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Abstract 

 

 

ABSTRACT 

The complex geometry of a porous medium makes challenging the study of 

transport phenomena through it. Investigations are carried out treating the whole 

macroscopic porous medium as an equivalent homogeneous medium, whose 

governing equations are averaged over a Representative Elementary Volume 

(REV). Governing equations are coupled with the microscopic problem scales 

by means of the so-called closing coefficients. 

Results of the study of transport phenomena in two classes of porous media: 

open-cell foams and biological systems, also with reference to human arteries 

are presented in this thesis. 

For open-cell foams, analysis of microscales pressure drop and convective 

heat transfer were carried out with both experimental and numerical techniques. 

Experiments were carried out for various open-cell aluminum foam samples 

with different porosities and PPI in order to study pressure drop. Local 

convection heat transfer in one foam sample, for different inlet velocities of the 

fluid, was analyzed. Numerical predictions were obtained by using a finite 

element scheme. The geometry for the numerical models was reconstructed by 

means of two techniques. In the first, tomographic scans on three open-cell 

aluminum foam samples with different porosities were carried out to obtain a 

real foam; in the second the geometry was computationally reconstructed with 

reference to Kelvin’s foam model, obtaining an ideal foam. The ideal foam 

geometry was further modified in order to analyze thermally developing effects 

and strut shape effects on pressure drop and convection heat transfer. Nusselt 

number was correlated to process parameters, for thermally developed flow, and 

it was shown that the accuracy of the ideal model improves when the strut shape 

is well-modeled. 

By using the macroscopic porous medium approach, two industrial 

applications of open-cell foams were studied with a numerical approach. The 

first application is a volumetric solar receiver, where an open-cell ceramic foam 

is employed as the porous absorber; the second one was an aluminum foam-

based heat sink. In both cases, results are presented for different foam 

morphologies and thermo-fluid-dynamic conditions. 

Low density lipoprotein (LDL) deposition through the walls of human 

arteries was studied by using a macroscopic porous medium approach. Different 

arteries were analyzed: a straight artery, a stenosed artery and the aorta-iliac 

bifurcation. Governing equations, with the appropriate boundary conditions, 

were solved by using both a numerical approach and an analytical approach. 
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For the straight artery, Numerical modeling allowed to analyze the non-

Newtonian fluid effects on the prediction of LDL deposition in different size 

straight artery. The above effects were studied by comparing various non-

Newtonian fluid models and showed that a Newtonian fluid assumption can be 

used without introducing remarkable differences. An analytical approach was 

used to investigate LDL deposition in an arterial wall under hyperthermia and 

hypertension, obtaining a simplified analytical solution. Energy and species 

equations were coupled by means of the Ludwig-Soret effect. LDL 

accumulation under hyperthermia in a stenosed artery modeled with a 

cosinusoidal function was numerically analyzed. In all cases, hyperthermia and 

hypertension increase LDL accumulation. For the aorta-iliac bifurcation, a 

numerical 2-D study of non-Newtonian effects on LDL mass transport showed 

that the Newtonian fluid assumption is weak in presence of recirculation zones. 
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NOMENCLATURE 
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Latin letters 

A cross-section area m
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2
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2
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v filtration velocity m/s 

V volume m
3
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x, y, z cartesian coordinates m 
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 thermal diffusivity m
2
/s 
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h hydraulic  
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in inlet  
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p pore  
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1. INTRODUCTION 

The word “pore” derives from the ancient greek “ορός”, that means 

“passage”. This word is also similar to “πείρω”, that means “passing through”. 

This gives the sense of what is meant as porous. A porous material is a material 

that is not perfectly compact, with many voids. [1]. It is possible to find porous 

materials everywhere: ground, sand, rocks are porous (Fig. 1). Porous materials 

are two-phase media, made up by a solid matrix and a fluid that fills the pores. 

Various length scales for a porous medium can be identified (Fig. 2). 

Starting from the Brinkman screening distance   , where K is the permeability, 

it is possible to define a pore size, dp, a Representative Elementary Volume 

(REV) size, LREV, and a linear dimension of the system, L, [2]: 

 

   << dp < LREV << L                (1) 

 

The Representative Elementary Volume is defined as the smallest volume 

characterized by the local average properties, with a particular reference to the 

porosity [2]. This volume must be large enough, in order to avoid microscale 

effects on averaged properties, and small enough, to appreciate their spatial 

dependence. The above constraints are satisfied by small enough REVs for the 

majority of porous media of practical importance [3]. 

Due to its complex geometry, analyzing transport phenomena in a porous 

medium at every scale is challenging. For macroscopic porous media, the most 

used technique treats the whole porous medium as an equivalent homogeneous 

medium. However, this approach needs experiments or pore-scale analysis to 

close governing equations of the equivalent medium. Due to the increasing 

computational capacity, more detailed pore-scale analyses have been performed 

worldwide only recently [2]. 

 

 
 

Fig. 1. Examples of porous materials. 
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Fig. 2. Various length scales of a porous medium. 

 

Transport in porous media has received a growing attention by the scientific 

community in the last years. Various books have been written on this subject, 

among which Principles of Heat Transfer in Porous Media [4], Convection in 

Porous Media [5], Handbook of Porous Media [6], Dynamics of Fluid in 

Porous Media [7]. Very recently, the book Porous Media: Applications in 

Biological Systems and Biotechnology [8] deals on current and potential 

applications of porous media theory in modeling biological systems. Besides, 

the great interest of the scientific community in this topic is testified by three 

peer-reviewed journals entirely devoted to it: Transport in Porous Media, 

Journal of Porous Media and Special Topics, Reviews in Porous Media. 

 

1.1. Open-cell foams: a key to enhance heat transfer 

An example of a man-made porous material is an open-cell foam. It is 

characterized by a relatively high ratio of the volume of the voids to the total 

volume of the porous material. Open-cell foams differ from closed-cell foams 

because the voids communicate each other. Though they are a man-made 

material, respecting some defined laws, foams are so named since they resemble 

foams available in nature. Such laws are Plateau’s laws, which had been derived 

by the Belgian scientist Joseph Plateau in 1873 [9]. For an ideal foam, a 

necessary and sufficient condition that ensures mechanical equilibrium is that 

foams have to verify three laws, for faces, edges and vertices, respectively [10]. 

For the faces, the soap films have a constant average curvature, and they are 

smooth. Their curvature is ruled by Young-Laplace law: 
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 , , 1, , 2, ,2  2 1/ 1/  i j i j i j i jp H r r                                                           (2) 

 

where pi,j is the pressure difference between two bubbles i and j,  is the 

surface tension, <Hi,j> the mean curvature of the film that separates bubbles i 

and j, and r1,i,j and r2,i,j are the two principal radii of curvature of the film,  

respectively. 

For the edges equilibrium, angles of arccos (- 1/2) = 120° are formed 

between the soap films, that meet in threes along edges (or Plateau borders). 

For the equilibrium of vertices, angles of arccos (- 1/3) ≈ 109.5° are formed 

between four edges, that meet at vertices [10]. If these laws are not respected by 

means of an infinitesimal perturbation, then all the films will rearrange in order 

to respect these laws. It is also important to observe that such laws are strictly 

valid for a dry foam, that is a foam with edges. Man-made foams are usually 

wet foams, in which the edges are thickened by the solid material. Plateau’s 

laws for wet foams should remain valid, at least approximately [10]. A SEM 

image of an open-cell foam, with a sketch of Plateau’s laws, is reported in Fig.3. 

Foams can be also classified with reference to the solid matrix material. The 

most diffused solid matrix is polyurethane. Polyurethane was invented by Bayer 

[11], while he was  working for  IG Farbenindustrie AG, from the  condensation  

 

 
 

Fig. 3. SEM of an open-cell foam (wet foam) with a sketch of Plateau’s laws. 
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of two monomers, difunctional hexane diisocyanate and 1,4-butanediol [12]. 

When there is a trace of water in the reactants, carbon dioxide gas is produced 

from the chemical reaction. This CO2 forms many small empty areas in the final 

product, obtaining a polyurethane foam [12]. A very important contribution to 

the polyurethane foams development was given by Volz [13], while he was 

working at Scott Paper Company. He patented a route to manufacture a 

reticulated foam, that was a pretty regular low-density foam with open pores. 

Other solid matrixes can be used, for example a metallic matrix made with 

aluminum, copper or other metals. As reported by Banhart [14], the first 

mention of metal foaming was made by De Meller [15]. A development of this 

process was patented by Elliott [16]. Many foaming techniques were proposed 

during the years, and research is still carried out, not only to improve foam 

properties but also to reduce its costs [14]. Ashby reported that the price of a 

metal foam can vary from 7 to 12,000 $/kg [17]. 

Foams can also be made up by a ceramic material as the solid matrix, for 

example the silicon carbide SiC. Binner [18] reported that the first patent had 

been issued by Schwartzwalder and Somers [19]. Nowadays, several 

manufacturing routes are available. An innovative technique has been 

developed by Ortona et al. [20]. They proposed the indirect production of a 

ceramic foam starting from a combination of 3D printing of polymer inks with 

replication. Open-cell metal and ceramic foams are represented in Fig. 4. Glass 

and cement have also been proposed [21]. 

Both closed-cell and open-cell foams have lots of applications. Depending 

on their solid matrix, the advantages are low density, acoustic and vibration 

damping, relatively high or low thermal and electrical conductivities, resistance 

to corrosion and oxidation, stability at high temperatures, thermal and 

electromagnetic shielding [22]. Focusing only on metal or ceramic open-cell 

foams, some applications [22, 23] are reported in the following. Metal foams 

can be used in the automotive sector in the crash element or as diesel particulate 

filters. In the aerospace sector, they can be used as tailbooms of helicopters, as 

CO2 scrubbers, as bearing structures or as thermal, electromagnetic and 

microsatellite shields. In the biomedical sector, due to their geometry, metal 

foams can be used for orthopedic or dental implants. In buildings, they can be 

used for sound absorption, or for the protection from fire and electromagnetic 

fields. Fuel cells can also be equipped with a metal foam. 

Apart from the various fields of applications, particular attention needs to be 

paid to open-cell foams when heat transfer needs to be enhanced. In this case, 

the advantages are the complex internal geometry that favors flow mixing, the  
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Fig. 4. Background, upper left and lower left: metal open-cell foams; 

Upper right and lower right: ceramic foams. 

 

high heat transfer surface to total volume ratio and the relatively high thermal 

conductivity. Metal foams can be employed as heat exchangers, heat sinks, 

burners, Phase Change Materials (PCM), heat pipes or volumetric receivers for 

Concentrated Solar Power (CSP) or hydrogen production. Due to their high 

performances at high temperatures, ceramic foams can be used for high 

temperature filters and heat exchangers, burners, or for volumetric receivers for 

hydrogen production or for CSP. Some applications are reported in Fig. 5. 

 

1.2. The role of the porous media theory for biological systems 

From the above mentioned definition of a porous medium, it is possible to 

conclude that porous media can be found more easily than one can imagine. 

One of the most straightforward examples is a biological system. Indeed, many 

of these can be considered as porous materials. For example, porous media 

theories can be applied to marine biological modeling, like the nutrient that are 

released into seawater from sinking marine aggregates, the tortuosity of marine 

sediments, or the transport activities caused by burrowing macrozoobenthos 

species [25]. Other examples are the  biofilms,  that are complex  aggregation of  
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Fig. 5. Examples of open-cell foams. 

 

microorganisms growing on a solid substrate [8]. They can be helpful in 

bioremediation, and damaging in other cases, such as water pipes. 

For the human body, some applications can be here mentioned. Many human 

tissues and organs can be treated as porous media [8]. Some phenomena that 

can be studied with a porous media approach are diffusion in brain tissues, 

Magnetic Risonance Imaging (MRI) to characterize tissue properties, blood 

flow in tumors, drug delivery [26, 27]. In tissue engineering, porous scaffolds 

can be used as the template for the growth of the cells, leading to the formation 

of an artificial tissue. Heat transfer in the human body can also be modeled by 

means of a porous media approach. This is very important for hyperthermia in 

treating tumors, laser eye surgery, venous diseases or other applications. In 

hyperthermia, necrosis in the tissues is induced by a thermal dose. It is widely 

used in liver cancers, and also for esophagus or lung cancers. Various 

techniques are used [28]. In the radiofrequency thermal ablation, a needle is put 

on the tumor lesion. Electromagnetic radiations are generated at a frequency of 

about 500 kHz. An alternate current passes through the tissue, close to the 

needle, causing heating due to ions agitation. The best necrosis can be induced 

when the temperature of the tissue ranges between 70 °C and 95 °C, for 4-6 

minutes [28]. A technique that seems to be more advantageous is the microwave 

thermal ablation. Differently from the radiofrequency-based technique, it is 

based on very high frequency electromagnetic waves (about 2450 MHz). With 

such frequencies, the electrode starts to act like an antenna, causing the agitation 

of water molecules, heating the tissue. The advantage is that there is no current 
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passage through the patient body. Other techniques are used, like the laser 

thermoablation. However, the first two mentioned are the less invasive. Because 

local temperatures have a main role, the accurate knowledge of temperature 

fields is very important, in order to apply the thermal dose that damages as less 

as possible healthy tissues. Nakayama and Kuwahara [29] were the first that 

recently developed a model of bioheat transfer based on the theory of porous 

media. They identified the two phases of the porous media as the tissue and the 

blood vessels. 

The part of the human body that has been modeled most recently with a 

porous-media based approach is the arterial wall. It is divided into various 

porous layers and predictions on macromolecule transport through it are carried 

out. This way, transport of macromolecules, such as High-Density Lipoprotein 

(HDL) or Low-Density Lipoprotein (LDL) is studied, in order to investigate 

with a good accuracy how deposition occurs on an arterial wall. A resume of 

porous media applications in biological systems is depicted in Fig. 6. 

 

1.3. Present thesis 

Open-cell foams and biological systems, in particular the arterial wall, are 

studied in the present thesis. 

Governing equations for transport in porous media are introduced in Chapter 

2. Mass, momentum, energy and species equations are obtained by means of the 

Volume Averaging Technique (VAT), with which the macroscopic porous 

media is treated as a homogeneous equivalent medium. The closure problem in 

the volume-averaged governing equations is discussed. 

 
Fig. 6. Applications of porous media to biological systems. 
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Fluid flow and heat transfer in open-cell foams are analyzed in Chapter 3. 

Production techniques, microstructure, and geometrical reconstruction 

techniques of open-cell foams are first presented. The chapter is subdivided into 

two parts: pressure drop and convection heat transfer are first studied, in order 

to obtain closing coefficients; then, open-cell foams in some industrial 

applications are modeled with a macroscopic porous media approach. In the 

first part, the literature on forced convection and pressure drop is reviewed and 

experimental and numerical results for the determination of closing coefficients 

are presented. In the second part, some examples of open-cell foams industrial 

applications, such as CSP and heat sinks. 

Porous media concepts are applied to a biological system, in particular to an 

artery, in Chapter 4. Anatomy of the artery and the atherosclerotic plaque 

growth process are introduced. LDL transport in an artery is predicted, using a 

multi-layer porous model for the wall. Analytical and numerical solutions are 

developed for a straight artery, accounting for hypertension, hyperthermia and 

non-Newtonian rheology effects on mass transport. Different artery geometries 

are also numerically analyzed. For a stenosed artery, hyperthermia effects are 

also included in the model, while, for the aorta-iliac bifurcation, non-Newtonian 

effects on mass transport are analyzed. 

The aim of the work described in this thesis is to provide useful information 

on porous media transport. For the open-cell foams, closing coefficients can be 

used in various thermal applications, in order to improve predictive ability of 

macroscopic models. Macroscopic models have been derived and reported in 

the following with their advantages compared to conventional technologies. For 

the biological systems, the studies on LDL mass transport in an artery through 

the wall will provide important information in understanding the atherosclerosis 

process. Topics investigated in the present thesis are resumed in Fig. 7. 
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Fig. 7. Topics investigated in the present thesis 
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2. TRANSPORT PHENOMENA IN POROUS MEDIA 

Modeling of transport phenomena in porous media is presented in this 

chapter. Single-phase conservation equations for mass, momentum, energy and 

species are presented. It will be shown how the Volume Averaging Technique 

(VAT) can be used to write such equations for an equivalent single-phase 

porous media. Finally, the closure problem for these equations is introduced 

with some examples. 

 

2.1. Basic conservation equations 

Mass, momentum, energy and species equations for a fluid are presented in a 

differential form. Energy equation will be also presented for a solid and for a 

fixed control volume, V. 

The mass conservation law is 
 

 = 0
t





 


u         (3a) 

 

where   is the fluid density, t the time and u the fluid velocity vector. The two 

terms in the equation are the transient and the advective term, 

When the flow is stationary compressible, Eq.3a becomes 
 

  = 0 u      (3b) 

 

When the flow is stationary incompressible, it becomes 
 

= 0u      (3c) 
 

The momentum equation, derived from the application of Newton’s second 

law on a fluid element, is: 
 

+p
t




    


 
 
 

u
u u T f                    (4a) 

 

where p is the pressure, T is the stress tensor, f is a body force per unit volume 

and  is the dynamic viscosity. The two terms on the left side are the transient 

and the advective term, that represent the inertial terms. The first two terms on 

the right side account for the stresses effects in the fluid; the third term 

represents body forces, for example the gravity force. 

When the flow is Newtonian compressible, with f = 0, Eq.(4a) becomes: 
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    2
 

3

T
p

t
  


        



   
   
   

u
u u u + u u                     (4b) 

 

where the superscript T stands for transpose. 

When the flow is Newtonian incompressible, Eq.(4b) becomes 

 

2
 p

t
 


     



 
 
 

u
u u u                     (4c) 

 

When the flow is Newtonian stationary incompressible, Eq. (4c) becomes 
 

2
 p     u u u                   (4d) 

 

The pressure and velocity flow fields can be determined when the above 

mass and momentum equations are coupled with the appropriate boundary 

conditions. 

The temperature field is obtained introducing the energy equation. It is 

derived from the first law of thermodynamics, applied on an elementary fluid 

element. For a pure substance, neglecting the viscous dissipation effects, we can 

write: 
 

  +
h p Q

h k T p
t t V


    

         
    

u u                   (5a) 

 

where h is the specific  enthalpy, k is the thermal  conductivity, Q is the heat 

power, and Cp is the heat capacity at constant pressure of the fluid. Equation 

(5a) balances the enthalpy variation, the heat transferred, the energy increase 

due to the compression and the internal energy generation. 

Equation (5a) reduces to Eq. (5b) when there is no internal energy generation 

and pressure gradients effects on temperature can be neglected. 
 

   p

T
C T k T

t



   



 
 
 

+ u                    (5b) 

 

In steady-state conditions Eq. (5b) reduces to: 
 

   pC T k T    u         (5c) 
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Finally, for a steady-state solid or retained fluid Eq. (5c) becomes: 
 

2
0T                   (5d) 

 

A particular case of the energy equation is reported in the following. Dufour 

[31] found out that concentration gradients can induce heat transfer in a 

multicomponent mixture, then named Dufour effect. Even if it is often 

negligible [32], it can play a role in areas such as hydrology, petrology and 

geosciences [33]. The Dufour effect can be described by using the 

nonequilibrium thermodynamics [34]. A comprehensive description of the 

Dufour effect was given by Bird et al. [35]. The heat flux q for a binary mixture 

can be expressed as: 
 

1 1 1

   
 

     

  

N N N
i j T i ij i j

i

i i j i i j ij i j
j i

c R T x x D m m
k T h

x x D

k 

    


    
 

   
 

 
ji

i

jj
q j      (6a) 

 

where ji is the mass flux referred to the i-species, provided by Fick’s law of 

diffusion 
 

  ij i iD m     i i REFj u u     (6b) 

 

c is the concentration of the mixture; R is the universal gas constant; xi and mi 

are the molar and the mass fraction of the i-component, respectively; kT is the 

thermo-diffusion coefficient: Dij is the mass diffusivity of the species i through 

j; ui is the velocity of the species i; uREF is a reference velocity, that often is the 

mass average velocity. It is worth noticing that in Eq. (6a) the Maxwell-Stefan 

diffusivities are correlated to Fick mass diffusivities Dij via the term xi xj/mi mj. 

In Eq. (6a), the first term is the heat conduction term, the second is the heat 

diffusion term, that accounts for the heat transport each diffusing species, the 

third term is the Dufour term, that depends on the mass fluxes. Besides, the term 

in parenthesis can be also expressed as (ui - uj), that is the relative velocity of 

diffusion between the two species. 

Equation (6a) can be further modified. Let’s consider a solid-liquid binary 

mixture at almost constant pressure. The enthalpy can be expressed as h = f (T, 

p); if the pressure is taken constant, dh = Cp dT, that becomes h = Cp T for 

finite differences. Making reference to a zero-enthalpy state, the second term on 

the right side of Eq. (6a), combined with Eq. (6b), can be written as – i Cp ui (Ti 

- TREF), with TREF the reference temperature of the zero-enthalpy state and ui the 

net velocity of the species i. The third term on the right side of the equation can 
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be modified by using Eq. (6b) and some basics relationships of mass transfer. 

Finally Eq. (6a) can be rewritten as: 
 

 
  

 
 

  
ijT i

i p i REF i

i

DR T k
k T C T T c

M c


      

i
q u         (7) 

 

where M is the molecular weight of the mixture. 

In a mixture, the mass transfer is due to the movement of particles of a given 

species through it, driven by the concentration gradient of the species. It is ruled 

by Fick’s law of diffusion (Eq. (6b)), that has a strong analogy with Fourier’s 

law for heat conduction. For each component, it is possible to write a species-

conservation equation, that reminds of energy equation (Eq. (6b)): 
 

  2 'i
i ij i

c
c D c k

t


   


u                     (8) 

 

where k’ refers to the rate of production or destruction of moles of i per unit 

volume. This equation is valid if the Fick diffusivity Di j is homogeneous and 

isotropic. It is important to observe that the velocity term refers to the molar 

average velocity [35]. Indeed, different chemical species move at different 

velocities through a mixture, thus a molar average velocity is needed. 

In the species equation, the counterpart for the Dufour effect is the Ludwig-

Soret effect. This effect was first observed by Carl Ludwig for liquids [36] and 

was named only later by Soret [37]. The experiment performed by Soret 

consisted in a tube of salt water, where the two extremities were at different 

temperatures. He observed that the salt tends to migrate from the hot end to the 

cold one, meaning that temperature has an effect on mass species transport. Like 

for the Dufour effect, if the Ludwig-Soret effect is taken into account, the mass 

flux ji of a mixture can be written by means non-equilibrium thermodynamics 

theories. If gradients of electrical potential and pressure effects on the mass flux 

are neglected, the following correlation can be written for a binary mixture: 
 

 ln   
 

ij T ij T
ij i ij i

D T D
D c D c T

M M T

k k 
        ij         (9) 

 

However, depending on the sign of the thermo-diffusion coefficient kT, the 

species could tend to move either to the hot region or to the cold one [35], for 

example in some gaseous binary mixtures when temperature is lowered [38]. 

The thermo-diffusion coefficient kT physically represents the importance of the 

mass flux due to the thermal diffusion compared to that due to molecular 
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diffusion. A typical value of kT is 0.01 [38, 39]. Two comprehensive reviews of 

the Ludwig-Soret effect were carried out by Platten [40] and Rahman and 

Saghir [41]. 

 

2.2. Porous media governing equations: the Volume Averaging Technique 

(VAT) 

Because of the complex geometry of porous media, it is very convenient to 

solve flow, temperature and chemical species fields making reference to the 

averaged form of transport governing equations. This is accomplished through 

the Volume Averaging Technique (VAT), that was introduced by many authors 

simultaneously [42 – 45]. It allows to go through averaged transport equations, 

that are valid for an equivalent single-phase porous medium. 

In the following basic definitions of VAT technique are first introduced; then 

governing equations presented in Subsection 2.2 will be introduced for a porous 

medium, highlighting the closure problem. 

 

2.2.1. Basic definitions and theorems 

Let us consider a flow through a porous medium, with a velocity modulus |u|. 

The scale that is represented for a Representative Elementary Volume (REV) is 

larger than the pore scale, but far smaller than the whole macroscopic porous 

medium scale (d < LREV << L), as reported in Eq. (1) and sketched in Fig.8.  

 

 
 

Fig. 8. Porous media scales: from micro (d) to macro (L). 
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Velocity and pressure fields can be solved simultaneously with appropriate 

boundary conditions. However, the complex geometry makes the problem 

difficult to be solved analytically. Moreover, a numerical solution would be also 

rather difficult, due to the large number of elements required. This is 

schematically resumed in Fig. 9. 

A way to solve the problem is to average the governing equations on the 

REV. By doing this for all REVs in a macroscopic porous  medium, it is easy to 

evaluate the flow and temperature fields. Due to the increasing computational 

capacity, pore-scale methods are recently plying a more important role in 

transport through porous media [2]. 

The first step in the volume-averaging process is the definition of a local 

volume average and its intrinsic volume average. The porosity, , of a porous 

medium, made up by voids and solid, is defined as the ratio of the volume of the 

voids, Vf , to the total volume of the porous medium, V = Vf + Vs, with Vs the 

volume of the solid; thus:  = Vf/V. The local volume average of a generic 

variable  and its intrinsic volume average, < >f
, averaged over Vf , are so 

correlated: 

 

 
Fig. 9. Velocity distribution in a Representative Elementary Volume of the 

porous medium. 
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1
 d

f

f

V
V

V
                      (10) 

 

The same process is performed for the solid phase, averaging variables over 

Vs and replacing  by 1-. The volume averaging of transport equations requires 

the use of volume-averaged operators. Three theorems are presented: the 

volume averaged form of the transport theorem (Eq, 11a), the theorem for the 

volume average of a gradient (Eq.11b), the theorem for the volume average of a 

divergence (Eq.11c) [46, 47]: 

 

1
  d

St t V
S





 

 
 u n                                   (11a) 

 

1
 d

SV
S       n                       (11b) 

 

1
 d

SV
S    b b b n                            (11c) 

where b is a generic vector. Another often made assumption is the 

decomposition of a variable into its intrinsic average and its spatial deviation 

[48], with which  = <>
f
 +   for a scalar and b = <b>

f
 +    for a vector. This 

assumption is very helpful in the averaging process, and it is often used by 

many authors [3, 49 – 51]. 

With this premise, the volume averaged form of mass, momentum, energy 

and species equations are derived in the following subsections. 

 

2.2.2. Mass and momentum equations 

The volume averaged general form of the continuity equation for a porous 

media is obtained by substituting Eqs. (11a) and (11c) in Eq. (3a): 
 

= 0
t





 


u                   (12a) 

 

For a stationary compressible flow Eq.(12a) becomes: 
 

 = 0 u               (12b) 

 

and for a stationary incompressible flow Eq. (12b) becomes: 
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= 0 u                (12c) 

 

The momentum equation, accounting for the microscopic effects of the solid 

matrix, can be derived either by the volume averaging of the momentum 

equation for a free fluid [3, 50] or with the homogeneization technique [2] or 

with a semi-heuristic method [2, 52]. Among the above mentioned methods the 

volume averaging process is the most robust approach from a theoretical point 

of view. After using Eqs. (11a – 11c), the volume averaged form of the 

momentum equation (Eq. (4a)) becomes: 

 

1
+  d

S
p A

t V

 

       
 


u

u u T f T n                (13) 

 

where n is a normal vector oriented from the solid to the fluid phase. Equation 

(13) allows the evaluation of the integral on the right side, that represents the 

microscopic effects of the solid matrix on the fluid. The theoretical derivation 

was performed by Whitaker [50]. From the well-established results from 

literature, considering  also the case of a Newtonian fluid, it is  possible to write  

the momentum equation [52, 53]: 

 

2 +
f

p
t

   

  

  
       
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u u u
u f u u u

K K
      (14a) 

 

that, for incompressible flows, reduces to [52]: 
 

2
+

f
p

t

   

  


       



 
 
 

u u
u u f u u u

K K
(14b) 

 

with K the permeability, a third-order tensor, and f the inertial coefficient, that 

typically ranges between 10
-2

 ÷ 10
-1

 for open cell foams. In both equations, the 

left side represents the macroscopic inertial force, made up by a transient and an 

advective term, while, terms on the right side represent the pressure, the 

Brinkman macroscopic viscous shear stress [54], the Darcy microscopic viscous 

shear stress [55], and the Forchheimer microscopic inertial force [56]). The 

microscopic inertial force term is sometimes expressed in different forms [22]. 

It is important to remark that both macroscopical inertial force and viscous 

shear stress terms in Eqs. (14a) and (14b) are often negligible [50]. Besides, it is 
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worth noticing that Eq. (14b) can be applied to compressible fluids as long as 

Knudsen numbers are small enough [57]. 

The momentum equation for a porous medium reminds of Staverman-

Kedem-Katchalsky equations for a membrane [58], that account also for 

osmosis. The osmotic pressure is defined as the minimum pressure of a solution 

that doesn’t allow the solvent to pass through a semi-permeable membrane. The 

osmotic pressure, , was defined by Van’t Hoff as R T ci. If reference is 

made to the selective permeability of the membrane to some solutes, 0, [59], 

the osmosis can be taken into account by modifying Eq. (14b) into: 
 

2 +

o i

p
t

f
RT c

  

  




 
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u u
u u f u

K

u u
K

           (15) 

 

2.2.3. Energy equations 

Energy equations for both solid and fluid phases are here presented. Two 

models for the energy equations can be used. The Local Thermal Equilibrium 

(LTE) model assumes the two phases to be in local thermal equilibrium. The 

Local Thermal Non-Equilibrium (LTNE) model accounts for a local convection 

heat transfer between the two phases. In the former case, only one energy 

equation is needed for both phases, while in the latter case two energy equations 

are needed, coupled by a convection heat transfer term. LTNE model equations 

are first presented in the following. 

Volume averaging theorems reported in Eqs. (11a – 11c), with spatial 

decompositions, applied to  Eq. (5b), allow to obtain, for both liquid and solid 

phases, respectively: 
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where the effective fluid thermal conductivity is keff,f = kf  and the effective 

solid thermal conductivity can be expressed as keff, s = (1 - ks/3 for a foam [60] 

and as keff, s = (1 - ks for a porous medium; the subscripts f and s refer to the 

fluid and solid phases, respectively. 

Equation (16a) for the fluid phase has the transient and an advective term on 

the left side, while on the right there are the conduction, the interfacial 

convection, the thermal tortuosity and the thermal dispersion terms. On the left 

side of Eq. (16b) for the solid phase there is the transient term and on the right 

side there are the conduction, the interfacial convection, the thermal tortuosity 

and the divergence of the radiation flux ∇∙qr terms. The interfacial convection 

term recalls Newton’s correlation: 

 

     1
 d

f fs s

f f c s f v s f
S

S
h T T h T T

V V
k T S      n                (17) 

 

A volumetric heat transfer coefficient, hv = hc (S/V), can, thus, be defined, 

with hc the convection heat transfer coefficient and S/V the specific surface area. 

The thermal tortuosity and dispersion terms are often negligible; however, they 

can be modeled with a gradient diffusion assumption and included into the solid 

effective thermal conductivity term. 

With such assumptions, energy equations for the stationary flow in the fluid 

and solid phases are, respectively: 
 

     ,

f f fs

p f eff f f v s ff
C T k T h T T      u                  (18a) 

 

   ,0
fs s

eff s s v s fk T h T T      rq              (18b) 

 

Radiation effects in a porous medium can be investigated with a very simple 

approach, the Rosseland diffusive approximation [61], that assumes the medium 

to be optically thick. With this approximation, the equivalent radiative thermal 

conductivity kr is included in the solid effective thermal conductivity keff, s. 
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A more accurate approach models the porous medium as a participating-

medium, characterizing the radiation through a porous medium, starting from a 

balance of photons with wavelength, , direction, , intensity, I(, x, ), in an 

elementary volume dx long. The intensity can vary in the elementary volume 

because of interactions between photons and material, that imply absorption, 

emission in the  direction, outscattering in directions different from , and 

inscattering, that refers to the photons coming from other directions and 

reflected in  direction. The balance, sketched in Fig. 10, is reported in the 

expression, known as Radiative Transfer Equation (RTE) equation: 
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   (19) 

 

where  is the spectral absorption coefficient, is the spectral scattering 

coefficient, the subscript b stands for black body, and <> (i → ) is the 

scattering phase function, that accounts for the angular distribution of the 

scattered energy. Equation (19) allows to evaluate the function I(, x, ), that is 

correlated with the energy equation by defining a radiative heat flux qr. The 

expression of ∇∙qr, for all wavelengths and a gray medium [61] is: 
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Fig. 10. Radiative energy balance for a dx long elementary volume. 
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A simplified form for the RTE can be derived when the radiation is assumed 

to be collimated. A collimated radiation occurs when the radiation that hits the 

participating medium make this with all light waves parallel among each other. 

In such case, for which Eq. (19) is written without considering inscattering from 

other directions and emission, it is possible to write: 
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x
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    (21) 

 

with  the coefficient of extinction, that is equal to <> = <> + <>. Eq.  

(21) provides Beer-Lambert-Bouguer law: 
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that describes the exponential decay behavior of collimated radiation through a 

semitransparent media. In order to correlate Eq. (22) with the radiative heat flux 

divergence, ∇∙qr, it is possible to write the following correlation, since direction 

and space coordinates are independent of each other: 
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where n is the unit vector describing the direction of the radiative intensity field. 

Equation (23) is valid for all wavelengths and directions. 

When reference is made to the LTE model, only one temperature is defined, 

<Tf>
f
 = <Ts>

s
 = <T>, and one energy equation is be written, that also accounts 

for the Dufour effect: 
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with , , eff eff f eff sk k k  . 

 

2.3.4. Species equations 

The volume averaged form of the species equation (Eq. (8)) is: 
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with Deff the effective diffusivity, that is commonly expressed as Deff = Di, 

where is the tortuosity. The tortuosity is the ratio of the curved path length 

between two points of a porous material to the length of the straight line 

connecting them. When a chemical reaction term needs to be modeled, the term 

< k’ > becomes k < c > , where k is an effective volumetric first-order reaction 

rate. 

As it was observed for the volume-averaged momentum equation (Eq. 15), 

also the species equation reminds of the Staverman-Kedem-Katchalsky 

equations for transport across membranes [58]. The selective rejection of the 

membrane to certain solutes can be modeled by including the Staverman 

reflection coefficient, s, that varies in the 0 ÷ 1 range, and in some cases is 

equal to the osmosis reflection coefficient [62]. By considering the selective 

rejection of solutes and the chemical reaction term depicted above, the volume-

averaged species equation can be written: 
 

  21 s eff

c
c D c k c

t



     


u     (26) 

 

Finally, the volume-averaged species equation for a porous media with 

Ludwig-Soret effect is: 

  2 21
eff T

s eff

Dc k
c D c k c T

t M T





       


u     (27) 

 

2.4. The closure problem in the volume-averaged governing equations 

The above presented volume-averaged equations, coupled with the 

appropriate boundary conditions, can solve the flow, temperature and species 

fields of a macroscopic porous medium. However, because of the volume 

averaging process, the governing equations contain some unknown quantities, 

called closing coefficients, that must be known in advance for solving the 

transport fields. They are resumed in Table 1. 

The accuracy of closing coefficients strongly affects the macroscopic 

solution accuracy. They can be obtained either with experiments or pore-scale 

simulation or simplified models or very simplified analytical solutions. Their 

evaluation is still challenging. Only recently the increased computational 

resources  improved  the  method  based on  pore-scale  simulations.  One of the  

challenges of this method is the representation of the pore-scale geometry, for 
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Table 1. Closing coefficients for volume-averaged mass, momentum, energy 

and species equations. 
 

Equation Phase Coefficient Symbol Unit 

Momentum Fluid Permeability K m
2
 

Momentum Fluid Inertial coefficient f 1/m 

Energy Fluid Effective thermal conductivity keff,f W/m K 

Energy Solid Effective thermal conductivity keff,s W/m K 

Energy Solid Scattering   1/m 

Energy Solid Absorption   1/m 

Energy Solid Phase function  - 

Energy 
Solid 

Fluid 

Volumetric interfacial heat 

transfer coefficient 
hv W/m

3
 K 

Species Fluid Tortuosity   - 

Species Fluid Effective diffusivity Deff m
2
/s 

 

which advanced techniques, like the x-ray Computed Tomography (xCT), can 

be very helpful. Some of the most used correlations for closing coefficients are 

reported in the following as examples. More details for open-cell foams are 

reported in the next chapter. 

In the momentum equations, the permeability, K, was introduced by Darcy 

[55]. Typical values of the permeability are 10
-16

 m
2
 for  sandstone, 10

-11
 m

2
 for 

fiberglass, 10
-9

 m
2
 for a cigarette and 10

-7
 m

2
 for an open cell foam. The 

Forchheimer extension was introduced in [56]. A review of models used for 

permeability is presented in [2]. One of the most common correlations for 

permeability is the Carman-Kozeny equation [2, 63]: 
 

 

3
2

2
180 1

K d






             (28) 

 

Another correlation, accounting also for inertial effects, was developed by 

Ergun [64]. An extension of it for fluidized beds was presented in [65]: 
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For the energy equation, the effective thermal conductivity is usually 

modeled by using a weighted average form. Foams are an exception since the 

actual effective thermal conductivity differs from the weighted average one 

[66]. As it has already mentioned, the thermal dispersion can be modeled with a 

gradient diffusion hypothesis, and the radiative heat transfer too. The 

participating media approach for radiation allows to determine the closing 

coefficients  and  as well as their sum,=  + . For large values of the 

size parameter, using geometric optics the porous material is represented as a 

monodisperse assembly of independently scattering voids [67]: 
  

 
3

1
d

                (31) 

 

The interest of the scientific community in the interfacial volumetric heat 

transfer coefficient has become important only recently, due to the growing 

interest on LTNE models. The most simplified approach uses the correlations 

for tube banks proposed in [68]. The majority of models for porous media are 

based on packed sphere beds. Kuwahara et al. [69] developed a model based on 

staggered structural units that simulate the solid part of a porous media. A 

correlation for turbulent flow over an array of square rods was developed by 

Saito and de Lemos [70]. However, the real problem of the interfacial 

volumetric heat transfer coefficient evaluation is the determination of the 

specific surface area (Eq. (17)), that is quite hard because of the complexity of 

the geometry. This point will be discussed in the next chapter. 

Finally, the effective diffusivity of the species transport equations makes the 

determination of the tortuosity often difficult. Some examples are an electrical 

analogy [71], the pore theory [72], empirical methods [73]. 

In conclusion, the accuracy of a volume-averaged macroscopic porous 

medium strongly depends on the closing coefficients. An analysis on closing 

coefficients related to the momentum equation and to the LTNE model, for 

open-cell foams, will be presented in the next chapter. 
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3. FLUID FLOW AND HEAT TRANSFER IN OPEN-CELL FOAMS 

Fluid flow and heat transfer in open-cell foams, with an emphasis on 

pressure drop and convection heat transfer, with their corresponding closing 

coefficients, are discussed in this chapter. Basic definitions, manufacturing 

techniques and foam morphology are presented. Closing coefficients are 

determined with both experiments and numerical simulations. Simulations of 

heat transfer in open-cell foams engineering applications, such as volumetric 

solar receivers and heat sinks, are presented. 

 

3.1. Basic definitions 

Open-cell foams are a particular class of porous material. Their morphology 

is pretty regular, i.e. almost periodical. They are also defined as cellular 

materials. The term “cellular” is an adjective that derives from the word “cell”, 

that means compartment [74]. A cellular material is characterized by many cells 

packed together to fill a space, thus a cell is a single unit periodically repeated 

in such space. An example of cellular material is the honeycomb, made up by 

polygons that fill a plane area. A foam is characterized by polyhedral cells that 

fill a three-dimensional space; it is called open-cell foam when the solid 

material is contained only in the edges, which are named struts. The struts meet 

in vertices of finite dimensions, named junctions, on which, at least 

approximately, Plateau’s laws are valid. In an open-cell foam, the faces of the 

polyhedral are open, then a flow can pass through these openings, that are called 

pores. A resume of these basic definitions is depicted in Fig. 11. 

 

3.2. Manufacturing techniques 

Open-cell foams  used to enhance heat transfer can be based on a metal solid  

 

 
 

Fig. 11. Open-cell foams basic definitions. 
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matrix, due to the high thermal conductivity of metals, or on a ceramic material, 

like silicon carbide SiC. The latter solid matrix material is used when 

temperatures are above the melting point of metals, for example in a volumetric 

solar receiver. An exhaustive book on polymer foams has been written by Mills 

[75]. Open-cell metal foams can be manufactured with the three methods 

outlined below; ceramic foams can be manufactured by means of the second 

and third following techniques. 

The first, most used, technique is the casting  method [17]. An open-cell 

polymer foam is the template matrix. It is dried and embedded in casting sand 

after coating with a mold casting slurry. The casting material is hardened by 

baking, and the template tends to evaporate, obtaining a negative imagine of the 

foam. After inserting the molten metal, the metal foam is obtained by 

directional solidification and cooling, and the mold material is removed, 

obtaining the final product. This technique is used by ERG Aerospace [23]. 

Another technique, that can be used for the production of metal foams, such 

as nickel foams [17], is based on Chemical Vapor Deposition (CVD). Again the 

template is an open-cell polymer. In order to obtain the nickel-based foam, the 

template foam is put into a CVD reactor with nickel carbonyl Ni(CO)4, that 

splits into nickel and carbon monoxide at a temperature of about 100 °C, 

depositing on the template. Infrared heating can be used to burn the polymer 

template, and an open-cell foam with hollow struts is obtained. For applications 

where enhancing the heat transfer is the target, this technique is less convenient 

than the casting method because the hollow struts reduce the overall foam 

thermal conductivity. 

A third method, based on casting metal over a stacked bed of soluble spheres 

that could be made of salt [76], is called leachable bed casting. It allows to 

obtain very regular foams. 

Metal open-cell foams obtained with the above mentioned techniques are 

sketched in Fig. 12. 
 

 
Fig. 12. Methods used for manufacturing open-cell foams. 
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3.3. Morphology of an open-cell foam 

Because of their complex microstructure, open-cell foams morphology plays 

a fundamental role in transport phenomena, such as heat transfer and pressure 

drop. An accurate knowledge of foam microstructure is quite challenging due to 

the high uncertainty in measurements. Predictive models based on geometries 

that represent a foam can be also employed to model foam microstructure. In 

the following, measurements techniques and predictive models for various 

morphological parameters are described, after presenting definitions of foam 

morphological properties. 

The porosity of a foam, , has been previously defined as the ratio of the 

void volume to the foam total volume. The specific surface area, S/V, is the ratio 

of the heat transfer surface area to the total volume of the foam. The heat 

transfer surface area, that is referred to the interfacial surface area between the 

two phases, is the sum of the struts surface area plus the junctions surface area. 

The high specific surface area of foams is one of their advantages in terms of 

heat transfer, and it is also challenging to obtain. For this purpose, various 

techniques can be employed. Experimental techniques are based on the 

Brunauer-Emmett-Teller (BET) theory, which states that the specific surface 

area can be indirectly evaluated from the adsorption of non-corrosive gases like 

nitrogen on a surface. However, for ceramic foams, this method tends to 

overestimate the value of the specific surface area because of the rough surface 

of the struts [77]. Techniques based on Magnetic Resonance Imaging (MRI) 

[78] and x-ray Computed Tomography (xCT) [79] construct experimentally the 

geometry of the foam and measurements are carried out in by computation After 

reconstructing the foam with one of the aforementioned methods, various 

techniques can be employed for the determination of the specific surface area. A 

statistically-based method makes use of the two-point correlation function [80, 

81], that is the probability that within a porous medium two points at a distance 

r, are in the fluid volume at the same time. This function is a two-dimensional 

auto-correlation function, equal to s2(r) = <f(x) f(x+r)>, where f(x) is the 

indicator function of the coordinate x. It can be determined with the Monte 

Carlo method, and it is very useful due to its properties. Indeed, the two-point 

correlation function is used to determine key parameters, such as porosity and 

specific surface area: 
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Another method (BoneJ) is based on the discretization of the foam solid 

interfacial surfaces, subdivided into many triangles [82] and the surface area is 

the sum of the areas of the triangles. The surface area can be also determined by 

measuring the length of the interface of each slice. Other techniques for the 

evaluation of the specific surface area are based both on computationally-

generated foam geometrical models and on analytical considerations on ideal 

foam structures [77, 83, 84]. 

Linear morphological characteristics that need to be determined are the 

Pores Per Inch (PPI), the pore size, the cell size and the strut size (Fig. 11). For 

the strut, two sizes can be identified, respectively along the axial and the 

orthogonal directions. 

The Pores per Inch give the information on how dense a foam is. The higher 

the PPI the more pores are counted along a fixed direction. Simplified 

determinations of the pore size are based on the reciprocal of the PPI. However, 

Howell et al. [85], after collecting many literature data, concluded that, at a 

given PPI value, the actual pore size is generally different from the nominal 

value provided by the manufacturer. 

The pore size has be defined in several ways; as: the cord length 

distributions [86], the diameter of the circle having an area equal to that of the 

pore [77], the arithmetic mean of the long and short axes of an ellipse that 

approximates the pore [78], the diameter of the largest circle contained in the 

pore [79]. Petrasch et al. [87] reported a pore size distribution of a ceramic 

foam, where two peaks can be identified as the small longitudinal pores mean 

diameter and the macroscopic pore size. They defined the pore size as the 

diameter of the largest sphere that includes a point in the pore space, fitted 

completely within the pore space [88]. The standard deviation of a pore size 

distribution tends to increase when the pore density becomes lower. 

The cell size received less attention in the years, because of the high 

uncertainty in measurements [78]. It has been defined similarly to the pore size. 

Thanks to the almost-spherical shape of a cell, Iasiello et al. [79] defined the 

cell size as the diameter of the largest sphere contained in a cell. Inayat [89] 

argued that cell size can be obtained from the void volume enclosed by the three 

dimensionally interconnected foam struts. Grosse et al. [78] defined the cell size 

as the diameter of a volume-equivalent sphere. Maire et al. [90] defined it as the 

average circular segment diameter divided by a factor 0.785. 

The strut has variable cross sections, due to the foaming process, as sketched 

in Fig. 11. Inayat et al. [77] assumed the thickness of the minimum strut cross 

section as the strut size. The strut size has also been defined as the height of a 
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solid strut equilater triangle cross-section [91]. More exhaustive models take 

into account also the variability of the strut section along the strut length [92]. 

Finally, the strut length is defined as the distance between its extremity 

vertices, measured center to center [93]. 

 

3.3.1. Real foams 

In this paper, a real foam is referred to as a foam whose structure is obtained 

by means of an imaging technique, such as the Magnetic Risonance Imagine 

(MRI) or the x-ray Computed Tomography (xCT). Microstructure 

measurements carried out on real foams are classified as experimental, and 

they’re often more accurate than pure experimentally techniques, such as BET 

[77]. 

Even if it has less quality than tomography, MRI is used in imaging since it 

has an acceptable images resolution [78]. This technique is widely used in 

medicine, due to its accuracy and to the non-ionizing radiations. It is physically 

based on the Nuclear Magnetic Resonance (NMR), a technique that was first 

presented by Rabi et al. [94] for molecular beams. It is based on the precession 

of nuclear spins induced by a magnetic field. Images are obtained as a function 

of the time that nuclei require to reset their initial equilibrium condition. This 

technology is also used in engineering applications [95]. Grosse et al. [78] 

applied it investigating foams morphology. In order to perform measurements, 

the pore space was filled with a liquid suitable for 
1
H-MRI measurements, since 

the magnetic resonance is a technique that requires elements with non-zero 

nuclear spin, that possess a magnetic moment. 

The most used imaging technique is the x-ray Computed Tomography 

(xCT). The CT scanner was invented by Godfrey Hounsfield and Allan 

Cormack in 1972, and they won the Nobel Peace Prize for this. The invention 

was announced in 1972, even if Hounsfield conceived his idea in 1967. With 

this technique, x-rays are emitted from a source to a detector, and they are 

attenuated by the material through which x-rays pass, obtaining an image 

depending on the attenuation. Taking images from different angles, cross-

section images of a rotating object hit by x-rays is computationally 

reconstructed in three-dimensions. This technique is widely used in medicine, 

with the object (the patient) settling and the x-ray source rotating around the 

object. The x-ray attenuation depends on the attenuation coefficient of the 

object, and the computational reconstruction is obtained with complex 

alghoritms, such as the Filtered Back Projection (FBP). FBP is used when the x-

ray beam hitting each detector element has parallel components [96]. Images 

obtained via MRI and xCT are reported in Fig. 13. 



Fluid flow and heat transfer in open-cell foams 
 

 

33 

 

 
 

Fig. 13. Imaging techniques for real foam. 

 

The 3D image obtained is then postprocessed. Indeed, images are obtained in 

gray-scale, without indications on threshold between the two phases. Various 

postprocessing techniques are be employed to determine the threshold between 

the two phases. Two techniques are the iterative selection thresholding method 

[97] and the Otsu method [98]. The former is an iterative procedure based on 

the isodata algorithm, while, in the latter, the threshold is chosen in order to 

minimize the intra-class variance between the two classes. Other postprocessing 

tools can be employed in order to improve the quality of the images. 

From the scan data, it is possible to evaluate all the morphological properties 

that have been presented in the previous sub-section. In particular, among the 

various properties, the specific surface area can be determined in several ways. 

However, it is worth to underline that a high uncertainty can be found, because 

of several issues, such as the quality of the images, errors due to the used 

method, etc.. 

 

3.3.2. Ideal foams 

How to represent a foam is an ancient problem. Since a foam tends to 

minimize its surface area, it is a minimal surface problem, ruled by the principle 

of  minimum energy, that is a restatement of the second law of thermodynamics. 

It states that any physical configuration tends to reach the equilibrium in order 

to minimize its internal energy, that in the case of foams is due to the 

intermolecular forces. Besides, a foam must be space-filling, and has to respect 

Plateau’s laws. It is also to take into account that foaming is not only affected 

by surface tension, but also by other factors, such as competitive growth or 

viscosity forces [21]. 

Since the aim is to find a minimal surface area, the isoperimetric quotient 

can be used here. It is defined as q = 36  V
2
/S

3
, in order to have q = 1 for a 

sphere. The first ideal foam was proposed by Plateau [9]. Starting from the 

Face-Centered-Cubic (FCC) lattice, it is possible to obtain, with a Voronoi 
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tessellation, a rhombic dodecahedron, with twelve rhombic faces. It is reported 

in Fig. 14; its isoperimetric quotient is equal to 0.7045 [99]. This geometry was 

improved by Kelvin [100]. He obtained from the Body-Centered-Cubic (BCC) 

lattice a fourteen-sided polyhedral, named tetrakaidekahedron or truncated 

octahedron, with slightly curved hexagonal faces, that guarantees the minimal 

surface area condition. In the above referred solid eight faces are hexagonal and 

six are square, with q = 0.757 [99]. In this tetrakaidekahedron with plane faces, 

q = 0.753. It was the best space-filling ideal foam since, about a century later, 

Weaire and Phelan [101] identified a unit cell with even lower specific surface 

area than Kelvin foam model. Using Surface Evolver [102], a software for the 

study of surface shaped by surface tension or other energies, they obtained a 

unit cell starting from the Voronoi tessellation of the A15 phase, that is a series 

of intermetallic compounds. They found a unit cell made up by eight equal 

volume cells. Two of them are pyritohedra, an irregular dodecahedron with 

pentagonal faces, and six are truncated hexagonal trapezohedra, a 

tetrakaidecahedron with two hexagonal and twelve pentagonal curved faces. 

The surface energy, that is proportional to the surface area when the thickness is 

uniform, is minimized of approximately 0.3% with respect to Kelvin’s model, 

resulting in q = 0.764 [99]. 

Some architectural structures are based on ideal foams and minimal surfaces 

concepts. Tensile structures, which are structures with only tension and no 

compression or bending, are based on this. The design of the roof of the 

Olympic  Stadium in Munich was  based on  this idea. Another  example is the 

 

 
 

Fig. 14. Ideal dry and wet foams, with their isoperimetric quotients, q. 
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Beijing National Aquatics Center, also known as Water Cube, whose design of 

the outer wall is based on the Weaire-Phelan structure. The photos of the above 

structures are reported in Fig. 15. 

Modeling foam morphology by using an ideal foam is cheaper than using 

imaging techniques. For the specific surface area, no exhaustive correlations are 

available yet [77]. Richardson et al. [83] used a Lord Kelvin foam modified 

model with triangular struts, ds, wide, that is the strut thickness. Starting from 

considerations from Gibson and Ashby [21] among the other morphological 

parameters, the following correlation for the specific surface area has been 

derived: 
 

12.979 1 0.971 1

1p

S

V d


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
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            (33) 

 

with dp the pore  size, that is the diameter of a circle  with an area  equivalent to 

an hexagonal pore. Another correlation was proposed by Buciuman and 

Kraushaar-Czarnetzki [103]. They too used the Lord Kelvin modified model 

and the correlations from Gibson and Ashby [21]. The pore size was assumed as 

the diameter of a circle having the same area as the weighted average of all the 

14 pores of a tetrakaidecahedron: 
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Inayat et al. [77], with reference to a model based on Kelvin foam, presented 

correlations accounting for the strut shape: 
 

/ 4.867 1 0.971 1 / pS V d   
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            (35) 

 

 
 

Fig. 15. The Water Cube in Beijing and the Olympic Stadium in Munich. 
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/ 6.49 1 0.971 1 / pS V d   
 

           (36) 

 

where Eq. (35) holds for a circular strut, that in an open-cell foam represents the 

lowest porosity for an open-cell foam, while Eq. (36) is valid for a triangular-

concave strut, that exhibits the highest possible porosity of an open-cell foam. 

More recently, correlations have been derived also for computationally-

generated ideal foams. Wu et al. [104] modeled an open-cell foam starting from 

Lord Kelvin foam model, using a Computer-Aided Design (CAD) software. 

The struts were circular, and the strut surfaces smoothing at junctions was 

designed with a face-blended structure with the curvature depending on 

porosity: 
 

2 315.71 52.45 79.51 41.5 
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V d
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            (37) 

 

3.4. State-of-art 

3.4.1. Pressure drop 

Pressure drop in an open-cell foam represents an issue, because of 

concentrated pressure drops in the solid matrix of the porous domain. Even if 

there are advantages in terms of heat transfer, pressure drop is to be taken into 

account in the design of open-cell foams applications. As it was depicted in the 

previous section, the first correlations for open-cell foams were based on 

different porous materials, such as packed sphere beds. Only more recently, 

foams pressure drop is modeled by using either correlations or experiments 

based on open-cell foams. 

Closing coefficients can be obtained by applying a least-squares quadratic 

curve fit on the pressure drop per unit length as a function of the velocity [105]: 
 

2 2p f
A B

L K K

 
   u u u u             (38) 

 

where L is the length, A and B are two coefficients, |u| is the modulus of the 

superficial velocity, that is the inlet velocity of the fluid through the open-cell 

foam. It is defined as the ratio of the volumetric flow rate to the cross section 

area of the channel. Equation (38) is a finite-differential one-dimensional form 

of Eqs (14a) and (14b), where macroscopic inertial forces, shear stresses and 

body forces are neglected, and the media is assumed to be isotropic with respect 

to the permeability. 
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A least-square quadratic curve fit allows to evaluate coefficients A and B. By 

imposing A = /K and B =  f/  , closing coefficients K and f are obtained. 

The same result is obtained with a linear fit on the linearized form of Eq. (38): 
 

1p f
A B

L K K

 
   u u

u
            (39) 

 

Bhattacarya et al. [106] suggested that differences between the two methods 

are negligible. The linear fit can be useful to clearly identify the transition 

region from Darcy to Forchheimer flow regimes, because the function is 

constant when Darcy’s law holds, while it is linear when Forchheimer’s 

extension is to be taken into account. Boomsma and Poulikakos [107] studied 

water flow through an aluminium open-cell foam. They reported that, for 10, 20 

and 40 PPI foams with almost 0.92 porosity, transition from Darcy to 

Forchheimer regimes occurs at 0.101, 0.110 and 0.074 m/s, respectively. 

Three methods are used to study pressure drop in open-cell foams. The first 

is based on experiments, the second on simulations carried out on real foams; 

the third on simulations on representative geometries or ideal foams. It is worth 

noticing that the second and third methods can present problems of symmetry 

boundary conditions in the CFD modeling [115]. 

Experiments for pressure drop are quite easy to carry out. A stream of air (or 

other fluids, such as water) passes through an open-cell foam at a certain 

velocity, and the pressure difference between inlet and outlet sections is 

measured with a pressure transducer. Recently pressure drop and heat transfer 

coefficients in refrigerant fluids, such as CO2 in supercritical conditions [108] or 

R1234yf and R1234ze [109], were investigated experimentally. Many studies 

on measurements of pressure drop are available in the open literature. A resume 

of such results for different PPI values is reported in Fig. 16. 

The method based on simulations carried out on real foams is a hybrid 

method because the geometry is experimentally determined, but Computational 

Fluid Dynamics (CFD) is also employed. After reconstructing the geometry 

with an imaging technique, simulations are performed on the one-phase fluid 

domain, and pressure difference between the flow inlet and outlet are 

determined from data reduction. Closing coefficients are obtained from Eqs. 

(38) or (39). Direct Pore Level Simulations (DPLS) were performed by Petrasch 

et al. [87]. They used a finite volume CFD code to solve incompressible 

continuity and Navier-Stokes equations with an in-house mesh generator, using 

a 10 PPI open-cell ceramic foam with almost 0.86 porosity. Considering the 

solution  obtained as an  exact  solution  within the limits of a numerical  study,  
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Fig. 16 Pressure drop per unit length: a) 5 PPI; b) 10 PPI; c) 20 PPI; d) 40 PPI. 
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they compared results in terms of permeability and Forchheimer coefficient 

with solutions based on simplified approaches, such as Carman-Kozeny 

equation (hydraulic radius model) or the two-point correlation bound. Haussner 

et al. [116] obtained closing coefficients, including permeability and 

Forchheimer coefficient, by using DPLS on a 20 PPI foam with 0.91 porosity. 

Both Petrasch et al. [87] and Haussner et al. [116] used a slip boundary 

condition at the interior walls of the computational domain, in order to simulate 

foam symmetry. Ranut et al. [117] analyzed PPI effects on pressure drop, 

concluding that at higher PPI pressure drop has an isotropic behavior compared 

to 20 and 10 PPI, that exhibit a slight anisotropy. A comparison between real 

and ideal foam models has been performed by Iasiello et al. [79], who found a 

better agreement with experimental data for the real model. Diani et al. [118] 

performed simulations for copper foams with different PPI and about 0.935 

porosity, with a difference from experimental results no larger than 20%. 

Ideal foams pressure drop models have been receiving a wide attention in 

the last years, since, compared to direct experiments or to real foam based 

techniques, they allow a huge safe in terms of costs and time. A geometric 

analytical model representing the microstructure of an open-cell foam was 

introduced 1988 by Du Plessis and Masliyah [119]. It consisted of three square 

section ducts, mutually perpendicularly-oriented. This model is called the 

Representative Unit Cell (RUC), and was used by Fourie et al. [120], in order to 

improve the predictive accuracy of the analytical model from Du Plessis and 

Masliyah [119] in modeling Forchheimer regime. The permeability K and the 

inertial coefficient f are expressed as follows: 
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with the tortuosity, , is =  (ds + dp)
2
/Ap and the pore opening, Ap, Ap = ( /4) 

(dp
2
 – ds

2
). It is worth noticing that ds + dp is equal to the microscopic 

characteristic length of the RUC by Fourie et al. [120]. Fourie and Du Plessis 

[121] ameliorated the model using the Representative Hydraulic Diameter 

(RHD) model, that accounts for the effects of a triangular strut. 

Another analytical model, based on the analogy with bank of tubes, the cubic 

cell model, was proposed by Lu et al. [122]. It consists of three mutually 
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perpendicular equivalent cylinders, each having a diameter ds and a length equal 

to the pore size, dp. The same approach was used by Lacroix et al. [123]. A 

model based on a pentagonal dodecahedron was developed by Huu et al. [124]. 

Following Lacroix et al. [123], they started from Ergun’s equation, substituting 

the particle diameter withan equivalent strut diameter derived from a different 

geometric model. It is important to observe that a pentagonal dodecahedra is not 

a perfectly filling-space geometry, but it can be modified in order to satisfy this 

condition. 

Recently, the increase in computational capacities allowed to employ foam 

geometries in pressure drop modeling. Boomsma et al. [115] analyzed the fluid 

flow through an open-cell foam by using the Weaire-Phelan foam model. The 

comparison of pressure drop with experimental results showed differences of 

about 25%, that authors attributed to a lack of wall effects in the numerical 

model. The Weaire-Phelan foam was also used by Kopanidis et al. [91] and 

Cunsolo et al. [125], who concluded that the lighter Kelvin’s model can be used 

without remarkable differences in modeling convection and pressure drop for 

high porosity foams. The Kelvin’s model was used by many authors [79, 104, 

125 – 127] since it is simpler than the Weaire-Phelan one. Correlations for 

permeability K and inertial coefficient f as a function of porosity  and cell size 

dc are herein reported from Wu et al. [104]: 
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Suleiman and Dukhan [126] performed simulations over an array of Kelvin 

foam cell in series, and found maximum differences of about 15% for low 

velocity regime pressure drop compared with experiments run on their own. 

However, it is reported that there is still a lack of data on exhaustive and reliable 

models for pressure drop modeling based on ideal foams. 

 

3.4.2. Convection heat transfer 

The local heat transfer between the two phases when they are not in thermal 

equilibrium (LTNE model) is referred as interfacial convection heat transfer. 

Sometimes, rather than to the coefficient of convection, hc, reference is made to 

the volumetric heat transfer coefficient, hv, that accounts to heat transferred in 

the whole porous medium, also for conduction through the solid struts. The 
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same three methods described for the evaluation of pressure drop can be used to 

evaluate the interfacial convection heat transfer coefficient and the 

corresponding volumetric heat transfer coefficient. 

Many experimental techniques can be employed. They can be classified as 

stationary or transient techniques. A stationary technique was used by Fuller et 

al. [128]. They calculated the volumetric heat transfer coefficient in Eq. (17) by 

using a heating pad at the bottom of the foam sample. Data reduction was 

performed by making an energy balance over the foam domain. However, this 

technique underestimates volumetric heat transfer coefficients, since the 

temperature gradient in the foam reduces at decreasing Biot number. Dukhan et 

al. [129] investigated water convection heat transfer through an aluminum foam. 

A surface heater wrapped the foam sample and the surface temperature was 

measured at the bottom of the sample in the flow direction. The authors 

identified a region in the solid where the slope of the temperature profile was 

uniform, the temperature field being fully developed. Therefore the temperature 

profile in the fluid was the same as in the solid and was obtained by measuring 

the fluid temperature in the exit section of the foam. A similar technique was 

used for the thermally developing region, by using the inlet water temperature 

instead of the outlet one. Another experimental technique considers the foam as 

an extended heat transfer surface. After obtaining an overall heat transfer 

coefficient, the thermal resistance of the foam struts is taken into account, in 

order to obtain an interfacial coefficient, by defining a foam efficiency based on 

the concept of fin efficiency [130]. This technique was used by Mancin et al. 

[131]. Even if it is the most accurate steady-state technique, it is still depends on 

the solid material of the foam. The correlation proposed by the authors, valid for 

30 < Re < 200 and Pr = 0.7, is: 
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with the Reynolds number Re = |u|  ds/f  and the Prandtl number Pr = f 

Cp,f/kf. Fluid properties are evaluated at mean fluid temperature and pressure. 

The most accurate experimental technique is the transient technique, based 

on an inverse method. The experimental apparatus is set up in such a way as to 

guarantee a local temperature difference between the two phases; thus a LTNE 

model can be applied. Temperature profiles of solid and fluid as a function of 

the time are measured. By employing Eqs. (18a) and (18b), the volumetric heat 

transfer coefficient, hv, is iteratively modified in order to match simulated 

profiles and measured profiles within a fixed tolerance. The volumetric heat 

transfer coefficient is independent of the foam solid matrix and, if the specific 
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surface area is known, the interfacial heat transfer coefficient is obtained by 

means of Eq. (17). In most cases the problem is assumed to be one-dimensional. 

Thermocouples are located at the inlet, outlet and side boundaries of the foam. 

Experimental results in the literature are resumed in Fig. 17. 

Convection heat transfer in real foams has been investigated numerically 

with the same approach as that for a single-phase fluid presented in the previous 

section, with the appropriate boundary conditions. The convection heat transfer 

coefficient is obtained as: 
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where both temperatures are averaged over the computational domain, the 

temperature of the solid <Ts>
s
 is taken at the solid/fluid interface, and the 

temperature of the fluid <Tf>
f
 is the bulk temperature. The interfacial boundary 

condition can be either a uniform heat flux or a uniform interfacial temperature. 

Petrasch et al. [87] and Haussner et al. [116] used DPLS to investigate heat 

transfer coefficients under a constant solid temperature boundary condition. 

Anisotropy effects were analyzed by Ranut et al. [117] under either uniform 

heat flux or uniform interfacial temperature boundary condition, observing 

slightly anisotropy for lower PPI. Uniform heat flux boundary condition has 

been also used by Iasiello et al. [79] for a 40 PPI foam with about 0.90 porosity 

and by Diani et al. [118]. Results are often presented in terms of heat transfer 

coefficients and a volumetric heat transfer coefficient is obtained by using the 

specific surface area calculated directly on the scanned real foam. Since this is a 

new technique, only few data is available in the literature. 

With reference to the third technique, the first simplified geometrical models 

were based on Zukauskas correlations [68] for tube banks. Lu et al. [122] 

developed a cubic cell model using existing heat transfer data for convection 

crossflow through cylinder banks. More recently, geometries based on ideal 

foams were used to study the interfacial convection heat transfer. Differences in 

coefficients of convection heat transfer predicted by the Weaire-Phelan’s and 

Kelvin’s foam models were found to be negligible for high porosity foams 

[125]. Kelvin model is preferred because it is lighter than Weaire-Phelan one. 

Pusterla et al. [137] investigated the effects of the morphology of the 

Kelvin’s foam, in terms of junction thickness, cell inclination angle and strut  

tapering, that is the ratio between junction diameter and strut minimum 

diameter. The effects of struts shape on convection heat transfer were analyzed by 
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Fig. 17. Experimental volumetric heat transfer coefficient: 

a) 5 PPI; b) 10 PPI; c) 20 PPI; d) 40 PPI.
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Ambrosio et al. [138]. Thermally developing effects were analyzed by Wu et al. 

[139] by simulating an array of Kelvin’s foams in series. By applying a uniform 

surface temperature boundary condition, they identified three regions for 

thermally developing flow: a boundary affected region, a stable convection 

region and a thermal equilibrium region. They also found that the convection 

heat transfer is more affected by the cell size than by the porosity. They 

presented the following correlation [139, 140]: 
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that is valid in the thermally developed region, for 0.66 <  < 0.93 and 70 < Rec 

< 800, where Rec = |u| dc/oth representative and ideal models can be 

developed by improving the foam geometry. For example, the correlation 

proposed by Wu et al. [139] is based on cylindrical struts, a simplified geometry 

of the struts. 

 

3.5. An experimental approach for the closing coefficients 

3.5.1. Description of the experimental apparatus 

Based on a transient technique for the evaluation of the convection heat 

transfer, an innovative experimental apparatus has been designed and set up. 

The scheme of the apparatus is reported in Fig. 18. The stainless-steel AISI 

316L test rig is an open-circuit, with a rectangular cross  section. An Atlas  

Copco GA7VSD screw air compressor guarantees a variable air flow rate at a 

constant pressure. The volumetric flow rate varies in the 0.4 - 1.2 m
3
/min range. 

Before exiting the compressor, the air is dehumidified by an R134a drier, 

water, oil and particulate are removed by a set of filters. The air stream passes 

through a pressure control valve, that makes the pressure close to the 

atmospheric pressure value. The mass flow rate is measured with a volumetric 

orifice flow meter (Fig. 19a), useful for stationary measurements, due to its 

costs and accuracy. It is equipped with a differential pressure transducer, 

according to EN 5167-1:2003 [141]. The air density is given by the ideal gas 

law p/ = RT. It has been checked that using a gas law by considering humid air 

provides a negligible error. The absolute pressure is determined with an Eliwell 

piezoelectric transducer, with a 0.5- 8.0 bar operating range between and a ± 

1.0% full-scale accuracy. The temperature is measured with a K-type 

thermocouple, with a ± 1.1 °C accuracy, and a Agilent 34901 cold junction 

compensation,  with an  accuracy of ± 1.0 °C.  Downstream of  the  volumetric  
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Fig. 18. Scheme of the experimental apparatus. 

 

flow rate measurement section, a calm  chamber stabilizes the flow and the 

circular cross section changes into a rectangular one. Since measurements are 

carried out in transient conditions, a DANTEC Mini CTA 54T30 temperature 

anemometer is used to evaluate the fluid velocity upstream of the test section. 

 

 
 

Fig. 19. a) Volumetric flow orifice flow meter; b) Test section. 
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The anemometer is calibrated before the tests, using the volumetric orifice flow 

meter. The photo of the test section is reported in Fig. 19b. The test section is 

long 300 mm, with a 100 x 60 mm
2
 rectangular section. A 3051 Rosemount 

pressure transmitter, with a ± 1.1 Pa accuracy, is used to measure the pressure 

drop between the inlet and outlet section of the sample. A 300 W mica heating 

pad is mounted at the top of the sample. The test section is insulated with 

calcium-magnesium silicate sheets. Five K-type thermocouples are used to 

measure the solid temperature. Three are equally-spaced at the top of the sample 

and two are mounted at the bottom at the extremities. Inlet and outlet fluid 

temperatures are measured by using six T-type thermocouples, with a ± 0.5 K 

accuracy, three at the inlet and three at the outlet, respectively. These 

thermocouples are equally-spaced, mounted in order to avoid the contact with 

the solid sample. T-type thermocouples were chosen due to their high response 

in frequency. All the eleven thermocouples use the cold junction compensation 

from the Agilent 34901A data acquisition card. Runs have been performed on 

aluminum foam samples (6101-T6) provided by ERG Aerospace, whose 

geometrical and morphological parameters are resumed in Table 2. 

 

3.5.2. Experimental determination of the closing coefficients 

The aim of the experimental runs is to determine pressure drop and 

interfacial convection heat transfer in an open-cell foam. In particular, 

permeability, K, inertial factor, f, and volumetric heat transfer coefficient, hv, are 

determined from experimental data. The Forchheimer coefficient, C, can be 

obtained also from C = f/  . Procedures for both pressure drop and volumetric 

heat transfer coefficients are described in the following. 

Pressure drops are evaluated with a differential pressure transducer. Dividing 

the  pressure  drop by the sample  length we to obtain the pressure  drop per unit  

 

Table 2. Parameters of the investigated foams. 
 

Porosity PPI 
Cross section 

(mm
2
) 

Length 

(mm) 

0.944 5 

54 x 94 

194 

0.945 10 194 

0.943 20 194 

0.940 20 185 

0.902 40 194 

0.970 40 175 
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length. By performing different runs at different superficial velocities, |u|, 

shows that the dependence of pressure drop on the velocity is almost quadratic, 

as depicted in Eq. (38) or Eq. (39). Closing coefficients are be obtained by 

applying either Eq. (38) or Eq. (39). In this work, reference is made to Eq. (39). 

Coefficients A and B can be obtained by a quadratic or linear regression of 

experimental data; thus K and f are obtained by A = /K and B =  f/  . 

Uncertainty analysis is performed by applying propagation of uncertainties 

without variable correlations. Defining a functional relationship y = f (x1, x2, …, 

xN), the composed uncertainty, uc(y), is derived: 
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where u
2
(xi) is the variance of xi. Since the volumetric flow rate is measured 

with a volumetric orifice flow meter equipped with a differential pressure 

transducer, the velocity is determined with the following correlation[141]: 
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where CD is the discharge coefficient; d/D is the ratio of the orifice diameter to 

the duct diameter;  is the fluid expansibility factor;  is the fluid density, 

measured upstream of the tapping plane; p is the pressure drop between the 

orifice upstream and downstream pressure. The discharge coefficient, given by 

the Reader-Harris/Gallagher equation [141], is evaluated by an iterative 

procedure; the fluid expansibility factor is obtained from an empirical formula 

[141]. Uncertainty of the velocity in Eq. (48) is determined according to EN 

ISO 5167-1:2003 [141]. 

The volumetric heat transfer coefficient is evaluated with a transient-hybrid 

technique, in order to point out its dependence on time. The experimental 

procedure is described in the following. The heating pad is switched on with 

stagnant air, thus the solid temperature increases, especially on the top of the 

heating section. Heat transferred by conduction through the struts warms up the 

bottom of the sample. By switching off and on the heating pad, equilibrium in 

temperatures is attained with a 5 K maximum temperature difference among the 

five thermocouples. When the equilibrium temperature is reached, the heating 
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pad is switched off, and air at ambient temperature starts to flow through the 

sample by opening a valve. Because of the heat transferred from the foam struts, 

the temperature of the air increases along the sample. The temperature of the air 

in the exit section of the foam decreases with the time, finally assuming the 

value of the struts temperature located in the inlet section, and air and solid 

temperature profiles are obtained. 

The volumetric heat transfer coefficient is given by following equation: 
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where the heat rate, Q, is evaluated as the total enthalpy variation between the 

entrance and the exit of the foam; V is the total volume of the foam, Ts is the 

mean temperature of the solid measured by the five K-type thermocouples. 

Since thermocouples are located on the heating pad, thermal inertia lag effects 

may cause errors in measured temperatures. The dependence of the solid 

temperature on time has been evaluated by applying a transient first-law balance 

on a control volume that encloses only the solid part of the foam. Besides, since 

Biot number is small in an aluminum metal foam, a uniform temperature in each 

strut has been assumed. <Tf> is the mean value of fluid temperatures at the 

outlet and inlet flow sections of the foam, by the six T-type thermocouples 

located at the outlet and inlet sections, respectively. 

 

3.5.3. Results 

3.5.3.1. Pressure drop 

Pressure drop measurements have been carried out by varying the inlet 

velocity of the air from 0.5 to 3.5 m/s. 

Pressure drop per unit length as a function of the air velocity, the ratio of 

pressure drop per unit length to the velocity for various values of PPI and 

porosity, is presented in Figs.20 and 21, respectively. The dependence of 

pressure drop on the inlet velocity is almost quadratic, in agreement with Darcy-

Forchheimer law (Eq. 38). 

Figure 20a points out PPI effects, while Fig.20b emphasizes porosity effects. 

With references to PPI effect ( ≈ 0.94), we notice that the larger PPI the larger 

the pressure drop, because the flow faces an increasing number of obstacles 

along its path. A slight increase of the pressure drop with porosity is exhibited 

in Fig. 20b,  where  PPI = 40. This  behaviour, also  observed by  Mancin et al.  
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Fig. 20. Pressure drop per unit length vs. air velocity: 

a) ε ≈ 0.94 and various PPI; b) PPI = 40 and various ε. 

 

[110], is caused by the variation of the strut section shape with porosity in a 

foam. The shape changes from triangular to concave-triangular, increasing drag 

forces. 

Figure 21 shows linear regressions, with R
2
 always higher than 0.98. It 

allows to determine the permeability, the inertial coefficient and the 

Forchheimer coefficient by means of Eq. (39). 

Permeability, inertial factor and Forchheimer coefficient as a function of 

porosity and PPI are reported in Fig.22. One can notice that in a 40 PPI foam, 

the permeability is almost independent of the porosity, whereas a fair increase 

of the inertial coefficient is exhibited. This is due to the variation of the strut 

section shape with porosity, thus there is an increase in drag forces. Fig.22b 

shows that the permeability of lower PPI foams is larger, meaning that the fluid 

flows more easily through the foam. On the other hand, Forchheimer coefficient 

increases with PPI, because of increasing inertial effects. 

 

 
 

Fig. 21. Ratio of pressure drop per unit length to the velocity vs. the velocity: 

a) ε ≈ 0.94 and various PPI; b) PPI = 40 and various ε. 
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Fig. 22. a) Permeability and inertial factor vs. the porosity, at 40 PPI; 

b) Permeability and Forchheimer coefficient vs:PPI, for ε ≈ 0.94. 

 

Pressure drop per unit length as a function of the air velocity, for 40 PPI and 

 = 0.902, together with data taken from the literature, is presented in Fig. 23. 

Equation (47) allows to evaluate uncertainties of the closing coefficients. 

The uncertainty of inlet velocity was no higher than 1.30 %; the maximum 

uncertainties of closing coefficients were 6.97 % for K, 2.47 % for C and 2.56 

% for f, for  = 0.944 and PPI = 5. 

In conclusion, it has been shown that PPI affects pressure drop and closing 

coefficients more than the porosity. 

 

3.5.3.2. Convection heat transfer 

Volumetric convection heat transfer coefficients are evaluated for a foam 

with  = 0.902 and 40 PPI, inlet velocity of 1.50 m/s, 2.50 m/s and 3.50 m/s. 
 

 
 

Fig. 23. Pressure drop per unit length vs. air velocity, for 40 PPI and  = 0.902. 
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Fig. 24. Fluid temperature in the inlet and outlet sections of the foam vs. time, 

for  = 0.902, PPI = 40 and various inlet velocities. 
 

The fluid temperature in the inlet and outlet sections of the foam as a 

function of time, for  = 0.902, PPI = 40 and various inlet velocities, is reported 

in Fig. 24. Since the heating pad is switched off during the transient, the fluid 

temperature in the outlet section rapidly decreases with time, tending 

asympthotically to the unchanging inlet fluid temperature. One can also notice 

that the higher the velocity, the faster the transient. 

The volumetric heat transfer coefficient as a function of time, for  = 0.902, 

PPI = 40 and various inlet velocities, is reported in Fig. 25. 
 

 

Fig. 25. Volumetric heat transfer coefficient vs. time, for 

 = 0.902, PPI = 40 and various inlet velocities. 
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The figure shows that during the transient heat transfer coefficients decrease 

faster with increasing velocity. One can also remark an equal duration of the 

transient for 3.50 m/s and 2.50 m/s whereas it is longer for 1.50 m/s velocity. 

 

3.6. Predictive models for the closing coefficients 

Together with experimental approaches, numerical simulations based on real 

and ideal foams have been performed. Predictions of pressure drop and 

convection heat transfer for real and ideal foams are presented in this section. 

 

3.6.1. Foam geometry reconstruction 

The geometry of both real and ideal foams can be reconstructed in several 

ways. In research herein described the real foam was reconstructed by using 

xCT, while the ideal foam was built up with reference to Kelvin’s foam model. 

Since differences in pressure drop and convection heat transfer between 

Kelvin’s and Weaire-Phelan’s foam models are negligible at high porosities 

[125], the simpler and computationally lighter Kelvin’s foam model was 

preferred. 

 

3.6.1.1. Real model: the RVE theory 

Three real foam cylindrical samples (10 mm length and 10 mm diameter), 

having the same 40 PPI value, with 0.88, 0.94, 0.97 nominal porosities and 

0.87, 0.94, 0.96 measured porosities, manufactured by ERG Aerospace, were 

scanned. Scans were performed with an Xradia MicroxCT-400 machine, that 

ensures a spatial resolution < 1 m and a pixel size down to 0.3 m. The x-ray 

source maximum voltage and power are 90 kV and 8 W, respectively; for a light 

material, such as aluminum, 20 kV and 3 W are typically used. The x-ray 

detector is a 4 megapixel (2048x2048) 16-bit digital CCD camera, equipped 

with a lens that magnifies the images. 1X and 4X magnifications were used in 

this research. The pixel sizes were 17.7 m, 17.8 m and 18.9 m for 0.88, 0.94 

and 0.97 porosities, respectively, for the 1X magnification. For the same 

porosities, Pixel size were 4.59 m, 4.41 m and 4.66 m, when the 4X lens 

was used. The spatial resolution, that is the size of the smallest object that can 

be detected through the sample, was about 40 m and about 10 m for 1X and 

4X magnification, respectively. Together with the pixel size, the spatial 

resolutions depends on the field of view. Grey-scale images are then obtained 

for both magnifications, as depicted in Fig. 26, where the scans of a 0.96 for the 

0.96 porosity  foam are  presented. It is clear that in both cases the strut  shape is  
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Fig. 26. CT scans for a 0.96 porosity foam: a) 1X and 18.9 m pixel size; 

b) 4X and 4.66 m pixel size. 

 

crisp. Thus the 1X magnification guarantees an accurate enough analysis, as the 

subsequent morphological analysis will confirm. To obtain the binary images 

from the grey-scale ones, the freeware program ImageJ was used. A 7.1 x 7.1 x 

10 mm
3
 sub-volume was cut, in order to remove corner artifacts from the CT 

data. The threshold was determined with the iterative selection thresholding 

method [97], and it was verified that the Otsu method provides negligible 

differences on porosity [98]. 

The morphological analysis was carried out to evaluate the porosity, the 

specific surface area, the cell size, the pore size, the strut size, the strut length 

and the junction size. The strut size refers to its middle cross section, that is the 

minimum value along the strut length. The specific surface area was evaluated 

with the two-point correlation function and its properties are reported in Eq. 

(32). Reference has been made to two definitions of all the above mentioned 

sizes. The first, herein named definition #1, assumes the size as the diameter of 

the largest sphere inscribed into each foam morphological parameter; the 

second, definition (#2), assumes the size as the diameter,       , of an 

equivalent circle, with an area, A, equal to that of the cross-section of each 

measured morphological parameter. Two dimensionless parameters have also 

been used. The first is the strut tapering, t = dj/ds, [138] and the foam shape 

factor,  = As/Acirc, where As is the average area of the strut cross section and 

Acirc is the average area of the smallest circle that contains the cross section of 

the strut. All measurements  were  carried out on 2D slices of the  CT data.  The  
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Fig. 27. Foam strut shapes as a function of the porosity. 

 

comparison of dc and dp values for 1X and 4X exhibited differences less than 

0.3%; thus 1X data are used in the following. The above parameters are 

resumed in Fig. 27. 

Sizes were evaluated as the average values of 30 runs for pores, struts and 

junctions and 10 runs for the cells. The distribution of pore size, according to 

definitions #1 and #2, for various porosities is reported in Fig.28. The figure 

shows that distributions gather around a common value, especially when 

reference is made to definition #2. We also notice that the higher the porosity 

the lower the spread in the distributions. The average measured morphological 

characteristics, together with their standard deviations, are reported in Table 3. 

With reference to both foam morphologies, defined as #1 and #2, Fig.27 

showed that the larger the porosity the smaller the foam shape factor, with the 

strut shape varying from convex-triangular to concave-triangular. The strut 

 
Fig. 28. Pore size distribution: a) definition #1; b) definition #2. 
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Table 3. Average measured morphological characteristics 

(standard deviation in parentheses). 
 

ε β     
(mm) 

S/V 

(1/m)
 

    

(mm) 

    

(mm)
 

    

(mm)
 

t 

Definition #1 

0.87 
0.67  

(0.07) 

1.32 

(0.15) 
1408 

1.72 

(0.15) 

0.88 

(0.19) 

0.29 

(0.11) 

2.2 

(0.3) 

0.94 
0.59  

(0.06) 

1.37 

(0.14) 
954 

1.85 

(0.21) 

0.95 

(0.19) 

0.20 

(0.04) 

2.1 

(0.3) 

0.96 
0.49  

(0.05) 

1.45 

(0.14) 
922 

2.03 

(0.17) 

0.89 

(0.20) 

0.16 

(0.05) 

1.8 

(0.2) 

Definition #2 

0.87 
0.67  

(0.07) 

1.32 

(0.15) 
1408 

1.71 

(0.16) 

0.99 

(0.23) 

0.29 

(0.09) 

2.1 

(0.3) 

0.94 
0.59  

(0.06) 

1.37 

(0.14) 
954 

1.84 

(0.21) 

1.00 

(0.19) 

0.18 

(0.03) 

2.0 

(0.2) 

0.96 
0.49  

(0.05) 

1.45 

(0.14) 
922 

1.99 

(0.16) 

0.96 

(0.22) 

0.15 

(0.02) 

1.5 

(0.2) 

 

length increases at increasing porosity, because the distance between its extreme 

cross sections increases as the percentage of solid in the foam decreases. For the 

same reason the specific surface area and the strut size decrease at increasing 

porosity. The cell size increases with porosity because convex-triangular struts 

occupy more room in a cell. Figure 28 showed that pore size is almost 

independent of porosity. Since the junction diameter increases faster than the 

strut diameter, the strut tapering increases at decreasing porosity. 

The comparison of the sizes by definitions #1 and #2, shows that differences 

are less about than 1%, except for the pore sizes, for which, as usual, the 

difference is larger, also 10%. Reference will be made in the following to 

definition #1, since it is simpler to carry out. 

Since the simulation of the whole CT scanned sample is computationally 

expansive, the Representative Volume Element (RVE) concept helps save 

computational power in simulations. An RVE is sketched in Fig.29. Haussner et 

al. [116] proposed a cubic RVE, with LRVE = 3.50 dp, that guarantees the 

invariance of porosity, extinction coefficient and thermal conductivity. Since no 

data are available for a cubic RVE that guarantees the invariance of pressure 

drop per unit  length and the volumetric  heat transfer  coefficient, in the present  
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Fig. 29. The Representative Volume Element (RVE). 

 

study only porosity and specific surface area will be treated as invariant, 

assuming a suitable length of the RVE. Moreover, when the RVE dimension is 

being chosen, the spatial invariance of the RVE in the scanned sample must be 

guaranteed. The CT scanned sample is first divided into cubic elements, having 

the same volume,     
 . The Monte Carlo method is used on each element to 

obtain the two-point correlation function with a C++ code [79]. The porosity 

and the specific surface area of each cubic element is evaluated by means of the 

properties of the two-point correlation function in Eq. (32) and, therefore, their 

distribution in the scanned sample is obtained. Thus, a mean and a standard 

deviation can be obtained from these calculations for both  and S/V, and a 

Coefficient of Variation (CV) is defined as the ratio of the standard deviation to 

the mean value. The same procedure is followed for different cubic elements of 

volume     
 , obtaining CVs for the different values of LRVE. The chosen RVE is 

that with the lowest LRVE for which CV < 0.15, for both porosity and specific 

surface area. It is worth remarking that this methodology makes the RVE 

independent of its position in the scanned sample; therefore, it is also defined as 

the Statistical Representative Volume Element (SRVE). Mean values of the 

porosity and the specific surface area as well as the coefficient of variation as a 

function of the length of the Representative Volume Element scaled with the 

cell size, for  = 0.94, are reported in Fig.30. The grey region in the figure 

denotes the  values of the abscissa  that can be  assumed  as representative of the  
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Fig. 30. Mean values of the porosity (a)) and the specific surface area (b)), vs. 

the length of the Representative Volume Element scaled with the cell size. 

 

scanned sample. 

The characteristics of the chosen RVEs are reported in Table 4. 

 

3.6.1.2. Ideal model: generating the foam 

The ideal foam model is generated according with Kelvin’s foam model, by 

using the free-to-use software Surface Evolver [102], as described in the 

following. 

First of all, three vectors are described, in such a way to form a cubic lattice 

in R
3
 space and to use periodic conditions. Vertices of a surface can move 

through the domain. Due to periodic conditions, only 12 vertices coordinates are 

necessary to characterize the 24 vertices that form the Kelvin’s foam. Vertices 

are linked by edges (36 in the Kelvin’s foam). Only 24 edges are associated in 

the code, and the r 8 edges are determined by indicating if an edge is oriented in 

a certain direction in the R
3
 space, starting from one of the 24 edges. Finally, the 

edges linked by the 14 faces (6 squares and 8 hexagons) are indicated, and two 

Kelvin’s foams with equal volume are obtained. 

 

Table 4. Morphological characteristics of 

the Representative Volume Elements. 
 

LRVE 

(mm) 

 CV∙10
2  S/V 

(1/m)
 

CV∙10
2 

1.88 0.87 2.47 1408 13.79 

1.89 0.94 0.86 954 7.10 

1.91 0.96 0.39 922 3.37 
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The slighty curved configuration that enhances the isoperimetric quotient q 

(Fig. 14) is obtained refining the foam geometry and the surface energy is 

reduced by using a gradient-descent method. The wet foam is built up by using 

the command wetfoam2.cmd, that substitutes the edges with nearly-equilateral 

triangular section edges of a chosen width, which characterizes the foam 

porosity. Again, the geometry is refined and the surface energy is reduced with 

a gradient-descent method, obtaining a wet (open-cell) foam with a concave-

triangular strut shape. The generation of a wet foam is sketched in Fig. 31. It is 

worth remarking that the foam is obtained as a simplicial complex; thus refining 

the geometry is very important to improve the quality of its boundaries. 

The foam so obtained is saved as a IGES file and exported into COMSOL 

Multiphysics, that scales and replicates it along every direction. Because 

thermally developing effects are also analyzed in the present study, a single 

Kelvin’s cell is replicated twenty times along the flow direction. Besides, from a 

single cell, it is possible to calculate the specific surface area S/V for different 

porosities and cell sizes. Indeed, only two parameters are necessary to 

univocally define the morphology of a foam. By generating foams with different 

porosities and scaling them for different cell sizes, the following correlation is 

derived by means of a multiple regression: 
 

3.513

2.121
c

S

V d

 

               (50) 

 

with a coefficient of determination R
2
 = 0.9954. Eq. (50) is valid for 0.85 <   < 

0.95 and 0.5 mm < dc < 2.0 mm. 

 

 
 

Fig. 31. Wet foam generation with Surface Evolver [142]. 
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Foams generated with this technique have a concave-triangular shape due to 

the minimization of surface energy process. It is known that foams generated 

with a casting process exhibit a strut shape dependent on the porosity, varying 

from circular to concave-triangular, as it was sketched in Fig. 27. In order to 

generate foams with different strut-shapes, foams developed with Surface 

Evolver must undergo some modifications. An in-house MATLAB code is used 

to generate Kelvin’s foams with different struts shapes, with a preset porosity. 

Making references to the three scanned foams, with 0.87, 0.94 and 0.96 

porosity, the ideal foam strut shape has been adjusted in order to obtain different 

strut shapes and, time by time, the shape that matches the real foam shape. The 

code is developed in such way as to make negligible the dependence of porosity 

and cell size on the struts shape. It is worth remarking that modifications make 

difficult to carry out simulations for array of cells. 

Different strut shapes of ideal and real foams are sketched in Fig.32, where 

the images within black frames indicate the shape of ideal struts that reproduces 

the corresponding real one. 

The specific surface areas obtained are measured with MATLAB as the sum 

of the areas of the interfacial triangles divided by the foam volume. They are 

resumed in Table 5. 

 

3.6.2. Mathematical model 

Three-dimensional single-phase fluid mass, momentum and energy 

governing equations are employed in the evaluation of heat transfer and 

pressure drop. The flow is assumed to be stationary and incompressible, with 

uniform thermophysical properties of the air in the entire computational 

domain. The flow can be assumed as laminar, if the Reynolds  number based on 

 

 
 

Fig. 32. Different strut shapes of ideal and real foams. 
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Table 5. Specific surface area of the investigated 40 PPI foams. 
 

ε S/V (1/m) 

 Ideal Real 

 Concave Triangular Convex 

0.96 1142 945 779 922 

0.94 1509 1223 1166 954 

0.87 2053 1801 1675 1408 

 

the pore size, Rep, is less only than 200. Dybbs and Edwards [142] showed that 

in the 150 – 300 range of the pore Reynolds number flow in a porous medium is 

laminar unsteady. Hall and Hyatt [143] showed that the transition to a fully 

turbulent flow occurs for Rep about 150 and Della Torre et al. [144] showed that 

at Rep = 200 there are some instabilities in the flow, denoting that transition 

from laminar to turbulent is starting. However, they concluded that pressure 

drop are fairly dependent on flow regimes, and Wu et al. [139] reported that 

differences between laminar and turbulence simulations are negligible. 

Comparisons of results from the present work with numerical and experimental 

data from the open literature confirm the feasibility of the present model. 

Governing equations (3c), (4d) and (5c) are employed in the following. 

Boundary conditions for the real foam model are presented in Fig. 33. Boundary 

conditions for the ideal foam model are the same, and, in order to save 

computational power, simulations of thermally developing flow in the ideal 

foam made reference to a quarter of the structure, accounting for symmetry 

boundary conditions. Inlet and outlet fictitious sections are used to make 

computations easier. A plug flow inlet condition is assumed, for different 

superficial velocities |u|, and a temperature T0 = 293.15 K is set. At the outlet 

section, the ambient pressure p0 = 101 kPa is set, with no viscous stresses. The 

lateral boundaries of the computational domain are assumed as symmetrical, 

with a slip condition, with no shear stresses for the flow field and an adiabatic 

boundary condition for the energy equation. At the solid/fluid interface, the 

fluid is set as no slip and a Neumann boundary condition is employed in the 

energy equation, setting a |q| = 1000 W/m
2
 heat flux entering the fluid from the 

solid phase. 

The aforementioned governing equations coupled with boundary conditions 

are solved with a finite-element scheme based on the Galerkin method by using  
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Fig. 33. Boundary conditions for the real foam model. 

 

the commercial code COMSOL Multiphysics. Streamline and crosswind 

stabilization are used, and quadratic shape functions are employed. A non-linear 

solver is used to solve simultaneously governing equations, with a Lower Upper 

(LU) factorization method using the PARDISO sparse solver. Convergence 

criterion of 10
-4

 for velocity, pressure and temperature is verified, while mass 

and energy conservation are always checked with an error always less than 1%. 

A tetrahedral mesh with a higher resolution near the boundaries is chosen for 

the numerical analysis. The meshes for the real foam and for the ideal foam 

with different struts shape are generated with iso2mesh (MATLAB), while the 

mesh for the ideal foams obtained directly from Surface Evolver is generated 

with the meshing tool of COMSOL Multiphysics. The grid independence has 

always been checked with the Richardson Extrapolation (RE). This statistical 

technique is a sequence acceleration method used to improve the rate of 

convergence of a sequence. The grid independence is verified for both real and 

ideal cases, on the most restrictive case, that with which the maximum pore 

velocity, up = |u|/. The above test is performed on the differences of a variable, 

, that could be either the average phases temperature difference T = <Ts>
s
 - 
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<Tf>
f
, that is proportional to the heat transfer coefficient, or the pressure drop, 

p, between inlet and outlet sections. 

Three meshes are defined, with Ni elements (i = 1, 2, 3), for which three 

variables, i, (i = 1, 2, 3) are obtained from simulations. The refinement grid 

coefficient, R, is defined as R = Ni+1/Ni = cost. The Richardson Extrapolation of 

the variable difference, RE, is an estimation of  when N→∞, and it is 

defined with the order of accuracy, p, as: 
 

1 2

1 1

N N

RE N pR

 
 

 
   


           (51a) 
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2 1

ln

ln

N N

N N
p

R

 

 

   
 
    

             (51b) 

 

The Richardson Extrapolation of the variable difference, that is either T or 

p, for the real foam, is reported in Fig. 34. By considering a 3% tolerance from 

the RE for both T and p, it is possible to conclude that a mesh with 600,000 

elements simulates real foams with a satisfactory accuracy. 

 

 

 
 

Fig. 34. Richardson Extrapolation of T and p, for a real foam. 
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3.6.3. Results 

Velocity, pressure and temperature fields are evaluated by solving the 

mathematical model previously described. Velocity and temperature fields, for 

for  = 0.87 and |u| = 1.5 m/s, are presented in Figs. 35 and 36, respectively. 

Figure 35a shows that velocity profiles are modified by the porous matrix, while 

Fig.35 b points out that the entering heat flux increases temperature along the 

flow direction due to the entering heat flux. 

 

3.6.3.1. Data reduction 

Pressure drop, heat transfer coefficients and volumetric heat transfer 

coefficients are obtained from data reduction. Pressure drop are obtained either 

as p = <pin> - <pout>, when the pressure is taken as a surface average in the 

inlet and outlet sections, or as p – pout, when different cross sections along the 

flow direction are considered. With reference to Eq. (17), volumetric transfer 

coefficient, hv, and heat transfer coefficient, hc, are given by: 
 

v c fs

s f

S S
h h

V VT T
 



q
                         (52) 

 

When thermally developing effects are analyzed, local effects are taken into 

account. Thus, a local <Ts>
s
 - <Tf>

f
 is required. The physical scale for an open- 

cell foam is the cell scale. Therefore, an average temperature difference is 

evaluated for each cell, obtaining a value of heat transfer coefficients for each 

cell. 
 

 
 

Fig. 35. Velocity modulus (m/s), for  = 0.87 and |u| = 1.5 m/s: 

real foam (left); ideal foam (right). 
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Fig. 36. Temperature fields (K), for  = 0.87 and |u| = 1.5 m/s: 

real foam (left); ideal foam (right). 

 

A Nusselt number, Nu, and a volumetric Nusselt number, Nuv, are defined 

as: 
 

2

Nu Nu
  c v

v

f f

h L h LS S
L L

V k V k
                           (53) 

 

where L is a characteristic length, that has to be defined. It should represent the 

typical scale of the problem, giving a physical sense to the dimensionless 

number. Similar considerations can be made on the Reynolds number, Re = |u| 

L/. Various characteristic lengths for the convection problem in porous media 

have been proposed. Examples are the square root of permeability,    [2], that 

is the Brinkman screening distance; the product  ∙C [146]; the strut size, ds 

[131]; the cell size dc [139]; the pore size, dp [132]; the reciprocal of the specific 

surface area, V/S [147]. Among these, the cell size seems to be the best choice 

because it is representative of the physical problem, it doesn’t vary a lot in a 

foam sample, and it is easy to determine. The hydraulic diameter, dh, was also 

proposed as a characteristic length by Schlegel et al. [134]: 

 

0

0

( ) d
4 4 4 4

( ) d

L

ff f

h L

f
f

A L LA V V
d

L S V S VL L L


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


            (54) 

where Af is the cross section available for flow, Lf is the wetted perimeter, and L 

is the length of the foam. From Eq. (54), it is possible to see that dh = f (, S/V). 

It is important to observe that the morphology of a foam can be uniquely 
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characterized if two morphological parameters are known, making dh a very 

interesting characteristic length parameter. Besides, the cell size can be scaled 

with the porosity, thus obtaining a characteristic length, dc/, that contains two 

morphological parameters for the characterization of a foam. In conclusion, it is 

possible to argue that dh and dc/ are the best characteristic lengths. 

 

3.6.3.2. Results for the real model 

Volumetric and superficial convection heat transfer as a function of the 

superficial velocity |u|, for different foam porosities, are reported in Fig. 37. The 

figure shows that both coefficients increase with superficial velocity. The 

convection heat transfer slightly decreases with increasing porosity because of 

the decrease of pore velocity up = |u|/, while the decrease with porosity in the 

volumetric heat transfer coefficient is larger because of the dependence of the 

specific surface area on the porosity, previously reported in Table 3. 

Pressure drop per unit length as a function of the superficial velocity, for 

different foam porosities, is reported in Fig. 38. The figure exhibits an almost 

quadratic dependence of the pressure drop on the velocity and a slight increase 

in the pressure drop at decreasing porosity. Experiments carried out on real 

foams showed a fairly agreement between experimental and numerical results. 

Indeed, modeling pressure drop allows to account for wall effects, that 

highly affect the numerical solution [115]. However, the comparison with 

experimental  data, reported  in the following, will show that the  real model can 

 

 
 

Fig. 37. Heat transfer coefficient and volumetric heat transfer coefficient vs. 

superficial velocity, for different porosities. 
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Fig. 38. Pressure drop per unit length vs. superficial velocity, 

for different porosities. 

 

still provide acceptable results. 

The convection heat transfer coefficient and the ratio of the pressure drop 

per unit length to the superficial velocity, for PPI = 40 and  = 0.94, predicted 

by the real model are reported in Fig. 39. For the sake of comparison, data taken 

from the literature are also reported in the figure. Predicted convection heat 

transfer and pressure drop can be compared with Eq. (44) [131] and with 

numerical results, for  = 0.936, from Diani et al. [118]; predicted pressure 

drops can also be compared with experimental data from Bhattacarya et al. 

[106],  for   = 0.937,  and  from  Dukhan  [114],  for  = 0.923.  A   very   good  

 

 
 

Fig. 39. Predictions of the real model vs. superficial velocity, for  = 0.94 and 

PPI = 40: a) heat transfer coefficient; b) ratio of the pressure drop per unit 

length to the superficial velocity. 
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agreement is exhibited for both convection heat transfer coefficient and pressure 

drop. 

 

3.6.3.3. Results for the ideal model: thermally developing effects 

Results of simulations carried out on a Kelvin’s foam model built up only by 

using Surface Evolver are presented in the following. In order to analyze 

thermally developing effects, reference as been made to a foam made up by 

twenty elementary cells aligned along the flow direction. The convection heat 

transfer coefficient is scaled using dc/ as the characteristic length. Therefore, 

the cell Nusselt number is defined as Nuc = hc dc/kf  and the cell Reynolds 

number is defined as Rec = ρ |u| dc/μ. 

Simulations have been carried out for  = 0.87, 0.91 and 0.94, and for 67 < 

Rec < 434. 

Nusselt number as a function of the ratio of the axial coordinate to the cell 

size, for various Reynolds numbers and  = 0.87, 0.94, is reported in Fig. 40. 

Nusselt number as a function of the ratio of the axial coordinate to the cell 

size, for various Reynolds numbers and porosities, is reported in Fig. 41. 

Both figures show that Nusselt number increases along the flow direction 

reaching a maximum, then it decreases, reaching an asymptotic value after a 

certain cells number. Thus, three regions can be identified. The first is called the 

impingement region, the second is the thermally developing flow, and the third 

is the thermally developed region. In the impinging region, Nusselt number 

increases along the flow direction due to impinging effects in the inlet section, 

which   affect  downstream  cells.   For  lower  Reynolds  numbers,   this  region 

 

 
 

Fig. 40. Nusselt number vs. the ratio of the axial coordinate to the cell size, for 

various Reynolds numbers: a)  = 0.87; b)  = 0.94. 
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Fig. 41. Nusselt number vs. the ratio of the axial coordinate to the cell size, 

for various cell Reynolds numbers and porosities. 
 

becomes practically negligible, and, on the other hand, this region is wider 

when Reynolds number increases, because of inertial effects in the fluid. 

Besides, since porosity is included in the Reynolds number, a decrease in 

porosity increases the Reynolds  number and enlarges the impinging region. We 

state that the impinging flow effects must be taken into account when Rec· ≥ 

284. The thermally developing region begins when Nusselt number reaches its 

maximum value. Afterwards, the Nusselt number reaches an asymptotic value, 

and a thermally developed region can be identified. 

Figure 41 shows that Nusselt number increases with porosity at lower 

Reynolds numbers, while the opposite occurs at higher Reynolds numbers. This 

point will be clarified later with a pore-scale analysis. 

The thermally developed Nusselt number, NuT, is defined as the Nusselt 

number of the i cell for which differences with the Nusselt number of the i-1 

cell becomes lower than 1%. The thermal entrance length, zT, is the axial 

coordinate at which the flow becomes thermally developed. Its ratio to the cell 

size, LT/dc, as a function of the porosity, for various Reynolds numbers, is 

reported in Fig. 42.·One can notice that the larger the porosity the shorter the 

entrance length, since a larger quantity of solid material requires a larger length 

for the flow development. The entrance length increases at increasing Rec·, as 

it occurs in a duct. 

Volumetric  Nusselt number as a function of the ratio of the axial coordinate 

to the cell size, for various Reynolds numbers and porosities, is reported in Fig. 

43. By performing a multiple least-square, the following correlation is obtained: 
 

0.4827 4.271
v,T cNu 2.897Re                  (55) 
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Fig. 42. Dimensionless thermal entrance length vs. the porosity, 

for various Reynolds numbers. 

 

with R
2
 = 0.957, that is valid for 0.87 <  < 0.94 and 67 < Rec < 434. 

 

 

 
 

Fig. 43. Volumetric Nusselt number vs. the ratio of the axial coordinate 

to the cell size, for different Reynolds numbers and porosities. 
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Predictions by the ideal model are now compared with both experimental 

results from Younis and Viskanta [132] and with Eq. (46) [139, 140]. In order 

to compare Eq. (55) with experimental data, the cell size is to be correlated with 

the pore size. Using correlations among strut length, Ls, strut thickness, ds, 

porosity, , and pore size, dp, from [21, 83], and defining the cell size, with 

reference to the tetrakaidecahedron, by means of the correlation V = 11.31   
  = 

4/3 π (dc/2)
3
, we obtain: 

 
 

1 0.971 1

1.5312
p cd d

 
                         (56) 

 

Comparisons with data from Wu et al. [139, 140] are made by means of Eqs. 

(46) and (55). The volumetric heat transfer coefficient as a function of the 

velocity, for different values of PPI, cells size and porosity, is reported in 

Fig.44. The comparison with experimental data show differences less than about 

30 %; predictions are more accurate for low than for high velocities. The 

comparison with numerical data from Wu et al. [139, 140] shows a very good 

agreement. It is worth reminding that Wu et al. [139, 140] assumed a uniform 

temperature condition in a CAD-generated foam with circular struts. 

A pore-scale analysis of the thermally developed region has also been 

carried out. For the sake of comparison, 10 values of Nusselt number were 

obtained for a single cell, thus the temperature difference in Eq. (52) was 

evaluated  considering 1/10 of a single cell. A normalized Nusselt number, Nu*, 

 

 
 

Fig. 44. Volumetric heat transfer coefficient vs. the velocity, for different values 

of PPI, cells size and porosity: a) experimental literature data; b) numerical 

literature data. 
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is defined as the ratio of the local Nusselt number to the thermally developed 

Nusselt number, NuT. 

The normalized Nusselt number in two adjacent cells as a function of the 

dimensionless thermal entrance length, for  = 0.94 and Rec = 201, is reported in 

Fig. 45. Streamlines are in gray-scale, with lighter gray meaning faster 

pathlines. One can notice that the flow separation at the rear of foam struts, and 

a periodic behavior of the normalized Nusselt number through a developed cell; 

Nu*  minimum value is attained in regions of the aforementioned separation. 

Due to flow mixing in the back of a strut at high velocities, Nusselt number 

increases. Downstream of a cell, from zT/dc = 0.6 to 1.0, the Nusselt number 

increases faster than upstream, due to the different orientation of the struts. 

Figure 46, for a triangular foam strut with Rec = 72, shows that the 

separation region can be quite large. 

 

 

Fig. 45. Normalized Nusselt number in two adjacent cells vs. the 

dimensionless thermal entrance length, for  = 0.94 and Rec = 201. 



Fluid flow and heat transfer in open-cell foams 
 

 
72 

 
 

Fig.46. The separation region downstream of a triangular foam strut, 

with Rec = 72. 

 

In connection with Fig. 41, the above observed separation helps understand 

the reason why Nusselt number increases with porosity at lower Reynolds 

numbers, whereas the opposite occurs at higher Reynolds numbers. Two 

competitive effects are observed at pore scales: first, the velocity increase with 

decreasing porosity enhances the convection heat transfer; second, the 

separation increase with decreasing porosity reduces the convection heat 

transfer. At higher Reynolds numbers the first effect likely prevails on the 

second and increases Nusselt number at increasing porosity, whereas, at lower 

Reynolds numbers, the second effect prevails on the second and reduces 

convection heat transfer. 

The heat transfer coefficient as a function of the dimensionless thermal 

entrance length in two adjacent cells, for thermally developed flow, various 

Reynolds numbers and  = 0.87 and 0.94, is reported in Fig.47. 

The heat transfer coefficient as a function of the dimensionless thermal 

entrance length in two adjacent cells, for thermally developed flow,  = 0.87, 

0.91, 0.94 and various Reynolds numbers, is reported in Fig.48. 

Figures 47a and 47b show a downstream shift of the axial coordinate at 

which the heat transfer coefficient attains the maximum value. The shift is 

inversely proportional to the Reynolds number. It is also worth noticing that, at 

both porosities, the larger the Reynolds number the larger the variation of the 

heat transfer coefficient with the axial coordinate within a cell. 
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Fig. 47. Heat transfer coefficient vs. the axial coordinate in two adjacent cells, 

for thermally developed flow and various Reynolds numbers: 

a)  = 0.87; b)  =0.94. 

 

Figure 48a shows that at the lower Reynolds number the heat transfer 

coefficient increases at increasing porosity, whereas Fig.48b shows that does 

not occur at the higher  Reynolds number. The figure exhibits also higher values 

 

 
 

Fig. 48. Heat transfer coefficient vs. the axial coordinate in two adjacent cells, 

for thermally developed flow and  = 0.87, 0.91, 0.94: 

a) Rec   = 63; b) Rec   = 378. 
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of the heat transfer coefficient for lower porosities than for higher porosities. As 

it was already discussed, the lowest value of the heat transfer coefficient in a 

cell occurs on the rear surface of the struts, because of the flow recirculation. 

Fig.48a exhibits remarkable differences between the lower values of the heat 

transfer coefficient at different porosities, whereas at the larger Reynolds 

number (Fig. 48b), the above mentioned differences are rather small. 

 

3.6.3.4. Results for the ideal model: struts shape effects 

The numerical model that allows to characterize the thermally developing 

flow in open-cell foams herein presented can be improved, taking into account 

some aspects of the foam morphology. By observing Fig.30, we see that the 

strut shape of a foam manufactured with the casting method depends on 

porosity. Since struts of foams generated by Surface Evolver have a concave-

triangular shape, because of the minimizing energy process, some modifications 

with MATLAB are needed on the geometries in order to simulate the real strut 

shape. The process by which the above mentioned modifications are 

accomplished is described in this section. 

Due to computational reasons, only one cell has been investigated. However 

predictions can be considered accurate enough, since Figs. 42 and 43 exhibited 

small differences among Nusselt numbers in the developing and fully developed 

regions. In the following the hydraulic diameter defined in (Eq. 54) is used as 

the characteristic length in Nusselt number, Nuh, and Reynolds number, Reh. 

Nusselt number as a function of Reynolds number, for different strut shapes and 

 = 0.87, 0.94, 0.96 is reported in Fig.49. The figure shows that Nusselt 

numbers predicted by the ideal models are closer to those predicted by the real 

models when the shape of the ideal struts shape better approximates the shape 

of the real struts. In particular, among the ideal models the convex-triangular 

struts shape, with the highest foam shape factor ( = 0.67), maximizes the 

convection heat transfer. This occurs because the smoother strut geometry 

reduces local flow separation effects, that have a negative impact on convection. 

Pressure drop as a function of the axial coordinate, for different strut shapes, 

 = 0.87, 0.94, 0.96 and |u| = 0.5 m/s, 1.0 m/s, 1.5 m/s, is reported in Figs. 50, 

51, 52, respectively. The pressure drop has been analyzed neglecting inlet 

effects, that are higher in an ideal foam than in a real foam, because of the the 

different strut arrangement. Indeed, the ideal foam is a geometrically-ordered 

foam, while the real foam is taken with the RVE approach, for which the strut 

orientation effects are not taken into account. 
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Fig. 49. Nusselt number vs. Reynolds number for different strut shapes: 

a)  = 0.87; b)  =0.94; c) = 0.96. 

 

 

 
Fig. 50. Pressure drop vs. the axial coordinate, for different strut shapes and 

|u| = 0.5 m/s: a)  = 0.87; b)  = 0.94; c)  = 0.96. 
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Fig. 51. Pressure drop vs. the axial coordinate, for different strut shapes and 

|u| = 1.0 m/s: a)  = 0.87; b)  = 0.94; c)  = 0.96. 

 

  
 

Fig. 52. Pressure drop vs. the axial coordinate, for different strut shapes and 

|u| = 1.5 m/s: a)  = 0.87; b)  = 0.94; c)  = 0.96. 
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Figures 50 – 52 confirm that, immediately downstream of the inlet section, 

the minimum difference between pressure drop predicted by ideal and real 

models occurs when the foam shape factor is the same. As a matter of fact, large 

differences between real and ideal models predictions are exhibited in the inlet 

section of the foam, since the arrangement of struts in ideal models causes a 

higher pressure drop. If reference is made only to the ideal models, figures show 

that the maximum pressure drop occurs for  = 0.49, because the concave-

triangular strut shape enhances drag forces. 

In conclusion, we can state that: 

- Real foam models predict highly accurate convection heat transfer 

coefficients, whereas the accuracy of predicted pressure drop is affected 

by factors, such as the RVE choice that is limited by computational 

resources; 

- There are both impinging and thermally developing effects in open-cell 

foams less than 10 cells long; the investigated cases downstream of the 

tenth cell the flow was thermally developed; 

- Since the struts shape affects both heat transfer and pressure drop, the 

accuracy of predictions by the ideal model improves when the strut shape 

is the same as that of the real foam. The convex-triangular struts shape 

with the maximum foam shape factor maximizes the Nusselt number and 

minimizes pressure drop. 

 

3.7. Engineering applications of open-cell foams 

Macroscopic analyses of engineering applications where open-cell foams 

enhance heat transfer are presented in the following. 

 

3.7.1. Concentrated Solar Power (CSP) 

3.7.1.1. Description of the technology: the volumetric solar receiver 

The use of mirrors to concentrate solar rays in a point in order to warm 

surfaces is a very ancient issue. In 212 a.C., during the Siege of Siracusa (Italy), 

Archimedes used it to deflect sun rays onto the ships of the Roman fleet, 

causing fires (Fig. 53). 

Nowadays, this principle can be used to obtain thermal or electrical energy. 

There are two types of receivers, that is the point where mirrors focus the solar 

radiation: the tubular receiver and the volumetric receiver (Fig. 54). In the first 

receiver sunlight is focused on a tube, where a fluid flows through; in the 

second receiver  sunlight irradiates a porous  material, that absorbs radiation and  
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Fig. 53. Giulio Parigi, Greek mathematician Archimedes' mirror burning 

Roman military ships, 1599-1600. Fresco. Stanzino delle matematiche, 

Galleria degli Uffizi, Firenze, Italy. 
 

 
 

Fig. 54. Tubular and volumetric solar receivers. 
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transfers energy to a fluid that flows through. In the second receiver the 

volumetric effect reduces radiative losses, increasing the thermal efficiency. 

Two Concentrated Solar Power CSP configurations can be distinguished for 

volumetric solar receiver applications [148]: in an open-loop receiver a stream 

of air, after being heated by the receiver, transfers heat to a steam generator, that 

moves a steam turbine; in a closed-loop receiver the air is directly expanded in a 

gas turbine of a Combined Cycle system (CC). 

A first example of volumetric absorber was proposed by Fricker [149] in the 

1983. Many prototypes and projects have then been presented. In the 

SOLGATE project [150], three modules in series, with different working 

temperatures, were the receiver. The first, at the lowest temperature, was a 

metal tube; the second, at intermediate temperature, was a metal wire mesh; the 

third, at the highest temperature, was a ceramic foam. The only operative 

volumetric solar receiver in the world is the 60 meters-high solar tower CSP 

located in Julich, in North Rhine-Westphalia (Germany), that uses a 1.5 MW 

steam turbine. The absorber module is made from SiSiC, consisting in an 

extruded parallel channel structure inserted into a cup [151]. 

 

3.7.1.2. Mathematical model 

A parametric analysis of the thermal performance of a volumetric solar air 

receiver based on a ceramic foam will be carried out by using a macroscopic 

porous media approach. 

The volumetric solar receiver is a high porosity ceramic foam cylinder, with 

a length of 50 mm and a diameter of 100 mm. The concentrated solar heat flux 

irradiating the inlet section is equal to 600 kW/m
2
. Air at ambient temperature 

enters the porous material and, flowing through it, is warmed up. Because of the 

irradiation at the inlet section, a LTNE model is employed. 

The computational domain, with boundary conditions, is sketched in Fig. 55. 

Volume-averaged governing equations are Eq. (12b) for the mass, Eq. (14a) for 

the momentum, and Eqs. (18a) and (18b) for the fluid and solid energy. The 

radiative term ∇∙qr is modeled according to Beer-Lambert-Bouguer law (Eq. 

(22)), thus Eq. (23) is used. The coefficients needed to close such equations are 

the permeability, K, the inertial factor, f, the volumetric heat transfer coefficient, 

hcv, the effective thermal conductivity for the solid phase, keff,s, the extinction 

coefficient, . The first two mentioned closed coefficients are modeled by using 

Eqs. (42) and (43), the volumetric heat transfer coefficient is determined by 

using Eq. (55), the effective thermal  conductivity for the solid phase is assumed  
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Fig. 55. The computational domain and boundary conditions of the 

volumetric solar receiver. 

 

to be keff, s = (1 - ks/3 [54], and the extinction coefficient is evaluated from Eq. 

(31). The dependence of thermophysical properties on temperature is taken into 

account by using COMSOL Multiphysics material libraries. 

Boundary conditions for the momentum equation are a laminar inflow 

condition in the inlet section, thus the flow is assumed to be fully developed at 

the entrance section by using a fictitious air inlet domain, a no-slip condition at 

the wall, a symmetry slip condition on the symmetry axis, and an atmospheric 

pressure condition at the outlet. As to the fluid phase energy equation, air at 

ambient  temperature, T0 = 300 K is assumed to enter the receiver; side walls 

and symmetry axis are adiabatic; an outflow condition is used in the outlet 

section. In the solid phase energy equation, radiation losses at the inlet section 

are taken into account by assuming a heat flux |q| =       
   -   

  , where  is 

the apparent  emissivity of the ceramic foam at ambient temperature ( = 0.95), 

 is the Stefan-Boltzmann constant, Ts is the solid temperature at the inlet 

section. Zero-gradient temperature boundary conditions are employed at the 

symmetry axis, side wall and outlet section. The aforementioned governing 

equations, with closing coefficients and boundary conditions, are solved 

numerically with COMSOL Multiphysics. A 2D mesh with both triangles and 

quadrilaters of about 15,000 elements has been used, with a convergence 

criterion of 10
-4

. Both grid independence and relative tolerance have been 

checked. It is interesting to notice that computational times are far much smaller 

than for discrete simulations performed before. 
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3.7.1.3. Results 

Simulations are performed for different values of inlet velocity, |u|, cell size, 

dc, and porosity, . The fluid and solid volume average temperatures as a 

function of the axial coordinate, predicted in the present study, for different 

values of the inlet velocity, the cell size, the porosity, together with numerical 

predictions by Wu et al. [140], are presented in Fig.56. 

Wu et al. [140] modeled the radiation using the RTE with a P-1 model, that 

requires one more equation for the model. The model of the present study is 

simpler. It overestimates temperatures, since emitted and outscattered radiations 

are not accounted for. The figure shows that differences between temperatures 

predicted by the present model and by the Wu et al.’s model are less than 5%. 

Radiation intensity vs. axial coordinate in a cell predicted in this study, for 

various cell sizes and porosities, is reported in Fig. 57. Figure 57a points out 

that the larger the cell size the higher the radiation intensity, because of the 

easier propagation of the radiation. In Fig.57b we can remark that the radiation 

intensity increases at increasing porosity, since again the propagation of 

radiation is made easier by the decreasing fraction of the solid volume. 

The fluid and solid volume average temperatures as a function of the axial 

coordinate, predicted in the present study, for |u| = 1.30 m/s and different values 

the cell size and the porosity, are reported in Fig.58. The figure shows that, 

whichever the cell size and the porosity, a same common value of the fluid and 

solid temperatures, called the equilibrium temperature, is attained. In a well 

performing volumetric receiver the so-called volumetric effect occurs, this 

meaning that the temperature of the irradiated side of the absorber is lower than 

the temperature of the fluid leaving the absorber. From a physical point of view,  

 

 
 

Fig. 56. Fluid and solid volume average temperatures vs. axial coordinate: 

a) |u| = 1.51 m/s,  = 0.85, dc = 1.0 mm; b) |u| = 1.73 m/s,  = 0.80, dc = 1.5 mm. 
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Fig. 57. Radiation intensity vs. axial coordinate; a)  = 0.80 and various cell 

sizes; b) dc = 1.5 mm and various porosities. 

 

the volumetric effect is characterized by a competition between radiation and 

interfacial convection. The radiation being the same, an increase in convection 

heat transfer increases the volumetric effect because heat is transferred more 

efficiently by the solid to the fluid. 

The best volumetric receivers are that for dc = 1 mm and that for  = 0.90 

among those reported in Figs.58a and 58b, respectively. 

The fluid and solid volume average temperatures and pressure drop as a 

function of the axial coordinate in a cell, for  = 0.80, dc = 1.50 mm and various 

velocities, are reported in Fig.59. Figure 59a shows that the lower the velocity 

and,  consequently, the  lower  the  mass flow  rate,  the  higher  the  equilibrium 

 

 
 

Fig. 58. Fluid and solid volume average temperatures vs. the axial coordinate, 

for |u| = 1.30 m/s: a)  = 0.80 and various cell sizes; b) dc = 1.50 mm and 

various porosities. 
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Fig. 59. Fluid and solid volume average temperatures and pressure drop vs. the 

axial coordinate, for  = 0.80, dc = 1.50 mm and various velocities. 
 

temperature. We can also notice that radiation heat losses are higher at the inlet 

section. 

Finally, the fluid and solid volume average temperatures and pressure drop 

as a function of the axial coordinate in a cell, for  = 0.90, dc = 1.50 mm, |u| = 

1.30 m/s, air and helium, are reported in Fig.60. The comparison between air 

and helium shows the better performance of helium, that exhibits equal 

radiation heat losses and higher equilibrium temperatures. This was to be 

expected, because of the higher thermal conductivity of helium than air. 

Differences between pressure drop in air and helium are almost negligible. 

 

3.7.2. Heat sinks 

3.7.2.1. Metal-foam based heat sinks for electronic cooling 

Nowadays, the  progress of microchips  technology is growing  up  very fast. 

 

 
 

Fig. 60. Comparisons between air and helium volumetric receiver: a) 

temperature profiles and b) pressure drop. 
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The number of transistors in a dense integrated circuit doubles approximately 

every two years, according to the Moore’s law (Fig. 61). A transistor is a 

semiconductor device with at least three terminals connected to an external 

circuit. It can be used to amplify or to switch an electronic signal. By applying a 

current or a tension to two of the terminals, it is possible to vary the current 

flow or other electrical quantities with the help of the third terminal. Thus, heat 

rate proportional to the square of the current is generated by means of Joule 

effect. In the coming years, due to the miniaturization of components, power 

density of about than 100 W/cm
2
 are expected to be reached, as shown in Fig. 

62. In fan-cooled heat sinks, where heat is removed from a surface by using a 

finned heat sink combined with a fan, fins are used to extend the heat transfer 

surface. However, with growing power density, new technologies are needed. 

Metal foams are promising because they have a high specific surface area 

and a tortuous morphology that promote flow mixing, thus enhancing 

convection heat transfer. A finned metal foam geometry made up by inserts of 

aluminum foam between fins was proposed by Bhattacarya and Mahajan [152]. 

They   concluded  that  this   geometry  enhances   six  times  the   heat   transfer 

 
 

 
 

Fig. 61. Moore’s law. 



Fluid flow and heat transfer in open-cell foams 
 

 
85 

 

 
 

Fig. 62. Intel microprocessors power density vs. minimum feature size and year 

of introduction. 

 

coefficient in conventional longitudinal finned heat sinks. However, if the 

comparison is made at the same value of pressure drop, the enhance in heat 

transfer reduces to 1.5 – 2 times. Hsieh et al. [153] proposed a heat sink made 

up by a aluminium foam under an impinging flow with a restricted flow outlet, 

that further enhances heat transfer. An experimental and numerical study of a 

finned aluminum-foam based heat sink, with a 0.963 porosity and 8 PPI, 

employing a circular impinging air jet cooling flow was carried out by Feng et 

al. [154]. They, analyzing metal foam heat sinks with and without fins, 

concluded that the finned configuration enhances of 1.5-2.8 times the heat 

transfer once the flow rate or the pumping power is fixed. 

 

3.7.2.2 Mathematical model 

An aluminium Finned Metal Foam (FMF) heat sink, together with the 

boundary conditions, is reported in Fig. 63. Boundary conditions hold also for 

the Metal Foam (MF) based heat sink, that has the same configuration without 

fins. The heated plate is a 68 x 68 mm
2
 square. The ratio of the impinging flow 

section diameter, D, to the heated plate side, W, varied from 0.25 to 1. The 

height of the computational  domain, H, varied between 10 mm and 40 mm. The 
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Fig. 63. Sketch of a metal foam based heat sink (FMF) and boundary conditions 

for the mathematical model. 

 

fin thickness, t, is either 2 mm or 4mm. A 2 mm and 4 mm fins pitch was 

assumed. The number of fins used in the computations was 1, 2, 4, 6, 8 and 10. 

The porosity and the PPI of the aluminium foam varied from 0.88 to 0.97 and 

from 5 to 40, respectively. The thermal analysis was carried out applying a 50 

°C temperature difference between the two extremities, with the heated plate at 

70 °C, an acceptable temperature for a microchip. Due to the physics of the 

problem, an LTNE model is employed. Governing mass, momentum and energy 

equations for the porous domain are Eqs. (12c), (14b), (18a) and (18b), 

respectively, with  ∇∙qr.= 0. The aluminium fins were modeled by using Eq. 

(5d). The volume-averaged momentum equation closing coefficients were Eqs. 

(42) and (43), taken from correlations from Wu et al. [104], while Eq. (55) was 

used for the volumetric heat transfer coefficient. The solid effective thermal 

conductivity was set as keff, s = (1 - ks/3 [54]. Thermophysical properties were 

assumed to be independent of the temperature. Boundary conditions for the 

fluid flow are a plug flow at the inlet section, a no slip boundary condition on 

the upper part of the fins facing the plug flow, on the space between the upper 

square and the impinging section, on the foam-finned boundaries, and on the 

heated plate, due to the impinging flow. A zero relative pressure boundary 

condition with no shear stresses is imposed at the sides of the computational 

domain. In the energy equations, temperature is set as equal to 20 °C in the inlet 

section, except for the part of the fins that are in contact with the impinging 

flow, and to 70 °C on the heated plate. Outflow conditions are used on the 
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confining wall and in the outlet section. Robin boundary conditions are 

employed both on internal interfaces between fins and foam and on the upper 

part of fins. In both cases, the correlations for the heat transfer coefficients used 

by Feng et al. [154] are employed. Governing equations with boundary 

conditions are solved with COMSOL Multiphysics by using a 48,000 

tethraedral mesh for the finned metal foam heat sink, while a 35,000 mesh was 

used for the foam heat sink. The above values were checked by verifying the 

number of elements that made the discretization error negligible. Like for the 

volumetric solar receiver model, computational times were very short. 

 

3.7.2.3 Results 

Dissipated heat rate as a function of the velocity, for the FMF and MF heat 

sinks, together with data by Feng et al. [154], is reported in Fig.64. The figure 

exhibits differences between predictions by the present model and Feng et al.’s 

model less than 8% for the FM model and less than 18% for the FMF model. 

Let the convection heat transfer, hc, be defined as: 
 

hc = |q|/ΔT              (57) 
 

where the heat flux |q| is the ratio of the dissipated heat rate to the plate area. 

Convection heat transfer coefficient and pressure drop are evaluated for  = 

0.92, PPI = 10, |u| = 0.5 m/s, t = 2 mm, H = 20 mm, and D/W = 1. 

The convection heat transfer coefficient and pressure drop as a function of 

the number of fins, for t = 2 mm and 4 mm, are presented in Fig. 65. The figure 
 

 
Fig. 64. Dissipated heat rate vs. the velocity, 

for the FMF and MF heat sinks. 
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Fig.65. Convection heat transfer coefficient and pressure drop vs. number of 

fins, for t = 2 mm and 4 mm. 

 

points out that, both for 2 and 4 fins, the heat transfer coefficient increases, 

attains a maximum and then decreases. This because there is a competition 

between two factors: the enhancement of number of fins, that promotes the 

dissipation, and the reduction of the foam inserts volume. In the first part of the 

curves, the enhancement of fins number improves heat sink performance, but 

when fins number increase, the reduction of foam volume causes a reduction in 

the dissipated heat. For the pressure drop, more fins means less foam volume, 

thus less pressure drop due to the reduction of foam inserts volume. 

The convection heat transfer coefficient and pressure drop as a function of 

the sink height, for FMF and MF heat sinks with four fins, are reported in 

Fig.66. The heat transfer coefficient reduces with height because the impinging 

jet reaches the hot plate more difficultly, and also pressure drop reduces because 

a large fraction of the fluid exits the heat sink from the side walls of the foam 

immediately. Comparing the MF heat sink with the FMF heat sink, the latter 

exhibits a higher heat transfer coefficient but also a higher pressure drop. 

 

 
 

Fig.66. Convection heat transfer coefficient and pressure drop vs. height of the 

heat sink, for FMF and MF sinks with four fins. 
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Fig.67. Convection heat transfer coefficient and pressure drop vs. D/W ratio, for 

FMF and MF sinks with four fins. 

 

The convection heat transfer coefficient and pressure drop as a function of 

the ratio of the impinging jet diameter to the side length of the heated plate, for 

FMF and MF sinks with four fins, are reported in Fig.67. We notice that the 

larger the section, the higher the heat transfer coefficient, since increasing the 

plate size decreases the velocity of the fluid but allows the fluid to reach the 

plate in an easier way. The MF configuration performs better than the FMF one 

at low values of D/W because it is finned and has a smaller free area; thus the 

contribution of cold air is drastically reduced. Pressure drop in the MF 

configuration is unaffected by the size of the impinging section since the mass 

flow rate is unchanged, while pressure drop in FMF is affected by the size of 

impinging section because of the fins, that induce a concentrated pressure drop. 

The convection heat transfer coefficient and pressure drop as a function of 

the porosity, for FMF and MF sinks with four fins, are reported in Fig.68. The 

figure shows that  increasing the porosity  reduces the  volumetric  heat  transfer  

 

 
 

Fig. 68. Convection heat transfer coefficient and pressure drop vs. porosity, for 

FMF and MF sinks with four fins. 
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coefficient, because it is inversely proportional to the porosity, as well it reduces 

also the pressure drop, since the foam contains a decreasing fraction of solid. 

The convection heat transfer coefficient and pressure drop as a function of 

PPI, for FMF and MF sinks with four fins, are reported in Fig.69. The figure 

exhibits a slight increase in heat transfer coefficient and a marked increase in 

pressure drop at increasing PPI. Heat transfer in MF configuration is almost 

independent of PPI, since at high values of the volumetric heat transfer 

coefficient a LTE condition is attained and enhancing PPI is useless. 

 

 
 

Fig. 69. Convection heat transfer coefficient and pressure drop vs. PPI, for FMF 

and MF sinks with four fins.
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4. BIOLOGICAL SYSTEMS: A POROUS-MEDIA BASED APPROACH 

As it was previously mentioned, porous media theories can be used to study 

transport phenomena in biological systems. The accumulation of Low-Density 

Lipoprotein (LDL) through the arterial wall is discussed in this section. The 

anatomy of an artery, together with the atherosclerotic plaque growth process, is 

presented. A multilayer model for the arterial wall is employed, in order to 

consider the wall heterogeneity. Analytical and numerical approaches are 

presented for a straight artery, a stenosed artery and the aorta-iliac bifurcation, 

analyzing LDL accumulation due to various effects, such as the non-Newtonian 

behavior of the fluid, the hypertension and the hyperthermia. 

 

4.1. The cardiovascular system 

4.1.1. General description 

The cardiovascular system is the set of organs and vessels that ensures the 

blood circulation in a body [155]. Some of the most important contributors to its 

history are resumed in Fig. 70. One of the first witness on the study of this 

system is the Ebers Papyrus. It is dated in about 1550 B.C., about the 

Seventeenth Dynasty of ancient Egypt. It is a, 20 m x 20 cm, 110 page papyrus 

written in hieratic, with medical prescriptions. The heart is described as the 

main part of blood circulation, linked with the rest of the organism by vessels. 

In the classic antiquity, important contributions were given by Hippocrates, 

Aristotle, Erasistratus and Galen, while in the XIII century Ibn al-Nafis 

described the pulmonary  circulation of the blood. William  Harvey, in the XVII 

 

 
 

Fig. 70. Some contributors to the cardiovascular system knowledge. 
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century, was the first who described the systemic circulation and the properties 

of blood pumped through the body by the heart. 

The human cardiovascular system is sketched in Fig. 71. In all the 

vertebrates, the heart (Fig. 71c) is the central part of the system. It acts as a 

pump that delivers blood to the body by arteries, veins and capillaries, able to 

generate a pressure that guarantees the blood circulation. The heart is mainly 

made up by striated muscle tissues; it is surrounded by a sack, named 

pericardium. Two cavities can be distinguished: on the left there is the arterious 

blood rich of oxygen, while on the right there is the venous blood. As to the 

higher and lower regions, in the upper we detect two thin walled compartments, 

named atria; in the lower we see two thick walled compartments, named 

ventricles. Each atrium is linked to the corresponding ventricle by the 

atrioventricular orifice. The left and right sides are separated by the interatrial 

septum, in the upper part, and by the interventricular septum, in the lower one. 

The blood poor in oxygen comes through the right atrium from the superior and 

inferior venae cavae, passing into the right ventricle by the tricuspid valve. 

Then, through the pulmonary artery, it enters the lungs, where it exchanges 

oxygen with carbon dioxide. The part of the cardiovascular system that has been 

described until now is called the small circulation. The oxygenated blood, 

through the left atrium, enters the left ventricle by the mitral valve, and then 

goes to the aorta, by which it is sent to the whole cardiovascular system. 

Together with the superior and inferior venae cavae, this part of the 

cardiovascular system is named the big circulation. After the aorta, the 

oxygenated blood passes through the arteries, and, after going through the 

capillaries, it goes back to the heart by the superior and inferior vena cavae.  

 

 
 

Fig. 71. Cardiovascular system [156]: a) major arteries, b) major veins; c) heart. 
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The arteries deliver oxygen and metabolites to cells and tissues, receiving 

from them carbon dioxide and catabolites. This causes the arterious blood to 

have a red color lighter than that of the venous blood. 

Blood is a non-Newtonian fluid tissue that passes through the vessels. Its 

volume is made up by a 45% of cells embedded in a 55% of plasma. Cells are 

red (known as erythrocytes), white (known as leukocytes), platelets; red cells 

occupy the highest percentage in total volume. They are about 5 millions per 

mm
3
 of blood. The role of red blood cells is to deliver oxygen from lungs to 

tissues, and their percentage in the blood volume is named hematocrit. In lungs, 

red blood cells exchange carbon dioxide with oxygen thanks to a protein named 

hemoglobin. White blood cells protect the body against infectious diseases and 

foreign invaders, while the platelets stop blood losses after an injury. The 

plasma is an aqueous solution with a 7.35 – 7.45 alcaline pH. It is composed of 

about 90% in volume of water (solvent), an 8% of proteins, and the rest are 

other substances, such as lipids. Plasma maintains the hematic volume, 

stabilizes the blood pH and the osmotic pressure with proteins, to deliver some 

substances, such as lipids. The nutrient substances are delivered from the 

vessels to the tissues, through the thin walls of the capillaries, that are vessels 

situated between an artery and a vein. A sketch of the capillary exchange is 

presented in Fig. 72. Along the capillary, mass exchange occurs through the 

semi-permeable walls, carrying some solutes, such as O2 and CO2, via an 

interstitial fluid that is very similar to the plasma. Blood hydrostatic pressure 

and osmotic pressure are the main driving forces, and in the middle of the 

capillary they are equal, thus there is no solvent movement, Starling forces are 

zero. However, solutes are still passing due to the concentration  gradient. Since  

 

 
 

Fig. 72. Sketch of the capillary exchange [157]. 
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not all the fluid leaving the artery goes into the venous end, the lymphatic 

system captures the remaining part of the fluid. In other words, it drains tissues 

from liquids and other exceeding substances, carrying them to the lymph. The 

lymph is a transparent fluid, with a composition similar to that of plasma, with 

some differences: for example, it has white blood cells and doesn’t have plasma 

proteins. 

 

4.1.2. Anatomy of an artery 

With the exception of the pulmonary and the umbilical arteries, the 

oxygenated blood travels through the cardiovascular system by the arteries. 

They can be classified with reference to their dimensions. The biggest artery is 

the aorta, that exit the heart. It has a length of about 30-40 cm and a diameter of 

2.5-3.5 cm (Fig. 73a) and can be divided into various sections. The first part is 

the ascending aorta, at which basis there are the left and the right coronary 

arteries, that circulate blood to the heart. Downstream of the ascending aorta, 

there is the aortic arch, whose upper part has three major branches: the 

brachiocephalic trunk, the left common carotid artery, and the left subclavian 

artery. The descending aorta is divided into the thoracic aorta and the abdominal 

aorta, that are limited by the passage through the diaphragm; in particular, in the 

lower border of the twelfth thoracic vertebra. From the first part, arteries such as  

 

 
 

Fig. 73. Cardiovascular system [156]: a) aorta; b) artery wall. 
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the bronchial arteries start, while in the latter part other arteries, such as the 

celiac artery and the renal arteries, start. The end of the abdominal aorta 

bifurcates into the left and right common iliac arteries, where a smaller branch 

named the median sacral artery, is located. It is important to notice that, in a 

normal adult, aorta dimensions can vary from about 3 cm in the ascending aorta 

to 1.5 cm in the aorta-iliac bifurcation, that becomes 2 cm/m
2
 and 1 cm/m

2
 in 

the body surface area-adjusted version. Large arteries diameters span in the 7.0 

– 30 mm range, while medium arteries diameters are in the 2.5 – 7.0 mm range. 

Diameters of small arteries are less than 2.5 mm. The arterioles, that forego the 

capillaries, have diameters less than 0.1 mm, while capillaries diameters are less 

than 10 m. Capillaries are as small as to allow only one red blood cell to pass 

through it once a time. Such values are resumed in Table 6. 

The microscopic anatomy of an artery is depicted in Fig. 73b. The lumen is 

the part which the blood flows through. Three parts, named tunica, can be 

distinguished through the wall: tunica intima, tunica media and tunica 

adventitia. 

The tunica intima is the layer that faces the lumen; it is delimited by the 

endothelium and the Internal Elastic Lamina (IEL), also known as the internal 

elastic membrane. The part of the arterial wall in contact with the lumen is the 

endothelium. It is made up by squamous cells that form the epithelial tissue. It 

plays many roles, such as acting as a semi-selective barrier for solutes and white 

blood cells, or the control of blood pressure via vasoconstriction and 

vasodilation. A pathologic state that occurs when the endothelium loses its 

functions is the endothelial dysfunction. Endothelial cells are also covered by a 

glycoprotein-polysaccharide, named glycocalyx. The endothelium and the IEL 

are linked by a fine network of connective tissue, that is the main part of the 

tunica intima. The tunica intima is separated from the tunica media by the IEL. 

It is a membrane made of elastic tissue, thick and prominent in muscular 

arteries, while it is often incomplete and less prominent in arterioles. 

The tunica media is made up by Smooth Muscle Cells (SMC) and elastic 

tissue. It is distinguishable from the tunica intima because of the different color, 

and of the fibers transverse arrangement. The amount of elastic tissue depends 

also on  the  dimensions; indeed,  the aorta, that is  the largest  artery, has a very  

 

Table 6. Typical arteries diameters. 
 

 Aorta large medium small
 

arterioles capillaries 

d (mm) 30 - 15 30 – 7 7 – 2.5 2.5 – 0.1 0.1 – 0.01 < 0.01 
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high amount of elastic tissue. A layer of elastic connective tissue, the External 

Elastic Lamina (EEL), separates the media tunica from the tunica adventitia. 

The tunica adventitia is made up by collagen fibers, in order to anchor the 

vessel to nearby organs. It is absent in the capillaries. It is worth saying that also 

the vasa vasorum, that means “the vessels of the vessels”, is found in arteries. 

The vasa vasorum is a network of small blood vessels that supply the arterial 

walls, together with the nerva vasorum, that h control SMC of the tunica media. 

 

4.1.3. Atherosclerotic plaque growth process 

A Cardiovascular Disease (CVD) is a class of diseases that involves the 

cardiovascular system. In the 2012, CVD was the 47% of all deaths in the 

European Union (EU) [158]. It causes 4 millions of deaths in Europe per year, 

with 1.9 millions only in the EU [158]. It is the main cause of death of women 

in all Europe, and the main cause except for six countries for men [158]. CVD 

include coronary artery diseases (heart attack and angina pectoris), stroke, 

cerebral vascular disease, transient ischemic attacks, aorta aneurysms, and other 

phenomena. Despite many factors affect CVD, some, like coronary artery 

disease, stroke and peripheral artery disease, depend on atherosclerosis. Risk 

factors are smoking, diabetes, sedentary lifestyle and overweight. The 

atherosclerosis is a form of arteriosclerosis, for which a fibrofatty plaque 

through the wall of an artery makes it thicker. 

The growth of an atherosclerotic plaque is sketched in Fig. 74 and described 

in the following. The  blood  flows  through  the lumen  carrying  many  solutes,  

 

 
 

Fig. 74. Atherosclerotic plaque growth [159]. 
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such as the Low-Density Lipoprotein (LDL) (Fig. (74)). LDL have a diameter in 

the 18 - 25 mm, range and a density spanning between 1006 and 1063 kg/m
3
. 

They are generated by the liver from the Intermediate-Density Lipoprotein 

(IDL), and they delivery triglycerides and esterified cholesterol to the periferical 

tissues. When the LDL is in excess in the cardiovascular system, High-Density 

Lipoprotein (HDL) tends to remove it; when there is an excess of LDL, 

hypercholesterolemia occurs. The LDL tends to infiltrate through the arterial 

wall via the endothelium. This means that the integrity of this thin layer has a 

primary role into reflecting the LDL. When the LDL arrives to the tunica 

intima, it tends to oxidize, forming ox-LDL and causing an inflammation. This 

event recalls from the lumen the white blood cells, that tend to infiltrate the 

wall, especially when endothelium permeability is high. Since macrophages are 

now activated to absorb ox-LDL, foam cells are generated. Besides, foam cells 

have some chemiotactic factors that promote the infiltration of SMC from the 

tunica media, contributing to the formation of foam cells. This process causes 

the growth of an atherosclerotic plaque, that reduces the lumen section, 

hampering blood to flow normally. Besides, the above described process can 

generate, between the endothelium and the intima. a fibrous cap, made up by 

connective tissue. Depending on the consistency of this layer, the plaque can be 

either stable or unstable. In the first case, the fibrous cap is thick and solid, and 

the occlusion of the lumen can occur. This problem can be solved by a collateral 

circulation, since the plaque growth is relatively slow. In the second case, the 

plaque could break and form a thrombous. In such case, there is no collateral 

circulation that solves the problem. Stenosis severity can be classified 

depending on its area reduction, A [160], that expresses the percentage of area 

available for the flow. Assuming that the artery is cylindrical, it is possible to 

write: 
 

2

1
lumen

r
A

r

 
   

 
              (58) 

 

A stenosis with a 75 % of area reduction is considered as hemodynamically 

significant [160]. 

Although the best solution is the reduction of risk factors, many techniques 

can be used for the reduction of an atherosclerotic plaque. The most used one is 

the balloon angioplasty (Fig. 75a). An empty balloon is inserted in the diseased 

artery by means of  a catheter, which is flattened when it reaches  the  occlusion.  
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Fig. 75. a) Balloon angioplasty [156]; b) laser angioplasty. 

 

This procedure is often completed by using a metallic wire, the stent, that may 

be covered or not by a drug. The surgery, in local anesthesia, lasts about 1 hour, 

After removing the balloon catheter, it is necessary to compress the place from 

which the catheter is inserted into the body. Often, the femoral artery is used to 

insert the catheter, but the radial artery can be also used because the mentioned 

compression can be performed by only using systems similar to bracelets. 

Another technique that might be used for complicated stenosis is the laser 

angioplasty (Fig. 75b), approved by US Food and Drug Administration for 

coronary uses in 1992. It is based on a fiber-optic laser equipped on the tip of 

the catheter, that sends pulsating beams of light to vaporize the atherosclerotic 

plaque. Any fragments can be expelled by using a vacuum device. An excimer 

laser, together with a balloon, can be used to improve the accuracy. Many 

authors suggest that tip temperatures above 300 °C produce greater ablation 

than at lower temperatures, but transmural thermal damage can occur [161]. 

Barbeau et al. [162] concluded that, even if recanalization temperature had a 

wide range, for probe temperatures below 160 °C recanalization can occur, with 

powers between 5 and 10 W. It is important to remark that the main issue of this 

technique is the vessel damage; therefore different types of laser generators and 

probes have been investigated during the years [163]. Apart from the laser 

angioplasty, since temperature gradients affect the LDL transport due to the 

Ludwig-Soret effect (Eq. 9), it is interesting to realized how LDL transport 



Biological systems 
 

 

100 

through the arterial wall is affected by temperature gradients. Besides, with 

reference to the hyperthermia treatments for cancers discussed in the 

introductive chapter, heat can be transferred from the surrounding tissues to the 

exterior part of an arterial wall during an hyperthermia treatment. 

 

4.2. Modeling Low-Density Lipoprotein (LDL) transport: state-of-art 

The role of LDL transport through an arterial wall is very crucial to 

understand the atherosclerotic plaque growth. However, experiments are very 

hard to be carried out, because of ethics and microscales. There are very few 

experimental results on LDL accumulation. Studies on the LDL and albumin 

uptake in the rabbit aortic wall were carried out by Meyer et al. [164]. 

Experiments on zebrafish embryos were carried out by Xie et al. [165] in 

studies on LDL concentration polarization. The concentration polarization 

consists of accumulation of solute on a membrane surface; it occurs in arteries 

because the endothelium selectively rejects the LDL. 

Since experiments are difficult to carry out, modeling plays a primary role. 

Depending on the accuracy in the description of the arterial wall, it is possible 

to identify three classes of models [71]. The first class is the wall-free model, by 

which the arterial wall is modeled by means of a boundary condition. This class 

is the simpler one, since the model needs less parameters. However, these 

models are not able to predict concentration profiles across the wall. The second 

class is the fluid-wall model, and that is a little bit more complex than the first. 

It accounts for the arterial wall, that is treated as an equivalent homogeneous 

layer. Even if this class is able to catch concentration profiles across the wall, is 

not possible to exactly predict what occurs in each layer cannot be predicted. 

The most accurate and complex class is the multi-layer model, that accounts for 

the heterogeneity of the wall. Since several transport parameters are necessary 

to perform predictions in each artery layer, these models are the very difficult to 

develop, and they have had more attention only in the last years. However, 

using these models is very powerful in order to understand where the LDL tends 

to accumulate, with particular reference to the tunica intima, that is the layer in 

which the atherosclerotic plaque grows. An example of concentration profiles 

obtained with a wall-free model for the aorta and with a multi-layer model for a 

common carotid artery bifurcation is depicted in Fig. 76. 

 

4.2.1. Wall-free and monolayer models 

Wall-free models were the first to be proposed, due to their simplicity. They 

were  proposed by Back et al. [168] for the  oxygen  transport.  One of  the  first 
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Fig. 76. Concentration profiles along the lumen wall of: 

a) aorta [166]; b) common carotid artery [167]. 

 

applications to LDL transport was made by Deng et al. [169]. The boundary 

conditions for the momentum equation and for the species equation are, 

respectively: 
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            (59) 

 

where the subscript w refers to the lumen/arterial wall interface. The first 

condition describes a no-slip boundary condition, for the solvent coming 

through the arterial wall at the filtration velocity, that is the velocity of the 

solvent (plasma) through the wall. In axisymmetric models, the filtration 

velocity is the radial component of the flow field. Wada et al. [170] imposed a 

no-slip condition also for the filtration velocity, assuming its effects on the flow 

field to be negligible. The second boundary condition in Eq. (59) refers to the 

solute flux j, and it takes into account the polarization effect on the lumen 

boundary wall. The term Deff / Leff represents the apparent permeability of the 

arterial wall, that can be modeled in several ways [171 – 173]. In some cases, 

the solute flux j equation is further simplified. In particular, the solute flux 

through the wall can be assumed to be zero (|j| = 0). This assumption is realistic 
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when a perfectly impervious artery is considered, and no LDL infiltrates 

through the wall [169, 174]. A further simplified form is exhibited when also 

convection is neglected, thus there is only a zero-gradient boundary condition 

on the wall [175]. 

Due to its simplicity, the wall-free model is the most widely used. It can be 

useful when complex conditions, such as particular geometries need to be 

simulated. Wall-free models were employed to model human aorta by Liu et al. 

[166] for the analysis of non-Newtonian and pulsatile flow effects on LDL 

accumulation, using MRI images. They concluded that, in most regions of the 

aorta, non-Newtonian effects on LDL concentrations are relatively insignificant. 

However, such effects are more important in areas with flow disturbance, for 

both steady state and pulsatile flow cases. LDL accumulation by means of a 

Large Eddy Simulation (LES) was analyzed by Lantz and Karlsson [176] for an 

aorta generated from MRI images. Stenosed carotid arteries were also modeled 

by using a wall-free model by Fazli et al. [177] and Nematollahi et al. [178]. 

The single-layer models are a compromise between the simplicity of the 

wall-free models and the accuracy of the multi-layer models. As it was 

previously discussed, the arterial wall is modeled as a unique homogeneous 

layer. The momentum equation is modeled by using Eq. (14b), while the mass 

transport equation is modeled by Eq. (26) or a similar form. Stangeby and Ross 

Ethier used a single-layer model for the momentum equation and a wall-free 

model for the LDL transport [179]. Single-layer models for both momentum 

and species equation were used by Olgac et al. [180] and by Sun et al. [181]. In 

both cases, the momentum equation is further simplified by using Darcy’s law. 

Olgac et al. [180] analyzed LDL transport in a stenosed artery by considering 

the effects of WSS on endothelial cells and its pathways of volume and solute 

flux. They evaluated the volume and solute flux by using a three pore model 

that accounted for endothelial normal and leaky junctions and vesicular 

pathways. Sun et al. [181] studied pulsatile flow effects on LDL transport for a 

stenosed artery. The thermophysical properties for the arterial wall needed in 

their model were the solute lag coefficient, equal to 1 – s, the effective LDL 

wall diffusivity and the apparent permeability. Such properties were obtained by 

using an optimization technique based on experimental data. 

 

4.2.2. Multilayer models 

The most accurate predictive models for the LDL transport across the arterial 

wall are the multi-layer model. The the endothelium, the intima, the IEL and the 

media are considered, while the tunica adventitia is often replaced by a 
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boundary condition. These models are more complicated since they need 

several thermophysical parameters to close governing equations, and this 

estimation is quite challenging because of the scale of the problem and of the 

lack of experimental data. Models used for the determination of the above said 

parameters are often based on the fiber matrix models and on the pore theory 

[62]. In the fiber matrix models [182], the porous layer is assumed to be made 

up by fibers with certain radius and porosity. The permeability can be calculated 

from Carman-Kozeny equation. For the solute apparent permeability, it is 

possible to define a membrane solute diffusivity and a membrane partition 

coefficient. The membrane partition coefficient is a measure of the solubility of 

a substance, and it influences the permeation of a solute across a biological 

membrane. It measures how a substance dissolves in a membrane: if the 

concentration gradients between the boundaries of the membrane are higher, the 

rate of diffusion across the membrane is faster. Starting from these concepts, 

both the effective diffusion coefficient and the partition coefficient can be 

determined by using an exponential decay law that takes into account porosity, 

molecules radius and fiber radius and length, then considering hard spherical 

molecules through a random network of fibers. Thermophysical properties of 

the tunica intima were determined by using this technique by Chung and Vafai 

[183], and cholesterol lipid accumulation process can be considered by varying 

morphological parameters, such as porosity. Curry [62] showed that both 

Staverman coefficients can be expressed as the square of the complement to one 

of the partition coefficient. In the pore theory, it is assumed that the permeable 

channels of finite length are straight cylinders with a uniform diameter. The 

flow is assumed to be one-dimensional, and both solvent and solute share the 

same pathways. Permeability, effective diffusivity and reflection coefficients 

can be evaluated as a function of porosity, molecules and opening radius, and of 

partitioning coefficient. Often, a scale factor is used to match clinical data. The 

pore theorem was used by Chung and Vafai [184] to model endothelium 

thermophysical properties. Other techniques for the determination of these 

coefficients are based on in vitro and in vivo measurements [71, 73] and on 

optimization techniques [185]. 

As it was previously discussed, LDL transport through an arterial wall has 

been analyzed with multi-layer models only recently. Prosi et al. [71] proposed 

a new methodology for the transport closing coefficients, based on in vivo 

measurements. They analyzed in detail the effects of disturbed flow on LDL 

accumulation through the wall by analyzing an advanced stenosis. Effects of 

hypertension were analyzed by Yang and Vafai [186] by using a porous media 
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volume-averaged model. Ai and Vafai [73] developed a new technique for the 

closing coefficient, based on in vivo and in vitro measurements, and on a 

simplified analytical solution. LDL accumulation through a stenosed artery was 

also analyzed. Effects of transmural pressure and WSS on LDL accumulation 

were investigated by Sun et al. [185]. In order to obtain closing coefficients, 

they used an optimization approach based on matching one-dimensional 

simulations and experimental data. Comparing results from the multi-layer 

model with those from a single-layer model, they found that, even if solute flux 

through the wall and LDL distribution through the media are similar, the single-

layer model could not provide a detailed description of the intima. Effects of 

gender-related geometries of aorta-iliac bifurcation on LDL transport were 

analyzed by Khakpour and Vafai [187]. A comprehensive analytical solution 

using the method of matched asymptotic expansions was presented by 

Khakpour and Vafai [188], while a simplified analytical solution was presented 

by Yang and Vafai [189]. Non-Newtonian aspects through the arterial wall were 

analyzed by Hong et al. [190] by using a one-dimensional four-layer model 

based on a power-law modified Darcy law. Comparisons with predictions based 

on a Newtonian fluid with a 1.39 mPa s viscosity showed that non-Newtonian 

effects through the wall had to be taken into account because differences on 

filtration velocities were remarkable. Fluid-Structure Interactions (FSI) effects 

and atherosclerotic plaque growth effects on LDL deposition were investigaed 

by Chung and Vafai [183, 184], while hyperthermia effects coupled with FSI 

were analyzed by Chung and Vafai [191]. Hyperthermia effects on a stenosed 

artery were analyzed by Iasiello et al. [192]. Analytical solutions for an artery in 

presence of a stent and for a curved artery were developed by Wang and Vafai 

[193, 194], while coupled hyperthermia and hypertension effects were 

analytically studied by Iasiello et al. [195]. A realistic carotid artery bifurcation 

was analyzed with a multilayer model by Kenjeres and de Loor [167]. The 

geometry was reconstructed by using CT scans, adding inlet and outlet flow 

extensions to facilitate computations. Combined effects of non-Newtonian 

blood behavior and FSI were analyzed by Deyranlou et al. [196], who 

concluded that a Newtonian assumption was accurate for large vessels, even if it 

seemed to underestimate concentration through the wall. The non-Newtonian 

effects of artery sizes and aorta-iliac bifurcation on LDL deposition were 

investigated by Iasiello et al. [197]. 

 

4.3. Straight artery 

4.3.1. Mathematical model 
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A straight artery, together with boundary conditions of the present study, is 

sketched in Fig.77. The multi-layer model is made up by four layers. 

Glycocalyx effects on mass transport are neglected due to the negligible 

thickness [198]. However, it has been found that Glycocalyx health can play a 

role [199]. The length of the artery is set as 124 mm [186], with a lumen radius 

of 3.1 mm [186], that is typical of a medium-sized artery. In order to analyze 

transport for different artery sizes, also radius equal to 6.1 mm and 9.1 mm have 

been investigated. The arterial wall thickness is set as 214 m, where the 

endothelium’s is 2 m, the intima’s is 10 m, the IEL’s is 2 m and the media’s 

is 200 m [186]. The tunica adventitia is replaced by a boundary condition on 

the media/adventitia interface. 

Non-Newtonian, hypertension and hyperthermia effects are here analyzed. 

For the sake of readability, the volume averaging symbols < > will be dropped 

in the following. The flow is assumed as steady-state and incompressible, since 

pulsation effects can be neglected [186]; osmosis pressure effects are also 

negligible compared to hydraulic pressure effects [186]. An LTE model is used 

for the energy equation through the arterial wall [200, 201]. 

For the free blood stationary flow through the lumen, governing equations 

for mass, momentum and species are Eqs. (3c), (4a) and (8), respectively, with f 

 

 
 

Fig. 77. Sketch of an arterial wall with boundary conditions. 
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and r equal to 0. Governing equations for mass, momentum, energy and species 

through the arterial wall are Eqs. (12c), (13), (24) and (27), respectively. 

Equation (13) is taken in its stationary form, and the integral relative to Eq. (13) 

is replaced by the two last terms on the right side of Eq. (14), where the 

Forchheimer term is negligible, due to very low Reynolds numbers. A 2-D 

axisymmetric model is used in the computations. 

In order to solve governing equations, boundary conditions are needed for 

both lumen and arterial wall. They are reported in Fig. 77. The flow is assumed 

to be fully developed at the inlet, with a maximum velocity |u|M = 0.338 m/s 

[186]. This value gives a Re ≈ 1000, that is typical of a medium artery. At the 

outlet of the lumen, a 100 mmHg pressure is set up, with no viscous stresses. 

Hypertension effects are analyzed by increasing the pressure up to 150 mmHg 

and 190 mmHg. A 28.6·10
-3

 mol/m
3
 LDL inlet concentration and an outflow 

condition with a zero-gradient concentration at the lumen outlet are assumed. At 

the lumen/wall boundary, and at boundaries between wall layers, the continuity 

of velocity, concentration, temperature, mass flux and energy is applied, while a 

jump condition is applied for the shear stresses. The continuity of mass flux |j| 

described for the i-layer boundary is: 
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where the subscripts a, D and T stays for advective, diffusive and thermal, 

respectively. The filtration velocity, v, is the radial component of the velocity. 

For the energy equation and for the same boundary we also write the continuity 

of the heat flux |q|: 

 

 p ref effC v T T k T     a D
q q q                     (62) 

 

 
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a D a D
q q q q q                       (63) 

At the lumen/endothelium interface, a Dirichlet condition is imposed for the 

temperature. Two cases are analysed. In the first, named internal heating, heat is 

applied from the interior part of the artery, while in the second, named external 
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heating, heat is applied from outside. Considering 310 K as the isothermal 

arterial wall temperature, a temperature of 330 K or 350 K is set up for the 

interior wall when heat is applied from the lumen side. The highest temperature 

in the computational domain is referred as TH and the lowest as TC. A slip 

condition is applied at the extremities of each porous domain, in order to 

simulate the symmetry of the walls. For the species and energy equations, a 

zero-gradient condition is imposed for both concentration and temperature, 

respectively. At media/adventitia interface, a 30 mmHg hydraulic pressure is set 

up, causing a p = 70 mmHg transmural pressure in healthy conditions; it 

increases when hypertension is considered by changing the lumen outlet 

pressure value. A zero-gradient condition is imposed for the concentration field. 

Effects of this boundary condition have been discussed by Prosi et al. [71] and 

by Yang and Vafai [186]. When heat enters the interior side of the arteria, a 330 

or 350 K on the lumen/endothelium interface and 310 K on the media/adventitia 

interface Dirichlet condition is imposed; when heat enters the exterior side of 

the artery a 310 K boundary condition is imposed on the media/adventitia 

interface and a 330 or 350 K on the lumen/endothelium interface boundary 

condition is imposed. Therefore, in the following reference will be made to 20 

K or 40 K differences in the temperature of the artery walls. 

Thermophysical properties and closing coefficients are further needed for the 

governing equations. Thermophysical properties are those of the blood, for the 

lumen, and of the plasma, for the arterial wall. Since non-Newtonian effects are 

analysed in the present paper, different rheological models are used. For the 

lumen they are four. The first is the Newtonian model, in which  = 3.7 mPa s. 

In the Newtonian case, it is possible to write ∇·T = ∇2 
u. The other rheological 

models that are employed are: 

 a Power-law fluid model, were  
1* n

  


 , with *
 the fluid 

consistency index,  the shear rate and n the power-law index. In this 

study, *  = 9.267 mPa s
n
 and n = 0.828 [202. 

 a Carreau fluid model, where    
1

2 21

n

z    



 
    
 

, with ∞ 

and z the fluid dynamic viscosities at infinite and zero shear rate, 

respectively, and  the relaxation time. In this study,  = 3.45 mPa s, 

z = 56 mPa s,  = 3.313 s and n = 0.3568 [203, 204]. 



Biological systems 
 

 

108 

 a Carreau-Yasuda fluid model, where    
1

1

n
q q

z    



 
    
 

, with q a coefficient relative to the Carreau-Yasuda fluid model herein 

used. In this study,  = 3.45 mPa s, z = 56 mPa s,  = 1.902 s, q = 

1.25 and n = 0.22 [203]. 

The fluid viscosity as a function of the shear rate, for different rheological 

methods, is reported in Fig:78. 

For the arterial wall, in order to consider non-Newtonian effects, the 

following non-Newtonian momentum equation is considered: 

 

    
* 1

2

1*

*

1 2 :
n

n

n

p

C

K K

 
  

 

 





 
       

 

 
  
 
 

u u f

u u
u

        (64) 

 

Inertial forces, buoyancy, viscous effects and microscopically inertial effects are 

assumed negligible and Eq. (64) is simplified to a power-law Darcy equation 

[186, 188, 189, 193]: 

 

 
 

Fig. 78. Rheological models used in this study. 
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1*

*

n

p
K


 

   
 
 

u
u             (65) 

where the consistency index is 
* 1n    . The power law permeability is 

[205]: 
 

 1

2
* 1 50

2 3 1 3

n
n

n K
K

n



 



   
    

   
             (66) 

 

where the tortuosity, , is set equal to 25/12 [206]. 

In order to correlate viscosity and shear stresses, experimental data from 

Graf and Barras [207] are used to obtain the consistency inde, *, and the 

power law fluid index, n. By performing a regression analysis on Graf and 

Barras’s data, a power-law function is found, that, with * = 3.16 mPa s
n
 and n 

= 0.81, fits experimental data. When the Newtonian model is employed for the 

arterial wall,  = 0.72 mPa s is used [71]. 

Closing coefficients for the porous media equations are taken after Chung 

and Vafai [191] and resumed in Table 7, together with geometrical features and 

thermophysical properties, which are considered as Newtonian for semplicity in 

the table. The hydraulic permeability, K
end

, the effective diffusivity, D
end

, the 

Staverman reflection coefficient, s
end

, are taken from Chung and Vafai [184] 

(2012). They are obtained, obtained by using the pore theory, considering a 

leaky junction fraction of 5·10
-4

, a radius of the endothelial cells of 15 m, with 

a 14.343 nm half width of leaky junctions. The porosity is taken from Lin et al. 

[208]. The intima properties are taken from studies carried out on fiber matrix 

model, for both permeability and diffusivity, by Huang et al. [209]. The 

reflection coefficient is taken from Prosi et al. [71], who obtained it by 

assuming that the mass flux is only advective through the intima. The porosity 

is taken from Huang et al. [209]. In the IEL, hydraulic permeability and 

effective diffusivity obtained from the pore theory are taken from Prosi et al. 

[71]; the reflection coefficient is obtained from mass fluxes through the various 

layer [71]. The porosity is taken from Song et al. [210]. Hydraulic permeability 

and effective diffusivity for the media are taken from Huang et al. [209]. Both 

reflection coefficient and first-order reaction coefficient are taken from Prosi et 

al. [71], who solved a non-linear system of two equations in two unknowns, 

obtained  from an electrical  analogy and from the mass  conservation  principle. 

Table 7. Thermophysical properties and closing coefficients [191]. 
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Property Lumen Endothelium Intima
 

IEL Media 

Thickness 

r (m) 
3100 2 10 2 200 

Density 

 (kg/m
3
) 

1.07·10
3
 1.057·10

3
 1.057·10

3
 1.057·10

3
 1.057·10

3
 

Viscosity 

 (kg/m s) 
3.7·10

-3
 0.72·10

-3
 0.72·10

-3
 0.72·10

-3
 0.72·10

-3
 

Porosity 

 
- 0.0005 0.983 0.002 0.258 

Permeability 

K (m
2
) 

- 3.22·10
-21

 2·10
-16

 
4.392·10

-

19
 

2·10
-18

 

Diffusivity 

Deff (m
2
/s) 

2.87·10
-11

 5.7·10
-18

 5.4·10
-12

 3.18·10
-15

 5·10
-14

 

Reflection 

coefficient 

S 
- 0.9888 0.8272 0.9827 0.8836 

Reaction 

k (1/s) 
- 0 0 0 -3.197·10

-4
 

Thermal 

diffusivity 

eff (m
2
/s) 

- 1.42·10
-7

 1.42·10
-7

 1.42·10
-7

 1.42·10
-7

 

 

The porosity is taken from Huang and Tarbell [211]. The effective thermal 

diffusivity, eff, of each layer is taken from Duck [212]. There is a lack of data 

of the thermo-diffusion coefficient, kT, in the literature. Its value is about 0.01 

[38, 39], but it is expected to be lower because LDL is a heavy molecule. 

Therefore, herein a sensitivity analysis has been carried out, by varying, kT. 

Governing equations are solved with either numerical or analytical 

approaches. Numerical approaches for non-Newtonian studies and analytical 

approaches for hypertension coupled with hyperthermia are used. The latter 

approach will be discussed in detail in the next paragraph. When numerical 

approaches are employed, a Galerkin-based finite element scheme is used from 

the commercial code COMSOL Multiphysics. It is important to remark that the 

conservative form of the species equation is used instead of the non-

conservative one. Since geometries are regular, a mapped quadrilateral mesh is 

used, with about 500,000 elements. Grid independence and RMS relative 

tolerance have been checked by comparing the LDL concentration profiles 

along the lumen/endothelium interface with different number of elements and 

relative tolerances. 
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4.3.2. Numerical approaches 

4.3.2.1. Non-Newtonian effects 

Blood is often assumed as a Newtonian fluid when flowing through large 

arteries [203, 204, 213, 214, 215] and, sometimes, when flowing through 

medium arteries [214], because of the typical shear rates depending on the 

vessel dimensions. The importance of non-Newtonian effects on blood was 

highlighted by Johnston et al. [204], and the analysis was further extended to 

stenosed arteries by Razavi et al. [216]. The assumption of Newtonian fluid 

loses its accuracy especially when shear stresses at the wall are lower, as in 

complicate geometries, such as stenoses, bends or bifurcation. Further, there are 

only few studies on non-Newtonian effects on LDL transport in an artery [166, 

190, 196]. Non-Newtonian effects on LDL transport are presented in the 

following, in order to evaluate the accuracy of the Newtonian assumption for 

different arteries. 

Non-Newtonian effects for a medium straight artery are analyzed under 

hypertension conditions and for different artery sizes. Hyperthermia effects are 

neglected. First of all, non-Newtonian effects are analyzed for a medium size 

artery with rlumen = 3.1 mm. The filtration velocity for different transmural 

pressures, p = 70 mmHg, 120 mmHg and 160 mmHg, can be obtained either 

from simulations or from a hydraulic analogy. From Eq. (6), assuming that the 

flow is one-dimensional, one can write [190]: 
 

1

1

4

1

n

n

end int IEL med
i

i

p p
v

R R R R
R



 
 

           
  
 


              (67) 

 

where the hydraulic resistance, 
iR , of the i-layer is: 

 

* ,*

,*

i
i

i

L
R

K


                  (68) 

 

Results from the numerical model and from the hydraulic analogy are 

essentially the same. The filtration velocity, for different rheological models and 

transmural pressure, as a function of the axial  coordinate and  the pressure drop 
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Fig. 79. Filtration velocity, for different rheological models and transmural 

pressure, vs. a) the axial coordinate; b) the pressure drop. 

 

are reported in Fig. 79a) and 79b), respectively. For the sake of comparison, 

experimental data from the literature are also reported in Fig 79b. Figure 79b 

shows that the filtration velocity increases with transmural pressure, due to the 

increase of the driving force. One can also notice that, for low pressure drop, 

nearly common values are predicted by both Newtonian and Darcy Power-law 

fluid, while the Newtonian model underestimates, up tp 15%, the filtration 

velocity at larger p. The comparison of predicted values with experimental 

data shows a better agreement of results obtained with the model proposed in 

the present work. 

Defining the wall shear stresses (WSS) as the product of the dynamic 

viscosity and the shear rate, the shear rate and the wall shear stresses as a 

function of the axial coordinate, for different rheological models, are reported in 

Fig.80a) and 80b), respectively. The figures exhibit small differences between 

the predictions of the different models; the maximum differences in the WWS 

values are those between Newtonian and Carreau fluid models. 

 

 
Fig. 80. Shear rate and wall shear stresses vs. the axial coordinate, for different 

rheological models. 
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Reference is made in the following to the LDL concentration polarization, 

defined as the concentration scaled with the inlet concentration value c0 = 

28.6∙10
-3

 mol/m
3
. The concentration polarization as a function of the axial 

coordinate, for different rheological models and intramural pressure, is 

presented in Fig. 81. Figures point out an increasing in the concentration both 

with the axial coordinate, because of to the polarization, and with the transmural 

pressure, because of the enhancement of the solvent driving force through the 

wall. Comparing predictions of non-Newtonian models, we notice that the 

Power-Law model predicts both the highest shear rate and concentrations.  

Differences in LDL concentrations predicted by non-Newtonian models for 

various transmural pressure are negligible, less than 1%. Finally, the 

comparison between predictions by non-Newtonian models and Newtonian 

models shows negligible differences too, less than 2%. 

LDL concentration polarization as a function of the radius in the arterial 

wall, for different rheological models and transmural pressure, is presented in 

Fig. 82. The concentration polarization is almost uniform in the intima, while it 

rapidly decreases in the IEL. This is explained mainly by the change in 

diffusivity, as reported in Table 7. The concentration polarization is rapidly 

consumed in the  media by the chemical  reaction term, that describes  the solute 

 

 
 

Fig. 81. LDL concentration polarization vs. the axial coordinate, 

for different rheological models and transmural pressures. 
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Fig. 82. LDL concentration polarization vs. the radius in the arterial wall, 

for different rheological models and transmural pressures. 
 

uptake made by the SMC. Because of the increasing filtration velocity with 

transmural pressure, the concentration polarization increases with transmural 

pressure. The comparison between Newtonian and non-Newtonian models 

highlights higher values predicted by non-Newtonian models, because of their 

higher filtration velocity. Differences are negligible at normal transmural 

pressure, while they are slightly less than 15 % at the highest investigated 

transmural pressure. The comparison with experimental results from Meyer et 

al. [164] shows a good agreement, especially at the normal transmural pressure, 

referred to a healthy cases. However, differences increase with transmural 

pressure, attaining an almost 30% value. 

Wall shear stresses as a function of the axial coordinate, for different models 

and lumen radius is presented in Fig.83. Non-Newtonian models predict an 

increase in the wall shear stresses as the artery radius becomes smaller. 

Differences between predictions of rheological models, for different artery 

sizes, are found ,as it occurred for medium arteries. 

LDL concentration polarization as a function of the axial coordinate at the 

lumen/endothelium interface, for different models and artery sizes, is reported 

in Fig.84. Figures show that the larger the artery the larger the concentration 

since more solvent is driven through the arterial wall from shear rates. 

Differences between Newtonian and non-Newtonian models slightly increase 

with the lumen radius; they are no larger than 3%. Also in this case a correlation 

is noticed between shear rates and concentrations. 
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Fig. 83. Wall shear stresses vs. the axial coordinate, 

for different models and lumen radius. 
 

 
Fig. 84. LDL concentration polarization vs. the axial coordinate at the 

lumen/endothelium interface, for different models and artery sizes. 
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Fig. 85. Percent difference in concentrations among models vs. the pressure 

drop at the lumen/endothelium interface, for different artery sizes. 

 

Finally, percent differences in LDL concentrations among models as a 

function of the transmural pressure at the lumen/endothelium interface, for 

different artery sizes are reported in Fig.85. Differences among concentrations 

predicted by the Newtonian and non-Newtonian models slightly increase both 

with the lumen radius and the transmural pressure, the maximum value being 

less than 3%. 

On the basis of the above presented results, we can conclude that Newtonian 

models can be usefully used in predicting LDL transport in medium and large 

straight arteries. 

 

4.3.3. Analytical approaches 

4.3.3.1. Deriving a simplified analytical solution 

An analytical solution is presented for coupled hyperthermia and 

hypertension effects on LDL transport. Since PDE that describe the LDL 

transport are difficult to solve analytically, well-established results from 

previous works are employed to obtain a simplified solution. First of all, only 

the arterial wall is modeled, and the lumen domain is replaced with a boundary 

condition on the lumen/endothelium interface. Governing equations for the 

arterial wall previously described in the mathematical model sub-section are 

further simplified. The fluid is assumed to be Newtonian. The macroscopic 

inertial term can be neglected, and the Brinkman viscous term too. Besides, the 

problem is further reduced to a one-dimensional problem. Filtration velocity in 

the radial direction is much higher than it is in the axial direction, and the heat 
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transfer is independent of the axial direction (Chung and Vafai [191] and 

Iasiello et al. [192]). Since the arterial wall thickness is much smaller than the 

overall artery diameter, the effect of curvature is negligible [194]. Finally, with 

reference to the thermodiffusion (Ludwig-Soret) term that appears in Eqs. (27) 

and (60), the temperature at the denominator is supposed to be uniform in each 

layer and reference is made to its mean value. With reference to a one-

dimensional coordinate, y*, governing equations for each layer are scaled in a 

dimensionless form, obtaining the following equations for mass, momentum, 

energy and species: 
 

*

*

d
0

d

v

y
                       (69) 

 

*
*

*

d 1

ReDad

p
v

y
                       (70) 

 

* 2 *
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* T *2

d 1 d

d Pe d

T T
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y y
                 (71) 

 

 
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* *2 *2
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d 1 d d
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S

M f

kLk Tc c T
v c
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
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with the following dimensionless parameters: 
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where Da is the Darcy number; Pe
T
 is the thermal Peclet number; Pe is the mass 

Peclet number; TM is the mean temperature; v0 is the reference filtration 

velocity, equal to 2.31∙10
-8

 m/s [164]; c0 is the reference concentration value at 

the lumen inlet section, namely 28.6∙10
-3

 mol/m
3
; L0 is the reference length of 

the arterial wall, in the radial direction, that represents its thickness; TH is the 

temperature at the hot surface; TC is the temperature at the cold surface. 
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Fig. 86. Boundary conditions for the analytical problem. 

 

Boundary conditions are reported in Fig. 86. They are, in a dimensionless 

form, essentially the same as those described in the mathematical model 

subsection. At the lumen/endothelium boundary, it is assumed that p1 = 100 

mmHg and c* = 1.0246. The pressure is the same as that at the outlet flow 

section in the lumen, for a normal transmural pressure, while the dimensionless 

concentration is the LDL concentration at the wall in the midsection of the 

vessel [186]. At the media/adventitia interface, a pressure p2 = 30 mmHg is set. 

Equation (70) is solved by means of an electrical analogy, as it was 

previously did for non-Newtonian fluids (Eqs.67, 68). Equation (67) is now 

assumed with n = 1, since the flow is Newtonian; the pressure difference p is 

p = p1* - p2*; the hydraulic resistance of the i-layer is R
i
 = L

i,*
Re Da. 

The filtration velocity as a function of the axial coordinate along the 

lumen/endothelium interface, under normal pressure and under hypertension, is 

reported in Fig.87, respectively. Prediction are in very good agreement with 

data from the literature. 
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Fig. 87. Filtration velocity vs. the axial coordinate along the lumen/endothelium 

interface: a) under normal pressure; b) under hypertension. 

 

The energy equation, Eq. (71), is solved and used in the LDL equation to 

account for Ludwig-Soret effect. The temperature distribution in each layers is  
 

 
*

1

1 2

* * T yT TT y c e c


                       (73) 

 

With reference to Table 7, thermal diffusivities are the same in each layer; 

therefoe Pe
T
 is equal everywhere. This means that a two equations linear system 

is to be solved to obtain the temperature profiles. The ODE constants are: 
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for the internal heating, and: 
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for the external heating. 

The solutions to Eqs.74 are presented in Figs.88. 
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Fig. 88a. Dimensionless temperature vs. 

the distance from lumen/endothelium 

interface 

 Fig.88b. Temperature vs. the 

distance from lumen/endothelium 

interface 

 

The solution to the solute Eq. (13) is obtained by solving it in each layer, 

with continuity boundary conditions at the interfaces. Equation (72) is 

rearranged in the form: 
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Substituting the term on the right side of this equation with the second 

derivative of Eq. (73), we obtain: 
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Equation (77) is a second order ODE. Its solution has the following general 

form: 
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where i refers to the i
th
-layer. Eigenvalues 1  and 2 are: 
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By setting k = 0, eigenvalues for endothelium, IEL and intima are obtained, 

then, in the three layers, 2 0  . 
iA  is given by 
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where the Lewis number, Le, is defined as Le = Pe/Pe
T
. Continuity between 

layers is guaranteed by boundary conditions reported in Fig. 1b. Constants 
1

ic  

and 
2

ic  are obtained, for each i
th
-layer, by applying boundary conditions to Eq. 

(77). The following equations system is derived: 

 

1 2 1.0246end end endc c A                                (81a) 

 
*, *,* T *, * T *,

1 1Pe Pe
1 2 1 2

end end int endend endy yend end end v y int end end v yc e c A e c e c A e
 

     (81b) 

 

   

 

 

*, * T *,
1

*, * T *,
1

* T *,

*, * T *,
1

* Pe
1 2

* T Pe
1 1end

* T Pe
1end

0

* Pe
1 2

1

1
Pe

Pe

Pe
Pe

1

end end end

end end end

end

int end e

yend end end end v y
S

yend end end v y

f T v yT

end
fM

yint int int int v y
S

v c e c A e

c e A v e

k T
v c e

M cT

v c e c A e















    
 

  


 

    
   

 
*, * T *,

1

* T *,

* T Pe
1 1int

* T Pe
1int

0

1
Pe

Pe

Pe
Pe

nd

int end end

end

yint int int v y

f T v yT

int
fM

c e A v e

k T
v c e

M cT







  




                          (81c) 

 
*, *,* T *, * T *,

1 1Pe Pe
1 2 1 2

int int IEL intint inty yint int int v y IEL IEL IEL v yc e c A e c e c A e
 

          (81d) 



Biological systems 
 

 

122 

   

 

 

*, * T *,
1

*, * T *,
1

* T *,

*, * T *,
1

* Pe
1 2

* T Pe
1 1int

* T Pe
1int

0

* Pe
1 2

1

1
Pe

Pe

Pe
Pe

1

int int int

int int int

int

IEL int i

yint int int int v y
S

yint int int v y

f T v yT

int
fM

yIEL IEL IEL IEL v y
S

v c e c A e

c e A v e

k T
v c e

M cT

v c e c A e















    
 

  


 

    
   

 
*, * T *,

1

* T *,

* T Pe
1 1IEL

* T Pe
1IEL

0

1
Pe

Pe

Pe
Pe

nt

IEL int int

int

yIEL IEL IEL v y

f T v yT

IEL
fM

c e A v e

k T
v c e

M cT







  




                   (81e) 

 
*, *,* T *, * T *,

1 1Pe Pe
1 2 1 2

IEL IEL med IELIEL IELy yIEL IEL IEL v y med med med v yc e c A e c e c A e
 

      (81f) 

 

   

 

 

*, * T *,
1

*, * T *,
1

* T *,

*, * T *,
1

* Pe
1 2

* T Pe
1 1IEL

* T Pe
1IEL

0

* Pe
1 2

1

1
Pe

Pe

Pe
Pe

1

IEL IEL IEL

IEL IEL IEL

IEL

med IEL I

yIEL IEL IEL IEL v y
S

yIEL IEL IEL v y

f T v yT

IEL
fM

ymed med med med v y
S

v c e c A e

c e A v e

k T
v c e

M cT

v c e c A e















    
 

  


 

    
   

*, * * T *,
1 2

* T *,

* T Pe
1 1 2 2med

* T Pe
1med

0

1
Pe

Pe

Pe
Pe

EL

IELmed IEL med IEL

IEL

y ymed med med med med v y

f T v yT

med
fM

c e c e A v e

k T
v c e

M cT

  





 
    

 




       (81g) 

 
*, *, * T *,

1 2 * T Pe
1 1 2 2 Pe 0

med IEL med IEL IELy ymed med med med med v yc e c e A v e
          (81h) 

 

where
*,iy is the dimensionless coordinate y*, with reference to the location of 

each i
th
-layer. Equations 81 are rearranged in a matrix form: 
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where the terms in the matrix B are: 
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while the terms in the vector e are: 
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The vectorial form of the coefficients g  is obtained using the following 

matrix format: 
 

1 g B e                       (84) 

 

that is the compact form of the analytical solution to Eq. (72). 
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Fig. 89. LDL concentration vs. the distance from interfaces in isothermal 

conditions, for different models. 

 

The LDL concentration as a function of the distance from interfaces in 

isothermal conditions, for different model, obtained by the analytical solution of 

the above presented equations, is reported in Fig.89. Figures point out that 

concentration is strongly affected by the set of thermophysical properties and 

closing coefficients. Indeed, in the endothelium layer, differences in slopes are 

due to different values of mass Peclet number. The Peclet number obtained with 

properties from the present work, the same as that of Chung and Vafai [191], is 

the highest one, thus indicating that advection is dominating on diffusion. 

A comparison with isothermal analytical solutions from literature is reported 

in Fig. 90, also considering different transmural pressures and endothelium 

diffusivities. Again, a very good agreement has been found. 

Comparisons with numerical results from Chung and Vafai [191] for LDL 

transport under hyperthermia conditions are reported in Figs. 91 and 92, with 

different values of T and kT. It is noticed that the external heating mode 

increases  the LDL  concentration,  especially  in the  intima  layer, whereas  the  
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Fig. 90. LDL concentration vs the distance from interfaces in isothermal 

conditions, for different models. 
 

 
 

Fig. 91. LDL concentration vs the distance from lumen/endothelium interface, 

for external heating and different models and thermodiffusion coefficients. 
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Fig. 92. Concentration vs the distance from interfaces, for different models or 

internal heating for models and thermodiffusion coefficients. 

 

internal heating causes a slight reduction only for low thermal loads. In the 

external heating the particles migrate from the hot to the cold zone, while the 

opposite occurs for the internal heating. This is very stressed in the intima layer. 

In the intima, LDL concentration gradients are higher with external heating than 

with the internal heating. This occurs because, with reference to Eq. (27), the 

thermal diffusion term has an absolute temperature term at denominator, that 

enhances the mass flux due to thermodiffusion. Temperatures in the intima layer 

are lower for external heating than for internal heating and, therefore LDL 

concentration is higher. Comparing the present analytical solution with 

numerical data from Chung and Vafai [191], a very good agreement is 

remarked. 
 

4.3.3.2 Hypertension and hyperthermia effects 

Combined effects of hypertension and hyperthermia on LDL transport are 

analyzed by using the analytical solution derived in the previous sub-section. 

Results are reported in Figs. 93 and 94, where LDL concentration as a function 

of   the  distance  from   lumen/endothelium  interface,  for  different  transmural 
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Fig. 93. LDL concentration vs the distance from lumen/endothelium interface, 

for external heating, different transmural pressures and thermodiffusion 

coefficients. 

 

pressures and thermodiffusion coefficients, as well as for external and internal 

heating are reported. 

As it was noticed for non-Newtonian effects, hypertension increases LDL 

accumulation across the wall. The highest LDL concentrations are obtained 

when transmural pressure, thermo-diffusion coefficient and temperature 

difference are the highest, for both external and internal hyperthermia cases. 

With reference to internal heating case (Fig. 94), for all the transmural pressures 

the larger the thermodiffusion coefficient the lower the LDL concentration at 

the endothelium/intima interface. However, the opposite occurs at the 

intima/IEL interface, since concentration increases along the intima, more 

remarkably with increasing thermodiffusion. In the IEL, the situation changes 

again, since at the IEL/media interface the lowest values of concentration are 

reached when kT = 0.01. 
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Fig. 94. LDL concentration vs the distance from lumen/endothelium interface, 

for internal heating, different transmural pressures and thermodiffusion 

coefficients. 
 

In conclusion, the coupled effect of hypertension and hyperthermia 

dramatically increases LDL concentrations across the arterial wall, especially 

when the heat enters its exterior boundary. 

 

4.4. Stenosed artery 

When an artery with a stenosis is modeled, geometrical modeling plays the 

main role. Many different geometrical models were proposed. A trapezoidal 

shape of the stenosis was proposed by Jung et al. [218]. Dash et al. [219] used a 

sinusoidal function, while a bell-shaped Gaussian function was used by Liao et 

al. [220]. Longa et al. [221] used two integrated Gaussian functions at a certain 

distance, with a straight segment between them in order to have a smooth 

stenosis. Another function was based on a cosinusoid [222]. Differences among 

various stenosis geometries are resumed in Fig. 95. Different stenosis models 

have  been  applied for  the same case.  Even  if there are some little differences,  
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Fig. 95. Some geometrical models of the stenosis shape. 

 

the stenosis shapes are almost the same. In this study, a cosinusoidal stenosis 

shape is used, that will be described in the following sub-section. 

 

4.4.1. Mathematical model 

The geometrical model used in the following is similar to the one described 

in the previous section. The length of the artery is assumed to be equal to 22.32 

cm [73]. An axisymmetric stenosis is modeled with the following cosinusoidal 

function [222]: 
 

 
1 1 cos

2

st

lumen lumen st

z zr

r r z

  
   

 
                        (85) 

 

that is valid for –z0 ≤ (z – zst) ≤ z0. The dimensionless parameter  that takes into 

account the severity of the stenosis. The subscripts 0 and st refer to the axial 

coordinate on the centerline of the stenosis, that is also the minimum lumen 

cross section, and to the distance between the center of the stenosis and its 

beginning, respectively. The stenosis severity parameter is correlated to the 

stenosis area reduction (Eq. (58)) with the following equation: 
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In this study, two values,  = 1/2 and  = ¼, are investigated, in order to 

analyze the effects of a mild stenosis (43%) and of a severe stenosis (75%). The 

fibrous cap formed during the atherosclerosis process is also accounted for in 

the geometrical model, because of its primary role. Its thickness is assumed to 

be 65 m, above which the fibrous cap is considered as thin [223], and its 

effective diffusivity is 4.5·10
-13

 m
2
/s [223]. 

Governing equations are essentially the same as those of the mathematical 

model in the previous section. A Newtonian model is referred to. 

Thermodiffusion effects are considered, since the aim of this study is to analyze 

hyperthermia effects on a stenosed artery. Equations (3c), (4d) and (8) are 

employed for the mass, momentum and species transport through the lumen, 

respectively. Equation (8) is taken in its stationary form, with r = 0. For the 

arterial wall, Eqs. (12c), (14b), (24) and (27) are employed for mass, 

momentum, energy and solute, respectively. Equations (14b), (24) and (27) are 

taken in their stationary form. Forchheimer term and body forces are neglected 

in the momentum equation. Thermophysical properties and closing coefficients 

are resumed in Table 7. Boundary conditions, the same as those of the 

mathematical model, are resumed, together with the geometrical model, in Fig. 

96. 

Because of the complex geometry, a triangular mesh is used to solve 

numerically the governing equations. 

 

 
 

Fig. 96. Boundary conditions for the stenosis problem. 
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4.4.2. Hyperthermia effects 

The present model has been validated comparing predicted temperature 

profiles in the straight part of artery with the analytical solution from Mahjoob 

and Vafai [224] and with numerical results from Chung and Vafai [191]. 

Predictions for the stenosed part of an artery have been compared with results 

by Chung and Vafai [183]. The above said comparisons are presented in Fig. 

97, that shows a good agreement among data. 

Temperature across the arterial wall as a function of the radius, for different 

stenosis severity and stenosis locations, is shown in Figs. 98a and 98b, 

respectively. Figs.98a exhibits a strong dependence of the temperature, on the 

stenosis thickness, that is consistent with differences in thermal Peclet number, 

whose order is O(10
-5

) in regions where there is no stenosis and O(10
-4

) in the 

region with a stenosis. This means that the increasing advective contribution 

makes the temperature profile non linear, as that it in mere conduction is. 

Similar considerations can be made on the effect of the stenosis location in 

Fig.98b. 

Hyperthermia effects on LDL transport are highlitghed in Figs. 99 and 100, 

where the LDL concentration as a function of the radius, for different stenosis 

severities and thermodiffusion coefficients as well as for both external and 

internal heating, is reported in Fig.99. Increasing the thermodiffusion effect 

increases the concentration, especially in the intima layer. Comparing external 

and internal heating modes shows that effects on internal heating are lower, as it 

was found for a straight artery in the previous section. 

LDL concentration as a function of the radius, for different stenosis severity 

and thermal load as well as for both external and internal heating, respectively, 

is reported  in Fig.100. One can notice that the axial  location of the stenosis has  
 

 
Fig. 97. Comparisons with literature data: a) temperature profiles; 

b) LDL concentration profiles across the stenosis. 
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Fig. 98. Temperature across the arterial wall vs. the radius,  

for various: a) stenosis severities; b) stenosis locations. 

 

 
Fig. 99. LDL concentration vs. the radius, for different stenosis severities and 

thermodiffusion coefficients: a) external heating;b) internal heating. 

 

 
Fig. 100. LDL concentration vs. the radius, for different stenosis severity and 

thermal load: a) external heating; b) internal heating. 



Biological systems 
 

 

134 

a negligible effect on mass transport. The thermal load increases the LDL 

concentration in the intima layer; the increase in the external heating is larger 

than that in internal heating. 

Definitely, LDL concentration is increased under hyperthermia loads also in 

a stenosed artery. 

 

4.5. Aorta-iliac bifurcation 

The geometry of the aorta-iliac bifurcation is complicated, because of the 

bifurcation. Both for males and females it was exhaustively described by Shah 

et al. [225]. They found that the abdominal aorta has an asymmetrical left lateral 

orientation, which implies a longer right common iliac, a smaller left take-off 

angle, and a smaller right radius of curvature at the bifurcation. Measurements 

on eleven Asian people were performed by Ganananda Nanayakkara et al. 

[226]. Studies on the bifurcation exact position and its local geometry were 

recently carried out by Deswal et al. [227]. They remarked that the geometry of 

the aorta-iliac is influenced by many parameters, that depend on sex and other 

factors. The gender-related aorta-iliac effects on macromolecule transport were 

investigated by Khakpour and Vafai [187]. 

 

4.5.1. Mathematical model 

The aorta-iliac bifurcation geometry, which this study refers to, is represented in 

Fig. 101. Its geometrical features are obtained with the following procedure, 

also used by Khakpour and Vafai [187]. Making reference to the anatomical 

data from Shah et al. [225], the mean values of the geometrical parameters 

reported for the male cases are considered. The lumen diameter of the aorta is 

2.1 cm; the length is 5.0 cm. The lumen diameter of the right common iliac is 

1.28 cm; its length is 6.1 cm. The lumen diameter of the left common iliac is 

1.24 cm; it length is 5.8 cm. Both the right and the left take-off angles are 40°. 

Numbers #1 and #2 refer to the right and left iliac arteries, respectively. 

Governing equations, thermophysical properties, closing coefficients and 

boundary conditions are the same as those of the mathematical model, used in 

the non-Newtonian analysis of the straight artery. A 2-D model is used in the 

present analysis. Thermophysical properties and closing coefficients are taken 

from Table 7. Governing equations are solved with the finite element method, 

and a triangular mesh was chosen with a larger number of elements than for the 

straight artery, since the geometry is more complicated and flow recirculation 

may occur. Grid independence and relative tolerance have been checked on the 

concentration polarization along the lumen/endothelium interface. 
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Fig. 101. Geometry of the aorta-iliac bifurcation. 

 

4.5.2. Non-Newtonian effects 

Dimensionless velocity as a function of the radius, at various axial 

coordinates is reported in Fig.102. We can remark that the less the distance from 

 
 

Fig. 102. Dimensionless velocity vs. the radius, at various axial coordinates. 
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the bifurcation the larger the flatness of velocity distribution in the cross section 

of the artery. The slight asymmetry on the right side depends on the larger blood 

flow rate entering the right common iliac. 

Wall shear stress and LDL concentration along the lumen/endothelium 

interface, for the Newtonian model and various Reynolds numbers, are 

presented in Fig.103. The Reynolds number is Re = 2 um rlumen/. The figure 

shows that wall shear stresses increase with increasing Reynolds number. As to 

the right iliac, they slightly increase upstream of the curve, attaining a 

maximum at the point A, where the bifurcation begins. WWS decrease in the 

curved region and act in the opposite direction for higher Reynolds numbers. 

This causes flow recirculation, exhibited in Fig. 104, where velocity vector and 

LDL concentration in the right bifurcation region are reported. No recirculation 

occurs in the region of the left iliac, because of the smaller variation of the 

artery geometry. The concentration polarization decreases at increasing 

Reynolds numbers. Upstream of the bifurcation, the concentration increases due 

to the polarization effect; then it slightly decreases in the bent, because of the 

flow deceleration; finally, it increases again. The LDL concentration attains a 

maximum where recirculation occurs, due to the change in the sign of the WSS, 

that  causes  a solute stagnation. A similar  behavior for  stenosis  was found by  

 

 
 

 

Fig. 103. Wall shear stress and LDL concentration along the lumen/endothelium 

interface, for the Newtonian model and various Reynolds numbers. 



Biological systems 
 

 

137 

 
 

Fig. 104. Velocity vector and LDL concentration in the right bifurcation region. 

 

Nematollahi et al. [228]. Finally, Figs. 103a and 103b, as well as Figs.103c and 

103d) show that, for Newtonian fluids, there is an inverse relationship between 

WSS and concentration profiles. 

Wall shear stress and LDL concentration along the lumen/endothelium 

interface, for various rheological models, Reynolds numbers and for the right 

and left iliac arteries are reported in Figs.105 - 108. Figures 105 and 106 show 

that, apart from the aorta region, wall shear stresses, at each value of the 

Reynolds number, both in the right and left iliac arteries, are independent of the 

rheological model. Different viscosities are the reason why in the aorta region 

wall shear stresses depend on models. Figure 105 show that recirculation flow 

in the right iliac artery occurs in Newtonian fluid for Re = 1200 and Re=1500 as 

well as Power-law and Carreau-Yasuda non-Newtonian models for Re=1500. 



Biological systems 
 

 

138 

 
 

Fig. 105. Wall shear stresses along the lumen/endothelium interface of the right 

iliac artery, for various rheological models and Reynolds numbers. 

 

LDL concentrations predicted by all rheological models are similar, apart 

from   the   cases  at  Re = 900, 1200,  1500   in  the   right   iliac  artery,   where  

 

 
 

Fig. 106. Wall shear stresses along the lumen/endothelium interface of the left 

iliac artery, for various rheological models and Reynolds numbers. 
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Fig. 107. LDL concentration along the lumen/endothelium interface of the right 

iliac artery, for various rheological models and Reynolds numbers. 
 

recirculation occurs. This means that predictions are less accurate when a 

Newtonian model is used for low shear stress regions, like bifurcations or other 

particular geometries. 
 

 
 

Fig. 108. LDL concentration along the lumen/endothelium interface of the left 

iliac artery, for various rheological models and Reynolds numbers. 
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In conclusions, Newtonian models may not predict accurately LDL 

accumulation when particular geometries with low WSS are analyzed. 
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CONCLUSIONS 

Transport in porous media has been analyzed in the present thesis. Two 

classes of porous media have been chosen for this study: open-cell foams and 

biological systems, with reference to the low density lipoprotein (LDL) 

transport through the arterial wall. Heat transfer and pressure drop in open-cell 

foams have been investigated both on micro and macro scales. Experiments and 

numerical simulations on real and ideal foams have been carried out to solve the 

problem at microscale; numerical simulations have been developed for foam-

based volumetric solar receivers and heat sinks at macroscale. LDL transport 

has been analyzed by using a multi-layer model, that studies the arterial wall 

layers with the volume-averaged porous media governing equations. Many 

aspects like non-Newtonian, hypertension and hyperthermia effects have been 

analyzed by using either an numerical or an analytical approach. 

In the open-cell foams microscale analysis, experiments have been carried 

out on aluminum open-cell foam samples to analyze pressure drop and 

convection heat transfer. Porosity and PPI effects on pressure drop and its 

closing coefficients have been studied. Results showed that the PPI effect is 

much higher than the porosity one. In particular, pressure drop increases with 

PPI, while it slightly increases with porosity. Preliminary transient experiments 

on volumetric heat transfer coefficients have been also presented, for different 

velocities of the fluid. They showed that the higher the velocity the higher the 

decrease of the transfer coefficient with the time. Numerical approaches for 

pressure drop and convection heat transfer have been used for both real and 

ideal foams samples. Three real foams samples, with equal PPI and different 

porosities, have been investigated. Their geometry has been reconstructed by 

using x-ray Computed Tomography (xCT). After a comprehensive study on 

their morphology, pressure drop and volumetric heat transfer coefficients have 

been evaluated for a Representative Volume Element (RVE) of the scanned 

sample by using a finite-element scheme. Ideal foam samples have been 

reconstructed with reference to the tetrakaidechadric Kelvin’s foam model. The 

specific surface area has been correlated to the porosity and cell diameter. 

Thermally developing effects have been analyzed by simulating an array of 

Kelvin’s cells. Three different regions along the flow direction were 

distinguished: an impinging region where the heat transfer coefficient increases, 

a thermally developing region where the heat transfer coefficient decreases, and 

a thermally developed region where the heat transfer coefficient is uniform. The 

extension of the first two regions increases at larger Reynolds numbers and 

lower porosities. A correlation for the thermally developed Nusselt number has 
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been obtained. The pore-scale analysis of Nusselt number in a single thermally 

developed cell showed that the convection heat transfer becomes periodic at 

very low scales. The effects of strut shape on convection heat transfer and 

pressure drop have been evaluated for a single cell, by changing the strut shape 

with a MATLAB-based in-house code. It was found that the more accurate the 

strut shape the closer the ideal model results to the real model ones. 

The thermo-fluid-dynamic of open-cell foams engineering applications, such 

as volumetric receivers and foam-based heat sinks, has also been analyzed by 

using a macroscopic porous media approach. Various foam morphologies of the 

volumetric receivers have been analyzed. Results showed that higher porosities 

and lower cell sizes increase the so-called volumetric effect and, consequently, 

the efficiency of the receivers. The fluid outlet temperature was almost 

independent of the morphological parameters of the investigated foams. Two 

configurations of the foam-based heat sinks have been investigated. In the first, 

inserts of foam are placed between fins; in the second the sink is made up only 

by the open-cell foam. The finned metal foam heat sink enhances heat transfer 

more than the metal foam heat sink. Parametric analysis for various geometries 

and foam morphologies has been accomplished, in order to find the best 

configuration for both heat transfer and pressure drop. 

As far as the LDL transport through an arterial wall is concerned, different 

geometries have been analyzed: a straight artery, a stenosed artery and the 

aorta-iliac bifurcation. The accumulation through the arterial wall of a straight 

artery has been analyzed either numerically or analytically. Non-Newtonian 

fluid effects on mass transport have been investigated numerically under 

hypertension conditions, for both medium and large arteries. Differences on 

LDL concentration polarization along the lumen/wall interface between 

Newtonian and non-Newtonian models were always less than about 3%; 

therefore, a Newtonian model may be an acceptable approximation in modeling 

LDL transport. Differences among depositions through the arterial wall were 

less than 1% for a healthy case, reaching a value mainly less than the 10% for 

the highest transmural pressure value, that can still be considered negligible. 

Analytical approaches have been performed to solve the mass transport through 

the wall under both hypertension and hyperthermia effects. Hyperthermia 

effects on mass transport were included by considering the Ludwig-Soret effect. 

Both hypertension and hyperthermia increased mass transport. However, it was 

also noticed that hyperthermia can sometimes reduce the concentration when 

the heating load is applied from the interior of the wall, in particular for low 

heat loads. 
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The stenosed artery has been studied by using a cosinusoidal function to 

model its geometry; different stenosis severities have been considered. A 

numerical approach based on a finite-element scheme has been chosen. The 

study of hyperthermia effects on mass deposition showed that hyperthermia 

increases LDL accumulation. The aorta-iliac bifurcation has been investigated 

numerically. Various rheological models, for different Reynolds numbers, have 

been compared. Differences among the various rheological models were 

negligible when no flow recirculation occurred. One can conclude that a non-

Newtonian fluid model must be preferred when geometries are complicated and 

wall shear stresses are low. 
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