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A B S T R AC T

The biomechanical behavior and the mechanobiology of cells, tissues
and organs have been intensively investigated in the last decades, with
the aim of discovering the key feedback mechanisms governing the ways
in which cascades of chemical signals are transmitted within the hierar-
chically organized living structures and interplay with physical events
at different scale levels. Continuum Mechanics has deeply contributed
to develop this research area and to meet related challenges, by cre-
ating the physically and mathematically consistent ground on which
large deformation, stresses, evolving constitutive laws, growth, remod-
eling and morphogenesis do interact. The needed multiphysics vision in
analyzing the complex behavior of the living matter has in particular
consolidated Tissue Mechanics theoretical approaches and related mod-
eling strategies which are currently recognized as indispensable tools
for explaining experimental evidences, for predicting dynamics of liv-
ing systems as well as for supporting the design of prostheses for both
soft and hard tissues. Further impulse to these studies is then given
by the rapidly growing advances of the research in tissue engineering
which continuously redraw new scenarios for applications in medicine
and lead to envisage innovative drug delivery systems and biomaterials.
Within this vivid multidisciplinary debate, an increasing interest has
been recently registered in the Literature for the mechanical properties
of living cells –and for the understanding of the dynamics to which they
obey at different scale levels– also motivated by some recent discoveries
which seem to allow to envisage new horizons for therapy and diagnosis
of human diseases like cancer, by for example exploiting the different
in-frequency response of single healthy and tumor cells stimulated by
Ultrasound. However, at the macroscopic scale –say at the tissue level–
the feedback mechanisms and the cascade of bio-chemical and physical
signals characterizing the complex interaction of dynamics occurring at
different scales significantly complicates the biomechanical response of
living matter and growing tumor masses, thus requiring enriched mod-
els which incorporate the mechanobiology at the micro- and meso-scale
levels. Cancer diseases in fact occur when in a healthy tissue the cell-
cell and cells-ECM (the Extra-Cellular Matrix) interactions are altered,
and hyperplasia is generated as effect of sudden and often unforesee-
able genetic modifications followed by a cascade of biochemical events
leading to abnormal cell growth, lost of apoptosis, back-differentiation
and metastasis. As a consequence, the determination of models capa-
ble to macroscopically describe how tumor masses behave and evolve
in living tissues by embodying tumor invasion dynamics determined
by cell-cell and cells-environment to date still remains an open issue.
Growth of biological tissues has been recently treated within the frame-

v

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



work of Continuum Mechanics, by adopting heterogeneous poroelastic
models where the interaction between soft matrix and interstitial fluid
flow is additionally coupled with inelastic effects ad hoc introduced to
simulate the macroscopic volumetric growth determined by cells divi-
sion, cells growth and extracellular matrix changes occurring at the
micro-scale level. These continuum models seem to overcome some lim-
itations intrinsically associated to other alternative approaches based
on mass balances in multiphase systems, because the crucial role played
by residual stresses accompanying growth and nutrients walkway is pre-
served. Nevertheless, when these strategies are applied to analyze solid
tumors, mass growth is usually assigned in a prescribed form that es-
sentially copies the in vitro measured intrinsic growth rates of the cell
species. As a consequence, some important cell-cell dynamics govern-
ing mass evolution and invasion rates of cancer cells, as well as their
coupling and feedback mechanisms associated to in situ stresses, are in-
evitably lost and hence the spatial distribution and the evolution with
time of the growth inside the tumor –which would be results rather
than input– are forced to simply be data. In order to solve this sort of
paradox, the present Thesis work, within a consistent thermodynamic
framework, builds up an enhanced multi-scale poroelastic model un-
dergoing large deformation and embodying inelastic growth, where the
net growth terms directly result from the “interspecific” predator-prey
(Volterra/Lotka-like) competition occurring at the micro-scale level be-
tween healthy and abnormal cell species. In this way, a system of fully-
coupled non-linear PDEs is derived to describe how the fight among
cell species to grab the available common resources, stress field, pres-
sure gradients, interstitial fluid flows driving nutrients and inhomoge-
neous growth do all simultaneously interact to decide the tumor fate.
The stability of the predator-prey dynamics and some original theo-
retical results for the non-linear mechanics of growing media are also
developed and discussed in detail. The general approach –that is the
coupling of growth, large deformation and competitive cell dynamics–
is therefore applied to actual biomechanical problems (in particular an-
alyzing growth and stress in tumor spheroids and arterial walls) and
the theoretical outcomes are finally compared with in vivo experiments
and animal models to validate the effectiveness and the robustness of
the proposed strategy.
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I N T RO D U C T I O N

In the framework of Tissue Mechanics the contribution of the biome-
chanics and, more in general, of the mechanics of materials and struc-
tures, to complement biomedical know-how and support clinical and
surgical choices is currently recognized as a successful approach in
practical applications. The engineering standpoint often determines a
deeper understanding of the complex behavior related to the physical
interaction between tissues and their constituents, as well as between
tissues and synthetic materials, this in turn giving the possibility to
obtain better clinical outcomes and to gain some new insights into the
basic understanding of the phenomena that hide behind physiological
events, in health or disease. To investigate the key feedback mecha-
nisms regulating the transmission of chemical signals within the hierar-
chically organized living structures and their connection with physical
events at different scale levels, Continuum Mechanics provides a well-
established theoretical framework in which hyperelasticity and evolving
constitutive laws can be additionally enriched by growth, remodeling
and morphogenesis.
With focus on the present Research work, one of the arguments treated
regards the characterization of vascular systems – and more specifically
pulmonary autograft transposed into aortic position– through nonlin-
ear anisotropic elasticity and large deformation theories, additionally
including a full coupling of these laws with specific evolution equations,
in order to predict growth and remodeling in blood vessels, and analyze
the effects that altered physiological conditions and interactions with
synthetic materials can induce into the evolving living structures, in
term of tissue morphology and histology as well as with reference to
structural integrity and mechanical stability. However, needed physio-
logical processes, aside from the impairment between the mechanical
properties of the PA vessels with respect to the aortic systemic pressure,
can be compromised by the arising of problems mainly related to two
choices: the material(s) constituting the prosthesis and the microstruc-
ture of the device itself. The consequences deriving from these choices
in terms of potential unfavorable remodelling have been in detail an-
alyzed by means of simple analytical considerations. Furthermore, to
overcome these issues, recent advances have been done on both biome-
chanical theoretical investigation and on in vivo experimentation of
newly assembled co-polymer scaffolds for the reinforcement of PA in
Ross operation. The proposed biomechanical model in fact provided
positive effects coming from the synergy between the transposed ves-
sel and the composite polymer scaffold, demonstrating the ability of
this implant to accommodate mechanical loads guaranteeing graft in-
tegrity, controlling the progressive graft dilation, allowing regional so-
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matic growth and preventing dilative degeneration.
However, the phenomenological description of the growth and remod-
elling capabilities of a biological system can be complicated by the
necessity of including further aspects, which take into account the in-
teractions between the tissue elementary constituents at the cells scale,
since these dynamics are then inexorably connected to the macroscopic
fate of the system itself.
Therefore, in order to catch the sometimes extremely complex func-
tional relationships and multi-physical interactions governing the orga-
nization of a growing tissue, the sole mechanical considerations can be
no more exhaustive, and a multidisciplinary approach is necessary to
take into account other leading aspects related to biochemical nature
of the interplays at basis of the growth and remodelling processes. How-
ever, especially in dealing with the modelling of living structures, it can
result sometimes advantageous to hazard to describe such phenomena
by means of a more eclectic point of view, adopting approaches that are
ordinarily not associated to that physical framework, but instead be-
long to other disciplinary areas. Nevertheless, the direct observation of
some common elementary, characteristic properties of the natural phe-
nomenon under study and an open-minded attitude allow to transpose
some “foreign” logics to the mechanical problem at hand, opportunely
integrating all the building-blocks in order to furnish a comprehensive
description of all the interactions governing the behavior of the living
structures.
In particular, in the present Research work, these strategies have been
harnessed to model the growth of living tumors: the mechanics of the tu-
mor growing mass has been explicitly modeled by considering the host
tumor-host interactions interpreted in the light of behavioral sciences,
and, in particular, by means of the Volterra-Lotka competitive logics.
With the aim of predicting cancer fate, the growth of solid tumors can
be in fact treated physically as a mechanical process according to which
a heterogeneous tissue expands within a surrounding medium. Tumor
expansion is controlled by some internal driving stresses, which are
counterbalanced by mechanical resistance provided by the surround-
ing environment. Internal stresses are mostly generated by cells pro-
liferation dynamics, which is influenced by the diffusion of nutrients
within the tumor. This implies that the physical forces pushing the
tumor ahead do not involve the sole surface tension and the pressure
of the surrounding medium, but also the explicit active cellular forces
deputy in the momentum balance that, in turn, retrospectively activate
mechanosensitive cellular processes. To gain new insights into the basic
understanding of the complex machine of the host-tumor interaction,
a heterogeneous poroelastic model of tumor spheroid can be helpfully
constructed taking into account the mechanically activated stress fields,
fluid pressure and nutrient walkway all coupled with spatially inhomo-
geneous and time-varying bulk growth. Actually, the growth is seen
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as a result of competitive-cooperative dynamics occurring at the mi-
croscopic scale level among healthy cells, cancer cells and extra-cellular
matrix (ECM) that —in principle-– cannot be assumed a priori. Never-
theless, these dynamics are generally neglected in engineering models,
as a consequence of both the difficulty of mathematically describing
them with sufficient accuracy and the problems arising from the cou-
pling of competition equations with the mechanical ones. To try to
overcome these limits –limits which significantly reduce the aptitude
of the mathematical models to predict the destiny of tumor masses-–
the idea is to macroscopically model the dynamics occurring at micro-
scopic scales by introducing ad hoc nonlinear Volterra/Lotka-like equa-
tions (VL), extensively utilized to describe ecological systems as well
as several population dynamics which involve psychological and collec-
tive behaviors of social communities. In brief, the present PhD thesis
is organized as follows. Chapter 1 recalls the fundamentals of nonlin-
ear solid mechanics, with insights into the mechanics of growth and
remodelling, that will be exploited in the biomechanical models succes-
sively proposed. Chapter 2 presents the basic notion of Volterra-Lotka
system, starting from the original predator-prey logic to the most gen-
eral form. In Chapter 3, some simple uncoupled biomechanical models
will be presented with the aim to gain insight into the understanding
of key aspects concerning the growth and remodelling of living tissues
in physiological and non-physiological conditions. Chapter 4 applies a
weak coupling strategy in order to investigate the previously described
problem of somatic growth and remodelling of pulmonary autografts
in Ross operations, while Chapter 5 is entirely dedicated to the full
coupling strategy in which mechanical aspects, fluid walkways with
nutrient transport, cells-cells and cells-ECM VL-interactions are simul-
taneously taken into account to characterize the growth multicellular
tumor spheroids.
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Part I

T H E O R E T I C A L F R A M E WO R K

The aim of the following two chapters is to introduce the
basic concepts of Continuum Mechanics and Volterra-Lotka
dynamical systems, that will be afterward coupled in order
to model growth and remodelling processes of biological sys-
tems.
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1
F U N DA M E N TA L S O F C O N T I N U U M S O L I D
M E C H A N I C S

The Biomechanics of growth and remodelling is formulated within the
framework of Continuum Mechanics. Solid mechanics provides in fact
a macroscopic description of the material bodies kinematics and defor-
mation, the stress concept and of the constitutive framework, as well
as the statement of the fundamental balance principles (mass conser-
vation, balance of momentum, balance of energy and entropy inequal-
ity). Also, growth (or conversely, resorption) implies that systems are
open with respect to the mass. Remodelling, which is related to mi-
crostructural changes, can be itself described through the introduction
of macroscopic quantities, such as internal stress and material prop-
erties. These widely known evidences are all taken into account in
describing continua conservation equations, and suitable growth and
remodelling-related specific terms are introduced. This chapter recalls
some fundamental concepts of continuum mechanics of solids, with at-
tention on those notions that will be successfully encountered in the
following chapters dealing with specific biomechanical applications. For
an exhaustive treatment of these arguments, the reader is invited to the
inspiring books by Holzapfel [87], Ogden [148], Bigoni [22], Gurtin [79]
and Cowin [46], as well as to the works by Lubarda et al. [127, 128],
Garikipati [74], Schmid et al. [176] and Cowin [48], on which the most
of these notions largely draws from.

1.1 motion of continua and deformation

The characterization of the motion, deformation and stress of a solid
body subject to prescribed loading and constraint is the focus of solid
continuum mechanics. The model of continuum body was introduced by
the French mathematician Augustin-Louis Cauchy in the 19th century.
It ignores the atomistic and molecular, and so discrete (discontinuous),
nature of matter, and considers a body as a continuous (or at least
piecewise continuous) distribution of matter in space and time, at a
macroscopic scale. Therefore, a body B can be defined as a continu-
ous set of material points [87]. Let this body be embedded in a frame
{Rd, t}, with d denoting the Euclidean space dimension (in what fol-
lows, a three-dimensional space is considered). The geometrical regions
of the Euclidean space occupied by the body at a certain time t –say
Ωt ⊂ Rd– is called configuration. Each configuration is determined
uniquely at any time. A specific configuration can be fixed in order to
set timeline, at a conventional starting time ti = 0, which is denoted

3
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4 fundamentals of continuum solid mechanics

as initial time. Consequently, the region Ω0 can be identified as initial

configuration. Similarly, one can fix a reference configuration as a partic-
ular region Ωt in which body particles P ∈ B occupy position denoted
by a position vector X, this configuration being then considered as un-

deformed (with respect to which motion is described). It is convenient
in the most of cases to make reference configuration and initial con-
figuration actually coincide (hereinafter, this hypothesis will be held).
Therefore, let the region Ω0 move to a new region Ω at a time t > 0.
In this configuration, material particles P ∈ B will be denoted by a cer-
tain position x. This new configuration is called a current or deformed

configuration. The material and spatial position vectors X = XIEI and
x = xiei are respectively described by means of material basis {EI}
and a current basis {ei}, with XI and xi indicating the corresponding
components. Starting from these initial considerations, there exist a
one-to-one correspondence between each particle of the body P ∈ B
and the position X ∈ Ω0(B) at t = 0, defining the map X = κ0 (P, t).
A similar correspondence can be established for a current position vec-
tor x mapping P onto Ω, say x = κ (P, t). Then, since material points
P are described by means of the reference undeformed configuration,
an uniquely invertible correspondence between the current position and
the material position can be introduced, which is called motion:

x = κ

κ−1

0 (X, t) , t

= χ (X, t) (1.1)

X = χ−1 (x, t) (1.2)

This notion let to introduce two different ways to describe motion.
The material description or Lagrangian description characterizes mo-
tion with respect to the material coordinates XI and time t, so serves to
describe what happens to the particle as it moves (the observer moves
solidarily with the body particle). The spatial description or Eulerian

description characterizes motion with respect to the spatial coordinates
xi and time t motion by fixing the attention on a region point.
A body B modifying its shape during motion is called a deformable
body. Hence, deformation is related to the change of body particles
reciprocal distances during motion. If inter-particales distances do not
vary, motion is rigid. Assuming as coincident the reference systems
for the reference and the current configurations, to adequately describe
the movement of body particles, a displacement field can be introduced,
connecting body particles material position X in the undeformed con-
figuration to their current position x. By adopting a Lagrangian de-
scription, it results

x = X + u (X, t) (1.3)
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1.1 motion of continua and deformation 5

In order to exclude translations, equation (1.4) can be differentiated
with respect to X, in this way obtaining a direct relation between the
infinitesimal line element dx , dX and the differential du:

dx = dX + du (X, t) = [I + u ⊗ ∇X] dX (1.4)

where I is the identity second-order tensor in the reference configura-
tion, ∇X is the vector differential operator {∂/∂X1, ∂/∂X2, ∂/∂X3}T

and ⊗ is the standard tensor product between two vectors, defined in
a way to give [a ⊗ b]ij = aibj . Therefore, u ⊗ ∇X = ∇X u, the latter
operator indicating the material displacement gradient. The deforma-
tion process can be characterized by using transport theorems. They
describe the mapping from the reference to current configuration of
infinitesimal line, area, and volume elements, respectively. To do this,
we introduce a fundamental kinematic quantity: the deformation gradi-

ent F, which represents a linear transformation generating the current
infinitesimal line elements dx through the action of the second-order
tensor F on the reference infinitesimal line elements dX ([26]):

dx = F (X, t) dX (1.5)

Clearly, it readily follows from the direct differentiation of equation
(1.1)1 and the comparison with (1.4) that the deformation gradient F

admits two alternative representations, namely:

F = ∇Xχ =
∂x

∂X
, F = I + u ⊗ ∇X (1.6)

The elements of F are called stretches and represent the relative
change in length between a spatial line element and a material line
element. More precisely, the expression of F reads:

F =
∂xi
∂XJ

ei ⊗ Ej = Fijei ⊗ Ej (1.7)

from which we see that F is a two-point tensor: one base vector is
defined with respect to the Eulerian configuration and the other is de-
fined with respect to the Lagrangian configuration, i.e. it is a geometric

object having its two feet on different manifolds (Maugin, [133]). From
the statement of the existence of the inverse mapping, it follows that
the deformation mapping is one-to-one. Thus, the deformation gradient
F cannot be singular and its inverse exists:

F−1 = ∇xχ−1 =
∂X

∂x
(1.8)

Naturally, this implies that det F ̸= 0. The determinant of the defor-
mation gradient is connected to the mapping between the infinitesimal
current volume dv and the infinitesimal reference volumes dV . More
precisely, given three infinitesimal line elements individuating an in-
finitesimal volume element, the latter can be computed by means of
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6 fundamentals of continuum solid mechanics

the scalar product between an infinitesimal line element and the cross
product of the other two, for example dv = (dx1 × dx2) · dx3. The
volume of this parallelepiped is algebraically the absolute value of the
determinant of the matrix formed by the rows constructed from the
vectors. As a consequence, by using equation (1.5), it is easy to verify
that:

dv = (dx1 ×dx2) ·dx3 = det


dx1

dx2

dx3

 = det


F dX1

F dX2

F dX3

 = det F det


dX1

dX2

dX3


(1.9)

Then it follows that

dv = JdV, J := det F (X, t) =
dv

dV
(1.10)

the local volumetric deformation measure J is known as Jacobian of
the deformation gradient. Since both the infinitesimal volumes dv and
dV are positive quantities, the Jacobian must also be positive,

J = det F (X, t) > 0 (1.11)

also implying that interpenetration of volume elements of body B is
excluded. Coherently, volumetric dilatation and contraction occur when
J > 1 and J < 1, respectively, while in case J = 1 the transformation
is called isochoric. By now observing that a generic spatial (as well as
the material) infinitesimal area element da = dan –defined by means
of its surface da and the normal outward vector n– can be obtained
from the cross product of two line elements, the infinitesimal volume
can be rewritten as dv = da · dx. Analogously, dV = dA · dX. Then,
the use of equations (1.5) and (1.10) give [87]:

dv = da · dx = JdV

da · FdX = JdA · dX
da − JF−TdA


· dX = 0 (1.12)

Since dX cannot vanish, equation (1.12) let to obtain the so called
Nanson’s formula

da = JF−TdA = CofF dA (1.13)

which maps each infinitesimal material area dA = daN into an in-
finitesimal spatial area element da = dan through the application of
the CofF. Equations (1.5), (1.10) and (1.13) give then the aforemen-
tioned transport theorems, schematically represented in Fig. 1.

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



1.1 motion of continua and deformation 7

Figure 1: A hand-made sketch of the kinematics and deformation of material
bodies

It can be shown that the deformation gradient F can be algebraically
decomposed in two ways into a pure deformation and a pure rotation.
This polar decomposition is multiplicative and reads as [46]

F = RU = VR (1.14)

where R ∈ Orth+ is an orthogonal tensor (i.e. RTR = RRT = I)
representing the rotation and called the rotation tensor, while U and
V are called the right and the left stretch tensors, respectively, and
both represent the pure deformation contribution. The stretch tensors
admit the following spectral decomposition:

U = λ1N1 ⊗ N1 + λ2N2 ⊗ N2 + λ3N3 ⊗ N3 (1.15)
V = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3 (1.16)

where λk are the principal stretches, and Nk and nk represent the
material and current eigenvectors. Then, by adopting the first decompo-
sition in (1.14), deformation occurs by first stretching material elements
and then by applying a rigid rotation. The second decomposition of
(1.14) provides a rotation before stretching fibres (still having material
length) into their spatial length. Clearly, it emerges that F incorpo-
rates all the information for describing the deformation at a material
point. However, it is not suitable for describing deformation seen as
the change of shape of the body due to the presence of rigid body rota-
tions. Also, F is not a symmetric tensor. To overcome these problems,
the right Cauchy Green tensor C and the left Cauchy Green tensor b

can be introduced:

C = FTF = UTRTRU = U2, (1.17)
b = FFT = VRRTVT = V2 (1.18)
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8 fundamentals of continuum solid mechanics

They respectively connote as a material strain tensor and a spatial
strain tensor. Moreover, they result symmetric and positive definite and
do not account for rigid rotation, by definition.
Further several deformation measures can be adopted. If motion in-
cludes a deformational component, then the length dx will be dif-
ferent from the length dX. To calculate this change in length the
current square length ds2 = dxTdx and the material square length
dS2 = dXTdX can be used. Then the half of the difference between
the square lengths can be computed and, accounting for relationship
(1.5) and (1.17)1, one has [46]:

1
2 (ds

2 − dS2) = dXT 1
2 [C − I] dX (1.19)

The quantity in square brackets is called the Green-Lagrange strain

tensor:
E =

1
2 (C − I) (1.20)

An alternative representation of the Green-Lagrange tensor can be
given in terms of the displacement vector u, by recalling (1.6):

E =
1
2

FTF − I


=

1
2 (∇X ⊗ u + u ⊗ ∇X + (∇X ⊗ u)(u ⊗ ∇X))

(1.21)
This definition emphasizes the linear part and a geometrically nonlinear
part. In the so called small strain theory, which implies the hypothesis
∂ui/∂XJ ≪ 1, nonlinearties are not taken into account and the linear
strain tensor is obtained as:

ϵ =
1
2 (∇X ⊗ u + u ⊗ ∇X) = sym (u ⊗ ∇X) (1.22)

The eulerian counterpart of the Green-Lagrange tensor is given by the
Euler-Almansi strain tensor, which reads as:

e =
1
2

I − b−1


(1.23)

1.1.1 Seth-Hill strain measures. The logarithmic (Hencky) strain

It is clear that U or V provide a local measure of deformation because
their principal components represent the stretch of the three orthogonal
fibres aligned to the eigenvectors [22]. As said, the first represents a
material measure of deformation since it transforms material quantities
into material quantities, while the second exclusively acts on spatial
quantities. The tensors U and V, as well as C and b can be used to
quantify the strain. However, strain measures are not limited to these
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1.1 motion of continua and deformation 9

choices. To quantify the strain, different measures can be adopted. More
generally, the so-called Seth-Hill strain family can be defined:

E(m) =


1
m (Um − I) , m ̸= 0

ln U, m = 0
, e(m) =


1
m (Vm − I) , m ̸= 0

ln V, m = 0
(1.24)

defined for every integer m so that they vanish in absence of deforma-
tion. Note that, with attention on material definition, for example, the
case m = 1 defines the engineering strains ϵi = λi − 1, while the case
m = 2 gives the definition of the Green-Lagrange tensor as defined
in equation (1.21). The logarithmic strain tensor –or Hencky strain–
can be defined by considering the logarithm of the eigenvalues in its
spectral decomposition so that

H = E(0) = ln U = lnλi Ni ⊗ Ni (1.25)
h = e(0) = ln V = lnλi ni ⊗ ni (1.26)

The isotropy of the logarithmic tensor function implies that, since
V = RURT

h = RHRT (1.27)

In particular, the so-called logarithmic strain ϵH = lnλ can be intro-
duced by considering the incremental deformation of a fibre of initial
length l0 up to the final length l. An intermediate deformation between
these two states is defined by a length l∗, in a way to define an incre-
mental deformation dϵH as

dϵH =
dl∗

l∗
(1.28)

The total deformation will be then given by the sum of the several
incremental deformation:

ϵH =
 ϵH

0
dϵH =

 l

l0

dl∗

l∗
= ln l

l0
(1.29)

where λ = l/l0 represents the stretch of the fiber. Moreover, at small
strain, the fiber engineering strain is readily obtained, i.e. ϵH ≈ λ− 1.
Also, the advantage of adopting strain measure resides in the possibility
of additively decomposing the stretches that are indeed multiplicatively
combined. In the case of the fiber, for example, let the stretch λ be seen
as the result of two combined stretches, say λ∗ = l/l∗ and λ0 = l∗/l0,
where l∗ depicts an intermediate configuration and the two stretches
might be elastic or inelastic. Multiplicative decomposition is in fact
widely adopted in finite thermo-elasticity and plasticity. Naturally, in

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



10 fundamentals of continuum solid mechanics

this simple case, it results λ = λ∗λ0, and the Hencky strain will be
given by:

ϵH = ln l

l0
= ln l

l∗

l∗
l0

= lnλ∗ + lnλ0 (1.30)

This feature, opportunely generalized in order to take into account
the configuration changes in combining deformations, can be useful for
biomechanical problems, in which the multiplicative decomposition of
the deformation gradient into its elastic and growth part is commonly
employed.

1.1.2 The multiplicative decomposition. The elasto-growth case

In continuum mechanics of growing media, finite strain kinematics
treats the total deformation by means of the aforementioned multi-
plicative decomposition. In particular, the deformation gradient F is
assumed to be the result of a growth tensor Fg and a geometrically
elastic tensor Fe that de facto combine in a multiplicative manner in
order to give back the deformation gradient:

F = FeFg (1.31)

By following this representation, multiple configurations have to be
taken into account. In fact, the body is first supposed to undergo a
growth process that drives the latter towards a grown intermediate
configuration, say Bg. In this configuration, the material particles oc-
cupy the position xg (X, t) ∈ Bg and their deformation can be described
through an appropriate growth tensor Fg, in a way that dxg = Fg dX.
The polar decomposition of Fg reads:

Ug = λgi (Ni ⊗ Ni) Fg = RgUg = λgi (Ngi ⊗ Ni) (1.32)

where λgi are the principal growth stretches, that are inelastic, Jg =
det Ug = dVg/dV0 = λg1λg2λg3 being therefore the volumetric change
with respect to the initial configuration due to growth, while Ngi =

RgNi define the rotation on each eigenvector Ni in the configuration
Bg. During the growth process the body is also supposed to be un-
loaded, in this way the (inelastic) strain contribution being exclusively
caused by the volumetric change induced by the growth itself. How-
ever, the introduction of this intermediate configuration also implies
the need of discerning separately the contribution of volumetric growth
and the densification that can combine together to furnish the growth
seen as overall local mass addition/removal. However, as well-known,
the growth strain alone does not completely describe the body motion
since the growth deformation path has been deprived of external loads
and it cannot generally ensure the geometric compatibility of the inter-
mediate configuration. In fact, infinitesimal volume elements grow (or
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1.1 motion of continua and deformation 11

reasorb) independently from each other, as conceptually represented
in Fig. 2, thus resulting in an overall incompatible configuration. For
these reasons, the body experiences an elastic strain which permits to
adapt the response to prescribed boundary conditions (i.e. the external
mechanical loads and/or the given constraints) as well as to compatibi-
lize the grown elements by kindling suitable self-equilibrated (residual)
stresses within the body. Then, the elastic strain Fe maps the points
xg ∈ Bg onto the actual configuration x ∈ B, having the in-cascade
transformation:

dx = Fe dxg = FeFg dX (1.33)

The polar decomposition of Fe gives:

Ue = λei (Ngi ⊗ Ngi) Fe = ReUe = λei (ni ⊗ Ngi) (1.34)

Ue then denoting the principal elastic stretch seen in the grown con-
figuration. By combining the right stretch tensors introduced in (1.32)
and (1.34), the total stretch tensor U can be determined by considering
the right Cauchy-Green tensor and decomposition (1.31):

C = FTF = U2 = UT
g


RT
g UT

e UeRg


Ug = UT

g

◦
U

2
eUg (1.35)

with
◦
U

2
e = RT

g U2
eRg thus representing the back rotated version of

Ue reported to the reference configuration. This also let to write:

U =


UT
g

◦
U

2
eUg (1.36)

Also, the orthogonal rotation matrix R can be expressed as R =

ReRg.
A first Lagrangian type strain measure associated to the deformations
Fe and Fg are:

Ee =
1
2

FT
e Fe − I


, Eg =

1
2

FT
g Fg − I


(1.37)

The total Green-Lagrange type strain can be expressed as a combi-
nation of these measure as

E =
1
2

FTF − I


= Eg + FT

g EeFg (1.38)

Clearly, since Ee and Eg are defined with respect to the reference
configuration, it results E ̸= Ee + Eg. This additive decomposition
becomes instead valid at small strains: in this case, geometrical small
total strain imply that also growth strain keeps adequately small, in
this way having

ϵ = ϵg + ϵe (1.39)
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12 fundamentals of continuum solid mechanics

Figure 2: Schematic representation of the kinematics of growth. The body
undergoes a growth process and reaches a grown, incompatible
configuration in absence of external actions, and then experiences
elastic adaptation and load-induced deformation.

Furthermore, with attention to the Hencky strain measure, by ex-
ploiting the logarithm properties together with (1.36), it is possible to
write:

H = ln U =
1
2 ln UT

g

◦
U

2
eUg = ln Ug + ln

◦
Ue = Hg +

◦
He (1.40)

where the back rotated tensor
◦
He to ensure the coaxiality of the

summed Hencky strain tensors. Since logarithm is an isotropic func-
tion, the relationship

◦
He = RT

g HeRg can be readily established. In
the present work, this strategy will be particularized to describe the
biomechanical problem of tumor spheroids growth.

It is worth to highlight that the Eulerian description of the deforma-
tion process can be argued in a completely analogous manner. In fact,
by introducing the left stretch tensor V = RURT, the left Cauchy-
Green tensor, under the decomposition (1.31), can be written as:

b = FFT = V2 = VeReV
2
gR

T
e VT

e = VeV̌
2
gV

T
e , (1.41)

V =


VeV̌2
gV

T
e = λini ⊗ ni (1.42)
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1.1 motion of continua and deformation 13

V̌g denoting a push-forward operation of the growth left stretch
throughout the current basis. Then the Eulerian Hencky strain is de-
fined as

h = ln V = ln Ve + ln V̌g = he + ȟg (1.43)

1.1.3 Material time derivative

To fulfill the kinematic description, velocity vector fields have to be
defined. A material time derivative is the derivative with respect to
time holding X fixed, i.e.

DA

Dt
=

∂A

∂t


X

(1.44)

For a material field Φ = Φ (X, t) and a spatial field ϕ (x (X, t) , t) the
material time derivative reads

DΦ
Dt

= Φ̇ =
∂Φ (X, t)

∂t
(1.45)

Dϕ

Dt
=

∂ϕ (x (X, t) , t)

∂t


X=χ−1(x,t)

=
∂ϕ (x, t)

∂t
+
∂ϕ (x, t)

∂x

∂x

∂t
(1.46)

Then, in the second case, the material time derivative of a spatial field
is performed by first pulling back the representation of ϕ to the material
description, then a material derivative is taken and, finally, the resulting
expression is again pushed forward to the spatial description. Therefore,
one can introduce the material ẋ and spatial v descriptions of the
velocity:

ẋ (X, t) =
∂χ (X, t)

∂t
and v (x, t) = ẋ


χ−1 (x, t) , t


(1.47)

and the material ẍ and spatial a acceleration fields

ẍ (X, t) =
∂2χ (X, t)

∂t2
(1.48)

a (x, t) = ẍ

χ−1 (x, t) , t


=
∂v

∂t
+ L

∂x

∂t
(1.49)

where equation (1.49) is written according to definition (1.45). Also,
in equation (1.49), the definition of the spatial velocity gradient has
been employed:

L =
∂v (x, t)

∂x
= v ⊗ ∇x (1.50)

The material velocity gradient is instead given by:

Ḟ =
∂ẋ (X, t)

∂X
= λ̇i ni ⊗ Ni + λi(ṅi ⊗ Ni + ni ⊗ Ṅi) (1.51)
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14 fundamentals of continuum solid mechanics

the summation over i being subtended. The relation between the
spatial and the material velocity gradient can be derived through the
chain rule differentiation:

Ḟ =
∂ẋ (X, t)

∂X
=
∂ẋ

∂x

∂x

∂X
= LF, (1.52)

L = ḞF−1 =
λ̇i
λi

ni ⊗ ni + ṅi ⊗ ni +
λi
λj


i ̸=j

(ṅi · nj)ni ⊗ nj (1.53)

Starting from (1.52), the back rotated rate of deformation can be
defined as the symmetric part of the velocity gradient:

D = sym(v ⊗ ∇x) =
1
2

U̇U−1 + U−1U̇


=

=


λ̇1

λ1

ω3

2


λ1

λ2
− λ2

λ1


ω2

2


λ3

λ1
− λ1

λ3


λ̇2

λ2

ω1

2


λ2

λ3
− λ3

λ2


sym λ̇3

λ3

 (1.54)

where ωi are the components of the vector ω = axial

ṘR


=

[ω3 − ω2 ω1]T, which represents the rotation velocity of the prin-
cipal axes ni, employing the relationship ṅi = ω × ni. The material
time derivative of the Jacobian can be determined by means of the
Jacobi formula and equation (1.52):

J̇ =
∂J

∂F
: Ḟ = JF−T : LF = JI : L = J∇x · v (1.55)

In a completely analogous manner, one can define the rates of the
Jacobian Jg and Je = det Ue in the case of multiplicative decomposi-
tion:

Lg = ḞgF
−1
g J̇g = JgI : LgLe = ḞeF

−1
e J̇e = JeI : Le (1.56)

and it readily follows that

L = Le + Fe Lg Fe (1.57)

Also, through the identity Ėk = FT
k sym(Lk)Fk, the following rate

expressions can be obtained:

Ė = FT
g sym(Lg)Fg + 2sym(FT

g EeḞg) + FT sym(Le)F (1.58)

Finally, the rates of the Hencky strain introduced in (1.25) result

Ḣ =
λ̇i
λi

Ni ⊗ Ni + ln λi

Ṅi ⊗ Ni + Ni ⊗ Ṅi


(1.59)

ḣ =
λ̇i
λi

ni ⊗ ni + ln λi (ṅi ⊗ ni + ni ⊗ ṅi) (1.60)
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1.2 stress measures 15

which admits, through similar considerations made for the symmetric
part of the velocity gradient (1.54), the following representation:

Ḣ = RTḣR =

=


λ̇1

λ1
ω3 ln


λ1

λ2


ω2 ln


λ3

λ1


λ̇2

λ2
ω1 ln


λ2

λ3


sym λ̇3

λ3

 (1.61)

1.2 stress measures

As a solid deforms, stresses are internally generated. For a deformable
body on which external forces are applied (in an inertial system), the
resulting field of internal reactive forces acting on infinitesimal surfaces
within the body is connoted as stress. Therefore stress physically ex-
presses the interactions among neighboring particles within the contin-
uous material. While in small deformations stress is uniquely identified
as the force per unit reference area, this implying that stress variations
are exclusively due to forces changes, in large deformation the spatial
infinitesimal area cannot be confused with the reference infinitesimal
area and stress variation accounts also for the geometrical transforma-
tions. Therefore an actual measure of stress should be referred to the
current area element. However, in many problems the current config-
uration is not known and alternative stress measures, referred to the
reference configuration, might be employed. To define the true stress
–or Cauchy stress– let us consider a cutting surface passing through a
material point P ∈ B. The body is subjected to a system of external
forces f , consisting of surface tractions and body forces and is supposed
at equilibrium. When the body is cut by the surface, as a mechanical re-
action to external loads, forces are then transmitted through the points
of the cutting surfaces. Hence, each infinitesimal are da will experience
a force aliquota df so that, in the point P the Cauchy surface traction
can be defined as the vector (see Fig. 3):

t (x, t) =
df

da
(1.62)

According to Cauchy’s postulate, the traction vector t persists for
all surfaces passing through the point P and having the same normal
vector n at P . The state of stress at a point in the body is then defined
by all stress vectors t associated with all planes that pass through that
point. According to Cauchy’s stress theorem, there exists a second-order
tensor σ (x, t), such that t is a linear function of n, i.e.

t (x, t,n) = σ (x, t)n (1.63)
Mechanical equilibrium also implies that t (x, t,n) = −t (x, t,−n)

(Fig. 3). Therefore the stress elements of the Cauchy stress tensor will
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16 fundamentals of continuum solid mechanics

Figure 3: Definition of the Cauchy stress vector

be the components of the traction vector at each material point P on
that face. The Cauchy stress tensor is a pure Eulerian stress tensor,
and can be represented as

σ (x, t) = σijni ⊗ nj (1.64)

Another useful stress measure is the Kirchhoff stress, which is given
by the Cauchy stress σ multiplied by the Jacobian J :

τ = Jσ (1.65)

The Lagrangian version of the Cauchy’s stress theorem can be for-
mulated as

T (X, t) = P (X, t)N (1.66)

in which N is the normal outward vector to the infinitesimal reference
area element, and T is the corresponding traction. Then the following
relation holds:

T (X, t) dA = t (x, t) da (1.67)

Substituting into (1.67) the relations (1.66) and (1.63), and by taking
into account the Nanson’s formula (1.13), the so-called Piola-Kirchhoff

stress is obtained as

P = JσF−T = τF−T (1.68)

The Piola Kirchhoff tensor therefore relates the current force to the
referential area element. It is obtained by means of a Piola transforma-
tion of the Cauchy stress σ, and results to be a two-point tensor having
representation1

P = Pijni ⊗ Nj (1.69)

It is worth noting that the Piola-Kirchhoff stress is not a symmetric
tensor:

PT = JF−1σ ̸= P (1.70)

1 The stress tensor is not necessarily coaxial with the deformation tensor.
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1.2 stress measures 17

In order to have a Lagrangian stress that is also symmetric, the second

Piola Kirchhoff stress is introduced:

S = F−1P = F−1τF−T, S = ST (1.71)

1.2.1 The concept of residual stress in growing bodies

Stress is the response of a deformable body to applied forces. However,
a common feature of biological structures is the presence of nonzero
stresses known as residual stresses. Such stresses reveal that kinemat-
ical growth takes place in an incompatible manner, meaning that the
compatible total strain which is macroscopically observed is the result
of an incompatible growth strain accompanied by an elastic adapta-
tion (as previously discussed). The latter one is directly responsible
of restoring tissue geometrical compatibility, this being guaranteed by
imprisoned stresses. Therefore, residual stresses are nonzero stresses
detectable in a traction-free body (in a loaded configuration, a further
superimosed elastic deformation might combine with the adaptive one).
A simple example is represented by vessel structures: the growing over-
lapping layer of a vessel structure have to elastically stretch in the
circumferential direction in order to respect geometrical compatibility.
This feature implies that nonzero residual stress resides in vessel walls.
In fact, Fung [69] showed that this stress can be revealed by observing
the opening angle of the vessel when a cut is performed in longitudi-
nal direction. However, the adjective "residual" might be ambiguous
(or contradictory) because suggests that one can find residual stresses
(also) after cutting a (grown) material, while - generally - when one
ideally or practically cuts a material, it releases the imprisoned elastic
energy so obtaining "stress-free" configurations. The term is however
used to also denote the stresses accumulated in a (continuum model
of a) tissue during growth to guarantee compatibility of the total de-
formation - that is, elastic and inelastic (growth-associated) strains -
at each time, but the term "prestress" might suitably replace "residual
stress" also in these cases. To qualitatively explain the nature of growth-
induced stresses, let us consider a mechanically analogous deformation
process in which, as in the growth, elastic and inelastic strains can ap-
pear combined to give the overall strain at each material point (and at
any time), say a (linear) elementary thermo-elastic problem where, for
instance, an one-dimensional bar is subjected to uniaxial stress/strain
regime.
Then, one can distinguish two possible cases of interest.

• Force-prescribed case: the bar is subjected to a combined (com-
pressive or tensile) axial load applied to its constraint-free ends
and to a small uniform temperature increase; the body will homo-
geneously deform and at each point the total strain will be given
by the sum of a purely inelastic (thermal) and a purely elastic
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(load-induced) strain. If an opposite in sign load is then applied
(the load is removed to have homogeneous boundary conditions
in term of forces), the beam will change its previous deforma-
tion state and a sole uniform inelastic strain will be exhibited
by the bar, without any stress. As a consequence, by cutting at
this stage the bar at an arbitrary section along its axis, neither
(residual) stresses nor additional strains will be exhibited, but
a residual strain (say a thermal strain analogous to the growth-
induced strain) can be however observed by comparing the initial
unladed and at room temperature bar length with the final one.

• Displacement-prescribed case: a complementary case can be con-
structed by assuming the same bar considered above, now sub-
jected to an uniform temperature increase with the clamped (full
constrained) ends. In this case, as well-known, no total strain can
be observed at any bar point (at least until the material strength
is reached), elastic strains locally equate inelastic (thermal or
growth) strains and stresses (due to the reaction forces at the
clamped ends) occur. The body already has homogeneous bound-
ary conditions in terms of displacements (in case of non-zero dis-
placements prescribed, to return to homogeneous boundary con-
ditions one would have to apply an opposite-in-sign displacement
at the ends) thus, by cutting at this stage in an arbitrary section
the bar, the stored elastic energy is released and the beam will
show a stress-free deformed configuration different from the ini-
tial one, characterized - as in the first case - by the sole inelastic
residual strain and no residual stresses.

But how can we define residual strains and stresses? And what is then
the difference between the two thermo-elastic cases presented above?
A possible answer to the first question (the definition of residual stress
and strain) is that the residual strain can be seen as the strain observed
in an element when the material is returned to a stress-free condition,
and the residual stress can be complementary interpreted as the self-
equilibrated stress generated inside an element when it returns to a
strain-free (zero total strain) condition (as also commonly done deal-
ing with plasticity, for example). As a consequence, the definition given
above allows to elucidate the difference between the two thermo-elastic
cases. In both the situations, after the cutting, one actually has no resid-
ual stresses (both the bar final configurations are in fact stress-free) and,
if the temperature increase was set to be the same, one also observes
only inelastic (thermal, or growth) strains. The sole difference which
one can recognize to distinguish between the two cases is given by the
“energy release” after the cutting observed in the second situations and
revealed to the observer by the change of configuration, which implic-
itly depends on the presence of a self-equilibrated stress field present
into the bar before the cutting. The above described simple paradigm
might be also exploited to interpret the wide use of the thermal stress.
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If in fact - after the cutting - one wanted to go back to the undeformed
configuration (zero total strain at each point of the bar), one should
ideally apply a stress field exactly equal to the self-equilibrated stress

state present into the bar prior to cut the beam. This stress state would
hence result to be associated to a zero-strain condition and, by virtue
of the above given definitions of residual strains and stresses, should be
thus thought as a residual stress.
Also, from the simple thermo-elastic paradigm utilized above in parallel
with growth, two further aspects can be highlighted. Fist, homogeneous

(spatially uniform) deformation states can determine residual stresses
(the second case above described) and therefore the stresses can occur
not only in “inhomogeneously grown” materials. Futhermore, as well-
known, (in linear thermo-elasticity) if a linearly varying inelastic de-
formation field is imposed (e.g. a thermal strain field linearly varying
with x, y and z of a Cartesian coordinate system in a generic three-
dimensional domain of a not constrained and unloaded body with arbi-
trary shape) the inelastic strain does not generate stresses (because the
compatibility equations ∇ × (∇ × ϵ)T = 0 are automatically satisfied
and the total strain coincides with the inelastic one, thus producing
vanishing stresses): thus, if inelastic thermal strains are replaced by in-
elastic growth strains, a tissue material can inhomogeneously (linearly
in this case) grow without accumulating stresses.

1.3 conservation equations

Conservation equations are material-independent principles. Due to
their axiomatic character, they cannot be derived from other natural
laws. In what follows, the main balance principles will consider continua
with a growing mass and, therefore, multiplicative decomposition will
be adopted. Also, some growth-specific and remodelling-specific terms
will be introduced in order to appropriately provide mass supply/re-
moval as well as remodelling-induced changes, by assuming a pure vol-
umetric growth process.

1.3.1 The mass conservation equation

A substantial difference between the theory of open systems and the
theory of closed systems resides in the formulation of the mass balance.
Differently from the theory of closed systems, the mass of open systems
is not constant. Then a time rate of the mass growth rg has to be
introduced (see e.g. Lubarda and Hoger [127]), and the mass balance
can be written as

dm = dm0 + dmgen

ρ dv = ρ0 dV +
 t

ti

rg dvdτ
(1.72)
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where ρ(k) : Ω(k) → R denotes the mass density in the configuration
(k), so that the mass of every dv(k)-measurable subset of Ω(k) is given
by dm(k) = ρ(k) dv(k), in a way that also ρ(k) > 0, ∀x(k) ∈ Ω(k). By
deriving (1.72) with respect to time,

d

dt
(ρ dv) = rgdv (1.73)

dρ

dt
dv+ ρ

d(dv)

dt
= rgdv (1.74)

Dividing both members by the initial fixed volume dV and recalling
equations (1.10) and (1.55), one obtains

dρ

dt
+ ρ∇x · v = rg (1.75)

which is the current (Eulerian) local form of the mass balance. Also,
a pull-back of variables in equation (1.73) gives the Lagrangian form of
the mass balance:

d(J (X, t) ρ (x (X, t) , t))

dt
= J (X, t) rg (x (X, t) , t)

or dϱ

dt
= Rg (1.76)

in which the position ϱ = J ρ and Rg = J rg have been introduced
to denote material quantities.

1.3.2 The momentum conservation equations

1.3.2.1 The Reynolds transport theorem

It is convenient to briefly recall the Reynolds transport theorem, which
generalizes the well-known Leibnitz integral rule. Considering a func-
tion F (x, t) (that can be tensor, vector or scalar valued), this theorem
states that:

D

Dt


Ω

Fdv =


Ω

dF
dt

+

∂Ω

(v · n)Fda (1.77)

Also the well-known Gauss divergence theorem is recalled:
Ω

∇x · A =

∂Ω

A · nda (1.78)

1.3.2.2 Conservation of linear momentum

The first Euler’s law of motion is here presented by introducing a spe-
cific growth term, representing the momentum rate associated with the
growing mass [47]:

D

Dt


Ω
ρvdv =


∂Ω

tda+


Ω
ρbdv+


Ω
rgvdv (1.79)

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



1.3 conservation equations 21

where t is the traction vector and b is the body force vector. By then
applying the Reynolds transport theorem (1.77) to the first member of
equation (1.79), and accounting for the balance of mass in (1.75), it
results

D

Dt


Ω
ρvdv =


Ω
ρ
dv

dt
+ rgv dv (1.80)

The direct substitution of the latter in equation (1.79), together with
the application of the Cauchy’s theorem (1.63) and the divergence the-
orem (1.78), leads to the local spatial form of the linear momentum
conservation equation:

∇x · σ + ρb = ρ
dv

dt
∀x ∈ Ω (1.81)

Also, a pull-back operation on members of balance (1.79) let to derive
the material linear momentum equation, giving

D

Dt


Ω0

ϱẋdV =

∂Ω0

TdA+


Ω0

ϱBdV +


Ω0

Rgẋ dV (1.82)

Since Ω0 is fixed, time differentiation on the left-side of equation
(1.82) can be performed on the integrand

D

Dt


Ω0

ϱẋdV =


Ω0

dϱ

dt
ẋ + ϱ ẍ dV =


Ω0

Rgẋ + ϱ ẍ dV, (1.83)

and, by proceeding in an analogous manner through the account of the
Cauchy’s theorem (1.66) and of the mass balance in the form (1.76),
one obtains:

∇X · P + ϱB = ϱẍ ∀X ∈ Ω0 (1.84)

where the pull-back evaluation of the acceleration has been consid-
ered (see equations (1.48)). Localized forms of equilibrium equations
show therefore an intuitive representation of equilibrium: the body is
entirely at equilibrium if each its element satisfies equilibrium require-
ments.

1.3.2.3 Balance of angular momentum

The second Euler’s law of motion, written in its integral form, also
presents a growth rate-dependent term and reads:

D

Dt


Ω
(x × ρv)dv =


∂Ω

(x × t)da+


Ω
(x × ρb)dv+


Ω
rg(x × v)dv

(1.85)
From the application of the Reynolds transport theorem (1.77) (con-

sidering the field F = (x × ρv)), it results

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



22 fundamentals of continuum solid mechanics

D

Dt


Ω
(x × ρv)dv =


Ω


ρ
d

dt
(x × v) + rg(x × v)


dv =

=


Ω


ρ(x × d

dt
v) + rg(x × v)


dv (1.86)

in which the relation ẋ

χ−1 (x, t) , t


× v (x, t) = 0 has been em-

ployed. Then, the substitution of equation (1.86) into equation (1.85),
gives 

Ω
ρ(x × dv

dt
)dv =


∂Ω

(x × t)da+


Ω
(x × ρb)dv (1.87)

By means of the Cauchy’s theorem (1.63) and the Gauss theorem
(1.78), the following identity can be obtained

∂Ω
(x × t)da =


∂Ω

(x × σn)da =


Ω


x × ∇x · σ + ε : σT


dv (1.88)

in which ε is the Levi-Civita permutation tensor. Therefore, substi-
tution of (1.89) into (1.87), and imposing the conservation of linear
momentum, the only remaining term is


Ω

x ×

∇x · σ + ρb − ρ

dv

dt


+ ε : σTdv = 0,

Ω
ε : σT dv = 0 (1.89)

By means of localization, the produced scalar equations are of the
type σij − σji = 0, i ̸= j, which imply the symmetry of the Cauchy
stress, i.e.

σ = σT, ∀x ∈ Ω (1.90)
The material form is formulated through a pull-back operation, and

the result has already been reported in terms of second Piola-Kirchhoff
stress tensor in equation (1.71).

1.3.2.4 Energy conservation equation

The first law of thermodynamics requires the balance of energy. It states
that the rate of total energy, which is the sum of the internal energy E
and the kinetic energy K, equals the rate of mechanical work W plus
the rate of non-mechanical work Q:

Ė + K̇ = W + Q (1.91)
The rate at which external surface and body force do work on the

current configuration is given by the expression [127]

P =

∂Ω

t · v da+


Ω
ρb · v dv =


Ω


ρ
d

dt

1
2v · v


+ σ : D


dv

(1.92)
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where D = symL. By considering the thermal power, an internal rate
of heat source per unit mass wh and heat flux vector qh are introduced,
so that

Q =


Ω
ρwh dv−


∂Ω

qh · n da =


Ω
(ρwh − ∇x · qh) dv (1.93)

Therefore, the first law of thermodynamics in the form (1.91) can
be written by considering the specific energy density per unit mass e
and by further introducing two further related to growth (see [47, 127,
149]):

D

Dt


Ω
ρe dv+

D

Dt


Ω

1
2ρv · v dv = W + Q+

+


Ω
k · γ̇ dv+


Ω
rg

1
2v · v + e


dv+


Ω
εg ρ

−1 rg dv (1.94)

The last three terms of equality (1.94) are kindled in association with
the remodelling and growth processes. In particular, the microstruc-
tural changes due to remodelling can be described at a continuum scale
through suitable remodelling variables, here represented by the vector γ

and so k can be viewed as a thermodynamic driving force conjugated
to the rate of remodelling variables. The second term represents the
rate of kinetic energy and specific energy associated with the current
mass generation and the last term takes into account a contribution
to the growth enhanced by a specific metabolic energy supply per unit
volume, say εg.
By then developing the first two terms of the energy balance (1.94) in
the light of the Reynolds transport theorem (1.77), one has

D

Dt


Ω
ρ

1
2v · v + e


dv =


Ω
ρ
d

dt

1
2v · v + e


dv+


Ω
rg

1
2v · v + e


dv

(1.95)

Inserting the latter into (1.94), the local form of the energy conser-
vation equation is finally obtained:

ρ
de

dt
= σ : D + ρwh − ∇x · qh + k · γ̇ + εg ρ

−1 rg (1.96)

If the reference configuration is used to formulate the balance in a
Lagrangian form, the mechanical work reads:

P =


Ω0


ϱ
d

dt

1
2 ẋ · ẋ


+ P : Ḟ


dV (1.97)

in which the identity Jσ : ḞF−1 = P : Ḟ has been used. Analogously,
the pull-back on Q reads

Q =


Ω0

(ϱWh − ∇X · Qh) (1.98)
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in which Wh = Jwh is the material heat source and Qh = JqhF−T

is the nominal heat flux vector. The energy formulation reads

D

Dt


Ω0

ϱ

1
2 ẋ · ẋ + e0


dV = W + Q+

+


Ω0

K · γ̇0 dV +


Ω0

Rg

1
2 ẋ · ẋ + e0


dV +


Ω0

εg0 ϱ
−1 Rg dV

(1.99)

the subscript 0 denoting the corresponding material quantities, i.e.
evaluated in x (X, t). The differentiation of the left side of equation
(1.100) together with mass balance (1.76), as well as of equations (1.97)
and (1.98), gives

ϱ
de0
dt

= P : Ḟ + ϱWh − ∇X · Qh + K · γ̇0 + εg0 ϱ
−1 Rg (1.100)

1.3.2.5 Balance of Entropy

The total internal dissipation per unit mass can be accounted by in-
troducing two thermodynamic forces, say fg and fγ (per unit mass),
respectively conjugated to the rates rg and γ̇. In such a way, the total
rate of dissipation, which is the product of the absolute temperature θ
and is written down:

θυ = fγ · γ̇ + fgρ
−1rg (1.101)

This term must be positive to be thermodynamically consistent. The
second law of thermodynamics requires that the entropy production,
defined as the difference between the rate of entropy and the entropy
power has to be greater than zero. Thus, by indicating with s the
entropy production per unit current mass, one has in the integral form
that:

D

Dt


Ω
ρsdv ≥


Ω
ρ
wh
θ
dv−


∂Ω

1
θ

qh · n da+


Ω
rg s dv+


Ω
ρυ dv

(1.102)
The application of the Reynolds transport theorem (1.77) to the left

side of equation (1.102) and the exploitation of the mass balance (1.75)
let to straightforwardly obtain:


Ω
ρ
ds

dt
dv ≥


Ω
ρ
wh
θ
dv−


∂Ω

1
θ

qh · n da+


Ω
ρυ dv (1.103)

and, by means of the localization theorem, one has

ds

dt
≥ −1

ρ
∇x ·


qh

θ


+

1
θ


wh + ρfγ · γ̇ + fg rg


(1.104)
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The corresponding material descriptions of (1.103) and (1.104) are
respectively

Ω0

ϱ
ds0
dt

dV ≥


Ω0

ϱ
Wh

θ
dV −


∂Ω0

1
θ

Qh · N dA+


Ω0

ϱυ0 dV

(1.105)
ds0
dt

≥ −1
ϱ

∇X ·


Qh

θ


+

1
θ


Wh + ϱF γ · Γ̇ + Fg Rg


(1.106)

in which s0 is the entropy per unit reference mass, while Γ = Jγ,
Fg = fg (x (X, t) , t) and F γ = fγ (x (X, t) , t).

1.3.2.6 Combined energy and entropy equations

It is convenient to express the local energy and entropy equations in a
quasi-isothermal case:

ρ
de

dt
= σ : D + ρwh − ∇x · qh + k · γ̇ + εg ρ

−1 rg (1.107)

ρθ
ds

dt
≥ −∇x · qh + ρwh + ρfγ · γ̇ + fg rg (1.108)

ϱ
de0
dt

= P : Ḟ + ϱWh − ∇X · Qh + K · γ̇0 + εg0 ϱ
−1 Rg (1.109)

ϱθ
ds0
dt

≥ −∇X · Qh + ϱWh + ϱF γ · Γ̇ + Fg Rg (1.110)

By now subtracting (1.108) from energy equation (1.107), it follows
that

ρ


de

dt
− θ

ds

dt


≤ σ : D +


k − ρfγ


· γ̇ + (εg − ρ fg) rg (1.111)

Then, on the left side of equation (1.111), the Helmholtz free-energy per
unit volume ψ = ρ(e− θs) can be readily recognized, thus obtaining
the Clausius-Duhem inequality

dψ

dt
≤ σ : D +


k − ρfγ


· γ̇ + (εg − ρ fg) ρ

−1rg (1.112)

In an analogous manner, the material rate of free energy is obtained
by combining (1.110) and (1.109):

dψ0
dt

≤ P : Ḟ + (K − ϱF γ) · Γ̇ + (εg0 − ϱFg) ϱ
−1Rg (1.113)

Therefore, provided the set of the state variable on which the internal
energy depends, suitable constitutive relations are obtained through
direct comparison. Moreover, in what follows, isothermal processes will
be conveniently assumed.
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1.4 constitutive equations

Constitutive relations are introduced to take into account the material-
specific mechanical response. In order to deal with biomechanical prob-
lems, growth and remodelling terms are still considered and the kine-
matical multiplicative decomposition of the deformation gradient (1.31)
can be employed. Then, in defining the internal variables, the free en-
ergy function will clearly depend upon the elastic part of the defor-
mation, as well as to other structural internal variables such as the
remodelling ones. Besides the concept of internal variables, two further
important principles for the construction of material equations are the
principle of material objectivity and the principle of material symme-

try.
The principle of material objectivity affirms that constitutive equations
are invariant with respect to the observer. In other words, ψ (QF) =

ψ (F) , ∀Q ∈ Orth+. Observing that the Cauchy-Green tensor (as well
as other purely Lagrangian and Eulerian strain measures) is free from
rigid body motions, and so it might be reasonable to formulate consti-
tutive equations in terms of this strain measure (or the others), this
implying ψ = ψ (C) (or equivalently ψ = ψ (b)).
The principle of material symmetry states that constitutive equations
have to be invariant with respect to all transformations of the material
coordinates, which belong to the symmetry group Gk of the underlying
material. In other words, if one considers a material coordinate trans-
formation, say X∗ = QX, ∀Q ∈ Gk, the corresponding deformation
gradient and right Cauchy-Green tensor read as

F∗ =
∂x

∂X∗ = FQ C∗ = (F∗)TF∗ = QTCQ (1.114)

Provided that the second Piola-Kirchhoff stress S is work-conjugate
with C, the material symmetry requires that

ψ (C) = ψ

QTCQ


and S (C) = S


QTCQ


, ∀Gk ⊆ Orth

(1.115)
Consequently, isotropic materials is defined as the class of materials

for which Gk = Orth, and characterizes the materials whose response
is the same in all directions.
If volumetric growth is now accounted, and by virtue of objectivity, it
is convenient to consider the Helmoltz free energy ψ as a function of
the elastic Cauchy-Green tensor Ce and of the remodelling parameters.
In this case the tensor Ce is defined on the grown intermediate con-
figuration, and thus it is not in its Lagrangian description. Then, the
relationship

◦
Ce = RT

g CeRg is utilized to describe Ce with respect to
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the initial configuration. Also, the following relation has to be consid-
ered in expressing the reference specific free energy:

Ωg

ψ

Ce, γg


dV g =


Ω0

Jgψ(
◦
Ce, Γ)dV

0 (1.116)

with γg = Jeγ. Therefore the relation ψ0 = Jgψ (the overset symbol
will be avoided in what follows for the sake of clarity). Also, by taking
into account the identity Ė = 1

2Ċ = FTdF one can write

1
2S : Ċ = τ : d = P : Ḟ (1.117)

The latter relation, together with (1.116), are inserted into (1.113) in
a way to have

Jgψ̇+ ψJ̇g ≤ 1
2S : Ċ + (K − ϱF γ) · Γ̇ + (εg0 − ϱFg) ϱ

−1Rg (1.118)

by also taking into account the multiplicative decomposition of the
deformation gradient (1.31), it is possible to write C = FT

g CeFg in a
way that

Jg
∂ψ

∂Ce
: Ċe + Jg

∂ψ

∂Γ
: Γ̇ + JgψI : Lg ≤ 1

2S :

ḞT
g CeFg + FT

g CeḞg + FT
g ĊeFg


+

+ (K − ϱF γ) · Γ̇ + (εg0 − ϱFg) ϱ
−1Rg

(1.119)

or, since the symmetry of the second Piola-Kirchhoff tensor,

Jg
∂ψ

∂Ce
: Ċe + Jg

∂ψ

∂Γ
: Γ̇ + JgψI : Lg ≤ S : FT

g CeḞg +
1
2S : FT

g ĊeFg+

+ (K − ϱF γ) · Γ̇ + (εg0 − ϱFg) ϱ
−1Rg

(1.120)

Now, focusing on the last term of (1.120), two considerations can
be introduced. By first observing that the adaptation (elastic) path of
the deformation is mass preserving (i.e. there is no growth/resorption
during elastic deformation), the hypothesis

dm = dmg, Jρ = Jgρg (1.121)

can be introduced, with ρg being the body true density in the grown
configuration, and mass balance (1.72) can be rewritten as

ρg Jg = ρ0 +
 t

ti

Rg dτ (1.122)

It is reasonable now to assume that density does not change during
mass growth (meaning that growth is purely volumetric), implying that
ρg = ρ0. It follows that, by differentiating with respect to time

Jg = 1 + 1
ρ0

 t

ti

Rg dτ, J̇g =
1
ρ0 Rg, JgI : Lg =

1
ρ0 Rg (1.123)
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in which the relation J̇g = Jg tr(Lg) has been used. Also, from the
mass balance (1.76), in the light of the present substitutions one has

d(Jρ)

dt
= ρ0J̇g, ρ̇+ ρ tr(Le) = 0, or ρ̇

ρ
= − J̇e

Je
(1.124)

which coherently describes the change of density throughout the elas-
tic adaptation path of the whole deformation, implying that a direct
relationship between elastic expansion and density rarefaction (and con-
trarily, elastic compression implies local densification).
Substitution of (1.123) into (1.120) let to collect the various terms

1
2FgSFT

g − Jg
∂ψ

∂Ce


: Ċe +


K − Jg

∂ψ

∂Γ
− ϱF γ


· Γ̇+

+


Jg


ρ0

ϱ
εg0 −ψ


I + FgSFT

g Ce − Jg ρ
0 FgI


: Lg ≥ 0 (1.125)

This method, also known as Coleman’s method (see ), let to derive
through direct comparison the elastic stress response for the present
case, as well as an expression for the thermodynamic forces above pos-
tulated. More precisely, for the first two brackets:

S = 2JgF−1
g

∂ψ

∂Ce
F−T
g = JgF

−1
g SeF

−T
g = 2∂ψ0

∂C
(1.126)

F̃ γ = K − Jg
∂ψ

∂Γ
(1.127)

the tilde indicating the quantity expressed per unit volume. It is
clear that the stress emerges, as known, as a response of the material
to a deformation process which induces a change of the strain energy

density. The thermodynamic force F̃ γ can be interpreted as a driving
force guiding the remodeling process and takes into account the effect of
a referential force K with respect to which a certain aliquota of energy
is spent for kindling the remodelling process. With attention on the
thermodynamic force associated to growth, the substitution of (1.126)
into the last term of equation (1.125) let to derive:

Fg = SeCe +


ρ0

ϱ
εg0 −ψ


I (1.128)

with the position Fg = ρ0 FgI. It follows that the thermodynamic
force associated to growth, i.e. thermodynamically conjugated to the
growth deformation gradient velocity Lg, are inevitably associated to
the change of configuration. The physical quantity underlying this change
of natural configuration is called configurational stress and can be
expressed in terms of an Eshelby-like stress tensor Σ, as defined by
Cgurtin [79], for example. A suitable definition for the configurational
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stress, responsible in this case of the domain variations induced by the
volumetric growth, has been given by Maugin [133] and it is in this
case related to Fg through

Σ = −Fg =


ψ− ρ0

ϱ
εg0


I − SeCe (1.129)

Remarks

The expression for the first Piola Kirchhoff stress tensor can be obtained
by considering relation (1.71) in conjunction with (1.126). The other
stress measures are:

P = FS = 2JgFe
∂ψ

∂Ce
F−T
g = Jg

∂ψ

∂Fe
F−T
g (1.130)

τ = PFT = Jg
∂ψ

∂Fe
FT
e (1.131)

σ = J−1τ = J−1
e

∂ψ

∂Fe
FT
e (1.132)

Furthermore, standard stress-strain relations can be obtained by op-
portunely depriving balances (1.107)–(1.110) of the growth- and remodelling-
related terms, or by vanishing growth deformation form equations (1.126),
(1.130)–(1.132) (i.e. by imposing Fg = I):

S = 2 ∂ψ
∂C

=
∂ψ

∂E
(1.133)

P = FS =
∂ψ

∂F
(1.134)

τ = PFT =
∂ψ

∂F
FT (1.135)

σ = J−1τ (1.136)

All these stress measures are in accord with the Hill’s [84] general
definition:

τ : d = S(m) : E(m) (1.137)
where E(m) is the Hill strain family (1.24). Therefore the first Piola-

Kirchhoff tensor is work-conjugate with F (they are both two-point
tensors), the second Piola-Kirchhoff stress S is work-conjugate with
E(2), and each stress has a unique counterpart. For the sake of com-
pleteness, it is here then reported the expression of the stress tensor T

conjugate to the Hencky strain ( [86]):

T(0) = A−1 : (RTτR) (1.138)
where A is a fourth-order structure tensor defined such as:

A =
3
i=1

Mi ⊗ Mi +
3

i,j=1
i ̸=j

2λiλj ln( λi
λj
)

λ2
i − λ2

j

Mi ⊗ Mj , (1.139)

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



30 fundamentals of continuum solid mechanics

with the second order tensors Mi, i = {1, 2, 3} being defined through
the eigenvectors Ni, in a way that MiMj = δijMi and 3

i=1 Mi = I.
Relationship (1.138) can be easily established starting from equality
(1.137) and observing that, through direct comparison, the rate matrices
D in (1.54) and Ḣ in (1.61) can be related each other by the matrix A,
i.e. Ḣ = A : D (for a more detailed derivation see also Hoger [86] and
Itskov [100]). In case the stress T(0) and U (thus H) are coaxial, T(0)

admits the following representation

T(0) = TiNi ⊗ Ni (1.140)

where Ti denote the principal stresses. In this case only the first term
of (1.139) actually is needed and follows that

T(0) = (RTτR) (1.141)

Furthermore, if deformation is homothetic and no rotations occur, one
has the Hencky strain actually conjugated with the Kirchhoff stress:

T(0) =
∂ψ

∂H
= τ (1.142)

By finally recalling (1.27), the following relations hold

τ (0) = RT(0)RT = Aτ =
∂ψ

∂h
, (1.143)

τ (0) = τ (1.144)

the second relation being obtained in case that V and τ (0) share the
same eigenvectors.

1.5 special constitutive models for isotropic hyper-

elasticity

Some of the most frequently used hyperelastic models are briefly re-
called below. As a direct consequence of the frame indifference, the
strain energy functions will exclusively depend on the invariants of the
strain measure adopted.

1.5.1 St. Venant-Kirchhoff model

The St. Venant-Kirchhoff model represents one of the simplest hypere-
lastic material model involving two sole material constants, here given
in terms of terms of Lamé moduli Λ and µ:

ψ =
1
2E : C : E =

Λ
2 (tr(E))2 + µ tr(E2) (1.145)

The fourth-order tensor C = 2µI + Λ I ⊗ I denotes the stiffness tensor.
It follows that

S =
∂ψ

∂E
= 2µE + Λ tr(E)I (1.146)
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Under the assumption of small strains this model gives the well-
known generalized Hooke’s law

σ = 2µ ϵ + Λ tr(ϵ)I (1.147)

1.5.2 Ogden incompressible materials. Mooney-Rivlin and Neo-Hookean

models

In the context of rubber-like materials, for which a substantial incom-
pressibility occur, i.e. J = λ1λ2λ3 = 1, Ogden [87, 148] postulated the
following phenomenological strain energy function, given in terms of
the principal stretches:

ψ = ψ (λ1, λ2, λ3) =
N
p=1

µp
αp


λ
αp

1 + λ
αp

2

+ λ

αp

3 − 3 (1.148)

On comparison with linear elastic material coefficients, the Ogden model
parameters have to satisfy to the consistency conditions:

N
p=1

µpαp = 2µ, µpαp > 0, p = 1, ..., N (1.149)

By setting N = 1, α1 = 2 the so called Neo-Hookean material is found

ψ =
µ1
2

λ2

1 + λ2
2 + λ2

3 − 3

= c1 (I1(C) − 3) (1.150)

while, for N = 2, α1 = 2 and α2 = −2, the Mooney-Rivlin model is
obtained:

ψ =
µ1
2

λ2

1 + λ2
2 + λ2

3 − 3


− µ2
2

λ−2

1 + λ−2
2 + λ−2

3 − 3

=

= c1 (I1(C) − 3) + c2 (I2(C) − 3) (1.151)

1.5.3 Fung model

In relation to the modelling of biological soft materials, which typically
exhibit an exponential like stress-strain response, Fung successfully pro-
posed [46, 69] the following strain energy function, constituted of a
bilinear standard term and an exponential term:

ψ =
1
2E : A : E +

c

2 [exp (E : B : E) − 1] (1.152)

The stresses are calculated from the strain energy function as

S =
∂ψ

∂E
= A : E + c(B : E) e(E:B:E) (1.153)

The Fung-model, under the simplified isotropic hypothesis, can be
written in terms the principal stretches as:

ψ =
1
2a

λ2

1 + λ2
2 + λ2

3 − 3

+
c

2

exp


b

λ2

1 + λ2
2 + λ2

3 − 3


− 1


(1.154)
in the sole material constants a,b and c.
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appendix

Invariants and their tensor-derivatives:

Given generic second-order tensor A, its invariants are defined as:

I1 (A) = tr (A) = A : I

I2 (A) =
1
2

(tr (A))2 − tr


A2


I3 (A) = det (A)

and the derivatives of these invariants with respect to A are

∂ I1
∂A

= I

∂ I2
∂A

= I1I − AT

∂ I3
∂A

= det (A)A−T
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2
S P E C I E S G ROW T H A N D VO LT E R R A - L O T K A
S Y S T E M S

Turning point of the study of population dynamics in the early 20th

can be sine dubio attributed to A.J. Lotka, an American byophisicist
and a statistician, and V. Volterra, one of the most important Italian
mathematicians.
Volterra and Lotka had physics as a reference, but did not consider only

mechanics: they both took also into account the energetic approach of
thermodynamics, and in fact, considered evolution as the expression of
the second law of thermodynamics [98].
In the following, some global properties of Volterra-Lotka approach and
its extensions are briefly treated in order to then transpose this exact
logic to the modelling of tissues constituents.

2.1 introduction

Elements of Physical Biology (1925, [115]) by Lotka is actually the first
book on mathematical biology. In its pages, Lotka described his view
of nature as a complex system plentiful of “energy transformers”, in
which natural selection was the result of the struggle among living or-
ganisms to ensure themselves the available energy: species that survive
and prosper are those that maximize both the rate at which resources
are procured and the effectiveness with which this resources are used
and converted into gain (offspring). In particular, among other con-
siderations, the book presented a mathematical model regarding the
interaction of two animal species, one of which was the parasite of the
other, inspired to chemical reaction systems. Lotka then extended his
energetic framework to human society, in demographic studies and eco-
nomics.
In the same period, and in a completely independent manner, Volterra
published his first result on variations and fluctuations of animal species
living together (Variazioni e fluttuazioni del numero d’individui in

specie animali conviventi [206]). He was requested to investigate the
possible reasons concealing behind the increase in fish population of
Selachians and other predators in the Adriatic Sea during World War
1 as compared with the preceding and following periods, as well as
the decrease in their prey, which feed on vegetables or invertebrates.
Differently from Lotka, Volterra intuition exclusively arose from bio-
logical considerations related to the observation of the biosystem. How-
ever, the rationale on which Volterra founded his view of nature is
completely analogous. In the essay Una teoria matematica sulla lotta

33
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per l’esistenza[204], he explains that biocenosis, i.e. the community
inhabiting the ecosystem, is constituted of more species interacting to-
gether. Ordinarily, individuals of a certain species fight for the same
amount of food or some species live at the expense of other species of
which they feed. Of course, some species can also cooperate and benefit
each other. The combination of these factors resides in what Volterra
calls the fight for life, and it quantitatively manifests in fluctuations
of species individuals, as well as, under different conditions, in the ex-
tinction or uncontrolled growth (Mathematical Theory of Struggle for

Existence[205]). This analysis represented to Volterra the mathemati-
cal form to Darwin’s intuition of phenomena of vital competition. The
result is the model which is nowadays known as Volterra-Lotka (VL)
equations, treated in the following, and a particular well-known case
in the predator-prey model. This model provides a generalization of the
Verhulst logistic model by accounting for the effects that the “encoun-
ters” among species individuals produce, following the hypothesis that
predation is directly proportional to the rate of encountering between
two different species individuals. The early model was then refined and
sophisticated by Volterra, also in correspondence with Lotka, in collab-
oration with other scientists such as U. D’Ancona (zoologist, Volterra’s
collaborator and future son-in-law). It is worth noting that the intu-
ition and the logic on which the VL equations found represent de facto

the progenitor of the modern Evolutionary Game Theory (EGT) intro-
duced by J.M. Smith and the renowned Nash equilibria games. In fact,
EGT extended the classical game theory between two or more players
to study the behavior of large populations that repeatedly engage in
strategic interactions, on which the survivor of a population depend.
The most of interaction is based on the idea that the current state
of a player depends on the presence of the other players. In brief, in
classical games (single round or repetitive) each player is rational as
he considers the opponents strategies in making appropriate choices
for maximizing utilities. In EGT, it is only required player to have
a strategy (sometimes unwillingly, depending on its natural attitude).
This strategy is known as fitness function and often depends on other
players in the game. In case of natural selection, another hypothesis
players (animals) do not choose their strategy or have the ability to
change it, they are born with a strategy and their offspring will inherit
that same identical strategy. As a result, the organism with the best in-
teraction strategy can have the highest fitness and increase their ability
to reproduce.
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2.2 simple-species growth

In particular, Volterra himself remarked that the model of unbounded
growth of a population N with proliferation rate ε > 0

dN

dt
= εN, N(t) = N0e

ε t (2.1)

was “unacceptable for biologists” [98] and mathematically unstable
(the case ε < 0 is instead related to the so-called exponential decay). A
first simple development of this model can be introduced by considering
the (negative) influence of the number of individuals through another
characteristic coefficient λ

dN

dt
= (ε− λN ) N, N (t) =

εN0eε t

ε+ λN0 (eε t − 1) (2.2)

where N0 is the initial number of individuals, this solution highlighting
a species in a given environment develop more realistically until its
density distribution approaches values that modify the conditions of
life. The maximum number of individuals potentially sustainable by
the environment is limt→∞N(t) = ε/λ; in the VL sense, the coefficient
λ can be also viewed as the weight of the influence that individuals of
a species exert on their similar. In a general case of more species, the
extension of the idea of the simple species logistic behavior lies on the
fundamental hypothesis of the existence of a certain interaction bond
between two or more of them, or, as Volterra says using a mechanical
analogy, a growth under “friction” among individuals of every single

species.

2.3 multiple species systems

A dynamical system can be in general written in the form

ẋ = xf (x), ẋi = fi(x1, ..., xn) (2.3)

where i = 1, .., n and fi : Rn → Rn is C1. It can be demonstrated that
populations that start from non-negative values remain non-negative.
Volterra-Lotka system are of the type f = b + Ax, where b is a
n−dimensional vector collecting the intrinsic rates of each species xi,
while A is a n×n matrix collecting the inter-species weight coefficient,
such that

ẋ = x (b + Ax) , ẋi = bi xi +
n
j=1

αij xj , xi (2.4)

In this form, if αij < 0 systems are known as competitive systems

and each species competes with all others including itself; contrarily,
if αij ≥ 0, i ̸= j the system is denoted as a cooperative system in the
sense that each species enhance the other species growth. The terms αii
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represent competition between members of the same population and
are known as intraspecific terms. The main interesting properties of
VL systems can be discussed by literally constructing the more general
case (2.6) starting from the simplest two species model up to the more
sophisticated models.

2.3.1 The predator-prey model

The simplest VL model, which is the one originally presented by both
the scientists, is the so-called predator-prey model. It is constituted of
a couple of ordinary and nonlinear differential equations. In his work
[206], Volterra denoted by x the density of preys and by y that of
predators. He assumed that, in absence of predators, preys tend to
grow with a certain positive rate a > 0 and the influence parameter
(introduced above with respect to a single species in (2.2)) –say b– is in
this case related to the encounter of the predator y, whose presence then
acts negatively on the proliferation of the species x. With regard to the
predators, it is assumed that they decay exponentially with rate c when
preys run out, while their growth will be weighted by the encounters
with the preys through an opportune predation rate d. The following
system of differential equations is then obtained:ẋ = x (a− b y)

ẏ = y (−c+ d x)
, b =

 a
−c

 , A =

0 −b
d 0

 (2.5)

The phase space consistent with the physics of the problem is repre-
sented by the first Cartesian orthant, i.e. R2

+ = {{x, y}|x ≥ 0, y ≥ 0}.
Three solutions can be immediately obtained. If x(0) = y(0) = 0, the
dynamics is not kindled at all and x(t) = y(t) = 0, ∀ t > 0. If only
x(0) = 0 then y(t) = y0 e−c t, while if y(0) = 0 then x(t) = x0 ea t.
The case x(0) > 0 and y(0) > 0 remains to be discussed. It can be
seen from (2.16) that, for the particular values x∗ = c/d and y∗ = a/b,
species rates vanish and the density of predators and preys do not vary.
The point {x∗, y∗} is known as stationary point or equilibrium point. A
system with this initial condition will remain in this state for all t > 0.
Also, system (2.16) can be rewritten asẋ = b x (y∗ − y)

ẏ = −d y (x∗ − x)
(2.6)

Hence, the signs of the rates ẋ and ẏ will depend on whether x and y are
larger or smaller than x∗ and y∗ respectively. More precisely, the couple
{x∗, y∗} divides the phase space into four regions, and the sign pattern
{ẋ, ẏ} can be determined in each quarter through (2.6) (see Fig. 4).
This operation shows that orbits {x(t), y(t)} counter-clockwise in the
phase space around the point {x∗, y∗}. Such a behavior denotes a orbit-

ing motion or periodic, i.e. the two species have periodic solutions and
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oscillate around the equilibrium point. This feature can also be revealed
by analyzing the stability of the equilibrium point (stability analysis
will be introduced in the following; however this case can be simply
illustrated). In other words, the linearized system can be obtained by
means of the Jacobi Matrix. By defining also with x = {x(t), y(t)}, the
system (2.16) can be written in the form ẋ = f (x). The linearization of
the orbits around a generic state xp then is described by the following
linear system

ẋ = J (xp)(x − xp), J (xp) =
∂ f

∂ x


x=xp

(2.7)

where J (xp) is also known as community matrix. In the present case,
in correspondence of xp = x∗:

J (x∗) =
∂ f

∂ x


x=x∗

=

a− b y −b x
d y d x− c


{x= c

d
,y= a

b
}

=

 0 − b c
d

d a
b 0


(2.8)

By exploiting the spectral decomposition theorem, one finds that
J (x∗) = VHΛV, where Λ = Diag{λ1, λ2} is the matrix of the eigen-
values and V the corresponding eigenvectors matrix (the H denoting
the hermitian matrix). In correspondence of the state x∗, eigenvalues
result imaginary and opposite in phase:

λ1 = i
√
a c λ2 = −i

√
a c (2.9)

Since system (2.7) is linear, by performing the substitution y = V(x −
x∗) and by then exploiting the fundamental theorem for linear systems
[150], local solution can be given in theẏ = Λy

y(0) = y0

, y(t) = eΛy0 (2.10)

which in this case gives

y(t) =

cos(
√
a c t) − sin(

√
a c t)

sin(
√
a c t) cos(

√
a c t)

y01

y02

 (2.11)

which represents a cyclic oscillation with no decaying (since the real
part of the eigenvalues (2.9) are zero), and amplitude equal to |y0| =
|x0 − x∗|. This also explains why the system is stationary if initial con-
ditions approach the equilibrium point, as said before. Another remark-
able property of this system can be derived from the direct observation
of the eigenvalues (2.9): in fact, it can be noticed that tr(J (x∗)) = 0.
This means that the dilatation/shrinkage of the phase space is null.
Then, since dynamics preserves the phase space volume, the system un-
der discussion is conservative. By definition, with reference to system
(2.6), a dynamical system is conservative if there exists a matrix D > 0
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such that AD is skew-symmetric. In the case of (2.16), it simply results
D = Diag{d−1, b−1}, this implying the already discussed consequences.
Furthermore, analogous considerations can be made by observing that
the system (2.16) is Hamiltonian, with H taken to be the Hamiltonian
function. In fact the system can be written in Hamiltonian canonical
form by performing the substitution p = log x and q = log y. In this
case one has: ṗ =

ẋ
x = a− b eq = ∂H

∂ q

q̇ = ẏ
y = −c+ c ep = −∂H

∂ p

(2.12)

that, integrated, readily gives

H(p, q) = a q− b eq + d p− c ep, or (2.13)
H(x, y) = d (x− x∗ log x) + b (y− y∗ log y) (2.14)

This function remains constant along the orbit, since it is easy to verify
by exploiting equations (2.6) that H provides the constant of motion,
since

Ḣ = d (x− x∗)
ẋ

x
+ b (y− y∗)

ẏ

y
= 0 (2.15)

This means that, since H is independent of time, the energy conserves
at each time, i.e. the energy of each state {x(t), y(t)} has the same
energy at each point of the orbit, and, since orbit is closed a curve and
species densities are constrained by energy to remain on this curve, it
follows that solution are periodic.

2.3.1.1 Dissipative associations

Now, a first modification that can be taken into account is to relax the
ideal hypothesis according to which preys growth exponentially in ab-
sence of predators. Therefore, by essentially following reasons discussed
in section 2.2, luet us suppose that preys have a limited growth. This
can be done by opportunely introducing a intraspecific logistic term
(modeling the competition between preys for the available resources),
analogously to equation (2.2). The system becomesẋ = x (a− b y− e x)

ẏ = y (−c+ d x)
(2.16)

Equilibrium points are the origin, the predators extinction and the
coexistence scenario:

P0 = {0, 0}, P1 = {a
e
, 0}, P2 = { c

d
,
a d− c e

b d
} (2.17)

Then the community matrix will be modified by the presence of the
self competition term as follows

J (x) =

 a− 2ex− by −bx
dy dx− c

 (2.18)
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Figure 4: Phase portrait of a predator prey model.

Figure 5: Periodic solutions of the predator prey model. It can be quali-
tatively appreciated the chaining established between preys and
predators, in the sense that preys abundance calls predators, and
the peak of the latter ones induces preys plumbing.

and the eigenvalues matrices corresponding to the rest points are in
this case
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Λ (P0) = Diag {a, −c} (2.19)

Λ (P1) = Diag

a d− e c

e
,−a


(2.20)

Λ (P2) = Diag


−c e

2d ±
√

∆
2d


, (2.21)

∆ = c

c e(4d+ e) − 4a d2


;

In the light of linearized solution (2.10), we can see that the origin is
unstable since possessing an unstable and a stable eigenvector: this be-
havior, that is analogous to that one of the pure predator-prey model
connotes the well known saddle point. With an analogous reasoning,
the prey dominance point can present a stable manifold. This situation
will occur if prcisely if c > d(a/e), i.e. the predators death rate will
be greater than the predation rate, opportunely weighted by a coeffi-
cient indicating the probability at which live preys can be encountered.
Also the third point can be stable. In particular, if ∆ > 0, one may
have a stable coexistence if c e >

√
∆ (otherwise, a stable and an un-

stable eigenvector will occur). If ∆ < 0 is verified, complex conjugate
eigenvalue will occur and solution of (2.10) will be

y(t) = e− c e
2d

cos(
√

∆
2d t) − sin(

√
∆

2d t)

sin(
√

∆
2d t) cos(

√
∆

2d t)

y01

y02

 (2.22)

Hence we have an oscillating behavior, but this time, damped by a
dissipative coefficient equal to tr(Λ (P2)) = −c e/d. The presence of
term tells us that dynamics do not conserve energy due to damping,
and, therefore, no close orbits will occur. Moreover, as near the state
{x(t), y(t)} is to the point P2, the less will be its energy. In this case
the point P2 is asymptotically stable.

2.3.1.2 Volterra-Lotka competitive case

Let us now consider, in the light of the biologically consistent consid-
erations according to which species growing in a confined environment
fight for the same resources, the case in which two species have similar
nature and are in competition, i.e. suppose that also the second species
can generate offspring independently from the other species and that in-
terspecific terms are negative and indicated with c1 and c2. In this case
species are competitive. Also, let us introduce intraspecific coefficients,
that can be expressed in terms of the species environmental carrying

capacities, say K1 and K2, which indicate the maximum density that
species can achieve. Let us then express the system (2.4) in the form:ẋ1 = b1 x1


1 − x1

K1
− c1 x2


ẋ2 = b2 x2


1 − c2 x1 − x2

K2

 (2.23)
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Figure 6: Phase portrait of a non-conservative orbit.

Figure 7: Oscillating solutions of the predator prey with dissipative asso-
ciations. The damping effect is clearly visible. a = 2.4, b =
0.45, c = 0.18, a = 0.15, e = 0.015,

To simplify calculations, the substitutions x = x1/K1 and y =

x2/K2, indicating with a12 = c1K2 and a21 = c2K1. Also time can be
rescaled by setting t = b1 t and b = b2/b1. This considerably reduces

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



42 species growth and volterra-lotka systems

the number of parameters, without affecting the topology of solutions:ẋ = x (1 − x− a12 y)

ẏ = b y (1 − a21 x− y)
(2.24)

Equilibrium points can be found by vanishing rates, i.e. by imposing:x = 0

y = 0

r1 : (1 − x− a12 y) = 0

r2 : (1 − a21 x− y) = 0
(2.25)

the lines r1 and r2 being denoted as nullclines. From (2.25) the
following state {x∗, y∗} ∈ R2

≥0 can be individuated:

P0 = {0, 0} P1 = {1, 0} P2 = {0, 1} P3 =

 1 − a12
1 − a12a21

,
1 − a21

1 − a12a21


(2.26)

Since populations are non-negative, the existence of the last point
occurs when either a12 > 1 and a21 > 1 or a12 < 1 and a21 < 1. We
can then write the community matrix:

J =

1 − 2x− a12 y −a12 x

−a21 y 1 − a21 x− 2 y

 , (2.27)

and find that

J (P0) = {1, 1}, J (P1) = {−1, 1 − a21}, J (P2) = {−1, 1 − a12},

J (P3) = {− (1 − a12)(1 − a21)

1 − a12a21
,−1}, (2.28)

and, by studying the linearized behavior through the observartion of
the eigenvalues, the system near equilibrium will behave as y = eΛy0
with the sole difference that Λ ∈ R and so trajectories will either
converge towards the rest point or diverge from it, depending on the
sign of the eigenvalues. These considerations let to discriminate four
cases of interest, also shown in Fig. 8:

1. Case a12 < 1 and a21 < 1. This is the case of weak interaction. In
this case the point P3 exists and constitutes an attractor, while
the other 3 points are unstable, i.e. candidate equilibria that will
not occur and energetically diverging.

2. Case a12 > 1 and a21 > 1. In this case there is aggressive competi-
tion and ultimately one population wins, while the other is driven
to extinction. Then coexistence P3 is now unstable together with
the origin (unstable node), while P1 and P2 are stable nodes. It
can be shown that the prevalence of one of these points with
respect to the others depends on the initial conditions of the
problem. In other words, The winner depends upon which has
the starting advantage.

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



2.3 multiple species systems 43

3. Case a12 < 1 and a21 > 1. In this case P4 does not exist. Equiva-
lently, this conditions says that in the phase space r1 > r2, where
r1 and r2 have been defined in (2.25). This imply that species x
has a better strategy, in the sense that for every y his rate pre-
vail, and so the first species will in time drive the second to the
extinction. In other words, x is dominant and P1 is a stable node.

4. Case a12 > 1 and a21 < 1. In this case situation is inverted, since
r2 > r1 and y is dominant; thus, only P2 will constitute a stable
node.

Figure 8: Phase planes for 2 species VL equations in the different discussed
cases. Stable nodes are highlighted in each case, and the nullclines
r1 and r2 are respectively in blue and red. Case 1. a12 = 0.15 and
a21 = 0.2, Case 2. a12 = 1.5 and a21 = 2, Case 3. a12 = 0.15 and
a21 = 2, Case 4. a12 = 1.5 and a21 = 0.2

Also, it can be demonstrated that this system does not admit isolated
periodic orbits.
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2.4 stability

In the previous section we have checked the stability of the system by
analyzing only neighborhood stability against small perturbations away
from equilibrium points. In the following the definition of stability and
the Lyapunov criteria will be resumed. Let us consider the system (2.4)

ẋ = x (b + Ax) , ẋi = bi xi +
n
j=1

aij xj , xi (2.29)

and let the equilibrium values of the ecosystem be known, i.e.

b = −Ax∗, bi = −

j

aijx
∗
j (2.30)

The system is said to be Lyapunov stable [129], if

∀ ϵ > 0 ∃ δ > 0 : ||x(0) − x∗|| < δ ⇒ ||x(t) − x∗|| < ϵ (2.31)

This means that trajectories starting close enough to the equilibrium
point (within a certain distance δ) remain close enough to the equilib-
rium point (within a certain distance ϵ), in case of stable system (see
Fig. 10).

Figure 9: Lyapunov stability definition

The equilibrium of the system (2.29) is also asymptotically stable if
it is Lyapunov stable and

∃δ > 0 : ||x(0) − x∗|| < δ ⇒ lim
t→∞

||x(t) − x∗|| = 0 (2.32)

this definition indicating that trajectories (starting near the equilib-
rium points) converge to equilibrium point. A stronger condition is the
exponential stability, which occur when the equilibrium is asymptoti-
cally stable and ∃α > 0, β, δ > 0 such that

||x(0) − x∗|| < δ ⇒ ||x(t) − x∗|| ≤ α||x(t) − x∗|| e−β t, (2.33)
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∀ t ≥ 0. This then requires that the rate of asymptotic convergence,
for solutions starting close enough to the rest point, remains always
bounded by a particular known rate α||x(t)− x∗|| e−β t. In the previous
section we have investigated local stability by linearizing the system in
the neighborhood of the equilibrium point, in order to establish if the
latter one constituted a stable node (i.e. a point in which trajectories
converge) or an unstable node (i.e. a point that can become a source
of trajectories). The basin of attraction of x∗ is defined by the set of
points x(0) satisfying x(t) → x∗ as t → ∞. It is standard argument
to construct the stability Hurwitz matrix (which in this case is the
Jacobian) and determine the stable directions by studying the sign of
its eigenvalues, recalling that an equilibrium point is asymptotically
stable if the stability matrix eigenvalues have all negative real part.
The first theorem of Lyapunov (Lyapunov theorem for linear systems)
also implies that the matrix J with elements {aijx∗

j} is stable if and
only if there exists a positive matrix Q such that QJ +J TQ is definite

negative.
Furthermore the presence of one or more eigenvalues with positive real
part gives unstable solutions, while the existence of zero eigenvalues (i.e.
no corresponding eigenvectors) constitutes a so-called center manifold

and the behavior of this point can be analyzed through the center-
manifold theory, for example (see e.g. [107]).
The second method exploits the Lyapunov stability theorem and makes
use of Lyapunov function. Considering a system ẏ = f (y) with f (0) = 0

(this condition can be fulfilled through the substitution yi = xi − x∗
i ),

a function V : Rn → R is defined such that:

V (0) = 0
V (y) ≥ 0, y ̸= 0

V̇ =
∂ V

∂y
f (y) ≤ 0 (2.34)

Then, if the system admits a Lyapunov function, then solution is
asymptotically stable. Moreover, if V is radially unbounded, solution
is globally stable. The main advantage of Lyapunov criterion is that
stability can be proven without requiring knowledge of the true physical
energy, provided a Lyapunov function can be found to satisfy the above
constraints.

Due to (2.34)1 and (2.34)2 the Lyapunov function presents a strict
minimum in y = 0. Now, let the set Kc be defined as:

Kc = {y : V (y) ≤ c and ||y|| ≤ ϵ0} (2.35)

Then for any c > 0, there exists a δ(c) > 0 such that

{||y||} ⊂ Kc, (2.36)

and for every 0 < ϵ < ϵ0 there is a c(ϵ) such that

Kc ⊂ {||y|| < ϵ} for c ≤ c(ϵ) (2.37)
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Figure 10: Illustration of the geometrical interpretation of the Lyapunov sta-
bility theorem.

Statement (2.36) follows immediately from the continuity of V at y = 0.
For (2.37) note that {ϵ < ||y|| < ϵ0} is compact and V is therein
positive. Therefore min||y||∈(ϵ,ϵ0) V (y) = c(ϵ) and, chosen c < c(ϵ) the
set Kc satisfies (2.37). Therefore, given 0 < ϵ < ϵ0 and c < c(ϵ), one
has Kc ⊂ {||y|| < ϵ}. Since for hypothesis

V̇ =
∂ V

∂y
f (y) ≤ 0

V (y) cannot increase. So, if y(0) ∈ Kc, y(t) is in Kc for all t in its
forward interval of existence. By condition (2.36) we can ensure that
y(0) ∈ Kc by taking ||y(0)|| ≤ δ(c), which is the delta requested for
stability theorem. In fact, if this is guaranteed, y(t) ∈ Kc ∀t > 0.
A typical Lyapunov function for general LV can be taken in the form

V (x) =

i

qi


(xi − x∗

i ) + x∗
i ln xi

x∗
i


(2.38)

where qi are the elements of Q−1. In particular, this well-known form of
the Lyapunov function recalls the Boltzmann-type entropy production
of statistical mechanics, which therefore implies a substantial equiva-
lence between dynamical system stability and entropic, i.e. thermody-
namic, stability (see for example the work by Chakrabarti and Ghosh
[36]). This important result de facto confirms what both Volterra and
Lotka had postulated and gives insights in the thermodynamic analysis
of mechanical systems coupled with interspecific dynamics that will be
presented in the following. To this aim, finally, another remarkable re-
sult deriving from theses two theorems has been shown by Tuljapurkar
and Semura ([193]). The particular structure of the general Volterra-
Lotka systems let in fact to demonstrate that local stability ensures

global stability in absence of center manifolds.
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In the light of the arguments presented, the Volterra-Lotka logic, as
well as more modern EGT framework, can be transposed from the an-
imal species context to the scale of biological tissues and in particular,
to describe the interactions between cells, both in ordinary physiologi-
cal processes and disease. It can be in fact assumed that in an organ-
ism, cells act in an evolving environment (the extra-cellular space) and
share the same spaces, thus inevitably compete for the same resources.
If cells growth were kindled “ignorantly”, probably any biological struc-
ture would be originated with the existing functionality and hierarchy.
In a physiological context, this is guaranteed by an orchestrated by
an orchestrated cascade of biophysical, chemical and mechanical stim-
uli, which likely determine the tissue development. In disease, some
of these balances as well as some cells gene expressions might be al-
tered and disordered mechanisms occur, and also mutations might be
present. In particular, in the following chapters, we will assume cancer
and healthy cells as populations in evolutionary games, with fitness
functions designed using Volterra-Lotka type functions in order to see
tumor development as cancer (mutated) cells ousting normal cells pop-
ulation and host environment.
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Part II

U N C O U P L E D M O D E L L I N G

Growth and mechanical variables can be studied by essen-
tially starting from elemental uncoupled models in which
either the one or the other is treated as a free-parameter
of the problem. This essential approaches result highly ef-
fective and have the advantage to exploit well-known ana-
lytical solutions and simplified approaches in order to dwell
on the implications that the variation of growth and remod-
elling parameters have on the phenomenological aspects in
foreground
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3
U N C O U P L E D M O D E L S E X P L O R I N G
B I O M E C H A N I C A L I S S U E S

Theory of elasticity provides the possibility of taking into account
macroscopic body growth as an inelastic deformation that combines
with elastic effects in order both to find the stresses harboring within
the tissue environment and to understand how these stresses affect
the leading physiological processes. In principle, biomechanical models
might constitute a synthesis of all these aspects, endeavoring to describe
how they interlace each other by determining a complex machinery in
which mechanical-driven feedback and growth and remodelling-induced
structural changes are comprehensively taken into account. However, to
better the understand the causes and the consequences of this crosstalk
and to gain insights into the way in which these processes can be op-
portunely modeled, some simplified cases can be first introduced. The
exploitation of small strains hypothesis as a first analysis gives in fact
the advantage of getting key information about the knowledge of the re-
ciprocal influence between the mechanical environment and the tissue
growth and remodelling attitudes, through a well-established mathe-
matical setting. In this sense, some important theoretical insights about
the consequences that the alterations of the “healthy” mechanical envi-
ronment can have on tissue development –seen as the fate of a growth
and remodelling process– can be readily evidenced. To this purpose, ex-
perimental observations then give a fundamental feedback and allow the
development and the optimization of the mechanically-based hypothe-
ses of some growth phenomena. Therefore, simple uncoupled problems
can be treated, in which growth is additively combined with geomet-
rical deformation and is supposed known on the basis of experimental
data. Uncoupled modelling then aims to achieve valuable information
on tissue properties and evolutionary tissue response by treating the
mechanical problem and the growth-related dynamics in a relatively
separate way, i.e. trying not to explicitly include in the biomechanical
model all the feedback mechanisms describing the crosstalk between
mechanical variables and tissue constituents. Thus, the assumption is
that these effects can be in some fashion reported on a side by suppos-
ing known the way in which macroscopic growth affects the mechanical
problem, and, on the other side, by analyzing tissue evolutionary dy-
namics in the attempt to describe mechanically-driven alterations at
the constituents scale in the simplest way possible.
In the following sections, some elemental models dealing with differ-
ent physiological and abnormal situations will be presented, and the
focus will be on some qualitative information that these models let to
put in evidence despite the aforementioned assumptions. In particular,
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some adverse consequences of the maladaptation of pulmonary arter-
ies reinforced with synthetic and transposed in aortic position will be
investigated by exploiting well known analytical solutions (see for exam-
ple [60]); also, the problem of the formation of fibrotic capsula around
breast implants will be analyzed by means of a simple biomechanical
model. Finally, the last section is dedicated to the modelling of the
BMU (Basic Multicellular Unit) activity involved in bone remodelling
process through a straightforward application of the Volterra-Lotka
logic presented in Chapter 2.

3.1 representative examples

3.1.1 Compliance mismatch and compressive wall stresses give clues

for explaining anomalous remodelling of pulmonary arteries with

Dacron synthetic grafts

Synthetic grafts are often satisfactory employed in cardiac and vascular
surgery, including expanded poly(ethylene terephthalate) or expanded
poly(tetrafluoroethylene). However, accumulating evidences suggest the
emergence of worrisome issues concerning the long-term fate of pros-
thetic grafts as large vessel replacement. Disadvantages related to the
use of synthetic grafts can be traced in their inability of mimicking
the elasto-mechanical characteristics of the native vascular tissue, lo-
cal suture overstress leading to several prosthesis-related complications
and retrograde deleterious effects on valve competence, cardiac func-
tion and perfusion. Motivated by this, in this section it is analyzed –by
means of both elemental biomechanical paradigms and more accurate
in silico Finite Element simulations– the physical interactions among
aorta, autograft and widely adopted synthetic (Dacron) prostheses uti-
lized in transposition of pulmonary artery, highlighting the crucial role
played by somehow unexpected stress fields kindled in the vessel walls
and around suture regions, which could be traced as prodromal to the
triggering of anomalous remodeling processes and alterations of needed
surgical outcomes. Theoretical results are finally compared with histo-
logical and surgical data related to a significant experimental animal
campaign conducted by performing pulmonary artery transpositions
in 30 two-month old growing lambs, followed up during growth for
six months. The in vivo observations demonstrate the effectiveness of
the proposed biomechanical hypothesis and open the way for possible
engineering-guided strategies to support and optimize surgical proce-
dures.
The evidence supporting the large availability and ease of synthetic
grafts, including expanded poly(ethylene terephthalate) (Dacron®) or
Valsalva Dacron, has allowed an extensive application of these conduits
in a wide spectrum of vascular pathologies ([40, 162]). To the best of
our present knowledge, the advantage of synthetic conduits, especially
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Valsalva Dacron, has encouraged the development of aortic valve spar-
ring operation in surgery of aortic disease ([51, 52, 180]) and recently
it has been proposed as external reinforcement to prevent dilatation
of the pulmonary autograft in the Ross Operation ([33, 34, 141, 190]).
Nevertheless, the evidence supporting an implementation of synthetic
graft has not erased the complications related to his employment. The
unresolved issue are represented by degradation for threadbare, impair-
ment of the electromechanical properties of the vascular wall and elicit
the inconvenient issue of windkessel phenomenon. ([17, 21, 95, 96, 110,
130, 139]). Among persons receiving polyethylene terephthalate grafts
implant, this complication is related to an initial increasing diameter
vs. the package size range to 26% ([42, 209]), leaving unanswered the
problem about the morphological impairment of the native aorta and
biomechanics future of synthetic grafts ([14, 20, 152, 163]). To re-create
the same dynamic stress, we set out to study in a large experimental
growing ovine model the interaction between stress shielding, strain
and growth in the synthetic coating and in the native vascular struc-
ture. The rapid growth and systemic blood pressure are used in the
animal model as a catalyst to induce the dynamic stress. A mathe-
matical model was developed to quantify these stress distributions and
to obtain insights about the growth and remodeling capability of the
pulmonary artery transposed in aortic position from a biomechanical
point of view, as well as to investigate the physical causes underlying
the above mentioned adverse phenomena.
The experimentation on growing ovine animal model provided the exe-
cution of pulmonary trunk transposition from right ventricular outflow
tract and transposed into the descending aorta. Growth, remodelling
and stress shielding of this unitary tubular structure was studied be-
tween two groups of animals receiving an external reinforcement with
expanded poly (ethylene terephthalate), or Dacron®, and animals sub-
jected to PA transposition alone. The measurement were reported at
day one, three and six months by angiography and echocardiography.
Biological processes were evaluated with the histochemistry. In what
follows, a biomechanical model describing the mechanical conditions of
the native aorta and pulmonary artery with synthetic graft is devel-
oped, in order to discuss the relationship between the in vivo model
observations and the mechanics of these systems. We studied the im-
plications that the mechanical properties of the different constituents
can have in determining long-term non-physiological alterations.

3.1.1.1 Qualitative insights into stress fields and remodelling from el-

emental elastic schemes

One of the most relevant aspects for expecting successful outcomes in a
clinical intervention –such as the pulmonary autograft transposition re-
inforced with Dacron graft– lies in the possibility of restoring ordinary
physiological conditions through an adequate process of remodeling
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within the transplanted tissue. From a biomechanical standpoint, it is
well known that tissue grows and remodels in response to an altered
mechanical environment ([89]). These adaptations are then inevitably
associated with the (local and average) state of stress, or strain, within
the tissue induced by both the external loads and constraints. Neverthe-
less, the effectiveness of the remodeling process may result unfaithful
if such stress-induced stimuli and their alterations are not compatible
with certain physiological ranges, which let the soft vessel tissue un-
dergo a progressive natural remodeling over characteristic timescales
(weeks to months, [135]), needed to reorganize its microstructure and to
accommodate its mechanical properties to the new environment, in this
way reaching a homeostatic configuration. By focusing on the vascular
remodeling, for instance, Fung and Liu ([70]) experimentally induced
morphological and structural alterations of the pulmonary artery in
rats by gradually increasing systemic pressure from 15 mmHg up to 30
mmHg in a month, the tunica media and adventitia opportunely adapt-
ing and thickening over this period. From a mechanical point of view,
it is widely suggested ([43, 82, 216]) that the circumferential stress as-
sumes a primary role in influencing the process of vessels remodeling.
For these reasons, with the purpose of analyzing the post-operative
remodeling potential of a pulmonary artery vessel tract transposed
in aortic position, subjected to arterial pressure and reinforced with
a Dacron graft, a simple mechanical model has been here proposed
to analyze the stresses distribution prodromal to vascular remodeling.
More specifically, three significant scenarios are taken into account: the
healthy aorta (A), the healthy pulmonary artery (PA) and the reinforced

pulmonary artery (PA+D) transposed in aortic position. The first two
cases represent physiological situations, thus respectively subjected to
arterial and venous pressures, while the last case of interest is simulated
by considering a vessel exhibiting venous-like material properties when
subjected to both arterial blood pressure and external confinement due
to the presence of the non-resorbable Dacron mesh, mechanically rep-
resented by an additional outer layer with elastic properties related to
its actual material and fabric structure.

3.1.1.2 Balance equations and closed-form solutions to model vessels

structure

Within the above mentioned perspective of determining the essential
form and the order of magnitude of the stress fields in the blood vessels
under the cardiac cycle-induced internal pressure for the three above
mentioned scenarios of interest, a first analysis can be conducted in
the realm of linear elasticity ([15, 68]): relevant qualitative information
can be in this way gained by exploiting analytical solutions, available
by invoking classical results presented in the literature also with ref-
erence to composite hollow cylinders under different load conditions
([60]), including anisotropic ([61]) and inhomogeneous ([63]) elasticity.
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By following this line of reasoning, the cases of healthy aorta and pul-
monary artery are therefore modeled as isotropic homogeneous hollow
cylinders, with arterial and venous pressures pA and pPA respectively
exerted at their internal walls. In a similar way, the case of PA rein-
forced with Dacron (PAD) is then simulated by considering a two-phase
composite hollow cylinder where the inner layer represents the vessel
wall and the surrounding layer replicates the non-resorbable coating,
whose overall mechanical properties are homogenized to take into ac-
count the penalization of the bulky material stiffness due to the low
volume fraction offered by the structure to the effective elastic confine-
ment of the graft. Formally, the three vessels are thus geometrically
described by the cylindrical regions as follows (see Fig. 11):

A and PA : ri ≤ r ≤ ri + h, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (3.1)
PA+D : ri ≤ r ≤ ri + h∨ ri + h ≤ r ≤ ri + h+ hD,

0 ≤ θ ≤ 2π, 0 ≤ z ≤ l (3.2)

Figure 11: A hand-made sketch illustrating the geometry and the mechanical
features of the native aorta (on the left), the native pulmonary
artery (in the midlle) and the pulmonary autograft (on the right).

where ri is the internal lumen radius, h and l are the vessel thick-
nesses and heights, respectively, while hD is the thickness of the Dacron
prosthesis. Also, being the aorta and the pulmonary artery significantly
different in terms of intrinsic material parameters, corresponding elastic
moduli EA and EPA were adopted, while a common Poisson’s coeffi-
cient ν was instead assumed. With reference to the homogenized Dacron
layer, an effective elasticity modulus ED was assigned to taking into
account the nonlinear dependence of the overall stiffness with respect
to mesh volumetric fraction and a different Poisson’s coefficient νD was
also selected. By further introducing the hypothesis of axisymmetric
of the problem, the stress vector (in the so-called Voigt notation) can
be written as σk = {σkrr, σkθθ, σkzz}, where σkrr, σkθθ and σkzz denote the
radial, circumferential and longitudinal stress components, respectively
(Fig. 11), while the superscript k = {A,PA,D} specifies the stress com-
ponents (and the related moduli) of the material to be considered. In
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duality with the stress, the deformation vector, ϵk = {ϵkrr, ϵkθθ, ϵkzz}, is
defined, where ϵkrr measures the radial strain, ϵkθθ the circumferential
strain and ϵkzz the longitudinal (along the z–axis) elongation/contrac-
tion. For the problem at hand, without loss of generality, a plane state
of deformation can be additionally postulated, ϵkzz = 0 being therefore
assumed for all the cases. By making reference to the above recalled
elastic moduli and invoking the generalized Hooke’s law, stresses can
be linearly associated to the strains and, under the hypothesis of cylin-
drical symmetry, the equilibrium equations reduce to the sole one in
the radial direction, that is

dσkrr
dr

+
1
r
(σkrr − σkθθ) = 0 (3.3)

In particular, symmetry gives the displacements as

ukr = uk(r), uθ = 0, ukz = wk = ϵk0z (3.4)

to which are associated the strains in the simplified form

ϵkrr =
dukr
dr

, ϵkθθ =
ukr
r
, ϵkzz = ϵk0 (3.5)

Linear isotropic elasticity allows to therefore write

σkrr = 2µkϵkrr + λkϵk, (3.6)
σkθθ = 2µkϵkθθ + λkϵk, (3.7)
σkzz = 2µkϵkzz + λkϵk (3.8)

where σkθθ = 2µkϵkθθ + λkϵk is the linear dilation (the trace of the
strain tensor), 2µk = Ek

(1+νk)
, λk = νkEk

(1+νk)(1−2νk)
, and Ek and νk are the

Young modulus and the Poisson ratio of the k− th phase, respectively.
By substituting (3.5) in (3.6) and finally in (3.3), the classical Navier-

Cauchy differential equation in terms of displacements is finally ob-
tained as

r2d
2uk

dr2 + r
duk

dr
− uk = 0 (3.9)

For the three scenarios and the related boundary conditions, the so-
lutions in terms of the displacements can be easily found in closed-form
as ukr = Ck1 r + Ck2 r

−1, with the constants Ck1 and Ck2 being particu-
larized for each case. In particular, to obtain the explicit the solutions,
for the case of the aorta (A) the equation (3.9) is integrated between
ri and ri + h by imposing the boundary conditions σArr(ri) = −pA and
σArr(ri + h) = 0, whereas in the PA case the equation (3.9) is inte-
grated over the vessel thickness with conditions σPArr (ri) = −pPA and
σPArr (ri + h) = 0. Differently, the problem of reinforced PA in aortic
sight requires to solve equation (3.9) of equilibrium for each layer, by
both assuming the radial stress to balance the arterial pressure at the in-
ternal radius, i.e. σPArr (ri) = −pA and to vanish outside of the Dacron
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layer, i.e. σDrr(ri + h+ hD) = 0; also, continuity of radial stresses at
the vessel-prosthesis interface, that is σPArr (ri + h) = σDrr(ri + h), as
well as compatibility of radial displacements have to be ensured. Once
each displacements function is defined, stresses can be readily calcu-
lated through compatibility equations (3.5) and constitutive relations
(3.6). The discussion of the each vessel’s environmental stress will be
analyzed in order to understand how the reinforced PA and the com-
municating healthy aorta interchange forces in correspondence of the
interface and predict the vessels remodelling capabilities. In fact, in the
suture ring zone, a more complex stress distribution occur, which pro-
vides the emergence of non-zero shear stresses σθz. This shear stress can
be in fact likely related to the problematic splitting-like phenomena of
the pulmonary autograft. Finally, it is worth to notice that long term
effects of growth and remodelling have not been taken into account in
this linear model, since the latter ones would require a more detailed
description involving a nonlinear theoretical approach (see for example
[143]). Note: Integration

constants for
displacements
deriving from
(3.9)

• Reference Aorta:

CA
1 = − 2ν2pAr2

i

EA


r2

i − (h + ri) 2
 − νpAr2

i

EA


r2

i − (h + ri) 2
 + pAr2

i

EA


r2

i − (h + ri) 2


CA
2 =

ν pAr2
i (h + ri)

2

EA


r2

i − (h + ri) 2
 + pAr2

i (h + ri)
2

EA


r2

i − (h + ri) 2


• Reference Pulmonary Artery:

CP
1 = − 2ν2r2

i pP

EP


r2

i − (h + ri) 2
 − νr2

i pP

EP


r2
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 + r2
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EP
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CP
2 =

νr2
i pP (h + ri)

2

EP


r2

i − (h + ri) 2
 + r2

i pP (h + ri)
2

EP


r2

i − (h + ri) 2


• Pulmonary Artery transposed in aortic sight and reinforced with
the external Dacron layer:

CP A
1 = [(ν + 1)(1 − 2ν)pAr

2
iEP A(νD + 1)(2 (νD − 1) (h+ ri)

2 − 2hD (h+ ri) − h2
D)+

+ (ν + 1)2(1 − 2ν)pAEDhDr
2
i (hD + 2(h+ ri))]


EP A[(ν + 1)EDhD (hD + 2 (h+ ri))


(1 − 2ν) (h+ ri)

2 + r2
i


+

− h (νD + 1)EP A (h+ 2ri)


2 (νD − 1) (h+ ri)
2 − 2hD (h+ ri) − h2

D


]

CP A
2 = −(ν + 1)pAr

2
i (h+ ri)

2 [2hD (h+ ri)


2ν2 + ν − 1

ED − (νD + 1)EP A


+

+ 2

ν2

D − 1

EP A (h+ ri)

2 + h2
D


2ν2 + ν − 1


ED − (νD + 1)EP A


]


EP A[h2

D


(ν + 1)ED


h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


− h (νD + 1)EP A (h+ 2ri)


+

+ 2hD (h+ ri) ((ν + 1)ED


h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


− h (νD + 1)EP A (h+ 2ri))+

+ 2h

ν2

D − 1

EP A (h+ ri)

2 (h+ 2ri)]
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CD
1 = [2


ν2 − 1


pA


2ν2

D + νD − 1

r2

i (h+ ri)
2]
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h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


− h (νD + 1)EP A (h+ 2ri)


+

+ 2hD (h+ ri)

(ν + 1)ED


h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


− h (νD + 1)EP A (h+ 2ri)


+ 2h


ν2

D − 1

EP A (h+ ri)

2 (h+ 2ri)]

CD
2 = −[2


ν2 − 1


pA (νD + 1) r2

i (h+ ri)
2 (hD + h+ ri)

2]


[h2

D(−h (νD + 1)EP A (h+ 2ri) +
(ν + 1)ED(h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


)+

+ 2hD (h+ ri) ((ν + 1)ED


h2(2ν − 1) + 2h(2ν − 1)ri + 2(ν − 1)r2

i


+

− h (νD + 1)EP A (h+ 2ri)) + 2h

ν2

D − 1

EP A (h+ ri)

2 (h+ 2ri)]

3.1.1.3 Finite Element Modeling of the pulmonary artery

To analyze in more detail the mechanical effects of Dacron net-reinforcement
on the response of the overall vascular system (the artery integrated
with the reinforced pulmonary autograft), a numerical analysis has been
performed by means of the Finite Element Method (FEM). The simu-
lation has been conducted with the aid of the commercial FEM-based
code ANSYS©([1]). The FEM model let to examine the anastomosis
zone in a more faithful way by constructing a geometry constituted of
the reinforced PA directly communicating with aorta tract, and inter-
nally subjected to arterial pressure. Each tract was externally provided
of the mechanical conditions already described for the analytical solu-
tions: the artery was externally unloaded, while the Dacron synthetic
graft has been positioned outside the PA tract (Fig. 12). Coherently
with the analytical model, the numerical analyses have been performed
under the hypothesis of linear elasticity and small deformations refer-
ring to the material properties reported in Table 1. To this aim, an
ad hoc custom made Ansys procedure, written in APDL parametric
language, has been developed to reconstruct the FE vessels model by
considering the geometrical parameters in the Table 1. The woven struc-
ture of the Dacron graft has been built parametrically on the external
surface of the PA tract by fixing a fine mesh net of about 1mm2.

Table 1: Synoptic table of geometrical and material parameters

Symbol [Unit] ri [mm] hk [mm] Ek [kPa] νk [-]

Aorta (A) 10 1.5 400 0.49
Pulmonary Artery (PA) 10 1.5 20 0.49
Dacron (D) - 0.5 7500 0.4
The Dacron Young modulus here reported accounts for the mesh volume fraction
of 5%.

The geometrical models of both PA and aorta have been meshed
by means of about 121 000 standard hexahedral elements and almost
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152 000 nodes with three degrees of freedom for each node, while the
synthetic structure of the graft has been meshed by means of about
10 000 classical beam elements –based on Timoshenko beam theory–
and 9 500 nodes. The magnitude of the applied load was about 16 kPa
(representing a typical mean value of the arterial pressure), which acts
in radial direction on the internal vessel walls; in addition, symmetri-
cal boundary conditions have been considered on the bottom and top
circular surface of the structures. This refined model therefore permits
to investigate the stress state generated on the arteries walls and to
evaluate the “cage-effect” of the stiffer Dacron structure on the inte-
grated system, by then highlighting the perturbations of the analytical
solutions when aorta, PA and the Dacron mesh are working together.

Figure 12: Geometry of the FE model, with a detail showing the commu-
nication of the native aorta (in red) with the pulmonary artery
tract (blue), integrated with the external Dacron structure.

3.1.1.4 The animal model

Preparation of the animals. Thirty two-month (8-10 weeks) old growing
lambs weighting about 18±3 kg underwent transposition of pulmonary
artery autograft in aortic position under cardiopulmonary bypass. Tech-
nical and anatomical issues imposed reimplantation of the PA in the de-
scending aorta while the right ventricle outflow tract was reconstructed
with a fresh homograft from another lamb of the same age and weight.
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We observed the progression of autograft diameter during the period
of fastest growth such us the biomechanical futures and histological
modification.
Non-Resorbable Materials. Meshes used in this study were cut into a
rectangle measuring 20 mm in height matching with the height of au-
tograft, rolled out on a metallic candle, and then reassured by a suture
to create a cylinder with an internal diameter of 10 mm (20 mm in
height in 10 mm diameter directly adherent to the PA). In addition
to animals subjected to PA transposition (control group, n=15), the
experimental design included a group (n=15) in which the PA was re-
inforced with an external synthetic non-absorbable grid of Polyester
and group (n=15). The autograft was then inserted into the fibrillar
cylinder and was anastomosed suturing both its margins and those of
the prosthetic structure to the pulmonary autograft trunk.
Implantation. Lambs were premedicated with ketamine (25 mg/kg IM)
and anesthesia was guaranteed by the injection of sodium thiopentothal
(6, 8 mg /kg) via the internal jugular. Animal received 100mg of lido-
caine intravenously as prophylaxis against rhythm disturbance. After
endotracheal intubation, ventilation was provided up to animal awaken-
ing and the anaesthesia was maintained with inhalation isoflurane (1%
to 2, 5%). The electrocardiogram was monitored. Chest was prepped
and shaved. The heart was approached via left thoracotomy. After open-
ing the pericardium, the right atrium was exposed for cannulation and
the trunk of the pulmonary artery was dissected free from its right
ventricular origin up to its bifurcation in the pulmonary arteries. The
same was done for the descending thoracic aorta and a region distal
to the portion of choice for the PA transposition was cannulated. Ap-
proximately 8 cm of the descending thoracic aorta was left for clamp
positioning and to perform the anastomosis with the pulmonary artery
trunk under optimal conditions. Three mg/kg of heparin was given
intravenously, and cardiopulmonary bypass was started between right
atrium and descending aorta. The cerebral circulation of the animal was
guaranteed on a beating heart. Tree cm of the pulmonary artery trunk
was transposed into the descending aorta with an end-to-end anastomo-
sis in 5-0 prolene. A fresh pulmonary artery homograft, explanted from
animals sacrificed on the same day for another experimental study, was
inserted to reconstruct the right outflow tract, with a proximal and
distal end-to-end anastomosis in 5-0 prolene. Left thoracotomy was
closed and aspiration drainage left in place. All experiments have been
performed in respect of guidelines for animal care and handling. The
protocol was approved by the institutional animal care committee.
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3.1.1.5 Pulmonary Catheterization, Angiographic and Echocardiographic

study.

The angiography was assessed injecting contrast medium by means of
direct puncture of pulmonary trunk, and its diameter in situ was mea-
sured. In addition, a catheter was positioned for injection in to the
ascending aorta and the basal diameter was determined (BV Pulsera
Philips). Animals were humanely sacrificed and tissue harvested for
histopathological analysis. Measurement of the ascending aorta, de-
scending aorta proximally and distally to the autograft were made in
order to obtain a reference to be compared to the diameter of the PA.
A weight curve for each animal during the growing period was paral-
lely processed. A serial of standard 2D and Doppler transthoracique
echocardiography examination with colour flow mapping were used in
all animal before and after operation and every two-week during follow-
up to correctly evaluate the unfolding of the experiment (commercially
available GE Medical System, Vivid 7, Milwaukee, Win). Colour flow
imaging was performed to determine the permeability of pulmonary
autograft and the presence or absence of any blood clots.

3.1.1.6 Theoretical outcomes from analytical solutions and FE models.

Analytical results, obtained by using the computational software Math-

ematica® [210], for all the scenarios and independently from the ves-
sel type, the maximum absolute value of the principal stresses can be
recognized in the circumferential (hoop) one, whose peaks are in fact
strictly greater than both the radial and longitudinal stresses. In par-
ticular, with reference to Fig. 13, the hoop stress σθθ in the reference
aorta is about 120 kPa (compatibly with the most of homeostatic val-
ues furnished in literature, [89]), this value being correlated to both the
higher blood pressure regimes and to the higher degree of distensibility,
as well as to the aorta major stiffness and thickness with respect to the
other vessel walls. The circumferential stress in the reference pulmonary
artery is instead visibly smaller, provided that the venous pressure pPA
is about 2 kPa (15 mmHg) and also stretches are sustained. However,
a first relevant difference between these two described situations and
the case of the reinforced PA in aortic position emerges from Fig. 13:
it can be in fact noticed that, while in the two previous physiological
conditions tensile hoop stresses occur in the vessel walls, the reinforced
pulmonary artery results instead to be compressed in circumferential
direction. This somehow unexpected compressive stress state, as shown
in Fig. 13 is the result of the confining action of the stiffer Dacron outer
mesh, which de facto absorbs the most part of the extensional mechani-
cal energy induced by the arterial pressure pA during the entire lifetime
(differently from PDS, Dacron is a not resorbable material [143]), by
thus approaching tensions close to the those registered in the reference
aorta and so providing an almost complete shielding effect on the PA.
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As a consequence, the partition of the stresses among reinforced PA and
Dacron regions is altered by the significant stiffness mismatch between
the biological and synthetic materials: the stress state experienced by
the constrained PA walls becomes compressive and therefore opposite-
in-sign with respect to the tensile one needed to stimulate a tissue PA
remodeling towards an arterialization process. As highlighted in Fig.13,
this creates a distance of the in situ stress from the mechanical signal-
ing range which would ensure the starting of a favorable and gradual
adaptation of the PA structure to the aortic pressure, the amplitude of
this range having been determined on the basis of experimental findings
present in the literature [69]. In addition, it is worth to notice that also
radial stresses (see Fig. 14) are essentially uniform and compressive in
the reinforced PA due to the cooperation of the aortic pressure and the
confining reaction of the polymer graft, with an average value of −16
kPa, that practically equals the aortic pressure pA. The latter value is
very different from the healty PA radial compression, while the mean
radial stress of the native aorta over the vessel thickness is found to
be about −7 kPa. These stress fields allows to infer that, at long-term,
the exceeding mechanical constraints realized by the stiff scaffold can
determine a persistent static compression that in turn stimulate an
increased ratio of the collagen/elastin expression in the extra-cellular
matrix synthesized by the cells during growth ([39, 41]). Moreover, in
response to the interventional procedure, the natural reparative pro-
cess enhances vascular smooth cells (VCMs) proliferation leading to
neointima development and causing hyperplasic intimal remodeling and
stenosis, with an accentuation of hypertension ([135]). This effect can
be also aggravated when combined with the external mechanical con-
striction, that prevents the elastic stretching of the vessel, and can in
turn increase the process of cells migration over the successive weeks
towards the intimal layer, where proliferation in a compressed environ-
ment may provoke thicker wrinkled surfaces. Finally, the inability to
adequately sense elastic stretch due to confinement and localized in-
flammation might start fibrotic processes. Furthermore, VCMs being
so more prone to apoptosis under hypertension ([135]). In this sense,
a prolonged wall compressive stress might represent an enhancer for
starting these physiological processes.

A further interesting results from analytical solutions is that lon-
gitudinal stresses σzz are also compressive in the reinforced PA (15),
differently from the tensile regimes in the same direction occurring in
the Dacron as well as in the reference aorta and pulmunary artery un-
der corresponding physiological pressures. This forces the overall stress
state inside the prosthesized PA towards a hydrostatic compression –
which further suggest a possible compromised arterialization process–
in turn generating an anomalous changing in sign of the stress at hand
across the PA-aorta junction.
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Figure 13: Distribution of the circumferential stresses over the vessel thick-
ness. (A-red line) Reference Aorta. (PA-blue line) Reference Pul-
monary Artery. (PAD-purple full line) Pulmonary artery rein-
forced with non-resorbable Dacron mesh. (PAD-Purple dashed
line) Stresses in the region occupied by the Dacron region (in
gray). The active remodeling window compatible with PA initial
material properties is highlighted in orange.

Figure 14: Distribution of the radial stresses over the vessel thickness. (A-
Red line) Reference Aorta. (PA-Blue line) Reference Pulmonary
Artery. (PAD-Purple full line) Pulmonary artery reinforced with
non-resorbable Dacron mesh. (PAD-Purple dashed line) Stresses
in the region occupied by the Dacron region (in gray).

In particular, it can be predicted that the discrepancy between the
stress states in the PA-tract and native aorta determines the spurious
shear σrz across the suture section to ensure the longitudinal equilib-
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Figure 15: Distribution of the longitudinal stresses over the vessel thick-
ness. (A-Red line) Reference Aorta. (PA-Blue line) Reference
Pulmonary Artery. (PAD-Purple full line) Pulmonary artery re-
inforced with non-resorbable Dacron mesh. (PAD-Purple dashed
line) Stresses in the region occupied by the Dacron region (in
gray).

rium on, say, a ring of vessel material with height hs, that represents
the segment out of which both the regime aorta and PA stress states
are restored as uniform (see Fig. 16). Despite this more complex local
stress state constitutes a detail behind those caught by the analytical
solutions of the elemental models under analysis, a rough estimation of
the averaged value of this shear stress can however obtained by consid-
ering that it must be proportional to the gap between the aorta and
the reinforced PA longitudinal stresses, i.e. σrz ≃ (σAzz − σPAzz )rm/hs,
where rm is the average radius of the vessels. From the biomechanical
standpoint, this implies that the more the PA is compressed, the more
the anastomotic region might become stenotic, this effect being am-
plified for larger vessels and reduced heights hs, thus producing strong
localized stress gradients. Since local symmetry of the stress tensor and
global rotational equilibrium on the ring zone give σrz = σzr, tangen-
tial stresses also arise perpendicularly to the lines of suture (the z-axis,
in the model at hand), and the corresponding forces can thus provoke
local pull out distortions correlated to anastomotic disruption phenom-
ena.

To analyze in more detail the influence of these spurious stresses
on the localization of strain prodromal to possible anomalous biome-
chanical responses of the tissues, a numerical simulation has been per-
formed by means of the finite element method (FEM) code ANSYS®.
The FE model let to include the anastomosis zone by constructing a
geometry constituted of the reinforced PA integrated with the aorta
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Figure 16: Illustration of the spurious stress state emerging in the anasto-
mosis region, along the suture line.

tract, which were internally subjected to arterial pressure. Each tract
was externally provided of the mechanical conditions already described
for the analytical solutions: the artery was externally unloaded, while
Dacron synthetic graft was added to the PA region. Artery, PA and
Dacron were then given the material properties already introduced (re-
ported in Table 1) and a linear constitutive behavior was assigned to
them. Results of the numerical simulations confirmed the values of the
circumferential and longitudinal stresses obtained from the analytical
model in the two vessels separately, as reported in Fig. 17.

In addition, the FEM results revealed the theoretically hypothesized
shear stresses concentrations (see Fig. 18), with peaks of about 75 kPa,
within a narrow transition zone in the suture region whose height is
comparable to the vessel thickness. This means that a steep gradient of
stress concentrates in a small height, causing geometrical anastomotic
deformation which can affect the generation of local disruptions. In
addition, localized equivalent stresses prone to yielding conditions can
potentially occur in the suture region and can be at the basis of the
pseudoaneurysmal degeneration observed in such zone, where the PA
wall effectively experiences higher levels of strains (Fig. 19).
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Figure 17: Numerical simulation provides the quantitative estimation of
shear stresses at the reinforced PA-aorta interface.

Figure 18: Illustration of the spurious shear stresses in the suture zone (Top),
and of the Dacron structure confinement acting on the PA pres-
surized vessel (Bottom).
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Figure 19: Von Mises equivalent stress concentrations (on the left) and equiv-
alent strain (on the right).

Finally, in order to have a direct comparison with the experimental
results of the control group (the one subjected to not-reinforced PA
transplantation), the analytical procedures have been also applied to
the case of not-reinforced PA, by means of the equation (3.3). Aortic
pressure have been imposed on a pulmonary artery material cylinder,
with free stress conditions at the external boundary. The results showed
that, in absence of longitudinal deformation, say ϵzz = 0), the circum-
ferential stress in the PA was essentially analogous to the aorta one.
However, provided the greater compliance of the PA venous-like struc-
ture with respect to the stiffer aorta, such stress results excessive to
be adequately sustained by the PA walls, and inevitably the mechani-
cal integrity of the vessel would be compromised. In accord with these
considerations, the not-reinforced PA circumferential stretch λnrPAθθ –
which measures the increase of dilation– results to be about four times
greater than the aorta circumferential stretch λAθθ, thus tending to an
overall aneurysmal diametral expansion. In addition, if one relaxes the
hypothesis of plane deformations, the difference between the respec-
tive circumferential stresses σnrPAθθ and σAθθ is proportional both to the
difference between the Young moduli and the longitudinal strain, i.e.
σnrPAθθ − σAθθ ∝ (EA −EP )ϵzz (see Fig. 20).

As a consequence, the combined presence of elevated aortic pressure
and longitudinal in situ elastic stretch of the vessels can cause a severe
increase of the non-reinforced PA stress, approaching theoretical values
from 200 kPa up to 700 kPa, already at strains ϵzz < 10%. These
significantly high magnitudes are close to the aortic stress thresholds
(von Mises stress) reported in some literature works ([88, 178]), and
can be for this reason directly connected to mechanical critical states
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Figure 20: Circumferential stress increase in the non reinforced PA with re-
spect to circumferential stress in the reference aorta, as a function
of the longitudinal strain.

that invite yielding processes, irreversible deformations and, therefore,
aneurysmal degeneration.

3.1.1.7 Surgical and Histopathological findings

Clinical outcomes obtained from the histological analyses and the ani-
mal model overall confirm the occurrence of some expected pathological
events that have been theoretically predicted by the biomechanical re-
sults. The immediate outcome –at day 0 (D0)– of the surgical implant
of both reinforced and not reinforced group is shown in Fig. 21A. The
not reinforced PA clearly already exhibits an over distension (25±3
mm) with respect to the more stable reinforced implant (16±2 mm).

The abnormal dilation of the non reinforced PA with respect to the
dimensions of the surrounding native aorta then progressively increases
up to approximately 40 mm, as the opened structure in Fig. 21C dis-
tinctly shows. On the other side, the long-term histological changes
observed in the group polyester, documented by signs of inflammatory
reaction to a foreign body, are the end results of the abnormal phenom-
ena of transmural and endoluminal migration of the mesh cutting the
PA wall, highlighted in Fig. 21D, where the knitted Dacron structure
can be clearly identified within the PA wall. This fact can be related to
a sort of mechanically induced “cage-effect”, which produces the partic-
ular vessel wall configuration also shown in Fig. 18). As a matter of fact,
the vessel tissue –which already suffers from the anomalous compres-
sive hoop stresses due to the excessive confinement that degrades its
mechanical properties– is locally over-stressed by the pressure exerted
by the Dacron wires: the PA material is therefore damaged and thus
resorbs, allowing the polyester fibers to penetrate across the wall thick-
ness, finally leading to a gradual embedding of the Dacron structure,
as illustrated in Fig. 22B.
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Figure 21: A. Not-reinforced PA at D0; B. The PA reinforcd with Dacron
implant at D0; C. Not-reinforced PA trunk with aneurismal for-
mation (analysis after the break at 3 months); D. The Dacron
reinforcement cut through vessel wall at six months (M6);

Histological pathways was a conspicuous inflammatory infiltrate and
fewer smooth muscle cells and more interstitial connective tissue could
be seen with respect to control. Abnormal processing of the extracellu-
lar matrix protein fibrillin 1 by vascular smooth-muscle cells initiates de-
tachment of vascular smooth-muscle cells from the extracellular matrix,
leading to the release of matrix metalloproteinases (MMPs) together
with their tissue inhibitors. The resulting matrix disruption, elastin and
lamellar fragmentation lead to increased apoptosis of vascular smooth-
muscle cells and disruption of the media layer (see Fig.22A), adversely
affecting the structural integrity and flexibility of the autograft rein-
forced with polyester mesh.

In the control, intima denudation and media disruptions were ob-
served (Fig. 22B). In the tunica media, smooth muscle cells were present,
but had irregular profiles and no discernible alignment; moreover, cells
were widely spaced with intervening collagen fibers, grouped in thick
and dense bundles. Deeper in the media, scant elastic fibers formed
irregular fascicles. Adventitia was formed by dense connective tissue.
All the qualitative considerations derived from the biomechanical anal-
ysis of the vessel walls stresses have been then traced in the histolog-
ical observations. The histological study of the polyester group actu-
ally revealed a pathological structure of the vessel section constituents,
presenting noticeable intimal hyperplasia, inflammatory reaction and
adventitial fibrosis at 10 weeks (see Fig. 22C). Moreover, experimental
observations found that the intensification of these adverse phenomena
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Figure 22: A. Medial disruption phenomena occurred at six months; B. En-
doluminal migration of the polyester mesh at six months; C. His-
tological analysis of the Dacron reinforced pulmonary artery at
10 weeks; D. Reactive fibrosis of the external wall after removed
of the reinforcement at six months; E. Localized calcification of
the media at six months; F. Syntetic reinforcement macroscopic
lesion at six months; G. Thrombus attached to the wall. Macro-
scopic lesion in PA alone explanted at 10 weeks; H. Echocardio-
graphic control of the implant with throumbus.

can bring in a six-month period to an accentuation of reactive fibro-
sis and to the formation of localized calcifications in the tunica media,
as reported in Fig. 22E. Also, the ex vivo examination revealed that
the unfaithful remodeling circumstances predicted by the theoretical
models can bring to the formation of macroscopic lesions, as well as to
pathological thinning of the composite layers. The difference with the
native grown and remodeled aorta clearly appears at six months, as
shown in Fig. 22F.
Echocardiographic and angiographic measurements were taken by two
independent observers blinded in regard to the treatment group. An in-
terrater reliability analysis using the Kappa statistic was performed to
determine consistency among raters. K coefficient was 0.82 indicating
adequate agreement. Echocardiographic and angiographic time points
were assessed at day 0 (D0) and 6 months (M6) postoperatively. Two
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main criteria guided the selection of the time span. The finally weight
of animal fixed at 54±12 kg which might reliably reflect the body mass
of the average human patients normally undergoing Ross operations.
Also, this time period was assumed sufficient to observe a likely defini-
tive growth and thus mature remodelling outcomes. In the PA alone
group, an instantaneous distension of implanted trunk (25±3 mm) was
noted, followed by development of one case of intraluminal thrombosis
at ten weeks (39±3 mm, P<0.001, see Fig. 22G-H). A 56% diameter
increase was revealed with respect to D0 (Fig. 23) and indexed ratio
of 2.5 with respect to reference. In the synthetic reinforcement group,
the graft diameter increased initially to 16±2 mm, but remained stable
at M6 (20±1 mm, indexed ratio 1.05; overall increase 5%, P=0.4).

Advances in biomechanical features, histological and molecular as-
sessments should be used to get a better understanding of the mecha-
nisms underlying the improved use of prosthesis Dacron graft in cardio-
vascular surgery. The unresolved issue are represented by evidence of
the discrepancy between the elastomechanical properties of the grafts
and of the native vessel favoring the worrisome sequelae both locally, at
the anastomotic site, and, retrogradely, in terms of valve dysfunction
and ventricular workload. In this realm, the results of the present study
revealed the following findings: 1) the definition of a “compliance mis-
match” phenomenon is appearing as a potentially important concern in
cardiac surgery and might be responsible of daunting issues, especially
in the long-term follow up of patients; 2) the mismatch between pros-
thetic material and native vessel biomechanical properties results in
a considerable disadvantage determining “tissue incompatibility” that
can exert detrimental effects on the normal efficiency of the pulmonary
autograft; 3) the compliance loss induced by the interposition of an
inextensible grafting at the level of the neoaortic root may impart ex-
cessive stresses on the suture line, leading to dangerous anastomotic
aneurysm. In perspective, starting from this study and by enhancing
the modeling by including at long-term mathematical descriptions of
the biomechanical interaction among vessel growth and remodeling and
syntetic grafts, it is felt that mechanically-oriented strategies can be en-
visaged and helpfully employed to find alternatives to the Dacron poly-
mer structure in the PA transposition through the design optimization
of new polymer-based composed prostheses systems.
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Figure 23: Angiographic controls: A. Non-reinforced group, at D0. B. Rein-
forced group, at D0. C. Non-reinforced group, at M6. Ecochardio-
graphic controls at M6: D. Reinforced group. E. Non-reinforced
group.
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3.1.2 The role of biomechanics in breast implants capsular contracture

Breast Capsular Contracture (BCC) is one of the adverse complica-
tions occurring with greater incidence in breast augmentation surgical
procedure. Its formation (see Fig. 24) can be interpreted as the conclu-
sive phase of the physiological process known as response to a foreign
body. By starting from a biochemical standpoint, the formation of the
peri-prosthesic capsule is certainly a multifactorial process and many
hypotheses concerning its etiology have been developed, as well as a
number of pharmacological protocols have been suggested in Literature.
However, the majority of the proposed theories seems to be only par-
tially supported by clinical data. On the other hand, clinical follow-up
and observed morphological microstructure of capsules with respect to
the overall size of breast implants address the hypothesis that biome-
chanical interactions between prosthesis and host tissue may play a
crucial role in the biological processes governing the phenomenon.

Figure 24: Silicon implant with a peri-prosthesic capsule.

Silicone breast implants have been widely used in both reconstructive
and aesthetic surgery and breast augmentation has become, nowadays,
one of the most frequently performed operations in plastic surgery: it
is estimated, e.g., that more than 1% of the female population in the
only USA has undergone this kind of operation ([134]). After breast
augmentation, many complications may occur, such as double-bubble
deformity, mal-position, breast ptosis, wrinkling and rippling, as well as
hyperanimation deformity, hematoma and seroma. Anyway, the most
common postoperative complication in breast reconstruction and aug-
mentation is certainly the capsular contracture; as well known, this
phenomenon is the formation of a fibrotic capsule around the breast
implant as the conclusive phase of the physiological process known as
response to a foreign body. Although this peri-prosthetic capsule is use-
ful to the primary stabilization of the implant keeping it in its proper
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position in the breast, it frequently contracts around the prosthesis,
generating on its surface an anomalous pressure increase. This process
causes deformity and hardening of the breast, with consequent pain for
the patient; it may appear since the early post-operative period until
some years after the breast augmentation ([218]) and it’s also the pri-
mary reason for revision in breast implant studies, ranging from 15%
to 30%, with up to 50.000 patients treated yearly ([19, 188]). Such far-
ranging statistical data have urged Literature to investigate capsular
contracture etiology suggesting different pharmacological protocols in
order to minimize its incidence and consequences. By starting from a
biochemical standpoint, many hypotheses concerning capsular contrac-
ture etiology have been developed, but the majority of the proposed
theories seems to be only partially supported by clinical data. Capsular
contracture can be regarded as the net result of the interaction among
different factors –such as, e.g., bacteria contamination, tissue trauma,
surgical technique, implant geometry– that ultimately result in a patho-
logic state ([2, 154]), but it’s not clear, at the moment, how and how
much each factor has influence on the origin and the development of this
pathology. Many studies regarding the effectiveness of different drugs
in the treatment or prevention of capsular contracture have been car-
ried out in the last years, but further controlled experiments in humans
are required ([18, 71, 175, 218]). The most applied practiced pharmaco-
logical protocol to prevent this complication is the prophylactic admin-
istering of antimicrobial agents. Indeed, breast pocket irrigation has
been universally recommended for many years; but, since multiple bac-
teria seem to be implicated in the pathogenesis of capsular contracture,
many of the irrigations used by surgeons have been inadequate to give
broad-spectrum coverage against these bacteria ([2]). The remarkable
decrease in capsular contracture achieved with the polyurethane foam-
covered implants and the contemporary questions about the safety of
these kind of devices related to their no longer manufacture drove to
turn out mammary implants with textured surfaces with the aim of
achieving the same favorable outcomes ([59, 134, 211]). What is cur-
rently sure is that any capsular contracture benefit of polyurethane
devices was due to biochemical effects on the capsule and not to the
surface texture ([2]); however there is still a lack of definitive data to
support a real benefit of texturization in regard to capsular contracture
([59, 153]). At the moment, the gold standard for the treatment of this
pathology is a total capsulectomy, which consists of a removal of the en-
tire affected capsule and implant. When treating a contracted capsule,
it is advisable to use a new implant in the affected breast, other than
considering a site change or, in extreme cases, moving the implant to a
fresh pocket ([2]). The will to avoid this kind of complication with so
high economic and clinical impact suggested researchers to explore the
mechanisms at the basis of this pathology, but, up to the present, none
of the proposed studies concern the merely mechanical aspect of the
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problem. Clinical follow-up and observed morphological microstructure
of capsule, with respect to the overall size of breast implants, address
the hypothesis that biomechanical interactions between prosthesis and
host tissue may play a crucial role in the biological processes governing
the phenomenon. To encounter these phenomenological aspect from a
mechanical point of view, an analytical biomechanical model of the fi-
brotic capsule growing around the prosthesis has been developed, with
the aim both of analyzing the mechanical interactions of the two bod-
ies –by evaluating mutual forces exerted across their surfaces– and of
interpreting the role of these forces in terms of the negative outcomes
characterizing the capsular contracture phenomenon. This is pursued
by analyzing by modeling the growth of an elastic homogeneous mass
lying on a spherical substrate, an approach frequently encountered in
literature and formulated by means both of a non-linear and a linear
case (see e.g. the works by Defalias [50] as well as by Araujo and McEl-
wain [12]). The linear approach furnishes from a side a considerable
mathematical simplification and somehow neglects the complexity of
the soft tissue constitutive behavior, but, on the other hand, it may
find particularly helpful in order to interpret from a mechanical stand-
point the phenomenona underlying the adverse outcomes related to the
formation of the periprosthesic fibrotic capsule.

3.1.3 Basic Equations of a linear elastic continuum with growth asso-

ciated deformation

The observed microscopic anatomy of the tissue growing around the
mammary implants ([56, 157, 168]) addressed us to model the fibrotic
capsule like a hollow sphere made of isotropic material growing around
the prosthesis, whose geometry has been considered spherical. In or-
der to define the suitable boundary value problem, the formal analogy
between the thermo-elasticity equations and the ones ruling biological
tissues growth mechanics has been used ([127]), the latter providing a
parallel between thermal and growth-associated inelastic strain. In par-
ticular, the growth of a homogeneous elastic biological material around
a spherical substrate, which is the mammary prosthesis, has been simu-
lated in order to study the mechanical influence of this fibrotic layer in
terms of exchanged forces, both at the (lower) capsule-prosthesis and
at the (upper) capsule-breast interfaces. The kinematics of elastic mass
growth has been addressed in continuum mechanics on the basis of the
well-established multiplicative decomposition of the deformation gradi-
ent F = FeFg, where Fe is the elastic component and Fg the growth
one ([48, 164]), both of them singularly not representing a true gradient.
Given the symmetry of the spherical problem at hand and a linearly
elastic and isotropic constitutive behavior, the classical linear isotropic
elasticity law involving a Green-Lagrange strain measure will be first
employed for describing the effects of small strains. Under this assump-
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tion, the above mentioned decomposition of the deformation gradient
can be reformulated in a way to have an additive decomposition of the
linearized strain tensor into the sum of an elastic and a pure growth
aliquots, in complete agreement with a classical thermo-elastic analogy,
i.e.

E = Ee + Eg = S : σ + g Γ,

E = sym (u ⊗ ∇)
(3.10)

where u ∈ C2 (Ω) is the displacement vector function defined on a
closed subset Ω ⊂ R3, g Γ is a growth strain tensor, with g ∈ R being a
pure volumetric growth strain function and the matrix Γ = Diag {γk}
containing the anisotropic multipliers for each principal direction so
that tr (Γ) =


k γk = 1, whereas σ = {σij} is the Cauchy stress

tensor and S represents the compliance fourth rank tensor. By deriving
the stress tensor σ from equation (3.10)1 and by introducing the elastic
stiffness tensor C = S−1 = 2µI + ΛI ⊙ I (here given in terms of the
Lamé moduli µ and Λ, while I and I are respectively the fourth order
and the second order identity tensors), the constitutive relation and
the quasi-static equations of motions in three dimensions read as

σ = C : (E − Γ g)

∇ · σ = −b,

σ = σT
(3.11)

in which the superscript T denotes the transpose, b the body force
vector and ∇ · (·) is the divergence operator. The Cauchy stress is then
directly connected to the pure elastic strain and, more precisely, it is
usually derived from the well known de Saint Venant-Kirchhoff strain
energy density:

W (Ee) = µtr

E2
e


+

Λ
2 tr (Ee)

2 (3.12)

under the further hypothesis of small strain, with the stress tensor then
resulting σ = ∂W/∂Ee. The direct coupling of compatibility equa-
tions (3.10)2 with both constitutive law(3.11)1 and equilibrium equa-
tion (3.11)2 gives the Navier-Cauchy equations:

µ∇ · (u ⊗ ∇) + µ∇ · (∇ ⊗ u) + Λ∇ (∇ · u) +

− 2µ (∇ · Γ g + Γ · ∇g) − Λ∇g = 0 (3.13)

in which body forces have been neglected. The statement of the
boundary value problem (BVP) also provides the prescription of suit-
able boundary conditions, either by imposing known displacements u in
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Figure 25: The multi-layer hollow sphere model

correspondence of the subset points ∂Ωu ⊆ Ω subjected to constraints
acting along the direction nu (i.e. u · nu = u), or by assigning traction
t on the loaded surface ∂Ωt ⊆ Ω –identified by the normal vector nt–
through the widely known Cauchy’s theorem σ · nt = t.

3.1.4 Capsule-Breast system as a double-layered hollow sphere: ana-

lytic solution and clinical clues

By focusing on a spherically symmetric and quasi-static case, a spher-
ical frame of coordinates {r, θ, ϕ} has been adopted, so that a bilayer
composite hollow sphere has been used to describe the periprosthetic
capsule-brest gland system. More precisely, the entire body volume Ω
can be simply viewed by the union of the capsule region Ω(c) = {r ∈
R+/{0} : R1 ≤ r ≤ R2} and the breast tissue region Ω(b) = {r ∈
R+/{0} : R2 ≤ r ≤ R3}, where the superscripts c and b indicate the
capsule and the breast, respectively, while R1 is the prosthetic capsule
internal radius (coinciding with the implant radius), R2 is the interface
radius that accounts for the capsule thickness and R3 is the external
breast radius (see Fig. 25).

For each hollow spherical layer, the deformation tensor (3.10)2 be-
comes E(i) = Diag


du(i)/dr, u(i)/r, u(i)/r


–the radial displacements

u(i) being function of the sole radial coordinate r– and the the anisotropy
coefficients matrix is written as Γ(i) = Diag


γ
(i)
r , (1 − γ

(i)
r )/2, (1 − γ

(i)
r )/2


.

In order to readily find analytic solutions in the most straightforward
manner, one can introduce incompressibility relations for both the bod-
ies. This imply a modification of the classical Kirchhoff potential (3.12)
by introducing a pressure, say q(i) for each body, which represents a La-
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grangean multiplier for ensuring the constant elastic volume constraint,
then obtaining:

W (i)

E(i)
e


= µ(i)tr


(E(i)

e )2

+

Λ(i)

2 tr

E(i)
e

2
− q(i)tr


E(i)
e


(3.14)

the two pressure then representing classical Lagrange multipliers. As
a consequence, by deriving with respect to the deformation, the Cauchy
stresses in a spherical eigenspace read:

σ
(i)
r = k(i)


1 − ν(i)


du(i)

dr
+ 2ν(i) u(i)

r
−


ν(i) +


1 − 2ν(i)


γ
(i)
r


g(i)


− q(i)

(3.15)

σ
(i)
θ = σ

(i)
ϕ = k(i)


u(i)

r
+ ν(i) du(i)

dr
− 1

2


1 −


1 − 2ν(i)


γ
(i)
r


g(i)


− q(i) (3.16)

where k(i) = E(i)/((1 + ν(i))(1 − 2ν(i))), E(i) and ν(i) are the Young
modulus and the Poisson ratio of each material, respectively. By in-
voking symmetry, a sole non-trivial equilibrium equation dσ

(i)
r /dr +

2r−1(σ
(i)
r − σ

(i)
θ ) = 0 emerges from (3.11)2. Further simplifications can

be introduced by assuming both that the fibrotic capsule undergoes
homogeneous growth, also the anisotropy multiplier γ(c)r being taken
constant, and that the surrounding breast tissue is in a not growing
homeostatic state, i.e. the bulk net growth function g(b) is null. To close
the problem, the method of Lagrange multipliers is applied, so that the
two radial equilibrium equations (above mentioned) result coupled with
the constant volume constraints. In this way an ODE system of four
equations is obtained, the four unknowns being the two displacements
and the Lagrangean pressures. In addition, the BVP also provides the
continuity of displacements and radial tensions are imposed at the in-
terface, while the other boundary conditions are given by prescribing
zero radial stress at the external radius r = R3 and null displacement
at r = R1, in this way assuming the silicon prosthesis as a rigid sub-
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strate (due to the fluid incompressibility). Under these considerations,
after few calculations one obtains:



d
dr


1
r2

d
dr


r2u(c)


= 1−2ν(c)

1−ν(c)


3γ(c)r − 1


g(c)

r +
(1−2ν(c))(1+ν(c))

E(c)(1−ν(c))
dq(c)

dr

d
dr


1
r2

d
dr


r2u(b)


=

(1−2ν(b))(1+ν(b))
E(b)(1−ν(b))

dq(b)

dr

1
r2

d
dr


r2u(c)


= g(c)

1
r2

d
dr


r2u(b)


= 0

u(c)|r=R1 = 0

u(c)|r=R2 = u(b)|r=R2

σ
(c)
r |r=R2 = σ

(b)
r |r=R2

σ
(b)
r |r=R3 = 0

(3.17)
System (3.17) is in this form de facto uncoupled, so that it can be

readily solved analytically in a cascade manner. Solutions were per-
formed by using the commercial computational software Mathemat-

ica®([210]). Displacements are obtained from (3.17)3,4 together with
conditions (3.17)5,6:

u(c) =
g(c)r

3


1 − R3

1
r3


and u(b) =

g(c)

R3

2 −R3
1


3r2 (3.18)

The direct substitution of (3.18) in the first two equations of (3.17)
let the pressures q(c) and q(b) be derived through a direct integration.
It immediately follows that:

q(c) = Q(c) + 2µ(c)g(c)(1 − 3γ(c)r ) log

r

R2


and q(b) = Q(b)

(3.19)
In this way, the stresses within the capsule layer read:

σ
(c)
r = 2µ(c) g(c)

3


(1 − 3γ

(c)
r ) + 2R3

1
r3


− 2µ(c)g(c)(1 − 3γ

(c)
r ) log


r

R2


− Q(c)

(3.20)

σ
(c)
θ = −µ(c) g(c)

3


(1 − 3γ

(c)
r ) + 2R3

1
r3


− 2µ(c)g(c)(1 − 3γ

(c)
r ) log


r

R2


− Q(c)

(3.21)

and, in the breast external shell, one has
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σ(b)r = −4µ(b) g
(c)

R3

2 −R3
1


3r3 −Q(b)

σ
(b)
θ = 2µ(c) g

(c)

R3

2 −R3
1


3r3 −Q(b)

(3.22)

where, in (3.19), (3.22) and (3.20), Q(c) and Q(b) are integration
constants given by:

Q(b) = −
4g(c)µ(b)


R3

2 − R3
1


3R3
3

(3.23)

Q(c) =
4g(c)

3


µ(c)


R1
R2

3
+

1
2


1 − 3γ

(c)
r


+ µ(b)


1

R3
2

− 1
R3

3


R3

2 − R3
1


(3.24)

The linear analysis carried out shows how the growth of the fibrotic
periprosthetic capsule –modeled in terms of an inelastic strain g(c)–
implies the accumulation of a self-equilibrated (residual) stress which
can give some important suggestions for analyzing the biomechanical
reasons underlying the clinically observed adverse phenomena of the
capsular contracture. The deformations obtainable from the displace-
ment functions (3.18), in the light of the linear analysis proposed, sug-
gests a good reliability of the solutions up to a 10 % of growth strain,
this value being then effectively adopted for the present results. A cap-
sule thickness of 3 mm has been assumed, coherently with the most
of the experimental observations. Regarding the material parameters,
an almost incompressible Poisson’s ratio has been used, equal to 0.495
coherently with the majority of the literature works concerning the
study of the breast tissue mechanical properties, as well as the Young
modulus that was set to E(c) = 28 MPa in accord with the averaged
values proposed in literature ([157]). By observing the stress distribu-
tions over the capsule thickness, reported in Fig. 26, it clearly emerges
that the radial stresses arising in the capsule generate a state of com-
pression in the surrounding breast tissue, which can effectively justify
the clinical evidence of painful sensations. The circumferential stresses
–relevant in magnitude with respect to the radial ones in the capsule–
can be directly connected to the hardening of the capsule. Indeed the
phenomenon of contraction is explained in the clinical practice as a
circumferential tightening which acts as a “wrap”, making the implant
feel hard and loose mobility. Also, the combined actions of radial trac-
tions and negative hoop stresses can be involved in the detachment
phenomena observed at the capsule-prosthesis interface, and this par-
ticular conformation can likely concur in determining the wrinkling of
the prosthesis surface, detectable by means of a nonlinear analysis.

The high circumferential compression are substantially independent
from the implant sizes and the capsule thickness (see Fig. 27). Radial
stresses instead exhibit a direct proportionality with the capsule thick-
ness, de facto demonstrating the positive correlation between capsular
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Figure 26: Stresses in the capsula-breast system. The stresses within the
capsula generate a state of compression in the overlying breast
tissue (top). The negative circumferential stress is instead respon-
sible of the capsule hardening. Stresses in the capsula are plotted
by varying the anisotropy coefficient γr.

thickness and Baker clinical score ([155]). Conversely, an inverse pro-
portionality with the prosthesis size suggesting a higher incidence of
capsular contracture in the case of smaller implants.

3.1.4.1 Finite Element-based computational model

Standard round smooth silicone gel-filled breast implants have been
considered. Numerical simulations, implemented by means of the code
ANSYS®([1]), have been carried out by referring to breast implant sizes
ranging from 100 cc to 400 cc, values suggested by surgical follow-
up. In order to create a 3-D model to be used in a FEM context, a
parametric reconstruction algorithm has been defined. We referred to
a standard round gel-filled prosthesis, which has been regarded as a
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Figure 27: Correlation between stress, prosthesis size (ideal spherical model)
and capsular thickness.

Figure 28: Geometrical features of the breast implant reconstruction.

solid of revolution, obtained by rotating the surface S, shown in Fig.
28, around axis y. As shown in Fig. 28, surface S has been described
in a parametric way, where:
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a = (1 − α)p (3.25)
b = D/2 (3.26)
c = p/2 (3.27)
R = (a2 + b2)/2a (3.28)
r = c(a2 + b2)/(b2 − a2) (3.29)
γ = arctan[b/(R− a)] (3.30)
sin γ = b/R (3.31)
cos γ = (R− a)/R (3.32)

Notation is different from that used in the analytical model: p is pros-
thesis projection, b is half diameter, τ is the pathologic capsular thick-
ness, b′ is the x-axis of the center of gravity of circular segment with
basis 2c = αp and radius r. As previously, we assumed τ = 3mm, that
is the average value of the pathologic ones capsular thickness founded
in literature. The geometric symmetry of the problem and the mechan-
ical conditions let us carry out perform FEM analysis on a volume V ,
equal to a quarter of the entire prosthesis, calculated as V = V1 + V2,
where:

V1 =
πa2

4


R− a

3


(3.33)

V2 =
π

2


b

2S1 + b′S2


, (3.34)

b′ = b+ r


cos3 γ

π
2 − γ


− sin γ cos γ − sin γ


(3.35)

where S1 is the surface of the rectangle with basis b and height 2c and
S2 is the surface of the circular segment with basis 2c = αp and radius
r . This custom-made algorithm let us obtain the specific geometric
model for any size of the prosthesis, inputting only the projection p and
the diameter D, values simply available from manufactures web sites.
The element type chosen to mesh the volumes is 8 nodes hexahedral
whit 3 degrees of freedom and linear shape functions for each node. A
very fine mesh (about 100.000 elements) let us to minimize geometric
distortions and structural error energy. Figure BBB shows 250cc half
prosthesis-capsular mesh.

Both the silicone and the capsular tissue has been considered homo-
geneous, isotropic and linear elastic materials. We set E(c) = 28MPa
as the average value founded in Literature for pathologic status ([157])
and E(s) = 3MPa ([46]); both silicone and capsule has been considered
near to be incompressible. The formal analogy between equations rul-
ing growth and thermo-elasticity has been used again, so linear quasi-
static thermo-elastic analyses have been carried out. We set a ther-
mal load |∆T | = 10°C and the thermal dilation coefficient was set to
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Figure 29: A half 250 cc prosthesis-capsular mesh

βT = 0.01[T−1], in order to obtain a volumetric contraction of the
capsular tissue of about 10%. Capsule thickness was still equal to 3
mm. In particular, the inverse proportionality of the interface average
stress with the prosthesis size has been confirmed also by looking at
the numerical results (Fig. 30), which let to obtain a more faithful
geometrical description.

Thermo-growth analogy

It is here briefly reported (for a spherically symmetric case) the direct
comparison between the thermoelastic constitutive equations and the
stress-strain relationship including a growth-associated term, in order
to highlight the substantial analogy between thermal and growth in-
duced deformations, i.e. Aϑ ↔ Γg, with ϑ and A respectively denoting
the temperature scalar field and the thermal dilatation coefficient ma-
trix:

σr =
E

(1+ν)(1−2ν) [(1 − ν) εr + 2ν εθ − (1 + ν)αr ∆ϑ]

σθ =
E

(1+ν)(1−2ν) [εθ + ν εr − (1 + ν)αθ ∆ϑ]
ρ c
kϑ

∂ϑ
∂t +

ϑ′ β
kϑ

∂(εr+2εθ)
∂t = 1

r2

∂(r2ϑ)
∂r +Qϑ

(3.36)


σr =

E
(1+ν)(1−2ν) [(1 − ν) εr + 2ν εθ − γrg]

σθ =
E

(1+ν)(1−2ν) [εθ + ν εr − γθg]

∂g
∂t = G (g, σ)

(3.37)
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Figure 30: Medium capsular pressure versus size

It is worth noting that the full analogy provides also the introduction
of a evolutionary growth counterpart of the well-known Fourier’s heat
equation (3.36)3. Equation (3.37)3 then represents a scalar equation (or
a system) coupled with the mechanical problem in order to determine
the evolution of the growth term g.
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3.1.5 Volterra-Lotka equations to predict BMU remodelling

Bone is a complex tissue that, as the most of living tissues, is being
dynamically subjected to repair and synthesis processes throughout
an individual’s life [219]. These processes of continuous rebuilt and re-
pair are known to affect bone tissue mechanical response. For example,
among the several theories focusing on bone mechanics, Cowin and
Hegedus’s theory of adaptive elasticity [47] provides that bone tissue
elastic constants are weighted by the volume fractions, which accounts
for the tissue porosity and also enters as a key variable into bone-
implants optimization procedures (see for example Fraldi et al. [62]).
The macroscopic mechanical properties of bone tissue are determined,
at the cell scale, by the continuous activity of different type of cells, re-
sponsible of resorbing and synthesizing new bone matrix constituents,
also in response to mechanical signaling, such as local microstrain [81],
stress concentrations and microdamage [73].
The process by which bone adapts its internal microstructure and sub-
sequently changes its mechanical properties in relation to the specific
mechanical and physiological environment is denoted as bone remod-

elling cycle. As anticipated, bone remodeling consists of two leading
sub-processes: the resorption of old bone and the formation of new bone.
At the cellular level, the former is performed by osteoclasts (OCLs),
multinuclear cells of hematopoietic origin, while the latter is carried
out by osteoblasts (OBLs), which are mononuclear cells of mesenchy-
mal origin ([219]).
Therefore bone remodelling can be interpreted as the result of the inter-

action of different cellular species forming the BMUs (“Basic Multicel-
lular Units”). The whole process is regulated by the opposite actions of
the two aforementioned cell species. Osteoclasts excavate a resorption
space that is subsequently filled with new bone tissue by osteoblasts.
In cortical bone osteoclasts dig tunnels through solid bone while in tra-
becular bone they dig trenches across the trabecular surface, while os-
teoblasts fill these resorption cavities creating osteons and hemi-osteons
respectively, which are aligned to the dominant loading isostatics. As
a result bone tissue is continuously broken down by osteoclasts and
rebuilt by osteoblasts and a well-known macroscopic evidence is that
bone tissue fibres are oriented in the meaning loading directions (Wolff’s
laws); so, it can be hypothesized that mechanical signaling regulating
bone macroscopic properties de facto directly orients cellular activity.
The biochemical coupling factor between osteoclast resorption and os-
teoblast remodelling is then assumed to have a mechanical origin, and
recent studies showed that metabolic process is controlled by osteo-

cytes (OCYs), that are the most abundant species in bone tissue with
respect to the transient recruitment of OCLs and OBLs. Osteocytes are
mature and differentiated osteoblasts that have been embedded within
the bone matrix after the bone formation phase. These cells present de-
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velop cytoplasmic processes which run through the canaliculi and form
a communication network that can convert mechanical signals into bio-
chemical signals ([77]), so playing a fundamental role. In fact, Han et
al. ([81]) have shown from a mechanical standpoint that the role of os-
teocyte mechanotrasduction overcomes a precedent paradox according
to which bone tissue microstrain was too small to initiate cellular re-
sponse, since the osteocytes tethering elements excitation amplifies the
locomotion strain signal and allows to achieve an adequate signaling
threshold to kindle the BMU remodelling cascade. From a biochemi-
cal viewpoint, mechaotrasduction induce osteocytes to secrete growth
factors that stimulates bone tissue synthesis, as well as the inhibitory
factors able to stop the latter activity. Consequently, osteoblasts are
enhanced by these signals and bone formation occurs in the loaded di-
rections, while osteoclast resorption is triggered by the lack of them,
due to disuse or microcracks in the canicular networks. The result is
that packets of bone are removed where demand is low and new bone
is formed where mechanical strains/stresses are sufficiently detected.
This also permits the restoration of micro-damages caused by fatigue
and shocks.

3.1.5.1 The phases of BMU remodelling

In bone remodeling, bone formation succeeds the osteoclastic bone re-
sorption, so that resorbed lacunae are alternately filled with new bone
matrix ([132]). In this sense bone remodelling connotes as a cyclic phys-
iological process, orchestrated by the complex interplay of the three cell
types previously presented. BMU communication occurs by means of
opportune autocrine signaling (i.e. communication among cells of the
same type) and paracrine signaling (communication among cells of dif-
ferent types). More precisely, this “cycle” consists of activation, resorp-
tion, reversal, and formation phases ([132]). In brief, the development
of a single BMU in the bone can be summarized as follows ([169]):

• Initiation and Resorption. Initially, from 10 to 20 osteoclasts are
recruited to the initiation site and resorb the old bone tissue.
This phenomenologically occurs in response to different stimuli,
such as underload (due to disuse), microcracks generation, low
calcium levels and other hormonal alterations. At the single-cell
level, early OCLs hematopoietic progenitors differentiate to os-
teoclasts when receive opportune signals from stromal support
cells, that belong to the osteoblast lineage [103]. These stromal
cells express macrophage-colony stimulating factor (M-CSF) and
RANKL, which act via their respective receptors (c-fms and RANK)
on osteoclast progenitors to promote their differentiation. Stromal
cells also secrete osteoprotegerin (OPG) which binds to RANKL
and thus inhibits osteoclasts by lowering the RANK/RANKL
binding formation. OPG would thus act to promote osteoclast
death, and active osteoclasts have a life span of about ten days
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([169]). During the whole resorption phase, OCLs aggregate into
a well-confined zone, called cutting cone. Dead cells are contin-
ually replaced by new ones so that the population size remains
approximately constant.

• Transition or reversal. Bone formation takes place exclusively in
sites when bone resorption had previously occurred [103]. The
recruitment of OBLs is then attributed to the release of coupling

factors from the bone matrix during resorption disarrangement.
Therefore, the presence of OCLs stimulates osteoblast precur-
sors to differentiate into active OBLs. Activation of OBLs down-
regulates OCls via OPG/RANKL pathways, and so OCLs un-
dergo apoptosis in Bim/caspase-3 manner. Formation and min-

eralization. Up to 1000-2000 OBLs ([169]) are responsible of fill-
ing resorbed trench with new bone (closing cone). Furthermore,
osteoblasts are much less efficient than osteoclasts, and the bone
formation takes roughly 10 times longer than the resorption. Fi-
nally, the new formed bone matrix mineralizes and OBLs either
undergo apoptosis or differentiate into osteocytes. Approximately,
BMU activity can take from 100 to 200 days ([58]). After activa-
tion (approximately 8 days), osteoclastic resorption is completed
9-34 days. Reversal and coupling period takes about two weeks,
while less efficient osteoblasts fill the caniculi in a period between
60 and 130 days ([16]).

All these considerations let to describe the biological phenomenon of
bone remodelling by introducing competitive Volterra-Lotka model, in
which bone cells and bone matrix are identified with the “populations”
taking part into the system at hand, and the corresponding rates model
the BMU activity. In particular, the focus is on the modelling of OCLs,
OBLs and bone matrix. Each equation will present coupling terms,
which are positive or negative according to the biology of the process.
In fact, following the present analogy, resorbing osteoclasts can be seen
as “predators” of the bone matrix and are simultaneously inhibited
by the OBLs during the transition phase (and thus negatively coupled
with them). On the other side, OBLs rate are positively affected by the
previously described communication with OCLs, but OBLs cells are
also progressively preyed by the bone tissue, since some of them are
embedded within the deposed matrix. Naturally, mass does not have
an intrinsic activation coefficient and its rate will be given by the bal-
ance between OCLs resorption activity and OBLs formation.
Furthermore, in order to directly take into account the strain-dependent
behavior of the remodeling rate, suitable coefficients have been intro-
duced to simulate the activation process of both OBLs and OCLs driven
by the osteocytes mechanical signaling. It has been in fact experimen-
tally observed that mechanical stimulation outside a certain physiolog-
ical window, i.e. under disuse and overloading, affects the apoptosis of

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



3.1 representative examples 89

osteocytes, which exhibit a “U-shaped” survival response to mechan-
ical loading ([207]). More precisely, it was observed that osteocytes
apoptosis was significantly high before 1000µε and over 5000µε, and
very low within this range ([146]). In our elemental model, this char-
acteristic can be used to reproduce the BMU cells activation, in this
way regulating their action on bone matrix on the basis of the tissue
resident strain (that is supposed assigned). This is done by means of
two suitable strain dependent functions which act in order to maximize
OBLs recruitment in the central window, as well as to enhance OCLs
resorption in the non-physiological loading windows. The system in its
general form then reads:

ẋ = F (ε, ε1, ε2,x) (3.38)

where the vector x collects the species and the way they interact, while
mechanical-driven recruitment is taken into account through cells ac-
tivation coefficients and is a function of the levels of the deformation
experienced at the the cell level [81], and is based on the threshold
behavior analyzed by
[207], with ε1 and ε2 denoting such micro-strain thresholds. Further-
more, each species xi represents the species density opportunely nor-
malized with respect to a reference value, i.e. xi = ρi/ρ∗

i . In the light
of the interactions described, the explicit system actually results:


ẋobl (t) = (r1 (ε, ε1, ε2) − a11xobl (t) + a12xocl (t) − a13xb (t)) xobl (t)

ẋocl (t) = (r2 (ε, ε1, ε2) − a21xobl (t) − a22xocl (t) + a23xb (t)) xocl (t)

ẋb (t) = (a31xobl (t) − a32xocl (t) − a33xb (t)) xb (t)
(3.39)

with the activation rate r1 and r2 respectively being modeled as

r1 = r10

(1 + e−µ1(ε−ε1))−1 − (1 + e−µ2(ε−ε2))−1


(3.40)

r2 = r20

1 − δ


(1 + e−µ1(ε−ε1))−1 − (1 + e−µ2(ε−ε2))−1


(3.41)

where r10 and r20 denote the differentiation rate of OBLs and OCLs
precursors, respectively. The solutions of the proposed system gives
information about the cooperation of the cells activity during the re-
modelling process, in terms of development of bone density which is
formed or resorbed, as well as the time sequencing related to the al-
ternation of the several phases of the BMU cycle, as shown in Fig. 31.
In particular, at low microstrain OCLs are recruited in order to re-
sorb the unloaded material, as well as at excessively high microstrain
prone to damages. In these two situations, the stable equiblibrium for
the system is represented by the state which provides the bone matrix
extinction see Fig.32. For a physiological value of microstrain, in corre-
spondence of which BMU cycle is activated for promoting bone tissue
remodelling, the BMU cycle phases can be clearly recognized (Fig. 31)
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by noticing the alternation of the OCLs resorption period with the
(longer) OBLs formation period, until the process tends to quiescence
with an increased bone matrix density. Of course, this solution pro-
vides the coexistence of the three species, and therefore the stability
of the solution will be guaranteed in correspondence of the respective
equilibrium point (Fig.32).

Figure 31: Bone remodelling dynamics obtained from the numerical sim-
ulations. Cells number and bone density have been scaled;
r10 = 0.4 d−1, r20 = 0.9[122, 207], a11 = 0.02 d−1[28],a12 =
0.075 d−1, a21 = 0.19 d−1[219], a22 = 0.01 d−1[169], a31 =
0.0012 d−1, a32 = 0.01 d−1[169, 170],a33 = 0.00025 d−1,
ρ∗
b = 1.75g/cm3[123], ρ∗

ocl = 400 cells/mm3, ρ∗
obl =

20000 cells/mm3[97].

Naturally, bone remodelling might strictly depend upon the spatial
distribution of the strain within the bone tissue. However, this simple
example let to highlight the dynamics underlying the BMU cycle itself
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Figure 32: Analysis of the local stability of solutions in correspondence of
the equilibrium points related to non-physiological (black) and
physiological (red) stimuli.

in order to propose a way to couple adaptative elasticity-based algo-
rithm (that focus on a higher scale) with a suitable remodelling rate,
which can be determined on the basis of the knowledge of inner the
cells dynamics. This let to have resorption in hypo-loaded regions as
well as bone matrix production in densely loaded regions and obtain a
synthetic index of bone mass fraction.
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Part III

C O U P L E D M O D E L L I N G

This part is dedicated to the analysis of biomechanical prob-
lems in which growth and remodelling phenomenological
equations are in direct coupling with solid mechanics. In
this way, all the interactions describing the influence of the
mechanical environment on cells activities and, vice versa,
the effects of growth and remodelling on the mechanical re-
sponse of the biological material are simultaneously taken
into account through a full coupled strategy.
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4
T H E “ W E A K ” C O U P L I N G

The so-called weak coupling is referred to the modelling of biomechan-
ical problems in which growth and remodelling are explicitly included
with the aim of analyzing growth-induced stresses and deformations,
by opportunely deriving ad hoc constitutive assumptions. This is often
done by means of kinematical equations describing the two processes
in a phenomenological way, for example by adopting specific evolution
models whose parameters are calibrated on the basis of experimental
observations. The following sections are dedicated to the application
of this modelling strategy to the problem of effects of growth and re-
modelling of vessel structures in vascular diseases and surgical practice,
demonstrating that they can be strictly correlated to the mechanical
alterations in a non-physiological environment. This is done by means
of a hyperelastic material model in which both growth, remodelling
and their mechanical counterpart have simultaneously been taken into
account, this interactions also opening to further considerations about
the role that the the communication between mechanical and physio-
logical events has in determining positive (or either adverse) outcomes,
as well as in driving the cooperation between biological and synthetic
prosthesis materials.

4.1 biomechanics meets ross operation in cardiovas-

cular diseases

Ross operation, i.e. the use of autologous pulmonary artery to replace
diseased aortic valve, has been recently at the center of a vivid debate
regarding its unjust underuse in the surgical practice. Keystone of the
procedure regards the use of an autologous biologically available graft
which would preserve the anticoagulative and tissue homeostatic func-
tions normally exerted by the native leaflets and would harmoniously in-
tegrate in the vascular system, allowing for progressive somatic growth
of aortic structures.
Since the introduction in 1967 of Ross Operation in the cardiac surgery
scenario, the PA represented a valuable substitute for both congenital
and acquired disease of the left ventricular outflow tract in children
and young adult [167, 189, 196]. Accumulating evidences suggest that
the advantages of the PA are related to the ability to match the so-
matic growth of cardiovascular structures in pediatric surgery and to
the avoidance of life-long anticoagulation [141, 142]. Conversely, the re-
ported incidence of PA dilatation without loss of integrity of the leaflets

95
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Figure 33: A. Scheme of the implantation of a cryopreserved pulmonary
artery homograft into the discending aorta. B,C,D. Concept and
design of composite semiresorbable armored bioprosthesis. The
specific design of the GORE-TEX auxetic armor will allow mul-
tidirectional growth and resistance to abnormal dilatation (B:
Initial implantation, C: Intermediate phase, D: Complete devel-
opment).

among patients undergone to Ross Operation ranges from 20 to 40%.
The consequence is PA regurgitation that might lead to severe left
ventricular dysfunction in the long-term follow-up of persons who had
surgery for congenital and acquired heart disease [53]. In order to over-
come these issues and design an ad hoc system capable of both allowing
somatic growth and providing mechanical sustain to the PA-vessel, a
composite reinforcement constituted of a resorbable scaffold ([145, 187])
and a e-PTFE armor has been introduced in Ross procedure (see Fig.
33). In order to reproduce the clinical scenario in which this procedure
might be applied and allow the development and testing of different
devices or techniques aimed to improve the pulmonary autograft (PA)
performance, a large animal model was successfully pioneered, by per-
forming Ross Operation in a statistically significant court of growing
lambs.

Therefore, to support and supplement the in vivo animal experimen-
tation and to investigate the impact of this new device on mechanisms
of growth, remodelling and stress shielding of the reinforced PA, a
mathematical model has been developed, simulating the biomechani-
cal changes of pulmonary artery subjected to systemic pressure load
and reinforced with a combination of resorbable and auxetic synthetic
materials. The positive biological effects on vessel wall remodeling, the
regional somatic growth phenomena and prevention of dilatative de-
generation have been analyzed. The theoretical outcomes show that a
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Figure 34: Left (top): Sketch of the main biomechanically relevant features
of the pulmonary autograft and the reinforcement. Right (top):
Nominal (first Piola-Kirchhoff) hoop stress versus circumferential
stretch in artery and vein-like materials. Left (bottom): elastic
reaction pressure against external vessel radius dilation exhib-
ited by GORE-TEX auxetic reinforcement during pulmonary au-
tograft growth and deformation. Right (bottom): in-time mass
degradation of bioresorbable polydioxanone (PDS) structure.

virtuous biomechanical cooperation between biological and synthetic
materials takes place, stress-shielding guiding the physiological arteri-
alization of vessel walls, consequently determining the overall success
of the autograft system.
The application of principles of tissue engineering through the use of
bioresorbable materials is increasingly considered an attractive and
valid alternative for cardiovascular structures replacement ([184]). Spe-
cific studies have been also focused on the development of drug-releasing
vascular bioresorbable prosthesis able to ameliorate and accelerate pro-
cesses of endothelialization and vascular regeneration using manufactur-
ing techniques which allow for both a permissive action on the biology
of the vessel ([185]) and the realization of graft able to bear significant
hemodynamic loads ([35]).

In particular, the PA composite reinforcement enveloping the arte-
rial walls (intima, media and adventitia) is constituted by a biodegrad-
able scaffold made of polydioxanone (PDS), integrated with an external
GORE-TEX weave (expanded polytetrafluoroethylene, e-PTFE) whose
structure is characterized by a negative Poisson’s ratio (see Figure 34).
In particular, it might reliably speculate that the temporary interac-
tion between the bioresorbable reinforcement and the PA might have
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orchestrated a complex process of vascular remodelling based on a bal-
ance between inflammation and extracellular matrix production result-
ing, after biomaterial resorption, in an arterial-like vessel still biolog-
ically alive and capable of growth ([187]). Indeed, the biomaterial on
a side accompanied and accelerated the naturally occurring pressure-
load adaptation phenomena attenuating the pressure load exerted on
the pulmonary artery and compensating the tendency to dilation pre-
venting aneurysmal degeneration, but on the other, still permitted and
respected somatic growth of vascular structure over time ([145]). The
observations discussed by ([92]) concerning the differential potential
of dilation at the various segments of the aorta, i.e. annulus, Valsalva
sinuses (0.5 mm/year) and sinutubular junction (increase of 0.7-0.9
mm/year), outlined the need to study the biomechanical changes of
pulmonary artery reinforcements in their different parts. This induced
to reconsider their design with the aim to better adapt to the nor-
mal physiology of the aortic root improving the resistance of the zones,
which are meant to majorly suffer from dilatative degeneration. The
mechanical stress associated to progressive overstrain of the pulmonary
artery under systemic pressure might in fact affect PA integrity and the
endothelialization process ([186]); therefore, in this context, prevention
of the graft stretching is crucial.
The biomechanical response is then studied to validate the in vivo re-
sults and overcome some unresolved surgical issues of growth and re-
modelling of pulmonary arteries subjected to systemic pressure, and
to thus analyze the effects of an innovative prosthesis system realized
by combining resorbable and auxetic synthetic materials. The proposed
biomechanical model seems to provide the positive effects of the synergy
of these two synthetic materials, that accommodate mechanical loads
guaranteeing graft integrity, controlling the progressive graft dilation,
allowing regional somatic growth and preventing dilatative degenera-
tion ([126, 159]).

4.2 details of the experimental animal model

The experimental model of transposition of the pulmonary trunk as
autograft in aortic position has been developed and performed under
cardiopulmonary bypass in 20 growing lambs ([141, 142, 144]). Tech-
nical and anatomical issues imposed reimplantation of the PA in the
descending aorta, with the pulmonary trunk being replaced by a homo-
graft from another lamb of the same age and weight. The age of the
animals at the moment of the implant was 2 month (8-10 weeks) and
baseline mean weight was about 21±3 kg, allowing to observe the pro-
gression of the autograft diameter during the period of fastest growth.
Morphometric and cardiovascular parameters were comparable preoper-
atively among animals. There were no difference in haemoglobin levels
and ventricular function. The group of 20 lambs was divided into two
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subgroups: a control group (n=10), subjected to ordinary PA transpo-
sition, and a group of 10 animals in which the PA was reinforced with
an external synthetic semiresorbable armored scaffold (prosthetic). All
animal experiments have been performed in respect of the guidelines
for animal care and handling and the protocol was approved by the
institutional animal care committee.

Semiresorbable copolymer scaffold. The experimental design of the
device consisted of an internal bio-resorbable scaffold made with Poly-
dioxanone (PDS), arranged in a frame of hexagonal cells, externally
coupled with a non-resorbable layer of e-PTFE, having an auxetic be-
havior. The mesh structure and arrangement were specifically designed
in order to constrain the excessive enlargement of the vascular graft di-
ameter by also absorbing wall mechanical stress, while accommodating
its natural longitudinal growth by embracing the root of the aorta. For
this purpose, the unit cells of the PDS and e-PTFE plies have been
respectively positioned as sketched in Figure 35.

Surgical Model. Lambs were premedicated with ketamine (25mg/kg
via intramuscular injection) and anesthesia was guaranteed by the injec-
tion of sodium thiopentothal (6-8mg/kg) via the internal jugular. An-
imal received 100mg of lidocaine intravenously as prophylaxis against
rhythm disturbance. After endotracheal intubation, ventilation was pro-
vided up to animal awakening and the anesthesia was maintained with
inhalation isoflurane (1% to 2.5%). The electrocardiogram was moni-
tored and chest was prepped and shaved. The heart was approached
via left thoracotomy. After opening the pericardium, the right atrium
was exposed for cannulation and the trunk of the pulmonary artery
was dissected free from its right ventricular origin up to its bifurca-
tion in the pulmonary arteries. The same was done for the descending
thoracic aorta and a region distal to the portion of choice for the PA
transposition was cannulated. Approximately 8cm of the descending
thoracic aorta was left for clamp positioning and to perform the anasto-
mosis with the pulmonary artery trunk under optimal conditions. Hep-
arin (3mg/kg) was administered intravenously, and cardiopulmonary
bypass was started between right atrium and descending aorta. The
cerebral circulation of the animal was guaranteed on a beating heart.
A 3cm tract of pulmonary artery trunk was transposed into the de-
scending aorta with an end-to-end anastomosis in 5-0 prolene. A fresh
pulmonary artery homograft, explanted from animals sacrificed on the
same day for another experimental study, was inserted to reconstruct
the right outflow tract, with a proximal and distal end-to-end anasto-
mosis in 5-0 prolene, as in the Ross operation. Left thoracotomy was
closed and aspiration drainage left in place. Before implantation, in
the experimental group the PA has been reinforced with PDS and e-
PTFE meshes according to the study design. The resorbable mesh was

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



100 the “weak” coupling

prepared at the operative table (time 10±2 min). Meshes used in this
study were cut into a rectangle measuring 20mm in height matching
with the height of autograft and rolled out on a metallic candle and
then reassured by a suture to create a cylinder with an internal diam-
eter of 10mm (20mm in height in 10mm diameter directly adherent to
the PA). The autograft was then inserted into the fibrillar cylinder and
was anastomosed suturing both its margins and those of the prosthetic
structure to the pulmonary autograft trunk. The mesh was oriented to
allow maximal extensibility in the longitudinal direction and minimal
transverse extensibility. The principal stages of the implant in situ de-
ployment are reported in Fig. 33B,C,D. All animals survived to the
procedure and did not experience surgical complications. A case of PA
initial rupture and thrombosis occurred at 6 months follow-up in the
control group, without causing animal decease. Procedure did not pose
particular technical challenges. At 6 months the lambs weight was dou-
bled ( 21±3kg at day 0 and 55±10kg at 6 months) suggesting a normal
growth process. The animal model was mainly focused on the develop-
ment of an effective and reproducible model of pulmonary autograft
transposition into arterial system with the aim to study the behavior
of the autograft and develop suitable strategies to prevent its future
dilation, which represents one of the major drawback of this operation.

4.3 mathematical modelling

4.3.1 Nonlinear mechanics and growth of blood vessels

In the last decades, biomechanical behavior and mechanobiology of
cells, tissues and organs have been intensively investigated, with the aim
of discovering key feedback mechanisms governing the ways in which
cascades of chemical signals are transmitted within the hierarchically
organized living structures and interplay with physical events at differ-
ent scale levels ([66]). Continuum Mechanics has deeply contributed to
develop this research area and to meet related challenges, by mainly
creating the physically and mathematically consistent ground on which
large deformation, stresses, evolving constitutive laws, growth, remod-
eling and morphogenesis do interact ([10],[46],[89]).
Within this framework, by essentially starting from an approach pro-
posed by [90] and [91] in some recent milestone works on biomechanics
of arterial walls, it is here constructed an ad hoc non-linear mathemat-
ical model for PA, by incorporating tissue growth, remodeling, large
deformations and hyperelasticity.
Going in medias res, let us consider the body B(0,0) in its reference
stress-free configuration, with dV0 indicating its volume elements and
X the position of each material point. The evolution of the elastic body
can be entirely described by the motion vector x = x (X, t) that maps
the material points X ∈ B(0,0) onto spatial points x at any time t
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through the definition of the deformation gradient F defining an appli-
cation between the two tangent spaces. This deformation gradient can
be written by also accounting compatibility with the body particles
displacement field u (X, t) ∈ C 2(B(0,0)) as:

F = ∇Xx (X, t) = I + u (X, t) ⊗ ∇X (4.1)

where ∇ is the nabla operator (the subscript indicating the space to
which it is referred), while ⊗ is the dyadic product. It is standard ar-
gument to consider the deformation gradient as composed by different
aliquots, respectively responsible of growth, elastic load-induced defor-
mations and residual stress-associated stretches. The most common
structure adopted to describe these contributions is a multiplicative
decomposition in a way that F = FeFg (see e.g. [164]): herein Fg rep-
resents a volumetric growth tensor and Fe the elastic tensor ensuring
compatibility and taking into account both elastic load-induced defor-
mation and residual stresses1.
As a matter of fact, the presence of self-equilibrated stresses can be
traced if, after cutting out a ring from a blood vessel tract, it contracts
(or dilates) along the cylinder generator to release the elastic energy
associated to axial stresses and/or if a nonzero opening angle α is mea-
sured after cutting the cylindrical ring along its generator to relax hoop
stresses ([69, 91]). Material points X are then mapped through the ref-
erence configuration towards first non-compatible grown intermediate
configuration Btg in which they occupy position xg (X, t) ∈ Btg and then
onto the current loaded configuration B(t,s), being here denoted by the
position vectors x (X, t) (see Figure 35).

In this configuration, t denotes the ordinary long timescale that fol-
lows the growth process (which is of the order of days or months),
whereas s indicates the short timescale at which typically mechani-
cal equilibrium is reached. Also, volume elements in these configura-
tions are dVg = JgdV0 and dv = JedVg = JdV0, with Jg = det Fg,
Je = det Fe and J = det F = JgJe, respectively. Coherently with ex-
perimental observations, the body is assumed to be elastically incom-
pressible, so that Je = 1 and dv = dV g or J = Jg; this also implies
that density ρ does not change, growth being purely volumetric ([127]).
The evolution growth equation then represents a kinematic relation for

1 From a rigorous mechanical point of view, the term "residual stress" –although widely
used in the Literature– is often incorrectly adopted: in fact, in absence of applied
loads, before to ideally (and suitably) cut a grown material, the stress kindled within
the tissue as a result of the inhomogeneous growth is "self-equilibrated" rather than
"residual" ("remaining"), while –after cutting an inhomogeneously grown material–
a "stress-free" (deformed) configuration is recovered rather than a "residual stress."
The adjective "residual" is hence erroneous in the first case and ambiguous in the
second, because suggests that one can find residual stresses after cutting a (grown)
material, while on the contrary a "stress-free" deformed configuration characterized
by "residual (inelastic) strain" is actually found. This is the reason for which, in the
present work, the terms "residual strain", "self-equilibrated (residual) stress" and/or
"stress-free deformed state" have been preferred.
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Figure 35: Sketch of the biomechanical model of reinforced pulmonary au-
tograft under aortic systemic pressure including ab origine self-
equilibrated (residual) stresses, growth, remodeling and elastic
deformation.

the body elementary growing volume; in particular, by introducing a
growth volumetric source (and sink) term rg, under the assumptions of
no mass fluxes and constant density ρ (which implies a pure volumetric
growth), the mass conservation for the elastically incompressible body
(i.e. Je = 1) can be expressed by:

d

dt
(dm) = rgdv (4.2)

In order to describe the growth behavior of the experimental ani-
mal models and reproduce the effects of the physiological growth on
the stresses in vessel walls, a logistic rate form will be assigned to the
source (or sink) term rg. Mass fluxes have been neglected, and the hy-
pothesis of constant density leads to:

J̇g =
1
ρ
Jgrg, or F−1

g : Ḟg = rg (4.3)

where dot denotes the material time derivative and rg = ρ−1rg ac-
counts for the mass supply/removal due to the growth process which
describes how the body evolves. In general, the growth may depend on
different factors, such as the availability of metabolic energy needed for
activating the biological process ([69, 201]) and other internal condi-
tions, defining the type of interaction among biomaterial constituents
and in situ stresses, that is known to inhibit (or eventually enhance)
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selected cellular processes at the basis of the growth mechanisms ([6]).
In addition, due to axis-symmetry of geometry and loads of the prob-
lem at hand, the growth is also expected to be symmetrical and the
growth tensor can be thus taken in diagonal form:

Fg = Diag


J

1−ζ
2

g , J
1−ζ

2
g , Jζg


(4.4)

ζ being a coefficient deputed to catch possible tissue growth anisotropies
along the longitudinal direction and in the vessel cross-section plane.
By neglecting inertia terms, balance of linear momentum can be writ-
ten by making reference to both unstressed and current (grown and
elastically deformed) configurations as follows (see e.g. [46])

∇X · P = −b̂, ∀ X ∈ B(0,0) (4.5)
P · N = t̂, ∀ X ∈ ∂B(0,0) (4.6)

or

∇x · σ = −b, ∀ x ∈ B(t,s) (4.7)
σ · n = t, ∀ x ∈ ∂B(t,s) (4.8)

where b and b̂ respectively represent the body force vector in the
current configuration and its pulled-back version, analogous arguments
being applied, by recalling the Nanson’s formula, for geometrically in-
terpreting tractions t and t̂, as well as the outward normal vectors N

and n to the body surfaces, in the reference and current configurations.
In (4.7) σ (x, t) represents the Cauchy stress, while P (X, t) is the first
Piola-Kirchhoff (or nominal) stress, these two second order tensors –
which coincides under small deformations– being related to each other
through the Piola transform:

P = JσF−T (4.9)

Furthermore, in order to faithfully reconstruct the biomechanical con-
stitutive behavior of the vessel, the strain energy density ψ is here
considered as a function of the elastic deformation tensor Fe and of
a vector γ containing nγ remodeling parameters describing the aver-
age microstructural changes occurring at the material particles as a
consequence of growth and deformation processes. Hence, by following
the approach proposed in [149], the total elastic energy referred to the
initial configuration takes the form:

Ψ =


V0

Jgψ (Fe,γ)dV0 (4.10)

with V0 = measure(B(0,0)).
To obtain the specific constitutive laws involving the Piola-Kirchhoff
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stress and the growth and remodelling conjugate forces, the dissipation
principle has been written down by essentially following the approach
by [127] and [149]. In particular, under the hypothesis of isothermal
process, the balance of energy can be written by taking into account a
contribution to the growth which represents a metabolic energy supply
per unit mass, say εg, and a vector of driving forces k responsible of the
remodeling-associated microstructural changes. In this way one finally
obtains:

d

dt


V
ρ

1
2v · v + u


dv =


V


ρ
d

dt

1
2v · v


+ σ : d + k · γ̇


dv+

+


V
rg

1
2v · v + u


dv+


V
εg rg dv (4.11)

u and V being the internal energy per unit current mass and the
current volume measure, respectively. Also, v is the velocity vector
and d = sym(ḞF−1) is the symmetrical velocity gradient, the other
quantities σ and γ̇ defining the Cauchy stress tensor and the rate of
the remodeling parameters vector, as also specified in the main text.
By using (4.2), the balance of energy (4.11) reduces to:


V
ρ
du

dt
dv =


V
(σ : d + k · γ̇) dv+


V
εg rg dv (4.12)

The total internal dissipation per unit initial mass can be instead
accounted by introducing two thermodynamic forces fg and fγ , respec-
tively conjugated to the rates rg and γ̇: in such a way the rate of
dissipation is written down:


V
θ
ds

dt
ρ dv =


V


fg ρ

−1rg + fγ · γ̇

dv (4.13)

where s is the entropy per unit current mass and θ is the absolute
temperature. The second law of thermodynamics requires the right
side of (4.13) to be non negative. By combining the energy equation
(4.12) and the entropy equation (4.13), the free energy per unit volume
ψ = ρ (u− θ s) can be thus obtained as a function upon the elastic
deformation Fe and the remodeling parameters γ, as also established
in (4.10). At the end, it results:

d

dt


V
ψ dv = (4.14)

=


V


σ : d +


k − fγ


· γ̇ + (ρεg − fg) ρ

−1rg

dv

or
d

dt


V0
Jgψ dV

0 = (4.15)

=


V0


P : Ḟ + Jg


k − fγ


· γ̇ + (ρεg − fg) J̇g


dV 0
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V0 denoting the referential volume. By means of the localization
theorem and exploiting the deformation multiplicative decomposition
F = FeFg one has:

Jg
∂ψ

∂Fe
: Ḟe + Jg

∂ψ

∂γ
· γ̇ + ψJ̇g = (4.16)

= PFT
g : Ḟe + FT

e P : Ḟg + Jg

k − fγ


· γ̇ + (ρεg − fg) J̇g

A direct comparison of the terms at both sides of (4.16) leads to:

P = Jg
∂ψ

∂Fe
F−T
g

fγ = k − ∂ψ

∂γ
(4.17)

fg = ρεg + Σ

from which it follows that the growth-conjugate force is the result
of the interplay of metabolic (e.g. biochemical) and mechanical factors,
with Σ = Σ : I being the trace of the Eshelby-like stress tensor related
to the change of domain variations induced by the volumetric growth
Σ = FT

e ∂ψ/∂Fe − ψI, as obtained for example by [7] and [149]. As
a consequence, the dissipation inequality, derivable by imposing the
second member of (4.13) to be non negative, can be split into two
independent contributions:


V0


K − Jg

∂ψ

∂γ


· γ̇ dV 0 ≥ 0 (4.18)

V0
(ρεg + Σ) J̇g dV 0 ≥ 0 (4.19)

The respect of the first of the reduced dissipation inequalities (4.18)1
allows to write the remodeling evolution equation in the following form:

γ̇ = cγ


K − Jg

∂ψ

∂γ


, cγ ≥ 0 (4.20)

cγ being a non-negative term (either constant or not) accounting for
the characteristic remodeling time, and K = Jgk representing a proper
referential (or drag) force which drives the remodeling process ([149]).
The second inequality is a pressure-volume relationship (vanishing in
the pure remodeling case, J̇g = 0). Its validity implies that the growth
case J̇g > 0 is characterized by the presence of a pressure responsible
of the domain expansion and by an adequate amount of metabolic
energy, convertible into mass growth, that is assumed to be indefinitely
available; vice versa, the resorption case J̇g < 0 can be associated to
the lack of energy supply and to the presence of stresses contracting
the volume domain.
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Finally, by then recalling constitutive relation (4.17) and the Nan-
son’s formula (4.9), the Piola-Kirchhoff and Cauchy stress tensors can
be expressed as follows:

P = Jg
∂ψ

∂Fe
F−T
g and σ =

∂ψ

∂Fe
FT
e (4.21)

4.3.2 Inflation and growth-associated stresses in vessel walls

From a geometric viewpoint, a blood vessel can be seen as a thick-walled
hollow (composite) cylinder, each layer exhibiting elastic anisotropy as
a result of the tissue microstructure (see Figure 34). From the mechani-
cal standpoint, several works can be found in literature where the prob-
lem of determining the elastic response of composite cylinders under
different load conditions is approached and analytically solved ([60]),
also in case of anisotropy ([61]) and for general inhomogeneous media
([63]). However, pressure regimes and growth generally induce large
deformations in the blood vessels and therefore non-linear models are
required (see for instance [91] and [41]). Within the non-linear theory
of elasticity, and by making reference to the geometrical symmetries,
the unstressed reference configuration B(0,0) can be then described in
terms of cylindrical coordinates by the region:

Ri ≤R ≤ Ro,

0 ≤Θ ≤ (2π− α) , (4.22)
0 ≤Z ≤ L

where Ri and Ro indicate the inner and the outer radii of a relaxed and
excised configurations, L is the vessel trunk length and α is the opening
angle, a measure of the elastic energy imprisoned within the material
before ideally cutting the vessel to go back to a virtual stress-free ref-
erence configuration and due to ab origine self-equilibrated (residual)
stress (see Figure 35). Analogously to the pure inflation problem, under
the hypotheses of axis-symmetry of both loads (i.e. the systemic aortic
blood pressure) and growth, the deformed in situ configuration can be
instead described by the region:

ri ≤r ≤ ro,

0 ≤θ ≤ 2π, (4.23)
0 ≤z ≤ l

with θ = hΘ and h = 2π/ (2π− α). This also implies that the defor-
mation gradient can be helpfully written in terms of principal stretches,
i.e. F = λrRer ⊗ eR+λθΘeθ ⊗ eΘ +λzZez ⊗ eZ . By taking into account
the residual stress-induced opening angle, growth and elastic deforma-
tions, the total stretches are univocally determined by starting from
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the relation dv = JgdV0 accounting the elastic incompressibility, thus
obtaining:

λrR =
∂r

∂R
= J1−ζ

g

R

rhλezZ

λθΘ = h
r

R
(4.24)

λzZ =
l

L
= JζgλezZ

where the axial stretch time-history λzZ may be assumed to be pre-
scribed, for example deriving it from experimental observations ([141]).
In particular, by considering that in situ vessels exhibit residual axial
strains which allometrically increase as the overall body grows, a possi-
ble form of the stretch λzZ can be faithfully described by means of the
following evolution function:

λzZ (t) =
λfzZ + λizZ

2 +

+
λfzZ − λizZ

2 tanh (ωz (t− tz)) (4.25)

where λizZ and λfzZ represent the initial and the final observed stretch
ratios, while tz and ωz are a characteristic time and a suitable frequency
constant, respectively. Furthermore, by virtue of the elastic incompress-
ibility constraint, the following relation for the radius r at the current
time can be derived:

r =


2

hλezZ

 R

Ri

J1−ζ
g


R

RdR+ r2

i =

=


J1−ζ
g

R2 −R2
i

hλezZ
+ r2

i (4.26)

in which the assumption of uniform growth tensor has been introduced,
according to recent literature works ([160, 202]).
By following the work by [91], arteries can be mechanically modeled by
considering a two-layer hollow cylinder, the inner and the outer layers
representing the tunica media and the tunica adventitia, respectively,
the mechanical contribution of the tunica intima being negligible. Both
of them can be constitutively characterized by a strain energy function
made of an isotropic part and an anisotropic contribution which ac-
counts for the fibers orientation. Hence, by also introducing a suitable
Lagrange multiplier qξ to take into account the elastic incompressibility
constraint, the strain energy functions reads as:

ψξ =ψξiso (I1) + ψξaniso (I4, I6) =

=
kξ0
2 (I1 − 3) + kξ1

2kξ2


i=4,6


ek

ξ
2(I

ξ
i −1)

2

− 1

+

− qξ (Je − 1) (4.27)
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where ψξiso and ψξaniso (I4, I6) respectively characterize the mechani-
cal response of the volumetric part and the response of the vessel (elas-
tic and collagen) fibers; the superscript ξ = {m, a} denotes media and
adventitia, while kξ0,1,2 are suitable material constants, being kξ0 related
to the volumetric response. The above introduced energy densities are
then written as a function of the invariants ([91]):

I1 = tr Ce

Iξ4 = Ce :

a
ξ
+ ⊗ a

ξ
+


(4.28)

Iξ6 = Ce :

a
ξ
− ⊗ a

ξ
−


where Ce = FT

e Fe is the left Cauchy-Green tensor and a
ξ
+,− = cosβeΘ ±

sin βeZ represent the fibers directors lying within the media and the
adventitia. The application of the Piola transform (4.21)2 returns the
expression for the Cauchy stress tensor, connected to (4.27) by the
relationship:

σξ = J−1
g PξFT =

∂ψξ

∂Fe
FT
e − qξI (4.29)

Then, by rewriting (4.7)1 in absence of body forces and in the current
configuration as ∇x · σξ = 0, the sole non-trivial equilibrium equation
to be satisfied is:

dσξrr
dr

+
σξrr − σξθθ

r
= 0 (4.30)

Direct integration of this equation –separately written for both me-

dia and adventitia– combined with the condition describing the inner
deformed radius once the tractions on the walls are prescribed, gives:

σarr (ro) − σmrr (ri) = ∆p = (4.31)

=

ξ


Iξ
J

ζ−1
2

g


h
r

R

∂ψξ

∂λθΘ
− ∂r

∂R

∂ψξ

∂λrR


∂r

∂R

dR

r

with Im = [Ri, Ri +Hm] and Ia = [Ri +Hm, Ro], Hm denoting
the thickness of the tunica media. By prescribing continuity of radial
stresses and of displacements at the vessel layers interface, the corre-
sponding interface radius in the deformed configuration can be deter-
mined through the relation rH =


r2
i + J1−ζ

g h−1λ−1
ezZHm (Hm + 2Ri).

The pressures σarr (ro) and σmrr (ri) are instead related to the external
loading condition through the Cauchy’s theorem (4.7)2 or σξ · nξ =

tξ, ∀x ∈ ∂Bξ.
From the computational standpoint, it is worth to highlight that, once
the loading conditions have been assigned, the equilibrium relation
(4.31) can be analytically solved for each finite time step during which
growth can be assumed constant, in this way reducing to the sole
unknown ri and thus obtaining the deformed configuration through
(4.26).
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4.3.3 Biomechanics of reinforced pulmonary artery transposed into

aortic position

As already said, by testing an ad hoc designed prosthesis system made of
a combined bioresorbable scaffold and an auxetic reinforcement, a large
animal model of transposition of pulmonary artery in systemic pressure
load. This experimental in vivo study, aimed to replicate actual clinical
scenarios, has enabled to observe a physiological arterialization of the
reinforced pulmonary vessels transposed into aortic position ([141, 145,
187]), resulting in PA medial thickening and matrix rearrangement (see
Figure 36).
To biomechanically explain these in vivo experimental findings and gain
insights into possible enhancements of PA reinforcements design crite-
ria, a mathematical model is built up by incorporating vessel growth,
remodeling and large elastic deformations of both biological and syn-
thetic materials.

Figure 36: A-B) Surgical implant. A. Bioresorbable reinforcement; B. Con-
trol. C-D) Hematoxylineosin staining. C. Bioresorbable rein-
forcement. Note remnants of PDS. D. Control. Note medial dis-
ruption and inflammatory infilitrates; E-F) PicroSirius red stain-
ing. E. Bioresorbable reinforcement compact collagen organiza-
tion: the “elastic zone” of the vessel and less pronounced cel-
lular infiltrate. F. Control. Dispersed collagen fibers; G-H) Mal-
lory staining; G. Bioresorbable reinforcement. Elastin deposition
(pink). H. Control. Presence of collagen (blue); I-L) MMP-9 im-
munohistochemistry. I. Bioresorbable reinforcement. Note MMP-
9 overexpression in the PDS group indicating active matrix re-
modeling phenomena. L. Control.

Three theoretical simulations of experimental interest have been then
performed:

• Reference Aorta, regarding the modeling of a benchmark aortic
tract subjected to internal systemic pressure, say pi, of 120 mmHg
(16 kPa, assumed constant). This case establishes for the reference
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aorta selected benchmark quantities, say the physiological growth
over a six-month period (represented by the evolution of both di-
ameter and thickness of the vessel layers) and the wall mechanical
stresses.

• No Reinforcement, analyzing the case of a not reinforced pul-
monary artery transposed into aortic position at the pressure pi
and subjected to growth and remodeling processes. Results of
this simulation are directly compared with the outcomes from
the control group of the animal model.

• Composite Reinforcement, concerning the mechanical analysis of
the reinforced PA system undergoing growth and remodeling. The
presence of the prosthesis is simulated by integrating the mechan-
ical properties of the adventitia with those of the PDS biodegrad-
able structure, by thus additionally providing an external vari-
able pressure po, accounting for the e-PTFE armor elastic confine-
ment whose value depends on the armor constitutive properties
and evolves as a function of the pulmonary artery dilatation and
growth.

With reference to the theory presented in the previous Sections, some
additional key features have been introduced to faithfully describe the
above mentioned cases.
First of all, the effect of the blood vessel structural remodeling on the
tissues elasticity has been analyzed and thus mathematically described
in terms of change of mechanical properties. To make this, suitable re-
modeling parameters γm and γa have been introduced to guide the evo-
lution of bulk moduli km0 and ka0 of media and adventitia, respectively.
As a result, the tunics energy densities become explicitly dependent
on them, i.e. ψξiso = ψξiso


I1, γξ


, so mimicking the temporal elastic

properties changes also experimentally observed by [101]. Also, with
reference to (4.20), the role of the remodeling enhancers K is assumed
to be played by the average levels of energy densities occurring in the
aortic layers in a physiological situation, in this manner interpreting the
remodeling as an energy-driven process which dynamically responds to
energy supplies with tissue structural changes –over selected timescales–
to accommodate stress and strain and in turn minimize energy, a logic
to which many biomaterials seem to obey if subjected to remodeling
([46]).
For the sake of simplicity, the parameters γξ have been here considered
as volume averaged values, so that the equation (4.20) can be written
in the following scalar form:

γ̇ ξ = cγJg

ψ ξ
A,iso − ∂ψ

ξ
V

∂γξ

 (4.32)

where cγ ≥ 0 is a dimensional constant which takes into account the
characteristic long-term timescale of remodeling (ranging from about
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4000 h to 40000 h, as reported by [216]), whereas ψξA and ψξV respec-
tively denote the energy functions specialized for the aorta and the PA
trunk subjected to a volume averaging process (see the synoptic Table
3 for the adopted material parameters):

ψ
ξ
A,V =

1
V0


V0

ψξA,V dV0 (4.33)

Furthermore, to accurately model the reinforced PA case, how de-
grading polydioxanone (PDS) mesh and e-PTFE external armor do
cooperate and in-time support the vessel walls must be additionally
mathematically described. With reference to the PDS structure, this
is indirectly done by mechanically enriching the adventitia with an
augmented time-dependent bulk modulus decreasing in time according
to a selected experimentally based degradation law. In this way, the
updated adventitia bulk modulus, say κa0, takes the form:

κa0 = γa (t) ka0 + (ϕ (t))ν ks0 (4.34)

where ks0 constitutes the PDS contribution to the overall (reinforced)
adventitia bulk modulus, ϕ (t) is a degradation law which describes the
scaffold volume fraction pauperization2 (according to the actual PDS
mass bioresorption program in a six-months period, see e.g. [147]), here
chosen as (see Figure 34, right-bottom graphic):

ϕ (t) =
ϕ0

1 + ω1eω2(t−ts)
(4.35)

where ϕ0 is a constant representing the initial PDS volume fraction
which accounts for the porosity of the scaffold ([24]) while ν is a di-
mensionless, strictly positive (typically between 1 and 3) penalization
power, employed to have as a result the well-known less than propor-
tional stiffness increase with the material volume fraction of a porous
representative volume element ([46, 116]). Also, in (4.35), ts accounts
for a characteristic inflection time and ω1 and ω2 represent constants
to be set in order to fit the experimental PDS degradation curve ([171],
[24], [136]). In this way, the model accurately catches the role exerted
by the PDS scaffold in terms of vessel wall stiffening, at the early stages
of growth the PDS mesh supporting the pulmonary artery to resist to
higher systemic blood pressures –so avoiding excessive strain in turn
provoking high stress and finally aneurysms– then progressively degrad-
ing and slowly accompanying the autograft toward possible remodeling
and arterialization-like processes. On the other hand, the role played
by the e-PTFE auxetic structure –that is somewhat complementary to
that of PDS– has been modeled to reproduce an initial auxetic-induced
relatively low contribution to vessel elastic resistance against load pres-
sure, becoming the confinement effect increasing as tissue grows up,

2 There is thus a direct effect of the PDS pauperization on the growth, remodeling
and in turn on the overall elastic properties of the adventitia, but not vice versa,
that is growth and remodeling do not affect (or perturb) the PDS degradation law.

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



112 the “weak” coupling

moving outward the external PA radius. From the mathematical point
of view, this is translated into an elastic reactive pressure transmitted
at the PA outer cylindrical surface as the external radius expands (see
Figure 34, left-bottom graphic). Therefore, by imaging the e-PTFE net
as an external layer simply described by an exponential strain energy
potential whose structure is similar to that in (4.10), and assuming that
no external pressure is applied on this layer, the following relationship
can be established ([90]):

σnrr (ro) = −
 λo

λe

1
λ2
TλZ − 1

∂ψn

∂λT
dλT , (4.36)

ψn =
kn1
kn2


ek

n
2 (In

4 −1) − 1


(4.37)

given that In4 = In6 = λ2
T cos2 ηn + λ2

Z sin2 ηn, ηn being the mesh
half-angle. In equation (4.36) λT and λZ denote the azimuthal and the
longitudinal stretches which completely describe the deformation of the
auxetic net, whose associated deformation gradient is thus

Fn = Diag


RLn
rnln

,
rn
R
,
ln
Ln


(4.38)

By taking λZ = ln/Ln to be constant, the condition at the interface
ro = r (Ro) immediately gives λZ = JζgλezZ and the e-PTFE structure
motion rn can be described similarly to (4.26) and related to the vessel
outer radius as written down:

rn =


R2 −R2

o

λZ
+ r2

o =


J−ζ
g
R2 −R2

o

λezZ
+ r2

o , (4.39)

where

ro =


J1−ζ
g

R2
o −R2

i

hλezZ
+ r2

i (4.40)

Hence, the equations (4.26) and (4.39) allow to derive the square
stretches at the the boundary as a function of ri:

λ2
o =

r2
o

R2
o

=
1
R2
o


J1−ζ
g

R2
o −R2

i

hλezZ
+ r2

i


(4.41)

λ2
e =

r2
e

(Ro +Hn)
2 =

1
(Ro +Hn)

2


J−ζ
g

Hn (2Ro +Hn)

λezZ
+ r2

o


where Hn is the initial auxetic armor thickness. The equilibrium

equation σnrr (ro) = σarr (ro) to be satisfied at the interface ro then gives
the possibility of finding, by integrating (4.36), the actual pressure that
the armor applies on the adventitia by elastically reacting to the vessel
deformation and growth. In particular, by performing the substitution
x = kn2 (In4 − 1), it is possible to compactly write:
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σarr (ro) = −po =
kn1 e

−Q cos2 ηn
λZ

 xe

xo

ex+Q

x+Q
dx =

=
kn1 e

−Q cos2 ηn
λZ

(Ei (xe + Q) − Ei (xo + Q)) (4.42)

with Q = 1 − kn2λ
2
Z sin2 ηn − kn2λ

−1
Z cos2 ηn and Ei (x) representing

the exponential integral function, while xe = x

λ2
e


and xo = x


λ2
o


are both functions of the updated vessel outer radius ro (or equivalently
ri) through (4.41)1 and (4.41)2, that is:

xe +Q = kn2 cos2 ηn

λ2
e − λ−1

Z


xo +Q = kn2 cos2 ηn


λ2
o − λ−1

Z


(4.43)

Lastly, all the in silico simulations (in detail discussed below) are con-
ducted by assuming the growth to obey a typical logistic profile, a law
largely encountered in the literature to describe many different growth
dynamics of living systems, at different scale levels, and hence widely
adopted among biologists to fit related experimental data ([105]); as
a consequence, in order to consider the direct effect of the experimen-
tally observed growth of the lambs discussed in [141] on the mechanical
analysis of the vessels alone and the reinforced PA system, it is here
proposed to transpose the logistic growth assumption also to the tissue
scale, as a first step also hypothesizing a stress-uncoupled growth as
a simplifying rationale to mimic the physiological growth curve. Thus,
the equation (4.3) can be explicitly given in the form:

J̇g = cgJg


1 − Jg

Jmaxg


(4.44)

where Jmaxg represents a prescribed upper bound reference value, in
the present case evaluated on the basis of the (allometrically scaled)
body size achieved by the adult animal model with respect to the ini-
tial size ([141, 142, 144]), while cg ≥ 0 is a proper growth rate (see e.g.
[80]).
With respect to the case of reference artery, only physiological growth
during a six-month period with no internal remodeling has been as-
sumed: also, for both the cases of reference artery and not reinforced
PA, the analyses have been conducted by considering the presence of
the sole systemic aortic pressure, thus prescribing to the biomechanical
models zero external loads at the outer radius and internal pressure
pi –typically of the order of 100-120 mmHg– assumed to be constant
during the time step of the analyses. As a result, the equation (4.31)
becomes:

pi =


ξ∈{m,a}


Iξ
J

ζ−1
2

g

h r
R

∂ψξA,V
∂λθΘ

− ∂r

∂R

∂ψξA,V
∂λrR

 ∂r

∂R

dR

r
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with which the two above mentioned cases can be distinguished and
separately treated by specializing the strain energy functions through
proper assignments of different intrinsic parameters, so that ψξA and
ψξV can be recognized as representative of aorta and pulmonary artery
(vein-like) materials, respectively.
On the other side, by making reference to the above proposed theo-
retical strategy for describing how the bioresorbable scaffold and the
auxetic structure do cooperate to reinforce the pulmonary autograft,
the balance equation (4.31) reads as:

pi − po =


ξ∈{m,a}


Iξ
J

ζ−1
2

g


h
r

R

∂ψξV
∂λθΘ

− ∂r

∂R

∂ψξV
∂λrR


∂r

∂R

dR

r

Finally, the equations (4.44) and (4.45) constitute the system to be
solved for analyzing the reference aorta, in which the sole unknowns are
the growth term Jg and the inner radius ri; the same equations have to
be coupled with (4.32) to model the not reinforced PA biomechanical
response. Analogously, to simulate the biomechanical behavior of the
reinforced PA, the equations (4.45), (4.44) and (4.32), which incorpo-
rate the remodeling parameters γa and γm responsible for arterializa-
tion phenomena, have to be instead used.
From the numerical standpoint, the simulations to be conducted for
reference artery, pulmonary artery and reinforced autograft, require
suitable material and geometric parameters, in detail reported in Ta-
ble 3. For the sake of clarity, the parameters have been divided in
different sections regarding the different model constituents: both aor-
tic and pulmonary artery constitutive parameters have been deduced
from [32, 91, 149, 203], the opening angle value being instead referred
to the range proposed by [4]. The geometric parameters have been ex-
trapolated by the ex vivo data obtained throughout the experimental
observations. Lastly, the material parameters concerning both the PDS
and the e-PTFE volumetric response have been determined from the
inflation compliance data reported in literature ([24, 109, 172, 179, 183,
195]).

4.4 the relay race effect of pds scaffold and e-

ptfe armor

The analyses have been performed by implementing the above detailed
biomechanical models in the computational software program MATHEMATICA®

([210]). Here, the partial differential equations governing the problems
have been solved analytically in space, for each time step, and hence
the complete solution found by numerically integrating over the whole
six-month observation period related to the animal model ([141]).
The obtained results highlight that, although the PA tracts were ini-
tially the same from a physiological and a constitutive point of view,
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under the systemic blood pressure their behavior significantly diverges
in the two cases, i.e. reinforced and not reinforced vessels. In fact, results
show that the cooperation between bioresorbable PDS scaffold and per-
manent e-PTFE auxetic structure plays a crucial role in preventing a
fateful yielding of the vessel, wall intrinsic mechanical properties in ab-
sence of reinforcement being absolutely inadequate to both respond to
the new imposed aortic pressure regimes and limit large deformations
prodromal to aneurismal complications. In particular, theoretical out-
comes, illustrated in Figure 39, clearly show a marked difference among
reference aorta, PA alone and PA with prosthesis, in terms of pressure-
induced initial burst dilatation and final associated vessels diameters, a
fact also quantitatively confirmed by experimental observations ([141])
and summarized in Table 2. Theoretical predictions are indeed in very
good agreement if compared with experimental data, except for a slight
underestimation of not reinforced PA sizes, mainly related to the fact
that, in absence of prosthesis, actual strains are not purely due to com-
bined elastic deformation and growth, additional inelastic strains being
kindled by locally occurring irreversible (i.e. visco-elastic-plastic and
damaging) phenomena, as can be seen by direct observations (Figure
37).

Figure 37: A. Not reinforced PA trunk with aneurismal formation (analysis
after the break at 3 months); B. PA reinforced with knitted poly-
dioxanone resorbable copolymer scaffold (explanted at 6 months):
note the homogeneous vessel profile denoting the success of the
implant.

The analytical curves also underline a specific non-linear trend, in
terms of vessel diameters time-history, which shows a sort of asymptotic
behavior that furnishes an upper bound to vessel growth in proximity
of body adulthood, a phenomenon otherwise unforeseeable on the basis
of the sole initial (at one day) and final (at six months) observations
and qualitatively crucial to envisage a successful prognosis of the PA re-
inforcement also when this surgical protocol is applied to young human
patients. As a matter of fact, the not reinforced PA excessively dilates
during the time window considered, passing from an initial diameter of
about 29.5 mm –measured in the first days– to a diameter of about 38.1
mm, after six months. Moreover, the actual deformation profiles of the
not reinforced PA go off the vessel from the tube-like shape, by losing
the axis-symmetry of the response assumed in the present theoretical
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model, as can be observed from the angiographic measures (Figure 38),
as well as from in situ (Figure 36) and explanted ex vivo vessel trunks
(Figure 37).

Figure 38: A,B,E,F) Angiographic images. A. Not reinforced PA at day 1;
E. Not reinforced PA at day 180; B. Reinforced PA at day 1;
F. Reinforced PA at day 180. Note the uniformity of the vessel
profile in case of reinforcement (B,F) and loss of physiological
shape, prone to aneurismal complication (A,E). C,D,G,H) Eco-
graphic images (vessel cross sections). C. Not reinforced PA at
day 1; G. Not reinforced PA at day 180; D. Reinforced PA at
day 1; H. Reinforced PA at day 180. Note the severe diameter
dilation in the not reinforced case (C,G).

On the contrary, in the doubly reinforced PA, the mathematical
model demonstrates that the prosthesis system overall works as a sort
of "relay race", by guaranteeing the handover of the bearing structure
functions from the PDS scaffold (at the early stages of tissue growth
and remodeling) to the e-PTFE armor, initially "dormant" as a con-
sequence of the typically low stiffness exhibited by stress-free auxetic
structures at small strains. In this way, the mechanical shielding of the
lapse vessel confines the radial expansion and simultaneously allows to
the pulmonary artery to remodel its tunics for attaining an adequate
level of mechanical properties (e.g. elastic bulk moduli, see Figure 41).
Finally, once the bioresorbable scaffold has completed its degradation
program and the strengthened vessel walls can actively respond to the
systolic pressure, the e-PTFE structure accompanies PA media and ad-

ventitia toward their progressive aortic somatic growth, by stretching its
weave to gain stiffness and effectively confine further vessel expansion,
so avoiding tissue prolapse and aneurismal degenerative phenomena.

Furthermore, Figure 39 also shows that the mathematical model pre-
dicts a "gain" of the reinforced grown PA to be measured in terms of
wall thickness occurring when the PA tracts are ideally excised and re-
laxed, as well as when the vessels are subjected to the in situ inflation
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Figure 39: Left: Evolution of the outer diameters (continuous lines represent
theroetical outcomes while markers are experimental measures).
Right: Vessels thicknesses provided by the simulations at day 1
and at day 180 when the vessels are either in position or excised.

Table 2: Comparison of the external diameters (expressed in mm) - experi-
mental observations vs analytical predictions

Day 1 Day 180

Experimental Analytical Experimental Analytical

Reference Aorta 13.0–16.4 13.1 17.0–21.0 21.0
Composite Reinforcement 14.0–20.0 16.3 25.0–33.0 27.2

No Reinforcement 25.0–33.0 24.2 34.3–42.0 36.1

pressure, so highlighting an effective thickening of the reinforced graft
after the observation period that can be directly related to actual PA
arterialization. It is worth to notice that the estimated Cauchy (actual)
stresses, predicted by the mathematical model at 180 days and illus-
trated in Figure 40, bring to light further aspects that may help to
better understand the actual effects of both PDS scaffold and e-PTFE
armor in reinforced PA on growth and elastic response of the vessel to
systemic pressure. In fact, from the stress profiles illustrated in Figure
40, it can be inferred (and somewhat quantified) the mechanical role of
the prosthesis system and, in particular, of the GORE-TEX structure.
The effective pressure difference between the internal systolic push and
the external armor confinement de facto determines a "stress shield-
ing" phenomenon which maintains the stress distribution over the PA
thickness sufficiently uniform, by also forcing the stress level in the
tunica media to be moderate with respect to the physiological one in
the (ticker and stiffer) reference aorta, in this way creating a safe state
of stress settling at about 100 kPa. On the contrary, from theoretical
outcomes, the not reinforced PA exhibits equivalent (von Mises) and
circumferential (hoop) stresses in the tunica media with peaks of about
800 kPa, a value sufficiently high and close to tissue stress threshold
to determine mechanically critical states and invite yielding processes
potentially undergoing aneurismal degeneration. Also, Figure 40 shows
the non-linear pressure-diameter curves one would virtually measure in
the three cases examined (reference aorta, reinforced and not-reinforced
PA) at 180 days, if an ex vivo inflation test were performed. It can
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be there noticed how the not reinforced PA experiences strong dilata-
tion in a low range of inflation pressures –below 50 mmHg– with the
external diameter achieving pathological dimensions before the curve
exhibits a theoretical hardening. The behaviors of reference and rein-
forced pulmonary arteries are instead different, and, in both the cases,
the diameters dilation at systemic pressure is in good agreement with
the experimental observations in the animal model ([141]).

Figure 40: Cauchy stress profiles along the wall thicknesses in reference
aorta (top-right), reinforced (bottom-left) and not reinforced
(top-left) Pulmonary Autografts, with related pressure-diameter
curves at 180 days for the grown vessels (bottom-right).

In particular, by comparing pressure-diameter curves for reinforced
and not reinforced PA, it emerges from the results a significantly and
qualitatively different mechanical response in the two cases, the former
exhibiting much smaller variations of the outer diameter than the lat-
ter, within the same pressure interval, say in the order of tens kPa. In
the reinforced PA, this initial stiff behavior can be attributed to the
balancing between the internal push and the e-PTFE external pressure
due to the GORE-TEX elastic reaction to the vessel expansion. After
that, a region of approximately proportional dilatation is observed, fol-
lowed by an elastic hardening at higher pressures due to the combined
effect of the intrinsic hardening of the vessel walls related to stress lev-
els and reorientation of elastic fibers and the increasing stiffness of the
auxetic material induced by severely dilated armor elements.
It is finally worth to notice that, albeit the stiffer behavior of reinforced
PA exhibited in Figure 40 in terms of pressure-diameter is theoretical
derived at 180 days –thus in absence of PDS– the effect of the biore-
sorbable scaffold is implicitly taken into account by the model through
the (at six months registered) PA arterialization, a result biomechani-
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cally due to the stress shielding, initially ensured by the biodegradable
PDS and finally stabilized by the confining action of the GORE-TEX
structure. The concrete consequence of this interplay can be explicitly
traced in the proposed mathematical model by analyzing the results in
terms of in-time remodeling of average wall bulk moduli k0. In Figure
41 the comparison between reinforced and not reinforced PA intrinsic
stiffness variation during the six-month is for this purpose shown.

Figure 41: Evaluation of the bulk moduli remodeling in reinforced and not
reinforced PA.

The theoretical outcomes, related to the modeling of the structural
changes of reinforced pulmonary artery grafts under systemic pressure
regimes, have shown that a virtuous biomechanical cooperation be-
tween biological and synthetic materials takes place, "stress-shielding"
guiding the physiological arterialization of the vessel walls, consequently
determining the overall success of the autograft system. The modeling
has in fact theoretically demonstrated that in doubly reinforced PA,
the prosthesis system de facto works as a sort of "relay race", by guar-
anteeing the handover of the bearing structure functions from the PDS
scaffold (at the early stages of tissue growth and remodeling) to the
e-PTFE armor, initially "dormant" as a consequence of the typically
low stiffness exhibited by stress-free auxetic structures at small strains.
In this way, the mechanical shielding of the lapse vessel contains the
radial expansion and simultaneously allows to the pulmonary artery
to remodel its tunics for attaining an adequate level of mechanical
properties. Once the bioresorbable scaffold has completed its degrada-
tion program and the strengthened vessel walls can actively respond
to the systolic pressure, the e-PTFE structure accompanies PA me-

dia and adventitia toward their progressive aortic somatic growth, by
stretching its weave to gain stiffness and to effectively confine further
vessel expansion, so avoiding tissue prolapse and aneurismal degener-
ative phenomena. From the engineering point of view, all the results
have essentially shown a very good agreement when compared with ex-
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perimental data, also quantitatively, thus encouraging the use of the
mathematical model for better understanding the specific biomechan-
ical dynamics and designing possible new criteria and strategies for
optimizing PA prostheses and successfully applying the surgical proto-
cols to human patients.

Table 3: Synoptic table of data and employed parameters
References: 1. [149] ; 2. [203] ; 3. [32] ; 4. [91] ; 5. [4] ; 6. [5] ; 7.
[179] ; 8. [116] ; 9. [24] ; 10. [171] ; 11. [109] ; 12. [195] ; 13. [172] ; 14.
[183] ; 15. [217] ; 16. [142] ; 17. [144] ; 18. [141] ; 19. [94] ; 20. [80] ;
21. [216]. E. O. - Experimentally Observed Parameters. F./A. P. -
Fitting/Assumed Parameters

Symbol Unit Value References

Aorta PA

Media Adventitia Media Adventitia

Material Parameters

k0 [kPa] 51.1 5.1 16.7 1.67 [1, 2, 3]
k1 [kPa] 18.6 1.86 4.9 0.49 [1, 2, 3]
k2 [-] 17.4 1.74 0.839 0.711 [1, 4]
β [°] 29 62 29 62 [4]
Geometrical Parameters

H [mm] 0.8 0.4 0.667 0.333 E. O.
Ri [mm] 7.8 9.5 E. O.
α [°] 91 120 [5]
λizZ [-] 1.7 1 [4, E. O.]
λfzZ [-] 2 2 [6, E. O.]
PDS Parameters

ks0 [kPa] 267 [7]
ν [-] 1.34 [8]
ϕ0 [-] 0.25 [9]
ω1 [-] 0.07 F./A. P.
ω2 [-] 0.05 F./A. P.
ts [day] 30 [10]
ePTFE Parameters

kn1 [kPa] 1000 [7, 11, 12, 13, 14]
kn2 [-] 0.4 F./A. P.
Hn [mm] 0.2 [15]
ηn [°] 26 F./A. P.
Growth-Remodeling data

Jmaxg [-] 3.375 [16, 17, 18]
ζ [-] 0.133 F./A. P.
cg [day−1] 0.025 [19, 20]
cγ [kPa−1 day−1] 8.64×10−5 [21]
ωz [day−1] 0.02 F./A. P.
tz [day] 90 F./A. P.
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T H E F U L L C O U P L I N G

poroelasticity coupled with volterra-
lotka dynamics in solid tumor growth

The full connection between dynamical systems used as predictive mod-
els in computational biology and the biomechanical theory of growth
and remodelling represents the key activity described in the following.
The continuum modeling of growing bodies draws from time upon the
well-known finite strain formulation widely adopted also in elastoplas-
ticity and thermoelasticity, see e.g. the renowned works by Rodriguez,
Cowin and Lubarda, for example([164], [48], [128]). The mechanics of
growth and remodelling opened a scientific thread which is up to now
currently investigated more and more avidly because of both the in-
creasing interest aroused and the enormous number of applications,
which might have a remarkable resonance on medical treatments and
surgical procedures. As mentioned in the previous chapters, a grow-
ing soft biomaterial can be realistically associated with a heterogenous
multi-component and eventually multiphasic body, whose consituents
are changing in mass. For this reason, a growing body can be likely
thought as an open system in which growth itself is the overall result
of the complex interactions between constituents inhabiting the body
and what enters/leaves the system. Consequently, although the main
role in the growth process is played by the solid constituents, the further
coupling with the fluid counterpart seems necessary, since the latter one
plays the role of nutrient carrier and enhance the growth process by fil-
trating through the solid compartments and letting the exchange of bio-
chemicals at the cellular level. In order to faithfully describe solid-fluid
interplays connected with growth, the mechanical problem is described
by means of the Biot’s poroelasticity theory, in which the mechanical
field variables account for the presence of a fluid phase and a heteroge-
neous solid phase that coexist and interact by experiencing reciprocal
forces and exchanging mass. In this way solid mass generation can be
directly connected to growth, and the deriving solid stresses and in-
terstitial fluid pressure are separately recognizable, the two stresses
having a different physiological interpretation: fluid pressure is in fact
connected with the interstitial fluxes that drive macromolecules walk-
ways through the tissue interstitium previously mentioned, while solid
skeleton stress translates the physical forces exerted by the solid con-
stituents during the growth process. This growth-induced stress might
be therefore expressly determined from the knowledge of the dynamics
of such living constituents within the tissue “ecosystem” (i.e. from the
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description of the interactions between cells and extra-cellular environ-
ments), searching for a suitable way of determining an expression for
the growth-induced strain and related eigenstresses.
With reference to the subsequent applications, this strategy will let
to comprehensively present a model of tumor growth, and the focus
will be on a byosystem whose solid part is composed by tumor and
healthy cells and extracellular matrix, namely the ECM, the variations
of which are translated in terms of their volumetric fractions at the tis-
sue scale1. A fully coupled system of PDEs is derived and the effort of
enriching the mechanical problem with these dynamics lies into the fact
that growth is not treated as a system parameter or a canonical a pri-

ori prescribed function, as often encountered in the most of Literature,
but as a variable itself of the problem, i.e. the growth will be a direct
consequence of the way in which the interactions between the species
inhabiting the living tissue will be modeled. In this sense, the popula-
tion dynamics and the games theory offer a powerful tool allowing the
possibility of describing the interaction among biological entities in the
same way as individuals of an ecosystem. In this context, the Volterra-
Lotka equations –adopted for the tumor model under discussion– have
commonly been used for describing the oscillations of the number of
animals in a restricted ecosystem. For example, they have been recently
adopted to describe the migration and the interations of herbivorouse
angulate species (Cervus elaphus, Capreolus capreolus, Sus scrofa) in
“Parco Nazionale dell’Abruzzo" (see e.g. [31]). With an analogous imagi-
native effort, this way of establishing inter-specific interactions has been
transposed to the scale of the cells and the other elementary biologi-
cal constituents, with the difference that the corresponding ecosystem
is largely more complicated than its macroscopic ecologic counterpart
and actively affects the behaviour of the species, in this way repre-
senting an explicit unknown. By combining the population dynamics
with the mechanical problem, the result is a heterogeneous poroelas-
tic model, where the interaction between soft matrix and interstitial
fluid flow is coupled with inelastic effects ad hoc introduced to simulate
the macroscopic volumetric growth determined by cells division, cells
growth and extracellular matrix changes occurring at the micro-scale
level. The continuum modeling framework embracing the poroelastic
approach has been preferred since it seems to overcome some limitations
associated to other alternative approaches based on mass balances in
multiphase systems because the crucial role played by residual stresses
accompanying growth, and nutrient walkway (solidarily to fluid flow)
is preserved. However, when these strategies have applied to analyze
growth in solid tumors (see e.g. [166, 192]), some important cell-cell
dynamics governing mass evolution, remodelling and invasion rates of
cancer cells are inevitably lost. For this reason, the enhanced poroelastic

1 Cells interaction could be also treated by adopting a discrete approach, for example
by modelling populations in terms of the cells number.
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5.1 introduction 123

model with inelastic growth has been developed through a full-coupling
strategy, where the net growth induced deformation and the rise of in-
ternal pressures result from the competitive dynamics between healthy
and cancer cell species, modeled by Volterra/Lotka-like equations. In
this way the following system of non-linear fully-coupled PDEs has
been derived to describe the complex mechanism of mutual influences
among the cell species competition that is due to available common
resources, stress gradients, interstitial fluid flows and inhomogeneous
growth are all taken into account. The description of the activities re-
lated to this argument can be approximately divided into three parts:
the linear formulation, the non linear formulation and the experimental
setups (with comparisons). Despite the mathematical description, the
complex interactions constituting the problem actually provide that the
tumor and healthy cells compete within the extracellular space for the
common resources, in this way determining a growth strain which is
directly responsible of the rise of inelastic stresses in confined environ-
ments. The stress state within the tissue is then straightly responsible
to activate and regulate mechano-sensing processes driving changes in
cells cycles, proliferation and migration capabilities. In particular, hy-
drostatic stress can affect proliferation and impair cell mitosis, in this
way determining a complete coupling between the mechanical and the
dynamical physiological events. The complex machinery deriving from
these interactions, in the case of the MultiCellular Tumor Spheroid –
MCTS– growth, can be summarized in the “logical” scheme proposed
in Fig. 42.

5.1 introduction

The rapidly growing advances of the research in tissue engineering con-
tinuously redraw new scenarios for applications in medicine, leading to
the design of innovative drug delivery systems and biomaterials ([140,
181], [131]). A multiphysics vision in analysing the complex behavior
of the living matter has in particular consolidated Tissue Mechanics
(TM) theoretical approaches and modeling strategies ([46]) which are
currently recognized as helpful and indispensable tools for explaining
experimental evidences as well as for supporting the design of prosthe-
ses for both soft ([143]) and hard ([62]) tissues. In this framework, an
increasing interest has been in particular registered in literature for the
mechanical properties of living cells –and for the understanding of the
dynamics to which they obey at different scale levels– also motivated
by some recent discoveries which seem to allow to envisage new hori-
zons for therapy and diagnosis of human diseases like cancer, by for
example exploiting the different in-frequency response of single healthy
and tumor cells stimulated by utrasound ([64]).
The challenge to give a unified description of what tumor is, by provid-
ing a comprehensive model that would include the overall complexity

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



124 the full coupling

Figure 42: Logical connections highlighting the interaction network co-
inceved for the MCTS model.

of its physiology, is still hard to deal with, both because tumors have
different natures and characteristics and since there are several causes
that can be associated to their generation and development, and each
physiological process is actually the integration of a considerable num-
ber of sub-processes occurring at different spatial (and temporal) scales.
However, at the macroscopic scale –say at the tissue level– the feed-
back mechanisms and the cascade of bio-chemical and physical signals
characterizing the complex interaction of dynamics occurring at differ-
ent scales significantly complicates the biomechanical response of, say,
tumor masses, thus requiring enriched models which encorporate the
mechanobiology of solid tumor growth ([3]).
Cancer diseases occur when in a healthy tissue the cell-cell and cells-
ECM (the Extra-Cellular Matrix) interactions are altered, and hyper-
plasia is generated as effect of sudden and often unforeseeable genetic
modifications followed by a cascade of biochemical events leading to ab-
normal cell growth, lost of apoptosis, back-differentiation and metasta-
sis. In this framework, the determination of models capable to describe
how tumor masses behave and evolve in living tissues has been object of
several studies which, by starting from different standpoints, have been
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aimed to predict tissue growth –and selected biochemical and physical
phenomena– by invoking heuristic, diffusion-based, multiphase-reactive
or purely mechanical models. This variety in theoretical approaches also
reflects the difficulties related to harmonize experimental evidences and
theoretical outcomes within an unifying fence, where the complexity of
the mechanobiology at the basis of the tumor development might be
better understood. As a matter of fact, how tumor invasion dynam-
ics determined by cell-cell and cells-environment, elastic and residual
stresses, do interact seems to be crucial for deeply tracing actual mecha-
nisms occurring in complex heterogeneous materials like tumor masses
during growth ([13]).
From the mechanical point of view, the behavior of heterogeneous bod-
ies is modeled in the literature by means of different approaches. In
particular, to follow different solid and fluid constituents in a tissue, the
Biot poromechanical theory certainly represents a well-recognized strat-
egy for describing the coupling between fluid and solid phases ([49]),
some specific features of living bodies being caught through thermody-
namic models of open systems ([117] and [127]). With reference to the
biomechanics of growing tumors, linearly elastic ([12] and poroelastic
([173]) models, as well as non-linear hyperelasticity in which the mul-
tiplicative decomposition of the deformation gradient into a growth
and an adaptive strain is helpfully adopted ([128], [164], [194]) have
been widely used. The two main approaches employed to model the
mechanical behavior and the growth of solid tumors are based on the
theory of mixtures ([30, 156]) and on theory of linear poroelasticity
([166]), also in light of the fact that many soft tissues behave obeying
the linear consolidation theory by Terzaghi ([65]). The dualism between
mixture’s theory and theory of porous media has been often summoned
in dealing with the characterization of biological tissue, see for example
the work by Garikipati ([74]). The two approaches provide complemen-
tary information. In fact, on a side, multiphase models mainly focus on
the microscopic interactions among the phases of a continuous medium
whose solid part is inhomogeneous at the micro- and the macro-scale
levels, as well as the effects that the diffusion of particles (like nutri-
ents, enzymes etc.) can have on its constituents. On the other side,
heterogeneous poroelastic models, in this case associated with inelas-
tic growth functions, permit to characterize of the effective growing
stresses harboring in tumor tissues due to the inner mass expansion
into the surrounding medium, to which some stiffness and permeability
features are attributed. In particular, if one adopts poroelastic models,
the effective stress is partitioned into solid stress and interstitial fluid
pressure –in principle capable to strain alone the porous matrix– to
which a growth-associated stress is added. In this approach, the ob-
server varies solidarily to the solid phase and the fluid phase diffuses
with respect to the latter one (while nutrient and chemicals can diffuse
with respect to the fluid). The fluid walkway in the porous medium is
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driven by interstitial fluid pressure gradients engendered by spatially
inhomogeneous pore volumetric dilation associated with resident stress
fields. Nevertheless, some coupled key dynamics occurring at different
scale levels and characterizing tumor growth are generally not taken
into account simultaneously. In particular, to the best authors knowl-
edge, how the cell populations actually interact at the microscale within
the ECM and determine stresses, strain and nutrients walkway at the
macroscopic level, in turn driving growth and invasion, has been not
yet described explicitly ([76]). In fact, the vast majority of the models
dealing with the analysis of growth-induced stresses introduces an a pri-

ori prescribed growth function –generally with a Gompertzian profile
([192])– in the form of a volumetric strain contribution that appears into
the momentum equation ([8]). This implies that the growth-associated
strains influence the stress but not vice versa, because of the absence
of both the modeling of the interactions among cell species and ECM –
from which macroscopic mass growth results– and the coupling between
growth and stress. As a consequence, the growth dynamics is strongly
affected by these simplified assumptions and thus the final tumor mass
(e.g. multi-cellular spheroid) growth profiles somehow slavishly copies
the growth function given in input, in this way de facto reducing the
growth from an unknown to a data.
Actually, the cell-cell and cells-ECM dynamics –which occur at micro-
scale level– continuously give/receive feedback to/from stress and strain
events at the macroscale, this affecting the growth process, residual
stresses and tumor fate as well.
At the microscale level, mechanical interactions between cells and ECM
have been described in some recent works by simulating the mutual
effects in terms of exchanged forces ([156, 177]) or, by making use
of single-cell models based on the tensegrity structure paradigm by
Ingber ([93]), to explain some experimentally observed evidences re-
lated to reorganization of cell cytoskeleton, cell migration, adhesion
and evolution of cell stiffness properties mediated by polymerization-
depolymerization phenomena of the protein filaments.
At the micro/mesoscale level, say the level at which cell populations
collectively interact and can be seen as aggregates, the competition be-
tween healthy and tumor cell species has been very recently presented in
the light of the Game Theory - GT ([99, 108, 124, 125, 212]), highlight-
ing the effectiveness of this peculiar standpoint. Overall tumor growth
can be in fact seen as the result of the indirect interaction (interspe-
cific competition) between tumor and healthy species, both oriented
towards the biological environment to grab resources, the abnormal
cells playing the role of a mutant cell line attacking and compromising
the homeostasis of the healthy tissue development.
In the framework of GT, with reference to interspecific competition,
Volterra-Lotka (VL) models certainly represent accredited candidates
to describe the above mentioned biological dynamics, for example by
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identifying tumor and healthy populations as introduced by [75] and
more recently proposed by ([208]). However, when these strategies are
applied to analyze growth in solid tumors, some key coupled effects re-
lating mechanics and cell-cell dynamics governing mass evolution and
invasion rates of cancer cells are inevitably lost.
In fact, in dealing with tumor growth, there is the need of inevitably
interlacing the ordinary VL structure with non-constant terms account-
ing for the mutual –and “inter-scale”– influence of metabolic and me-
chanical factors, an example being the influence of macroscopic solid
stresses on the alteration of the resulting duplication rate of the cell
species.
In order to overcome the modeling obstacles above mentioned and to
catch the effective bio-mechanical coupling in solid tumor growth, it
here is proposed an enhanced multiscale poroelastic model with in-
elastic growth where the net growth terms result from the internal
Volterra/Lotka-like competition between healthy and cancer cells oc-
curring at the micro-scale level. In this way, a system of fully-coupled
non-linear PDEs is derived to describe the complex machine in which
the mutual influences of the competition among cell species due to avail-
able common resources, stress gradients, interstitial fluid flows, nutrient
provision and inhomogeneous growth are all simultaneously taken into
account, as schematically summarized with reserence to a solid tumor
(the multi-cellular tumor spheroid (MCTS)) in Fig.42.
In the hereinafter discussed system, the mechanics of tumor growth
is constructed by considering a multi-constituent solid tissue in which
each species (cells, ECM and fluid) is represented by its volumetric
fraction ϕγ , where the subscript γ will be adopted to indicate the set S
of the solid species, i.e. the tumor (T ), the healthy (H) and the apop-
totic (A) cells volume fractions, the ECM and fluid volume fractions
being denoted by the the subscripts (M) and (F ), respectively. Here-
inafter, the cascade of events related to the growth of these species will
be described by means of a simpler linear poroelastic model coupled
with inelastic growth and then by introducing a more detailed non-
linear poromechanical model based on the logarithmic Hencky strain
together with a Fung-like hyperelastic constitutive law, to which the
coupling with the interspecific evolution equations is associated through
the construction of an appropriate species-derived growth strain tensor.

5.2 an enhanced interspecific poroelastic model of

tumor growth

Cancer can be viewed as a disease involving irreversible genomic alter-
ations affecting intrinsic cellular cycles. These genomic alterations act
in combination with the modification of the environmental conditions
defined by immune response, matrix metabolism and stiffness, mechan-
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ical and biochemical gradients ([8]). The growth of solid tumors can
be treated physically as a mechanical process according to which a
heterogeneous tissue expands within a surrounding medium. Tumor ex-
pansion is controlled by some internal driving stresses, which are coun-
terbalanced by mechanical resistance provided by the surrounding en-
vironment. Internal stresses are mostly generated by cells proliferation
dynamics, which is influenced by the diffusion of nutrients within the
tumor. This implies that the physical forces pushing the tumor ahead
do not involve the sole surface tension and the pressure of the surround-
ing medium, but also the explicit active cellular forces deputy in the
momentum balance that, in turn, retrospectively activate mechanosen-
sitive cellular processes. With the aim to gain some new insights into
the basic understanding of the complex machine of the host-tumor inter-
action in growing solid tumors, we present a heterogeneous poroelastic
model of a tumor spheroid subjected to different prescribed boundary
conditions, in which the mechanically activated stress fields, fluid pres-
sure and nutrient walkway are coupled with spatially inhomogeneous
and time-varying bulk growth. This growth is induced by competitive
dynamics occurring at the microscopic scale level among healthy cells,
cancer cells and ECM, macroscopically modeled by introducing ad hoc
non-linear Lotka/Volterra-like equations. The basic idea is that cancer
and healthy cell species do not compete directly, as it would happen in
a pure predator-prey logic, but fight to contend the common resources
occupying the shared environment. The common resources are here
constituted by the available fluid content supposed to be saturated
of nutrients, the environment being simply represented by the space
that cells can inhabit at a certain time during growth and proliferation
processes. The introduction of this transitive effect, that permeates
through the system and enriches previously proposed poroelastic mod-
els ([173]), well mimics the actual competition among cell species by
reproducing the experimentally observed coupled dynamics in which
the presence of one species tends to somehow limit the development
of the other, and here described as a behavioral phenomenon occur-
ring in the cells community. This mutual inhibition in turn modifies
the intrinsic growth rates of the cell populations and leads to spatially
inhomogeneous elastic and residual stresses as well as non-uniform IFP
distributions within the tumor spheroid. In the present treatment, how-
ever, in order to limpidly elucidate the key aspects of the dynamics at
hand, further elements that would imply a direct competition between
cancer and healthy cells depending on additional factors, such as the
anti-oncogenic potentials of some immune cells or the aggressiveness
of pre-malignant cells which become malignant as a result of mutation
processes, will be neglected.
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5.3 the linear mcts model

5.3.1 Poroelasticity equations coupled with the model to tumor spheroids

By recalling the constitutive equations of linear poroelasticity ([46]),
the strain tensor E, defined on a closed subset Ω ⊂ R3 in presence of
volumetric growth, can be written as follows

E = S : σeff + γ g,

E = sym (u ⊗ ∇) ,

σeff = σ + A p.
(5.1)

where u ∈ C2 (Ω) is the displacement vector, γ g is a growth strain
tensor, with g ∈ R being a pure volumetric growth strain function and
the matrix γ = diag {γk} containing the anisotropic multipliers for
each principal direction so that tr (γ) =


k γk = 1 (already defined in

Chapter 3), whereas S represents the drained compliance fourth rank
elasticity tensor (the apex (d) will be avoided not to burden the nota-
tion) and σeff is the effective stress tensor. Its definition includes the
Cauchy stress tensor σ and the interstitial fluid pressure p (IFP), A

denoting the so-called Biot effective stress coefficient symmetric tensor,
equal to A =


I − C · S(m)


· I, in which C = S−1 is the drained stiff-

ness tensor and S(m) is the matrix-associated compliance fourth order
tensor, while I and I respectively indicate the fourth-rank identity ten-
sor and the second-rank identity vector (in Voigt notation). By deriving
the stress tensor σ from equations (5.1) and in absence of body forces
and neglecting inertia terms, the stress equations of motions in three
dimensions read as

σ = C : Ee −


I − C · S(m)


· I p

∇ · σ = 0, σ = σ T
(5.2)

in which Ee = (E − γ g) represents the elastic part of the deforma-
tion, by assuming an additive decomposition following the hypothesis of
small deformations (see Chapter 1). By combining (5.2)2 with compat-
ibility equations (5.1)2, together with the hypothesis of considering an
elastic isotropic material (also implying that A = AI), the quasi-static
balance of linear momentum can be expressed as:

µ∇· (∇ ⊗ u)T +(µ+ λ)∇ (∇ · u) −2µ (∇ · γ g + γ · ∇g) −λ∇g−A∇p = 0

(5.3)
with A =


1 −K/K(m)


, K and K(m) being the drained and matrix

bulk moduli, while µ = E/2(1 + ν) and λ = E/ (1 + ν) (1 − 2ν) are
the Lamé moduli.
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Also, the other basic field variable of poroelasticity is the dimen-
sionless (under the hypothesis of constant density) variation in fluid
content, named ζ, linearly related to the elastic strain and the pore
pressure field through the relationship [46]:

ζ = ϕF − ϕF0 = A : S : σ +Ceff p = A : (E − γ g) +M−1 p,

Ceff = I :


S − S(m)


: I −φ

1/K(F ) − I : S(m) : I


,

(5.4)

This constitutive assumption let the fluid mass conservation equation–
by assuming constant fluid density–be rewritten as:

∂ζ

∂t
+ ∇ · qF = ΓF , ΓF = κv (pv − p−ϖ (πv − πι)) − κl (p− pl)

(5.5)
in the balance above qF representing the vector flux that is supposed

to obey Darcy’s law, so that qF = −1/υFK∇p, with υF denoting
the fluid viscosity and K the intrinsic permeability symmetric tensor,
whereas ΓF is a source/sink term (fluid mass supply per unit volume)
introduced as a measure of fluid interchange from the leaky capillaries
to the absorbing lymphatic vessels within the interstitial space at the
microcirculation level, modeled according to the Starling’s theory. In
the definition of ΓF , it is taken into account that the difference between
the capillary and the interstitial pressures (pv − p) is the principal driv-
ing force regulating IFP as suggested by [25] affecting the movement
of fluid within the microvascular beds, the latter being contrasted by
the difference between the capillary and interstitial osmotic pressures
(πv − πι) weighted by a reflection coefficient ϖ, while the lymphatic
drainage in the opposite direction is mainly driven by the drop related
to the IFP and lymphatic vessels pressure pl ([102, 213, 214]). Natu-
rally, this terms are multiplied by two conductivity coefficients, named
κv and κl respectively. The constitutive equation (5.4), where ϕF and
ϕF0 severally connote the current and the initial fluid volume fractions,
introduces other characteristic poroelastic constants, in particular Ceff
is the the effective compressibility factor in which the porosity φ and
the fluid bulk modulus K(F ) are also included (the fluid is supposed to
be incompressible, so that 1/K(F ) → 0), and M−1 is the inverse of the
Biot modulus, expressed as

M−1 = Ceff (1 − A : B) ,

B =
1

Ceff
S : A =

1
Ceff


S − S(m)


: I

(5.6)

In (5.6) further appears the Skempton compliance difference ten-
sor B, that reduces to B = (B/3) I because of isotropy, with B =
1/K − 1/K(m)


/Ceff , tending to unity for fluid-saturated materi-

als, as well as for K(m) approaching to K(F ), wheter or not the fluid
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and the matrix are assumed incompressible, in this case being the poros-
ity φ actually uneffective. Introducing the undrained elastic constants
as

S(u) = S − S : (A ⊗ B) (5.7)

and by also invoking isotropy, the scalar Biot effective stress coefficient
A got in equation (5.3) can be expressed in terms of undrained and
drained constants and the Skempton coefficient B

S(u) = S − AB

3 S : (I ⊗ I) = S − AB

3
1 − 2ν
E

(I ⊗ I)

A =
3
B


ν(u) − ν


(1 − 2ν)


1 + ν(u)

 (5.8)

Then, by focusing on a spherically symmetric case in a way to have
the deformations (5.1)2 be written as E = diag {∂u/∂r, u/r, u/r}
and the multiplier γ = diag {γr, (1 − γr) /2, (1 − γr) /2}, the stress-
strain-pore pressure constitutive equations (5.2)1 take the form


σr =

E
(1+ν)(1−2ν)


(1 − ν) ∂u

∂r + 2ν ur − (ν + (1 − 2ν) γr) g


− 3
B

(ν(u)−ν)
(1−2ν)(1+ν(u))

p,

σθ = σϕ = E
(1+ν)(1−2ν)


u
r + ν ∂u∂r − 1

2 (1 − (1 − 2ν) γr) g


− 3
B

(ν(u)−ν)
(1−2ν)(1+ν(u))

p

(5.9)
in agreement with works both by Rice ([161]) and Araujo ([13]), re-

spectively with regard to the characterization of porous materials and
the anisotropic expansion of linear elasticity through a fixed prescribed
growth-strain distribution. Similarly, by starting from the definition
of the isotropic Skempton coefficient B, an analogous reasoning let to
simply obtain that Ceff = A/KB = 9


ν(u) − ν


/B2E


1 + ν(u)


, so

that the constitutive relation for fluid content ζ in (5.4)1 combined
with the expression of the Biot modulus given by (5.6)1 becomes

ζ =
3
B


ν(u) − ν


(1 − 2ν)


1 + ν(u)

 (ϵ − g) +
9


ν(u) − ν


B2E

1 + ν(u)


1 −


ν(u) − ν


(1 − 2ν)


1 + ν(u)


 p

(5.10)

with ϵ = tr (E), the latter also showing the growth g effectively play-
ing a role against the increase of fluid fraction, but it is actually the
associated growth dynamics introduced in the following revealing this
as the conseguence of an effective consumption, modeled as a resource
sharing/fight dilemma and actually interpreted as a predation by the
cells. The ulterior advantage of having adopted this notation lies into
the fact that equations (5.8) and (5.10) need only four elastic con-
stants E, ν, ν(u) and B, that can be easily accessible in Literature, also
with reference to biological tissues (see for example [65]).
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The poroelastic constitutive equations (5.9) and (5.10) involve the
growth strain function g = g (Φ), Φ here being the vector collecting
the volumetric fractions of the species involved in the dynamics –in
this case represented by the healthy and tumor cells and the ECM, say
ϕH , ϕT and ϕM– and g representing an inelastic growth term that is
responsible of the current net generation of the species at each time
t. As a consequence, the poroelastic field equations (5.2)2 and (5.5)
naturally result coupled with the species mass balances in the form

∇ · σ = 0

∂ζ
∂t − ∇ ·


K
υF

∇p

= ΓF

∂Φ
∂t = Γg

(5.11)

where Γg represents the vector of the net species rates, actually ex-
plaining the way in which the species interact. For this purpose, by fo-
cusing on the competition between cancer and healthy cells interacting
with the ECM to survivor in the common environment by challenging
for the same resources, Volterra-Lotka (VL) equations –largely used in
literature to model cell-cell and cell-immune system interactions ([75,
99]) due to the widely recognized contribution that evolutionary game
theory as well as population ecology can give in understanding and
predicting the behavior and the structure of a heterogeneous cells pop-
ulation ([208, 212]) also in complex environments, like the tissue-level
microenvironments– have been here employed to describe the dynam-
ics among the species. The mutual inhibiting inter-species parameter
is thus just related to the weight that each species exerts on the other
one, modifying the growth rates through non zero dimensionless com-
petition terms. Equations (5.11)3 can be then explicitly given in the
form



∂ϕT
∂t = ΓT = ϕF γT ϕT (1 − αTTϕT − αTHϕH − αTMϕM )

∂ϕH
∂t = ΓH = ϕF γH ϕH (1 − αHTϕT − αHHϕH − αHMϕM )

∂ϕM
∂t = ΓM = βTϕT + βHϕH − δMϕM (αMTϕT + αMHϕH)

(5.12)
By observing equations (5.12)1 and (5.12)2 it can be noticed that

they look like the classical diffusive VL-like ones, while the prolifera-
tion rate (i.e. the measure of converting available resources into repli-
cation capability) is here directly proportional to the variable fluid
content ϕF = ϕF0 + ζ. In this sense the fluid is a feeding-like term
which enters explicitly in the definition of the payoff functions of the
cells populations rates unlike the classical competitive equations, in
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which species are supposed to have food indefinitely. The current food-
provison term actually multiplies the inner growth rates γT and γH ,
penalized through the VL-coefficients αIJ , with {I, J} = {T,H,M},
representing for I = J a self-inhibiting term, whereas for I ̸= J they
provide the effects of the mutual inter-species inhibitions. The third
equation simply reproduces the balance of ECM in which biochemical
differences between healthy and tumor ECM components are neglected
and therefore the resulting overall ECM fraction, ϕM , dynamically de-
pends on the synthesis and Matrix Degrading Enzymes (MDEs) pro-
cesses promoted by cells, through the production characteristic rates
βT and βH , and the loss rate δM , weighted by the coefficients αMT and
αMH .
At this point, it is worth noting that classical poroelastic field equa-
tions (5.11)1 shall be adopted provided that u as well as the stresses
σij produce infinitesimal changes in this quasi-stationary problem, and
also that the volumetric growth term g keeps adequately small; how-
ever one should first ascertain what is a small deformation dealing with
growing tumor, as suggested by [78], and this sounds valid especially
in case growth is not an a priori assigned parameter but is instead the
result of interior dynamics, that autonomously evolve once the external
and initial conditions are given.

With reference to tumor spheroids made by a central nucleus and
a surrounding hollow sphere with radii a and b, provided with a rigid
internal inclusion with radius ri → 0 in order to avoid singularities,
under the hypothesis of isotropic linear elasticity and under the further
simplifying assumptions both of isotropic growth, which means γr =

1/3, and isotropic constant permeability, which gives K/υF = kF I,
the equations (5.3) and (5.5) reduce to those of a spherically sym-
metric problem in which the poroelastic variables are those obtained
(5.9) and (5.10), and a fully coupled system (5.11) is derived, involv-
ing an essential set of measurable parameters and five variables - say
{u, p, ϕT , ϕH , ϕM}-, being the sole radial non zero displacement com-
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ponent and all the unknown functions depending upon r and time t. In
particular, one has:



∂
∂r


∂u
∂r + 2ur


−


1+ν
1−ν


γrg− A

3K


1+ν
1−ν


p

= 0

∂ζ
∂t = kF

1
r2

∂
∂r


r2 ∂p

∂r


+ κv (pv − p−ϖ (πv − πι)) − κl (p− pl)

∂ϕT
∂t = ϕF γT ϕT (1 − αTTϕT − αTHϕH − αTMϕM )

∂ϕH
∂t = ϕF γH ϕH (1 − αHTϕT − αHHϕH − αHMϕM )

∂ϕM
∂t = βTϕT + βHϕH − δMϕM (αMTϕT + αMHϕH)

(5.13)
where the net growth strain term (assuming that the consituents have

the same density) can be defined in terms of the solid constituents as:

g = ϕT + ϕH + ϕM − ϕT0 + ϕH0 + ϕM0 (5.14)

analogously to the variation of fluid content ζ, the additional sub-
script 0 indicating the volumetric fractions of tumor and healthy cells
and matrix, respectively, at the conventional initial time t = 0. To take
into account the mechanically-coupled processes affecting growth, the
coefficients appearing in the VL equations (5.12) are thought to be
dependent on the mechanical stress in the way explained in the section
below.

5.3.1.1 Physical meaning and estimation of both poroelastic parame-

ters and VL coefficients

• Poroelastic Parameters:
Once the ordinary set of poroelastic constants adopted in writing the
problem (5.13) have largely been discussed before, the source/sink
term appearing in equation (5.13)2 involve the use of two conductivity
parameters. The first one, κv is proportional to both the hydraulic per-
mebility of the blood vessel wall Lv and the vascular surface area per
unit volume Sv/V , and it is here considered to be constant since no
effects of vascularization have been taken into account at this point, so
that the vascular surface can be supposed homogeneously distributed
within the overall volume. However, there is a wide Literature ([102])
reporting the distinction of tumor and healthy vascular permeability.
The other conductivity parameter κl is instead related to the effective-
ness of the lymphatic drainage within the tissues. It is known that
within a tumor there are no functional absorbing lymphatics due to
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the fact that ordinary lymphatic drainage mechanisms are altered and
then the interstitial fluid pressure rises to values that are proportional
to the vascular pressure. The draining lymphatics density tends in fact
to decrease in the early stages mainly due to the action of MDEs over-
produced by tumor cells ([214]) and also tumor cell induced-stress such
as tumor overcrowding can cause lymphatic collapse since the lym-
phatic vessels pressures is generally low. Moreover, cancer metastatic
cells tend to invade lymphatic vessels and lymphnodes space (however
metastasis is here not treated). The transition from neoplasic tissue
to normal tissue typical values of κl = LlSl/V ,Ll and Sl/V being re-
spectively the lymphatic vessel permeability and the lymphatic surface
area per unitvolume, is then modeled through a decreasing function by
assuming κl linearly decreasing with the tumor fraction variation:

κl = (1 − (ϕT − ϕT0)) κln (5.15)

with κln being an assigned constant denoting the nominal value of
drainage conductivity in normal tissues. Naturally κl multiplies the
pressure drop p− pl, with pl constant. In the same way κv multiplies
the Starling’s gradient pv − p−ϖ (πv − πι). The term pv represents the
microvascular net pressure (MVP) inside the blood vessels (the effec-
tive pressure is considered due to the fact that vessels can locally be
both afferent and efferent), that in normal conditions exceeds the pres-
sure in IF space and promotes the movement of fluid toward the latter.
The hydrostratic gradient pv − p is countered by the colloidal osmotic
pressure gradient (πv − πι) related to the plasma proteins, multiplied
by a reflection coeffient ϖ that takes into account the selectivity of the
vessels pores, here assumed constant.

• Volterra-Lotka Parameters

In standard VL models all the coefficients are assumed to be constant
because the food chain is simulated by assuming that preys can access
to indefinite reserves of food, reproducing and being preyed by preda-
tors at a constant rate. On the other hand, to realistically describe the
competitive dynamics among cell species and ECM in tumor spheroids,
two main phenomena cooperate to require varying coefficients in the
VL equations (5.12). The first one is that in biological tissues nutri-
ents are delivered by fluids which in poroelastic models obey the fluid
balance equation (5.5) and whose content is generally neither spatially
uniform nor constant in time and can be explicitely accounted through
the term ϕF = ϕF0 + ζ. Additionally, some VL parameters also im-
plicitly vary with space and time through the hydrostatic stress level
perceived by cells, σhyd = tr (σ) /3 , which directly acts to modulate
the intrinsic proliferation rates of the cell species. Accordingly, the rate
of tumor cells and healthy cells in (5.12)1 and (5.12)2 are then influ-
enced by the presence of the mutual competition term αHT and αTH
that weight the way a species is influenced by the presence of the other
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one, while the explicit form of the characteristic growth parameters
γT and γH can be constructed to take into account the effect of hy-
drostatic stress. This assumption derives from the fact that the local
stress is known to induce latency in cell development known as dia-
pause ([3, 158]), a reversible non-proliferating state during which the
cell metabolism is very low and making this way the cells aggregates
not to expand over a certain size so reaching a standstill of prolifer-
ation, whose reasons are not completely clear yet as well as the way
of re-activation. This mechanism, of phenotypic origin and having cru-
cial role in tissue homeostasis for regeneration and growth in normal
conditions, is also evidently preserved by cancer cells, entering an inac-
tive and clinically asymptomatic state thanks to which cancer cell are
capable also to regulate or at least delay the achievement of the apop-
totic state when critical conditions are achieved, in this way becoming
a concrete possibility for the tumor itself to control its growth and to
undergo dormancy as long as the environmental conditions are again
favorable to progression, as in the case of the angiogenic dormancy in
which cancer cells are not inactive although they look clinically asymp-
tomatic, until adequate vascularization restores their growth potential.
This mechanism is also investigated with therapeutic purposes, in or-
der to induce or maintain the dormancy and avoid metastasis ([158]).
In particular, from a mechanical standpoint, it can be supposed an
interesting connection with the experimental observation according to
which high compressive stresses inhibit tumor growth ([83, 137]). Hence,
given that the hydrostatic stress affects the intrinsic tumor cell growth
rates γT and γH in a way such that if σhyd is less than a critical thresh-
old value σhydcr , and assumed that cancer cells and healthy cells in the
quiescent state are virtually indistinguishable as the former appear as
asymptomatic as the latter, it is thought that the respective intrinsic
growth rates reduce to a common low growth rate, say γq, while if the
critical stress value is overcome, growth rate approaches abnormal val-
ues typical of cancer cells. The following transition function SK


σhyd


has been finally introduced:

γK = γK0SK = γK0

 γq
γK0

+


1 − γq

γK0


exp


χσ

σhyd − σhydcr


1 + exp


χσ

σhyd − σhydcr


 ,

(5.16)
γK0 = TK

−1ln2

where K = {T,H}, χσ is a constant and the corresponding fixed
coefficients γT0 and γH0 have been taken depending upon the doubling
time TT and TH of tumor and healthy cell species, respectively, assumed
in the range 17-40 hours ([67] and experimentally determined for two
different cell lines (as argued in the following), whereas the quiescent
metabolic rate γq is a reduced non zero metabolic coefficient resulting
from the fact that quiescent cells arrest their division process but not
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their metabolic activity, because they maintain a basal metabolic rate
in presence of nutrients ([54]) and can increase size until optimal envi-
ronmental conditions occur. Thus, it is assumed that γq = εqγH0, with
εq ≪ 1 being an appropriate reduction coefficient.

The coefficients αTM and αHM are chosen to be constant and rep-
resent the weight the ECM exerts in terms of restriction of available
space. The cross terms αHT and αTH are instead a measure of the mu-
tual inhibition, while the coefficients αTT and αHH are self-competition
coefficients accounting for the carrying capacity of each cellular species.
These coefficients can be considered constant and not affected by the
mechanical stress, this because tumor quiescent cells keep their aggres-
sive mutagenic phenotype against normal cells, like their intimate na-
ture was just hidden during quiescence. All these considerations let to
describe a sufficiently complex population dynamics with respect to
the classical one, being the game of interaction affected by the environ-
mental parameters as well as there possibility of changing the strategy
through the modulation of the the intrinsic rates in order to find the
fittest way to survive. On the other hand, in this first formulation the
variability is in the rate and there is no way of physically discriminat-
ing proliferating cells from quiescent cells, and also necrosis as well as
angiogenesis have not been modeled, these aspect certainly introduc-
ing higher degree of complexity to the equations. Finally, it is worth to
note that in the proposed model ECM balance (5.12)3 is also written
in a VL-like form, with a production rate that depends on the amount
of cells synthesizing ECM components, say distinctly βT and βH for
cancer and healthy cells, while the degrading rate δM is weighted by
the interaction coefficients αMT and αMH which account the way ECM
is attacked by the cells lysis, leading to a three-species VL-like compe-
tition. The adopted parameters are summarized in Table 6.

5.3.2 Results of the linear model

Numerical simulations by means of the commercial package Wolfram
Mathematica®([210]). With focus on the linear model, the respect of
the hypothesis of small deformations introduced in section implies the
analyses of solutions effectively remarking this assumption. As a conse-
quence, since it is expected that the whole growth process would likely
generate large deformations on the timescale of the tumor growth, the
attention has been here payed on a reduced time window (in relation
with the conducted experimental observations), in order to obtain so-
lutions compatible with the linear model assumptions. The latter solu-
tions could not provide the needed long-term information in relation
with experimental findings: in this sense, the nonlinear model described
in the following sections will be certainly more effective. However, it is
worth noting that the linear model results of great engineering interest
for the evolutionary problems at hand since it provides a strategy to con-
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struct the entire solution by superposing incremental sub-cases, which
can be linearly modeled. In this paragraph, given the control volume
dimensions via the assignment of the external radius b, a confined in

vivo growth has been modeled by analyzing a displacement-prescribed
case, i.e. u(b, t) = 0. In particular, species distributions, pressure and
displacement have been prescribed at the starting time ti = 0+ by
giving the following initial conditions:

ϕM (r, ti) = ϕM0, ϕT (r, ti) = ϕT0D(r)

ϕH (r, ti) = ϕH0(1 −D(r)), p (r, ti) = 0, u (r, ti) = 0
(5.17)

Herein D(r) = (1 + exp (χr (r− a) /b))−1 is a function adopted to
characterize the transition from neoplasic core to the host environment,
where χr is a proper smoothing coefficient, a is the initial tumor front
and the relation ϕT0 > ϕH0 subsists to take into account internal hy-
perplasia. In this situation, it was assumed b = 3a as initial geomet-
rical relation between external and internal initial radii of the tumor
spheroid. In addition, no Darcy fluxes occur at r = b and r = ri, where
also null displacement u(ri, t) has been provided. Moreover, no accumu-
lated stress has been provided to the body, then a residual stress-free
simulation is here considered for the sake of simplicity, and the simu-
lation time has been set to 1 week. These two fact imply that some of
the previously discussed phenomena, such as growth inhibition due to
mechanical compression, could be not immediately observable as long
as the nonlinear model will be treated and simulations could be carried
performed over longer time. However, as said, the linear model can be
used to construct more elaborated solutions, by iteratively treating lin-
ear solutions obtained up to a generic time tk as a new starting state
–including distributions, pressure and internal stress distributions– in
order to construct solutions up to the next time tk+1 = tk + ∆t.
By then focusing on the species development, reported in Fig. 43, the
tumor species fast accrues its amount in the tumor region, by increasing
of approximately the 30%, and slightly starts to invade the surround-
ing host tissue. In this case, the tumor amount growth results greater
than its invasiveness potential, meaning that the tumor cells –for the
assigned initial state– tend to “bulky” proliferate by penalizing the
other healthy constituents and by saturating the available space and
the nutrients rather than diffusing and increasing its extension. Addi-
tionally, the limited migration of the case under discussion can be also
attributed to the absence of pre-existing resident compressive stress
(here not provided). Experimental observations ([200]) that tumor mi-
gration is strongly enhanced by the level of mechanical compression,
which induces border cancer cells to augment their motility. In the
present case, an “unloaded” environment was imagined, and therefore
stress within the spheroid can be considered still sustainable by the
internal proliferating cells.
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Figure 43: Tumor, healthy and ECM fractions within the control volume at
the specified times.

The IFP was predicted to rise within the tumor interior, this gener-
ating an outward flux at the tumor-host interface (Fig. 44), and this
implies that the tumor interior will be progressively deprived of nutrient
exchange due to the IFP barrier, and thus abnormally high IFP signif-
icantly contributes to induce potential internal apoptosis and necrosis
within tumor spheroids.

Figure 44: Evaluation of the pressure drop and radial flux at different times.

Also the IFP combines with the growth term and the elastic response
directly derivable from the displacements and the elastic constants to
express the effective stress field that build up into the volume. Solid
stresses account the tumor accretion by generating internal compression
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Figure 45: Solid stress obtained from the linear model. (top) Radial Stress.
(bottom) Hoop stress.

–here approaching 800 kPa, as shown in Fig. 45–, decreasing towards
the periphery. In particular, radial stress amplitude slightly decreases
and reaches at r = b a value representing the radial reaction exerted
against the confinement made by the outer environment, while circum-
ferential stress exhibits a more drastic transition from the intratumoral
region to the host healthy tissue, here also exhibiting positive values,
probably related to the tissue accommodation in correspondence of the
spheroid expansion, and, proceeding toward the exterior, hoop com-
pression re-occurs as an effect of the peripheral confinement.

As said, the effects of stress accumulation and tumor invasion are
long-term effects that can be depicted for enhanced growth process.
Therefore, with a sole illustrative purpose to both anticipate the results
of the nonlinear model and show at the same time the predictive po-
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tential of the full-coupled strategy, two further long-time simulations
have been conducted. In particular, different external loading condi-
tions could have different long-term effects on cells growth: therefore,
two limiting conditions have been compared by considering a stress-
free growth (i.e. σrr(b) = 0) and a fully confined growth. Results are
summarized in Fig. 46. Here, tumor cells grown in the unconfined case
result more invasive than those ones grown in the confined case (Fig.
46A and B). Stresses in the unconfined case achieve approximately 600
Pa within the tumor interior, while confinement induce almost hydro-
static compression increase up to about 2kPa (Fig. 46C, D,E and F).
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Figure 46: Distributions of tumor and healthy fractions in case of uncon-
fined growth (A) and fully confined growth (B).
Stresses in the stress-free case: (C) Radial (D) Circumferential
Stresses in the confined case: (E) Radial (F) Circumferential
Illustration of the MCTS formation enhanced by the VL dynam-
ics (G).
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5.4 the nonlinear mcts model

5.4.1 Preliminary remarks on the experimental model

The limitations exhibited by the presented linear model can be over-
come by using a nonlinear theory. Also, the integration of the theoret-
ical description with experimental observations introduced hereinafter
and derived from both in vitro experiments on cancer cells cultures
and in vivo-implanted tumor spheroids, by means of an animal model,
let to even further enhance the previous model. This is done, for ex-
ample, by observing the growth variability in function of the available
nutrients, in order to derive an explicit and more accurate dependence
of the growth rate upon the extra-cellular resources availability and
in order to better describe the apoptosis mechanism. For this reason,
the nonlinear model has been also enriched by introducing other two
constituents, i.e. the nutrient concentration and the apoptotic cells.
Moreover, the experimental observations accompanying the theoretical
results developed in the subsequent nonlinear model have been oppor-
tunely designed in order to evaluate the dimensional growth and the
related mechanical characteristics, in terms of the (direct and inverse)
evaluation of the mechanical properties and residual stresses. Then, be-
fore presenting the mathematical details of the nonlinear fully coupled
MCTS model, some details of the animal model and the experimental
procedures are introduced. In particular, two different cell-lines have
been adopted:

• Human pancreas cancer cell line MIAPaCa-2, was purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA)
and grown in Dulbecco’s Modified Eagle’s medium (DMEM) sup-
plemented with L-glutamine, antibiotics, and 10% heat-inactivated
fetal bovine serum (FBS, Gibco/Invitrogen, Grand Island, NY,
USA). The cells were maintained at 37◦C in a humidified at-
mosphere of 5% CO2. All experiments were performed with cul-
tures grown for no longer than 6 weeks after recovery from frozen
stocks.

• Human Triple Negative Breast cancer cell line MDA-MB.231, was
purchased from American Type Culture Collection (ATCC, Man-
assas, VA, USA) and grown in RPMI1640 medium (DMEM) sup-
plemented with L-glutamine, antibiotics, and 10% heat-inactivated
fetal bovine serum (FBS, Gibco/Invitrogen, Grand Island, NY,
USA). The cells were maintained at 37◦C in a humidified at-
mosphere of 5% CO2. All experiments were performed with cul-
tures grown for no longer than 6 weeks after recovery from frozen
stocks.

Twenty eight-week-old female Foxnnu/nu mice were purchased by Har-
lan (San Pietro al Natisone, Italy). Mice were housed 5 per cage and
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maintained on a 12-h light:12-h dark cycle (lights on at 7.00 a.m.)
in a temperature-controlled room (22±2◦C) and with food and wa-
ter ad libitum. The experimental protocols were in compliance with
the European Community Council directive (2010/63/EU). Animals
were individually identified using numbered ear tags. All experiments
were conducted in a biological laminar flow hood. The mice were anes-
thetized using isoflurane during the high-frequency ultrasound imaging.
The anesthetic agent used is Zoletil 100 (Virbac): combination of 50% of
Tiletamine and Zolazepam; it is used to 50 mg/kg by adding Atropine
sulfate at 0.04 mg/kg, and xilazine 2%. After 2-week of acclimation
to the housing conditions, a first group of mice (Mice n.1,...,11) were
injected subcutaneously (s.c.) with a suspension of MDA-MB.231 cells,
1.5 × 106 cells/mouse in the right hind limb in 150 µl of PBS solu-
tion. Mice tumor growth was measured biweekly with a digital caliper
2BIOL (Besozzo, Italy) and expressed in terms of surface, volume and
measuring two reference diameters.
The experimental protocol provided to sacrifice animals when MDA-
MB.231 tumors reached specific nominal sizes: 2 animals at volume of
300 mm3, 2 animal at volume of 600 mm3, 2 animals at volume of 900
mm3 and 2 animals at volume of 1200 mm3 or when presenting signs of
pain. Another group of mice (Mice I,II,III) was instead injected subcu-
taneously (s.c.) with a suspension of MiaPaCa-2 cells, approximately
2 × 106 cells/mouse, with analogous procedures. Tumors growth was
monitored every 5 days by means of caliber (C) and through echogra-
phy (US). Animals were sacrificed after three weeks and after tumor
implantation and organs were dissected and analyzed. All in vivo pro-
cedures were carried out in accordance with protocols approved by the
European Animal Care and Use Committee. In the end, time of tumor
dissection, each animal was subject to Ultrasound (US) and Magnetic
Resonance (MR) imaging.

5.4.1.1 Imaging and Data Processing

High-frequency ultrasound imaging

Imaging and measuring of adrenal glands were performed by high-
resolution ultrasound imaging system Vevo® 2100 (System Visualson-
ics, Toronto Canada). It is characterized by high-frequency, high-resolution
digital imaging platform with linear array technology and Color Doppler
Mode; and is used in preclinical research in a wide range of animal
models and applications including cancer, cardiovascular and inflam-
mation, etc. Mice, were anesthetized by isoflourane/O2 (4% for induc-
tion and 2, 5% for maintain sedation) and placed in prone position on a
temperature-controller surgical table to maintain rectal temperature at
37◦C, continual ECG monitoring was obtained via limb electrodes. Tu-
mor dimensions was evaluated by B-Mode (2D) imaging for anatomical
visualization, with 22-55 hMHz transducer (operating frequency of 40
MHz, axial resolution 40 µm), with enhanced temporal resolution with
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frame rates up to 740 fps (in 2D for a 4 × 4 mm2 FOV), and enhanced
image uniformity with multiple focal zones.
Magnetic resonance imaging

Animals were subjected to magnetic resonance imaging (MRI) at 1.5
T (Magnetom Symphony, Syngo MR 2002B, Siemens, Erlangen, Ger-
many) and a dedicated phased array coil. Mice were placed in a supine,
head first position. Axial, sagittal and coronal T2-weighted two-dimensional
BLADE images of whole body were obtained. Sequence parameters
are: TR/TE 4000/127 msec.; flip angle 150 degrees; slice thickness 2
mm; gap 0 mm; matrix 256x256; FOV 120 × 120 mm2; pixel spac-
ing 0.5 × 0.5 mm2; acquisition time 4 min). Images assessment was
performed in a single reading session for each animals by an expert
radiologists. The radiologists, based on T2-weighted images, manually
drawn regions of interests (ROI) along contours of tumor, covering the
whole lesion with exclusion of peripheral fat, artefacts and blood ves-
sels were drawn over the tumor. The segmentation was done on axial,
coronal and sagittal plane and following the segmented volumes (SV)
were calculated, for each plane, as product between the number of vox-
els, pixel spacing and slice thickness. The results were reported in term
of mean value of three volume measures.

5.4.2 Imaging results

Table 4 showed the results of tumor size measures from caliber in vivo,
ex vivo, US and MR imaging. The days indicated in the table repre-
sented the days between the inoculation and sacrifice time. MR Imaging
was resulted more accurate than US imaging considering the percentage
difference of volume measure respect to caliber ex vivo volume measure.
In fact for MR imaging was obtained a median ± standard deviation
value of 1.9% ± 13.8% while for US imaging was obtained a median ±
standard deviation value of 8.7% ± 33.8%. Figure 47 showed a panel of
digital image acquisitions for mouse n.4, n.9, n.11 and n.1. 2D view of
MRI allowed a more accurate tumor size estimation and a more accu-
rate interpretation of involvement with adjacent structures (as muscle
infiltration) than US imaging. Similar considerations have been made
to estimate the morphology of MiaPaCa-2 tumors. In particular, Fig.
48 shows the time development of tumor in Mouse II and the digi-
tal processing to accurately evaluate the sample volumes through 3D
reconstructions.

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



146 the full coupling

Figure 47: 2D visualization of tumours on mouse n.4, n.9, n.11 and n.1. Coro-
nal and sagittal T2-weighted images, applying intensity colouring
maps of mouse n.4 (A,B), mouse n.9 (F,G), mouse n.11 (M,N)
and mouse n.1 (R,S). There were single slice segmentation super-
imposed on coronal T2 weighted images need to volume calcula-
tion. Volumes measured are 231.8mm3 (mouse n.4), 504.5mm3

(mouse n.9), 818.1mm3 (mouse n.11) and 935, 1mm3 (mouse n.1),
respectively. Ultrasound images (C,H,O,T) and tumor specimen
images (D-E, I-L,P-Q, U-V) were reported for the mouse n.4,
n.9, n.11 and n.1, respectively

Figure 48: Digital image acquisitions with reference to Mouse II. A. Ultra-
sound image at Time I. B. Ultrasound image at Time II. C.
Ultrasound image at Time III (the yellow lines indicate maxi-
mum and minimum diameter); Coronal and Transversal (D-E)
T1-weighted images (T1-w) at Time III (red lines indicate max-
imum and minimum diameter); Volumetric image (F) obtained
by MRI at Time III.
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Table 4: Caliber measurements, US measurements ans MRI volumes reconstructions in MDA.MB-231 tumor at different sizes

US C vivo C ex vivo MR

ID size days Dmax dmin A V Dmax dmin A V Dmax dmin A V Dmax dmin A V SV
1 1200 14 14,0 10,5 147,0 771,8 14,1 13,6 165,3 1304,0 12,2 10,1 123,8 627,7 14,5 11,4 165,3 942,2 935,1
6 300 14 11,7 6,9 80,9 279,0 10,5 9,5 76,3 470,0 9,3 8,1 75,5 305,7 10,6 7,2 76,3 274,8 308,9
3 600 21 12,2 6,4 78,2 251,0 13,9 10,5 116,8 761,1 13,8 7,6 104,3 394,1 13,9 8,4 116,8 490,4 403,3
4 300 21 8,7 7,2 62,7 226,5 8,9 8,0 63,2 281,9 7,8 7,2 56,5 203,8 8,1 7,8 63,2 246,4 231,8
7 600 29 16,0 9,0 144,0 648,0 11,5 9,8 91,6 552,2 10,2 8,8 89,8 394,9 10,7 8,6 91,6 392,0 367,5
2 900 40 15,5 10,0 155,0 775,0 13,5 11,6 152,6 908,3 13,5 13,2 178,1 1171,6 15,0 10,2 152,6 778,2 986,3
11 900 40 15,5 10,0 155,0 775,0 13,8 11,8 137,9 960,8 15,2 10,3 156,4 805,2 13,1 10,5 137,9 726,3 818,1
9 600 50 9,5 7,6 72,2 274,4 11,5 10,4 107,9 624,5 10,2 9,6 97,6 467,1 11,6 9,3 107,9 501,6 504,5
10 1200 50 16,0 12,0 192,0 1152,0 16,2 13,2 185,3 1411,3 17,2 12,8 220,5 1411,5 14,2 13,1 185,3 1211,1 1271,3
5 1200 55 13,5 10,0 135,0 675,0 14,4 13,6 168,8 1320,2 13,8 12,3 169,7 1043,9 13,5 12,5 168,8 1054,7 1199,4
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5.4.3 The kinematics of tumor growth in finite deformation

Let B0 be a body in its reference configuration and let V 0 be its volume.
The growth and the deformation of the elastic body is entirely governed
by the body motion x = x (X, t) that maps the material points X ∈ B0

onto spatial points x at any time t, so that the overall deformation
gradient F is additionally introduced by accomplishing compatibility
with the body particles displacement field u (X, t) ∈ C 2 B0, thus
giving:

F =
∂x (X, t)

∂X
= I + u (X, t) ⊗ ∇X (5.18)

where ⊗ is the dyadic product and ∇ is the nabla vector, the sub-
script indicating the coordinates with respect to which the differentia-
tion is performed. By exploiting the polar decomposition theorem, the
existence of a proper orthogonal matrix R ∈ Orth3

+ is ensured and
introducing the diagonal right stretch tensor U one has:

U = λi

N̂i ⊗ N̂T

i


F = RU = λi


n̂i ⊗ N̂T

i


(5.19)

where λi and N̂i are respectively the principal stretches and the eigen-
vectors of U (the summation symbol over i = 1, 2, 3 being subtended),
while n̂i = RN̂i determines the rotation of the eigenbasis in the cur-
rent configuration (the superscript T indicating the transpose of the
tensor matrix representation). By adopting the multiple natural con-
figuration approach introduced by [164] and in following more recent
inherent works ([48]), the deformation gradient is assumed to be the
result of a growth tensor and an elastic tensor that de facto combine
in a multiplicative manner in order to give back (5.18), so that one can
read:

F = Fe Fg Fs (5.20)
Herein, a further starving deformation gradient Fs is formally intro-

duced in order to take into account the fact that, in principle, one could
not simply choose as reference configuration an initial stress-free config-
uration, but rather a state in which residual stress have been previously
imprisoned in the body. However, for the sake of simplicity, in what fol-
lows it is assumed that Fs = I. As a consequence, the body is first
supposed to undertake a growth process that drives the latter towards
a grown intermediate configuration, say Bg. In this configuration, the
material particles occupy the position xg (X, t) ∈ Bg and their motion
can be described through an appropriate growth tensor Fg. Assuming
that the growth is isotropic, the polar decomposition of Fg leads to
write:

Ug = λg

N̂i ⊗ N̂T

i


Fg = RgUg = λg


N̂gi ⊗ N̂T

i


= λg I

(5.21)
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with λg = J
1
3
g , Jg = det Ug = dVg/dV0 denoting the relative volume

change with respect to the initial configuration, whereas N̂gi = RgN̂i

defines the rotation on each eigenvector N̂i in the configuration Bg.
During the growth process the body is also supposed to be unloaded,
in this way the (inelastic) strain contribution being exclusively caused
by the volumetric change induced by the growth itself. However, the
introduction of this intermediate configuration also implies the need
of discerning separately the contribution of volumetric growth and the
densification that can combine together to furnish the growth seen as
overall local mass addition/removal. Coherently with the idea of a body
system as a multiphasic continuum, this approach allows to translate
the concept of growth –seen as flow of material particles entering (or
leaving) the system– into an equivalent geometrical deformation of an
infinitesimal volume element within the body, the mass flows being
so interpreted as intrinsic growth rates of the living species. However,
as well-known, the growth strain alone does not completely describe
the body motion since the growth process is supposed stress-free and,
in general, it could not ensure compatibility of the intermediate con-
figuration since the infinitesimal volume elements grow independently
from each other, as conceptually represented in Fig. 49. For this reason,
the body must experience an elastic strain which permits to adapt the
response to prescribed boundary conditions (i.e. the external mechani-
cal loads and/or the given constraints) as well as to compatibilize the
grown elements by kindling suitable self-equilibrated (residual) stresses
within the body. Then, the elastic strain Fe maps the points xg ∈ Bg
onto the actual configuration x ∈ B and, through the already adopted
decomposition, gives:

Ue = λei

N̂gi ⊗ N̂T

gi


Fe = ReUe = λei


n̂i ⊗ N̂T

gi


(5.22)

Ue then denoting the principal elastic stretch seen in the grown con-
figuration. By combining the right stretch tensors introduced in (5.21)
and (5.22), the baptized total stretch tensor U appearing in (5.18) can
be determined by considering the right Cauchy-Green tensor:

C = FTF = U2 = UT
g


RT
g UT

e UeRg


Ug = UT

g

◦
U

2
eUg (5.23)

with
◦
U

2
e = RT

g U2
eRg thus representing the back rotated version of

Ue reported to the reference configuration. This also let to write:

U =


UT
g

◦
U

2
eUg (5.24)

Also, the orthogonal rotation matrix R can be expressed as R =

ReRg.
For the problem at hand, that is a MCTS under uniform boundary
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Figure 49: Illustration of the kinematics of growth in finite strain by adopt-
ing a multiplicative decomposition of the deformation gradient
F into a growth part Fg mapping the body points onto an inter-
mediate and generally incompatible configuration and an elastic
part Fe which moves the body toward the current compatible
(grown) configuration, which is also subjected to external load-
induced deformations.

conditions, a spherically symmetric geometry is introduced, so that
X = {R,Θ,Φ}, the field variables depending exclusively on R. A spher-
ical body is then considered by simply setting an external radius Ro
delimiting the control volume and an inner radius Ri → 0. Further-
more, spherical symmetry ensures that the deformation gradient F can
be conveniently referred to its principal coordinates:

F = Diag{λr λθ λθ} (5.25)

In addition, the forms of the deformation gradient (5.25) and of the
growth tensor (5.21) imply that the elastic tensor Fe is also diagonal:

Fe = F F−1
g = Diag


λr
λg

λθ
λg

λθ
λg


Je = JJ−1

g (5.26)

J = det F and Je = det Fe being the Jacobians of the transforma-
tions.
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5.4.4 Hencky strain measure and associated growth strain

It is well-known that the finite deformation theory provides general
strain measures, generated by the Seth-Hill formula ([84]), recalled from
Chapter 1:

E(m) =
1

2m


FTF
m

− I

=

1
2m (Cm − I) =

1
2m


U2m − I


(5.27)

where C the right Cauchy-Green tensor. In the present work, the
Hencky’s logarithmic strain measure is adopted, in such a way obtain-
ing:

H := E(0) = lim
m→0

E(m) =
1
2 ln


FTF


=

1
2 ln C = ln U (5.28)

The reason of this albeit legitimate choice is motivated by several
advantages, first of all the possibility of extending the natural proper-
ties of the logarithm –i.e. the additive decomposition and the power
law– to the logarithmic isotropic tensor function, in this way reducing
the nonlinear multiplicative decomposition of the deformation gradient
into the linear superposition of elastic and inelastic (growth-associated)
strain contributions. In fact, by recalling eq. (5.24), one has:

H = ln U = ln Ug + ln
◦
Ue = Hg +

◦
He (5.29)

where the back rotated tensor
◦
He is here adopted in order to account

the coaxiality of the three Hencky strain tensors, the relationship
◦
He =

RT
g HeRg deriving from both the position introduced in eq. (5.23) and

the properties of the logarithmic isotropic tensor function. In particular,
if the spherical symmetry is assumed, one has that

◦
He and He coincide.

Also, by introducing the spatial velocity gradient L = ∂ẋ/∂x = Ḟ F−1

and D = sym (L), which represent the incremental deformations, the
diagonalized structure let to write

Ḣ =
3
i=1

λ̇i
λi

N̂i ⊗ N̂T
i = RTdR = D (5.30)

This also provides a simplified intuitive interpretation of H as the
time summation of incremental deformations, a particularly suitable
standpoint when dealing with evolutionary and incremental problems,
in this way proposing a solution to the issue suggested by Graziano and
Preziosi [78] through the adoption of a particular nonlinear deforma-
tion measure that simplifies the complexity of the problem related to
the presence of multiplicative stretches because of its properties, being
also effectively interpreted as an incremental deformation process at
the limit. It is worth to highlight that the Eulerian description of the
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deformation process can be argued in a completely analogous manner.
In fact, by introducing the left stretch tensor V = RURT, the left
Cauchy-Green tensor, under the decomposition (5.20), can be written
as:

b = FFT = V2 = VeReV
2
gR

T
e VT

e = VeV̌
2
gV

T
e , (5.31)

V =


VeV̌2
gV

T
e = λin̂i ⊗ n̂T

i (5.32)

V̌g denoting a push-forward operation of the growth left stretch
throughout the current basis. Then the eulerian Hencky strain is de-
fined as

h = ln V = ln Ve + ln V̌g = he + ȟg (5.33)

Obviously, it is immediate to verify that H and h are linked each
other by the relationship:

H = RThR (5.34)

This also implies that, for a generic isotropic and scalar valued tensor
function φ (·), one has φ (H) = φ (h). In addition, it is possible to
bring back to the linear additive formulation E = Ee + Eg by simply
considering a first order approximation of (5.29) for both growth and
elastic small stretches.

5.4.5 The hyperelastic potential for MCTS solid phase

To derive suitable and thermodynamically consistent constitutive as-
sumptions, let us first introduce a geometrically nonlinear strain energy
density in the form (see, for example, [11, 27, 174, 215]):

ψHyp (He) =
1
2 He : C0 : He, C0 > 0 (5.35)

so that the (back-rotated) work-conjugate Kirchhoff stress τ results
to be linearly dependent on He, as also reported by [86] (in this context
the elastic aliquot is considered by depriving the total strain H of the
anelastic growth term Hg):

τ e = C0 : He (5.36)

where C0 = 2G I + Λ I ⊙ I represents the (positive definite) tan-
gential stiffness tensor, with G and Λ being the Lamé moduli2. Addi-
tionally, it is here proposed to enrich the elastic strain energy density

2 More precisely, the relation between the Kirchhoff stress and the Hencky strain
should account the presence of a structure tensor, as also in detail reported in
Chapter 1. In this case, this fabric results in the identity because of the symmetric
and diagonal structure of the deformation tensor He.
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(5.35), commonly adopted in problems involving the logarithmic strain
measure, in order to take into account the constitutive nonlinearities
typically exhibited by biological tissues, that are normally captured by
exponential laws. To do this, the well-known Fung exponential consti-
tutive model ([69]) has been extended by replacing the elastic strain
tensor Ee with the general Hill’s expression given by (5.27) in order to
obtain a bilinear-exponentiated Hencky potential:

ψHyp

E(m)
e


=

1
2 E(m)

e : A : E(m)
e +

c

2

exp


E(m)
e : B : E(m)

e


− 1


(5.37)

so that the case m → 0 leads to the elastic strain energy density
effectively adopted to model the solid part response:

ψHyp (He) =
1
2 He : A : He +

c

2 (exp (He : B : He) − 1) (5.38)

in which the fourth-order tensors A, B and the scalar c are material
parameters. The consistency conditions for (5.38) read:

ψHyp|He→0 = 0
∂ψHyp
∂He


He→0

=


A : He + cB : He e(He :B:He)


|He→0 = 0 (5.39)

∂2ψHyp
∂He∂HT

e


He→0

=


A + (B + (He : B) ⊙ (B : He)) c e(He :B:He)


|He→0 =,

= A + cB

The ⊙ operator denoting the standard tensor product between sec-
ond order tensors. Then, eq. (5.39)3 reproduces the tangential stiffness
tensor C0 appearing in eq. (5.35) in terms of the material parameters
A, B and c, so that one can assume –due to isotropy– that the latter
tensor quantities present an analogous structure, i.e. A = a1I+ a2I ⊙ I

and B = b1I + b2I ⊙ I, the energy (5.38) reducing to:

ψHyp (He) =
1
2 a1tr


H2
e


+ a2tr (He)

2 +
c

2

e(b1tr(H2

e)+b2tr(He)
2) − 1


(5.40)

This also requires A + cB be positive definite, and –for the par-
ticular form (5.40)– the respect of the conditions a1 + c b1 > 0 and
a1 + 3a2 + c (b1 + 3b2) > 0 in any fitting procedure of experimental
data for the determination of the material constants. In this manner,
a nonlinear fitting procedure has been carried out in order to match
the experimental data resulting from an uniaxial compression test per-
formed on tumor samples in order to experimentally derive the tumor
effective mechanical response. Results shown in Fig. , in which simple
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compression tests performed both on MiaPaCa2 and MDA.MB231 tu-
mor samples are reported, clearly show how the Hencky enriched law
introduced is highly capable of fitting experimentally observed mechani-
cal behavior. The effectiveness of the choice of the hyperelastic potential
ψHyp slected to represent the elastic/conservative part of the “actual”
response of the overall biological (tumor mass) material is shown in Fig-
ure 50, where a very good agreement between the experimental points
and the theoretical predictions can be seen.

Figure 50: Uniaxial compression test of a tumor specimen. (A) Comparison
between experimental data and fitting performed by making use
of both a classical Hencky stress-strain curve and the proposed
modified Fung-like Hencky law. (B) A picture showing the biolog-
ical sample positioned in the load cell to perform the laboratory
test. (C) Evaluation of the experimentally measured tangent stiff-
ness (Young moduli varying with strain) fitted by means of the
proposed Fung-like model.

Table 5: Material coefficients obtained from mechanical tests on MiaPaCa-2
and MDA.MB231 tumor samples.

Material Coeffcient→
Cell Line↓

a1 [MPa] a2 [MPa] c [MPa] b1 [-] b2 [-]

MiaPaCa-2 0.0226992 1.17955 0.00310748 −5.52926 1.65771
MDA-MB.231 0.0662486 3.22843 0.0153308 −4.04314 1.72176

5.4.6 Effective stress and fluid-strain-pore pressure in poroelastic me-

dia undergoing large deformations

In the classical poroelastic approach the saturated porous continuum
is composed by a solid part, namely the skeleton, enriched with a fluid
phase which flows within the interstitial spaces when the pore network
is connected. The presence of the fluid phase thus introduces a further
stress contribution, here indicated as interstitial fluid pressure p (IFP).
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In this framework, the displacement field u (X, t) is referred to the
skeleton, so that F in (5.18) represents its deformation gradient. As a
consequence, the motion of the skeleton can be naturally thought as
the result of the (intrinsic) elastic response of the solid material and
the contribution of the fluid pressure. This let to write the Terzaghi
effective stress given as the uncoupled sum of the elastic stress and the
IFP, the validity of which is also provided in finite strain regime (see e.g.
the work [29]. Therefore, one can write the purely elastic and isotropic
Cauchy stress tensor as:

σ = σeff − α (p− p0) I (5.41)

with σeff denoting the effective stress connected with the material
effective constitutive response, in this case provided by the conserva-
tive potential introduced by (5.40); in addition, αI and p0 respectively
indicate the isotropic Biot effective stress tensor and the IFP reference
pressure. In this way, after neglecting the body forces and inertia terms,
the conservation of linear momentum in the reference configuration re-
quires:

∇X · P = 0 (5.42)

the second order tensor P being the first Piola-Kirchhoff stress (e.g.
the nominal stress), which is considered the work-conjugate tensor of
the skeleton deformation gradient F and thus actually representing the
Lagrangian form for the state of the skeleton. It can be shown (see the
Appendix B for more details) that the stress tensor P is related both to
the hyperelastic strain energy density describing the effective response
of the body and to the IFP through a constitutive relation completely
analogous to the Terzaghi decomposition (5.41) which reads as:

P = JgF
−T
e

∂ψHyp
∂He

F−T
g − Jα (p− p0)F−T (5.43)

where the expression τ e = ∂ψHyp/∂He playing the role of the effec-
tive Kirchhoff stress for the porous material (with respect to the grown
configuration), in analogy with linear constitutive equation (5.36) that
is commonly adopted when the Hencky strain measure is employed.
This additive decoupling –deriving from the conservation of the Terza-
ghi’s effective stress principle in finite strain regime– reasonably sug-
gests the possibility of adopting a decoupled potential for the fluid
and the solid part, giving in this manner a suitable expression for the
poroelastic potential from which one can properly derive the stress
constitutive equation, as well as the other poroelastic fluid-strain-IFP
constitutive relation. Details are reported in Appendix A at the end of
the Chapter.
In fact –with regard to the variation in fluid content for the fluid-
saturated poroelastic body at hand– a fluid content-elastic strain-IFP
constitutive equation can be explicitly derived, as also reported by [106].
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In particular, the current fluid content at time t can be defined in terms
of the kinematics of the mixtures, i.e. in terms of the fluid mass per
unit volume of the reference configuration, that is here ρF = JϱFϕF ,
with ϕF and ϱF being respectively volume fraction and its true den-
sity (fluid mass per unit fluid volume). The following differential state
equation is then introduced:

dρF = JϱF

αdhe +Ceffdp


= JϱF


αdhe +

 1
M

+
ϕF
KF


dp


(5.44)

in which isothermal condition have been considered, he = tr (He) =

He : I, while Ceff is the effective compressibility factor containing both
M and KF , respectively the Biot and the fluid bulk moduli. Also, the
hypothesis of fluid incompressibility (considering ϱF constant) leads
the incremental fluid fraction variation be defined as:

d (JϕF ) = J


αdhe +

1
M
dp


(5.45)

The above relationship can be further simplified by considering mod-
erate variations of the fluid, in this way obtaining:

JϕF = ϕ0
F + Jαhe + JM−1 (p− p0) (5.46)

in this way providing a relationship analogous to those of classical
linear poroelasticity, as also discussed by [46], in which ϕ0

F is the initial
fluid fraction.

The fluid balance equation already introduced in (5.11) is then rewrit-
ten, under large deformations, in the following way:

dρF
dt

+J∇x · qF = JΓF , ΓF = κv (pv − p−ϖ (πv − πι))−κl (p− pl)

(5.47)
where qF still denotes the fluid vector flux and ΓF is the source/sink

term (fluid mass supply per unit volume) introduced as a measure of
fluid interchange from the leaky capillaries to the absorbing lymphatic
vessels within the interstitial space at the microcirculation level, mod-
eled as in (5.13). By taking into account the relationship (5.46), the
conservation equation (5.47) becomes:

J


α
dhe
dt

+
1
M

dp

dt


+ J∇x · qF = JΓF

α
dhe
dt

+
1
M

dp

dt


+ J−1∇X · QF = ΓF

(5.48)

where QF = JF−1 qF is the material flux vector (i.e. per unit ref-
erence area). Furthermore, the vector flux qF is supposed to obey
Darcy’s law, so that qF = −υF−1k ∇xp, with υF denoting the fluid
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viscosity and k the intrinsic permeability symmetric tensor in the cur-
rent frame of reference. Thus, by further including the transformations
∇x (·) = F−T ∇X (·) and Jk = F k0 FT, the explicit Lagrangian ex-
pression of (5.48) is:

α
dhe
dt

+
1
M

dp

dt


− (JυF )

−1 ∇X · (k0∇Xp) = ΓF (5.49)

in this way obtaining the second poroelastic field equation for the
IFP, with the operator d (·) /dt representing material derivative. The
pressure equation (5.49) still exhibits the source/sink term ΓF , mod-
eled according to the Starling’s law, reported in equaton (5.47). Herein,
κv is proportional to both the hydraulic permebility of the blood vessel
wall Lv and the vascular surface area per unit volume Sv/V , and it is
here considered to be constant since no effects of vascularization have
been taken into account, so that the vascular surface can be supposed
homogeneously distributed within the overall volume. However, there is
a wide Literature ([102]) reporting the distinction of tumor and healthy
vascular permeability. The other conductivity parameter κl is instead
related to the effectiveness of the lymphatic drainage within the tis-
sues. It is known that within a tumor there are no functional absorbing
lymphatics due to the fact that ordinary lymphatic drainage mecha-
nisms are altered and then the interstitial fluid pressure rises to values
that are proportional to the vascular pressure. The draining lymphatics
density tends in fact to decrease in the early stages mainly due to the
action of MDEs over-produced by tumor cells ([214]) and also tumor
cell induced-stress such as tumor overcrowding can cause lymphatic col-
lapse since the lymphatic vessels pressures is generally low. Moreover,
cancer metastatic cells tend to invade lymphatic vessels and lymphn-
odes space (however metastasis is here not treated). The transition
from neoplasic tissue to normal tissue typical values of κl = LlSl/V ,Ll
and Sl/V being severally the lymphatic vessel permeability and the
lymphatic surface area per unit volume, is then thought to be affected
by the presence of tumor cells, in this case represented by their frac-
tion ϕT . Furthermore, it is assumed the lymphatic conductivity to be
locally affected also by the apoptotic cell fractions, namely ϕA since
the apoptotic material is removed by filtration through the lymphatic
space itself. In particular, for the sake of simplicity, it is assumed that
this parameter decreases linearly with tumor fraction, i.e.:

κl = κl0

1 −


ϕT + ϕA − ϕ0

T − ϕ0
A


(5.50)

being ϕ0
T and ϕ0

A the initial tumor and apoptotic fractions, where
κl0 is the unperturbed lymphatic hydraulic conductivity. In this model,
both lymphangiogenesis and angiogenesis as well as vascular collapse
phenomena have not been taken into account, and thus κv has been
considered constant. Moreover, the IFP is assumed to be initially at
equilibrium, and this implies that the reference pressure p0 results to
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be p0 = (κv (pv −ϖ (πv − πι)) + κl0pl) / (κv + κl0),. The other ordi-
nary poroelastic constants, in accord with the structure of relationship
(5.10), have been evaluated by explotiting the well known expressions
also proposed by Rice ([161]) and Cowin ([46]) and are reported below:

α = 3
B

(ν(u)−ν)
(1−2ν)(1+ν(u))

(5.51)

1
M =

9(ν(u)−ν)
B2E(1+ν(u))


1 − (ν(u)−ν)

(1−2ν)(1+ν(u))


(5.52)

where B is the material Skempton coefficient that tends to unity
for saturated biological material, ν(u) is the undrained Poisson ratio,
whereas E and ν are the tangential Young modulus and Poisson’s ratio.

5.4.7 Nutrients

The poroelastic problem here discussed applied to a biological contin-
uum differs from the classical known also because the fact that the
fluid phase is known to transport molecular solutes that represent the
feeding or the enhancer of the cell population metabolism, so playing
an essential to the growth mechanism their digestion actually provides
the cells of the required energy. It is here imagined that this energy
derives from a single nutrient species dissolved within the fluid because
of simplicity. For this reason, if en is the specific energy provided by a
single mole of nutrient species n (x (X, t) , t), by assuming there is di-
rect proportionality between the burning energy and the nutrients, i.e.
E = enn with en assumed constant, the balance of energy is obviously
linked to that of the nutrients according to:


V (t)

EdV =

V (t)


dE
dt

+ E∇x · v


dV = E0 + Ψ0 −


V (t)

EconsdV

d

dt


V (t)

EdV =

V (t)


dE
dt

+ E∇x · v


dV = − d

dt


V (t)

EconsdV

d

dt


V (t)

ndV =

V (t)


dn

dt
+ n∇x · v


dV = − d

dt


V (t)

 t

t0
nΓconsdτdV

d (Jn)

dt
= −JnΓcons, Γcons = χγ


ϕγ − ϕγ

0

, ∀V (t) ⊆ B

(5.53)

In (5.53) a constant total energy E0 and a constant boundary flux
Ψ0 have been introduced, whereas Econs represents the aliquota of en-
ergy consumed, which is given by the time integral of a consumption
term, here modeled as a first order reaction in terms of the nutrients n
through a consumption rate Γcons depending on the tumor and healthy
cells volumetric fractions (discussed in the subsequent section and de-
noted respectively by the subscripts γ = T and γ = H), in a way to
have Γcons (t = 0+) = 0. In addition, the overall quantity of nutrient
must account that the latter are dissolved in the fluid phase, so that
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it is hypothesized that the moles of nutrients n depend simultaneously
both on a concentration function, say η, and the fluid fraction ϕF . By
substituting n = ηϕF into the last of (5.53) one has:

d (Jn)

dt
= −JnΓcons

d (JϕF η)

dt
= −JϕF ηΓcons

(JϕF )
dη

dt
+ η

d (JϕF )

dt
= −JϕF ηΓcons

(5.54)

in which the quantity JϕF is then replaced with relationship (5.46).
The poroelastic equations above introduced, precisely given by equa-

tions (5.42) and (5.49), also enriched by the presence of the nutrients
through equation (5.54), are naturally coupled with the evolution equa-
tions describing the behaviour of the solid matrix, modeled as a het-
erogeneous phase in which the main constituents are the tumor cells,
the healthy cells and the extra-cellular matrix. Their interlaced activity,
promoted/inhibited by both the environmental conditions in terms of
available space and mechanical stress as well as by the presence/lack
of available nutrients carried by the fluid phase, is responsible of the
growth of the heterogeneous tissue. This both permits to define the
growth strain intervening in the balance equations presented without
prescribing any growth function, and moreover causes the rise of the
residual stresses imprisoned within the tissue structure that have been
recently experimentally observed for example by [192]. The next sec-
tion is thus dedicated to the derivation of these evolutionary laws, by
translating the cell-cell and the cells-ECM interaction occurring at a
micro-scale level to the continuum macro-scale with the help of a mul-
tiphasic approach.

5.4.8 Solid Species Equations

The recent Literature provides formulations on the mechanics of solids
with a growing mass establishing a constitutive connection between the
evolution equations describing the mass exchange and the kinematic re-
lated strain, the most of these taking into exam a homogeneous body un-
dergoing the growth process, see e.g. the review article by Kuhl ([118]),
or the extensive analysis by Lubarda and Hoger ([127]), or even the out-
line involving multiple growing constituents suggested by Schmid et al.
([176]). Also, a mixture theory-based formulation of tissue interstitial
growth to describe the change in mass of a solid heterogeneous body
even in the light of a poroelastic approach has been recently illustrated
by Cowin and Cardoso ([49]). Here, the problem focuses on the defi-
nition of the interspecific interactions among the species (introduced
above) which can be recognized in the growth process of a multicell
tumor spheroid.

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



160 the full coupling

Therefore, by considering the RVE of a body in a generic configura-
tion k, with the aim of defining a suitable growth strain for the porous
body with multiple biological constituents, the following useful quanti-
ties taken into account within the text sections are reported ([176]):

• the total density ρ(k):

ρ(k) =
dm(k)

dV (k)
(5.55)

• the partial density for each constituent γ:

ργ
(k) =

dm(k)
γ

dV (k)
(5.56)

• the true density for each constituent γ:

ϱγ
(k) =

dm(k)
γ

dV (k)
γ

(5.57)

• the constituent volume fraction ϕ
(k)
γ defined as:

ϕ(k)γ =
dV (k)

γ

dV (k)
(5.58)

By combining equations (5.56), (5.57) and (5.58) it immediately
follows that:

ρ(k)γ =
dm(k)

γ

dV (k)
=
dm(k)

γ

dV (k)
γ

dV (k)
γ

dV (k)
= ϱ(k)γ ϕ(k)γ (5.59)

whereas the total density can be expressed as:

ρ(k) =
dm(k)

dV (k)
=

1
dV (k)


γ

dm(k)
γ =


γ

dm
(k)
γ

dV (k)
=

γ

ρ(k)γ =

γ

ϱ(k)γ ϕ(k)γ

(5.60)
By means of relation (5.59) the change of density expressing the

densification (or conversely the the “rarefaction”) between two differ-
ent body states (h) and (k) can be easily computed for the single
constituent

ρ
(k)
γ

ρ
(h)
γ

=
ϱ
(k)
γ ϕ

(k)
γ

ϱ
(h)
γ ϕ

(h)
γ

(5.61)

as well as referring to the total change of density if (5.60) is em-
ployed, i.e.

ρ(k)

ρ(h)
=


γ
ϱ
(k)
γ ϕ

(k)
γ

γ
ϱ
(h)
γ ϕ

(h)
γ

(5.62)
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The hypothesis of constant true density implies that equation (5.62)
can be rewritten for a body state k with respect to the initial configu-
ration as:

ρ(k)

ρ0 =


γ
ϕ
(k)
γ

γ
ϕ0
γ

(5.63)

with k denoting for the application in exam either the growth path
which drives the body from the reference B0 configuration to the grown
configuration Bg or the adaptative (elastic) deformation path towards
the current configuration at time t, namely Bt. It is worth noting that
(5.63) implies that the body grows without keeping a constant total
density along the growth/resorption path and thus the total solid mass
exchange will obviously results into the combined densification and
volume effects:

dm(k)

dm0 =
ρ(k) dV (k)

ρ0 dV 0 =


γ
ϕ
(k)
γ

γ
ϕ0
γ

dV (k)

dV 0 = Jk


γ
ϕ
(k)
γ

γ
ϕ0
γ

(5.64)

where eq. (5.63) together with condition (5.71) have been used,
while Jk = dV (k)/dV 0 = det(Fk) represents the volume change given
by the Jacobian of the deformation gradient associated with the map-
ping toward the configuration k.
By focusing on the specific problem, the solid constituents involved
in the growth process, described in the current configuration by their
volumetric fractions ϕγ on a continuum scale, are namely: the tumor
and the healthy cell species, namely T and H, the extra-cellular phase
which is denoted with M , whereas the apoptotic cells fraction is indi-
cated by A. As anticipated, the way of describing their rate is strictly
guided by their phenotype –in the case of the cells– and by the way
the cells interact with the environment, for the ECM. Here, these in-
teractions are modeled through a modified Volterra-Lotka (VL) model,
largely used in Literature to describe cell-cell interactions ([75, 99, 108,
124, 125, 212]), in which the inter-species coefficients are not constants
as in the classical population models assuming constant feeding and
free space, but instead vary as an effect of the changes of the environ-
ment in terms of mechanical sensing and nutrient supply. It is in fact
reasonably assumed that cells do not compete each other as in a pure
predator-prey logic, rather they compete for the same resources and
for the shared space. In addition, the mutual inhibiting inter-species
parameters are thus related to the weight that each species exerts on
the other one, modifying the growth rates through non zero compe-
tition terms. The evolution equations for the solid mass constituents
are obtained by imposing the conservation principle and also account-
ing that the solid masses are related to the volume elements through

[ March 30, 2016 at 17:03 – classicthesis version 4.2 ]



162 the full coupling

the equation dmγ = ϱγ ϕγ dV . Therefore, by considering the current
volume fractions at time t one has:

dmγ = dm0
γ + dmgen

γ

ϱγ ϕγ dV = ϱγ ϕ
0
γ dV

0 +
 t

ti

ϱγ ϕγ Γγ dV dτ

d

dt
(Jϕγ) = J ϕγ Γγ

(5.65)

that represents the Lagrangian form of conservation of mass for the
generic constituent γ, where a suitable intrinsic source and sink term Γγ
has been introduced, which explicitly contains interaction inter-specific
terms as well as other parameters that directly influence the growth
dynamics. The rates Γγ in equation (5.65) are here reported:



ΓT = γT (1 − αTTϕT − αTHϕH − αTMϕM ) − δT

ΓH = γH (1 − αHTϕT − αHHϕH − αHMϕM ) − δH

ΓM = (βTϕT + βHϕH)ϕ
−1
M − δM (αMTϕT + αMHϕH)

ΓA = δTϕT + δHϕH − δAϕA

(5.66)

where, to take into account the mechanically-activated processes oc-
curring during growth, the coefficients γT , γH and αIJ appearing in the
VL rates (5.66) inserted into equations (5.65) are thought to be depen-
dent both on the mechanical stress, analogously to the linear model.
However, provided the considerations already discussed in the linear
case, there is here the need to specify what stress measure has been
adopted for expressing cells mechano-sensing. To do this, it is supposed
that cells rates are affected by the spherical part of the Piola-Kirchhoff
stress in the intermediate configuration Bg in agreement with [127],
which is here obtained as P sphe = tr (Pe) /3, with Pe = J−1

g FT
e PFT

g .
This environmental elastic stress directly acts to modulate the intrinsic
proliferation rates of the cell species.
In addition, the coupling with the fluid ϕF that had been postulated in
equation (5.12), has been here opportunely replaced by the more spe-
cific coupling with nutrient concentration delivered by the interstitial
fluid. This implies that cells growth rate is assumed to be proportional
to the nutrient concentration η in the way that the rate is maximum
when nutrients are abundant and decreases in case of their depletion.
In particular, a standard Michaelis-Menten type dependence has been
chosen, identically for both the cells for the sake of simplicity. Further-
more, constant apoptosis is assumed for healthy cells, whereas tumor
apoptosis peaks where nutrients are absent and decreases to a minimum
value for plenty nutrient concentration, according to the fact that tu-
mor cells are known to evade apoptosis.
Hence, given that the hydrostatic stress affects the intrinsic tumor cell
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growth rates γT and γH in a way such that if P sphe is less than a crit-
ical threshold value P sphcr , and assumed that cancer cells and healthy
cells in the quiescent state look practically asymptomatic ([158]), it is
thought that the respective intrinsic growth rates reduce to a common
low growth rate, say γQ. Dually, if the critical stress value is overcome,
growth rate approaches abnormal values typical of cancer cells. All
these considerations lead to re-write the functional forms for the tu-
mor and healthy cells intrinsic rates γT and γH appearing in equations
(5.66)1 and (5.66)2:

γK = γK0


η/η0

aη + bη η/η0


SK(∆P ) (5.67)

with aη and bη being the coefficients of the Michaelis-Menten term
related to the nutrients consumption and η0 a baseline nutrient con-
centration. These coefficients have been determined by observing the
variations of intrinsic growth rates of both the cells species on the basis
of the nutrients availability. In fact, a slight dependence of the cells
growth capability upon the nutrients abundance within the environ-
ment has been preliminarily studied. Specifically, by looking at Fig.
51, an increase of the replicating potential of both in vitro cultured
MiaPaCa-2 cells and MDA.MB-231 cells occurred by augmenting the
quantity of FBS (Fetal-Bovine-Serum) in the culture medium. For the
sake of simplicity, this particular feature has been supposed to likely
transpire also in vivo on the basis of the nutrients accessibility.

Furthermore, these curve let to obtain experimentally a mean esti-
mation of the intrinsic growth rates of the cell lines. In fact, from the
trends above illustrated, the MiaPaCa-2 and the MDA cells mean dou-
bling times are respectively 24 hours and 35 hours. With reference to
the stress-dependent factor in equation (5.67), the form of relation-
ship appearing in equation (5.16) has been preserved, with the sole
difference of substituting the Cauchy stress of the linear case with the
nonlinear stress Pe:

SK(∆P ) =
γQ
γK0

+


1 − γQ

γK0

 exp

χP

P sphe − P sphcr


1 + exp


χP

P sphe − P sphcr

 (5.68)

where γK0 = T−1
K ln 2 and K = {T,H}, γK0 being the intrinsic

growth coefficient depending upon the cells’ doubling time that is spe-
cific for the cell line under exam. The quiescent metabolic rate γQ is a
reduced metabolic coefficient resulting from the fact that quiescent cells
arrest their division process but not their activity, because they main-
tain a basal metabolic rate in presence of nutrients ([54]) until optimal
environmental conditions occur. Thus, it is assumed that γQ = εQγK0,
with εQ being an appropriate reduction coefficient.
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Figure 51: (A,B) Growth curves of cells species obtained in vitro by varying
the percentage of Fetal Bovine Serum of the medium. (C,D) Cells
vitality measurements in normal medium. (E,F) Image of the in

vitro cell cultures. (G) Construction of a suitable growth curve
describing the functional dependence of the growth rate upon the
nutrient availability.

The coefficients αTM and αHM are chosen to be constant and repre-
sent the weight the ECM exerts in terms of restriction of available
space. The cross terms αHT and αTH are instead a measure of the mu-
tual inhibition, while the coefficients αTT and αHH are self-competition
which wheight the influence that the cells can exert on their similar and
account for the carrying capacity of each cellular species. These coeffi-
cients can be likely considered constant, in virtue of the fact that tumor
quiescent cells are supposed to keep their aggressive mutagenic pheno-
type against normal cells, like their intimate nature was just hidden
during quiescence. All these considerations let to describe a sufficiently
complex population dynamics with respect to the classical one, being
the game of interaction affected by the environmental parameters as
well as there possibility of changing the strategy through the modula-
tion of the the intrinsic rates in order to find the fittest way to survive.
On the other hand, in this first formulation the variability is in the rate
and there is no way of physically discriminating proliferating cells from
quiescent cells, and also necrosis as well as angiogenesis have not been
modeled, these aspect certainly introducing higher degree of complex-
ity to the equations.
The third rate in (5.66) simply represents the net balance of ECM in
which biochemical differences between healthy and tumor ECM com-
ponents are neglected and therefore the resulting overall ECM fraction,
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ϕM , dynamically depends on the synthesis and Matrix Degrading En-
zymes (MDEs) processes promoted by cells through the production
coefficients βT and βH and the lysis coefficients αMT and αMH . In
conclusion, following an analogous reasoning, the loss rates δK are as-
sumed to be dependent on the nutrients deficiency, in particular their
lack accentuating the aggregates rate of apoptosis:

δK = δK0
cη

cη + η/ηA
(5.69)

cη being a proper function parameter and ηA being a critical nutrient
concentration above which apoptosis rate rises.

5.4.9 Definition of the growth strain

The solid body is supposed undergoing volumetric isotropic growth,
leading to a diagonal mapping between the reference configuration and
the grown configuration, so that the isotropic growth stretch for growth
strain tensor (5.21) can be written as:

dxg = Fg dX, Fg = λg I, λg = J
1
3
g (5.70)

In searching a suitable expression for the volumetric growth it is
taken into account that the body under exam is here thought as a
porous heterogeneous continuum made of a certain number of solid
constituents with a perfusant filling the interstitial cavities, capable of
flowing through the latter. The recent Literature provides several for-
mulations on the mechanics of solids with a growing mass establishing a
constitutive connection between the evolution equations describing the
mass exchange and the kinematic related strain, the most of these tak-
ing into exam a homogeneous body undergoing the growth process, see
e.g. the review article [118], or the extensive analysis by [127], or even
the outline involving multiple growing constituents suggested by [176].
Also, a mixture theory-based formulation of tissue interstitial growth
to describe the change in mass of a solid heterogeneous body even in
the light of a poroelastic approach has been recently illustrated in [49].
Here, the problem focuses on the definition of the interspecific inter-
actions among the species (introduced above) which can be distinctly
recognized in the growth process of a multicell tumor spheroid. Along
the growth path of the deformation process the solid species accrue
or reasorb enhanced by the nutrients contained within the fluid phase,
the growth then determining the rise of an adaptive solid strain that,
together with the action of a pore-pressure field, also drives the per-
fusion of the fluid, whose characterization is here accounted by means
of the poroelasticity approach. Any increase/decrease of fluid volume
due to inflow/outflow can in fact be considered a poroelastic effect, like
a "sponge-like" swelling which follows the skeleton deformations. More-
over, by focusing on the specific application, for example, although the
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fluid is doubtless an enhancer of the growth of the cells populations
inhabiting the solid, is not a self-reproducing, i.e. growing, constituent
and also it is not directly consumed by cell themselves because cells
feeds the nutrients dissolved within the fluid and its movement is exclu-
sively an elastic effect. For these reasons, the growth process is assumed
to be entirely the responsibility of the solid phase, and so it is assumed
that the volume change can be completely determined by the solid
growth under the assumption of a dense structure (e.g. by supposing
the solid phase to be present at each material point). In a completely
opposite way, the solid constituents mass achieved at the end of the
growth process is assumed to preserve on the elastic adaptation path.
In particular, the partial masses of the constituents in the grown con-
figuration and in the current configuration are assumed to coincide.
This hypothesis is stronger than assuming an unchanging overall mass,
because the latter could potentially keep the same as a result of the
partial masses changes which in some way balance each other. Thus,
to sum up the speech, by indicating by S the set of solid constituents
(i.e. the tumor and healthy cells and the ECM constituents) and with
F the fluid one, the two following hypotheses are introduced:

• for γ ∈ S, dm0
γ ̸= dmg

γ and dmg
γ = dmγ

• for the fluid species, dm0
F = dmg

F and dmg
F ̸= dmF .

In the framework of multiple configurations description, it is likely to
introduce the following simplifying hypothesis: all the solid constituents
are characterized by the same constant true densities (e.g. the con-
stituent unit mass per unit volume of the constituent itself), that is

ϱ
(k)
γ = ϱ, ∀γ and for each configuration (k). (5.71)

This hypothesis is supposed reasonable both because the biological
constituents have very similar true densities each other and the latter
does not significantly change either after a growth process or in re-
sponse to a mechanical insult, so giving back the fact that the change
of density depends exclusively on the volumetric rearrangement (i.e.
on the fractions) of the constituents after volumetric growth or after
a mechanically-induced volumetric change. By using formula (5.57),
under the hypothesis of constant true density for the solid constituents
, one has that dm(k)

γ = ϱ dV
(k)
γ for each configuration (k) of the defor-

mation process. In this way, by also accounting fluid incompressibility
in what follows, the partial mass gain for each constituent results to
coincide with the normalized volume change:

ξ(k)γ =
dm(k)

γ

dm0
γ

=
ϱ dV (k)

γ

ϱ dV 0
γ

=
dV (k)

γ

dV 0
γ

, ξ0
γ = 1 ∀γ (5.72)
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The total volume change due to growth is then obtained as

Jg =
dV g

dV 0 =

γ

dV g
γ

dV 0 =

γ

dV g
γ

dV 0
γ

dV 0
γ

dV 0 =

γ

ξgγ ϕ
0
γ =


γ

dmg
γ

dm0
γ

ϕ0
γ

(5.73)
herein the hypotheses made about the partial masses lead to:

Jg =

γ

dmg
γ

dm0
γ

ϕ0
γ =


γ∈S

dmγ

dm0
γ

ϕ0
γ + ϕ0

F (5.74)

and also ascertaining that, by mean of equations (??) and (??) and
taking constant true density

dmγ

dm0
γ

=
ργ dV

ρ 0
γ dV

0 =
ϱ ϕγ dV

ϱϕ 0
γ dV

0 = J
ϕγ
ϕ 0
γ

(5.75)

After that it follows that:

Jg = J

γ∈S

ϕγ + ϕ0
F (5.76)

By exploiting the fluid saturation condition (also used to define poroe-
lastic relationships) one gets

Jg = 1 +

γ∈S


Jϕγ − ϕ0

γ



λg =

1 +

γ∈S


Jϕγ − ϕ0

γ

 1
3

(5.77)

The above result can be expressed in its rate form by considering the
mass conservation principle (5.65), in this way obtaining a comprehen-
sive balance equation for pure volumetric growth:

dJg
dt

=

γ∈S

1
ρ0
γ

d

dt
(Jργϕγ) =


γ∈S

d

dt
(Jϕγ) = J


γ∈S

ϕγ Γγ = Jgrg

(5.78)
in which rg = Je


γ∈S

ϕγ Γγ is a net volumetric generative term in the

current configuration and referred to the grown configuration by means
of the jacobian Je.

•Remark:
The derived growth induced strain (5.77) let to write the deformation
term by means of the Hencky strain measure, say:

hg =
1
3 ln (Jg) =

1
3 ln

1 + J

γ∈S

ϕγ −

γ∈S

ϕ0
γ

 (5.79)
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In case of small strain3, this expression reduces to:

ϵg =
1
3

γ∈S


ϕγ − ϕ0

γ


= γr g (5.80)

that is the relationship that had been used in the linear model (see
equation (5.14)).

5.4.9.1 Stresses and Growth in the nonlinear MCTS

The hypothesis of a spherically symmetric problem is here maintained
by writing all the variables of the problem as a function of the sole
radial material coordinate R in a space-time frame {R, t} ∈ R+ × R+.
More specifically, the variables involved reduce to: the radial displace-
ment u, the interstitial fluid pressure p, the nutrient concentration η

and the solid constituents volume fractions ϕγ denoting the tumor cells,
the healthy cells, the apoptotic cells and the ECM fractions. Then the
MCTS can be modeled as a multiphasic spheroid –immersed in a host
multiphasic crown– in which the interaction between the biological con-
stituents (at the microscale) can be described at the continuum scale
by means of their volumetric fractions, the solid ones constituting the
porous tissue network, as sketched in Fig. 52. In particular, R ranges
from an internal inclusion with radius Ri → 0+ to an external radius
Re (where mechanical tractions and boundary condition are imposed),
while the time t starts at a conventional starting time ti = 0+, by
setting a three weeks simulation for both the theoretical case and the
MiaPaCa cells, compatibly with the duration of the experiments regard-
ing this cell-line, while, because of the different experimental protocol
adopted for the MDA.MB-231 cell-line, numerical solutions were calcu-
lated up to 50 days. The simulations, numerically performed by means
of the NDSolve package furnished by the computational software Math-

ematica®([210]), consider the growth of a tumor nucleus with a given
initial radius equal to a infiltration at the time ti and surrounded by
the external host crown with Re.

3 This case highlights how the hypothesis of small strain, in order to make the current
configuration coincide with the initial one, has to be separately valid for both the
total strain and the growth strain. In other words, it is not possible to provide a
large growth strain and combine it with a suitable elastic strain in order to obtain
small total deformations.
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Figure 52: Sketch of the mathematical modeling of the MCTS. The focus
is on the different scales in order to highlight the roles of the
several constituents in determining the modeled phenomena at
the tissue scale.

The entire system of PDEs describing the problem illustrated in Fig.
52 then reads:

∂PRR
∂R + 2

R (PRR − PΘΘ) = 0

α dhe
dt + 1

M
dp
dt − kF

J R2
∂
∂R


R2 ∂p

∂R


= ΓF

ϕF
dη
dt + η


α dhe

dt + 1
M

dp
dt


= −ϕF ηΓcons

1
J
d(JϕT )
dt = ϕTΓT

1
J
d(JϕH )
dt = ϕHΓH

1
J
d(JϕM )

dt = ϕMΓM

1
J
d(JϕA)
dt = ϕAΓA

(5.81)

in the unknown variables {u, p, η, ϕT , ϕH , ϕM , ϕA}.
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Initial and Boundary Conditions. The initial conditions at ti = 0+
have been assigned by setting a constant ECM initial fraction ϕ0

M and
a baseline nutrient concentration η0, while the cells volume fraction
distribution have been determined by estimating the tumor nucleus
initial radius a from the number of tumor cells injected Nc (approxi-
mately 2 × 106 cells in the experiments conduced) as Rc


Nc P

−1
f

1/3
,

Rc representing the tumor cell radius ([121]) and Pf = 0.68 being a
packaging factor calculated under the simplifying hypothesis of rigid
spheres. The given initial distribution within the observed area is sup-
posed to be ϕ0

T = ϕ̃TΠ (R), with Π (R) = exp(−R/
√

2a)2 being a cho-
sen starting profile and ϕ̃T its amplitude representing the tumor cells
fraction within the volume. In an opposite manner, the healthy cells
fraction distribution results ϕ0

H = ϕ̃H (1 − Π (R)), while null apoptotic
fraction is also assigned. Furthermore, the saturation condition let to
automatically write ϕ0

F . The IFP is set at its reference value p0 and
also null initial displacement u have been supposed. With reference to
the boundary conditions, no internal and external fluxes respectively
towards the inner inclusion and the skin overlying layer have been as-
signed, i.e. ∂p/∂R = 0 both for R = Ri and R = Re. In addition, the
internal inclusion is thought to be motionless, i.e. u = 0 at R = Ri for
each time. At the external boundary R = Re, different illustrative cases
of theoretical and practical interest have been analyzed. In particular,
the simulations performed refer to:

• a stress-free condition, simulating an unconfined growth case, i.e.
σrr|Re = 0.

• a stress-prescribed condition, to analyze the effect of a (constant)
environmental pressure on the growth, to meet recent experimen-
tal evidences according to which mechanical stress impairs tumor
spheroids proliferation ([137, 138, 198]). Interestingly, theses stud-
ied in viro showed that an isotropic environmental stress ranging
from 500 Pa up to 10 kPa can actually reduce cell proliferation
and volume expansion, and showed that a compression between 2
and 5 kPa is sufficient to reduce the spheroids volumes (with ref-
erence to the unstressed spheroid growth). Therefore, in order to
analyze the sensitivity of the model at hand in terms of the influ-
ence of the stress conditions on the growth of the tumor spheroid,
a confined problem has been also studied, by applying a constant
confining compression σrr(re) = −pext.

• to find a correlation with the experimental model in the most
faithful manner, it is finally imagined that, at the external bound-
ary, the growing MCTS feels the contact with a skin-like layer.
This hypothesis have been introduced in order to mimic the pos-
sibility of the growing spheroid of exchanging forces with an over-
lying elastic layer, also directly observing that the animals skin
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Figure 53: Detail showing the stretched skin layer surrounding the grown tu-
mor in contrast with the more lapse and wrinkled skin appearing
in the other “unperturbed” anatomic regions.

appeared to be more tensed around the grown tumor (see Fig.
53). Therefore, assuming that the deformation process is entirely
governed by the evolution of the spheroid, that consequently pro-
vokes also the elastic stretching of the skin-like layer, and that the
latter layer exhibits a linear constitutive behavior with the true
strain, the continuity of the radial Cauchy stresses at R = Re,
i.e. σrr|Re = σskinrr |Re as well as the coincidence of the hoop
stretches, that is λΘΘ|Re = λskinΘΘ |Re , are then required. If the
skin layer is assumed nearly incompressible, one can finally write
a leakage-like boundary condition, by imposing the continuity of
the normal stresses. In terms of the nominal stresses it results
PRR|Re = −4Gs


1 + u (Re)R−1

e

2 ln

1 + u (Re)R−1

e


, where Gs

is the skin shear modulus.

5.4.10 Numerical solutions of the MCTS model

The modeling of the here presented Volterra-Lotka dynamics between
tumor and host fractions let to get knowledge about the tumor ag-
gressiveness in terms of the tumor fraction growth, i.e. of its amount
and invasion level within the control volume. As shown in Fig. 54, the
result of this competition leads the tumor cells be prevailing into the
environment, consequently occupying the most of the available space
and thus automatically inhibiting the growth of normal cells. In par-
ticular, with reference to the unconfined growth case, tumor invasion
appears highly aggressive: the combination between growth dynamics
and free-stress condition, which also implies free-expansion capability,
abet the MCTS to invade almost all the available space, causing the
host tissue fraction pauperization. By referring to a stress-prescribed
case, the combination of the VL growth kinetics with mechano-sensing
processes makes the MCTS aggressiveness effectively reduces in terms
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of invasiveness radius and presents enhanced apoptosis, in good agree-
ment with the aforementioned experimental works.

Tumor species invasion and stretch together determine the expan-
sion of the tumor volume and consequently, the push of the external
environment. This interaction is reasonably accompanied by the de-
velopment of mechanical forces at the interface region. By looking for
example at the unconfined case, one can see that, at three weeks, the
most of the environment has been invaded by the tumor species, which
forms a compact hyperproliferative spheroid of about 9 mm in radius,
as shown in Fig. 55, thus almost entirely pervading the initial healthy
volume. Furthermore, Fig. 55 additionally shows the presence of a non
zero net (e.g. deviatoric, in the particular case) stress arising at the tu-
mor/host interface, which well represents the previously hypothesized
interface exchange of mechanical stress. The presence deviatoric stress
peaks also suggests that growth –that is a dissipation process– could
locally be associated to plastic phenomena, related to a reorganization
of the cells and compression in the surrounding tissue. Moreover, as
also suggested by Ambrosi et al. ([9]), this interface stress could be
also related to the formation of a sort of peri-tumoral capsule, since
the motion of the expanding tumor spheroid drags and compress the
communicating ECM layers.

The growth term and the fluid pressure actually combine with the
effective stress in order to express the solid stress field that builds up
into the MCTS, which plays a non-negligible role in many phenom-
ena related to the growth of the multicell spheroid, from the influence
that mechanical stress exerts on tumor expansion to the adverse impor-
tance in determining central necrosis processes, vascular collapse and
representing a stress-induced drug-barrier. By focusing on the analysis
of these stresses (Fig. 56), it emerges that its hydrostatic stress (Fig.
56B) is predicted to be almost completely compressive in the inner
spheroid due to the adverse regime of hyperplasia, to which is related
the almost completely hydrostatic stress distributions (see Fig. 56A
and C). As anticipated, the latter stresses also represent a mechanical
barrier for the perfusants to enter the interior of the tumor, an hy-
pothesis largely put forward in literature, according to which tumor
hypertension and high intratumoral IFP (Fig. 56D) can actually com-
promise the interstitial transport of macromolecules towards the tumor
interior and cause a diversion of biological fluids towards the periphery
due to the pressure drop at the tumor/host boundary. The aggressive
growth of the internal tumor spheroid also determines the push of the
surrounding host crown which experiences a positive hydrostatic stress
at the tumor-host interface. At the tumor front, where proliferation
occurs, a quick rise of hydrostatic stress can be in fact observed, which
settles on values (positive, in this case) accounting the thrust of the
internal volumetric growth as well as the effects of the absence of an
external confinement and actually indicating a deformation of the sur-
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rounding tissue. Also the hoop stress shows a similar behavior, see Fig.
56C, and clearly indicates the accumulation of the stress necessary for
the compatibilization of the tissue growing elementary volumes during
the growth process. The storage of this compressive eigenstress, here ex-
clusively determined by the inner growth dynamics, may be manifested
in different ways, for example by acting on the tissue integrity, in order
to catch the effects of the its sudden release. For instance, recent liter-
ature works analyze the accumulation of residual stress in the tumor
spheroid interior (see e.g. [191] and [192]) by engraving the explanted
tumor spheroid and estimating the growth-induced stress stored within
the tissue from the opening of the slit, as well as by observing the bend-
ing of the cut interfaces which then would result no more compatible
each other along the discontinuity surface.

In this sense, a less invasive way to determine the accumulation of
the growth associated stress could be certainly more effective in or-
der to also account the time evolution that accompanies the accrual of
the in situ residual stresses. A direct measurement would also consider
the compression aliquota induced by the presence surrounding tissues
(which instead disappears when the tumor is removed, causing a par-
tial relaxation of the tissue), this representing a further pre-stress that
would contribute to the stress-related unfavorable phenomena previ-
ously described. In addition, a direct experimental in loco estimation,
that could be efficiently supported by the present theoretical results,
can have a key role in modulating the ad hoc design of mechanically
driven drug delivery therapies. In fact, one could also think to model
a further coupling in order to include the effects of therapeutic agents
on cells proliferation. This could be likely predicted, for example, by
explicitly including in the present evolutionary model the alterations
of cells metabolism due to the (direct) interaction with drugs, mod-
eled as a further chemical antagonist species into the VL dynamics.
Moreover, the recent literature deeply emphasizes in understanding the
role of the mechanical interaction between the growing tumor spheroid
and a (stressed) surrounding environment, focusing both on the role of
stresses exerted by the tumor grown in a stressed environment (see for
example [83]) and on the possibility of inhibiting spheroids prolifera-
tion potential as an effect of applied mechanical stresses, see e.g. [137,
138, 198]. As seen, results shown (assuming pext 2 kPa and 3 kPa) are
effectively able to capture a mechanically-induced reduction of the tu-
mor growth of the spheroid in a constrained (compressed) environment,
see the bottom panel Fig. 54. Accordingly, the stresses are obviously
affected by the external pressure. In particular, 57 (here referred to the
case pext = 2 kPa) shows everywhere compressive distributions along
the radius, with higher internal compression and weaker stress gradients
at the interface. In fact, the host tissue practically feels a hydrostatic
compression, that equals the external confinement. As a consequence,
the external pressure transparently transfers to the tumor boundary,
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where Cauchy stresses start to increase towards the tumor center, ap-
proaching in this case values of about 5 kPa and thus slightly higher
than both the external loads and to the corresponding stresses in the
unconfined case (Fig. 56).
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Figure 54: Tumor cells fractions versus host tissue fraction evolving at differ-
ent times. (top) Unconfined growth case (middle, bottom) Stress
prescribed cases, including apoptotic fractions. Pressure applied
were 2 kPa and 3 kPa, respectively.
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Figure 55: Invasion of the tumor spheroid in the healthy region and repre-
sentation of the associated non-zero interface stress

Figure 56: Evolution of the Cauchy stress components at different times. A.
Radial stress. B. Hydrostatic stress. C. Circumferentisl stress. D.
Interstitial Fluid Pressure
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Figure 57: Stress of the spheroid when a compression of 2 kPa is applied.
A. Radial stress. B. Hydrostatic stress. C. Circumferentisl stress.
D. Interstitial Fluid Pressure
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5.4.11 Comparison of theoretical and experimental results

Focusing on the third set of simulations, the main results, emerging
from the numerical solution of problem (5.81) when matched with ex-
perimental observations, certainly lie in the possibility of predicting
the growth of the tumor species –the MiaPaCa-2 and MDA.MB-231
cell lines in the case at hand– and thus also obtaining the level of in-
vasion of the tumor in the host tissue. In fact, by referring to Fig. 59,
it can be seen how the tumor internal phase grows in time by conse-
quently occupying a significant portion of the available domain. More
specifically, MiaPaCa-2 cell line seems to growth and invade host tis-
sue faster than the breast cancer counterpart. In fact, approximately
7 mm are achieved in a three-weeks period, while MDA.MB-231 cell
line has a slightly greater variability, but averagely implies 40 days
to achieve the same dimensions. This also implies that MDA tumor
cells interior are progressively more deprived of nutrients because they
result to be in a hypoxic region longer than pancreatic cells and also
feel constant compression in such region: as a consequence, the percent-
age of apoptosis in the tumor inner layers is more enhanced, and this
metabolic/stress-driven alteration actually makes the MCTS exhibit
a non-proliferative core surrounded by a proliferating ring of tumor
MDA cells (see e.g. 59). This results in complete agreement with the
experimental evidences according to which mechanical stress accumu-
lation produces enhances central apoptosis, with the MCTSs de facto

exhibiting proliferating cells rings in the peripheric regions which have
been also experimentally observed in the present Literature, see e.g. the
work by Cheng et al., [38] (however, proprietary hystological analysis
to evaluate caspase-3 activity should be properly conducted in order
to find an exact correlation with the theoretical model outcomes).

This can be interpreted as the overall result of both the inter-specific
VL dynamics explicitly included in the model between the tumor and
the host tissue species and the effect of the other environmental vari-
ables affecting the growth process, as well as the external conditions
to which the body is subjected which derive from the biological struc-
tures in contact with the tumor. In particular, from Fig. 59 information
about the composition of the phases (in terms of percentage of cells,
ECM and fluid) as well as a quantitative observation of the invasiveness
can be readily derived. Also, the theoretically predicted growth curve
related to the time progress of the tumors radius seems to be in good
agreement with the experimental data, in terms of experimentally mea-
sured dimensions; the complete set of experimental measure is reported
to Table 4, while the comparison between numerical simulations and
experimental findings is synthetically shown in Fig. 60.

As previously discussed, the growth of the MCTS is connected the
genesis of in situ internal stresses. These stresses account for both the
internal pressure exerted by the growing mass and the elastic com-
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Figure 58: Tumor fraction vs host fraction in MiaPaCa-2 (top) and
MDA.MB-231 (bottom) cell lines

patibilization of the grown volume, as well as the elastic deformation
because of the external mechanical stimuli. In absence of external loads,
the stress within the body is expressively related to the internal inelas-
tic deformation, i.e. it is the expression of the mechanical force exerted
by the growing tissue elements. In the present case, the numerical re-
sults serve also the introduction of the elastic confinement aimed to
simulate the tension exchange with the skin layer and the spheroid will
thus project an external radial reactive tension, which is not constant
as in the previous section, but its magnitude evolves with the tumor
development (in this sense, it is more realistic to think this mechanical
interaction as a progressively increasing reaction rather than a constant
pressure, in terms of consequences on tumor spheroid growth kinetics).
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Figure 59: Cancer cell spheroid (red) showing that proliferative zone
(green) concentrates towards the periphery, while prolifera-
tion is suppressed in the regions of higher mechanical stress,
where apoptosis is induced. Image from Cheng et al. [38],
doi:10.1371/journal.pone.0004632.g003.

Fot both the cells, the analysis of the radial stresses show the pro-
gressive accumulation of a slightly variable radial compression which
is quantitatively more enhanced (and uniform) in the tumor region.
The combination of radial and circumferential solid stresses –the case
of MDA-MB231 cells is illustrated in Fig.61– gives an internal hydro-
static state of stress that attains, in this case, a value of 8 kPa (about 60
mmHg) inside the tumor and slightly decreases toward the periphery,
where the proliferation front advances because of the minor resistance.
Also the host surrounding crown is consequently radially constrained,
and it is additionally compressed by the external increasing reaction.

The circumferential Cauchy stresses in Fig.61 show a quantitatively
similar trend to the radial stresses in the inner layers; however, a
sharper gradient occurs at the interface at each time, provoking also
peri-tumoral circumferential positive tensions before relaxing and re-
approaching compressive values due to the host external confinement.
Also, MiaPaCa-2 tumors exhibited very similar behavior in terms of
mechanical stress, as shown in 62, with internal compression equal to
approximately 4 kPa.

Importantly, it is widely accepted ([191]) that residual stress are a
general feature of avascular tumor spheroids, i.e. human tumors accu-
mulate growth-induced mechanical stress in an analogous manner with
respect to the animal models here presented. Accordingly, this enhanced
approach combining VL dynamics, hyperelasticity of the biological sam-
ples under exam and fluid contribution are able to reproduce the most
of the stress characteristics that Jain et al.([191]) have described in
their works. They in fact demonstrated that accumulated solid stress
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Figure 60: Comparison between the experimenatal size measure and the pre-
dicted spheroid redius development obtained from the numerical
simulations. (top) MiaPaCa-2 cell line (bottom) MDA.MB-231
cell line.

ranged in the interval 2-19 kPa and presents circumferential distribu-
tions with intratumoral compression and peripheral tensions. In the
case just discussed, the presence of the host tissue crown and the exter-
nal confinement would dimish the latter feature, but it can be somehow
restored –in order to investigate the mechanical properties of the tumor
itself– by virtually “explanting” the tumor spheroid, then depriving it
of the external layers and compression. Moreover, it could be pairwise
interesting to provide the time-evolution of this stresses combined with
the tumor interspecific development, as shown by the present models,
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Figure 61: Stresses in the heterogeneous MCTS, MDA.MB-231 cells. (Top)
Radial Stress. (Bottom) Circumferential Stress.

and it is thought that growth-induced stress and deformation also affect
the material properties of the evolving tissue. In addition, it is possible
that local material properties and resident stress have a close relation-
ship. As anticipated, from a physiological point of view, elevated solid
stresses cause compression of blood capillaries and lymphatic vessels.
The former is at the bases of the hypoxia and the lack of an adequate
level of nutrients and can induce central necrosis, whereas the latter
provokes an increase of the interstitial fluid pressure which makes pe-
ripheral backflow phenomenona carrying fluids outside the mass more
likely to happen. All these factors combined promote tumor progres-
sion, invasion and immuno-suppression. As a consequence, the exact
knowledge of the in situ solid stress combined with the knowledge of
evolved material properties of the tissue would furnish a complete view
of the tumoral micro-environment in order to obtain several important
therapeutic implications, for example in mechanically relaxing tumor
compression to control internal permeability, in this way improving
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Figure 62: Stresses in the heterogeneous MCTS, MiaPaCa-2 cells. (Top) Ra-
dial Stress. (Bottom) Circumferential Stress.

the efficacy of drug perfusion and also designing ad hoc drug-delivery
procedures.
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Table 6: Synoptic table of the parameters adopted in the MCTS model
(exp.det. = experimentally determined)

Parameter Value Unit Source

Poroelastic/Conductivity parameters

νu 0.49999 [-] [46, 65]
B 0.9999 [-] [65]
kF 4.13 × 10−8 cm2mmHg−1d−1 [166, 192]
Lp 3.6 × 10−8 cm mmHg−1d−1 [166, 192]
S/V 100 cm−1 [102, 166]
κl0 1.33 × 10−5 mmHg−1d−1 [214]
pv 25 mmHg [102, 192]
ϖ 0.91 [-] [102, 192]

πv − πl 10 mmHg [102, 192]
Cells rates and interspecific coefficients

TT = TH
24 (MiaPaCa-2)

35 (MDA.MB231)
hours exp. det.

αTT = αTH = αMH 1 [-] [75, 99, 208]
αHT = αHH 3 [-] [75, 99, 208]

αMT 2 [-] [75, 99, 208]
βT .05 d−1 [37]
βH .1 d−1 [37]

δT = δH
0.0314 (MiaPaCa)

0.0719 (MDA.MB231)
d−1 [121]

ϵq 0.1 [-] [197]
aη 0.1 [-] exp. det.
bη 0.9 [-] exp. det.
cη 0.25 [-] exp. det.
η0 10−8 g cm−3 [113]

ϕ̃T = ϕ̃H 0.2 [-] assumed
ϕ̃M 0.4 [-] assumed
a 1 mm exp. det.
Gs 15 kPa [55]
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5.5 relating residual stress to the mcts mechanical

properties

The nonlinear model here presented, which provides a strategy combin-
ing interspecific evolution equations aimed to replicate the interaction
between the tissue constituents and a poroelastic framework which de-
scribes the fluid-solid interplay, leads to the characterization of the
growth-induced intratumoral stresses. Such stresses, which are com-
monly defined as the self-equilibrated stresses in a free-traction body,
are known to influence the mechanical behavior of many tissues, as
well as of many engineering materials, and can be strongly related to
the growth and remodelling processes (see, for example the case of ar-
teries discussed by Fung [69]). As said, in the case of solid tumors,
stress seems to concur in many physiological events related to their
development, such as internal necrosis and vascular collapse as well
as peripheral migration and lymphangiogenesis: this happens by influ-
encing cell proliferation and squeezing, and by altering nutrients and
chemicals walkways through mechano-sensing activated inhibition and
flow impairment. The role of stress gradients in biological media is in
fact critical in promoting cells reconfiguration and motility and, nat-
urally, plays also a driving role in chemicals diffusion within the fluid
phase as well as macromolecules extravasation throughout the intersti-

tium. In the case of tumors, there is a wide literature dedicated to the
investigation of tumor mechanical micro-environment to establish the
nature as well as the causes and the effects of intratumoral residual
stresses ([12, 182, 191, 192]), and are aimed also to offer mechanically
based hypotheses to prospect intratumoral drug inflow as well as to
reduce peritumoral convective flow and thus likely decrease metasta-
sis of cancer cells ([102]). Furthermore, from a kinematic standpoint,
the presence of residual stress basically reveals that body growth takes
place in an incompatible manner, meaning that the compatible observ-
able strain of a grown tissue is the combination of an incompatible
growth strain (which would cause growth with disruptions) and an in-
compatible strain due to elastic stress [182], which is then responsible
of restoring the geometrical and structural compatibility of the tissue.
In the case, the presence of a residual stress manifests through the
bending of the tissue halves (see Fig. 63).

This implies that in loco residual stress can be revealed, as largely
known, by making cuts and by noticing the resulting change in con-
figuration. By virtue of these considerations, several models of tumor
growth have been proposed ([165]) and, to date, no direct quantitative
measurements of residual stress in solid tumors have been shown, except
for indirect estimations performed by measuring the deformation result-
ing from the opening of the two halves of an excised tumor spheroid
after that a partial cut is realized on the mass itself, by then relating
the experimental findings with cutting finite element simulations (see
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Figure 63: Visualization of the opening angle when a partial cut is per-
formed (left) and of the bending of the tumor spheroid halves
in case of a complete cut (right), revealing the presence of resid-
ual stress.

the work by Stylianopoulos et al. [191]). This particular behavior has
also been qualitatively replicated on a tumor spheroid, by first making
a partial cut (up to half the spheroid height) and observing the pro-
gressive opening of the slit with the characteristic opening angle, and
then performing a complete cutting and observing the curvature of the
generated surface, as reported in Fig. 63.
However, it is well-known that residual stress influences the mechanical
behavior of the material. Nonzero residual stress field in a traction-free
body is necessarily inhomogeneous and anisotropic ([85]), as well as
an imposed deformation out of the residually stressed configuration
can relieve the internal loads at some points and load other points,
while a residual stress-free material would be only loaded by such de-
formation. Also, another essential evidence is that the actual (tangent)
material properties can depend on residual stress, and consequently
material properties of a homogeneous and isotropic “ground” material
can become inhomogeneous and anisotropic as a result of the accumu-
lation of both residual stress and, of course, deformation: therefore, the
knowledge of the latter ones together with strain energy density (which
measures how much a material point is loaded or unloaded by a given
deformation) can comprehensively characterize the global mechanical
behavior of a residually stressed body. Nonlinear tumor spheroids not
excluded from these considerations, and it is therefore thought that
tangent stiffness can represent a valid candidate to be an indirect way
to trace residual stress. Starting from this idea, before presenting fur-
ther details, the previous sections results have been here summarized
for the sake of clarity:

• An enhanced MCTS model have been developed, by proposing
a full coupling strategy between the nonlinear mechanical prob-
lem and interspecific dynamic, to describe tumor growth kinetics
and stress accumulation. Starting from the whole stress distri-
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butions (including external loads due to the imposed boundary
conditions), an estimation of the residual stress within the sole tu-
mor has been made by considering the stress distribution at each
time deprived by the external radial reaction, by assuming the
latter to essentially determine a hydrostatic aliquota associated
with external load.

• An in vivo experimental model has been conducted, by following
a size-controlled protocol. The explanted were thus measured in
size and mechanically tested in compression. This particular ex-
plantation procedure has been designed in order to both trace
tumor effective size and obtain time/size-dependent information
about the mechanical properties evolution. Hence, the variation
of tangent moduli has been experimentally evaluated during tu-
mor development. Also, a reference (small) tumor spheroid was
utilized to reconstruct the theoretical nonlinear stress-stretch law.

Starting from these experimental data and theoretical results, in very
good agreement between each other in terms of resulting tumor size
growth, a correlation between the theoretically obtained stress and de-
formation and the experimentally determined tangent moduli is then
investigated. Therefore, the residual stress-modified elastic coefficients
have been all analytically estimated by adopting a well-known small-

on-large strategy, which has the advantage to explicitly emphasize the
prestress contribution with respect to the deformation contribution in
tangent matrix calculation, and by taking into account both induced
transverse isotropy and inhomogeneous variation (with respect to the
radius) of the stiffness coefficients. To reproduce in silico the provided
mechanical tests, mechanical properties have been inserted in an ap-
propriate FE model, by simulating a sphere compression between two
parallel rigid plates: in this way, stress-strain curves have been numer-
ically derived and compared with experimental findings.

5.5.1 The small-on-large approach

The established constitutive equations accounting for growth and elas-
tic deformation at each time let to obtain the different stress measures.
In particular, given the elastic second PK stress tensor Se, the follow-
ing relations among the various stress tensors are here recalled (see
Chapter 1):

Se = 2 ∂ψe
∂Ce

= 2Fg
∂ψe
∂C

FT
g = 2FgSFT

g (5.82)

P = JgFeSeF
−T
g (5.83)

τ = JgFeSeF
T
e = JgFSFT (5.84)

σ = J−1
e FeSeF

T
e = J−1

e FSFT (5.85)
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With the aim of evaluating the tangent stiffness of the tumor body
tensor at each time stage, the presence of non-trivial resident stretch
–and stress– has to be taken into account. These quantities in fact are
known to affect the evaluation of the material properties. It is then here
supposed that the tangent moduli to be estimable by means of a small

on large procedure, in which a small strain (the one related to the test-
ing of the material properties) can be superimposed to the (large) finite
strain at a certain time t. This strategy can be somehow viewed as a
generalization of the well known evaluation of the elastic modulus of a
cord under constant tension, and its formulation has been encountered
in many classical elasticity works (see for example [85, 151, 199]) as
well as more recent biomechanical works ([15]). By focusing on this spe-
cific application, the growth and compatibilization processes occurring
in tumor development will likely imply that the incremental material
parameters will depend on the history of growth-induced stresses and
deformations at time t.
By identifying the body motion at time t with the deformation gradi-
ent F(t), a further (small) gradient is then applied, say F∗ = I + H∗,
where H∗ = ∂u∗/∂x (X, t) is the gradient of the additional displace-
ment u∗, which drives the body to a new current configuration (the
system will move towards this configuration at a certain time t∗). The
displacement gradient can be obviously decomposed into its symmet-
ric and skew-symmetric parts, i.e. H∗ = E∗ + Ω∗, which respectively
denote the infinitesimal strain and rotation tensors in case of small de-
formations. Therefore, a new small-on-large deformation gradient F(t∗)

can be defined by means of the standard multiplicative decomposition
as F(t∗) = F∗F(t). Starting from this position, the stress τ (t∗) can be
expressed by starting from the knowledge of the stress at time t and
the deformation gradient. In particular, by denoting the quantities at
time t with the subscript 0, and provided that J∗ → 1, the constitutive
relation (5.82)3,4 let to write

σ∗ = J−1
e0 F∗F0


S0 +

∂S

∂C


C0

: (C − C0)


FT

0 F∗T =

= F∗


σ0 + 4J−1
e0 F0

∂2ψe
∂C∂C


C0

FT
0 : (FT

0 E∗F0)


F∗T (5.86)

where (C − C0) = 2FT
0 E∗F0. Given that F∗ = I +H∗, the hypothe-

sis of small displacement gradient H∗ leads to

σ∗ ≊ σ0 + (I ⊗ σ0 + σ0 ⊗ I) : H∗ + 4J−1
e0 F0

∂2ψe
∂C∂C


C0

FT
0 : (FT

0 E∗F0)

(5.87)
where the non standard tensor products ⊗ and ⊗ can be defined

by means of the double contraction rules (X ⊗ Y) : Z = XZYT and
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(X ⊗ Y) : Z = XZTYT (see for example [111, 112]). Derivation with
respect to E∗ gives the expression of the tangent stiffness matrix:

C∗ =
∂σ∗

∂E∗


F∗→I

≊ I ⊗ σ0 + σ0 ⊗ I + 4J−1
e0 (F0 ⊗ FT

0 )•◦ ∂2ψe

∂C∂C


C0

•◦(FT
0 ⊗ F0)

(5.88)

where the double contraction operation “•◦” appearing in (5.88) are
defined such that [X•◦Y]ijhk = XimnkYmjhn ([111, 112]). Therefore, the
tangent moduli of a pre-stressed material will account for the presence
of such resident stress through a direct linear dependence (as in the
simpler linear situation), and a further contribution which depends on
the deformation achieved at time t when the small deformation is super-
imposed. Furthermore, by also considering the symmetry of the defor-
mation tensor E∗ in contracting the tangent stiffness to the Voigt 6 × 6
usual notation, the position Cαβ = (C∗

ijhk +C∗
ijkh)/2, α, β = {1, .., 6},

i ̸= j and h ̸= k, has been automatically employed4. With reference to
the adopted strain energy function ψe(He) (Equation (5.38)), involv-
ing the Hencky strain measure He = ln(Ce)/2, the tangent stiffness is
evaluated by means of the chain rule:

C∗ = I ⊗ σ0 + σ0 ⊗ I+

+ 4J−1
e0


(F0 ⊗ FT

0 )•◦∂Ce

∂C
•◦ ∂He

∂Ce
•◦


∂2ψe

∂He∂He


He0


•◦ ∂He

∂Ce
•◦∂Ce

∂C
•◦(FT

0 ⊗ F0)


(5.89)

in which the following tensor derivatives have been introduced:

∂Ce

∂C
= F−T

g ⊗ F−1
g (5.90)

∂He

∂Ce
=

3
i=1

1
2λ2

ei

Mi ⊗ Mi +
3

i,j=1
i ̸=j

ln( λei
λej

)

λ2
ei − λ2

ej

Mi ⊗ Mj , (5.91)

with the second order tensors Mi, i = {1, 2, 3} being defined through
the eigenvectors ni of the configuration at time t (defined in Section 5.4.3),
in a way that MiMj = δijMi and 3

i=1 Mi = I. Therefore, by re-
ferring to the spherically symmetric problem described, and adopting
the specific constitutive relation (5.40), at each time t a deformation
Fe0 = Diag{λer0, λeθ0, λeϕ0} and stress state σ0 = Diag{σr0, σθ0, σϕ0}
can be identified, in which λeϕ0 = λeθ0 and σϕ0 = σθ0, respectively.
The resulting tangent stiffness matrix exhibits transverse isotropy and
its independent elastic constants have the following expressions:

4 For the sake of clarity, full the following second-order tensors representation has been
employed: X = {X11, X12, X13, X21, X22, X23, X31, X32, X33}; the Voigt notation
reduced to XV = {X11, X22, X33, X23, X13, X12}
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C11 = C∗
rrrr =

=
1

λ2
eθ0

λer0


a1 + a2 + c eQ

1
4


2b2 log λ2
eθ0 + (b1 + b2) log λ2

er0

2
+ b1 + b2


+ 2σr0,

(5.92)
C22 = C∗

θθθθ =

=
1

λ2
eθ0

λer0


a1 + a2 + ceQ

1
4

(b1 + 2b2) log λ2

eθ0 + b2 log λ2
er0

2
+ b1 + b2


+ 2σθ0,

(5.93)
C12 = C∗

rrθθ =

=
4

a2 + c eQ


1
4


2b2 log λ2

eθ0
+ (b1 + b2) log λ2

er0

 
(b1 + 2b2) log λ2

eθ0
+ b2 log λ2

er0


+ b2


λ−1

er0(log2 λer0 − log2 λeθ0)−1

λ2

er0 − λ2
eθ0

2
,

(5.94)
C23 = C∗

θθϕϕ =

=
λer0

λ2
eθ0


a2 + c eQ

1
4

(b1 + 2b2) log λ2

eθ0 + b2 log λ2
er0

2
+ b2


, (5.95)

C66 = C∗
rθrθ =

=
λer0


a1 + b1c eQ


log2 λer0

λeθ0
λ2

er0 − λ2
eθ0

2
+
a1 + b1c eQ

4λ3
er0

+
1
2
(σθ0 + σr0) (5.96)

where Q = b1tr(H2
e) + b2(tr(He))2, while transverse isotropy fur-

ther implies that C∗
rϕrϕ = C∗

rθrθ, C∗
rrϕϕ = C∗

rrθθ and C∗
θϕθϕ = (C∗

θθθθ −
C∗
θθϕϕ)/2.

It is worth noting that, as a consequence of both the assumed spher-
ically symmetry of the problem at hand and of isotropic growth hy-
pothesis, the obtained transverse isotropy implies that the five elastic
contants (5.92)–(5.96) result to be dependent upon five unknown func-
tion, i.e. Cαβ = Cαβ (σr, σθ, λr, λθ, λg). Therefore, in principle, the pos-
sibility of measuring the entire set of elastic constants (with respect to
a previous measure) might permit to locally find a numerical solutions
of a closed non linear system, in order to then find stresses and defor-
mations.
With focus on the present application, the distribution of elastic con-
stants within the tumor at different times and accounting for growth,
residual stress and deformations, is shown in Fig. 64.

In particular, one can observe from Fig. 64 the Cαβ, α, β = {1, 2, 3}
decrease with volume (see also Fig. 65), this being in accord with theo-
retical evidences demonstrating that resident residual stress can make
the body more compliant [104]. Also, one might hypothesize that this
can be considered an overall integration effect –at the tissue scale– of
the experimental evidences –at the single-cell scale– according to which
cancer cells are more deformable than healthy cells, see e.g. Fraldi et
al. [64].

Also, Fig. 64 shows how the tissue actually results a weakly trans-
versely isotropic material. Also, from a quantitative point of view, two
main considerations emerge. Perhaps the most evident not ordinary as-
pect is that radially varying tangent shear moduli exhibit a negative
part. This, combined with both weak anisotropy (or, as a matter of fact,
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Figure 64: Tangent elastic constants in the MCTSs at different volume size

an almost isotropic behavior) and a substantial incompressibility (the
Poisson’s ratios approach 0.5 almost everywhere, especially towards
the tumor center), tells us that all the growing tumor inhomogeneous
spheroids would exhibit an internal core with negative tangent elas-
tic moduli –thus inherently unstable– and an external ordinary phase
(which is stable). Negative stiffness can occur, for example, when de-
forming a body that stored (or received) energy [119], and so, also in
case of the presence of residual stress. However, this unexpected result
does not represent a theoretical issue, since the global stability of elas-
tic composites with this particular configuration has been theoretically
provided by the works by Drugan and Lakes (see e.g. [57, 114, 120]).
Residually stressed tumors seem to replicate this feature, and this tis-
sue softening effect still being in accord with the microscopic cancer
cells more compliant structure, in the sense that to further grow and
deform under residual compression, tissue locally behaves by intensify-
ing its compliance, and by exhibiting fluid-like behavior.
Another observation to take into account is that the bulk constants are
quantitatively very similar each other due to combined weak anisotropy
and substantial incompressibility, and this could generate problems in
the in-progress finite element procedure (for example, numerical in-
stabilities might occur, the matrix becoming singular). However, the
mechanical response of the MCTS due to bulk growth –evaluated by
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Figure 65: Tangent elastic constants of the superior block as a function of
the volume size

performing a compression test like that one under discussion– mainly
involves the volumetric part of the stored energy density, and the respec-
tive tangent modulus will be affected by the latter aliquota, rather than
the shear tangent response which is minimally implicated. For these
reasons, the elastic modulus of interest has been calculated by invert-
ing the superior third-order minor of the tangent stiffness matrix and
considering the first compliance constant, i.e. E = [S]−1

11 , S = C−1
3×3,

and then passed to the FE model. As seen from Fig. 66, despite the
weak anisotropy, the contribution of the volumetric deformation energy
makes stiffens the radial response of the material.

Figure 66: Tangent Young moduli obtained from the compliance matrix at
different tumor dimensions.

As a first implementation, to avoid possible problems related to the
presence of the (limited) core with negative Young modulus, the inter-
nal core has been in principle substituted by an internal incompressible
phase with sufficiently low Young modulus (approaching that one of the
first layer with positive modulus).
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5.5.2 Finite Element modeling

Finite Element simulations have been developed with the aim to eval-
uate the mechanical response of the MCTS subjected to uniaxial com-
pression, by essentially investigating the influence that growth, defor-
mation and residual stress can have in determining the effective elastic
behavior of the material, given in terms of tangent properties. Hence
numerical models have been considered, each one being representative
(in size and internal elastic properties) of an explanted MTCS accord-
ing to the experimental protocol summarized in table Table 4. Each
numerical simulation aims to reproduce the experimental mechanical
compression test performed on ex vivo spheroidal tumors. The simu-
lation has been conducted with the aid of the commercial FEM-based
code Ansys® ([1]). Since the soft tissue samples under exam exhibit high
deformability properties, to simulate the compression action of a rigid
plate on them particular attention is required in modeling the dynam-
ics of the contact. This implies the introduction of both geometrical
and body contacts-related nonlinearities. For this purpose, an ad hoc

custom made Ansys procedure, written in APDL parametric language,
has been developed to reconstruct all FE models.

Figure 67: (Top-left) Representation of the FEM modeled uniaxial test.
(Top-right) Schematic representation of the assignment of radi-
ally varying material properties to the sphere elements. (Down)
Considered volumes.

In order to reduce the computational efforts and gain advantage in
performing several nonlinear analyses, only one-eighth of the sphere
has been considered, taking into account the appropriate symmetric
boundary conditions (see Fig. 67-left). As already said, to practically
avoid numerical instabilities, a spherical cavity has been provided at
the center of each sphere and negative YM cores have been replaced by
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Figure 68: (Top-left) Representation of the FEM modeled uniaxial test.
(Top-right) Schematic representation of the assignment of radi-
ally varying material properties to the sphere elements. (Down)
Considered volumes.

an elastic phase with an high incompressibility and very low stiffness
(see Fig. 67-right). By referring to the animal model measurements (see
Table 4) and simulated sizes, different spherical geometries have been
generated by considering the experimentally-derived external radii and
maintaining the same central void (Fig. 67-bottom).

The geometrical models of both rigid plate and hollow sphere have
been meshed by means of about 10.000 standard hexahedral elements
- SOLID185 - and almost 11.500 nodes with three degrees of freedom
for each node, while, to simulate the non linear contact, the external
spherical cap and the bottom surface of the plate have been meshed
with contact-target elements (CONTA170 TARGE175 respectively). Ef-
forts have been devoted to characterize the tangent stiffness of each nu-
merical simulation of spheroid compression, in which isotropic elastic
properties take into account the resident residual stress. Each spherical
model has been divided into a wider external spherical region, in which
the Young modulus varies radially according to the analytically defined
law and the Poisson’s ratio is equal to ν = 0.495, and a limited central
core in which the Young modulus was assumed constant and equal to
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Figure 69: Experimental (blue points) and numerically obtained (green
points) force-deformation curves in direct comparison for each
MCTS. (Middle) fitting of two experimental dataset with the
hyperelastic law adopted in the analytical model

the lower modulus of the communicating previous zone, with and a
more incompressible characteristic, say ν = 0.499 (see Fig. 67-right).
Each analysis simulates a compression along z-axes, and was realized
by imposing a displacement to the plate of about one-tenth of the exter-
nal radius of the sphere. A displacements sequence of the compression
simulation is reported in the Fig. 68, in which it is also possible to ap-
preciate the effect of the contact confinement and the resultant reactive
stress state developing the spheroid at various deformations.

Figure 70: Experimental (dashed line) and numerically obtained (continu-
ous line) development of the tangent moduli as a function of the
tumor sizes.

For each numerical substep the reaction force Fz has been evaluated
and, together with the computed deformation ϵz, a force-deformation
curve for each spheroid has been obtained. Finally, these numerical re-
sults have been put in direct comparison with the experimental dataset,
finding a good agreement between them as reported in Fig. 69. This
agreement is more evident in terms of tangent moduli, as highlighted
in Fig. 70. Actually, the good agreement between experimental results
and the coupled analytic/Finite element strategy let to consider this
procedure a reliable and less invasive technique to investigate the na-
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ture of residual stress and stored energy within tumor masses in a way
to preserve their integrity, as well as to convincingly validate the re-
sults given by the hyperelastic/VL model also in terms of predicted
mechanical features.
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appendix a

Mathematical Details for the derivation of the Strain Energy Density

and of the solid stress:

The total mechanical energy can be defined from the referential volu-
metric energy density ψ0 as well as from the volumetric energy density
ψ, respectively related to the configurations B0 and Bg and connected
each other by (also provided by Ganghoffer, [72]):


V 0
ψ0(

◦
He, ρF )dV

0 =

V g
ψ (He, ρF ) dV

g =

V 0
Jgψ (He, ρF ) dV

0

(A.1)
the relationship ψ0 = Jgψ being useful in the following. Apart from

the elastic strain, both of them are supposed to depend explicitly also
on the fluid content ρF = JϱFϕF as discussed in section 5.4.6. By
neglecting thermal terms contributions, the dissipation inequality can
be written as ([7]):

V
σ : D dV −


∂V
µqF · n dS ≥ d

dt


V 0
Jgψ dV

0 (A.2)

which can be expressed by means of localization theorem as:

Jσ (x (X, t) , t) : D − ∇X · (µQF ) ≥ d Jgψ

dt
(A.3)

where, in (A.2) and (A.3), µ denotes the fluid chemical potential
and QF = JqFF−T is the referential flux vector, while the tensor D =

sym(ḞF−1) is the symmetrical velocity gradient. The fluid conservation
equation (5.47)1 returns the relation:

dρF
dt

+ ∇X · QF = JΓF (A.4)

so that a simple manipulation of (A.3) by also accounting (A.4) gives:

P : Ḟ − QF · ∇Xµ− µJΓF + µ ρ̇F ≥ ψJ̇g + Jg
∂ψ

∂He
: Ḣe + Jg

∂ψ

∂ρF
ρ̇F

(A.5)
where the symmetry of the Cauchy stress tensor and the identity Jσ :

D = Jσ : L have been used, this giving JσF−T : Ḟ = P : Ḟ. Terms in
equation (A.5) can be reorganized keeping in mind the multiplicative
decomposition of the deformation gradient (5.20) and by applying the
Jacobi formula and the chain rule respectively on the first term and
the second term of the right side, in this way having:


P FT

g − JgF
−T
e

∂ψ

∂He


: Ḟe +


µ− Jg

∂ψ

∂ρF


ρ̇F +


FT
e P − JgψF−T

g


: Ḟg+

− QF · ∇Xµ− JµΓF ≥ 0 (A.6)
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From which it is immediately obtained through the standard appli-
cation of the Coleman’s method ([44]) on the first two brackets that:

P = JgF
−T
e

∂ψ

∂He
F−T
g = F−T

e

∂ψ0

∂
◦
He

F−T
g (A.7)

and

µ = Jg
∂ψ

∂ρF
=
∂ψ0
∂ρF

(A.8)

in which it is assumed that the growth deformation term associated
with the solid species does not depend explicitly on the elastic defor-
mation and the fluid content. In addition, the respect of the dissipation
inequality (A.7) is fulfilled by adopting for the fluid flux and the fluid
source term structures of the type QF = −k0∇Xµ, with k0 being a pos-
itive definite permeability tensor, and ΓF proportional to −µ through
a positive conductivity parameter, which in the case of an incompress-
ible fluid can be represented for instance by Darcy law and Starling
equation respectively, given by the equations (5.47)2 encountered in
section 5.4.6. The last remaining term in equation (A.7) is actually
connected to the dissipation processes due to growth, the Eshelby-like
stress Σ = FT

e ∂ψ0/∂Fe − ψ0I being related to the material (configu-
rational) forces arising because of the domain changes (see e.g. [7, 72,
149]) and conjugated to Lg = ḞgF

−1
g .

The potential ψ0 has to be made explicit then also in the light of the
poroelastic approach here adopted. In this context the Terzaghi decom-
position is frequently used in order to express the stress in terms of
the solid stress/deformation and interstitial fluid pressure, the validity
of this uncoupling in finite strain regime having also been discussed
in Literature (see e.g. the work [29]). This (partial) change of argu-
ments can be perceived by introducing a strain energy density which is
dual to that one introduced in equation (A.1), by means of a Legendre
transform, performed in what follows on the referential energy for the
sake of clarity. Additionally, a general decomposition for the latter is
introduced, in a way that the potential ψ0, connected with the skeleton
response, can be intuitively derived from the effective response of the
material (described by the hyperelastic law proposed in section 5.4.5)
by subtracting a second potential taking into account the sole fluid
response. Hence:

ψ0 = ψHyp,0(
◦
He) −ψF,0(

◦
He, ρF ) (A.9)

Hence, a variation of ψ0 gives:

dψ0 =
∂ψ0

∂
◦
He

: d
◦
He +

∂ψ0
∂ρF

dρF =
◦
τ e : d

◦
He + µdρF (A.10)
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so that by subtracting the variation d (µρF ) = µdρF + ρF dµ one
obtains:

dψ∗
0 =

◦
τ e : d

◦
He − ρF dµ (A.11)

with ∂ψ0/∂
◦
He = ∂ψ∗

0/∂
◦
He and

ψ∗
0(

◦
He, µ) = ψHyp,0(

◦
He) −ψ∗

F,0(
◦
He, µ) = ψ0 − µρF (A.12)

Furthermore, a constitutive relationship for the fluid content is de-
rived since:

ρF = −∂ψ∗
0

∂µ
=
∂ψ∗

F,0
∂µ

(A.13)

The latter also implying that:

dρF = − ∂

∂µ
(dψ∗

0) = −∂
◦
τ e
∂µ

: d
◦
He+

∂ρF
∂µ

dµ = JϱF α : d
◦
He+Jϱ2

F C
effdµ

(A.14)
in which the positions ∂

◦
τ e/∂µ = ∂2ψ∗

0/∂µ∂
◦
He = −JϱFα and

∂ρF/∂µ = −∂2ψ∗
0/∂µ2 = Jϱ2

FC
eff have been introduced. The coeffi-

cients α and Ceff are denoted respectively as Biot effective stress tensor
and Biot effective compressibility modulus, multiplied by the Jacobian
J in order to take into account their material expression. As known,
their physical meaning have been largely elucidated in the poroelas-
ticity Literature (see e.g. the pioneering work by [23] as well as other
more recent works such as [45]. By further considering an incompress-
ible fluid ( i.e. by considering ϱF constant and an elevated fluid bulk
modulus) and by assuming isotropy, equation (A.14) reduces to the
constitutive relationship (5.45):

d (JϕF ) = J

αdhe +M−1dp


(A.15)

where the fluid chemical potential definition µ = µ0 + ϱ−1
F (p− p0)

has been implied. The relationships (A.14) and (A.15) can be further
simplified by considering moderate variations of the fluid, in a way to
write:

ρF = ρ0
F + JϱFα :

◦
He + Jϱ2

FM
−1 (µ− µ0) (A.16)

or
JϕF = ϕ0

F + Jαhe + JM−1 (p− p0) (A.17)

being ρ0
F = ϱFϕ

0
F . As a consequence, by considering (A.16) and

(A.13), a direct integration returns that:

ψ∗
F,0(

◦
He, µ) = ρ0

F (µ− µ0) + JϱF (µ− µ0)α :
◦
He + J

ϱ2
F

2M (µ− µ0)
2

(A.18)
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so that the poroelastic uncoupled potential can be derived from
(A.12) as:

ψ∗
0(

◦
He, µ) =ψHyp,0(

◦
He) − ρ0

F (µ− µ0) − JϱF (µ− µ0)α :
◦
He+

− J
ϱ2
F

2M (µ− µ0)
2 (A.19)

from which, accounting also (A.1), it follows that the Kirchhoff stress
can be also given by the Terzaghi decomposition:

◦
τ e = Jg

∂ψHyp
∂He

− JϱF (µ− µ0)α (A.20)

and, consequentially, the first Piola-Kirchhoff elastic stress is written,
also provided isotropy and fluid incompressibility, according to (A.7):

P = F−T
e

◦
τ eF

−T
g = JgF

−T
e

∂ψHyp
∂He

F−T
g − Jα (p− p0)F−T (A.21)

appendix b

Thermodynamic forces associated to the linear growth model:

The theoretical model introduced in the previous sections combines
the classical poroelastic field equations with linear growth through the
direct (full) coupling with a suitable dynamical system –whose motion
follows the Volterra-Lotka logic– in order to express the inelastic defor-
mation due to volumetric growth as a result of the net interaction of
the biological solid species. It could pairwise interesting for this reason
to make some thermodynamic considerations in order to derive from a
dissipation principle both the constitutive assumptions and determine
an expression for the thermodynamic forces the model conjugated to
state variables, as well as the conditions which ensure both the global
stability and the thermodynamic consistence of the system in a linear
theoretical framework. The latter can be seen as a multi-component sys-
tem, in which the solid constituents are denoted by a subscript i ∈ S,
while the fluid one is indicated by the subscript i = F . However, the
high water content in the so-called solid species let to assume a constant
true density – say ϱ– for each constituent, so that the total density of
the system remains unchanged:

ρ = ρS + ρF =

i∈S

ϱ ϕi + ϱϕF = ϱ (B.1)

since the sum of all the volumetric fractions gives unity (in what
follows, the subscript i will exclusively refer to the solid constituents
and the hypothesis of constant density will be hold true). Also, growth,
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which is described as an inelastic process, inevitably implies the pres-
ence of a dissipation. For this reason, the free energy density ψ is here
expressed as the sum of a reversible energy aliquota, which is linked to
the purely (poro)elastic contribution, and a dissipative term, which is
instead function of the solid growing species , in a way to write:

ψ = ψe (Ee, ϕF ) + ψg (ϕi) (B.2)
In particular, under the hypothesis of an isothermal process, the

balance of energy can be made explicit by introducing a specific and
metabolic energy contribution, say ϵg which is directly responsible of
the growth process g. Hence, the first principle explicitly reads:

V
ρ
dU

dt
dv =


V

σ : D dv+


V
εg ġ dv (B.3)

U and V being the internal energy per unit mass and the volume mea-
sure, respectively. Also, v is the velocity vector and D = sym(v ⊗ ∇)

is the symmetrical velocity gradient. Analogously, the second principle
can be instead expressed by introducing a thermodynamic force fg con-
jugated to the rate ġ –representing a volumetric rate of entropy supply–
and a conductive rate of entropy supply due to the fluid flux vector, in
a way to have:

V

dS

dt
ρ dv ≥


V
fg ġ dv+


∂V
µF qF · dA (B.4)

By subtracting equation (B.4) from (B.3), and identifying the free en-
ergy per unit volume defined in (B.2) as ψ = ρ(U −S), the dissipation
inequality can be readily obtained:


V

σ : D dv−

∂V
µF qF · dA +


V
εg ġ dv−


V
fg ġ dv ≥ d

dt


V
ψ dv

(B.5)
where µF = ρ−1

F (p− p0) is the fluid chemical potential. To further
express the former equation in a local form, the Gauss theorem is ap-
plied on the second member of the left side of (B.5), while the chain
rule on the right side, with ψ given by (B.2). It results:

σ : D−∇µF ·qF −µF ∇·qF + εg ġ−fg ġ ≥ ∂ψe
∂Ee

: Ėe+
∂ψe
∂ϕF

ϕ̇F +

i

∂ψg
∂ϕi

ϕ̇i

(B.6)
The terms in equation (B.6) can be then collected by invoking both

the strain additive decomposition of the deformations under isotropy,
i.e. E = Ee + (g/3)I, and the fluid continuity equation (5.5):


σ − ∂ψe

∂Ee


: Ėe +


p− p0 − ∂ψe

∂ϕF


ϕ̇F − ∇µF · qF − (p− p0)ΓF+

+

σhyd + ϵg − fg


ġ− ∇ϕψg · ϕ̇ ≥ 0 (B.7)
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from which one gets the following constitutive assumptions for the
ordinary poroelastic variables

σ =
∂ψe
∂Ee

,

p = p0 +
∂ψe
∂ϕF

(B.8)

In addition, relation (B.7) results satisfied by taking a Darcy type
flux vector qF = −K∇µF (with K > 0) and by opportunely intro-
ducing a fluid source term such that ΓF ∝ p0 − p (which is expressed
by the Starling law in (5.5)). In order to introduce explicit constitu-
tive assumptions and obtain a suitable expression for the linear elastic
potential as a function of the ordinary poroelastic variable –the strain
tensor and the interstitial pressure, according to the most of the clas-
sical models ([46])– a Legendre transform is performed on ψe in a way
to have a partially dual energy:

ψ∗
e (Ee, p) = ψe (Ee, ϕF ) − ϕF (p− p0) (B.9)

By further considering its differential form and accounting (B.8)2
one has the identity:

dψ∗
e =

∂ψe
∂Ee

: dEe − ϕF dp =
∂ψ∗

e

∂Ee
: dEe +

∂ψ∗
e

∂p
dp, (B.10)

from which

∂ψe
∂Ee

=
∂ψ∗

e

∂Ee
and ϕF = −∂ψ∗

e

∂p
(B.11)

Equation (B.11)2 together with (B.9) then let to obtain the explicit
constitutive relation (5.4)1 for the fluid content by linearizing the in-
cremental fluid fraction dϕF , thus having

ϕF = ϕF0 + A : Ee +M−1(p− p0) (B.12)

in which A = −∂2ψ∗
e/∂Ee∂p and M−1 = −∂2ψ∗

e/∂p2, and ϕF0
being the initial fluid fraction at zero elastic strain and at the reference
pressure p0. Hence, the substitution of (??) into (B.11)2 and a direct
integration of with respect to p gives:

ψ∗
e = ψ̂ (Ee) − ϕF0(p− p0) − (p− p0)A : Ee − 1

2M (p− p0)
2 (B.13)

where the introduced energy density term ψ̂ can be interpreted as
the effective energy aliquota, the one connected to the displacement
gradient. In a linear isotropic framework, this naturally coincides with
the quadratic elastic St. Venant-Kirchhoff strain energy density, i.e.:

ψ̂ =
1
2 Ee : C : Ee (B.14)
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with C = ∂2ψ∗
e/∂E2

e = 2µI + λI ⊙ I being the isotropic fourth order
stiffness tensor, in a way that, together with the relation (B.8)1, the
Terzaghi stress (5.1)3 is immediately derivable.

Once dealt about the elastic potential, in the light of the specific
constitutive assumptions that have been introduced, the reduced dissi-
pation inequality (B.7) reads:

σhyd + ϵg − fg

ġ− ∇ϕψg · ϕ̇ ≥ 0 (B.15)

These terms are clearly not independent, since the growth function g is
related to the species vector by (5.14). However, they singularly carry
different information for the system at hand and, for this reason, the
conditions of their positivity is separately analyzed. The first term ac-
tually associates the growth volumetric strain to both mechanical and
metabolic factors, from which one obtains that the thermodynamic driv-
ing force conjugated to the growth can be expressed as fg = σhyd + ϵg
(this can be seen as a linear expression of an Eshelbian stress previ-
ously discussed for the nonlinear case). This relation also qualitatively
suggests that growth takes place in presence of available and adequate
metabolic resources, in a way to sustain growth also in a stressed (e.g.
compressed) environment, in which growth could be likely inhibited.
The respect of (B.15) would in fact imply that the lack of metaboli-
ties (nutrients), as well as the simultaneous presence of unfavorable
compressive state of stress would either arrest the growth or cause a
resorption process, which is still in agreement with the sign of (B.15).
Furthermore, this coupling term (less intuitive than the other ones) can
be seen as an effective cross-talk between the purely mechanical part of
the problem and the biological one, which focuses on the kinematic de-
scription of the growth, and in this sense also authorizes the possibility
of establishing the "two-way" feedback mechanism already discussed. In
particular, one can assume a direct influence of the mechanical stress on
the growth, here modeled by introducing non-constant VL coefficients
as above discussed, which have been explicitly built as a (positive)
function of the hydrostatic stress in a way to enforce the mechanical
inhibition of the proliferative potential of cell species in a compressed
environment.
The last term in (B.15) deals instead with the condition ψ̇g = ∇ϕψg ·
ϕ̇ ≤ 0, which is strongly connected to the ecological stability of the
species dynamics. In particular, the condition emerged represents the
well-known Lyapunov stability criterion ([129]) which relates the sta-
bility of a certain stationary point of the ecosystem to the existence
of a positive-definite Lyapunov function in the positive octant of the
phase field, that vanishes at the equilibrium points and such that its
time derivative is locally negative semidefinite in a neighborhood of the
candidate attractor point(s). Inequality (B.15) then actually states a
substantial equivalence between the thermodynamical and dynamical
stability of the multi-species system, in the light of the fact that the
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entropy principle can be attributed to the study of the stability of the
Lyapunov function of the generalized VL system at hand, a key par-
allel for the present application that has been also deeply investigated
–without considering mechanical coupling– in the field of ecological mod-
eling recent literature (see, for example, the work by Chakrabarti and
Ghosh - [36]). For these reasons, compatibly with the Lyapunov sta-
bility theorem assessments, one can suppose that, in the neighborhood
of an equilibrium point ϕ∗, the dissipation potential can assume the
following expression:

ψg (ϕi, ϕ
∗
i ) =


i={T,H,M}

(ϕi − ϕ∗
i ) + ϕ∗

i ln

ϕ∗
i

ϕi


,

ψ̇g =


i={T,H,M}
(ϕi − ϕ∗

i ) Γi (B.16)

which is very similar to the Boltzmann entropy formula. In order to
define a specific dissipation function for the species, the study of the
stationary points is then required.

Equilibria

Then, with the aim to discuss the stability of the system (5.13) in a
simpler way, it is here proposed of separating the first two poroelastic
nonhomogeneous PDEs from the multispecies equations on the basis
of their characteristic times. In fact, apart from the static momentum
equation, the poroelastic equations are intrinsically governed by the
speed of the elastic medium (that is proportional to


K/ϱ) and by the

rise/decay times of the pressure τ+p ≈ (κvM)−1 and τ−
p ≈ (κlM)−1,

that are of the order of the seconds/fraction of seconds. On the other
hand, cells dynamics processes will adapt nearby their attractors pre-
sumably in a slower manner, because of both the greater biological
intrinsic proliferation times –of the order of the day– and the VL mu-
tual interactions. In other words, by condensing the poroelastic field
variables within the vector S = {u, p}, the dynamic-coupled differen-
tial equations (5.13) posed in the wayL(S, Ṡ) = Π (S,ϕ)

ϕ̇ = Γ (S,ϕ)
(B.17)

presents the fast variables S and slow variables ϕ, since regardless
of how time can be scaled, so that the relative rates will verify the
condition ∥ Ṡ ∥∞≫∥ ϕ̇ ∥∞. Hence, for rescaled times t′ comparable
with the rate of S, one can obtain a fast subsystem FS corresponding
to L(S, Ṡ) = Π (S,ϕ; t′)

ϕ̇ = 0
(B.18)
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and, for rescaled t′′ compatible with the (slowest) characteristic time
of the species, a slow subsystem SS isL(S, Ṡ) = 0

ϕ̇ = Γ (S,ϕ; t′′)
(B.19)

The dynamics of the original system can be explained in terms of
the respective fast and slow subsystems. This procedure also validates
the adoption of a decoupled potential in (B.2), with the functions ψe
and ψg being independent of the species vector and of the poroelastic
variables, respectively. Since ϕ are fixed in the FS, the growth term is
quasi static in time t′, so that the problem would reduce to a classic
poroelastic problem with a constant growth strain, whose stability is
guaranteed the ellipticity of the poroelastic classical problem. At the
slow time scales, the conditions (B.19) let to study the dynamics of the
species, during longer time intervals, for fixed quantities S.

By following this way of reasoning, at sufficiently slow time scales
t′′ the state variables Ee and ϕF of the coupled potential (B.2) can be
assumed to hold at a certain constant value, say {Ee, ϕF } (or, equiva-
lently, {Ee, p}), in a way that condition (B.15) can be rewritten as:

∇ϕψg · ∂ϕ

∂t′′
|(Ee,p) ≤ 0 (B.20)

Thus, also by virtue of the theorem proposed by Tuljapurkar (see
[193]), this condition is equivalent to study the local stability of the
species motion around a given equilibrium point ϕ∗ in the phase space
delimited by the tetrahedron I = {(ϕT , ϕH , ϕM ) ∈ R3

≥0 : ϕT + ϕH +

ϕM < 1 − ζ(Ee, p)}. In addition, it is noticed that the localization of
the entropy inequality naturally implies the study of the stability of
the local species time trajectories, that is to say the requirement –at
each point P of the open domain Ω– of the ordinary condition:

∀ ϵ > 0 and ∀P ∈ Ω

∃ δ(ϵ) > 0 : ∥ϕ|t′′=0+ − ϕ∗∥ < δ → ∥ϕ|t′′≥0+ − ϕ∗∥ < ϵ (B.21)
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Thus, considering the specific case of a radially symmetric problem,
by introducing a non-dimensional variable z = r/b− cγT0t

′′, the focus
is on the following non-dimensional subsystem:



−cdϕT
dz = q


Ee, p


ϕT (1 − αTTϕT − αTHϕH − αTMϕM )

−cdϕH
dz = q


Ee, p


γ̃H0ϕH (1 − αHTϕT − αHHϕH − αHMϕM )

−cdϕM
dz = β̃TϕT + β̃HϕH − δ̃MϕM (αMTϕT + αMHϕH)

(B.22)
in which tilde denotes the initial rates divided by γT0, while the func-

tion q > 0 takes into account the influence of the (mechanical) coupling
parameter, which are fixed at the slow time scales. The positivity of the
latter can be assumed by observing that (5.16) is a positive function,
together with the adoption of a linear porosity law which ensures small
porosity variations, avoiding in this way a complete saturation of the
pore space. Moreover, the non-dimensional constant c does not influ-
ence the search of equilibrium points, and thus one can assume c = −1
in what follows for the sake of simplicity. Equations (B.22) clearly rep-
resent a three-species system, that let to determine in a more direct
way both the physically/biologically consistent equilibrium points and
the physically/biologically consistent trajectories lying in the domain I.
This is also guaranteed by considering positive initial conditions for the
species, which ensures that the positive octant is invariant and that all
trajectories of motion keep bounded in this (0,R+)× (0,R+)× (0,R+),
as shown by Itik ([99]). These two lemmas can be reported for com-
pleteness:

Lemma 1. With all positive initial conditions, the solutions of the
system (B.22) lie in (0,R+) × (0,R+) × (0,R+) . This follows by ob-
serving that each coordinate hyper-plane is invariant.

Lemma 2. The solutions of (B.22) with initial values in (0,R+) ×
(0,R+)× (0,R+) are bounded from above in (0,R+)× (0,R+)× (0,R+)

for all t ≥ 0.

Then, starting from (B.22), the Jacobi matrix JΓ = ∇ϕΓ of the
linearized system results to be (tildes are omitted for clarity):

JΓ =

 q(1 − αT HϕH − ϕMαT M − 2ϕTαT T ) −qαT HϕT −qαT MϕT

−qαHTϕH q(1 − 2αHHϕH − αHMϕM − αHTϕT ) −qαHMϕH

βT − αMTϕM βH − αMHϕM −αMHϕH − αMTϕT


(B.23)
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Steady state points are founded by posing Γ = 0. The physically
admissible points which can potentially occur describe the following
exclusive situations of interest:

1. Cells fractions extinction. This first situation is depicted by three
equilibrium points, and it can be written as ϕ∗

1 = {ϕ∗
T1 = 0, ϕ∗

H1 =

0, ϕ∗
M1}, with ϕ∗

M1 being determined in the first two cases respec-
tively as 1/αHM and 1/αTM , while it is undetermined in the
third of them. Then, the first two cases are included in the last
one and only the point ϕ∗

1 ⊂ I can be analyzed. Basically, this
equilibrium state points out that, in the instant in which cells tra-
jectories approach cells extinction, matrix will remain unchanged
(this derives also from the fact that no self-degradation had been
provided).

2. Healthy fraction dominance. It is associated to the steady state
ϕ∗

2 with expression
ϕ∗
T2 = 0, ϕ∗

H2 =
1

αHH


1 − βHαHM

δMαMH


, ϕ∗

M2 =
βH

δMαMH


(B.24)

and would correspond to a system in its healthy stage, without
invading tumor.

3. Tumor fraction dominance. The equilibrium point –say ϕ∗
3– is

given by
ϕ∗
T3 =

1
αTT


1 − βTαTM

δMαMT


, ϕ∗

H3 = 0, ϕ∗
M3 =

βT
δMαMT


(B.25)

and it is associated to a complete tumor stage.

4. Solid species coexistence. These (two) points have an articulate
expression in terms of model coefficients, so let them be denoted
simply as ϕ∗

4 = {ϕ∗
T4, ϕ

∗
H4, ϕ

∗
M4} and ϕ∗

5 = {ϕ∗
T5, ϕ

∗
H5, ϕ

∗
M5} not

to burden the speech.

With reference to parameters adopted (see table Table 6), a situation
of strong dominance occurs for the tumor species. The introduction of
the aggressive tumor species with a fitness function that, in relation to
the modified coefficients, possesses a strategy prevailing on the healthy
counterpart, de facto turns the ECM-healthy cell coexistence (i.e. in ab-
sence of tumor species) into an unstable equilibrium state. In particular,
the insurgence of a predator species within the ecosystem possessing
the given characteristics heavily affects the normal system homeostasis.
In other words, provided that points in 1) and 4) have no physical in-
terest for the consideration at hand (in particular, equilibria 4) do not
give acceptable states), one can see that the tumor presence generates
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an unstable direction in correspondence of point 2). The eigenvalues
associated to points 2) and 3) –say y2 and y3– are:

y2 = JΓ(ϕ
∗
2) =


−q (δMαMH − βHαHM )

δMαMH
,−δMαMH − βHαHM

αHH
,

q (−βHαHHαTM + βHαHMαTH + αHHδMαMH − δMαMHαTH)

αHHδMαMH


(B.26)

y3 = JΓ(ϕ
∗
3) =


−q (δMαMT − βTαTM )

δMαMT
,−δMαMT − βTαTM

αTT
,

q (−αHMβTαTT − αHT δMαMT + αHTβTαTM + δMαMTαTT )

δMαMTαTT


(B.27)

The projections in the phase space of Fig. 71A and B respectively
show equilibria ϕ∗

2 and ϕ∗
3 in their planes, i.e. ϕT = 0 and ϕH = 0.

In particular, focusing on Fig. 71A , the projections of phases trajec-
tories in the plane ϕT = 0 exhibit a convergent trend towards the
point ϕ∗

2; this means that the plane ϕT = 0 constitutes a stable sub-
space for state 2., described by the two dimensional stable subspace
E2 = span{v21,v22}, where v21 and v22 are the eigenvectors corre-
sponding to the eigenvalues y2 with negative real part. In particular, the
third eigenvalue y23 has positive real part by substituting the adopted
coefficients and also given that the function q is strictly positive, and
thus generates an unstable direction v23 according to the first Lyapunov
stability theorem (here denoted by means of the red arrow in Fig. 71A
and C ). Therefore, the effect of tumor strategy, as highlighted in Fig.
71C, is to “divert” trajectories from the healthy subspace towards the
tumor stage. Furthermore, it results that ℜ{y3} < 0, and consequently
ϕ∗

3 is a stable attractor (Fig. 71B and Fig. 71D).
Naturally, these considerations are related to the chosen set of coef-

ficients. The variation of the coefficients αIJ , δI and βI may generate
scenarios, in which altered dynamics may occur exhibiting different
stable attractors –like those ones related to the cells cohexistence that
additionally include oscillating patterns here not obtained, or the one
related to the tumor extinction in which the healthy species is able to
survive to a given ad hoc treatment– also in presence of a tumor-type
fitness function in the species rates. All the coefficient must in fact be
interpreted as the translation of the microscopic interactions between
cells and between cells and ECM, and this implies that the coefficients
themselves may be actually the net result of multiple reactions-based
processes that occur at a subcellular scale. There could be therefore the
possibility of modelling the latter interaction by considering a more re-
alistic multiscale approach in which chemical species actually work as
intermediate regulators of the cross-talks among populations at the tis-
sue scale. In this way also the interaction between tumor and immune
system could be considered by also introducing perturbation of these
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Figure 71: A. Representation (projection) of the phase portrait in the plane
ϕT = 0, with focus on the equilibrium point ϕ∗

2. B. Represen-
tation of the phase in the plane ϕH = 0, that evidences the
equilibrium point ϕ∗

3. C. Projection of the phase portrait in the
plane ϕM = ϕM2∗. The stable manifolds (blue arrows) directed
in direction ϕT = 0 and the unstable manifold (red arrow) driv-
ing trajectories towards the tumor invasion stage are here clearly
distinguishable. D. Tumor dominance stage, constituting a stable
attractor.

mechanisms, in particular by explicitly inserting antagonist species like
drugs in order to analyze the variations of the tumor strategy coeffi-
cients and capture possible changes into the system fate, by operatively
prospecting the possibility to determine a metamorphosis of the biosys-
tem asymptotic behavior.
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C O N C L U S I O N S

In this Research work different biomechanical topics have been ana-
lyzed. In particular, the different themes have been treated with in-
creasing complexity, by progressively including new phenomena and
tracing new strategies in order to faithfully describe some important
cells interspecific dynamics and the way they determine macroscopic tis-
sue growth and residual stresses. Different key aspects and cues on the
physics of development growing tumors, from the modelling of a multi-
cell environment through the eclectic adoption of behavioral scheme of
the Volterra-Lotka approach to their direct relationship with harboring
intratumoral stresses and the mechanical response of the tumor tissue,
have been harvested in Chapter 5 in order to furnish a faithful model
of tumor complex dynamics, believing that a logical scheme (those
one of the VL population dynamics) could have been able to describe
a chaotic event such as the occurrence of a tumor disease. However,
although some important feature depending on direct competition be-
tween cancer and healthy cells have been elucidated, other important
aspects remain to date partially excluded. Among these, there is the
possibility to include the oncogenic potentials of some immune cells
or the aggressiveness of malignant cells which become malignant as a
result of mutation processes, thus even further from the classical evolu-
tionary logic. Also, the coupling with chemical species could be enriched
in order to replicate a more complex environment in which the interspe-
cific coefficients themselves can be viewed as the result of the chemical
pathways through which cells communicating with the environment, in
this way realizing a more structured and multiscale model. Alterations
of the equilibria of the system could be analyzed by considering the
introduction of antagonist chemical species in order to investigate their
effectiveness on the cells proliferation potential as well as in terms of
their capability of perfusing withing the tuor interstitium. In the field
of therapy, other applications could be investigated, based on the possi-
bility of mechanically targeting tumor cells aggregates through selected
resonant ultra-sounds stimulations.
The strategy proposed can be of course applied also in the other fields
of the research presented. In fact, starting from the results obtained
in Chapter 4, the full coupling could be used to enhance biomechani-
cal models of arterial walls by integrating diffusion/reaction-based cell
dynamics into macroscopic description of growth, remodeling and me-
chanics of the vessel structure, by exploiting the feedback from histo-
logical analyses and the ad hoc designed biaxial experimental tests to
characterize the constitutive behavior of vessel structures. Also, the
integrated Finite Element simulations would allow to force numerical
algorithms to replicate in vivo responses, by reconstructing detailed
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3D geometries of anatomic districts of interest with the help of imag-
ing techniques. In this way FE-guided topology optimization would be
coupled with enhanced biomechanical strategies to improve the biome-
chanical synergy between the vessel and the prostheses, realized with
optimized materials and micro-structure.
Finally, all these activities, apart from the degree of detail with which
have been presented throughout the Thesis work, are motivated by a
common denominator: the attempt to contribute to pave the way –by
means of enlarged multidisciplinary and multiphysic perspective which
is nowadays necessary in the contemporary Research– to unloose, at
least partially, the Gordian knot of the knowledge of the microcosm of
the living materials, in the belief they can be described through the
simple principle that govern the macro-systems around us.
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