are uniformly bounded.
This condition that supt t g

∗(t) be finite, is clearly weaker than integrability.
The collection of all such functions is referred to as weak-L 1, being satisfy
for every L 1-function and by non-integrable functions such that 1

|x| .
In other words, we can say that the maximal function Mf is in weak-L 1

whenever f belongs to L 1.

Theorem 2.1.5. (Lebesgue’s differentiation theorem). If f is a locally inte-
grable function on Rn, then

lim
|Q|→0

∫
Q
|f(y)− f(x)| dy = 0, x ∈ Q,

for almost every x in Rn.

Corollary 2.1.6. If f is locally integrable in Rn, then

lim
|Q|→0

∫
Q
f(y) dy = f(x), x ∈ Q,
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Corollary 2.1.7. If f is locally integrable in Rn, then

|f(x)| 6 (Mf)(x) (2.2)

for almost every x ∈ Rn.

Before proceeding further with our study of the maximal function we
shall need a covering lemma. The cover is made up from the collection of
dyadic cubes, i.e., the cubes formed by means of dilatations and contractions
by a factor of two of the basic partition of Rn into unit cubes with vertices
at the lattice points.

Lemma 2.1.8. Let Ω be an open subset of Rn with finite measure. Then
there is a sequence of dyadic cubes Q1, Q2, ..., with pairwise disjoint interiors,
that covers Ω and satisfies

1. Qk ∩ Ωc 6= ∅, (k = 1, 2, ...);

2. |Ω| 6
∞∑

k=1

|Qk| 6 2n|Ω|.

Let us recall that the function f∗∗(t) = 1
t

∫ t
0 f

∗(s) ds is the average of f∗

over the interval (0, t). This is maximal among all averages of f∗ over inter-
vals containing t because f∗ is decreasing. Hence, f∗∗ is the Hardy maximal
function of f∗. It is possible to prove the equivalence of the maximal func-
tion of the decreasing rearrangement and the decreasing rearrangement of
the maximal function.

Theorem 2.1.9. There are constants c and c′, depending only on n , such
that

c(Mf)∗(t) 6 f∗∗(t) 6 c′(Mf)∗(t), (t > 0) (2.3)

for every locally integrable function f on Q (see [H],[BS]).

Proof. Fix t > 0. For the left-hand inequality, we may suppose f∗∗(t) <∞,
otherwise there is nothing to prove. Given ε > 0, by Theorem 2.1.3 there
are functions gt ∈ L 1 and ht ∈ L∞ such that f = gt + ht and

‖gt‖L 1 + t‖ht‖L∞ 6 tf∗∗(t) + ε (2.4)

Then, by Theorem 2.1.4 and Lemma 2.1.2, for any s > 0,

(Mf)∗(s) 6 (Mgt)∗
(s

2

)
+ (Mht)∗

(s
2

)
6
c

s
‖gt‖L 1 + ‖ht‖L∞
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6
c

s
(‖gt‖L 1 + s‖ht‖L∞).

Putting s = t, using (2.4) and letting ε → 0, we obtain the first of the
inequality of (2.3).
For the right-hand inequality in (2.3), we may suppose (Mf)∗(t) < ∞,
otherwise there is nothing to prove.
The lower semicontinuity of Mf ensures that the set

Ω = {x ∈ Rn : (Mf)(x) > (Mf)∗(t)}

is open, and we have |Ω| 6 t because Mf and (Mf)∗ are equimeasurable.
Applying Lemma 2.1.8 we obtain a sequences of cubes Q1, Q2, ..., with pair-
wise disjoint interiors, that cover Ω and satisfy

Qk ∩ Ωc 6= ∅, (k = 1, 2, ...) (2.5)

and ∑
|Qk| 6 2n|Ω| 6 2nt (2.6)

With F = (
⋃

k Qk)c, we set

g =
∑

k

fχQk
, h = fχF

so f = g + h. Then the subadditivity of f → f∗∗ gives

f∗∗(t) 6 g∗∗(t) + h∗∗(t) 6
1
t
‖g‖L 1 + ‖h‖L∞ . (2.7)

Now, by (2.5), each Qk contains a point of Ωc, and at such a point the
maximal function has value at most (Mf)∗(t) because of the way in which
Ω is defined. Thus,

1
|Qk|

∫
Qk

|f(y)|dy 6 (Mf)∗(t), (k = 1, 2, ...).

The L 1-norm of g may be estimate by

‖g‖L 1 =
∑

k

∫
Qk

|f(y)|dy 6
∑

k

|Qk|(Mf)∗(t).

Hence, using (2.6), we have

‖g‖L 1 6 2nt(Mf)∗(t) (2.8)
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On the other hand, the set F is contained in Ωc and so the maximal function
is bounded by (Mf)∗(t) on F . Hence, using (2.2), we have

‖h‖L∞ = ‖fχF ‖L∞ 6 ‖(Mf)χF ‖L∞ 6 (Mf)∗(t).

Combining the last estimate with (2.7) and (2.8), we obtain the right-hand
inequality in (2.3).

This equivalence is useful to establish the boundedness of the maximal
operator on rearrangement-invariant spaces.
To establish the L p-boundedness of the Hardy-Littlewood maximal opera-
tor inequalities (1.7) and (1.8) are crucial.

Theorem 2.1.10. Let 1 < p 6 ∞ and suppose f ∈ L p(Rn) then Mf ∈
L p(Rn) and

‖Mf‖L p(Rn) 6 cp‖f‖L p(Rn)

where c is a constant depending only on p and n.

Proof. Since p > 1, we may use (1.7) with λ = 1
p and q = p. Since

f∗∗(t) ∼ (Mf)∗(t), with c depending only on n,

‖Mf‖L p(Rn) =
(∫ ∞

0
(Mf)∗(t)pdt

) 1
p

6 c

(∫ ∞

0

(
1
t

∫ t

0
f∗(s)ds

)p

dt

) 1
p

6 cp′
(∫ ∞

0
f∗(t)pdt

) 1
p

= cp′‖f‖L p(Rn).

We will study the Hardy-Littlewood maximal function in the several
spaces introduced in the first chapter.
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2.2 Maximal function in Lorentz-Zygmund spaces

Let us introduce some notions related to the interpolation of operators.
We have seen in the above section that the fundamental inequality

(Mf)∗(t) 6 c
1
t

∫ t

0
f∗(s) ds (2.9)

for the Hardy-Littlewood maximal operator M provide the L p-boundedness
of this operator for p > 1 (Theorem 2.1.10).
We want to develop an interpolation theory such that the boundedness from
L p to L q, for intermediate values of p and q will follow by applying the
appropriate Hardy inequalities.

Definition 2.2.1. Suppose 1 6 p0 < p1 6 ∞, 1 6 q0, q1 6 ∞ and q0 6= q1.
Let σ denote the interpolation segment

σ =
[(

1
p0
,

1
q0

)
,

{
1
p1
,

1
q1

}]
,

that is, the line segment in the unit square {(x, y) : 0 6 x, y 6 1} with
endpoints (1/pi, 1/qi),(i = 0, 1). Let m denote the slope

m =
1/q0 − 1/q1
1/p0 − 1/p1

of the line segment σ.
Consider for each measurable function f on (0,∞) and each t > 0

(Sσf)(t) = t−1/q0

∫ tm

0
s1/p0f(s)

ds

s

+t−1/q1

∫ ∞

tm
s

1
p1 f(s)

ds

s
.

The operator Sσ : f → Sσf is the Caldéron operator associated with the
interpolation segment σ

Let us give the definition of operator of joint weak type (p0, p1, q0, q1)

Definition 2.2.2. Suppose 1 6 p0 < p1 6 ∞ and 1 6 q0, q1 6 ∞ with
q0 6= q1. Let T be a quasilinear operator and suppose Tf is defined for all
functions f for which

Sσ(f∗)(1) =
∫ 1

0
s1/p0f∗(s)

ds

s
+
∫ ∞

1
s1/p1f∗(s)

ds

s
(2.10)
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Then T is said to be of joint weak type (p0, q0; p1, q1) if there is a constant c
such that

(Tf)∗(t) 6 c Sσ(f∗)(t), (0 < t <∞)

for all f satisfying (2.10)

Recalling inequality (2.9) it is easy to verify that the Hardy-Littlewood
maximal operator M is an operator of joint weak type (1, 1;∞,∞).

We can apply the following theorem (for more details see [BR] and [BS]):

Theorem 2.2.3. Suppose 0 < p < r 6 ∞ and 0 < q, s 6 ∞ with q 6= s. Let
T be a quasilinear operator of weak type (p, q; r, s). Suppose 0 < θ < 1 and
let

1
u

=
1− θ

p
+
θ

r
,

1
v

=
1− θ

q
+
θ

s

Suppose 0 < a 6 ∞, −∞ < α <∞. Then

T : L u,a(log L )α → L v,a(log L )α.

Since M the Hardy-Littlewood maximal operator is an operator of joint
weak type (1, 1;∞,∞)

M : L u,a(log L )α → L u,a(log L )α, u > 1

Moreover it is possible to establish the L p,q(log L )α-boundedness of the
Hardy-Littlewood maximal operator.

Lemma 2.2.4. If p > 1, and 1 6 q 6 ∞, −∞ < α <∞ then

M : L p,q(log L )α → L p,q(log L )α

is a bounded operator.

Now, it is interesting to study the case p = 1.
Let us introduce the definition of maximal function relative to a cube.

Definition 2.2.5. Let f be locally integrable and let Q be a cube on Rn.
The Hardy-Littlewood maximal function MQf of f relative to Q, or simply,
the Q-maximal function on f , is defined by

(Mf)Q(x) = sup
x∈Q′⊂Q

∫
Q′
|f(y)| dy
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where the supremum extends over all cubes Q′ that contain x and are
contained in Q. The following lemma holds for the Zygmund spaces:

Lemma 2.2.6. For 0 < α 6 1, f ∈ L log L α(Q) if and only if MQf ∈
L (log L )α−1(Q). In particular there exists c = c(n, α) such that∫

Q
|f | logα

(
e+

|f |
|f |Q

)
dx 6 c

∫
Q
MQf logα−1

(
e+

MQf

|f |Q

)
dx

To prove our main result (Proposition 2.2.8) let us state the following
lemma, contained in [BR].

Lemma 2.2.7. Suppose 0 < ν < ∞, let ψ be a nonnegative decreasing
function on (0, 1) and fix t with 0 < t < 1.
If 1 6 r 6 ∞, then(∫ t

0
[sνψ(s)]r

ds

s

) 1
r

6 c

∫ t

0
sνψ(s)

ds

s
(2.11)

Remark. Let us observe that if −s+ 1
r > 0 we have for any t satisfying

0 < t < 1 (
log

1
t

)−sr+1

= (−sr + 1)
∫ 1

t

(
log

1
u

)−sr du

u

Proposition 2.2.8. If r > 1, 0 6 s < 1
r and MQf ∈ L 1,r(log L )−s then

f ∈ L 1,r(log L )−s+ 1
r

Proof. Let us assume, for simplicity, |Q| = 1. By Definition 1.2.1 and rela-
tion (1.11), we have

‖f‖
L 1,r(log L )−s+1

r
=
{∫ 1

0

[
t(1− log t)−s+ 1

r f∗(t)
]r dt

t

} 1
r

6

6 c

{∫ 1

0
[tf∗(t)]r

(
log

1
t

)−sr+1 dt

t

} 1
r

=

= c

{∫ 1

0
[tf∗(t)]r

[∫ 1

t

(
log

1
u

)−sr du

u

]
dt

t

} 1
r

=

= c

{∫ 1

0

(
log

1
u

)−sr (∫ u

0
[tf∗(t)]r

dt

t

)
du

u

} 1
r

.
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Using Lemma 2.2.7, the last term is dominated by

c

{∫ 1

0

(
log

1
u

)−sr (∫ u

0
tf∗(t)

dt

t

)r du

u

} 1
r

=

= c

{∫ 1

0

(
log

1
u

)−sr

ur

(
1
u

∫ u

0
f∗(t) dt

)r du

u

} 1
r

=

= c

{∫ 1

0

(
log

1
u

)−sr

ur (f∗∗(u))r du

u

} 1
r

.

By Theorem 2.1.9, we can conclude

‖f‖
L1,r(log L)−s+1

r
6 c

{∫ 1

0

[(
log

1
u

)−s

u(MQf)∗(u)

]r
du

u

} 1
r

=

= c‖MQf‖L 1,r(log L )−s <∞.

If we are dealing with Lorentz spaces, Proposition 2.2.8 becomes

Corollary 2.2.9. If r > 1 and MQf ∈ L 1,r then f ∈ L 1,r(log L )
1
r .

We can also introduce a more general definition of maximal function.

Definition 2.2.10. Let Q0 be a cube in Rn and s > 1. The Hardy-Littlewood
maximal function of f : Q0 → R is defined by the rule

(Msf)(x) = sup
x∈Q⊂Q0

(∫
Q
|f |s
) 1

s

, x ∈ Q0

we shall conveniently discard the subscript s = 1. Now consider a con-
tinuous function A : [0,+∞) → [0,+∞) satisfying:

1. doubling condition: there exists k > 0 such that A (2t) 6 kA (t) for
any t > 0.

2. growth condition: for some p > 1 the function t −→ A (t)
tp is increasing.

Lemma 2.2.11. If the above conditions hold and A (|f |) ∈ L 1(Q0), then∫
Q0

A (Msf) 6 c0

∫
Q0

A (|f |) (2.12)

for all 1 6 s < p, where c0 = c0(n, p, s, k).
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2.3 Maximal function in Orlicz spaces

We shall give a brief review of maximal inequalities in Orlicz spaces. This
approach leads to the theory of higher integrability of functions.

Proposition 2.3.1. (Maximal inequality) Given an Orlicz function Φ we
define

Ψ(t) = Φ(t) + t

∫ t

0
s−2Φ(s)ds (2.13)

where
∫ 1
0 s

−2Φ(s)ds <∞. Then for each measurable function h we have

‖h‖Ψ 6 3n ‖Mh‖Φ (2.14)

and ∫
Ω

Φ(Mh) dx 6 2 · 3n

∫
Ω

Ψ(2h) dx (2.15)

Moreover, we do not gain any higher integrability if the function t→ t−pΦ(t)
is increasing for some p > 1. In this case

Φ(t) 6 Ψ(t) 6
p

p− 1
Φ(t)

and we have the following asymptotically sharp bound for p near 1:

‖Mh‖Φ 6
4 · 3np

p− 1
‖h‖Φ

This proposition is a generalization of the result of Stein [S] which assert
that Mh ∈ L 1(Ω) if and only if h ∈ L log L (Ω). In fact it is sufficient to
set Φ(t) = t log(e+ t), we find the following precise inequalities:

1
3n+2

∫
Ω
Mh 6

∫
Ω
|h| log

(
e+

|h|
|h|Ω

)
6 2n

∫
Ω
Mh

To observe a regularity phenomenon of a Borel measure as well as the higher
integrability of L 1 functions, one really must assume that Mh(x) lies in a
Orlicz space L Φ, with Φ not too far from the identity function. The un-
expected twist is that such measures have no singular part with respect to
Lebesgue measure and, therefore, are presented by locally integrable func-
tions.
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2.4 Maximal function in BMO spaces

By Definition 2.2.5 certain estimates for the sharp function are easy to come
by. It is clear that

f ]
Q0

(x) 6 2MQ0f(x), (x ∈ Q0), (2.16)

where MQ0 is the Q0-maximal operator.
In particular MQ0f 6 Mf , it follows from Theorem 2.1.9 that

(f ]
Q0

)∗(t) 6 cf∗∗(t), (0 < t <∞), (2.17)

for every integral function f supported on Q0.
The inequalities (2.16) and (2.17) cannot be reverse since there are un-
bounded functions f whose sharp functions are bounded (for example f(x) =
| log |x||, for −1 6 x 6 1) . Nevertheless there is an inequality in the oppo-
site direction to (2.17) when the quantity f∗∗ is replaced by f∗∗ − f∗.
The following theorem holds

Theorem 2.4.1. Let f be an integrable function supported on a cube Q0.
Then

f∗∗(t)− f∗(t) 6 c(f ]
Q0

)∗(t),
(

0 < t <
|Q0|
6

)
.

(for the proof see [BS]).

Lemma 2.4.2. Let Q0 be a cube in Rn and suppose f ∈ BMO(Q0).If Q is
any subcube of Q0, then

(MQ0f)Q 6 c‖f‖∗,Q0 + inf
Q
MQ0f,

where c is a constant independent of f .

This lemma implies that MQ0 is a bounded operator on BMO(Q0). This
lemma implies a stronger result.

Let us define the BLO(Rn) class of function f with bounded lower oscil-
lation. This class consists of all locally summable functions f which are
locally essentially bounded from below and such that

‖f‖BLO = sup
Q
L(f ;Q) < ∞
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Here the supremum is taken over all cubes Q ⊂ Rn, and

L(f ;Q) =
1
|Q|

∫
Q
f(x)dx− ess inf

x∈Q
f(x)

Actually, Mf acts from BMO to BLO.

Theorem 2.4.3. Let f ∈ BMO(Q0), where Q0 ⊂ Rn is a cube. Then
Mf ∈ BLO and

‖Mf‖BLO 6 C ‖f‖∗

where the constant C depends only on the dimension n.
The following inclusions hold

L∞(Q0) ⊂ BLO(Q0) ⊂ BMO(Q0)

Theorem 2.4.4. The Hardy-Littlewood maximal operator MQ0 is a bounded
operator on BMO(Q0). Furthermore, MQ0 maps BMO(Q0) into BLO(Q0).

Remark. The space BLO(Q0) is exactly the range of the maximal
operator MQ0 on BMO(Q0).

2.5 Maximal operator on distributions

We shall rely on one particular approximation of the identity. That is, we
fix a radially symmetric function Φ ∈ C∞0 (Rn) supported in the unit ball
and having integral 1.
For example

Φ = C(n)

{
exp 1

|x|2−1
if |x| < 1;

0 if |x| ≥ 1
(2.18)

where the constant C(n) is chosen so that
∫
φ(x)dx = 1. For each t > 0, we

consider a parameter approximation to the Dirac mass Φt(x) = t−nΦ(x
t ).

Given h ∈ L 1
loc(Ω), we recall the mollifiers

(h ∗ Φt) =
∫

Ω
Φt(x− y)h(y)dy

whenever 0 < t < dist(x, ∂Ω). So we can extend the mollification to
Schwartz distribution h ∈ D

′
(Ω) as follows

(h ∗ Φt) = h[Φt(x− ·)]
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where we remark that the function y → Φt(x − y) belongs to C∞0 (Ω) for
0 < t < dist(x, ∂Ω).
Then the associated maximal function of h can be defined as

MΩh(x) = sup{|h ∗ Φt(x)| : 0 < t < dist(x, ∂Ω)}

and for Ω = Rn

Mh(x) = sup{|h ∗ Φt(x)| : t > 0}

This maximal function works well in connection with H 1-spaces defined in
chapter (5).
Let us compare the maximal functionMh with the classical Hardy-Littlewood
operator Mh.
If Ω is a cube

Mh(x) 6 C(n)Mh(x) for all x ∈ Ω

Indeed, for 0 < t < dist(x, ∂Ω) the function y → Φt(x − y) is supported in
the ball B(x, t) ⊂ Q(x, t) ⊂ Ω. Thus

(h ∗ Φt)(x) 6 CnMΩh

A reverse is also true locally. In fact if we consider σ = σ(n) = (1/
√

64n) < 1
and the cube σΩ which has the same center as Ω but is reduced σ times in
size. Then we have

MσΩh 6 c(n)MΩh

for all x ∈ σΩ. Indeed for t = 4
√
n|Q|1/n and all y ∈ Q we obtain∣∣∣∣x− y

t

∣∣∣∣ 6 √
n|Q|1/n

t
6

1
4
.

Hence

Φt(x− y) =
1
tn

Φ
(
|x− y|
t

)
≥ exp(−4/3)

4nnn/2|Q|
≥ C(n)

|Q|

But t < dist(x, ∂Ω). We apply the definition of maximal function MΩh to
obtain the reverse inequality.



34 CHAPTER 2. MAXIMAL FUNCTION



Chapter 3

Jacobian of Orientation
Preserving Mappings

3.1 Introduction

In higher dimensions there are many example of nonlinear differential ex-
pressions. Most familiar is the Jacobian determinant. Consider a smooth
mapping f = (f1, f2, ..., fn) : Ω → Rn defined on an open region Ω ⊂ Rn,
briefly f ∈ C∞(Ω,Rn). Its differential, sometimes called the gradient ma-
trix, consists of the first order partial derivatives of the coordinates functions.

Df =



∂f1

∂x1

∂f1

∂x2
... ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
... ∂f2

∂xn

∂fn

∂x1

∂fn

∂x2
... ∂fn

∂xn


The determinant of this matrix is called Jacobian of f . We reserve several
different symbols to denote the Jacobian, most commons are

J(x, f) = det[Df(x)] =
∂(f1, f2, ..., fn)
∂(x1, x2, ..., xn)

The Jacobian function occurs in many different contests such as geomet-
ric theory of measure and integration, the mapping degree theory, quasicon-
formal analysis, nonlinear elasticity, etc...
Most often the expression J(x, f) serves us as a volume element on Ω, which

35
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in conjunction with the formula

J(x, f) dx = df1 ∧ ... ∧ dfn = d(f1 df2 ∧ ... ∧ dfn)

leads, via integration by parts, to important estimates.
In order to make use of these properties it was necessary to integrate the
Jacobian, thus the usual hypothesis was f ∈ W 1,n

loc (Ω,Rn).There arise a nat-
ural question: under what condition on f is the Jacobian function locally
integrable? There is no reason to expect that the degree of integrability of
J(x, f) is different from that of |Df |n. This idea followed from the inequal-
ity of Hadamard |J | 6 |Df1| |Df2|...|Dfn|, this implies that if f ∈ W 1,n

certainly J ∈ L 1 .
Surprisingly, just one condition that J(x, f) does not change the sign in Ω,
implies the higher integrability of the Jacobian.
It is worth pointing out that the starting point in the theory of the regular-
ity of the Jacobian is the celebrated result due to S. Müller [M] that for an
orientation preserving mapping

1. |Df | ∈ L n(Ω), then J ∈ L log L (K) for any K compact subset of Ω
(see also [CLMS]).

In [IS] T.Iwaniec and C.Sbordone proved that

2. if |Df | ∈ L n(log L )−1(Ω), then J ∈ L 1
loc(Ω).

In [BFS], H.Brézis, N.Fusco and C.Sbordone interpolated between 1)
and 2) by proving that

3. if |Df | ∈ L n(log L )−α(Ω), 0 6 α 6 1, then J ∈ L (log L )1−α(K),
for any K compact subset of Ω.

The spaces L n(log L )−α(Ω), L (log L )1−α(Ω) for 0 6 α < 1 are Orlicz
spaces generated respectively by the Young functions

χ(t) = tn log−α(e+ t)

Θ(t) = t log1−α(e+ t)

It is possible to generalize these results as follows (see for more details
([MO])).
If |Df | belongs to the Orlicz space L χ(Ω), where χ(t) is a Young function
such that

atn log−1(e+ t) 6 χ(t) ∀t > t0
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with a > 0, t0 > 0, and if Θ(t) is defined by

Θ(t)
t

∼
∫ t

1

χ′(s1/n)
s2−1/n

ds

where ∼ denotes the usual equivalence notation between convex real func-
tions,then J ∈ L Θ(K) for any compact subset of Ω.

An important tool to prove these results, is the following estimate, proved
by T. Iwaniec and C. Sbordone in [IS]∫

K
J(x, f) dx 6 c(n,K)

∫
Ω

|Df |n

log(e+ |Df(x)|
|Df(x)|Ω )

dx

when K is any compact subset of Ω and |Df |Ω denotes the integral mean of
|Df | over Ω. It can be viewed as dual to Müller’s result.
At this point it became clear that the improved integrability property of the
Jacobian could be observed in Orlicz-Sobolev spaces near W 1,n

loc (Ω,Rn). To
illustrate, we mention the inequality by H.Brezis, N.Fusco and C.Sbordone
[BFS]∫

K
J(x, f) log1−α

(
e+

|J(x, f)|
|J |K

)
dx 6 c(n,K)

∫
Ω

|Df(x)|n

logα(e+ |Df(x)|
|Df(x)|Ω )

dx

for all α ∈ [0, 1], which was extended to all α ∈ R by L. Greco [G].
As a matter of fact, under the above hypothesis of Iwaniec and Sbordone,
the Jacobian is even slightly higher integrable.
Indeed, G. Moscariello, in [MO], proved that J(x, f) lies in L log log Lloc(Ω).
Subsequently L.Greco, T.Iwaniec and G. Moscariello proved that il |Df(x)|n ∈
L P with P a log-convex function and if J > 0 then J ∈ L Υ where
Υ(t) = P(t) + t

∫ t
0
P(s)
s2 ds.

However these results are only a part of a more general spectrum about
estimates of Jacobians.
In this spirit following the results above, we can realize is quite natural to
study the Jacobians in more special spaces. As suggested in [BFS], it is inter-
esting to study the regularity of the Jacobian when Df belongs to Lorentz
spaces . It appears that to get positive results one cannot rely only on these
spaces but it is forced to encode the theory in the Lorentz-Zygmund spaces.

In [BFS] it is proved that if the Jacobian J of a mapping f = (f1, ..., fn) ∈
W 1,1(Ω,Rn) is nonnegative, and if |Df |n ∈ L 1, q

n with 1 < q
n < ∞, then
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we have MQJ ∈ L
1, q

n
loc (Q) where MQ is the maximal operator defined in

Chapter 2.
Many properties of the Jacobian may be emphasized writing J as diver-
gence of a vectorial field. Let us consider f ∈ C 2(Ω,Rn); developing detDf
according to the last row, we have

detDf =
n∑

j=1

∂fn

∂xj
adjnj

Df

where we denote by adjij the algebraic complement of the element (i, j) in
the gradient matrix Df . With this notation it is possible to write

detDf = Dfn ·B.

With a direct calculation it is easy to prove that divB = 0. These tech-
niques will be examined carefully in Section (3.3).

3.2 Regularity result

Let us state an important lemma in the framework of Lorentz-Zygmund
spaces.

Lemma 3.2.1. If g ∈ L p,q(log L )α, 1 6 p < q and α > −1
q then

lim
ε→0

ε
1
p

∫
Ω
|g|p−ε(x)dx = 0. (3.1)

Proof. By applying Theorem 1.3.2, we have that L p,q(log L )α ⊆ L p(log L )−
1
p

then the lemma follows from the result in [BFS] which implies that for
g ∈ L p(log L )−s(Ω), 0 < s 6 1 we have

lim
ε→0

εs
∫

Ω
|g|p−ε(x)dx = 0.

(see for more details [G1])

Theorem 3.2.2. If |Df |n ∈ L 1, q
n (log L )−s(Ω), J > 0, and 0 6 s < n

q 6 1

then J ∈ L 1, q
n (log L )−s+n

q (K) for any K compact subset of Ω.
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Proof. For f ∈ W 1,n−ε(Ω,Rn), −∞ < ε < 1 and Q ⊂ Q0/2, Q0 a cube
contained in Ω we have

∫
Q
|Df1|−εJ(x, f) 6 c(n) | ε |

∫
2Q
|Df |n−ε + c(n)

[∫
2Q
|Df |

n(n−ε)
(n+1)

]n+1
n

.

This inequality firstly proved in [IS], was then extended to more general
cases in [GIOV] and [G2].
Since, by Theorem 1.3.2, L 1, q

n (log L )−s ⊂ L (log L )−1 we can pass to the
limit as ε → 0 in the above inequality and use Lemma 3.2.1 to obtain, for
any cube Q ⊂ Q0

2 ∫
Q
J 6 c(n)

[∫
2Q
|Df |

n2

n+1

] (n+1)
n

and therefore for almost every x ∈ Q0/2 we have

MQ0/2J(x) 6 c(n)
[
MQ0(|Df |

n2

n+1 )(x)
] (n+1)

n

(3.2)

Since |Df |n ∈ L 1, q
n (log L )−s, then |Df |n2/(n+1) belongs to the Lorentz-

Zygmund space L (n+1)/n,q(n+1)/n2
(log L )−s n

n+1 and then by Lemma 2.2.4
MQ0(|Df |n

2/(n+1)) belongs to the same space.

From this it follows that
[
MQ0(|Df |n

2/(n+1))
]n+1/n

and alsoMJQ0/2 belongs

to L 1, q
n (log L )−s(Q0/2).

Finally from Proposition 2.2.8 we deduce that J ∈ L 1, q
n (log L )−s+n

q (K)
for any compact K ⊂ Ω.

Remark. Following the same ideas of [BFS] if we consider the function

f(x) =
x

|x|
| log |x||−

1
q (log | log |x||)−1/n

where |x| < a < 1, n < q then it is easy to check that

|Df | ∈ L n,q (3.3)

and J 6∈ L (log L )
n
q as it was reasonable to expect.

Actually, by elementary calculation, we can prove that locally

J ∈ L 1, q
n (log L )

n
q . (3.4)
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Verification of (3.3). It is easy to check that |Df | is equivalent to

(1/|x|)| log |x||−
1
q (log | log |x||)−

1
n

then the claim follows since∫ a

0

[
1

| log r|
1
q (log | log r|)

1
n

]q
dr

r
<∞.

Verification of (3.4). We can remark that J is equivalent to

(1/|x|n)| log |x||−1−n/q(log | log |x||)−1

then, since by our assumption 1 − q
n < 0, the claim follows thanks to the

fact that

‖ J ‖
q
n

L 1,
q
n (log L )

n
q
'
∫ a

0

[
1

| log r| log | log r|

] q
n dr

r
<∞.

3.3 Div-curl fields

Let us assume that Ω is a cube in Rn and σΩ a cube of the same center as
Ω but σ times smaller than Ω, for 0 < σ 6 1.
If B : Ω → Rn, E : Ω → Rn are integrable vector fields on Ω such that

div B =
n∑

i=1

∂Bi

∂xi
= 0

curl E =
(
∂Ei

∂xj
− ∂Ej

∂xi

)
i,j=1...n

= 0

in the sense of distribution, the scalar product 〈E,B〉 is referred to as a
div-curl product.
Let us state this useful lemma

Lemma 3.3.1. Let 〈B,E〉 be a nonnegative div-curl product such that B ∈
L p log−1 L (Ω,Rn) and E ∈ L q log−1 L (Ω,Rn) with 1 < p, q <∞, 1

p + 1
q =

1. Then for any 0 < σ < 1∫
σΩ
〈B,E〉 dx 6 c

(∫
Ω
|B|r

) 1
r
(∫

Ω
|E|s

) 1
s

where 1
r + 1

s = 1 + 1
n , 1 6 r 6 p , 1 6 s 6 q and c = c(n, p, q).
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Theorem 3.3.2. Let B ∈ L p,a(log L )−
1
γ (Ω,Rn), E ∈ L q,b(log L )−

1
γ (Ω,Rn),

where 1
p + 1

q = 1, a > p and b > q if 1
θ = 1

a + 1
b and 0 6 2

γ < 1
θ < 1, then

〈B,E〉 ∈ L 1,θ(log L )−
2
γ
+ 1

θ (σΩ,Rn).

Furthermore

‖ 〈B,E〉 ‖
L 1,θ(log L )

−2 1
γ +1

θ (σΩ)
6 c‖ |B| ‖

L p,a(log L )
− 1

γ (Ω)
‖ |E| ‖

L q,b(log L )
− 1

γ (Ω)

If a > p, b > q and 1
γ < 1, then

|B| ∈ L p(log L )−1(Ω)

and
|E| ∈ L q(log L )−1(Ω)

We are under the hypothesis of Lemma 3.3.1 and there is a constant c =
c(n, p, q) such that for any cube σΩ ⊂ Ω∫

σΩ
〈B,E〉 dx 6 c

(∫
Ω
|B|r

) 1
r
(∫

Ω
|E|s

) 1
s

(3.5)

where r,s are any numbers such that 1 6 r 6 p, 1 6 s 6 q, 1
r + 1

s = 1+ 1
n . If

we denote by M the local maximal function associated to the cube σΩ ⊂ Ω
and by M the maximal function in Ω this inequality yields:

M(〈B,E〉) 6 c [M|B|r]
1
r [M|E|s]

1
s

pointwise in σΩ. Here the constant depends on σ. Applying Lemma 2.2.4
[M|B|r]

1
r ∈ L p,a(log L )−

1
γ (Ω) and [M|E|s]

1
s ∈ L q,b(log L )−

1
γ (Ω). Then

applying Proposition 1.3.8 we have that M(〈B,E〉) ∈ L 1,θ(log L )−
2
γ (σΩ).

Then applying Proposition 2.2.8 with r = θ and s = 2
γ we have that 〈B,E〉 ∈

L 1,θ(log L )−
2
γ
+ 1

θ (σΩ). Furthermore the inequality yields

‖〈B,E〉‖
L 1,θ(log L )

− 2
γ +1

θ (σΩ)
6 c‖M〈B,E〉‖

L 1,θ(log L )
− 2

γ (σΩ)
(3.6)

By (1.12) and Lemma 2.2.4

‖ 〈B,E〉 ‖
L 1,θ(log L )

− 2
γ +1

θ (σΩ)
6 c‖M 〈B,E〉 ‖

L 1,θ(log L )
− 2

γ (σΩ)

6 c‖ [M|B|r]
1
r [M|E|s]

1
s ‖

L 1,θ(log L )
− 2

γ (Ω)

6 c‖ [M|B|r]
1
r ‖

L p,a(log L )
− 1

γ (Ω)
‖ [M|E|s]

1
s ‖

L q,b(log L)
− 1

γ (Ω)

6 c‖|B|‖
L p,a(log L )

− 1
γ (Ω)

‖|E|‖
L q,b(log L )

− 1
γ (Ω)
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3.4 Div-curl fields coupled by the distortion in-
equality

Let us introduce another definition which will be generalized in the following
section for div-curl couple

Definition 3.4.1. A mapping f : Ω → Rn is said to have finite distortion
if

1. f ∈ W 1,1
loc (Ω,Rn)

2. The Jacobian determinant of f is locally integrable and does not change
sign in Ω

3. there is a measurable function K0 = K0(x) > 1 finite almost every-
where, such that f satisfies the distortion inequality

|Df(x)|n 6 K0(x)|J(x, f)| a.e. Ω (3.7)

Assumptions 1. 2. and 3. are not enough to imply f ∈ W 1,n
loc (Ω,Rn)

unless of course K0 is a bounded function.
We shall investigate the degree of integrability of a class of div-curl fields
〈B,E〉 which are coupled by the distortion inequality:

|B|p

p
+
|E|q

q
6 k(x) 〈B,E〉 a.e. in Ω (3.8)

where 1 6 k(x) < ∞ is a measurable function in Ω and 1 < p, q < ∞ are
conjugate Hölder exponents, p+ q = pq.
We shall assume

〈B,E〉 ∈ L 1,θ(Ω) (3.9)

Theorem 3.4.2. Let F = 〈B,E〉 be a div-curl field verifying (3.8) and
(3.9).
If k(x) ∈ Expγ(Ω) for some γ > θ then B ∈ L p(log L )λ(Ω,Rn) and E ∈
L q(log L )λ(Ω,Rn) for any λ > 0, locally.
Furthermore

‖ |B|p + |E|q ‖
L 1,θ(log L )

λ− 1
γ (σΩ)

6 c‖〈B,E〉‖
L 1,θ(log L )λ− 1

θ (Ω)
(3.10)

Proof. Since 〈B,E〉 ∈ L 1,θ(Ω), by (3.8) and Lemma 1.3.3 we deduce that
|B| ∈ L p,θp(log L )−

1
γp (Ω) and |E| ∈ L q,θq(log L )−

1
γq (Ω).
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Since γ > θ,certainly |B| ∈ L p(log L )−1(Ω) and |E| ∈ L q(log L )−1(Ω).
Therefore, we may apply inequality (3.5) and following the same argument
of Theorem 3.3.2 we deduce that 〈B,E〉 ∈ L 1,θ(log L )−

1
γ
+ 1

θ (σΩ).
Again from distortion inequality using the fact that K(x) ∈ Expγ we obtain

that |B| ∈ L p,θp(log L )
1
θp
− 2

θp (σΩ) and |E| ∈ L q,θq(log L )
1
θq
− 2

θq (σΩ).Let
use mathematical induction to deduce that 〈B,E〉 ∈ L 1,θ(log L )m( 1

θ
− 1

γ
)(σΩ)

for any integer m and then 〈B,E〉 ∈ L 1,θ(log L )λ(σΩ) for any λ > 0. The
estimate (3.10) can be deduced by distortion inequality arguing as in The-
orem 3.3.2.

A motivation for this type of inequality arises from the study of the
p-harmonic equation

div |∇u|p−2∇u = 0 (3.11)

In fact, setting E = ∇u and B = |∇u|p−2∇u we obtain

|E|p

p
+
|B|q

q
= 〈B,E〉
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Chapter 4

A Divergence free vector:
the ∞-Laplacian

4.1 Introduction

This chapter is concerned with various linear and nonlinear PDEs whose
prototype is the p-harmonic equation

div
(
|∇u|p−2∇u

)
= 0, 1 < p <∞ (4.1)

The focus is on the limiting case as p approaches ∞, referred to as the
∞-Laplacian

∆∞u = 2
n∑

i j=1

uxiuxj

|∇u|2
∂2u

∂xi∂xj
.

Upon multiplication by a suitable function λ = λ(∇u) it is possible to ex-
press this operator in divergence form. There may be several such functions
λ = λ(∇u), called divergencefactors. Writing the ∞-Laplacian in diver-
gence form allows to speak of weak ∞-harmonic functions in the Sobolev
class W 1,2

loc (Ω).

4.2 Divergence factors and integrating fields

In this chapter it is interesting to underline that dealing with nonlinear par-
tial differential equations, it is often convenient to write them in divergence
form. Consider, for example, the question of the domain of definition of a
given nonlinear differential operator. Expressing this operator in a diver-
gence form, makes one derivative dispensable in the definition of its domain.

45
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Naturally, there may exist many divergence forms of an operator, leading
to different domains of definition. A typical example is furnished by the
Hessian determinant in two variables:

detHu = det
[
uxx uxy

uxy uyy

]
= uxxuyy − uxyuxy for u ∈ W 2,2

loc (Ω)

= (uxuyy)x − (uxuxy)y for u ∈ W
2,4/3

loc (Ω)

= 1
2(uuxx)yy + 1

2(uuyy)xx − (uuxy)xy for u ∈ W 2,1
loc (Ω)

= (uxuy)xy − 1
2(uxux)yy − 1

2(uyuy)xx for u ∈ W 1,2
loc (Ω)

(4.2)
In another example, the reader may try to verify the following identity for
the Gaussian curvature of a surface z = u(x, y) in R3,

Ku =
uxxuyy − uxyuxy

(1 + u2
x + u2

y)2
=

det Hu
(1 + |∇u|2)2

(4.3)

First notice that Ku is none other than the Jacobian determinant of the
mapping

(A,B) =

 ux√
1 + u2

x + u2
y

,
uy√

1 + u2
x + u2

y

 , (4.4)

K = AxBy −AyBx. (4.5)

We can express Ku in divergence form using two different formulas

K = (ABy)x − (ABx)y = (AxB)y − (AyB)x (4.6)

This leads us to two different divergence forms of the curvature

K = div F. (4.7)

The so-called integrating field F = (F 1, F 2) can be expressed as
F 1 =

ux

(1 + u2
x + u2

y)2
[
(1 + u2

x)uyy − uxuyuxy

]
F 2 = − ux

(1 + u2
x + u2

y)2
[
(1 + u2

x)uxy − uxuyuxx

] (4.8)



4.3. THE P -LAPLACIAN 47

or 
F 1 = − uy

(1 + u2
x + u2

y)2
[
(1 + u2

y)uxy − uxuyuyy

]
F 2 =

uy

(1 + u2
x + u2

y)2
[
(1 + u2

y)uxx − uxuyuxy

] (4.9)

Adding up these two solutions we gain a symmetry with respect to x and y.
Namely,

2K = (ABy −AyB)x + (AxB −ABx)y (4.10)

2F =
(
uxuyy − uyuxy

1 + u2
x + u2

y

,
uyuxx − uxuxy

1 + u2
x + u2

y

)
(4.11)

One interesting outcome of this calculation is that the Gaussian curvature
can be defined for surfaces parameterized by functions in W 2,1

loc (Ω). Such
parametrizations have integrating factors F ∈ L 1

loc(Ω,Rn).

4.3 The p-Laplacian

The p-harmonic equation

div |∇u|p−2∇u = 0 (4.12)

is the Euler-Lagrange equation of the variational integral

Ep[u] =
1
p

∫
Ω
|∇u(x)|pdx 1 < p <∞. (4.13)

That is why the Sobolev space W 1,p(Ω) is viewed as the natural domain of
definition of this equation. However, this equation can also be expressed
as a fully non-linear equation, in nondivergence form, by carrying out the
differentiation

|∇u|2∆u+ (p− 2)
n∑

i = 1

n∑
j =1

uxiuxjuxixj = 0. (4.14)

We are looking for a solution in W 1,r with r < p (very weak solutions).
The border line exponents p = 1 and p = ∞ can also be considered. We

set

∆∞u
def== 2

n∑
i,j=1

uxiuxj

|∇u|2
∂2u

∂xi∂xj
=

2
|∇u|2

Tr (∇u⊗∇u)Hu
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and

∆1u
def== 2

n∑
i,j=1

(
δj
i −

uxiuxj

|∇u|2

)
∂2u

∂xi∂xj
=

2
|∇u|2

Tr (|∇u|2I −∇u⊗∇u)Hu

The p-Laplacian is then a linear combination of ∆1 and ∆∞,

∆p = 1
p∆1 + p−1

p ∆∞.

More explicitly we have

∆pu =
2
p

n∑
i,j=1

(
δj
i + (p− 2)

uxiuxj

|∇u|2

)
∂2u

∂xi∂xj

=
2

p|∇u|2
Tr
(
|∇u|2I + (p− 2)∇u⊗∇u

)
Hu.

Thus, the scalar function λ = |∇u|p−2 is a divergence factor of ∆pu. Pre-
cisely we have

|∇u|p−2∆pu =
2
p

div|∇u|p−2∇u (4.15)

The corresponding integrating field equals F(V ) = |V |p−2V . Indeed,

DF = |V |p−2

(
I + (p− 2)

V ⊗V
|V |2

)
(4.16)

4.4 The p-harmonic equation in the plane

The class of divergence factors is particularly rich in two dimensions due to
the complex structure in R2 ∼= C = {z = x + ıy, x, y ∈ R}. Let Ω be an
open subset of the complex plane. A function u ∈ C 2(Ω) is:

• ∞-harmonic if

1

2
|∇u|2∆∞u = uxx u

2
x + 2uxy uxuy + uyy u

2
y = 0, (4.17)

• 1-harmonic if

1

2
|∇u|2∆1u = uxx u

2
y − 2uxy uxuy + uyy u

2
x = 0, (4.18)

and
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• p-harmonic if

1

2
|∇u|2∆pu = 1

p
|∇u|2∆u+

(
1− 2

p

)
(uxx u

2
x + 2uxy uxuy + uyy u

2
y) = 0.

(4.19)

We shall make use of the Cauchy-Riemann derivatives

∂

∂z
=

1
2

(
∂

∂x
− ı

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
+ ı

∂

∂y

)
(4.20)

and the complex gradient of u, which is defined by

f(z) = uz = 1
2 (ux − ı uy) .

Since

∂f

∂z
=

1
4

[uxx − iuxy − i(uxy − iuyy)] =
1
4
(uxx − 2iuxy − uyy);

∂f

∂z
=

1
4

(uxx + uyy)

and
∂f

∂z
=

1
4

[uxx − uyy + i(uxy + uyy)]

The p-Laplacian of u can be expressed in terms of f as

1

4
∆pu =

∂f

∂z
+
(

1
2
− 1
p

)[
f

f

∂f

∂z
+
f

f

∂f

∂z

]
(4.21)

This is an elliptic operator for all 1 < p <∞. However, the borderline cases
lead to formally parabolic operators

1

4
∆1u =

∂f

∂z
− 1

2

[
f

f

∂f

∂z
+
f

f

∂f

∂z

]
(4.22)

and
1

4
∆∞u =

∂f

∂z
+

1
2

[
f

f

∂f

∂z
+
f

f

∂f

∂z

]
(4.23)

We can view the complex gradient of the p-harmonic function as a solution
of the Beltrami equation

fz = µ(z)fz, µ(z) =
(

1
p
− 1

2

)[
f

f
+
f

f

fz

fz

]
(4.24)
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which is always elliptic if 1 < p < ∞. For p = 1 and p = +∞ we observe

that the distortion function K(z) =
1 + |µ(z)|
1− |µ(z)|

is still finite at the points

where
f

f

∂f

∂z
6∈ R.

At these points the equation (4.24) remains elliptic.
Of particular interest to us will be the complex gradients of ∞-harmonic

functions.
In fact if we consider the equation ∆∞u = 0 we obtain

∂f

∂z
= −1

2

(
f

f
· ∂f
∂z

+
f

f
· ∂f
∂z

)
.

Recalling that <e(z) = z+z
2 and =m(z) = z−z

2 . These are solutions of the
quasilinear first order system

∂ f

∂ z
= −<e

(
f

f
· ∂ f
∂ z

)
= −1

2

(
f

f
· ∂f
∂z

+
f

f
· ∂f
∂z

)
. (4.25)

The Jacobian determinant of f is computed as:

J (z, f) = | fz |2 − | fz |2 =
∣∣∣∣=m f

f
· ∂f
∂ z

∣∣∣∣2 . (4.26)

Thus J (z, f) is positive at the points where (4.25) is elliptic.

4.5 Divergence factors for ∞-Laplacian

To define∞-Laplacian in the weak sense for functions having only first order
derivatives we need to express ∆∞ in a divergence form. In particular, in
the plane the ∞-laplacian equation becomes

u2
xuxx + 2uxuyuxy + u2

yuyy = 0

multiplying by a suitable divergence factor λ we would like to write the
∞-laplacian in a divergence form. Let us find all divergence factors λ =
λ(ux, uy) of the equation (4.17). That is, we are looking for solutions to

λu2
xuxx + 2λuxuyuxy + λu2

yuyy =
∂

∂x
A (ux, uy) +

∂

∂y
B(ux, uy). (4.27)
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This identity holds if and only if

∂A

∂ux
= λu2

x,
∂B

∂uy
= λu2

y (4.28)

and
∂A

∂uy
+
∂B

∂ux
= 2λ ux uy. (4.29)

It will be advantageous to work with the complex function

F = F (w) def== A + ıB,

of the complex variable w = ux + ı uy. In this notation the system takes the
form

∂F

∂w
=

1
2
w

w

(
∂F

∂w
+

∂F

∂w

)
=
w

w
<e∂F

∂w
(4.30)

and
λ =

2 Fw

w2
=

2<eFw

|w|2
. (4.31)

Observe that F is orientation preserving in the sense that |Fw|2− |Fw|2 =
|Fw|2 − |<eFw|2 = |=mFw|2 > 0.

4.6 Basic examples

A family of basic solutions of (4.30)

Fk(w) =
(k − 1)γk

(
w

|w|

)k+1

+ (k + 1)γk

(
w

|w|

)k−1

|w|k2−1
(4.32)

for k = 0, 1, 2, . . .. The corresponding divergence factors of (4.32) are

λk(w) =
2<eFk(w)

|w|2
= −(k − 1)k(k + 1)

|w|k2+2

[
γk

(
w

|w|

)k

+ γk

(
w

|w|

)k
]

=
ak cos kθ + bk sin kθ

rk2+2
, ak, bk ∈ R.

(4.33)
where w = reıθ. In particular, the real valued functions

λ(w) =
cos kθ
rk2+2

and λ(w) =
sin kθ
rk2+2

(4.34)
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are divergence factors of the operator (4.17). We may, therefore, introduce
the complex divergence factors

Λk(w) =
cos kθ + ı sin kθ

rk2+2
=

eıkθ

rk2+2
=

rkeıkθ

rk2+k+2
=

wk

|w|k2+k+2
(4.35)

The case k = 0 gives F0(w) = γ w, where γ ∈ ıR. Hence the divergence
factor is trivial, λ = 0, being the real part equal to 0. For k = 1 we obtain
F1 ≡ γ ∈ C, so again λ = 0.

The first nontrivial case occurs when k = 2

F2(w) =
γ w3 + 3 γ w|w|2

|w|6
(4.36)

Next we look for one solution of particular interest to us by studying the
limiting case of (4.32) in which k is considered as real parameter approaching
zero. Let γk = 1, so that F0(w) = 0. Then we have

Fk(w)
2k

=
(k − 1)eı(k+1)θ + (k + 1)e−ı(k−1)θ

2krk2−1
. (4.37)

Therefore, we can compute the limit

lim
k−→0

Fk(w)
2k

= w(1− ıArgw). (4.38)

Thus
F (w) = w(1− ıArgw) (4.39)

might be a solution to (4.30), in any simply connected subset of C − {0}.
Note that choosing a different branch of Argw will not affect the equation
(4.30) since ı w is also a solution. Direct computations reveal that indeed
(4.39) is an integrating field:

∂Argw
∂w

=
−ı
2w

(4.40)

and
∂Argw
∂w

=
ı

2w
. (4.41)

Hence, we obtain
∂F

∂w
=

1
2
− ıArgw. (4.42)
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We find that

2
∂F

∂w
=
w

w
and

∂F

∂w
+
∂F

∂w
= 1 (4.43)

as desired. The corresponding divergence factor is

λ =
2Fw

w2
=

1
|w|2

. (4.44)

Proposition 4.6.1. The ∞-Laplacian has a divergence form in which the
integrating field F (w) = w(1− ıArgw) is multivalued.

In other words

u2
x

u2
x + u2

y

uxx + 2
uxuy

u2
x + u2

y

uxy +
u2

y

u2
x + u2

y

uyy =
∂

∂x
A (ux, uy) +

∂

∂y
B(ux, uy).

(4.45)
where

A (ux, uy) = ux + uy tan−1 uy

ux
(4.46)

B(ux, uy) = uy − ux tan−1 uy

ux
(4.47)

The Jacobian determinant of F = A + ıB is positive as long as Argw 6= 0.
Indeed, we note that |Fw|2 − |Fw|2 = |12 − ıArgw|2 − |12 |

2 = (Argw)2 > 0.
Another example of the divergence form of the equation (4.17) is obtained
by taking into consideration the solution

F2(w) =
3

w2w
+

1
w3 . (4.48)

Hence, we can write, remembering that w · w = |w|2

A + ıB =
1

(ux − ıuy)3
+

3
(ux + ıuy)2(ux − ıuy)

=
4u3

x

(u2
x + u2

y)3
−

4 ıu3
y

(u2
x + u2

y)3

. (4.49)

Thus, we have

A (ux, uy) =
4u3

x

(u2
x + u2

y)3
, (4.50)

B(ux, uy) =
−4u3

y

(u2
x + u2

y)3
, (4.51)

and

λ =
12(u2

y − u2
x)

(u2
x + u2

y)4
. (4.52)
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4.7 The conjugate functions

To every integrating field there corresponds a conjugate function. Having
written the ∞-Laplace equation in the divergence form

[A (ux, uy)]x + [B(ux, uy)]y = 0 (4.53)

the conjugate function v is defined by the rule
A (ux, uy) = vy

B(ux, uy) = −vx

. (4.54)

Set

∆ =
(
∂A

∂uy
+
∂B

∂ux

)2

− 4
∂A

∂ux

∂B

∂uy
.

According to the general classification of the first order nonlinear PDEs this
system is:

• elliptic at the points where ∆ < 0

• hyperbolic at the points where ∆ > 0

• parabolic at the points where ∆ = 0

For the two examples discussed above we obtain

4u3
x

(u2
x + u2

y)3
= vy

4u3
y

(u2
x + u2

y)3
= vx

(4.55)

and 
ux + uy tan−1 uy

ux
= vy

uy − ux tan−1 uy

ux
= −vx

. (4.56)

In the first example, the system is well defined outside the zeros of ∇u.
Both systems (4.55) and (4.56) are parabolic at every point. However, a
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given pair (u , v) can also be consider as the solution to an elliptic system.
Let us analyze this point of view in a general setting

A (ux, uy) = vy

B(ux, uy) = −vx,
(4.57)

where we recall that A + ıB = F and Fw = 1
2

w
w (Fw + Fw). In analogy to

the Cauchy-Riemann equations we introduce the complex function

h(z) = u(z) + ı v(z) (4.58)

We want to express the system (4.57) as a nonlinear Beltrami type equation
for h. Our computation is as follows

F (ux + ıuy) = A (ux, uy) + ıB(ux, uy) = vy − ıvx. (4.59)

In terms of h this reads as

F (hz + hz) = hz − hz (4.60)

F (hz + hz) + hz + hz = 2hz. (4.61)

Next we consider the function

Ψ(w) def== F (w) + w = w(2− ıArgw) (4.62)

that we need to invert. First compute its complex derivatives

Ψw = 1 + Fw =
3
2
− ıArgw (4.63)

and
Ψw = Fw =

1
2
w

w
. (4.64)

Hence the Jacobian determinant of Ψ is positive

|Ψw|2 − |Ψw|2 =
9
4

+ (Argw)2 − 1
4

= 2 + (Argw)2 > 2. (4.65)

Therefore, the equation Ψ can be locally inverted. We proceed as follows

hz + hz = Ψ−1(2hz) (4.66)

or, equivalently
hz = Ψ−1(2hz)− hz (4.67)

It takes a form of a nonlinear Beltrami equation

hz = H (hz) (4.68)
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4.8 Analysis of W 1,2-solutions

We consider here ∞-harmonic functions in the Sobolev class W 1,2
loc (Ω). To

make use of the integrating field F (w) = w(1 − ıArgw) we must spec-
ify a brunch of the argument of w = ux + ıuy. There are many ways to

choose a measurable branch of Argw def== Arg∇u. The divergence equation
at (4.53) has a meaning in the distributional sense only if both A (ux, uy)
and B(ux, uy) are locally integrable. This will be easily assured by assuming
that the branch of Arg∇u lies in L 2

loc(Ω).

Definition 4.8.1. A function u ∈ W 1,2
loc (Ω) for which we can choose an L 2−

branch of Arg∇u, is called a weak solution to the ∞-Laplace equation if∫
Ω

[ηx A (ux, uy) + ηy B(ux, uy)] dxdy = 0 (4.69)

for every η ∈ C∞
0 (Ω).

Since ∞-harmonic functions have continuous derivatives by Savin’s the-
orem [S], every ∞-harmonic function is a weak solution in the sense of
definition 4.8.1 in a neighborhood of points where the gradient does not
vanish.

From now on we assume that Ω is a simply connected domain in C. Thus
the system (4.56) admits a unique (up to a constant) conjugate function
v ∈ W 1,1

loc (Ω).

Theorem 4.8.2. The mapping h(z) = u + ıv ∈ W 1,1
loc (Ω) solves the elliptic

Beltrami type equation

hz = µ(z)hz, µ(z) =
ıθ(z)

2− ıθ(z)
(4.70)

where θ(z) = Arg∇u. Moreover, the distortion function of h is locally inte-
grable

K(z) =
1 + |µ(z)|
1− |µ(z)|

=
1
4

(
|θ|+

√
4 + θ2

)2
6 (1 + |θ|)2 ∈ L 1

loc(Ω) (4.71)

The Jacobian determinant of h actually does not depend on the choice
of Arg∇u. Indeed, the first order system takes the form

ux + θuy = vy

uy − θux = −vx,
(4.72)
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or equivalently

div
[

1 Arg∇u
−Arg∇u 1

]
∇u = 0. (4.73)

Hence

J(z, h) = uxvy−uyvx = u2
x+θuxuy +u2

y−θuxuy = |∇u|2 ∈ L 1
loc(Ω). (4.74)

Next, let us assume that Arg∇u ∈ L∞(Ω), say |θ| < M . For example, this
is the case if uy > 0 a.e. in Ω. In this case the distortion function is bounded
and h ∈ W 1,2

loc (Ω).

Corollary 4.8.3. If Arg∇u ∈ L∞(Ω) a.e. in Ω then h is a K-quasiregular
mapping, with K = (1 + ‖Arg∇u‖∞)2. In particular, ∇u may vanish only
on a set of measure zero.

In fact, by Astala’s area distortion theorem [As] we see that h ∈ W 1,p
loc (Ω)

with every p < 2K
K−1 . Also, h is Hölder continuous of exponent α = 1

K . Its
Jacobian is positive a.e. and hence ∇u may vanish only on a set of zero
measure.
Whether ∇u may vanish is not clear. For example, Aronsson [Ar] proved
that non-constant ∞-harmonic functions of class C 2(Ω) have nonvanishing
gradient. We believe that ∇u 6= 0 if u ∈ C 1,α(Ω), with α > 1/3.

Corollary 4.8.4. Suppose that Arg∇u ∈ W 1,2
loc (Ω), then u has locally inte-

grable second derivatives; that is u ∈ W 2,1
loc (Ω).

Proof. It suffices to observe that the Laplacian of u lies in the Hardy space
H 1

loc(Ω). Indeed,

uxx + uyy = uxθy − uyθx = det
[
ux uy

θx θy

]
∈ H 1

loc(Ω). (4.75)

The Laplace equation with the Jacobian determinant in the right hand
side has been investigated by Wente in 1969 [W]. His work originated in-
tensive study of the Jacobian determinants in Hardy spaces [CLMS], [IV].

Finally we note that if θ ∈ W 1,2
loc (Ω) a theorem of Hempel, Morris and

Trudinger [HMT] implies that there exists λ > 0 so that
∫
Ω expλθ2 < ∞.

Then h = u+ ıv becomes a mapping of exponentially integrable distortion

|Dh(z)|2 6 K(z) J(z, h), K ∈ Exp(Ω). (4.76)

Some properties of such mapping have been investigated in chapter (3.1) in
the case K ∈ Expγ(Ω), γ > 1. For other properties of such mappings see
[IM], [MM], [IKMS], [IKO].
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Chapter 5

Div-curl couple of arbitrary
sign

This chapter is devoted to the illustration of intrinsic links between the
theory of compensated compactness and classical tools of Harmonic and Real
Analysis. Before providing a more detailed background we will establish
some preliminary results and we will show some examples. Our main result
is Theorem 5.1.5, which is a generalization of Theorem 5.1.2.

5.1 Some definitions and examples.

Let u ∈ W 1,n(Rn,Rn) then its Jacobian J(u) = det(∇u) belongs to the
multidimensional Hardy space. This space can be characterized as follows

H 1(Rn) =
{
f ∈ L 1(Rn) : sup

t>0
|ht ∗ f | ∈ L 1(Rn)

}
where ht = 1

tnh(./t), h ∈ C∞0 (Rn), h > 0, Supp h ∈ B(0, 1). Let us recall
that

(ht ∗ f) =
∫

B(x,t)
ht(x− y)f(y) dy =

∫
B(x,t)

1
tn
h

(
x− y

t

)
f(y) dy

One of the most prominent result in harmonic analysis is that by Fefferman
and Stein [FS]. They proved that BMO(Rn) is the dual of the Hardy space.
The BMO-H 1 pairing denoted by

〈 f , g 〉 =
∫ ∗

Rn

f(y) g(y) dy

59
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For f ∈ BMO(Rn) and g ∈ H 1(Rn). The latter symbol coincides with
converging integral if the product f · g happens to be integrable.

Lemma 5.1.1. If f ∈ H 1(Rn) and g ∈ BMO(Rn) then ∗∣∣∣∣∫ ∗

Rn

f(y) g(y) dy
∣∣∣∣ 4 ‖f‖H 1 ‖g‖BMO (5.1)

Another important result of Sarason is that H 1(Rn) is the dual space
of VMO(Rn).

Let us come back to our first example. Let u ∈ W 1,n(Rn,Rn, trivially
J(u) belongs to L 1(Rn) for the Hadamard inequality (|J(u)| 6 |Du|n) but
the structure of J(u) allows to find a proper subspace of L 1, namely H 1,
which contains the range of the mapping u→ J(u) from W 1,n(Rn,Rn) into
L 1(Rn). Furthermore H 1 is the minimal linear vector space containing
this range.
The above example indicates an improvement of the L 1 regularity. This
improvement can be appreciated recalling Stein’s lemma about the L 1

loc

nonnegative functions f ∈ H 1
loc

f ∈ H 1
loc ⇐⇒ f log f ∈ L 1

loc.

Therefore it is covered the result of Müller : let u ∈ W 1,n(Rn) assume
J(u) > 0 then J(u) log J(u) ∈ L 1

loc.
This result inspired many succeeding works. It is worth to show three ex-
amples, just like in [CLMS], to succeed in proving Theorem 5.1.5.

The first example, as mentioned above, is the Jacobian under the hypothesis

u ∈ L q
loc(R

n,Rn) for all q <∞, ∇u ∈ L n(Rn,Rn×n). (5.2)

The second example deals with vectors E,B on Rn satisfying

E ∈ L p(Rn,Rn), B ∈ L q(Rn,Rn), with 1 < p <∞,
1
p

+
1
q

= 1 (5.3)

∗ Hereafter we propose the following abbreviation A 4 B for inequalities of the form
|A| 6 C · B , where the constant C > 0 (called implied constant) depends on parameters
insignificant to us, such as the dimension n and so forth. One shall easily recognize those
parameters from the context.The implied constant will vary from line to line.
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divE = 0, curlB = 0 in D ′(Rn) (5.4)

Then, we form the scalar product E ·B which clearly belongs to L 1(Rn).

For the third example we consider a scalar function u and a vector field
v on Rn for n > 2 satisfying{

∇u ∈ L 2(Rn,Rn), u ∈ L 2n/(n−2) if n > 3;
u ∈ L q

loc(R
n) for all q <∞, if n = 2.

(5.5)
∇v ∈ L 2(Rn,Rn×n), div v = 0
v ∈ L 2n/(n−2)(Rn,Rn), if n > 3;
v ∈ L q

loc(R
n,Rn)for all q <∞, if n = 2.

(5.6)

then

∇u ·
(
∂v

∂xi

)
for some fixed i ∈ {1, ..., n} ∈ L 1(Rn).

In [CLMS], the main result is

Theorem 5.1.2. 1. Let u satisfy (5.2) then J(u) ∈ H 1(Rn).

2. Let E and B satisfy (5.3)-(5.4), then E ·B ∈ H 1(Rn).

3. Let u satisfy (5.5)-(5.6) then ∇u · ∂v
∂xi

∈ H 1(Rn).

Remark. The cases 1) and 3) are included in case 2). Indeed in the case
3) of Theorem 5.1.2 we observe that ∇u ∈ L 2(Rn,Rn), ∂v

∂xi
∈ L 2(Rn,Rn)

while curl (∇u) = 0 and div
(

∂v
∂xi

)
= ∂

∂xi
(divv) = 0 in D′.

This means that case 3) is a reduction of case 2) with E = ∂v
∂xi

and B = ∇u.
The case 1) is a reduction of 2), since we may write

J(u) = det(∇u) = ∇u1 · σ

with
divσ = 0 inD ′(Rn), |σ| 6 Πn

j=2|∇uj | a.e.

This means that is possible to take E = σ ∈ L n/(n−1)(Rn,Rn) and B =
∇u1 ∈ L n(Rn,Rn).

Therefore we have only to prove the second assertion of Theorem 5.1.2.
The proof follows from this lemma
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Lemma 5.1.3. Let E,B satisfy divE = 0 and curlB = 0. For all α, β
satisfying

1
α

+
1
β

= 1 +
1
n
, 1 6 α 6 p, 1 < β 6 p′.

There exists a constant C (depending only on h, α, β) such that

|{ht ∗ (E ·B)} (x)| 6 C

(∫
B(x,t)

|E|α
) 1

α
(∫

B(x,t)
|B|β

) 1
β

(5.7)

for all x ∈ Rn, t > 0. Here we denote by B(x, t) the open ball centered at x
of radius t.

Admitting Lemma 5.1.3 we conclude with the proof of Theorem 5.1.2,
since 1 < p < ∞ and 1

p + 1
p′ = 1, one can find α and β satisfying (5.7) and

also α < p, β < p′

sup
t>0


(∫

B(x,t)
|E|α

) 1
α
(∫

B(x,t)
|B|β

) 1
β


6

(
sup
t>0

∫
B(x,t)

|E|α
) 1

α
(

sup
t>0

∫
B(x,t)

|B|β
) 1

β

.

We deduce from the maximal theorem that sup
t>0

|ht ∗ (E ·B)| ∈ L 1(Rn) and

that
sup
t>0

|ht ∗ (E ·B)| 6 C M(|E|α)
1
α M(|B|β)

1
β

Here, we omit the details of proof of Theorem 5.1.3, since we will argue
Theorem 5.1.5 in the same way.

This result was generalized by Dolcini. In [DO], it is proved a regularity
result in the framework of Orlicz spaces.
Let us define the N -functions.
Let a be a real valued function defined on [0,∞) and having the following
properties:

1. a(0) = 0, a(t) > 0 if t > 0, lim
t→∞

a(t) = ∞;

2. a is nondecreasing, that is, s > t > 0 implies a(s) > a(t);
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3. a is right continuous, that is , if t > 0, then lim
s→t+

a(s) = a(t).

Then the real valued A defined on [0,∞) by

A(t) =
∫ t

0
a(τ)dτ

is called an N -function. (see for more details [Ad])
An example of N -functions are

A(t) = tp, 1 < p <∞,

A(t) = et − t− 1,

A(t) = (1 + t) log(1 + t)− t.

Given a function a we define ã as follows

ã(s) = sup
a(t)6t

s.

The N -functions A and Ã given by

A(t) =
∫ t

0
a(τ) dτ, Ã =

∫ s

0
ã(σ) dσ

are said to be conjugate. Examples of such conjugate pairs are:

A(t) =
tp

p
, Ã(s) =

sq

q
, 1 < p <∞,

1
p

+
1
q

= 1;

A(t) = et − t− 1, Ã(s) = (1 + s) log(1 + s)− s.

In the framework of Orlicz spaces we have the following theorem

Theorem 5.1.4. Let A(t) be an N -function, and Ã(t) its conjugate. Sup-
pose that there exists 1 < p 6 q < ∞ for which A(t)

tp is increasing, A(t)
tq is

decreasing, with q < p∗.†

If B ∈ L A(Rn,Rn), E ∈ L Ã(Rn,Rn), divB = 0, curlE = 0 then E · B ∈
H 1(Rn). Moreover

‖E ·B‖H 1 6 c ‖E‖L Ã ‖B‖L A . (5.8)

† Hereafter p∗ = np/(n − p) if p < n, any exponent bigger than p if p > n.
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The space to which this result implies include as particular case the Zyg-
mund space L p logα L , with 1 < p <∞, α ∈ R.

Our aim is to encode this theory in the Lorentz spaces. The following
theorem holds

Theorem 5.1.5. Let us assume 1 < p, q 6 ∞. If B ∈ L p,q(Rn) and
E ∈ L p′,q′(Rn) with 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1 and divB = 0, curlE = 0

then E ·B ∈ H 1(Rn).
Furthermore, the following estimate holds

‖E ·B‖H 1(Rn) 6 c ‖ E ‖L p′,q′ (Rn)‖ B ‖L p,q(Rn)

Proof. Let us take B ∈ L p,q(Rn) with divB = 0 and E ∈ L p′,q′(Rn) with
curlE = 0.
Assume first of all, q > p

B ∈ L p−ε,r
loc

r > 0, 0 < ε < p− 1

since q > p, it follows that q′ < p′ for the duality between respectively the
exponents p, p′ and q,q′. By Theorem 1.3.2

E ∈ L p′

loc

We can find ε > 0 such that

(p− ε)′ < (p′)∗

simply assuming that p∗ = ([p′]∗)′ < p− ε.
Then there exists π ∈ L

(p′)∗,q′

loc : ∇π = E.
The assumption that divB = 0 implies that div (πB) = E · B in the
distributional sense, then if h is a function in C∞

0 (Rn), h > 0 and Supph ⊂
B(0, 1) ∫

Ω
πB∇ϕ = −

∫
Ω
E ·B ϕ

For every ϕ ∈ C∞0 (Ω).
If h is the function defined above, for any x ∈ Rn and for all t > 0, we have:

ht ∗ (E ·B) (x) =
∫

B(x,t)
ht(x− y) [(E ·B)(y)] dy
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=
∫

B(x,t)

1
tn
h

(
x− y

t

)
((E ·B) (y)) dy

=
1
tn

∫
B(x,t)

h

(
x− y

t

)
div[B(y)π(y)] dy

=
1
tn

∫
B(x,t)

∇h
(
x− y

t

)
B(y)π(y)

t
dy

=
1
tn

∫
B(x,t)

∇h
(
x− y

t

)
B(y)

{
π(y)− (π)x,t

t

}
dy,

since supp(h) ⊂ B(0, 1) the equality becomes:

| ht∗(E·B)(x) |6 c(n, h)

(∫
B(x,t)

| B |p−ε

) 1
p−ε
(∫

B(x,t)

∣∣∣∣π(y)− (π)x,t

t

∣∣∣∣(p−ε)′
) 1

(p−ε)′

6 c(n, h)

(∫
B(x,t)

| B |p−ε

) 1
p−ε
(∫

B(x,t)
| ∇π |α

) 1
α

with α = ((p− ε)′)∗.

Considering the supremum in both sides of the above inequality

sup | ht∗(E·B)(x) |6 c(n, h) sup


(∫

B(x,t)
|B|p−ε

) 1
p−ε
(∫

B(x,t)
| ∇π |α

) 1
α


6 c(n, h)

(
sup

∫
B(x,t)

|B|p−ε

) 1
p−ε
(

sup
∫

B(x,t)
| E |α

) 1
α

= c(n, h) [Mp−ε(B)]
1

p−ε [Mα(E)]
1
α

Applying Holder’s inequality and noting that (Mp−ε(B))
1

p−ε ∈ L p,q
loc and

(Mα(E))
1
α ∈ L p′,q′

loc we have by Lemma 2.2.4

‖ sup |ht ∗ (E ·B)(x)|‖L 1 6 c‖ (Mp−ε(B))
1

p−ε ‖L p,q ‖ (Mα(E))
1
α ‖L p′,q′ 6

6 C‖B‖L p,q‖E ‖L p′,q′

and this proves the result for p < q.
If p = q we have the proof in Theorem 5.1.2 in [CLMS].
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We have to consider a third case with E ∈ L p′,q′(Rn) with curlE = 0 and
B ∈ L p,q(Rn) with divB = 0 and q < p. Let us remark that

E ∈ L p′,q′(Rn) implies L
(p′)∗
loc

B ∈ L p,q(Rn) implies L p
loc

For definition (p′)∗ = np′

n+p′ < p′, ∀p′.

So there exists π ∈ L p′

loc(Ω):∇π = E ⊂ L
(p′)∗
loc . As in the first case

|ht ∗ (E ·B)(x)| 6 c(n, h)

(∫
B(x,t)

|B|p
) 1

p
(∫

B(x,t)

∣∣∣∣π(y)− (π)x,t

t

∣∣∣∣p′
) 1

p′

6 c(n, h)

(∫
B(x,t)

|B|p
) 1

p
(∫

B(x,t)
|E|(p′)∗

) 1
(p′) ∗

Considering the supremum in both sides of the above inequality we have

sup |ht ∗ (E ·B)(x)| 6 c(n, h) sup


(∫

B(x,t)
|B|p

) 1
p
(∫

B(x,t)
|E |(p′)∗

) 1
(p′) ∗


6 c(n, h)

sup

(∫
B(x,t)

|B|p
) 1

p

sup

(∫
B(x,t)

|E |(p′)∗
) 1

(p′) ∗


= c(n, h) [Mp(B)]

1
p

[
M(p′)∗

(E)
] 1

(p′)∗

Applying Holder’s inequality and the fact that [Mp(B)]
1
p ∈ L p

loc, [M(E)(p′)∗ ]
1

(p′)∗ ∈
L

(p′)∗
loc by Lemma 2.2.4 we have

‖ sup |ht ∗ (E ·B)(x)|‖L 1 6 c‖[Mp(B)]
1
p ‖L p,q ‖[M(p′)∗

(E)]
1

(p′)∗ ‖L p′,q′

6 C‖B‖L p,q‖E ‖L p′,q′

so Theorem 5.1.5 is proved.



5.2. ANOTHER EXAMPLE 67

5.2 Another example

We want to show in this section a few examples from PDE’s theory that this
can be pushed further if more cancellations are present.
Let u, v satisfy {

∇u ∈ L 2(Rn), ∇v ∈ L 2(Rn),
divu = div v = 0 inD ′(Rn)

(5.9)

We wish to consider the quantity

n∑
i,j=1

∂2

∂xi∂xj
(uivj)

Theorem 5.2.1. Assume (5.9), then

n∑
i,j=1

∂2

∂xi∂xj
(uivj) ∈ H 1(Rn)

Before proving Theorem 5.2.1, let us claim the following lemma

Lemma 5.2.2. For all f satisfying ∇f ∈ L 2(Rn) there exists a constant
C > 0 such that

∫
Rn

sup
t>0

∫
B(x,t)

{
1
t

∣∣∣∣∣f −
∫

B(x,t)
f

∣∣∣∣∣
}2

dy

 dx


1
2

6 C ‖∇f‖L 2

Proof of Theorem 5.2.1. We have to estimate

ht ∗

 n∑
i,j=1

∂2

∂xi∂xj
(uivj)

 (x)

=
n∑

i,j=1

∫
Rn

ht(x− y)
∂2

∂yi∂yj

[(
ui −

∫
B(x,t)

ui

)(
vi −

∫
B(x,t)

vi

)]
dy

=
n∑

i,j=1

∫
B(x,t)

1
tn

(
∂2h

∂xi∂xj

)(
x− y

t

){
1
t

(
ui −

∫
B(x,t)

ui

)}{
1
t

(
vj −

∫
B(x,t)

vj

)}
dy.
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Therefore ∣∣∣∣∣∣ht ∗

 n∑
i,j=1

∂2

∂xi∂xj
(uivj)

∣∣∣∣∣∣
6 C

n∑
i,j=1

∫
B(x,t)

∣∣∣∣∣1t
(
ui −

∫
B(x,t)

ui

)∣∣∣∣∣
∣∣∣∣∣1t
(
vj −

∫
B(x,t)

vj

)∣∣∣∣∣ dy.
We deduce from Hölder inequality

sup
t>0

∣∣∣∣∣∣ht ∗

 n∑
i,j=1

∂2

∂xi∂xj
(uivj)

∣∣∣∣∣∣
6 C

sup
t>0

∫
B(x,t)

∣∣∣∣∣1t
(
u−

∫
B(x,t)

u

)∣∣∣∣∣
2
 1

2

·

sup
t>0

∫
B(x,t)

∣∣∣∣∣1t
(
v −

∫
B(x,t)

v

)∣∣∣∣∣
2
 1

2

Using Lemma 5.2.2 we deduce thatsup
t>0

∫
B(x,t)

∣∣∣∣∣1t
(
u−

∫
B(x,t)

u

)∣∣∣∣∣
2
 1

2

;

sup
t>0

∫
B(x,t)

∣∣∣∣∣1t
(
v −

∫
B(x,t)

v

)∣∣∣∣∣
2
 1

2

belong both to L 2(Rn).

Therefore, sup
t>0

∣∣∣∣∣∣ht ∗

 n∑
i,j=1

∂2

∂xi∂xj
(uivj)

∣∣∣∣∣∣ belongs to L 1(Rn).

Many other examples may be illustrated
Example 5.1 Let us consider the Hessian of a mapping u ∈ W 2,p(Rn),
where p > n2

n+2 . For simplicity, let us consider n = 2. We observe that we
have

det(D2u) =
∂2u

∂x2
1

∂2u

∂x2
2

−
(

∂2u

∂x1∂x2

)2

=
∂2

∂x1∂x2

(
∂u

∂x1

∂u

∂x2

)
− 1

2
∂2

∂x2
1

((
∂u

∂x2

)2
)
− 1

2
∂2

∂x2
2

((
∂u

∂x1

)2
)

This last expression make sense when ∇u ∈ L 2
loc(R2,R2) which is the case

D2u ∈ L 1
loc.
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Theorem 5.2.3. Let n = 2, u ∈ W 2,2(R2). Then the expression

∂2

∂x1∂x2

(
∂u

∂x1

∂u

∂x2

)
− 1

2
∂2

∂x2
1

((
∂u

∂x2

)2
)
− 1

2
∂2

∂x2
2

((
∂u

∂x1

)2
)

belongs to H 1(R2).

Example 5.2 Let n = 2 and u ∈ W 2,2(Rn). The quantity |∆u|2 −∑n
i,j=1

∂2
∂xi∂xj

that we define to be

∑
i6=j

∂

∂xi∂xj

(
∂u

∂xi

∂u

∂xj

)
− 1

2
∂

∂x2
i

((
∂u

∂xj

)2
)
− 1

2
∂

∂x2
j

((
∂u

∂xi

)2
)

belong to H 1(R2).
It is possible to combine the Examples 5.1 and 5.2 by considering all the
minors of the Hessian matrix D2u.

The following lemma is due to [CLMS]

Lemma 5.2.4. If u ∈ W 2,2(Rn), then all the minors of the Hessian matrix
∇2u, which have order 2, belong to H 1(Rn).
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Chapter 6

Nondivergence elliptic
equations with BMO
coefficients

6.1 Introduction

In dimension n > 2 little is known about nondivergence elliptic operators
with measurable coefficients. The uniqueness problem has been studied
in a number of papers mainly, by Aleksandrov, Bakel’man and Pucci (see
[A],[B],[P] and the references therein).
For the existence, the uniform ellipticity condition is generally not enough,
additional conditions being needed.
In 1956 a “cone ”condition was introduced by Cordes. It deals with the
scattering of the eigenvalues of the coefficient matrix A(x) = [aij(x)], see
also Talenti [T]. In the two-dimensional case, the “cone ”condition is a
consequence of the ellipticity condition, so it is redundant.
Under the cone condition Campanato [C] established higher integrability
properties of the second derivatives of the solutions, in the same spirit of
the results of Meyers’ [ME] for divergence elliptic equations.
In 1963 Miranda [M] proved that, if the coefficients lie in W 1,n, then the
Dirichlet problem {

Lu = h

u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω)

is well posed. Here Ω is bounded open set in Rn and h ∈ L 2(Ω). This result
is optimal in the category of L p-spaces. Indeed, for aij ∈ W 1,n−ε, ε > 0,
the uniqueness fails.

71
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An improvement of Miranda’s result was given by Alvino and Trombetti
[AT]. They assume that ∂aij

∂xs
lay in the Marcinkiewicz space L n

weak and the

constants in the weak type inequality for ∂aij

∂xs
are sufficiently small.

New ingredients to this theory came in 1981 from the celebrated results by
Krylov-Safonov [KS] concerning Hölder continuity.
In [CFL] Chiarenza-Frasca-Longo originated a study of the equations with
VMO-coefficients. They showed that if f belongs to L p

loc(Ω),1 < p < ∞,
then u belongs to W 2,p

loc (Ω).
Very recently D’Onofrio and Greco [DG] have studied the degree of regu-
larity of solutions of an elliptic equation of nondivergence form, which does
not fall under any of the preceding assumptions.
The aim of this chapter is to develop this theory for elliptic equations with
coefficients having sufficiently small BMO-norm. To formulate the results
we must first set up some notation and terminology (see 6.3). The last part
of this chapter is divided into two sections. The first one deals with elliptic
equations with bounded coefficients and the main result is a higher integra-
bility of |∇2u|. The second one deals with unbounded coefficients and we
obtain the following L 2 log L estimate

‖∇2u‖L 2 log L (Rn) 4 ‖h‖L 2 log L (Rn)
∗

We notice (see Proposition 6.5.3) that our assumption the BMO-norm of the
coefficients aij to be sufficiently small is weaker than the smallness condition
for the L n

weak norm of their derivatives ∂aij

∂xs
which allows the authors in

[AT] to obtain their existence and uniqueness theorem in W 2,2∩W 1,2
0 of the

solution to the Dirichlet problem

Lu = h ∈ L 2

6.2 Hodge decomposition

Given a vector field F = (f1, f2, ..., fn) ∈ L p(Rn,Rn) one can solve uniquely
the Poisson equation

F = ∆u = (∆u1,∆u2, ...,∆un),

for U = (u1, u2, ..., un) ∈ D ′(Rn,Rn). This yields the div-curl decomposition
of F , also known as Hodge decomposition:

F = E +B, (6.1)
∗ We have already introduced this symbol 4 in Lemma 5.1.1
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where
B = ∆U −∇ divU and E = ∇ divU

where B and E are easily seen to be divergence and curl free, respectively.
More explicitly, with the aid of the Riesz transforms R = (R1, ...,Rn), we
find that

B = (I + R⊗R)F and E = −(R⊗R)F.

Hereafter, we use the notation R ⊗R = [Rij ] for the matrix of the second
order Riesz transforms. We consider the projections of L p(Rn,Rn) onto
the spaces Bp(Rn) and Ep(Rn), where we denote by Bp(Rn) and Ep(Rn) the
spaces of divergence free and curl free vector fields in L p(Ω,Rn) respectively.
These projections are easily expressed in terms of the Riesz transforms B =
I + R ⊗R and E = −R ⊗R. The uniqueness of the decomposition at 6.1
gives

kerB = Ep(Rn) and kerE = Bp(Rn)

There is another way of expressing F in terms of the potential field U ,
namely

F = ∇(divU) + div (curlU) (6.2)

Let us note that the divergence of a matrix function is being used here,
which is a vector field whose coordinates are obtained by computing the
divergence of the row vectors.
Now, if curlF ∈ L s(Rn,Rn×n), consider the Poisson’ equation for curlU

∆(curlU) = curl(∆U) = curlF ∈ L s(Rn,Rn)

By ellipticity of the Laplace operator we gain some regularity of curlU . The
second term in the right hand side of (6.2) belongs to the Sobolev class
W 1,s(Rn,Rn), while the first term, denoted by F0, is a curl free distribution.
It brings us to the following Poincaré type inequality

Lemma 6.2.1. For each distribution F ∈ D′(Rn,Rn) with curlF ∈ L s(Rn,Rn),
1 < s < ∞, there exists F0 ∈ E(Rn,Rn) such that F − F0 ∈ W 1,s(Rn,Rn)
and we have the uniform bound

‖F − F0‖W 1,s = ‖DF −DF0‖L s 6 Cs(n) ‖curlF‖L s

In much the same way, we obtain the following dual estimate:

Lemma 6.2.2. For each distribution F ∈ D′(Rn,Rn) with divF ∈ L s(Rn),
1 < s < ∞, there exists F0 ∈ B(Rn,Rn) such that F − F0 ∈ W 1,s(Rn,Rn)
and

‖F − F0‖W 1,s 6 ‖DF −DF0‖L s 6 Cs(n) ‖divF‖L s
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It is worth mention that in both lemmas F0 is obtained via a singular
integral operator acting on F . Consequently, if F has compact support,
then F0 decays as C|x|−n at infinity.
Some Orlicz-Sobolev variants of these lemmas are also available, but we shall
pursue this matter later on.
Let F ∈ L p(Rn,Rn), 1 < p <∞, be a given vector field. We decompose it
as F = B + E, with B ∈ Bp(Rn) and E ∈ Ep(Rn). Then we introduce the
operator S : L p(Rn,Rn) → L p(Rn,Rn) by the rule SF = E−B. Precisely,
we have

−S = B−E = I + 2R⊗R

Here are the basic properties of this operator, showing great resemblance to
the Hilbert transform in the real line

1. S is an involution; S ◦ S = I

2. S is self-adjoint; ∫
Rn

〈SF,G〉 =
∫

Rn

〈F,SG〉

for any F ∈ L p(Rn,Rn) and G ∈ L q(Rn,Rn), with 1 < p, q < ∞,
satisfying p+ q = pq. Thus, in particular,

3. S : L 2(Rn,Rn) → L 2(Rn,Rn) is an isometry.
These are the legitimate reason for calling S the Hilbert transform in
Rn.

6.3 Preliminary results

In this section we introduce the necessary background for the succeeding
proofs. The following lemma (see [IMMP]) establishes boundedness of sin-
gular integral operators and related commutators in the Orlicz classes.

Lemma 6.3.1. Let Φ(t) = tp logα(e+ t), 1 < p <∞, α ∈ R and let T be a
singular integral operator in Rn. Then

‖T (f)‖L p logα L 6 Cp(α) ‖f‖L p logα L

Moreover if k ∈ BMO(Rn), then the commutator kT−Tk : L p logα L (Rn) →
L p logα L (Rn) is a bounded operator satisfying

‖(kT − Tk)f‖L p logα L 6 Cp(n, α) ‖k‖BMO‖f‖L p logα L .
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Lemma 6.3.2. Let us assume the following inequality holds∫
Rn

u2

log (e+ u)
6 A with A > 1

then ∫
Rn

(
u
A

)2
log
(
e+ u

A

) 6 1

Proof. It is sufficient to observe that for A > 1∫
Rn

(
u
A

)2
log
(
e+ u

A

) 6
∫

Rn

1
A

u2

log (e+ u)
6 1

Let us recall a useful version of Gehring Lemma, for more details see
[Gi].

Proposition 6.3.3. Let Ω be a bounded open set in Rn and g ∈ L q(Ω),
q > 1. If for any cube Q ⊂ 2Q ⊂⊂ Ω∫

Q
gq dx 6 c

(∫
2Q
g dx

)q

+
∫

2Q
f q dx+ θ

∫
2Q
gq dx

where f ∈ L r
loc(Ω), r > q and 0 6 θ < 1, then there exist C = C(n, θ, c, q)

and ε = ε(n, θ, c, q) such that g ∈ L p
loc(Ω), p ∈ [q, q + ε) and(∫

Q
gp dx

) 1
p

6 C

{(∫
2Q
gq dx

) 1
q

+
(∫

2Q
fp dx

) 1
p

}

In view of the forthcoming Theorem 6.4.1 we now state the following
lemma.

Lemma 6.3.4. Let u ∈ W 2,2(Rn). Then for every η ∈ C∞0 (Rn), the follow-
ing inequality holds:∫

Rn

η2|∇u|2 6 4
∫

Rn

u2|∇η|2 + 2
∫

Rn

|u∇2u||u|η2

Proof. Integrating by parts, we have∫
Rn

η |∇u|2 =
∫

Rn

η 〈∇u · ∇u〉
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= −
∫

Rn

u 〈∇u · ∇η〉 −
∫

Rn

η · u∆u

6
∫

Rn

|u| |∇u| |∇η| +
∫

Rn

|∇2u| |u| |η|

Replace η by η2 ∈ C∞0 (Rn) in previous inequality to obtain∫
Rn

η2 |∇u|2 6 2
∫

Rn

|u| |∇u| |η| |∇η| +
∫

Rn

|∇2u| |u| η2

This implies, in view of the elementary inequality 2xy 6 δ2x2 + y2

δ2 , that∫
Rn

η2 |∇u|2 6 δ2
∫

Rn

η2 |∇u|2 +
1
δ2

∫
Rn

u2 |∇η|2 +
∫

Rn

|∇2u| |u| η2

Hence:∫
Rn

η2 |∇u|2 6
1

δ2(1− δ2)

∫
Rn

u2 |∇η|2 +
1

1− δ2

∫
Rn

|∇2u| |u| η2

Taking δ2 = 1
2 we obtain the desired inequality.

6.4 Bounded coefficients, a higher integrability re-
sult

Let A : Rn → Rn×n be a matrix valued function on Rn such that

|ξ|2 6 〈A(x)ξ , ξ〉 6 K|ξ|2 (6.3)

for all ξ ∈ Rn and for a.e. x ∈ Rn. Let

‖A‖BMO(Rn,Rn×n) 6 ε (6.4)

where ε > 0 is sufficiently small.

Consider the operator

Lu = 〈A(x) , ∇2u〉 =
n∑

i,j=1

Aij(x)
∂2u

∂xi∂xj
(6.5)

for u ∈ W 2,1(Rn).

Our aim is to give a higher integrability result for second derivatives of
a solution u of equation

Lu = h (6.6)
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Theorem 6.4.1. Let Ω be a bounded open set of Rn and u ∈ W 2,2
loc (Ω) a

solution to equation (6.6) with h ∈ L r(Ω), r > 2.
There exists p = p(ε) > 2, such that ∇2u is locally p-integrable and(∫

Q
|∇2u|p dx

) 1
p

4

(∫
2Q
|∇2u|2 dx

) 1
2

for any cube Q ⊂ 2Q ⊂⊂ Ω.

The following L 2 estimate is useful to prove Theorem 6.4.1

Theorem 6.4.2. Let A ∈ BMO(Rn, Rn×n) satisfy conditions (6.3), (6.4).
If u solves equation (6.6) then

‖∇2u‖L 2(Rn) 4 ‖h‖L 2(Rn) (6.7)

provided |∇2u| ∈ L 2(Rn) and h ∈ L 2(Rn).

Proof. We denote by f the gradient of u, f = (f1, f2, ..., fn) = ∇u, where
the coordinate functions satisfy f i

j = uxixj = f j
i . Hereafter the subscripts j

and i stand for the partial derivatives with respect to xj and xi, respectively.

We have by (6.3)

|∇2u|2 = |Df |2 =
n∑

α=1

n∑
i=1

fα
i f

α
i 6

n∑
α=1

n∑
i,j=1

Aij(x)fα
i f

α
j

=
n∑

α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) +

n∑
α=1

n∑
i,j=1

Aij(x)(fα
α f

j
i )

the second term of the right hand side is equal to ∆u · h, so we obtain

n∑
α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) + (∆u)h

6
n∑

α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) +

√
n |h| |Df |

by the elementary inequality ab 6 1
2a

2 + 1
2b

2 the second term can be esti-
mated by the following expression

n∑
α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) +

1
2
|Df |2 +

n

2
|h|2
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Finally, the following estimate holds true

|Df |2 6 2
n∑

α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) + n|h|2 (6.8)

Integrating on Rn, recalling by Lemma 5.2.4 that
∑n

α=1

∑n
i,j=1 f

α
i f

j
α−fα

α f
j
i ∈

H 1 it is possible to use Lemma 5.1.1, Hölder inequality and assumption
(6.4): ∫

Rn

|Df |2 6 2‖A‖BMO‖
n∑

α=1

n∑
i,j=1

fα
i f

j
α − fα

α f
j
i ‖H 1 + n

∫
Rn

|h|2

6 2ε
∫

Rn

|Df |2 + n

∫
Rn

|h|2

The first term in the right hand side is absorbed by the left hand side, pro-
vided ε = ε(n) is sufficiently small.

Then we conclude with the desired estimate:∫
Rn

|∇2u|2 =
∫

Rn

|Df |2 6 c(n)
∫

Rn

|h|2

Let us state the following Caccioppoli type estimate

Lemma 6.4.3. Let u ∈ W 2,2
loc (Rn) a solution to equation (6.6) with h ∈

L 2
loc(Rn).

Then ∫
Rn

ψ4|∇2u|2 4 K4

∫
Rn

|u|2
(
|ψ|2|∇2ψ|2 + |∇ψ|4

)
(6.9)

+
∫

Rn

ψ4|Lu|2

for any ψ ∈ C∞0 (Rn).

Proof. Consider a test function ϕ ∈ C∞0 (Rn) and v = ϕu. The partial deriv-
atives are: vi = ϕui + ϕiu and vij = ϕuij + ϕjui + ϕiju+ ϕiuj .
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By Definition (6.6)

Lv =
n∑

i,j=1

Aijvij =
n∑

i,j=1

Aij(ϕuij + ϕjui + ϕiju+ ϕiuj)

= ϕh+
n∑

i,j=1

Aij [ϕjui + ϕiju+ ϕiuj ]

Using Theorem 6.4.2 and hypothesis (6.3), the following inequality holds

‖ ∇2v ‖2 4 ‖ ϕh ‖2 + ‖ K∇ϕ∇u ‖2 + ‖ K u∇2ϕ ‖2. (6.10)

Since v = ϕu then

ϕ∇2u = ∇2v − 2∇ϕ∇u− u∇2ϕ,

hence
‖ ϕ∇2u ‖2 4 ‖ ∇2v ‖2 + ‖ ∇ϕ∇u ‖2 + ‖ u∇2ϕ ‖2

Finally, in view of (6.10) we conclude with the inequality

‖ϕ∇2u‖2 4 ‖ϕh‖2 + ‖ K∇ϕ∇u ‖2 + ‖ Ku∇2ϕ ‖2

+‖ ∇ϕ∇u ‖2 + ‖ u∇2ϕ ‖2

This means that∫
Rn

ϕ2|∇2u|2 4
∫

Rn

K2|∇ϕ|2|∇u|2 +
∫

Rn

K2|∇2ϕ|2u2

+
∫

Rn

ϕ2|Lu|2

Applying Lemma 6.3.4 to the first hand right side with η = |∇ϕ| and noticing
that |∇η| 6 |∇2ϕ|, we obtain∫

Rn

ϕ2|∇2u|2 4 K2

∫
Rn

u2 |∇2ϕ|2 + K2

∫
Rn

|u| |∇2u| |∇ϕ|2

+K2

∫
Rn

u2 |∇2ϕ|2 +
∫

Rn

ϕ2 |Lu|2
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If we set ϕ = ψ2, then |∇ϕ| 4 |ψ||∇ψ| and |∇2ϕ| 4 |ψ∇2ψ|+ |∇ψ|2.
This yields: ∫

Rn

ψ4 |∇2u|2 4 K2

∫
Rn

u2
(
|ψ||∇2ψ| + |∇ψ|2

)2
+K2

∫
Rn

|u| |∇ψ|2|ψ|2 |∇2u| +
∫

Rn

ψ4 |Lu|2

Finally ∫
Rn

ψ4 |∇2u|2 4 K2

∫
Rn

u2
(
|ψ||∇2ψ| + |∇ψ|2

)2 (6.11)

+K4

∫
Rn

|u|2|∇ψ|4 +
∫

Rn

ψ4 |Lu|2

Let us consider the first term of the right hand side in (6.11) by the ele-
mentary inequality (a+ b)2 6 2(a2 + b2) we obtain the desired inequality.∫

Rn

ψ4|∇2u|2 4 K4

∫
Rn

u2
(
|ψ||∇2ψ|+ |∇ψ|2

)
+
∫

Rn

ψ4|Lu|2

Now we are ready to prove our main result

Proof of Theorem 6.4.1. Let us consider a bump function

0 6 ψ 6 1, ψ ∈ C∞0 (2Q)

ψ = 1 on Q

such that
|∇ψ| 6 1

diamQ

and
|∇2ψ| 6 1

(diamQ)2
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Replacing the function ψ in the inequality (6.9) we obtain∫
Q
|∇2u|2 6

K4

(diamQ)4

∫
2Q
u2 +

∫
2Q
|Lu|2

This inequality is not affected if we subtract any linear function from u, say
u0 = A x+ B, so that we can write∫

Q
|∇2u|2 4 K4

∫
2Q

[
u− u0

(diamQ)2

]2

+
∫

2Q
|Lu|2

Next we recall Poincarè inequality:[∫
2Q

(∣∣∣∣ u− u0

diam2Q

∣∣∣∣)2
] 1

2

4

(∫
2Q
|∇2u|s

) 1
s

which holds for every s ≥ max{1, 2n
n+4}.

Take s = 2n
n+2 , to obtain weak Reverse Hölder inequality(∫

Q
|∇2u|2

) 1
2

4 K2

(∫
2Q
|∇2u|

2n
n+2

)n+2
2n

+
(∫

2Q
|Lu|2

) 1
2

By Proposition 6.3.3 (with q = 2) there is p = p (n,K) > 2 such that
∇2u is locally p-integrable, provided h = Lu ∈ L p(Rn) and so Theorem
6.4.1 is proved.

6.5 Unbounded coefficients, a priori estimate

In this section, we wish to deal with unbounded coefficients.
Consider the equation

Lu = h (6.12)

where

Lu = 〈A(x) , ∇2u〉 =
n∑

i,j=1

Aij(x)
∂2u

∂xi∂xj
(6.13)
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for u ∈ W 2,1(Rn) and
|ξ|2 6 〈A(x)ξ , ξ〉 (6.14)

for all ξ ∈ Rn and for a.e. x ∈ Rn. Let

‖A‖BMO(Rn,Rn×n) 6 ε (6.15)

where ε > 0 is sufficiently small. Then the following a priori estimate holds.

Theorem 6.5.1. Let A ∈ BMO(Rn, Rn×n) satisfying conditions (6.14),
(6.15). Assume that A(x) = A0, A0 constant, outside a compact set B ⊂ Rn.
If u solves equation (6.12), then

‖∇2u‖L 2 log L (Rn) 4 ‖h‖L 2 log L (Rn)

provided ∇2u and h lie in the space L 2 log L (Rn).

Proof. Let us consider a test function

ϕ = log
(
e+

M |Df |
‖Df‖2

)
Furthermore a well known result of Coifman and Rochberg [CR] tells us that
the function ϕ = log

(
e+ M |Df |

‖Df‖2

)
is in BMO(Rn) and

‖ϕ‖BMO(Rn) 6 c(n)

Let us multiply Df by the test function ϕ. By Hodge decomposition

ϕDf = Dg + H. (6.16)

where both components are given explicitly by means of Riesz transforms.

Indeed

Dg = S(ϕDf), S : L p(Rn,Rn×n) → L p(Rn,Rn×n), 1 < p <∞

and the divergence free vector H can be expressed as

H = T (ϕDf) = (Tϕ− ϕT )Df

where T is a singular operator in Rn (for more details see [IMa]).

Since ϕ ∈ BMO(Rn), by Lemma 6.3.1

‖H‖L 2 log L (Rn) 4 ‖ϕ‖BMO ‖Df‖L 2 log L (Rn)
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4 ‖Df‖L 2 log L (Rn)

Let us recall the pointwise inequality (6.8)

|Df |2 4
n∑

α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i ) + |h|2 (6.17)

It is obvious that

log
(
e+

|Df |
‖Df‖2

)
6 log

(
e+

M |Df |
‖Df‖2

)
(6.18)

Multiplying inequality (6.17) by ϕ , we obtain

ϕ|Df |2 6 ϕ

 n∑
α=1

n∑
i,j=1

Aij(x)(fα
i f

j
α − fα

α f
j
i )

+ ϕ|h|2

=
n∑

α=1

n∑
i,j=1

Aij(x)
[
(ϕfα

i )f j
α − (ϕfα

α )f j
i

]
+ ϕ|h|2 (6.19)

Recalling (6.18) and (6.19), we have the following estimate

|Df |2 log
(
e+

|Df |
‖Df‖2

)
6

n∑
α=1

n∑
i,j=1

Aij(x)
[
(ϕfα

i )f j
α − (ϕfα

α )f j
i

]
+ ϕ|h|2

(6.20)
Since, using (6.16)

ϕfα
i = gα

i +Hαi, ϕfα
α = gα

α +Hαα

we get by (6.20)

|Df |2 log
(
e+

|Df |
‖Df‖2

)
4

n∑
α=1

n∑
i,j=1

Aij(x)
[
Hαif j

α −Hααf j
i

]

+
n∑

α=1

n∑
i,j=1

Aij(x)(gα
i f

j
α − gα

αf
j
i ) + ϕ|h|2

Integrating the previous inequality, by (1.16)

‖Df‖2
L 2 log L (Rn) 4

∫
Rn

|A| |H| |Df | + ‖A‖BMO ‖
n∑
α

n∑
i,j

gα
i f

j
α − gα

αf
j
i ‖H 1

(6.21)
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+
∫

Rn

ϕ|h|2

where in the right hand side we have employed Lemma 5.1.1.
The estimate we are going to prove is technical but also fundamental to
higher integrability properties of (6.21). Let us go step by steps estimating
the right hand side of inequality (6.21).

Estimate for
∫

Rn |A| |H| |Df |.
Using the elementary inequality 2ab 6 a2 + b2 with a = |H| and b = |Df |

2
∫

Rn

|A| |H| |Df | 6
∫

Rn

|A| |H|2 +
∫

Rn

|A| |Df |2 (6.22)

Adding and subtracting A0, we obtain

2
∫

Rn

|A| |H| |Df | 6
∫

Rn

|A−A0| |H|2 +
∫

Rn

|A−A0| |Df |2

+|A0|
∫

Rn

(|H|2 + |Df |2) = I1 + I2 + I3

Let us denote by I1, I2, I3 respectively the first, second and third term in
the right hand side of the above inequality.
Let us estimate I1, using inequality (1.17) and Definition 1.3.1

I1 =
∫

Rn

|A−A0||H|2 =
∫

Rn

(
|H|2

‖H‖2
2

N |A−A0|
)
‖H‖2

2

N
(6.23)

6
∫

Rn

[
|H|2

‖H‖2
2

log
(

1 +
|H|2

‖H‖2
2

)
+ (eN |A−A0| − 1)

]
· ‖H‖

2
2

N

6
2
N
‖H‖2

L 2 log L +
‖H‖2

2

N

∫
Rn

(
eN |A0−A| − 1

)
By assumption A(x) = A0, for x ∈ Rn −B a.e., hence∫

Rn

(
eN |A0−A| − 1

)
=
∫

B

(
eN |A0−A| − 1

)
Since A belongs to BMO, we know by the John-Nirenberg lemma (see
Lemma 1.5.3) that for N large and A ∈ BMO∫

B

(
eN |A0−A| − 1

)
<∞
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Recalling that ϕ ∈ BMO and the BMO-norm of ϕ may be bounded by a
constant depending only on the dimension and applying Lemma 6.3.1 the
following inequality holds

‖H‖2
L 2 log L 4 ‖ϕ‖BMO ‖Df‖2

L 2 log L 4 ‖Df‖2
L 2 log L (6.24)

Furthermore by Theorem 6.4.2, recalling relation (1.16)

‖H‖2
2 6 ‖ϕ‖BMO ‖Df‖2

2 4 ‖h‖2
2 4 ‖h‖2

L 2 log L (6.25)

It follows from (6.24) and (6.25) that

I1 =
∫

Rn

|A−A0||H|2 4
2
N
‖Df‖2

L 2 log L + ‖h‖2
L 2 log L (6.26)

Analogously

I2 =
∫

Rn

|A−A0||Df |2 4
2
N
‖Df‖2

L 2 log L + ‖h‖2
L 2 log L (6.27)

for the last term I3 using again (6.24), and (6.25) we have

I3 = 2|A0|
∫

Rn

(|H|2 + |Df |2) = |A0|
[
‖H‖2

2 + ‖Df‖2
2

]
4 |A0|

[
‖h‖2

L 2 log L + ‖h‖2
2

]
4 ‖h‖2

L 2 log L (6.28)

According the estimates (6.26), (6.27) and (6.28)

2
∫

Rn

|A| |H| |Df | 4
4
N
‖Df‖2

L 2 log L + ‖h‖2
L 2 log L (6.29)

Estimate for ‖gα
i f

j
α − gα

αf
j
i ‖H 1 .

According to a generalization of the results in [CLMS]

‖gα
i f

j
α − gα

αf
j
i ‖H 1 6 ‖Dg‖L 2 log−1 L ‖Df‖L 2 log L (6.30)

Next we will estimate ‖Dg‖L 2 log−1 L

‖Dg‖L 2 log−1 L = ‖S(ϕDf)‖L 2 log−1 L 6 ‖ϕDf‖L 2 log−1 L



86 CHAPTER 6. NONDIVERGENCE ELLIPTIC EQUATIONS

= ‖Df‖L 2 log L · ‖ϕF‖L 2 log−1 L (6.31)

where
F =

|Df |
‖Df‖L 2 log L

With the aid of the elementary inequality (1.17) we arrive at the estimate

ϕF = (ϕ− 1)F + F 4 F log(e+ F ) + eϕ−1 − 1 + F (6.32)

Since

eϕ−1 − 1 = e
log

�
e+

M|Df|
‖Df‖2

�
−1 − 1 =

1
e

(
e+

M |Df |
‖Df‖2

)
− 1 =

M |Df |
e‖Df‖2

then by (6.32)

ϕF 6 2F log(e+ F ) +
M |F |
e‖F‖2

Squaring

ϕ2F 2 6 8F 2 log2(e+ F ) +
∣∣∣∣MF

‖F‖2

∣∣∣∣2
dividing by log(e+ ϕF ) and applying Theorem 2.1.10 and (1.16)∫

Rn

ϕ2 F 2

log(e+ ϕF )
6
∫

Rn

ϕ2F 2

log(e+ F )
6 8 +

‖MF‖2
2

‖F‖2
2

6 k

where k = k(n) > 1.
Hence, by Lemma 6.3.2 we get∫

Rn

(ϕ
kF
)2

log
(
e+ ϕF

K

) =
∫

Rn

ϕ2F 2

k2 log
(
e+ ϕF

k

) 6
∫

Rn

ϕ2F 2

k log (e+ ϕF )
6 1

Then by definition of Luxemburg norm

‖ϕF‖L 2 log−1 L 6 k(n) (6.33)

Hence, replacing (6.33) in (6.31)

‖Dg‖L 2 log−1 L 6 k(n) ‖Df‖L 2 log L (6.34)

It follows from (6.30) and (6.34) that

‖gα
i f

j
α − gα

αf
j
i ‖H 1 4 ‖Dg‖L 2 log−1 L · ‖Df‖L 2 log L (6.35)
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6 k(n)‖Df‖2
L 2 log L .

Estimate for
∫

Rn ϕ|h|2.
To estimate the last term in (6.21), we need the following inequality

log(e+ x) 6 2 + log(1 + x2) (6.36)

Applying (6.36) to ϕ, we obtain the following estimate

ϕ = log
(
e+

M |Df |
‖Df‖2

)
6 2 + log

[
1 +

(
M |Df |
‖Df‖2

)2
]

(6.37)

Assume Ψ = log
[
1 +

(
M |Df |
‖Df‖2

)2
]
.

Multiplying relation (6.37) by |h|2 and using inequality (1.17)

ϕ|h|2 6 2|h|2 + Ψ|h|2

Next using inequality (1.17)

ϕ|h|2 6 2|h|2 +
[
|h|2

‖h‖2
2

log
(

1 +
|h|2

‖h‖2

)
+ eΨ − 1

]
‖h‖2

2 (6.38)

by definition of Ψ and Lemma 2.2.11∫
Rn

eΨ−1 − 1 =
∫

Rn

(M |Df |)2

‖Df‖2
2

6 C (6.39)

According to Definition 1.3.1, by (6.38) and (6.39)∫
Rn

ϕ |h|2 4 ‖h‖2
L 2(Rn) + ‖h‖2

L 2 log L (Rn)

4 ‖h‖2
L 2 log L (Rn) (6.40)

Finally, using the previous Estimates and (6.21), we obtain∫
Rn

|Df |2 log
(
e+

|Df |
‖Df‖2

)

6
4
N
‖Df‖2

L 2 log L (Rn) + ‖h‖2
L 2 log L (Rn) + εk(n)‖Df‖2

L 2 log L (Rn)
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+‖h‖2
L 2 log L (Rn)

If N is large and ε is small so it is possible to absorb the first and the third
term to the right hand side then

‖Df‖2
L 2 log L (Rn) 4 ‖h‖2

L 2 log L (Rn)

i.e. :
‖∇2u‖L 2 log L (Rn) 4 ‖h‖L 2 log L (Rn)

By using the following theorem, (for more details see [G]) we can deduce
a relation between the spaces weak-L n(1.2.8) and BMO (1.5.8).

Theorem 6.5.2. Let a ∈ W 1,1(Ω) where Ω is convex, and suppose there
exists a constant K such that∫

Ω∩BR

|∇a| dx 6 KRn−1 for all balls BR.

Then there exist positive constants σ0 and C depending only on n such that∫
Ω

exp
( σ
K
|a− aΩ|

)
dx 6 C (diamΩ)n

where σ = σ0|Ω|(diamΩ)−n.

Proposition 6.5.3. Let a ∈ W 1,1(Rn) be such that |∇a| belongs to L n,∞(Rn)
and ‖∇a‖L n,∞ < ε.
Then a ∈ BMO(Rn) and

‖a‖BMO(Rn) 6 Cε

where C=C(n).

Proof. Fix a ball B ⊂ Rn. By Theorem 6.5.2, we know that if for BR ⊂ B

R

∫
BR

|∇a| dx < ε

then there exist constants σ = σ(n) and C = C(n) such that∫
B

exp
(σ
ε
|a− aB|

)
dx 6 C
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and this implies that
σ

ε

∫
B
|a− aB| dx 6 C

hence, taking the supremum with respect to B ⊂ Rn

‖a‖BMO 6
C

σ
ε.
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[Mu] F. Murat,Compacité par compensation, Ann. Sc. Pisa, 5(1978), 489-
507.

[PO] C. Pucci, Un problema varizionale per i coefficienti di equazioni dif-
ferenziali di tipo ellittico, Annali Scuola Norm. Sup. Pisa 16 (1962) 159-
172.

[P] C. Pucci, Limitazioni per soluzioni di equazioni ellit-
tiche, Ann.Mat.Pura Appl. 74 (1966) 15-30.



96 BIBLIOGRAPHY

[P2] C. Pucci, Equazioni ellittiche con soluzioni in W 2,p, p < 2, Univ. Gen-
ova Pubbl. Ist.Mat. 173 (1967/1968) 35-45.

[PT] C. Pucci and G. Talenti, Elliptic (second order) partial differential
equations with measurable coefficients and approximating integral equa-
tions, Advances in Math. 19,(1976),no 1,45-105.

[S] O. Savin, C1 regularity for infinity harmonic functions in two dimen-
sions, Preprint 2004.

[ST] E.M. Stein, Note on the class LlogL, Studia Math. 32(1969), 305-310.

[T] G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti mis-
urabili, Ann. Mat. Pura Appl. 69 (1965) 285-304.

[Ta] L. Tartar, Compensated compactness and applications to partial differ-
ential equations, Monlinear analysis and mechanics:Heriot-Watt Sym-
posium, Vol.IV, Re.Notes in Math., 39, Pitman,Boston,London, (1979),
136-212.

[T] A. Torchinsky, Real variable methods in harmonic analysis, Pure
and Applied Mathematics, Vol. 123, Academic Press, Inc., (1986).

[W] H. Wente, An existence theorem for surfaces of constant mean curva-
ture, J. Math. Analysis and Appl. 26,(1969), 318-344.

[Z] W.P. Ziemer, Weakly Differentiable Functions, Sobolev spaces
and functions of bounded variation, Springer-Verlag, (New
York),(1989).


