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          Abstract  
The advent of nanotechnology and the commercialization of several nanoparticle-containing-products call to a 

thorough assessment of the environmental risks derived from the exposure to these new materials. The most 

important criticisms of new nano-structured materials are represented by the emerging properties, the absence of a 

dedicate regulation, the increasing world-market, the implementation of the application fields. At “nano” size, 

materials show different physicochemical properties compared to the same material of larger size (bulk material), 

particularly with respect to conductivity, density, hardness, surface area and surface layer composition. At the same 

time, these novel properties of nanoparticles (NPs) generate special concerns about their potential hazards to humans 

and other organisms when released into the environment.  

In this context, studies on the potential toxicity of NPs in different biological systems are urgently needed in order 

to define adequate guidelines for toxicity studies and to harmonize the production of new and safe materials. Since 

marine environment represents the ultimate sink for any materials discharged into the environment, the effect on 

marine organisms should be considered a critical point in the definition of NP toxicity.  

In coastal ecosystems, microalgae play a key role as primary producers and, being at the base of the aquatic food 

web, any modification of their growth could affect higher trophic levels additionally, phytoplankton represents an 

excellent aquatic model for the study of the effects of pollutant exposure at population level due to a short generation 

time and high sensitivities. For all these reasons, they could be considered as key targets for NPs toxicity. 

 In this PhD thesis marine phytoplankton have been used in order to assess the potential toxicity and the mode of 

action of different metal bearing NPs: ZnO, SiO2, TiO2, and Ag. Several endpoint such as population growth 

inhibition, microscopy observations, cytotoxicity and evaluation of DNA damage are evaluated in the aim of 

understand the different interaction among algae/NPs and how this interaction could be related to the toxic 

mechanisms.  

The comparison among the tested nanomaterial toxicity pattern highlighted that the algae population growth 

inhibition occurred through specific pathways related to different physicochemical NP behavior in seawater.  

ZnO seems to exert its toxic action upon algae by a punctual and continuous ion release from aggregates in proximity 

of algae cell wall. In addition, in the case of Ag NPs, the toxicity is related to the ion release but to a greater extend 

respect to ZnO NP.  For SiO2 a cascade of effects (ROS production-DNA damages-growth inhibition) are evidenced 

suggesting a toxicity starting from oxidative stress generation. TiO2, instead, firstly acts on DNA structure and then, 

being not soluble in seawater, after internalization during cell division or cell wall destruction, gives place to 

activation of cellular signals destabilizing DNA structure. These results underline the importance and the necessity 

of further long-term toxicological experiments. In addition, more attention should be paid on how the toxic effects 

induced by NPs has impact on the food chain. 
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          Abstract 
Lo sviluppo della nanotecnologia e la commercializzazione di diversi prodotti contenenti nanoparticelle  (NP) 

richiede un’approfondita valutazione del rischio ambientale derivante dall’uso di questi nuovi materiali. 

La maggiore criticità di questi materiali nanostrutturati è rappresentata dalle particolari caratteristiche chimico-

fisiche, dall’assenza di una regolamentazione dedicata, dal crescente mercato mondiale, l’implementazione dei 

campi di applicazione. I nanomateriali mostrano proprietà chimico fisiche differenti rispetto allo stesso materiali di 

taglia più grande (bulk), soprattutto rispetto alla conducibilità, densità, durezza, area di superficie e composizione 

degli strati superficiali. Allo stesso tempo queste nuove proprietà delle NP generano preoccupazione circa il loro 

potenziale pericolo per l’uomo e l’ambiente. 

In particolare, poiché l’ecosistema marino rappresenta il bacino ultimo di raccolta di qualsiasi materiale emesso in 

ambiente, la valutazione degli effetti delle nanoparticelle su organismi marini dovrebbe essere considerata come un 

punto cruciale nella definizione della tossicità dei nanomateriali. 

Nell’ambiente costiero, le microalghe rappresentano un gruppo chiave in quanto alla base della rete trofica acquatica 

e pertanto qualsiasi effetto tossico subito potrebbe ripercuotersi su livelli trofici più elevati. Dunque le microalghe 

possono essere considerate come eccellenti organismi target per lo studio degli effetti derivanti dall’esposizione a 

diversi contaminanti a livello di popolazione grazie ai brevissimi tempi di generazione e all’elevata sensibilità. Per 

tutti questi motivi possono essere considerate come gli organismi ideali per la definizione del rischio derivante 

dall’esposizione alle nanoparticelle. 

In questa tesi, il potenziale effetto tossico ed i meccanismi d’ azione di diverse tipologie di NP (ZnO, SiO2, TiO2, 

Ag) sono stati valutati prendendo in considerazione come organismo target le microalghe marine. 

Sono stati valutati diversi parametri: inibizione della crescita algale, morfologia, citotossicità e danno al DNA allo 

scopo di comprendere le differenti interazioni tra alghe/nanoparticelle e come queste interazioni siano collegate ai 

meccanismi di tossicità. 

Il confronto tra i risultati ottenuti permette di evidenziare che la tossicità è strettamente connessa al comportamento 

chimico fisico delle diverse NP in una matrice complessa come l’acqua di mare. 

Le NP di ZnO sembrano esercitare la loro azione tossica sulle cellule algali mediante un rilascio di ioni dagli 

aggregati continuo e puntuale in prossimità della parete cellulare. Anche nel caso delle NP di Ag la tossicità è 

strettamente collegata al rilascio di ioni ma in misura maggiore rispetto a ZnO.  

Per SiO2 sono stati evidenziati degli effetti a cascata (Produzione di ROS- Danno al DNA-inibizione della crescita) 

suggerendo che la tossicità potrebbe avere origine a partire dallo stress ossidativo provocato dalle NP.  Il TiO2 invece 

agisce prima di tutto sulla struttura del DNA ed essendo insolubile in acqua di mare, si può ipotizzare che la 

destabilizzazione della struttura del DNA sia conseguente a una sua internalizzazione durante la divisione cellulare 

o a causa della distruzione della parete cellulare. 

Questi risultati sottolineano l’importanza e la necessità di ulteriori esperimenti di tossicità a lungo termine che 

pongano una maggiore attenzione anche sull’effetto prodotto dalle NP lungo la catena trofica. 
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          Preface 
Nanotechnology is one of the most promising and emerging technologies today. The amazing potential of this new 

technology, however, also comes with novel risks and uncertainties. The assessment of risks evolving from a new 

technology is a great challenge and should be carried out in parallel to the technological developments.  

The present research is focused on the comprehension of the (eco)toxicology of a specific category of inorganic 

engineered nanoparticles (metal nano) upon marine phytoplankton. Different parameters and endpoint are taken into 

account   in order to evaluate not only the NP toxic effect but also the mode of action of each material. 

In Chapter 1, the main criticisms related to the production, diffusion and potential release and fate of these 

compounds in the marine environment are discussed. 

Chapter 2 describes the aim of the project, which intends to evaluate the potential biological effects of four 

representative transition metal/oxides nanoparticles (TiO2, SiO2, ZnO and Ag NPs) on marine microalgae. 

In section 3.1 (and related Supporting information) the diverse toxic effect of SiO2 and TiO2 nanoparticles toward 

the marine microalgae Dunaliella tertiolecta are reported and discussed.  

In section 3.2, the genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta in comparison 

with geno-cytotoxic SiO2 and TiO2 effects at population growth inhibition levels are discussed.  

Section 3.3 focused on the population growth inhibition of three species of marine microalgae exposed to different 

sizes of Ag NPs and to coating agent PVP/PEI. 

Finally, in Chapter 4 and 5, a general discussion is reported together with the main conclusions on the NP toxicity 

in marine environment has been delineated. 
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               1.   State of the art 
 

1.1 Nanotechnology and nanomaterials: definition and application fields 
Nanotechnology is an emerging technology that promises revolutionary improvement of products and materials 

for new applications. Many scientists call nanotechnology the key technology of the 21st century. By some 

estimates, nanotechnology even promises to far exceed the impact of the Industrial Revolution (Lyle et al., 

2015). However, what is nanotechnology? By definition, nanomaterials (NM) have structures with at least one 

dimension in the range of 1 to 100 nm (e.g. Lespes and Gigault, 2011, Moore 2006, Stone et al., 2010, Weinberg 

et al., 2011, Wiesner et al., 2009). This is a very arbitrary definition since 100 nm do not represent a 

physicochemical threshold that justifies the distinction of NM and larger (bulk) materials. Therefore, another 

definition says that, in order to be a NM, it must have properties that are different from the bulk material of the 

same chemical composition (Zänker and Schierz 2012). These “non-bulk” properties usually only occur in 

dimensions under 30 nm (Auffan et al., 2009). 

Hence nanoparticles (NPs) possess properties that are “qualitatively or quantitatively distinctly different from 

their other physical forms” (SCENIHR, 2007), such as those of larger-sized particles (bulk particles) made from 

the same materials and their water-soluble/ionic form. Size-related differences in particle properties may be due 

to the larger surface area per mass, resulting increased ratio of surface-to-core atoms and increased number of 

corner and edge atoms. 

This results in increased reactivity (Feldheim et al., 2007) or increased ion release (Elzey and Grassian, 2010), 

which enables their use in novel applications. 

Engineered NPs are classified as a group separate from naturally occurring nanoparticles and anthropogenic 

incidentally produced nanoparticles (Oberdörster et al., 2005).  

Nanoscale materials have always existed and originate from both natural and anthropogenic sources (Klaine et 

al., 2008). Aquatic colloids, fumes originating from volcanic activity or from forest fires and atmospheric dusts, 

all contain naturally. Other nanomaterials are unintentionally produced and released into nature by industrial 

activity such as car exhaust, industrial emissions and welding fumes (Ostiguy et al., 2006; Nowack and Bucheli, 

2007). 

Manufactured or engineered nanomaterials (ENMs), however, are deliberately produced to take advantage of 

the novel properties at the nanoscale. 

Based on their chemical composition, ENMs can be classified into broad categories such as carbon-based NM, 

which include carbon nanotubes (CNTs), fullerene C60 and graphene; metal-bearing NPs, including metal NPs 

such as silver (Ag), metal oxides, such as titanium dioxide (TiO2), or semiconductor nanocrystals, also known 

as quantum dots, and finally, polymer-based nanomaterials such as polyethylenglycol and latex NPs (Pan and 

Xing, 2010; Buzea et al., 2007; Handy et al., 2008).  

To document the penetration of nanotechnology in the consumer marketplace, the Woodrow Wilson 

International Center for Scholars and the Project on Emerging Nanotechnology created the Nanotechnology 

Consumer Product Inventory (CPI). (Vance et al., 2015). 

In table 1, the growth of the CPI since 2005 is listed. In 2011, the CPI described 1314 products. The new total 

of 1814 products as of March 2015 represents a thirty-fold increase over the 54 products originally listed in 

2005 – which is not a complete representation of the growth of this market. Products come from 622 companies 

located in 32 countries. United States is the major producer of nanotechnology-based consumer products 

followed by Europe East Asia and other countries as Australia, Canada, Mexico and Israel. 

(www.nanotechproject.org). In figure 1 the main nanotechnologies application fields together with the number 

of available products over time (since 2007) in each major category are reported. The Health and Fitness 

category includes the largest listing of products in the CPI, comprising 42% of listed products. Within the Health 

and Fitness category, Personal Care products (e.g., toothbrushes, lotions, and hairstyling tools and products) 

comprise the largest subcategory (39% of products). The number of consumer products containing NPs in their 

formulation is expected to reach 3400 by 2020 under current trends www. nanotechproject.org/news/archive. 
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              Table 1: Number of products in the CPI over time. (Vance et al., 2015) 

 
 

 

 

 

                                  
Figure 1: Number of available products over time (since 2007) in each major category and in the Health and Fitness 

subcategories. (Vance et al., 2015) 

                         

 

Comparing worldwide production of different NPs, TiO2 (10,000 t/year), SiO2 (10-10,000 t/year), ZnO (100-

1000 t/year) are the most produced NM (Piccinno et al., 2012; Keller and Lazareva, 2013). Ag NPs are produced 

in moderate quantities (55 t/year) and the global annual production of silver NPs represents only 2% of that of 

TiO2. However, silver NPs are the most popular advertised NM in the CPI, present in 438 products (24%). NPs 

such as CeO2, FeOx, AlOx and quantum dots are produced between 100 and 1000 t/year (Piccinno et al., 2012).  
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Table 2. Production/utilization quantities of ten nanomaterials in the world and in Europe in t/year). (Piccinno et al., 2012). 

 

 
 

 

Each of these categories presents specific features. Thanks to their crystalline structure and electrical properties 

carbon-based, NPs are mainly used in the electronic field. Thanks to the great surface area, some of these NPs 

are also used for molecular absorption (i.e. gas storage). CBs are diffusely applied as pigments or strengthening 

agents in tires. 

Organic NPs are investigated for their application in medical, biomedical and cosmetic field. Finally, inorganic 

NPs show a broad spectrum of properties so they are used in many applications such as catalysis, cosmetics, 

optic, diagnostic, and drug delivery. 

Among these inorganic NPs, metal oxides are of great interest in nanotechnology (Rice et al., 2009) and 

represent at the same time an attractive and critical group. The reasons of this consideration (emerging 

properties, growing market, hazard, and (eco) toxicity) are reported in the sections below.  

 

 

                  1.2 Metal bearing nanoparticles: characteristics and critical aspect 
Metal oxides play a very important role in many areas of chemistry, physics, and materials science (Rodriguez 

and Garcia, 2007). Metallic elements can form a large diversity of oxide compounds. These can adopt a vast 

number of structural geometries with electronic structures that can exhibit metallic, semiconductor, or insulator 

character. In the emerging field of nanotechnology, the goal is to make nanostructures or nanoarrays with special 

properties with respect to those of bulk or single-particle species (Meenakshi et al., 2012). 

Criticisms arise for manufactured metal nanoxides (MONs) since their dimensions at the nanoscale confer 

emerging properties, which differ from single atoms, individual molecules or bulk materials. For this reason, 

MONs should be considered as new chemical compounds, which do not obey to classical physic laws 

(SCENIHR, 2007; Vippola et al., 2009). 

Firstly, they have a surface area to volume ratio greater than microparticles with the same chemical composition; 

this means that the atoms on the surface are more than in the core and the binding energy is lower if compared 

to the bulk material. With the reduction in size, also, the electrons can be confined in a very little space and the 

result can be both a quantized spectrum of energy and a quantized ability to accept and donate electrical charge 

(Kamat, 2002). Some MONs (e.g. TiO2, ZnO) show the ability to generate electron-hole pairs when photo-

activated: when particles with a specific size (5÷20 nm) are excited by energy greater than their band gap. A 

positive holes in the valence band occur because electrons are promoted to the conduction band (Hurst et al., 

2011). This electronic unbalance can lead to redox processes on particle surface and further recombination 

reactions can occur with the subsequent loss of the absorbed energy. Another consequence of the quantum effect 

is the appearance of magnetic moment in materials, which do not present this property at the bulk state (Buzea 

et al., 2007). Emerging properties are of actual interest in the nanotechnological world. These new 

characteristics are usefully employed to develop new technological applications and benefits, but, at the same 

time, such changes in chemical-physical behaviour may determine different environmental fate and/or toxic 
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properties, making necessary a risk assessment on case-by-case basis. For these reasons, these chemicals should 

be treated as new substances and therefore regulated by a specific discipline. The main characteristics of the 

NPs selected for this study were reported below. 

 

ZnO: Zinc oxide nanoparticles (ZnO NPs) (Fig. 2) is of great importance, with their annual global production 

to be estimated in 550 ton, classifying them third in production order after SiO2 (5550 ton) and TiO2 (3000 ton) 

(Piccinno et al., 2012). ZnO NPs are used as ultraviolent light absorbents additives in sunscreens, toothpastes 

and beauty products (Serpone et al., 2007), as well as in rubber manufacture, production of solar cells and LCD, 

pigments, chemical fibers, electronics, and textiles (Bondarenko et al., 2013; Klaine et al., 2008) due to their 

specific properties, e.g. transparency, high isoelectric point, biocompatibility, and photocatalytic efficiency. 

Finally, ZnO NPs have been also employed as antimicrobial agents (Padmavathy and Vijayaraghavan, 2008).  

 

                         
                
                                       Figure 2: Zinc Oxide nanoparticles. (Manzo et al., 2013) 

 

 

 

 

TiO2: Titanium dioxide (TiO2) NPs (Fig. 3) is the naturally occurring oxide of titanium. It has several different 

crystalline structures. Rutile is the most common natural form of TiO2, whereas anatase and brookite are two 

more rare polymorphs. TiO2 has been used widely in pigments, accounting for 70% of the total production 

volume of pigments worldwide. It provides whiteness and opacity to products such as paints, plastics, papers, 

inks, foods, and toothpastes. It can also be found in pharmaceuticals and cosmetic products such as sunblock 

due to its photocatalytic, biocidal, and/or antiproliferative properties (Chen, 2014). TiO2 NP are also used in the 

decontamination of air, soil, and water. 
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                                                       Figure 3: TiO2 nanoparticles from (www.nanolabs.co.in) 

 

 

 

SiO2: Silica-based nanomaterials (fig. 4) have attracted much attention in biomedical applications as cell 

markers, gene transfection agents, imaging moieties, and drug carriers. They possess a variety of unique 

properties, such as ease of synthesis, availability of surface modification, robust mechanical properties, and 

relatively inert chemical composition silica (SiO2) NPs have found extensive applications in chemical 

mechanical polishing and as additives to drugs, cosmetics, printer toners, varnishes, and food. In recent years, 

the use of SiO2 NPs has been extended to biomedical and biotechnological fields, such as biosensors for 

simultaneous assay of glucose, lactate, l-glutamate  (Zhang et al., 2004), biomarkers for leukemia cell 

identification (Santra et al., 2001), cancer therapy (Hirsch et al., 2003), DNA delivery (Bharali et al., 2005) and 

drug delivery (Venkatesan et al., 2005). 

 

                                      
                                         

                                            Figure 4: SiO2 nanoparticles (www.hiqnano.com) 

 

 

 

 

 

 

 

 

 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiAka-a4ePLAhWLORQKHSubCAwQjB0IBg&url=http%3A%2F%2Fwww.nanolabs.co.in%2Fmetal-oxide-nanoparticles.htm&bvm=bv.117868183,d.bGg&psig=AFQjCNH09G18m2EzMJ-Tkai5rDH9O3OguA&ust=1459267491423523
http://www.sciencedirect.com/science/article/pii/S0041008X06003528#bib41
http://www.sciencedirect.com/science/article/pii/S0041008X06003528#bib30
http://www.sciencedirect.com/science/article/pii/S0041008X06003528#bib17
http://www.sciencedirect.com/science/article/pii/S0041008X06003528#bib3
http://www.sciencedirect.com/science/article/pii/S0041008X06003528#bib36
http://www.hiqnano.com/
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Ag: Engineered Silver (Ag) NPs (fig. 5) are believed to be the most commercialized nanomaterials. As a result 

of their wide applications, a considerable fraction of the Ag NPs will eventually find their way into aquatic 

ecosystems and possibly exert some negative effects, given their anti-bacterial characteristics (Miao et al., 2009) 
Silver nanoparticles Ag NPs are emerging as one of the fastest growing product categories in the 

nanotechnology industry. Due to their physico chemical properties, including a high thermos electrical 

conductivity, catalytic activity and non-linear optical behavior (Capek, 2004) Ag NPs have potential value in 

the formulation of inks, microelectronic products and medical imaging devices. Due to bactericides or 

fungicides, properties have found versatile applications in diverse products like household appliances, cleaners, 

clothing, cutlery, children’s toys, and coated electronics (Luoma et al., 2008).  

 

 

                      

                                              
 

                                                   Figure 5: Silver nanoparticles (www.nanobond.com) 
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                  1.3 Fate and release of nanoparticles in environment 
Nanomaterials are produced and applied for products that improve our daily life (e.g. medical products, cleaning 

products, cosmetics, computer technique) and for industrial applications (e.g. paintings, coatings, powders and 

fibers for the production of materials with new properties). However, increased production levels inevitably 

lead to increasing incidence of the materials in the environment. 

 Until a few years ago, little was known about the fate of nanomaterials in the environment, but recent studies 

suggest important emerging patterns (Gottschalk et al., 2009; Keller et al., 2014; Garner and Keller 2014). There 

are still major strategic knowledge gaps for even the most widely used nanoparticles (NPs) involving their 

postproduction life cycles, including entry into the environment, environmental pathways, eventual 

environmental fate, and potential ecotoxicological effects.  

Engineered Nanomaterials ENMs are released into the environment either during their use, by spillages, by 

intentional release for environmental remediation applications, or as end-of-life waste (Keller et al., 2013). As 

already reported more than 1,800 products that are on the market today contain NPs (Bondarenko et al., 2013) 

and production estimates of major ENMs range from 270,000 to 320,000 metric tons per year, of which high 

end estimates suggest that 17 % may be release to soils, 21 % to water, and 2.5 % to air, with the balance 

entering landfills (Keller and Lazareva 2013). Many fate and transport processes need to be considered to 

understand ENM mobility, bioavailability, and ultimate fate (Fig. 6). These include ENM emissions to air, 

water, and soil; advection in and out of the system; diffusive transport; volatilization to air; transformation into 

other ENMs or compounds; aggregation; sedimentation; dissolution; filtration; and sorption to suspended 

particles and the subsequent deposition to sediment (Quik et al., 2011). Many processes are important to ENMs 

that may not be relevant to the environmental behavior of traditional contaminants (Quik et al., 2011), such as 

aggregation, dissolution, deposition, and attachment. These are all determined by their size, surface properties, 

and ambient environmental characteristics. 

Once released, ENMs will interact with the environment in several ways. These interactions are controlled by 

the inherent properties of the ENMs (solubility in water, colloidal stability, reactivity, etc.) and the properties 

of the environment into which they are released (temperature, flows of air, water, and solids, and the 

physicochemical characteristics of each phase) (Garner and Keller, 2014). Properties such as ionic strength (IS), 

pH, the presence of organic matter, and compartment composition are all important parameters that will modify 

ENM behavior (Keller et al., 2010; Lowry et al., 2012a, b; Zhou et al., 2012b). It is important to understand 

both how ENMs interact with their environment and how their environment alters the expected interactions. 

Current predictions indicate that globally as much as 66,000 metric tons of ENMs are released directly to surface 

waters every year (Keller and Lazareva 2013).  

 ENMs release in the aquatic environment largely depends on the chemical properties of the water. Differences 

in aquatic characteristic can significantly affect the rate of many fate and transport processes. Studies of ENM 

fate in realistic aquatic media indicates that in general, ENMs are more stable in freshwater and storm water 

than in seawater or groundwater, suggesting that transport may be higher in freshwater than in seawater.  

For example, the IS and concentration of natural organic matter NOM present in seawater versus freshwater 

will impact rates of aggregation, sedimentation, and dissolution for some ENMs. Variations in surface charge, 

surface coating, and shape can also alter the fate of ENMs in the environment. Transformations processes such 

as oxidation, sulfidation, and interactions with phosphate, all frequently present in  aquatic systems, will also 

have a significant effect on aggregation, dissolution, and as a result toxicity. 
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Figure 6: Fig. 1 Conceptual model of key ENM fate processes. Diagram by Anastasiya Lazareva. This shows how 

nanoparticles are transported between environmental compartments and how they may interact with other constituents in 

the environment as well as with themselves. (Garner and Keller, 2014) 

 

                  1.4 Toxicity of nanoparticles 
The unique physic-chemical properties of engineered NPs derived from their small size, surface area and surface 

reactivity (inorganic or organic coatings etc.), chemical composition, solubility, shape and aggregation state are 

crucial factors that determine their toxicity. Together with the development of nanotechnology a new area of 

toxicology rise up: nanotoxicology. Nanotoxicology focuses on the understanding of the relationship between 

the toxicity of NPs depending on their dose levels and physicochemical properties such as size, shape, reactivity 

and material composition (Paur et al., 2011). In general, the evaluation of NP toxicity was focused on in vitro 

cells. NPs may be taken up by, and induce effects in, organisms in many different ways, however the exact 

method for this is entirely particle specific (Bhatt and Tripathi, 2011). In the first instance , NPs may adhere to 

a cell and block essential pores and membrane functions. Alternatively, they could also enter the cell by 

endocytosis, via diffusion through pores (with the potential for pore stretching or damage), or via ion transport 

systems. Having entered the cell, the NPs can potentially interfere with electron transport processes, or facilitate 

reactive oxygen species (ROS) production by hampering organelle functions. ROS production may lead to 

nucleic acid damage, protein oxidation or disruption of cell membranes. (Xia et al., 2015)  

 

                  1.5 Toxic effect on the aquatic organisms 
Most of the currently available ecotoxicological data regarding NPs are limited to species used in regulatory 

testing or freshwater species (Lovern and Klaper, 2006; Federici et al., 2007; Warheit et al., 2007; Handy et al., 

2008a,b; Blaise et al., 2008) including phytoplankton (Navarro), Daphnia magna (waterflea), Lymnaea 

stagnalis (pond snail) and Caenorhabditis elegans (nematode). From these studies, results have highlighted a 

range of sub-lethal effects including reduced swimming (Boyle et al., 2013)), reduced growth and reproduction 

(Zhao and Wang, 2011), bioaccumulation (Rosenkranz et al., 2009), digestive stress and reduced feeding 

(Croteau et al., 2011a, 2011b).  

Despite extensive research on freshwater species, little study has been directed towards marine organisms. 

Published data at this time are available for just eight phyla and, of these, many reports are limited to a single  

class, order or species. It is not yet clear how best to extrapolate freshwater data for marine organisms given 

that the properties of NPs will change according to exposure media, as will the biological, behavioral and 

respiration characteristics of marine organisms.  

In general, three primary biological targets can be identified in the marine environment: 

1) filter feeders, which can be exposed to high ENP concentrations present in surface waters released by 

terrestrial and atmospheric sources or existing aggregates; 
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2)  pelagic species ranging from phytoplankton to fish and mammals, including deep sea species exposed 

during vertical migration of the particles;  

3) benthic species that are exposed to ENPs deposited in sediment biofilms (Matranga and Corsi, 2012). 

 

 

             1.6 Microalgae as target organisms 
 In coastal ecosystems, microalgae play a key role as primary producers and, being at the base of the aquatic food 

web, any modification of their growth could affect higher trophic levels (Rioboo et al., 2007). Additionally, 

phytoplankton represents an excellent aquatic model for the study of the effects of pollutant exposure at population 

level (Chen C. et al., 2012), due to a short generation time and high sensitivities. The evaluation of NP effects upon 

marine phytoplankton is a necessary step to predict their potential impact on coastal marine food webs and overall 

ecosystems they support. 

Zn2þ for example has been shown to interfere with silica uptake in diatoms. ZnO NPs (10 mg/L) have been shown 

to inhibit growth of the diatoms Chaetoceros gracilis and Thalassiosira pseudonana with accumulation in T. 

pseudonana resulting in mortality (Peng et al., 2011), although not at relevant concentrations. Phaeodactylum 

tricornutum displayed fewer effects with growth only slightly inhibited, suggesting a lower nutrient demand for 

silica than the other species. Larger ZnO NPs (20-30 nm spheroids) have been shown to inhibit growth of T. 

pseudonana at only 0.5 mg/L, but the diatom Skeletonema marinoi, the chlorophyte Dunaliella tertiolecta and the 

prymnesiophyte Isochrysis galbana at concentrations of 1 mg/L over 96 h (Miller et al., 2010). ZnO NPs showed 

significant toxicity to T. pseudonana and Skeletonema costatum over 96 h (Wong et al., 2010), generating an LC50 

of 2.36 e 6.65 mg/L. Similar EC50 values for exposure of D. tertiolecta to ZnCl2, ZnO NPs (100 nm) and micron 

ZnO and have been recorded as 0.65 mg/L, 1.94 mg/L and 3.57 mg/L respectively (Manzo et al., 2013).  That 

significant reduction in growth was seen at 0.23 mg/L for ZnCl2, 1 mg/L for ZnO NPs and 3 mg/L for micron ZnO 

highlights dissolution as the primary driver of toxicity. However, these values are far above environmental relevance 

meaning that only highly acute, point source discharges are likely to affect marine algae. Dissolution of Ag ion is 

also believed to be the driver of toxicity for Ag NPs. 50% inhibition (IC50) in the growth of P. tricornutum has been 

recorded at 2380±1880 and 3690±2380 µg/L for ionic Ag, citrate-capped (14 nm) and PVP-capped (15 nm) Ag NPs 

respectively (Angel et al., 2013). Referencing the particles to their disso lution rate shows equivalent Ag 

concentrations for each IC50 value. Similar conclusions were drawn comparing Ag NPs (PVP capped, 10 nm) and 

Ag ions on the photosystem quantum yield of the coastal diatom Thalassiosira weissflogii (Miao et al., 2009). 

Dissolved Ag ion was seen to form AgCl complexes that adsorbed to the diatoms’ surface, thereby making algae 

vectors for AgCl transport to higher trophic organisms. To date, only one study exists on the effects of NPs on 

macroalgae, on the sea lettuce Ulva lactuca (Turner et al., 2012). A 48 h exposure to Ag NPs (58 27 nm, PVP-

capped) only reduced the yield of photosystem II at concentrations above 55 mg/L, however AgNO3 exposures 

showed negative effects at only 2.5 mg/L, suggesting dissolution of Ag ion as the main driver of toxicity. Evidence 

of bioaccumulation was strongly associated with surface adsorption rather than internalization, however this could 

still provide a toxic substrate for surface grazers. 

TiO2 and SiO2 NPs were observed to be able to inhibit the growth of varieties of algae (Fujiwara et al., 2008; Van 

Hoecke et al. 2008; Hall et al. 2009). Van Hoecke et al. (2008) showed that different sizes of SiO2 were toxic to 

Pseudokirchneriella subcapitata, with an EC 20 for the growth rate in the range of 20.0–28.8 mg/L. Ji et al. (2011), 

in a study about the green algae Chlorella, reported that SiO2 had no significant toxicity while TiO2 NPs (HR3, 

anatase) greatly inhibited the algal growth with an EC30 of 30 mg/L.  

Data about TiO2 are various and effects were generally found at concentrations >10 mg/L (Hund-Rinke and Simon 

2006; Menard et al., 2011). A very recent study of Xia et al., (2015) reported for Nitzschia closterium population 

(96 h) EC50 values of 88 and 118 mg/L for 21 and 60 nm TiO2 NPs, respectively. Actually lower EC50 values were 

observed for P. subcapitata (Aruoja et al., 2008, Lee et al., 2013) and for different marine algae; Li et al., 2015 

reported TiO2 EC50 values of 10 mg/L for Karenia brevis and 7 mg/L for the diatom Skeletonema costatum while 

1–3 mg/L TiO2 was reported to exert a significant adverse effect upon some marine phytoplankton population 

(Thalassiosira pseudonana, Skeletonema costatum, Dunaliella tertiolecta, and Isochrysis galbana ).  

 

 

 

 

 

 



 

15 

 

             References 

 

Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of 

nanoparticulate silver in aquatic systems. Chemosphere 93:359-365 

Auffan M, Rose  J, Bottero JXY, Lowry GV,  Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic 

nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634-641. 

Bharali DJ, Klejbor I, Stachowiak EK,  Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2003)   

Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. 

P natl acad sci USA 100 no. 23 

Bhatt I, Tripathi N (2011) Interaction of engineered nanoparticles with various components of the environment and 

possible strategies for their risk assessment. Chemosphere 82:308-317 

 Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO 

nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. 

Arch Toxicol 87:1181-1200  

 Boyle D,   Al-Bairuty GA,   Ramsden CS,  Sloman KA,   Henry TB,   Handy RD (2013)  Subtle alterations in 

swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill 

rather than brain injury. Aquat toxicol 126:116–127 

Buzea C, Pacheco Blandino II, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. 

Biointerphases 2: 17- 172. 

Buzea C, Pacheco I, Robbie K. (2007) Nanomaterials and nanoparticles:  sources and toxicity. Biointerphases 2:17-

71. 

Capek I. (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interfac 

110:49–74      

Chen C, Zhang J, Ma P, Jin K, Li L, Luan J (2012) Spatial-temporal distribution of phytoplankton and safety 

assessment of water quality in Xikeng reservoir. J Hydroecol 33(2):32- 38. 

Croteau MN, Dybowska AD, Luoma SN, Valsami-Jones E (2011b) A novel approach reveals that zinc oxide 

nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 5:79-90. 

Croteau MN, Misra SK, Luom SN, Valsami-Jones E (2011b) Silver bio-accumulation dynamics in a freshwater 

invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45:6600-6607. 

Elzey S, Grassian V.H. (2010) Agglomeration, isolation and dissolution of commercially manufactured silver 

nanoparticles in aqueous environments. J Nanopart Res 12(5): 1945-1958. 

Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus 

mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415-430. 

Feldheim DL. (2007) The new face of catalysis. Science 316(5825): 699 -700. 

Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate 

and toxicity studies. J Nanoparticle Res 16:2503.  

Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled Environmental Concentrations of Engineered 

Nanomaterials TiO2, ZnO, Ag, CNT, Fullerenes for Different Regions. Environ Sci Technol 43:92162-9222.  

Handy RD, Von Der Kammer F, Lead JR, Hasselov M, Owen R,Crane M (2008) The ecotoxicology and chemistry 

of manufactured nanoparticles. Ecotoxicology 17:287-314. 

Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B,  Price RE, Hazle JD, Halas NJ, West JL (2003)  

Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.  P natl acad sci 

USA 100 no. 23 

http://link.springer.com/journal/204
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/article/pii/S0166445X12002871
http://www.sciencedirect.com/science/journal/0166445X
http://www.sciencedirect.com/science/journal/0166445X/126/supp/C


 

16 

 

Hurst SJ, Fry HC, Gosztola DJ, Rajh T (2011) Utilizing Chemical Raman Enhancement: A Route for Metal Oxide 

Support-Based Biodetection. J Phys Chem C 115:620-630. 

Kamat PV. (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 

106: 7729-7744. 

Keller AA, Lazareva A (2014) Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. 

Environ Sci Technol Lett 1:65−70 

Keller AA, Vosti W, Wang H, Lazareva A (2014) Release of engineered nanomaterials from personal care products 

throughout their life cycle. J Nanopart Res 16:2489. 

Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR 

(2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology 

and Chemistry 27(9):1825-1851. 

Lespes G, Gigault J (2011) Hyphenated analytical techniques for multidimensional characterisation of submicron 

particles: A review. Anal Chim Acta  692:26–41 

Lourtioz JM, Lahmani M, Dupas-Haeberlin C, Hest P (2015) Nanosciences and Nanotechnology: Evolution or 

Revolution? Springer 

Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) 

nanoparticles. Environ Toxicol Chem, 25:1132-7.  

Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, 

Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012a) Long-term  transformation 

and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci 

Technol 46(13):7027–7036  

Lowry GV, Gregory KB, Apte SC, Lead JR (2012b) Transformations of nanomaterials in the environment. Environ 

Sci Technol 46(13):6893–6899 

Luoma SN (2008) Silver nanotechnologies and the environment - The Project on Emerging Nanotechnologies 

www.nanotechproject.org 

Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013a) Toxic effects of ZnO nanoparticles towards 

marine algae Dunaliella tertiolecta. Sci Total Environ 445-446:371-376 

Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: Model organisms 

and molecular approaches. Mar Environ Res 76:32-40 

Meenakshi SD, Rajarajan M, Rajendran S, Kennedy RZ Brindha G (2012) Synthesis and characterization of 

magnesium oxide nanoparticles. Nanotechnology 50:10618-10620 

Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered 

nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041. 

Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine 

phytoplankton. Plos One 7:e30321.  

Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? 

Environ Int 32:967-976. 

Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory 

Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 

150(1): 5-22. 

Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies 

of ultrafine particles. Environ Health Perspect 113(7): 823-839. 

http://www.sciencedirect.com/science/article/pii/S0003267011002777
http://www.sciencedirect.com/science/article/pii/S0003267011002777
http://www.sciencedirect.com/science/journal/00032670
http://www.sciencedirect.com/science/journal/00032670/692/1


 

17 

 

Ostiguy C, Lapointe G, Menard L, Cloutier Y, Trottier M, Boutin M, Antoun M, Normand C (2006). 

Nanoparticles:Actual Knowledge about Occupational Health and Safety Risks and Prevention Measures. Available 

at www.irsst.qc.ca/ media/documents/PubIRSST/R-470.pdf. 

 Padmavathy N,  Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study Sci 

Technol Adv Mater 9 

Pan B, Xing B (2010) Manufactured nanoparticles and their sorption of organic chemicals. Adv Agron 108:137–

181. 

Paur HR,  Cassee FR,  Teeguarden J ,  Fissan H   Diabate S,  Aufderheide M,   Kreyling WG, O 

Hänninenh, , Gerhard Kasper O, Riediker M,  Rothen-Rutishauser B,  Schmid O (2011) In-vitro cell exposure 

studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J 

Aerosol Sci 42:668–692 

 Peng X,   Palma S,  Fisher NS, Wong SS  Effect of morphology of ZnO nanostructures on their toxicity to marine 

algae Aquat Toxicol 102:4186–196 

Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered 

nanomaterials for Europe and the world. J Nanopart Res 14:1109-1120  

Quik JTK, Vonka JA, Hansenc SF, Baunc A, Van De Meenta D (2011)  How to assess exposure of aquatic organisms 

to manufactured nanoparticles. Environ Int 37:1068–1077 Special Issue: Environmental Fate and Effects of 

Nanoparticles 

Rice RH, Vidrio EA, Kumfer BM, Qin Q, Willits NH, Kennedy IM, Anastasio C (2009) Generation of oxidant 

response to copper and iron nanoparticles and salts: Stimulation by ascorbate. Chem Biol Interact 181:359–365. 

Rioboo C, Prado R, Herrero C, Cid A (2007) Population growth study of the rotifer Brachionus sp. fed with triazine-

exposed microalgae. Aquat Toxicol 83:247-253 

Rodriguez JA, García MF. Synthesis, Properties, and Applications of Oxide Nanomaterials. John Wiley & Sons, 30 

mar 2007 - 640 pagine 

Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake 

by Daphnia magna. Environ Toxicol Chem 28:2142-2149. 

Santra S,  Zhang P,  Wang K,  Tapec R, Tan W (2001) Conjugation of Biomolecules with Luminophore-Doped 

Silica Nanoparticles for Photostable Biomarkers. Anal Chem 73:4988–4993  

SCENIHR (2007). Opinion on the appropriateness of the risk assessment methodology in accordance with the 

technical guidance documents for new and existing substances for assessing the risks of nanomaterials, adopted at 

the 19th plenary meeting on 21022 June 2007 after public consultation. European Commission, Brussels, Belgium.  

European Commission. 

Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: Surface oxidation, colloidal stability and 

uranium sorption. Environ Pollut 157: 1088–1094 

 Serpone N,  Dondi D,  Albini A (2007) Inorganic and organic UV filters: Their role and efficacy in sunscreens and 

suncare products. Inorg Chim Acta 360:794–802 

Stone D,  Harper BJ,  Lynch I, Dawson K, Harper SL (2010) Exposure Assessment: Recommendations for 

Nanotechnology-Based Pesticides. Int J Occup Med Env 16: 467-474 

Turner A,  Brice D,  Brown MT  (2012) Interactions of silver nanoparticles with the marine macroalga Ulva lactuca  

Ecotoxicology 21:148-154 

Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Inventory of 

nanotechnology-based consumer products. Beilstein J Nanotechnol 6:1769–1780. 

Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool 

for protein therapeutics.  Biomaterials 26:7154–7163   

http://www.tandfonline.com/author/Padmavathy%2C+Nagarajan
http://www.tandfonline.com/author/Vijayaraghavan%2C+Rajagopalan
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929#aff8
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0021850211000929
http://www.sciencedirect.com/science/article/pii/S0166445X1100021X
http://www.sciencedirect.com/science/article/pii/S0166445X1100021X
http://www.sciencedirect.com/science/article/pii/S0166445X1100021X
http://www.sciencedirect.com/science/article/pii/S0166445X1100021X
http://www.sciencedirect.com/science/journal/0166445X
http://www.sciencedirect.com/science/journal/0166445X/102/3
http://pubs.acs.org/author/Santra%2C+Swadeshmukul
http://pubs.acs.org/author/Zhang%2C+Peng
http://pubs.acs.org/author/Wang%2C+Kemin
http://pubs.acs.org/author/Tapec%2C+Rovelyn
http://pubs.acs.org/author/Tan%2C+Weihong
http://www.sciencedirect.com/science/article/pii/S0269749108004624
http://www.sciencedirect.com/science/article/pii/S0269749108004624
http://www.sciencedirect.com/science/article/pii/S0020169306000259
http://www.sciencedirect.com/science/article/pii/S0020169306000259
http://www.sciencedirect.com/science/article/pii/S0020169306000259
http://www.sciencedirect.com/science/journal/00201693
http://www.tandfonline.com/author/Stone%2C+David
http://www.tandfonline.com/author/Harper%2C+Bryan+J
http://www.tandfonline.com/author/Lynch%2C+Iseult
http://www.tandfonline.com/author/Dawson%2C+Kenneth
http://www.tandfonline.com/author/Harper%2C+Stacy+L
http://link.springer.com/journal/10646


 

18 

 

Vippola M, Falck GCM, Lindberg HK, Suhonen S, Vanhala S, Norppa H, Savolainen K, Tossavainen A, Tuomi T 

(2009) Preparation of nanoparticle dispersions for in-vitro toxicity testing. Hum Exp Toxicol 28:377–385. 

Wang Z, Li C, Shao J, Li X, Peijnenburg WJGM (2012)  Aquatic toxicity of nanosilver colloids to different trophic 

organisms: contributions of particles and free silver ion. Environ Toxicol Chem 31:2408-2413. 

Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures: 

Environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42. 

Weinberg H,  Galyean A,  Leopold M (2011)  Evaluating engineered nanoparticles in natural waters. Trends Anal 

Chem  30:72–83  

Wiesner MR, Lowry GV, Jones KL, Hochella MF, Di Giulio RT, Casman  E, Bernhardt ES (2009) Decreasing 

Uncertainties in Assessing Environmental Exposure, Risk, and Ecological Implications of Nanomaterials. Environ 

Sci Technol 43:6458–6462 

Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2 nanoparticles with the marine microalga 

Nitzschia closterium: growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525 –33.  

Zhang J, Liu J, Wang S, Zhan P, Wang Z, Ming N (2004) Facile Methods to Coat Polystyrene and Silica Colloids 

with Metal. J Adv Funct Mater 14:1089–1096  

Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to 

Daphnia magna. Environ Toxicol Chem 30:885-892. 

Zhou D, Bennett SW, Keller AA (2012b) Increased mobility of metal oxide nanoparticles due to photo and thermal 

induced disagglomeration. PLoS One 7(5):e37363 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0165993610002773
http://www.sciencedirect.com/science/article/pii/S0165993610002773
http://www.sciencedirect.com/science/article/pii/S0165993610002773
http://www.sciencedirect.com/science/journal/01659936
http://www.sciencedirect.com/science/journal/01659936
http://www.sciencedirect.com/science/journal/01659936/30/1


 

19 

 

          2. Aims of the study  
Nanotechnology is one of the most promising and emerging technologies today. The amazing potential of this new 

technology however is associated with many uncertainties regarding risks posed by nanomaterials, especially in 

marine environment that represents the ultimate sink for any substance deliberately or purposely discharged into the 

environment. 

In this view, the present thesis wants to elucidate the ecotoxicological impacts of a set of metal bearing nanoparticles  

(NPs) to a class/group key organism in marine environment such as marine microalgae.  

The evaluation of NP effects upon marine phytoplankton is a necessary step to predict their potential impact on 

coastal marine food webs and overall ecosystems they support. 

The work presented in this thesis aims to collect new knowledge about NP ecotoxicity. Additionally, this thesis 

explores the diverse mode of action of the several NPs by different kind of endpoints and tests.  

The main hypotheses of the present work are: 

 

 NP toxic action for algae is not solely ascribable to ion releasing. 

 The NP physic-chemical characteristics in environmental media influence the effects upon algae 

 The NP ecotoxic action is the results of different effects valuable at cellular and DNA levels by 

COMET assay. 

 The presence of a capping agents could largely influence the toxicity   

 

These tests might provide a complementary tool in environmental risk assessment of metal bearing NPs in marine 

ecosystems and might reveal if the toxic action of NPs occur through cellular mechanisms involving oxidative stress, 

genotoxicity and damage to different cellular compartments. 

In order to achieve these objectives and to proof this hypotheses true, the present work attempts to address the 

following general objective: 

 

 to evaluate the population growth inhibition, cell viability, oxidative stress, DNA damage, 

morphological modifications of microalgae exposed to ZnO, TiO2, SiO2, and Ag NPs. 

 

This general objective has been subdivided into the three specific objectives shown below, which are addressed in 

each chapter of the Results section and in the General Discussion section: 

 

 AIM Section 3.1 

To evaluate the population growth rate alterations of Dunaliella tertiolecta exposed to SiO2 and TiO2. The 

cytotoxicity is also assessed by the analysis of cell viability and ROS production. 

 

 AIM Section 3.2 

To assess the genotoxic (COMET assay) and cytotoxic effects (ROS production and cell viability) of ZnO NPs 

towards D. tertiolecta. Genotoxic effects were also compared to those exerted by other metal oxide 

nanomaterials such as SiO2 and TiO2 NPs at levels of population growth inhibition, in order to disclose the 

diverse mode of action. 

 

 AIM Section 3.3 

To assess a preliminarily screening in order to understand the sensitivity of microalgae  belonging to different 

classes exposed to different size of Ag NP. Interactions of algae cells surface with Ag NPs were also studied 

by microscopy analysis.  
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                   3. Results and discussion 
 

                       3.1 The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine    

                             microalgae Dunaliella tertiolecta 

               
This section has been published in: S. Manzo, S. Buono, G. Rametta, M. Miglietta, S. Schiavo, G. Di Francia. 

2015.  

The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. 

Environmental Science and Pollution Research Volume 22, Issue 20, pp 15941-15951  

 

Abstract 

Nanoparticles (NPs) are widely used in many industrial applications. NP fate and behavior in seawater are a 

very important issue for the assessment of their environmental impact and potential toxicity. In this study, the 

toxic effects of two nanomaterials, silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs with similar primary 

size (~20 nm), on marine microalgae Dunaliella tertiolecta were investigated and compared. The dispersion 

behavior of SiO2 and TiO2 NPs in seawater matrix was investigated together with the relative trend of the 

exposed algal population growth. SiO2 aggregates rapidly reached a constant size (600 nm) irrespective of the 

concentration while TiO2 NP aggregates grew up to 4±5 μm. The dose–response curve and population growth 

rate alteration of marine alga D. tertiolecta were evaluated showing that the algal population was clearly 

affected by the presence of TiO2 NPs. These particles showed effects on 50 % of the population at 24.10 [19.38–

25.43] mg L−1 (EC50) and a no observed effect concentration (NOEC) at 7.5 mg L−1. The 1% effect 

concentration (EC1) value was nearly above the actual  estimated environmental concentration in the aquatic 

environment. SiO2 NPs were less toxic than TiO2 for D. tertiolecta, with EC50 and NOEC values one order of 

magnitude higher. 

The overall toxic action seemed due to the contact between aggregates and cell surfaces, but while for SiO2 a 

direct action upon membrane integrity could be observed after the third day of exposure, TiO2 seemed to exert 

its toxic action in the first hours of exposure, mostly via cell entrapment and agglomeration. 

 

Introduction  

Engineered nanomaterials (ENMs) are an important emerging class of contaminants, with potential wide -

ranging ecological impacts due to their small size and high reactivity. Silicon dioxide and titanium dioxide are 

the most commonly employed among the 10 major ENMs in various industrial sectors (production of >100 

t/year) (Future markets, 2012).  

Nanostructured TiO2 is mainly used for protection against UV ray exposure in many sunscreens and cosmetics, 

while SiO2 nanoparticles (NPs) are mainly used in paints and coatings for an improved rheology, attachment, 

and scratch resistance (Rittner 2003; Mizutani et al. 2006; Zappa et al. 2009). 

As so, these nanomaterial-based products are expected to end up in waterbodies mainly via urban and industrial 

sewage. In particular, SiO2 and TiO2 could represent, respectively, the 7 and 53 % of the predicted engineered 

NM emissions in waterbodies (Keller et al. 2013). As a result, NPs could reach the marine environment and 

therefore the coastal systems, which are likely to be the ultimate sink for any NM deliberately or purposely 

discharged into the environment (Klaine et al. 2008). In this view, marine algae, which are highly diffused in 

coastal ecosystems (Behrenfeld et al. 2006) and are particularly susceptible to contaminants associated with 

anthropogenic pollution, can be regarded as a suitable indicator for marine water pollution by ENMs. The 

evaluation of NP effects upon marine phytoplankton is indeed a necessary step to predict their potential impact 

on coastal marine food webs and on the whole ecosystems they support. 

Recently, some studies regarding the effects of nanomaterials such as ZnO, TiO2, Ag, and SiO2 upon marine 

algae and diatoms were published (Bielmyer-Fraser et al. 2014, Li et al. 2005, Xia et al. 2015), showing that 

this is still an emerging field. TiO2 and SiO2 NPs were observed to be able to inhibit the growth of varieties of 

algae (Fujiwara et al. 2008; Hall et al. 2009; Van Hoecke et al. 2008). Van Hoecke  et al. (2008) showed that 

different sizes of SiO2 were toxic to Pseudokirchneriella subcapitata, with an EC20 for the growth rate in the 

range of 20.0–28.8 mg L−1; Ji et al. (2011), in a study about the green algae Chlorella, reported that SiO2 had 

no significant toxicity while TiO2 NPs (HR3, anatase) greatly inhibited the algal growth with an EC30 of 30 

http://link.springer.com/journal/11356/22/20/page/1
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mg L−1. The same authors emphasize the contribution of the crystalline structure to the toxicity due to surface 

properties and reactivity, and a greater toxic effect was generally reported for anatase in comparison with rutile 

(Clément et al. 2013, Ji et al. 2011). 

Data about TiO2 are various and effects were generally found at concentrations >10 mg L−1 (Hund-Rinke and 

Simon 2006; Menard et al. 2011). A very recent study of Xia et al. (2015) reported for Nitzschia closterium 

population (96 h) EC50 values of 88 and 118 mg L−1 for 21 and 60 nm TiO2 NPs, respectively. Actually lower 

EC50 values were observed for P. subcapitata (Aruoja et al. 2008, Lee et al. 2013) and for different marine 

algae; Li et al 2015 reported TiO2 EC50 values of 10 mg L−1 for Karenia brevis and 7 mg L−1 for the diatom 

Skeletonema costatum while 1–3 mg L−1 TiO2 was reported to exert a significant adverse  effect upon some 

marine phytoplankton population (Thalassiosira pseudonana, S. costatum, Dunaliella tertiolecta, and 

Isochrysis galbana) only under natural levels of ultraviolet radiation (Miller et al. 2012). In the main, studies 

about SiO2 and TiO2 NP toxicity toward microalgae are hardly comparable because of several differences in 

testing matrices, test organisms, and standardized experimental conditions (Minetto et al. 2014). 

Another important issue is the NP tendency to aggregate in aquatic environments. The formation of micrometer-

sized particles modifies the surface properties and the influence of particle size and shape on their ecotoxicity 

(Handy et al. 2008; Limbach et al. 2005). In particular, TiO2 aggregates so rapidly in seawater that the predicted 

residence times are in the range of hours (Garner and Keller, 2014). A fast sedimentation and a short residence 

time in the water column (i.e., within hours to days) result in low exposure doses to species living in the water 

column but also in a corresponding accumulation in sediment (Klaine et al. 2008). In this context, SiO2 presents 

a noteworthy behavior: it is rather stable even in high-ionic strength media and its aggregates in seawater show 

a long residence time with a consequent slower sedimentation (i.e., multiple weeks or longer) and potentially 

greater transport distances (Zhang et al. 2009). In this work, we focused on the different behavior of well 

investigated materials, such as TiO2 (anatase) and SiO2 in pristine nanometric powders (~20 nm), in a marine 

environment over a 4-day testing time. A test organism particularly sensitive to NP exposure as D. tertiolecta 

was used (Miglietta et al. 2011). The population growth rate alterations were evaluated and determined the no 

observed effect concentration (NOEC) and EC50 for SiO2 and TiO2. The cell damages were also evaluated by 

the analysis of cell viability and ROS production. 

The different aggregation trends in standard seawater were highlighted and related to the ecotoxicological 

effects. 

 

Materials and method 

Chemicals 

Commercial silicon dioxide nanoparticles (nominal purity 99.5 %, primary particle size 10–20 nm) and titanium 

dioxide (anatase, nominal purity 99.7 %, primary particle size 25 nm) were purchased from Sigma-Aldrich. 

Artificial seawater (ASW) was prepared according to the ASTM method (NaCl 0.4 M, MgCl 2*6H2O 

0.053M,Na2SO4 0.02 M, CaCl2*H2O 0.01 M, KCl 9 mM, NaHCO3 2 mM, KBr 0.8 mM, H3BO3 0.4 mM, 

SrCl2*6H2O 0.09 mM, NaSiO3*9H2O 0.07 mM) and filtered through 0.22 μm (pH 8.0) (ASTM 1998). 

 

Organisms 

D. tertiolecta (Chlorophyceae: Chlamydomonadales) (CRIAcq Laboratory, (Na) Italy) algae were maintained 

in a sterilized standard medium (Guillard 1975) made with ASW. 

Microalgae were incubated under cool continuous white fluorescent lights until log phase growth prevailed 

(about 58 μmol photons m−2 s−1 at 24±1 °C with aeration for 5–7 days) to provide inocula for experiments. 

Cell density was measured by a hemocytometer. 

 

Particle dispersion  

Stock suspensions of SiO2 and TiO2 NPs were prepared by dispersing dry powders into artificial seawater to 

the final concentration of 2000 mg L−1 for SiO2 and 1000 mg L−1 for TiO2, respectively. The NP suspensions 

were bath sonicated in a low-power ultrasonic bath (Elma Transsonic Digital S) for 30 min. Stock dispersions 

were properly diluted at concentrations ranging between 5 and 200 mg L−1 for SiO2 and 1 and 100 mg L−1 for 
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TiO2. After dilution, all the suspensions were bath sonicated again for 10 min. The dilutions were vortexed 

briefly before the addition of micronutrients and test organism. 

 

Particle characterization 

The average particle size of only few of the diluted suspensions (i.e., 200, 125 mg L−1 for SiO2 and 100, 20, 

7.5 mg L−1 for TiO2) was analyzed by dynamic light scattering (DLS) in order to monitor the particle 

aggregation at an early stage (first 180 min) and for the next 4 days using the Zetasizer Nano ZS (Malvern 

Instruments). This instrument employs a 4-mWHe–Ne laser, operating at wavelength 632.8 nm with the 

measurement angle set at 173° using a Non-Invasive Back Scatter (NIBS) patented technology. Samples were 

measured at 25 °C. The electrophoretic mobility was measured with the Zetasizer (Nano ZS, Malvern 

Instruments Ltd., UK) and converted to ζ potentials by the instrument software (Dispersion Technology 

Software, version 5.1, Malvern Instruments Ltd., UK) using Henry’s equation: Ue=2εζf (ka)/3η, where  Ue is 

the electrophoretic mobility, ε is the dielectric constant, ζ is the zeta potential, η is the viscosity of the dispersant, 

and f (ka) is the Henry function. For high-ionic-strength media was used the Smoluchowski approximation f 

(ka) =1.5. 

 

Toxicity test 

Algal growth inhibition test 

Algal bioassays were performed according to IRSA-CNR (IRSA-CNR 1978). All glassware was acid washed, 

rinsed with purified water Milli-Q, and autoclaved before use. Algal cells (with a final density of 103 cells L−1) 

were first filtered (0.22 μm) and rinsed three times with filtered autoclaved seawater. The algal cells were then 

added to each treatment and control (standard culture media, Guillard medium) together with nutrients. Test 

plates (10 mL) were kept in a growth chamber constantly illuminated with a white fluorescent lamp (enhanced 

irradiation between 400 and 500 nm), at a temperature of 24 ± 1 °C for 4 days. The growth inhibition was 

expressed in percent effect with respect to the control. The concentrations of the testing solutions were defined 

on the basis of a preliminary screening (Miglietta et al. 2011) and were 100, 50, 40, 30, 20 10, 7.5, 5, and 1 mg 

L−1 for TiO2 and 200, 175, 150, 125, 100, 75, 50, and 5 mg L−1 for SiO2.  

 

Growth rate determination 

During the experiments, 0.5 mL algal cells were taken daily and cell quantity was counted with a Burker 

chamber counting the cells under a microscope to determine the growth rate. The growth rate was calculated 

according to the equation described by Xiong et al. (2005): 

                                                                 U= (lnNt−lnN0)/ (t−t0) 

where U (cell number/h) is the growth rate; Nt and N0 are the cell quantity at times t and 0, respectively; t (h) 

is the sample time for counting cell quantity; and t0 (h) is the origin time of the treatment. 

 

Microscope observations 

The algal cells were subjected to microscope analysis (fluorescence microscope ZEISS Axioskop 50) for 

preliminary observation of the nature and extent of the damage (optical) followed by a more specific observation 

through fluorescence microscopy. 

Optical observations were carried out on 50–100 algal cells treated with the highest TiO2 (100 mg L−1) and 

SiO2 (200 mg L−1) concentrations, and the 10 most representative images were recorded (Axiovision REL 4.8 

by Axiocam/cm1 ZEISS). 

 

 Viability assay by AO staining: 

The Acridine orange (AO) staining was carried out in triplicate on D. tertiolecta exposed to TiO2 (7.5, 

20 and 100 mg L-1) and SiO2 (200 and 125 mg L−1) suspensions by adding 25 μL of 7.5 mg mL-1 of the 
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dye solution to 0.5 mL of samples (particle exposed and untreated control). The treatment was applied 

for 5, 24 and 96 h. The observation was performed using a 460-490 nm excitation filter. 

 

 Qualitative evaluation of intracellular ROS  

Qualitative ROS production was carried out in triplicate on D. tertiolecta exposed to TiO2 (7.5, 20 and 

100 mg L-1) and SiO2 (200 and 125 mg L−1) NP suspensions for 24 and 96 h. 0.5 mL of SiO2 samples 

was centrifuged for 5 min at 3000 rpm washed with sterile saline solution (8 g L-1 NaCl, 0.2 g L −1 

KCl) and re-supended in 1mL of the saline. Then, 5 μL of 2 mM DCFH-DA (Sigma-Aldrich) and 50 

μL of 10 mM Na2EDTA (permeabilization agent) were added to cell suspensions for 1 h at room 

temperature under dark condition. The stained cells were analysed by microscopy using a 460-490 nm 

excitation filter. 

 

 MTT assay 

Cell viability was measured in triplicate by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide) assay (Pakrashi et al. 2013, modified). Briefly, after 96 h of interaction 

of the microalgae with the SiO2 (200 and 125 mg L−1) and TiO2 (7.5, 20, and 100 mg L−1) NP 

suspension, 10 mL of samples and untreated control were added with 400 μL MTT solution (5 mg 

MTT in 1 mL in phosphate buffer solution filtered at 0.22 μm) and incubated in the dark for 4 h. The 

suspensions were centrifuged at 8000 rpm for 8 min. The pellets were washed with 5 mL of ASW and 

then 4 mL of DMSO was added. The absorbance was measured at 570 nm using a  

Spectrophotometer (Varian Cary 1E). 

 

Data analysis 

Analysis of variance (ANOVA) was applied, using raw data, in order to test for significant differences in effects 

among treatments (the significance level was always set at p=0.05). 

The 50 % effect concentration (EC50) and the 1 % effect concentration (EC1) were calculated using the linear 

interpolation method (inhibition concentration procedure or ICp) (Cesar et al. 2004; US EPA 1993). The 

bootstrap method was used to obtain the 95 % confidence interval because standard statistical methods for 

confidence interval calculations were not applicable. No observed effect concentration 

(NOEC) and lowest observed effect concentration (LOEC) were determined by Dunnett’s test. Concentration–

response functions were statistically determined by applying a best-fit procedure (Scholze et al. 2001). With 

this approach, different regression models (Boltzmann, logistic, exponential), provided by Origin 8 SR2 

(Northampton, MA) statistical software, were applied to each data set in order to determine, on the basis of 

statistical criteria, the regression model that better described the trend observed in the toxicity data. Differences 

in growth inhibition (comparisons between the control group and each of the experimental groups) were tested 

for significance using the multiple comparisons Dunnett’s procedure US EPA (1989). 

 

Results and discussion 

Aggregation trends 

As expected in a high-ionic-strength medium such as seawater, the analysis of the particle size of the SiO2 and 

TiO2 clearly shows hydrodynamic sizes larger than their primary size (Fig. 1a) (Keller et al. 2010; Metin et al. 

2011; Zhang et al. 2008). Already, in the first 120 min, SiO2 (at 125 mg L−1) showed an average aggregate size 

of around 1300 nm which increased up to nearly 2μm at a higher particle concentration. These dispersions show 

ζ potential values of −12.2±0.6 and −10.3±0.7 mV, respectively. These magnitudes indicate that the repulsive 

energy among the particles is smaller compared to the van der Waals attraction energy, and so the particles 

show a marked tendency to flocculate. A similar behavior was already described in a work by Zhang and co-

workers for metal oxide nanoparticles and addressed to a destabilization effect provoked by the presence of a 

high concentration of electrolytes in solution, especially double charged cations like Mg2+ (Zhang et al. 2008). 

In fact, the presence of a high content of electrolytes (as in seawater) can result in the compression of the 

electrical double layer surrounding the particles with the consequent decrease in its repulsive energy; in this 

way, the net repulsive energy barriers between nanoparticles become negligible and aggregation occurs.  

 



 

24 

 

 

Figure 1. Changes in nanoparticle aggregate sizes in ASW as measured by DLS over time for a SiO2 at 200 and 125 mg 

L−1 and b TiO2 at 100, 20, and 7.5 mg L−1. The average indexes of polydispersity were 0.49±0.08 for 125 mg L−1 and 

0.34±0.14 for 200 mg L−1 of SiO2, and 0.45±0.1 for 100 mg L−1, 0.46±0.07 for 20 mg L−1, and 0.63±0.07 for 7.5 mg L−1 of 

TiO2. 

 

It was also reported that, above a critical electrolyte concentration, an increase in nanoparticle concentration 

shortens the average distance travelled by a particle between collisions, resulting in an increase in aggregation 

rate (Metin et al. 2011). Eventually, this means that in our experimental conditions, the agglomeration behavior 

is affected primarily by the initial concentration. 

As a consequence of particle aggregation, around 50 % of the total original mass of SiO2 nanoparticle aggregates 

settled out of the water within 2 h of sedimentation (data not shown). 

However, after 24 h, the nanoparticles did not settle out of the water efficiently: 20–30 % still remained in the 

settled water and were observed as aggregates with an average size of around 600 nm (Fig. 2).  

 

 

 

Figure 2. Mean size (±SD) of the particle aggregates, at two SiO2 concentrations (125 and 200 mg L−1), during the 4 days 

of the algal bioassay together with the relative trend of the exposed (straight line) and control (dotted line) algal population 

growth (103 cells mL−1). 

 

This experimental finding could be related to the reduced residual concentrations of particles in the aqueous 

solution with a consequent decrease of the average size of suspended agglomerates. 

Analogously, TiO2 NPs aggregated rapidly to around micrometer-sized particles even at relatively low (20– 7.5 

mg L−1) concentrations (Fig. 1b). At a higher particle concentration (100 mg L−1), the increased probability of 

collisions between particles affected the aggregation rate. These TiO2 dispersions showed a negative ζ potential 

from−4.7±0.9 to −10.7±0.3 mV (at 100 and 7.5 mg L−1, respectively). The absolute values of this parameter 

indicate that the dispersions were rather unstable and support the observation of an increasing tendency for 

flocculation and settling with increasing initial concentration. 



 

25 

 

During the 96 h of the ecotoxicological assay, TiO2 aggregates confirmed the aggregation trend observed in the 

first hours (Fig. 3). After 48 h, the aggregates were around 5 μm and afterwards settled out and drastically 

reduced their concentration in the water column even at the lower initial particle concentration. 

 

 

 

 
 

Figure 3. Mean size (±SD) of the particle aggregates, at three TiO2 concentrations (7.5, 20, and 100 mg L−1), 

during the 4 days of the algal bioassay together with the relative trend of the exposed (straight line) and control 

(dotted line) algal population growth (103 cells mL−1). 

 

Toxic effects of SiO2 and TiO2 aggregates  

SiO2 toward D. tertiolecta (Fig. 4). Figure 4 reports the effects on the growth of the algal population caused by 

the presence of TiO2 and SiO2 particles. A complete dose–response curve was recorded in the tested 

concentration range of TiO2 while SiO2 appeared less toxic than TiO2. In fact, though having observed a wider 

concentration range, only EC50 and NOEC values were measured for SiO2. In Fig. 2 was reported the mean 

size of the particle aggregates, at SiO2 NOEC and EC50 values (125 and 200 mg L−1, respectively), during the 

4 days of the algal bioassay together with the relative trend of the exposed algal population growth. As 

previously reported, within 24 h, mainly aggregates with sizes around 600 nm were present in suspension. The 

average size of particles available in the water column was the same at both concentrations. This indicates that 

SiO2 formed a stable population of homoaggregates and that, by increasing the SiO2 concentration, only the 

overall number of these aggregates increased.  

 



 

26 

 

 

Figure. 4 Toxic effects (EC 50%, EC 1%and NOEC) of D. tertiolecta cells (96 h exposure time), together with the 

corresponding regression fit curve functions: SiO2 (a) and TiO2 (b). The best-fit function of toxicity data (n= 6) was sigmoid 

growth functions. Horizontal lines indicate the 95 % confidence limits of the control mean (n=6). EC 50 and 100 % are also 

represented with lines. *See “Data analysis”. 

In the first 24–48 h, independently by the tested concentration, the algae were covered by aggregates (Fig. 5); 

however, no clear toxic effects upon algal cell number, viability, and ROS production were evident (Fig. 6). On 

the other hand, it is likely that the cell surfaces covering by the aggregates can induce a certain inhibition of the 

photosynthetic activity due to the reduction of the light availability (Navarro et al., 2008; Wei et al., 2010). This 

sharp tendency for strong heteroagglomerations between SiO2 aggregates and algal cells was also reported, in 

experimental conditions (i.e., pH and IS) close to ours in a recent work by Ma et al. (2015). Thereafter, SiO2 

interacted with cell surfaces producing the measured effect. In particular, after 72 h of exposure, cell numbers 

were reduced; after 96 h, the growth inhibition became evident with respect to the control (SI Fig. S1) also with 

appreciable differences related to the tested concentration. At 125 mg L−1 and after 96 h of exposure, optical 

microscopic observations (Fig. 5c) showed that algal cells were completely covered by aggregates but still no 

alterations of cell shape and/ or integrity were evident. Signs of cell morphology alte ration and cytoplasmatic 

cell membrane damages were observed instead at 200 mg L−1 (Fig. 5f). Several authors have already reported 

this same behavior  

                              

Figure 5 Phase contrast microscopy images (×40) of D. tertiolecta cells exposed to selected concentrations of SiO2 NP at 

different times of exposure. SiO2 125 mg L−1 5 h (a), 24 h (b), and 96 h (c); SiO2 125 mg L−1 5 h (d), 24 h (e), and 96 h 

(f).               
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(Wei et al. 2010; Van Hoecke et al. 2008), and in some cases, the strong SiO2 interaction with the cell led to the 

production of holes that allowed the cytoplasmatic materials to come out (Lin and Xing 2008). In the same 

timetable, cell viability assays corroborate these results. AO staining as well as MTT assay and ROS production 

highlighted the effect of particle concentration on the viability and on the oxidative stress extent (Fig. 6). SiO2 

cytotoxicity was then dependent on exposure time. Accordingly, other studies with different species showed 

that longer exposure time to silica caused higher toxicity due to irreparable   damages accumulated kinetically 

(Napierska et al. 2010; Vo et al. 2014). These damages could be linked to NP interaction with cell surfaces or 

by NP internalization (Von Moos et al. 2013). Although the relatively rigid cell wall is known to be an efficient 

barrier that prevents ENM internalization (Ma and Lin 2013), the permeability of cell walls also changes during 

the delicate phase of cell division in the course of which the cell wall is newly synthesized (Wessels 1993; 

Ovecka et al. 2005; Navarro et al. 2008; Wang et al. 2011). On the other hand, it is unlikely that algal cells 

could internalize silicon ions because of the extremely low solubility of SiO2 (Brunner et al. 2006).      

 

 

Figure 6 Graphs showing percent viability and percent of damaged algal cells, treated with increasing SiO2 concentrations, 

at different times of exposure 5 h (black bars), 24 h (light gray bars) and 96 h (dark gray bars) measured by acridine orange  

(a), MTT (b), and DCFH-DA (c) 

                            

            

In Fig. 3, the relative trend of the exposed algal population growth is reported together with the mean size of 

the particle aggregates, at three concentrations of TiO2 that represent NOEC, EC50, and EC100 values for the 

investigated algae. Figure 3a shows the effects of exposure at 7.5 mg L−1 of TiO2 (NOEC). During this test, a 

slight (not statistically significant) reduction in microalgae growth was observed in the  second and third day, 

but it was completely recovered at the end of the test (96 h). Accordingly, growth rate values were quite similar 

to those of the control up to concentrations as high as 20 mg L−1 (SI Fig. S2). Similarly, Wang et al. (2008) 

observed that the growth of algae Chlamydomonas reinhardtii exposed to 10 mg L−1 of TiO2 was inhibited until 

the third day but was recovered at the end of the test. Also, Xia et al. (2015) reported a similar trend for the N. 

closterium exposed at 5 mg L−1 TiO2 (anatase). Starting from the second day of exposure to 20 mg L−1 of TiO2, 

a growth reduction was observed which evolved in a marked effect at the fourth day (Fig. 3b). At TiO2 100 mg 

L−1, D. tertiolecta growth resulted completely inhibited (EC 100 %) since the first day of exposure (Fig. 3c).  

As can be seen, at the three selected concentrations, the size of the TiO2 aggregates rapidly increased from a 

few microns and, since the second day, it was always higher than 4000 nm. 

However, increasing the particle concentrations increases the probability of collisions not only between 

particles (homoaggregation) affecting the aggregation rate but also between aggregates and algal cells, thus 

increasing the number of potential cells injured by the nanomaterial. This heteroaggregation phenomenon was 

previously described (Wang et al. 2008, Li et al. 2015, Ma et al. 2015, Xia et al. 2015), and the rate of 

agglomeration seemed to be faster in the presence of algae (Sadiq et al. 2011). The highest cell/TiO2 aggregation 

occurred in cultures spiked with 100 mg L−1. 

Figure 7 shows indeed how large aggregates entrapped algal cells. The same was already observed by Huang 

et al. (2005) which showed how P. subcapitata cells adsorbed TiO2 nanoparticles carrying up to 2.3 times their 

own weight. Actually, AO staining after 5, 24, and 96 h of exposure at 100 mg L−1 of TiO2 evidenced entrapped 

cells still viable up to 5 h of exposure while, after 24 h, microalgae nuclei were coming out, provo king cell 

death (Figs. 8 and 9). These results highlighted that the toxic effects always appeared after at least 5 h of 

incubation/ exposure at 20 and 100 mg L−1 TiO2 concentrations (Fig. 7). 
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Figure 7 Phase contrast microscopy images (×40) of D. tertiolecta cells exposed to increasing concentrations of TiO2 NP at 

different times of exposure. TiO2 7.5 mg L−1 5 h (a), 24 h (b), and 96 h (c); TiO2 20 mg L−1 5 h (d), 24 h (e), and 96 h (f); 

TiO2 100 mg L−1 5 h (g), 24 h (h), and 96 h (i). 

 

Since it was observed that the TiO2 aggregates were already few microns sized in these first hours, it could be 

envisaged that the first step of the toxic action is the entrapment of the algal cells by means of very large particle 

aggregates. Then, the close interaction between aggregates and cell membranes induced an oxidative stress as 

ROS production (Thill et al. 2006; Hartmann et al. 2010) that actually provoked damages in around 80 % of the 

cell population exposed to 100 mg L−1 of TiO2 (Fig. 9). Although in the aggregation process pristine NP 

characteristics may be lost, the peculiar TiO2 anatase reactivity resulting in an evident cytotoxicological effect 

(Braydich-Stolle et al. 2009), should be taken into account. 

On the other hand, the alteration of the cell membrane due to the cell entrapment may affect cellular uptake of 

nutrients and energy transduction mechanisms (related to ATP synthesis) (Yeung et al. 2009; Hartmann et al. 

2010).  
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Figure 8 Fluorescence microscopy images showing D. tertiolecta cellular damage observed after TiO2 exposure (100 mg 

L−1) (AO staining, ×40).  

 

Although the mechanisms of TiO2 toxicity were not completely known, considering that the dissolution of TiO2  

NP was negligible in water, the effect seems mainly ascribable to the ROS production, in response to the particle 

interaction with algae cells and in some cases to their internalization and accumulation in the chloroplast (Xia 

et al. 2015, Li et al. 2015, Iswarya et al. 2015). Recently, Iswarya et al. (2015) showed that the TiO2 crystalline 

structure highly influenced ROS generation in exposed freshwater algal cells. Besides, a different toxicity 

cellular target for anatase (nucleus and cell membrane) and rutile (internal organelles) was also reported. 

 

 

Figure 9 Graphs showing percent viability and percent of damaged algal cells, treated with increasing TiO2 concentrations, 

at different times of exposure 5 h (black bars), 24 h (light gray bars) and 96 h (dark gray bars) measured by acridine orange 

(a), MTT (b), and DCFH-DA (c) 
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Conclusion 

The aim of this investigation was to evaluate and compare the potential toxicity of two nanoparticles, SiO2 and 

TiO2, that were largely used in various industrial sectors, toward the marine microalgae D. tertiolecta. Our 

results showed that the NP aggregation was a key phenomenon and it could be relevant for toxicity in the marine 

environment.  SiO2 aggregates rapidly reached a value (600 nm) which was independent of the concentration, 

while TiO2 NPs underwent a completely different aggregation behavior in the seawater matrix: TiO2 aggregates 

grew up to 4±5 μm, and reaching such a large size, they deposited as sediment. D. tertiolecta showed different 

sensitivities to tested NPs and TiO2 was the most toxic one. The overall toxic action seemed due to the contact 

between aggregates and cell surfaces, but while for SiO2 a direct action upon membrane integrity could be also 

observed after 72–96 h of exposure, TiO2 seemed to exert its toxic action mostly via cell entrapment and 

agglomeration in the first hours of exposure. The results of this study and in particular the EC1 values, compared 

with the current maximum predicted release concentrations, highlighted the actual potential risk of these ENMs 

in the marine environment. However, SiO2 could be more hazardous than TiO2 toward phytoplankton species 

due its longer residence time as a suspension in the water column. 

 

                     

Figure S1- Growth rate (mean ±SD) of D. tertiolecta population at different SiO2 concentrations. *Values significantly 

different from control (p<0.05).  

 

 

                        

Figure S2- Growth rate (mean ±SD) of D. tertiolecta population at different TiO2 concentrations. *Values significantly 

different from control (p<0.05). 
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                  3.2 Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta  

                  and comparison with SiO2 and TiO2 effects at population growth inhibition levels. 

 

This section has been published in: S. Schiavo, M. Oliviero, M. Miglietta, G. Rametta, S. Manzo. 2016. 

Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and 

TiO2 effects at population growth inhibition levels. Science of Total Environment. Volume 550, 15 April 2016, 

Pages 619–627. 

  

Abstract  

The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release 

into the aquatic environment where algae represent the basis of the thropic chain. 

NP effects upon algae population growth were indeed already reported in literature, but the  concurrent effects 

at cellular and genomic levels is still largely unexplored. 

Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production 

and cell viability) of ZnO NPs toward marine microalgae Dunaliella tertiolecta. A comparison at defined 

population growth inhibition levels (50% Effect Concentration, EC50, and No Observed Effect Concentration, 

NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al. 2015) 

was performed in order to elucidate the diverse mechanisms leading to algae growth inhibition.  

After 72 h exposure, ZnO particles act firstly at level of cell division inhibition (EC50:2 mg Zn/L)  while the 

genotoxic action is evident starting from 5 mg Zn/L. This outcome could be ascribable mainly to the release 

toxic ions from aggregate of ZnO particle in the proximity of cell membrane. 

In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic  effect with 

respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with 

TiO2 and SiO2 showing similar MI values at NOEC and EC50 concentrations. 

The results presented herein suggest that up to TiO2 NOEC (7.5 mg/L), the algae DNA repair mechanism is 

efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend 

for SiO2, although at lower effect level respect to TiO2, is observable. 

The comparison among the tested nanomaterial toxicity pattern highlighted that the algae population growth 

inhibition occurred through specific pathways related to NPs different physicochemical behavior in seawater. 

 

1. Introduction 

In the last years, the production volume of engineered nanomaterials (ENMs) as well as their use in several 

applications continue to grow rapidly (Keller et al. 2013). Personal care products represent  one of the most 

significant applications of ENMs that could have environmental implication. ZnO, TiO2 and, to a less extent, 

SiO2 are commonly used in skin care and sunscreens for UV protection, facial moisturizers and foundation 

(Keller et al. 2014). Therefore, an increasing release, currently estimated less than 1 µg/L (Keller et al. 2014), 

of these particles can be expected in the coastal marine waters, as ultimate sink for any ENM discharged into 

the environment. Once released, ENMs will interact with the environment in several ways. These interactions 

are controlled by the inherent properties of the ENMs (solubility in water, colloidal stability, reactivity, etc.) 

and by the properties of the environment into which they are released such as ionic strength, pH, the presence  

of organic matter (Keller et al. 2010; Lowry et al. 2012). 

In coastal ecosystems, microalgae play a key role as primary producers and, being at the base of the aquatic 

food web, any modification of their growth could affect higher trophic levels (Rioboo et al. 2007). Additionally, 

phytoplankton represents an excellent aquatic model for the study of the effects of pollutant exposure at 

population level (Chen C. et al. 2012), due to a short generation time and high sensitivities. 

The action of nanoparticles (NPs) upon microalgae is usually evaluated by parameters that integrate  and reflect 

sublethal effects at population level such as growth rate, biomass, chlorophyll fluorescence and primary 

production (Aruoja at al. 2009; Ji et al. 2011; Chen X. et al. 2012; Ma et  al. 2013). However to shed light on 

the NP mode of toxic action it could be useful to combine the investigation of the cellular response, as cell 

viability, ROS production, with genotoxicity (Dalai et al. 2013; Gunawan et al. 2013; Bhuvaneshwari et al. 

2015; Demir et al. 2014; Golbamaki et al. 2015; Suman et al. 2015). Due to their small size and high surface 

area, coupled to other physicochemical features, such as ion dissolution and charged surfaces, NPs may indeed 

interfere with replication, transcription and cell division mechanisms (Singh et al. 2009; Xia et al. 2015). 

http://www.sciencedirect.com/science/journal/00489697/550/supp/C
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Actually, if small enough, NPs may pass through cellular membranes/walls and gain access to the nucleus and 

DNA (Singh et al. 2009) or be internalized during cell division (Magdolenova et al. 2013) or through holes in 

cell wall (Navarro et al. 2008; Chen X. et al. 2012; Li et al. 2015).  

Alternatively they may indirectly cause DNA damage by promoting oxidative stress and cellular inflammatory 

responses (Golbamaki et al. 2015). 

The most part of genotoxic studies were conducted in vitro (Falck et al. 2009; Apoorva et al. 2013)  although 

more relevant aspects such as uptake, metabolism and repair mechanisms could be taken into account only by 

in vivo studies (Gonzalez et al. 2008; Rocco et al. 2015). Nevertheless, the NP genotoxicity toward some 

environmentally relevant organisms, up to now is still little explored. 

Some studies were conducted upon cells of aquatic organisms such as fishes and mussels (Lee et al. 2009; 

Clemente et al. 2013; Gomes et al. 2013; Isani et al. 2013; D’Agata et al. 2014), very few ones upon plant cells 

(Kumari et al. 2011; Demir et al. 2014; Pakrashi et al. 2014) and, to the best of our knowledge, none about 

microalgae (Akcha et al. 2008). In this frame, a useful and sensitive technique for the assessment of genotoxicity 

is the alkaline single-cell gel electrophoresis, also known as comet assay. Despite other genotoxicity tests (e. g. 

micronucleus test), the comet assay is applicable to any kind of eukaryotic cell and it is independent of cell 

proliferation or cell cycle status. This method, generally used to test NPs, as well as other genotoxic agents 

(Kumar et al. 2011; Shukla et al. 2011) is a suitable tool for measuring primary DNA damage also in microalgae  

(Akcha et al. 2008; Prado et al. 2009). 

Herein, the genotoxic (COMET assay) and cytotoxic effects (ROS production and cell viability) of ZnO NPs 

towards D. tertiolecta were investigated. Genotoxic effects were also compared to those exerted by other metal 

oxide nanomaterials such as SiO2 and TiO2 NPs at levels of population growth inhibition, in order to disclose 

the diverse mode of action. To this purpose we relied on the growth inhibition dose-response curves for D. 

tertiolecta exposed to ZnO, SiO2 and TiO2 NPs and the relative no observed effect concentration (NOEC) and 

EC50 (50% Effect concentration) values defined in some previous works (Manzo et al. 2013a; Manzo et al. 

2015). Cytotoxic effects of ZnO were compared with those previously reported for SiO2, TiO2 (Manzo et al. 

2015). 

 

2. Materials and methods 

Organisms 

Dunaliella tertiolecta (Chlorophyceae: Chlamydomonadales) is a marine green flagellate with a cell size of 

10−12 μm. Algal cells were maintained in sterilized standard medium (Guillard, 1975) made  with filtered 

Artificial SeaWater (fASW, ASTM, 1998, pH 8.0, 35‰ of salinity, 0.22 μm filtered).  

To provide inoculant for experiments, microalgae were incubated under cool continuous white fluorescent lights 

(about 58-μmol photons m−2 s−1) at 24±1 °C with aeration for 5-7 days until log phase growth prevailed. Cell 

density was measured by hemacytometer. 

 

Material characterization and particle dispersions in exposure medium 

Commercial silicon dioxide nanoparticles (nominal purity 99.5%, primary particle size 10–20 nm) and titanium 

dioxide (anatase, nominal purity 99.7%, primary particle size 25 nm) were purchased from Sigma-Aldrich. Bare 

zinc oxide (ZnO cod. 544906, particle size 100 nm, surface area 15–25 m2/g) were purchased from Sigma-

Aldrich. Artificial seawater (ASW) was prepared according to the ASTM method (NaCl 0.4 M, MgCl2*6H2O 

0.053 M, Na2SO4 0.02 M, CaCl2*H2O 0.01 M, KCl 9 mM, NaHCO3 2 mM, KBr 0.8 mM, H3BO3 0.4 mM, 

SrCl2*6H2O 0.09 mM, NaSiO3*9H2O 0.07 mM) and filtered through 0.22 μm (pH 8.0) (ASTM, 1998). 

Stock suspensions of SiO2, TiO2 and ZnO NPs were prepared by dispersing dry powders into fASW to the final 

concentration of 2000 mg/L for SiO2, 1000 mg/L for TiO2 and 1000 mg Zn/L for ZnO. The NP suspensions 

were bath sonicated in a low-power ultrasonic bath (Elma Transsonic Digital S) for 30 min. Stock dispersions 

were properly diluted  at NOEC (No Observed Effect Concentration) and EC50 (concentration that causes 50% 

effect relative to the control) obtained for SiO2 TiO2 and ZnO in our previous studies for D. tertiolecta growth 

inhibition test (Manzo et al. 2013a; Manzo et al. 2015): 125 mg/L (NOEC) and 200 mg/L (EC50) for SiO2; 7,5 

mg/L (NOEC) and 20 mg/L (EC50) TiO2; 0.1 mg Zn/L (NOEC) and 2 mg Zn/L (EC50) for ZnO NP. In addition, 

for ZnO NP the complete dose-response curve (5, 10, 25, 50, 100 mg Zn/L) was also evaluated.  

After dilution, all the suspensions were bath sonicated again for 10 min. The dilutions were vortexed briefly 

before the addition of micronutrients and test organisms.  
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Particle characterization 

The physico-chemical characterizations of the materials in the exposure medium were previously evaluated 

(Manzo et al. 2013a; Manzo et al. 2015) and are now briefly summarized in Table 1. In the main, these 

physicochemical features highlight the instability of all the nanomaterials tested in seawater, which result in the 

formation of large, micrometric sized aggregates with a faster or slower tendency to sediment also in relation 

to the initial particle concentrations. The Z-potential magnitudes indicate indeed that the repulsive energy 

among the particles is smaller than van der Waals attraction energy, and so the particles have a marked tendency 

to flocculate. 

 

Table 1- Physic-chemical characterizations of SiO2 TiO2 and ZnO Nanoparticles, in filtered (0.22 μm) ASW (T 18°C , pH: 

8; Salinity 35‰).* reported in Manzo et al. 2015,  ̂reported in Manzo et al. 2013 

                     

 

Algae cells treatment 

Algal cells (with a final density 106 cells L-1) were filtered (0.22 μm) and rinsed three times with  autoclaved 

fASW. The algal cells were then added to each treatment and control (standard culture  media, F/2 medium) 

together with nutrients. All the experiments were performed in triplicate. For positive control the algal cells 

were exposed to H2O2 100 μM. Two different concentrations of a non-nano control (ZnSO4) were also used. 

Test plates (10 mL) were kept in a growth chamber with continuous light (about 58 µmol photons m-2 s-1), at a 

temperature of 24 ± 1°C for 3 days.  

 

Genotoxicity of ZnO, TiO2 and SiO2 NPs 

The comet assay was carried out on the algal cells after 24 and 72 h of NP exposure, based on our  previous 

results, as described in Akcha et al. 2008. For each replicate, two slides were prepared. 30  μL of the cell 

suspension (50 x 106 cells/L) were added to 225 μL of 0.5% low melting point (LMP)  agarose in PBS. Then, 

85 μL of this mixture were deposited on a slide pre-coated with 0.5% normal melting point (NMP) agarose in 

PBS. The slides were immediately placed on ice, in the dark, for 1 min to allow the agarose to solidify. Then, 

90 μL of the LMP agarose solution were deposited on the slide. Once the last layer was solidified, the slides 

were immersed in a glacial lysis buffer (NaCl 2.5 M, Na2EDTA 0.1 M, Tris base 0.01 M, N-sarcosinate 1%, 

DMSO 10%, Triton X-100 1%, pH 10) for 1 h at room temperature, in dark. DNA unwinding was performed 
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by pre-incubating the slides (15 min at room temperature in the dark) in freshly prepared electrophoresis buffer 

(NaOH 0.3 M, EDTA 0.001 M, pH 13). DNA migration was performed in the same buffer for 20 min at 23  V 

(390 mA, E= 0.66 V/cm). At the end of electrophoresis, slides were washed for three times for 5  min in Tris 

base 0.4 M, pH 7.5 and fixed with methanol. The slides were then stored at 4 °C in the dark. 

For DNA staining, 75 μL of ethidium bromide solution (20 μL/mL) was placed on each slide. The  slides were 

observed using an optical fluorescence microscope coupled to a camera and 100 cells  per replicate were 

analyzed by Comet Score TM program to measure the length of the tail and the  percentage of DNA in the head. 

The percentage of damaged nucleus (number of damaged cells/100 cells) was calculated. The DNA damage 

was quantified by classification of cells into five scores corresponding to tail length (Collins, 2004; Kalantari 

et al. 2012) that is Score 0: no tail, Score 1: tail shorter than the diameter of the head (nucleus), Score 2: tail 

length 1 to 2x the diameter of the head, Score 3: tail longer than 2x the diameter of the head and Score 4: no 

head.  

The Mutagenic Index was then calculated according the following formula: 

                                                               𝑀𝐼 = ∑
𝑖∗𝑁𝐶𝑆𝑖

𝑁
4
𝑖=0  

 

Where: 

i= 0-4 score 

N= number of total cells 

 

Cytotoxicity of ZnO NP 

Cell viability 

Cell viability was measured by MTT (3-(4.5-Dimethylthiazol-2-yl)-2.5-Diphenyltetrazolium Bromide) assay 

(Pakrashi et al. 2013 modified). After 24 and 72 h of interaction, 10 mL of the algae  cell suspensions were 

added to 400 μL of MTT solution (5 mg MTT in 1 mL phosphate buffer solution) and incubated in dark for 4 

h. The suspension was then centrifuged at 8000 rpm for 8 min.  

The pellet obtained was washed with 5 mL of fASW and then 4 mL of DMSO (dimethyl sulfoxide) was added. 

The absorbance was measured at 570 nm using spectrophotometer (Varian Cary 1E).  

Cell viability was also evaluated by Acridine Orange (AO) staining. The assay was carried out on the untreated 

and treated algal cells after 24 and 72 h of exposure: 25 μL of the dye  solution (7.5 mg/mL) was added to 0.5 

mL of sample. The stained cells were analyzed by microscopy using a 460–490 nm excitation filter 

(fluorescence microscope ZEISS Axioskop 50). 

 

Qualitative evaluation of intracellular ROS 

The production of intracellular reactive oxygen species (ROS) was determined using 2.7-dichlorofluorescin 

diacetate (DCFH-DA), as described in Pakrashi et al. 2013. 0.5 mL of samples were collected after 24 h and 72 

h of exposure, and incubated in the dark at room temperature for 1 h with DCFH-DA solution (5 μL of 2 mM 

DCFHDA and 50 μL of 10 mM Na2EDTA). The stained cells were analyzed by microscopy using a 460–490 

nm excitation filter (fluorescence microscope ZEISS Axioskop 50). 

 

Data analysis 

All data presented in this study are reported as mean ± SD. One-way ANOVA was applied in order to est for 

significant differences between treatments and control (significance level was always set   at p =  0.05). Results 

were also recorded as effect percentage with respect to the control by using the Abbott’s formula (Abbott, 1925).  

The error relative to the mutagenic index was calculated with this formula: 

 

                                                [(
𝑆𝐷𝑐

𝑋𝑐
)+∑ (

𝑆𝐷𝑖

𝑋𝑖
)4

𝑖=0 ] ∗ 𝑀𝐼 



 

39 

 

 

SDc= standard deviation control 

X= means control 

SDi= standard deviation samples 

Xi= means samples 

MI= Mutagenic Index 

 

3. Results and discussion 

The genotoxicity results obtained after 24 and 72 hours exposure to the investigated oxide  nanoparticles are 

reported in Fig. 1 for ZnO and in Fig. 2 for SiO2, TiO2. The cytotoxic effects (ROS production and cell viability) 

already investigated for SiO2 and TiO2 (Manzo et al. 2015) were reported for ZnO in figure 3. 

The cytotoxic (as % viable cells) and genotoxic effects (as % MI) obtained at (ZnO, SiO2, TiO2) EC50 and 

NOEC levels of population growth inhibition were summarized in Table 2. Due to the relevant differences 

among investigated particles and related effects, the section was arranged in four subsections: one for each 

nanoparticle and a final comparison among them.  

 

Table 2. ZnO, TiO2, SiO2 genotoxicity and cytoxicity (as % effect) at EC50 and NOEC values measured for D. tertiolecta 

population growth inhibition (Manzo et al. 2013a; Manzo et al. 2015) 

                

ZnO 

Figure 2 showed the level of DNA damage after 24 h of algae exposure. No effects were evaluable up to 5 mg 

Zn/L, where a 40% of damaged nuclei was registered (Score 4), similarly to that obtained at 10 mg Zn/L (40% 

of cells classified as score 3). At 25 mg Zn/L, the highest effect was observed with the 55% of nuclei seriously 

damaged (Score 4), while at 50-100 mg Zn/L, the lowest percentage of injured cells was obtained (33%-20% 

respectively). The Mutagenic Index (MI) also corroborated these results: the highest value (2.4) was detected 

at 25 mg Zn/L, while intermediate values (2 and 1.6) for 5-10 mg Zn/L respectively and low values (0.99 and 

1.2) for 50 and 100 mg Zn/L were obtained (fig. 3a). 

Analogously, after 72 of exposure, no effects were evaluable up to 5 mg Zn/L, where instead a decreasing 

percentage of injured nuclei respect to the 24 h was observed (fig. 4a). In the range 10- 100 mg Zn/L an 

increasing number of damaged nuclei were present and in particular at 25 mg Zn/L the highest percentage of 

damaged nuclei was observed (fig. 4a) together with the maximum MI (3.64) (fig. 3a). Under the applied 

experimental conditions, untreated D. tertiolecta cells showed a compact nucleus with a well-defined head 

region without any tail. Damaged algae cells, instead, showed comets with undefined head regions and tails of 

DNA fragments as reported by the microscope images in figure 1.  
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Figure 1. Fluorescence microscopy images showing DNA damage of  D. tertiolecta exposed to increasing concentration of 

ZnO NP and to negative and positive control after 24 and 72 h of exposure 

 

 

Figure 2. Fluorescence microscopy images showing DNA damage of D. tertiolecta exposed to increased concentration of 

TiO2, SiO2 NP and to negative and positive control after 24 and 72 h of exposure. 

 

Several studies reported that ZnO particles are capable of inducing genotoxic effects on human cells (Gopalan 

et al. 2009; Mu et al. 2014) earthworms (Hu et al. 2010), freshwater snail (Ali et al. 2012) and plants root cells 

(Demir et al. 2014) in the range of 10-1000 mg/L. 

It is worth to note that after 24 h of D. tertiolecta exposure to ZnO suspensions, a non monotonic dose-response 

relationship was obtained with a decreasing trend starting from 25 mg Zn/L. Kitchin et al. 2011, explained a 

similar non-monotonic trend, observed in the TiO2 NP genotoxicity dose response curve, with a substantial 

concentration-dependent agglomeration occurring during the first hour after sonication (i.e. higher 

concentrations-larger agglomeration-less reactive surface area-less DNA damaged cells-higher cell hetero-

agglomeration and consequent loss of cell vitality). 

However, an efficient DNA repair process (Rinna et al. 2015) could be assumed up to a certain threshold dose 

as we observe at 5 mg Zn/L (higher genotoxic effect at 24 h respect to 72 h). The viability of algal cells exposed 

to ZnO particles for 24, 72 h and measured by AO staining, was shown in Fig. 3b. After 24 h the action of ZnO 

particles upon cell viability became evident in the range of 10-25 mg Zn/L with a clear worsening between 50 

and 100 mg Zn/L. At 72 h, the toxic effects became more evident, with very low percentage of viable cells (32 

% and 26% at 50 and 100 mg Zn/L, respectively). 
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Figure 3. Genotoxicity and cytotoxicity of algal cells exposed to different concentrations of ZnO NP for different exposure 

times: Mutagenic Index (A); Cell viability (AO staining) (B); Relative Cell viability (MTT) (C); Intracellular ROS (DCFH-

DA) (D). *Statistically different with respect to the control. (p=0.05). 

 

Actually, at 72 h of exposure, the amount of relative viable cells (fig. 3c) measured by MTT assay, was even 

higher (46% at 100 mg Zn/L) showing a noticeable action upon the level of cell  metabolism. Likewise, the 

intracellular ROS production, evaluated by DCFH-DA, similar at all concentrations after 24 h, was significantly 

increased after 72 h of exposure to concentrations above 10 mg Zn/L (fig. 3d). To explain these findings it is 

necessary to recall some of the peculiar physicochemical properties of the NPs in seawater. Once in testing 

medium, NPs undergo to complex chemical transformations that lead to presence of ions/complexes, 

suspended/agglomerated NPs (Misra et al., 2012) whose bioavailability, uptake rates and toxicity can be largely 

different. In particular, in seawater, ZnO NPs tended both to rapidly form aggregates of considerable size, 

depending on time and ZnO NP concentration, and to dissolve with a maximum solubility around 25 mg Zn/L 

after 70 h, as evidenced in our previous work for a saturated ZnO NPs suspension (Manzo et al., 2013a). 

In the first hours (24 h), the hetero-aggregation among algae and NP aggregates was favored at lowest 

concentrations and algae were in fact rapidly surrounded by NP aggregates whereas, at highest concentrations 

of NPs, the homo aggregation was prevalent and algae resulted not entrapped (fig. S1-S2). The close interaction 

between algal cells and aggregates provoked a noticeable effect on the cell morphology (fig. S2-S3): cells loss 

a regular shape and showed a lower turgor with respect to the unexposed ones (fig. S2). This is likely because 

of this hetero-aggregation that ROS production increased and the cell viability reduced in dependence of 

exposure time and Zn concentration (fig. 3). 

Moreover, when algae came into contact with NP aggregates (fig. S1), the release of toxic ions can occur in 

proximity of cell membrane/wall (Li et al., 2015; Suman et al., 2015), provoking a direct action inside the cells 

(Golbamaki et al., 2015). However, the observed increase of DNA damages up to 25 mg Zn/L did not find an 

immediate correspondence with the effects provoked by an equivalent amount of ionic Zinc (fig. S4). These 

observations drive to the conclusion that together with the toxic action of ionic zinc, it is also necessary to 

consider the effects linked to the presence of aggregates in the suspensions as described in other studies, as for 

example the dissolution in proximity of cell membrane (Manzo et al., 2013a; Manzo et al., 2013b; Matranga 

and Corsi, 2012). 

This suggested a combined action of multiple processes in the resulting effect. The comparison among all the 

considered endpoint outcomes (genotoxicity/cytotoxicity and growth inhibition) in relation to Zn concentration 

(fig. 5) highlighted that the 72 h exposure exerted, as first effect, the 50% reduction of cell division (growth 

inhibition EC50) at value around 2 mg Zn/L. This could be probably due to the particle/ions interaction with 

protein responsible for regulation of cell cycle events such as DNA replication and cell division (Magdolenova 

et al., 2013). Starting from 5 mg Zn/L an increasing genotoxicity can be evaluated (fig. 5). It was probable that, 
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a direct action of Zn ions release near cell membrane/wall provoked Zn accumulation in the cell and 

consequently the observed DNA damages (Heim et al., 2015). The vitality parameters resulted compromised 

starting from 10 mg Zn/L (fig. 3b, c) when the DNA repair mechanisms turned out to be insufficient (Rinna et 

al. 2015). The number of cells in oxidative stress slowly increased from 5 mg Zn/L, becoming more considerable 

starting from 25 mg Zn/L (fig. 3d) for the probable surpass the cells’ ability to  compensate by detoxification 

activities (Guo et al. 2011).  

 

                      
Figure 4. Comet score frequency at different doses of ZnO NP (A) and TiO2, SiO2 (B) for different times of exposure (24–

72 h). Positive control (H2O2 100 μM) 93% score 4 (24 h) and 95% score 4 (72 h). 

 

                              

Figure 5. Mutagenic index, cell viability and oxidative stress (% effect) in relation to the concentration corresponding to 

ecotoxicological parameters of ZnO NP, obtained from (Manzo et al., 2013a, 2015). 

 

TiO2 

In figure 4b, the results of comet assay on microalgae exposed to TiO2 were shown. After 24 h of exposure, 

nuclei were already seriously damaged (MI 2.4-3.7). At 7.5 mg/L the highest effect (69% cells with score 4, MI 

3.07) was registered, while at 20 mg/L a lower level response (around 50% cells with score 4 and MI of 2.35) 

was obtained (tab. 3). After 72 h of exposure, the majority of the nuclei (>70%) were categorized as extremely 

damaged (score 4, see Material and Methods) and showed an undefined morphology of the head region (fig. 2), 

instead, the other classes (score 0-3) were always poorly represented (<20%) with MI 3.74 at 7.5 mg/L and MI 

3.46 at 20 mg/L. 

Stating that in seawater, TiO2 NPs rapidly aggregated up to micron-sized particles (Keller et al. 2010) while 

dissolution of TiO2 can be considered negligible, it could be envisaged that the main toxic action was ascribable 
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to the entrapment of the algal cells by the TiO2 aggregates (Manzo et al. 2015). This close interaction could 

induce an oxidative stress as ROS production (Thill et al. 2006; Hartmann et al. 2010). 

After the first 24 h of exposure at 7.5 mg/L, concentration that represent the NOEC for algae  growth, the 

probable increment of ROS production inside the algae cell (Jugan et al., 2012; Li et al., 2015), generates free 

radicals that induces indirect genotoxicity mainly by DNA-adduct formation  (Bhattacharya et al., 2009). 

Additionally the switch on of detoxification activities and DNA repair processes probably occurred. After a 

longer cell exposure (72 h) while the rank DNA damage for 7.5 mg/L was more or less the same, the genotoxic 

effect was more evident at highest concentration (20 mg/L) (fig. 2) and was probably due to the loss of cells’ 

ability to detoxify (Guo et al., 2011). This also resulted in evaluable cytotoxic effects and in the reduction (i. e. 

EC50) or complete inhibition of cell growth (Manzo et al. 2015). 

Many studies showed that TiO2 NPs induce genotoxicity in different organisms (e. g. fish cells, Reeves et al. 

2008; Clemente et al. 2013; Earthworms: Hu et al. 2010; plants: Demir et al. 2014; Pakrashi et al. 2014; Mytilus 

galloprovincialis: D’agata et al. 2014) and human cell lines (Bhattacharya et al. 2009; Demir et al. 2013; Ghosh 

et al. 2013) ranging from 1 mg/L to 1000 mg/L. 

 

SiO2 

Figure 4b showed the results of comet assay for D. tertiolecta exposed to SiO2 NPs. After 24 h, at 125 mg/L, 

more than 70% of intact nuclei were observed and MI value was 0.55 (tab. 3). Differently, around the 60% of 

the cells exposed to 200 mg/L showed intact or slightly damaged nuclei (fig. 4b) and a MI value of 1.26. 

Accordingly, after 24 h algae, although covered by aggregates (as in seawater SiO2 NPs rapidly aggregated), 

did not showed consistent toxic effects as viability, and ROS production, independently by concentration 

(Manzo et al. 2015). After 72 hours, an increasing genotoxic effect was evaluable at both concentrations: 

approximately 50% of nuclei appeared intact or with a short tail and similar MI values were obtained (1.22; 

1.74 at 125 and 200 mg/L respectively) (tab. 3). Analogously, with increasing exposure time (72 h), the SiO2/cell 

interaction produced an increment of ROS level in the cell, that provoked an increasing effect at  cellular and 

nuclear level (Manzo et al. 2015). 

The genotoxic effect of silica nanoparticles on cells and in particular upon algae are poorly known and the 

available literature data are often controversial. Some studies reported about the  genotoxicity of silica 

nanoparticles (Gerloff et al. 2009; Yang et al. 2009; Choi et al. 2011) while recent works concluded about the 

lacking of significant genotoxicity (Singh et al. 2009; Downs et al. 2012; Kain et al. 2012; Lankoff et al. 2013; 

Golbamaki et al. 2015). 

Based on the experimental results, SiO2 exerted after 72 h a moderate genotoxic action upon algae (MI 1.74 

maximum) while at cellular level a long exposure result in evident effect on viability and ROS production that 

could be the main responsible of cell growth inhibition at 200 mg/L (EC50). 

However because genotoxic and oxidative responses measured at 125 mg/L (NOEC) were not so different from 

those at 200 mg/L (tab. 2) it was very probable that different mechanisms cooccurred in the action of silica 

particles and that the induced cell growth inhibition was the resultant of balances among anti-ROS responses, 

DNA damages, chromosome instability, mitosis inhibition. (Yang et al. 2009; Downs et al. 2012) 

 

The different toxicity of ZnO, TiO2 and SiO2 

In Table 2, the results of ZnO, TiO2 and SiO2 genotoxicity (as % effect ), cytotoxicity (MTT, AO and oxidative 

stress as % effect) at EC50 and NOEC values measured for D. tertiolecta population growth inhibition (Manzo 

et al. 2013a; Manzo et al. 2015) were reported. 

ZnO NPs turned out to be the most toxic with the lowest EC50 and NOEC values while SiO2 was less toxic 

than TiO2. On the other hand, based on genotoxicity data (MI, 72 h of exposure) the rank of toxicity was 

different. At concentration representing EC50 and similarly, at concentration evaluated as NOEC, the order of 

genotoxicity was TiO2>SiO2>ZnO. Actually, TiO2 and SiO2 showed similar MI values at both NOEC and EC50 

concentrations. Therefore, it could be speculated that at lowest exposure TiO2 concentration (7.5 mg/L), the 

algae DNA repair mechanism was still efficient and the exerted damage did not affect the algae growth. A 

similar trend was observable for SiO2 (tab. 2). 

In the case of ZnO, the adverse effect at 2 mg Zn/L (EC50) was only evaluable at level of cell  division inhibition 

while the genotoxic action was evident only starting from to 5 mg Zn/L (fig. 5). This outcome could be 

ascribable mainly to the release toxic ions from aggregate of ZnO particle in the proximity of cell membrane 
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(fig S2-S3-S4) and their action on replication mechanisms together with the capability of cell to recover the 

DNA damages at low concentration as previously described in the ZnO section. 

Considering both parameters of cell viability (MTT and AO), either at EC50 and NOEC values, the  rank of 

toxicity was TiO2>SiO2>ZnO while considering the number of cells in oxidative stress, a higher % for SiO2 

respect to TiO2 was obtained (SiO2>TiO2>ZnO). Therefore, SiO2 exerted a significant oxidative stress that did 

not result in an extensive DNA damage, reduction of cell vitality, and/or inhibition of algae reproduction and 

therefore cells activated all the process necessary to maintain the cellular homeostasis in response the external 

stimuli. In the case of TiO2, instead it was probable that there was first an action on DNA, that at NOEC did not 

provoke a loss of vitality neither an inhibition of reproduction, while at EC50 compromised these functions  

although not as direct response to oxidative stress. The action on DNA could be due to the induction of cellular 

signals capable to provoke DNA damages, when TiO2 aggregates remained out of algal cell and to the TiO2  

interaction with DNA molecule in the case of internalization during division processes (Magdolenova et al. 

2013) or through holes in cell wall (Navarro et al. 2008; Chen X. et al. 2012; Li et al. 2015). 

 

 4. Conclusion 

ZnO nanoparticles were largely demonstrated to be toxic to marine microalgae population growth also at 

concentration not so far from the actual estimate in the seawater. For contributing to the  establishment of a 

protective threshold for marine biota the effects at level of higher sensitivity and lower ecosystem complexity 

as cellular and genomic level should be determined. 

In this work for the first time, the potential ZnO genotoxicity by Comet assay and cytotoxicity of microalgae 

D. tertiolecta was investigated and the results were evaluated in the light of growth inhibition assessment. 

ZnO seemed to exert its toxic action upon algae by a punctual and continuous ion release from aggregates in 

proximity of algae cell wall. The first interference was at level of the regulation of cell  division then resulting 

in the inhibition of algae population growth while DNA molecule structure and vitality parameters were 

compromised only at increasing concentration (5 mg Zn/L and 10 mg Zn/L respectively). 

The comparison with SiO2 and TiO2 toxicity pattern allowed highlighting a different pathways leading to the 

algae population growth inhibition. For SiO2 a cascade of effects (ROS production- DNA damages-growth 

inhibition) were evidenced suggesting a toxicity starting from oxidative stress generation. TiO2 instead firstly 

act on DNA structure and, being not soluble in seawater, an internalization during cell division or cell wall 

destruction could occur together with the activation of cellular signals destabilizing DNA structure. Our study 

provides some insights into the toxic mechanisms of metal oxide nanoparticles for marine algae however further 

investigations are still needed to confirm the suggested nano/particle- specific pathways. 

 

Supplementary materials: 

Methods:  

The algal cells were subjected to light microscope analysis (ZEISS Axioskop 50) for preliminary observation 

of the nature and extent of the damage, followed by a more specific observation through Focused Ion Beam 

microscopy. (FEI QUANTA 2 D). Optical observations were carried out on algal cells treated with different 

ZnO NP concentrations (5-25 and 100 mg Zn/L)  at different exposure time (5 h, 24h, 72 h) the  most 

representative images were recorded  Axiovision REL 4.8 by Axiocam/cm1 ZEISS).  

Before FIB observations algal cells were fixed as described in Li et al 2015. After 72 h of exposure to ZnO NP 

(100 mg Zn/L)   algal cells were centrifugated (4000 rpm 10min). Then the samples were fixed with 3% 

glutaraldehyde solution in 4◦C for 2 h. The samples were washed with 0.1 M PBS (pH 7.8) by centrifugation 

(4000rpm, 10 min) three times. Algal cells were fixed with 1% osmium tetroxide for 2 h in 4◦C, and 0.1 M PBS 

(pH 7.8) was added to wash the cells by centrifugation (3800 rpm, 10 min) three times. The control and treated 

(10 mg/L) cells were placed on a thin glass slide, air dried and observed under the FIB. 
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Figure S1. Phase contrast microscopy images (×40) of D. tertiolecta cells exposed to selected concentrations of 

ZnO NP and control at different times of exposure (5 h, 24 h and 72 h). 

 

 

Figure S2. More detailed phase contrast microscopy images (×40) of D. tertiolecta cells exposed to ZnO NP 

100 mg Zn/L at different exposure time: A (24 h); B (72 h); C (Control) 
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     Figure S3. FIB images of D.tertiolecta exposed to ZnO NP 100 mg Zn/L for 72 h. 

 

 

        Figure S4. Comet assay microscope images for D.tertiolecta exposed to ZnSO4 
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 Figure S5. Additional algal cells comet resulting from the exposure (72 h) to ZnO NP 100mg Zn/L. 
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                  3.3 Growth inhibition of three species of marine microalgae exposed to different  

                  sizes of Ag NPs and to coating agent PVP/PEI 
 

This section has been published in: Simona Schiavo, Nerea Duroudier, Eider Bilbao, Mathilde Mikolaczyk, 

Jorg Schafer, Miren Cajaraville, Sonia Manzo.  Growth inhibition of three species of marine microalgae 

exposed to different sizes of Ag NPs and to coating agent PVP/PEI. Aquatic toxicology. Under review.  

 

Abstract 

Microalgae are at the base of aquatic food chains, being starting points of biomagnificat ion processes that 

transport increased amounts of accumulated contaminants into food chains. Ag NPs are increasingly used due 

to their antimicrobial properties, therefore their presence in aquatic ecosystems is expected to grow. We 

evaluated the potential toxic effects of PVP/PEI coated 5 nm Ag NPs and of uncoated 47 nm Ag NPs to three 

species of marine microalgae with the aim of assessing their relative sensitivity. The selected species Isochrysis 

galbana (Prymnesiophyceae), Tetraselmis suecica (Chlorophyceae) and Phaeodactilum tricornutum 

(Bacillariophyceae) showed cell wall differences: the diatom P. tricornutum has an elaborate and thick cell 

wall, T. suecica cell wall is composed of coalesced rigid carbohydrate scales while I. galbana has a relatively 

soft cell coating. Microalgae were exposed for 72 h to PVP/PEI 5 nm Ag NPs (0.00001-100 mg Ag/L) or to 47 

nm Ag NPs (1-10 mg Ag/L) following the OECD 201 guideline. In parallel, the toxicity of PVP/PEI was also 

evaluated. Both types of NPs formed aggregates in seawater, larger for 47 nm Ag NPs than for 5 nm Ag NPs. 

The release of Ag ions by PVP/PEI 5 nm Ag NPs was around 10 times higher than by 47 nm Ag NPs. Ag NPs 

were able to interact with algal cells surface, as shown by microscope observations. There were clear differences 

in sensitivity towards PVP/PEI 5 nm Ag NPs among species. T. suecica was about 10 times more sensitive 

(EC50 0.0052 mg Ag/L) than I. galbana (EC50 0.039 mg Ag/L) and P. tricornutum (EC50 0.06 mg Ag/L). 

PVP/PEI alone also showed effect to algae indicating that it contributed significantly to the toxicity of 5 nm Ag 

NP suspensions. Ag NPs of 47 nm resulted less toxic than 5 nm Ag NPs, probably due to differences in size, 

dispersant and consequent dissolution and aggregation behavior. P. tricornutum was slightly less sensitive 

(EC50 4.72 mg Ag/L) than T. suecica (EC50 4.1 mg Ag/L) and I. galbana (EC50 3.30 mg Ag/L) which agrees 

well with the presence of a resistant silicified cell wall in the diatom. The mechanisms leading to observed 

inhibitory effects on algae growth need further studies. 

 

Introduction 

Silver nanoparticles (Ag NPs) are among the most used metallic nanoparticles in consumer products (Rejeski 

et al. 2008; Marin et al. 2015) due to their unique physicochemical characteristics, such as  high conductivity, 

scattering, chemical stability and catalytic activity (Johari et al. 2013) as well as their antimicrobial properties 

(Mohan et al. 2007; Wijnhoven et al. 2009). As the market for silver containing nano-functionalized products 

is significantly increasing worldwide (Boxall et al. 2007; Blaser et al. 2008; Thio et al. 2012), release of Ag 

NPs to the environment, including aquatic systems, is becoming relevant and is expected to grow up in the next 

decades (Tiede et al. 2009; Fabrega et al. 2011; Moreno-Garrido et al. 2015). Once in the aquatic environment, 

it is likely that Ag NPs become a source of (Ag NP) aggregates and of dissolved silver ions (Ag (I)), that could 

produce adverse effects in aquatic organisms. 

Toxicity of Ag NPs to different freshwater and saltwater organisms belonging to different trophic  levels has 

been widely reported (Fabrega et al. 2011; Wang et al. 2012; Ribeiro et al. 2014; Dorobantu et al. 2015; 

Gambardella et al. 2015). However, as recently reviewed by Moreno-Garrido and co-workers (2015), data on 

the toxicity on microalgae, and especially on microalgae from marine or estuarine environments, remain scarce 

and scattered. Current literature shows a wide variation of results on the toxicity of Ag NPs to microalgae, that 

vary in as much as five orders of magnitude of EC50 values (Lee et al. 2005; Navarro et al. 2008; Kennedy et 

al. 2010; Burchardt et al. 2012; He et al. 2012; Ribeiro et al. 2014), possibly in relation to differential algae 

sensitivity and to different factors including Ag NP size and presence of coating agents. Although the coating 

agents used for NP stabilization are an integral part of the NPs, still scarce attention is devoted to  their potential 

contribution to the overall toxicity of NPs (El Badawy et al. 2011; Katsumiti et al. 2014a; Zhang et al. 2014; 

Katsumiti et al. 2015; Navarro et al. 2015). 
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As microscopic primary producers, microalgae are the first target organisms for most of the  pollutants present 

in aquatic systems. They constitute the base of aquatic food chains, being potential starting points of 

biomagnification processes. Therefore, marine microalgae, which are widely distributed in coastal ecosystems 

(Behrenfeld et al. 2006) and are particularly susceptible to pollutants (Miglietta et al. 2011; Manzo et al. 2014) 

can be regarded as suitable indicators for marine water pollution by NPs (Aruoja et al. 2009). The evaluation 

of NP effects upon marine phytoplankton is indeed a necessary step to predict their potential impact on the 

whole ecosystems they support. Different species of microalgae could show differences in sensitivity towards 

NP toxicity depending on their structural and physiological characteristics. Phaeodactilum tricornutum 

(Bacillariophyceae) is a widespread pennate diatom (Rushforth et al. 1988; Francius et al. 2008)  commonly 

used for assessing effects of NPs (Baker et al. 2014; Castro-Bugallo et al. 2014; Moreno Garrido et al. 2015). 

The cell wall is formed by two valves overlapping in the girdle band region but in opposition to other diatoms, 

Phaeodactylum is very poor in silica, being the cell wall essentially composed of organic compounds. This 

diatom showed different sensitivities to Ag NPs and in particular a 50% growth inhibition (IC50) has been 

recorded at 2380 ± 1880 and 3690 ± 2380 μg/L for citrate-capped (14 nm) and PVP-capped (15 nm) Ag NPs, 

respectively (Angel et al. 2013) while a EC50 of around 930 μg/L for citrate Ag NPs has also been reported 

(Moreno-Garrido et al. 2015).  

Tetraselmis suecica is an elliptical microalgae of the Chlorophyceae (Prasinophyceae) class ranging up to 12 

μm in length while Isochrysis galbana (Prymnesiophyceae) is the smallest (4-7 μm) among the three algae 

tested in this study andis widely cultured to feed bivalves in the aquaculture industry. Both algae show a peculiar 

cell wall structure: T. suecica is enclosed in a rigid polysaccharidic cell wall or theca (Becker et al. 1994) while 

I. galbana has a relatively soft cell coating composed of coalesced carbohydrate scales (Zhu and Lee, 1997). 

Although both algae are generally used as model organisms for toxicity assessment of NPs (Miller e t al. 2012; 

Minetto et al. 2014), to the best of our knowledge no literature is available about Ag NPs effects on these 

species. 

In this study, the effects of PVP/PEI coated 5 nm Ag NPs and of uncoated 47 nm Ag NPs upon three marine 

microalgae (P. tricornutum, T. suecica and I. galbana) were evaluated with the aim of assessing their relative 

sensitivity. Population growth rate alterations as well as growth inhibition were evaluated and the No Observed 

Effect Concentration (NOEC), the Lowest Observed Effect Concentration (LOEC) and EC50 values were 

calculated. Interactions of algae cells surface with Ag NPs were also studied by microscopy analysis. Moreover, 

the potential toxic effects caused by the PVP/PEI coating agent were determined in order to understand the 

potential contribution of the coating agent to the overall toxicity of Ag NP suspensions. 

Materials and methods 

Obtainment and characterization of Ag NPs 

Uncoated Ag NPs and Ag NPs coated with PVP/PEI (Poly N-vinyl-2-pirrolidone + Poly ethyleneimine; 

77%:23%) were purchased as a stable aqueous suspension from Nanogap (Galicia, Spain). According to the 

manufacturers’ information, PVP/PEI coated AgNPs showed an average  size of 5.08 ± 2.03 nm and a zeta 

potential of +18.6 ± 7.9 mV, while uncoated Ag NPs presented an average size of roughly 47.2±15.6 nm in 

distilled water (DW).  Particle size distribution of PVP/PEI coated 5 nm Ag NPs and of uncoated 47 nm Ag 

NPs in artificial seawater (ASW, ASTM 1998) was analyzed daily by Dynamic Light Scattering (DLS) using a 

Zetasizer Nano Z (Malvern Instruments Ltd., Worcestershire, UK) during the 72 h of the ecotoxicological assay. 

Dissolution of both types of Ag NPs was assessed in ASW as described by Katsumiti et al. (2014b).  

Briefly, 10 ml samples of the Ag NP suspensions were prepared at a concentration of 10 mg/L and filled into 

dialyzer tubes (Spectra/ Por® Float-A-Lyzer; MWCO 0.1-0.5 kDa). The sample-filled dialyzers were then 

immersed in 1 L ASW. Samples (3 replicates of 1 ml) were extracted at 24, 48 and 72 h from the solution and 

analyzed for Ag ions using ICP-MS (Thermo X2 series) after 100- fold dilution using external calibration. 

Differences obtained for replicate samples were consistently lower than 5 % (R.S.D). 

 

Organisms 

P. tricornutum (Bacillariophyceae: Naviculales), T. suecica (Chlorophyceae: volvocales) and I. galbana 

(Prymnesiophyceae: Isochrysidales) were maintained in sterilized standard medium (Guillard, 1975) made with 

ASW. 

Microalgae were incubated under cool continuous white fluorescent lights until the log phase growth prevailed 

(about 58 μmol photons m−2 s−1 at 24±1°C with aeration from 5 to 7 days) to  provide enough inocula for 

experiments. Cell density was measured by a hemocytometer. 
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Toxicity test 

Algae growth inhibition test 

Algae bioassays were performed according to IRSA-CNR (IRSA-CNR, 1978). All glassware was rinsed with 

Milli-Q purified water and autoclaved before use. Microalgae (with a final density of 104 cells/ml) were first 

filtered (0.22 μm) and rinsed three times with filtered autoclaved ASW. 

Then, microalgae were added to each treatment and control (standard culture media, Guillard medium) together 

with nutrients. Stock suspensions of PVP/PEI 5nm Ag NPs and 47 nm Ag NPs were prepared by dispersing the 

primary stock solution into ASW to the final concentration of 100 mg/L. Stock dispersions were properly diluted 

at concentrations ranging 0.00001-100 mg Ag/L for PVP/PEI 5nm Ag NPs and 1-10 mg Ag/L for 47nm Ag 

NPs. Concentration ranges were selected based on the literature (Navarro et al. 2008; Oukarroum et al. 2012; 

He et al. 2012) and on preliminary toxicity experiments performed with each NP type. 

The PVP/PEI stock solution was diluted at concentrations ranging 0.0001-1040 mg/L (the same concentration 

range present in the 5nm Ag NP suspensions). After dilution, all the suspensions were briefly vortexed before 

the addition of micronutrients and test organisms. 

Test plates (10 ml) were kept in a growth chamber constantly illuminated with a white fluorescent  lamp 

(enhanced irradiation between 400 and 500 nm), at a temperature of 24 ± 1 °C for 3 days. 

Growth inhibition was expressed as percentage effect with respect to controls. 

 

Growth rate determination 

During the experiments, growth rate was determined daily by counting microalgae with a Burker chamber under 

a light microscope. Growth rate was calculated according to the equation described by Xiong et al. (2005): 

                                                                    U = (ln Nt- ln N0) / (t - t0) 

where U (cell number/h) is the growth rate; Nt and N0 mean the quantity of cells at times t and 0, 

respectively,where t means any exposure time (h) and t0 means the initial time of the treatment (h). 

 

Microscope observations 

Observations on the interactions of Ag NPs with microalgae were performed through light microscope analysis 

(ZEISS Axioskop 50) followed by more detailed observations through Focused Ion Beam (FIB) microscopy 

(FEI QUANTA 2 D). Before FIB observations, microalgae were fixed as described in Li et al. (2015). Briefly, 

after 72 h of exposure, microalgae were centrifuged (4000 rpm for 10min) and then samples were fixed with a 

3% glutaraldehyde solution at 4°C for 2 h. 

Samples were then washed three times with 0.1 M PBS (pH 7.8) by centrifugation (4000 rpm for 10 min). 

Microalgae were fixed with 1% osmium tetroxide for 2 h at 4°C and finally 0.1 M PBS (pH 7.8) was added to 

wash the cells by centrifugation (3800 rpm for 10 min, three times). Control and treated (10 mg Ag/L) 

microalgae were placed on a thin glass slide, air dried and observed under the FIB.  

 

Data analysis 

Statistical analyses for growth inhibition as well as for NOEC and LOEC values were conducted using the 

statistical package SPSS v.19 (SPSS Inc., IBM Company, Chicago, USA). Prior to the analysis, data were tested 

for normality (Kolmogorov-Smirnov normality test) and homogeneity of variances (Levene’s test). Significant 

differences (p<0.05) with respect to controls were set based on analysis of variance (ANOVA) and the multiple 

comparisons Dunnett's test. EC50 values were calculated using the Linear Interpolation Method (Inhibition 

Concentration procedure or ICp) (US EPA, 1993) and the bootstrap method was used to obtain 95% confidence 

intervals 
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Results 

Physicochemical characterization 

PVP/PEI coated 5 nm Ag NPs dispersed in ASW at 10 mg/L immediately reached a mean size of around 100 

nm according to DLS measurements (Figure 1).The mean size remained stable up to 24h (100 nm), while after 

48-72 h aggregates were slightly smaller (around 90 nm, Figure 1). Zeta potential values for PVP/PEI 5 nm Ag 

NPs in ASW ranged from -5 mV to +0.2 mV. Uncoated 47 nm Ag NPs tended to aggregate rapidly in ASW 

reaching a mean size of about 880 nm that turned to be slightly smaller at 24 h (~600 nm) (Figure 2). The largest 

size was achieved after 48 h (~3000 nm) and aggregates were smaller (around 1400 nm) after 72 h (Figure 2). 

Zeta potential in ASW was around -8 mV. 

 

                        

Figure 1: Mean size (±SD) of aggregates of PVP/PEI 5 nm Ag NPs (10 mg/L) during the 3 days algae bioassay. 

 

 

 

                          

Figure 2: Mean size (±SD) of aggregates of 47 nm Ag NPs (10 mg/L) during the 3 days algae bioassay 

 

 

Dissolution of both types of Ag NPs in ASW was detected along the 72 hours of experimentation (Table 1). In 

general, the release of Ag ions by PVP/PEI coated 5 nm Ag NPs was around 10 times higher than that by 

uncoated 47 nm Ag NPs (Table 1). After 24 hours, PVP/PEI coated 5 nm Ag NPs released around 20% of Ag 

ions while only near 1.5% of the uncoated 47 nm Ag NPs was converted into ionic Ag (Table 1). At 72 hours, 

dissolution of PVP/PEI coated 5 nm Ag NPs increased to 29.6% and for uncoated 47 nm Ag NPs to 3.4% (Table 

1). 
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  Table 1. Release of Ag ions as % of total starting material of Ag NPs (10 mg/L) in ASW.            

                               

                  

Toxic effects of PVP/PEI 5nm Ag NPs and coating agent PVP/PEI 

Figure 3 shows the effects of PVP/PEI 5 nm Ag NPs and of the coating agent PVP/PEI on the  growth of selected 

microalgae. Main ecotoxicological parameters evidenced clear differences insensitivity among studied species 

(Table 2). For PVP/PEI 5 nm Ag NPs, the effects were significant at the lowest concentration for all three  

microalgae. In fact, the NOEC was below 0.00001 mg Ag/L and the LOEC was always represented by the 

lowest concentration tested (Table 2). Based on the EC50 values obtained, T. suecica was about 10 times more 

sensitive (EC50 0.0052 mg Ag/L) than I. galbana (EC50 0.039 mg Ag/L) and P. tricornutum (EC50 0.06 mg 

Ag/L). This greater sensitivity of T. suecica was also evidenced by the analysis of the growth rates reported in 

Table 3. In fact, for T. suecica significant growth rate inhibition was measured starting from 0.01 mg Ag/L 

whereas the growth rates for I. galbana and P. tricornutum were not significantly different from controls up to 

0.1 mg Ag/L (Table 3). 

 

 

Table 2. Ecotoxicological parameters (EC50; NOEC; LOEC) for the three microalgae exposed to PVP/PEI 5 nm Ag NPs 

and PVP/PEI coating agent. 

 

              

 

The coating agent PVP/PEI alone inhibited markedly the growth of the three microalgae (Figure 3  and Table 

4). The highest EC50 value (0.83 mg/L corresponding to 0.083 mg Ag/L in PVP/PEI 5  nm Ag NP suspension) 

was registered for P. tricornutum. T. suecica resulted the most sensitive with a EC50 value of 0.004 mg/L (= 

0.0004 mg Ag/L in PVP-PEI 5 nm Ag NP suspension), while for I. galbana an intermediate EC50 value was 

obtained (0.03 mg/L corresponding to 0.003 mg Ag/L in PVP/PEI 5 nm Ag NP suspension). Thus, PVP/PEI 

alone was toxic to algae indicating that it contributed significantly to the toxicity of PVP/PEI 5 nm Ag NP 

suspensions. 
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The observations by light microscopy and by FIB of the three microalgae exposed to PVP/PEI 5 nm Ag NPs 

(10 mg Ag/L) are reported in Figure 5a and Figure 6a. PVP/PEI 5 nm Ag NPs seemed to  interact with algae 

mainly by entrapping them in a network of hetero-aggregates without changing their shape or morphology. 

Similarly algae exposed to PVP/PEI alone appeared entirely covered by the polymeric matrix. Moreover, FIB 

images allowed a more detailed observation of algae surface which resulted completely covered and surrounded 

by PVP/PEI 5 nm Ag NPs aggregates. In the case of P. tricornutum and I. galbana this coverage did not result 

in alterations of cell morphology, while for T. suecica a change in shape and a loss of cell turgor, with respect 

to the control, could be observed. 

 

 

 

Figure 3: Toxic effects of different concentrations of PVP/PEI 5 nm Ag NPs (red triangle) and PVP/PEI (blue triangle) upon 

P. tricornutum, T. suecica and I. galbana. Asterisks indicate statistically significant differences with respect to controls 

(p<0.05). 

 

Table 4. Growth rate (mean ± SD) for the three microalgae exposed to PVP/PEI at the same concentration range present in 

the 5 nm Ag NP suspensions. Asterisks indicate statistically significant differences with respect to controls (p<0.05).  
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Toxic effects of 47 nm Ag NPs 

Overall, 47 nm Ag NPs were less toxic than PVP/PEI 5 nm Ag NPs for the three microalgae tested. P. 

tricornutum was slightly less sensitive (EC50 4.72 mg Ag/L) than T. suecica (EC50 4.1 mg Ag/L) and I. galbana 

(EC50 3.30 mg Ag/L) (Table 5). T. suecica showed a peculiar inverted U-shaped dose-response curve (Figure 

4). For the three species tested, the decrease in growth rate was maximal at 5 mg Ag/L and then growth rate 

values increased at 7.5 and 10 mg Ag/L (Figure 4, Table 6). 

Figures 5b and 6b show light microscopy and FIB images obtained for the three microalgae exposed to 47 nm 

Ag NPs (10 mg Ag/L). Light microscopy images showed that 47 nm Ag NPs interacted by surrounding algae 

surface without entrapping them in hetero-aggregates. Algae surfaces were observed in greater detail by FIB 

microscopy: algae cells resulted covered by 47 nm Ag NP aggregates but no signs of cell morphology alterations 

and plasma membrane damages could be highlighted. 

 

 

 

 

 

Figure 4: Toxic effects of different concentrations of 47 nm Ag NPs upon P. tricornutum, T. suecica and I. galbana. 

Asterisks indicate statistically significant differences with respect to controls (p<0.05). 

 

 

Table 5.Ecotoxicological parameters (EC50; NOEC; LOEC) for the three algae exposed to 47 nm Ag NPs 
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Table 6. Growth rate (mean ± SD) for the three microalgae exposed to 47 nm Ag NPs. Asterisks indicate statistically 

significant differences with respect to controls (p<0.05). 

 

          

 

 

 

Discussion 

In this study, the effects of two different types of Ag NPs upon three different species of marine microalgae 

were evaluated with the aim of assessing their relative sensitivity. Obtained results can contribute to the 

understanding of effects of nanomaterials in the marine aquatic environment. We assessed the toxicity of 

PVP/PEI coated 5 nm Ag NPs and of uncoated 47 nm Ag NPs. Since it has been reported that coating agents 

contribute to the overall toxicity of NPs (El Badawy et al. 2011; Nguyen et al. 2013; Katsumiti et al. 2014a; 

Katsumiti et al. 2015; Navarro et al. 2015), the effects of PVP/PEI on the three microalgae were also evaluated. 

 

Physicochemical characterization 

DLS measurements of PVP/PEI coated 5 nm Ag NPs dispersed in ASW clearly showed hydrodynamic sizes 

larger than their primary size. PVP and PEI are both good NP stabilizers (Dai and Bruening, 2002; Zhang et al. 

2010), although aggregation of primary particles is likely to occur in high ionic strength media such as seawater 

(Thio et al. 2012). Already in the first minutes NPs reached a mean size of around 100 nm that appeared to be 

balanced by steric hindrance and particles were stable up to 24 h, decreasing then their size to 90 nm after 48-

72 h. Similar relative stability was reported for PVP-coated Ag NPs in SW by other authors (Angel at al. 2013). 

Considering that polymeric coating enhance particles stability (Lin et al. 2012), the absence of  PVP/PEI in 47 

nm Ag NP suspensions led to a sharp phenomenon of aggregation: DLS measurements in ASW indicated that 

particles tend to rapidly aggregated reaching the size of 3000 nm after 72 h. 

Dispersions of PVP/PEI 5 nm Ag NPs showed Z-potential values ranging from -5 mV to +0.2 mV. 

Generally, PVP-coated Ag NPs are nearly neutral in seawater (Thio et al. 2012) and thus, measured values are 

possibly a consequence of the positively charged PEI present in the capping mixture as electrosterical stabilizer 

agent. As recently reported in the OECD dossier on silver nanoparticles (OECD, 2015) a positive Z-potential 

value often generates an enhanced Ag NP toxicity since the reduced electrostatic barrier allows a more probable 

cell-particle interaction. In this study, the slight positive charges of PVP/PEI 5 nm Ag NPs could play an 

attractive role on the negatively charged algae surfaces allowing a greater toxicity respect to negatively charged 

47 nm Ag NPs (-8 mV). 

The NP dissolution rate is generally not affected by the presence of coating agents (Angel et al. 2013), but it 

was mainly influenced by the NP primary size (Ho et al. 2010). Accordingly, we found that dissolution rate 

from PVP/PEI 5 nm Ag NPs was 10 fold higher than dissolution rate measured for suspensions of uncoated 47 

nm Ag NPs. Similarly, it was reported a dissolution rate for 5.4 nm Ag-NPs of about 9 times higher than that 

for 20.5 nm Ag-NPs (Ho et al. 2010). 
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On the other hand, in environmental and biological solutions containing chloride ions, AgCl complexes (and 

some times silver carbonate and silver phosphate) will form from the dissolved silver ions. Therefore, due to 

the high salinity of seawater, dissolved silver is likely to be less toxic, respect to low salinity waters, because 

silver speciation may have been dominated by AgCl complexes that are less toxic than free silver due to their 

lower bioavailability (Lee et al. 2005). For example, Angel et al. (2013) reported that only 34% of the total 

silver present at the start of the test dissolved in seawater. At the same way, we found that after 72 h the 29% 

of total silver was released by PVP/PEI 5 nm Ag NP while only 3% of total silver was released by 47 nm Ag 

NPs. 

 

 

Toxic effects upon microalgae 

By comparing the dose-response curves obtained for uncoated and coated Ag NPs, different levels of toxicity 

were clearly detectable. Microalgae exposed to uncoated 47 nm Ag NPs showed EC50 values of several orders 

of magnitude higher (3-4 mg Ag/L) than those obtained by the algae exposed to PVP/PEI coated 5 nm Ag NPs 

(0.0052-0.06 mg Ag/L). The different algal sensitivity could be ascribable to a combined effect of particle size 

and occurrence or not of coating agent PVP/ PEI once suspended in saline medium (Miao et al. 2009; He et al. 

2012; Gambardella et al. 2015). 

In the present study, the three algae, when exposed to PVP/PEI 5 nm Ag NP, were less sensitive  respect to 

Thalassiosira weissflogii (Miao et al. 2009) exposed to PVP Ag 10 nm NP (EC50 1-2 *10-12 M), but more 

sensitive respect to D. tertiolecta (EC50 0.9 mg/L) and S. costatum (EC50 3.1 mg/L) treated with uncoated 10 

nm Ag NP (Gambardella et al. 2015). Instead, when I. galbana, T. suecica and P. tricornutum were exposed to 

40 nm Ag NPs, minor sensitivity respect to C. marina (EC50 0.2 mg/L, He et al. 2012). In the case of P. 

tricornutum the obtained EC50 values were not directly comparable with that ones obtained for this species and 

other diatoms in previous works (Angel et al. 2013; Moreno-Garrido et al. 2015) due to difference in NP sizes 

used (14-15 nm) and in capping agent composition. 

The nano aggregates of coated Ag NPs (less than 100 nm) resulted more available to microalgae in comparison 

to the larger ones produced by uncoated NPs. This greater availability resulted in a closer interaction with 

microalgae surfaces that appeared entrapped in a network of large heteroaggregates of PVP/PEI coated 5 nm 

Ag NPs, as could be highlighted by light microscopy and FIB microscopy. 

 

 

 

Figure 5: Micrographs obtained by light microscopy of  P.tricornutum, T.suecica and I. galbana exposed to 10 mg/L 

PVP/PEI 5 nm Ag NPs (A) and 47 nm Ag NPs (B). Control cells are shown in the insets 
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It seems that aggregates covering cell surfaces can induce a certain inhibition of the photosynthetic activity of 

microalgae due to the reduction of light availability (Navarro et al. 2008; Wei et al. 2010; Manzo et al. 2015). 

On the other hand, based on light microscope observations, aggregates of uncoated Ag NPs mainly entrapped 

few algae cells at time resulting in generally small formations. This was also observable in FIB images in which 

only few aggregates were found surrounding the algae cell surfaces. 

Coating agents are chemicals (such as polymers and surfactants) used in the synthesis of Ag NPs to prevent 

their aggregation through electrostatic repulsion, steric repulsion or both (Phenrat et al. 2008; Hotze et al. 2010). 

In the case of silver, the most prevalent capping agents are citrate and polyvinylpyrrolidone (PVP) (El Badawy 

et al. 2011). The PVP-AgNPs are stabilized through the steric repulsion caused by the adsorption of PVP on the 

particle surface (Zhang and Zhang, 2014). The PEI-Ag NPs are electrosterically stabilized due to the adsorption 

of the PEI on the particle surface (El Badawy et al. 2010). In general, no toxic effects have been previously 

reported for PVP upon marine microalgae (Moreno-Garrido et al. 2015) while a clear toxic effect has been 

reported for PEI for different organisms (El Badawy et al. 2011; Ivask et al. 2014). However, to the best of  our 

knowledge, there is no literature available upon the use of these two polymers together. In the  present study, 

algae exposed to the coating agent PVP/PEI alone showed an evident growth inhibition effect similar to that 

observed for coated NPs, but a different behaviour could be distinguished for the three algae. In particular, in 

the case of I. galbana and T. suecica, the coating agent alone resulted more toxic than PVP/PEI coated Ag NP 

suspensions at PVP/PEI equivalent concentrations. We can speculate that once algae were added to the PVP/PEI 

suspension, an immediate steric interaction occurred due to the stabilizing nature of the agent itself. This could 

provoke the inclusion of microalgae in the polymeric matrices with a subsequent clear toxic effect, especially 

in the case of microalgae without a resistant cell wall (I. galbana and T. suecica). 

Similarly, a possible role of the coating agent in the overall toxicity to algae of different metal NPs as well as 

some evidences for different organic coating agents has been previously reported by some authors (El Badawy 

et al. 2011, Moreno-Garrido et al. 2015, Navarro et al. 2015). 

 

           

Figure 6: FIB micrographs of P. tricornutum, T. suecica and I. galbana exposed to 10 mg/L PVP/PEI 5 nm Ag NPs (A) and 

47 nm Ag NPs (B). Control cells are shown in the insets. 

 

The three selected microalgae differed in sensitivity towards tested NPs; T. suecica and I. galbana were more 

sensitive than P. tricornutum to both NPs as well as to the coating agent. The higher sensitivity of I. galbana 

and T. suecica could be due to their cell wall characteristics. These algae have no distinct or mineralized cell 

walls (Throndsen et al. 1993; Zhu et al. 1997) and therefore, they may be more vulnerable compared to other 

taxa with different cell wall properties. Thus, the resistant cell wall of P. tricornutum seemed to limit the toxic 

effects of coated and uncoated Ag NPs and of the coating agent. Additionally, small microalgae have been 
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found to be more sensitive than diatoms (Helbling et al. 1994; Karentz et al. 1994; Holm-Hansen et al. 1997). 

This higher sensitivity has been related to their larger surface area to volume ratio compared to larger microalgae 

(Quigg et al. 2006; Levy et al. 2007). Moreover, due to their dimensions, small  microalgae may be covered 

faster by NPs. Finally, algae motility is a key process that should be taken into account: it allows a greater 

interaction between algae and NP aggregates but it could also be a very sensitive process that could be affected. 

Mobile algae cells are widely distributed in culture medium, thus increasing their contact time with Ag NP 

aggregates, with respect to immobile diatoms that tend to settle at the bottom of the well (Zhou et al. 2015). 

 

Conclusions 

Ag NPs of 47 nm resulted less toxic than PVP/PEI coated Ag NPs of 5 nm for the three microalgae  species. 

This is possibly related to the fact that 5 nm Ag NPs formed smaller aggregates that could be more available to 

cells when compared to aggregates of 47 nm Ag NPs. An additional reason could be that PVP/PEI 5 nm Ag 

NPs released around 10 times more Ag ions than 47 nm Ag NPs.  

PVP/PEI alone was also toxic to algae indicating that it contributed significantly to the toxicity of PVP/PEI 5 

nm Ag NP suspensions. The mechanisms leading to observed inhibitory effects on algae growth remain to be 

explored and need further studies. Finally, of the three species tested, T. suecica was the most sensitive to 

PVP/PEI 5 nm Ag NP exposure while the diatom P. tricornutum was most resistant, highlighting the influence 

of algae cell surface characteristics on NP toxicity. 
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                 4. General discussion 
In this work, the ecotoxicity of ZnO, SiO2 TiO2 (section 3.1-3.2), and of coated and uncoated Ag (Chapter 3.3) 

NPs upon marine microalgae were studied using different approaches. Selected NPs varied in chemical 

composition, size, shape, crystal structure and presence of coating agent. To evaluate the bioavailability to 

microalgae, NPs were characterized in testing media (i.e. seawater) and all main results, such as size 

distribution, Z-potential, ion release, sedimentation were summarized in Table 1.  

Overall results of this work evidenced how the toxic effects were strictly related to the metal containing NPs 

and then to their different physic-chemical behavior in a complex matrix like seawater. 

In the main, these physicochemical features highlighted the instability of all tested nanomaterials in seawater, 

which result in the formation of large, micrometric aggregates with specific sedimentation trend also in relation 

to the initial particle concentrations. The Z-potential magnitudes indicated indeed that the repulsive energy 

among the particles was smaller than van der Waals attraction energy, and so the particles showed a marked 

tendency to flocculate. All these parameters influenced the, availability and then toxicity and the mode of action 

of the different nanoparticles. 

Therefore, it could be assumed that the Ag 5 nm is the most toxic metal followed by ZnO, TiO2 while SiO2 was 

the least toxic metal. These results are in line with findings of other studies upon different organisms. Katsumiti 

et al. (2014) founds the same rank of toxicity upon hemocytes and gill cells of Mytilus galloprovincialis. Other 

authors found that ZnO was more toxic, respect to TiO2.and SiO2 upon 4 different microalgae species (Miller 

et al. 2012) or upon two different bacteria (Adams et al., 2006) 

The following section discusses the key findings of this thesis and aimed to make recommendations for future 

investigations of nanomaterial effect in marine environment for a reliable hazard assessment. 

 

 

                 4.1 The role of dissolution in NP toxic action for algae 
The dissolution is an important process to take into account in the NP toxicity as it largely influences the mode 

of action and the impact on human and environmental health. The NP potential to dissolve influences their 

persistence in the environment and acts as a critical factor that determines the diverse biological responses. 

Dissolution can delivery highly toxic ions, as in the case of NPs composed of elements, which, in solution, are 

known to be toxic (such as Zn2+, Cu2+, Cd2+ and Ag+ (Brunner et al., 2006; Xia et al., 2008).  

The comparison among different metal bearing NPs in seawater, showed TiO2 and SiO2 NPs as almost insoluble, 

while ZnO and Ag NPs were instead soluble. Dissolution of ions from metal bearing NPs such as ZnO and Ag 

appears to be a major driver of toxicity for many aquatic organisms. The toxicity of ZnO NPs was previously 

attributed to the dissolution of ionic Zn in freshwater (Aruoja et al., 2009; Franklin et al., 2007; Heinlaan et al., 

2008), seawater (Wong et al., 2010; Miller et al., 2010) and in cell culture media (Xia et al., 2008). Similarly in 

many studies (Lok et al., 2007; Navarro et al., 2008) the dissolution of Ag ions was suggested as the responsible 

for Ag NP toxicity.  

In the present work, we confirmed that dissolution plays a role in NPs toxicity since the most toxic NPs were 

those with the highest capability of toxic ion release: Ag NPs 5 nm and ZnO NPs (see table 1).  

In the case of Ag NPs (Section 3.3), it has been found that algae population growth inhibition was positively 

related to the Ag ion release. The higher was the dissolution rate measured (PVP/PEI 5 nm Ag NPs respect to 

the uncoated 47 nm Ag NPs) the higher was the  toxic effect observed. 

For ZnO NPs (Section 3.2) the comparison among all the considered endpoint outcomes 

(genotoxicity/cytotoxicity and growth inhibition)  highlighted that a direct action of Zn ion release near algae 

cellular membrane/wall could provoke Zn accumulation in the cell and consequently DNA damages (Heim et 

al., 2015). In the case of the ZnO NPs the toxic effect is not solely ascribable to ion releasing but is also related 

to the particles aggregation process in the medium. 

 

               4.2 NP Size dependent toxicity  
In this work we found that also other NP properties such as the pristine size could inf luence the toxicity to 

microalgae cells. Comparing the two types of Ag NPs tested, smaller NPs (PVP/PEI 5nm) were more ecotoxic 

than the larger ones (Ag 47 nm). Microalgae exposed to uncoated 47 nm Ag NPs showed EC50 values of several 

orders of magnitude higher (3-4 mg Ag/L) than those obtained by the algae exposed to PVP/PEI coated 5 nm 

Ag NPs (0.0052-0.06 mg Ag/L). The different algal sensitivity could be ascribable to a combined effect of 

particle size and occurrence or not of coating agent PVP/PEI once suspended in saline medium (Miao et al. 

2009; He et al. 2012; Gambardella et al. 2015). 
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Size dependent toxicity was also reported in other studies. For example Clement and co-authors reported that 

TiO2 NPs (15 nm; 25 nm; 32 nm) were more toxic toward different organisms (microalgae, daphnia, rotifer and 

plants) respect to microsized TiO2 (44 µm). For Ag NPs different researcher reported about silver size-

dependent toxicity (Jiang et al., 2008; Zhang et al., 2014; Gliga et al., 2014) in particular Carlson et al. (2008) 

found that Ag NPs 15 nm and 30 nm were more toxic respect Ag NPs 55 nm. Passagne et al. (2012) reported 

that toxicity was size- and time-dependent, with 20 nm SiO2 NPs being more cytotoxic than larger ones (50 

nm). 

Regarding ZnO NPs in different studies a higher toxicity of nano ZnO with respect to bulk was observed for 

different organisms( Heinlaan et al., 2008, Ji et al., 2011, Jiang et al., 2009 and Wong et al., 2010). In particular 

in Manzo et al 2013 bulk ZnO (>100nm) resulted less toxic than nano ZnO (<100nm) upon the green algae D. 

tertiolecta.  

In most of these studies the small size and the relatively large surface have been suggested to result in increased 

toxicity when compared to particles in micrometer size. There is a general consensus on that ≤30 nm NPs are 

more toxic than larger ones due to their dramatic changes in behavior that enhance their reactivity (Auffan et 

al., 2009). Particles of 30 nm in size show less than 20% of the constituent atoms in their surface while particles 

of 10 nm show approximately 35-40% of the atoms localized at their surface (Auffan et al., 2009). Therefore 

the higher  toxicity of  NPs ≤ 30 nm respect larger ones was attributed to  the considerable changes in NP 

property that enhance their reactivity (Auffan et al., 2009).  

 

 

                  4.3 The role of NP aggregation in toxic effect 
The aggregation status is a key factor affecting the NP availability, uptake and toxicity. Physicochemical 

parameters of testing  media such as pH and ionic strength can lead to a different precipitation of NPs and 

consequently to lower bioavailability for biota (Baun et al., 2008). NPs are known to rapidly aggregate and 

precipitate in high ionic strength media such as seawater (Canesi et al., 2010; Brunelli et al., 2013). 

NP once in seawater gave place to two different aggregation phenomenon homoaggregation (aggregation 

among NPs) and heteroaggregation (aggregation between NPs and organisms or natural organic matter (NOM). 

In surface water, whether the NPs will undergo homoaggregation rather than heteroaggregation with inorganic 

colloids depends on the respective kinetics of these competing scenarios. High NP concentration will increase 

the homoaggregation rate, while high colloid concentration or presence of organisms will likely favor 

heteroaggregation (Labille et al., 2015) 

In the case of ZnO (470-1040 nm) the hetero-aggregation among algae and NP aggregates was favored at lowest 

concentrations and algae were in fact rapidly surrounded by NP aggregates whereas, at highest concentrations 

of NPs, the homo aggregation was prevalent and algae resulted not entrapped. The close interaction between 

algal cells and aggregates provoked a noticeable effect on the cell morphology: cells loss a regular shape and 

turgor. Regarding SiO2 NPs (1300-1800 nm), within 24 h from dispersion in seawater, mainly aggregates with 

sizes around 600 nm were present in the suspension independently from the starting concentration. (Table 1). 

This indicates that SiO2 formed a stable population of homoaggregates and that, by increasing the SiO2 

concentration, only the overall number of these aggregates increased. Independently by the tested concentration, 

the algae were covered by aggregates; however, no clear toxic effects upon algal cell number, viability, and 

ROS production were evident. On the other hand, it is likely that the cell surfaces covering by the aggregates 

can induce a certain inhibition of the photosynthetic activity due to the reduction of the light availability 

(Navarro et al. 2008; Wei et al. 2010). This sharp tendency to a strong heteroagglomerations between SiO2 

aggregates and algal cells was also reported, in experimental conditions (i.e., pH and IS) close to ours, in a 

recent work by Ma et al. (2015). 

The size of the TiO2 aggregates rapidly increased in seawater to a few microns. However, increasing the particle 

concentrations increases the probability of collisions not only between particles (homoaggregation) affecting 

the aggregation rate but also between aggregates and algal cells, thus increasing the number of potential cells 

injured by the (nano)material. This heteroaggregation phenomenon was previously described (Wang et al. 2008, 

Li et al. 2015, Ma et al. 2015, Xia et al. 2015), and the rate of agglomeration seemed to be faster in the presence 

of algae (Sadiq et al. 2011). Since it was observed that the TiO2 aggregates were already few microns sized in 

these first hours, it could be envisaged that the first step of the toxic action is the entrapment of the algal cells 

by means of very large particle aggregates. Then, the close interaction between aggregates and cell membranes 

induced an oxidative stress as ROS production (Thill et al. 2006; Hartmann et al. 2010). The NP aggregates of 

coated Ag NPs (less than 100 nm) resulted more available to microalgae in comparison to the larger ones 

produced by uncoated NPs. This greater availability resulted in a closer interaction with microalgae surfaces 

http://www.sciencedirect.com/science/article/pii/S0048969712016087#bb0060
http://www.sciencedirect.com/science/article/pii/S0048969712016087#bb0070
http://www.sciencedirect.com/science/article/pii/S0048969712016087#bb0075
http://www.sciencedirect.com/science/article/pii/S0048969712016087#bb0185
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that appeared entrapped in a network of large heteroaggregates of PVP/PEI coated 5 nm Ag NPs. It seems that 

aggregates covering cell surfaces can induce a certain inhibition of the photosynthetic activity of microalgae 

due to the reduction of light availability (Navarro et al. 2008; Wei et al. 2010). On the other hand, based on 

light microscopy observations, aggregates of uncoated Ag NPs also entrapped few algae cells at a time, resulting 

in generally small formations. 

 

                  4.4 The presence of coating agent could influence the toxicity 
The modifications of NP surface chemistry (e.g. Coating agents) or the presence of additives in the NPs 

preparation (e.g. surfactants) are used to increase the stability of NPs in suspension but may influence their 

biological reactivity. The NP  modifications can influence significantly NP dissolution and can promote toxicity 

by its own chemistry (Falck et al., 2009; Mano et al., 2012) increasing the production of ROS and producing 

oxidative stress (Mano et al., 2012). Although the coating agents  used for NP stabilization (PEG, PVA, PVP, 

PEI) are an integral part of the NPs, still scarce attention is devoted to their potential contribution to the overall 

toxicity of NPs (El Badawy et al. 2011; Katsumiti et al. 2014a; Zhang et al. 2014; Katsumiti et  al. 2015; Navarro 

et al. 2015). Although various surfactants (Triton x, Tween) are commonly applied to stabilize metal NP their 

toxicity upon different organisms still lacking (Kvıtek et al 2008) . 

Coating agents are chemicals (such as polymers and surfactants) used in the synthesis of NPs to prevent their 

aggregation through electrostatic repulsion, steric repulsion or both (Phenrat et al. 2008; Hotze et al. 2010). In 

the case of silver, the most prevalent capping agents are citrate and polyvinylpyrrolidone (PVP) (El Badawy et 

al. 2011). The PVP-AgNPs are stabilized through the steric repulsion caused by the adsorption of PVP on the 

particle surface (Zhang and Zhang, 2014). The PEI-Ag NPs are electrosterically stabilized due to the adsorption 

of the PEI on the particle surface (El Badawy et al. 2010). In general, no toxic effects have been previously 

reported for PVP upon marine microalgae (Moreno-Garrido et al. 2015) while a clear toxic effect has been 

reported for PEI for different organisms (El Badawy et al. 2011; Ivask et al. 2014). However, to the best of our 

knowledge, there is no literature available upon the use of these two polymers together.  

In the present study, algae exposed to the coating agent PVP/PEI alone showed an evident growth inhibition 

effect similar to that observed for coated NPs, but a different behavior could be distinguished for the three algae. 

We can speculate that once algae were added to the PVP/PEI suspension, an immediate steric interaction 

occurred due to the stabilizing nature of the agent itself. This could provoke the inclusion of microalgae in the 

polymeric matrices with a subsequent clear toxic effect, especially in the case of microalgae without a resistant 

cell wall. So it could be concluded that the presence of the coating agents could influence the NP toxicity. 

 

    

4.5 Different algae sensitivity  
In marine coastal ecosystems, microalgae play a key role as primary producers and, being at the base of the 

aquatic food web, any modification of their growth could affect higher trophic levels (Rioboo et al., 2007). 

Additionally, phytoplankton represents an excellent aquatic model for the study of the effects of pollutant 

exposure at population level (C. Chen et al. 2012), due to a short generation time and high sensitivities . The 

evaluation of NP effects upon marine phytoplankton is indeed a necessary step to predict their potential impact 

on the whole ecosystems they support. Different species of microalgae could show differences in sensitivity 

towards NP toxicity depending on their structural and physiological characteristics. The selected microalgae 

belong to different classes Phaeodactilum tricornutum (Bacillariophyceae) is a widespread pennate diatom 

(Rushforth et al. 1988; Francius et al. 2008) commonly used for assessing effects of NPs (Baker et al. 2014; 

Castro-Bugallo et al. 2014; Moreno Garrido et al. 2015). The cell wall is formed by two valves overlapping in 

the girdle band region but in opposition to other diatoms, Phaeodactylum is very poor in silica, being the cell 

wall essentially composed of organic compounds. Tetraselmis suecica is an elliptical microalgae of the 

Chlorophyceae (Prasinophyceae) class ranging up to 12 μm in length while Isochrysis galbana 

(Prymnesiophyceae)is the smallest (4-7 μm) among the three algae tested in this study and is widely cultured 

to feed bivalves in the aquaculture industry. Both algae show a peculiar cell wall structure: T. suecica is enclosed 

in a rigid polysaccharidic cell wall or theca (Becker et al. 1994) while I. galbana has a relatively soft cell coating 

composed of coalesced carbohydrate scales (Zhu and Lee, 1997). Although both algae are generally used as 

model organisms for toxicity assessment of NPs (Miller et al. 2012; Minetto et al. 2014). The results of this 

thesis (chapter 4) showed that these three microalgae differed in sensitivity toward tested NPs; T. suecica, I. 

galbana and D. tertiolecta were more sensitive than P. tricornutum. The higher sensitivity of I. galbana, D. 
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tertiolecta and T. suecica could be due to their cell wall characteristics. These algae have no distinct or 

mineralized cell walls (Throndsen et al. 1993; Zhu et al. 1997) and therefore, they may be more vulnerable 

compared to other taxa with different cell wall properties. Thus, the resistant cell wall of P. tricornutum seemed 

to limit the toxic effects of NPs and of the coating agent. see cap. Additionally, small microalgae have been 

found to be more sensitive than diatoms (Helbling et al. 1994; Karentz et al. 1994; Holm-Hansen et al. 1997). 

This higher sensitivity has been related to their larger surface area to volume ratio compared to larger microalgae 

(Quigg et al. 2006; Levy et al. 2007). Moreover, due to their dimensions, small microalgae may be covered 

faster by NPs. Finally, algae motility is a key process that should be taken into account: it allows a greater 

interaction between algae and NP aggregates but it could also be a very sensitive process that could be affected. 

Mobile algae cells are widely distributed in culture medium, thus increasing their contact time with NP 

aggregates, with respect to immobile diatoms that tend to settle at the bottom of the well (Zhou et al. 2015).  

 

 

4.6 Suitability of genotoxic and cytotoxic assays to evaluate NP toxicity 

mechanisms  
The action of nanoparticles (NPs) upon microalgae is usually evaluated by parameters that integrate and reflect 

sublethal effects at population level such as growth rate, biomass, chlorophyll fluorescence and primary 

production (Aruoja et al., 2009; Ji et al., 2011; Chen X. et al. 2012; Ma et al., 2013). However to shed light on 

the NP mode of toxic action it could be useful to combine the investigation of the cellular response, as cell 

viability, ROS production, with genotoxicity  as DNA damage (Dalai et al., 2013; Gunawan et al., 2013; 

Bhuvaneshwari et al., 2015; Demir et al., 2014; Golbamaki et al., 2015; Suman et al., 2015). The results of this 

thesis evidenced the usefulness of considering different parameters and endpoint (Cell viability, Oxidative 

stress, DNA damage, algae population growth inhibition) to understand the mechanisms behind NP toxicity. 

By carrying out different assays, it could be possible to observe not only the effects but even all the cascade 

events that conduct to the toxicity.  

In this thesis for the first time the evaluation of NP genotoxicity was performed using the comet assay upon 

microalgae cells. Due to a high growth rate, phytoplankton offers the possibility to study the trans-generational 

effects of NPs exposure. With a view to obtaining a better insight into the long-term consequences of 

genotoxicity at population level, it appeared so valuable to evaluate the genotoxicity of different NPs on 

microalgae through comet assay. 

Despite other genotoxicity tests (e.g. micronucleus test), the comet assay is applicable to any kind of eukaryotic 

cell and it is independent of cell proliferation or cell cycle status. This method, generally used to test NPs, as 

well as other genotoxic agents (Kumar et al., 2011; Shukla et al., 2011) is a suitable tool for measuring primary 

DNA damage also in microalgae (Akcha et al., 2008; Prado et al., 2009).   

From the genotoxic evaluation herein performed it could be established that the Comet Assay is a useful method 

to assess not only the NP genotoxicity  but also to understand their mode of action.  
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                                  Table 1. NPs physic-chemical characterization  

 

 

 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NPs  [NPs] 

(mg/L) 

Size (nm) Ζ-pot (mV) pH Ion 

release 

(mg/L) 

SiO2 125 1300 ±100 -12.15±0.63 7.8 negligible 

200 1800±180 -10.31±0.81 7.9 negligible 

TiO2 7.5 1300±110 -10.7±0.28 8.0 negligible 

20 1350±115 -9.4±0.35 8.0 negligible 

ZnO 1 470±45 -10.35±0.83 8.0 -- 

5 1040±70 -10.51±1.43 8.0  

10    3.5±0.5 

PVP/PEI 

Ag 5nm 

10 100 -5  7.8 2  

Ag 47 nm 10 600 -8 7.8 1.52 
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5. Conclusion  
In conclusion it could be assumed that many different factors should be taken into account in the understanding 

the mechanisms underlying NP toxicity.  

The NP ecotoxicity could not be only ascribed to ion release but it is also dependent to the NP behavior 

(aggregation trends, sedimentation process) together with all the transformation that could have place in a 

complex matrix like seawater. 

In fig, 1 the mode of action of ZnO, SiO2 and TiO2 are graphically summarized on the bases of results presented 

in this thesis. ZnO NP exerted its toxic action upon algae by a punctual and continuous ion release from 

aggregates in proximity of algae cell wall. The first interference was at level of the regulation of cell division 

then resulting in the inhibition of algae population growth while DNA molecule structure and vitality parameters 

were compromised only at increasing concentration (5 mg Zn/L and 10 mg Zn/L respectively). The comparison 

with SiO2 and TiO2 toxicity pattern allowed highlighting different pathways leading to the algae population 

growth inhibition. For SiO2 a cascade of effects (ROS production–DNAdamages– growth inhibition) was 

evidenced suggesting a toxicity starting from oxidative stress generation. TiO2 instead firstly act on DNA 

structure and, being not soluble in seawater, an internalization during cell division or cell wall destruction could 

occur together with the activation of cellular signals destabilizing DNA structure. In figure 2 the results obtained 

for Ag NP are summarized In the case of the Ag NP Ag NPs of 47 nm resulted less toxic than PVP/PEI coated 

Ag NPs of 5 nm for the three microalgae species. This is possibly related to the fact that 5 nm Ag NPs formed 

smaller aggregates that could be more available to cells when compared to aggregates of 47 nm Ag NPs. An 

additional reason could be that PVP/PEI 5 nm Ag NPs released around 10 times more Ag ions than 47 nm Ag 

NPs. PVP/PEI alone was also toxic to algae indicating that it contributed significantly to the toxicity of PVP/PEI 

5 nm Ag NP suspensions. It could be speculated that the aggregation and the dissolution play a key role in the 

toxicity thus microalgae surfaces that appeared entrapped in a network of large heteroaggregates. It seems that 

aggregates covering cell surfaces can induce a certain inhibition of the photosynthetic activity of microalgae 

due to the reduction of light availability. However the mechanisms leading to observed inhibitory effects on 

algae growth remain to be explored and need further studies. 

 

 

                                               

                                                Figure 1: The diverse mode of action of ZnO NPs, SiO2 and TiO2 upon microalgae 
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                                          Figure 2: Toxic effect of PVP/PEI Ag NP 5 nm and Ag 47 nm upon microalgae 
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