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Abstract (Ita)

A livello globale,  vi  è  un crescente interesse per  la  produzione di  microalghe come biomasse vegetali  innovative,
essendo ricche di sostanze fitochimiche ad alto valore aggiunto da applicare in diversi settori commerciali (alimentare,
mangimistico, nutraceutico, cosmetico e di depurazione dei reflui) e come fonti future di biodiesel, per il loro contenuto
lipidico e il profilo in acidi grassi caratteristico di alcune specie. Fino ad oggi il mercato delle microalghe destinate al
settore alimentare e mangimistico è stato un mercato di nicchia, ma si sta incrementando grazie alla loro composizione
nutrizionale (in particolare per il contenuto in lipidi, grassi, proteine, carboidrati, pigmenti e vitamine), sottolineando
che  tali  biomasse  hanno  un  buon  potenziale  per  essere  considerate  competitive  rispetto  alle  altre  fonti  vegetali
convenzionali.  Dal  punto  di  vista  della  produzione  di  biodiesel  dalle  microalghe,il  processo  risulta  ancora  troppo
oneroso da un punto di vista economico, sia per il costo dei fertilizzanti sia per il consumo di energia impiegata per la
raccolta e l’essiccazione della biomassa e per l’estrazione di “phytochemicals” dalla biomassa stessa. 
Per migliorare la competitività dei prodotti a base di microalghe devono essere considerati alcuni aspetti tecnici ed
economici, che giocano un ruolo chiave nei costi di produzione della biomassa e nella sostenibilità ambientale del
processo di  produzione. Nel presente lavoro di  tesi, digestati liquidi  provenienti  da digestione anaerobica di rifiuti
organici di diversa origine e natura e le acque reflue di una industria dolciaria sono stati analizzati come fertilizzanti
alternativi ed economici per la produzione di microalghe autotrofe ed eterotrofe. 
La ricerca è stata suddivisa in quattro capitoli: 
1) Una mini-review sull’utilizzo dei digestati liquidi e dei sottoprodotti dell’industria alimentare come fertilizzanti per
le microalghe sulla base della legislazione europea; 
2) Produzione eterotrofica della microalga Galdieria sulphuraria utilizzando come medium alternativo un sottoprodotto
proveniente dal processo produttivo delle ciliegie candite e il conseguente effetto sulla biomassa prodotta in termini di
produttività e composizione della biomassa stessa; 
3) La crescita e la capacità di metabolizzare i nutrienti presenti nei diversi digestati liquidi utilizzati di due specie
microalgali  di  acqua  dolce  (S.  obliquus,  B.  braunii),  una  diatomea  marina  (P.  tricornutum),  e  un  cianobatterio
fotosintetico (A. maxima); 
4)  La  valutazione  della  produttività  in  termini  di  biomassa,  di  tasso  di  fissazione  di  anidride  carbonica  e  della
composizione biochimica di due specie microalgali, P. tricornutum e S. obliquus, coltivate indoor in fotobioreattori ad
alta tecnologia e in open pond e fotobioreattori a bassa tecnologia sotto serra nel sud Italia. Le microalghe sono state
accresciute utilizzando standard medium e due digestati liquidi ottenuti dalla digestione anaerobica di biomasse vegetali
e agro-zootecniche. 
In  conclusione  i  medium alternativi  applicati  hanno  mostrato  la  capacità  di  sostenere  la  produzione  microalgale,
inducendo con l’utilizzo di sottoprodotti di industria dolciaria una riduzione della produttività per  G. sulphuraria di
circa il 25%, e una produttività in linea con gli standard medium con l’utilizzo dei digestati liquidi per S. obliquus e P.
tricornutum. 
Inoltre sono state  evidenziate variazioni del  profilo biochimico delle biomasse prodotte  con l’utilizzo dei  digestati
liquidi in termini di lipidi (aumento medio del 55%) e di carboidrati (diminuzione media di circa il 5%). 
Anche  con  l’utilizzo  dei  sottoprodotti  dell’industria  dolciaria  si  è  osservata  una  variazione  nella  composizione
nutrizionale della biomassa, con una riduzione media di circa il 35% del contenuto proteico e lipidico e, con un aumento
di circa il 70% dei polifenoli, in particolare gli antociani e con un aumento del 12%dei carboidrati.
Anche il profilo lipidico ha mostrato delle variazioni, con una riduzione di circa il 70% degli acidi grassi saturi e un
aumento del 10% degli insaturi sia per i digestati liquidi che per il sottoprodotto dell’industria dolciaria.
Le diverse specie microalgali hanno evidenziato una buona capacità di “phyto-remediation” con una riduzione dell’
NH4

+-N presente nei digestati di circa il 90% e una riduzione di circa l’86% di PO4. La coltivazione con i digestati
liquidi e le acque reflue del processo produttivo delle ciliegie candite permetterebbe oltre ad una riduzione dei costi dei
fertilizzanti, anche interessanti modifiche sulla composizione della biomassa prodotta e in alcuni casi l’arricchimento
delle biomasse di alcuni composti ad elevata attività biologica.
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Abstract (Eng)

Globally, there is growing interest in microalgae production as innovative vegetable biomass rich in phytochemicals at
high added value to  apply in  different  commercial  sectors  (food,  feed,  nutraceutical,  cosmetician and wastewaters
depuration) and as future biodiesel source for the high lipid content and fatty acid profile of some species. To date the
microalgae market for food and feed is a niche market but it  is increasingly relevant and strictly correlate to their
chemical  composition  (in  particular  lipids,  fatty  acids  profile,  proteins,  carbohydrates,  pigments  and  vitamins),
underlying  that  microalgae  biomass  has  the  potential  to  be  competitive  respect  the  others  conventional  vegetable
sources. From a point of view of biodiesel source the microalgae production is yet too expensive, both for fertilizers
cost both for energy consumption for harvesting, drying and extraction. To develop the competitiveness of microalgae
based  products,  some  technical  and  economic  aspects,  that  play  a  key  role  in  biomass  production  costs  and  in
production environmental sustainability, have to be considered. 
In the present research liquid digestates from anaerobic digestion of organic waste and food industry by-products were
analyzed as alternative cheap fertilizer for autotrophic and heterotrophic microalgae production. An overview in terms
of possible application of produced biomass in commercial sector on the basis of EU legislation was also considered.

The thesis work consists of four experiments:
1) An overview of the use of liquid digestates and food industry by-products as microalgae grow media;
2) Heterotrophic production of Galdieria sulphuraria in spent cherry brines and its effects on the biomass productivity
and composition;
3)  The growth and the ability to metabolize the nutrients  presents  in different  liquid digestates  of  two species  of
freshwater microalgae (S. obliquus, B. braunii), a marine diatom (P. tricornutum), and a photosynthetic cyanobacterium
(A. maxima); 
4) The evaluation of biomass productivity, the carbon dioxide fixation rate and the biochemical composition of two
microalgal species, P. tricornutum and S. obliquus, grew indoors in high-tech photobioreactors and open ponds and low
photobioreactors technology in greenhouses in southern Italy. Microalgae were cultivated using standard medium and
two liquid digestates obtained by anaerobic digestion of vegetable biomass and zootechnical wastes.

In conclusion the alternative media applied showed the ability to support sustainably the microalgae production, leading
a reduction of productivity of about 25% with the use of by-products of confectionary industry, and a productivity in
line with the standard medium with the use of liquid digestates for S. obliquus and P. tricornutum. 
Furthermore,  the  biochemical  profile  changes  of  biomass  produced  with  the  use  of  the  liquid  digestates  were
highlighted, in terms of lipids (average increase of 55%) and carbohydrates (average decrease of about 5%). With the
use of by-products from the confectionary industry was observed a variation in the nutritional  composition of the
biomass, with an average reduction of about 35% of the protein and lipid content and, with an increase of about 70% in
terms of polyphenols, in particular anthocyanins, and with an increase of 12% of carbohydrates. 
Also the lipid profile showed the variations, a decrease of about 70% of saturated fatty acids and an increase of 10% of
unsaturated FA for liquid digestates and by products from confectionary industry utilized. The different microalgae
species utilized were metabolized and reduced by about 90% the NH4 + -N The different microalgae species were
highlighted a good capacity of phyto-remediation with a reduction of about 90% the NH4 + -N and a reduction of PO4

 of
about 86%. 
The cultivation with liquids digestates and the wastewater of the preserved cherries production process allow in addition
to a reduction in costs of fertilizer, also interesting changes on the composition of the biomass produced and in some
cases the enrichment of the biomass with compound with high biological activity.
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Chapter 1: Sustainable production of microalgae biomass in liquid digestates and by products from agro-food
industries

Abstract
Globally, there is growing interest in microalgae production as innovative vegetable biomass rich in phytochemicals at
high added value to  apply in  different  commercial  sectors  (food,  feed,  nutraceutical,  cosmetician and wastewaters
depuration) and as future biodiesel source for the high lipid content and fatty acid profile of some species. To date the
microalgae market for food and feed is a niche market but it  is increasingly relevant and strictly correlate to their
chemical  composition  (in  particular  lipids,  fatty  acids  profile,  proteins,  carbohydrates,  pigments  and  vitamins),
underlying  that  microalgae  biomass  has  the  potential  to  be  competitive  respect  the  others  conventional  vegetable
sources. From a point of view of biodiesel source the microalgae production is yet too expensive, both for fertilizers
cost both for energy consumption for harvesting, drying and extraction. To develop the competitiveness of microalgae
based  products,  some  technical  and  economic  aspects,  that  play  a  key  role  in  biomass  production  costs  and  in
production  environmental  sustainability,  have  to  be  considered.  In  the  present  minireview  liquid  digestates  from
anaerobic digestion of organic waste and food industry by-products were analyzed as alternative cheap fertilizer for
autotrophic and heterotrophic microalgae production. An overview in terms of possible application of produced biomass
in commercial sector on the basis of EU legislation was also considered.

Keywords: Microalgae; Biomass; Liquid digestate, food industry by-product

1. Introduction 
Microalgae are a huge group of unicellular eukaryotic photosynthetic microorganisms from freshwater, brackish and
marine systems. Although photosynthetic cyanobacteria (blue green algae) belong to the domain of bacteria, often they
are considered and indicated as “microalgae” (Medlin et al., 2007).
Different metabolism can be observed in microalgae: autotrophy, heterotrophic and mixotroph.
For microalgae autotrophic production only inorganic compounds such as CO2, N, S, P and light as energy source are
essential  for  their  growth  and  development.  The  solar  energy  is  captured  into  biomass  (photosynthesis)  with  an
efficiency  higher  (3%)  than  terrestrial  plants  (0.2–2%  )(Stephenson  et  al.,  2011).  Inorganic  nutrients  and  water
significantly affect the cost and the environmental sustainability of microalgae production. For algae culture systems,
the total cost vary between 10-20 % for the cost of nutrients (Benemann and Oswald, 1996), but some authors as Xia
and Murphy (2016) asserted in a recent Life-Cycle Assessment (LCA), that the use of artificial fertilizers (e.g., nitrogen,
phosphorus) can account for half of the cost and energy input in microalgae cultivation. The recent hike in fertilizer
price increased the microalgae production cost substantially and the environmental impact of chemical processes to
their synthesis is not negligibile.
Some microalgae strains are mixotrophic performing at the same time photosynthesis and catabolising organic nutrients,
but some species are able to change their metabolisms on the basis of environmental conditions in terms of nutrients
availability and light exposition (Kaplan et al., 1986; Perez-Garcia et al., 2011).
The heterotrophic growth of microalgae can be an effective cheap option to photoautotrophic cultivation, that suffers
from the light limitation due to mutual shading of cells (Chen, 1996) and by low concentration achieved, that increase
the harvesting cost for the high energy consumption. Many microalgae have been shown to be able to grow rapidly in
heterotrophic  conditions,  reaching  high  cellular  density  and  biomass  productivity.  Although  the  heterotrophic
production has several advantages over photosynthetic production including also a high degree of process control and a
lowering for harvesting costs, it involves high capital costs for a large-scale fermentation facility.
Heterotrophic culture, requiring organic carbon source, can grow on different sugars or organic acids, which represent
the main cost in medium formulation.
From an economic point of view the organic carbon source contributes 45.4%; inorganic chemicals, 3.2%; electricity
30.6 %; steam 14.2 %; and aseptic air 6.6% of the total production cost. The importance to reduce the cost of the
organic carbon source is highlight of the glucose cost, about 80% of the total medium cost (Ogbonna and Moheimani,
2015).
With these  simple  nutritional  requirements,  microalgae  are  a  promising environmentally friendly source  of  lipids,
proteins and carbohydrates at a large scale, representing a good alternative respect other conventional vegetable source. 
Microalgae  showed  some  important  advantages  respect  to  conventional  terrestrial  plants:  they  present  an  higher
biomass productivity and CO2  assimilation, and moreover arid or low quality agricultural land is necessary for their
cultivation  (Singh and  Gu,  2010;  Scott  et  al.,  2010).  Even if  the  microalgae  cultivation  is  carried  out  in  aquatic
environment, they required less water than terrestrial crops, showing a reduced fresh water consumption. Microalgae
may be cultivated in brackish and sea water without herbicide or pesticide application, and reducing the need of external
nutrients (NH4, NO3 and P)(Aslan and. Kapdan, 2006; Pratoomyot et al., 2005).
At the present the production of microalgae biomass is still in an advancing
phase and further work is necessary to improve the productivity and to decrease the cost of production.
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Strategies  to  reduce  production  costs  include  cultivation  in  wastewaters  (Wu  et  al.  2013;  Holbrook  et  al.  2014),
cultivation under stress conditions (Alvarez-Dıaz et al., 2014) and bio-prospecting for new strains.
In the present mini-review the microalgae growth on different kind of wastewaters, in particular liquid digestate from
anaerobic digestion of organic waste (municipal, zootechnical and vegetable wastes) and food industry by-products was
analysed. An overview of EU regulation on their application as fertilizer was reported together with possible microalgae
biomass utilization.

2. Anaerobic digestion
The biogas process, known as anaerobic digestion (AD), happens naturally in different environments (the stomach of
ruminants, landfills, volcanic hot springs, submerse rice fields, etc). In biogas plants the AD process is highly controlled
to reach the maximum methane production. In this process the organic matter is digested in O 2 absence by a complex
microorganism  community  comprising  different  metabolic  phases:  hydrolysis,  acidogenesis,  acetogenesis,  and
methanogenesis.
This result in two valuable products: methane and digestate. The produced biogas is a very useful source of renewable
energy, whilst digestate is a highly valuable bio-fertiliser (IEA Bioenergy, 2015).

2.1 Biogas Industry: products applications
In the past 10 years the biogas global industry has developed significantly (Xia and Murphy, 2016) and to date the most
of biogas is utilized to produce heat and electricity. Until now only in Sweden the use of up graded biogas as a transport
fuel is applied and as indicated in 2013 the 54 % of biogas was used as transport biofuel (IEA Bioenergy, 2015), while
in other countries (such as Switzerland, Germany, France, Chinaand the USA) biogas-fuelled transport  systems are
developing (Borjesson and Mattiasson, 2008). 
In Europe, Germany is leader in the biogas industry, with about 10020 biogas plants, that in 2014 produced over 144PJ
of energy, applied as electricity satisfying the 4.7% of demand and as heat satisfying the 1% of demand (IEA Bioenergy,
2015). 
Another important by-product of AD is the digestate (Nkoa, 2014), which processing and treatment often represent the
major “problem” in the development of a biogas industry (Fuchs and Drosg, 2013). Digestates may be separated into
solid with a value ranging from 10 to 20% by mass and liquid with a value ranging from 80 to 90% by mass fractions
by screw press or decanter centrifuge (Fuchs and Drosg, 2013). Solid digestate is more stable because containing less
water and it can easily be transported and stored. It can either be used as agricultural biofertiliser or be further converted
to heat  and/or value-added products (e.g.,  pyrochar,  nanocellulose) via thermal processes (Fuchs and Drosg, 2013;
Monlau et al., 2015).
By contrast, liquid digestate processing is more difficult. The simplest treatment method is to directly spread on local
agricultural land showing, however, some disadvantages.
In fact the most of the nitrogen is in the ammoniac form (up to 80%) (Uggetti  et al., 2014), that volatilises causing
nutrient loss, which may induce eutrophication of near water systems (Levine et al., 2011). 
Furthermore it may induce different kind of soil contamination which reduces the long-term crop productivity of soil:
chemical (e.g., heavy metals, PAH), biological (e.g.,pathogens), physical (e.g.,plastics) (Nkoa, 2014; Lukehurst et al.,
2010).
It is important to underline that the fast developing of biogas plants in terms of number and capacity, leads to an over
production of digestate for local agricultural land, considering also that the value of liquid digestate after long-distance
transport may become negative.
Land application is strictly correlate to different aspects as the crop growth stage, soil type, and time of year (not winter
application). Thus, digestate needs to be stored and often the storage can allow additional greenhouse gases release
(e.g.,CH4, N2O) (Monlau et al., 2015; Lukehurst et al. 2010) because the digestion process rarely destroys all volatile
compounds.
Technologies, such as membrane separation and evaporation, can efficiently concentrate the nutrients of liquid digestate
but they require high energy consumption (Fuchs and Drosg, 2013). There are huge demands on agricultural land for
application of digestate (in countries such as Germany) and in a number of countries (such as Ireland) authorisation for
the application of digestate produced from the digestion of animal by-products and wastes is very difficult to obtain. 
In  Germany, usually the digestate is used without further treatment and only about 10% of the plants treating waste
produce  compost  from the  output  of  the  digestion  process.  The liquid  phase  is  separated  after  digestion  and  the
separated fibre is generally post-composted. Only 6% of the quality assured digestate (BGK label) is produced as solid
digestate in Germany. Liquid digestate (94% of whole digestate) is used directly as fertiliser in agriculture. 
Others solutions where digestate is not land applied are extremely beneficial to a biogas system. 
The European Nitrates Directive (91/676/EEC) regulates the use of nitrogen in organic materials to agricultural land
(Fuchs et al., 2010). As a consequence the spreading of digestate to land is controlled (based on nitrogen content) and
dependent on location and crop demand.
An alternative solution for digestate treatment could be aquatic microalgae (Monlau et al., 2015; Cheng et al. 2015), but
an overwiev of EU regulation on digestate application is needed to define the possible application and utilization of
microalgae biomass grown on diluted liquid digestate. 
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2.2 EU Legislation: new procedure for defining end-of-waste (EoW) criteria
Use of digestate as fertiliser requires to put great attention to the “quality” of digestate that is strictly correlate to the
feedstock supplied to biogas plants. Quality management of digestate used as fertiliser should be integrated into overall
national environmental protection and nutrient management policies as yet done in some countries like Austria, Canada
(Ontario),  Denmark,  Germany,  Netherlands,  Sweden,  Switzerland  and  the  United  Kingdom.  National  regulatory
frameworks  for  digestate  quality management  and  certification for  use  enhance  its  use  as  fertiliser  in  a  safe  and
sustainable way.
In order to use digestate as a fertiliser, certain regulatory requirements, both on national and European level, must be
applied. In this regard, the existing national regulations which guarantee high-quality digestate, as well as the ongoing
European harmonisation procedure designed to facilitate cross-border trading with digestate, are to be mentioned. 
In the EU final report the digestate definition was:“digestate is the semisolid or liquid product that has been sanitised
and stabilised  by  a  biological  treatment  process  of  which  the last  step  is  an  anaerobic  digestion  step.  It  can  be
presented as whole digestate or separated in a liquor phase and a semisolid phase”.
Taking a look at  the EU regulation is essential,  as  it  reveals important  gaps but also areas  of great  improvement.
Digestate is currently classified as ‘waste’ in the European legislation and as waste is not useful for other purposes if not
treatment and disposal. The Waste Framework Directive (2008/98/EC, or WFD) among other amendments introduces a
new procedure for defining end-of-waste (EoW) criteria for digestate in such a way as to allow the use as a fertilizer for
human vegetable cultivation systems.
These criteria are yet to be defined for each specific waste stream, but the general conditions that a waste material has to
follow are defined by Article 6 of the WFD in the following terms:
‘certain specified waste shall cease to be waste [within the meaning of point (1) of Article 3] when it has undergone a
recovery, including recycling, operation and complies with specific criteria to be developed in accordance with the
following conditions:
 a) The substance or object is commonly used for a specific purpose;
 b) A market or demand exists for such a substance or object;
c) The substance or object fulfils the technical requirements for the specific purpose referred to in (a) and meets the
existing legislation and standards applicable to products; 
d) The use of the substance or object will not lead to overall adverse environmental or human health impacts.’
In  the  Communication  from  the  Commission  on  future  steps  in  bio-waste  management  in  the  European  Union
(COM(2010)  235)3,  the  European  Commission  states  that  digestate  from  bio-waste  are  under-used  materials.
Furthermore, it is mentioned that the end-of waste procedure under the Waste Framework Directive could be the most
efficient way of setting standards for compost and digestate, that enable their free circulation on the internal market and
to allow using them without further monitoring and control of the soils on which they are used.
"Bio-waste" is defined in the Waste Framework Directive (WFD) as "biodegradable garden and park waste, food and
kitchen waste from households, restaurants, caterers and retail premises, and comparable waste from food processing
plants".  It  does  not include forestry or agricultural  residues,  manure,  sewage sludge, or other  biodegradable waste
(natural textiles, paper or processed wood).
The European Compost Network has provided a summary of the different aspects of quality assurance systems for
digestate in different European countries, which consider input materials, process requirements and animal by-products
regulations aspects  (ABPR),  physical  contaminants,  stability/maturity/fermentation  degree,  organic  matter  and  dry
matter requirements, heavy metal limits (mg/kg d.m.).
Other important framework regulations are the Regulation (EC) N°1069/2009 (Animal by-products Regulation) and the
Regulation (EC) No 1907/2006 (REACH). The Animal by-product regulation distinguishes between the different input
material categoriesand defines the exporting requirements for manure or digestate to other countries.
Digestate, unlike biogas and compost, is not exempt from the European chemical legislation, REACH. This means that
if chemically modified feedstock is used in anaerobic digestion, the registration requirements under REACH will apply.
This, in turn, could lead to an irrational situation where some plant operators might not apply to receive the EoW status
for their digestate, to avoid the administrative burden related to REACH. In autumn 2013, EBA provided the European
Commission with a position paper explaining the composition of digestate and the technology of anaerobic digestion,
while delivering arguments  for  digestate’s  exclusion from REACH. The main argument  of  EBA’s  position is  that
digestate cannot be subject to REACH, as it is, in most cases, composed of either whole living or unprocessed dead
organisms or, alternatively, waste. These types of feedstock do not fall under the scope of the regulation.
The big question remains, is digestate waste or a by-product? Until now, the question is still not answered properly.

2.3 Liquid digestate composition
The composition of digestate is strictly correlate to  the type of feedstock processed (Chambers, 2011)  and digestion
process  parameters  and type  applied.  Different  organic  wastes  can  feed  anaerobic  digesters  as  organic  municipal,
zootechnical and vegetable waste. The variability of chemical profile of LD can be very high and also for the same
digester feed with the same kind of feedstock it is possible to observe variability strictly correlate to the impossibility to
apply the identic feedstock. 
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The application of LD as fertilizer both for plants and microalgae requires to know the chemical profile to ensure not
only the absence of toxic compounds (as metals, PAH, plastics, ecc.) but also to know the right quantity to apply as
fertilizer in terms of nitrogen, phosphorus and potassium.  However, information about this aspect is still scarce, and
evidences from the literature points out the need to consider the variability of digestate composition and the presence
and  concentration  in  pathogens  and  heavy metals  as  important  factors.  Therefore,  further  efforts  are  required  to
determine the operating conditions able to enhance fertilizer properties and pathogen reduction, as well as to promote
the digestate  nutrient  recycling.  The anaerobic digestion is  a  process  that  usually if  conducted properly induces a
significantly decrease of pathogens on the basis of microbial species, digester temperature, and retention time (Godfree
and Farrell, 2005).
Uggetti et al. (2014) reported that the liquid digestates (LDs) usually are characterized by low level of organic matter
and  phosphorus,  counter  balanced  by  high  potassium  and  nitrogen  concentrations  (up  to  80%  in  the  form  of
ammonium). They showed also that the micro-element composition of digestates can cover the nutrient requirements of
a microalgae population. In table 1, adapted from Uggetti et al. (2014) and Pognani et al. (2009) the N, P and K content
observed for liquid digestates from different anaerobic digester feedstock was reported. 
The chemical composition of liquid digestates (Table 1) can cover properly the nutrient requirements of a microalgae
population.

Table 1. Characteristics of liquid digestates from anaerobic digestion of
different organic waste (adapted from Uggetti et al., 2014 and Pognani et
al., 2009)
Feedstock of AD Total Nitrogen Total

Phosphorus
Total

Potassium
Dairy manure 125–3456

(mgL-1)
18–250
(mgL-1)

116
(mgL-1)

Poultry manure 1380–1580
(mgL-1)

370–382
(mgL-1)

592
(mgL-1)

Sewage sludge 427–467
(mgL-1)

134–321
(mgL-1)

12
(mgL-1)

Food waste and
dairy manure

1640–1885
(mgL-1)

296–302
(mgL-1)

Liquid Cattle
Slurry

4.27 (%DM) 0.66
(% DM)

4.71
(% DM)

Energy crops,
cow manure

slurry and agro-
industrial waste
and OFMSW

105-110
(g kg-1 TS)

10.9-11.8
(g kg-1TS)

Clover/grassor
pea strawor cereal

strawor silage
maize and

clover/grasssilage

0.253
(% FM)

0.62
(%DM)

18.5
(%DM)

DM= dry matter; TS= total solid; FM= fresh matter

2.4 Microalgae and liquid digestate
In the 1950s Golueke and Oswald (1959) conducted the first attempt to cultivate microalgae in digestate. This process
has not been properly studied until  the increasing demand for  digestate  processing from the biogas industry (IEA
Bioenergy, 2015; Fuchs and Drosg, 2013). 
Many studies report  the use of  digestate  from urban wastewater  treatment,  manure or swine slurry for  microalgal
growth (Godfree and Farrell, 2005; Uggetti et al., 2014), considering both the microalgae biomass productivity, but also
their ability to remove N, P from LDs (table 2). In fact microalgae with their ability to remove some compounds as
Nitrogen (N), Phosphorus (P), Potassium(K) and metals present a high phytoremediation activity, that allow to recover
the water reaching for some environmental toxic parameters values acceptable.
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Table 2. Microalgae cultivated in diluted LDs and their performance in terms of nutrient removal efficiency and
biomass concentration and productivity (Adapted from Xia et al., 2016)
Digestate
Origin

Species Nutrient
Removal
Efficiency (%)

Biomass Productivity
And/or Concentration

References

Alcohol wastewater C. pyrenoidosa TN 91.6
TP 90.7

0.58 g L−1d−1

3.01 g L−1
Yang et al., 2015

Starch wastewater C. pyrenoidosa TN 83.1
TP 97.0

0.63 g L−1d−1

2.05 g L-1
Tan et al., 2014

Swine  manure  and
sewage

Chlorella
PY-ZU1

TAN 73
TP 95

0.601 g L−1d−1

4.81 g L-1
Cheng et al., 2015

Dairy manure Chlorella sp. TN 82.5
TP 74.5

1.71 g L-1 Wang et al., 2010

Wastewater sludge Chlorella sp. TN 83.7
TP 94.2

0.45 g L−1d−1

2.11 g L−1
Akerstrom et al., 2014

Dairy manure C.vulgaris TN 93.6
TAN 100
TP 89.2

Wang et al., 2010

Poultry litter C. minutissima,
C. sorokiniana,
S. bijuga

TN 60
TP 80

0.076 g L−1d−1

0.612 g L−1
Singh et al., 2011

Livestock waste C. vulgaris,
S. obliquus,
N.oleoabundans

TN 76.0
TP 63.2

Zhao et al., 2015
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Vinasse C. vulgaris TN 37
TP 71

11.8 g m-2d-1

0.6 g L−1
Serejo et al., 2015

Cattle  slurry  and  raw
cheese whey

C. vulgaris,
N.oleoabundans
S. obliquus

TAN 99.9
PO4-P 97.3

0.26 g L−1d−1 Franchino et al., 2013

Pig manure Desmodesmus sp. TN 75.6
TAN 92.7
PO4-P 100

0.385 g L−1 Ji et al., 2015

Pig manure Desmodesmus sp. TN 100
TP 100

0.029 g L−1d−1

0.412 g L-1
Ji et al., 2014

Municipal wastewater N.salina TN 100
TP 100

0.092 g L−1d−1

0.92 g L−1
Cai et al., 2013

Municipal wastewater N. salina
Synechocystis sp.

TN 100
TP 100

0.151 g L−1d−1 Cai et al., 2013

Dairy manure N.oleoabundans 0.088 g L−1d−1 Levine et al., 2011

Livestock waste S. accuminatus 0.118 g L−1d−1 Park et al., 2010

Swine manure Scenedesmus sp. TAN >95
PO4-P >97

0.67 g L−1d−1 Dickinson et al., 2015

Livestock waste S. obliquus TN 74.6
TP 88.8

0.311 g L−1d−1 Xu et al., 2015

Dairy manure Chlorella sp. TAN  100
TP 34.3

1.71 g L−1 Wang et al., 2010
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Dairy manure N.oleoabundans TAN 95 0.0883 g L−1d−1 Levine et al., 2011

Sago  starch  factory
wastewater

A. platensis TAN99.9
TP 99.4

14.4 g m−2 day−1 Pang et al., 2000

Wastewater Desmodesmus sp. TN 94.2
TP 95.6

1.039 g L−1 Ji et al., 2015

Piggery wastewater A.platensis TN 80–93
 TP 84–98

64.7 g·m–2·d–1 Liu et al., 2015

Piggery wastewater O.multisporus,
Nitzschiacf.
pusilla,
C.mexicana,
S. obliquus,
C. vulgaris,
M. reisseri

TN 62
TP 28

       0.34 ±0.08gL−1

0.37 ±0.13gL−1

0.56 ±0.35gL−1

0.53 ±0.30gL−1

0.49 ±0.26gL−1

0.35 ±0.08gL−1

Reda et al., 2013
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Furthermore the combining liquid digestate and microalgae cultivation can
significantly  reduce  the  nutrient  cost  of  biomass  production.  For  liquid
digestate treatment, mixotrophic microalgae not only improve the biomass
productivity and enhance nitrogen and phosphorus removal but also enable
inorganic and organic carbon removal. 
Mixotrophic  cultivation  induces  higher  biomass  concentration  and
productivity  and  less  photoinhibition/limitation  than  photoautotrophic
cultivation; in particular mixotrophic microalgae can achieve from one to
two magnitudes higher productivities than photoautotrophic cultures (Xia
and Murphy, 2015).
Several  experiments  pointed  out  the  existence  of  inhibitory  effects  on
microalgal  growth,  especially  with  manure  wastewater  or  digestate  as
substrate. Among the observed effects, high ammonia concentrations were
often responsible for microalgal growth inhibition (Kallqvist and Svenson,
2003; Li et al., 2008). Indeed, although ammonia can be an excellent source
of nitrogen for microalgal growth, free ammonia at high concentration is
toxic  for  most  strains  of  microalgae  due  to  its  uncoupling  effect  on
photosynthetic  processes  in  isolated  chloroplasts.  Another  cause  of
microalgae growth inhibition is light limitation mainly due to the shading
caused by LDs turbidity and color (Uggetti et al., 2013; Yuan et al., 2011;
Guieysse  et  al.,  2002).  No  particular  effect  of  digestate  turbidity  on
microalgal growth has yet been reported in the literature. However, it should
be noticed that the digestate is diluted in almost all the experiments reported
in the literature (Becker, 2007; Godfree and Farrell, 2005; Wu and Pond,
1981) reducing the color and turbidity of LDs, and so the decreased input
light.
Nevertheless, once the inhibitory factors have been identified, their effect
can be easily overcome by substrate dilution or carbon dioxide addition (for
pH and ammonia concentration control) (Uggetti et al., 2013). 
In  our study we observed also an increase in ash content  of  microalgae
biomass cultivated in LDs respect artificial media, and variation in chemical
profile of microalgae. The increase in ash hasn’t be discussed properly in
literature, but it can represent a problem in application of biomass produced
or in extraction of phytochemicals, increasing also the harvesting cost.
The commercial application of microalgae biomass grown in LDs is yet low
clear and strictly correlate to the nature of LDs as indicated in the Waste
Framework  Directive  (2008/98/EC,  or  WFD)  that  introduces  a  new
procedure for defining end-of-waste (EoW) criteria for LD. 
When this criteria, still not properly developed, are respected in terms of
high  selected organic  waste  input  in  Anaerobic  Digester  and absence of
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contaminants as pathogens, metals, PAH and others, the microalgae biomass
grown in LDs is not consider a biomass of poor quality to utilizer as biofuel
or  biomass to treat  for  energetic  purpose,  but  applicable on the basis  of
absence  of  contaminations  for  food  and  feed  purpose  in  relation  to  EC
Regulation  767/2009 (establishes  the  rules  on  the  marketing  of  feed
materials  and  compound to  placing  on  the  market  and  use  of  feed),  to
Regulation  (EC)  No  1774/2002 (Animal  by-products  not  intended  for
human  consumption)  and  to  the  EU  Scientific  Report  of  Enzing  et  al.
(2014)  on  “Microalgae-based  products  for  the  food  and  feed  sector:  an
outlook  for  Europe”.  This  report  analysed  the  production,  markets  and
regulation of microalgae-based food and feed products, especially focusing
on the European sector. 
Also in this case the question on application in food and feed sectors of
microalgae grown in “selected and treated wastewaters” is not enough clear
and appearing applicable only for energetic purpose also if  EU policy is
extreme interest  in nutrients and water  recycling with great  attention for
phosphorus.

3. Wastewater from agro-food industry
The food and beverage industry is the largest manufacturing sector in the
EU  also  respect  the  automobile,  chemical,  machinery,  and  equipment
sectors (CIAA, 2004).  Food processing activities produce in Europe large
amounts of by-products and waste (about  2.5 108 ton year−1)  along with
relevant  amounts  of  high  COD,  BOD and  SS effluents  (Federici  et  al.,
2008).
Water in fact is an essential input for the food and drink industry,  as an
ingredient,  as a key processing element and as a  cooling agent in many
production processes, and wastewater is the most common waste in the food
and  drink  industry,  characterized  by  organic,  chemical  and  microbial
contamination. 
In particular Food and Drink industry accounts for approximately 1.8% of
Europe’s total water use (excluding agriculture) and is considered one of the
largest  producers of wastewaters,  often in base of  its  origin very rich in
proteins,  sugars,  pigments  and  lipids  along with  particular  aromatic  and
aliphatic compounds. The food industry wastewaters cannot be disposal in
the  environment  before  a  depuration  process  to  avoid  negative
environmental effects, but for its chemical composition as it is or enriched
of some compounds could be applied as microalgae grow media, decreasing
the fertilizers cost, reducing the disposal cost of wastewaters and producing
a biomass to apply in different sectors on the basis of its quality and safety.
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3.1 Food industry
The food wastewater produced is different from country to country on the
basis of main market developed. For example in India about 65%–70% of
the organic pollutants are produced from food and agro-product industries,
such as distilleries, sugar factories, dairies, fruit canning, meat processing
and pulp and paper mills (Rajagopal, 2008). 
In Mediterranean countries the wine production is one of the main agro-
food industries,  and it  has also reached importance in other  parts of  the
world (Australia, Chile, the United States, South Africa and China) (Ganesh
et al. 2010). 
The wine industry releases large volumes of wastewaters due to the water
involved in various washing operations. 
In addition olive oil industries have gained an high economic importance
for many Mediterranean countries (Meksi et al., 2012). Malaysia presently
accounts for 39% of world palm oil production and 44% of world exports
(MPOC, 2013), producing a huge amount of polluted palm oil mill effluent
(POME).
Fia  et  al. (2012)  in  coffee-producing  regions  (e.g.  Brazil,  Vietnam  and
Colombia) showed that the industrial wastewaters released has become a
large  environmental  problem,  creating  the  need  for  low  cost  treatment
technologies.  In  contrast  Nieto  et al.  (2012) determined the potential for
methane  production  from  six  agro-food  wastes  (beverage  waste,  milled
apple waste, milk waste, yogurt waste, fats and oils from dairy wastewater
treatment and cattle manure). 
The annual worldwide production of olive oil is estimated to be about 1750
million metric tons, with Spain, Italy, Greece, Tunisia and Portugal being
the major producers,  and about 30 Mm3 of oil  mill wastes are produced
annually in  the  Mediterranean  regions  during  the  seasonal  extraction  of
olive oil (Meksi et al., 2012; Un et al., 2008).

3.2 Wastewaters/by-product composition from food industry 
The composition and concentration of different agro-food wastewaters vary
from low (wash water from sugar mill or dairy effluents) to high strength
substrates (cheese, winery and olive mill wastewaters), particularly in terms
of  organic  matter,  acids,  proteins,  aromatic  compounds,  nutrients
availability, etc. (Rajagopal, 2008; Ganesh et al., 2010; Zhao et al., 2012).
The main parameters of the agro-food industrial wastewater, such as total
solids (TS), total nitrogen (TN), total phosphorus (TP) and biological and
chemical oxygen demand (BOD and COD) are given in Table 3.
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Table 3. Characteristics of typical agro-food industrial wastewater (modified by Rajagopal et al. 2013)
Industry TS

mgL−1
TP
mgL−1

TN
mg L−1

BOD
mgL−1

COD
mgL−1

Ref.

Palm oil mill 40 - 750 25 50 Rupani et al., 2010
Sugar-beet
processing

6100 2.7 10 - 6600 Alkaya  and  Demirer,
2011

Dairy 250–2,750 - 10–90 650–6,250 400–15,200 Gotmare et al., 2011;
Passeggi et al., 2009

Corn milling 650 125 174 3,000 4850 Ersahin et al., 2013
Potato chips 5,000 100 250 5000 6000 Senturk et al., 2010
Baker’s yeast 600 3 275 - 6,100 Ersahin et al., 2011
Winery 150–200 40-60 310–410 - 18000-21000 Rajagopal, 2008

Ganesh et al.,2010
Cheese dairy 1,600–3,900 60-100 400–700 - 23,000-

4,0000
Rajagopal, 2008

Olive mill 75,500 - 460 - 130,100 Gonçalves et al.,2012
Cassava starch 830 90 525 6300 10500 Sun et al., 2012
Wheat starch 12800-

16400
170-190 500-600 9400-13200 18,750 Murayama, 2002

Beer 5100–8750 As PO4 
10-50

25–80 1200–3600 2000–6000 Simate et al., 2011

Tomato 47.5±46 151.4 ± 70 6953 ±3278 Gohil and Nakhla, 2006
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canning waste

Confectionary
Industry

TSS  177-
1050

8,6-65 33-100 1840-4910 2840-19900 El-Gohary et al., 1999;
Orhon et al., 1995;
Diwani   et  al.,  2000;
Ozturk  and  Altinbas,
2008

Notes: acontains flour, soybean, tomato, pepper and salt. 
TS: total solids; 
TN: total nitrogen; 
TP: total phosphorus; 
BOD: Biochemical Oxygen Demand; 
COD: Chemical Oxygen Demand.

14



Very interesting is also the sugar content of some food industry waste, in
particular  from  vegetable  and  fruits  (dried  plum,  sweet  corn,  olive  oil,
syrum  fruit,  winery,  ecc.),  where  the  most  abundant  are  glucose  and
fructose,  while  maltose and saccharose were observed in  wastewaters  of
syrum  production  and  sweet  corn  cannery.  Polyols,  such  as  sorbitol,
mannitol and other forms were respectively encountered from plum, sweet
corn and olive oil processing.
The literature data reported that the food industry wastewaters are very rich
in nutrients  that  can  be  recycled  in  different  sectors  from agriculture  to
energy,  and  presents  a  lot  of  nutrients  for  microalgae  growth  both  in
autotrophic production that in heterotrophic and mixotrophic conditions.
From  our  experience  sometimes  food  wastewaters  can  be  reach  in
compounds with interesting biological activity, e.g. as polyphenols, that are
the primary source  for  coloration in  flowers  and  fruits.  The dark colour
often associated with wastewater streams from the distillery and beverage
industries is due to the polyphenolic compounds. Polyphenols are present in
olive oil waste (Mulinacci, 2001) and in spent cherry-blanching liquid is
observed the presence of anthocyanin (Chaovanalikit and Wrolstad, 2003).
In our experience growing  G.sulphuraria  in spent cherry blanching liquid
enriched the biomass harvested in polyphenols (anthocyanin), but it is not
clear  if  they  are  introjected/absorbed,  linked  to  the  cell  wall  or  simply
dragged with biomass.

3.3 Microalgae and food industry wastewaters/by-product
Many  microalgae  have  been  shown  to  be  able  to  grow  rapidly  in
heterotrophic conditions with glucose as a carbon source to accumulate high
amounts  of  lipids,  which  are  one  of  the  most  promising  feedstock  for
biodiesel production. However, glucose is one of the main contributors in
the high cost of microalgae culture.  Numerous studies have attempted to
find  less  expensive  organic  carbon  sources  for  biodiesel  and  other
applications. 
The  application  of  food  industry  waste  for  microalgae  growth  can  be
preceded  from others  treatment  (e.g.  hydrolysis,  enzymatic  digestion)  to
improve the nutrients avaibility. 
Xu et al. (2006) developed a corn powder hydrolysate instead of glucose as
the carbon source to obtain favorable results in terms of biomass and lipid
productivities  (2  g  L−1 day−1,  932  mg  L−1 day−1 respectively) for
heterotrophic grow of Chlorella protothecoides.
Gao  et  al. (2010)  used  sweet  sorghum  juice  as  a  substrate  for  the
heterotrophic cultivation of Chlorella protothecoides, obtaining satisfactory
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results for the biomass concentration (5.1 gL-1) and the corresponding lipid
content (52.5%). Yuqin et al. (2013) evaluated the feasibility of using potato
starch  hydrolysate  (PSH)  instead  of  glucose  as  a  carbon  source  for  C.
protothecoides lipid production. Literature data are few as showed in table 4
and not complete in terms of microalgae productivity and phytoremediation
activity.
Some agro-food industries wastewaters/by-products can be used as the sole
carbon  and  energy  sources  with  a  high  reduction  of  media  costs  for
microalgae production and a recovery of nutrients and water.
The foregoing achievements indicate that the use of relatively inexpensive
biomass  materials  for  the  production  of  biodiesel  is  feasible  and
economically viable. 
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Table 4. Microalgae Cultivated in food waste and food by-products and their performance 

Food waste Species Nutrient Removal
Efficiency

Growth rate,
productivity

and/or
concentration

Ref.

Corn powder hydrolyzate
Chlorella protothecoides

3.92 gL-1 Xu et al., 2006

Sweet sorghum juice 5.1 gL-1 Gao et al., 2010

Hydrolyzed food waste
(containing rice, noodles,

meat, and vegetables)

S. mangrovei,
C. pyrenoidosa

2.1±0.3 day-1

2.2 ±0.7 day-1
Pleissner et al., 2013

Hydrolyzed food waste Cryptococcus curvatus TN= 29.7±1.0 mgL−1

TP= 16.9±0.3 mgL−1
1.1 g L−1 Chi et al., 2011

Hydrolyzed food waste
(Bakery: cake and pastry;
food: noodles, rice, meat

and vegetables)

C.vulgaris

a0.8 day-1 Lau et al., 2014

Hydrolyzed dairy waste C. vulgaris a0.4 day-1 Abreu et al., 2012

Hydrolyzed food waste
(restaurant food and

bakery waste)
C. pyrenoidosa

1.4 day−1

0.79 ± 0.1gg−1
Pleissner et al., 2015

Potato starch hydrolysate C. protothecoides 20.23 g L−1 Yuqin et al., 2013
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4. Graphical Conclusion
With the purpose of clearing all the possibilities and threats originated from
the  use  of  liquid  digestates  and  food  by-products/wastewaters  for
microalgae  growth,  two  different  SWOT  (Strengths,  Weaknesses,
Opportunities, and Threats) analysis has been developed and are shown in
Table 5 and Table 6, respectively. 

Table 5. A SWOT analysis for liquid digestate to apply as microalgae growth 
media

Positive Negative
Internal Strengths 

Rich in inorganic nutrients (N, 
P, K);

Lowering of the pathogen load;

Spore absence;

Very abundant;

Useful for microalgae grow;

Reduction in fertilizers cost for 
microalgae production;

Phytoremediation;

Water and nutrients recovery;

Reduction cost of LD disposal;

Reduced release in environment 
(soil).

Weaknesses

High cost transport

Pure Stability 

Extremely variable composition

Presence of impurities: Pathogen, 
PAH, metals, plastics, ecc.

Turbidity

Limited markets for biomass
Reduced microalgae biomass 
production

High ash content in biomass produced

High microalgae harvesting cost

Possible release in environment

External Opportunities

Environmental and economic 
sustainable production of 
microalgae;

Water and nutrients recovery;

Reduced the environmental 
impact of LD;

Threats

Microalgae biomass low quality for 
presence of metals, PAH, pathogens 
and others impurities

Lost of NH3 for volatilization 
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Promotes economic 
development 

Table 6. A SWOT analysis for food by-products and microalgae. 
Positive Negative

Internal Strengths 

Rich in inorganic and 
organic nutrients (N, P, K 
and sugars);

Very abundant;

Useful for microalgae 
grow;

Reduction in fertilizers 
cost; 

Phytoremediation; 

Water and nutrients 
recovery;

Reduction cost of food 
wastewater disposal

Enriched of biological 
activity of microalgae 
biomass produced

Weaknesses

High cost transport

Pure Stability 

Extremely variable composition

Presence of impurities: 
pathogen, pesticides, ecc.

Color

Limited markets for biomass
Reduced microalgae biomass 
production

High ash content in biomass 
produced 

High microalgae harvesting cost

Possible release in the 
environment

Externa
l

Opportunities

Reduction the organic 
matter that needs to 
bedisposed 

Sustainable production of 
microalgae

Promotes economic 
development 

Effective food waste 
management

Threats

Contamination (such as bacteria)
of produced microalgae biomass

The impurities may find 
themselves in the final biomass
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5.Aim
The aim of this research was to improve the environmental and economic
sustainability  of different  microalgae  species  production,  utilizing  cheap
alternative media as Liquid Digestates and food by-products. In particular
were analyzed LDs from different industrial Anaerobic Digesters, fed with
various organic substrates (zootechnical, vegetable and municipal organic
waste) and spent cherry blanching liquid from a confectionary industry.
Research was carried outat CAISIAL (Aquaculture section - University of
Naples,  Federico  II,  Portici  (Na),  Italy)  in  an  aquaculture  plant  with
different technology for microalgae production (indoor and outdoor). 
The PhD thesis is organized in 4chapters. 
First  chapter  is  a  general  introduction (or  minirewiev),  followed from 3
experiments  reported  as  scientific  papers,  that  are  submitted  or  in
submission to scientific journals.
The  title  and  aim  of  different  experiments  carried  out  are  summarized
below.
Chapter 2 
Production of Galdieria sulphuraria on spent cherry-blanching liquid. 
The research aim was to evaluate the use of spent cherry-blanching liquid as
heterotrophic  growth  medium  for  G.sulphuraria,defining  its  biomass
productivity,  chemical  composition,  antioxidant  activity  and  in  vitro
digestibility respect  the  biomass  produced on  artificial  standard  medium
(SM). The antioxidant activity release during the digestion was studied at all
phases on soluble and insoluble fractions. The microalgae phytoremediation
ability in terms of effluent toxicity, before and after G.sulphuraria growth,
were  also assessed  applying an  acute  and chronic  ecotoxicity tests  with
organisms belonging to  different  trophic  levels  (a  primary producer  and
consumer), due to the impossibility to have a complete chemical framework
of the effluent, which is a complex mixture.
Chapter 3 
Biological treatment of liquid digestate: the potential of microalgae. 
The  aim  of  the  present  study was  to  evaluate  the  potential  of  different
marine and freshwater microalgae species to produce renewable biomass
removing and recycling nutrients from LDs. Different strains of microalgae
(Arthrospira  maxima,  Scenedesmus  obliquus,  Pheodactylum  tricornutum
and  Botryococcus braunii) known for their productivity, phytoremediation
activity and commercial interest were chosen.
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Chapter 4 
Influence  of  the  growing  conditions  on  large  scale  productivity  and
biochemical composition of two microalgae species. (article accepted and
under revision by Journal of Applied Phycology)
The aim of present work was to evaluate the biomass productivity, carbon
dioxide  fixation  rate  and  biochemical  composition  of  two  microalgae
species, P. tricornutum and S. obliquus, cultivated indoor in high technology
photobioreactors  (HT-PBR)  and  outdoor  both  in  pilot  ponds  and  low
technology  photobioreactors  under  greenhouse  in  Southern  Italy.
Microalgae  were  grown  in  standard  media  and  in  two  liquid  digestates
obtained  from  anaerobic  digestion  of  agro-zootechnical  and  vegetable
biomass. 
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Chapter 2: Production of Galdieria sulphuraria on spent cherry brine liquid  

Abstract 

 

The candy fruit industry produce large amount of wastewaters that represent an added cost for the companies. In this 

paper the spent cherry-brine liquid (sCBL), used in the sweet cherry manufacturing to bleach, firm and preserve fruit, 

was considered. Because sCBL is reach of free sugar and SO2 it could represent a suitable growing substrate for the 

microalgae Galdieria sulphuraria which needs these two components to grow. 

The research aim was to evaluate the use of sCBL as heterotrophic growth medium for Galdieria sulphuraria, a 

unicellular rhodophyte, and to assess the quality of the microalgae biomass. For this reason biomass productivity was 

measured together with its chemical composition, antioxidant activity and in vitro digestibility. Data were compared 

with those obtained producing the biomass on standard medium (SM). The G. sulphuraria phytoremediation ability and 

the effluent ecotoxicity, before and after microalgae growth, were also assessed. 

The biomass grown in sCBL has a nice red color and its productivity was 0.57±0.04 g L-1day-1 a value that is about 25% 

lower than in the SM. The biomass produced in sCBL showed a lower content in proteins (220±6.4 vs 320±5.5 mg g-1) 

and lipids (46±3.2 vs 77±1.1 mg g-1) and an increase in polyphenols (5.3 vs 1.6 mg g-1). Carbohydrates content was 

12% higher respect to the biomass produced in SM. 

The growth in sCBL induced on microalgae biomass also a changing in the fatty acid profile with a reduction in 

palmitic acid of 12% and in linoleic acid of 8% and an increase in oleic acid of 25%. Also the total digestibility of entire 

biomass was decreased being of 63.4±8.1% and 79.3±5.8%, for sCBL and SM respectively. 

As expected from the higher content in total polyphenols, in particular anthocyanin, the biomass grown in sCBL has a 

higher antioxidant activity (AA), that during in-vitro digestion presents the highest release in the soluble fraction of 

intestinal phases. In conclusion, the G. sulphuraria nutritional profile underline that this strain is an interesting source 

of added value phytochemicals, and cultivation on sCBL would allow the production process environmental and 

economically sustainable also enriching the biomass of anthocyanin. 

 

Key words: Galdieria sulphuraria, Brine cherry liquid, Food industry by-product, Phytoremediation, Heterotrophic, 

Batch culture 

 

Highlights 

1) The spent cherry-brine liquid, enriched in nitrogen was used successfully as heterotrophic growth medium for 

G. sulphuraria.  

2) The spent cherry-brine liquid as heterotrophic growth medium induced changing in biomass composition of G. 

sulphuraria respect to the standard medium. 

3) G. sulphuraria biomass was enriched in anthocyanin presented in spent cherry-brine liquid and released by 

cherries. 

4) The intestinal digestion phase for soluble fraction of sCBL showed the highest antioxidant activity release for 

G. sulphuraria. 

5) G. sulphuraria showed a good nutrient removal efficiency from spent cherry-brine liquid. 
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1. Introduction 

Globally, there is growing interest in microalgae production as innovative vegetable biomass rich in phytochemicals at 

high added value to apply in different commercial sectors (food, feed, nutraceutical, cosmetician, energetic and 

wastewaters depuration). The microalgae market for food and feed is increasingly relevant and strictly correlate to their 

chemical composition (in particular lipids, fatty acids profile, proteins, pigments and vitamins), underlying that 

microalgae biomass has the potential to be competitive respect to the others conventional vegetable sources. To develop 

the competitiveness of microalgae based products, some technical and economic aspects, that play a key role in biomass 

production costs, have to be considered. 

The autotrophic microalgae biomass production generally requires nutrients (e.g., N, P, C) and water, which 

significantly affect the cost and the environmental sustainability of its production. The cost of nutrients in algae culture 

systems vary between 10-20 % of the total cost (Benemann and Oswald, 1996), but some authors as Xia and Murphy 

(2016) asserted in a recent Life-Cycle Assessment (LCA), that the use of artificial fertilizers (e.g., nitrogen, phosphorus) 

can account for half of the cost and energy input in microalgae cultivation. The recent hike in fertilizer price increased 

the microalgae production cost substantially and the environmental impact of chemical processes to their synthesis is 

not negligible.  

In microalgae culture, heterotrophic growth can be a cost-effective alternative to photoautotrophic, that is often limited 

by insufficiency of light caused by mutual shading of cells (Chen, 1996) and by low concentration achieved, that 

increase the harvesting cost for the high energy consumption. Many microalgae have been shown to be able to grow 

rapidly in heterotrophic conditions, reaching high cellular density and biomass productivity. Although the heterotrophic 

production has several advantages over photosynthetic including also a high degree of process control and a lowering 

for harvesting costs, it involves high capital costs for a large-scale fermentation facility.  

To date few heterotrophic microalgae species are commercially produced mainly for PUFA extraction to be used in 

infant food formulation or as health food and feed ingredient. The main species are Crypthecodinium cohnii for DHA 

production (Martek, USA), Schizochytrium sp. for food and feed supplement (Omegatech and Bio-Marin, USA) and 

Ulkenia (Nutrinova, Germany) for DHA-rich oil. It is important to remember also the studies on heterotrophic 

production of Chlorella protothecoides for biodiesel production (Xu et al., 2006, 2007; Eredia-Arroyo et al., 2010; 

Espinosa-Gonzalez et al., 2014).  

The heterotrophic biomass productivity can be variable between the microalgae species and for the same strain on the 

basis of the concentration and form of organic carbon source utilized and growth parameters applied: a biomass 

productivity ranging from 9.5-50 gL-1day-1 can be assumed for G. sulphuraria cultivated in different conditions as 

reported by Graverholt and Eriksen (2007) and confirmed by Barclay et al. (1994) and Behrens (2005) for Martek 

operations with others microalgae species (Alabi et al, 2009). 

Heterotrophic culture require organic carbon sources such as sugars or organic acids, which represent the main cost in 

medium formulation, and some agro-food industries wastewater, can be used as the sole carbon and energy sources with 

a high reduction of media costs and water consumption. 

From an economic point of view the organic carbon source contributes 45.4%; inorganic chemicals, 3.2%; electricity 

30.6 %; steam 14.2 %; and aseptic air 6.6% of the total production cost. The cost of glucose has also been estimated to 

be about 80% of the total medium cost, underlying the importance to drastically reduce the cost of the organic carbon 

source (Ogbonna and Moheimani, 2015). 

In the present research, the spent cherry-brine liquid (sCBL) from an Italian local confectionery industry was evaluated 

as possible heterotrophic growth medium for G. sulphuraria. This food industry by-product is produced starting from 

sodium metabisulphite brines, used by the sweet cherry processing industry to bleach, firm and preserve cherries, which 

will be used into confectionery industries and applied in different products.  

The disposal of sCBL is mandatory for its environmental toxicity strictly correlate to its chemical composition (e.g. 

several thousand ppm SO2, high COD level) and acid pH (̴ 4) and implicates added costs for confectionery industries. 

One possible solution to the disposal problem was its use as heterotrophic microalgae growth medium. 

G. sulphuraria (Cyanidiales), a thermo-acidophilic (extremophile) unicellular red algae is one of the best candidate to 

be used in sCBL for its ability to grow in an environment rich in sulfites with high concentration of sugars and low pH, 

making this strain very resistant to contamination. Galdieria is too a promising microalgae in the food and feed sector 

both for protein and carbohydrates production and a particular attention from the scientific community was for the 

production of C-phycocyanin, a potent antioxidant protein, suitable also for blue food dye and already authorized as an 

additive color in Japan. Interestingly also the skin care market require Galdieria extracts and an existing patent 

(MI2014A 000186), on its use as active ingredient to reduce the effects caused by acne, is owned by an Italian company 

(Vitalab srl) in agreement with our research group. 

The research aim was to evaluate the use of sCBL as heterotrophic growth medium for G.sulphuraria, defining its 

biomass productivity, chemical composition, antioxidant activity and in vitro digestibility respect the biomass produced 

on artificial standard medium (SM). The antioxidant activity release during the digestion was studied at all phases on 

soluble and insoluble fractions. The microalgae phytoremediation ability in terms of effluent toxicity, before and after 

G. sulphuraria growth, were also assessed applying an acute and chronic ecotoxicity tests with organisms belonging to 

different trophic levels (a primary producer and consumer),due to the impossibility to have a complete chemical 

frameworkof the effluent, which is a complex mixture. 
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2. Materials and methods 

 

2.1. Organism and cultivation 

G. sulphuraria (SAG 107.79) was obtained from Culture Collection of Algae at the University of Göttingen (SAG), 

Germany. Stock culture of axenic microalgae strain in photoautotrophic condition was maintained routinely by regular 

sub-culturing at 4 weeks intervals on both liquid and agar slants of Cyanidium Medium (Troxler, 1972) at pH 4. 

The transition from autotrophy to heterotrophy was performed in conical glass flasks of 1 L using the standard medium 

Allen (1968) whit 30 gL-1of glucose as organic carbon source and placing the cultures in the dark. The pH was set at 

1.5, while temperature was maintained at 26 ± 2 °C. The culture oxygenation and mixing was provided through an air 

bubbling system equipped with a filter of 0.22 µm to avoid culture contamination, while the exit gas passed through a 

condenser at 4°C to reduce evaporation. 

2.2 Production and chemical characterization of spent cherry-brine liquid (sCBL) 

The sCBL was collected from an Italian confectionery industry, that produced candied cherries, and transported in lab at 

4°C. spent brine contains about 10% glucose and fructose, 0.5–1.5% CaCl2, up to 0,4 % sulfur dioxide, citric acid, and 

lesser amounts of other of soluble constituents leached from the fruit (data from confectionery industry). After cherries 

processing the sCBL was enriched by leach sugars, organic acids, bleached anthocyanin pigments and other water-

soluble compounds from the fruit (Wrolstad, 2009), showing a yellow color induced by yellow carotenoids.  

For chemical and ecotoxicity analysis the sCBL was filtered on 20 µm filter and centrifuged at 5000 g for 15 min at 

10°C.  

Measurements of pH, dry matter (gL-1), Biological Oxygen Demand (BOD5) (mg O2 L-1), Chemical Oxygen Demand 

(COD) (mg O2 L-1)(following APAT-IRSA 5120 and 5130 methods, respectively) and Total Suspended Solid 

(TDS)(gL-1) (according to APHA, Standard Methods, 1995) were performed. The sulfate content was evaluated 

applying APAT-IRSA 4020 procedure.  

Before and after the G. sulphuraria growth, sCBL was analyzed for ammonium (N-NH4) (Salicylate Method), nitrate 

(N-NO3) (Cadmium Reduction), nitrite (N-NO2) (Diazotization Method) and phosphate (PO4) (Acid digestion Method,) 

(mg L-1) content using a spectrophotometer test kit (HACH –Milano- DR 2400) and for BOD5 and COD level to define 

the Galdieria nutrient removal efficiency. 

 

2.2.1 Ecotoxicity test on spent CBL  

Before and after the G. sulphuraria growth, the ecotoxicity of sCBL was evaluated by performing ecotoxicity tests with 

organisms belonging to different trophic levels in particular a primer producer (Pseudokirchneriella subcapitata), as a 

chronic ecotoxicity test, and a primer consumer (Daphnia magna) as acute ecotoxicity test, following ISO standards 

methods: UNI-EN ISO 6341:2011 and UNI-EN ISO 8692:2005, respectively. Before the running the ecotoxicological 

tests the pH of the sample was adjusted to 7.5, to prevent the intrinsic toxic effects associated with the low pH-value. 

The experiments were carried out in triplicate for each treatment. The EC50 was calculated using the Linear 

Interpolation Method (Inhibition Concentration procedure or ICp) (Cesar et al., 2004, US EPA 1993). The bootstrap 

method is used to obtain the 95% confidence interval. Antocyanin analysis was also performed on sCBL as described in 

paragraph 2.4. 

Analysis of variance (ANOVA) was applied, using raw data, to test for significant differences in effects among 

treatments (significance level was always set at a = 0.05).  

 

2.3 G. sulphuraria growth tests on spent CBL  

For growth test and batch production the pH of sCBL was adjusted at 1.5 with H2SO4 (96-98%), as for SM, and the 

samples were enriched in N content (due to very low level in sCBL) until the concentration of Allen medium (280 mg 

L-1) with NH4Cl and then sterilized by autoclaving. The culture oxygenation and mixing was provided through an air 

bubbling system equipped with a filter of 0.22 µm and the temperature was maintained at 26 ± 2 °C. 

 

2.3.1 Preliminary lab scale growth test 

In a preliminary test to define the best sCBL dilution to apply for G. sulphuraria growth and its possible toxicity, the 

microalgae were pre-cultured and inoculated with a final inoculum concentration of about 4.2±0.2 g L−1 in 250 mL 

erlenmeyer flasks containing sCBL at five different dilutions (20, 40, 60, 80 and 100 % v/v); the dilution were carried 

out using as diluent the SM (Allen, 1968), that was utilized also as standard control. 

The culture growth was assessed experimentally by measuring daily the corresponding dry weight (g L-1) estimated 

gravimetrically following APHA Standard Methods (1995). 

The experiments were carried out in triplicates for each growth medium dilution applied for 16 days, to define the 

growth-curves. Growth-curve functions were statistically determined by applying a best-fit procedure. With this 

approach, different regression models, provided by Origin1 8 SR2 (Northampton, MA) statistical software, were 

applied to each data set in order to determine, on the basis of statistical criteria (the least-square method and the analysis 

of residuals), the regression model that best described the observed data. At this stage, the most appropriate model was 

chosen by applying a goodness-fit of criterion (Scholze et al., 2001).  
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N and P removal efficiency and BOD and COD reduction by microalgae was evaluated measuring their variations in 

concentration at time 0 and after 16 days of growth and expressed as mean % of N and P removal efficiency and as % 

reduction of BOD and COD.  

 

2.3.2 Pilot scale production  

To evaluate the batch productivity of G. sulphuraria, 100% sCBL, that in the preliminary test showed a good growth 

performances no statistically different from the control, was utilized as growth medium. As control medium in addition 

to the Allen medium with 30 g L-1glucose was tested also Allen with citric acid, added at a concentration equal to sCBL 

initial content (0.75%). The microalgae were pre-cultured and inoculated with a final inoculum concentration of about 

3.7±0.2 g L−1 for all the treatments (day 0).The production volume was of 5 L in glass flaskes and the experiments were 

carried out in triplicates for each growth medium applied for 12 days. The growth was monitored counting the numbers 

of cells for mL with an optical microscope at 40X with Burker chamber and measuring daily the corresponding dry 

weight (g L-1). 

The produced biomass was harvested with a continuous centrifuge at 4000 rpm and plenty rinsed with distilled water to 

remove culture medium constituents. Each supernatant was collected for chemical analysis and ecotoxicology tests (as 

described in par. 2.2), while the wet microalgae biomass was frozen and dried in lyophilizer to evaluate the dry weight 

and measure the productivity (mg DW L-1day-1). 

Mean productivity P (g DW L−1 day−1) for cultivation cycle lasting n days was calculated as reported in equation 1: 

𝑃 =
𝑋/𝐿

𝑛
        (1) 

where X is the dried harvested biomass weight, L the total liters centrifuged and n the number of production days. 

Analysis of variance (ANOVA) was applied, using raw data, to test for significant differences in growth among sCBL 

and the two control media (significance level was always set at p = 0.05). 

 

2.4 Chemical characterization of G. sulphuraria biomass composition  

The biomass ash content was measured in a muffle furnace at 550° until constant weight following the standard 

procedure describe by IRSA-CNR methods (1994). 

Carbohydrate determination was performed on 1 g of freeze dried samples treated with hydrochloric acid (0.2 M) at 

85°C for 1 h. After neutralization by sodium hydroxide, reduced sugars were determined using the Fehling test.  

The lipid content was evaluated by Bligh and Dyer method (1959) briefly: 20 mL of a mixture chloroform: methanol (2 

: 1, v/v) were added to 100 mg of the lyophilized sample followed by 20 min of mixing. This mixing was repeated for 

10 min both after adding the second portion of 10 mL of chloroform and after addition of 20 mL of water. After 

centrifugation, the organic phase was evaporated to dryness and the weight of the residue was determined after 30 min 

at 105 °C. The lipid extract prepared for total lipid determination was suspended in hexane and used for the fatty acid 

methylation. Fatty acids were converted to their methyl esters before analysis. Hexane extract (1 mL) was added with 

200 µL of KOH 2 N in methanol for 30 s at room temperature, and 1 mL was injected directly in the GC apparatus. The 

analysis of fatty acid methyl esters was carried out using a Shimadzu 17A gas chromatograph equipped with a fused 

silica capillary column (Phenomenex ZB-WAX, 0.50 µm film thickness, 60 m x 0.32 mm i.d.) and a FID detector. 

Helium was the carrier gas with a flux of 2 mL min-1. The temperature program was 200 °C x 5 min, 200 °C until 230 

°C in 15 min (2 °Cmin-1), constant at 230 °C for 30 min. The column, the injector and FID temperatures were 200, 240 

and 240 °C, respectively. Identification of fatty acid was carried out using reference fatty acids methyl esters (FAME) 

from Merck (Merck, Darmstadt, Germany).  

Samples were analyzed for protein concentration by the Kjeldahl method (AOAC Official Method 985.29, 1995) using 

a nitrogen conversion factor of 6.25.  

Polyphenols were determined using a Folin metod (1927) with the Folin-Ciocalteu reagent (Obanda & Owuor, 1997). A 

calibration curve of gallic acid (ranging from 0.0125 to 0.1 mg mL-1) was elaborated and the results, determined from 

regression equation of the calibration curve (y=6.781x, R2=0.997), were expressed as mg gallic acid equivalents per g of 

the sample. In this method, 125 µL of the sample extract diluted 10–75 times with deionized water (to obtain 

absorbance in the range of the prepared calibration curve) was mixed with 0.5 mL of distilled water with the addition of 

125 µL of 3-fold-diluted Folin–Ciocalteu phenol reagent and it was shake. After 6 min, 1.25 mL of 7.5% sodium 

carbonate solution and 1 mL of distilled water were added to the mixture. The mixture is allowed to stand for 90 min 

and blue color formed is measured at ʎ 760 nm using a spectrophotometer. The blank was prepared at the same way but 

with the distilled water (125 µL).  

The detection of anthocyanins was performed according to previously paper from Troise et al., 2014. The detection of 

anthocyanin was performed by extraction of 400 mg lyophilized sCBL and lyophilized Galdieria biomass grown on 

sCBL and in Allen medium in 12 mL of MetOH / water (70:30 v /v). After 30 min of mixing, the samples were 

centrifuged (4000 g at 4° C for 10 min). The supernatant filtered with a 0.45µm filter was centrifuged for a second time 

at 14.800g for 10 min at 4° C. Finally, 10 μL was injected into the LC-HRMS system. Anthocyanins separation was 

performed on a U-HPLC Accela system 1250 (Thermo Fisher Scientific, Bremen, Germany) consisting of a degasser, a 

quaternary pump, a thermostated autosampler (10 °C) and a column oven set at 30 °C. Mobile phase A was 0.1% 

formic acid and mobile phase B was 0.1% formic acid in acetonitrile; the separation was achieved by using a Gemini 

C18 column (150 x 2.0 mm, 5.0 μm; Phenomenex, Torrance, CA) and the following gradient flow (300 μL/min) of 

http://www.sciencedirect.com/science/article/pii/S0308814605007296#bib24
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solvent B (min/%B): (1/5), (2/15), (4/15), (8/90), (12/90) was used. The autosampler needle was rinsed with 800 μL of 

acetonitrile/ water (70/30, v/v) before each injection. The Exactive Orbitrap HRMS system (Thermo Fisher Scientific, 

Bremen, Germany) was equipped with a heated electrospray interface operating in the positive ion mode and scanning 

the ions in the m/z range of 60−1200. The resolving power was set to 50000 full width at half-maximum (FWHM, m/z 

200), resulting in a scan time of 1 s. The automatic gain control was used to fill the C-trap and gain accuracy in mass 

measurements (balanced mode, 106 ions); maximum injection time was 100 ms. The interface parameters were as 

follows: spray voltage, 3.5 kV; capillary temperature 275 °C and heather temperature at 200 °C, capillary voltage, 30 V 

; skimmer voltage, 14 V; sheath gas flow, 30 (arbitrary units); and auxiliary gas flow, 15 (arbitrary units). Prior 

anthocyanins determination, the instrument was externally calibrated by infusion with a positive ions solution that 

consisted of caffeine, Met-Arg-Phe-Ala (MRFA), Ultramark 1621, and acetic acid in a mixture of 

acetonitrile/methanol/water (2:1:1, v/v/v) in order to guarantee the best analytical conditions. Reference mass (lock 

mass) of diisooctyl phthalate ([M + H]+, exact mass = 391.28429) was used as recalibrating agent for positive ion 

detection. Anthocyanins were detected by using an in-house database developed according to compounds list reported 

in phenol-explorer www.phenol-explorer.eu (Rothwell et al., 2013; Neveu et al., 2010). Specific m/z ratios were 

included in Exact Finder (Thermo Fisher Scientific, Bremen, Germany) and the following parameters were selected: 

signal to noise ratio higher than 5, area threshold higher than 10000, mass tolerance up to 5 ppm.  

Chemicals for the Anthocyanins detection: Acetonitrile and water for LC/HRMS determination were obtained from 

Merck (Darmstadt, Germany); formic acid was purchased from Sigma-Aldrich (St. Louis, MO). The calibration 

solutions (see “Anthocyanins detection” section) were obtained from Thermo Fisher Scientific (Bremen, Germany). 

 

2.5 In vitro digestibility of G. sulphuraria biomass 

The total digestibility of dried biomass produced was assessed following the method described in Minekus et al. (2014), 

that in vitro simulated the conditions of in vivo digestion (enzymes involved, pH, temperature, incubation time, fluids of 

the gastrointestinal tract)carrying out the digestion three phases: oral, gastric and intestinal. The fluids of the 

gastrointestinal tract such as salivary (pH 7), gastric (pH 3) and intestinal (pH 7.5) have been formulated as previously 

described (Minekus et al.,2014).The experiment were carried out in triplicate on 2.5 g of lyophilized biomass of G. 

sulphuraria grown in SM and sCBL. Firstly, 1.75 mL of the Simulated Salivary Fluid (SSF) solution was added to the 

sample; the mix was minced. 0.25 mL of α-amylase solution (1500 U/mL di SSF), 12.5 µL of CaCl2 0.3 M and 487.5 

µL of water were added. The samples were incubated for 2 min at 37 ° C under stirring. Subsequently, 5 mL of the 

sample from the salivary phase, were added to 375 mL of Simulated Gastric Fluid (SGF), 0.8 mL pepsin solution 

(25000U mL-1SGF), 2.5 µL of CaCl2 0.3 M, 0.1 mL hydrochloric acid to reach pH 3, 0.35 mL of water and exposed to 

gastric phase.The solution have been mix to the dark at 37° C for 2 hours. Then 10 mL of the sample from the gastric 

phase, were exposed to the intestinal phase. To 10 mL of gastric chyme (partially digested food) were added 5.5 mL of 

Simulated Intestinal fluid(SIF), 2.5 mL of pancreatic solution (800 U mL-1of SIF), 1.25 mL of bile solution (6 mgmL-

1of SIF), 0.02 mL of CaCl2 0.3 M, 0.075 ml of NaOH 1M (to reach pH 7) and 0.65 mL of water. The solution have been 

in agitation in the dark at 37° C for 2 hours. At this point, the solution (20 mL) was centrifuged at 4000 rpm for 10 min 

at 4°C. The soluble and insoluble fractions were divided, weighed, frozen at -40 ° C for subsequent analysis of 

antioxidant activity (AA) described in the next paragraph. 

The total digestibility was evaluated utilizing the gravimetric method for the determination of the soluble fraction (g) 

after digestion in vitro, and the quantity (g) of the initial sample. 

The quantities were expressed as dry weight: 

 

D = 
% soluble fraction ( g ) 

sample start ( g )
 * 100     (2) 

 

2.6 Antioxidant Activity  

2.6.1 ABTS method  

The AA of the soluble fractions, after in vitro digestion, and on water extract of whole biomass was determined using a 

direct measurement of ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6- sulfonic acid). Antioxidant capacity assay was 

carried out using an UV–VIS recording spectrophotometer (HACH –Milano- DR 2400) by the improved ABTS+method 

as described by Re et al. (1999). ABTS+ radical cation was generated by reacting 7 mM ABTS and 140 mM potassium 

persulfate after incubation at room temperature (23°C) in dark for 16h.  

The ABTS+solution was diluted with ethanol to an absorbance of 0.70±0.05 at ʎ 734nm. The filtered sample was 

diluted with 70% methanol soas to give 20–80% inhibition of the blank absorbance with 0.1mL of sample. 1mL of 

ABTS+solution (with absorbance of 0.70±0.05) was added to 0.1mL of the tested samples and mixed. The reactive 

mixture was allowed to stand at room temperature for 2.5 min and the absorbance was immediately recorded at 734nm. 

Trolox standard solution (final concentration 0–15μM) in methanol was prepared and assayed at the same conditions. 

The absorbance of the resulting oxidized solution was compared to that of the calibrated Trolox standard. Results were 

expressed in terms of Trolox equivalent antioxidant capacity (TEAC, mmol Trolox equivalents per 100g dry weight of 

sample). On the in soluble fractions AA was assessed with ABTS Quencher method (Serpen et al., 2007; Vural et al., 

2009).  

 

http://www.phenol-explorer.eu/
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2.6.2 DPPH method 

The AA of the soluble fractions, after in vitro digestion, was measured also through the DPPH method (Brand-

Williams, 1995).The stock solution was prepared with 20 mg of DPPH (2,2-diphenyl-1-picrylhydrazyl) and 50 mL of 

methanol. The "working solution" (ws) was obtained by combining the stock solution (DPPH/methanol 20mg/50mL) to 

methanol, 1:10 ratio. The absorbance of the ws was at ʎ 517 nm equal to 0.9±0.2. The ws was utilized for the test: 1 mL 

of ws was added to 0.2 mL of sample, for the blank was used the same quantity (assay with distilled water). The 

reactions were carried out in triplicate for each sample and for each blank. After 10 min, the absorbance at 517 nm was 

measured for each sample. The percentage of inhibition was calculated: 

% Inhibition = [(1-Abs sample) / Abs blank]*100 

The AA was expressed in Trolox equivalent, used for the system calibration. The values of inhibition percentage were 

replaced in the equation of the calibration curve, obtained by measuring the absorbance of solutions of Trolox a known 

concentration, so can obtain values expressed in μmol Trolox equivalent L-1 of the sample. On the insoluble fractions 

the DPPH AA was assessed following the Quencher modification of Gokmen et al. (2009).  

 

3. Results and discussion 

3.1 Spent brine cherry liquid composition and ecotoxicity 

The chemical composition of sCBL were showed in table 1. It was characterized by low pH and a high dry matter 

content of 88.4 g L-1. The higher N content was in the form of NO3-N and the total P was 30.10 mg L-1, with an N:P 

ratio of 0.4, very low and not sufficient to sustain the microalgae growth. To utilize sCBL as microalgae growth 

medium before preliminary tests and batch production the N concentration was adjust adding NH4Cl until to reach a N 

concentration as in SM. 

The sulphates SO4
2- concentration was of 162 mg L-1 with a S content of 54.1 mg L-1. The TOC was 10.8 g L-1 showing 

an increase of 3.8 times respect the initial concentration in cherry-brine liquid (2.81 g L-1 due to acid citric) and strictly 

correlate to the sugars release from cherries (essentially as glucose, fructose and sorbitol) (Park et al., 1997). In the SM 

the N and S source was represented by (NH4)2SO4 applied at a final concentration of 1.32 g L-1, with a [N] of 280 mg L-

1, and a [S] of 320 mg L-1, values higher respect sCBL composition (table 1). Also the [P] was higher (110 mg L-1), 

showing a N:P ratio of 2.5, lower than sCBL after NH4Cl addition (9.3), where P was a limiting nutrient. The SM 

organic carbon source was the glucose at a concentration of 30 g L-1 with a TOC of 12g L-1. Both in sCBL that in SM 

for the pH adjustment it was added sulfuric acid, which induced an addition in S content equal to 1.34g L-1. After pH 

adjustment at 1.5 the sCBL color changed from yellow to red due to anthocyanin presence, released by cherries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given the impossibility to perform a complete chemical characterization of sCBL and to evaluate the microalgae 

phytoremediation activity, it was decided to perform ecotoxicity tests before and after the Galdiera growth on sCBL. 

Before growth the sample showed an EC50 value ranging from 5.49 to 5.56% (v/v) for P. subcapitata, that was the 

most sensible organism, while D. magna showed an EC50 of 18.86 % (v/v) ranging from 17.5 to 19.37.  

The sCBL chemical composition for the parameters analyzed resulted adapted to grow in heterotrophy G. sulphuraria, 

when compared to the SM, with the only exception of N concentration. It is important to underline that the sample 

showed a very high COD and a BOD5 of 1200 mg L-1 O2 (table 1), that prohibit it disposal into surface water bodies 

and sewage (D.L.152/06) as also confirmed by ecotoxicity results obtained in the present research.  

The high COD value, respect BOD, showed very low biodegradability of sCBL, strictly correlated to the low pH and 

high sulfur dioxide content, acting as an inhibitor of most yeasts, molds, and bacteria, avoiding the natural sugar 

oxidation.  

 

3.2 Preliminary lab scale growth test and pilot scale production 

The results obtained from the preliminary test showed that at all dilutions of sCBL tested, the growths were not 

statistically different respect the SM (Fig. 1), underlying the no-toxic chemical profile of sCBL against Galdiera and its 

Table 1. Chemical and physical parameters 

of raw sCBL 

Parameters Value 

pH 4.2 

Total Suspended Solid (gL-1) 0.64 

Dry matter (gL-1) 88.4 

NH4-N(mgL-1) 1.15 

NO3-N(mgL-1) 11.0 

NO2-N(mgL-1) 0.3 

P total(mgL-1) 30.10 

TOC (gL-1) 10.8 

Sulphates SO4
2-(mgL-1) 162 

BOD (mgL-1 O2) 1200 

COD (mgL-1 O2) 65000 
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reuse in terms of nutrients and water. The microalgae reached a concentration of 10.2±0.6 g L-1 DW on the 16th day of 

cultivation in SM and values ranching between 9.5-9.9 g L-1 DW in sCBL at different dilutions tested. Graverholt and 

Ericksen (2007) reported, for different strains of G. Sulphuraria growth in batch and fed-batch, maximal biomass dry 

weight concentration between 4.6-109 g L-1 at different glucose concentration (ranging from 10 to 500 g L-1) and at 

temperature higher than our (42°C). Our results are in line with literature data if it was considered the lower temperature 

applied during the growth experiments (26°) and selected to reduce the energy heating input and the evaporation 

process of culture. The production process sustainability has been a key point of this research. Differently from what 

reported in literature for microalgae heterotrophic production in the preliminary test was evidenced a long lag phase of 

about 6 days (fig.1) before start the exponential phase as yet observed by Graverholt & Eriksen (2007) (4 days), 

probably due to the reproductive process of this heterogenic size strain, where an increase in little cells number not 

correspond an weight increase.  
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Figure 1. G. sulphuraria growth curves obtained in the preliminary test at different dilution factors of sCBL (20, 40, 60, 

80 and 100% v/v) in SM. Increase in dry weight (g L-1) in the cultivation days. The function that best fit raw data was a 

Growth/Sigmoidal: Logistic 𝑦 =
𝐴1−𝐴2
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The N and P removal efficiency in sCBL, evaluated after 16 days of culture, were respectively of 97.85% and 98.23%, 

with a final concentrations of 8.02 mg L-1for N and of 1.05 mg L-1for P. A BOD5 reduction of 80% (240 mg L-1 O2) and 

a COD reduction of 60% (26.000 mg L-1 O2) were evaluated. Whit microalgae growth some sCBL parameters as N and 

P content and BOD5 and COD decreased, but only for N and P concentrations until values that make the wastewater 

downloadable in sewerage system and into surface waters. A 240 mg L-1 O2 of BOD5 is enough only to discharge in 

sewer, but the COD is yet enough high requiring others treatment before its disposal as required by Italian D.L. 152/06. 

The ecotoxicity tests repeated after Galdieria growth showed a reduction of EC50 for both species involved in the test: 

the EC50 of chronic test with P. subcapitata decreased of 50%, whilethe EC50 of acute test with D. magna decreased of 

45% underlying the phytoremediation activity of microalgae. 

Data on G. sulphuraria grown on wastewaters are very scarces. Selvaratnam et al. (2014) evaluated the growth and 

nutrient removal efficiency of G. sulphuraria grown on primary wastewater effluent in mixotrophic condition in seven 

days assessing an NH3-N removal efficiency of 88.3% and for PO4 of 95.5% value in line with our results.  

For batch production, the dilution of sCBL chosen was 100% (v/v) because in the preliminary test it induced a 

microalgae growth not statistically different from the control and the others dilutions tested and in the way to obtain a 

complete reuse of water. Two different organic carbon sources in SMs (Allen) were applied: one was glucose (30g L-1) 

and the other citric acid (7.5 g L-1). In this case, the microalgae growth was expressed in terms of dry weight and cell 

density (cell mL-1), due to the heterogeneity of cell dimension, characteristics of this strain. Kuroiwa et al.(1989) 

described the life cycle of Cyanidium caldarium, to date reclassified as G. sulphuraria (SAG strain information): a large 

mother cell of the I-type divides to form 16 endospore cells; the young cell increases in volume after the initiation of 

synchronous culture and reaches about 16 times the initial volume of the young cell. As the volume of the I-type cell 

does not change 48 h after the initiation of synchronous culture, the daughter cells decrease stepwise in volume after 
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each endospore division. Patterns of quantitative changes similar to that in cell volume are observed in the size of the 

chloroplasts and the spindle of the cell nucleus, and in contents of chloroplast DNA and pigments (Kuroiwa et al., 

1989). The cells size reported in literature (Albertano et al., 2000) were between 3-11µm. 
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Figure 2. G. sulphuraria batch production in sCBL 100% (v/v) and in two SM (Allen+glucose 30gL-1and Allen 

+citric acid 7.5gL-1): increase in cell density(cell mL-1) in the cultivation days. 

 

In the SM (Allen medium + glucose), the productivity was 0.760.03 g L-1day-1, value statistically different and higher 

respect sCBL productivity (0.570.04 g L-1day-1), also if the cell numbers for mL was higher in sCBL respect SM. In 

fact under microscope 40X in sCBL the cells were very little respect the control and as indicated by results also lighter 

(photo 1). In Allen medium with citric acid (0.75%), the productivity was the lowest with a value of 0.030.01 g L-1day-

1, indicating that the microalgae growth in sCBL was supported not only by acid citric utilized in the preparation of 

cherry-brine liquid but also sugars released by cherries during their permanence time and that contributes to the BOD of 

the brine and the problems of waste disposal (Wrolstad, 2009).  

The C:N ratio is an important parameter in microalgae production and lowest ratio was measured for Allen + 7.5 g L-

1citric acid (10) respect the SM (43) and sCBL (39), indicating organic C limitation, while in sCBL it was observed a 

very high N:P ratio of 9.3 respect SM (2.5) underlying P limitation. 

Galdieria showed a good growth performance despite the heterogeneity of cellular dimension (fig. 2). Literature data on 

heterotrophic biomass productivity of G. sulphuraria are variable on the basis of the concentration and form of organic 

carbon source utilized and growth parameters applied in particular temperature: a biomass productivity ranging from 

9.5-50 g L-1day-1 can be assumed for G.sulphuraria cultivated in different conditions as reported by Graverholt and 

Eriksen (2007) and confirmed by Barclay et al. (1994) and Behrens (2005) for Martek operations with others 

heterotrophic microalgae species (Alabi et al, 2009). 
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 Photo 1. Cellular dimension of G. sulphuraria grown in sCBL (A) and in SM (B) 

 

3.3Macronutrient composition 

The chemical composition of Galdieria biomass growth in SM and sCBL was showed in table 2 and demonstrated to be 

influenced from medium growth composition. The biomass obtained in SM presented as main component, the 

carbohydrates’ fraction (52.3%), followed by protein content (32%) in line with data reported also for another strain of 

G. sulphuraria by Graziani et al. (2013 ) with a higher carbohydrates’ fraction of 69% and a lower protein content of 

26.5%. The carbohydrates’ fraction and protein content were also in agreement with value reported by Harun et al. 

(2010) on another rhodophyta microalgae species (not Cyanidiales) as Porphyridium cruentum, that showed a mean 

protein content of 28-39% and 40-57% of carbohydrates fraction.  

The lipid % assessed in this research is slightly higher respect literature data for this species (Graziani et al., 2013) but 

generally lower for that reported for other microalgae, indicating also as main storage nutrient the carbohydrate fraction. 

The sCBL biomass respect SM showed adecrease in proteins (of about 31%) and in lipids (of 40%), with an increase in 

carbohydrate content of about 12% and in polyphenols (5.3 vs 1.6 mg g-1). 

It is known that Galdieria accumulate storage glycogen (α-glucan) (Stadnichuk et al., 2007; Shimonaga et al., 2008), 

which is distinguished from the semi-amylopectin type of α-glucan, called floride an starch, in red algae (Sheath et al., 

1979; Nakamura et al., 2005; Shimonaga et al., 2008, Sakurai et al., 2016). Sakurai et al. (2016) observed that in 

heterotrophic cultures of G. sulphuraria, cellular glycogen content increased with the glucose addition in the culture 

medium. Our results of increase carbohydrates’ fraction when cells were grown in sCBL were strictly correlate to the 

sugars released from cherry in sCBL. In fact previous studies showed that G. sulphuraria can use various carbon 

sources for its growth (Seckbach and Baker, 1970; Gross and Schnarrenberger, 1995; Kurano et al., 1995; Graverholt 

and Eriksen, 2007). 

The data showed that the amounts of carbohydrates and lipids are largely regulated by growth conditions. It is known 

for autotrophic microalgae, that stress conditions due to N and P deprivation induced a reduction in protein content and 

promote the conversion of carbon dioxide fixed into energy-rich compounds such as lipids and carbohydrates (Ho et al. 

2013). An important role in heterotrophic growth was represented by the C:N ratio, that was 43 and 39 respectively in 

SM and sCBL. 

Different authors reported that the C:N ratio can influence cellular lipid content by controlling the switch between 

protein and lipid syntheses (Gordillo et al., 1998, Wen and Chen, 2003). A high C:N ratio induced an increase in lipid 

content, which is caused by nitrogen depletion in the culture. Wen and Chen (2003) reported that in heterotrophic 

cultivation of the green microalga Chlorella sorokiniana, a C/N ratio of 20 was found to indicate a change from carbon 

to nitrogen limitation (Chen and Johns, 1991). Cellular lipid content was at a minimum at this value and increased at 

both higher and lower C/N ratios (Chen and Johns, 1991). For some species as Cryptheconidium conhii (marine) and C. 

sorokiniana the accumulation of lipids may not be dependent on nitrogen exhaustion but on an excess of carbon in the 

culture media. Hence in heterotrophic cultures, lipid accumulation was attributed to consumption of sugars at a rate 

higher than the rate of cell generation, leading to conversion of excess sugar into lipids (Ogbonna and Mohemani, 

2015). In our case the C:N ratio in sCBL was little lower respect SM but the P limitation was more evident inducing in 

G. sulphuraria biomass an increase in carbohydrates as storage component and not in lipid content that in this strain 

generally was very low. 

The fatty acid profile of G. sulphuraria was characterized by palmitic, oleic and linoleic acids and a % of unsaturated 

fatty acids of 56% was assessed (table 2). In sCBL biomass was observed a reduction in palmitic acid of 12% and 

linoleic acid of 8% and an increase in oleic acid of 25% respect the biomass growth in SM. In both growth condition 

was observed a high prevalence of monounsaturated fatty acid (C18:1), that in microalgae usually was induced in 

heterotrophic growth condition as also reported for Chlorella zofingiensis (Liu et al., 2011), and probably related to a 

decrease of thylakoid structural lipids, occurring in the algae grown in the dark. In agreement with Sakurai et al. (2015), 

Lang et al., (2011) and Graziani et al (2013) long-chain fatty acids were not found in G. sulphuraria. 

The assessed ratio of mono/polyunsaturated in sCBL was about 3:1, while in SM was 2.2:1.  

In G. sulphuraria under heterotrophic conditions in SM, the unsaturated/saturated ratio reported in literature was about 

five (Graziani et al., 2013), while we assessed a different ratio of 2:1 in SM and 2.6:1 in sCBL due to the different 

growth conditions applied. Although, the data of G. sulphuraria fatty acid profile, are very few, our results confirm the 

ratio unsaturated/saturated reported for other microalgae (Gouveia and Oliveira, 2009). A C/N ratio also affects fatty 

A B 
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acid composition. Chen and Johns (1991) found for C. sorokiniana that a low C/N ratio favoured a high proportion of 

unsaturated fatty acids, as observed also from our results (tab. 2). 

These results confirmed that microalgae are metabolically very flexible and their total lipid concentration as well as 

fatty acid composition can change significantly depending on the strain, on culture medium composition and on the 

growth conditions applied (Buono et al., 2014). 

Regarding the possible use of the whole G. sulphuraria biomass, the low amount of total lipids and the limited 

percentage of polyunsaturated fatty acids can positively influence the storage time, limiting the oxidative degradation, 

which is usually a relevant problem when microalgae are incorporated in foods (Ryckebosch et al., 2011).  

 

 

Table 2. Main fatty acids (%) profile of G. sulphuraria cultivated in SM and sCBL 

Fatty acid (%) SM sCBL 

C14:0 0.32±0.1 0.52±0.03 

C16:0 19.86±0.02 17.46±0.16 

C18:0 7.77±0.03 7.07±0.5 

C18:1 38.34±1.05 47.84±1.12 

C18:2 17.83±1.13 16.41±1.09 

% Saturated 27.95 25.05 

% Unsaturated 56.47 64.25 

 

 

A qualitative analysis of anthocyanin was performed both on Galdieria biomass grown in sCBL and SM, and on 

lyophilized sCBL before growth experiment. 

In Galdieria grown on SM was observed the absence of anthocyanin, while in sCBL before growth experiment and in 

Galdieria growth in sCBL the presence of different anthocyanins was assessed (figure 3). The anthocyanin identified 

were showed in Table 3 with the respective mass error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Measured areas of antocyanin after methanol/water extract in sCBL (A) and Galdiera biomass grown in sCBL 

(B) 
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Table 3: Compounds identified by using Exact Finder and phenol-explorer. The mass accuracy (Δppm) was calculated 

dividing the mass error (i.e.: the difference between the theoretical mass and the experimental mass) by the theoretical 

mass. The results were reported in ppm by multiplying by 106. 

Compound Name Formula m/z 

(Expected) [M]+ 

m/z 

(Measured) [M]+ 

m/z  

(Δppm) 

Cyanidin C15H10O6 287.0550 287.0550 -0.07 

Cyanidin3-O-(6''-acetyl-galactoside) C23H22O12 491.1184 491.1164 -4.0892 

Cyanidin 3-O-(6''-acetyl-glucoside) C23H22O12 491.1184 491.1164 -4.0892 

Cyanidin 3-O-(6''-succinyl-glucoside) C25H24O14 549.1239 549.1224 -2.7427 

Cyanidin 3-O-arabinoside C20H18O10 419.0973 419.0962 -2.5807 

Cyanidin 3-O-galactoside C21H20O11 449.1078 449.1078 -0.1104 

Cyanidin 3-O-glucoside C21H20O11 449.1078 449.1078 -0.1104 

Cyanidin 3-O-rutinoside C27H30O15 595.1657 595.1648 -1.5986 

Cyanidin 3-O-xyloside C20H18O10 419.0973 419.0962 -2.5807 

Delphinidin 3-O-galactoside C21H20O12 465.1028 465.1032 1.0508 

Delphinidin 3-O-glucoside C21H20O12 465.1028 465.1032 1.0508 

Malvidin 3-O-arabinoside C22H22O11 463.1235 463.1230 -0.9519 

Pelargonidin C15H10O5 271.0601 271.0604 0.9740 

Pelargonidin 3-O-galactoside C21H20O10 433.1129 433.1125 -0.9345 

Pelargonidin 3-O-glucoside C21H20O10 433.1129 433.1125 -0.9345 

Pelargonidin 3-O-sambubioside C26H28O14 565.1552 565.1570 3.2943 

Pelargonidin 3-O-sophoroside C27H30O15 595.1657 595.1669 1.9907 
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Peonidin C16H12O6 301.0707 301.0708 0.3516 

Peonidin 3-O-arabinoside C21H20O11 449.1078 449.1075 -0.7899 

Peonidin 3-O-galactoside C22H22O11 463.1235 463.1230 -0.9519 

Peonidin 3-O-glucoside C22H22O11 463.1235 463.1230 -0.9519 

Peonidin 3-O-rutinoside C28H32O15 609.1814 609.1828 2.3045 

Petunidin 3-O-arabinoside C21H20O11 449.1078 449.1078 -0.1104 

Petunidin 3-O-rutinoside C27H30O15 595.1657 595.1669 1.9907 

Vitisin A C26H24O14 561.1239 561.1255 2.8634 
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In fact Chaovanalikit and Wrolstad (2004) observed that about half of the 

polyphenolics of cherries were leached into the brine solution, suggesting 

the application of cherry-processing wastewaters as potential sources for 

natural colorants, nutraceuticals and natural antioxidants and anti-

inflammatory (Wang and Stoner, 2008; Blando et al., 2004). In line with 

our results Mozetic and Trebse (2004) showed as main anthocyanins in 

cherries Cyanidin 3-O-glucoside (Cy 3-glc) and Cyanidin 3-O-rutinoside 

(Cy 3-rut). 

In figure 3 the relative measured areas of anthocyanins for sCBL and 

Galdieria grown in sCBL were reported. The measured area of glycosylated 

derivatives of cyanidin, pelargonin, petunidin, peonidin were summed to 

assess the relative amount in the two samples. The anthocyanin presence in 

Galdieria biomass grown in sCBL is a very interesting aspect even if the 

absorption was not clear (inside cells, outside on surface attachment or only 

for dragging during biomass harvesting), but as indicated in the graph the 

anthocyanin profile in the two samples is equal indicating an bio-

accumulation in microalgae biomass. In this way the biological activity of 

G. sulphuraria and its possible application in food, feed and cosmetician 

can be improved and enriched. Literature data on microalgae anthocyanin 

assimilation are scarce.  

Jelinek et al. (2015) observed the biosorption of polyphenols on the surface 

of Chlorella vulgaris non living cells apparently hardly correlated by 

molecular polyphenol structure. Other authors as Sherman et al. (1991) and 

Ismail et al. (2013) reported that some microalgae (Chlorella, 

Stigeoclonium, Microspora, Ulva and Spirogyra) metabolized polyphenols 

through polyphenol oxidase enzyme, while Kunamneni et al. (2007) 

observed that white rot fungi like Pleurotus present a group of enzymes 

(e.g. laccase, manganese, peroxidase, veratryl alchol oxidase), that have the 

ability to metabolize and degrade polyphenolic compounds.  

 

3.4 In vitro total digestibility and antioxidant activity (with DPPH and 

ABTS methods)  

About microalgae digestibility, it is important to underline that many 

microalgae species showed a thick polysaccharide/cellulosic cell wall, 

representing about 10% of the algal dry matter. The intact cell wall posed 

serious problems in the downstream process as well as in the use as 

food/feed, since they are difficult to digest for humans and other non-

ruminants (Buono et al., 2014) and the technological system applied for 

drying can act on wall cells disrupt and microalgae digestibility. 

Digestibility improved through the introduction of the technology of spray-

http://phenol-explorer.eu/compounds/9
http://phenol-explorer.eu/compounds/10
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drying, and also quick blanching at over 100°C. Digestibility of Chlorella 

powder in the human body is presently assumed to be ca. 80%. Chlorella 

cells broken by a mill are known to have a slightly higher digestibility than 

non-broken Chlorella, but the difference may not be significant (Becker et 

al., 2004). Our sample were lyophilized and the total digestibility of 

Galdieria grown in SM and sCBL assed using INFOGEST protocol was 

79.3±5.8% and 63.4±8.1%, respectively. Galdieria total digestibility was in 

line with literature data for other microalgae strains(Becker 

&Venkataraman,1982) and the reduction digestibility for sCBL can be 

attribute to major ash and carbohydrates content (table 4).  

 

 

Table 4. Chemical composition of 

Galdiera biomass growth in SM 

(Allen + 30gL-1) and in sCBL 

Nutrients (mg 

g-1) 

SM sCBL 

Proteins 320±5.5 220±6.4 

Lipids 77±1.1 46±3.2 

Carbohydrates 523±6.3 584±1.3 

Polyphenols 1.6 5.3 

Ash 80 150 

 

 

The in vivo digestibility of algae is not well documented, and the available 

studies on their assimilation by humans have not provided conclusive 

results. However, several authors have described a high rate of algal protein 

degradation in vitro by proteolytic enzymes such as pepsin, pancreatin, and 

pronase (Mabeau and Fleurence 1993). 

Mišurcová et al., (2010) evaluated the total digestibility (TD) of different 

kind of microalgae simulating in vitro the human digestion applying 

different methods in which used as enzyme only pepsin, only pancreatin and 

pepsin and pancreatin. They observed an efficiency of digestibility in the 

following order: pancreatin>pancreatin/pepsin > pepsin.  

In the blue-green microalgae they assessed a TD between 71.4 and 81.9 %, 

for the green microalgae the TD was 78.6 - 60.9 %, for the red microalgae 

the TD was between 77.6- 80.3% and for the brown microalgae the TD was 

between 58.4 and 60.3 %. The TD of red macroalgae analyzed ranging 

between 87.4-84.9% for Porphyra tenera and 65.9-73.2 % for Palmaria 

palmate, data in line with our results. 
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The innovative material and methods applied to evaluate TD was 

INFOGEST (Minekus et al., 2014), that received international consensus, 

and was developed to overcome some difficulties in the digestibility 

evaluation of different matrices, as expensive human trials and the high 

variability of “in vitro” test utilized, that usually obstruct to compare results 

across research teams.  

The polyphenol content for the control was 1.6 mg gallic acid g-1 and for the 

G. sulphuraria grown in sCBL was 5.3 mg gallic acid g-1. At the moment, 

there are no data in the literature on the total phenolic content of 

G.sulphuraria. 

Goirisi et al. (2012) evaluated the phenolic content of 32 different 

microalgae strains evaluating a mean phenolic content of 2.11 mg GAE g-1 

DW; in particular they observed the highest content of 4.57 mg GAE g-1 

DW for Isochrysis sp. and the lowest 0.54 mg GAE g-1 DW for 

Haematococcus pluvialis in red phase. The only red microalgae phenolic 

content reported was of 1.22 GAE g-1 DW for Porphyridium cruentum with 

a value in line with our results for biomass grown in SM. Clearly, the higher 

polyphenol content observed for G. sulphuraria biomass produced in sCBL 

is strictly correlate to the raw composition in anthocyanin of sCBL as before 

discussed. 

There are only few published studies regarding the identification and 

quantification of phenolic composition in microalgae species and very 

interesting was the research carried out by Safafar et al. (2015) that 

analysed the phenolic compounds and quantity in microalgae grown in 

municipals wastewaters autotrophically.  

In UPLC-MS/MS study, simple phenolics and hydroxycinnamic acids 

(ferulic acid and p-coumaric acid) were detected in Chlorella vulgaris, 

Haematococcuspluvialis, Diacronema lutheri, Phaeodactylum tricornutum, 

Tetraselmis suecica, and Porphyridium purpureum microalgae species 

(Goiris et al., 2014).  

The Antioxidant capacity (TEAC) of G. sulphuraria biomass grown in SM 

and in sCBL was of 29.0 mmol kg-1 and of 42.2 mmol kg-1, respectively. 

The high value observed in biomass growth in sCBL is strictly correlate to 

the higher concentrations of polyphenols (table 4) (in particular 

anthocyanin), molecules well known in the literature for their antioxidant 

activity.  

Graziani et al., 2013 reported an antioxidant activity absolute value for G. 

Sulphuraria biomass of 5.6 mmolkg-1, very low respect our data. At the 

moment, there are no data in the literature on the antioxidant capacity of G. 

sulphuraria or other Cyanidiales. 
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Goirisi et al. (2012) evaluated the antioxidant capacity of antioxidant 

extracts of 32 different microalgae strains applying ABTS assay and 

observing data from 4.55 to 69.4 μmol trolox eq. g-1 DW, with a value of 

5.14 for Porphyridium cruentum, very low respect our results. 

The release of AA during the digestion was evaluated applying two 

different methods. In the soluble fraction, the release of the antioxidant 

activity, according to the DPPH method, was significantly higher during the 

intestinal phase for sCBL and salivary phase for SM (fig. 3A), while the 

release of the antioxidant activity according to the method ABTS is 

significantly higher during the gastric phase for SM and intestinal phase for 

sCBL (fig. 3B). In the insoluble fraction, the release of AA according to the 

DPPH Quencher method was significantly higher during the intestinal phase 

for both samples, while there were no statistically differences in the release 

of the antioxidant activity according to the method ABTS during the three 

digestion phases for insoluble fractions. 

In the salivary and gastric phases, the antioxidant activities of the soluble 

and insoluble fraction of Galdieria grown in SM and in sCBL, evaluated 

with DPPH and ABTS methods, were no statistically different. In the 

intestinal phase, with DPPH method, the values were statistically different 

both for the soluble fraction (SM 24.8 ± 0.5; sCBL 271±5.3 mmol TE kg-1) 

and for the insoluble fraction (SM  48±7.0; sCBL 40±0.9 mmol TE kg-1) 

(fig. 4).  

The highest values generally observed with ABTS methods respect DPPH 

were also found by Shalaby and Shanab (2013) for S. platensis and by 

Thaipong (2006) for guava fruit extracts.  

At the moment, there is no data on Galdieria biomass antioxidant activity 

release during in vitro digestion. Carfagna et al. (2014) reported the effect 

induced by a diet of 10% of Galdieria on oxidative damage and metabolic 

changes elicited by acute exercise in rats, observing a reduction of oxidative 

damage and mitochondrial dysfunction, made it potentially useful even in 

other conditions leading to oxidative stress, including hyperthyroidism, 

chronic inflammation, and ischemia/reperfusion. 

The high release of AA at the end of in vitro digestion (intestinal phase) can 

be strictly related to the higher total polyphenol content in Galdieria grown 

in sCBL, as reported for digested jackfruit and araticum by Pavan et al. 

(2014). 

 

 

http://www.sciencedirect.com/science/article/pii/S0889157506000081
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Figure 4. Antioxidant activity (mmol TE kg-1) evaluated with DPPH (A) 

and ABTS (B) methods of soluble and insoluble fraction of salivary, gastric 

and intestinal digestion 
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4. Conclusion  

G.sulphuraria showed a good growth performance in sCBL, that was found 

to be a good and cheap alternative fertilizer for this microalgae, allowing a 

complete water recovery. The produced biomass presented a lower 

productivity respect the control for the different ratio of C:N:P of sCBL and 

the chemical composition of biomass showed to be influenced by chemical 

composition of growth medium. Very interesting was the higher polyphenol 

content and antioxidant activity of sCBL biomass. 

The highest antioxidant activity of biomass produced in sCBL is due to the 

high content of polyphenols, in particular anthocyanins, that were 

assimilated in a way not known from sCBL as indicated also by red color of 

biomass.  

Galdieria grown in SM showed a high digestibility (79%) in line with value 

indicated for Chlorella, while sCBL biomass probably also for its ash and 

carbohydrates content showed a total digestibility of 63%. The max release 

of antioxidant activity was observed for sCBL biomass for soluble fraction 

at intestinal phase with both determination methods applied and for SM 

biomass with ABTS method in gastric phase for soluble fraction, and with 

DPPH Quencher method at intestinal phase for insoluble fraction and at 

salivary phase for soluble fraction. These data are very interesting in the 

elaboration of nutraceutical products with specific activity to undress to 

target organ. 

According to data of this paper, the production cost of Galdieri with sCBL 

can be strongly reduced avoiding the use of expensive C organic source. 

The environmental toxicity of sCBL as indicated from N and P removal 

efficiency and BOD5 and COD reduction was interesting, but the COD is 

yet enough high requiring others treatment before its disposal in surface 

water bodies or sewage as required by Italian D.L. 152/06. The ecotoxicity 

tests repeated after Galdieria growth showed a reduction of ecotoxicity of 

about 45% for both species involved in the test. 

The growth in heterotrophy not reached high cell density as reported in 

other research for low culture temperature (26°) applied with the aim to 

reduce at minimum the heating energy cost and the evaporation process of 

culture, that substantially increase the environmental and economic 

sustainability of biomass production. Furthermore at this growth 

temperature the G sulphuraria aqueous extract showed interesting 

cosmetician activity (anti-acne) (data not shown) as indicated by an existing 

patent (MI2014A 000186), developed by Italian company and our research 

team, and that has aroused the interest of many international cosmetic 

companies.  
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G. sulphuraria obtained in sCBL can be used to develop new food 

ingredients, and thanks to its macro and micronutrient profile, it can be used 

to design food preparations and to extract some high value phytochemicals 

(pigments, anthocyanin). Additionally microalgae cultivation on food 

industry by-product would be a socially responsible way to reintroduce food 

wastes in the food chain. 
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Chapter 3: Biological treatment of liquid digestate: the potential of microalgae.  

 

Abstract 

 

The present work evaluated the potential of two freshwater microalgae (S. obliquus, B. braunii), a marine diatom (P. 

tricornutum), and a photosynthetic cyanobacterium (A. maxima) to grow metabolizing the nutrients from Liquid 

Digestates (LDs). The LDs were obtained from anaerobic digestion of different organic wastes: zootechnical (LDA), 

vegetable biomass (LDB) and organic fraction of municipal solid wastes (LD C). In bacth experiements LD A induced 

the best growth performance with a growth rate not statistically different from the control using standard media (SM) 

for S. obliquus (0.14±0.02 vs 0.15±0.02 g/L/day) and B. braunii (0.24±0.01 vs 0.2±0.04 g/L/day), while A. maxima and 

P.tricornutum reached a growth rate of 0.2±0.03 and 0.15±0.02 g/L/day, respectively in LDB. LDC gave good 

performances as a growth medium only using A. maxima. 

A.maxima and S. obliquus showed the best NH4
+-N removal efficiency with value ranging between 98.9-99.8 %, while 

P. tricornutum and B. braunii exhibited values of 79.0 and 88.5 % respectively. Biochemical composition of A. maxima 

and S. obliquus grown in repeated batch cultivation using photobioreactor using LDA and LDB as a medium 

replacement showed an increase of lipid, carbohydrates and ash in both microalgae. The produced biomass showed an 

interesting biochemical composition, suggesting its application in feed, chemicals and energy sectors.  

 

Keywords: microalgae, digestate, phytoremediation, biomass composition 

 

Highlights 

1. Liquid digestates, coming from anaerobic digestion (LDs) of different organic wastes, were used successfully 

as diluted microalgae growing media.  

2. A photosynthetic Cyanobacterium, two Chlorophyceae and one diatom showed good growth performances in 

liquid digestates from agro-zootechnical waste. 

3. About 100% of N from liquid digestate were removed by S. obliquus and A. maxima.  

4. Cultivation using liquid digestates gaves microalgae biomass with valuable chemical composition although 

they induced an increase in ash content up to 20%. 

 

1. Introduction 

Organic streams such as urban organic waste, vegetable by-products and animal wastes are largely used to produce 

energy by Anaerobic Digestion (AD). In AD acid and methane-forming microorganisms in absence of oxygen and in 

stable conditions, convert the organic components to methane, carbon dioxide and other compounds (Demirel and 

Yenigün, 2002). The spent by-product of AD is usually separated in a liquid (LD) and a solid digestate phases. 

Chemical composition of LD depends largely from the input biomass and often it shows high content of potassium and 

nitrogen (mainly in form of ammonium) and low levels of phosphorus and organic carbon. (Uggetti et al., 2014). LDs 

represent a treat for the environment for their eutrophication potential and require expensive treatments to lower toxicity 

and to safely dispose them. 

LDs represent a useful source of nutrients in microalgae culture lowering the needs for chemical fertilizers and 

consequently production costs. As a renewable biomass feedstock, microalgae provide several benefits respect to 

terrestrial plants such as: (1) higher biomass productivities and CO2 fixation rate, (2) possibility to be grown in arid or 

low quality lands, (3)less water consumption with possibility to use brackish and sea water, (4) no needs of herbicides 

or pesticides, (5)accumulation of lipids which can be extracted and converted to biodiesel (Chisti, 2007), (6) production 

of different high value phytochemicals, (7) potential for phytoremediation. 

Benemann and Oswald, (1996) were reported the cost of nutrients in algae culture systems, affect between 10-20% of 

the total cost; but several authors as Xia and Murphy (2016) affirmed that the half of the cost and energy input in 

cultivation of microalgae is represented of the use of artificial fertilizers (e.g., nitrogen, phosphorus). An increase in 

fertilizer price has immediate consequences on the microalgae production cost thus making any long-term investment 

plan highly vulnerable to unpredictable factors.  

Several studies, regarding the use of wastewaters as algae growth media, have been published (Wilkie and Mulbry, 

2002; Kebede-Westhead et al., 2006; Chinnasamy et al., 2010) showing high efficiency in N and P removal and also of 

some heavy metals and toxic compounds (Mallick, 2003; Priya et al., 2007). For these reasons the wastewaters 

represent potential sustainable sources of fertilizers and water for microalgae culture especially when industrial scale up 

of the productions are designed. 

Unfortunately, the use of LDs as a nutrient source for microalgae growth may affect growth rates, biomass chemical 

composition and the growth of undesired organisms, when compared to levels achieved with expensive defined 

artificial growth media (Gao and Li, 2011; Vasseur et al.,2012; Xin et al., 2010). For LDs the ammonia content often 

cause an inhibition of microalgae growth (Cho et al., 2013; Källqvist and Svenson, 2003). In fact, the ammonia have the 

ability to restrict the electrons usable for photosynthesis, causing a inhibition of growth (Konig et al., 1987). A problem 

solving can be the use of an optimal LD concentration and dosing in a way able to support the growth of microalgae 

avoiding inhibition effects (Uggetti et al., 2014; Erkelens et al. 2014). 

http://www.sciencedirect.com/science/article/pii/S0960852407001563#bib58
http://www.sciencedirect.com/science/article/pii/S0960852407001563#bib58
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Despite the overwhelming interest in the treatment of wastewaters by microalgae, few research works have been done 

on the use of LD as nutrient source, highlighting several hurdles that must be solved for their efficient use in industrial 

plant (Khanh et al., 2013; Bjornsson et al., 2013; Ras et al., 2011; Wang et al., 2010; Ugetti et al., 2014; Veronesi et al., 

2015). 

The aim of the present study was to evaluate the potential of three different LDs to be used as a fertilizer substitute in 

the cultivation of the cyanobacterium Arthrospira maxima, of the freshwater microalgae Scenedesmus obliquus and 

Botryococcus braunii and of the marine diatom Pheodactylum tricornutum. Nutrient removal efficiencies from LDs and 

chemical composition of final biomass were evaluated and compared with standard culture conditions. 
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2. Materials and methods 

2.1. Microalgae strains 

The starting cultures of A. maxima (SAG 84.79), S. obliquus (SAG 276-5), P. tricornutum (SAG 1090-1a)and B. 

braunii (SAG30.81) were routinely maintained in Erlenmayer flasks of 500 mL using standard media (SMs), 

respectively Zarrouk (Zarrouk,1966), BG11 (Rippka et al., 197), 1/2 SWES (Schlösser, 1993) and CHU13 (Chu, 1942), 

at 20 ± 2 C°, 100 µmol m-2 s-1 light by fluorescent lamps and mixing through orbital shaker at 50 rpm. 

 

2.2 Liquid Digestates 

The LDs were collected from industrial anaerobic digestors fed with different organic substrates. The zootechnical LD 

came from AD of water buffalo farming waste enriched with whey coming from a mozzarella cheese factory. The 

vegetable LD was made by AD of corn, rye and wheat grown on agricultural soil not permitted for food commodities 

(some hectares around a landfill). The third LD tested in the present study was produced by AD of organic fraction of 

municipal solid wastes in a plant having a capacity of about 40.000 tonn/year. The LD samples were transported in 

laboratory at 4°C and measurements of pH, conductivity (mScm-1), dry matter (gL-1), BOD5 (mg O2L-1), COD (mgO2L-

1), Total Solid (TS) and Dissolved Solid (DS) (gL-1) were performed according to APHA, Standard Methods, 1995. 

The samples were labeled as: LDA= zootechnical wastes; LDB = vegetable biomass; LDC = organic fraction of 

municipal solid wastes. 

To reduce the shadow effect due to the presence of solid particulate, LDs were filtered progressively from 250 to 50 µm 

and centrifuged at 2500 g for 20 min. Finally LDs were autoclaved to inactivate any contaminating organism. LDs were 

analyzed for ammonium (N-NH4) (Salicylate Method), nitrate (N-NO3) (Cadmium Reduction), nitrite (N-NO2) 

(Diazotization Method) and phosphate (PO4) (Acid digestion Method,) content using spectrophotometric test kits 

(HACH –Milano- DR 2400).N-NH4 was analized before and after autoclaving to assess the amount of ammonia lose by 

stripping. 

The LDs were used as fertilizers for microalgae at a variable dilutions on the basis of their NH4
+-N content and the 

microalgae species-specific requests. The dilutions were performed in distilled water for freshwater strains (S. obliquus 

and B. braunii) and in artificial sea water (Instant Ocean® Sea Salt) at 20‰ for the marine diatom P. tricornutum. The 

LDs for A. maxima growth were diluted in tap water enriched with sodium bicarbonate at a concentration of 14 gL-1. 

 

2.3 Experimental design 

2.3.1 Batch culture experiments 

A first set of experiments was performed in order to evaluate algal growth and microalgae ability to remove N and P in 

diluted digestates. The selected strains were inoculated at an inoculum:medium ratio of 1:3in 250 mL Erlenmeyer flasks 

containing LDs at different dilutions on the basis of species-specific microalgae NH4
+-N tolerance and requests in terms 

of N, considering the N concentration in SMs. The starting inoculum concentration was from 85 to 100 mg L−1and pH 

was adjusted at 7.5 for all the media. 

The NO3-N concentration of each artificial standard control medium (SM): 410 mgL-1in Zarrouk; 250 mgL-1 in BG11; 

28 mgL-1 in ½ SWESS; 60 mgL-1 in CHU13. The LDs were added daily until the achievement of a final N 

concentration equal to the respective SM as reported in table 1. All the experiments were carried out in triplicate. 

The cultures were carried out at 24 ± 1 C°, under continuous illumination of 200 µmol m-2 s-1(Light Emitting Diode) 

and mixing provided by orbital shaker at 150 rpm.  

The growth curves were estimated by daily measurements of absorbance at species-specific wavelength (A. maxima and 

S. obliquus at 560 nm; P. tricornutum at 625 nm and B. braunii at 680 nm) until 14 days. 

The specific growth rates (µ) of the cultures were calculated using Eq. (1), where Xt is the algal dry weight at time t, X0 

is the algal dry weight at t=0 and t-t0 are days spent to achieve the end of exponential phase. 

 

𝜇 = [ln( 𝑋𝑡/𝑋0)]/(𝑡 − 𝑡0)    (Eq. 1) 

 

Growth-curve functions were statistically determined by applying a best-fit procedure: different regression models, 

were applied to each data set in order to define, on the basis of statistical criteria, the regression model that best 

described the observed data. Regression curves were obtained and analyzed using the least-square method and the 

analysis of residuals. At this stage, the most appropriate model was chosen by applying a goodness-fit of criterion 

(Scholze et al., 2001). Statistics were made with the help of Origin1 8 SR2 software (Northampton, MA). 

N and P removal efficiency by microalgae was evaluated. At the end of culture growth the media samples were 

centrifuged at 3500 rpm for 35 min and supernatants, filtered at 0,22 micron analized for NH4
+-N, NO3-N, PO4

3—P 

calculating the percentage of removing dividing the results with the starting values. 

2.3.2 Semi-continuous culture experiments 

The microalgae, that showed better growth performances in the bacth test (S. obliquus and A. maxima) in terms of 

growth rate, % N and P removal efficiency, were cultivated using LDA and LDB in bubble column photobioreactors 

(PBRs) with a working volume of 10 L with a semicontinuous protocol at 24±1C°. The PBRs were continuously 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166921/#B32
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illuminated by florescent lamps at 200 mmol/m2/s and the mixing and gas exchange provided through air bubbling at 

200 L/h. 

Daily assessment of pH, temperature, dissolved O2 and conductivity were performed. The N and P concentrations in the 

medium were assessed at harvesting times by spectrophotometric analysis previously described. Microalgae growth was 

routinely monitored through optical density measures: a linear relationship between OD and dry weight (DW) estimated 

gravimetrically (APHA, Standard Methods, WPCF 1995 ) was determined for each strain. 

On the basis of growth curves, when the microalgae culture arrived near to the end of the exponential phase, the harvest 

of 1/3 of culture was carried out (about three times a week) using a continuous centrifuge (4.000 g).After harvesting the 

supernatant was discharged and diluted LDs were added to each photobioreactor, re-establishing in 20h the starting N 

concentration at the different SMs levels through a peristaltic pump. An aliquot of each supernatant was collected for 

chemical analysis, while the wet microalgae biomass was freeze dried to calculate the productivity expressed in mg 

biomass produced daily for culture liter. Mean productivity P (g DW l−1 d−1) for cultivation cycle lasting n days was 

calculated as: 

 

𝑃 =
(∑𝑋 𝐿)⁄

𝑛
      (Eq. 2) 

 

where X is the dried biomass harvested, L the harvested total volume and n the number of production days. 

The ash content of harvest biomass was evaluated following the IRSA-CNR methods (1994) and utilized to evaluate the 

ash free productivity and biochemical composition. 

Culture contaminations were evaluated accurately with an optical microscope at 100X and 400X magnifications. In the 

presence of fungi, protozoa, rotifers or unwanted algae the cultures were discharged.  

All the experiments were carried out in triplicate and average values with standard deviation were reported in the 

results. Analysis of variance(ANOVA) was applied, using raw data, to test for significant differences in growth among 

LDs and control (significance level was always set at p = 0.05). 

 

2.4 Chemical analysis 

Microalgae biomass was analyzed for chemical composition in terms of lipids, proteins, carbohydrates, pigments and 

fatty acid profile. The lipid content was evaluated by Bligh and Dyer method(1959): 20 mL of a mixture chloroform : 

methanol (2 : 1, v/v) were added to 100 mg of the lyophilized sample followed by 20 min of mixing using 1 g of 1 mm 

glass beads. This mixing was repeated for 10 min after adding 10 mL of chloroform and 20 mL of water. After 

centrifugation, the organic phase was evaporated and the weight of the residue was determined. The lipid extract 

prepared for total lipid determination was suspended in hexane and used for the fatty acid methylation. Fatty acids were 

converted to their methyl esters before analysis. Hexane extract (1 mL) was added with 200 µL of KOH 2 N in 

methanol for 30 s at room temperature, and 1 mL was injected directly in the GC apparatus. The analysis of fatty acid 

methyl esters was carried out using a Shimadzu 17A gas chromatograph equipped with a fused silica capillary column 

(Phenomenex ZB-WAX, 0.50 µm film thickness, 60 m x 0.32 mm i.d.) and a FID detector. Helium was used as carrier 

gas at 2 mL min-1. The temperature program was 200 °C x 5 min, 200 °C until 230 °C in 15 min (2 °C/min), constant at 

230 °C for 30 min. The column, the injector and FID temperatures were 200, 240 and 240 °C, respectively. 

Identification of fatty acid was made using reference fatty acids methyl esters (Merck, Darmstadt, Germany).Protein 

content was estimated by the Kjeldahl method using a nitrogen conversion factor of 6.25(AOAC, 1995). Carbohydrate 

determination was performed on 1 g of samples treated with hydrochloric acid (0.2 M) at 85°C for 1 h. After 

neutralization by sodium hydroxide, reducing sugars were determined using the Fehling test (AOAC, 1995). 

C-Phycocyanin (C-PC) concentration in A. maxima was assessed with a spectrophotometric assay developed by 

Yoshikawa and Belay (2008) with PBS (5 mM - pH 7) as extraction medium. Chlorophyll-a was evaluated according to 

AOAC (1995) using an acetone/water (85% v/v) solution and centrifuging, the pellet subjected to five extraction and 

final collected supernatants mixed and reading the absorbance at666 and 642 nm using Jasco V530 spectrophotometer.  

Total chlorophyll content in S.obliquus was measured with N-N dimethylformamide. 1 g of the lyophilized biomass was 

diluted in 10 mL of distilled water, followed centrifugation at 4000rpm for 5 min. After centrifugation, the biomass was 

suspended in N-N dimethylformamide at 4°C for 24h. The supernatant absorbance was evaluated 

spectrophotometrically at 664 and 647 (Inskeep and Bloom, 1985). The chemical composition in lipids, carbohydrates, 

proteins and pigments was reported as mean value of biomass and relative standard deviation.  

3. Results and discussion 

3.1Wastewaters chemical characterization 

Chemical analysis after sterilization of the digestates in autoclave, showed a decrease in ammonia concentration of 

about 50-60% due to a stripping effect as yet observed by several authors (Hansen et al., 1998; Gonzàlez-Fernàndez et 

al., 2011; Franchino et al., 2013). In table 1 the results of chemical analysis after autoclaving of the three different LDs. 

LDC showed the highest N-NH4 concentration and the lowest of PO4
-2, respect to LDA and LDB. LDA exhibited the 

highest PO4
2 content and a pH around 7.7. 
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Although microalgae prefer to use NH4
+-N rather than NO3-N (Wang et al., 2014; Veronesi et al., 2015; Khalaf and 

Zeinab, 2007; Jongkon et al., 2008) with an optimal nitrogen concentration in the range 5 - 110 mg L-1, an high 

concentration of ammonium can inhibit the microalgae growth  in a species-specific concentration range. 

Collos and Harrison (2014) observed the effects of high ammonium concentrations on the growth of different 

microalgae strains and identified for different microalgae families the mean optimal ammonium concentrations, that 

were 140 mg L-1, 45 mg L-1, 6 mg L-1 for Chlorophyceae, Cyanophyceae and Diatomophyceae, respectively and their 

tolerance to high toxic ammonium levels was 702, 234, 65 mg L-1 underlying Chlorophytes as significantly more 

tolerant to high ammonium than diatoms. The toxicity of ammonium and its suitability as microalgae growth media was 

evaluated by different researches, that reported data with a great variability on different microalgae species (Uggetti et 

al., 2014; Park et al., 2010; Akerstrom et al., 2014). In fact, the ammonium concentration is correlate to the free 

ammonia (FAN), that changed on the base of pH and temperature. For example Akerstrom et al. (2014) reported that at 

25 °C, FAN accounts for only 0.1% of TAN at pH 6; this significantly increases to 0.6%, 5%, and 36% at pH 7, 8 and 9 

respectively. Therefore, pH control is considered an important strategy for reduction of FAN inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

To avoid the toxic effect caused by a high concentration of ammonium, and also to reduce the shading effect due to the 

brown color of the effluents, LDs were progressively diluted until the N concentration of the respective SMs as reported 

in table 2 with a daily NH4
+-N provision of 7, 20, 84 and 100 mg L-1 for P. tricornutum, B. braunii, S. obliquus and A. 

maxima respectively. 

growth was the N:P ratio. The N:P ratio was different between the samples with a value of 2.3, 43.8 and 134.2 for LD 

A, LD B and LD C respectively, indicating that P is the limiting growth macronutrient. The N:P ratio observed on our 

LD B and C are in line with value reported by Marcilhac et al. (2014) for different LDs (ranging between 38-135 

N:P).Chemical composition of tested LDs in terms of N and P observed was in line with data published by Uggetti et. 

(2014). 

LD A and LD B showed values in line with their respective SMs: 4,5:1 in Zarrouk, 25:1 in BG11, 3.9:1 in CHU13 and  

8:1 in ½ SWES. 

Usually, the culture media for microalgae and cyanobacteria have a N:P ratio species-specific between 100:1 to 2:1 but 

the range of 5.5:1 to 30.5:1 are the most desirable for green algae biomass production. The wide variability in terms of 

LDs concentration of nutrients highlights the needs of chemical and physical checks before use (even with quick and 

inexpensive methods).  

 

3.2 Batch cultures 

For each strains were reported the growth curves (Fig 1) represented by Logistic function (Growth-Sigmoidal). For all 

the strains the worst growth performances were observed applying the LD C probably due to its P content, that at the 

dilution factor applied was always the lowest, ranging between 2 to 0.2 mg L-1 and representing the limiting nutrient 

also respect to the SMs, in which the P concentration was between 4 in 1/2 SWES to 89 mg L-1 in Zarrouk. 

 

 

 

Table 1. Chemical characteristics of LDs 

Parameters LD A LD B LD C 

TS (gL-1) 23.4 20.5 52.8 

N-NH4 (mg L-1)* 1400 2000 2650 

N-NO3 (mg L-1)* 230 890 720 

PO4-P (mg L-1)* 716 66 24 

BOD5 (mgO2 L-1) 4000 6410 5000 

COD (mg L-1) 14100 22120 19800 

*Analysis carried out on autoclaved liquid digestates 

Table 2. Dilution and daily dosing of LDs on the basis of their NH4-N content for each 

microalgae strains analyzed 

Strain LD A LD B LD C  
[NH4

+-N]  

daily 

added 
 (mgL-1) 

Dil* 

 (%) 

Dosin

g time 

(days) 

Dil* 

(%) 

Dosing 

time 

(days) 

Dil* 

(%) 

Dosing 

time  

(days) 

P. tricornutum 0.5 4 0.28 4 0.26 4 7 

S. obliquus 6 3 3.4 3 3.1 3 84 
A. maxima 7.3 4 4.1 4 3.9 4 100.2 

B. braunii 1.4 3 0.8 3 0.75 3 20 

*Dil= Dilution 
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Figure 1. Optical density (OD) variations during cultivation days for A) A. maximaat ʎ 560 nm, B) S. obliquusat ʎ 560 

nm, C) P. tricornutumat ʎ 625 nm and D) B. brauniiat ʎ 680 nm growth on Standard Media and on LDs diluted at the 

SM N concentration. 

 

Moreover, respect the others LDs it may contain toxic compounds due to the quality of the municipal organic waste 

input to anaerobic digester, that often presents some impurity which give to the LD a difficult to control and to predict. 

In figure 1 A the growth curves of A. maxima on Zarrouk medium and on LDs media were showed: the best growth 

performance was obtained with LD B, that induced a specific growth rate of 0.2 d-1 reaching plateau after 9 days, while 

the lowest from 1 to 14 days was observed using LD C. The specific growth rate for LD A was obtained from 1 to 14 

days like into control. The value of LD A was statistically lower than control (Zarrouk medium), that was 0.18±0.02 d-1, 

result in line with literature data (Barrocal et al. 2010) and not statistically different from LD B (table 3). In Zarrouk 

medium the N:P ratio was 4.5:1, while the optimum value reported in literature was 7-11:1 (Kebede and Ahlgren, 

1996); LD B showed an N:P ratio of 43.8:1 and the growth rate was not statistically different from the control due to the 

N content in the form of ammonium that speeding the A. maxima growth in 9 days respect 14 days of control, however 

it not overcome the control growth probably for limiting P content, that was 20 times lower respect Zarrouk medium. 

The growth curves of S. obliquus was reported in figure 1B; LD A and LD B showed specific growth rates not 

statistically different to the control (0.16±0.05 vs 0.15±0.02 d-1). Also in this case for LD B the time to achievement of 

plateau was lower than the control. For the sample C the growth rate was significantly lower than the control and the 

others LDs (data not plotted) (table 3).  

 

Table 3. Specific growth rate(day-1)to the preliminary test for A. maxima, S. obliquus, P. 

tricornutum and B. braunii utilizing different liquid digestates as growth media 

Species Control 

(day-1) 

Growth rate (day-1) 

LD A 

Growth rate (day-1) 

LD B 

Growth rate (day-1) 

LD C 

A. maxima 0.18±0.02  0.1±0.02 0.2±0.03 0.04±0.01 

S. obliquus 0.15±0.02 0.14±0.03 0.12±0.05 0.021±0.03 

P. tricornutum 0.18±0.04 0.088±0.04 0.15±0.02 0.03±0.01 

B. braunii 0.20±0.04 0.24±0.01 0.22±0.05 0.06±0.01 
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P. tricornutum presented a growth rate in the control of 0.18±0.04 d-1(as showed in figure 1 C). LD B induced a growth 

rate not statistically different from the control (table 3). Cavounise et al. (2015) reported for P. tricornutum a growth 

rate between 0.072±0.04 day-1and 0.12±0.02 day-1 in standard conditions, data in line with our results. To the best of 

our knowledge to date only Veronesi et al. (2005) reported data on the growth of P. tricornutum grown on liquid 

digestate showing at 1:10 dilution a specific growth rate of 0.24 d-1, a value higher than into control using Guillard f/2 

medium (0,10 d-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. NH4
+-N concentration evaluated at T=0 and after 14 cultivation days for each strains growth on LD A and LD 

B. The percentage of removal efficiency (%) are reported.  

 

The control B. braunii specific growth rate was 0.20±0.04 d-1, value higher respect to the ones obtained in LD C (data 

not plotted). LD A and LD B (fig. 1 D) showed a specific growth rates not statistically different from the control (table 

3). 

For A. maxima and P. tricornutum the LD B represented a good growth media also if the P concentrations were lower 

respect the respective. For diatoms, the optimum N:P ratio is reported to be of 16:1 (Harrison et al. 1977) and they 

usually show low affinity for P. 

P.tricornutum did not divide the cells when the intracellular P concentration dropped below 2 fmol cell-1 as described 

by Chauton et al (2013). 

For photosynthetic cyanobacteria as opposed to microalgae, the absolute quantity and quality of nutrients influencing 

more than N:P ratio (Schreurs, 1992). LD B showed an high N:P ratio (43.8), but also the highest BOD5 (6410 mg O2 L-

1) that probably induced a mixotrophic metabolisms by A. maxima and P. tricornutum and resulting in a better growth 

performance respect to LD A, that at the dilution factor applied presented a higher P content (13 mg L-1for P. 

tricornutum and 181 mg L-1 for A. maxima) than LD B. For S. obliquus and B. braunii (Chlorophyceae) the LD A and 

LD B showed growth rates not statistically different from the control; the highest value was observed for LD A, that 

showed a N:P ratio of 2.3 value close to CHU13 (3.9), but lower than BG11 (25). Usually ratios within the range of 

5.5:1 to 30.5:1 are the most desirable for green algae (Schweitzer et al. 2014). LD A at dilution factor applied showed 

the highest P concentration for B. braunii (26 mg L-1vs 14 mg L-1in CHU13) and for S. obliquus (110 mg L-1 vs 7 mg L-1 

in BG11). 

The N and P removal efficiency in percentage, from t0 to day 14, evaluated for each strains are showed in figure 2 and 3 

respectively, where the nutrients concentration at T=0 and after 14 days are reported in bars with respective removal 

percentage (%). A. maxima and S. obliquus showed the best NH4
+-N removal efficiency with value near to 100% for 

both LDs, while P. tricornutum and B. braunii exhibited values ranging from 79 to 88.5 % (Fig. 2). The P removal 

efficiency was high for all the strains with value up 90%, only S. obliquus showed a value of 86.1 % in LD A, that 

presented the highest P content of 110 mg L-1 vs 7 mg L-1 of the SM BG11. Results achieved showed the good ability of 

microalgae to remove N and P from liquid digestates until values ranging between 0.3-8 mg L-1 for NH4
+-N and 0.01-17 

mg L-1 for PO4
3—P.  

In Italy the DL 152/06 defines the values of emission limits in surface water and sewage for NH4
+ (≤15 mg L-1 for 

surface waters and ≤30 mg L-1 for sewage) and total P (≤10 mg L-1both in drain into water surface and discharge into 

the sewage system), this values are in line with our  

data for the NH4
+-N but lower for the P at dilution applied for LDA for  
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A. maxima, that can be improved changing the dilution applied or adding nitrate to liquid digestate in such a way also to 

increase the assimilation of the P. 

A critical point is to define the correct dilution of digestates for the microalgae growth that make sustainable the 

microalgae production, considering the quality of digestates and the quantity of LD produced by the anaerobic 

digesters.  

Our results on nutrients removal efficiency are in line with some literature data. Franchino et al (2013) reported for S. 

obliquus grown on agro-zootechnical digestate a removal percentage for N ranging from 84 to 94% and for P of about 

95 % at different LD dilutions, Marcilhac et al. (2014) using the same species, reported a N removal rate from 3.4 to 

36.5 mg N L-1 d-1 with different agro-zootechnical LDs diluted at 10%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. PO4
3--P concentration evaluated at T=0 and after 14 cultivation days for each strains growth on LD A and LD 

B. The percentage of removal efficiency (%) are reported. 

 

Kaushik et al. (2006), growing A. platensis on anaerobically digested distillery effluent diluted at 50% observed a 

decrease of total N of about 35.4-58%, value lower than our probably for reduced dilution of samples. 

The main species studied in literature are Chlorella spp and S. obliquus, Xia and Murphy (2016) reported the recent 

trends and performances of microalgae cultivated in LDs with value of Nutrient Removal Efficiency varying from 73 to 

100% for total N (except a value of 37% per Chlorella vulgaris grown on treated LD) and from 63 to 100% for P. 

 

 

Table 4. S. obliquus and A. maxima productivity (gL-1day-1) in 

standard media and in LDs samples in a 10L photobioreactor 

 S. obliquus A maxima 

Growth medium Productivity (mgL-1day-1) 

Control 70.4±7.4 98.3±5.2 

LD B  64.3±4.1 120.2±8.3 

LD A 73.4±5.6 101.7±8.0 

 

 

3.3 Semicontinuous productions using LDs 

On the basis of the results in the batch experiments and their low susceptibility to contamination, A. maxima and S. 

obliquus were chosen to perform cultivations in semi-continuous using photobioreactors and the digestate LD A and LD 

B. The productivity values obtained were shown in table 4. 

A.maxima reached the highest average biomass productivity in LD B, while using LD A the productivity was not 

statistically different from the control. For S. obliquus, both LD A and LD B showed not significant differences respect 

to the control. 

Data on microalgae productivity grown on LDs are scares and very difficult to compare due to the variable LD 

composition, % of LD tested, and microalgae strain assessed. Morais and Costa (2007) reported a biomass productivity 
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for S. obliquus between 40 and 140 mg L-1d-1 in column photobioreactors of 2 L maintained at 30°C under a 12 h 

dark/light photoperiod on SM without extra CO2 supply.  

Kaushik et al. (2006)studied the growth of A. platensis on anaerobically digested distillery waste and the biomass 

produced, at 50% diluted sample, was significant higher (1.23 mg ml-1) than the standard medium (0.78 mg ml-1) and 

the others dilutions tested. Phang et al. (2000) cultivated A. platensis in digested sago starch factory wastewater and 

observed an average specific growth rate of 0.51 d−1. Xu et al. (2015) studied the growth of S. obliquus with piggery LD 

at different dilutions reporting a biomass productivity of 310 mg L-1d-1, a very high value respect to our results. Xia et 

al. (2016) reviewed the literature data on the biomass productivities and maximum concentrations of some microalgae 

cultivated in liquid digestates reporting ranges of 30–670 mg L-1d-1 and 400–4800 mg L-1 respectively. These values are 

comparable with or slightly higher than those of photoautotrophic cultivation in synthetic medium. However, the 

performance can be further improved by removing inhibiting compounds or by adding limiting factors. 

The chemical composition of A. maxima and S. obliquus. cultivated in LD A, LD B and SMs was reported in table 5. 

Proteins are the main component in A.maxima and the values observed in biomass grown in LD A and LD B were not 

statistically different from value observed in SM. Data of protein content in SM are in line with data reported in 

literature (50-70% DW) (Devi et al., 1981; Becker, 2007). Our data suggest that protein content, at constant levels of 

nitrogen into the culture medium and following our production protocol, was not influenced by LDs. Maximum 

carbohydrate levels in A. maxima was reported in SM and the highest lipid content in LD B and the lowest in SM. 
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Table 5. Biomass compositon (mean %± SD) of A. maxima and S.obliquus grown on SM and LDs 

Components 

(mg/g) 

SM LD A LD B Components 

(mg/g) 

SM LD A LD B 

Protein 587.5±16.2 607.2±18.4 601.8±19.2 Protein 566.5±15.2 571.2±18.1 533.9±19.3 

Lipid 57.7±6.4 80.9±3.9 107.5±2.6 Lipid 165.6±9.3 234.1±9.3 263.6±6.3 

Carbohydrate 351.5±11.7 311.2±12.4 289.7±10.6 Carbohydrate 173.5±11.1 192.4±7.7 184.3±12.3 

Phycocianin 7.5±0.1 8.3±0.3 8.5±0.1 Chlorophyll 6.6± 

0.1 

7.2±0.3 8.5±0.4 

Chlorophyll 13.8±0.2 11.5±0.2 12.4±0.2     
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Kim et al. (2013) and Markou et al., (2012) reported a lipid content for 

Arthrospira sp. grown on SM ranging from 4 to 7% DW. The decrease in 

carbohydrates and increase in lipid content are strictly correlate with the 

N:P ratio of LDs: LD A showed a N:P ratio of 2.3 indicating respect SM the 

N as limiting nutrient. In LD B the N:P ratio was 43.8, so respect SM the 

limiting nutrient is P with a final concentration of 8 mg L-1. In stress 

condition, such as macronutrient starvation, microalgae change their 

metabolism and usually accumulate carbohydrates and lipids, as energy 

storage. In Markou et al. (2012) A. platensis under P limitation showed an 

increase in carbohydrates up to 65% and in lipids up to 7.5% with a 

reduction in protein content. In LD B it was observed a lipid increase from 

5.7 of SM to 10.7 %, but not an increase in carbohydrates that decreased 

from 35 to 29%. In LD A we observed an increase of lipids (8%) and a 

reduced carbohydrates content (31%). 

Depraetere et al. (2015) observed under N deprivation an increase in 

carbohydrates and a reduction in proteins, but in our semi-continuous 

production experiment conducted for 30 days the N deprivation was 

avoided so as a result the same protein levels were achieved, altought 

different level of lipid and carbohydrates probably because of the different 

N:P ratios. 

Phycocianin content was higher in LDs respect SM (table 5) but not 

different between LD A and LD B. Chaiklahan et al. (2011) reported a 

Phycocianin content of 6.17 mg g-1, value lower than the our experimental 

data. Maurya et al. (2014) in lab-scale experiment reported a reduction in 

phycocyanin at increasing light intensity, so it is in line with our results, 

where the slightly yellow colour of diluted LDs lowering the light 

availability inducing a phycocyanin content increase.  

The fatty acids profile of A. maxima cultivated on SM and LDs were 

showed in table 6. 
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Table 6. Fatty acids composition (mean %± SD) of A. maxima and S.obliquus biomass growth in SM and diluted 

LDs 

Fatty acid (%) SM LD A LD B Fatty acid (%) SM LD A LD B 

C16:0 45.4±7.4 49.3± 

9.9 

43.2± 

10.1 

C16:0 19.2±8.4 16.5± 

3.7 

20.7± 

4.2 

C16:1 6.1±0.4 6.3± 

1.9 

4.7± 

0.1 

C16:1 2.6±1.9 4.1± 

0.0 

1.1± 

0.5 

C18:0 7.4±0.9 7.2± 

2.97 

6.9± 

2.1 

C18:0 6.1±2.9 4.9± 

2.5 

3.7± 

1.9 

C18:1 6.6±1.7 3.9± 

0.6 

11.4± 

10.9 

C18:1 15.1±1.4 30.7± 

6.5 

31.2± 

5.4 

C18:2 12.2±1.9 18.7± 

0.8 

18.8± 

4.2 

C18:2 7.8±0.4 4.8± 

1.1 

5.2± 

2.7 

C18:3 n-6 15.7±0.6 11.5± 

5.6 

11.7± 

2.6 

C18:3 n-6 18.0±3.6 11.4± 

2.3 

9.9± 

4.2 
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The chlorophyll content ranging between 14-11.5 mg g-1 data statistically 

higher than the ones reported by Jiménez et al.(2003) where they achieved a 

chlorophyll content between 6 and 9 mg g-1. 

The main fatty acids are palmitic (PA), linoleic (LA) and γ-linolenic (GLA) 

acids. LA and GLA account for about 30 % of total fatty acids, GLA 

reported a mean value of about 15.7% in SM. In LDs was observed an 

increase in LA and a decrease in GLA respect to the SM. 

The proximate biochemical composition of S. obliquus in complete medium 

reported in literature (Becker, 2007) was 50-56 % DW protein, 10-17 % 

DW carbohydrates and 12-14 % DW lipid, data in line with our results 

(table 5). 

S. obliquus showed a lipid content higher in LDs respect SM (7 and 10% 

more in LD A and LD B respectively) and a protein content not statistically 

different between the treatments as reported for A. maxima. Furthermore in 

LDs also the chlorophyll content was higher than the control. The fatty 

acids profile of S. obliquus cultivated on SM and LDs were showed in table 

6. Chromatographic profiles showed that the main fatty acids are PA, oleic 

acid (OA), LA and linolenic acid, data in line with Hakalin et al. (2014) and 

in agreement with the data of Shih-Hsin et al., (2010) the C16 and C18 fatty 

acid groups accounted for about 65–70% of the total fatty acids. 

In LDs, PA were not statistically different from the control, while it was 

observed a decrease of linolenic acid and an increase in content of OA 

respect to the SM in both LDs.  

In semi-continuous production a reduction of about 20±2% in N and P 

removal efficiency was observed for both species in LD A, while in LD B it 

was noticed a reduction of 23±4% for N. Furthermore it was observed an 

increase in ash content in A. maxima from 9% in SM to 16 and 18% in LD 

A and LD B respectively. For Scenedesmus in SM the ash content reached 

7,5% instead of 13 and 16 of 20% in LD A and LD B respectively. Algal 

biomass harvested from wastewater typically contains 30–50% (dry weight 

basis) ash content (Yu, 2012). Some authors addressed the physical 

pretreatment of wastewater such as centrifugation to lower the content of 

ash into the final algae biomass. Chen et al. (2014) reported that the ash 

content of algae biomass harvested from wastewater was reduced from 

28.6% to 18.6% with the pretreatment of centrifugation in line with the 

results of our work.  
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4. Conclusion  

In conclusion the four microalgae strains (one photosynthetic 

Cyanobacterium, two Chlorophyceae and one diatom) showed a good 

growth performance in liquid digestates from agro-zootechnical waste. 

Liquid digestate from AD of municipal organic fraction waste supported 

efficiently the growth only of A. maxima, probably due to low P content and 

presence of some inhibiting compounds. 

The LDs input in terms of total N resulted winning in biomass productivity 

of A. maxima and S. obliquus and on their ability to remove N and P. LDs 

used to as growth media for microalgae could contribute to a more 

sustainable production without the use of chemical fertilizers, however it is 

not a solution that can be applied generically to all kind of LD because of 

the different quality of input that determines the quality of final liquid 

digestate. To save water usage and maximize the phytoremediation effect 

the LD must be used as much as possible with minimum dilution to keep 

economically and environmentally sustainable the whole microalgae 

production process. 

In the worst scenario if the LDs contains toxic compounds which are 

accumulated in the microalgae, the resulting biomass could be utilized as a 

biofuel for energy production via lipid extraction, pyrolysis, anaerobic 

digestion or for extraction of high value fine chemicals . 

Although the biomasses produced with LDs in this study have a high ash 

content, some of them showed a valuable biochemical composition, 

suggesting a possible application in feeding sector. Further investigations on 

accumulation of toxic compounds coming from LDs in produced biomass is 

necessary to define the application in commercial sectors. 
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Chapter 4: Productivity and biochemical composition of Scenedesmus obliquus and Phaeodactylum tricornutum: 

effects of different cultivation approaches. 

 

Abstract 

The present work evaluated biomass productivity, carbon dioxide fixation rate and biochemical composition of two 

microalgae species, P. tricornutum and S. obliquus, cultivated indoor in high technology photobioreactors (HT-PBR) 

and outdoor both in pilot ponds and low technology photobioreactors under greenhouse in Southern Italy. Microalgae 

were grown in standard media and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and 

vegetable biomass. P. tricornutum, cultivated in semi-continuous in indoor HT-PBRs with standard medium, showed a 

biomass productivity of 21.0±2.3 g m-2d-1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 

4.5±0.5 g m-2d-1, with a 24% decrease of biomass productivity. For S. obliquus a biomass productivity of 9.1±0.9 gm-2d-

1 in indoor HT-PBR was evaluated using standard medium. Appling liquid digestates as fertilizers in open ponds S. 

obliquus kept a not statistically different biomass productivity (10.8±2.0 g m-2d-1), such as P. tricornutum (6.5±2.2 g m-

2d-1) respect complete medium. The biochemical data showed that the fatty acid composition of the microalgae biomass 

was affected by the different cultivation conditions for both microalgae.  

In conclusion it was found that the microalgae productivity in standard medium were about doubled in HTPBR respect 

to open ponds for P. tricornutum and about 20% higher for S. obliquus. 

 

Keywords: Microalgae, CO2 fixation, biomass productivity, wastewater, photobioreactor, pond 
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1.Introduction 

In the last decades microalgae have attracted a great attention for its huge potential applications in different commercial 

sectors as nutraceutical, pharmaceutical, cosmetic, food and feed (Buono et al. 2014; Dibenedetto 2013; Gouveia 2011). 

Because of their high productivity and CO2-fixation efficiency respect to terrestrial plants, microalgae are considered a 

promising source of biofuel. To date microalgae represent a source of valuable products such as fats, in particular 

polyunsaturated fatty acids (EPA, DHA), pigments, protein and carbohydrates with remarkable biological activities. 

Microalgae are considered also an environmental friendly biomass because they can grow in low-quality, brackish, 

saline or seawater (Dibenedetto 2012; Dibenedetto and Colucci 2015; Guccione et al. 2014; Pérez- Martínez et al. 2010; 

Pittman et al. 2011) reducing the use of freshwater and avoid the use of arable land and pesticides for their cultivation. 

The use of municipal, industrial or agricultural wastewaters, as source of water and nutrients (N, P) is an attractive idea 

reducing both the microalgae cultivation and the organic wastewaters treatment costs and contributing to make the 

microalgae biomass production environmentally sustainable. Different microalgal cultivation systems can be applied for 

large-scale production: open ponds with different design (circular and raceway) and various types of closed 

photobioreactors (PBRs) e.g. tubular 

(vertical, horizontal and helical), flat plate and fermenter (Chisti 2008; Dibenedetto 2011). To reduce the microalgae 

biomass costs a massive cultivation system with high biomass productivity, low production and downstreaming costs 

and ease of handling, has to be developed (Abomohra et al. 2014). To date, raceway ponds are the most widespread 

production systems applied for microalgae biomass production mainly for nutraceutical purpose and has been 

intensively investigated and optimized over the past three decades (Dibenedetto 2011; Jonker and Faaij 2013; Li et al. 

2014) for some species such as Arthrospira spp and Chlorella spp. The microalgae growth and productivity are closely 

related to the growth medium composition, light, temperature, gas exchange and culture mixing. Respect to open ponds, 

PBRs, present a better control of cultivation conditions such as gas transfer, reduced contaminations and less water loss 

(Jorquera et al. 2010; Li et al. 2008; Posten 2009); on the other hand culture mixing and temperature control require 

large amount of energy and PBRs still showed high capital and management costs. 

Problems related to mixing, harvesting and drying should be further investigated to reduce the energy consumption 

achieving sustainable productions (Shimamatsu 2004). The use of microalgae providing a combination of CO2 fixation, 

biofuels and other chemicals production together with wastewater treatment is a promising alternative between the 

strategies applied for CO2 mitigation. P. tricornutum is a marine pennate diatom considered an important and 

innovative potential source of eicosapentanoic acid (EPA) for human consumption and for aquaculture animal feeds and 

it was also included among potential candidates for biodiesel production (Benavides et al. 2013). S. obliquus is a genus 

of freshwater microalgae, specifically of the Chlorophyceae, that can grow efficiently on different wastewaters, 

showing good growth performances and it is a promising microalgae for biofuels production (Mata et al. 2013). While 

many attempts have been made to assess Arthrospira spp. outdoor large scale productivity in North Mediterranean 

countries as in Spain (Jiménez et al., 2003a 2003b) and Italy (Converti et al. 2006; Torzillo et al. 1986; Tredici et al. 

1986; Tredici and Materassi 1992), few data exist about outdoor and large scale productivity of P. tricornutum and S. 

obliquus at our latitudes (Benavides et al. 2013; Miranda et al. 2012; Torzillo et al. 2012) and how the CO2 fixation and 

biomass composition change applying different technologies and fertilizers. 

In this research the biomass productivity, carbon dioxide fixation and biochemical composition of P. tricornutum and S. 

obliquus were assessed. Cultivations were carried out during two production years (2013-2014) using indoor high 

technology photo-bioreactors (HT-PBR) and outdoor pilot ponds and low cost/technology PBR (LT-PBR) under 

greenhouse in Southern Italy (Portici, Naples). The effects of nitrogen starvation and liquid digestates from anaerobic 

digestion on productivity and chemical composition of microalgae in terms of protein, carbohydrate, lipid content and 

fatty acids profile were evaluated. 

 

2. Materials and methods 

2.1 Microorganisms 

Microalgae S. obliquus (SAG 276-5) and P. tricornutum (SAG 1090-1 a) were obtained from Culture Collection of 

Algae at the University of Göttingen (SAG), Germany. Stock culture of axenic microalgae strains were maintained 

routinely by regular sub-culturing at 4 weeks intervals on both liquid and agar slants of BG11 (Rippka et al. 1979) and 

½ SWES (Schlösser 1993) standard growth media (SM), respectively for S. obliquus and P. tricornutum. Culture flasks 

were incubated at 24±1°C temperature, with continuous light intensity of 90 mol photons m-2
 s-1. To obtain the inocula 

for massive productions the cultures were inoculated in increasing volumes. 

  

2.2 Growth media 

The culture media BG11 and ½ SWES were applied as Standard control Media (SM), respectively for S. obliquus and 

P. tricornutum and the cultivations were carried out also in N Starvation condition (NS). Liquid Digestates (LD) were 

collected from industrial anaerobic digesters, fed with different organic substrates (vegetable biomass and zootechnical 

wastes) and were analyzed for chemical composition. Measurements of pH, conductibility (mS cm-1), salinity (g L-1), 

dry matter (g L-1), Biological Oxygen Demand (BOD5) (mgO2 L-1), Total Solid (TS) and Total Dissolved Solid (TDS) 

(g L-1) (according to APHA, Standard Methods 1995), were carried out. The samples were labeled as: LD A 

(zootechnical wastes) and LD B (vegetable biomass). LDs were analyzed for ammonium (N-NH4) (Salicylate Method), 
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nitrate (N-NO3) (Cadmium Reduction), nitrite (N-NO2) (Diazotization Method) and phosphate (PO4) (Acid digestion 

Method,) (mg L-1) content using a spectrophotometer test kit (HACH –Milano- DR 2400). For biomass production in 

order to prevent interferences from other microorganisms and to reduce the shadow effect due to the presence of solid 

particulate, wastewaters were filtered through filters from 250 to 100 μm and then centrifuged at 2500 g and autoclaved. 

Preliminary tests were carried out at laboratory scale (tubular PBR 10 L) to verify the tolerance and nutrients removal 

efficiency of each strain to LDs diluted at the same N-concentration of SMs (BG11 and ½ SWESS N-concentration: 

0.25 gL-1
 and 0.028 gL-1, respectively). Before and after the microalgae growth (until stationary growth phase), samples 

of the LD were analyzed to determine the microalgae macronutrient assimilation (N and P). On the basis of lab-scale 

results LD A was selected to be used as fertilizer for S. obliquus and LD B for P. tricornutum pilot scale cultivations in 

ponds. 

 

2.3 Production technologies and culture conditions 

The indoor high technology photobioreactor (HT-PBR) (Treelife ® Microlife, Padova - Italy) is an annular Plexiglas-

made vessel with a diameter of 50 cm and a working volume of 250 liters, illuminated with internal light sources, made 

up of 6x58 W fluorescent lamps. The area occupied by the HT-PBR was about 0.2 m2, and one PBR was placed in 1 m2
 

to calculate the areal yield of the culture. The HT-PBR was equipped with a distribution airline (air flow of 1800 L h-1) 

characterized by a circular designed submersed PVC tube and with systems of harvesting and filling. The cultivation 

was carried out in semi-continuous regime at a culture temperature of 23±2°C with a continuous artificial illumination 

of 174 μE m-2. This technology can operate theoretically 365 days/year. The cultivations were carried out in triplicate 

for three times for each strain for each medium analyzed. The outdoor productions in LT-PBR and open ponds were 

carried out under two greenhouses, each of about 100 m2
 and located at a latitude and longitude of 40.816135 N and 

14.350268 E. During the summer period, when the global radiation was high a shading of 50% was applied to reduce 

culture stress by overheating, photo-oxidation and photo inhibition (from June to August). The outdoor production 

technologies at our latitudes have an operation period of about 275 days/year, due to winter temperature and irradiance 

values, too low for microalgae profitable production. The low cost/technology PBR (LT-PBR) is a tubular polyethylene 

soft bag-made vessel with a diameter of 35 cm and a working volume of 100 L, supported by a metal mesh on a 

fiberglass base. The area occupied by the PBR was about 0.1 m2, and two PBRs were placed in 1 m2
 to calculate the 

areal yield of the culture. PBRs were oriented respect natural light to minimize the shadow effect. The air distribution 

was provided by 220 V diaphragm pump of 40 W, at a continuous air flow of 2400 L h-1, diffused through cylindrical 

ceramic diffusers (diameter 2 cm – length 7 cm). The cultivation was carried out in triplicate in batch regime, until 

maximum concentration achievement; in 2014 three runs were performed (in July, September and November) under 

natural photoperiod (sunshine duration max light 15 h, min 9 h), irradiance and temperature (Fig.1). 

 
Fig. 1 Temperature culture (line - monthly means) and daily global radiations (bars - monthly means) from June to November  

(2013-2014) on horizontal surface (ENEA data). 
Under each greenhouse, there are three pilot ponds: each concrete rectangular pond (4.6 x 2.4 m) was coated with a 

white food grade PolyVinyl Chloride (PVC) liner. The height of the culture was kept at 0.25 m with a working volume 

of about 2.5 m3
 for each pond. For the culture mixing and gas exchange an air bubbling system was used: 220 V 

diaphragm pumps of 40 W, at a continuous air flow of 2400 L h-1
 for each pond, diffused through a square designed 

submersed PVC tube (10 m length, 10 mm diameter, 0.8 mm holes placed every 25 cm of pipe). The cultivation was 

carried out in semi-continuous regime in triplicate three times from June to November under natural photoperiod for 

two years (2013-2014). The S. obliquus strain was pre-cultured and inoculated into the PBRs and ponds with an 

inoculum size of about 90–100 mg L−1, while the P. tricornutum strain with an inoculum size of about 85–100 mg L−1. 
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2.4 Culture management and production estimation 

Monitoring of the cultures was carried out daily measuring pH, temperature (°C), dissolved O2 (%) and salinity (‰) and 

the N and P concentrations (mg L-1) in the medium were assessed before harvesting through spectrophotometer 

measurements (as described at 2.2 paragraph). Microalgae growth was routinely monitored through optical density 

measures (OD ʎ 560 nm and 625 nm respectively for S. obliquus and P. tricornutum) using a spectrophotometer (DR 

2400, HACH –Milano): a linear relationship between OD and dry weight (DW) was determined for each strain. The dry 

weight was estimated gravimetrically (APHA, Standard Methods, WPCF 1995). During harvesting, a pre-filtering phase 

of 100 μm, to eliminate gross material was performed before the flocculation step with 0.1 N NaOH until a pH of 10.5; 

after supernatant removing, the microalgae sludge was centrifuged by a continuous centrifuge (MSE 300). After 

adjusting pH the supernatant was recycled in the culture and the nutrients reintegration applied. On a monthly base, a 

substitution with fresh medium was made. On a weekly base, the evaporated water was replaced by adding fresh water 

until reaching the final culture volume. 

An aliquot of collected wet biomass (about 3 g) was dried overnight at 105°C until reaching the dry weight, to calculate 

the final dry weight harvested. The volume of each harvesting for semi-continuous production regime (HT-PBR and 

ponds) was modulated following the different growth rate and keeping the concentration of microalgae in a range of 

density between 0.9 and 1.8 OD at ʎ of 560 nm for S. obliquus and between 0.7 and 1.8 OD at ʎ of 625 nm for P. 

tricornutum. Three harvests for week of about 1/3 of culture volume were carried out. Based on the total dry weight 

harvested from each pond, reintegration of fertilizers were carried out following the residual N and P concentration in 

the culture medium. For LDs the fertilizers reintegration was done on the base of their N total content. Culture 

contaminations were evaluated with an optical microscope at 10X and 40X because the cultures were not maintained in 

a strictly sterile environment. Daily global radiation data (MJ m-2
 day-1) on horizontal surface were taken from ENEA 

Research Center (National Agency for New Technologies, Energy and Sustainable Economic Development, Portici - 

NA) located near the cultivation site. 

The productivity of the PBRs and ponds was expressed as mean productivity P (g DW m-2
 d−1) for cultivation cycle 

lasting n days as: 

 

𝑃 = (∑𝑋/m2)/𝑛      (1) 

 

where ΣX/m2
 is the sum of dried biomass harvested from 1 m2 and n the number of production days. 

All the experiments were carried out in triplicate and average values with standard deviation are reported in the results. 

Analysis of variance (ANOVA) was applied, using raw data, to test for significant differences in growth among 

production technologies and growth media applied (significance level was always set at p = 0.05). 

 

2.5 Biochemical composition of microalgae 

Ash content was determined according to the modified method CEN TS/14775 (2004) in particular, 1 g of powered dry 

biomass, in a porcelain capsule, was ignited and incinerated in a muffle furnace at about 800°C for 8 h. The total ash is 

expressed as percentage of dry weight (% DW).  

Lipids were extracted using 5 g of dry biomass powder pretreated with liquid nitrogen. The biomass was subjected to 

two extraction cycles (8 h each at solvent boiling temperature) using a traditional Soxhlet apparatus: the first cycle was 

carried out using 100 mL of hexane as solvent, while for the second cycle a mixture of 100 mL chloroform-methanol 

2:1 (v/v) was used in order to extract the remaining polar lipid fraction. At the end of each cycle the extraction solvent 

was removed by a rotatory evaporator at 60°C and then the residue was placed in an oven at 80°C in order to dry the 

lipid fraction for 20 min. Then the lipid fraction was cooled into a desiccator under nitrogen and weighted. Results are 

expressed as total lipids content (% DW ash free). 

Carbohydrates in algal biomass were determined according to the NREL Laboratory Analytical Procedure (Wychen and 

Laurens 2013). In brief, 100 mg of lyophilized algal biomass were hydrolyzed in two-stage with sulfuric acid (2 h at 

30°C in 72 wt % sulfuric acid, followed by 1 h at 121°C in 4 wt % sulfuric acid), after which soluble carbohydrates 

were determined by high-performance liquid chromatography with refractive index detection (HPLC-RID). 

Protein content was analyzed by the Kjeldahl method (AOAC 1995) using a nitrogen conversion factor of 6.25. The 

total organic carbon (TOC) was determined using a TOC analyzer (Shimadzu 5000A instrument – suspension method). 

Fatty acid methyl esters (FAMEs) compositions were determined in according to AOCS method - Ce 2-66 (1997). 

FAMEs were analyzed by using a FOCUS gas chromatograph with a FID detector. Helium was used as carrier gas. The 

oven temperature was set at 150°C: it was initially held for 13 min at such temperature, that was then increased to 

210°C for 13 min and to 230°C for 15 min (at a rate of 5°C/min). Injector and detector temperature were set at 230°C 

and 250°C, respectively. Fatty acids identification was done by comparison of retention times with certified standards. 

 

3. Results and discussion 

3.1 Culture parameters 

While the culture parameters in indoor production are strictly controlled and maintained at optimal values for the two 

strains produced, in outdoor production no control of culture temperature and irradiance was applied, excluding shading 

during summer season. Culture temperature and solar irradiance data during the production period are reported in Fig.1. 
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The max monthly mean temperature of the cultures was observed in August (28.1±1.7°C) while the min average 

temperature was registered in November (18.0±1.4°C). The global solar irradiance (monthly average) on horizontal 

surface showed a typical Gaussian trend increasing from January (6.8 MJ m-2
 d-1) to June (27 MJ m-2

 d-1) and then 

decreasing from August (22 MJ m-2
 d-1) to November (6 MJ m-2

 d-1). The period selected for outdoor microalgae 

production is expected to be specular for the other months (to the exclusion of December, January and February) in 

biomass productivity due to the Gaussian trend of temperature and irradiance. P. tricornutum requires an optimal 

growth temperature range of 20-25°C (Benavides et al. 2013). This range of temperature is usually difficult to maintain 

in open ponds, particularly in summer (Fig. 1), indicating this season as stressful production period in terms of 

contamination and growth rate. S. obliquus is able to grow in a relatively wider temperature range, since its growing 

rate has limited variation between 14 and 30°C (Xu et al. 2012). This ability is especially important for the outdoor 

cultivation, because temperature is one of the main environmental parameters, that affects the microalgae growth 

(Martinez et al. 1999; Voltolina et al. 2005), which usually changes between hot or cold seasons and day or night-time 

temperatures in species-specific way (Mata et al. 2013). 

 

3.2 Liquid digestate composition 

The original LDs colour (100 % raw LD) was dark brown and the most of the nitrogen was in the form of ammonium 

(Table 1) thus highly available to microalgae (Veronesi et al. 2015; Wang et al. 2014;). In fact, microalgae are able to 

assimilate more quickly NH4-N rather than NO3-N (Jongkon et al. 2008; Khalaf and Zeinab 2007) with an optimum 

nitrogen concentrations in the range of 1.3 - 6.5 mg L-1. However, it is important to underline that too high 

concentration of ammonium can induce toxic effect on microalgae growth because being lipid-soluble it easily and very 

fast diffuses through membranes (Collos and Harrison 2014). Respect to LD A, LD B showed an higher N-NH4 

concentration (5000 mg L-1
 vs 2800 mg L-1) and the lower PO4 content (200 mg L-1vs 2170 mg L-1). Both LDs had a pH 

around 7.7 (Table 1). As consequence the N:P ratio was very different between the samples with a value of 1.4 for LD 

A and about 29 for LD B indicating that phosphate would act as limiting growth factor for microalgae, that usually 

grown in lab at N:P ratio species-specific between 100:1 to 1:0.5. The ratio N:P is an important factor for microalgae 

biomass production and media with ratios within the range of 5.5:1 to 30.5:1 are the most desirable for green algae 

(Schweitzer et al. 2014). In our work, the N:P ratio in the standard media applied were 25:1 in BG11 (Rippka et al. 

1979) and 8:1 in ½ SWES (Schlösser1993). Other parameters as BOD5 level, salinity and EC have been quantified. The 

wide variability in terms of LDs concentration of nutrients highlights the needs of chemical and physical checks before 

use. In preliminary tests the P removal efficiency was about 100 % for PO-2
4 using LD B for P. tricornutum and 32% 

using LD A for S. obliquus. N removal efficiency of about 97 % for S. obliquus growth in LD A and about 93 % for P. 

tricornutum growth in LD B. Ji et al. (2013) found for the removal of nitrogen and phosphorus from piggery wastewater 

effluent using S. obliquus values of about 95% and Shen et al. (2015) reported for S. obliquus, grown on artificial 

wastewater, a N removal efficiency of 97.8%, data in line with our results. Craggs et al. (1997) showed for P. 

tricornutum a removal efficiency of 100% in terms of ammonium and orthophosphate from the wastewater, a value 

slightly higher respect our results. 

  

Table 1 Physico-chemical characteristics of LD A and LD B. 

Parameters LD A LD B 

pH 7.8 7.6 

EC (mS cm-1) 9.8 5.4 

Salinity (g L-1) 5.3 1.9 

TDS (g L-1) 6.3 2.4 

TS (gL-1) 23.4 5.0 

N-NH4 (mg L-1)a 2800 5000 

N-NO3 (mg L-1) a 230 890 

N-NO2 (mg L-1) a 1 0.5 

PO4 (mg L-1) a 2170 200 

BOD5 (mgO2 L-1) 4000 6410 
a  samples analyzed after centrifugation 

 

3.3 Productivity and CO2 assimilation 

The biomass productivity data of P. tricornutum and S. obliquus, cultivated with different technologies and on different 

growth media, were showed in Table 2 and 3 respectively. P. tricornutum reached the highest average biomass 

productivity and CO2 fixation rate, respectively 21.0±2.3 gm-2
 d-1 and 35.5±4.3 gm-2

 d-1, during the indoor cultivation in 

HT-PBR on SM (Table 2). In outdoor systems, under greenhouse, the biomass productivity and the CO2 fixation rate 
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observed in LTPBR and in open pond on ½ SWES, were lower than HT-PBR, most probably due to daily and seasonal 

changes of temperature and solar irradiation (in terms of intensity and sunshine duration), reaching 4.9±2.0 gm-2
 d-1 and 

8.8±2.0 gm-2
 d-1 respectively in LT-PBR, and 10.9±3.7 gm-2

 d-1 and 19.8±2.7 gm-2
 d-1 respectively in open ponds (Table 

2). 

These data confirmed the sensitivity of P. tricornutum at temperature higher than 26°C: in fact, in outdoor cultivations, 

without a temperature control, this strain showed the worst growth performance from July to August (Fig. 1). Applying 

an enriched basal medium and a thermo regulated system (20°C) Benavides et al. (2013) showed from July to 

September in Florence for P. tricornutum a productivity of 11.7 gm-2
 d-1and 13.1 gm-2

 d-1 in open ponds (10 cm culture 

height) and in PBRs respectively, data in line with our results for pond production. Griffiths et al. (2009) showed a 

biomass productivity in open ponds of 0.07 g L-1d-1, value higher respect our data (0.04 g L-1d-1).  

 

Table 2 Biomass productivity and CO2 assimilation (mean value ± SD) 

of P. tricornutum 
Production 

technology 
Growth 

medium 
(g m-2 day-1) 

Biomass 

productivity  
CO2 fixation rate 

250 L HT-PBR  ½ SWES 21.0±2.3 35.5±4.3 
N-starvation 16.0±2.0 27.1±3.1 

100 L LT-PBR  ½ SWES 4.9±2.0 8.8±2.0 
Open pond 

 
½ SWES 10.9±3.7 19.8±2.7 
N-starvation 4.5±2.0 7.5±1.8 

LD B 6.5±2.2 10.7±2.3 

 

The higher productivity observed in outdoor PBRs by Benavides et al. (2013) and by other researchers (Grima et al. 

1996; Miron et al. 2003; Torzillo et al. 2012) was due to the different culture volume involved, PBR design and 

technology (thermoregulation system), that in a closed system are essential, and to the different natural condition of 

irradiance. Torzillo et al. (2012) applying the same system of Benavides et al. (2013) showed a P. tricornutum 

productivity of 14.8±1.6 g m-2d-1
 in pond outdoor and of 12.5 and 10.8 g m-2d-1

 in PBR outdoors. During nitrogen 

starvation (NS) the biomass productivity was reduced respect SM of about 5 g m-2d-1
 in HT-PBR (24 % reduction) and 

about 6 g m-2d-1
 in open ponds (59 % reduction). The literature data on P. tricornutum outdoor and indoor productivity 

under NS regime in large volumes are very scarce; Breuer et al. (2012) in 250 mL flasks registered an average biomass 

productivity of 486 mgL-1d-1
 in standard medium and 122 mgL-1d-1

 in NS condition (with a difference of 364 mgL-1d-1), 

value higher respect our results (67 mgL-1d-1in HT-PBR and 16 mgL-1d-1 in open pond) but not comparable for the 

different volumes involved and growth parameters. LD B in open ponds induced a P. tricornutum productivity of 

6.5±2.2 g m-2d-1, value not statistically different than that observed with SM but lower of about 4 g m-2d-1 probably due 

to the high N:P ratio of LD B (28:1), respect to ½ SWES (8:1), while the optimum ratio is reported to be of 16:1 for 

diatoms (Harrison et al. 1977). In fact diatoms may show low affinity for P and P. tricornutum did not divide the cells 

when the intracellular P concentration dropped below 2 fmol cell-1
 as described by Chauton et al (2013). Few data 

underlined the ability of P. tricornutum to grow on different kind of wastewaters as described by Chinnasamy et al. 

(2010) and Craggs et al. (1995), that utilized respectively carpet mill effluents and primary sewage effluent but without 

assess the biomass productivity. Literature data on CO2 fixation rate by P. tricornutum are scares: Ho et al. (2011) 

reported a carbon assimilation of 282 mgL-1d-1 and a biomass productivity of 150 mgL-1d-1 when it was cultivated in 

batch with 15% of CO2. In our study the max CO2 fixation was observed in HT-PBR in SM and at atmospheric CO2 

concentration with a value of 142 mgL-1d-1, and a biomass productivity of about 84 mgL-1d-1
 showing that there is not a 

linear relation between the CO2 added to the culture and the CO2 assimilated by microalgae. This also underlying that a 

significant amount of CO2, was lost in atmosphere when the gas is added to the culture, making this practice not 

environmental friendly. Closed systems respect to open ponds present higher ability to assimilate CO2 as described by 

Ho et al. (2011), and this observation were confirmed by the data of our research for the two strains showed in Table 2 

and 3. The highest biomass productivity and CO2 assimilation for S. obliquus were recorded in indoor HT-PBR on SM: 

9.1±0.9 g m-2d-1
 (0.05±0.005 gL-1d-1) and 17.5±1.7 gm-2d-1

 (0.07±0.01 gL-1d-1) respectively (Table 3). These values are 

in line with data reported by de Morais and Costa (2007), that measured a biomass 

productivity between 0.04 – 0.06 gL-1d-1 in column photobioreactors of 2 L maintained at 30°C under a 12h dark/light 

photoperiod. Ho et al. (2012) in photobioreactors indoor of 1L with an addition of 2.5% of CO2 evaluated the effect of 

N starvation, observing a biomass productivity of 626.6 mgL-1d-1
 and a CO2 fixation of 1058.9 mgL-1d-1, higher respect 

to those obtained in this paper likely because of little volume involved and the CO2 addition. In open pond under 

greenhouse and on SM, S. obliquus showed a productivity of 7.5±2.5 gm-2d-1
 (0. gL-1d-1), value lower respect to 

Gouveia and Oliveira (2009) data (0.09 gL-1d-1) obtained in outdoor raceways agitated by paddle wheels from May to 

August in Portugal. Gomez-Villa et al. (2005), cultivating S. obliquus in open ponds in Mexico at CO2 atmospheric 

level reported a winter productivity of 9 mgL-1d-1
 and in summer of 16 mgL-1d-1

 with a respective CO2 assimilation of 16 

and 31 mgL-1d-1. In this case the data are significantly lower than that obtained by us. The great differences in 
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productivity observed in literature for outdoor productions are strictly correlated to the environmental variability of 

temperature and irradiance, to different management of culture and to microalgae species-specific growth performance. 

Appling a NS fertilizer regime a productivity reduction of about 3 gm-2d-1
 in HT-PBR (36% reduction) and of about 1.5 

gm-2d-1
 in open pond (21.4% reduction) was observed in comparison to SM (Table 3).  

 

Table 3 Biomass productivity and CO2 assimilation (mean value ± 

SD) of S. obliquus 

Production 

technology 

Growth 

medium 

 (g m-2 day-1) 

Biomass 

productivity 

CO2 fixation 

rate 

250 L HT-PBR 

 

BG11 9.1±0.9 17.5±1.7 

N-starvation 5.9±1.2 12.1±1.9 

100 L LT-PBR  BG11 6.2±2.5 11.6±2.6 

Open pond 

 

BG11 7.5±2.5 14.2±2.1 

N-starvation 5.9±1.9 10.8±1.3 

LD A 10.8±2.0 19.3±0.9 

 

Breuer et al. (2012) in 250 mL flasks registered indoor an average biomass productivity of 719 mgL-1d-1
 in SM and 767 

mgL-1d-1
 in NS condition (with a difference of 48 mgL-1d-1), value higher respect our results (24 mgL-1d-1

 in HT-PBR 

and in open pond), strictly correlated to the culture volume, that in our case was of 250L in HT-PBR and 2.5 m3
 in pond 

and being microalgae growth likely affected by light deficiency. Fertilizing the medium in open ponds with LD A, a 

productivity of 10.8±2.0 gm-2d-1
 was assessed with a CO2 assimilation of 19.3±0.9 gm-2d-1. These results were in agree 

with those proposed by others authors (Arbib et al. 2013; De-Godos et al. 2010; Gomez-Villa et al. 2005; Martinez et al. 

2000). This confirms the good adaption ability to wastewaters coming from different industrial origins (Mata et al. 

2013) and the good efficiency to assimilate N and P compounds (Martı́nez et al. 2000) of this strain also in open ponds. 

LD A showed a ratio N:P of 1.4, very low respect SM (28:1), but it not induced P limitation phenomenon as observed 

for LD B. 

 

3.4 Biomass composition 

P. tricornutum showed differences on biochemical composition (lipids, carbohydrates and proteins) between the indoor 

and outdoor production systems (Fig. 2) and between the growth media applied. It is worth to note that the P. 

tricornutum is characterized by high ash content (17-22%) (Rebolloso-Fuentes et al. 2007; Zamalloa et al. 2012) 

depending from its nature (marine diatom) and the cultivation methods applied. On SM the most important component 

was the protein fraction, which achieved 58.0±1.6 % in indoor HTPBR, 50.5±0.9 % in LT-PBR and 49.5±1.2 % in the 

open pond (Fig. 2), reaching the highest value of protein productivity in indoor system (12.2±1.3 gm-2d-1).  

 
 

 

Fig. 2 Lipid, carbohydrate and protein 

content (% ash free DW) (mean ±SD) of P. 

tricornutum biomass grown in open ponds 

and PBRs on standard medium (SM), N 

starvation and LD B. 
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Miron et al. (2003) evaluated in P. tricornutum biomass produced in PBR outdoor in Almeria, Spain, a mean protein 

content of about 50% DW and observed that protein contents tend to be low in older cells than in the rapidly growing 

younger cells; Chrismadha and Borowitzka (1994) reported a protein content range of 30–70% DW, values in line with 

our results. Lower protein content was always observed in N starvation condition both in HT-PBR both in open ponds 

as expected. Interestingly, the highest value of protein concentration was recorded in open ponds fertilized with LD B, 

probably due to the high concentration of ammonium Nitrogen (see Table 1) which was highly available to microalgae 

(Veronesi et al. 2015; Wang et al. 2014). 

As far as the lipid content it was observed that in indoor HT-PBR was reached respect the others technologies the 

highest value of lipid productivity, that on SM was 2.3±0.3 gm-2d-1, where the biomass productivity was also high. In 

outdoor systems on SM the lipid productivity was 0.6±0.1 gm-2d-1
 in open pond and 0.3±0.1 gm-2d-1

 in LT-PBR.  

It is known that stress conditions due to N deprivation induced a reduction in protein content and promote the 

conversion of carbon dioxide fixed into energy-rich compounds such as lipids and carbohydrates (Ho et al. 2013). This 

influenced negatively the cell growth decreasing the biomass productivity and resulting in lower lipid productivity as 

yet observed by Procházková et al. (2014). Using NS regime in HT-PBR it was observed that the protein content and 

productivity were lower respect to SM (38.8±0.9 % and 6.2±0.8 gm-2d-1
  espectively), while the carbohydrate fraction 

(37.9 %) was comparable with that observed in the SM (Fig. 2). 

Nitrogen starvation increased the lipid content of P. tricornutum during the cultivation in indoor HT-PBR: a gradually 

increase was observed reaching the maximum lipid content of 31.9 % after 14 cultivation days (Fig. 3), however a 

decrease was observed if the cultivation was prolonged more than two weeks. 

In particular, as reported in Figure 3 an increase of non-polar lipids respect to the polar lipids was observed. Similar 

results was observed by Bondioli et al. (2012) with a different algal strain (Nannochloropsis sp), where the major lipids 

were represented by TAGs (non-polar lipids) under nitrogen starvation. The results obtained are in agreement with the 

assumption that under nutrient limitation algae may react by storing surplus energy as neutral lipid, without an increase 

of structural lipids (polar lipid) (Rodolfi et al. 2009; Sharma et al. 2012). Due to reduced cell division rate a decrease of 

biomass productivity and CO2 assimilation were observed compared with SM, showing data of 16.0±2.0 gm-2d-1 and 

27.1±3.1 gm-2d-1 respectively, while the lipid productivity average was 3.7±0.5 gm-2d-1 about 1.18 gm-2d-1 higher than 

the observed value in SM (2.3±0.3 gm-2d-1).  

 

 
Fig. 3 Lipid content trend in P. tricornutum under nitrogen starvation in indoor HT-PBR 

  

A lipid content around 10-25% DW was reported by different authors (Chauton et al. 2013; Yao et al. 2014; Torzillo et 

al. 2012; Wawrik et al. 2010). Griffiths et al. (2009) reported from a review of literature data a lipid content of 21% in 

complete medium and 26% in N starvation, while we observed in HT-PBR a variation from 10.8 % DW in SM to 23.1 

% DW in NS. 

N Starvation in open pond did not affect significantly the lipid content but only the biomass productivity and CO2 

assimilation, which were 4.5±2.0 gm-2d-1 and 7.5±1.8 gm-2d-1 (Table 2) respectively, and lower than that observed in SM 

and in indoor HT-PBR in NS condition. P. tricornutum biomass obtained in LD B showed a protein fraction of 65.6±0.7 

%, while carbohydrate and lipid fraction were 29.9±0.1 % and 4.4±0.2 % (Fig. 2). The most abundant fatty acids 

extracted from P. tricornutum were: saturated C16:0 (palmitic acid), monounsaturated C16:1 (palmitoleic acid) and 

poly-unsaturated C20:5 (eicosapentaenoic acid, EPA) (Table 4).  
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Table 4 Fatty acid composition of P. tricornutum cultivated in PBRs and open pond under different 

growth medium (SM= standard medium; NS= nitrogen starvation; LD B= liquid digestate B). 

Production 

technology/ 

growth 

medium 

C14:0 

(%) 

C16:0 

(%) 
C16:1 

(%) 
C16:2 

(%) 
C18:0 

(%) 

C18:1 

(%) 
C18: 2 

(%) 
C18:3 

(%) 
C20:5 

(%) 

HT-PBR  

SM 
5.8±0.3 19.3±0.8 41.5±1.6 - 1.5±0.2 4.6±0.2 1.1±0.1 2.9±0.2 12.6±0.9 

HT-PBR  

NS 
4.9±0.3 43.5±1.7 33.9±1.7 - 1. 

8±0.2 
7.1±0.5 0.6±0.1 1.1±0.1 10.1±0.1 

LT-PBR  

SM 
7.8±0.42 25.5±0.8 24.8±0.9 - 1.4±0.1 14.1±0.9 - 6.4±0.3 19.6±1.2 

Open pond 

MS 
13.2±0.9 23.4±1.1 21.9±1.3 5.2±0.1 2.7±0.2 5.3±0.2 1.2±0.2 - 19.7±0.9 

Open pond  

NS 
9.5±0.5 20.2±1.0 20.6±0.8 6.3±0.4 3.4±0.3 12.5±0.9 2.9±0.2 - 17.5±0.7 

Open pond  

LD B 
6.7±0.4 15.2±0.9 24.2±0. 

6 
7.9±0.3 1.5±0.1 6.5±0.9 2.8±0.2 - 28.7±0.9 
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Low concentrations of C18:1 (oleic acid), C16- and C18- polyunsaturated 

fatty acids were observed. EPA, one of the omega-3 fatty acids used in the 

human and animal diet, was produced during cultivation in SM at a 

concentration of 13 - 20 %. This value is lower respect to the data reported 

by Torzillo et al. (2012) who reported a 35 % of EPA in both using PBRs 

and open pond. When microalgae was cultivated on NS condition in HT-

PBR, the relative abundance of EPA decreased slightly as described also by 

Breuer et al. (2012) that reported a reduction of about 11 % (from 24 to 13 

%): a significantly reduction was observed from 13 to 10 % in HT-PBR and 

from 20 to 18 % in open ponds, differences of about 2-3%, lower than 

reported by Breuer that worked indoor using small volumes. The decreasing 

of C20:5 acid, was compensated by an increase of the concentration of 

C16:0 and C18:1 fatty acids, data in line with Breuer et al. (2012) for C16:0 

but not for C18:1. During the cultivation in open pond using NS condition, 

the decrease of C20:5 was not observed; this was justified by the absence of 

the lipid increase, as before described. During the cultivation in open ponds 

on LD B, respect to the SM was observed a decrease of SFAs (saturated 

fatty acids) (from 39.3 to 23.4 %) and an increase of unsaturated fatty acids 

(from 53.3 to 70.1 %). This is also a remarkable features of the use of this 

type of wastewater as in many case the unsaturated fatty acid are useful as 

building block for bioplastic or for nutritional supplements. Microalgae 

cultivated in outdoors achieved high content of PUFAs (polyunsaturated 

fatty acids) (in the range between 26-39 %) and lower MUFAs 

(monounsaturated fatty acids) (in the range between 27-39 %) compared to 

those obtained in indoor HT-PBRs (PUFA 12-16 %; MUFA 40-46 %). 

Moreover, a higher SFAs was observed in microalgae cultivated outdoor in 

NS (50.18 %). Looking at the biochemical composition of S. obliquus in 

indoor HT-PBR grown in SM the biomass showed the lowest lipid content 

(6.9±0.1 % DW) (Fig. 4) but, respect to the outdoor systems, reached the 

highest protein and carbohydrate productivity (4.2±0.4 g m-2d-1 and 

4.3±0.4 g m-2d-1 respectively).  
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Biomass produced in HT-PBR in NS conditions presented respect to the 

cultivation in SM, a reduction in protein content from 46.3±1.4 to 33.4±0.4 

% DW, whereas the lipid and carbohydrate contents increased from 6.9±0.1 

to 10.2±0.3 % DW and from 46.8±1.1 to 56.4±0.8 % DW (Fig. 4) 

respectively. This value are in line with the results by Ho et al. (2012), 

during the cultivation in batch system under nitrogen starvation. During the 

cultivation in open pond in NS, the decreasing of the biomass productivity  

 

Fig. 4 Lipid, carbohydrate and protein content (% ash free DW) (mean ±SD) of S. 

obliquus biomass grown in open ponds and PBRs on standard medium (SM), N 

starvation (NS) and LD B. 
 

(5.9±1.9 gm-2d-1), CO2 assimilation (10.8±1.3 gm-2d-1) and protein fraction 

(25.0±0.28 % DW) was compensate by an increase of the carbohydrate 

fraction (65.9±0.7 % DW), without observing an increase of the lipid 

fraction (Fig. 4). Interestingly, the composition of microalgae grown in 

open ponds with LD-A did not change significantly compared to SM: the 

protein was 40.0±1.3 % (vs 37.3±1.6 % DW) the carbohydrate content was 

54.9±0.3 (vs 50.4±0.3 % DW); while the lipid content decreases from 

12.6±0.6 to 5.1±0.1 % (Fig. 4). Abou-Shanab et al. (2013) reported a 31 % 

lipid content after 20 days of batch-mode cultivation of S. obliquus in 

sterilized piggery wastewater. These results are higher than those obtained 

in the present study. However, that work was conducted in batch mode 

where the medium probably became nutrient-depleted favoring stress 
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condition and thus increased lipid content. Numerous studies have 

demonstrated that microalgae are able to accumulate high lipid content 

under stressful conditions (Xin et al. 2010), however in our experiments a 

significant increase in lipid content under NS conditions was observed only 

in HTPBR. The proximate biochemical composition of S. obliquus in 

complete medium reported in literature (Becker 2007) was 50-56 % DW 

protein, 10-17 % DW carbohydrates and 12-14 % DW lipid, data in line 

with our data only for lipid content. The main fatty acids of S. obliquus 

were saturated C16:0 (palmitic acid), mono-unsaturated 18:1 (oleic acid), 

and poly-unsaturated 18:2 (linoleic acid) and 18:3 (linolenic acid) (Table 5). 

During the NS cultivation in indoor HT-PBR was observed a decrease of 

SFAs (from 30 to 23 %) and MUFAs (from 44 to 31 %) counterbalanced by 

an increase of PUFAs (from 26 to 45 %), respect to the standard medium 

(Table 5). 
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Table 5 Fatty acid composition of S. obliquus cultivated in PBRs and open pond under 

different growth medium (SM= standard medium; NS= nitrogen starvation; LD B= liquid 

digestate A). 
Production 

technology/ 

growth 

medium 

C16:0 

(%) 
C16:1 

(%) 
C16:2 

(%) 
C16:3 

(%) 
C18:0 

(%) 
C18:1 

(%) 
C18:2 

(%) 
C18:3 

(%) 

HT-PBR 

SM 
27.8±0.1 8.4±0.2 2.7±0.1 4.7±0.1 2.3±0.1 35.7±1.1 7.5±0.1 10.7±0.3 

HT-PBR 

NS 
21.0±0.1 6.1 

±0.1 
2.4±0.1 9.7±0.5 2.4±0.1 25.4±1.0 18.5±0.4 14.6±0.3 

LT-PBR  

SM 
27.1±0.2 4.1±1.1 3.3±0.1 11.2±0.2 3.7±0.1 16.3±0.9 10.5±0.2 21.6±0.4 

Open pond 

SM 
20.6±0.1 2.7±0.1 3.1±0.1 11.3±0.7 2.1±0.1 19.3±0.8 8.5±0.1 31.0±0.9  

Open pond 

NS 
19.6±0.1 2.0±0.1 1.4±0.1 7.9±0.2 2.5±0.1 39.1±1.3 9.1±0.4 16.1±0.3 

Open pond 

LD A 
20.7±0.2 3.6±0.1 2.7±0.1 6.8±0.2 2.5±0.1 31.4±1.1 11.9±0.8 14.8±0.1 
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Outdoor the biomass showed an increase in C18:1 when a NS regime was 

applied, as described by Breuer (2012); in HT-PBR this trend was not 

observed. The highest level of C18:3 was assessed in biomass cultivated in 

SM in LT-PBR (21.6±0.4 %) and in ponds (31±0.9 %). In open pond with 

LD A, the content of MUFAs (34.9 %) was higher than the content in the 

biomass cultivated in SM (22 %), where PUFAs were abundant (53.9 %). 

Like P. tricornutum, also in S. obliquus cultivated outdoor was achieved a 

higher content of PUFAs and SFAs and a lower content of MUFAs, 

compared to those obtained under indoor conditions (table 5). As described 

by Breuer et al. (2012) in the oleaginous strains in N starvation condition it 

is possible to observe an accumulation of TAGs, with a different fatty acids 

composition than that of functional and structural lipids. In the non-

oleaginous strains this could indicate a shift in lipid class composition, for 

example a reduction in thylakoid membrane content. Strains that 

accumulated the largest amounts of fatty acids also showed the largest 

change in fatty acid composition. The biochemical composition data have 

been evaluated to assess their potential use for the production of biofuels, 

chemicals and omega-3, and as animal feed and human food (Dibenedetto et 

al submitted). 
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4. Conclusions 

P. tricornutum and S. obliquus can be successfully grown in both open 

ponds under greenhouse in South of Italy and HT-PBRs, when a semi-

continuous regime was applied. However the use of HT-PBR imply high 

costs of investment and management. Our data showed that satisfactory 

productivity can be obtained in open ponds under greenhouse with much 

less investment. Looking at the cultivation with the use as culture medium 

of liquid digestates from anaerobic digestion they provide good biomass and 

CO2 fixation performance suggesting that the optimization of the cultivation 

parameters in low technology production plant is the optimal way to 

achieve profitable tradeoff between production costs, environmental 

sustainability and value of the microalgae biomasses. Even if the 

microalgae showed at lab scale a flexibility of their metabolism, which 

could be adapted to produce specific molecules, it’s regulation in big 

volumes seems to be more difficult probably due to the complex biological 

systems that come into play in large scale productions. Finally, the 

biomasses produced outdoor showed for both strains the higher PUFA 

content respect the indoor cultivations, while the cultivation in NS 

conditions showed the lower PUFA content respect to standard medium. 

The EPA production by P. tricornutum in the range from 20 to 28 % also 

using wastewater as medium, suggests its application in nutraceutical, food 

and feed sectors, while S. obliquus for its ability to grow on wastewater and 

its resistance to contamination and changes in temperature can be grow very 

profitable for both wastewaters depuration and animal feeding purpose. 

In conclusion, it was found that the microalgae productivity in standard 

medium were about doubled in HTPBR respect to open ponds for P. 

tricornutum and about 20% higher for S. obliquus. However, the 

performance obtained using ponds under greenhouse and wastewater as 

growth medium are satisfactory and guarantee at our latitudes, the best 

trade-off between the production yield and the investment, maintenance and 

management costs. 
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