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1. INTRODUCTION 

1.1.1. Kidney anatomy and physiology 

 The kidneys are organs that serve several essential regulatory roles in 

vertebrate animals. They are reddish-brown, bean-shaped organs located in the 

abdominal cavity, more specifically in the paravertebral gutter, and lie in a 

retroperitoneal position at a slightly oblique angle. There are two kidneys, one on 

each side of the spine. The asymmetry within the abdominal cavity caused by the 

liver typically results in the right kidney being slightly lower than the left, and left 

kidney being located slightly more medial than the right. The left kidney is typically 

slightly larger than the right kidney 1
 (Fig. 1). The superior pole of the right kidney is 

adjacent to the liver. For the left kidney, it is next to the spleen. Both, therefore, move 

down upon inhalation. In humans, the upper pole of each kidney lies opposite the 

twelfth thoracic vertebra, and the lower pole lies opposite the third lumbar vertebra. 

The weight of each kidney ranges from 125 g to 170 g in men and from 115 g to 155 

g in women. The human kidney is approximately 11 cm to 12 cm in length, 5.0 cm to 

7.5 cm in width, and 2.5 cm to 3.0 cm in thickness. 

 

 
Figure1: Location of the kidneys in the human body. Extracted from 

http://www.britannica.com/science/human-renal-system 
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 Located on the medial or concave surface of each kidney is a slit, called the 

hilus, through which the renal pelvis, the renal artery and vein, the lymphatics, and a 

nerve plexus pass into the sinus of the kidney. The organ is surrounded by a tough 

fibrous capsule, which is smooth and easily removable under physiological 

conditions.  

Two distinct regions can be identified on the cut surface of a bisected kidney (Fig. 2): 

a pale outer region, the cortex, and a darker inner region, the medulla. In humans, 

the medulla is divided into 8 to 18 striated conical structures, the renal pyramids. 

 

 

Figure 2: Diagram of the cut surface of a bisected kidney. Extracted from 

http://www.britannica.com/science/human-renal-system 

 

 The base of each pyramid is positioned at the corticomedullary boundary, and 

the apex extends toward the renal pelvis to form a papilla. On the tip of each papilla 

are 10 to 25 small openings that represent the distal ends of the collecting ducts (of 

Bellini). In contrast to the human kidney, the kidney of the mouse and of many other 

laboratory animals has a single renal pyramid and is therefore termed “unipapillate.” 

Otherwise, rodent kidneys resemble the human kidney in their gross appearance. In 

humans, the renal cortex is about 1 cm in thickness, forms a cap over the base of 
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each renal pyramid, and extends downward between the individual pyramids to form 

the renal columns of Bertin. 

 From the base of the renal pyramid, at the corticomedullary junction, 

longitudinal elements termed the “medullary rays of Ferrein” extend into the cortex. 

Despite their name, the medullary rays are actually considered a part of the cortex 

and are formed by the collecting ducts and the straight segments of the proximal and 

distal tubules. 

 
1.1.2. The nephron  

The nephrons are the basic structural and functional units of the kidney (Fig. 3). 

 

 

Figure 3: Structure and function of nephron. 
2
  

 

 Their main function is to regulate water and solute concentration as sodium 

chloride by filtering the blood, reabsorbing what is needed, and excreting the rest as 

urine. The nephron also eliminates wastes from the body, regulates blood volume, 

controls levels of electrolytes and metabolites, and regulates blood pressure pH. 
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Nephron functions are regulated by hormones such as the antidiuretic hormone, 

aldosterone, and parathyroid hormone. In humans, a normal kidney contains 

800,000 to 1.5 million nephrons. Nephrons span the cortex and medulla. The initial 

filtering portion of a nephron is the renal corpuscle, which is located in the cortex. 

This is followed by a renal tubule that passes from the cortex deep into the medullary 

pyramids. Part of the renal cortex, a medullary ray is a collection of renal tubules that 

drain into a single collecting duct. 

 The essential components of the nephron include the renal or Malpighian 

corpuscle (glomerulus and Bowman's capsule), the proximal tubule, the loop of 

Henle, the distal tubule, and the connecting tubule 3. The renal corpuscle filters out 

solutes from the blood, delivering water and small solutes to the renal tubule for 

modification. The glomerulus is a capillary tuft that receives its blood supply from an 

afferent arteriole of the renal circulation. The glomerular blood pressure provides the 

driving force for water and solutes to be filtered out of the blood and into the space 

made by Bowman's capsule. The remainder of the blood (only approximately 1/5 of 

all plasma passing through the kidney is filtered through the glomerular wall into the 

Bowman's capsule) passes into the efferent arteriole. The Bowman's capsule 

surrounds the glomerulus. It is composed of a visceral inner layer formed by 

specialized cells called podocytes. 

 The renal tubule is the portion of the nephron containing the tubular fluid 

filtered through the glomerulus. After passing through the renal tubule, the filtrate 

continues to the collecting duct system, which is not part of the nephron. The 

components of the renal tubule are:  
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 Proximal convoluted tubule (lies in the cortex, and is lined by simple cuboidal 

epithelium with brush border which help to greatly increase the area of 

absorption). 

 Loop of Henle (U-shaped, and lies in medulla)  

 Ascending limb of loop of Henle  

 Descending limb of loop of Henle  

 Distal convoluted tubule (a portion of nephron between the loop of Henle and 

the collecting duct system). 

 
1.1.3. Renal functions 

 The kidneys participate in homeostasis, regulating acid-base balance, 

electrolyte concentrations, extracellular fluid volume, and blood pressure. Many of 

the kidney's functions are accomplished by relatively simple mechanisms of filtration, 

reabsorption, and secretion, which take place in the nephron. Filtration, which takes 

place at the renal corpuscle, is the process by which cells and large proteins are 

filtered from the blood to create an ultrafiltrate that eventually becomes urine. The 

kidney generates 180 litres of filtrate a day, while reabsorbing a large percentage, 

allowing for the generation of only approximately 2 litres of urine. Reabsorption is the 

transport of molecules from this ultra-filtrate into the blood. Secretion is the reverse 

process, in which molecules are transported in the opposite direction, from the blood 

into the urine. All the blood in our bodies passes through the kidneys several times a 

day. The urine is collected in pelvis funnel-shaped structures of the kidneys that 

drain down tubes called ureters to the bladder.  

 The 20% of cardiac output is directed toward the kidneys. Most of renal 

oxygen is utilized to fuel Na+-K+-ATPase pumps, which drives tubular sodium 

reabsorption and other transport processes that are critical for the maintenance of 



6 

 

the physiological homeostasis. Since these transport processes are load dependent, 

renal oxygen consumption is directly linked to glomerular filtration rate (GFR), which 

in turn is renal blood flow dependent. In normal conditions, the renal oxygen tension 

(PO2) is physiologically low, especially in the medulla, where oxygen tensions of as 

low as 3 mmHg have been measured. Because of this intricate functional 

relationship, the kidney operates within a narrow range of relatively constant tissue 

PO2, rendering it susceptible to hypoxic injury 4. 

 

1.2.1. Kidney disease: Acute Kidney Injury (AKI) 

 Kidney disease is an important public health issue and represents a 

significant and persistent problem in clinical medicine. It is common and its 

prevalence increases with age, which means that the disease burden will increase 

with our aging population. There is an urgent need to understand the cellular 

mechanisms behind the development of these pathologies and also to find new 

effective therapies 5.  

 Acute kidney injury (AKI) is characterized by a relatively sudden decrease in 

the production, processing, and excretion of ultrafiltrate by the kidney [decreased 

glomerular filtration rate (GFR)]. AKI is a syndrome that includes kidney damage 

from mild injury to total loss of function with seriously implications for fluid 

homeostasis and electrolyte balance. The Acute Kidney Injury Network (AKIN) 

defined AKI as “An abrupt (within 48 hours) reduction in kidney function currently 

defined as an absolute increase in serum creatinine of more than or equal to 0.3 

mg/dl, a percentage increase in serum creatinine of more than or equal to 50%, or a 

reduction in urine output (documented oliguria of less than 0.5 ml/kg per hour for 

more than six hours)” 6.  
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 AKI causes permanent damage to the microvasculature and subsequent 

abnormalities in kidney structure and function. Through inflammatory and fibrotic 

signalling pathways, AKI can lead to progressive structural kidney damage, which 

may then predispose to worsening hypertension, proteinuria, and decline in the 

glomerular filtration rate (GFR) 7. AKI can also have long term consequences 

increasing the risk of developing chronic kidney disease 7 

 

1.2.2. Incidence 

 AKI is a common complication in hospitalised patients and presents high 

morbidity and mortality (30-70%). As a conservative estimate, approximately 17 

million admissions a year are complicated by AKI, resulting in additional costs to the 

health care system of $10 billion just in U.S 7. In the UK the incidence of AKI is 172 

per million per year and the current spending on the managment of AKI is £445 

million per year. 

The estimated incidence is 3-18% for all hospitalised patients 8 and has 

increased in the recent years. About two-thirds of patients in intensive care units 

develop AKI, often as part of the multiple organ dysfunction syndrome. 

Complications of medical care (9.6%), neoplasms (9.6%), trauma (8.1%), and 

diseases of the respiratory system (7.9%) comprise large portions of the patients 

who developed AKI during their hospitalisation. Among the AKI cases, the most 

common primary discharge diagnosis groups are circulatory diseases (25.4%) and 

infection (16.4%) 9.  

 

1.2.3. AKI: systemic context 

 Extra-renal organ dysfunction frequently coexists with AKI, increasing the 

already high morbidity and mortality rates. Recent experimental models have 
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elucidated some potential mechanisms of injury, including dysfunctional 

inflammatory cascades, oxidative stress, activation of pro-apoptotic pathways, 

differential molecular expression and leukocyte trafficking involved in multisystem 

diseases. Evidence shows that the AKI is linked with lung, heart, liver and brain 

dysfunctions (Fig. 4). AKI is frequently associated with respiratory complications and 

increases mortality in patients with lung diseases. Inflammatory cytokines such as 

interleukin (IL)-6 and/or IL-8 are potential mediators of renal injury as increase in 

inflammatory cytokines precede rises in serum creatinine in patients with acute lung 

injury. 

 

 

Figure 4: AKI effects on other organs 
10

 

 Patients with established AKI, heart injury has been reported as a common 

cause of death. Acute cardiac decompensation has effects on the kidney via 

hemodynamic mechanisms. Also, AKI can lead to myocardial damage as it induces 
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endothelial cell activation, cytokine secretion, and proapoptotic cascades. Many of 

the same processes involved in kidney–lung and kidney–heart interactions have 

been observed in the liver as increased neutrophil infiltration, vascular congestion, 

and vascular permeability occurs in liver after AKI 10. Kidney ischemia leads to an 

elevation of specific liver enzymes such as aspartate aminotransferase, alanine 

aminotransferase, lactate dehydrogenase as well as bilirubin levels 11. Neurological 

complications are recognised in AKI, including central nervous system dysfunction 

with irritability, attention deficit, hyperreflexia, postural tremor, decreased mental 

status, seizures and can leads to death. One study reported a connection between 

AKI and bone marrow and bowel through the release of inflammatory cytokines 11. 

 

1.2.4. Clinical Presentation 

 Clinical presentation varies with the cause and severity of renal injury, and 

associated diseases. Most patients with mild to moderate acute kidney injury are 

asymptomatic and are identified by laboratory testing. Patients with severe AKI, 

however, may be symptomatic and present with listlessness, confusion, fatigue, 

anorexia, nausea, vomiting, weight gain or edema. Patients can also show oliguria 

(urine output less than 400 mL per day), anuria (urine output less than 100 mL per 

day), or normal volumes of urine (nonoliguric AKI). Other presentations of AKI 

include development of uruemic encephalopathy (manifested by a decline in mental 

status, asterixis, or other neurologic symptoms), anemia, or bleeding caused by 

uraemic platelet dysfunction. 
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1.2.5. Earlier diagnosis and novel markers 

 A clinical history and physical examination are crucial for determining early 

diagnosis and to understand the cause of AKI. The clinical history should identify the 

use of nephrotoxic medications or systemic illnesses that might cause poor renal 

perfusion or directly impair in the renal function. Urea and creatinine are nitrogenous 

end products of metabolism and routinely used in the clinical setting to determine 

renal function12. Urea is the primary metabolite derived from dietary protein and 

tissue protein turnover. Creatinine is the product of muscle creatine catabolism. Both 

are relatively small molecules (60 and 113 daltons, respectively) that distribute 

throughout total body water 13. Creatinine is a chemical waste product in the blood 

that passes through the kidneys to be filtered and eliminated in urine. Serum 

creatinine is widely used measure renal function in renal practice. The well know 

reciprocal relationship between the serum level and clearance of creatinine in the 

steady state allows the clinician to estimate renal function from this routinely 

available measurement 14
 .  

 A blood urea nitrogen (BUN) test measures the amount of nitrogen in blood 

that comes from the waste product urea. 

 Discovery of new biomarkers that facilitate the early, sensitive, and specific 

diagnosis of AKI, is very important to safeguard the health and to prevent 

haemodialysis and/or transplantation in patients with AKI. The best performing 

biomarkers allow the diagnosis of AKI within a few hours after an insult, at a time 

when renal excretory function may still be at baseline, and 24/48 h before serum 

creatinine levels rise. The availability of well-performing biomarkers will also facilitate 

more effective testing of new clinical interventions. Surrogate markers of tubular 

injury are being considered as novel urinary biomarkers for AKI. These markers 
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include KIM-1 (kidney injury molecule-1) and NGAL (Neutrophil gelatinase-

associated lipocalin). 

 Kidney injury molecule-1 (KIM-1): KIM-1 is a member of the TIM family which 

is involved in the regulation of innate and adaptive immune responses 15. 

 Neutrophil gelatinase-associated lipocalin (NGAL): Neutrophil gelatinase-

associated lipocalin (NGAL) is a protein belonging to the lipocalin superfamily 

initially found in activated neutrophils. NGAL levels predict the future appearance 

of acute kidney injury after treatments potentially detrimental to the kidney and 

even the acute worsening of unstable nephropathies.. Furthermore, recent 

evidence also suggests that NGAL somehow may be involved in the 

pathophysiological process of chronic renal diseases 16. 

Novel AKI biomarkers, particularly when used in combination panels, possess 

greater specificity and earlier diagnostic and prognostic sensitivity than serum 

creatinine and blood urea nitrogen, during both the injury and the recovery phases of 

AKI 17. 

 

1.3. Etiology of acute kidney injury 

 The etiology of AKI has traditionally been separated into three categories 

(Fig.5): prerenal (caused by decreased renal perfusion, often because of volume 

depletion), intrinsic renal (caused by a process within the kidneys), and postrenal 

(caused by inadequate drainage of urine distal to the kidneys). In patients who 

already have underlying chronic kidney disease, any of these factors, but especially 

volume depletion, may cause AKI in addition to the chronic impairment of the renal 

function. 
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Figure 5: Etiology of AKI. 
Extracted from http://www.britannica.com/science/human-renal-system 

 

1.3.1. Pre-renal acute kidney injury 

 Kidney function may be normal, but decreased renal perfusion associated 

with intravascular volume depletion (vomiting or diarrhea) or decreased arterial 

pressure (heart failure or sepsis) results in a reduced glomerular filtration rate. Auto-

regulatory mechanisms often can compensate for some degree of reduced renal 

perfusion in an attempt to maintain the glomerular filtration rate. In patients with pre-

existing chronic kidney disease, however, these mechanisms are impaired, and the 

susceptibility to develop acute/chronic renal failure is higher. Several medications 

can cause prerenal AKI. Notably, angiotensin-converting enzyme inhibitors and 

angiotensin receptor blockers can impair renal perfusion by causing dilation of the 

efferent arteriole and reduce intraglomerular pressure. Nonsteroidal anti-

inflammatory drugs also can decrease the glomerular filtration rate by changing the 

balance of vasodilatory/vasoconstrictive signals in the renal microcirculation. These 

drugs and others limit the normal homeostatic responses to volume depletion and 

can be associated with a decline in renal function. In patients with prerenal AKI, 

http://www.britannica.com/science/human-renal-system
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kidney function typically returns to baseline after adequate volume status is 

established, the underlying cause is treated, or the nephrotoxic drug is discontinued. 

 

1.3.1.1. Pre-renal acute kidney injury: Transplantation 

 AKI caused by ischemia and reperfusion injury (IRI) is a common event in 

transplantation, which can contribute to delayed graft function. It is estimated that 

20% to 80% deceased donor’s kidneys can present delayed graft function (DGF) 18. 

Several definitions of DGF have been proposed as: the need of dialysis (at least one 

session) during the first week post-transplantation, early urine output lower than 

1200mL/day or no decrease in serum creatinine within 48 h 19, creatinine clearance 

lower than 10mL/min and creatinine at day 10 higher than 221μmol/L 20. A range of 

factors contribute to DGF such as organ procurement (i.e., kidneys from non heart-

beating donors), donor characteristics (i.e., donors older than 55 years), period of 

ischemia, recipient history (i.e., number of recipient’s previous transplants), renal 

toxicity, ureteral obstruction, among others.  

 

1.3.2. Intrinsic renal acute kidney injury 

 Intrinsic renal causes of AKI can be categorised by the component of the 

kidney that is primarily affected (tubular, glomerular, interstitial or vascular). Acute 

tubular necrosis is the most common type of intrinsic acute kidney injury in 

hospitalised patients. The cause is usually ischemic (from prolonged hypotension) or 

nephrotoxic (from an agent that is toxic to the tubular cells). In contrast to a prerenal 

etiology, AKI caused by acute tubular necrosis does not improve with adequate 

repletion of intravascular volume and blood flow to the kidneys 21. Both ischemic and 

nephrotoxic acute tubular necrosis can resolve over time, although temporary renal 
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replacement therapy may be required, depending on the degree of renal injury and 

the presence of pre-existing chronic kidney disease. Glomerular causes of acute 

kidney injury are the result of acute inflammation of blood vessels and the glomeruli. 

Glomerulonephritis can be primary a manifestation of a systemic illness (systemic 

lupus erythematosus) or pulmonary renal syndrome.  

Clinical history, physical examination, and urinalysis are crucial for diagnosing 

glomerulonephritis. Because management often involves administration of 

immunosuppressive or cytotoxic medications with potentially severe adverse effects, 

renal biopsy is often required to confirm the diagnosis before initiating therapy 22. 

Acute interstitial nephritis can be secondary to many conditions, but most cases are 

related to medication use, making patient history the key to diagnosis. Acute events 

involving renal arteries or veins can also lead to intrinsic AKI. Renal atheroembolic 

disease is the most common cause and is suspected with a recent history of arterial 

catheterisation, the presence of a condition requiring anticoagulation, or after 

vascular surgery. 

 

1.3.3. Post-renal acute kidney injury 

 Post-renal causes typically result from obstruction of urinary flow. Prostatic 

hypertrophy is the most common cause of obstruction in older men. Prompt 

diagnosis followed by early relief of obstruction is associated with improvement in 

renal function in most patients 23. 

 

1.4. Management and treatment of AKI 

 Optimal management of AKI requires close collaboration among primary care 

physicians, nephrologists, and other subspecialists participating in the care of the 
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patient. After AKI is established, management is primarily supportive. Patients with 

AKI generally should be hospitalised unless the condition is mild and clearly resulting 

from an easily reversible cause. The key to an correct management is assuring 

adequate renal perfusion by achieving and maintaining hemodynamic stability and 

avoiding hypovolemia. There is no specific current treatment for AKI and some 

patients require renal replacement therapy involving intermittent hemodialysis (IHD) 

or continuous renal replacement therapy (CRRT). Patients with AKI who require 

dialysis have a 50–70% mortality rate 24. 

 

1.5. Progression to Chronic Kidney Disease (CKD) 

 Clinical episodes of AKI may have lasting implications, and new data suggest 

that these include increasing the chance of subsequent development of CKD. The 

primary injury leads to reduced flow, which culminates in peritubular capillary loss. 

This creates a hypoxic environment that produces a fibrotic response that further 

propagates injury by affecting adjacent unaffected capillaries. Another perspective is 

that renal injury triggers an inflammatory response that recruits profibrotic cytokines 

such as transforming growth factor 1 and further induces the transformation of renal 

epithelial and endothelial cells into myofibroblasts, a process called epithelial or 

endothelial mesenchymal transition. Myofibroblasts produces excess of extracellular 

matrix, with subsequent tubulointerstitial injury and atrophy. The histopathological 

hallmark of CKD is tubulointerstitial fibrosis, and the degree of fibrosis is the best 

predictor for the progression to end-stage renal disease. In addition to the profibrotic 

processes, hypoxia also suppresses matrix degradation via reduced expression and 

activity of matrix metalloproteinases such as collagen metalloproteinase-I. The 



16 

 

eventual loss of the microvasculature creates a hypoxic milieu and produces the 

progressive nature of fibrosis.  

The permanent reduction in peritubular capillary density that occurs following 

ischemic AKI suggests this leads to a chronic hypoxic state 25.  

 

1.6. Cellular mechanism of AKI 

 Tubular epithelial cell injury and death with loss of kidney function is common 

to all types of AKI. It is classical thought that the severity of the injury and the 

availability of ATP will determine the type of the cell death occurring apoptosis or 

necrosis. I will further discuss in this section every type of injury. 

 

1.6.1. Nephrotoxic injury 

 Humans are exposed intentionally and unintentionally to a variety of diverse 

chemicals that harm the kidneys. Nephrotoxicity results in serious clinical 

syndromes, including AKI. Nephrotoxic agents have been implicated as etiologic 

factors in 17%–26% of in-hospital AKI 26. Drug-induced renal impairment involves 

many classes of drugs (Tab.1) and includes prescription agents as well as commonly 

encountered over-the-counter drugs. There are drug-specific and patient-specific risk 

factors that influence the development of drug-related nephropathy. 26 
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Drugs Use 

Vancomycin Glycopeptide antibiotic 

Ciprofloxacin Fluoroquinolone antibiotic 

Penicillins Antimicrobial agents 

Acyclovir Antiviral agents 

Table 1: Drugs that cause  AKI 

 

 Because renal tubules, especially proximal tubule cells, are exposed to drugs 

in the process of concentration and reabsorption, they are greatly influenced by drug 

toxicity 27. Cytotoxicity is induced by many drugs including aminoglycoside 

antibiotics, antifungal agents such as amphotericin B, antiretroviral drugs such as 

adefovir and anticancer drugs such as cisplatin. Nephrotoxic drugs may act at 

different sites in the kidney, resulting in altered renal function Fig. 6: 

 

 

Figure 6: Nephrotoxic drugs act at different sites in the kidney.  
Extracted from http://www.britannica.com/science/human-renal-system 

 

http://www.britannica.com/science/human-renal-system
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The general mechanisms that cause nephrotoxicity include changes in 

glomerular hemodynamics (NSAIDs and (ACE) inhibitors), tubular cell toxicity, 

inflammation, crystal nephropathy, rhabdomyolysis and thrombotic 

microangiopathy28. 

 

1.6.2. Ischemia reperfusion injury 

Renal ischemia/reperfusion injury (IRI), a common cause of AKI, results from 

a generalised or localised impairment of oxygen and nutrient delivery and waste 

product removal from kidney cells. There is an imbalance of local tissue oxygen 

supply and demand and accumulation of waste products of metabolism. As a result, 

the tubular epithelial cells undergo injury and, if it is severe, cell death. There are 

many pathophysiological states and medications that can contribute to generalised 

or localised ischemia (Fig.7) 2. 

 

 

Figure 7: Mechanisms that can lead to ischemia in the kidney. 
2
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Alterations in renal perfusion from either hypotension and/or vasoconstriction often 

lead to clinically significant ischemia. When the duration of ischemia exceeds a 

certain threshold, intracellular ATP stores become depleted and cells die from either 

apoptosis or necrosis. While reestablishment of adequate renal perfusion is the main 

therapeutic goal, rapid re-oxygenation or reperfusion of the ischemic kidney 

generates additional tissue injury involving multiple mechanisms, such as increased 

generation of reactive oxygen species (ROS) 29 The mechanisms of AKI involve both 

tubular and vascular factors. 

 

1.6.2.1 Tubular injury 

Ischemia induced AKI is characterised by tubular dysfunction with impaired 

sodium and water reabsorption and is associated with the shedding and excretion of 

proximal tubule brush border membranes and epithelial tubules cells into the urine. 

Tubular damage (Fig.8) that occurs include: 

 Loss of epithelial polarity and translocation of Na+/K+-ATPase pump from the 

basolateral membrane into the cytoplasm. 

 Proteolytic pathways involving calpains and caspases can participate in 

proximal tubule cell injury during hypoxia, which may explain the decrease in 

proximal tubule sodium reabsorption.  

 Calcium and ROS production may also have a role in the morphological 

changes which result in subsequent cell death (necrosis and apoptosis). Both 

viable and nonviable cells are shed into the tubular lumen, resulting in the 

formation of casts and luminal obstruction and contributing to the reduction in 

the GFR. 30 
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Figure 8: Morphological changes occurring in the proximal tubules following ischemia and 

reperfusion
32.

 

 

1.6.2.2 Vascular injury 

The vascular abnormalities observed in the ischemic kidney may occur as a 

result of different cellular events: 

• Increase in cytosolic calcium in the afferent arterioles of the glomerulus.  

• Upregulation of adhesion molecules has been implicated in outer medullary 

congestion, and antibodies to ICAMs and P-selectin have been shown to afford 

protection against acute ischemic injury. 

• Evidence support that activated leukocytes enhance the renal ischemic 

injury30 

 

1.6.2.3. Cellular mechanism of ischemia reperfusion injury 

Renal ischemia-reperfusion injury can be divided in two well differentiated 

physiological events: 

1. Ischemia: adenosine triphosphate (ATP) is provided by glycolysis. However, 

glycogen stocks are limited and soon are emptied mean while waste products 

and toxic metabolites including lactate are accumulated. As a result of anaerobic 



21 

 

glycolysis and the hydrolysis of ATP intracellular pH falls. Surprisingly, restoration 

of a normal pH during reperfusion in ischemic cells accelerates cell death, a 

phenomenon called the ‘pH paradox’.  

2. The reperfusion response can be divided into two distinct phase 31: 

a Initial phase: During this phase there is an activation of leucocytes that 

interact with the endothelium inducing inflammation and releasing 

ROS. They react with the cell membrane causing lipid peroxidation 

which affects leucocytes and platelets so leading to further 

vasoconstriction and a reduction in perfusion 32. 

b Later phase: This phase comprises activation of complements and 

triggering of the innate immunity causing apoptosis and necrosis of the 

tubular epithelial cells. 

 

1.6.2.4. Tissue repair during IRI  

Renal epithelial cells possess a remarkable ability to regenerate and proliferate 

after IRI (Fig. 9), a quality that is not shared by the majority of other tissues. In the 

fully developed kidney, cell division is minimal but it can increase more than 10-fold 

after acute injury. This complex regenerative process involves: 

 The first phase consists of cell damage and cell death, during which tubule 

cells start to generate signals that initiate the regenerative response.  

 The second phase is characterised by the appearance of a large pool of de-

differentiated epithelial cells with flattened appearance and poorly 

differentiated brush borders. These cells express vimentin, a marker for 

multipotent embryonic mesenchymal cells.  
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 The third phase is exemplified by a marked increase in the number of 

proliferating tubule epithelial cells that express genes encoding for a variety of 

growth factors such as IGF-1, HGF, and FGF.  

 The fourth phase is one of re-differentiation, during which the normal tubular 

epithelium is restored with fully differentiated polarized cells. 33 

 

 

 

Figure 9: Normal pathway of proximal tubule cell dedifferentiation and proliferation followed by 

redifferentiation and recovery of normal structure after AKI 
34

. 

 

1.7. Cell death: apoptosis/necrosis  

The balance between cell division and cell death is of utmost importance for the 

development and maintenance of multicellular organisms. Disorders of either process 

have pathological consequences and can lead to disturbed embryogenesis, 

neurodegenerative diseases, or the development of cancer. Therefore, the equilibrium 

between life and death is tightly controlled. There various types cell death which are 

executed by active cellular processes that can be intercepted by interfering with 

intracellular signalling. 
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1.7.1. Apoptosis  

Apoptosis is the major way by which eukaryotes remove superfluous, damaged and 

other potentially dangerous cells such as malignant cells, virus-infected cells and self-

reactive lymphocytes. The process is especially important during development and 

homeostasis, and is a fundamental process and evolutionaly conserved. Traditionally, cell 

death has mainly been categorised as apoptotic or necrotic based on morphological 

changes. The apoptotic cell death process is divided into three phases 35. 

 initiation phase (involves the activation of heterogeneous signalling pathways) 

 commitment phase (cells become irreversibly committed to death)  

 execution phase (morphological changes) 

The last step of the apoptosis is characterized by alterations in cellular volume, retraction 

of pseudopods, chromatin condensation, nuclear fragmentation, plasma membrane 

blebbing and disassembly of the cell into apoptotic bodies. This process culminates in the 

engulfment of the apoptotic bodies by other cells, preventing the release of cellular 

content into the extracellular space. By contrast, necrosis is generally considered an 

acute and uncontrolled mode of cell death that is associated with cell swelling and lysis, 

resulting in inflammation in the tissue 36. 

 

1.7.2 Apoptotic signalling pathways 

There are two classical signalling pathways leading to the activation of the caspase 

cascade: the intrinsic and the extrinsic pathways (Fig.10).  

 Intrinsic pathway: When the pro-apoptotic signals dominate, the integrity of the 

mitochondrial membrane is lost in a process known as mitochondrial outer membrane 

permeabilisation (MOMP). Intrinsic apoptotic stimuli, such as DNA damage or 

endoplasmic reticulum (ER) stress, activate B cell lymphoma 2 (BCL-2) homology 3 
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(BH3)-only proteins leading to BCL-2-associated X protein (BAX) and BCL-2 antagonist 

or killer (BAK) activation and mitochondrial outer membrane permeabilisation (MOMP). 

Anti-apoptotic BCL-2 proteins prevent MOMP by binding BH3-only proteins and 

activated BAX or BAK. Following MOMP, release of various proteins from the 

mitochondrial inter-membrane space (IMS) promotes caspase activation and 

apoptosis. Cytochrome c binds apoptotic protease-activating factor 1 (APAF1) inducing 

its oligomerization and thereby forming a structure termed the apoptosome that recruits 

and activates an initiator caspase, caspase 9. Caspase 9 cleaves and activates 

executioner caspases, caspase 3 and caspase 7, leading to apoptosis. Mitochondrial 

release of second mitochondria-derived activator of caspase (SMAC; also known as 

DIABLO) and OMI (also known as HTRA2) neutralizes the caspase inhibitory function 

of X-linked inhibitor of apoptosis protein (XIAP). The BCL-2 protein and its homologs 

are key elements in this regulatory network. The BCL-2 protein family consists of more 

than 20 proteins divided into three functional groups based on the expression of these 

BH domains:  

o anti-apoptotic BCL-2 proteins (BCL-2, BCL-XL, BCL-W, MCL-1 and A1),  

o pro-apoptotic BCL-2 proteins (BAX and BAK);  

o pro-apoptotic BCL-2 proteins, (contain the BH3, BH3) 

Many of the proteins of the BCL-2 family also contain a trans-membrane domain (TM). 

The integrity of the mitochondrial outer membrane is tightly controlled by the BCL-2 

proteins. Pro-apoptotic members cooperate to induce MOMP, while the anti-apoptotic 

members preserve mitochondrial integrity. Because the BCL-2 family acts at the 

mitochondria they are usually upstream of irreversible cellular damage, and therefore 

these proteins play a pivotal role in whether a cell will live or die.  
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 The extrinsic pathway to apoptosis is dependent on death receptors belonging to the 

tumor necrosis factor (TNF) receptor family. Lethal signalling by TNF receptor 1 

requires the participation of additional adaptor proteins, including tumor necrosis factor 

receptor type 1-associated death domain (TRADD). The extrinsic apoptotic pathway is 

initiated by the ligation of death receptors with their cognate ligands, leading to the 

recruitment of adaptor molecules such as FAS-associated death domain protein 

(FADD) and then caspase 8. This results in the dimerization and activation of caspase 

8, which can then directly cleave and activate caspase 3 leading to apoptosis. 

Crosstalk between the extrinsic and intrinsic pathways occurs through caspase 8 

cleavage and activation of the BH3-only protein BH3-interacting domain death agonist 

(BID), the product of which (truncated BID; tBID) is required in some cell types for 

death receptor-induced apoptosis 37. 

 

Figure 10: The extrinsic and intrinsic pathways to apoptosis 
37

.  
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1.7.3 Necrosis 

Necrosis has been traditionally thought to be a passive form of cell death. It is the 

end result of a bioenergetic catastrophe resulting from ATP depletion to a level 

incompatible with cell survival and was thought to be initiated mainly by toxic insults or 

physical damage. Necrosis is characterised morphologically by vacuolation of the 

cytoplasm, breakdown of the plasma membrane and an induction of inflammation around 

the dying cell attributable to the release of cellular contents and proinflammatory 

molecules. Cells that die by necrosis frequently exhibit changes in nuclear morphology but 

not the organised chromatin condensation and fragmentation of DNA into 200 bp 

fragments that is characteristic of apoptotic cell death. Figure 11 shows the morphological 

differences between cells dying by apoptosis and necrosis 
38. 

 

 

Figure 11: Morphological difference between apoptosis and necrosis 
39
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1.7.4. Role of lysosomes in cell death  

1.7.4.1. Lysosomes 

Lysosomes are single membrane-bound cytoplasmic organelles, present in almost 

all eukaryotic cells. The shape of the lysosomes varies from spherical to sometimes 

tubular. Their size differs depending on cell type, and in most cells lysosomes are typically 

1 nm. The size and number can increase drastically, for example as a result of 

accumulation of undigested material. A unique feature of the lysosomal membrane is its 

high carbohydrate content, due to heavily glycosylated lysosomal membrane proteins 

40.They are the major degradative compartment of the endosomal/lysosomal system and 

the terminal part of the endocytic pathway, where a variety of macromolecules, such as 

proteins, glycoconjugates, lipids and nucleic acids, are degraded to their building blocks. 

They are extremely well suited for this function as they contain over 50 different 

hydrolases. They are further characterized by low pH (3.8-5.0). Among the hydrolases, 

the proteases, which are responsible for protein degradation, are considered to be highly 

important.  

Although lysosomes are long considered to be responsible primarily for the non-

specific degradation of organelles and of the long-lived proteins, it is now clear that they 

have a number of other functions including selective degradation of proteins, repair of the 

plasma membrane, release of endocytosed material and removal of certain pathogens. 

Proteins destined for degradation enter lysosomes via endocytosis (extracellular proteins), 

phagocytosis (pathogens and cellular debris), micro and macroautophagy (intracellular 

proteins). Cytosolic proteins can also enter lysosomes via chaperone-mediated autophagy 

across the lysosomal membrane using heatshock proteins as chaperones and LAMP-2 

protein as the receptor that recognizes specific sequences on the target proteins. With the 

exception of microautophagy and chaperone-mediated autophagy, all other pathways 
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involve fusion of lysosomes with other vacuoles (phagosomes or autophagosomes) or 

organelles (late endosomes), indicating that lysosomes are very dynamic organelles 
41. 

 

1.7.4.2. Role of lysosomes in apoptotic or necrotic cell death 

Most, if not all, cell death pathways eventually lead to lysosomal membrane 

permeabilisation (LMP), which allows lysosomal content leakage into the cytosol. The 

high content of hydrolytic enzymes in lysosomes makes them potentially harmful to the 

cell. Complete or massive lysosomal breakdown induces cytosolic acidification and 

uncontrolled cell death by necrosis due to indiscriminate degradation of cellular 

components by lysosomal enzymes. In contrast, partial and selective LMP induces the 

controlled dismantling of the cell by apoptosis due to lysosomal proteases activity. 

 Lysosomal proteases that have been implicated in cell death are those cathepsins 

that remain active at neutral pH, such as cathepsin B, cathepsin D and cathepsin L. 

Several reports indicate that, in response to some lethal stimuli, not all lysosomes are 

permeabilised at the same time, although the mechanisms explaining this heterogeneity 

remain elusive.  

Large lysosomes seem to be particularly susceptible to the action of LMP-inducing 

agents. In addition, the production of intracellular mediators such as ROS, which have a 

spatially limited range of activity, may induce the permeabilization of lysosomes only in 

those subcellular regions that are near to mitochondria, the major ROS-generating 

organelles. Therefore, lysosomes that are localised in the proximity of uncoupled 

mitochondria are more likely to suffer damage to their membranes than distant 

lysosomes. Moreover, lysosomes constitute the principal reservoir of chelatable iron, 

which accumulates upon the autophagic degradation of iron-containing proteins including 

mitochondrial cytochromes and ferritin. Iron-catalysed Fenton reactions, which produce 
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highly reactive pro-oxidants, may damage lysosomal membranes. Iron overload, as it 

occurs in some pathologies and aging processes, can increase the susceptibility of 

lysosomes to LMP. A second important question regarding LMP is whether it occurs 

through non-selective rupture of the membrane or whether specific pores are formed that 

allow for the selective translocation of molecules up to a certain size through the partially 

permeable lysosomal membrane. In the outer mitochondrial membrane, proapoptotic 

proteins, BAX and BAK, may form transient pores that allow for the translocation of a 

number of molecules larger than 100 KDa without inducing a rupture of the membrane, 

and Bax is also capable of inducing LMP by acting directly on the lysosomal membrane42. 

 

1.7.4.3 Role of lysosomal cathepsins in apoptosis 

The cathepsin protease family consists of 12 known members that can be subdivided 

into 3 distinct groups, based on the amino acid that comprises the active site residue:  

 serine proteases (cathepsins A and G) 

 cysteine proteases (cathepsins B, C, H, K, L, S, and T)  

 aspartate proteases (cathepsins D and E) 

Cathepsins are synthesised as inactive zymogens, and their activation involves 

proteolytic processing. There are extensive evidences linking cathepsins with apoptosis, 

in particular cathepsins B and D. In fact, most of the known apoptosis execution pathways 

occuring in the cytoplasm require translocation of cathepsins that intersect and enhance 

other apoptosis signalling mechanisms. Cathepsins are released into the cytosol as active 

enzymes where they can interact with a variety of substrates (BCL-2 family proteins Bid, 

BCL-2, BCL-XL, and MCL-1, XIAP, caspases-2 and -8, phospholipase A2 (PLA2) and 

sphingosine kinase-1) contributing to caspase dependent and independent apoptosis with 

or without mitochondrial involvement. Indeed, in cell culture, apoptosis was found to be 
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markedly inhibited by Ca074-Me, a specific cathepsin B inhibitor, and by Pepstatin A, a 

cathepsin D inhibitor 43. This data confirmed cathepsins B and D, as important 

components for the apoptosis execution pathways. 

Cathepsins are mainly considered to be downstream mediators of lysosomal cells 

death (LCD), but they can apparently also initiate LMP. In fact, lack of cathepsin B 

prevents LMP in hepatocytes treated with TNF or sphingosine. The LMP promoting effect 

of cysteine cathepsins might be due to the intralysosomal degradation of highly 

glycosylated lysosome-associated membrane proteins, which form a protective glycocalyx 

shield on the inner lysosomal membrane. Alternatively, minor leakage of cathepsins could 

activate LMP by cleaving sphingosine kinase 1 or other cytosolic substrates that maintain 

lysosomal stability. Finally, the activation of apoptotic caspases is frequently associated 

with secondary LMP that might speed up or amplify the death process. Often, such 

secondary LMP is initiated by caspase-9, which can be activated in the apoptososome or, 

in murine cells, by caspase-8-dependent cleavage. After TNF receptor internalization, 

cathepsin D release can result in activation of caspase-8 and -7- dependent cascade that 

activates acidic sphingomyelinase, activation of pore-forming BCL-2 proteins (BAX and 

BAK) and subsequent mitochondrial outer membrane permeabilization (MOMP) 44. 

Indeed, in cell culture, apoptosis was found to be markedly inhibited by Ca074-Me, a 

specific cathepsin B inhibitor, and by Pepstatin A, a cathepsin D inhibitor 43. This data 

confirmed cathepsins B and D, as important components for the apoptosis execution 

pathways.  

 

1.7.4.4. Cathepsin D 

Cathepsin-D (CtsD) is a ubiquitous, lysosomal, aspartic endopeptidase that 

requires an acidic pH (3-4) to be proteolytically active. The human CtsD gene contains 9 
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exons, and is located on chromosome 11p15. During its transportation to lysosomes, the 

52-kDa human pro- CtsD is proteolytically processed to form a 48-kDa, single-chain, 

intermediate which is an active enzyme located in the endosomes. Further proteolytic 

processing yields the mature active lysosomal protease, which is composed of both heavy 

(34 kDa) and light (14 kDa) chains. The human CtsD (Fig.12) catalytic site includes two 

critical aspartic residues (amino acids 33 and 231) located on the 14-kDa and 34-kDa 

chains, respectively. CtsD is a key mediator of apoptosis. During apoptosis, mature 

lysosomal CtsD is translocated to the cytosol due to LMP. Cytoplasmic CtsD can cleave 

BID to form tBID which triggers the insertion of BAX into the mitochondrial membrane, 

and leads in turn to the mitochondrial release of Cytochrome c into the cytosol and the 

activation of pro-caspases 9 and 3 45. CtsD is also involved in caspase-independent 

apoptosis by activating BAX independently of Bid cleavage, and leading in turn to the 

mitochondrial release of the apoptosis inducing factor (AIF) 46. More recently, it has been 

shown that CtsD can also activate pro-caspase 8, initiating neutrophil apoptosis during the 

resolution of inflammation 47. In agreement, CtsD inhibitor, Pepstatin A partially delayed 

the apoptosis induced by different drugs 48. 

Since CtsD is one of the lysosomal enzymes that require a more acidic pH to be 

proteolytically active it is open to question whether cytosolic CtsD is able to cleave the 

substrate(s) implicated in the apoptotic cascade. In that respect some reports point that 

CtsD is still active at cytosolic neutral pH, however, its stability is limited due to reversible 

deprotonation of the active aspartate site. There are several mechanisms that might 

contribute to prolonged CtsD activity during apoptosis, such as cytosolic acidification or 

substrate binding.  
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Figure 12: Structure of the human CathepsinD 
48

. 
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2 HYPHOTESIS AND AIMS 

The role of CtsD in apoptosis is widely supported in the literature 49, however 

nothing is known about the role of CtsD in apoptosis during AKI. Therefore, my 

hypothesis is that CtsD plays a role during apoptosis in AKI, and its modulation 

through inhibitors could have a potential therapeutic beneficial effect. 

In order to address this hypothesis, in this thesis I have my addressed 5 main aims: 

 Characterisation of CtsD expression in two animal models of AKI, Folic 

Acid (FA) nephrotoxic model and ischemic reperfusion injury (IRI) 

model. 

 Analysis of the pharmacological inhibition of CtsD over kidney function, 

tubular cell damage and apoptosis in the two models of AKI. 

 Study of the effect of CtsD inhibition in in vitro cultured tubular epithelial 

cells under hypoxic conditions. 

 Analysis of the pharmacological of CtsD inhibition on a progressive 

model of renal fibrosis induced by ischemia reperfusion injury. 

 Study of CtsD expression in human acute tubular necrosis transplant 

patient biopsies. 
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3 ABSTRACT  

Acute kidney injury (AKI) is an abrupt reduction in kidney function due to tubular 

cell death by toxic or ischemic (IRI) insults. It significantly contributes to graft loss as 20-

80% of deceased donor kidneys suffer IRI induced AKI. Despite the progress in the 

management of the disease, mortality rates in the last five decades remain unchanged at 

around 50%. Therefore there is an urgent need to find new therapeutic targets against 

AKI. Lysosomal proteases, particularly CtsD, can play multiple roles in apoptosis, 

however its role during AKI is still unknown. Here I describe a novel role for CtsD in AKI. 

 CtsD was upregulated in damage tubular cells in nephrotoxic and ischemic (IRI) 

induced AKI. CtsD pharmacological inhibition using Pepstatin A lead to an improvement in 

kidney function, a reduction in apoptosis and an overall decrease in the number of 

damaged tubular cells in the kidneys with nephrotoxic or IRI induced AKI. Treatment with 

Pepstatin A slowed progression to CKD from IRI induced AKI, with a reduction in 

interstitial fibrosis. Analysis of acute tubular necrosis (ATN) transplanted patient biopsies 

revealed high levels of CtsD in damaged looking tubular cells. CtsD needs to be 

translocated from the lysosomes into the cytosol to exert its pro-apoptotic function. In 

agreement with this, CtsD distribution in human disease differed from non-apoptotic to 

apoptotic cells, with a lysosomal or cytosolic distribution respectively. 

My work support the role of CtsD in apoptosis during AKI opening new prospects 

for the treatment of AKI by targeting lysosomal proteases. 
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4 MATERIALS AND METHODS 

4.1. Reagents and antibodies 

Pepstatin A, Folic acid, anti-α-SMA antibody, TriReagent, SYBR Green JumpStart 

were purchased from Sigma-Aldrich; Cathepsin D (CtsD) activity assay kit, anti-GAPDH 

and anti-Neutrophil-1 from Abcam; citric acid based antigen unmasking solution, 

Avidin/Biotin blocking kit, Vectastain Elite ABC Reagent and DAB peroxidase substrate kit 

from Vector Laboratories; TUNEL In Situ Cell Death Detection Kit, TMR red and DNase I 

from Roche; Alexa Fluor secondary antibodies and ProLong® Diamond Antifade 

Mountant with DAPI from Thermo Scientific; Bradford from Biorad; Clearance from Leica; 

Pig serum from Serotec; Haemalum Mayer from TCS Biosciences; Pertex from Histolab; 

Pierce ECL reagent and NanoDrop 2000 from Thermo Scientific; X-ray film from 

Carestream BIOMAX Light Film; Moloney Murine Leukemia Virus Reverse Transcriptase 

(M-MLV RT) and random primers from Promega; KIM-1 ELISA was from R&D; 

isopropanol from Fisher Chemical; MTT from Sigma-Aldrich. CtsD antibody was 

purchased from St Cruz Biotechnolgy; caspase-3 antibody and PARP antibody from Cell 

Signaling; anti-rabbit biotin conjugated from Dako. Unless otherwise reported all other 

reagents were from Sigma-Aldrich. 

 

4.2. Animal models 

4.2.1. Animal housing and ethics 

Mice were housed in the Comparative Biology Centre (CBC) at Newcastle 

University. Animals were maintained in a 12-h light dark cycle, regulated temperature 

(20oC ± 3 oC) and humidity (50% ± 10%). All the animal studies were done in accordance 

to the UK Home Office Regulations and under its approval (licence 60/4521). 
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4.2.2. Drug preparation for in vivo use 

Pepstatin A was diluted with DMSO to a concentration of 20 mg/mL. For injection 

20mg/mL of Pepstatin A stock was diluted 10 times in saline and injected at 10 mg/Kg or 

20 mg/Kg. Vehicle was 10% DMSO in saline. Vehicle and Pepstatin A for injection was 

daily prepared fresh. 

Folic acid was diluted in 0.3 M sodium bicarbonate to 25 mg/mL concentration. It 

was injected intraperitoneally (i.p.) at a concentration of 250 mg/kg. Vehicle was 0.3 M 

sodium bicarbonate. Both folic acid and vehicle were prepared fresh every time before 

usage. 

 

4.2.3. Induction of acute kidney injury: Ischemia reperfusion injury (IRI) model 

Left renal pedicle of 8-10 week C57BL/6 females was clamped for 25 min. Once 

the ischemic time was finished, the kidneys were reperfused for 24 h. Controlateral control 

right kidneys and kidneys from sham animals were used as controls. Sham animals 

underwent a mock surgical procedure. Vehicle or Pepstatin A (10 mg/Kg) were 

administered 1 h before surgery and 4 h post-surgery by i.p.injection. Animals were culled 

24 h after surgery. A minimum of 7 animals were used in each IRI experimental group 2. 

 

4.2.4. Induction of acute kidney injury: Folic acid (FA) model 

A single i.p. injection of 250 mg/Kg of folic acid in vehicle (0.3 M NaHCO3) or 

vehicle alone was administered to 8-10 week C57BL/6 females. Vehicle or Pepstatin A 

(20 mg/Kg) were injected i.p. 45 min and 24 h post-folic acid administration. Animals were 

culled 48 h after folic acid injection. A minimum of 8 animals were used in each folic acid 

experimental group 26. 
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4.2.5. Induction of chronic kidney injury: Chronic ischemia reperfusion (IRI) model 

In 8-10 week C57BL/6 females the left renal pedicle was clamped for 35 min. Then 

the clamp was removed, and the kidney was reperfused for 28 days. Sham animals 

underwent a mock surgical procedure. Vehicle or Pepstatin A (20 mg/Kg) were 

administered by i.p. injection 1 h before surgery and from day 2 post-surgery three times a 

week up to 28 days. A minimum of 6 animals were used in each experimental group 34  

 

4.2.6. Animal sample harvest 

4.2.6.1 Blood 

The blood from the mice was harvested by cardiac puncture. Cardiac puncture is a 

suitable technique to obtain a single, large, good quality sample from a euthanized mouse 

or a mouse under deep terminal anaesthesia. 0.1-1 mL of blood were obtained depending 

on the size of the mouse and whether the heart was beating. Blood samples were taken 

from the heart through the diaphragm or the top of the sternum. The blood was collected 

in eppendorf tubes and it was left to coagulate at room temperature. When the blood was 

coagulated the samples were centrifuged at 800 r.p.m for 15 min. The serum was 

collected and transfered into a new eppendorf tube while the pellet was discarded. The 

samples were stored at -80°C. 

 

4.2.6.2. Urine 

Urine were harvested using metabolic cages or single urine spot collection before 

harvesting. Animals were maintained in the metabolic cages with normal availability of 

food and water, 12-h light dark cycle, regulated temperature (20°C ± 3°C) and humidity 

(50% ± 10%. After 24 h the levels of excreted urinary was checked, and the urine were 

collected on a refrigerated rack (allowing urine collection from +4° down to -15° C). 
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Then, the urine were centrifuged at 12000 r.p.m. for 15 min to discard possible cell 

contamination, and the supernatant was stored at -80°C. 

 

4.2.6. Kidney harvest 

Kidney harvest was conducted using sterile surgical instruments and consumables 

(autoclaved), with endeavours to keep the operating area as sterile as possible. The 

animals were anesthetized with isoflurane. The mice were shaved on the abdomen, 

placed on their back on a sterilely heated mat, and the limbs were loosely immobilized 

with sterile masking tape. Then, a 3 cm midline incision in the abdomen to enter the 

peritoneal cavity was made. A calibri abdominal retractor was inserted. After this step the 

stomach and the bowel was pulled superiorly to fully expose the kidneys.  

The kidneys were isolated from surrounding adventia, fat and the adrenal glands in 

the peritoneal cavity with fine tip forceps. In the end with fine tipped forceps the kidneys 

were collected with minimal trauma. The tissues were used for histology, protein and, 

RNA analysis. 

 

4.3. Biochemical analysis in serum 

Blood urea nitrogen (BUN) and serum creatinine assays were performed in serum 

at the Clinical Biochemistry Department of the Royal Victoria Infirmary, Newcastle. 

 

4.4. KIM-1 ELISA in urine 

Mouse KIM-1 microplate were coated with a monoclonal antibody specific for mouse KIM-

1. Then, 50 μL of Assay Diluent RD1-55 and 50 μL of Standard and urine were added per 

well. The microplate was covered with the adhesive strip provided and was incubated for 

2 h at room temperature. After this incubation, the solution was aspirated from each well 
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and washed 3 times with 400 μL washing buffer. After the last wash, 100 μL of cold anti-

Mouse KIM-1 Conjugate was added to each well and, the microplate was covered with a 

new adhesive strip for 1 h at 4 °C, without shaking. After this incubation anti-Mouse KIM-1 

Conjugate was removed and washed with 400 μL washing buffer 3 times. Then, 100 μL of 

substrate solution was added to each well, and the microplate was incubated for 30 min at 

room temperature. The microplate was kept in the dark. The reaction was stopped by 

adding 100 µL of stop solution to all the wells. The absorbance was measured using a 

plate reader at 450 nm with an absorbance correction at 540 nm. The urinary KIM-1 

concentration was calculated based on the standard curve and expressed in absolute 

terms (pg/mL). 

 

4.5. Cell culture of human epithelial tubular cells 

4.5.1. Cell maintenance 

HKC-8 cells are a cell line derived from human renal proximal tubular, which 

displays many of the characteristics, such as polarisation and channel expression, of 

the proximal tubule cells. HKC-8 cells, therefore, are a useful system for the study of 

human renal proximal tubular cell 50. HKC-8 cells were cultured in 1:1 Dulbecco’s 

modified Eagle’s: F12 medium or DMEM supplemented with 100 U/ml penicillin, 100 

µg/ml streptomycin, 2 mM L-glutamine, 5% FBS, and maintained at 37°C at an 

atmosphere of 20% O2 /5% CO2. 

The cells cultured were adherent and were routinely grown as a monolayer to 

approximately 75-100% confluence before passaging.  
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4.5.2. Cell passage 

For passaging cells, the media was aspirated prior to two brief washes in 1x PBS 

(approximately 10 mL-T75). Cells were then incubated with trypsin-EDTA for 5-15 

min. At random intervals during this incubation the detachment of the cells was 

encouraged by gentle tapping. Once detachment was confirmed by light microscopy, 

trypsin-EDTA activity was inhibited by the addition of an excess of serum containing 

media. The trypsin-EDTA/cells mixture was then transferred to a sterile 50 mL 

Falcon tube prior to centrifugation (typically at 1300 rpm) for 5 min. The supernatant 

was aspirated off prior to resuspend the cell pellet in fresh media, before seeding the 

cells as desired for experiment or cell maintenance. 

 

4.5.3. Cell cryopreservation and revival 

2.5.3.1. Cryopreservation 

Cell lines were frozen down in liquid nitrogen (LqN2) and at -80°C when no longer 

required or for stock lines. Cells were detached as outlined in 4.5.2, but the pellet was re-

suspended in 5 mL of freezing media [90% (v/v) FCS/ 10% (v/v) DMSO] typically 1-2 mL 

for a T75 flask before aliquoting into sterile cryovials. The cryovials were then placed into 

a Nalgene Mr. Frosty Cryo 1°C Freezing Container containing isopropanol, and left at -

80°C overnight. This cools the cells at a rate of approximately 1°C per h. The following 

day, the cryovials were placed in LqN2. 

 

4.5.3.2. Revival of the cells 

Cell were removed from -80°C or LqN2 and rapidly thawed at 37°C in a waterbath, 

re-suspended in 10 mL freshly warmed media and centrifuged at 1300 r.p.m for five min. 

The supernatant was then discarded, and the cell pellet re-suspended in 5 mL of fresh 
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media, which was transferred into two T75 flasks. The cells were left to attach overnight, 

and the next morning the media was replaced. 

 

4.5.3.3. Cell treatment 

HkC-8 cells were seeded in six well plate at a density of 2 × 105 cells/well in 2 mL 

of DMEM, and left to attach overnight. The next morning the media was replaced with 2 

mL fresh warm media, and the cells were treated with Pepstatin A 10mg/mL (final 

concentration 10 μg/mL) and vehicle (DMSO). The plates were incubated for 48 h at 37°C 

at an atmosphere of 20% O2/5% CO2 (normoxia) or 1% O2/5% CO2 (hypoxia). Cell lysates 

were performed after 48 h of treatment.  

 

2.5.3.4. Cell viability assay (MTT) 

The MTT assay is a colorimetric assay for assessing cell metabolic activity. 

NAD(P)H-dependent cellular oxidoreductase enzymes may, under defined conditions, 

reflects the number of metabolic viable cells present 51. The assay was conducted as it 

follows: HKC-8 cells were seeded in 24-well plates at a density of 1 × 105 cells/well in 1 

mL DMEM and were left to attach overnight. The next morning, the medium was removed, 

and the cells were incubated for 48 h with fresh DMEM with Pepstatin A 10 μg/mL or 

vehicle (DMSO). The plates were incubated for 48 h at 37°C at an atmosphere of 20% 

O2/5% CO2 (normoxia) or 1% O2/5% CO2 (hypoxia). After incubation, MTT reagent 

(Sigma-Aldrich) (5 mg/mL MTT in PBS) was added to each well being assayed to an 

equal 1/10 dilution from the original culture volume and incubated for 4 h at 37 °C. After 

this incubation time, the medium was removed, 1 mL of isopropanol was added, and the 

absorbance measured at 570nm and 630 nm. The data are expressed as the difference 

between 630 nm and 570 nm absorbances. 
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4.6. Histological analysis 

4.6.1. Approval for the use human samples 

Acute Tubular Necrosis (ATN) transplanted C4b negative biopsy samples were 

taken under full ethical approval granted by the NRES Committee East Midlands-Derby 

Research Ethics Committee (REC reference 13/EM/0311), patient consent and in 

accordance to the approved guidelines. 

 

4.6.2. Immunohistochemistry in mouse and human tissues 

4.6.2.1. Cathepsin D immunohistochemistry 

Tissue was fixed in 10% formalin for a minimum of 24 h before been processed 

and embedded in paraffin blocks. Sequential 4μm kidney sections were cut, placed in a 

water bath set to 45°C, and fixed onto superfrost plus slides (Thermo Scientific). Slides 

were allowed to cool down and dried overnight at 37°C. Prior to staining, the slides were 

deparaffinised with Clearene (two washes, 5 min each) and rehydrated through a gradient 

of alcohol (two consecutive washes of 100% and 70% ethanol solutions, 5 min each). 

Tissue sections were then incubated in 2% hydrogen peroxide/methanol solution for 15 

min to quenching endogenous peroxidase activity. Sections were removed and washed 

for 5 min in PBS 1X. Then, the sections were incubated for 20 min in a microwave at 750 

W with antigen unmasking solution (1/100 in deionised water) (Vector). After cooling with 

tap water, the sections were mounted into sequence and washed with PBS 1X. Finally, 

the blocking steps showed in the table 2 were followed. Between every step 3 washes 

with PBS 1X were performed. 
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Reagents Volume Time 

Avidin 3 drops 20 minutes 

Biotin 3 drops 20 minutes 

Swine Serum 100μL 1 hour 

Table 2: Blocking steps. 

 

After blocking, the sections were incubated overnight at 4°C with the primary 

antibody anti- CtsD (1/100 in swine serum 10%). 

After overnight incubation, sections were washed three times for 5 min with PBS 

1X. The secondary antibody, anti-rabbit biotin conjugated (1/200 in swine serum 10%) 

was incubated 1 h at room temperature. After the incubation, sections were washed in 

PBS for 5 min and 3 drops of ABC regent were added to each section and incubated for 

45 min at room temperature. Every section was then incubated with 100 μL of DAB 

solution (2 drops buffer, 4 drops DAB, 2 drops hydrogen peroxide to 5 mL H2O) to allow 

the colour development. The reaction was stopped by rinsing slides with PBS 1X. 

Following this step, the sections were briefly washed in deionised water before the nuclei 

were stained with Mayer’s Haematoxylin for 60 sec.  

Sections were then dehydrated through a series of ethanol solutions for 5 min each 

(50%, 70%, 100%). Sections were then washed in Clearance twice for 10 min and 

mounted with Pertex. Slides were dried at room temperature overnight before viewing 

under a light microscope. Image analysis was performed with a Nikon Eclipse Upright 

microscope using NIS-Elements BR Analysis software. CtsD human sections staining was 

assessed by an expert histopathologist. A minimum of 8 different patient biopsies was 

stained. 
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4.6.2.2. α-SMA immunohistochemistry 

Before the addition of the primary antibody, all the steps were the same as in 

protocol 4.6.2.1. Sections were incubated overnight at 4°C with the primary antibody anti-

α-SMA FITC (1/1500) and wrapped in foil.  

After overnight incubation, sections were washed three times for 5 min with PBS 

1X. The secondary antibody, anti-fluorescin biotinylated made in goat (1/300 in swine 

serum 10%) was incubated 2 h at room temperature. After the incubation, sections were 

washed in PBS for 5 min and protocol was followed as described in section 4.6.2.1. 

Slides were dried at room temperature overnight before viewing under a light 

microscope. Image analysis was performed in a minimum of 10 random 200X fields with a 

Nikon Eclipse Upright microscope. Using NIS-Elements BR Analysis software, thresholds 

for α-SMA positive cells area were created, and the analysis was run automatically.  

 

4.6.2.3. NIMP-1 immunohistochemistry 

Before the addition of the primary antibody, all the steps were the same as in 

protocol 4.6.2.1. Sections were incubated overnight at 4°C with the primary antibody anti-

NIMP-1 (diluted 1/200). After incubation, sections were washed three times for 5 min with 

PBS 1X. The secondary antibody, anti-rat biotinylated made in goat (diluted 1/200 in 

swine serum 10%) was incubated 90 min at room temperature. After the incubation, 

sections were washed in PBS for 5 minutes and protocol was followed as described in 

section 4.6.2.1.  

Slides were dried at room temperature overnight before viewing under a light 

microscope. Image analysis was performed in a minimum of 10 random 200X fields with a 

Nikon Eclipse Upright microscope. Using NIS-Elements BR Analysis software, thresholds 

for NIMP positive cell area were created, and the analysis was run automatically. 
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4.7. TUNEL staining 

Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) staining 

is one of the most widely used methods for detecting DNA damage. TUNEL staining relies 

on the ability of the enzyme terminal deoxynucleotidyl transferase to incorporate labeled 

dUTP into free 3'-hydroxyl termini generated by the fragmentation of genomic DNA into 

low molecular weight double-stranded DNA and high molecular weight single stranded 

DNA 52.  

TUNEL was performed in 4 µm paraffin embedded kidney sections. Kidney 

sections were dewaxed in Clearance for 10 min and rehydrated through a battery of 

alcohol solutions (100% and 70%). Sections were then washed with PBS 1X for 5 min and 

incubated in the microwave at 350W with antigen unmasking solution (1/100 in deionised 

water) for 5 min followed by 1 min at 750W. After a briefly cool down with tap water, the 

sections were mounted in sequence and washed with PBS 1X. The positive control was 

incubated with 1000 U/mL recombinant DNase I in 1% BSA for 10 min at room 

temperature. After this step, the positive control was mounted in sequence and washed 

with PBS 1X. All the sections were incubated with the blocking solution (3% BSA, 20% 

Pig serum) for 30 min. 

50 μL of Tunnel Reaction Mixture solution (50 μL of enzyme solution + 450 μL label 

solution) were added on the kidney sections. The negative control received just 50 μL of 

label solution. The sections were incubated for 1 h at room temperature in a humidified 

atmosphere in the dark. Finally, the sections were washed with PBS 1X, mounted with 

ProLong® Diamond DAPi conjugated mounting medium (Invitrogen), and analysed using 

a Zeiss Axio fluorescent microscope. TUNEL and DAPi positive nuclei were quantified in 

10-18 random 200X fields per section using Image J software analysis. Results were 



46 

 

expressed as percentage of the number of positive TUNEL nuclei versus total nuclei 

(DAPi). 

 

4.8. Dual immunofluorescence TUNEL/CtsD in human paraffin sections 

TUNEL staining procedure, described in the paragraph 4.7., was followed until the 

blocking step with 3% BSA, 20% Piggy serum. After that, anti-cathepsin D (1:100) primary 

antibody was added overnight in 1% BSA in the cold room. Sections were washed 5 times 

prior the addition of the anti-goat FITC secondary antibody (1:200) for 1 h at room 

temperature. From this point, slides were kept in the dark. After washing 5 times with 

PBS1X, 50 μL of Tunnel Reaction Mixture solution (50 μL of Enzyme solution + 450 μL 

label solution) was added on the kidney sections. The negative control received just 50 μL 

of label solution. The sections were incubated for 1 h at room temperature in a humidified 

atmosphere in the dark. Finally, the sections were washed with PBS 1X and were 

mounted with ProLong® Diamond DAPi conjugated mounting medium and analysed 

using a Nikon A1 confocal microscope. Pictures were taken sequentially at 600X oil. 22 

images of 0.3 μm slice were acquired per coverslip. Image analysis was performed using 

Image J software. Images are expressed as merged channels, being each channel the 

maximum intensity Z stack projection of the 22 individual steps. 

 

4.9. Sirius Red staining 

Sirius Red stain is known to specifically bind to collagens due to its sulphonic 

groups reacting strongly with the basic groups present in collagen molecules. 4µm thick 

paraffin kidney slides were dewaxed in Clearance and rehydrated through a battery of 

alcohol solutions (100% and 70%). After this step, the sections were incubated in 0.1% 
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Sirius Red stain for 2 h at room temperature. Any excess of dye was removed by three 

brief washes in acidified water (0.5%, v/v) acetic acid in deionised water.  

Sections were then dehydrated by incubating them in a series of ethanol solution 

for 5 min each (50%, 70%, 100%). Sections were finally incubated in Clearance twice for 

5 five min each and mounted with Pertex (Histolab). Slides were dried at room 

temperature overnight before viewing under a light microscope. Image analysis was 

performed in a minimum of 10 random 200X fields with a Nikon Eclipse Upright 

microscope. Using NIS-Elements BR Analysis software, thresholds for percentage of 

positive area was created and the analysis was run automatically.  

 

4.10. Tubular damage assessment and scoring 

PAS was performed in 4 µm kidney sections following standard procedures. 

Tubular damage was assessed in 10-20 random 200X fields in the corticomedullary 

(CMJ) for the ischemia reperfusion model and the cortex for the folic acid model. 

Glomerular cast formation was used as an indication of tubular damage in the CMJ and 

tubular dilation, loss of brush border and epithelial flattening were used as indicators of 

tubular damage in the cortex. Results were expressed as percentage of the number of 

damage cells versus total number of cells per field. Using these percentages the score 

grades were assigned as it follow: score 1 (0-25%), score 2 (25-50%), score 3 (>50%). 

 

4.11. Immunocytochemistry of HKC-8 cells 

HKC-8 cells were cultured on glass coverslips in six wells plate, fixed with formalin 

10 min, and permeabilized with 0.1% saponine/0.5% BSA for 10 min. After blocking with 

3% BSA for 45 min, the coverslip were incubated with anti-HIF1-α antibody for 90 min at 

room temperature. The coverslips were washed three times with PBS1X between every 
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step. After washing, secondary anti-mouse-FITC was added and incubated. Coverslips 

were mounted with ProLong® Diamond DAPi conjugated mounting medium and left to dry 

overnight at room temperature in the dark. The coverslips were analysed using a Nikon 

A1 confocal microscope. Pictures were taken sequentially at 600X oil. 3X electronic zoom 

was made of a region of interest. 10-11 images of 0.75 μm slice were acquired per 

coverslip. Image analysis was performed using Image J software. Images are expressed 

as merged channels, being each channel the maximum intensity Z stack projection of the 

11 individual steps. 

 

4.12. Protein analysi 

4.12.1. Preparation of cellular or tissues lysates 

For HKC-8 cells were washed twice with PBS 1X, scrapped in 100 μL of RIPA 

buffer and transferred into an eppendorf tube. For kidney tissue approximately 50 mg of 

kidney were homogenised in 1 mL of RIPA buffer. Either cells or tissues were kept in the 

ice for 15 min and vortex for at least five times to break the cells and release the cellular 

content. After this step, the cells were sonicated for 5 min in cold deionised water. 

Supernatants containing cellular lysates were obtained by centrifugation at 14.000 r.p.m 

for 15 min at 4 °C; pellet containing cellular membranes and nuclei was discarded. The 

samples were stored at -80 °C. 

 

4.12.2. Protein quantification 

Protein samples were quantified with Bradford. The Bradford assay is based on the 

properties of the Coomassie Brilliant Blue G-250 dye which exists in four different ionic 

forms. The more anionic blue form binds mostly arginine, tryptophan, tyrosine, histidine, 

and phenylalanine protein residues, and has an absorbance at 595 nm which can be 
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measured using a spectrophotometer. Therefore protein concentration can be determined 

when measured in parallel with a bovine serum albumin (BSA) standard of known 

concentration.  

The Bradford assay was performed in duplicates in 96 well-plate. The proteins 

samples (1/200) were mixed in 200 μL of 20% Bradford solution and incubated at room 

temperature for at least 5 min. After this step the plate was read at the spectrophotometer 

to 595 nm.  

The BSA standard curve (Fig 13) was created with concentration plotted on the x-

axis and absorbance plotted on the y-axis. This standard curve was then used to 

determine the concentration of the unknown protein. 

 

Figure 13: Calibration curve Bradford assay 

 

4.12.3. Electrophoresis sample preparation  

10-20 µg of protein were mixed with reducing loading buffer [62.5 mM Tris buffer, 

pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 100 mM DTT and 0.02% (w/v) bromophenol 

blue]. Samples were denatured by heating at 90 °C for 5 min. Samples were cold down 

and centrifuged at 13000 rpm 1 min before loading. 
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4.12.4. SDS PAGE  

SDS-PAGE analysis involves the denaturation of proteins by heating in the 

presence of both DL-Dithiothreitol (DTT) and SDS (sodium dodecyl sulphate). The 

combination of these reagents ensures that the protein loses all its secondary, tertiary and 

quaternary structures and all linear, with a negative charge. Therefore, when loaded onto 

a gel with fixed pore size, and a current is applied it will migrate towards the positive 

electrode, governed by its molecular weight. When run against markers of known 

molecular weight, the molecular weight of unknown protein sample bands could be 

determined. 8-15% acrylamide resolving gels were set between glass plates clamped 

together using Biorad system. Gels were prepared according to that reported in the table 

3 below:  

 

Resolving 
gel 

8% 10% 12% 15% 
Stacking 

gel 
6% 

Distilletd 
water 

9.6mL 8.7mL 7.6mL 6.4mL 
Distilletd 

water 
5.84mL 

Tris 1.5 M 
pH8.8 

4.5mL 4.5mL 4.5mL 4.5mL 
Tris 1.5 M 

pH 6.8 
2.5mL 

SDS 10% 180μL 180μL 180μL 180μL SDS 10% 100μL 

Acrymalide 
40% 

3.6mL 4.5mL 5.6mL 6.8mL 
Acrymalide 

40% 
1.5mL 

APS 10% 90μL 90μL 90μL 90μL APS 10% 50μL 

TEMED 18μL 18μL 18μL 18μL TEMED 10μL 

 
Table 3: Acrylamide gels receipt. 

 

A thin layer of isopropanol was applied to remove air bubbles and ensure a level 

interface between the stacking and separating gels. Upon polymerisation the isopropanol 

was removed before the stacking gel was cast on top. The stacking gel was prepared 

according table 3. Combs were carefully placed into the stacking gel to form the wells for 

the samples to be loaded into. When polymerisation was complete the combes were 
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removed, and the gels were fastened into the gel tank, which was then filled with 

electrode running buffer (1x ERB) (20 mM Tris, 160 mM glycine and 0.08% (w/v) SDS, pH 

8.3). 10-20 μg total proteins was loaded per well. Electrophoresis was carried out at 80 V 

initially until the dye front had crossed the interference of the stacking and resolving gel. 

After that, the voltage was increased to 120V until the dye front had reached the end of 

the gel. At this point the gels were removed from the tank and the Western blotting was 

performed according to the next paragraph. 

 

4.12.5. Western blotting 

After the electrophoresis, the stacking gel was discarded whilst the resolving gel 

was placed in chilled transfer buffer [25 mM Tris, 192 mM glycine and 20% (v/v) 

methanol, pH 8.3]. Gels were loaded into the Western transfer cassettes overlayed with 

the nitrocellulose membrane between both filter paper and pads, and placed into the 

tanks with ice pack before being immerged in chilled transfer buffer (Fig 14). 

 

 

 

 

 

 

Figure 14: Western transfer picture representation. 

 

he negatively charged proteins were transferred onto the positively charged 

nitrocellulose membrane by running the tank at 290 mA for 1 h. Afterwards, the 

nitrocellulose membrane was removed and washed in 1x TBS-T [0.2 M NaCl, 20 mM Tris 
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and 0.05% (v/v) Tween 20, pH 7.4] to remove any traces of methanol. The nitrocellulose 

membrane was then then blocked in 3% (w/v) marvel milk powder in 1X TBS-T buffer for 

1 h at room temperature to prevent non-specific protein binding.  

The nitrocellulose membrane was then washed three times in 1X TBS-T, prior to 

incubation with the primary antibodies (Tab.4) diluted in incubation buffer (0.3% (w/v) milk 

powder in 1X TBS-T) overnight at 4 °C.  

 

Antibody Dilution MW (KDa) Reference number Supplier 

Goat polyclonal  

Anti-cathepsinD 

1/250 46 sc-6486 St Cruz  

Biotechnolgy 

Rabbit monoclonal 

Anti-cleaved Caspase-3 

1/1000 19 5A1E Cell Signaling 

Goat polyclonal 

Anti-GAPDH  

1/1000 37 ab9483 Abcam 

Rabbit monoclonal 

PARP Antibody 

1/1000 89 9542 Cell Signaling 

 
Table 4: Primary WB antibody list. 

 

Following three 1X TBS-T washes, the membrane was incubated with the 

appropriate secondary antibodies for 1 h at room temperature. Finally, the membrane was 

washed for a minimum of 30 min with multiple TBS-T changes prior to chemiluminescent 

detection. 
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4.12.6.Protein chemiluminescent detection 

Pierce ECL reagent was used for chemiluminescent detection of the horseradish 

peroxidase (HRP) activity of the intended protein. Following the guidelines provided, equal 

volumes of reagents 1 and 2 were mixed and pipetted onto the membrane, ensuring that it 

was covered equally for 1 min. Excess ECL reagent was removed by blotting with tissue 

paper. The membrane was fixed into a cassette, and exposed to X-ray film in a dark room 

followed by development of X-ray film with a Xograph SRX-101A developer. 

 

4.12.7. CtsD activity assay 

Cathepsin D (CtsD) activity was determined using CtsD activity assay kit which is a 

fluorescence-based assay that utilizes the preferred CtsD substrate sequence 

GKPILFFRLK(Dnp)-D-R-NH2) labelled with 7-methoxycoumarin-4-acetic acid (MCA). The 

CtsD contained in the samples cleaves the synthetic substrate releasing fluorescence, 

which can be quantified using a fluorescence plate reader.  

10 µg of proteins were incubated with the lysis buffer up to 50 μL of final volume for 

each sample in the 96 wells black plate. 52 μL of reaction mix (50 μL reaction buffer + 2 

μL substrate) were added in each well. Plate was then read to obtain the basal reading 

and incubated at 37°C. Readings were done after 1 and 2 h using a fluorescence plate 

reader at Ex/Em = 355/520 nm. Results are expressed as a slope of fluorescence 

emission after 1 h or 2 h per µg of protein. 

 

4.13. Gene expression analysis 

4.13.1. RNA Isolation  

Kidney tissue was homogenised in 1 mL of TriReagent in an RNase/DNase free 

eppendorf. 200μL of chloroform were added and mixed carefully prior to centrifugation at 
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13,000 rpm for 15 min at 4°C. The upper aqueous layer containing the RNA was removed 

and transferred to a new tube. Then, 500 μL chilled sterile isopropanol were added, and 

the mixture was incubated on ice for 20 min; before centrifugation at 13,000 rpm for 10 

min at 4°C. The supernatant was discarded, and the RNA pellet washed in 500 μL 70% 

ethanol (diluted in sterile water nucleasi-free) before a final 10 min centrifugation step at 

13,000 rpm at 4°C. Finally, following removal of the 70% ethanol, the RNA pellet was left 

to dry and was re-suspended in a small volume (typically 10-30 μL) of nuclease free water 

dependent upon the pellet size. The purified RNA was quantified by NanoDrop 2000. 

 

4.13.2. cDNA synthesis 

Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) is an RNA-

dependent DNA polymerase that can be used in complementary DNA (cDNA) synthesis 

with long messenger RNA templates.  

1 μL of RNA at 500 ng/μL was added to 8 μL of RNase free water plus 1 μL of 

DNase and 1 μL of DNase buffer. This mix was incubated for 30 min at 37°C. Then, 1 μL 

of DNase stop solution was added to stop the reaction, and the mix was left at room 

temperature for 2 min. After this step, 0.5 μL of random hexamer and 2 μL nuclease free 

water were added, and the mix was incubated at 70°C for 5 min. The mix was kept in ice 

prior to add 6.5 μL of Retro transcription mix (Tab.5). The samples were than incubated 

for 1 h at 42°C to produce 1st strand cDNA, and stored at -20°C. 

RNAsin 0.5μL 

MMLV RT buffer 4 μL 

MMLV RT 1 μL 

dNTPs 1 μL 

Table 5: Retrotranscription mix  
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4.13.3. Primer design and sequences 

Primers sequences were obtained from the Primers Bank of Harvard Medical 

School (http://pga.mgh.harvard.edu/primerbank/). The gene accession number for the 

mRNA of interest was found on NCBI database in the sections Nucleotide 

(http://www.ncbi.nlm.nih.gov/pubmed). The gene accession was inserted in the Primer 

Bank and chosen primers were run in BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), to 

check for unspecific binding of the selected primers. All the sequences are reported below 

(Tab.6). 

Gene (GenBank Accession) Primer sequence 

Col1A1  (NM_007742) Fw: 5’-TTCACCTACAGCACGCTTGTG-3’ 

Rv: 5’-GATGACTGTCTTGCCCCAAGTT-3’ 

Col 3A1 (NM_009930) Fw: 5’-CTGTAACATGGAAACTGGGGAAA-3’ 

Rv: 5’-CCATAGCTGAACTGAAAACCACC-3’ 

CXCL-1 (NM_008176) Fw: 5’- CTGGGATTCACCTCAAGAACATC-3’ 

Rv: 5’- CAGGGTCAAGGCAAGCCTC-3’ 

CXCL-2  (NM_009140) Fw: 5’- CCAACCACCAGGCTACAGG-3’ 

Rv: 5’- GCGTCACACTCAAGCTCTG-3’ 

IL-1β  (NM_008361) Fw: 5’-CAACCAACAAGTGATATTCTCCATG-3’ 

Rv: 5’-GATCCACACTCTCCAGCTGCA-3’ 

IL-6 (NM_031168) Fw: 5’- TAGTCCTTCCTACCCCAATTTCC-3’ 

Rv: 5’- TTGGTCCTTAGCCACTCCTTC-3’ 

RANTES (NM_013653) Fw: 5’-TGCTGCTTTGCCTACCTCTCC-3’ 

Rv: 5’- TGGCACACACTTGGCGGTTCC-3’ 
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Table 6: Mouse primers sequences. 

 

4.13.4. Quantitative real-time PCR (qRT-PCR) 

cDNA samples were diluted up to 10 ng/μL. 20 ng of cDNA was added per 

reaction. Samples were run in duplicate. 18 μL of SYBR green mastermix (Tab.7) were 

added to each well in turn. 

 

DNase free water 6μ 

2X SYBR Green (Sigma-
Aldrich) JumpStart 

 
10μ 

Primer reverse 1μ 

Primers forward 1μ 

 
Table 7: SYBR green mastermix  

 

The plate was run on an Applied Biosystems 7500 Fast Real-Time PCR system 

machine; after the initial denaturation step, there were 40 repeated cycles consisting 

of95°C for 5 sec,60 or 55°C for 30 sec,72°C for 1 min. 

The level of SYBR Green JumpStart detected was measured during the cycling 

step of each cycle, and the cycle threshold (CT) values were calculated by manually 

applying a threshold limit to represent the exponential phase of the amplification. SYBR 

Green binds to double strand DNA (dsDNA) and the fluorescence was detected at the end 

of each elongation step giving a value to the amount of dsDNA present.  

TNF-α  (NM_013693) Fw: 5’-CCCTCACACTCAGATCATCTTCT-3’ 

Rv: 5’- GCTACGACGTGGGCTACAG-3’ 
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Quantitation of gene expression was calculated relative to the housekeeping 

control 18S using the comparative ∆∆Ct method. Briefly, the mean and standard deviation 

(SD) of the CT values were calculated for 18S and the target gene. The ΔCT was 

calculated by subtracting the 18S CT from the target gene CT. Data were plotted against 

vehicle sham or control group. 

 

4.14. Statistical analysis  

Results are expressed as mean ± SEM unless otherwise stated in the figure 

legend. All p values were calculated using student’s t-test. *P ≤ 0.05, **P ≤ 0.01 or ***P ≤ 

0.001 was considered statistically significant.  
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5. RESULTS 

5.1. Characterization of CtsD expression in folic acid (FA) induced nephrotoxic 

AKI 

Nephrotoxic AKI can happen due to a wide variety of commonly used drugs 2. 

Intrinsic damage into the kidney tissue will lead to cell death contributing to the 

decline in kidney function and the development of AKI. First of all, I analysed the 

expression of CtsD, through Western blotting (WB) and immunostaining in the 

nephrotoxic AKI model of FA injection. Administration of high doses of FA induces 

acute tubular necrosis by crystal formation mainly within the cortical area 44. 8-10 

week C57BL/6 females were given a single i.p. injection of 250 mg/Kg of FA in 

vehicle (0.3 M NaHCO3), or vehicle alone. The animals were culled after 48 h of the 

injection and the kidneys were collected.  

Figure 15A shows CtsD WB in the kidney lysates from vehicle and FA treated 

mice 48 h after injection. For this WB 20 μg of total kidney protein was loaded per 

well. Pro- (52KDa) and mature (48KDa) forms of CtsD protein were increased in 

mice treated with FA compared with mice treated with vehicle. This data suggests 

that CtsD could be involved in nephrotoxic AKI. GAPDH protein expression was 

unchanged and used as the WB loading control (Fig. 15A). 

WB resultes were confirmed by CtsD immunostaining in kidney tissue. 

Paraffin embedded kidney tissues were stained for CtsD as described in the 

methods section 4.6.2.1. CtsD staining in kidney cortex confirmed an increase of 

CtsD expression mainly in damaged tubular epithelial cells in the mice treated with 

FA. Almost no expression of CtsD was detected in the cortex from non-injured mice 

(Fig. 15B). These data confirmed that CtsD is upregulated in FA induced nephrotoxic 

AKI.  
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Figure 15: Western Blot of pro- and mature form of CtsD and GAPDH in total kidney lysates (A). 

Representative pictures of CtsD cortical immunostaining(beown) of kidney tissue (B). Animals were 

treated with FA (250mg/Kg) or vehicle for 48 h. 

 

5.2. Effect of pharmacological inhibition of CtsD by Pepstatin A in a FA 

induced nephrotoxic AKI model 

To understand the role of CtsD in FA nephrotoxic induced AKI, the CtsD 

inhibitor Pepstatin A was administrated. Pepstatin A (20 mg/Kg) was injected i.p. 45 

min and 24 h post-FA administration. A minimum of 8 animals was used in each FA 

experimental group. The control animals were injected with vehicle alone. After 48 h 

of FA administration the animals were culled and blood, urine and kidneys collected. 

The results obtained are listed below. 
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5.2.1. Effect of CtsD inhibition on kidney function during FA induced AKI 

Kidneys functions was assessed using biomarkers on the serum and urine. 

The biochemical markers blood urea nitrogen (BUN) and creatinine were analysed in 

serum (Fig 16A and 16B). As expected, both markers were increased upon FA 

administration compared with vehicle. Interestingly, animals receiving both FA and 

Pepstatin A treatment had a significantly lower BUN and creatinine concentration 

than the ones which received FA and vehicle, reflecting improved kidney function 

(Fig 16A and 16B). 

Moreover, the urine biomarker KIM-1 was used to determined renal tubular 

injury (Fig 16C). In agreement with the serum results, urine KIM-1 was increased in 

AKI induced by FA but was lower in the animals treated with Pepstatin A compared 

with the ones treated vehicle alone. 
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Figure 16: BUN (A), serum creatinine (B), urine KIM-1 ELISA (C) in control and 48 h FA vehicle and 

Pepstatin A treated kidneys. Animals were treated with vehicle or Pepstatin A (20mg/Kg) 45 min 

before and 24 h post-FA. Repeated measures t-test, *P ≤ 0.05  

 

5.2.2. Effect of Pepstatin A on tubular cell damage during FA induced AKI 

To determine the real tubular cell damage PAS staining and scoring was 

performed. Damaged tubules were classified according to previously described AKI 

clinical pathological description using the following criteria: tubular dilation, loss of 

brush border and epithelial flattening. Tubular damage was assessed in 10-20 

random 200X fields in the cortex.  
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Analysis of kidney tissues from FA vehicle or Pepstatin A treated mice 

showed that Pepstatin A reduces by 40% the percentage of tubular cell damage in 

FA treated animals (Fig. 17A). In agreement, the histomorphological injury score was 

also significantly reduced by Pepstatin A treatment (Fig. 17B). The improvement in 

kidney function and a decrease on the tubular cell damage in Pepstatin A treatment 

could be explained by a direct effect of CtsD inhibition on inflammation 53 or on 

epithelial tubular cell death 54. 

 

Figure 17: Percentage of tubular cell injury in cortex (A) or histomorphological injury score (B) as 

assessed by tubular dilatation, epithelial flattening and loss of brush border in FA vehicle or Pepstatin 

A treated kidneys. Representative PAS pictures (C), damaged tubules *. Animals were treated with 

vehicle or Pepstatin A (20mg/Kg) 45 min before and 24 h post-FA. Repeated measures t-test, *P ≤ 

0.05  

 

5.2.3. Effect of CtsD inhibition on kidney inflammation during FA induced AKI 

To clarify the role of CtsD in inflammation during AKI, gene expression of 

inflammatory mediators was analysed by RT-PCR. The inflammatory mediators 

analysed were CXCL-1, CXCL-2, IL-1β, IL-6, TNF-α and RANTES 55, and the results 
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are shown in figure 18. The expression of all the inflammatory mediators was 

significantly increased in the mice that were treated with FA. Pepstatin A did not 

influence on their expression apart from the expression of IL-1β that was significantly 

decreased.  

 

Figure 18: CXCL-1 (A), CXCL-2 (B), IL1-β (C), IL-6 (D), TNF-α (E) and RANTES (F) mRNA 

expression from control and 48 h FA vehicle or Pepstatin A treated kidneys. Animals were treated 

with vehicle or Pepstatin A (20mg/Kg) 45 min before and 24 h post-FA. Repeated measures t-test, *P 

≤ 0.05 or **P ≤ 0.01 



64 

 

5.2.4. Effect of Pepstatin A on apoptosis during FA induced AKI 

Next I determined the effect of Pepstatin A on apoptosis by two different 

methods. First of all, apoptosis was evaluated through WB of active-caspase 3, an 

effector apoptotic caspase. The extrinsic apoptotic pathway is initiated by the ligation 

of death receptors (TGF) with their cognate ligands, leading to the recruitment of 

adaptor molecules such as FAS-associated death domain protein (FADD) and then 

caspase 8. This results in the dimerisation and activation of caspase 8, which can 

directly cleave and activate caspase 3, leading to apoptosis 37. Control kidney 

treated only with vehicle was compared with FA kidneys treated with vehicle or 

Pepstatin A. FA administration increased cleaved or active caspase-3 in kidney 

tissue and increase that was inhibited by Pepstatin A administration indicating a 

reduction in apoptosis due to CTsD inhibition. GAPDH protein expression was 

unchanged and used as the WB loading control (Fig. 19A). 

In order to confirm the effect of Pepstatin A on apoptosis induced by FA, 

TUNEL staining was performed. TUNEL staining (Fig 19B) confirmed WB data 

showing a 50% reduction in the percentage of apoptotic positive cells in the FA injury 

kidneys of mice treated with Pepstatin A compared with vehicle. In the control 

kidneys, TUNEL positive cells were not detected. Therefore, CtsD inhibition 

improves kidney function, reduces tubular damage and apoptosis in FA nephrotoxic 

induced AKI model. 
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Figure 19: Cleaved caspase-3 and GAPDH WB (A). Percentage of cortical TUNEL positive cells 

versus total cells and representative TUNEL +/- DAPI pictures (B) in FA vehicle or Pepstatin A treated 

kidneys. White arrows point to TUNEL
+ 

cells. Animals were treated with vehicle or Pepstatin A (20 

mg/Kg) 45 min before and 24 h post-FA. Repeated measures t-test, *P ≤ 0.05  

 

5.3. Characterisation of CtsD expression and its correlation with the levels of 

apoptosis in ischemia reperfusion induced AKI 

AKI can be induced by many conditions, in this thesis two models were 

evaluated, FA and IRI. Both necrosis and apoptosis contribute to tubular loss during 

IRI 56. The cell death ratio biases towards necrosis rather than apoptosis as the 

severity of the damage increases with higher ischemic times 57. Thus, I first 

characterised the contribution of apoptosis to a mouse model of renal IRI. I 

performed different ischemic times (25, 35 and 45 min) with the same reperfusion 

time (24 h). After 24h the animals were culled and blood, urine and kidneys were 



66 

 

collected. Contralateral right kidneys and kidneys from sham animals were used as 

controls. Sham animals underwent a mock surgical procedure. The effect of different 

ischemic times on apoptosis was analysed by WB of selected apoptotic markers. I 

chose two well described apoptotic events, the cleavage of the effector caspase-3 

and the inactivation or cleavage of Poly ADP ribose polymerase-1 (PARP-1). PARP-

1 is an enzyme participating in DNA repair which contributes to apoptosis by 

caspase-3 inactivation or cleavage 58. Both, active caspase-3 and caspase 

dependent cleaved PARP-1 fragment were increased after 25 min of ischemia in 

comparison with the control kidneys (Fig. 20). However, their expression declined at 

35 and 45 min most likely due to a higher contribution to cell death from necrosis 

rather than apoptosis at the longer ischemic times (Fig. 20).  

I then characterized expression of CtsD in IRI. Both forms of CtsD, pro- and 

mature one, followed similar expression pattern as active caspase-3 and cleaved 

PARP-1 with maximum expression at 25 min ischemia and a later decline in 

expression by 35 and 45 min ischemia (Fig. 20). GAPDH protein expression was 

unchanged and used as the WB loading control. Thus, and in agreement with the 

findings of the FA induced nephrotoxic model, CtsD was also up-regulated in AKI 

after ischemia reperfusion. 
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Figure 20: Western Blot of cleaved or active caspase-3, PARP-1 and cleaved PARP-1, pro- and 

mature CtsD and GAPDH in kidney lysates during increasing ischemic times (25, 35 and 45 min) and 

24 h reperfusion in contralateral and IRI kidneys lysates.  

 

In addition, CtsD expression was confirmed by CtsD immunostaining in control and 

25 min IRI in paraffin embedded kidney tissues. As shown in figure 21 at the 

corticomedullary junction (CMJ) (A) or the cortex (B) of contralateral control kidney 

very little CtsD staining was detected and this was limited to a fine punctate pattern 

in some tubular cells (Fig. 21A-B).  

However, in the left kidney after 25 min of the ischemic insult CtsD staining 

was stronger in epithelial tubular cells from the corticomedullary junction and the 

cortex (Fig. 21A-B). Interestingly, CtsD was predominately detected in damaged 

tubules characterised by tubular dilation and the presence of granular casts. 

Therefore, CtsD expression correlates with apoptosis in damaged epithelial tubular 

cells during IRI. 
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Figure 21: Representative pictures of CtsD immunostaining (brown) of CMJ (A) or cortex (B) from 

contralateral control kidneys and and 25 min ischemic 24 h reperfused kidneys. 

 

5.4. Effect of CtsD pharmacological inhibition by Pepstatin A in IRI induced 

AKI model 

CtsD is known to play a pro-apoptotic role in different cell types 54, however its 

role in IRI induced AKI is still unknown. The occurrence of IRI induced AKI can be 

predicted in some cases as occurs during renal transplant 59 or major surgery 60. In 

those cases, pre-treatment before the ischaemic episode has potential therapeutic 

application. In order to simulate this scenario, I pre-treated the mice with CtsD 

inhibitor (Pepstatin A) 1 h before ischemia and again 4 h post-ischemia. I performed 

25 min ischemia and 24 h reperfusion, conditions where both apoptosis and CtsD 

protein levels were highest in this model. Firstly, I analysed the activity of CtsD in 

kidney using a specific fluorescently label substrate. In agreement with Fig. 20, CtsD 

activity was significantly increased at 25 min after IRI in comparison with sham 

kidneys (Fig. 22). Pepstatin A reduced CtsD activity not only in IRI kidneys but also 

in sham operated kidneys. 
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Figure 22: CtsD fluorometric activity in kidney lysates of sham and IRI vehicle or Pepstatin A treated 

animals. Ischemia was performed for 25 min and kidneys were reperfused for 24 h. Animals were 

treated with vehicle or Pepstatin A 20mg/Kg 1 h before surgery and 4 h post-surgery. Repeated 

measures t-test,*P ≤ 0.05 or ***P ≤ 0.001. 

 

5.4.1. Effect of Pepstatin A on tubular cell damage during IRI induced AKI 

Tubular injury was assessed in this animal model in the corticomedullary 

junction (CMJ), as it is the most affected area during IRI 5761. The CMJ is highly 

susceptible to the damage induced by ischemia because of its low glycolytic capacity 

to produce ATP.  

This compromises survival of cells located in the CMJ under ischaemic 

conditions. Tubular damage was assessed according to previously described AKI 

pathological scoring system 21 using the following criteria: tubular dilation and 

granular cast formation.  

Pepstatin A significantly reduced the percentage of damaged tubules and the 

histomorphological injury score in the CMJ in IRI kidneys (Fig. 23A-B). Figure 23C 

shows representative PAS pictures of sham and IRI vehicle or Pepstatin A treated 

kidneys. From this data it is evident that CtsD inhibition by Pepstatin A reduces 

tubular cell damage after acute IRI. 
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Figure 23: Percentage of tubular injury as assessed by tubular dilatation and granular cast formation 

in CMJ (A) and histomorphological injury score (B) of IRI vehicle or Pepstatin A treated kidneys. 

Representative PAS pictures* (C) of sham or IRI vehicle or Pepstatin A treated kidneys (damage 

tubules *). Ischemia was performed for 25 min and kidneys were reperfused for 24 h. Animals were 

treated with vehicle or Pepstatin A 20mg/Kg 1 h before surgery and 4 h post-surgery. Repeated 

measures t-test,*P ≤ 0.05 or **P ≤ 0.01. 

 

5.4.2. Effect of CtsD inhibition on kidney inflammation during IRI induced AKI 

IRI injury is triggered by the inflammatory response produced during the 

reperfusion phase which is driven by neutrophils amongst other inflammatory cells. 

CtsD is known to drive apoptosis in neutrophils through activation of caspase-8 62, 

therefore, CtsD inhibition could lead to a sustained inflammatory response. Thus, I 

analysed the effect of Pepstatin A administration on inflammation in this model. 

Pepstatin A had not effect in the number of neutrophils observed in the CMJ after IRI 

(Fig. 24).  
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Figure 24: Average number of NIMP
+ 

 cells per field with representative pictures in the CMJ of IRI 

vehicle or Pepstatin A treated kidneys. Ischemia was performed for 25 min and kidneys were 

reperfused for 24 h. Animals were treated with vehicle or Pepstatin A 10mg/Kg 1 hr before surgery 

and 4 h post-surgery.  

 

I then analysed the gene expression of AKI inflammatory mediators by RT-

PCR. As in FA nephrotoxic injury model, I evaluated CXCL-1 and CXCL-2, IL-1β, IL-

6, TNF-α and RANTES. The expression of inflammatory genes was increased in IRI 

but it was not significantly altered by Pepstatin A treatment (Fig. 25A-F). In summary, 

Pepstatin A did not have a major effect on inflammation during AKI. 
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Figure 25: CXCL-1 (A), CXCL-2 (B), IL1-β (C), IL-6 (D), TNF-α (E) and RANTES (F) mRNA 

expression from sham and IRI vehicle or Pepstatin A treated kidneys. Ischemia was performed for 25 

min and kidneys were reperfused for 24 h. Animals were treated with vehicle or Pepstatin A 20mg/Kg 

1 h before surgery and 4 h post-surgery. Repeated measures t-test, **P ≤ 0.01, ***P ≤ 0.001. 

 

5.4.3. Effect of Pepstatin A on apoptosis during IRI induced AKI 

I next assessed the effect of Pepstatin A on apoptosis in IRI induced AKI. As 

shown in figure 26, an increase in cleaved or active caspase 3 in IRI kidneys was 

demonstrated by WB in comparison with contralateral control and sham kidneys. 

GAPDH protein expression was unchanged and used as the WB loading control. 

This increase was inhibited by Pepstatin A treatment. This data supporting my 

previous findings in the FA nephrotoxic model (Fig. 19A) 

 



73 

 

 

Figure 26: Cleaved caspase-3 and GAPDH WB of sham, control or IRI vehicle or Pepstatin A treated 

kidneys. Ischemia was performed for 25 min and kidneys were reperfused for 24 h. Animals were 

treated with vehicle or Pepstatin A 20mg/Kg 1 h before surgery and 4 h post-surgery.  

 

In order to confirm Pepstatin A effect on apoptosis during IRI induced AKI 

TUNEL staining was performed. In agreement with the active caspase-3 WB, TUNEL 

staining confirmed a 40% reduction in the percentage of apoptotic cells (TUNEL+) in 

the CMJ of IRI Pepstatin A treated animals compared to vehicle only treatment (Fig. 

27).  

No TUNEL positive cells were detected in the control kidneys. Thus, CtsD 

reduces tubular damage and apoptosis with no effect on the inflammatory response. 
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Figure 27: Percentage of cortical TUNEL positive cells versus total cells and representative TUNEL 

+/- DAPI pictures in IRI vehicle or Pepstatin A treated kidneys. Ischemia was performed for 25 

minutes and kidneys were reperfused for 24 hour. Animals were treated with vehicle or Pepstatin A 

20mg/Kg 1 hour before surgery and 4 hours post-surgery. Repeated measures t-test, *P ≤ 0.05. 

 

5.5. Effect of CtsD inhibition on hypoxic induced in tubular epithelial cells  

During IRI, tubular epithelial cells undergo hypoxia due to a decreased 

oxygen supply 63. HKC-8 cells were seeded in six well plates and incubated in 

hypoxic and normoxic conditions.  

Hypoxia-Inducible Factor (HIF)-1α is a hetero-dimeric transcription factor that 

plays an integral role in the body's response to low oxygen concentrations. HIF-1α is 

translocated into the nuclei hypoxic conditions where acts as master transcriptional 

regulator. 

HIF-1α immunostaining in HKC-8 cells was performed after 48 h normoxic or 

hypoxic cultured conditions to confirm hypoxia (Fig.28). As expected hypoxia led to 

the translocation of HIF-1α from the cytosol, where is located in normoxic conditions 

(20% O2), into the nuclei under low oxygen concentration (1% O2). 
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Figure 28: HIF-1α immunostaining in HKC-8 cells under normoxic (20% O2/5% CO2) or hypoxic (1% 

O2/5% CO2) cultured conditions for 48 h. The white arrows point to HIF-1α located within the nuclei. 

 

Then, I assessed the effect of Pepstatin A on the cell viability using the MTT 

assay. HKC-8 cells were seeded in 24-well plates and left to attach overnight. The 

following morning they were treated with Pepstatin A 10μg/mL or vehicle (DMSO) for 

48 h at 37°C in 20% or 1% O2 concentration. The cells incubated in low 

concentration of O2 showed significantly reduced the number of viable cells as 

expressed by the number of metabolically active cells in comparison with cells 

cultured in normal O2 concentration (Fig. 29). Pepstatin A treatment significantly 

increased cell number under hypoxic conditions and had no effect under normoxic 

conditions.  
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Figure 29: Percentage of metabolically active viable cells assessed by MTT assay in HKC-8 cells 

treated with vehicle or Pepstatin A (10μg/mL) under normoxic (20% O2/5% CO2) or hypoxic (1% 

O2/5% CO2) conditions for 48 h. Repeated measures t-test, ***P ≤ 0.001.  

 

A reduction in cell number could be due to an increase in apoptosis induced 

by hypoxic conditions. In order to confirme this cleaved or active caspase-3, WB was 

performed in HKC-8 incubated for 48 h with Pepstatin A 10μg/mL or vehicle (DMSO) 

at 37°C in 1% O2 concentration. Caspase-3 was decreased in hypoxic cells treated 

with Pepstatin A in comparison with cells treated with vehicle only (Fig.30). GAPDH 

protein expression was unchanged and used as the WB loading control.Thus in vitro 

result supports the in vivo IRI findings.  

 

Figure 30: Cleaved or active caspase-3 and GAPDH WB in HKC-8 cells under hypoxic conditions for 

48 h treated with vehicle or Pepstatin A (10μg/mL). 
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5.6. Effect of CtsD inhibition in a progressive model of renal fibrosis following 

IRI induced AKI 

AKI predisposes to the development and exacerbation of chronic kidney 

disease (CKD) 59. During AKI a normal repair response will restore the normal 

tubular epithelium. This process involves cell death, proliferation of normal viable 

tubular cells and reestablishment of cell polarity. However, an abnormal repair 

response (incomplete tubular repair, persistent inflammation, fibroblasts proliferation 

and excessive extracellular matrix deposition) will instead lead to CKD 7. To analyse 

whether CtsD inhibition could have an effect on CKD induced by AKI, I performed an 

ischemia reperfusion injury chronic model.  

In 8-10 week C57BL/6 females, the left renal pedicle was clamped for 35 min. 

Then, the clamp was removed and the kidney reperfused for 28 days. Sham animals 

underwent a mock surgical procedure. Vehicle or Pepstatin A (20mg/Kg) was 

administered by i.p. injection 1 h before surgery and from day 2 post-surgery three 

times a week up to 28 days. After 28 days, the animals were culled and blood, urine 

and kidneys were collected. 

First of all, I analysed CtsD activity in kidney tissue using a specific 

fluorescently labelled substrate. IRI kidneys showed a significant increase in CtsD 

activity in compared with sham which was significantly reduced by pepstatin A 

treatment (Fig. 31).  
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Figure 31: CtsD fluorometric activity in kidney lysates assessed by the cleavage of a specific 

fluorescently labelled substrate. Ischemia was performed for 35 minutes and kidneys were reperfused 

for 28 days. Animals were treated with vehicle or Pepstatin A 20mg/Kg 1 h before surgery and from 

day 2 post-surgery three times a week up to 28 days., Repeated measures t-test,. **P ≤ 0.01,***P ≤ 

0.001. 

 

5.6.1. Effect of Pepstatin A on apoptosis in a progressive model of renal 

fibrosis induced by IRI AKI 

Next, cleaved or active caspase-3 WB was performed to analyse the effect of 

Pepstatin A on apoptosis in this chronic model (Fig.32). Cleaved caspase-3 WB 

confirmed an increase in apoptosis in IRI kidneys in comparison with sham kidneys 

and a decrease in IRI Pepstatin A treated kidneys.  
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Figure 32: Cleaved caspase-3 and GAPDH WB in sham and IRI vehicle or Pepstatin A treated 

animals. Ischemia was performed for 35 min and kidneys were reperfused for 28 days. Animals were 

treated with vehicle or Pepstatin A 20mg/Kg 1 hour before surgery and from day 2 post-surgery three 

times a week up to 28 days.  

 

5.6.2. Effect of Pepstatin A on interstitial fibrosis in a progressive model of 

renal fibrosis induced by IRI AKI 

To determine whether apoptosis reduction led to an improvement of CKD 

progression, interstitial fibrosis was analysed. Ischemia was performed for 35 min 

and kidneys were reperfused for 28 days. Interstitial collagen, as assessed by Sirius 

Red staining, was significantly reduced by Pepstatin A treatment in IRI kidneys 

compared with IRI vehicle (Fig. 33A).  

However, Pepstatin A did not have any effect on the number of interstitial 

myofibroblasts (Fig. 33B). Furthermore, collagen synthesis was analysed by collagen 

1A1 and collagen 3A1 gene expression. Gene expression for collagen 1A1 and 

collagen 3A1 was significantly decreased in IRI Pepstatin A treated kidneys 

(Fig.33C-D). Therefore, early treatment with Pepstatin A slowed fibrosis 

development as a consequence of ischemic AKI. 
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Figure 33: Morphometric analysis of interstitial collagen (SR+ area/field) (A) or interstitial 

myofibroblast (α-SMA+ area/field) (B) of kidney cortex from sham and IRI vehicle or Pepstatin A 

treated kidneys. Col1A1 (C) and Col3A1 (D) kidney mRNA expression from sham and IRI vehicle or 

Pepstatin A treated kidneys. Ischemia was performed for 35 min and kidneys were reperfused for 28 

days. Animals were treated with vehicle or Pepstatin A 20mg/Kg 1 hour before surgery and from day 

2 post-surgery three times a week up to 28 days. Repeated measures t-test, *P ≤ 0.05, **P ≤ 

0.01,***P ≤ 0.001. 

 

5.7. CtsD expression in acute tubular necrosis transplant kidney human 

biopsies  

The results obtained demonstrate that CtsD inhibition by Pepstatin A 

represents a good therapeutic approach to reduce apoptosis, tubular damage and 

improve kidney function in mouse AKI. Pepstatin A administration also improved 

CKD progression from ischemic AKI, reducing apoptosis and interstitial fibrosis. In 

order to validate some of my findings in human disease, CtsD immunostaining was 
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performed in acute tubular necrosis (ATN) transplanted patient biopsies. CtsD was 

highly expressed in tubular epithelial cells in these patients (Fig. 34) compared to 

previous reports in normal human kidney 64. Moreover, CtsD expression appeared to 

correlate with the degree of tubular damage. Thus, injured tubules characterised by 

loss of brush border, granular cast formation, tubular dilatation and epithelial cell 

vacuolisation had higher CtsD expression than less damaged cells.  

 

Figure 34: Representative pictures of CtsD immunostaining (brown) in ATN transplanted human 

kidney biopsies. Black arrows point at damaged tubular cells with granular casts. 

 

During apoptosis CtsD is released from the lysosomes into the cytosol due to 

lysosomal membrane permeabilisation (LMP), where it can play an active role in the 

apoptotic pathway 54. To further study CtsD expression during cell death in ATN 

patients, CtsD (green) was co-stained with TUNEL (red) in these transplant biopsies.  
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During ATN, CtsD was expressed in non-apoptotic (TUNEL-) and apoptotic 

(TUNEL+) epithelial tubular cells (Fig. 35A). However, its cellular distribution changed 

depending on whether cells were undergoing apoptosis. While CtsD was distributed 

within vacuoles, most likely lysosomes, in non-apoptotic tubular epithelial cells (Fig. 

35B), in apoptotic cells CtsD was evident in the cytosol (Fig. 35C). This observation 

suggests translocation of CtsD from the lysosome into the cytosol during apoptosis 

in human ATN. My findings support a possible role for CtsD during tubular epithelial 

cell death in transplant kidneys with ATN.  

  

 

Figure 35: CtsD (green)/TUNEL (red) dual immunostaining in ATN transplanted human kidney 

biopsy. White arrows point to non-apoptotic and apoptotic tubular cells (A). Detail CtsD distribution in 

a non-apoptotic tubular epithelial cell (TUNEL-/CtsD+) (B). Detail CtsD distribution in an apoptotic 

tubular epithelial cell (TUNEL+/CtsD+) (C).  
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6 DISCUSSION 

Acute kidney injury (AKI) incidence has risen over the last decades due to the 

aging population and the comorbidities associated with these patients 65. It is a 

common complication in hospitalised patients. The association between the 

development of AKI and higher in-hospital mortality has been well known for 

decades and reported in several studies 66. As a conservative estimate, in the U.S. 

about 17 million admissions a year are complicated by AKI, resulting in additional 

costs to the health care system of $10 billion 8. AKI is often under-recognised and 

associated with elevated risk of long-term adverse outcomes in hospitalised 

patients67.  

It is also a frequent and serious complication encountered in 30% to 50% of 

subjects after cardiopulmonary bypass (CPB) 68. AKI requiring dialysis in CPB 

patients occurs in up to 5%, in whom the mortality rate approaches 80%, and is the 

strongest independent risk factor for death after CPB. AKI also contributes to 

delayed graft function (DGF after transplantation) as ischemia reperfusion induced 

AKI occurs in 20-80% of deceased donor kidneys, with detrimental effects for both 

graft life and patient survival. 

Finally, maladaptive repair following AKI contributes to the development or 

exacerbation of chronic kidney disease (CKD) and end-stage renal disease (ESRD) 

34. Despite the progress in the management of AKI, its mortality rate over the last 50 

years remains unchanged at around 50% 69. Therefore, there is an urgent need for 

specific therapies against AKI. Thus, better knowledge about the cellular 

mechanisms driving AKI is crucial in order to find new therapeutic candidates. 

AKI is a complex disease which can be caused by a variety of insults, 

however, all of them lead to epithelial tubular cell death and loss of kidney function. 
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When apoptosis is deregulated, cells either fail to die, as in a number of pathologies 

such as cancer and other hyperproliferative diseases, or die excessively, as in a 

number of neurodegenerative disorders 70. Proteases play a central role in the 

execution phase of apoptosis, and the caspases, a family of cysteine proteases, are 

of major importance.  

A number of other proteases, including granzymes, cathepsins and calpains, 

have been also found to be involved in cell death 71. The basic function of a protease 

is to irreversibly modulate the properties of other proteins by cleaving them. As a 

consequence of a cleavage or a series of cleavages, proteins either gain a function, 

activation by limited proteolysis or lose a function, ultimately being turned over. 

Proteases are generally synthesised as inactive precursors that require activation, 

most often by limited proteolysis, thereby being protease substrate themselves. Due 

to this irreversibility, protease signalling is an effective way of killing a cell, as the cell 

death, once the program has started, cannot be reversed or prevented.  

Apoptosis signal transduction pathways have been found to occur in the 

cytoplasm, on the inner surface of the plasma membrane, in mitochondria, and in the 

nucleus. In particular, caspase-mediated signalling occurs predominantly in the 

cytoplasm. In contrast, cathepsins are localised in lysosomes, or are secreted by the 

cell. This raises the question as to how these enzymes can facilitate apoptosis 

signalling. An emerging line of evidence suggests that during apoptosis, cathepsins 

are translocated from lysosomes to other subcellular locations. 

It remains unclear, however, whether this is a general apoptosis 

phenomenon, or it is restricted to execution induced by only some apoptotic stimuli. 

In addition, it is unclear whether the release of cathepsins from lysosomes is 

controlled by pores or translocators, or it is simply the consequence of damage to 
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lysosomal membranes during the apoptotic process. To date, relatively little is known 

about potential intersections of cathepsin and caspase-mediated pathways, although 

it seems likely that these pathways may be integrated in some fashion.  

Lysosomal proteases such as CtsD can play multiple roles in apoptosis by 

degrading different substrates and/or contributing to mitochondrial destabilisation 72. 

CtsD is a lysosomal proteinase that may constitute as much as 10% of the soluble 

lysosomal proteins and whose concentration in liver lysosomes can be as high as 

0.7 mM. Being a major component of the lysosome, CtsD is found in nearly all 

mammalian cell types and tissues 73. Very little is known about the role of CtsD in 

kidney disease. A recent report identified CtsD as a possible novel prognostic 

marker for AKI in a urinary proteomic analysis. In this study, two proteins, IGFBP-7 

and CtsD, were validated by proteomics and ELISA as differentially regulated in 

urine from late/non-recovery versus early recovery AKI patients 74. Despite this 

evidence indicating a possible role of CtsD in cell death during AKI, its contribution is 

still unknown. 

My experiment work describes an increase of CtsD expression in two different 

models of AKI, nephrotoxic and ischemia induced (Fig. 15A, 20). CtsD was highly 

expressed in damaged tubular cells during both types of injury in comparison with 

sham or control kidneys, pointing towards a possible contribution of CtsD to cell 

death during AKI (Fig. 15B, 21).  

In agreement with my findings in mouse AKI, CtsD analysis in human 

transplanted biopsies with ATN confirmed high levels of CtsD in damaged tubular 

epithelial cells. During apoptosis, lysosomal membrane permeabilisation allows 

translocation of CtsD from the lysosome into the cytosol, where it exerts its pro-

apoptotic function. Indeed, microinjection of CtsD into the cytosol is sufficient to 
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trigger mitochondrial permeabilisation, cytochrome c release and apoptosis which is 

prevented by caspase-3 or CtsD inhibitor Pepstatin A 75. 

When analysing CtsD cellular distribution in human ATN, CtsD location 

seemed to change being mainly cytosolic in cells undergoing apoptosis and 

contained within vesicles, most likely lysosomes, in non-apoptotic cells (Fig. 35). 

CtsD optimal activity occurs in the acidic pH found within lysosomes. Although CtsD 

is still active at cytosolic neutral pH, its half life is limited due to the reversible 

deprotonation of the active aspartate site 72. However, there are several mechanisms 

that might contribute to prolong CtsD activity during apoptosis, such as cytosolic 

acidification 76 or substrate binding. In vitro studies have also shown that CtsD can 

display significant activity at a pH greater than 6.5 77. In addition, in cultured 

fibroblasts CtsD has also being reported as able to induce apoptosis at pH 7.0, 

therefore it is likely to be proteolytically active and cleaving substrates outside the 

lysosomal compartment 75. I confirm CtsD activity in my studies showing a significant 

increase during AKI (Fig. 22, 31). 

To further analyse the role of CtsD during cell death in AKI, I used the CtsD 

inhibitor, pepstatin A. Pepstatin A is the best available inhibitor against CtsD, 

however, it can affect at mach lower level other proteases of aspartic endopeptidase 

A1 family. Most of the proteases of the A1 family are specifically expressed in other 

organs, such as stomach (Pepsin and CtsE) or central nervous system (BACE-1 and 

-2). Although renin is expressed in kidney, Pepstatin A is a weak rennin inhibitor, to 

the extent that 26,000 times more Pepstatin A is needed to inhibit renin (Ki=13000 

µmol/L) at the same level than CtsD (Ki=0.5 µmol/L) 78. Therefore and despite I 

cannot exclude additional effects on other A1 peptidases in my studies, it is unlikely 

that they would be the main contributors.  
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CtsD knock-out mice develop massive neuronal cell death and die approximately 26 

days after birth due to neurological disorders 79, replicating human deficiency 8081.  

Pepstatin A dose for my studies was more than 50 times below the previously 

described IC50 82; at this dose Pepstatin A reduced CtsD activity without complete 

inhibition (Fig. 22, 31), which could have led to possible undesirable secondary and 

systemic effects. I first analysed the effect of CtsD inhibition on inflammation as 

cathepsins play an important role in the immune response 58 modulating tissue 

damage and cell death. Specifically, CtsD plays an important role driving neutrophil 

apoptosis by directly activating the initiator caspase-8. CtsD deficiency leads to 

delayed neutrophil apoptosis and amplified and a prolonged innate immune 

response 83. CtsD inhibition did not induce any changes in neutrophil infiltration (Fig. 

24).  

Gene expression analysis of common inflammatory mediators of AKI was also 

not altered by Pepstatin A treatment (Fig. 18, 24). Administration of Pepstatin A 

significantly improved kidney function (Fig. 16) in the nephrotoxic induced AKI model 

and reduced apoptotic tubular cell death in both models (Fig. 19,26,27), showing an 

overall reduction in the number of damaged tubular cells (Fig. 17, 23). Pepstatin A 

effect on apoptosis was confirmed in human tubular epithelial cells under hypoxic 

conditions (1% O2) (Fig. 29,30). It is therefore possible that Pepstatin A reduces 

functional and histological tubular injury by reducing apoptotic cell death. Proving a 

causal link between reduced apoptosis and favourable renal outcomes is difficult in 

vivo, but the cell protective effects of Pepstatin A are supported by the in vitro data 

presented.  

In my studies, I have not pursued further the mechanism of action behind 

CtsD during apoptosis in AKI. However, according to previous literature it is likely 
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that CtsD might be involved in either inactivating antiapoptotic proteins or activating 

proapoptotic factors. In that respect, it is known that LMP followed by release of 

cathepsins into the cytosol initiates apoptotic signalling, often via the intrinsic 

apoptotic pathway 84. This pathway is characterized by mitochondrial outer 

membrane permeabilisation (MOMP) and release of apoptogenic factors, including 

Cytochrome c into the cytosol.  

Mitochondrial membrane integrity is regulated by the BCL-2 protein family, 

which consists of both antiapoptotic and proapoptotic members, the latter of which 

includes BAX and BID 85. Under normal conditions, BAX is located in the cytosol in 

an inactive form, but upon induction of apoptosis, BAX translocates to the 

mitochondria where it triggers MOMP. Bid, which generally requires proteolytic 

processing to become proapoptotic, induces conformational changes in BAX, leading 

to its activation and oligomerisation, which favours MOMP. Bid can be cleaved by a 

number of proteases, including caspase-8, granzyme B, calpains, and cysteine 

cathepsins. In addition to BID, antiapoptotic BCL-2 proteins and XIAP have been 

shown to be cleaved by cysteine cathepsins during apoptosis. Less is known about 

the targets of the aspartic protease CtsD after its release into the cytosol. Bid has 

been suggested to be a target of CtsD, but the reports are not conclusive 86 

AKI can contribute or exacerbate the progression of CKD due to an abnormal 

or incomplete repair response. I have previously shown that Pepstatin A treatment 

from day 5 after IRI results in reduction of renal fibrosis due to an increase in 

collagen degradation with no effect on collagen gene transcription. In aur previous 

study a novel mechanism was proposed by which CtsD inhibition by Pepstatin A 

leads to an increase in extracellular protease activity, in particular UPA, due to 

altered lysosomal recycling. This could trigger a proteolytic cascade activating first 
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plasminogen into plasmin and culminating with the regulation and activation of 

MMPs. Both plasmin37–39 and MMPs are able to degrade extracellular matrix 

proteins causing a net reduction in fibrosis. This situation can be further sustained by 

a positive feedback loop, as plasmin is also able to activate UPA 87. In this thesis 

Pepstatin A pre-treatment before IRI seems to have additional beneficial effect over 

the development of the injury. As well as a decrease in interstitial collagen (Fig. 33), I 

have also observed a decrease in apoptosis (Fig. 32) and a reduction in the 

expression of pro-fibrotic genes (Fig. 33). I propose that CtsD can influence disease 

progression by a dual mechanism of action contributing to apoptosis in the acute 

phase and to collagen turnover during the chronic phase. The protection from both 

acute injury and subsequent progression to CKD identifies CtsD, and potentially other 

proteases, as potential therapeutic targets. 

In summary, in this thesis I report CtsD as an important mediator for apoptotic 

cell death during AKI. My work has focused on the role of CtsD, however, I cannot 

discard the participation of other lysosomal proteases such as CtsB or L during AKI, 

so further investigation will need to be done to clarify this. New therapies to reduce 

apoptotic cell death during AKI are already under study (caspase inhibitors, p53 

inhibitors and PARP inhibitors). Pepstatin A have been safely used in clinical trials for 

duodenal ulcer as well as HIV experimental studies 88, however, it has problems such 

as poor solubility and low bioavailability.  

New molecules to inhibit CtsD have been designed in recent years, opening 

new possibilities for better targeting of CtsD. In order to improve bioavailability and 

improve in vivo half-life, recent research has focused on smaller inhibitors that 

contain non-peptide functionalities in place of the peptide bond cleavage site of the 
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substrate. My work opens new and exciting prospect for the treatment of AKI by 

inhibiting lysosomal protease induced apoptosis. 

  



91 

 

7. CONCLUSIONS 

The data from this thesis has demonstrated the important role of CtsD in AKI. 

In fact, CtsD expression is upregulated in two murine models of nephrotoxic and 

ischemic induced AKI. CtsD was highly expressed in kidney damaged tubular 

epithelial cells during both types of injury in comparison with sham or control 

kidneys, pointing towards a possible contribution of CtsD to cell death during AKI. 

CtsD role during the AKI was analysed by using its inhibitor Pepstatin A. CtsD 

inhibition did not induce in our models any changes in neutrophil infiltration. Gene 

expression analysis of common inflammatory mediators of AKI was also not altered 

by Pepstatin A treatment. Therefore CtsD inhibition did not have a major effect on 

inflammation during AKI. 

Administration of Pepstatin A significantly improved kidney function in the folic 

acid nephrotoxic induced AKI model and reduced apoptotic tubular cell death in both 

models, showing an overall reduction in the number of damaged tubular cells. 

Pepstatin A effect on apoptosis was confirmed in human tubular epithelial cells under 

hypoxic conditions (1%O2).  

It is therefore possible that Pepstatin A reduces functional and histological 

tubular injury by reducing apoptotic cell death. AKI can contribute or exacerbate the 

progression of CKD due to an abnormal or incomplete repair response. Pepstatin A 

pre-treatment before IRI had additional beneficial effect over the progression of the 

injury towards renal fibrosis. In addition to a decrease in interstitial collagen, we also 

observed a decrease in apoptosis and a reduction in the expression of pro-fibrotic 

genes. 
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In agreement with our findings in mouse AKI, CtsD analysis in human 

transplanted biopsies with ATN confirmed high levels of CtsD in damaged tubular 

epithelial cells. 

In summary, in this thesis I report for the first time CtsD as an important 

mediator for apoptotic cell death during AKI and its inhibition as a possible novel 

treatment for AKI. My thesis opens new and exciting avenues for the treatment of 

AKI by inhibiting lysosomal protease induced apoptosis. 
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