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Introduction

The main topic of this thesis is to specialize mathematical methods and
construct stochastic models for describing and predict biological dynamics
such as neuronal firing and acto-myosin sliding.
Neurons are cells of the nervous system that can be of different types

depending on their position and task, but all have the main structure: axon,
dendrites and cell body. Comparing a neuron with a computer we can say
that the dendrites represent the input, the axons and synapses the output
and the cell body constitutes the processing unit of the information. Neurons
transmit information through electrical and chemical signals that constitute
the spike trains. These trains are the object of many studies, because of the
generally accepted hypothesis that the information transferred within the
nervous system is encoded by the timing and the rate of the spikes.
A powerful tool for neuroscientists is the mathematical theory of stochas-

tic processes. Even if it is rigorous and abstract it allows the description and
the computational simulation of many practical phenomena like the olfac-
tory system of a fly, the reaction of a monkey when it looks at a picture of a
predator or the answer of the human brain to an acoustic stimulation.
In fact neurons are subject to several sources of noise, so the description

of the neuronal activity must be carried out with stochastic models regulated
by stochastic differential equations.
At the end of the nineteenth century natural phenomena were modelled

by differential equations and it was commonly thought that if all initial data
could be collected, one would be able to predict the future almost surely.
The advent of quantum mechanics and chaos theory stressed the importance
of considering the effects of noise in the environment in which the system we
are studing is embedded. This fact does not imply that natural systems are
governed by chaos, but there is a limit in the precision of predictions.
The first example of SDE was proposed by Einstein 1905 and then by

Langevin in 1908 for the description of the Brownian motion of a small
pollen grain suspended in water. Langevin introduced a fluctuating force
which represents the incessant impacts of the molecules of the liquid on the
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INTRODUCTION iv

Brownian particle.
An adequate mathematical grounding for the approach of Langevin, however,
was not available until more than 40 years later, when Itô formulated his con-
cept of stochastic integration. Before then the solutions of SDEs, obtained
using classical methods of resolution, were physically unreasonable. Itô de-
fined the stochastic integral and introduced new rules of derivation using the
formula that bears his name: these definitions allowed the development of
the stochastic analysis.
Of course these mathematical results on stochastic processes are of general
nature and are valid not only in neuroscience. Theory and properties of
Gauss-Markov processes and diffusion processes are widely used for mod-
elling the time evolution of dynamical systems in many fields: economics,
physics, biology, engineering and medicine. Two examples are taken into
consideration in this Thesis: stochastic neuronal activity and motor proteins
dynamics.
It should be emphasized that the apparently twofold theme on which we fo-
cused the research is part of a strictly unitary context as the methods and
tools of investigation adapt naturally to both issues. Models describing the
stochastic evolution in the case of neuronal activity or that of the actin-
myosin dynamics are governed by stochastic differential equations whose
solutions are diffusion processes and Gauss-Markov processes. Of funda-
mental importance in the study of these phenomena is the determination
of the density of the first passage times through one or two time-depending
boundaries. For this purpose the development or use of numerical solution
algorithms and the comparison of the results with those obtained by sim-
ulation algorithms is essential. A particular type of Gauss-Markov process
(the time-inhomogeneous Ornstein-Uhlenbeck process) and its first passage
time through suitable boundaries are fundamental for modeling phenomena
subject to additional (external) time-dependent forces.

We briefly present the structure of this work.
Chapter 1 is dedicated to a quick resume of the basis of stochastic analysis

including conditional expectation, the Itô integrals, the definition of SDEs
and solution of an SDE focusing on the hypoteses that guarantee the exis-
tence and uniqueness of such solution.
In Chapter 2 the analysis of the properties of Gauss-Markov and diffu-

sion processes are presented focusing on their transition probabilities and the
related SDEs. Classical results and new contributions on the First Passage
Time of these processes through one boundary are reviewed in order to high-
light the four possible strategies adopted for the determination of the density
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of First Passage Time for specified processes: numerical solution of a second
kind Volterra integral equation, analytical evaluation of the moments using
the Laplace transform, asymptotic approximations or closed form solutions.
In Chapter 3 these results are applied in the modeling of neuronal ac-

tivity giving an overview on the models presented in literature marking the
difference between renewal and non-renewal processes. The latter processes,
despite a more realistic description of the experimental evidences, are more
difficult to treat from a mathematical point of view because they involve
time-inhomogeneous processes and correlation between spike times. The last
part of the Chapter is devoted to the Recurring Passage Time Problem, de-
scribed by a time-inhomogeneous Ornstein-Uhlenbeck processes and has been
the object of study during my visiting at the Laboratory of Mathematical
Physics of the Rockefeller University under the supervision of Prof. Marcelo
O. Magnasco.
In Chapter 4 a stochastic model for the prediction of the successive spikes

that constitute the train of spikes of a neuron is described by means of first
passage times of a succession of Gauss-Markov processes each of which is
identified by a particular mean function dependent on the first passage time
of the previous process An analogous strategy has been carried out to describe
the interspike intervals of the same train.
The first part of Chapter 5 contains mathematical results about the ran-

dom variable First Exit Time, useful in phenomena in which the dynamics
is confined in a particular region. Finally the second part deals with the
stochastic modeling of the acto-myosin dynamics responsible for the contrac-
tion in skeletal muscles.

In order to verify the validity of the proposed models it can not be disre-
garded the analysis of simulated and/or experimental data. For this reason,
in recent years more and more important is the cooperation between the
different fields of research, so that the studies of the data obtained through
experiments, refining the purely mathematical techniques, lead to new re-
sults.



Chapter 1

Preliminaries

In this Chapter we collect a miscellaneous of basic notions about Stochastic
Analysis that are essential for the understanding of the results presented
in the next chapters. The goal is therefore to recall the basic tools that
will be used in the following and not to provide a comprehensive overview
on the subject. For this reason, most of the proofs are not presented, which
however are classical results and can be found in very interesting and popular
textbooks such as [3], [5], [42], [58] and [82].

1.1 Conditional expectation

Let (Ω,F ,P) be a probability space (see, for instance, [82]).
Definition 1.1.1. Let A,B ∈ F be events such that P (B) > 0. The condi-
tional probability of A given B is defined as

P(A|B) = P(A ∩ B)
P(B)

. (1.1)

If the events A and B are not independent, the information about the
occurrence of B improves our “prediction” on A.

Let us now suppose that G is a sub-σ-algebra of F . Using the Radon-
Nikodym theorem it can be shown (see for instance [58] or [82]) that for
every integrable real-valued random variable X defined on Ω there exists a
G-measurable random variable Z (i.e. Z : (Ω,G) → R is measurable) such
that: ∫

B

XdP =

∫
B

ZdPG , ∀B ∈ G. (1.2)

We note that by PG in the second integral of (1.2) we indicate the measure
P restricted to the σ-algebra G.

1



CHAPTER 1. PRELIMINARIES 2

Definition 1.1.2. The G-measurable random variable Z is (PG)-almost surely
unique, is indicated by E(X|G) and is called conditional expectation of X
given G.

The expression (1.2) can be written in the following form:

E(X1B) = E(Z1B), ∀B ∈ G

where 1(·) is the the indicator of the event (·).
The conditional expectation enables us to define the conditional probability
with respect to a σ-algebra.

Definition 1.1.3. Let G be a sub-σ-algebra of F and let E ∈ F be an event.
We say that the random variable P(E|G) is the conditional probability of E
with respect to the sigma-algebra G if:

• P(E|G) is G-measurable,

• E[1HP(E|G)] = P(E ∩H) for any H ∈ G.

1.2 Stochastic Processes and Stopping Times

In the following we recall from [42] some definitions concerning stochastic
processes.

Definition 1.2.1. A stochastic process is a collection of random variables
X(t) = {X(t), t ≥ 0} on (Ω,F) which take values in a measurable space
(E, E), called state space.

If we fix the sample point ω ∈ Ω, the function t �→ X(t, ω) is the trajectory
(or sample path) of the process X(t) associated to ω. It can be viewed as
the mathematical abstraction of the results of a random experiment that can
be observed continuously in time. If we fix t, we obtain a random variable
ω ∈ Ω �→ Xt(ω).
The index t is commonly interpreted as time. When E ≡ R the stochastic

process is real and in this case it is usually equipped with the Borel σ-algebra
E = B(R), i.e. the smallest σ-algebra containing all the open sets of R.

Definition 1.2.2. The joint distributions of the vectors (X(t1), . . . ,X(tk))
on Ek, for k ∈ N and t1, . . . , tk ∈ [0,+∞) are the finite dimensional distri-
butions of the process X(t).
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The last definition is important because the Kolmogorov Consistency
Theorem ensures that a stochastic process is identified by the family of its
finite-dimensional distributions.

The temporal feature of a stochastic process suggests a flow of time,
so it makes sense at time t to talk about past, present and future of the
process. For this reason it is important to consider sequences of σ-algebras,
i.e. filtrations.

Definition 1.2.3. A filtration on the measurable space (Ω,F) is a non-
decreasing family {Ft, t ≥ 0} of σ-algebras such that:

i) Ft ⊆ F , ∀t ∈ [0,+∞),

ii) Fs ⊆ Ft, ∀s ≤ t < +∞.

We set F∞ := σ (∪t≥0Ft), where σ (∪t≥0Ft) is the σ-algebra generated by
∪t≥0Ft, i.e. the smallest σ-algebra containing every set in ∪t≥0Ft.

Definition 1.2.4. The stochastic process {X(t), t ≥ 0} is adapted to the
filtration {Ft, t ≥ 0} if, for each t ≥ 0, X(t) is a Ft-measurable random
variable.

This notion gives a physical interpretation: it describes non-anticipating
processes. These processes may depend only on past events and not on future
ones.

Since the random process {X(t), t ≥ 0} is a family of random variables
X(t) we say that it is measurable if each X(t) is F/B(R)-measurable. How-
ever for a rigorous definition we have to consider the product spaces.

Definition 1.2.5. The stochastic process X(t) is called measurable if, for
every A ∈ B(R), the set {(t, ω),X(t, ω) ∈ A} belongs to the product σ-
algebra B([0,+∞))⊗F .

Definition 1.2.6. The stochastic process X(t) is called progressively mea-
surable with respect to the filtration {Ft, t ≥ 0} if, for each t ≥ 0 and
A ∈ B(R), the set {(s, ω), 0 ≤ s ≤ t, ω ∈ Ω,X(s, ω) ∈ A} belongs to the
product σ-algebra B([0, t))⊗Ft.

A progressively measurable process is adapted and measurable.

A stochastic process that is adapted and is the most important and used
in literature and applications is the Wiener process.
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Definition 1.2.7. The standard Wiener process {W (t), t ≥ 0} is a continu-
ous one-dimensional stochastic process adapted to the filtration {Ft, t ≥ 0}
that have the properties:

i) P(W (0) = 0) = 1 ;

ii) W (t)−W (s) is independent of Fs for t > s ;

iii) the random variable W (t) − W (s) is normally distributed with mean
zero and variance | t− s |.

W (t) is often called also the standard Brownian motion. It is a gaus-
sian process with independent and stationary increments, is markovian, is
a martingale and has almost everywhere continuous but non-differentiable
trajectories.

Finally we give the definition of σ-algebra at a Stopping Time (see [42],[58])
that plays an important role in the definition of the strong Markov property,
presented in the next chapter.

Definition 1.2.8. A random time T is a stopping time of the filtration
{Ft, t ≥ 0} if the event {T ≤ t} belongs to the σ-algebra Ft ∀t ≥ 0. A
random time T is an optional time of the filtration {Ft, t ≥ 0} if {T < t} ∈ Ft

∀t ≥ 0.

Definition 1.2.9. Let T be a stopping time of the filtration {Ft, t ≥ 0}. We
define the σ-algebra at T as:

FT = {A ∈ F∞ : A ∩ {T ≤ t} ∈ Ft,∀t ≥ 0}.

1.3 Stochastic integral

Let consider the stochastic basis (Ω,F , (Ft),P). Let {W (t), t ≥ 0} be a
Wiener process adapted to the filtration and {X(t), t ≥ 0} a stochastic pro-
cess. The idea of Itô was to define the stochastic integral

∫ t

t0
X(s) dW (s) as

a suitable limit of simple processes [41].

Definition 1.3.1. A process X(t) is simple if there exists a strictly increasing
sequence of real numbers 0 = t0 ≤ t1 < t2 < . . ., as well as a sequence of
random variables ξi, (i = 0, 1, 2...) such that ∀i ξi is Fti-measurable and there
exists a constant C such that supn≥0 |ξn(ω)| ≤ C for every ω ∈ Ω, and

X(t, ω) = ξ0(ω)1{0}(t) +
∞∑
i=1

ξi(ω)1[ti,ti+1)(t), t ≥ 0, ω ∈ Ω.
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We call M2[t0, t] the class of processes for which the stochastic integral
can be defined.

Definition 1.3.2. M2[t0, t] is the class of real-valued processes {X(t), t ≥ 0},
progressively measurable with respect to the filtration {Ft, t ≥ 0} and such
that

E

[∫ t

t0

| Xs |2 ds
]
<∞.

The progressive measurability guarantees that the process is non antici-
pating and so X(t) is independent of the increments W (s) −W (t), ∀s > t.
This assumption is not very restrictive, in fact most of the real phenomena
described by stochastic processes have this property.

The simple processes belong to the classM2[t0, t] and for them the stochas-
tic integral is defined as stated in the following definition. Let us consider
the partition

t0 < t1 < t2 · · · < tn−1 < tn = t

of the interval [t0, t]. We define the points τi such that ti−1 < τi < ti for
i = 1, . . . , n.

Definition 1.3.3. The stochastic integral of the simple process X(t) with
respect to the Wiener process W (t) is the random variable

It =

∫ t

t0

X(s, ω) dW (s, ω) =
n−1∑
i=0

X(τi, ω)[W (ti+1, ω)−W (ti, ω)].

It is clear that the definition depends on the particular choice of the points
τi. If we take τi = ti, we obtain the Itô integral, if we take τi =

ti+1+ti
2

we
obtain the Stratonovich integral. We note that in the case of the Stratonovich
integral even if X(t) is non-anticipating, there is no independence of the
increments W (s)−W (t).
It is possible to extend the definition of stochastic integral to the entire

class M2[t0, t], because the class of simple processes is dense in M2[t0, t].

Theorem 1.3.4. For every process X(t) ∈ M2[t0, t] there exists a sequence
of simple processes Xn(t) ∈M2[t0, t] such that

lim
n→∞

E

{∫ t

t0

| Xn(s, ω)−X(s, ω) |2 ds
}
= 0.
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Definition 1.3.5. The sequence Xn(t) converges in mean square to X(t) if

lim
n→∞

E
(
| Xn −X |2

)
= 0.

and we write X = m.s. limnXn (mean square limit).

Theorem 1.3.6. If Xn(t) ∈ M2[t0, t] is a sequence of simple processes then
there exists a process X(t) ∈ M2[t0, t] such that∫ t

t0

X(s, ω) dW (s, ω) = m.s. lim
n→∞

∫ t

t0

Xn(s, ω) dW (s, ω).

Theorems 1.3.4 and 1.3.6 enable us to define the stochastic integral for a
process X(t) ∈M2[t0, t] in the following way:∫ t

t0

X dW = m.s. lim
n

∫ t

t0

Xn dW,

where {Xn(t)} converges to X(t) in M2[t0, T ].
For the properties, the proofs and some examples of stochastic integrals

see [34], [42], [57], [58] and references therein.

1.4 Stochastic Differential Equations

In the stochastic basis (Ω,F , (Ft),P) we consider the following Stochastic
Differential Equation (SDE)

dX(t) = b[t,X(t)]dt+ σ[t,X(t)]dW (t) (1.3)

with initial condition X(0) = ξ, where b[t,X(t)] and σ[t,X(t)] are the drift
and diffusion coefficients, respectively. {W (t), t ≥ 0} is a standard Wiener
process and {X(t), t ≥ 0} is a suitable real-valued stochastic process with
continuous sample paths.
The equation (1.3) has to be read as a different representation of the integral
equation:

X(t) = X(0) +

∫ t

0

b[s,X(s)]ds+

∫ t

0

σ[s,X(s)]dW (s). (1.4)

Following [42] we recall some important definitions.

Definition 1.4.1. A strong solution of the SDE (1.3) on the given space
(Ω,F ,P) and with respect to the fixed standard Brownian motion W (t) and
initial condition ξ, is a process X(t) with continuous sample paths and with
the following properties:
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i) X(t) is adapted to the filtration {Ft, t ≥ 0},

ii) P[X(0) = ξ] = 1,

iii) P

[∫ t

0
{|b[s,X(s)]|+ σ2[s,X(s)]}ds <∞

]
= 1,

iv) X(t) = X(0)+
∫ t

0
b[s,X(s)]ds+

∫ t

0
σ[s,X(s)]dW (s) holds almost surely.

Definition 1.4.2. A solution X(t) of SDE (1.3) is pathwise unique if for
every other process Y (t) solution of (1.3), X(t) and Y (t) are indistinguish-
able.

Definition 1.4.3. X(t) and Y (t) are indistinguishable if almost all their
sample paths agree

P[X(t) = Y (t),∀t ≥ 0] = 1.

Let us recall the conditions that guarantee the existence and uniqueness
of a strong solution of SDE (1.3).

Theorem 1.4.4 ([42]). Suppose that the coefficients b[t,X(t)] and σ[t,X(t)]
satisfy the global Lipschitz condition

||b(t, x)− b(t, y)||+ ||σ(t, x)− σ(t, y)|| ≤ K||x− y||, (1.5)

and linear growth condition

||b(t, x)||2+ ||σ(t, x)||2 ≤ K2(1 + ||x||2), (1.6)

for every 0 ≤ t < ∞, x, y ∈ R, where K is a positive constant. On some
probability space (Ω,F ,P) let ξ be a real-valued random variable independent
of the Wiener process W (t) and with finite second moment: E||ξ||2 <∞. Let
{Ft, t ≥ 0} be a filtration. Then there exists a pathwise unique continuous
process {X(t), t ≥ 0} adapted to {Ft, t ≥ 0} which is a strong solution of
SDE (1.3) with initial condition ξ. Moreover the process ∈ M2[0, T ]: for
every T > 0 there exists a constant C, depending only on K and T such that

E||X(t)||2 ≤ C(1 + E||ξ||2)eCt; 0 ≤ t ≤ T.

The condition on the independence of ξ with respect to W ensures that
ξ is non-anticipating, whereas the condition (1.8) excludes the case in which
the solution goes to infinity in finite time.

So a strong solution is considered on a given probability space, with re-
spect to a given filtration and a given Wiener process. When the probability
space, the filtration and the driving Wiener process are not imposed, but are
themselves part of the problem we talk about weak solutions.
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Definition 1.4.5. A weak solution of the SDE (1.3) is a triple

(X,W ), (Ω,F ,P) , (Ft)

where:

i) (Ω,F ,P) is a probability space and (Ft) is a filtration satisfying the
usual condition (i.e. F0 contains all P-null sets) ,

ii) X = {X(t), t ≥ 0} is a continuous real-valued process adapted to (Ft)
and W = {W (t), t ≥ 0} is a Wiener process,

iii) P

[∫ t

0
{|b[s,X(s)]|+ σ2[s,X(s)]}ds <∞

]
= 1,

iv) X(t) = X(0) +
∫ t

0
b[s,X(s)]ds+

∫ t

0
σ[s,X(s)]dW (s) almost surely.

Again following [42] we state, now, the theorem of existence of a weak
solution for SDE (1.3) in the case of σ(t,X) = 1.

Theorem 1.4.6. Consider the SDE

dX(t) = b[t,X(t)]dt+ dW (t), 0 ≤ t ≤ T, (1.7)

where T is a fixed positive number, W (t) is a Wiener process and b(t, x) is a
Borel-measurable, real-valued function on [0, T ]× R which satisfies

||b(t, x)|| ≤ K(1 + ||x||), 0 ≤ t ≤ T, x ∈ R (1.8)

for some positive constant K.
Then for any probability measure μ on (R,B(R)), equation (1.7) has a weak
solution with initial distribution μ.

Moreover Theorem 1.4.6 ensures that the solution is unique in the sense
of probability law.

Definition 1.4.7. We say that uniqueness in the sense of probability law
holds if, for any two solutions of equation (1.7), (X,W ), (Ω,F ,P) , (Ft) and

(X̃, W̃ ),
(
Ω̃, F̃, P̃

)
, (F̃t) with the same initial distribution, the two processes

X, X̃ have the same law.



Chapter 2

Gauss-Markov and Diffusion
processes

This Chapter is devoted to the collection of the main definitions and prop-
erties about the Gauss-Markov and Diffusion processes and their associated
First Passage Time random variables. Next section is devoted to the Markov
property and to the role these markovian processes play in the theory of
SDEs.

2.1 The Markov property

Let (Ω,F ,P) be a probability space with a filtration {Ft, t ∈ T}, where T is
a continuous parameter set.

Definition 2.1.1. A stochastic process {X(t), t ∈ T}, is Gaussian if the
finite collection of random variables X(t1), . . . ,X(tn) has a multivariate nor-
mal distribution for every n and t1, . . . , tn ∈ T .

Along the lines of [42] we give the following definitions.

Definition 2.1.2. Let μ be a probability measure on (R,B(R)). A real-
valued stochastic process {X(t), t ∈ T} adapted to the filtration {Ft, t ∈ T},
is said to be a Markov process with initial distribution μ if

(i) P(X(0) ∈ Γ) = μ(Γ), ∀Γ ∈ B(R)

(ii) for s, t ≥ 0 and Γ ∈ B(R),

P[X(t+ s) ∈ Γ|Fs] = P[X(t+ s) ∈ Γ|X(s)], P-almost surely.

9
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The probability appearing on the right-hand side of (ii) is conditioned on
the σ−algebra generated by X(s) (see Definition 1.1.3). The property (ii)
is known as the memoryless of the process and roughly speaking it means
that the conditional probability is determined entirely by the knowledge of
the most recent state of the process. If it holds also for any random times
we talk about strong Markov property.

Definition 2.1.3. Let μ be a probability measure on (R,B(R)). A real-
valued stochastic process {X(t), t ∈ T}, progressively measurable on
(Ω,F , (Ft),P), is said to be a strong Markov process with initial distribution
μ if

(i) P(X(0) ∈ Γ) = μ(Γ), ∀Γ ∈ B(R)

(ii) for any optional time S of {Ft, t ∈ T} and Γ ∈ B(R)

P[X(S + t) ∈ Γ|FS] = P[X(S + t) ∈ Γ|X(S)], P-almost surely.

The probability appearing on the right-hand side of (ii) is conditioned on
the σ−algebra generated by X(S), i.e. the collection of all sets of the form
{X(S) ∈ A} and {X(S) ∈ A} ∪ {S = ∞} with A ∈ B(R). Finally, we note
that every strong Markov process is a Markov process.

We consider the following SDE

dX(t) = A1(X(t), t)dt+
√
A2(t)dW (t), with X(t0) = x0 (2.1)

for t ≥ t0, where W (t) is the Wiener process and A1(x, t) and A2(t) are
respectively the drift and the infinitesimal variance of the process X(t):

An(x, t) = lim
Δt→0

1

Δt
E{[X(t+Δt)−X(t)]n|X(t) = x}

= lim
Δt→0

1

Δt

∫
R

(z − x)nf(z, t+Δt|x, t)dz (n = 1, 2). (2.2)

In the last equation, f(z, t + Δt|x, t) represents the transition probability
density function of the process X(t), i.e.

f(x, t|y, τ ) = ∂

∂x
P(X(t) < x|X(τ ) = y) (2.3)

and sinceX(t) is Markov f(x, t|y, τ ) satisfies the following Chapman-Kolmogorov
integral equation

f(x, t|y, τ ) =
∫

R

f(x, t|z, u)f(z, u|y, τ )dz, x, y ∈ R; τ, u, t ∈ T, τ < u < t.
(2.4)
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In Section 1.4 we recalled that under the hypotheses of measurability, global
Lipschitz condition (1.5) and restriction on the growth (1.8) of the involved
infinitesimal moments A1(x, t) and A2(t), Equation (2.1) admits a solution.
Determined that the solution exists, there remains the problem of finding

it. The classical “diffusion equations approach” is to evaluate the transition
probability functions f(x, t|·, ·) of the solution process using the techniques
of resolution of the partial differential equations. In fact, each f(x, t|y, τ ) of
the solution process satisfies the following Fokker-Planck equation and the
associated initial condition:

∂f(x, t|y, τ )
∂t

= − ∂
∂x
[A1(x, t)f(x, t|y, τ )]+

1

2

∂2

∂x2
[A2(t)f(x, t|y, τ )]

(2.5)

lim
t→τ
f(x, t|y, τ ) = δ(x− y).

The Kolmogorov consistency theorem [57] guarantees that a stochastic pro-
cess is determined by the family of its finite-dimensional distributions. Thanks
to the Markov property these distributions can be obtained knowing the ini-
tial distribution and the transition probabilities. Next theorem goes in this
direction:

Theorem 2.1.4 ([3]). If the SDE (2.1) satisfies the conditions of existence
and uniqueness of Theorem 1.4.4, the solution X(t) of the equation for arbi-
trary initial values is a Markov process whose initial probability distribution
at the instant t0 is the distribution of X(t0) and whose transition probabilities
are given by

P[X(t) ∈ E|X(s) = x]
where X(t) is the solution of the associated integral equation

X(t) = x+

∫ t

s

A1(X(u), u)du+

∫ t

s

√
A2(u)dW (u), t0 ≤ s ≤ t. (2.6)

In particular if the coefficients A1(X, t) ≡ A1(X) and A2(t) ≡ A2 are inde-
pendent of t, the solution of (2.1) is an homogeneous Markov process with
stationary transition probabilities.

Theorem 2.1.4 ensures that the solutions of SDEs of the type of (2.1)
are Markov processes, the next theorem shows when those solutions are also
diffusion processes:

Theorem 2.1.5 ([3]). If the SDE (2.1) satisfies the condition of existence
and uniqueness of Theorem 1.4.4 and if the coefficients A1(X, t) and A2(t)
are continuous functions with respect to t, the solution X(t) of the equation
is a Diffusion process.
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In the next section we show a different approach that is helpful in the
case of Gauss-Markov processes and in particular in the context of the first
passage time problem.

2.1.1 Basics on Gauss-Markov Processes

In the rest of the section we will assume that the process {X(t), t ∈ T},
where T = [0,+∞), is a real continuous Gaussian process with the following
properties:

1. m(t) := E[X(t)] is continuous in T;

2. the covariance c(s, t) := E{[X(s) −m(s)][X(t)−m(t)]} is continuous
in T × T ;

3. X(t) is non-singular except possibly at the end points of T , i.e. X(t)
has a non-singular normal distribution except possibly at t = 0, where
X(0) could be equal to m(0) with probability 1.

We recall an important characterization of the Gauss-Markov (GM) pro-
cesses:

Theorem 2.1.6. A Gaussian process is Markov if and only if its covariance
satisfies

c(s, u) =
c(s, t)c(t, u)

c(t, t)
(2.7)

for all s ≤ t ≤ u, with s, t, u belonging to the interior of T .
In particular well-behaved solutions of (2.7) can be written as product of

two functions h1(t), h2(t), i.e.

c(s, t) = h1(s)h2(t), s ≤ t (2.8)

where

r(t) =
h1(t)

h2(t)
(2.9)

is a monotonically increasing function and h1(t)h2(t) > 0 because of the
assumed non-singularity of the process on the interior of T . The transition
probability density function f(x, t|y, τ ) of a GM process is a normal-type
density characterized respectively by conditional mean and variance:

E[X(t)|X(τ ) = y] = m(t) +
h2(t)

h2(τ )
[y −m(τ )]

D2[X(t)|X(τ )] = h2(t)

[
h1(t)−

h2(t)

h2(τ )
h1(τ )

]
(2.10)
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for t, τ ∈ T , τ < t, i.e.

f(x, t|y, τ ) = 1√
2πD2[X(t)|X(τ )]

exp

{
−{x− E[X(t)|X(τ ) = y]}

2

2D2[X(t)|X(τ )]

}
.(2.11)

If m(t), h1(t), h2(t) ∈ C1(T ), f(x, t|y, τ ) satisfies the Fokker-Planck equation
(2.5) with A1(x, t) and A2(t) given by

A1(x, t) = m
′(t) + [x−m(t)]h

′
2(t)

h2(t)
, A2(t) = h

2
2(t)r

′(t), (2.12)

where the prime denotes the derivative with respect to the argument. In
this case we can call the GM processes also Gauss-Diffusion (GD) processes.
Equations (2.12) show that for GD processes the drift is in general time-
dependent and dependent on x at most linearly and the infinitesimal variance
depends at most on t. In fact, setting

a(t) =
h′2(t)

h2(t)
, b(t) = m′(t)−m(t) h

′
2(t)

h2(t)
, σ2(t) = h2

2(t) r
′(t), (2.13)

the infinitesimal moments (2.12) for the GD process {X(t), t ∈ T}, alterna-
tively, can be rewritten as space-linear functions as follows:

A1(x, t) = a(t)x+ b(t), A2(t) = σ
2(t) for t ≥ 0. (2.14)

The Gauss-Markov process X(t), with mean m(t) and covariance factors
h1(t), h2(t), satisfies the following Doob’s representation formula (see, for
instance, [23])

X(t) = m(t) + h2(t)W [r(t)], (2.15)

where W (t) is a standard Wiener process.

Proposition 2.1.7 ([7]). The GD process X(t) solution of equation (2.1)
is characterized , alternatively, by the following infinitesimal moments:

A1(X, t) = m
′(t) + h′2(t)W [r(t)], A2(t) = h

′
1(t)h2(t)− h1(t)h

′
2(t). (2.16)

In particular, A1(X, t) ≡ E[dX(t)].

Proof. Note that applying the Itô differentiation rule on both sides of (2.15),

dX(t) = m′(t)dt+ h′2(t)W [r(t)]dt+ h2(t)
√
r′(t)dW (t)

= {m′(t) + h′2(t)W [r(t)]}dt+ h2(t)
√
r′(t)dW (t). (2.17)
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From (2.15), W [r(t)] = [X(t) − m(t)]/h2(t); recalling (2.12) and (2.1), one
has

m′(t) + h′2(t)W [r(t)] = m
′(t) + h′2(t)

[X(t)−m(t)]
h2(t)

= A1(X, t)

h2(t)
√
r′(t) =

√
A2(t).

and so equations (2.16) hold.

We stress that we can derive the coefficient functions a(t), b(t) and σ2(t) of
equations (2.13) when we specify the mean and the autocovariance function
of the corresponding GM process as shown in the following theorem.
Using (2.14) the SDE (2.1) becomes

dX(t) = [a(t)X(t) + b(t)]dt+ σ(t)dW (t), X(0) = x0 = m(0). (2.18)

In Proposition 5 of [13] the authors provide a way to find the process solution
of (2.18). Since it is Gaussian its probability law is completely specified by
the mean and covariance functions.

Theorem 2.1.8. The solution of SDE (2.18) is the GD process having the
mean and covariance functions

m(t) =

⎡⎢⎣x0 +

∫ t

0

b(τ )e
−
∫ τ

0

a(s)ds
dτ

⎤⎥⎦ e
∫ t

0

a(s)ds
(t ∈ T )

(2.19)

c(τ, t) =

⎡⎢⎢⎣∫ t

0

σ2(ξ)e
−2
∫ ξ

0

a(s)ds
dξ

⎤⎥⎥⎦ e
∫ t

0

a(s)ds
e

∫ τ

0

a(s)ds
(0 ≤ τ ≤ t).

We note that we can determine the covariance factors:

h1(t) =
1

σ(0)

⎡⎢⎢⎣∫ t

0

σ2(ξ)e
−2
∫ ξ

0

a(s)ds
dξ

⎤⎥⎥⎦ e
∫ t

0

a(s)ds

h2(t) = e

∫ t

0

a(s)ds
σ(0), (t ≥ 0). (2.20)



CHAPTER 2. GAUSS-MARKOV AND DIFFUSION PROCESSES 15

2.1.2 Examples

The GM process class includes several processes widely studied in the theory
of stochastic processes. Among all we recall:

• The Wiener process {W (t), t ≥ 0} with the following infinitesimal
moments

A1W
(x, t) = bW , A2W

(t) = σ2
W , for t ≥ 0, (2.21)

has the mean m(t) and covariance factors h1(t), h2(t) as follows

mW (t) = bW t+ cW ,

(2.22)

h1W
(t) = σW t, h2W

= σW , (bW , cW ∈ R, σW ∈ R
+).

Its coefficient functions a(t), b(t), σ2(t), for t ≥ 0 can be derived from
(2.13) using (2.22), they are such that

a(t) ≡ 0, b(t) ≡ bW and σ2(t) ≡ σ2
W . (2.23)

Moreover, from (2.10), for 0 ≤ τ < t

EW (t|y, τ ) = E[W (t)|W (τ ) = y] = y + bW (t− τ )
D2

W (t|τ ) = D2[W (t)|W (τ )] = σ2
W · (t− τ ). (2.24)

• The well-known Ornstein-Uhlenbeck (OU) process {U(t), t ≥ 0}
has the infinitesimal moments for t ≥ 0

A1U
(x, t) = −aUx+ bU , A2U

(t) = σ2
U , (2.25)

and mean and covariance factors:

mU(t) =
bU
aU
+

(
cU −

bU
aU

)
e−aU t,

(2.26)

h1U
(t) =

σU

2aU
(eaU t − e−aU t), h2U

(t) = σUe
−aU t,

with aU , σU ∈ R
+, bU , cU ∈ R. In this case the coefficient functions

a(t), b(t), σ2(t), for t ≥ 0, from (2.13) and (2.26), are such that

a(t) ≡ −aU , b(t) ≡ bU and σ2(t) ≡ σ2
U . (2.27)



CHAPTER 2. GAUSS-MARKOV AND DIFFUSION PROCESSES 16

Moreover, from (2.10), for 0 ≤ τ < t

EU (t|y, τ ) = E[U(t)|U(τ ) = y] = bU
aU
+

(
y − bU
aU

)
e−aU (t−τ)

D2
U (t|τ ) = D2[U(t)|U(τ )] = σ

2
U

2aU

[
1− e−2aU(t−τ)

]
. (2.28)

The previous ones are examples of time-homogeneous processes. Time-
inhomogeneous processes, here called also Generalized Ornstein-Uhlenbeck
processes, belong also to the GM class. In the context of applications these
processes play a key role in the modeling of phenomena subject to external
time-dependent forces.

• A time-inhomogeneous Ornstein-Uhlenbeck process
{V (t), t ≥ 0} has the infinitesimal moments for t ≥ 0

A1V
(x, t) = −aVx+ bV (t), A2V

(t) = σ2
V , (2.29)

and the following mean and covariance factors

mV (t) = [cV +BV (t)] e
−aV t, with BV (t) =

∫ t

0

bV (τ )e
aV τdτ,

(2.30)

h1V
(t) =

σV

2aV

(eaV t − e−aV t), h2V
(t) = σV e

−aV t,

with aV , σV ∈ R
+, cV ∈ R, and bV (t) a time continuous function. Note

that h1V
(t) = h1U

(t) and h2V
(t) = h2U

(t) for aV = aU and σV = σU .
Now, the coefficient functions a(t), b(t), σ2(t), for t ≥ 0, from (2.13)
and (2.30), are such that

a(t) ≡ −aV , b(t) = bV (t) and σ2(t) ≡ σ2
V . (2.31)

Finally, from (2.10) and (2.30), for 0 ≤ τ < t

EV (t|y, τ ) = E[V (t)|V (τ ) = y] = mV (t) + e
−aV (t−τ) [y −mV (τ )]

D2
V (t|τ ) = D2[V (t)|V (τ )] = σ

2
V

2aV

[
1 − e−2aV (t−τ)

]
. (2.32)

An analogous of the transformation (2.15) for the OU and generalized OU
processes can be proved (see [25], [54]).

In the case of the OU process, r(t) =
e2aUt − 1
2aU

and so

U(t) = mU(t) + σUe
−aU tW

(
e2aU t − 1
2aU

)
. (2.33)
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Whereas the process V (t), having the mean mV (t) and the same covariance
factors of U(t), can be written as follows

V (t) = mV (t) + σV e
−aV tW

(
e2aV t − 1
2aV

)
(2.34)

and, since aU = aV and σU = σV , from (2.33)

V (t) = mV (t) + [U(t)−mU(t)] . (2.35)

2.2 First Passage Time

The First Passage Time (FPT) is one of the most studied and challanging
problems in the framework of stochastic processes ([20], [66] and [69]). The
literature devoted to the FPT problem is wide, even if few improvements
have been made in the last decades. The FPT problem consists in the de-
termination of the distribution of the first time the process describing the
modelled system dynamics enters a particular region or reaches a boundary
or threshold. The problem is of fundamental relevance being representative
of the evolution of processes in a wide range of applications like in neuro-
science ([13], [18], [19], [45], [79]), molecular biology ([10],[11]), population
dynamics ([61], [62]), queueing theory ([22], [36]) and finance ([4]).

2.2.1 One boundary: integral equation approach

Let the GD process X(t) evolve in the presence of a boundary S(t), that
when specified will be considered constant. The first passage time T of the
process X(t) through S(t) is defined as:

T := inf
t≥t0
{t : X(t) ≥ S(t)} with X(t0) = x0 < S(t0)

and with the probability density function (pdf)

g(S(t), t|x0, t0) :=
dP(T ≤ t)
dt

.

Using the Doob-representation formula (2.15) it is possible to construct
the FPT pdf of the GM process X(t) in terms of the FPT pdf gW (S(t), t|x0, t0)
of the standard Wiener process:

g(S(t), t|x0, t0) =
dr(t)

dt
gW{S∗[r(t)], r(t)|x∗0, r(t0)}, (2.36)
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where the process W (ϑ) evolves from x∗0 at time ϑ0 in presence of the
continuous boundary S∗(ϑ) with

x∗0 =
x0 −m[r−1(ϑ0)]

h2[r−1(ϑ0)]
, S∗(ϑ) =

S[r−1(ϑ)]−m[r−1(ϑ)]

h2[r−1(ϑ)]
. (2.37)

Hence results on the FPT pdf for the standard Wiener process can thus
be used to obtain the FPT pdf of any continuous GM process. Unfortu-
nately results in closed form in the case of GM processes are available only
in few cases and even in those cases exponentially large times are involved for
instance when transforming the Ornstein-Uhlenbeck process to the Wiener
process and this implies an unacceptable computational time dilation and
loss of accuracy in the numerical results.

An alternative approach can be followed. Since the sample paths of X(t)
are continuous functions, any sample path that starts at time τ from y < S(τ )
and reaches a state x > S(t) must cross the threshold for the first time at
some instant θ between τ and t. This sentence can be translated in the
following way:

f(x, t|y, τ ) =
∫ t

τ

g[S(θ), θ|y, τ ]f [x, t|S(θ), θ]dθ (2.38)

for x ≥ S(t) and y < S(τ ). Equation (2.38) is a first-kind Volterra integral
equation in the unknown g[S(t), t|y, τ ]. The kernel f [x, t|S(θ), θ] exhibits a
singularity of the type 1√

t−θ
as θ → t, so the numerical resolution of (2.38)

is quite complicated.

An important contribution to the solution of these critical issues is due
to Durbin ([28], [29]) who gave an explicit formula for the FPT pdf of a
continuous Gaussian process to a general boundary. He suggested also ap-
proximations formula, but with no bounds on the errors. In [30] the case of
Brownian motion crossing a curved boundary is considered and the formula
of [29] is expanded as a series whose terms are multiple integrals of increasing
dimensionality. Unfortunately the algorithms proposed were too expensive
to run and necessitated of large computation facilities.
In [8] is presented a direct and efficient computational method to obtain

evaluation of the FPT pdf for diffusion processes based on the idea of remov-
ing the singularity of the kernel in the equation (2.38). It is done modifying
the equation itself, or, to put it better, observing that if S(t) ∈ C1(T ) the
FPT pdf g(S(t), t|x0, t0) can be obtained as solution of the following second-
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kind Volterra integral equation

g(S(t), t|x0, t0)=−Ψ[S(t), t|x0, t0] +

∫ t

t0

Ψ[S(t), t|S(τ ), τ ]g(S(τ ), τ |x0, t0)dτ

(2.39)
with

Ψ(S(t), t|y, τ ) =
{
S

′
(t)−A1[S(t)] +

1

2
A

′
2[S(t)] + k(t)

}
f(S(t), t|y, τ )

+
1

2
A2[S(t)]

∂

∂x
f(x, t|y, τ )

∣∣∣
x=S(t)

(2.40)

where k(t) is an arbitrary continuous function. Even if equation (2.39) may
seem more cumbersome than equation (2.38), it presents a degree of freedom:
the specification of k(t). In fact the singularity of the kernel can be removed.
Following [8] we have that if S(t) ∈ C2(T ) then

lim
τ→t
Ψ[S1(t), t|S1(τ ), τ ] = 0 (2.41)

if and only if

k(t) =
1

2

{
A1[S(t)]−

1

4
A

′
2[S(t)]− S

′
(t)

}
. (2.42)

Hence using the k(t) as in (2.42), the kernel in (2.38) becomes non singular
and a simple numerical procedure can be applied.
We observe that the function Ψ in (2.40) can be also written in the following
way ([7])

Ψ(S(t), t|y, τ ) = f [S(t), t|y, τ ] (2.43)

×
{
S

′
(t)−A1[S(t), t]−A2(t)

S(t)− E[X(t)|X(τ ) = y]
2D2[X(t)|X(τ ) = y] + k(t)

}
again imposing

lim
τ→t
Ψ[S(t), t|S(τ ), τ ] = 0. (2.44)

In [23] these techniques are improved and specialized in the case of Gauss-
Markov processes. This new computationally simple and accurate method
allows to construct the FPT pdf for GM processes through time-dependent
boundaries for fixed or random initial states. In [23] is proved that if

S(t0) > x0 and S(t),m(t), h1(t), h2(t) ∈ C1(T ) (2.45)
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then g(S(t), t|x0, t0) can be obtained as solution of a second-kind Volterra
integral equation of the form (2.39) with

Ψ(S(t), t|y, τ ) =
{
S ′(t)−m′(t)

2
− S(t)−m(t)

2

h′1(t)h2(τ )− h′2(t)h1(τ )

h1(t)h2(τ )− h2(t)h1(τ )

− y −m(τ )
2

h′2(t)h1(t)− h2(t)h
′
1(t)

h1(t)h2(τ )− h2(t)h1(τ )

}
f [S(t), t|y, τ ]. (2.46)

For a detailed description of the numerical algorithm for the solution of (2.39)
with (2.46) we quote [13] and [23], we limit to observe that for its application
we need the mean and the covariance of the process X(t), for instance using
Theorem 2.1.8. If we know them we can write the normal transition pdf
f [S(t), t|y, τ ] and the function Ψ(S(t), t|y, τ ) involved in the Volterra integral
equation.

One boundary case: closed form results

As already said, analytical results in closed form for the FPT pdf are avail-
able in very few cases. For this reason the numerical approach presented in
the previous subsection plays a fundamental role in this context.
Here we present the special conditions that guarantee a closed form expres-
sion of the FPT pdf.
If we impose that the kernel of integral equation (2.39) vanishes identically

we obtain the following conditions:

Theorem 2.2.1 ([23]). Under assumptions (2.45) , we have

Ψ[S(t), t|S(τ ), τ ] = 0 ∀t, τ ∈ T with τ ≤ t

if and only if ∃ b1, b2 ∈ R such that

S(t) = m(t) + b1h1(t) + b2h2(t) ∀t ∈ T. (2.47)

Note that, since m(t0) = x0, b2 is not really arbitrary:

b2 =
S(t0)− x0

h2(t0)
.

Using the previous observation and equations (2.20), condition (2.47) can be
rewritten as:

∃ b1 ∈ R : S(t) =

[
S(t0) +

∫ t

t0

b(s)e
−
∫ s

t0
a(τ)dτ

ds

]
e
∫ t

t0
a(τ)dτ

+ b1h1(t), ∀t ∈ T.

(2.48)
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From equation (2.39), if the assumptions of Theorem 2.2.1 hold one obtains

g(S(t), t|x0, t0) =
S(t0)− x0

r(t)− r(t0)
h2(t)

h2(t0)

dr(t)

dt
f [S(t), t|x0, t0] (2.49)

that is completely determined if one knows the mean and covariance factors
of the process X(t).
Furthermore if t→ +∞, then

P(T < +∞) =
∫ +∞

t0

g(S(t), t|x0, t0)dt

=

{
1, if b1 ≤ 0,
exp
{
−2b1[S(t0)−x0]

h2(t0)

}
, if b1 > 0.

(2.50)

Another way to obtain a closed form expression for g(S(t), t|x0, t0) is that for
which the integral term on the right-hand side of equation (2.39) vanishes
([7]). Using the expression (2.43), we have that∫ t

t0

Ψ[S(t), t|S(τ ), τ ]g(S(τ ), τ |x0, t0)dτ = 0 (2.51)

if and only if ∃ d1 > 0, d2 �= 0 and d3 such that d21 + d3 > 0:

S(t) = m(t) + d2h2(t)−
h1(t)

2d2
ln[d1 +

√
δ(t)], and

k(t) =
A1[S(t), t]− S

′
(t)

2
+
d1d2[
√
δ(t)− d1]h2

2(t0)

2h1(t)[
√
δ(t) + d1]

√
δ(t)
, (2.52)

where δ(t) = d21 + d3e
−4d2

2
h2(t)
h1(t) . Of course in this case

g(S(t), t|x0, t0) = −Ψ[S(t), t|x0, t0]. (2.53)

Anyway this case turns to be not interesting in applications. In the next
chapter we will show some examples in which formula (2.49) can be useful
for applications.
Another special case in which a closed-form expression of FPT pdf is available
is that of the Daniels boundary. We just recall the main result from [23]. Let

y(t) = m(t) + d1h1(t) + d2h2(t)

u(t) = m(t) + d∗1h1(t) + d
∗
2h2(t) (2.54)

v(t) = 2u(t)− y(t)

be curves such that y(t) < u(t) < v(t) for all t ≥ t0, t, t0 ∈ T and t0 fixed
with d1, d2, d

∗
1, d

∗
2 ∈ R.
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Theorem 2.2.2 ([23]). Let

S(t) = u(t)− h1(t)h2(t0)− h1(t0)h2(t)

2[u(t0)− y(t0)]
ln

[
c1 +
√
Δ(t; t0)

2

]

with

Δ(t; t0) = c
2
1 + 4c2 exp

{
−4[u(t)− y(t)][u(t0)− y(t0)]
h1(t)h2(t0)− h1(t0)h2(t)

}
and

c1 > 0, c2 ∈ R, lim
t→supT

Δ(t; t0) > 0.

Then

g[S(t), t|y(t0), t0] =
u(t0)− y(t0)
r(t)− r(t0)

h2(t)

h2(t0)

dr(t)

dt

2
√
Δ(t; t0)

c1 +
√
Δ(t; t0)

× f [S(t), t|y(t0), t0] (y(t0) < u(t0)).

2.2.2 One boundary: analytical approach

An alternative approach, called analytical in [62], consists in the determina-
tion of the Laplace Transform (LT) of the FPT pdf and the calculation of
the FPT moments.
Let us limit to the case of time-homogeneous diffusion processes and constant
boundary, i.e. S(t) ≡ S. In this case equation (2.38) becomes

f(x, t|y, 0) =
∫ t

0

g(S, θ|y, 0)f(x, t− θ|S)dθ for x ≤ S, y > S. (2.55)

An analytical method to solve equation (2.55) is based on the LT. Let λ ∈ R

and let

gλ(S|y) =
∫ ∞

0

e−λtg(S, t|y)dt fλ(S|y) =
∫ ∞

0

e−λtf(x, t|z)dt (2.56)

be the LT of the functions g and f , respectively. Observing that equation
(2.55) is a convolution and recalling that the LT of a convolution of two
functions is equal to the product of the LT of the two functions, from (2.55)
we have

gλ(S|y) =
fλ(x|y)
fλ(x|S)

. (2.57)

It means that if we know the transition pdf of X(t) and we can calculate its
LT, then the LT of g follows and g can be obtained as the inverse LT if it is
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possible.
For example in [65] the inverse LT of gλ is calculated in the case of an OU
process X(t) with drift −x/θ and infinitesimal variance μ, for S = 0 giving
the well-known closed-form solution

g(t, 0|x0) =
2|x0|√
2π
[e2t− 1]− 3

2 e2t exp

{
− x2

0

2(e2t − 1)

}
. (2.58)

Even though the inverse LT of gλ cannot be calculated, it can anyway
provide useful information on the FPT. In particular the probability of the
first passage time

P(S|y) =
∫ ∞

0

g(S, t|y)dt (2.59)

and the moments

tn(S|y) =
∫ ∞

0

tng(S, t|y)dt (n = 1, 2, . . .) (2.60)

can be evaluated from gλ, that coincides with the characteristic function of
the random variable FPT, as follows:

P(S|y) = gλ(S|y)
∣∣∣
λ=0
, tn(S|y) = (−1)n

dngλ(S|y)
dλn

∣∣∣∣∣
λ=0

(n = 1, 2, . . .).

(2.61)
Starting from equation (2.61), in [65] the authors present the analytical ex-
pression of the generic n-th moment, although it is only a formal expression,
since it is rather complicated and hard to handle.

The Ricciardi-Sato FPT moments

The case of time-dependent boundaries for Gaussian processes is treated ex-
tensively in [63] and [64]. The authors presented the approximate evaluation
of the FPT pdf through time varying smooth boundaries for a stationary
one-dimensional Gaussian process (see Definition 2.1.1) with differentiable
sample paths, in terms of a series expansion.
For all n and t1 < t2 < . . . < tn let Wn(t1, . . . , tn|x0)dt1 . . . dtn denote

the joint probability that a Gaussian process X(t) crosses S(t) from below
in the intervals (t1, t1 + dt1), . . . , (tn, tn + dtn) given that X(0) = x0. With
this notation g(t, S(t)|x0) can be expressed as the following convergent series
([63]):

g(t, S(t)|x0) = W1(t|x0)

+
∞∑
i=1

(−1)i
∫ t

0

dt1

∫ t

t1

dt2 . . .

∫ t

ti−1

dtiWi+1(t1, . . . , ti, t|x0).
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Successive even-order partial sums of the above expansion provide progres-
sively improving lower bounds to g(t, S(t)|x0), while successive odd-order
partial sums provide improving upper bounds.
The functions Wn can be explicitly written:

Wn(t1, t2, · · · , tn|x0) =

∫ ∞

Ṡ(t1)

dξ1

∫ ∞

Ṡ(t2)

dξ2 · · ·
∫ ∞

Ṡ(tn)

dξn

n∏
i=1

[
ξi − Ṡ(ti)

]
× p2n[S(t1), S(t2), . . . , S(tn); ξ1, . . . , ξn|x0], (2.62)

where Ṡ(ti) indicates the time derivative of S(ti) and
p2n[S(t1), S(t2), . . . , S(tn); ξ1, . . . , ξn|x0] is the joint pdf of X(t1) = x1, ...,
X(tn) = xn, ξ1 = Ẋ1(t1), ..., ξn = Ẋ1(tn) conditional upon X(0) = x0.
The terms of the series expansion cannot be analitically calculated since

they do not admit a simplified form and so the multiple integrals should
be estimated numerically. Only the first-order term admits a closed form,
although very cumbersome, that in [39] is presented in the form

W1(t|x0) =
Λ3(t)

1/2

2π[1− ρ2(t)] exp
{
− [S(t)− x0ρ(t)]

2

2[1− ρ2(t)]

}
×
[
exp

{
−σ

2(t|x0)

2

}
−
√
π

2
σ(t|x0)Erfc

(
σ(t|x0)√
2

)]
(2.63)

where
|Λ3(t)| = −ρ̈(0)[1− ρ2(t)]− [ρ̇(t)]2,

σ(t|x0) =

(
1 − ρ2(t)
|Λ3(t)|

)1/2{
Ṡ(t) +

ρ̇(t)[ρ(t)S(t)− x0]

1− ρ2(t)

}
Erfc(z) =

2√
π

∫ +∞

z

e−y2

dy, z ∈ R

and ρ(t) is the correlation function of the process X(t),

ρ(t) =
c(s, t)√
D2

X(s)D
2
X(t)

such that ρ(0) = 1, ρ̇(0) = 0 and ρ̈(0) < 0. D2
X(t) indicates the variance of

the process X(t) and c(s, t) its covariance.
W1 is an upper bound to g(t, S(t)|x0) and constitutes a good approximation
for the FPT pdf only for small values of t. Higher order terms should be
numerically estimated even if multiple integrals lead to a fast loss of accuracy.
Studies on the second-order term and on the asymptotic behaviour of higher
order terms are presented in [39], [63] and [64].
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A much more concise expression of the FPT pdf for a class of GM and
diffusion processes can be obtained studying the asymptotic behavior of the
variable FPT both for asymptotically constant and asymptotically periodic
thresholds.

2.2.3 One boundary: asymptotic approximations

In the asymptotic regime it is possible to provide an exponential approxima-
tion for the FPT pdf that is very useful from an application point of view.

Let us consider a GM process X(t) for which the limit

W(x) := lim
t→+∞

f(x, t|x0, t0) (2.64)

exists. We say that X(t) admits the steady-state pdf W(x). For example,
the OU process belongs to this class of processes, while the Wiener process
does not.

In [53] the asymptotic behaviour of the FPT pdf through a constant
boundary for an OU process is investigated, while in [38] asymptotic results
for the FPT pdf through special time-varying boundaries are obtained for
the whole class of one-dimensional diffusion processes with steady-state pdf.
In [56] GM processes with steady-state pdf are considered. In particular for
the GM processes the authors use the results on OU processes, in fact from
equations (2.15) and (2.33) the following proposition holds.

Proposition 2.2.3 ([56]). Let U(t) be a non-stationary OU process, i.e. a
OU process with zero-mean and covariance

E[U(s)U(t)] = σ2(eβs − e−βs)e−βt/(2β)

with β > 0, σ > 0, s, t ∈ T and s < t. Then any GM process X(t) can be
represented in terms of U(t) as follows:

X(t) = m(t) + k(t)U [ϕ(t)], t ∈ T (2.65)

where m(t) is the mean function of X(t) and

k(t) = h2(t)

√
1 +
2β

σ2
r(t), ϕ(t) =

1

2β
ln

(
1 +
2β

σ2
r(t)

)
. (2.66)

with r(t) as in (2.9).
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The previous result allows the extension of the results concerning the OU
process to the entire class of GM processes that admit steady-state pdf.

In the following we recall the main results on the asymptotic behaviour
of the FPT pdf through asymptotically constant and asymptotically periodic
thresholds in the form presented in [13], in which the results of [38] for the
diffusion processes, and those of [56] specialized for the GM processes are
properly specified.

Whenever the transformed threshold S(t) approaches a constant func-
tion as the time t diverges, i.e. has an horizontal asymptote, the following
approximation holds.

Theorem 2.2.4. Let X(t) be a GM (or diffusion) process with steady-state
pdf and let S(t) be an asymptotically constant threshold:

lim
t→+∞

S(t) = S.

Setting
hX := −ϑ lim

t→+∞
Ψ(S(t), t|y, τ ) (2.67)

for t and S “big enough” one has

g(S(t), t|x0, t0) �
hX

ϑ
e−

hXt

ϑ . (2.68)

The parameter ϑ = −1/a(t) ≡ −1/a of SDE (2.18), the function Ψ(S(t), t|y, τ )
is defined in (2.46), instead the exact meaning of “big enough” will be clar-
ified in the next chapters when an extensive use of these theorems will lead
to estimations of the density functions under consideration.
Definition (2.67) and Equation (2.46) make clear why we consider pro-

cesses with steady-state pdf. In fact we need to take the limit of the function
Ψ(x, t|y, τ ) and, as consequence, of the transition pdf f(x, t|x0, t0).

For certain periodic boundaries, not very far from the initial value of
the process, the FPT pdf of one-dimensional diffusion processes with steady-
state density soon exhibits damped oscillations having the same period of
the boundary ([38]). If the threshold is asymptotically periodic, we have
that g(S(t), t|x0, t0) has an asymptotic non-homogeneous exponential form.

Theorem 2.2.5. Let X(t) be a GM (or diffusion) process with steady-state
pdf and let S(t) be an asymptotically P-periodic threshold:

lim
n→+∞

S(nP + t) = s(t)
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with
s(nP + t) = s(t), n = 0, 1, . . .

Then, setting

hX(t) := −ϑ lim
n→+∞

Ψ[S(t+ nP ), t+ nP |y, τ ] (2.69)

for t and S “big enough” one has

g(S(t), t|x0, t0) �
hX(t)

ϑ
e
−

∫ t

0

hX(τ )dτ/ϑ
(2.70)

where ϑ = −1/a.

As we have seen the solutions in closed-form are known only for suitable
families of thresholds; in all other cases it is possible to solve equation (2.39)
by means of some numerical quadrature procedures obtaining numerical ap-
proximations of g(S(t), t|x0, t0) with high degree of precision. This procedure
is a fast and accurate computational method, mainly centered on the repeated
Simpson rule in the case of GM processes and on the Trapezoidal rule in the
case of diffusion processes. The noteworth feature of this algorithm is its
being implementable after simply specifying the functions m(t), h1(t), h2(t)
that characterize the process, the threshold S(t) and the discretization step
p. Furthermore, it does not involve any heavy computation, neither it re-
quires use of any library subroutines, Monte Carlo methods or other special
software packages to calculate high dimension multiple integral (for further
details see [23]).



Chapter 3

Neuronal Models: renewal and
non-renewal processes

3.1 An overview on neuronal models

The phenomenology of the electrical activity of single neurons and the under-
standing of the ultimate mechanisms responsible for it have been the object
of numerous investigations by neurophysiologists, physicists and mathemati-
cians during the last decades.

Neurons are cells of the nervous system that transmit information through
electrical and chemical signals. These signals are generated across the mem-
brane of the neuron and transmitted through synapses.
Neurons can be of different types depending on their position and task, but
all have the same main structure: the dendrites that receive the signal from
other neurons, the soma that is the processing center of the signals, the axon
and the synapses. The signal is generated across the membrane and trans-
mitted along the axon till the axon terminals. Then through the synapses the
signal attains the post-synaptic neuron. In absence of input there is a non-
zero electrical potential across the membrane due to different concentration of
ions inside and outside the membrane. This voltage, called resting potential,
is maintained constant by means of metabolically driven ion pumps. When
the neuron receives an impulse the sodium channels open and sodium ions
enter in the neuron cell generating a positive charge that rejects potassium
ions. The potential is inverted and the depolarization or action potential oc-
curs. Then the sodium-potassium pomp returns the potential to the resting
value.

In a modeling context the neuron is viewed as a point-size particle, whose
membrane voltage fluctuates in response to synaptic inputs and internal

28
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noise. The neuron accumulates inputs and as soon as the threshold voltage
is exceeded, the neuron generates an action potential ([18],[79]). Therefore,
the generation of an action potential by a neuron involves the first passage
of the fluctuating membrane voltage through a threshold (see Fig. 3.1 for a
schematic representation of the evolution of the membrane potential). More

Figure 3.1: The schematic generation of an action potential. Image released
by Free Software Foundation.

in detail the membrane potential oscillates across its resting state until stim-
ula arrive. If the inputs are strong enough, the firing threshold is attained and
a spike occurs depolarizing the membrane. After that the potential quickly
decreases and just after the spike the neuron cannot accumulate inputs for a
certain amount of time, called refractory period. Then the dynamics starts
anew.
This dynamics of spikes generation underlies neural coding: neurons commu-
nicate information through their electrical spiking and the functional relation
between the information being encoded and the spikes is called a “neural
code”.

The first model was proposed by Lapicque in 1907; in this model the
membrane potential is studied in terms of an electric circuit consisting of a
resistor and a capacitor in parallel. The capacitor is charged (integrate) until
it reaches a threshold at which the neuron spikes (fire) and after that imme-
diately the potential is reset to the initial state. For this reason the model is
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called integrate-and-fire. Despite the simplicity of the model, Lapicque was
able to estimate the spiking-rate of a neuron subject to a constant stimulat-
ing input.
Several years later (1952) Hodgkin and Huxley explained the ionic mecha-
nisms underlying the initiation and propagation of action potentials in the
squid giant axon. The reason why they studied these kind of animals is
the length of their axons that facilitates experiments. They described the
behavior of the membrane potential in terms of the evolution of the ion chan-
nels located in neurons membrane. Unfortunately this deterministic model
is characterized by a large number of equations and parameters. Most of
the times the model cannot be analyzed analytically but only with computer
simulations.

The above deterministic models cannot describe some features exhibit by
neurons in vivo. In the famous paper of Gerstein and Mandelbrot [35] the
integrate-and-fire model for the first time incorporate the randomness of the
synaptic inputs arrival. This marks the beginning of the history of neuronal
models based on diffusion processes. The model is based on the assumption
that the random incoming potentials are viewed in the model as random
walks, and so the stochastic Wiener process is involved. The authors were
also able to show that experimentally recorded interspike intervals, i.e. the
time elapsed between two consecutive spikes, could be fitted well using the
FPT pdf of a Wiener process. In the case of constant threshold S the FPT
pdf g(S, t|y) of the Wiener process with drift μ and infinitesimal variance σ2

can be analytically written

g(S, t|y) = |S − y|
σ
√
2πt3

exp

[
−(S − y − μt)

2

2σ2t

]
, S �= y (3.1)

that is an Inverse Gaussian type pdf, obtained for the first time by Bachelier
in 1900 ([4]). Also the FPT moments can be evaluated in this case (see [62]),
and in particular mean and variance of the neuronal firing are

t1(S|y) =
S − y
μ
, V ar(S|y) = σ

2(S − y)
μ3

for μ > 0, S �= y.
Despite the good agreement with experimental data, this model does not
include the observed spontaneous decay of the neuron’s membrane potential.

The Stein’s model [73] goes in this direction introducing a resistor (the
leakage) in the electrical circuit representing the electrical evolution of the
membrane. The diffusion process used by Stein is a stochastic counterpart
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of the phenomenological leaky-integrate-and-fire (LIF) deterministic model.
The stochastic LIF is based on an SDE of the form

dX(t) =

(
−X(t)
ϑ
+ μ

)
dt+ σdW (t), X(t0) = x0 (3.2)

whose solution is an OU process. In absence of inputs to the neuron, in
any interval (t0, t) the membrane potential X(t) spontaneously decays with
exponential law to the resting potential

x(t) = x0 exp

{
−t− t0
ϑ

}
where ϑ is the decay time of the neuron’s membrane towards the resting
potential. Moreover he modelled the inputs by mean of Poisson processes,
distinguishing from excitatory and inhibitory inputs.
Although the OU process depicts more realistically the neurophisiological

reality, it is not possible to obtain closed form expressions for the firing pdf
in abitrary conditions.
An extensive discussion and a rigorous analysis on the use of diffusion

processes and their FPTs in the stochastic LIF model can be found in [20]
and [61]. In particular Capocelli and Ricciardi proposed a model in which
the effect of the noise decreases when the membrane potential is close to the
firing threshold, problem with application in particular biological situations.
The above OU process based models exhibit a non realistic feature: the
state space in which the stochastic process evolves is the entire real axis.
This means that arbitrarily large hyperpolarization values for the membrane
potential are possibile, and of course this is not physically reasonable. For
this reason Tuckwell [79] assumed the existence of a “reversal potential”. He
suggested that the state of the depolarization of a nerve cell is state dependent
implying that the oscillations of the membrane potential are restricted to a
certain region ([16]).
The LIF model is used both in artificial neural networks and description

of biological systems, but a wide range of approaches to the modeling of single
neurons have been proposed in literature. For instance in [48] the temporal
patters of action potentials is investigated by a compartimental model. The
model takes into account the distinction between dendritic and axonal po-
tentials, preserving the tractability of the one point model.
Papers devoted to the comparison with experimental data are instead pretty
rare for the complexity of the mathematical problems and the lack of ana-
lytical results. For this reason the verification of any model has to start with
an estimation of its parameters (see [43], [46] and [47]). In [47] is derived a
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method for the parameters estimation in the OU model, distinguishing be-
tween intrinsic parameters and input parameters. The former parameters are
characteristics of the neuron and can be measured directly, the latter have
to be estimated from experimental data [45].

Even if some concerns about the LIF model have arisen, it appears a
good compromise between the tractability and realism of the model and it
is by far the most used. The stochastic LIF model is based on a SDE of the
following type ([18]):

dV (t) = [−α(V (t)− Vrest) + I(t)] dt+ σdW (t), V (t0) = v0 < S. (3.3)

In (3.3) V (t) is the stochastic process representing the membrane potential,
the parameter 1/α(> 0) is the characteristic decay time of the membrane po-
tential, Vrest is the resting potential, v0 is the initial value, σ(> 0) represents
a constant intensity of the noise and W (t) the Wiener process. Furthermore,
I(t) stands for a time-dependent input signal that could play the role of an
injected input current or a synaptic current originated from the surrounding
neuronal activity. After each spike the membrane depolarization and the
input signal I(t) are immediately reset to the initial value and the dynamics
starts anew.

This resetting mechanism ensures that the interspike intervals (ISIs) are
independent and identically distributed (i.i.d.) random variables: they form
a renewal process. The ISI is a random variable defined as the random time
elapsed between the reset and the first spike after it. The importance of the
ISIs follows as a consequence of the generally accepted hypothesis that the
information transferred within the nervous system is encoded by the timing
of the action potentials [47], [61] and [62]. In the case of the renewal process,
since the ISI are i.i.d, one can consider the first interval that coincides with
the random variable FPT. Moreover one can analyze the ISIs separately and
build the complete spike train generated by the neuron by concatenation of
intervals.

For this reason the determination of the FPT pdf is of key importance in
this context. In the next subsection we review some special cases in which the
closed form solution for the FPT pdf of Gauss-Diffusion processes describing
the neuron’s membrane potential evolution exists.

3.1.1 Closed form solutions

Let us apply the results of Section 2.2.1 in some special cases in the context
of neuronal models [7].
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[(i)] Let Isyn, Iinj, v0, S ∈ R and σsyn ∈ R
+; the IF model is based on the

following stochastic differential equation

dV (t) = Idt+ σsyndW (t) (t > t0), and V (t0) = v0 < S, (3.4)

with I := Isyn+ Iinj where Isyn is a deterministic constant current describing
the effect of synaptic inputs to the neuron, Iinj is a constant current eventually
injected into the neuron for instance by an intracellular electrode and σsyn > 0
is the intensity of synaptic noise. The solution of equation (3.4) is the Wiener
process {W (t), t ≥ t0} with

bW := I and σ2
W := σ

2
syn.

Hence, for all constant firing thresholds S the condition (2.48) holds with
b1 = −I/σsyn and by means of Eqs. (2.11), (2.24) and (2.49) one has:

g[S, t|v0, t0] =
S − v0
t− t0

1√
2πD2

W (t|t0)
e
−
[S − EW (t|v0, t0)]2
2D2

W (t|t0) (t ≥ t0). (3.5)

Remark 1. Due to the simple reset mechanism the sequence of interspike
intervals is composed of independent and identically distributed random vari-
ables; therefore the FPT pdf directly provides the ISI pdf. �

The pdf in Eq. (3.5) is of inverse Gaussian type as seen in [35]. The mean
of the interspike interval is then (S − v0)/(Isyn + Iinj) and the variance is
σ2

syn(S − v0)/(Isyn + Iinj)
3, giving a coefficient of variation equal to

σsyn/
√
(S − v0)(Isyn + Iinj).

Admitting, as proposed by various authors, the eventuality of a time depen-
dent firing threshold S ≡ S(t) then, by means of Eq. (2.48), the function for
which exists a closed-form solution is of linear type:

S(t) = S(t0) + (bW + b1σ)(t− t0) (t ≥ t0). (3.6)

Remark 2. In the reset mechanism, to have a renewal process, since S(t) is
time-varying, it is necessary to add the repositioning of the firing threshold
value S(t0). In this way the FPT pdf still directly provides the ISI pdf. �

[(ii)] Let Isyn, Iinj, v0, Vrest, S ∈ R and θ, σsyn ∈ R
+; the LIF model is based

on the following stochastic differential equation

dV (t) =

[
−V (t)− Vrest

θ
+ Isyn+ Iinj

]
dt+ σsyndW (t) (t > t0), and

V (t0) = v0 < S,

(3.7)
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where Vrest is the resting potential and θ is the decay time of the membrane
potential; the meaning of the other parameters as in item (i). Eq. (3.7) is
that of the time-homogeneous OU process {U(t), t ≥ t0} with

aU :=
1

θ
, bU := Isyn + Iinj +

Vrest

θ
and σ2

U := σ
2
syn.

The condition (2.48) only holds with b1 = 0 for S̄ := aU/bU and by means of
Eqs. (2.11), (2.28) and (2.49) one has:

g[S̄, t|v0, t0] = σ
S̄ − v0
h1U
(t)

1√
2πD2

U(t|t0)
e
−
[S̄ −EU (t|v0, t0)]2
2D2

U (t|t0) (t ≥ t0). (3.8)

We stress that Remark 1 holds.
Note that S̄ coincides with the asymptotic mean of the membrane poten-

tial: in such a case the neuron may fire even in the absence of synaptic noise
(suprathreshold regime).
When the membrane potential, instead, evolves in the subthreshold regime,

i.e.
S − aU/bU√
σ2

syn/(2aU )
� 1, (3.9)

it is possible to obtain the following asymptotic expression (see Section 2.2.3
and the cited results of [38]):

g(S, t|v0, t0) ∼ aUhUe
−aU hU (t−t0)

(
t� t0 +

1

aU

)
. (3.10)

In Eq. (3.10), aU has dimension [time]
−1, whereas hU is the dimensionless

quantity

hU := −
1

aU
lim

t→+∞
ΨU [S, t|v0, t0] =

S − aU/bU√
πσ2

U/aU

e
−
(S − aU/bU )

2

σ2
U/aU ,

and (hUaU)
−1 can be interpreted as an estimate of the firing mean time. To

obtain the ISI pdf in the transient phase it is possible to use a numerical
quadrature, with a time step much smaller than 1/aU , operating on the
nonsingular integral equation (2.39); in the following we refer to it simply as
the numerical scheme.
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In the case of S ≡ S(t), from Eq. (2.48) the function for which there
exists the closed form solution is of hyperbolic type

S(t) = S(t0)e
−aU (t−t0) +

bU
aU

−
(
bU
aU

− b1
σU

2aU

)
e−aU(t−t0)

+ b1
σU

2aU
eaU(t−t0) (t ≥ t0),

(3.11)

and

g[S(t), t|v0, t0] = σ
S(t0) − v0
h1U
(t)

1√
2πD2

U (t|t0)
×

× e
−
[S(t)− EU(t|v0, t0)]2

2D2
U (t|t0) (t ≥ t0).

(3.12)

We stress that here Remark 2 holds. If b1 = 0 and Vth(t0) > μ/α the neuron
is in the suprathreshold regime, then the firing threshold

S(t) =
bU
aU

+

[
S(t0)−

bU
aU

]
e−aU (t−t0) (t ≥ t0), (3.13)

exponentially decreases to the asymptotic mean of potential membrane (bU/aU)
and it returns to the case of constant threshold equal to S̄ for large time.
[(iii)] Within the framework of item (ii), the LIF model with time depen-

dent synaptic current is based on the following SDE

dV (t) =

[
−V (t)− Vrest

θ
+ Isyn(t) + Iinj

]
dt+ σsyndW (t) (t > t0), and

V (t0) = v0 < S.

(3.14)

Equation (3.14) is that of the time-inhomogeneous Ornstein-Uhlenbeck pro-
cess {V (t), t ≥ t0} with

aV :=
1

θ
, bV (t) := Isyn(t) + Iinj +

Vrest

θ
and σ2

V := σ
2
syn.

If mV (t) satisfies the condition (2.47), it is possible to write the form of the
function bV (t) that ensures a closed form solution for the FPT pdf. Using
(2.13) and (2.47) we have

bV (t) = S
′
(t) + aV S(t)− b1σV e

aV (t−t0) (3.15)
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and so in this case:

bV (t) = aV S − b1σV e
aV (t−t0) (t ≥ t0). (3.16)

From equation (3.16) the following constraints for the deterministic currents
follow:

Iinj = α(S − Vrest) and Isyn(t) = −b1σeaV (t−t0) (t ≥ t0). (3.17)

Then, by means of Eqs. (2.11), (2.32) and (2.49) one has:

g[S, t|v0, t0] = σV
S − v0
h1V
(t)

1√
2πD2

V (t|t0)
×

× e
−
[S −EV (t|v0, t0)]2
2D2

V (t|t0) (t ≥ t0).

(3.18)

3.1.2 Time-dependent input signals

Despite the availability of some mathematical interesting models based on
various assumptions on the type of input to which the neuron is subject and
on possible generation mechanisms of the corresponding output, a universal
model to which refer in general instances is still lacking. In addition, the ex-
isting mathematical tools appear to be hardly effective due to the high degree
of nonlinearity exhibited by the neuron in the spike-reset behavior. Hence, to
focus on the description of neuronal behaviors the choice of the input classes
and parameters depends on which aspects one wants to highlight.
We note that in item (iii) of the previous subsection it is possible to

change the role of Isyn with that of Iinj; in general ve have I := Isyn + Iinj.
LIF models with time-varying input signals are described by inhomogeneous
OU processes [19].
With regard to the time dependent input I(t) the case of a periodic type
deterministic current is particularly interesting and widely considered in the
specialist literature ( [12], [16] and [45]). It describes the event of external
periodic stimulation of sensory neurons which are in direct contact with the
external world and also central neurons for which the stimulation is reflected
by synchronized postsynaptic activations.
In [12], for I, ω ∈ R

+ and φ ∈ (0, 2π), is considered the prototype periodic
function:

I(t) := I cos(ωt+ φ) (3.19)

and the problem is studied using the Fokker-Planck formulation. In partic-
ular the problem with a periodic input and constant threshold is mapped
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in a problem with constant input and periodic threshold, showing a spike
syncronization to the phase of the driving force. Moreover an asymptotic
approximation for the FPT pdf has been obtained. In the case of neurons
operating in the subthreshold regime, i.e. using the notation of equations
(3.3) and (3.19)

S − (Vrest + I/α)√
σ2/(2α)

� 1, (3.20)

they found:

g(S, t|v0, t0) ∼ αhV (t)e
−α

∫ t

t0

hV (s) ds (
t� t0 +

1

α

)
. (3.21)

It is a result of the Theorem 2.2.5 where V (t) is the time-inhomogeneous OU
process solution of (3.3) and hV (t) is the dimensionless periodic function

hV (t) := −
1

α
lim

n→+∞
ΨV [S, t+ nQ|v0, t0],

where Q = 2π/ω.
The asymptotic expression (3.21) exhibits two important features: it

holds for any values of the frequency ω and it is not affected from any addi-
tional phase shift with respect to the current I(t).

Further improvements of the stochastic LIF model have been introduced
in order to better fit the phenomenological evidences. In [14] the LIF model
with time-dependent decay time of the membrane and time-dependet resting
potential is considered. It is based on the following SDE:

dV (t) =

[
−V (t)− Vrest(t)

θ(t)
+ I(t)

]
dt+ σdW (t) (t > t0), and

V (t0) = v0 < S.

(3.22)

Thanks to this generalization the behavior of the driving force is enriched
and this permits to consider a wider range of cases. On the other side, of
course, the number of parameters increases.
In [16] the authors consider an Ornstein-Uhlenbeck process describing a

dynamics occurring in a restricted state-space, while in [15] the presence of
a lower reflecting boundary affects the evolution of generic Gauss-Markov
processes in order to include a reversal hyper-polarization potential.

The model (3.3) can be modified with the aim to take in account also the
phenomenon of the spike-frequency adaptation that some pyramidal cells in
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vivo exhibit (see [43]). Roughly speaking neurons show a reduction in the fir-
ing frequency of their spike response following an initial activity. In [43] the
problem is addressed incorporating an adaptive threshold in the LIF model.
In [17] the authors consider separately the role of the potassium ion chan-
nels and expresses the relative conductance dependent on the calcium con-
centration, [Ca2+](t). Such a concentration decays exponentially with its
characteristic time τCa and each spike generates a calcium influx α.
In these models the adaptation causes the correlation between successive

ISIs; in the next section we will show what this correlation implies.

3.1.3 Non-renewal processes

In [71] the authors presented evidences that the model based on the OU
process does not fit firing statistics in the case of prefrontal cortex neurons. In
fact neurons in vitro under a constant current injection generate regular spike
sequences, while cortical neuron in vivo generates irregular spike sequences.
A standard LIF model can reproduce the spiking irregularity only if the
inhibition is balanced with the excitation. Since the input signals can operate
on a single neuron in a complicated non-linear fashion, in [72] is stated that
the LIF model can reproduce biological spiking statistics if appropriately
choosing the statistical nature of the incoming inputs. The main statistical
coefficient that has to be introduced is the correlation, implying that the
hypothesis of independence between ISIs is not reasonable.
In addition to adaptation, also other cell-intrinsic properties like neural

refractoriness, bursting and short-term plasticity of the synapses cause tem-
porally correlated spike trains [68]. In this case the identification between
FPT and ISIs is no more valid and no standard method exists to solve the
associated first-passage-time problem.
For instance in case (iii) it is not possible to include Isyn(t) in the reset

mechanism, being this current exclusively dependent on synaptic activity.
Hence, in order to obtain fISI(t) we need fsyn(i), namely the pdf of the value
i of the synaptic current at the beginning of the generic ISI; therefore from
[7]:

fISI(t) : = Efsyn {gV [Vth, t|v0, t0; i]}

=

∫
R

gV [Vth, t|v0, t0; i]fsyn(i) di (t ≥ t0).
(3.23)

Unfortunately the determination of fsyn(i) is a really difficult task and in
general it depends on the type of function Isyn(t).
Instead in the case of the periodic input function (3.19), in [7] the ISI pdf

is obtained by averaging the FPT pdf with respect to its normalized hazard
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rate function:

fISI(t) =

∫ t0+Q

t0

gV (Vth, t|v0, s)hV (s) ds∫ t0+Q

t0

hV (s) ds

.

where hV (s) is defined in Subsection (3.1.2).
In general time-dependent stimulation complicates the FPT problem, as

a different stimulus is presented during each ISI [59]. In [45] Lánský uses
the terms endogenous stimulation when the input is reset after the spike,
and exogenous stimulation when the input keeps evolving even if the process
has been reset. The complete loss of memory in the reset mechanism has
been criticized and appear unbiological, since it would mean that the neuron
control completely the input it receives. For this reason it is important to
consider non-renewal processes describing the membrane potential activity
([26], [75] and [68]).

3.2 The Recurring Passage Time Problem

The firing activity of stimulated neurons is affected by temporal structure of
the injected current. If the input injected is made of random current pulses
of varying amplitudes applied to the constant current input we talk about
“frozen noise”. When a cortical neuron is repeatedly injected with the same
frozen noise, the timing of the spikes is highly precise from trial to trial and
spike patterns appear [78]. In [32] this phenomenon is explained saying that
the prestimulus history of a neuron may influence the precise timing of the
spikes, and this, once again, means that the ISIs are correlated.

In this context Taillefumier and Magnasco ([74], [75]) focus on the fol-
lowing sLIF model for a single neuron:

dV (t) = −αV (t)dt+ dC(t) + σdW (t), α > 0, V (t0) = r < l, t ≥ t0
(3.24)

in the presence of a constant threshold l and a Hölder-continuous load func-
tion C(t) such that dC(t) = I(t)dt. I(t) is a frozen noise conveying random
current pulses of varying amplitudes and a constant current input, injected
through synapses or a stimulating electrode.
When V (t) first reaches a threshold value l, an action potential is generated
and the voltage V (t) is reset to r < l, while I(t) keeps evolving. We note that
in this case the time-varying input that is not reset after the spike introduces
correlation within the interspike intervals.
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The load function C(t) is supposed to be Hölder-continuous of exponent
H ∈ (0, 1) i.e. such that

H = inf
t
Ht <∞

where

Ht = lim
δ→0+

sup
|t−s|≤δ

|C(t)−C(s)|
|t− s|h

is the local Hölder exponent. H is a measure of the degree of singularity of
I and in [74] and [75] is considered as the key mathematical property that
determine the regime of firing of the single neuron under study.
It is possible to map the dynamics of a neuron with an input, internal

noise and a constant threshold voltage, into a neuron with internal noise
and a fluctuating threshold voltage. Let assume that ti and ti+1 are instants
in which a spike occurs. Following [75], since the non-linearity of the sLIF
model lies in the generation of the action potential and the successive reset,
between the spikes ti and ti+1 we integrate separately the effect of the input
and the noise writing

V = Ui + li (3.25)

as the sum of a stochastic component

Ui(t) = re
−α(t−ti) +

∫ t

ti

e−α(t−s)dW (s) (3.26)

and a deterministic one

li(t) =

∫ t

ti

e−α(t−s)dC(s) (3.27)

with reset condition V (t+i ) = r. Note that (3.27) is the solution of the
ordinary differential equation

dli(t)

dt
= −αli + I(t).

In this framework the next spike, i.e. the first spike after ti, is seen as the
FPT τi+1 of the stochastic process Ui through the effective barrier Li(t)

τi+1 = inf
{
t > ti|Ui(t) > Li(t), Ui(t

+
i ) = r

}
, (3.28)

where
Li(t) := l − li(t). (3.29)

Therefore, a train of spikes t0 < t1 < . . . < tn can be determined by solving
many times the first-passage problems (3.28) for independent processes Ui.
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This definition, however, exhibits the undesidered property that the effective
barrier Li(t) depends on the specific value of ti.
In [75] it has been proved that another FPT problem, related to the

previous one, can be considered:

τ ′i+1 = inf
{
t > τi|U

′
i (t) > L(t), U

′
i (t

+
i ) = L(τi)− (l − r)

}
(3.30)

where L(t) := l− l0. We observe that the threshold now does not depend on
ti, while the stochasticity of the problem is transferred to the reset condition.
Intuitively in problem (3.28) the OU process Ui evolves in presence of noise
and the integrated input li is substracted from the threshold l, while in prob-
lem (3.30), called the effective barrier representation, the threshold becomes
continuous as a convolution of the injected current and the OU process is
reset in random points.
The train of spikes results from a succession of FPTs to the effective

barrier and the determination of FPT densities of these successive spikes
with the reset condition Ui(t

+
i ) = L(τi)− (l− r) is called “recurring-passage

problem”.
As mentioned before, in [74] the Hölder exponent H of the input plays an

important role in the determination of the regime of firing of the neuron and
evidences of a phase transition of the probability of observing a first passage
time of a Gauss-Markov process through a rough boundary of exponent H are
shown. If the injected frozen noise is less singular than the internal neuronal
noise (H > 1/2), the firing activity admits a continuous probability density
of spiking times, whereas the probability density becomes singular, almost
everywhere either zero or infinity, if the frozen noise is more singular than
the internal noise (H < 1/2).
The reliability of a spiking event is measured by the fraction of time

that the event occurs, while the precision of an individual spiking event is
quantified by the variance of its timing conditionally to belonging to a specific
pattern [32]. If we can identify narrow phase regions that carry most of the
spiking phase statistics, we say that the stochastic LIF neuron spikes reliably.
For the above model the larger the Hölder exponent is, the higher is the spike
reliability. For small Hölder exponents, we have poor spike reliability but high
temporal precision [75].
In Fig. 3.2, for instance, we realized a raster plot in the case of very

singular input (H = 0.26). We see that the patterns of the spiking activity
can be easily detected. We also note that the points of high firing activity,
very likely correspond to minima of the boundary. In fact the singularity
of the input is transferred into a loss of smoothness of the boundary that
exhibits picks of minimum in which, easily, the membrane potential crosses
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Figure 3.2: Raster plot of the simulated spikes for H = 0.26 over 10000
repetitions of the stimulus. The simulated neuron exhibits high temporal
precision in the spike activity.

the firing threshold.

3.2.1 Sample statistics and simulations

Paths of the process Ui(t) in presence of the effective boundary L(t) have been
simulated for all Hölder exponents H in the range (0.25−0.99) in increments
of 0.01 using a fast algorithm specialized for the first-passage times of Gauss-
Markov processes with Hölder continuous boundaries [76]. For each one of the
75 Hölder exponents, 62000 repetitions of the 10s stimulus were performed
accumulating 100 million first passages per Hölder exponent.

Figure 3.3: Raster plot of a small portion (one million) of the simulated
spikes for H = 0.88.

In Fig. 3.3 the raster plot in the case of H = 0.88 is reported. The rows
of the raster indicate the repetitions of the stimulus, while the dots indicate
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the occurrence of spike. In order to make the plot readable a mask made of
one million dots has been extracted from the original plot.
The times in which Ui(t) crosses L(t) are histogrammed in the peristimu-

lus time histogram (PSTH). The PSTH has on the x axis the temporal bins
and on the y axis the number of spikes occured in that temporal bin across
the repetitions, so it represents the instantaneous probability distribution of
first passage times.
Starting from the PSTH, we plot the histogram of the firing rate (see Fig.

3.4) i.e. on the x axis are reported the number of spikes and on the y axis
we report the number of bins that have that number of spikes in the PSTH.

Figure 3.4: Histograms of the firing rate for two particular choices of the
exponent H: on the left H = 0.26(< 0.5), on the right H = 0.88(> 0.5).

Figure 3.5: Plot of the cumulative distributions obtained integrating the
probability density given by the histograms for H = 0.26 (in blue), H = 0.5
(in red) and H = 0.97 (in green).
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Figure 3.6: Plot of the cumulative distributions obtained integrating the
probability density given by the histograms for 75 different exponents H.

Computing the cumulative distribution functions from the histograms of
the type of Fig. 3.4, for all considered exponents H, it turned out that the
cumulative functions coincide even accross the phase transition H = 0.5. In
Fig. 3.5 we plot the cumulative distributions in three special cases: one is
H = 0.26 below the critical value of the phase transition, one above the
critical value (H = 0.97) and one exactly H = 0.5. We see no appreciable
differences except at the beginning. It is a strong indication that it is a
universal kinematic property of this recurring problem that does not depend
on the shape of the boundary (see Fig. 3.6).



Chapter 4

Neuronal Models: successive
spike times

In order to address the model presented by Taillefumier and Magnasco in [74]
and [75], we propose in [26] and [27] a stochastic model for the prediction
of successive spikes by means of FPTs of a sequence of Gauss-Markov pro-
cesses each of which is identified by a particular mean function dependent on
the FPT of the previous process. In [74] the authors mainly focused on the
rate codes, i.e. the average number of spikes per unit of time, but of great
interest are also the temporal codes, in which the timing of action potentials
is related to the information transmission. The temporal codes are very im-
portant in the case of time-varying input signals but only poor results have
been obtained in this direction.
Recently, in [80], Urdapilleta derived the FPT statistics of a Brownian mo-
tion driven by an exponential time-dependent drift through an absorbing
threshold. Using the backward Fokker-Planck formulation he writes the FPT
density function as a series of terms that are solutions of an inifinite set of
recurrence equations.
Concerning the OU process Thomas provided a lower bound for the FPT

density in the case of suprathreshold regime, i.e. the case in which the
initial state and the asymptotic mean of the process are on opposide sides
of the threshold values. This implies that the probability of crossing of the
threshold in finite time is one, and can represent the situation in which the
neuron is driven by a strong current much greater than the fluctuations due
to the presence of noise [77]. In particular Thomas gives a lower bound for
the FPT density through a constant threshold S of an Ornstein-Uhlenbeck
process X(t) obeying to the SDE dX = −aXdt + σdW . In this case there

45



CHAPTER 4. SUCCESSIVE SPIKE TIMES 46

exist positive constants k, p and u such that

g(S, t|x0, t0) > k exp
{
−pe6at

}
,

provided that t > u. In particular:

k =
1024

9π
a
(x0

S
− 1
)

p = 1 +
a

32

(
S

σ

)2

u =
1

2a
ln

[
1 + max

{
8,

(
1 +
x2

0

S2

)
,

(
8σ2

aS2

)}]
. (4.1)

Anyway general results on OU processes are missing or fragmentary in the
literature. Stimulated by these arguments and other very interesting papers
([21], [40], [49], [59] and [68]), in the next section we show how the GM
processes theory can provide approximations of the firing distributions and,
in particular, to contribute to the modeling of successive spike times.

4.1 Modeling of successive spike times

We take into account a stochastic LIF model with reset after the spike for the
potential V (t), but not for the time-varying input I(t). For this reason the
model is based on the time-inhomogeneous diffusion process {V (t), t ≥ t0}
(with t0 ∈ [0,+∞)) solution of the following SDE:

dV = [−α(V − Vrest) + I(t)] dt+ σdW, V (t0) = v0 < S. (4.2)

The involved parameters have the same interpretation of those in SDE (3.3).
Assuming T0 = t0, let T1 be the FPT through the firing threshold S of the
solution process V (t) with reset to v0, i.e. V (T

+
1 ) = v0. T1 stands for the

first spike (firing) time; for t ≥ T1, the second passage time T2 occurs and it
stands for the second spike time of the train, and so on. It is possible to obtain
random samples T0, T1, . . . , Tn of successive spike times simulating random
paths of V (t) by applying the well-known Euler discretization method to
its SDE and recording the successive crossing times of S . The process is
discretized as follows:

V (tk+1) = V (tk) + [−α(V (tk)− Vrest) + I(tk)]Δt+ σ
√
Δtξk+1

where V (t0) = v0, (t0, . . . , tk, tk+1, . . .) is the time vector with tk+1 = tk + Δt,
k = 1, 2, . . . ; and ξk is a generated standard gaussian number.
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In [26] we propose a stochastic model for the prediction of these successive
spikes that constitute the train by means of FPTs of a sequence of Gauss-
Markov processes each of which is identified by a particular mean function
dependent on the FPT of the previous process. In particular we will see in
detail the case of the first two spikes and then we will generalize the idea.

4.1.1 Concerning the first firing time T1

Let us start by considering the process V1(t) solution of

dV1 = [−α(V1 − Vrest) + I(t)]dt+ σdW, V1(t0) = v0 t ∈ [t0,+∞). (4.3)

In particular, the parameter 1/α(> 0) is the characteristic decay time of the
membrane potential, Vrest is the resting potential, v0 is the initial value, σ(>
0) represents a constant intensity of the noise and W the standard Brownian
motion. Furthermore, I(t) stands for a time-dependent input signal never
reset. It can be generated by an injected input current or a synaptic current
originated from the surrounding neuronal activity.
According to [3] and [57], under hypotheses of regularity on the function I(t),
and due to the form of its infinitesimal moments:

A
(1)
1 (v, t) = −α (v − Vrest) + I(t), A

(1)
2 (t) ≡ σ2,

the process V1(t) is a Gauss-Diffusion process. It is also a GM process, i.e. a
Gaussian process identified by the mean and by a special covariance of the
form (2.8) (see, for details, [23]). Using the results of [13] we are able to write
its mean and covariance.
In fact denoting, for τ ≤ t,

M1(t|τ ) = Vrest

(
1 − e−α(t−τ)

)
+ e−αt

∫ t

τ

I(ξ)eαξdξ, (4.4)

V1(t) is characterized by the mean and covariance functions

mV1(t|v0, t0) = v0e−α(t−t0) +M1(t|t0), (4.5)

cV1(s, t|t0) =
σ2

2α
e−α(t−t0)

[
eα(s−t0) − e−α(s−t0)

]
(t0 ≤ s ≤ t) (4.6)

with the following transition pdf, for τ ≤ t,

fV1[x, t|y, τ ] =
√
α√

πσ2(1 − e−2α(t−τ))
exp

{
−α
[
x− ye−α(t−τ)−M1(t|τ )

]2
σ2 (1− e−2α(t−τ))

}
.

(4.7)
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Note that the above pdf is a normal-type transition function with the con-
ditional mean and variance

E[V1(t)|V1(τ ) = y] = mV1(t|y, τ ), (4.8)

V ar(t|τ ) = cV1(t, t|τ ). (4.9)

The FPT T1 of the process V1(t) through a constant threshold S is defined
as:

T1 := inf
t≥t0
{t : V1(t) ≥ S} with V1(t0) = v0 < S

and with the pdf

g1(S, t|v0, t0) =
dP(T1 ≤ t)
dt

.

For input signals I(t) such that the integral
∫ t

t0
I(ξ)eαξdξ exists for any t ≥ t0,

in [26] we provide a numerical approximation of the pdf g1(S, t|v0, t0) solving,
by a numerical procedure, the non-singular second kind Volterra integral
equation (2.39) where the function Ψ[S, t|y, τ ] in this case takes the following
expression:

Ψ1[S, t|y, τ ] =

=

{
−Sα(1 + e

−2α(t−τ))

1− e−2α(t−τ)
+
2αye−α(t−τ)

1 − e−2α(t−τ)
− [αVrest + I(t)] +

2αM1(t|τ )
1 − e−2α(t−τ)

}
× fV1[S, t|y, τ ]. (4.10)

Using the already mentioned numerical quadrature specialized for the case
of time-varying input signal I(t) we can provide evaluations of g1(S, t|v0, t0).
Then, from it also P(T1 ≤ t) can be evaluated.

In Fig. 4.1 we compare our numerical approximation ĝ1(t) of g1(S, t|v0, t0)
with the histograms of simulated FPTs for different threshold values and
starting points v0. The firing density is represented by histograms of a sam-
ple of FPTs T1, through a constant threshold, of simulated random paths
obtained from equation (4.3), discretized by means of the Euler method.
Hence, identifying the first spike time T1 with the FPT T1, we obtain, for

t ≥ t0,

P(T1 ≤ t) ≡ P(T1 ≤ t) = G1(S, t|v0, t0) =
∫ t

t0

g1(S, ξ|v0, t0)dξ. (4.11)

Finally, from (4.11), we provide Ĝ1(t) as an approximation of P(T1 ≤ t)

by means of a numerical quadrature applied to

∫ t

t0

ĝ1(ξ)dξ .

Now, we want to model the successive spike time T2.
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(a) (b)

(c) (d)

Figure 4.1: Histograms of 104 FPTs T1 of simulated random paths of V1(t)
by discretization of (4.3) and numerical ĝ1(t) for S = 1.5 ((a),(c)) and S = 2
((b),(d)). I(t) ≡ μ = 0.25, α = 1, Vrest = 0.2, σ = 1, t0 = 0,v0 = 0 in (a),(b)
and v0 = −0.5 in (c),(d). The discretization step for simulations and for the
numerical procedure is 10−3.

4.1.2 Concerning the second firing time T2

We now focus our attention on another stochastic process that is useful for
the description of the evolution of the neuronal membrane potential in the
presence of the threshold S before the spike time T2. We consider a process
V2(t), that in mean behaves like the process V1(t) but taking into account
that every past instant could have been a realization of T1, starting from
the reset value v0. So V2(t) is the GM process with covariance (4.6) and the
following mean function

mV2(t|v0, t0) = v0e−α(t−t0) +M2(t|t0) (4.12)

where we define

M2(t|t0) = E {E [M1(t|t1)|T1 = t1]} =
∫ t

t0

M1(t|t1)g1(S, t1|v0, t0)dt1.

(4.13)
The probability that each time instant t1 before t could have been an

instant of first spike is translated in the presence of g1(S, t1|v0, t0) in the
formula (4.13). This specific mathematical condition is motivated by the
assumption that the average behavior of the neuronal membrane after a spike
time (and reset) is almost the same of the ones before the spike, although
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in any time t it keeps the memory of the occurrence of a previous spike and
at the same time it is subject to the input signal which in the meanwhile
has never been reset. With these reasons in mind, we construct the ad hoc
process V2(t) as a transformed V1(t) by (4.13). Proposition 1 of [26], tells us
which SDE the process V2(t) satisfies.

Proposition 4.1.1 ([26]). The process V2(t), obtained from the process V1(t)
by (4.13), having mean defined by (4.12) and covariance as in (4.6), is a GM
process and is solution of the following SDE, for t ≥ t0,

dV2 =

{
−αV2 + α

[
Vrest +

I(t)

α

]
P(T1 ≤ t)

}
dt+σdW, V2(t0) = v0. (4.14)

Proof. From (4.4), (4.12) and (4.13), the mean function (4.12) of V2(t) be-
comes

mV2(t|v0, t0) = v0e
−α(t−t0) (4.15)

+ e−αt

[
αVrest

∫ t

t0

P(T1 ≤ ξ)eαξdξ+

∫ t

t0

I(ξ)P(T1 ≤ ξ)eαξdξ

]
.

Due to the linearity of relations (4.12) and (4.13), or equivalently from (4.15),
and due to the form of covariance (4.6), the process V2(t) is a GM process.
Moreover, we note that the specified process V2(t) is characterized by the
normal transition pdf

fV2[x, t|y, τ ] =
√
α√

πσ2(1 − e−2α(t−τ))
exp

{
−α
[
x− ye−α(t−τ)−M2(t|τ )

]2
σ2 (1− e−2α(t−τ))

}
,

(4.16)
having the same variance of V1(t) and the following conditional mean

E[V2(t)|V2(τ ) = y] = ye
−α(t−τ) +M2(t|τ ) (4.17)

where

M2(t|τ ) = e−αt

[
αVrest

∫ t

τ

P(T1 ≤ ξ)eαξdξ +

∫ t

τ

I(ξ)P(T1 ≤ ξ)eαξdξ

]
,

(4.18)
and, in particular, from (4.15),

M2(t|τ ) = mV2(t|v0, t0)− e−α(t−τ)mV2(τ |v0, t0). (4.19)

Finally, by using the differentiable mean function (4.15), recalling (4.18)
and (4.19), along the lines of [23], the infinitesimal drift of V2(t) is evaluable
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in the following way

A
(2)
1 (v, t) = lim

Δt→0

E[V2(t+Δt)− V2(t)|V2(t) = v]

Δt
= m′

V2
(t|v0, t0)− α [v −mV2(t|v0, t0)]

= M′
2(t|τ )− α [v −M2(t|τ )]

= −αv + α
[
Vrest +

I(t)

α

]
P(T1 ≤ t).

The infinitesimal variance is also evaluable giving A
(2)
2 (t) ≡ σ2. Hence, under

hypotheses of regularity on the functions involved in the infinitesimal drift,
V2(t) is also a diffusion process and solves the SDE (4.14).

Using notation analogous to that for V1(t), we now consider the FPT of
V2(t), i.e.

T2 := inf
t≥t0
{t : V2(t) ≥ S} with V2(t0) = v0 < S. (4.20)

Let g2(S, t|v0, t0) be the pdf of T2, i.e. g2(S, t|v0, t0) =
dP(T2 ≤ t)
dt

.

It is solution of

g2(S, t|v0, t0) = −Ψ2[S, t|v0, t0] +
∫ t

t0

Ψ2[S, t|S, τ ]g2(S, τ |v0, t0)dτ (4.21)

with

Ψ2[S, t|y, τ ] ={
−Sα(1+e−2α(t−τ))

1− e−2α(t−τ)
+

2αye−α(t−τ)

1− e−2α(t−τ)
−[αVrest+I(t)]P(T1 ≤ t)+

2αM2(t|τ)
1− e−2α(t−τ)

}
× fV2 [S, t|y, τ ] (4.22)

where fV2[S, t|y, τ ] andM2(t|τ ) are as in (4.16) and (4.18), respectively.
As done for the FPT T1 it is possible to provide numerical estimations

ĝ2(t) of the pdf g2(S, t|v0, t0) solving numerically (4.21) and compare these
estimations with results of simulations of equation (4.14). It is possible to

obtain also Ĝ2(t) by means of a numerical quadrature of ĝ2(t). In this case,
however, our numerical procedure to solve (4.21), that involves the func-
tion (4.22), requires to evaluate g1(S, t|v0, t0) and P(T1 ≤ t) before starting.
Hence, an iterative numerical strategy has been adequately carried out in
[26] to evaluate ĝ2(t). Similarly, the simulation algorithm applied to (4.14) is
based on the previous evaluation of P(T1 ≤ t) from (4.3). In Fig. 4.2 the sat-
isfactory agreement between simulations of V2(t) by discretization of (4.14)
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Figure 4.2: Histograms of 104 simulated T2 and numerical ĝ2(t) for S = 1.5
(on the left) and S = 2 (on the right). I(t) ≡ μ = 0.25, α = 1, Vrest = 0.2,
v0 = 0, σ = 1. The discretization step for the simulation is 10

−3 and for the
numerical procedure is 10−2.

and our numerical approximations ĝ2(t) highlights the accuracy of our nu-
merical results.
Let us suppose, for the moment, that the input is constant and I(t) ≡ μ.

In Fig. 4.3 are shown the behaviors of ĝ1(t) and ĝ2(t), whereas in Fig. 4.4
that of mV1 and mV2 both for S = 1.5 and S = 2. From the plots the mean
function mV2(t|v0, t0) seems to be always smaller than mV2(t|v0, t0) and it
looks also valid for the distribution functions Ĝ1(t) and Ĝ2(t) (see Fig. 4.5).

Figure 4.3: Plot of ĝ1(t) (red dashed) and ĝ2(t) (blue solid) for I(t) ≡ μ =
0.25, α = 1, Vrest = 0.2, σ = 1, t0 = 0,v0 = 0, S = 1.5 (on the left), S = 2
(on the right).

These intuitions motivated the following proposition proved in [26].

It is useful for the following Proposition to recall from [70] the following
definition:

Definition 4.1.2. The random variable X is smaller than the random vari-
able Y in the usual stochastic order (denoted by X ≤st Y ) if and only if

P(X ≥ u) ≤ P(Y ≥ u) ∀u ∈ (−∞,∞).
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Figure 4.4: Plots of the mV1(t|v0, t0) (red dashed) and mV2(t|v0, t0) (blue
solid) for S = 1.5 (on the left) and S = 2 (on the right). The other parameters
are as in Fig. 4.3.

Figure 4.5: Plots of the Ĝ1(t) (red dashed) and Ĝ2(t) (blue solid) for S = 1.5,
with constant I(t) ≡ μ = 0.25, obtained by numerical quadratures of the
corresponding ĝ·(t). The other parameters are as in Fig. 4.3.
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Proposition 4.1.3 ([26]). The FPT T1 of V1(t) and the FPT T2 of V2(t)
are stochastically ordered as follows

T1 ≤st T2.

Proof. We note that on the basis of (4.13), from (4.18), recalling (4.4),

M2(t|τ ) ≤M1(t|τ )P(T1 ≤ t), ∀t > τ ≥ t0 (4.23)

and from (4.12) and (4.4), we have

mV2(t|v0, t0) ≤ mV1(t|v0, t0), ∀t ≥ t0, v0 < S. (4.24)

(As expected from the considerations on Fig. 4.4.) Recalling that V1(t) and
V2(t) are GM processes, it is known ([13],[23]) that both are transformed
process of the Brownian motion W (·) as follows

V1(t) = mV1(t|v0, t0) + σe−α(t−t0)W

(
e2α(t−t0) − 1

α

)
,∀t ≥ t0 (4.25)

and

V2(t) = mV2(t|v0, t0) + σe−α(t−t0)W

(
e2α(t−t0) − 1

α

)
,∀t ≥ t0. (4.26)

Hence, taking into account (4.24), (4.25) and (4.26), we can write

P(T1 ≤ t) = P

(
max

t0≤τ≤t
V1(τ ) ≥ S

)
≥ P

(
max

t0≤τ≤t
V2(τ ) ≥ S

)
= P(T2 ≤ t),

∀t ≥ t0. Hence,
P(T1 ≥ t) ≤ P(T2 ≥ t), ∀t ≥ t0

i.e. T1 ≤st T2.

Again from [70], T1 ≤st T2 implies that E(T1) ≤ E(T2).
See Fig. 4.6 as further intuitive confirmation in the case of an exponential

input signal I(t) = μ+ λe−βt.

4.1.3 Two cases of study: exponential and constant

input signals

Now let us see how the previous results can be applied when the expression
of the input signal I(t) is specified.
We consider the following exponential form to represent an input signal:

I(t) = μ+ λe−βt with β > 0, μ, λ ∈ R, t ≥ t0 = 0. (4.27)
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Figure 4.6: Plots of the Ĝ1(t) (red dashed) and Ĝ2(t) (blue solid) for S = 1.5,
with an exponential input I(t) = μ + λe−βt (μ = 0, λ = 0.25, β = 1.5) ,
obtained by numerical quadratures of the corresponding ĝ·(t). The other
parameters are as in Fig. 4.3.

In this way, we can describe an inhibitory current with μ ≤ 0, λ ≤ 0 and
an excitatory current for μ ≥ 0, λ ≥ 0 and also currents that change their
nature in time when μλ < 0. Moreover, we can also tune the parameter β in
(4.27) to different decay times of the current to the constant level μ.
Note that the case of the constant input signal can be derived as a particular
case of the exponential input signal (4.27) with λ = 0.
Now, the SDE for V1(t) is the following one:

dV1 = [−α(V1 − Vrest) + μ+ λe
−βt]dt+ σdW, V1(t0) = v0 t ≥ t0. (4.28)

In this case, we find

M1(t|τ ) =
(
Vrest +

μ

α

) (
1− e−α(t−τ)

)
+

λ

α− β
(
e−βt − e−α(t−τ)−βτ

)
(4.29)

by which in [26] the mean, the covariance, the conditional moments and the
transition pdf of the process V1(t) have been specified. In particular, for
evaluating g1(S, t|v0, t0), in the corresponding integral equation, following
again [26], we can specify Ψ1[S, t|y, τ ] in this case withM1(t|τ ) as in (4.29):

Ψ1[S, t|y, τ ] =
{
−Sα
2

1 + e−2α(t−τ)

1 − e−2α(t−τ)
+
αye−α(t−τ)

1 − e−2α(t−τ)

−α
2

[
Vrest +

μ

α
+
λ

α
e−βt

]
+
αM1(t|τ )
1 − e−2α(t−τ)

}
× fV1[S, t|y, τ ].

Furthermore, from Proposition 4.1.1, the process V2(t), for the input sig-
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nal (4.27), satisfies the following SDE:

dV2=

[
−αV2+α

(
Vrest+

μ+ λe−βt

α

)
P(T1 ≤ t)

]
dt+σdW, V2(t0) = v0, t ≥ t0

(4.30)
and it is characterized by the following mean

M2(t|τ ) = e−αt

[
(αVrest + μ)

∫ t

τ

P(T1 ≤ ξ)eαξdξ + λ

∫ t

τ

e(α−β)ξ
P(T1 ≤ ξ)dξ

]
.

(4.31)
Finally, for evaluating g2(S, t|v0, t0), from (4.21) we can specify Ψ2[S, t|y, τ ]
of (4.22) with I(t) as in (4.27),M2(t|τ ) as in (4.31) and P(T1 ≤ t) as the nu-
merical evaluation P̂(T1 ≤ t), having already obtained ĝ1(t) for g1(S, t|v0, t0).
See in Fig. 4.7 (left) the comparison between histograms of T1 by simulations
of (4.28) and numerical approximations ĝ1(t). See in Fig. 4.7 (right) the
comparison between histograms of T2 by simulations of (4.30) and numerical
approximations ĝ2(t). Fig. 4.8, instead, shows how a threshold that is far
from x0 influences the pdfs g1(S, t|v0, t0) and g2(S, t|v0, t0).

Figure 4.7: Left: histograms of 104 simulated T1 and numerical ĝ1(t). Right:
histograms of 104 simulated T2 and numerical ĝ2(t) for exponential input
signal with λ = 0.25, β = 1.5(> α), μ = 0, α = 1, Vrest = 0.2, v0 = 0, σ = 1
and S = 1.5. The discretization step for the simulation is 10−3 and for the
numerical procedure is 10−3 on the left and is 10−2 on the right.

Note that Fig. 4.9 refers to the case β < α. In this way, it is possible
to take into account the cases in which the characteristic times α of the
membrane potential and β of the input signal are different; in particular,
the case β < α corresponds to the case in which the time-varying effect of
the input signal persists beyond the time of decay to the resting level of the
potential, whereas the case β > α corresponds to the case in which the time-
varying effect of the signal is short and vanishes before than the potential
attains the resting level. Indeed, the firing densities of Fig. 4.9 show higher



CHAPTER 4. SUCCESSIVE SPIKE TIMES 57

Figure 4.8: The same of Fig. 4.7 for S = 2.

Figure 4.9: The same of Fig. 4.7 for β = 0.5(< α).

values than those of Fig. 4.7, being more persistent the excitatory input
effect.
Finally, also the case α = β can be considered. In this case, from (4.29)

for β → α, we have

M1(t|τ ) =
[
Vrest +

μ

α

] (
1 − e−α(t−τ)

)
+ λe−αt(t− τ )

and, from (4.31) for β → α, we have

M2(t|τ ) = e−αt

[
(αVrest + μ)

∫ t

τ

P (T1 ≤ ξ)eαξdξ + λ

∫ t

τ

P (T1 ≤ ξ)dξ
]
.

Coming back to the original task, i.e. the approximation of the successive
spike times of the train T0, T1, . . . , Tn, we generalize the idea used for the first
two spikes ([26]). We model the behavior of the neuronal membrane potential
by diffusion processes {V1(t), V2(t), . . . , Vn(t)} such that {Vk(t), t ≥ t0} (for
k = 1, . . . , n) is solution of the SDE

dVk =

{
−αVk + α

[
Vrest +

I(t)

α

]
P(Tk−1 ≤ t)

}
dt+ σdW, Vk(t0) = v0 < S,

(4.32)
with t0 ≥ 0, P(T0 = t0) = 1. Here, the P(Tk−1 ≤ t) is the probability
that the previous spike time Tk−1 has already occurred, with reference to
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time t. We point out that we suitably inserted the factor P(Tk−1 ≤ t) in
order to take into account in some sense the occurrence of the previous spike
time Tk−1. Then we consider the FPT Tk of the stochastic process Vk(t) (for
k = 1, . . . , n) through a constant threshold S, and use it for the description
of the k-th spike time.

4.1.4 Interspike Intervals

Performing simulations of the SDE (4.32) we obtain spike times T1, . . . , Tn

and this enables us to build also histograms of the ISIs Tk − Tk−1 for k =
1, 2, . . . , n. Moreover having the approximations ĝ1(t) and ĝ2(t) one can give
estimations of the distribution of the ISI T2−T1. This idea has been presented
in [27].

For modeling the general ISIs Tk − Tk−1, for k = 1, 2, . . . , n, we now
consider the following SDEs

dYk(t) =

{
−αYk(t) + α

[
Vrest +

I(t)

α

]
P(Tk > t)

}
dt+ σdW (t), Yk(0) = v0,

(4.33)
for t > 0, where the process Yk(t) obeys to a similar dynamics of the process
Vk(t) except for the probability term P(·) in (4.33). In particular, Yk(t) is
linked to the process Vk(t), because the dynamics (4.33) of Yk(t) depends
on the probability distribution function of the FPT Tk of Vk(t). We use the
process Yk(t) to mimic the behavior of the membrane potential before the
occurrence of Tk, taking into account that Tk−1 is already occurred. Then,
we model the ISIs by using the FPTs of Yk(t), i.e.

T y
k := inft≥0

{t : Yk(t) ≥ S}, Yk(0) = v0 < S,

with the pdf

gYk
(S, t|v0, 0) :=

dP(T y
k ≤ t)
dt

.

Let us consider again the input current I(t) of the form (4.27).
According to [13], and for the specified I(t) , we set for k = 1, 2, . . . , n and
for 0 ≤ τ ≤ t

MYk
(t|τ ) = [αVrest + μ] e

−αt

∫ t

τ

P(Tk > ξ)e
αξdξ+λe−αt

∫ t

τ

P(Tk > ξ)e
(α−β)ξdξ.

(4.34)
In analogy with the previous notation, the Gauss-Markov (GM) process Yk(t),
for k = 1, 2, . . . , n, has the following mean function, for t ≥ 0,

mYk
(t|v0, 0) = v0e−αt +MYk

(t|0), (4.35)
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and covariance function (for k = 1, 2, . . . , n)

cYk
(s, t) =

σ2

2α
e−αt
[
eαs − e−αs

]
(0 ≤ s ≤ t). (4.36)

Furthermore, the normal transition pdf fYk
(x, t|y, τ ), for k = 1, 2, . . . , n, of

Yk(t) is

fYk
[x, t|y, τ ] =

√
α√

πσ2(1 − e−2α(t−τ))
exp

{
−α
[
x− ye−α(t−τ)−Mk(t|τ )

]2
σ2 (1− e−2α(t−τ))

}
.

(4.37)
In [27] a numerical approximation of the FPT pdf gYk

(S, t|v0, 0) is pro-
vided solving, by a numerical procedure, the following non singular second
kind Volterra integral equation:

gYk
(S, t|v0, 0) = −ΨYk

[S, t|v0, 0] +
∫ t

0

ΨYk
[S, t|S, τ ]gYk

(S, τ |v0, 0)dτ (4.38)

for k = 1, 2, . . . , n, with

ΨYk
[S, t|y, τ ] = fYk

[S, t|y, τ ]
{
−Sα1 + e

−2α(t−τ)

1− e−2α(t−τ)
+
2αye−α(t−τ)

1− e−2α(t−τ)
(4.39)

−α
[
Vrest +

μ + λe−βt

α

]
P(Tk > t) +

2αMYk
(t|τ )

1 − e−2α(t−τ)

}
.

In this case, for solving the integral equation (4.38) for gYk
(S, t|v0, 0) it

is required to obtain first gVk
(S, t|v0, 0), because the function ΨYk

[S, t|y, τ ] is
defined by means of Pk(t) = P(Tk > t) = 1− P(Tk ≤ t).
Taking into account that T0 = 0 and T y

1 ≡ T1, in [27] the FPT T y
2 is

presented as a good approximation of the second interspike interval T2− T1.
To lighten the procedure, under certain hypoteses, it is possible to make

use of the asymptotic approximations of the FPT pdf gV1(S, t|v0, 0). In the
next section we recall the mathematical framework and we show how it can
lead to the estimation of the ISI’s pdf in particular in the case T2 − T1.

4.1.5 An asymptotic approximation

At first, we specify an asymptotic approximation valid for the pdf g1(S, t|v0, t0)
in the case of asymptotically constant input signals such that

I = lim
t→+∞

I(t).
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From (4.4), (4.5) and (4.6) we have

lim
t→∞
mV1(t|v0, t0) = Vrest +

I

α
, (4.40)

lim
t→∞
V ar(t|τ ) = lim

t→∞

σ2

2α

(
1− e−2α(t−τ)

)
=
σ2

2α
. (4.41)

Hence, we obtain the stationary transition density function W1(x), i.e.

W1(x) = lim
t→∞
fV1[x, t|y, τ ] =

√
α

πσ2
exp

{
− α
σ2

[
x−
(
Vrest +

I

α

)]2}
.

(4.42)
From (4.10) and (4.42), we also obtain that

hV1 = − lim
t→∞

Ψ1(S, t|y, τ ) =
{
α

[
S −
(
Vrest +

I

α

)]}
W1(S) =

= α

√
α

πσ2

[
S −
(
Vrest +

I

α

)]
exp

{
− α
σ2

[
S −
(
Vrest +

I

α

)]2}
.(4.43)

Along the lines of [13], for t− t0 > 1/α and

S −

⎛⎝Vrest +
max
t0≤t
I(t)

α

⎞⎠ > √σ2α, (4.44)

then the following exponential approximation for g1(S, t|v0, t0) holds:
g1[S, t|v0, t0] ≈ g̃1(t) = hV1e

−hV1
(t−t0). (4.45)

Condition (4.44), better explains the words “big enough” used in Theorem
2.2.3.
Finally, as approximation of P(T1 ≤ t), we can have G̃1(t) from a numerical
quadrature of (4.11) when in place of g1(S, t|v0, t0) we use g̃1(t) obtaining

P(T1 ≤ t) ≈ P̃(T1 ≤ t) = 1− e−hV1
(t−t0) (4.46)

∀t ≥ t0. Then, we adopt the closed form expression of P̃(T1 ≤ t) in (4.15) in
place of P(T1 ≤ t) and we finally obtain

m̃V2(t|v0, t0) = v0e−α(t−t0) + M̃2(t|t0) (4.47)

with

M̃2(t|t0) = Vrest

(
1− e−α(t−t0)

) [
1 +
αe−hV1

(t−t0)

hV1 − α

]
+ e−αt

∫ t

t0

I(ξ)eαξdξ − e−αt

∫ t

t0

I(ξ)e−(hV1
−α)(ξ−t0)dξ. (4.48)
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We point out that now our numerical quadrature for evaluating the pdf
g2(S, t|v0, t0), can be directly applied without any previous numerical evalu-
ations of g1(S, t|v0, t0) and P(T1 ≤ t), but using the closed form expressions
g̃1(t) and P̃(T1 ≤ t) of (4.45) and (4.46), respectively.

Let us see as these mathematical results can be applied in the case of
input (4.27). Indeed in this case I(t) is asymptotically constant

I ≡ lim
t→+∞

I(t) = μ, lim
t→∞

M1(t|y, τ ) = Vrest +
μ

α
, (4.49)

and, from (4.42),

W1(x) =

√
α

πσ2
exp

{
− α
σ2

[
x−
(
Vrest +

μ

α

)]2}
. (4.50)

Therefore, for t − t0 > 1/α and S −
(
Vrest +

μ+λ
α

)
>
√
σ2α the asymptotic

approximation (4.46) is valid with hV1

hV1 = − lim
t→+∞

ΨV1(S, t|y, τ ) =

= α

√
α

πσ2

[
S −
(
Vrest +

μ

α

)]
exp

{
− α
σ2

[
S −
(
Vrest +

μ

α

)]2}
.(4.51)

In Fig. 4.10 is shown the comparison between the FPT pdf g1(t) and the
asymptotic approximation ĝ1(t) for S = 2.

Figure 4.10: Histograms of 104 simulated T1, compared to the numerical ĝ1(t)
(in red) and the asymptotic approximation g̃1(t) (in blue) for an exponential
input signal with λ = 0.1, β = 0.1(< α), μ = 0.1, α = 1, Vrest = 0.1,
v0 = −0.5, σ = 1 and S = 2. The discretization step for the numerical
procedure is 10−3, for simulations is 10−4.
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Finally, it is possible to use for the process V2(t) the approximated mean
function m̃V2(t|v0, t0) from (4.47), evaluated with the signal I(t) as in (4.27)
with

M̃V2(t|0) =
[
Vrest +

μ

α

](
1 − e−αt

)
+
(αVrest + μ)

hV1 − α
[
e−hV1

t − e−αt
]

+
λ

α− β
[
e−βt − e−αt

]
− λ

α− β − hV1

[
e−hV1

t−βt − e−αt
]
.(4.52)

Using these results in [27] is presented the good agreement of the numer-
ical evaluations of gV2(S, t|v0, 0) with histograms of second passage times T2

of V (t)(see Figs. 4.11 and 4.12).
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Figure 4.11: Approximations for the pdf of T2. Numerical evaluations of
gV2(S, t|v0, 0) (blue) and histograms of 104 second passage times T2 of simu-
lated paths of V (t) by (4.32), with time discretization step 10−4, λ = 0.25,
μ = 0.25, α = 1, Vrest = 0.2, v0 = 0, σ = 1, S = 1.8, β = 0.1 (on the left)
and β = 0.01 (on the right).
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Figure 4.12: Same of Fig.4.11 with S = 2

These informations on the FPT pdf gV2(S, t|v0, 0) can be used to obtain
the probability P(T2 > t) = 1−P(T2 ≤ t) necessary to construct the function
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MY2(t|0), as in (4.34) for k = 2, and also the function ΨY2[S, t|y, τ ] as in
(4.39). So a numerical evaluation of the pdf of χ2 is possible, and in Figs.
4.13 and 4.14 it is compared with the histograms of the second ISI T2 − T1 .
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Figure 4.13: Approximations for the ISI pdf of T2−T1. Numerical evaluations
of gY2(S, t|v0, 0) (blue) and histograms of 104 ISI duration T2−T1 of V (t) by
simulations of (4.32), with time discretization step 10−4. S = 1.8 and β = 0.1
(on the left) and β = 0.01(on the right), other parameters as in Fig. 4.11.
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Figure 4.14: Same of Fig.4.13 with S = 2.

4.1.6 A modified model: ordered FPTs for successive

spike times

Even if the FPT of V1(t) and the FPT of V2(t) are stocastically ordered,
T2 can occur before T1 i.e. P(T2 < T1) ≥ 0. For this reason we assume
Θ1 = T1 and consider the random variable Θ2 = max{Θ1,T2} for which
P(Θ2 < T1) = 0, being P(Θ2 ≥ T1) = 1 from its definition, with pdf

gΘ2(t) = g1(t)P(T2 ≤ t) + g2(t)P(T1 ≤ t) (4.53)
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where for shortness g1(t) = g1(S, t|v0, t0) and g2(t) = g2(S, t|v0, t0).
Following our numerical strategy, evaluations of the functions involved

in (4.53) are available, and finally also the evaluation of P(Θ2 ≤ t) can be
given by means of a quadrature applied to gΘ2(s) for t0 ≤ s ≤ t.
The random variable Θ2 turns out to be a more suitable tool for modeling

the second spike time. Indeed, in all cases of applications, and how it will
be shown for specified examples in the following, the numerical evaluation
of (4.53) fits the histogram of the simulated T2 better than the ĝ2(t) (see
Fig.4.15), where T2 is the second passage time of V (t) through the threshold
S.

Figure 4.15: Left: histograms of the simulated Θ2 = max{T1,T2} and the nu-
merical evaluation of gΘ2(t) (4.53) for an exponential input signal are shown.
Right: histograms of 104 simulated T2, the numerical evaluation of gΘ2(t)
(in black) and ĝ2(t) (in blue). The values of parameters are: λ = 0.2,
β = 0.01(< α), μ = 0.1, α = 1, Vrest = 0.2, v0 = −0.5, σ = 1 and S = 1.5 .

Also in Fig. 4.16 can be appreciated how gΘ2 (t) approximates the pdf of
T2. The satisfactory agreement between the numerical evaluation of (4.53)
and the histogram of the maximum of simulated FPTs T1 and T2, that is a
further support of the consistency of our method, is shown on the left-hand
sides of Figs. 4.15 and 4.16 .

Also in this context, under suitable assumptions, an asymptotic approx-
imation can be used. In particular we can write the pdf gΘ2 (t) using the
asymptotic approximation g̃1(t) of g1(t).

Let ĝ2[t; g̃1(t)] (P̂[T2 ≤ t; g̃1(t)]) be the numerical evaluation of g2(t) (P(T2 ≤
t)) obtained by using the asymptotic expression g̃1(t) of g1(t), we give the
following approximation γΘ2(t) for gΘ2(t) :

γΘ2(t) = hV1e
−hV1

(t−t0)P̂[T2 ≤ t; g̃1(t)] + ĝ2[t; g̃1(t)]
(
1 − e−hV1

(t−t0)
)
. (4.54)

In the case of S = 2 the hypoteses of asymptotic regime are satisfied, and
so the function g2[t; g̃1(t)] can be evaluated and, as consequence, also γΘ2(t)
(see Fig. 4.17).
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Figure 4.16: Left: histograms of the simulated Θ2 = max{T1,T2} and the
numerical evaluation of gΘ2(t) (4.53) for an exponential input signal. Right:
histograms of 104 simulated T2 and the numerical evaluation of gΘ2(t). The
values of parameters are the same of Fig. 4.7. The discretization step for the
numerical procedure is 10−2 and for simulations is 10−2 on the left and 10−4

on the right.

Figure 4.17: Histograms of 104 simulated T2 and the numerical evaluation
of γΘ2(t) (4.54) for an exponential input signal with λ = 0.1, β = 0.1(< α),
μ = 0.1, α = 1, Vrest = 0.1, v0 = −0.5, σ = 1 and S = 2. The discretization
step for the numerical procedure is 10−3, for simulations is 10−4.
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Finally, from [26] we give some indications about a quantitative error
analysis: the L1-norm of the difference between two interpolating densities
of histograms from two independent samples of T2 is about 0.08, while the
L1-norm of the difference between one of these densities and the numerical
evaluation of gΘ2(t) is about 0.54 for the case of Fig. 4.16. The L1-norm
of the difference related to independent histograms of T2 is about 0.12 for
the case of Fig. 4.15 (0.1 for Fig. 4.17), while the L1-norm of the difference
between the histogram of T2 and the numerical gΘ2(t) is about 1.2 for Fig. 4.15
(1.02 for Fig. 4.17). Independent simulations of the second passage times
T2 of the process V (t) have been performed by discretization of (4.2), and
the histograms and the interpolating densities have been obtained using the
software R.

We also provide a scatter plot to give some indications about the joint
distribution of the pairs of the two spike times (see Fig. 4.18). The agreement
is satisfactory for small times.

Figure 4.18: Scatter plots of 5 · 103 pairs (T1, T2) on the left, and of (T1,Θ2)
on the right. (T1, T2) are simulated first and second passage times of V (t).
(T1,Θ2) are pairs with simulated FPT T1(= T1) of V1(t) and simulated Θ2 =
max{T1,T2}, with simulated FPTs T2 of V2(t). All parameters are specified
in the caption of Fig. 4.15.

Finally, for the general k-th spike time, the following approximation can
be given: P(Tk ≤ t) ≈ P(Θk ≤ t) where Θk = max{Θk−1,Tk}.



Chapter 5

Two-boundary first exit time of
Gauss-Markov processes and
biological modeling

The study of the random variable First Exit Time (FET) of Gauss-Markov
and Diffusion processes plays a key role in the construction and development
of models in a wide variety of fields, as molecular biology, financial markets,
population dynamics and in the context of neuronal modeling ([1], [2], [9],
[25], [55] and [67]). Here we recall some of the main theoretical results for
two-boundary FET densities of some specified GD processes. We will focus
on the conditions that guarantee the existence of a closed-form expression or
on the methods that provide numerical approximations when these conditions
are not satisfied. We will also show how it is possible to use GD processes
and the corresponding FET through suitable boundaries for modeling the
acto-myosin dynamics responsible of the contraction in the skeletal muscles.

5.1 Two-boundary First Exit Time

Here, we recall definitions and main results of [55]. We now focus our atten-

tion on the random variable First Exit Time (FET) T (1,2)
x0 from a strip with

absorbing boundaries S1(t), S2(t) of a GD process X(t) starting from x0 at
time t0 = 0. Specifically, let S1(t) and S2(t) be a C

1([0,+∞))-class functions
such that S1(t) < S2(t), ∀t, S1(0) < X(0) ≡ x0 < S2(0). For all t ≥ 0, we

67
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shall now focus our attention on the random variables:

T (1)
x0
= inf

t≥0

{
t : X(t) < S1(t); X(ϑ) < S2(ϑ),∀ϑ ∈ (0, t)

}
X(0) = x0

(first-passage time through the lower boundary)

T (2)
x0
= inf

t≥0

{
t : X(t) > S2(t); X(ϑ) > S1(ϑ),∀ϑ ∈ (0, t)

}
, X(0) = x0

(first-passage time through the upper boundary)

T (1,2)
x0

= inf
t≥0

{
t : X(t) �∈

(
S1(t), S2(t)

)}
, X(0) = x0

(first-exit time)

and denote by g1(t | x0, 0), g2(t | x0, 0) and g(t | x0, 0), respectively, their
pdfs:

g1(t | x0, 0) =
∂

∂t
P
(
T (1)

x0
< t
)
,

g2(t | x0, 0) =
∂

∂t
P
(
T (2)

x0
< t
)
, (5.1)

g(t | x0, 0) =
∂

∂t
P
(
T (1,2)

x0
< t
)
≡ g1(t | x0, 0) + g2(t | x0, 0).

Hence, P (T (1)
x0 < t) [P (T (2)

x0 < t)] is the probability that X(t) crosses for the
first time S1(t) [S2(t)] at some time preceding t before crossing S2(t) [S1(t)],

whereas P (T (1,2)
x0 < t) is the probability that X(t) crosses for the first time

either S1(t) or S2(t) before time t.
The functions g1(t | x0, 0) and g2(t | x0, 0) satisfy a system of two Volterra

integral equations of the first type, each of which analogous to equation
(2.38). In [9], as done for the one boundary case, the authors wrote the
FPT pdfs as solution of two second-kind Volterra integral equations using
two arbitrary functions k1(t) and k2(t), whose specification allows to remove
the singularities of the kernels.
In [55] the system was adapted to the case of Gauss-Markov processes. In

this case we have that if S1(t), S2(t),m(t), h1(t), h2(t) ∈ C1(T ) the FPT pdfs
g1[t|x0, 0] and g2[t|x0, 0] solve the following system of nonsingular second-kind
Volterra integral equations:

g1(t | x0, 0) = 2Ψ1(t | x0, 0)

−2
∫ t

0

{
g1(τ | x0, 0)Ψ1[t | S1(τ ), τ ] + g2(τ | x0, 0)Ψ1[t | S2(τ ), τ ]

}
dτ,

(5.2)

g2(t | x0, 0) = −2Ψ2(t | x0, 0)

+2

∫ t

0

{
g1(τ | x0, 0)Ψ2[t | S1(τ ), τ ] + g2(τ | x0, 0)Ψ2[t | S2(τ ), τ ]

}
dτ,
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where

Ψj(t | y, τ ) =
{
S ′

j(t)−m′(t)

2
− Sj(t)−m(t)

2

h′1(t)h2(τ )− h′2(t)h1(τ )

h1(t)h2(τ )− h2(t)h1(τ )

−y −m(τ )
2

h′2(t)h1(t)− h2(t)h
′
1(t)

h1(t)h2(τ )− h2(t)h1(τ )

}
f [Sj(t), t | y, τ ] (j = 1, 2)

(5.3)

and
lim
τ→t
Ψi[Si(t), t|Sj(τ ), τ ] = 0 (i, j = 1, 2). (5.4)

5.1.1 Closed form for FET density

Again we recall the hypotheses that guarantee closed form expression for
g, g1, g2. When these conditions are not satisfied, it is possible to obtain
evaluations of FET density by means of numerical quadratures of the integral
equations (5.2).
First of all, under suitable assumptions on the boundaries of the GD

process, it is possible to prove that the first-exit time pdf g(t | x0, 0) is the
solution of a single non-singular Volterra integral equation in place of the
system (5.2).
We recall from [55] that, under all above assumptions, if

lim
t→+∞

r(t) = +∞, P
{
S1(t) ≤ X(t) < S2(t) | X(0) = x0

}
�= 1,

one has: ∫ +∞

0

g(t | x0, 0) dt = 1. (5.5)

Furthermore, if S1(t) and S2(t) are such that

S1(t) + S2(t) = 2m(t) + 2 c h2(t), (c ∈ R), (5.6)

for all t ≥ 0, then

g(t | x0, 0) = 2
[
Ψ1(t | x0, 0) −Ψ2(t | x0, 0)

]
(5.7)

−2
∫ t

0

g(τ | x0, 0)
{
Ψ1[t | S1(τ ), τ ]−Ψ2[t | S1(τ ), τ ]

}
dτ.

Finally, if S1(t) and S2(t) are such that (5.6) holds for all t ≥ 0 and if x0

is such that
x0 = m(0) + c h2(0), (c ∈ R), (5.8)
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then
g1(t | x0, 0) = g2(t | x0, 0) (5.9)

and as consequence

g(t | x0, 0) ≡ 2 g1(t | x0, 0) ≡ 2 g2(t | x0, 0) (5.10)

satisfies the single integral equation (5.7).
Even if there is no reduction to a single integral equation, it is possible

to obtain solutions in closed form for the FET pdf. Here, we briefly recall
the Theorems 4.1 and 4.2 of [55]. Let S1(t) and S2(t) be such that

S1(t) = m(t)+ b h1(t)+ c1 h2(t), S2(t) = m(t)+ b h1(t)+ c2h2(t), (5.11)

with S1(t) < S2(t) for all t ≥ 0, and let x0 be such that

x0 = m(0) + b h1(0) + c h2(0), (5.12)

with b, c, c1, c2 ∈ R and S1(0) < x0 < S2(0). Then, the closed form for the
following FET density holds:

g(t | x0, 0) =
h2(t)

r(t)− r(0)
dr(t)

dt

+∞∑
n=−∞

exp

{
−2n

2 (c2 − c1)2
r(t)− r(0)

}
×
{[
c− c1 + 2n (c2 − c1)

]
exp

{
−2n (c2 − c1) (c− c1)

r(t)− r(0)

}
f [S1(t), t | x0, 0]

+
[
c2 − c− 2n (c2 − c1)

]
exp

{
2n (c2 − c1) (c2 − c)

r(t)− r(0)

}
f [S2(t), t | x0, 0]

}
.

(5.13)

We point out that in [55] is reported also the particular case of two
Daniels-type boundaries for which the FET density admits a closed form.

Theorem 5.1.1. For all t ≥ 0 we set

u(t) = m(t) + b1h1(t) + c2h2(t)

v(t) = m(t) + (2b− b1)h1(t) + (2c− c1)h2(t),

with b, c, b1, c1 ∈ R and u(t) < v(t), and denote

Δ(t) = 1 − 4α1α2 exp

{
− [v(t)− u(t)][v(0)− u(0)]
h1(t)h2(0)− h1(0)h2(t)

}
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with α1 > 0, α2 > 0 and lim
t→supT

Δ(t) > 0. If S1(t), S2(t),m(t), h1(t), h2(t) ∈
C1([0,+∞)) and the absorbing boundaries and the initial state are of the
following forms

S1(t) = u(t)− h1(t)h2(0)− h1(0)h2(t)

v(0)− u(0) ln

[
1 +
√
Δ(t)

2α1

]

S2(t) = v(t) +
h1(t)h2(0) − h1(0)h2(t)

v(0)− u(0) ln

[
1 +
√
Δ(t)

2α2

]
x0 = m(0) + b h1(0) + c h2(0), (5.14)

with S1(0) < x0 < S2(0); then

g(t|x0, 0) =
v(0)− u(0)
2[r(t)− r(0)]

h2(t)

h2(0)

dr(t)

dt

√
Δ(t)

× {f [S1(t), t|x0, 0] + f [S2(t), t|x0, 0]} . (5.15)

The FET closed form for specific processes

Let us make explicit the (5.13) in specific cases of particular interest for
stochastic modeling.

• The Wiener process. We consider the Wiener process {W (t), t ≥ 0}
with mW (t), h1W

(t) and h2W
(t) as in (2.22). Then, from (5.11) and

(5.12), for this kind of process the closed form (5.13) holds for bound-
aries and initial condition as follows

S1W
(t) = Bt+ C1, S2W

(t) = Bt+ C2, x0 = cW + C (5.16)

with

B = bW + bσW , C1 = cW + c1σW , C2 = cW + c2σW , C = cσW

such that S1W
(t) < S2W

(t) for all t and S1W
(0) < x0 < S2W

(0). Hence,
the closed form of FET (5.13) for the Wiener process is

gW (t | x0, 0) =
1

t

+∞∑
n=−∞

exp

{
−2n

2L2

σ2
W t

}
×
{
(l1 + 2nL) exp

{
−2nl1L
σ2

W t

}
fW [S1W

(t), t | x0, 0]

+ (l2 − 2nL) exp
{
2nl2L

σ2
W t

}
fW [S2W

(t), t | x0, 0]

}
(5.17)
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where

L = S2W
(0) − S1W

(0) = σW (c2 − c1),
l1 = x0 − S1W

(0) = σW (c− c1),
l2 = S2W

(0)− x0 = σW (c2 − c).
(5.18)

Note that for c1 → −∞ in (5.17), i.e. moving away the lower boundary
S1W
(t), only the term with n = 0 gives a non-zero contribution, so

the FET density (5.17) tends to the well-known Inverse Gaussian type
density for the FPT pdf through the linear upper boundary S2W

(t):

lim
c1→−∞

gW (t | x0, 0) =
S2W
(0) − x0√
2πt3

exp

{
−(S2W

(t)− x0)
2

2t

}
.

Furthermore, as particular case, we can put together (5.11) and (5.12)
assuming

S1W
(t) = Bt+ x0 − c̃, S2W

(t) = Bt+ x0 + c̃ (5.19)

with the values B, c̃ ∈ R
+. It can be easily verified that, in this case,

one has that L = 2c̃ and l1 = l2 = c̃. For B = bW , x0 = cW , c = 0
the conditions (5.6) and (5.8) hold and so we can use (5.10) to obtain
g1(t | x0, 0) and g2(t | x0, 0) with the following expression for FET
density provided by (5.17):

g(t | x0, 0) =
c̃

t

{
fW [Bt− c̃, t | 0, 0] + fW [Bt+ c̃, t | 0, 0]

}
+
2c̃

t

+∞∑
n=1

exp

{
−8n

2c̃2

σ2
W t

}
×
{
fW [Bt− c̃, t | 0, 0]

[
cosh

(
4nc̃2

σ2
W t

)
− 4n sinh

(
4nc̃2

σ2
W t

)]
+ fW [Bt+ c̃, t | 0, 0]

[
cosh

(
4nc̃2

σ2
W t

)
− 4n sinh

(
4nc̃2

σ2
W t

)]}
.

• The OU process. For the U(t) process with mU(t), h1U
(t) and h2U

(t)
as in (2.26), from (5.11) and (5.12), the closed form (5.13) holds for the
hyperbolic-type boundaries

S1U
(t) = A1e

aU t +B1e
−aU t + C1, S2U

(t) = A1e
aU t +B2e

−aU t + C1,
(5.20)
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and initial condition x0 = cU + C where

A1 =
bσU

2aU
, B1 = cU −

bU
aU
− bσU

2aU
+ c1σU ,

B2 = cU −
bU
aU
− bσU

2aU
+ c2σU , C1 =

bU
aU
, C = cσU , (5.21)

such that S1U
(t) < S2U

(t) for all t ≥ 0 and S1U
(0) < x0 < S2U

(0).
Specifically, the closed form FET (5.13) for the OU process is

gU (t | x0, 0) =
2aUe

aUt

e2aU t − 1

+∞∑
n=−∞

exp

{
− 2n2L2

σ2
U(e

2aU t − 1)

}
×
{
(l1 + 2nL) exp

{
− 2nl1L

σ2
U(e

2aUt − 1)

}
fU [S1U

(t), t | x0, 0]

+(l2 − 2nL) exp
{

2nl2L

σ2
U (e

2aUt − 1)

}
fU [S2U

(t), t | x0, 0]

}
(5.22)

where

L = S2U
(0)− S1U

(0) = σU (c2 − c1),
l1 = x0 − S1U

(0) = σU (c− c1),
l2 = S2U

(0)− x0 = σU (c2 − c).
We note that it is possible to obtain (5.22) from (5.17) by means of
the Doob-transformation rule between Wiener and OU process. Indeed
applying (2.36) to each one of the pdfs of the FPT through S1U

and
S2U
, for r(t) = (e2aU t − 1)/(2aU ), manipulating properly the func-

tions fW [S1W
(t), t | x0, 0] and fW [S2W

(t), t | x0, 0], we obtain the result
(5.22).

• The generalized OU process. Let V (t) be the generalized OU process
with mean and covariance as in (2.30). From (5.11) and (5.12), the
closed form (5.13) holds for boundaries

S1V
(t) = A1e

aV t +B1(t)e
−aV t, S2V

(t) = A1e
aV t +B2(t)e

−aV t (5.23)

and initial condition x0 = cV + C, where

A1 =
bσV

2aV
, C = cσV ,

B1(t) = cV + c1σV −
bσV

2aV
+BV (t),

B2(t) = cV + c2σV −
bσV

2aV
+BV (t),
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such that S1V
(t) < S2V

(t) for all t ≥ 0 and S1V
(0) < x0 < S2V

(0). We
note that now B1(t), B2(t) are functions of time, since they depend on
BV (t), specified in (2.30).
From these positions we obtain a closed form FET pdf that is the same
of (5.22) with aU = aV , σU = σV and

L = S2V
(0)− S1V

(0) = σV (c2 − c1),
l1 = x0 − S1V

(0) = σV (c− c1),
l2 = S2V

(0)− x0 = σV (c2 − c),

whereas the transition normal densities fU [S1U
(t), t | x0, 0] and

fU [S2U
(t), t | x0, 0] are substituted by fV [S1V

(t), t | x0, 0] and
fV [S2V

(t), t | x0, 0], respectively.

Two-boundary: asymptotic approximation

If closed-form results of the FPT pdf are not available, particularly useful
are the asymptotic approximations. Results in this direction hold for time-
homogeneous one-dimensional diffusion processes with steady-state pdf in
three cases:

i) both boundaries possess horizontal asymptotes,

ii) both boundaries are asymptotically periodic,

iii) one boundary possesses an horizontal asymptote while the other bound-
ary is asymptotically periodic.

From [38] we recall here the main results about the three cases.
Let {X(t), t ≥ 0} be a time-homogeneous diffusion process defined over the
interval I = (r1, r2) such that P(X(0) = x0) = 1 with x0 in the interior of I.
Concerning Case i) we have the following result:

Theorem 5.1.2. Let S1(t) and S2(t) be asymptotically constant thresholds:

lim
t→+∞

Si(t) = Si (i = 1, 2).

Setting
Ri(Si) := 2(−1)i+1 lim

t→+∞
Ψi[Si(t), t|y, τ ], (i = 1, 2) (5.24)

and
U(S1, S2) := R1(S1) +R2(S2). (5.25)

Then we have asymptotically that

g(t|x0, 0) ∼ U(S1, S2) exp {−U(S1, S2)t}. (5.26)
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Theorem 5.1.2 is the natural extension to the two-boundary case of The-
orem 2.2.4 for the single boundary.
For Case ii) we assume that each Si(t) is asymptotically periodic of period

Qi, i = 1, 2.

Theorem 5.1.3. Let S1(t) and S2(t) be asymptotically periodic and bounded
functions:

lim
n→+∞

Si(t+ nQi) = φi(t) (i = 1, 2),

where φi(t)’s are periodic functions of periods Qi. Setting

Si :=
1

Qi

∫ Qi

0

φi(τ )dτ (i = 1, 2), (5.27)

Ri[φi(t)] := 2(−1)i+1 lim
n→+∞

Ψi[Si(t+ nQi), t+ nQi|y, τ ], (i = 1, 2) (5.28)

and
U [φ1(t), φ2(t)] := R1[φ1(t)] +R2[φ2(t)]. (5.29)

Then, we have for S1 → r1 and S2 → r2 the following asymptotic result:

g(t|x0, 0) ∼ U [φ1(t), φ2(t)] exp

{
−
∫ t

0

U [φ1(ϑ), φ2(ϑ)]dϑ

}
. (5.30)

For Case iii), let us suppose, for instance, that S1(t) has the horizontal
asymptote S1 and S2(t) is asymptotically periodic of period Q2. It is possible
to obtain a result analogous to (5.30) defining

U [S1, φ2(t)] := R1[S1] +R2[φ2(t)]. (5.31)

5.2 The acto-myosin dynamics

In order to show how it is possible to use GD processes and the corresponding
FET through suitable boundaries in the context of molecular biology, we
recall and specialize a model presented in [11] on the acto-myosin dynamics.
In fact putting together theoretical, numerical and simulative results about
GD processes it is possible to obtain improvements in the theoretical and
applicative apparatus jointly to additional understandings of experimental
evidences. In particular, we point out the key role played by the time-
inhomogeneous OU process for modeling phenomena subject to additional
(external) time-dependent forces.
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5.2.1 Physiology and classical models

The sarcomer is the basic unit of a skeletal muscle. It is composed of two
kinds of protein filaments: the actin and the myosin. These proteins slide
past each other when the muscle contract and relax and for this reason we
talk about “sliding mechanism”. There are 17 different types of myosins, in
the following we will always consider the so-called “Myosin II”. The myosin II
has a long tail and a head that can bind to actin. While still bound to actin,
the myosin flexes pulling the actin filament along with it; this causes the
actin filament to slide by the myosin filament. For the presence of ATP
the myosin head releases from the actin and unflexes. This frees the myosin
head to bind with a different actin site and the process may be repeated.
In the myosin head the ATP is idrolized producing the energy supply for
the muscles movement. The underlying mechanism producing this energy
conversion remains obscure. For detailed and extensive readings on molecular
motors see [50], [60], [81] and references therein.
This mechanism suggests a tight coupling between ATP cycles and protein
movement that leads to the deterministic lever-arm theory: each ATP cycle
generates one single power-stroke that causes a sliding of constant length
and preassigned direction of the actin filament. This deterministic approach
needs however to be improved. A stochastic approach can be used in this
context: during the time elapsing between the attachment of myosin head to
the actin filament and the final release of the phosphoric anion, the position
of the myosin head is determined both by the lever-arm swing and by the
action of Brownian motion induced by thermal agitation of the environmental
molecules of watery solution in which the involved proteins are embedded (see
[11]). The results of the experiments conducted by Yanagida and his group in
1985 [83] supports this criticism on the tight coupling. In fact measurements
of the total displacement produced by the myosin head during a complete
ATP cycle obtained in their experimental set-up, are in disagreement with
the deterministic lever-arm theory:

• the total distance traveled by the myosin head is not constant,

• this displacement is the sum of a random number of steps of amplitude
XD = 5.5 nm, i.e. the distance between two successive actin monomers.
During the time elapsing between two successive steps, the myosin head
randomly jitters around an equilibrium position performing a Brownian
motion. Denoting by XR the displacement induced by the thermal
watery solution, by r and d two constants, the total displacement X of
the myosin head during one ATP cycle is

X = rXR + dXD
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• steps mainly occur in a preferred “forward”direction, although some of
them occasionally can take place in the opposite “backward”direction.
Hereafter, forward steps will be taken as positive and backward steps
as negative. The total displacement is thus the algebraic sum of the
number of performed forward and backward steps.

For these reasons the coupling between the ATP cycle and the generation of
the power-stroke is weakened and the term “loose-coupling”is used.
The reason why we talk about the myosin head displacement instead of the
more intuitive actin displacement is due to the technologies exploited during
the experiments. A single myosin head was fixed to the tip of a microneedle
and placed near a binding site of an actin filament that had been previously
immobilized on a microscopy slide by means of optical tweezers. The deflec-
tions of the needle with respect to its resting position were then measured
and recorded. This measurements constitutes the myosin displacement.
In a modeling context the myosin moves along the actin filament performing
steps, mainly forwards and rarely backwards ([11], [24]). It is assumed that
the acto-myosin dynamics is overdamped (disregarding the inertial force) and
confined to only one space-period of the periodical morphology of the actin
filament. The particle diffuses in a symmetric one-well potential (the bind-
ing site) tilted by a time-dependent force driving the particle motion. The
myosin steps are represented as escapes from the potential well: the escape
happens when the particle crosses over a local maximum of the potential (see
Fig. 5.1).

5.2.2 A Gauss-Markov based approach to model the

proteins dynamics

In the framework of the loose-coupling theory a new model for the acto-
myosin dynamics has been proposed in [11]. It is based on the following
assumptions:

• the complex myosin II, ADP and the phosphoric anion (M.ADP.Pi) +
energy is viewed as a point-size particle moving along an axis whose
positive direction is associated with forward steps of the myosin head;

• the particle is embedded in a fluid; thus it is subject to a dissipative
force of drag coefficient β and thermal agitation. These foces are de-
scribed macroscopically by Gaussian noise of intensity 2βkBT, where
kB is the Boltzmann constant and T is the absolute temperature;

• the global interaction of the particle with the actin filament is synthe-
sized in a conservative unique force deriving from a potential U(x);
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Figure 5.1: A graphical illustration: a scheme of the biological phenomenon.
A myosin head (the circle) diffuses around the minimum of the potential
well. Two possible evolutions of the myosin potential are drawn to provide
an illustration of backward and forward steps. The steps happen when the
particle crosses over a local maximum of the potential. These maxima consti-
tute the two boundary confining the dynamics. In particular, note that the
position of the myosin is in x = S1 for a backward step, while the position
of the myosin is in x = S2 for a forward step.

• the particle’s dynamics is described by Newton’s equation;

• two forces act on the particle: Fi ed Fe. The internal force Fi is related
to the largest force that the myosin head is able to generate endoge-
nously, whereas Fe is an external force likely applied from outside by
the experimenter.

The space periodic structure of the actin filament suggests that the function
U(x) is periodic of period L i.e. the lenght of an actin monomer:

U(x) = U(x+ cL), ∀c ∈ Z.

Moreover, by the above assumptions, the particle is subject to a tilted po-
tential V (x)

V (x) = U(x)− Fx (5.32)

where F := Fi−Fe. Different profiles of the potential can be considered (see
[11]), here we choose a parabolic profile:

U(x) =
U0

L2/4

(
x− L

2

)2

(5.33)
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where U0 is the depth of the potential well.
In Fig. 5.1 is represented the dynamics in the periodic parabolic potential,
tilted by a driving force. Although the potential U(x) is simmetric, the tilting
drives the motion, favoring the forward steps.
We consider the model proposed in [11] including the effect of a time-

dependent force F (t) and improving the prediction of the occurence of back-
ward steps of myosin head. The assumption of the presence of a time-
dependent internal force is widely accepted, as in [52], [60].
The model is described by an SDE for the real-valued stochastic process

{X(t), t ≥ 0} that represents the evolution in time of the position of the
particle:

dX = −
[
U ′(X)− F (t)

β

]
dt+

√
2kBT

β
dW, (5.34)

with the initial condition X(0) = x0. We use (′) to indicate the space deriva-
tive, and as usual W is the standard Brownian motion.
We model the diffusive displacement of a myosin head along an actin fila-
ment via a Gauss-Markov process confined to a strip (see Fig. 5.1). The new
assumption on the particle (myosin head) is that it is subject not only to ran-
dom fluctuations of the surrounding thermal bath but also to an additional
driving force conveying the external load and the internal time-dependent
force arising from proteins interaction (see [52]). The dwell time, i.e., the
time elapsed in the potential well before escaping from it, is here modeled
by the FET of the GD process from the strip. The FET is equal to the FPT
through the upper (with respect to initial position of the process) boundary
or to FPT through the lower boundary. The attainment of one of the two
boundaries is used to represent escape from the well. In particular, if the
FET is equal to the FPT through the upper boundary, we say that a for-
ward step occurred; otherwise, if the FET is equal to the FPT through the
lower boundary, a backward step occurred. We remark that in our model we
consider the not customary presence of a lower boundary in the state space
of the GD process in order to include steps of the myosin in the opposite di-
rection of the driving force ([44]). We stress that the potential profile, drawn
symmetric in Fig. 5.1, is actually tilted by the driving force, and this implies
that the forward steps are more frequent than the backward steps.
In Fig. 5.2 is shown the effect of the force F on the parabolic potential
U(x). In particular the tilted potential V (x) is plotted in one space-period
for F = 0 (symmetric potential), F > 0 and F < 0. We note that, for the
cases that will be considered here for the proteins dynamics (F > 0), the
potential is tilted favouring the forward steps.
Experimental data confirm that, as it is natural to expect, the frequency
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Figure 5.2: Plot of V (x) from equations (5.32) and (5.33), in one period-
space for U0 = 15.75 pN nm and L = 5.5 nm. The black line represents
the symmetric parabolic potential (F = 0), the red line is obtained when
F = −1.88 pN and the blue line is V (x) for F = 1.88 pN.

of forward steps decreases as the applied load Fe increases, while the dwell
times increase with the load. Moreover as Fi increases the mean time that
the particle spends in the strip decreases.
Using the parabolic profile (5.33) in the SDE (5.34), we finally consider

the following SDE

dX = −1
θ
[X − ρ(t)] dt+ σdW (5.35)

where we have posed

θ =
βL2

8U0
, σ =

√
2kBT

β
, ρ(t) =

L

2
+ θ
F (t)

β
:=
L

2
+A(t). (5.36)

We note that (5.35) describes the stochastic evolution of a particle subject
to Brownian fluctuations in presence of a time-dependent equilibrium level
where the characteristic time θ denotes the time elapsed to reach it and A(t)
represents the time-dependent component of the attractor state ρ.
We set the starting point x0 = (S1 + S2)/2 and, in order to model the step
of the myosin from a site to the next one and the time required to perform
it, we represent the myosin dwell time as the FET random variable

TX = inf{t ≥ 0 : X(t) ≤ S1 or X(t) ≥ S2} (5.37)

through the constant boundaries S1 located at the origin (the lower one) and
S2 located at L (the upper one). The FET pdf is:

gX(t|x0, 0) =
d

dt
P{TX ≤ t}, with x0 =

S1 + S2

2
. (5.38)
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Under suitable regularity conditions on coefficients, we have seen in Sec-
tion 2.1 that the process X(t) solution of (5.35) is a diffusion process. We
can specify the mean and covariance functions of the Gauss-Markov diffusion
process X(t) solution of SDE (5.35) by using the result of Theorem 2.1.8. In
the specific case of SDE (5.35), the coefficient functions are

a(t) = −1
θ
, b(t) =

L

2θ
+
A(t)
θ
, σ2 =

2kBT

β
. (5.39)

The assumptions of Theorem 2.1.8 are that the coefficient functions a(t), b(t), σ
have to be defined in [0,+∞[ and they have to be such that the following
functions

B1(t) =

∫ t

0

a dτ, B2(t) =

∫ t

0

b(τ )e−B1(τ) dτ,

B3(t) =

∫ t

0

σ2e−2B1(τ) dτ (5.40)

exist in [0,+∞[. For regular enough F (t) the mean and covariance functions
of the GD process X(t) are specified as follows

m(t) = [x0 +B2(t)] e
B1(t), 0 ≤ t < +∞ (5.41)

c(τ, t) = eB1(t)+B1(τ)B3(τ ), 0 ≤ τ ≤ t < +∞. (5.42)

Since in this case

B1(t) = −
t

θ
, B2(t) =

L

2
(et/θ − 1) +

∫ t

0

A(t)
θ
eτ/θdτ,

B3(t) =
σ2θ

2
(e2t/θ − 1). (5.43)

it is sufficient to choose a function A(t) such that
∫ t

0

A(t)
θ
eτ/θdτ exist and

we have

m(t) = x0e
−t/θ +

S1 + S2

2

(
1 − e−t/θ

)
+ e−t/θ

∫ t

0

A(t)

θ
eτ/θdτ (5.44)

and the following covariance function

c(τ, t) =
σ2θ

2

(
eτ/θ − e−τ/θ

)
e−t/θ (0 ≤ τ ≤ t). (5.45)

In particular, the covariance function (5.45) is the product of two functions

h1(t) = σ
θ

2

(
et/θ − e−t/θ

)
, h2(t) = σe

−t/θ (5.46)
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whose ratio r(t) = h1(t)/h2(t) is a monotonically non decreasing function.
Finally, the infinitesimal moments of X(t) are

A1(x, t) = −
1

θ
[x− ρ(t)] , A2 = σ

2. (5.47)

Hence X(t) is the time-inhomogeneous OU process solution of (2.18) with
a(t) = −1/θ and b(t) = ρ(t)/θ. Making explicit the form of F (t) in (5.44),
the mean remains determined.

5.2.3 Different forces F (t) to model different cases

It is interesting to specify for which kind of driving force F (t) it is possible
to provide a closed-form function for the FET density useful to model the
dwell-time of the myosin head in a potential well. It can be made finding
relations between threshold values, mean behavior of the protein dynamics
and input forces ([25]).

For this purpose we re-consider the theoretical results presented in Section
5.1 specialized for processes that find application in the dynamics of the actin
and myosin proteins.

Closed-form results

With this aim let us consider the more general GD process with infinitesimal
moments

A1(x, t) = a(t)x+ b(t), A2(t) = σ
2(t). (5.48)

Given the boundaries S1(t), S2(t), by adding side-by-side the conditions (5.11),
we can write the following condition on the mean of the process

m(t) =
S1(t) + S2(t)

2
− bh1(t)−

c1 + c2
2
h2(t), (5.49)

where the parameter b must not be confused with the function b(t). From
(2.13) we know that

b(t) = m′(t)− a(t)m(t). (5.50)

Using (5.49) in (5.50), we obtain

b(t) =
S ′

1(t) + S
′
2(t)

2
− bh′1(t)−

[
S1(t) + S2(t)

2
− bh1(t)

]
h′2(t)

h2(t)
. (5.51)

For constant boundaries S1 and S2, we have

b(t) = −bh′1(t)−
[
S1 + S2

2
− bh1(t)

]
h′2(t)

h2(t)
. (5.52)
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This expression for b(t) ensures that, for the GD process solution of the
SDE

dX = [a(t)X + b(t)]dt+ σdW with X(0) = x0, S1 < x0 < S2

in presence of constant boundaries S1 and S2, the FET density admits the
closed form (5.13) for suitable values of the involved parameters. Specifically,
for the generalized OU process V (t) solution of

dV = [−aV V + bV (t)]dt+ σV dW, S1 < V (0) = v0 < S2 (5.53)

the FET density has a closed form of type (5.22) if

bV (t) = −bσV e
aV t +

(
S1 + S2

2

)
aV (5.54)

with aU = aV , S1U
(t) = S1, S2U

(t) = S2, σU = σV , c = 0 and for σV (c1+c2) =
S1 + S2 − 2x0.
Furthermore, if S2 = S = −S1 the condition (5.54) becomes

bV (t) = −bσV e
aV t.

Finally, the FET density admits a closed form if V (t) is solution of

dV = [−aVV − bσV e
aV t]dt+ σV dW, −S < V (0) = v0 < S. (5.55)

Concerning the application to the proteins dynamics, we have that Eq. (5.53)

is the same of Eq. (5.35) when aV = 1/θ, bV (t) = θρ(t) =
L

2θ
+
F (t)

β
, σV = σ,

S1 = 0 and S2 = L. So from (5.54) we can say that for an input force of type:
F (t)

β
= −bσe t

θ , the corresponding FET pdf from (0, L) admits a closed form.

Specifically, the time inhomogeneous OU process X(t) with the following
mean and covariance factors:

mX(t) = x0e
−t/θ − bσθ

2

(
et/θ − e−t/θ

)
,

h1X
(t) =

σθ

2
(et/θ − e−t/θ), h2X

(t) = σe−t/θ (5.56)

with 0 < x0 < L, admits the following FET closed form in presence of
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constant boundaries (0, L):

gX(t | x0, 0) =
2et/θ

θ(e2t/θ − 1)

+∞∑
n=−∞

exp

{
− 2n2L2

σ2(e2t/θ − 1)

}
×
{
(2nL + x0) exp

{
− 2nLx0

σ2(e2t/θ − 1)

}
fX[0, t | x0, 0]

+[(1− 2n)L− x0] exp

{
2nL(L − x0)

σ2(e2t/θ − 1)

}
fX [L, t | x0, 0]

}
.

(5.57)

The form (5.57) is obtained from (5.22) with aU = 1/θ, σU = σ, c = 0,
L = S2 − S1 = σ(c2 − c1), l1 = x0 = −σc1 and l2 = L − x0 = σc2, whereas
the transition normal densities fU [S1U

(t), t | x0, 0] and fU [S2U
(t), t | x0, 0] are

substituted by fX[0, t | x0, 0] and fX[L, t | x0, 0], respectively.
Although the force

F (t) = −bβ
√
2kBT

β
e

t
θ (5.58)

in SDE (5.35) guarantees a closed form for the FET density for S1 = 0 and
S2 = L, most of the times it is of a limited interest from a biological point
of view. In fact it has a positive exponential behavior and it can be used
in this context only to describe some phenomena in which an increasing (in
absolute value) and unbounded force is involved.

Other cases of study

We consider the case of a time-increasing force acting in the dynamics and
also the case of a time-decreasing force ([24]). We remark that for different
choices of F (t) the covariance function (5.45) does not change, but only the
mean functions have to be specified.

Case 1. In (5.35) we consider an increasing exponential force such that

A(t) = kθ(1− e−t/ϑ) (5.59)

with k positive real number (nm/ns) to model a force that attract the
myosin head to the next actin monomer (i.e., the upper boundary) ris-
ing during the interaction between the proteins and that grows when
the distance between the two filaments decreases ([33], [51]). Note that
the time constant ϑ characterizes the time that the force takes to as-
sume its maximum value kβ. In general, ϑ is different from θ. The
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choices ϑ > θ, ϑ = θ or ϑ < θ can be used to model different situations.

Case 2. In (5.35) we consider the decreasing exponential force such that

A(t) = kθe−t/ϑ (5.60)

with k positive real number (nm/ns) to model a quasi-impulsive force
that rapidly decays. This could be the case of an initial strong impact
between the myosin head and the actin filament that may cause the so-
called conformational change in the myosin neck. Here, ϑ is the decay
time of the force.

The simulation strategy and the numerical approach are mandatory because
no closed form results hold for the specified cases. Discretizing the considered
SDE using the Euler method described in the previous chapters, we simulated
particle paths and we recorded the instants of crossing of the boundaries ob-
taining statistical approximations of FET density. We compare these results
with evaluations of FET density obtained by numerical quadrature of the two
corresponding integral equations (of type (5.2)) and also with some experi-
mental data. We note that we only need mean and covariance functions of
the GD process to apply the numerical procedure; indeed, if we know them
we can write the normal transition pdf fX [x, t|z, τ ] and also the functions
Ψi(t|z, τ ) (i = 1, 2) involved in the integral equations (5.2).
In [24], using the cited numerical procedure, we provided numerical ap-

proximations of the FET pdf in the two cases. In Fig. 5.3 are shown different
curves characterized by different decay times of the force for Case 1. Dif-
ferent values of ϑ represent different rates of growth of the force acting on
the particle. We have also chosen two internal forces Fi in order to consider
different forces that the head of the myosin is able to generate. Numerical
approximations of the FET pdfs gX(t|x0, 0) for different values of ϑ for Case 2
can be found in Fig. 5.4.

Finally we underly that, for suitable values of parameters, the proposed
model can include a wide range of phenomenological evidences. In particular
in [24] we fitted experimental data, obtained in the Yanagida laboratory ([11],
[44]). In Tables 5.1 and 5.2 we provide accurate estimates of the measured
dwell-times for different loads applied to the particle for Case 1 and Case 2.
We note that the bigger is the load the longest is the time the particle elapses
inside the potential well.
We stress again the importance of all characteristic times involved in the

model. In particular in the simulation strategy the choice of a very small
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Figure 5.3: Numerical approximations g(t) of FET pdfs gX(t|x0, 0) for
different values of ϑ for Case 1. The blue curves on the left refer to
Fi/β = 1.8 nm/ns, the red curves on the right refer to Fi/β = 2.5 nm/ns. In
both figures U0 = 15.75 pN nm, k = 1.8 nm/ns, θ = 21.6 ns. The values of
ϑ are reported in the plots. The time discretization step is 10−3.

size of discretization time step is almost always essential to obtain reliable
estimations. This time step is chosen taking into account the characteristic
times.

Fitting the experimental data: Case 1

Fi/β Fe θ/ϑ Estimated FET mean Measured Dwell times

1.8 0.046 3.2 5.3 5.3
1.8 0.19 3.2 5.7 5.7
1.8 0.3 2.7 6.2 6.0
1.8 0.47 2.6 6.9 7.1
1.8 0.69 2.0 8.9 8.9
1.8 1.24 3.4 11.0 11.1
2.5 0.19 2.0 5.7 5.7
2.5 0.83 2.5 6.2 6.2
2.5 1.89 3.0 10.9 11.0

Table 5.1: Case 1. Estimations of mean FET of X(t) by using the numerical
procedure for different values of ϑ, internal and external forces and compar-
ison with the experimental measurements of the dwell-times ([11],[44]).
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Figure 5.4: Numerical approximations g(t) of FET pdfs gX(t|x0, 0) for
different values of ϑ for Case 2. The blue curves on the left refer to
Fi/β = 1.8 nm/ns, the red curves on the right refer to Fi/β = 2.5 nm/ns. In
both figures U0 = 15.75 pN nm, k = 1.8 nm/ns, θ = 21.6 ns. The values of
ϑ are reported in the plots. The time discretization step is 10−3.

Fitting the experimental data: Case 2

Fi/β Fe θ/ϑ Estimated FET mean Measured Dwell times

1.8 0.046 3.2 5.3 5.3
1.8 0.19 3.2 5.7 5.7
1.8 0.3 2.7 6.2 6.0
1.8 0.47 2.6 7.2 7.1
1.8 0.69 2.0 8.9 8.9
1.8 1.24 3.4 11.1 11.1
2.5 0.19 2.0 5.6 5.7
2.5 0.83 2.5 6.2 6.2
2.5 1.89 3.0 11.0 11.0

Table 5.2: Case 2. Estimations of mean FET of X(t) by using the numerical
procedure for different values of ϑ, internal and external forces and compar-
ison with the experimental measurements of the dwell-times ([11],[44]).

In [24] we also propose a refining of the model (5.35) in order to describe
more realistically the occurence of backward steps. The model proposed is:

dX = −1
θ
[X − ρ(t)] dt+ σdW (5.61)
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with X(0) = L/2 and ρ(t) = L/2 +A(t), where A(t) is now

A(t) = θF (t)− δ2Fe

β

and
kβ = Fi − δ1Fe with 0 ≤ δ1, δ2 ≤ 1.

The main idea of this model is that the external load Fe affects the force
F (t) and the equilibrium level ρ(t) with different weights δ1 and δ2. From
the point of view of the approximation of the experimental data, this allows
us to have a new free parameter useful for the description of the percentage
of backward steps.
Moreover the presence of a non negligible number of backward steps, af-

fects the form of the FET pdfs. In fact, also in this case, we performed
simulations of equation (5.61) and numerical approximations of the FET
density (see Fig. 5.5). Due to the presence of backward steps, we observe bi-
modal densities. In particular for Case 2 (Fig. 5.5 - right), for the considered
choices of parameters, we have that almost all the mass is concentrated in
the interval (0, 10), since the force is very strong at the beginning. Moreover
since the potential is very tilted at the beginning, the occurence of backward
steps is unlikely. They occur only after time 20, when the force is reduced
and the potential is less tilted.

The last intuition is supported by Fig. 5.6 where we have plotted the pdf
of the FPT through the lower boundary, i.e. the density of the backward
steps.
Similar considerations can be made for Case 1 (Fig. 5.5 - left). Here it is
possible to observe a remarkable probability of backward steps (see Fig. 5.6
- left) for small times, since the force is not strong enough to tilt completely
the potential. After time t = 10 we observe an high probability only of
forward steps.
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Figure 5.5: Numerical approximations g(t) of FET pdfs for the refined model
(5.61) for different values of ϑ for Case 1 (on the left) and Case 2 (on the
right). The different values assigned to Fe/β = 0.25, 0.75, 1.5 nm/ns are
reported in the plots, Fi/β = 2.5 nm/ns, U0 = 15.75 pN nm, θ = 21.6 ns and
suitable choices of δ1 and δ2.
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