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Abstract

Sterile neutrino, in addition to providing neutrino mass generation, depend-
ing on its mass scale, may have many important cosmological implications.
eV sterile neutrinos may explain the dark radiation problem (i.e. additional
relativistic density quantified by the effective number of neutrino species)
and the experimental data of short baseline experiments, a KeV sterile neu-
trino may be a warm dark matter candidate and furthermore sterile neutrinos
may also provide baryogenesis through leptogenesis. The main way of ob-
taining a significant abundance of sterile neutrinos is through their mixing
and oscillations with the active neutrinos.

Active-sterile neutrino oscillations may have considerable effects in the
early universe. One or more than one sterile neutrino may exist avoiding
the cosmological constraints only by suppressing the thermalization of sterile
neutrinos in the early universe and/or by considering non-standard cosmo-
logical theories.

Two different mechanisms to suppress the sterile neutrinos thermalization
and their eventual large production have been studied. In particular, the ex-
istence of neutrino asymmetries or the introduction of secret interactions
among sterile neutrinos. The existence of sterile neutrinos not fully thermal-
ized with the active species in the early universe in principle is compatible
with Big-Bang Nucleosynthesis data. It is also compatible with cosmolog-
ical measurements of the Cosmic Microwave Background and Large-Scale
Structures, if the neutrino masses do not exceed 1 eV.

However, the scenarios of secret self-interactions studied so far are not
suffcient to reconcile sterile neutrinos with cosmology. The new picture, that
we will introduce consists in assuming the same secret interactions with a
light pseudoscalar as the source of sterile neutrino production by oscilla-
tions (when they involve active species) and, in addition, along with the
self-interactions we will also consider interactions between sterile neutrino
and pseudoscalar particle in the sterile sector.



Introduction

The concept of sterile neutrino was introduced in the late 1960s by Pon-
tecorvo in order to discuss neutrino oscillations. This particle is a neutral
fermion which does not take part in weak interactions, except those induced
by mixing with active neutrinos, and with opposite chirality with respect to
the left-handed neutrino that participates in weak interactions.

The postulated existence of right-handed neutrinos is theoretically and
experimentally well-motivated. From the theoretical point of view, in fact,
any other known fermion has been observed with left and right chirality. Fur-
thermore, right-handed neutrinos can explain in a natural way, through the
seesaw mechanism, the observed extremely small masses of the active neu-
trinos compared with those of charged fermions in the standard model. The
seesaw mechanism leaves the masses of singlet neutrinos as free parameters.
They could have any value between 1015 GeV and less than 1 eV. This allows
to choose these parameters so that they can account for certain phenomena
and anomalies beyond the Standard Model, such as providing a dark matter
candidate or a mechanism for baryogenesis or explaining various short base-
line anomalies. In this latter case, the seesaw scale corresponds to the scale
of light sterile neutrinos. Although right-handed neutrinos are sterile under
weak interactions, they may participate in Yukawa interactions involving the
Higgs boson or in interactions involving new physics beyond the standard
model.

From the observational point of view, there exist a few anomalies in ex-
perimental results that find no explanation in a three-flavor active neutrino
pattern with nonzero mixing, even though this scheme successfully accounts
for most of the results of oscillation experiments designed to measure solar,
atmospheric, accelerator and reactor neutrinos.
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The three-neutrino mixing scheme was first challenged in 1995 by the
LSND experiment. The observation of a signal of short-baseline ν̄µ → ν̄e os-
cillations, led to assume the existence of one or more squared-mass differences
much larger than the solar and athmospheric ones. The results of subsequent
experiments have effectively confirmed the LSND observations, thus reviving
interest in the possible existence of one or more sterile neutrinos, with mass
in the eV scale, that can generate the squared-mass differences observed in
short-baseline oscillations.

Active-sterile neutrino oscillations may have considerable effects in the
early universe. They may excite additional light particles into equilibrium,
thus affecting the expansion rate of the universe. They may generate neutrino-
antineutrino asymmetry and distort neutrino energy spectrum. Active-sterile
neutrino oscillations after νe decoupling, may distort neutrino energy spec-
trum and deplete neutrino number density. In particular νe − νs oscillations
can affect the weak interaction rates of νe and hence the Big-Bang Nucle-
osynthesis. The primordial nucleosynthesis outcome indeed depends on the
expansion rate of the universe when the universe is still radiation-dominated
and therefore it depends on the effective number of neutrino species Neff . A
larger Neff produces a larger expansion rate of the universe, which in turn
leads to an earlier n/p freeze-out, leading to a larger relic neutron abundance,
and thus, to a higher production of 4He. Since nucleosynthesis of light el-
ements is based on the rate of weak reactions, the neutron lifetime τn is
another relevant parameter, whose accurate estimate becomes fundamental.

Unlike the BBN, probes of the late-time inhomogeneities of the universe,
such as the CMB anisotropies and the LSS distribution, are not sensitive
to the flavor content of the neutrino sector but only to its contribution to
the stress-energy tensor. Additional relativistic energy density, due to a
thermal population of light sterile neutrinos, affects the CMB anisotropies
primarily for its effects on the age around matter-radiation equality. A rest
mass significantly below the temperature of the thermal population around
matter-radiation equality would alter the equality redshift. As for large scale
structures, if massive neutrinos have not yet become nonrelativistic at the
time of radiation/matter equality, this transition will be delayed causing
suppression of the LSS matter power spectrum on small scales.

A fully thermalized population of sterile neutrinos appears to be in con-
flict with current BBN data and other cosmological observables. In order
to relieve this tension, different mechanisms to suppress the sterile neutrino
thermalization and their eventual large production have been studied. In par-
ticular, the existence of neutrino asymmetries or the introduction of secret in-
teractions among sterile neutrinos. Several models of secret self-interactions
have been proposed. None of these models seems to be able to provide sterile
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neutrinos with the appropriate interactions to evade all the cosmological con-
straints and respond to the problem of the observed anomalies. This leads to
the conclusion that the scenarios of secret self-interactions studied so far are
not sufficient to reconcile sterile neutrinos with cosmology. This motivates
the construction of an improved model, which consists in assuming the same
secret interactions with a light pseudoscalar as the source of sterile neutrino
production by oscillations with the active species and in addition introduc-
ing, along with the self-interactions νs− νs, further interactions in the sterile
sector νs − φ.

This thesis is organized as follows. Chapter 1 provides an overview of
neutrino physics, where the basics of the Standard Model of the elementary
particles are presented. Chapter 2 introduces the problem of neutrino masses
within the context of the Standard Model and beyond. The discussion on
neutrino mass is aimed at introducing the related neutrino properties, such
as mixing and oscillations, magnetic moments and decays, as well as the
nature itself of neutrinos as Dirac or Majorana particles and the existence
of a right-handed component. In Chapter 3 the plane-wave derivation of the
neutrino oscillation probability is reviewed with the main phenomenological
aspects of neutrino oscillations in vacuum and in matter, in particular the
anomalies observed in some oscillation experiments. Along with the three-
active neutrino oscillations framework, extended schemes comprising one or
more sterile neutrinos are also introduced as viable solutions to the observed
anomalies. In Chapter 4 the neutrino role during the different stages of the
universe is reviewed. Neutrinos play an important role in the evolution of the
universe from the very beginnings to the current state. In this chapter, we will
present an overview of the consequences and related constraints associated
with the presence of sterile species along with the active ones in the early
stages of the universe and in supernovae environments. Chapter 5 is focused
on the effective number of neutrino species Neff , since it parameterizes the
shape of relic neutrino spectra and their contribution to radiation. In this
chapter the case of additional sterile species and their oscillations with active
species is discussed for their possible effects on Big Bang nucleosynthesis. An
accurate estimate of the neutron lifetime is provided since the neutron decay
process affect the n/p ratio at the onset of primordial nucleosynthesis as
well as the light elements abundances produced in the standard Big Bang
nucleosynthesis.

In Chapter 6 a new model of sterile neutrino production and secret in-
teractions is introduced in order to explore the possibility of reconciling the
sterile neutrino with mass in the eV scale with cosmololgy. In Chapter 7
some conclusions and prospects are drawn.
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1
An Overview of Neutrino Physics

The existence of neutrinos was postulated in 1930 by W. Pauli to explain the
continuous spectrum of β-decay. The assumption that in β-decay together
with the electron a neutral penetrating particle, not yet detected in experi-
ments, is produced such that the total released energy is shared between the
electron and the new particle was the alternative explanation to assuming
that in β-decay the energy is not conserved. This neutral particle (electron
antineutrino) was discovered only 26 years later, in 1956, by C.L. Cowan and
F. Reines, during an experiment performed at the Savannah River fission
reactor, which showed reactions induced by free neutrinos.

The discovery of the parity violation in the β-decay and other processes of
weak interactions led to a two-component theory of massless neutrinos, left-
handed neutrinos and right-handed antineutrinos. They were included into
the V −A theory of weak interactions in 1958 and into the Standard Model
(SM) of electroweak interactions in 1967. This theory was soon confirmed
by experiments, which proved that neutrino is a left-handed particle. Since
no right-handed neutrino or left-handed antineutrino takes part in the weak
interactions, neutrinos were assumed to be massless in the SM. However, as it
does not violate any basic symmetry of this model, the SM can be extended
by introducing an isospin singlet νR (ν̄L) for neutrinos like all other fermions
(Bilenky 2010; Z.-Z. Xing et al. 2011). While the SM is a renormalizable
theory, it is necessary to go to non-renormalizable theories in order to describe
physics beyond the SM. This is usually done assuming the SM as an effective
theory.

In the late 1950s Pontecorvo (Pontecorvo 1957; Pontecorvo 1958) sug-
gested the possibility that neutrino flavor eigenstates are a superposition of
mass eigenstates and consequently subjected to the phenomenon of oscilla-
tions, analogously to K0−K̄0. Neutrino oscillation is a quantum mechanical
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interference effect generated by the different propagation of different mass
eigenstates, which are produced and detected coherently because of their very
small mass differences. This means that the flavor composition of a state can
change with time. Since in the late 1950s only the electron neutrino was
known, in order to discuss neutrino oscillations, Pontecorvo introduced the
concept of a sterile neutrino (Pontecorvo 1968), that is, a neutral fermion
which does not take part in weak interactions, as opposed to the normal left-
handed neutrinos that participate in weak interactions, usually called active.
Experimental evidence in favor of neutrino oscillation confirmed that neu-
trinos are massive particles. This has important cosmological consequences
as it affects the expansion rate of the universe and also has consequences on
the formation of structures in the early universe and their growth on certain
length scales (Giunti & Kim 2007; Lesgourgues et al. 2013; Mohapatra &
Pal 2004).

1.1 Neutrino in Elementary Particle Physics

The electroweak part of the SM Lagrangian, which determines neutrino in-
teractions in the SM, is related to the SU(2)L × U(1)Y part of the SM of
electroweak and strong interactions gauge group SU(3)C ×SU(2)L×U(1)Y ,
where C, L and Y denote colour, left-handed chirality and weak hypercharge.
Interactions and number of vector gauge bosons are uniquely determined by
the gauge group. The gauge bosons are eight massless gluons that mediate
strong interactions, four gauge bosons responsible for electroweak interac-
tions (three massive, W± and Z, and one corresponding to a massless photon)
which are respectively the generators of SU(3)C , SU(2)L and of U(1)Y .

Since there can be a mixing between the neutral gauge bosons of SU(2)L
and U(1)Y , electromagnetic and weak interactions must be treated together.
The symmetry under the color group SU(3)C is unbroken and there is no
mixing between the SU(3)C and SU(2)L × U(1)Y sectors thus, in the SM,
electroweak interactions can be studied separately from strong interactions.

The symmetry group SU(2)L, called weak isospin, has three generators
which satisfy the angular momentum commutation relations:

[Ia, Ib] = iεabcIc a, b = 1, 2, 3 (1.1)

where εabc is the Levi-Civita totally antisymmetric tensor, with ε123 = 1. In
the two-dimensional representation of the weak isospin group the generators
are Ia = σa/2, where σ1, σ2 and σ3 are the three Pauli matrices.
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The symmetry group U(1)Y , called hypercharge, is generated by the hy-
percharge operator Y , which is connected to the third component I3 and the
charge operator Q by the Gell-Mann-Nishijima relation:

Q = I3 +
Y

2
. (1.2)

The above relation implies the unification of weak and electromagnetic in-
teractions and fixes the action of the hypercharge operator on the fermion
fields, which is not constrained by the theory, being U(1)Y abelian. Local
gauge invariance is obtained by introducing three vector gauge boson fields
Aaµ (a = 1, 2, 3) and one vector gauge boson field Bµ associated with the
three generators Ia (a = 1, 2, 3) of the group SU(2)L and with the generator
Y of the group U(1)Y , respectively.

generation quarks leptons
1st u νe

d e−

2nd c νµ
s µ−

3rd t ντ
b τ−

Table 1.1: Generations of quarks and leptons in the SM.

For the three generations of leptons and quarks currently known are defined
three generations (in Table 1.1) of left-handed weak isospin doublets. The
right-handed components of quarks and leptons are all SU(2)L singlets, ex-
cept for the three neutrinos, assumed to be massless Weyl particles in the
SM, hence only the left-handed components take part in weak interactions
(see Table 1.2 for the correspondent electroweak quantum numbers).

1.2 The Electroweak Lagrangian

The SM Lagrangian density, invariant under the local symmetry group SU(2)L×
U(1)Y , written in terms of the fermion fields, the gauge boson fields and a
Higgs doublet Φ(x) for the three generations of leptons and quarks, has the
form:
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I I3 Y Q

LeL ≡
(
νeL
eL

)
LτL ≡

(
νµL
µL

)
LτL ≡

(
ντL
τL

)
1/2

1/2
−1/2

−1
0
−1

leR ≡ eR lµR ≡ µR lτR ≡ τR 0 0 −2 −1

Q1L ≡
(
uL
dL

)
Q2L ≡

(
cL
sL

)
Q3L ≡

(
tL
bL

)
1/2

1/2
−1/2

1/3
2/3
−1/3

qUuR ≡ uR qUcR ≡ cR qUtR ≡ tR 0 0 4/3 2/3

qDdR ≡ dR qDsR ≡ sR qDbR ≡ bR 0 0 −2/3 −1/3

Table 1.2: Eigenvalues of the weak isospin I and its third component I3, of
the hypercharge Y , and of the charge Q of the fermion doublets and singlets.

L = i
∑

α=e,µ,τ

L′αL /DL
′
αL + i

∑
α=1,2,3

Q′αL /DQ
′
αL

+ i
∑

α=e,µ,τ

l′αR /Dl
′
αR + i

∑
α=d,s,b

q′DαR /Dq
′D
αR + i

∑
α=u,c,t

q′UαR /Dq
′U
αR

− 1

4
~Fµν · ~F µν − 1

4
BµνB

µν + (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2

−
∑

α,β=e,µ,τ

(
Y ′lαβ L

′
αLΦl′βR + Y ′l∗αβ l

′
βRΦ†L′αL

)
−
∑

α=1,2,3
β=d,s,b

(
Y ′Dαβ Q

′
αLΦq′DβR + Y ′D∗αβ q′DβRΦ†Q′αL

)
−
∑

α=1,2,3
β=u,c,t

(
Y ′Uαβ Q

′
αL (i σ2Φ∗) q′UβR + Y ′U∗αβ q′UβR

(
−iΦTσ2

)
Q′αL

)

(1.3)

where the indices α, β run over the three generations of fermions. The primes
on the fermion fields are due to the fact that the fields, listed in Table 1.2, in
the above equation (1.3) are meant as having no definite masses, but as linear
combinations of the fields with definite mass. The Higgs doublet quantum
numbers are:
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Φ(x) ≡
(

Φ+(x)
Φ0(x)

)
I = 1/2 I3 =

1/2
−1/2

Y = +1 Q =
1
0

(1.4)

and the covariant derivative Dµ which contains two independent coupling
constants, g and g′, associated respectively with the group SU(2)L and
U(1)Y , is defined as:

Dµ ≡ ∂µ + i g ~Aµ ·
~σ

2
+ i g′Bµ

Y

2
(1.5)

The first two lines of equation (1.3) contain the kinetic and electroweak
terms for leptons and quarks, the self-couplings of the gauge bosons and the
Lagrangian of the Higgs sector which generates the spontaneous symmetry
breaking. The last two lines describe the Higgs–fermion Yukawa interactions,
with complex couplings Y ′lαβ, Y ′Dαβ and Y ′Uαβ , which are responsible for the
generation of charged leptons and quark masses and mixing.

The kinetic and self-interacting term for the gauge bosons is expressed
by means of the electroweak tensors ~F µν ≡ (F µν

1 , F µν
2 , F µν

3 ) and Bµν , where

F µν
a ≡ ∂µAνa − ∂νAµa − g

3∑
b,c=1

εabcA
µ
bA

ν
c (1.6)

Bµν ≡ ∂µBν − ∂νBµ (1.7)

Since the left-handed and right-handed components of the fermion fields have
different gauge transformation properties, the introduction of mass terms
proportional to fLfR + fRfL in the Lagrangian is forbidden by the gauge
symmetry. For charged leptons and quarks the generation of fermion masses
in the SM is achieved through spontaneous symmetry breaking via the Higgs
mechanism.

As for neutrinos, equation (1.3) shows that in the SM electroweak theory
there is no right-handed neutrino state, νR, which would be a singlet under
the weak isospin group of transformations. This implies that, differently
from charged leptons and quarks, there are no mass terms that appear as a
consequence of symmetry breaking and active neutrinos νL remain massless
in the the SM.

The expansion of the covariant derivatives in the first line of equation (1.3)
yields the charged-current (CC) and neutral-current (NC) weak interaction
Lagrangian densities,
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L(CC)
I = − g

2
√

2
JµWWµ + h.c., (1.8)

where the charged current is:

JµW = JµW,L + JµW,Q

= 2
(
ν ′eLγ

µe′L + ν ′µLγ
µµ′L + ν ′τLγ

µτ ′L

+ u′Lγ
µd′L + c′Lγ

µs′L + t′Lγ
µb′L
)
.

(1.9)

The gauge boson field in equation (1.8), defined as W µ ≡ (Aµ1 − iA
µ
2)/
√

2,
annihilates a W+ boson and creates a W− boson.

And as for the NC Lagrangian density,

L(NC)
I = − g

2 cos θW
JµZZµ + h.c., (1.10)

the neutral current is:

JµZ = JµZ,L + JµZ,Q

= 2
(
gνLν

′
αLγ

µν ′αL + glLl
′
αLγ

µl′αL + glRl
′
αRγ

µl′αR

+ gUL q
′U
αLγ

µq′UαL + gURq
′U
αRγ

µq′UαR + gDL q
′D
αLγ

µq′DαL + gDR q
′D
αRγ

µq′DαR

) (1.11)

The quantum electrodynamic (QED) Lagrangian, which describes the elec-
tromagnetic interactions, is obtained as part of the NC Lagrangian, with the
electromagnetic field Aµ expressed as a linear combination of Aµ3 and Bµ.
The orthogonal one defines the vector boson field Zµ and is given by a rota-
tion in the plane of the Aµ3 and Bµ fields through the weak mixing angle (or
Weinberg angle) θW ,

Aµ = sin θWA
µ
3 + cos θWB

µ (1.12)

Zµ = cos θWA
µ
3 − sin θWB

µ (1.13)

The gauge boson Aµ, associated with the electromagnetic potential of the
photon, remains massless, since it corresponds to an unbroken U(l) symmetry.
The related gauge generator, the electric charge, is given by Q (1.2).
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Inserting the expressions of the gauge fields in the NC Lagrangian one
finds an important relation, which connects the gauge coupling constants g
and g′ with the weak mixing angle θW and the elementary electric charge:

e = g sin θW = g′ cos θW ⇒ tanθW =
g′

g
(1.14)

The couplings gfA, with f = ν, l, U,D and A = L,R, are given by the relations:

gfL = If3 −Qf sin2 θW (1.15)

gfR = −Qf sin2 θW (1.16)

where Qf is the fermion electric charge in units of the elementary electric
charge e and If3 is the third component of the weak isospin of the fermion,
the values of which are summarized in Table 1.2.

Since neutrinos are neutral particles, they do not have a coupling to the
electromagnetic field. On the other hand, due to the mixing of the gauge
fields Aµ3 and Bµ in the above equations (1.12) and (1.13), the weak NC in-
teractions of charged fermions involve not only their left-handed component,
but also the right-handed one, with a strength proportional to the electric
charge and to sin2θW .

Whenever the typical range for energies and momenta carried by the
fermions is much smaller than the mass of the gauge fields W± and Z (∼ 100)
GeV, the gauge bosons produced in the trilinear vertex can only propagate
as virtual particles. In the low energy limit, the Lagrangian densities L(CC)

I

and L(NC)
I can be written for the effective theory at the tree-level as:

L(CC)
eff = −GF√

2
Jµ†W JµW (1.17)

L(NC)
eff = −2

GF√
2
Jµ†Z JµZ (1.18)

where,

GF ≡
√

2g2

8m2
W

= 1.166× 10−5GeV −2 (1.19)

is the Fermi constant, with the W boson mass mW = mZ cos θW . The gauge
boson masses appear to exhibit a custodial symmetry in the relation between
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their masses, in the limit of U(1)Y coupling g′ going to zero. That is, mW =
mZ as g → 0, whereas this relation changes to mW = 0.88mZ in the presence
of nonzero U(1)Y coupling.

The interaction Lagrangian densities (1.17) and (1.18) can describe a
number of purely four-lepton processes, such as the neutron decay process
n → p + e− + ν̄e, which was first studied by Fermi, in the low energy limit,
via a four-fermion Lagrangian (1.17). The β − decay process is particularly
important because it affects the neutron to proton ratio n/p at the onset of
primordial nucleosynthesis, as we shall see in chapter 4.

1.3 Spontaneous Symmetry Breaking: the Higgs Mech-
anism and Fermion Masses

In quantum field theories with symmetries, the way in which a symmetry
manifests itself is determined by the invariance of Lagrangian and vacuum
state under the symmetry transformations. In the early 1960s, it was real-
ized, through the work of Nambu and Goldstone, that a Lagrangian may be
invariant under a symmetry transformation but the lowest energy state may
not be. If the symmetry is global, the spectrum of the theory contains a
massless particle known as the Nambu-Goldstone boson. Through the works
of Higgs, Kibble, Guralnik, Hagen, Brout and Englert (Higgs, 1964; Guralnik
et al., 1964; Englert & Brout, 1964; Kibble 1967) it became also known that
when it is a gauge symmetry that is spontaneously broken, there will be no
such massless particle as a result. Moreover, the gauge boson corresponding
to broken generators gets mass.

In the SM of particle physics, the Higgs mechanism is essentially the
generation mechanism of mass for the gauge bosons as well as fermions,
through electroweak symmetry breaking. Without the Higgs mechanism all
bosons would be massless, while measurements show that the W±, and Z
bosons actually have relatively large masses (mZ = 91.1876 ± 0.0021 GeV
and mW = 80.385± 0.015 GeV).

The simplest description of the mechanism adds to the SM a quantum
field, the Higgs field, permeating the entire space. Below some very high
temperature, the field causes spontaneous symmetry breaking during inter-
actions. The breaking of symmetry triggers the Higgs mechanism, which
causes the bosons moving through the Higgs-field filled space with which
they interact, to acquire mass.

The dynamics of the Higgs field is governed by the term in the Lagrangian
density:
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LH = (DµΦ)† − V (Φ) = (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2
(1.20)

where Φ is the Higgs field doublet, defined in equation (1.4), with Φ+(x) a
charged complex scalar field and Φ(x) is a neutral complex scalar field.

In the above equation (1.20), the coefficient λ of the quartic self-couplings
of the Higgs fields, must be positive, λ > 0, in order V (Φ) to be bounded from
below, whereas µ2 is assumed to be negative, in order to realize the spon-
taneous breaking of the symmetry SU(2)L × U(1)Y to the gauge symmetry
group of electromagnetic interactions, U(1)Q, associated with the conserva-
tion of the electric charge, which is unbroken.

Neglecting an irrelevant constant ∝ v4 and defining:

v ≡
√
−µ

2

λ
(1.21)

the Higgs potential can be written as:

V (Φ) = λ

(
Φ†Φ− v2

2

)2

(1.22)

which is minimum for Φ†Φ = v2/2. In quantum field theory the minimum of
the potential corresponds to the vacuum state and the quantized excitations
of each field above the vacuum correspond to particle states.

Fermion and vector boson fields (which carry nonzero spin) and charged
scalar fields (which have zero spin) must have a zero value in the vacuum
state, in order to preserve the invariance under spatial rotation and electric
charge conservation. Only neutral scalar fields can have a nonzero value in the
ground state. This is called vacuum expectation value or vev. Evidently the
Higgs fields have a nonzero vev. Since the vacuum state must be electrically
neutral, the vev of the Higgs fields must be due to Φ0:

〈Φ〉 =
1√
2

(
0
v

)
(1.23)

In the unitary gauge, the Higgs doublet takes the form:

Φ =
1√
2

(
0

v +H(x)

)
(1.24)
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where H(x) is a real scalar field, which describes the physical Higgs boson,
obtained by excitations of the neutral Higgs field above the vacuum. By
substitution of (1.24) in the Higgs Lagrangian (1.20) one gets a mass term
for the Higgs boson,

mH =
√

2λv =
√
−2µ2. (1.25)

µ2 is a negative parameter, suitably introduced in the SM, whose value is
not connected to other quantities already measured. Thus, the value of the
mass of the Higgs boson must be determined experimentally since the SM
gives no prediction for it. However, from the experimental value of the Fermi
constant GF and the mass terms for the W and Z gauge bosons in the Higgs
Lagrangian, which yields:

mW =
gv

2
mZ =

gv

2 cos θW
, (1.26)

the resulting value of v is v ∼ 246 GeV.
As for the fermion masses, in the SM they arise as a result of the Higgs

mechanism through the presence of Yukawa couplings of the fermion fields
with the Higgs doublet. Substituting the Higgs doublet in the unitary gauge
(1.24) in the last three lines of equation (1.3), we derive the lepton masses,
starting by those of the charged leptons in the Higgs–lepton part of the
Lagrangian (1.3),

LH,L = −
∑

α,β=e,µ,τ

Y ′lαβ L
′
αLΦ l′βR + h.c., (1.27)

which becomes:

LH,L = −
(
v +H(x)√

2

) ∑
α,β=e,µ,τ

Y ′lαβ l
′
αL l

′
βR + h.c. (1.28)

where the term proportional to the vev of the Higgs doublet of the above
equation (1.28) provides the mass term for charged leptons, while the term
proportional to the Higgs boson field H(x) provides trilinear couplings be-
tween the charged leptons and the Higgs boson.

The matrix Y ′l of Yukawa couplings is a complex 3× 3 matrix, generally
not diagonal in the three-generations space, consequently the fields e′, µ′ and
τ ′ do not have definite masses. In order to find the charged lepton fields with
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definite mass, it is necessary to diagonalize Y ′l. This can be done through a
biunitary transformation:

V l†
L Y ′l V l

R = Y l with Y l
αβ = ylαδαβ, α, β = e, µ, τ (1.29)

where VL and VR are appropriate 3 × 3 unitary matrices by which the left-
handed and right-handed components of the charged lepton fields with defi-
nite masses are defined:

V l†
L l′L = lL V l†

R l′R = lR (1.30)

After performing the diagonalization (1.29) the Higgs–lepton term of the
Lagrangian takes the form:

LH,L = −
(
v +H(x)√

2

)
lLY

llR + h.c. = −
∑

α=e,µ,τ

ylαv√
2
lα lα −

∑
α=e,µ,τ

ylα√
2
lα lαH.

(1.31)

In the above equation (1.31), lα ≡ lαL + lαR are the fields of the charged
leptons with definite masses given by:

mα =
ylαv√

2
α = e, µ, τ (1.32)

where the coefficients ylα are unknown parameters of the SM, so that the
masses of the charged leptons cannot be predicted and must be obtained
from experimental measurements.

Similar reasoning can be applied to the Higgs–quark part of the La-
grangian (1.3) expressed in the unitary gauge,

LH,Q = −
(
v +H(x)√

2

)( ∑
α,β=d,s,b

Y ′Dαβ q
′D
αL q

′D
βR +

∑
α,β=u,c,t

Y ′Uαβ q
′U
αL q

′U
βR

)
+ h.c.

(1.33)

The terms proportional to v are mass terms for the quarks. As in the case
of the leptons, it is necessary to proceed by diagonalizing the complex ma-
trices of Yukawa couplings Y ′D and Y ′U , which are in general not diagonal,
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in order to find the massive quark fields. Thus, performing the biunitary
transformations by means of appropriate 3 × 3 unitary matrices, V D

L , V D
R ,

V U
L and V U

R :

V D†
L Y ′DV D

R = Y D with Y D
αβ = yDα δαβ, α, β = d, s, b (1.34)

V U†
L Y ′UV U

R = Y U with Y U
αβ = yUα δαβ, α, β = u, c, t (1.35)

and defining the transformed quark fields as:

V D†
L q′DL = qDL V D†

R q′DR = qDR (1.36)

V U†
L q′UL = qUL V U†

R q′UR = qUR (1.37)

the mass term in mathcalLH,Q reads:

LH,Q =−
(
v +H(x)√

2

)(
qDL Y

DqDR + qULY
UqUR

)
+ h.c.

= −
∑

α=d,s,b

yDα v√
2
qDα q

D
α −

∑
α=u,c,t

yUα v√
2
qDα q

D
α

−
∑

α=d,s,b

yDα√
2
qDα q

D
αH −

∑
α=u,c,t

yUα√
2
qUα q

U
αH

(1.38)

where qD,Uα ≡ qD,UαL
+qD,UαR are the fields of quarks having definite mass, whose

masses are given by:

mα =
yDα v√

2
α = d, s, b (1.39)

mα =
yUα v√

2
α = u, c, t. (1.40)

The coupling constants yD,Uα are unknown parameters of the SM, as well as
those of leptons, therefore the quark masses must be determined by experi-
mental measurements, as they cannot be predicted.
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Since all quarks have different masses, D or U quarks cannot be arbitrarily
rotated in the hadronic weak charged current:

JµW,Q = 2qUαLγ
µ
(
V U†V D

L

)
αβ
qDβL. (1.41)

Hence, the quark weak charged current does not depend separately on the
matrices V U

L and V D
L , but only on their product:

V U†V D
L ≡ V. (1.42)

The unitary matrix V (1.42) is the quark mixing matrix, known as Cabibbo–
Kobayashi–Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi & Maskawa,
1973), which englobes the effects of mixing between different generations
of quarks. In fact, the quark mixing matrix determines the weak charged-
current interactions of quarks through the current (1.41), which must be used
in the calculation of weak interaction processes involving quarks, where the
initial and final states describe particles with definite masses. This implies
that the measurable quantities depend on the elements of the quark mixing
matrix V :

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.43)

where, cij = cos θij, sij = sin θij, with 0 ≤ θij ≤ π/2. The CKM matrix (1.43)
depends upon three angles, θ12, θ23 and θ13, and one phase δ. The presence
of the complex phase δ in V is the only possible source of CP (charge conju-
gation and parity) violation, therefore, the observed CP violation processes
in the hadron phenomenology have been ascribed to a non vanishing value
of δ.

To a rather good approximation θ12 is just the Cabibbo angle. It is known
experimentally that s13 � s23 � s12 � 1. As for the magnitudes of all nine
CKM elements, they can be most accurately determined by means of a global
fit to all available measurements and imposing the SM constraints, such as
unitarity and three generations (PDG 2014).

The quark’s weak charged current conserves the baryon number (1/3 for
the quark and −1/3 for the antiquark), while there are no conserved flavor
numbers for quarks. On the other hand, the quark neutral current has the
same form whether it is expressed in terms of the quark mass eigenstates or
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νe, e
− νµ, µ

− ντ , τ
− νe, e

+ νµ, µ
+ ντ , τ

+

Le +1 -1

Lµ +1 -1

Lτ +1 -1

Table 1.3: Flavor lepton numbers.

in terms of the primed fields that appear in the weak charged current. Which
means that the weak neutral current is invariant under mixing of the quark
fields. As we shall see, this is also the case for the leptonic weak neutral
current.

As regards neutrinos, in the SM they have exactly zero mass. This means
that no right-handed partner νR is introduced in the SM in addition to the
left-handed component, hence they cannot couple to the Higgs boson and
get mass.

Defining the neutrino field as:

νL ≡

 νeL
νµL
ντL

 = V †Lν
′
L ≡ V †L

 ν ′eL
ν ′µL
ν ′τL

 , (1.44)

the leptonic weak charged current, in terms of the massless neutrino fields
νeL, νµL, ντL and the charged lepton fields with definite mass, takes the form:

JµW,L = 2
∑

α=e,µ,τ

ναLγ
µlαL. (1.45)

In the weak charged current (1.45), the neutrino fields νeL, νµL, ντL are called
flavor neutrino fields because each of them only couples with the charged
lepton field of the corresponding flavor. As a matter of fact, in the SM the
flavor neutrino fields are also mass eigenstates, being any linear combination
of massless fields still a massless field. In theories beyond the SM, where
neutrinos are massive, the neutrino mixing makes the flavor neutrino fields
distinguished from the mass eigenstates. As a consequence of the fact that
the leptonic current JµW,L connects each charged lepton with the neutrino
of the corresponding flavor, the flavor lepton number for each neutrino, Le,
Lµ, Lτ (see Table 1.3) as well as the total lepton number L = Le + Lµ +
Lτ , are conserved quantities in the SM related with the invariance of the
electroweak Lagrangian under global U(1) gauge transformations. Indeed,
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the nonconservation of the lepton numbers Le, Lµ, Lτ , L plays an important
role in the physics of neutrinos beyond the SM.

As regards the weak neutral current of the lepton fields, in the second last
line of equation (1.45), because of the unitarity of the matrices V l

L and V l
R,

the expression of the weak neutral current in terms of the unprimed lepton
fields with definite masses is the same as that in terms of the primed lepton
fields.
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2
Massive Neutrinos and New Physics Beyond

the Standard Model

As it has been shown in the previous Chapter 1.3, the SM predicts massless
neutrinos, making them essentially different from all other fermions which
have masses. Many scenarios of physics beyond the SM are concerned with
the aspect of masslessness of neutrinos, which appears in some way as an
artifact in the SM. In fact, there is no fundamental reason why one cannot
introduce a right handed field νR that could have paired with the νL through
the Higgs mechanism and produce a mass term for neutrinos the same way as
any other fermion. Comparing neutrino masslessness with that of the photon
in the SM, it becomes apparent that differently from the photon, which is
massless because of a conserved gauge symmetry that governs the dynamics
of the electromagnetic interaction, the masslessness of neutrinos is not based
on any symmetry principle.

Interestingly, so far there is no experimental evidence of significant de-
viations from the SM, except neutrino oscillation observations, which have
shown that neutrinos are massive and mixed and pointed out the SM as an
effective theory of the yet unknown theory beyond the SM. Since neutrinos
are certainly massive, neutrino mass must be included in a realistic model
of particle interactions. Then, another question that arises is whether the
inclusion of quantum gravity effects into the standard model could explain
neutrino masses.

What is the mechanism by which neutrinos gain tiny masses and how
they are mixed are quite challenging questions. The assumption that the
answer must be found in theories beyond the SM, designates the neutrino
as the main hint of a new physics beyond the SM. The justification of the
widespread opinion that the SM is not the ultimate theory of the elementary
particles physics but just a low-energy effective theory lies in various unsatis-
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factory aspects of the SM. For instance, the large number of parameters, the
unexplained existence of three generations and moreover the gravitational
interactions are not included. As regards the origin of the small neutrino
mass, this can find a possible explanation, beyond the SM perspective, in
the hypothesis that neutrino masses are a low-energy manifestation of physics
beyond the SM and their smallness is due to a suppression generated by a
new high-energy scale, possibly related to the unification of forces. This can
be achieved, for example, with the seesaw mechanism.

2.1 Neutrino Masses in the Standard Model and Be-
yond

Neutrino mass is the basis for many of the static properties that the neutrino
may acquire, such as mixing and oscillations, magnetic moments, decays and
the nature itself of neutrinos as Dirac or Majorana particles.

In the SM only one helicity state of neutrino per generation exists, there-
fore, neutrinos cannot have a Dirac mass, which requires both the helicity
states, unless one adds three right-handed neutrino fields. Clearly in the SM
the νR is not introduced because things are arranged so as to predict massless
neutrinos. If one is looking for a different outcome, one may arrange things
in some other way. The only extension of the SM that is needed to define
a Dirac neutrino mass is the introduction of a right-handed component ναR
for each flavor α = e, µ, τ . As long as no suitable right-handed partner is
introduced it is impossible to add a renormalizable mass term to the SM.

Alternatively, neutrinos may have another type of mass term, named
Majorana mass term, of the form νTLC

†νL, where C is the Lorentz charge
conjugation matrix. Although this form requires that particles have just one
helicity state and uses the opposite helicity state of the antiparticle, this
neutrino mass term is not gauge invariant and breaks lepton number by two
units, since it transforms as an SU(2)L triplet, being νL part of the SU(2)L
doublet with lepton number +1. However, the SM Lagrangian has exact
lepton number symmetry even after symmetry breaking, so that such terms
can never arise in perturbation theory. Neutrinos are therefore massless to
all orders in perturbation theory.

The SM is renormalizable because the ultraviolet divergences of the model
are controlled by gauge symmetries, so that counterterms exist to cancel all
infinities. The problem of divergences that increase when going to higher
loops in gauge theories, spoiling their predictive power, was solved in 1971
by ’t Hooft (’t Hooft 1971), who showed that renormalizability requires that
the gauge boson mass is generated by the Higgs mechanism and all terms
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in the Lagrangian have mass dimensions not greater than four. A further
requirement is the absence of triangle anomalies. In fact, it has been shown
that if a theory involves chiral interactions (i.e., interactions involving γ5 cur-
rents) of fermions, triangular one-loop graphs in general destroy the current
conservation which holds at the tree level (Adler 1969; Bell & Jackiw 1967).
This is called the axial anomaly. Gauge invariance means that the currents
corresponding to gauge symmetries must be conserved to all orders in per-
turbation theory. Therefore, the constraint of anomaly cancellation must be
imposed on gauge theories in order to preserve the theory renormalizability.

One may consider then the possibility that a neutrino mass can be in-
duced by non-perturbative effects in the SM. The lepton number current
conservation is effectively broken non-perturbatively through the anomaly.
However, since the anomaly contribution to the baryon number current non-
conservation has also an identical form, the B − L current is conserved to
all orders in the gauge couplings. This means that non-perturbative effects
from the gauge sector cannot induce B − L violation. Therefore, if the
neutrino mass term violates also B − L, then neutrino masses remain zero
even in the presence of non-perturbative effects. In other words, the renor-
malizable SM Lagrangian has an accidental B − L symmetry, which would
be violated by two units introducing a Majorana mass term for neutrinos.
Hence, the symmetry prevents mass terms not only at tree level but also to
all orders in perturbation theory. Moreover, since the symmetry B − L is
non-anomalous (unlike B and L separately), Majorana mass terms do not
arise even at the non-perturbative level. This means that the renormalizable
SM predicts mν = 0 to all orders in perturbation theory, and beyond. That
is, since the SM is a renormalizable theory, even its quantum corrections are
insensitive to the physics beyond the SM. Thus, the standard model gauge
group SU(2)L × U(l)Y fixes only the gauge bosons of the model, not the
fermions and Higgs contents. These are chosen arbitrarily in such a way that
the neutrinos are massless to all orders in perturbation theory, and even after
non-perturbative effects are considered.

On the other hand, one might also wonder whether the inclusion of quan-
tum gravity effects into the SM might explain neutrino masses. As long as we
treat gravity in perturbation theory, all gravity couplings respect B−L sym-
metry. However, once non-perturbative gravitational effects like black holes
and worm holes are included, there is no guarantee that global symmetries
will be respected in the low energy theory. This implies that the effective low
energy Lagrangian for the SM in the presence of black holes or worm holes
must contain baryon and lepton number violating terms. In the context
of the SM, the only terms of this kind that can be constructed are non-
renormalizable terms of the form ψLφψLφ/MPl, where ψL is the lepton dou-
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blet, φ is the Higgs doublet, and MPl is the Planck mass, MPl = l/
√
GN (with

GN the Newton gravitational constant). After the gauge symmetry breaking,
they lead to neutrino masses that are at most of order v2/MPl ∼ 10−5 eV
(Barbieri et al. 1980; Akhmedov et al. 1992), that is, at least three orders of
magnitude lower than required to solve the atmospheric neutrino problem.

In this picture, two theoretical questions become crucial. Firstly, how
one can extend the standard model to find models with massive neutrinos
and secondly how one can understand the smallness of the neutrino masses
compared to the masses of the charged fermions. In fact, though the charged
fermion masses vary widely, the smallness of the neutrino mass remains puz-
zling even within a single family. Consider for instance the electron mass,
me = 0.511 MeV, and the current masses for u and d quarks that are in
the range (5− 10) MeV. Evidently they vary within about an order of mag-
nitude, whereas νe is at least five orders lighter. Similarly, in the second
generation, we find mµ = 105 MeV, ms ' 150 MeV, mc ' 1500 MeV,
that are again within about an order of magnitude, while mνµ is at least
three orders lighter than mµ. Beside these two fundamental issues, another
important question, concerning neutrino mass, is whether the massive neu-
trinos are Dirac particles or Majorana particles. Namely, neutrinos could be
their own antiparticles since they have no electric charge. As pointed out in
(Babu & Mohapatra 1989), by including right-handed neutrinos, assumed to
be Majorana particles, the anomaly cancellation implies charge quantization
regardless of the number of generations. This could be used as an argu-
ment for neutrinos being both massive as well as Majorana type, given that
Majorana nature of neutrinos might also help us understand the smallness
of neutrino masses through the seesaw mechanism. As Majorana particles,
neutrinos must not carry additive quantum numbers, local or global. Then,
the total lepton number symmetry must be broken. Or more precisely, the
symmetry that has to be broken is B−L, which is the only true global sym-
metry of the SM in presence of neutrino mixing. Then one should look for
processes violating B −L, such as the neutrinoless double β-decay. If B −L
is violated spontaneously, the Goldstone theorem states the existence of a
massless pseudoscalar particle, called Majoron, being the breaking of B − L
symmetry related to neutrinos with Majorana masses.

Another issue related to mass is that of stability. Massless neutrinos
cannot decay, but if neutrinos have mass, they should be unstable since there
would be no symmetry to prevent their decay, except for the lightest neutrino.
This latter, being the lightest fermion, would be stable. The decays of the
heavier neutrinos could instead have significant effects on the cosmological
observables.

The above considerations lead to go beyond the standard model to ex-
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plain the observed evidences for neutrino masses. This does not necessarily
mean going beyond the gauge group of the standard model, which fixes only
the gauge bosons of the model. Even using the same gauge group, extra
fermions or Higgs bosons can be introduced so that the model predicts mas-
sive neutrinos. One of the peculiarities of the SM is that it contains left
and right chiral projections of all fermions except the neutrinos, which looks
artifactual. In models with enlarged fermion sector, right-handed neutral
fields νR corresponding to each charged lepton L are added. Like the other
right-handed fields, they are assumed to be SU(2)L singlets. The definition
of electric charge in equation (1.2) implies that they also have Y = 0. Al-
though they have no interaction with the gauge bosons, they affect the model
non-trivially because of their other properties. Simple models of this type
(see Mohapatra & Pal 2004) show one of the major consequences of generic
neutrino mass terms, that is, neutrino mixing. A consequence of neutrino
mixing is that the flavor lepton numbers, Le, Lµ, Lτ , are no more good global
symmetries, even at the classical level, because any mass eigenstate is a mix-
ture of νe, νµ, ντ . At the classical level, the only global symmetry remaining
in the leptonic sector is the total lepton number L. This feature wuold give
rise to various flavor violating processes in any model with neutrino mixing.
Moreover, this kind of models also provide no answer to the question about
the lightness of neutrinos.

2.2 Neutrino Mixing

In theories beyond the SM in which neutrinos are massive, flavor neutrino
fields are, in general, not mass eigenstates. This phenomenon is called neu-
trino mixing. The treatment of neutrino mixing is analogous to that of quark
mixing in the case of Dirac neutrinos and follows a similar procedure in the
case of Majorana neutrinos. We will conveniently use the notations V and
U , respectively, for the quark and neutrino mixing matrices:

νL = U νIL ≡

 νeL
νµL
ντL

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ν1L

ν2L

ν3L

 (2.1)

In the case of Dirac neutrinos, all properties of the quark mixing matrix V
(1.43) can be extended to the lepton mixing matrix U . Namely, the matrix U ,
which relates neutrino flavor eigenstates and mass eigenstates fields, essen-
tially depends on three mixing angles θ12, θ13 and θ23 and one CP-violating
phase δ. In the case of Majorana neutrinos there will be two additional
phases, called Majorana phases. νi is the (Dirac or Majorana) neutrino field

23



with mass mi.
By convention, the quark mixing matrix V connects weak isospin I3 = 1/2

quarks on the left to I3 = −1/2 quarks on the right, whereas the lepton
mixing matrix U connects I3 = −1/2 charged leptons on the left to I3 = 1/2
neutrinos on the right.

The mixing among neutrino mass eigenstates as they travel through space
is a quantum mechanical phenomenon. A coherent admixture of unequal
mass eigenstates is possible in quantum mechanics, where the energy non-
conservation problem is addressed by the uncertainty principle. This leads
to the phenomenon of neutrino oscillations.

The mechanism of generation of the neutrino mass term is still a matter of
hypothesis, as well as the nature of neutrinos with definite masses as Dirac or
Majorana particles. The neutrino mass term determines neutrino masses and
mixture and neutrinos nature (Dirac and Majorana) and also the possibility
of the existence of sterile neutrinos. Hence we will consider possible neutrino
mass terms using the fact that a mass term of any spin−1/2 field is a sum
of Lorentz-invariant products of left-handed and right-handed components
of the field.

2.2.1 Dirac Mass Term

In order to introduce a Dirac mass term for neutrinos using the same Higgs
mechanism that gives masses to quarks and charged leptons, the only exten-
sion of the SM required is to add three right-handed neutrino fields ναR with
α = e, µ, τ . Since the presence of right-handed neutrino fields does not affect
the cancellation of quantum anomalies, unlike the other elementary fermion
fields, the number of right-handed neutrino fields is not constrained by the
theory. Such fields are sterile, in the sense that they are singlet under the
whole gauge group and have no electroweak interactions as well as strong
interactions with all other particles.

With the assumption of an additional sterile component to each flavor,
the Higgs–lepton Yukawa Lagrangian (1.27) takes the form:

LH,L = −
∑

α,β=e,µ,τ

Y ′lαβ L
′
αLΦ l′βR −

∑
α,β=e,µ,τ

Y ′ναβ L
′
αL (iσ2Φ∗) ν ′βR + h.c., (2.2)

where Y ′ν is the matrix of neutrino Yukawa couplings.
In the unitary gauge the Higgs–lepton Yukawa Lagrangian after sponta-

neous symmetry breaking becomes:
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LH,L = −
(
v +H(x)√

2

)[
l′LY

′l l′R + ν ′LY
′νν ′R

]
+ h.c. (2.3)

with the chiral charged lepton l′L and the new right-handed neutrino ν ′R
defined in a similar way as the left-handed neutrino array in (1.44).

The mass terms are obtained by diagonalization through biunitary trans-
formations of the matrices Y ′l, as defined in (1.29), and Y ′ν :

V ν†
L Y ′νV ν

R with Y ν
kj = yνkδkj, k, j = 1, 2, 3 (2.4)

where yνk are real and positive.
Transforming the neutrino fields in the same way as those of the charged

leptons (1.30),

V ν†
L ν ′L = νL V ν†

R ν ′R = νR, (2.5)

the diagonalized Higgs–lepton Yukawa Lagrangian finally takes the form:

LH,L = −
(
v +H(x)√

2

)[ ∑
α=e,µ,τ

ylαlαLlαR +
∑

k=1,2,3

yνkνkLνkR

]
+ h.c. (2.6)

The above equation provides the neutrino masses:

mk =
yνkv√

2
. (2.7)

The neutrino masses (2.7) are proportional to the Higgs vev v, just as the
masses of charged leptons and quarks, but neutrino masses are much smaller
than those of charged leptons and quarks. The Higgs mechanism used in the
SM, provides no explanation of the very small values of the eigenvalues yνk
of the Higgs-neutrino Yukawa coupling matrix that are needed, as it leaves
the value of the Yukawa couplings with the Higgs of all particles an open
question.

The neutrino fields νkL and νkR form the Dirac bispinor νk ≡ νkL + νkR.
Such neutrino fields with Latin indices denote mass eigenstates, while flavor
neutrino fields are labeled by Greek indices. Note that the flavor neutrino
fields are useful only when the effects of neutrino masses are neglected, i.e.
in the SM limit. When neutrino masses are taken into account the flavor

25



neutrino fields do not have a definite mass and are not independent, being
coupled by the mass terms, therefore, in that case it is much more convenient
to work with the independent massive neutrino fields.

Defining the unitary matrix:

U = V l†
L V

ν
L , (2.8)

where U is the mixing matrix in the lepton sector that appears in equa-
tion (2.1), named Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, the
leptonic weak charged current can be written in terms of flavor and mass
eigenstates as well:

JµW,L = 2 ναLγ
µlαL = 2 νkLγ

µU †kβlβL, (2.9)

whereas even for massive neutrinos the neutral current interactions remain
unchanged.

Although the flavor lepton numbers are conserved in weak interactions,
in general they are violated by the neutrino part of the Higgs–lepton Yukawa
Lagrangian in equation (2.6). In fact, if the latter is rewritten as:

LH,L = −
(
v +H(x)√

2

) ∑
α=e,µ,τ

[
ylαlαLlαR +

∑
k=1,2,3

yνkναLUkανkR

]
+ h.c.,

(2.10)

the first term in (2.10) is invariant under the global U(1) gauge transforma-
tions:

lαL,R → eiφαlαL,R α = e, µ, τ (2.11)

as well as the weak charged-current JµW,L, but this is not the case for the
neutrino term in (2.10). There is no transformation that can be made on the
right-handed neutrino fields νkR leaving simultaneously invariant the neutrino
part of the Higgs–lepton Yukawa Lagrangian in (2.10) and the kinetic part
of the neutrino Lagrangian (see Giunti & Kim 2007).

Therefore, for massive Dirac neutrinos, the flavor lepton numbers are not
conserved, which leads to the interesting phenomenon of neutrino oscillations.
The only exceptions are the cases where the mixing matrix U is unity, that
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is, there is no mixing, or the Yukawa couplings yνk are all equal. The latter
case implies neutrino mass degeneracy, which is experimentally ruled out.
In both cases the flavor lepton numbers are conserved and neutrinos do not
oscillate. Since the Lagrangian is invariant under the global U(1) gauge
transformations corresponding to the choice φα = φ for all α, for massive
Dirac neutrinos the only remaining symmetry is the one associated with
total lepton number.

Note that the right-handed components νkR of the massive Dirac neutrino
fields represent sterile degrees of freedom with respect to weak interactions.
The mixing of the left-handed neutrino fields is independent of the right-
handed neutrino fields, so that the active and sterile degrees of freedom
remain decoupled in the presence of Dirac mixing and oscillations between
active and sterile states is not possible. On the other hand, although weak
interactions do not involve both left and right components of these fields, the
mass term can couple right-handed with the ordinary neutrinos and generate
a complicated mixing between active and sterile degrees of freedom.

The reason why the mixing is always applied to the neutrinos, whereas
the charged leptons are treated as particles with definite mass, is that the
three charged leptons are characterized by their mass. The flavor of a charged
lepton is identified by measuring its mass. The mass determines its kinematic
properties and its decay modes, which can be measured directly through long-
range electromagnetic interactions. Hence, charged leptons with a definite
flavor are, by definition, particles with definite mass. Conversely, neutrinos
can be detected only indirectly by identifying the charged particles produced
in weak interactions and the flavor of a neutrino created or destroyed in a
weak charged current process is the flavor of the associated charged lepton.
Therefore, flavor neutrinos need not have a definite mass and the mixing
connotes them as a superpositions of neutrinos with definite masses.

The Dirac neutrino mixing matrix U can be written using the same con-
venient parameterization used for quarks, given in equation (1.43), in terms
of three angles and one complex phase δ. A nonzero value for δ implies CP
violation in the leptonic sector.

2.2.2 Majorana Mass Term

The description of a massive fermion requires a four-component spinor, so-
lution of the Dirac equation:

(iγµ∂µ −m)ψ = 0. (2.12)
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With the free field ψ expressed in terms of the Weyl components of definite
chirality ψL and ψR,

ψ = ψL + ψR, (2.13)

the above equation (2.12) reads:

iγµ∂µψL = mψR (2.14)

iγµ∂µψR = mψL. (2.15)

Since space-time evolutions of the chiral fields are coupled by the mass m,
for a massless neutrino there is no need to introduce both chiral components.
Indeed, in the SM only the left-handed neutrino field is considered. However,
a two-component spinor can be sufficient for the description of a massive
fermion if one assumes that ψR and ψL are not independent and the relation
connecting them is such that the two equations (2.14) and (2.15) are two ways
of writing the same equation for one independent field, say ψL. The field with
such properties was introduced in 1937 by Ettore Majorana (Majorana 1937).

Using the defining properties of the charge conjugation matrix C and its
action on a spinor field:

ψ(x)
C→ ψC(x) = ξCCψ

T
(x) = iξCγ

2γ0ψ
T

(x) (2.16)

ψ(x)
C→ ψC(x) = −ξ∗CψT (x)C†, (2.17)

with ξC an arbitrary phase factor such that |ξC |2 = 1.
The field defined as:

ψCL = CψL
T

(2.18)

provides the Majorana relation between ψR and ψL:

ψR = ξCCψL
T

(2.19)

and behaves as a right-handed field. In fact, using PLC = CPL, it follows
that:
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PL

(
CψL

T
)

= C
(
ψLPL

)T
= C

[
(PRψL)† γ0

]T
= 0 (2.20)

where,

PL ≡
(1− γ5)

2
PR ≡

(1 + γ5)

2
(2.21)

are the the left-handed and right-handed projectors, respectively.
The Majorana field can thus be written as:

ψ = ψL + CψL
T

= ψL + ψCL . (2.22)

The Majorana condition,

ψ = ψC , (2.23)

implies the equality of particle and antiparticle. Hence, the two independent
components Majorana field only describes neutral fermions, such as neutri-
nos.

Note that Dirac and Majorana descriptions of neutrino field lead to dif-
ferent phenomenological consequences only if neutrinos are massive. In the
massless Majorana theory, the left-handed and right-handed chiral fields, re-
lated by equation (2.19), obey the same decoupled Weyl equations, obtained
from (2.14) and (2.15) in the case m = 0, which hold for the independent
left-handed and right-handed chiral components of Dirac neutrino field. Fur-
thermore, since only the left-handed chiral component of the neutrino field
takes part in weak interactions and obeys the same Weyl equation in both
the Dirac and Majorana descriptions, the right-handed chiral component is
irrelevant and Dirac and Majorana theories are physically equivalent. This
means that measuring some effect due to the neutrino mass appears as the
only way to distinguish a Dirac from a Majorana neutrino. Moreover, the
mass effect must not be of kinematic nature, such as neutrino oscillations,
because the kinematic effects of Dirac and Majorana masses are the same.
An appropriate way to identify neutrinos as Majorana particles is the obser-
vation of neutrinoless double β-decay.

Evidently, the neutrino mass term and its form play an important role.
A Majorana mass can be generated by a Lagrangian mass term with only
a chiral fermion field. As neutrinos are produced left-handed through weak
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interactions, we consider the left-handed chiral field νL. Chirality and Lorentz
invariance impose that any mass term combines the adjoint of a spinor of
definite chirality with a spinor of opposite chirality so that a proper Majorana
mass term can then be written as:

LMmass = −1

2
mνCL νL + h.c. (2.24)

Using the above mass term, the full free Majorana Lagrangian, comprising
the kinetic terms for the neutrino chiral fields, is given by:

LM =
1

2

[
νLi

↔
/∂ νL + νCL i

↔
/∂ νCL −m

(
νCL νL + νLν

C
L

)]
(2.25)

where, the factor 1/2 avoids a double counting of degrees of freedom due to
the fact that νCL and νL are not independent, as shown by equation (2.18).

Defining the Majorana field as:

ν ≡ νL + νCL (2.26)

such that the Majorana condition (2.23) is satisfied, the Majorana Lagrangian
(2.25) takes the form:

LM =
1

2
ν

(
i
↔
/∂ −mνCL

)
ν (2.27)

Using the anticommutation property of the fermion field and the explicit
expression for C, the Lagrangian (2.25) can be expressed in terms of the only
independent field νL:

LM = νLi
↔
/∂ νL −

m

2

(
−νTLC†νL + νLCνLT

)
. (2.28)

This expression for the Majorana Lagrangian is more convenient because the
kinetic term has the same form as that of a massless neutrino in the SM
and is the same as the Dirac Lagrangian. As for the mass term, this takes a
completely different form and represents a physical effect beyond the SM. As
already mentioned, if massive neutrinos are Dirac particles, the total lepton
number associated with the global U(1) gauge transformations is conserved.
In the case of massive Majorana neutrinos, this residual symmetry, whose
conserved charge counts the number of leptons minus anti-leptons summed
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over the flavor, is lost because the Majorana mass term in eqn (2.24) is not
invariant under the global U(1) gauge transformation νL → eiφνL.

For small neutrino masses one can treat the Majorana mass term as a
perturbation of the massless Lagrangian. Its effect at first order is to gen-
erate observable processes where ∆L = ±2. This is precisely the case of
neutrinoless double β-decay.

Although the Majorana mass term in (2.25) involves only the neutrino
left-handed chiral field νL that is present in the SM, the SM neutrinos cannot
have Majorana masses, because νL has third component I3 = 1/2 and hyper-

charge Y = −1, hence νCL νL has I3 = 1 and Y = −2. Such a term behaves as
a weak isospin triplet, then it cannot be obtained by spontaneous symmetry
breaking from a gauge-invariant Yukawa term involving a single Higgs dou-
blet. Since the SM does not contain any weak isospin triplet with Y = 2, it is
not possible to have a renormalizable Lagrangian term which can generate a
Majorana neutrino mass. By using two Higgs doublets, whose product con-
tains a weak-isospin triplet, one can construct the mass dimension-5 coupling
term:

L5 =
g

M
(
LTLσ2Φ

)
C†
(
ΦTσ2LL

)
+ h.c., (2.29)

where g is a dimensionless coupling coefficient, M is a mass scale, LL is the
one-generation SM lepton doublet and Φ is the Higgs doublet.

The Lagrangian term L5 is not renormalizable because it contains a prod-
uct of fields with energy dimension five. Therefore it should not be allowed
in the framework of the SM. However, with a view to consider the SM as a
low-energy effective theory which is the product of the symmetry breaking of
a high-energy unified theory, it is plausible an additional effective low-energy
Lagrangian term such as L5 which respects the SM symmetries, though not
renormalizable. The high-energy theory will be some more fundamental and
renormalizable theory that contains new heavy degrees of freedom which only
manifest as asymptotic states (real particles) at energies of the order of M
or higher, while at low energies, they can contribute to physical processes as
virtual particles and mediate new interaction terms among the SM degrees
of freedom.

Note that a dimension-5 effective operator similar to L5 cannot be written
for quarks, because it would generate a quark Majorana mass term that is
forbidden for charged particles. As for (2.29), spontaneous symmetry break-
ing provides the Majorana mass term for νL:
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LMmass =
1

2

g v2

M
νTLC†νL + h.c., (2.30)

which provides the Majorana mass:

m =
g v2

M
. (2.31)

Since the generated neutrino Majorana mass in (2.31) is proportional to the
ratio v2/M , where v is the scale of the electroweak symmetry breaking, it
sets the scale of the Dirac fermion masses mD generated through the Higgs
mechanism. Hence, equation (2.31) can be written as:

m ∝ m2
D

M
. (2.32)

mD is a typical Dirac mass, which could be of order of the mass of the
charged lepton or quark of the same generation. The relation in equation
(2.32) has the same structure of the relation that one obtains through the
seesaw mechanism that will be briefly discussed in section 2.3. As suggested
by the name seesaw the heavier the massM, the lighter is the neutrino mass
m.

The relation in equation (2.32) can explain the observed smallness of
neutrino masses. For example, taking mD ∼ v ∼ 102 GeV and M ∼ 1015

GeV, which is a plausible grand unification scale, then m ∼ 10−2 eV, which
is a plausible scale for the neutrino mass, according to the experimental data.

The Lagrangian term (2.29) can be straightforwardly generalized to the
case of three generations of neutrinos:

L5 =
1

M
∑
α,β

gαβ
(
L′TαLσ2Φ

)
C†
(
ΦTσ2L

′
βL

)
+ h.c., (2.33)

where g is a symmetric 3 × 3 matrix of coupling constants. The neutrino
Majorana mass term that arise after the electroweak symmetry breaking has
the form:

LMmass =
1

2

v2

M
∑
α,β

gαβ ν
′T
αLC†ν ′βL + h.c., (2.34)

which leads to the following Majorana mass matrix:
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ML
αβ =

v2

M
gαβ. (2.35)

Since the scale of the Majorana neutrino masses is set by the small ratio
v2/M , the strong suppression of neutrino masses with respect to the elec-
troweak scale finds a natural explanation in this framework.

2.2.3 Dirac-Majorana Mass Term

From the discussion in the previous sections of this chapter it follows that
the existence of the chiral field νL is well established, given that it enters in
the charged-current weak interactions Lagrangian. This is not the case for
the chiral field νR, whose existence is anyhow allowed by the symmetries of
the SM.

If there existed only νL, the neutrino Lagrangian would contain only the
Majorana mass term:

LLmass =
1

2

∑
α,β

ν ′TαL C†ML
αβ ν

′
βL + h.c. (2.36)

and neutrinos would be Majorana particles.
Assuming that in addition to the three known active left-handed neutrino

fields ν ′αL, with α = e, µ, τ , there also exist Ns sterile right-handed neutrino
fields νsR, with s = s1, ..., sNs (the right-handed neutrino fields are unprimed,
because these fields do not take part in weak interactions, whereas the active
left-handed neutrino fields need to be redefined in order to diagonalize the
leptonic weak charged current), then the neutrino Lagrangian must contain
the Majorana mass term for such fields:

LRmass =
1

2

∑
s,s′

νTsR C†MR
ss′ νs′R + h.c. (2.37)

If νsR exists, the neutrino Lagrangian can also contain the Dirac mass term:

LDmass = −
∑
s

∑
α

νsRM
D
sαν
′
αL + h.c., (2.38)

which would imply that neutrinos are Dirac particles.
The most general mass term, where left-handed active flavor fields and

right-handed sterile fields enter, has thus the form:
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LD+M
mass = LLmass + LRmass + LDmass. (2.39)

The Dirac–Majorana mass term (2.39) contains three complex mass matrices
ML, MR and MD. In particular, The Majorana mass matrices ML and MR

are symmetric. The left-handed Majorana mass matrix ML is a 3× 3 square
matrix, the right-handed Majorana mass matrix MR is a Ns × Ns square
matrix, and the Dirac mass matrix MD is a Ns × 3 rectangular matrix.

The above mass term is not invariant under the global gauge transforma-
tions. Thus, in the theory with the Dirac-Majorana mass term the lepton
number L is not conserved. This means that the fields of neutrinos with
definite masses are expected to be Majorana fields.

The neutrino fields with definite masses are given by the diagonalization
of the Dirac–Majorana mass term. For this purpose it is convenient to define
the column matrix of N = 3 +Ns left-handed fields:

N ′L ≡
(
ν ′L
νCR

)
, (2.40)

where ν ′L is the column matrix defined in equation (1.44) and νCR is the column
matrix of charge-conjugated right-handed sterile neutrinos:

νCR ≡

 νCs1R
...

νCsNsR

 . (2.41)

Thereby the Dirac–Majorana mass term (2.39) can be written in compact
form:

LD+M
mass =

1

2
N ′TL C†MD+M N ′L + h.c. (2.42)

where

MD+M ≡
(
ML MDT

MD MR

)
(2.43)

is a symmetric N ×N mass matrix.
Writing the left-handed flavor fields as unitary linear combinations of the

left-handed components of N fields with definite mass:
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N ′L ≡ V ν
LnL with nL =

 ν1L
...

νNL

 , (2.44)

where V ν
L is the unitary matrix which diagonalizes the mass matrix MD+M :

(V ν
L )T MD+M V ν

L = M with Mkj = mkδkj, k, j = 1, ...N. (2.45)

The Dirac–Majorana mass term now can be written in terms of the massive
left-handed fields as:

LD+M
mass =

1

2
nTL C†M nL + h.c. =

1

2

N∑
k=1

mk ν
T
kL C† νkL + h.c.

= −1

2
nCL M nL + h.c. = −1

2

N∑
k=1

mk νCkL νkL + h.c.,

(2.46)

where mk are real and positive Majorana masses, corresponding to the Ma-
jorana neutrino fields:

n =

 ν1
...
νN

 , (2.47)

with νk such that the Majorana condition is satisfied:

νk = νkL + νCkL νCK = νk. (2.48)

In order to examine the relevant consequences for weak interactions of the
mixing of active and sterile neutrino fields in equation (2.44), consider the
leptonic charged current written in terms of massive fields:

JµW,L = 2nL U
†γµ lL, (2.49)

where the mixing matrix U is the product of the 3×3 unitary matrix V l
L that

diagonalizes the charged lepton mass matrix and the N ×N unitary matrix
V ν
L that diagonalizes the Dirac–Majorana mass matrix,
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Uαk =
∑

β=e,µ,τ

(
V l†
L

)
αβ

(V ν
L )βk . (2.50)

The mixing matrix U (2.50) is a 3 × N matrix not unitary, since UU † = 1
but U †U 6= 1.

Despite the formal analogy between the expression of the leptonic charged
current in equation (2.49) and those for the Dirac case and for the mixing of
three Majorana neutrinos, the Dirac-Majorana case under consideration is
very different, because the mixing matrix is a 3×N matrix which connects
the three active flavor neutrinos to N massive neutrinos.

The mixing of active and sterile neutrinos is given by:

ναL =
N∑
k=1

Uαk νkL α = e, µ, τ (2.51)

νCsR =
N∑
k=1

(V ν
L )sk νkL s = s1, ..., sNs . (2.52)

Since active and sterile neutrino fields are linear combinations of the same
massive neutrino fields, oscillations between active and sterile states become
possible. This is also signaled by the non-unitary of the mixing matrix U
which implies that the total probability of active flavors is not conserved.

The above mixing relations can be written in the compact matrix form:

NL = U nL, (2.53)

where

NL ≡
(
νL
νCR

)
, U ≡

(
U

V ν
l L|Ns×N

)
=

(
V l†
L V

ν
L |3×N

V ν
L |Ns×N

)
(2.54)

The matrices V ν
L |3×N and V ν

L |Ns×N are obtained by taking the first three
rows and the remaining Ns rows of V ν

L . The matrix U so defined is a N ×N
unitary matrix.

As regards the neutrino neutral current,

JµZ,ν = nL γ
µ U †U nL, (2.55)

as a consequence of the non-unitarity of U the GIM mechanism does not
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work, meaning that in the general Dirac–Majorana case it is possible to have
neutral current transitions among different massive neutrinos.

2.3 The Seesaw Mechanism

The seesaw mechanism was introduced at the end of the seventies (Gell-Mann
et al. 1979; Yanagida 1980; Mohapatra & Senjanovic 1980) to explain the
extremely small masses of neutrinos compared with those of charged fermions
in the SM. Even if there was still no solid evidence for neutrino masses at
that time, there were extensions of the SM that led to nonzero masses for
neutrinos.

There are various types of extensions of the SM. The simplest version,
type 1, assumes two or more additional right-handed sterile neutrino fields
and the existence of a very large mass scale. This allows to identify the mass
scale with the postulated scale of grand unification.

The seesaw mechanism is a viable mechanism of neutrino mass generation,
based on the Dirac-Majorana mass term. This is achieved by adding right-
handed neutrinos and have these couple to left-handed neutrinos with a Dirac
mass term. The right-handed neutrinos have to be sterile with respect to
any of the SM interactions. Being neutral, the right-handed neutrinos can
act as their own anti-particles, and have a Majorana mass term. Like any
other Dirac mass in the SM, the neutrino Dirac mass is expected to be
generated through the Higgs mechanism and therefore cannot be predicted.
The Majorana mass for the right-handed neutrinos instead is not generated
through the Higgs mechanism and consequently is expected to be tied to
some energy scale of new physics beyond the SM. This implies that any
process involving right-handed neutrinos will be suppressed at low energies.
The correction related to these suppressed processes gives the left-handed
neutrinos a mass that is inversely proportional to the right-handed Majorana
mass.

The introduction of heavy right-handed neutrinos can then explain both
the small mass of the left-handed neutrinos and the absence of the right-
handed neutrinos in observations. However, because of the uncertainty in the
Dirac neutrino masses, the right-handed neutrino masses can have any value.
For instance, the heavy sterile right-handed neutrinos have been studied as
a possible candidate for a dark matter WIMP (Murayama 2007). Right-
handed neutrinos with masses in the range (0.1− 1.0) keV have been studied
(Dodelson & Widrow 1993), leading to warm dark matter and a structure
formation scenario alternative to both the standard hot and cold dark matter
scenarios. Light neutrinos are, in general, disfavored as an explanation for
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dark matter, because they are too hot, that is, their kinetic energy is large
compared to their mass, while formation of structures similar to the galaxies
seemingly requires cold dark matter.

They can also have a mass in the LHC energy range. An example is
provided by the Left−Right symmetric theory that originally led to the see-
saw mechanism. A TeV scale L−R symmetric theory could have significant
signatures at LHC, with a possible discovery of νR and observation of parity
restoration as well as the Majorana nature of neutrinos. If the scale of parity
restoration is in the few TeV region, Type I seesaw connects neutrino mass to
the scale of parity restoration, leading to a rich LHC phenomenology and a
number of lepton flavor violating processes (Senjanovic 2010). Right-handed
neutrinos can also have masses near the GUT scale, linking the right-handed
neutrinos to grand unified theories (Senjanovic 2011).

The mass terms mix neutrinos of different generations through the PMNS
matrix, which is the neutrino analogue of the CKM quark mixing matrix.
Although the quark mixing is almost minimal, the fact that some neutrino
mixing angles are large and even nearly maximal, was soon realized to be
compatible with a unified picture of quark and lepton masses within GUTs.
The symmetry group at MGUT could be either (SUSY) SU(5) or SO(10)
or a larger group (Altarelli 2007 and references therein). According to the
seesaw mechanism, light neutrino masses are small because neutrinos are
Majorana particles with masses inversely proportional to the large scale of
lepton number violation, which is close to 1014−1015 GeV not far from MGUT ,
so that neutrino masses fit well in the SUSY GUT picture.

Large neutrino mixings and possible complex phases that break CP in-
variance could potentially create a surplus of leptons over anti-leptons in the
early universe, a process known as leptogenesis. This asymmetry at a later
stage could be converted in an excess of baryons over anti-baryons (baryo-
genesis via leptogenesis), and explain the matter-antimatter asymmetry in
the universe. In SU(5) models the heavy Majorana neutrino masses are
not constrained by low energy physics as light neutrino masses and mixings.
Successful leptogenesis is possible, but it depends on the choice of the heavy
Majorana neutrino masses. In SO(10) models the implications of large neu-
trino mixings are much more stringent because of the connection between
Dirac neutrino and up-quark mass matrices. The requirement of large neu-
trino mixings then determines the relative magnitude of the heavy Majorana
neutrino masses in terms of the known quark mass hierarchy. This leads to
predictions for neutrino mixings and masses, CP violation in neutrino oscil-
lations and neutrinoless double β-decay. In models where the CP asymmetry
is determined by the mass hierarchy of light and heavy Majorana neutrinos,
the observed baryon asymmetry is obtained without any fine tuning of pa-
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rameters, if B−L is broken at the unification scale MGUT and the generated
baryon asymmetry does not depend on the flavor mixing of the light neutri-
nos. The predicted order of magnitude of the baryon asymmetry is also in
accord with observation (Buchmüller & Plümacher1996; Buchmüller 2002).
In fact, in unified theories with right-handed neutrinos B−L is spontaneously
broken. In theories where B − L is a spontaneously broken local symmetry,
out of equilibrium decays with CP and L violation of heavy right-handed
neutrinos can produce a B − L asymmetry, then converted near the weak
scale by instantons into an amount of B asymmetry compatible with obser-
vations (Buchmüller et al. 2005).

In order to expose the main idea of the seesaw mechanism, consider the
Dirac-Majorana mass matrix, in equation (2.43), with ML = 0:

MD+M =

(
0 MDT

MD MR

)
(2.56)

and the elements of the right-handed Majorana mass matrix MR much larger
than the elements of the Dirac mass matrix MD. The physical justifications
of such assumptions are that the left-handed Majorana mass matrix ML is
forbidden by the SM symmetries and MR is generated by new physics beyond
the SM. In fact, the right-handed Majorana mass term breaks conservation of
the lepton number therefore it is assumed that the lepton number is violated
at a scale which is much larger than the electroweak scale.

If all the eigenvalues of MR are much larger than all the elements of MD,
the mass matrix can be diagonalized by blocks, up to corrections of the order
(MR)−1MD:

W TMD+MW '
(
Mlight

Mheavy

)
'
(
−MDT

(
MR

)−1
MD

MR

)
(2.57)

with

W '

 1− 1
2
MD†

(
MRMR†

)−1

MD
[(
MR

)−1
MD

]†
−
(
MR

)−1
MD 1− 1

2

(
MR

)−1
MDMD†

(
MR†

)−1

 .

(2.58)

The heavy masses are given by the eigenvalues of the Ns ×Ns mass matrix
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Mheavy ' MR, whereas the light masses are given by the eigenvalues of the
light 3 × 3 mass matrix Mlight whose elements are suppressed, with respect
to the elements of the Dirac mass matrix MD, by the small matrix factor

MDT
(
MR

)−1
. However, the values of the light neutrino masses and their

relative sizes can vary over wide ranges, depending on the values of the
elements of MD and MR.

The two possibilities often considered in literature are those which follow
(Bludman et al. 1992).

2.3.1 Quadratic Seesaw

In the case:

MR =MI (2.59)

where I is the Ns-dimensional identity matrix and M is the high-energy scale
of new physics beyond the SM at which the total lepton number is violated.

The light mass matrix is:

Mlight ' −
MDTMD

M
(2.60)

and the light neutrino masses are given by:

mk =

(
mD
k

)2

M
k = 1, 2, 3. (2.61)

(
mD
k

)2
are the three eigenvalues of the 3 × 3 matrix MDTMD which are

expected to be of order of the charged lepton or around the up quark masses,
being MD generated by the SM Higgs mechanism.

The large energy scaleM in equation (2.60) suppresses the light neutrino
masses with respect to the masses of the charged leptons and quarks. The
reason why the case under consideration is called quadratic seesaw is that
the light neutrino masses mk scale as the squares of the masses mD

k :

m1 : m2 : m3 =
(
mD

1

)2
:
(
mD

2

)2
:
(
mD

3

)2
(2.62)

2.3.2 Linear Seesaw

Consider Ns = 3. In this case it is possible to have:
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MR =
M
MD

MD, (2.63)

where MD is the scale of the elements of MD, M � MD is the high-
energy scale of new physics beyond the SM at which the total lepton number
is violated and MD is the energy scale of the SM electroweak symmetry
breaking, i.e. MD ∼ 102 GeV, since MD is generated by the SM Higgs
mechanism.

Equation (2.57) leads to:

Mlight ' −
MD

M
MD. (2.64)

The light neutrino masses are given by:

mk =
MD

M
mD
k k = 1, 2, 3 (2.65)

where mD
k are the eigenvalues of MD.

The light neutrino masses are suppressed by the small ratioMDM with
respect to the masses mD

k , which are expected to be of order of the charged
lepton or around the up quark masses.

The above considered case is called linear seesaw because of the propor-
tionality of the light neutrino masses mk to the masses mD

k :

m1 : m2 : m3 = mD
1 : mD

2 : mD
3 . (2.66)

In conclusion, if the seesaw mechanism is realized in nature then, neutrinos
are expected to be Majorana particles, with masses much smaller than lepton
and quark masses, and heavy Majorana particles, namely the seesaw partners
of neutrinos, are also expected to exist.

The standard seesaw mechanism presented in this section, due to the
lepton-Higgs-right-handed neutrinos interaction, is called type I seesaw mech-
anism. Models with interactions of lepton pairs and Higgs pair with triplet
heavy scalar boson ∆ are called type II and models with an interaction of
lepton-Higgs pairs with heavy Majorana triplet fermion σR are called type
III seesaw models.
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2.4 Right-Handed Sterile Neutrinos

A sterile right-handed neutrino is an SU(2) singlet which is sterile under weak
interactions except those induced by mixing with active neutrinos. It may
participate in Yukawa interactions involving the Higgs boson or in interac-
tions involving new physics beyond the SM. Many extensions of the standard
model introduce a right-chiral sterile νR, with its left-chiral CP conjugate νCL .
As it will be shown in Chapter 3, the three-flavor active neutrino pattern with
nonzero mixing successfully accounts for most of the results of oscillation ex-
periments designed to measure solar, atmospheric, accelerator and reactor
neutrinos. On the other hand, there also exist a few anomalies in experimen-
tal results that find no explanation in such a framework. Additional sterile
neutrinos might be required for explaining all experimental data through
neutrino oscillations. These sterile species, predicted by many theoretical
models beyond the SM, are neutral leptons gravitationally interacting which
have no weak interactions as well as strong and electromagnetic interactions,
as all neutrino fields.

The three-neutrino mixing scheme was first challenged in 1995 by the
LSND (Neutrino Liquid Scintillator) experiment (Athanassopoulos et al.
1995; Athanassopoulos et al. 1998; Aguilar et al. 2001). The observation of
a signal of short-baseline ν̄µ → ν̄e oscillations, led to assume the existence
of one or more squared-mass differences much larger than ∆2

SOL and ∆2
ATM .

The first results of the MiniBooNE experiment, designed to check the LSND
signal, did not find any signal compatible with that of LSND in neutrino
mode, but the results in antineutrino mode have effectively confirmed the
LSND observations. This has revived interest in the possible existence of
one or more neutrinos, with mass in the eV scale, that can generate the
squared-mass differences observed in short-baseline oscillations. The addi-
tional massive neutrinos, which in the flavor basis correspond to sterile neu-
trinos, do not contribute to the number of active neutrinos determined by
LEP experiments through the measurement of the invisible width of the Z
boson, Na = 2.9840± 0.0082 (Schael et al. 2006).

For sterile neutrinos to have a relevant role in neutrino oscillations, as
suggested by LSND and MiniBooNE, or for most astrophysical and cosmo-
logical implications, it is necessary a non-negligible mixing between active
and sterile states of the same chirality. This does not occur in the pure
Majorana, pure Dirac, or very high energy seesaw limits, but only for the
pseudo-Dirac and active-sterile cases. The pseudo-Dirac case is in fact ex-
cluded, unless ML, MR . 10−9 eV, because this would imply significant
oscillations of solar neutrinos into sterile states, which is not observed. Sig-
nificant active-sterile mixing requires that at least some Dirac masses (MD)
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and some Majorana masses (MR and/or ML) are simultaneously very small
but non-zero. One possibility is that some new symmetry forbids all of the
mass terms at the perturbative level, but allows, for instance MR ∼ 1 eV
and MD ∼ 0.1 eV due to higher-dimensional operators.

Assuming that sterile neutrino has mass around eV and mixing around
0.1, then its contribution to the active neutrino masses is expected to be of
order MD2

/MR ∼ 0.1 eV, so that active-sterile mixing can lead to induced
contribution to the neutrino mass matrix (Smirnov & Zukanovich 2006). If
sterile neutrino is assumed having mass around keV and mixing around 10−4,
then its contribution to the active neutrino masses is of order MD2

/MR ∼
10−5 eV, and completely negligible.

An example of a theory with sterile neutrinos and the seesaw mechanism
is the SO(10) grand unified theory (GUT), in which a sterile neutrino is the
SU(5)-singlet member of the 16-dimensional spinor representation for each
SM generation. Similarly, sterile neutrinos appear naturally as the spinor
component of the corresponding chiral superfields in supersymmetric SO(10)
GUTs.

As regards low energy seesaw, consider the most general renormalizable
Lagrangian:

Lν ⊃ LSM −
MR

ij

2
NiNj − yαi LαNiH + h.c., (2.67)

where LSM is the SM Lagrangian without gauge singlet fermions, yαi are
the neutrino Yukawa couplings and MR

ij are the entries of the right-handed
neutrino Majorana mass matrix. The above equation (2.67) is expressed
in the weak basis where the Majorana mass matrix for the right-handed
neutrinos is diagonal.

The seesaw formula leaves the mass of singlet neutrinos as a free param-
eter. This allows to choose these parameters so that they can account for
certain phenomena and anomalies beyond the SM, such as providing a dark
matter candidate or a mechanism for baryogenesis or explaining various short
baseline anomalies. In this latter case, the seesaw scale corresponds to the
scale of light sterile neutrinos. Considering in particular this eV-scale see-
saw, non-oscillation experiments sensitive to the low energy seesaw include
searches for double β-decay and cosmological bounds on the number of rela-
tivistic particle species in the early universe as well as on the fraction of hot
dark matter. It is also possible a partial cancellation, that is, the contribution
to neutrinoless double β-decay of a light sterile neutrino, which generates an
active neutrino via seesaw, may cancel the contribution to double β-decay
from this active state. Assuming that no other mechanisms that can lead to
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double beta decay is realized in nature, the observation of a finite lifetime for
neutrinoless double β-decay would rule out equation (2.67), unless at least
one of the right-handed neutrino mass parameters is above a few tens of
MeV.

It has been showed (Donini et al. 2011) that minimal models based on
the 3 + 1 scheme are ruled out, even though in principle there would be
sufficient parameters to fit two mass splittings and two mixing angles. The
most minimal working model is the 3+2 model, which contains one massless
neutrino, four massive states, four angles and 2 CP phases. The simplified
case with degenerate eigenvalues of MR and in the CP conserving limit,
i.e., M1 = M2 = M and no phases, leads to reduce the number of extra
parameters, with respect to the standard three-neutrino scenario, to just one
extra mass, the common Majorana mass, M . This model in fact reduces to
the standard three neutrino scenario in the two limits: M → 0, when the
four eigenstates degenerate into two Dirac pairs, and the opposite M →∞,
when the two heavier states decouple. The fit to neutrino data will be good
for M below the quasi-Dirac limit, M ≤MQD (with MQD the scale where the
two massive neutrinos become Pseudo-Dirac particles) and also for M above
the seesaw limit M ≥MSS (with MSS the scale where the mass of the active
neutrinos is given by the seesaw formula). The value of MQD is fixed by solar
data to be very small whereas the seesaw limit is mostly determined by long-
baseline data. However, due to cancellations of the probabilities related to
the existence of two almost degenerate heavy states, the degenerate case does
not provide a sufficiently good fit to the anomalies than the standard three
neutrino scenario. A different situation is found dropping the degenerate
limit. In this case the heavy-light mixings depend on the light masses and
mixings, but also on the two heavy masses, and on a new complex angle
(Abazajian et al. 2012and references therein).
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3
Neutrino Flavor Oscillations

The neutrino flavor oscillations are a quantum mechanical phenomenon.
Neutrinos are produced through charged-current weak interactions as fla-
vor states. The charged current can produce any neutrino in conjunction
with a charged lepton. The neutrino beam produced is a linear superposi-
tion of different mass eigenstates. As the beam propagates, different com-
ponents of this beam have different velocities and evolve differently, so that
the probability of finding different eigenstates in the beam varies with time.
In other words, during the time t, different mass-components of the coherent
neutrino state acquire different phases. The oscillations are generated by
the interference of the different massive neutrinos, which are produced and
detected coherently because of the very small mass differences. This conse-
quence of neutrino mixing, named neutrino oscillation, was first suggested by
Pontecorvo (Pontecorvo 1957). If differences among neutrino masses are ex-
ceedingly small so that energy and momentum resolutions are not sufficient
to distinguish among neutrino mass eigenstates, the effect of interference,
i.e. the oscillations, can be observed. Whereas if the resolution of energy
and momentum measurements of all particles involved in the process were
high enough to allow the inference of the mass of the produced neutrino, no
oscillations would be observed.

Since in the late 1950s only one active neutrino was known, the electron
neutrino, in order to discuss neutrino oscillations, Pontecorvo introduced
the concept of sterile neutrino. In particular, in 1967 Pontecorvo predicted
the Solar Neutrino Problem as a consequence of νe → νµ (or νe → νsterile)
transitions even before the first measurement of the solar electron neutrino
flux in the Homestake experiment. The positive evidence of neutrino oscilla-
tions gives essentially two parameters: the mass difference squared ∆m2 and
mixing angle θ. A great deal of evidence for neutrino oscillations has been
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collected by many experiments covering a wide range of neutrino energies
and with different detector technologies. The standard theory of neutrino
flavor oscillations successfully accounts for the results of terrestrial and Solar
neutrino experiments. In fact, nearly all the mixing parameters are precisely
measured, except for the sign of the atmospheric mass-squared difference and
eventual CP violating phases.

In this chapter the plane-wave derivation of the neutrino oscillation prob-
ability is reviewed with the main phenomenological aspects of neutrino os-
cillations in vacuum and in matter. The derivation of a general expression
for the probability of neutrino oscillations is obtained by using the fact that
neutrinos in oscillation experiments are ultra-relativistic, since their masses
are smaller than about one eV and only neutrinos with energy larger than
about 100 keV can be detected (via nuclei conversions or elastic scattering
on electrons).

3.1 Neutrino Oscillations in Vacuum

In this section, the mathematical formulation of the neutrino propagation
through the vacuum is exposed including the sterile degrees of freedom. In
the standard theory of neutrino oscillations (Eliezer & Swift 1976; Fritzsch
& Minkowski; Bilenky & Pontecorvo 1976; Bilenky & Pontecorvo 1978) a
neutrino with flavor α and momentum ~p, created in a charged-current weak
interaction process from a charged lepton lα or together with a charged an-
tilepton lα, is not in general a physical particle but rather a superposition of
the physical fields νk with different masses mk, described by the ket state:

|να〉 =
N∑
k=1

U∗αk |νk〉 α = e, µ, τ, s1, ..., sNs , (3.1)

where U is the N × N (with N = 3 + Ns) square mixing matrix defined in
the previous chapter.

We consider a finite normalization volume V in order to have orthonormal
massive neutrino states:

〈νk|νj〉 = δkj. (3.2)

The unitarity of the mixing matrix implies that also the flavor states are
orthonormal:

〈να|νβ〉 = δαβ. (3.3)
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Since the massive neutrino states |νk〉 are eigenstates of the Hamiltonian,

H |νk〉 = Ek |νk〉 , (3.4)

a generic massive neutrino state produced at t = 0 evolves in time as a plane
wave:

|νk(t)〉 = e−iEkt |νk〉 . (3.5)

A flavor state |να〉, which describes a neutrino created with a definite flavor
α at time t = 0, from equations (3.1) and (3.5) evolves in time as:

|να(t)〉 =
N∑
k=1

U∗αk e−iEkt |νk〉 . (3.6)

Using the unitarity of the matrix U , U †U = 1, the massive states can be
expressed in terms of flavor states,

|νk〉 =
∑
β

Uβk |νβ〉 , (3.7)

and substituting equation (3.7) into (3.6) we obtain:

|να(t)〉 =
∑
β

(
N∑
k=1

U∗αk e−iEkt Uβk

)
|νβ〉 , (3.8)

which means that the superposition of massive neutrino states |να(t)〉, that
at t = 0 is the pure flavor state in equation (3.1), becomes a superposition of
different flavor states at t > 0 (if the mixing matrix U is not diagonal, that
is, neutrinos are mixed).

Note that if the number of massive neutrinos is greater than three, the
additional neutrinos in the flavor basis are sterile, then they interact with
ordinary matter only gravitationally or through interactions beyond those in
the SM. Eventual transitions of active flavor neutrinos into sterile ones can
be observed only through the disappearance of active neutrinos.

As at this stage we mean to focus on the evolution of active neutrino flavor
states, in what follows the Greek indices will be assumed to label only the
three active neutrinos and the mixing matrix U is replaced by the restriction
to active states U , introduced in the previous chapter.
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The coefficient of |νβ〉 in equation (3.8) provides the amplitude of να → νβ
transitions as a function of time:

Aνα→νβ(t) ≡ 〈νβ|να(t)〉 =
N∑
k=1

U∗αk Uβk e
−iEkt. (3.9)

This expression gives the probability of detecting a flavor β in a measurement
of neutrino flavor at time t > 0, in an originally να beam:

Pνα→νβ(t) =
∣∣Aνα→νβ(t)

∣∣2 =
N∑
k=1

U∗αk Uβk Uαj U
∗
βj e

−i(Ek−Ej)t. (3.10)

For ultra-relativistic neutrinos, the dispersion relation can be approximated
as:

Ek =
√
|~p|2 +m2

k ' |~p|+
m2
k

2|~p|
. (3.11)

Substituting this expression into (3.10), the transition probability can be
written as:

Pνα→νβ(t) =
∣∣Aνα→νβ(t)

∣∣2 =
N∑
k=1

U∗αk Uβk Uαj U
∗
βj e

−i
∆m2

kj
2|~p| t, (3.12)

where ∆m2
kj ≡ m2

k −m2
j is the squared-mass difference.

Since in neutrino oscillation experiments the time dependence of the flavor
transition probability cannot be followed, whereas the distance L between the
source of the neutrino beam and the detector is a measured quantity, the time
dependence is usually replaced with the variable L/c. For ultra-relativistic
neutrinos this means that, in natural units, it is possible to approximate
t = L, so that equation (3.12) becomes:

Pνα→νβ(L) =
N∑
k=1

U∗αk Uβk Uαj U
∗
βj e

−i
∆m2

kj
2|~p| L. (3.13)

The above equation (3.13) shows that the source–detector distance L and
the neutrino energy E ' |~p| are the experiment-dependent quantities which
determine the phases of neutrino oscillations, along with the squared-mass
differences ∆m2

kj, which are physical constants:
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φkj =
∆m2

kj

2|~p|
L. (3.14)

The amplitude of the oscillations is specified by the elements of the mixing
matrix U , which are constants that can be measured in neutrino oscillation
experiments as well as the squared-mass differences. Measurements of neu-
trino oscillations yield precise information only on the values of the squared-
mass differences ∆m2

kj, but not on the absolute values of neutrino masses,
except a lower bound on m2

k or m2
j , that must be larger than |∆m2

kj|.
The oscillation probability (3.13) depends on the elements of the mixing

matrix U through the quartic products, U∗αkUβkUαjU
∗
βj, which is independent

of the chosen parameterization and rephasing, and this is also the case for
Majorana mixing matrices. This rephasing invariance means that the Ma-
jorana phases cannot be measured in neutrino oscillation experiments. This
is true for any number of generations, so that neutrino oscillations are in
general independent of the Majorana phases, which are always factorized in
a diagonal matrix on the right of the mixing matrix. Then, eventual CP and
T violations in neutrino oscillations can only depend on the Dirac phases.

Taking into account that
∑

k=1,...,N =
∑

k>j +
∑

j>k +
∑

k=j, equation
(3.13) can be written as:

Pνα→νβ(L) =
N∑
k=1

|Uαk|2 |Uβk|2 + 2Re

[∑
k>j

U∗αkUβk Uαj U
∗
βj e

−i
∆m2

kj
2|~p| L

]
, (3.15)

and using again the unitarity of the mixing matrix U , the above expression
takes the form:

Pνα→νβ(L) =δαβ − 4
∑
k>j

Re
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kj

4|~p|
L

)

+ 2
∑
k>j

Im
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kj

2|~p|
L

)
.

(3.16)

The oscillation probabilities of the channels with α 6= β so far considered are
called transition probabilities. The oscillation probabilities of the channels
with α = β are usually called survival probabilities and are given by:

Pνα→να(L) = 1− 4
∑
k>j

|Uαk|2 |Uβk|2 sin2

(
∆m2

kj

4|~p|
L

)
. (3.17)
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The transition probability can be conveniently written in terms of the oscil-
lation length, Losckj = 4π|~p|/∆m2

kj, which measures the distance at which the
phase generated by ∆m2

kj becomes equal to 2π,

Pνα→νβ(L) =
N∑
k=1

|Uαk|2 |Uβk|2 + 2Re

[∑
k>j

U∗αk Uβk Uαj U
∗
βj e

−i 2πL
Losc
kj

]
. (3.18)

The oscillating term in the transition probability stems from the interference
of the different massive neutrino components of the state (3.6), meaning that
its existence depends on the coherence of the massive neutrino components.
If different massive neutrinos were produced or detected in an incoherent
way, the probability of να → νβ would be reduced to the constant term
in equation (3.18). The incoherent average of the oscillation probability
over the energy resolution of the detector or over the uncertainty of the
distance L can also lead to an effectively constant measurable probability
which has the same value as the incoherent transition probability. In fact,
if the neutrino production-detection distance L has uncertainty much larger
than the oscillation lengths Losckj , the transition probability (3.18) should be
averaged over distances larger than Losckj and thus the second term of the
r.h.s. of equation (3.18) cancels out, leading to:

〈
Pνα→νβ(L)

〉
=

N∑
k=1

|Uαk|2 |Uβk|2 . (3.19)

An analogous treatment applied to antineutrinos, produced by weak charged
current via positive charged lepton transitions l̄α → να, pair creation lανα,
and neutrino–antineutrino pair creation νανα mediated by weak neutral cur-
rent, leads to the antineutrino oscillation probability:

Pνα→νβ(L) =δαβ − 4
∑
k>j

Re
[
U∗αk Uβk Uαj U

∗
βj

]
sin2

(
∆m2

kj

4|~p|
L

)

− 2
∑
k>j

Im
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kj

2|~p|
L

)
,

(3.20)

which differs from the neutrino oscillation probability in (3.16) only in the
sign of the terms that depend on the imaginary parts of the quartic products
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of the mixing matrix elements.

Note that as long as the theory of neutrino oscillations is formulated in the
framework of a local quantum field theory, such as the SM and its exten-
sions comprising neutrino masses, the CPT is a symmetry of the oscillation
probabilities. This means:

Pνα→νβ(L) = Pνβ→να(L). (3.21)

As for the CP transformation, this interchanges neutrinos with negative helic-
ity and antineutrinos with positive helicity, transforming the να → νβ channel
into the να → νβ channel. Since the mixing matrix is, in general, complex
and leads to violations of the CP symmetry, such violations can be detected
in neutrino oscillation experiments by measuring the CP asymmetry:

Pνα→νβ(L)−Pνα→νβ(L) = 4
∑
k>j

Im
[
U∗αk Uβk Uαj U

∗
βj

]
sin

(
∆m2

kj

2|~p|
L

)
. (3.22)

The above expression confirms that a CP asymmetry can be measured only
in the transitions between different flavors, since for α = β the imaginary
parts in equation (3.22) vanish Im

[
U∗αkUαkUαjU

∗
αj

]
= 0 for any k, j.

Sterile neutrinos cannot be detected in the standard weak processes. How-
ever the unitarity relation,

∑
β

Pνα→νβ(t) =
∑
β,k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t =

∑
k

|Uαk|2 = 1, (3.23)

can provide information about transitions into sterile states. In fact, equation
(3.23) yields: ∑

β=e,µ,τ

Pνα→νβ(t) = 1−
∑

s=s1,...,sNs

Pνα→νs(t). (3.24)

The left-handed part of this relation is the total transition probability of a
flavor neutrino να into all possible flavor active neutrinos. This probability
can be measured if neutrinos are detected at some distance from the source
by the observation of a NC process. If the probability

∑
β=e,µ,τ Pνα→νβ should

be less than one this would be a proof of the transition of an active neutrino
into sterile states.
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3.2 Neutrino Oscillations in Matter

In the previous section, it has been shown that for the propagation of massive
neutrinos in vacuum, the flavor content of the neutrino beam is determined
by the neutrino mass-squared differences ∆m2

kj and the elements of the neu-
trino mixing matrix Uαk. As was first shown by Wolfenstein (Wolfenstein
1978), in the context of neutrino propagation in a medium with constant
matter density, the patterns of neutrino oscillations can be significantly af-
fected by the medium. If neutrinos travel through a material medium rather
than through the vacuum, along with their masses and mixing also the coher-
ent scattering of neutrinos in matter must be taken into account. In other
words, due to the coherent forward elastic scattering with the particles in
the medium (electrons and nucleons), neutrinos propagating in matter are
subject to a matter-induced potential. This potential, which is equivalent to
an index of refraction, modifies the mixing of neutrinos.

In the vacuum, a physical eigenstate can have components of νe, νµ, ντ
and other possible states. When such a state travels through a medium,
the modulation of its νe component is different from the same modulation in
the vacuum. This leads to changes in the oscillation probabilities compared
to their values in the vacuum. Interactions modify the effective mass of a
particle traveling through a medium. Since νe has different interactions with
respect to the other neutrinos, the modification is different for νe than for the
other flavor neutrinos. The reason is that typically the medium comprises
electrons but no muons or taus. Thus, if a νe beam goes through matter, it
experiences both charged and neutral current interactions with the electrons.
But a νµ as well as a ντ can interact with the electron only via the neutral
current, so that their interaction is different in magnitude than that of the
νe.

In 1985 Mikheev and Smirnov (Mikheev & Smirnov 1985) showed that it
is possible to have resonant flavor transitions when neutrinos propagate in a
medium with varying density and the existence of a region along their path
in which the effective mixing angle passes through the maximal mixing value
of π/4. The so-called Mikheev-Smirnov-Wolfenstein (MSW) mechanism, de-
rived from the above-mentioned studies, can explain the flavor conversion of
solar neutrinos during their propagation out of the Sun, even in the case of
a small vacuum mixing angle. Today it is known that the vacuum mixing
angle relevant for solar neutrino oscillations is large but not maximal and
that the flavor transitions of solar neutrinos occur through the MSW effect.

Neutrinos in matter are affected not only by coherent forward elastic scat-
tering, but also by incoherent scatterings with the particles in the medium,
although in most situations the amount of these incoherent scatterings is
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sufficiently small to be neglected.

Let us compute the effect of the coherent forward elastic scattering with
the particles in the medium, which does not change the state of the mat-
ter, by determining the potential experienced by a neutrino propagating in
a homogeneous and isotropic medium. We consider first elastic scattering
through charged current interactions. The CC interactions can only involve
νe through the process of elastic scattering on electrons, since there are no µs
or τs in the background at the ordinary temperatures of interest. Assuming
that the medium consists of a gas of unpolarized electrons, the effective CC
Hamiltonian, corresponding to the effective low-energy CC weak interaction
Lagrangian (1.17), after a Fierz transformation is given by:

HCC
eff (x) =

GF√
2

[νe(x)γµ (1− γ5) νe(x)] [e(x)γµ (1− γ5) e(x)] . (3.25)

A gas of unpolarized electrons is described by the density matrix:

ρe =

∫
d3pe

(2π)3 2Ee
f(Ee)

1

2

∑
he=±1

∣∣e−(pe, he)
〉 〈
e−(pe, he)

∣∣ , (3.26)

where the function f(Ee) is the statistical distribution of the electron energy
Ee, which also depends on the temperature of the electron background; he
denotes the helicity states and the normalization condition is assumed to be
‖|e−(pe, he)〉‖2

= 2Ee.
The effective potential induced by the charged current interactions, V CC ,

is obtained by averaging (3.25) over the background particle distribution and
multiplying by their number density:

HCC
eff (x) ≡Tr

[
ρeHCC

eff (x)
]

=
GF√

2
νe(x)γµ (1− γ5) νe(x)

∫
d3pe

(2π)3 2Ee
f(Ee)

× 1

2

∑
he=±1

〈
e−(pe, he)|e(x)γµ (1− γ5) e(x)|e−(pe, he)

〉
.

(3.27)

Four-momenta and helicities of the electron states before and after the scat-
tering are identical, because the interaction must leave the medium un-
changed in order to contribute coherently to the neutrino potential.
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Using ordinary properties of Dirac spinors and gamma matrix traces,

∑
he=±1

〈
e−(pe, he)|e(x)γµ (1− γ5) e(x)|e−(pe, he)

〉
= Tr

[(
/pe +me

)
γµ (1− γ5)

]
= 4 peµ,

(3.28)

and the isotropy of the electron background,∫
d3p

(2π)3f(Ee)
peµ
Ee

= neδ0µ, (3.29)

equation (3.27) becomes:

HCC
eff (x) = VCC νeL(x) γ0 νeL(x), (3.30)

with

VCC =
√

2GF ne (3.31)

the charged-current effective potential, where:

ne = Tr [ρe] =

∫
d3pe

(2π)3f(Ee), (3.32)

is the electron number density.
Similarly, the neutral-current potential of neutrinos propagating in a

medium with number density nf of fermions f , can be calculated starting
from the effective low-energy NC weak interaction Lagrangian (1.18) and the
corresponding NC effective Hamiltonian:

HNC
eff (x) =

GF√
2

∑
e,µ,τ

[να(x)γµ (1− γ5) να(x)]
∑
f

[
f(x)γµ

(
gfV − g

f
Aγ5

)
f(x)

]
,

(3.33)

which yields the following NC effective potential, for any flavor neutrino να,
induced by coherent interactions with fermions f :

V f
NC =

√
2GF g

f
V nf , (3.34)
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where, gfV ≡ gfL + gfR.
The total NC effective potential in a typical astrophysical environment,

such as the Sun, where the only fermions present are electrons, protons and
neutrons, is:

VNC =
∑
f

V f
NC =

√
2GF [geV ne + gpV np + gnV nn] , (3.35)

where,

geV = −1

2
+ 2 sin2 θW , (3.36)

gpV = 2 gUV + gDV =
1

2
− 2 sin2 θW = −geV (3.37)

gnV = gUV + 2 gDV = −1

2
. (3.38)

From electrical neutrality it follows that the number density of protons and
electrons are equal, so that the NC potentials of protons and electrons cancel
each other and only neutrons contribute,

VNC = −1

2

√
2GF nn. (3.39)

For neutrino wavelength large compared to the typical background inter-
particle distance, neutrinos propagation in a medium can be described by
introducing a neutrino index of refraction n(ν):

n(ν) =
pMed

p
, (3.40)

where pMed and p are the linear momenta in medium and vacuum, re-
spectively, for a given energy E =

√
p2 +m2

ν . For relativistic neutrinos
pMed = p− VCC − VNC , which leads to:

n(ν) − 1 = −1

p
(VCC + VNC) . (3.41)

Using the expressions of VCC for electron neutrinos, and VNC experienced by
all active neutrinos, the effective potential for a generic flavor neutrino can
be written as:
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Vα = VCCδeα + VNC = GF

√
2
(
neδeα −

nn
2

)
. (3.42)

The above potentials Vα are very small as GF

√
2 ' 7.63×10−14 eV cm3/NA,

with NA the Avogadro number.

Considering an ultra-relativistic left-handed flavor neutrino with momen-
tum ~p, described in equation (3.1). The total Hamiltonian in matter is

H = H0 +HI , (3.43)

where H0 is the free Hamiltonian, such that:

H0 |νk〉 = Ek |νk〉 with Ek =
√
|~p|m2

k, (3.44)

and HI is the interaction Hamiltonian, which is instead diagonal in the flavor
basis:

HI |να〉 = Vα |να〉 . (3.45)

The evolution of a neutrino, which is initially in the flavor state α, in the
Schrödinger picture is given by:

i
d

dt
|να(t)〉 = H |να(t)〉 with |να(0)〉 = |να〉 . (3.46)

The transition probability for a neutrino born at t = 0 with flavor α to be
found in a flavor state β after a time t is:

Pνα→νβ =
∣∣Aνα→νβ(t)

∣∣2 ≡ |〈νβ|να(t)〉|2 . (3.47)

The time evolution equation for the amplitudeAνα→νβ(t), analogous to (3.46),
can be also written in terms of the distance L from the source:

i
d

dL
Aνα→νβ(L) =

∑
ρ

(∑
k

Uβk Ek U
†
βk + δβρ Vρ

)
(3.48)

Taking into account that the typical energies of neutrinos are much larger
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than their masses, the evolution equation in space (3.48) can be written in
the relativistic limit (3.11) as:

i
d

dL
Aνα→νβ(L) =

(
|~p|+ m2

1

2|~p|
+ VNC

)
Aνα→νβ(L)

+
∑
ρ

(∑
k

Uβk
∆m2

k1

2|~p|
U †βkδβρ δβeVCC

)
Aνα→νρ(L),

(3.49)

where m1 is the smallest mass eigenvalue. The term in the first line of
equation (3.49) is irrelevant for the flavor transitions, since it generates a
phase common to all flavor that can be eliminated by a local the phase shift,
leading to:

i
d

dL
Aνα→νβ(L) =

∑
ρ

(∑
k

Uβk
∆m2

k1

2|~p|
U †βkδβρ δβeVCC

)
Aνα→νρ(L). (3.50)

The above equation (3.50) shows that neutrino oscillations, both in vacuum
and in matter, depend on the differences of the squared neutrino masses and
not on the absolute value of neutrino masses.

In matrix form equation (3.50) reads:

i
d

dL
Aνα→νβ(L) = (HF )ρβ Aνα→νρ(L), (3.51)

where the effective Hamiltonian matrix HF in the flavor basis has the form:

HF =
1

2|~p|
(
U M2 U † + A

)
, (3.52)

with,

M2 =

 0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

 , A =

 2 |~p|VCC 0 0
0 0 0
0 0 0

 (3.53)

Note that on the basis of the above evolution equation (3.51), it can be shown
that the Majorana phases in the mixing matrix do not affect the effective
Hamiltonian HF and hence neutrino oscillations in matter (Langacker et al.
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1987), as well as it occurs in vacuum. In fact, the unitary 3 × 3 mixing
matrix of Majorana neutrinos, dependent on three mixing angles and three
physical CP-violating phases, can be written as a product U = UDDM of
a unitary matrix UD, with three mixing angles and one phase, analogously
to the mixing matrix of Dirac neutrinos, and a diagonal unitary matrix DM

with two independent phases. The diagonal matrix of Majorana phases DM

on the right of the mixing matrix U cancels in the product U M2 U †. This
means that the Dirac or Majorana nature of neutrinos cannot be determined
in neutrino oscillations in vacuum as in matter.

3.2.1 The MSW effect

The above discussion is referred to the case of three-neutrino mixing, for
the sake of simplicity in what follows we consider the case of two neutrino
mixing. Namely, the mixing between an electron neutrino and a νµ or ντ .
If one wants to consider the mixing with a sterile neutrino νe − νs, one
needs to replace VCC → VCC + VNC , which corresponds to the replacement
Ne → Ne − Nn/2, since sterile states have no weak currents interactions
and the resonant condition is expected to involve both electron and neutron
number densities.

Since νµ and ντ have the same matter-induced potential, the two cases of
mixing νe → νµ and νe → ντ are equivalent. For definiteness we consider the
νe and νµ bi-dimensional space, and two corresponding mass eigenstates ν1

and ν2. In this case HF reduces to the following 2× 2 hermitian matrix:

HF =
1

4|~p|
(
∆m2 + 2|~p|VCC

)
1

+
1

4|~p|

(
−∆m2 cos 2θ + 2|~p|VCC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − 2|~p|VCC

)
,

(3.54)

where ∆m2 ≡ m2
2 −m2

1 and θ is the mixing angle:

|νe〉 = cos θ |ν1〉+ sin θ |ν2〉
|νµ〉 = − sin θ |ν1〉+ cos θ |ν2〉 .

(3.55)

Neglecting the term proportional to the identity operator in the first line
of equation (3.54), the second term can be diagonalized by the orthogonal
transformation:

UT
M HF UM (3.56)
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with

HF =
1

4|~p|
diag

(
−∆m2

M ,∆m
2
M

)
, (3.57)

the in-medium effective Hamiltonian matrix in the mass basis and

UM =

(
cos θM sin θM
− sin θM cos θM

)
, (3.58)

the unitary matrix which represents the effective mixing matrix in matter.

The in-medium effective mixing angle θM is given by:

tan 2θM =
tan 2θ

1− 2|~p|VCC
∆m2 cos 2θ

, (3.59)

whereas the effective squared-mass difference is

∆m2
M =

√
(∆m2 cos 2θ − 2|~p|VCC)2 + (∆m2 sin 2θ)2. (3.60)

The interesting phenomenon, discovered by Mikheev and Smirnov is that the
evolution equation shows a resonance when

∆m2 cos 2θ = 2|~p|VCC . (3.61)

Inserting the expression of VCC (3.31) in the above equation (3.61) provides
the electron number density corresponding to the resonance:

nRe =
∆m2 cos 2θ

2
√

2GF |~p|
. (3.62)

At the resonance the effective mixing angle is maximal, θM = π/4, which
means that the transitions from one flavor to the other may even be total if
the resonance region is wide enough. This mechanism, called MSW effect,
plays a significant role in astrophysical environments, such as the Sun and
type II supernovae, where the matter density radial profile can provide the
proper condition for a resonant conversion.

When the resonance condition is satisfied, the oscillation length in matter
can also be significantly different from the oscillation length in vacuum:
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LoscM =
Losc

sin 2θ
(3.63)

3.3 Neutrino Oscillations Experiments

Neutrino flavor oscillation experiments can be classified in two types. The
appearance experiments measure transitions between different neutrino fla-
vors in which the final flavor to be observed is absent in the original beam. In
this case the background can be very small and the experiment can be sen-
sitive to rather small values of the mixing angle. These experiments look for
enhancement of the flux of a specific flavor, when the distance L is far from
any integer multiple of all the Losckj , which means that a positive detection
requires:

Pαβ(L) > 0. (3.64)

The disappearance experiments measure the depletion of neutrinos of a par-
ticular flavor. This is performed considering the survival probability of a
neutrino flavor by means of comparison between the number of interactions
in the detector and the expected one:

Pαα(L) < 1. (3.65)

Taking into account that the number of detected events has statistical fluc-
tuations, even in the absence of oscillations, a small depletion is very difficult
to detect, meaning that small values of the mixing angle are difficult to mea-
sure through this kind of experiments. The appearance experiments might
seem much simpler than those of disappearance, as the observation of even
a single event would provide evidence of neutrino oscillation, whereas a dis-
appearance experiment requires the observation of a significant deviation of
a certain probability from unity. However this is not the case because an
appearance experiment can only search for a specific channel, say a νµ oscil-
lating to a νe. If νµ mixes very little with νe but very strongly with some
other state, the νµ → νe appearance experiment would be somewhat nega-
tive. While in a disappearance experiment on a νe beam, observable effects
are independent of whether the νe oscillates to νµ or ντ , or to anything else.

As previously mentioned, many models of neutrino mass predict right-
handed neutrinos which do not have interactions mediated by the gauge
bosons of the SM. Suppose that the νe, for example, mixes significantly with
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one of these sterile neutrinos. In this case an appearance experiment would
be useless, since the cross section for the production of a charged lepton must
be extremely small if a sterile neutrino is involved, whereas a disappearance
experiment can still register a depletion in the probability of a νe beam. This
means that an appearance experiment measures oscillations να → νβ specif-
ically for active neutrinos, whereas a disappearance experiment is sensitive
to να → νx oscillations where νx can be any flavor state, including the sterile
ones.

Let us briefly review the experiments of neutrino oscillations which have
primarily proven that neutrinos have small masses and that the flavor neu-
trinos νe, νµ, ντ are “mixed particles”.

Neutrino oscillations experiments started in the late 1960s with the Home-
stake solar neutrino radiochemical experiment by Davis and Bahcall (Davis
1964; Davis et al. 1968). In this experiment, the observed rate of solar νe
was found to be significantly smaller than the rate predicted by the Standard
Solar Model (SSM). This discrepancy was called the solar neutrino problem.
The second solar neutrino experiment Kamiokande, performed in the eight-
ies, was a direct-counting experiment for which it was used a large water-
Cherenkov detector. The solar neutrino rate measured by the Kamiokande
experiment was lower than the rate predicted by the SSM, confirming the
previous experimental results (Fukuda et al. 1996).

In the Homestake and Kamiokande experiments the flux of high-energy
solar neutrinos is about 10−4 of the total solar neutrino flux and its predicted
value strongly depends on the model. In the nineties, the new radiochemi-
cal solar neutrino experiments SAGE and GALLEX searched for neutrinos
from all reactions of the proton-proton and CNO cycles, including low-energy
neutrinos from the reaction p p→ d e+ νe. This reaction gives the largest con-
tribution to the flux of the solar neutrinos and the flux of the p−p neutrinos
can be predicted in a practically model-independent way. The event rates
measured in the SAGE and GALLEX experiments were about two times
smaller than the predicted rates (Hampel et al. 1999; Abdurashito et al.
1999). These experiments provided evidence in favor of the disappearance of
solar νe on the path from the central region of the sun, where solar neutri-
nos are produced, to the earth, whereas no indications in favor of neutrino
oscillations were found in the eighties and nineties in numerous reactor and
accelerator short baseline experiments.

In 1998 in the water-Cherenkov Super-Kamiokande experiment a signif-
icant up-down asymmetry of the high-energy atmospheric muon neutrino
events was observed. To be specific, this experiment found out that the
number of up-going high-energy muon neutrinos passing through the earth is
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about two times smaller than the number of the down-going muon neutrinos
coming directly from the atmosphere (Fukuda et al. 1998).

Previous indications in favor of a disappearance of solar νe became model-
independent evidence in 2002 when the solar neutrino experiment SNO de-
tected solar neutrinos through the observation of CC and NC reactions (Ah-
mad et al. 2002). It was shown that the flux of the solar νe is approximately
three times smaller than the flux of νe, νµ and ντ . In the same year in the
KamLAND reactor neutrino experiment it was found that the number of
reactor νe events at the average distance of ∼ 170 km from the reactors is
about 0.6 of the number of the expected events (Eguchi et al. 2003). Sub-
sequently it was also observed a significant distortion of the νe spectrum in
the experiment. The SNO and Super-Kamiokande results have found con-
firmation in another solar neutrino experiment based on time and energy
dependent rates, Borexino (Bellini, et al. 2010). Neutrino oscillations have
been observed also in the accelerator long-baseline experiments K2K (Abe,
et al. 2014) and MINOS (Adamson et al. 2011), which confirmed the results
obtained in the atmospheric Super-Kamiokande experiment.

The accelerator short-baseline LSND experiment, projected to look for
evidence of neutrino oscillations, produced results at odds with the SM ex-
pectation, when considered in the context of the observations in solar and
atmospheric neutrino oscillation experiments. The observed anomaly could
be explained through the existence of an additional sterile neutrino (Athanas-
sopoulos et al. 1985). The KARMEN and MiniBooNE experiments have par-
tially confirmed the LSND appearance result (Church et al. 2002; Conrad et
al. 2013). The most favored allowed region for the mass-squared difference
appears to be the band from 0.2 − 2.0 eV 2, although a region around 7 eV 2

might also be possible.

3.3.1 Three-Neutrino Mixing

Solar and atmospheric neutrino experiments have shown that neutrinos os-
cillate with two different squared-mass differences, ∆m2

SOL and ∆m2
ATM , re-

spectively. This has found confirmation in the results of the independent
measurements performed in terrestrial KamLAND and K2K experiments.
The possibility of two independent squared-mass differences can be realized
in three-neutrino mixing schemes. Although in the case of three-neutrino
mixing there are three squared-mass differences only two of them are in-
dependent, since ∆m2

32 + ∆m2
21 − ∆m2

31 = 0, meaning that the observed
hierarchy:

∆m2
SOL � ∆m2

ATM , (3.66)
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can be arranged in the two types of three-neutrino mixing schemes, named
normal and inverted hierarchy. Although the absolute neutrino mass scale
is not known, we have information on the squared-mass differences from
experiments. It is then possible to express the neutrino masses as functions
of only one unknown parameter, representing the absolute mass scale, which
is conveniently chosen as the value of the lightest mass, that is m1 in the
normal scheme and m3 in the inverted scheme. In particular, in the normal
scheme we have:

m2
2 = m2

1 + ∆m2
21 = m2

1 + ∆m2
SOL (3.67)

and
m2

3 = m2
1 + ∆m2

31 = m2
1 + ∆m2

ATM (3.68)

whereas in the inverted scheme:

m2
1 = m2

3 −∆m2
31 = m2

3 + ∆m2
ATM (3.69)

and

m2
2 = m2

1 + ∆m2
21 = m2

3 + ∆m2
ATM + ∆m2

SOL. (3.70)

Following the global analysis and notations in (Gonzalez-Garcia et al. 2015)
we summarize the main results of neutrino oscillations experiments. Dis-
appearance of solar νes and long baseline reactor νes proceeds mainly via
oscillations with wavelength ∝ E/∆m2

21 (with ∆m2
21 > 0 by convention)

and amplitudes controlled by θ12. Disappearance of atmospheric and LBL
accelerator νµs instead proceeds mainly via oscillations with wavelength ∝
E/ |∆m2

31| � E/∆m2
21 and amplitudes controlled by θ23. The angle θ13 con-

trols the amplitude of oscillations involving νe flavor with E/ |∆m2
31| wave-

lengths. Given the observed hierarchy between the solar and atmospheric
wavelengths there are two possible non-equivalent orderings for the mass
eigenvalues,

∆m2
21 � ∆m2

32 ' ∆m2
31 > 0, (3.71)

which corresponds to the so-called Normal Hierarchy (NH), and
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∆m2
21 � −

(
∆m2

31 ' ∆m2
32 > 0

)
, (3.72)

which in the above form corresponds to the opposite choice of the sign, labeled
as Inverted Hierarchy (NH).

Figure 3.1: Normal and Inverted Hierarchy.

The three-neutrino oscillation analysis of the available data involves six pa-
rameters: 2 mass differences (one of which can be positive or negative), 3
mixing angles, and the CP phase δCP . The determination of these param-
eters requires a global analysis of the data. In Table 3.1 we recollect the
main results (see Gonzalez-Garcia et al. 2015 and references therein for a
detailed survey), the corresponding best fit values and the derived ranges for
the six parameters at the 1 σ (3 σ) level. The results in the table are shown
for three scenarios: Normal or Inverted Hierarchy and with no assumption
of the order. In the first and second columns the hierarchy of the neutrino
mass states is known “a priori” to be Normal or Inverted, respectively. In the
third column no assumptions is made on the mass hierarchy. For this third
case only the 3 σ intervals are given. In this case the range of ∆m2

3l, where
l = 1 for NH and l = 2 for IH, is composed of two disconnected intervals,
one containing the absolute minimum (IH) and the other the secondary local
minimum (NH).
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Normal Hierarchy Inverted Hierarchy Any Hierarchy
bfp ±1σ 3 σ range bfp ±1σ 3 σ range 3 σ range

θ12/
o 33.438+0.78

−0.75 31.29→ 35.91 33.438+0.78
−0.75 31.29→ 35.91 31.29→ 35.91

θ23/
o 42.3+3.0

−1.6 38.2→ 53.34 49.5+1.5
−2.2 38.6→ 53.3 38.3→ 53.3

θ13/
o 8.50+0.20

−0.21 7.85→ 9.10 8.51+0.20
−0.21 7.87→ 9.11 7.87→ 9.11

δCP/
o 306+39

−70 0→ 360 254+63
−62 0→ 360 0→ 360

∆m2
21

10−5eV 2 7.50+0.19
−0.17 7.02→ 7.09 7.50+0.19

−0.17 7.02→ 7.09 7.02→ 7.09

∆m2
3l

10−3eV 2 2.457+0.0479
−0.047 2.317→ 2.607 2.449+0.0479

−0.047 −2.590→ −2.307

[
+2.325→ +2.599
−2.590→ −2.307

]
Table 3.1: Three-flavor oscillations parameters from the fit to global data in
(Gonzalez-Garcia et al. 2015). The values in the first and second column are
obtained assuming NH and IH, i.e., relative to the respective local minimum,
whereas in the third column no ordering is assumed. Note that ∆m2

3l ≡
∆m2

31 > 0 for NH and ∆m2
3l ≡ ∆m2

32 < 0 for IH.

All the data from oscillation experiments presented above can be consis-
tently interpreted within a three-flavor active neutrinos scheme with non
zero mixing. However, as already mentioned, in addition to these data, sev-
eral anomalies at short baselines (SBL) have been observed which cannot be
explained in the framework of 3 ν oscillations. Such results could be inter-
preted as oscillations involving an O(eV) mass sterile state, assuming that
neutrino oscillations may account for all the experimental data. This issue
will be discussed in Section 3.3.2.

3.3.2 Extended Neutrino Oscillation Scenarios

Although the three-flavor neutrino oscillations is a phenomenologically well
established framework, the anomalies observed in LSND, MiniBooNE, Gal-
lium solar neutrino experiments, and some reactor experiments (Achkar et
al. 1995) cannot be explained within that context. The possible existence
of additional sterile neutrinos with masses at the eV scale has provided a vi-
able solution to the observed anomalies as ascribable to oscillations between
active and sterile neutrinos. In the following we will give a brief overview of
the anomalies observed in neutrino experiments and the extended schemes,
comprising four or more light neutrinos, that could explain them. A more
detailed review of this subject can be found in (Kopp et al. 2013; Conrad et
al. 2013; Abazajian et al. 2012). The observed anomalies can be summarized
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as follows:

• evidence in the LSND experiment for νµ → νe transitions with E/L ∼
1 eV 2, where E and L are the neutrino energy and the distance between
source and detector, respectively;

• the MiniBooNE experiment searched for the same effect. The result
is the observation of a yet unexplained event excess in the low-energy
region of the electron neutrino and anti-neutrino event spectra. No
significant excess is found at higher neutrino energies. Interpreting
the data in terms of oscillations, the parameter values obtained are
consistent with those from LSND;

• an event rate lower than expected in radioactive source experiments at
the Gallium solar neutrino experiments SAGE and GALLEX (“Gallium
anomaly”). Possible explanation of the observed effect is the hypothesis
of νe disappearance due to oscillations with ∆m2 & 1 eV 2 (Giunti &
Laveder 2011);

• observations in SBL (L . 100 m) reactor experiments are not in agree-
ment with calculations of the neutrino flux emitted by nuclear reactors
(Mueller et al. 2011) which predict a neutrino rate a few percent higher
than observed. A decreased rate at those distances can be explained
by assuming νe disappearance due to oscillations with ∆m2 ∼ 1 eV 2

(“reactor anomaly”).

Note that one important reason for tension in the global data including the
LSND results is the non-observation of νµ disappearance at the eV-scale,
which is a generic prediction related to a possible explanation of the LSND
signal in terms of sterile neutrino oscillations. However, even if the LSND
signal is discarded, indications for the existence of sterile neutrinos from the
reactor and Gallium anomalies remain. Such indications are related to νe
disappearance and do not require νµ disappearance.

Here we resume the results of a global analysis (Kopp et al. 2013;
Gonzalez-Garcia et al. 2015) of those data under the hypothesis of addi-
tional neutrino species at the eV scale. A 3+1 mass scheme requires the
introduction of a neutrino state, ν4, with a mass-squared difference ∆m2

41

much larger than |∆m2
31|. In this case the oscillation probabilities for exper-

iments surveying the range E/L ∼ 1 eV 2 are given by:

Pαα = 1− sin2 2θαα sin2

(
∆m2

41L

4E

)
(3.73)
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Pµe = sin2 2θµe sin2

(
∆m2

41L

4E

)
, (3.74)

with E ' |~p| and the effective mixing angles defined as:

sin2 2θαα ≡ 4 |Uα4|2
(
1− |Uα4|2

)
(3.75)

sin2 2θµe ≡ 4 |Uµ4|2 |Ue4|2 , (3.76)

where α = e, µ and Uα4 are the elements of the mixing matrix describing the
mixing of the 4th neutrino mass state with the electron and muon flavor.

There is no CP violation in 3+1 SBL oscillations and the same relations
hold for both neutrinos and antineutrinos. Neglecting quadratic terms in the
mixing matrix elements yields the following relation between the effective
amplitudes relevant for appearance and disappearance probabilities:

4 sin2 2θµe ≈ sin2 2θee sin2 2θµµ. (3.77)

The tension in the global data and equation (3.77) makes it difficult to obtain
a good fit to all available data, hence first is considered the global data includ-
ing SBL anomalies related to νe and νe disappearance (reactor and Gallium
anomalies), ignoring the νµ → νe and νµ → νe appearance anomalies (LSND
and MiniBooNE). In this case, the SBL phenomenology is determined by the
two parameters ∆m2

41 and Ue4 for which a consistent region not in conflict
with any other data is found. The best fit point occurs at sin2 2θee = 0.09
and ∆m2

41 = 1.78 eV 2, while the no-oscillation hypothesis for the eV-scale is
excluded at 3.1 σ.

Consider now the question whether the hints for νe disappearance can
be reconciled with the appearance hints from LSND and MiniBooNE. Given
the relation in equation (3.77) between those appearance signals to disap-
pearance in the νe and νµ channels, since so far no positive signal has been
observed in νµ disappearance, several experiments set bounds on the relevant
mixing parameter Uµ4. The combined limits on νµ and νe mixing with the
eV-scale mass state ν4 lead to a tension between appearance signals and dis-
appearance data in the 3+1 scheme. This seems to indicate that extending
the standard model by adding one sterile neutrino state with a mass at the
eV scale (3+1) could be not sufficient to well describe all data. This leads to
consider whether any improvement could be achieved by introducing more

67



neutrino states at the eV scale, namely, adding two states with eV scale mass
splittings, ν4 and ν5, that can be arranged so that ∆m2

41 and ∆m2
51 are both

positive (“3+2”) or one of them is negative (“1+3+1”). The new interesting
feature in such 5-neutrino schemes is CP violation at the E/L ∼ eV 2 scale
which introduces some freedom in fitting neutrino versus anti-neutrino data
from LSND and MiniBooNE together. However, the main prediction from
the 4-neutrinos case remains valid also for 5-neutrinos. In fact, a non-zero
νµ → νe appearance at SBL necessarly predicts SBL disappearance for νe
and νµ. Thus, the tension between appearance and disappearance data re-
mains significant even in the 5-neutrinos case. The best fit points for the two
scenarios are summarized in Table 3.2.

∆m2
41 [eV 2] |Ue4| ∆m2

51 [eV 2] |Ue5|
3+1 1.78 0.151
3+2 0.46 0.108 0.89 0.124

Table 3.2: Best fit points for the 3+1 and 3+2 scenarios from reactor an-
tineutrino data.

3.4 Density Matrix Formalism and Kinetic Equation
for Mixed Neutrinos

Neutrino interactions with matter play an important role in determining
the nucleosynthesis outcome in explosive astrophysical environments such as
core-collapse supernovae or mergers of compact objects, as well as in the
formation of light nuclei in the early universe. Along with interactions with
matter, an important feature is the quantum phenomenon of neutrino fla-
vor oscillations. As neutrinos with different flavors interact differently with
matter, any mechanism that alters the flavor of neutrinos after their produc-
tion can affect the prediction of the matter property and the outcome of the
nucleosynthesis. To first order of a perturbation expansion, a modification
of the neutrino dispersion relation leads to the effect of resonant neutrino
oscillations indicated as a solution of the solar neutrino problem. To second
order, neutrinos are scattered, absorbed, or produced by the medium. There-
fore, they play an important thermal and dynamical role in certain phases of
stellar evolution, in particular in supernovae, and in the early universe. The
first-order (or refractive) effects are usually treated on the amplitude level in
the form of a Schrödinger equation for the single-particle wave functions for
the mixing flavors. While the second-order effects are treated in the form of a
kinetic equation, that is, a differential equation for the occupation numbers of
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the neutrino field modes that involves a Boltzmann collision integral. These
two approaches cannot account for a situation where neutrino oscillations
and collisions are both important, as is the case in the early universe and
in a supernova core immediately after collapse where the electron neutrinos
differently from the other flavors have a large chemical potential. In this
case, the action of oscillations and collisions could lead to flavor equilibrium,
i.e. to identical chemical potentials for some or all neutrino flavors. In this
environment, sterile neutrinos production and possible active-sterile neutrino
mixing could also play an important role to be accounted for. A systematic
unification of the first- and second-order interaction effects in a single self-
consistent equation and the derivation of a general Boltzmann-type collision
integral for mixed neutrinos interacting with each other and with a medium
is achieved in Refs. (Raffelt et al. 1993; Raffelt & Sigl 1993). This collision
integral allows to account for the simultaneous effects of neutrino oscillations
in a medium and for the effects of collisions.

The density matrix formalism is the appropriate tool to describe time-
dependent vacuum and matter terms, mixed quantum states of neutrinos
and possible loss of coherence due to real collisions in the primordial plasma.
Unmixed neutrinos are usually studied by means of a kinetic equation for
the evolution of particle and antiparticle occupation numbers. In order to
generalize this approach for mixed neutrinos in the framework of field theory
we consider the momentum expansion of the left-handed massless neutrino
field:

ψL(x) =

∫
d3p

(2π)3

(
ap(t)up + b†−pv−p

)
eip·x, (3.78)

where ap is the annihilation operator for negative-helicity neutrinos of mo-

mentum p and b†−p is the creation operator for positive-helicity antineutrinos.
The Dirac spinors u and v, which refer to massless negative-helicity particles
and positive-helicity antipartides, are taken normalized to unity.

For n flavors ap and b†−p are column vectors of n particle annihilators ai(p)

and antiparticle creators b†i (p), respectively, which satisfy the anticommuta-

tion relations
{
ai(p), a†j(p

′)
}

=
{
bi(p), b†j(p

′)
}

= δij (2π)3 δ(3)(p− p′). The

only bilinears needed to describe the neutrino ensemble are the slowly-varying
density operators a†pap′ and b†pbp′ , since the other bilinears either violate the
lepton number by two units or can be ignored because their expectation
values oscillate rapidly around zero. Making the additional assumption of
spatial homogeneity, the expectation value of every physical observable con-
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structed from the field ψ is independent of location and contributes only
for equal momenta p = p′. Therefore, a homogeneous neutrino ensemble is
completely characterized by the dimensionless n× n density matrices, ρp(t)
and ρp(t), respectively for neutrinos and antineutrinos:〈

aj(p)a†i (p
′)
〉

= (2π)3 δ(3)(p− p′) (ρp)ij (3.79)〈
bi(p)b†j(p

′)
〉

= (2π)3 δ(3)(p− p′)
(
ρp
)
ij
, (3.80)

where the reversed order of the flavor indices in equation (3.80) guarantees
that both density matrices transform in the same way under a unitary trans-
formation in flavor space, ψ′ = Uψ. The diagonal elements of ρp and ρp are
the ordinary particle and antiparticle occupation numbers, whereas the off-
diagonal elements represent correlations between the mixing flavors, hence
they vanish for zero mixing. This means that for a homogeneous ensemble
of mixed neutrinos these matrices are the appropriate generalization of the
occupation numbers and it is sufficient to study the time evolution of ρp and
ρp, which is given by:

i ρ̇p =
[
Ω0

p, ρp
]

+
[
Ωint

p , ρp
]

+ C
[
ρp, ρp

]
(3.81)

where the first term on the r.h.s. describes oscillations in vacuum:

Ω0
p =

M2

2|~p|
(3.82)

with M the neutrino mass matrix, diagonal in the mass basis. An equation
analogous to (3.81) can be written for the antineutrino ρp, with Ω0

p = −Ω0
p.

As for the matter-induced potential term, this is defined as:

Ωint
p =

√
2GF

[
L− 8p

3m2
W

E

]
+
√

2GF

[
ρ− ρ− 8p

3m2
Z

(
U + U

)]
(3.83)

Ω
int

p =
√

2GF

[
L+

8p

3m2
W

E

]
+
√

2GF

[
ρ− ρ+

8p

3m2
Z

(
U + U

)]
, (3.84)

where the first two terms correspond to the matter potentials felt by neu-
trinos in a background of charged leptons. Both are diagonal matrices in
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the interaction basis, one proportional to the difference L of number den-
sities of flavor-k leptons and the other to the sum E of energy densities of
charged leptons and antileptons of flavor k. Since L is proportional to the
asymmetry, the second kind of terms are dominant at high temperatures
(in the early universe the number of baryons and antibaryons were almost
equal, with present baryon asymmetry fixed by observations to the value
ηB = (nB −nB)/nγ ∼ 6× 10−10. Charge neutrality implies that the electron
and proton densities should be equal, meaning that the first-order matter
effect of the L term does not dominate at MeV temperatures). The last two
terms are the refractive contributions of background neutrinos, caused by
neutrino self-interactions, and depend on the the number and energy density
of the interacting neutrino type:

ρ =

∫
d3p

(2π)3ρp U =

∫
d3p

(2π)3 |p| ρp, (3.85)

with p0 = |p|, the energy of a neutrino mode. The analogous of the above
definitions for antineutrinos only needs the replacement of the density matrix
for the antiparticle. These matter terms caused by neutrino self-interactions
can have non diagonal elements in the flavor basis, which can lead to unex-
pected behavior of neutrino transitions in media where the neutrino density
is large. In particular, when cosmological flavor asymmetries of neutrinos are
considered. The above terms are also quite important in media with high
density such as Type-II supernovae.

Note that in equations (3.83) (3.84) the diagonal components of L and E
vanish in the corresponding entries for sterile neutrino states. Zeroes appear
in the last contributions also, whenever either of the two flavor indices in ρij
corresponds to a sterile neutrino state.

In general, the backreaction on the medium of neutrinos evolution cannot
be neglected. In special cases it is possible, however, to regard the medium as
an external heat bath, whose properties remain unaffected by the evolution
of the neutrino ensemble, so that the medium may be thought of as absorbing
or producing energy and lepton number without changing its temperature or
chemical potentials. In equilibrium, neutrinos will take on the same temper-
ature T while all mixing flavors will be characterized by the same chemical
potential µ. For a medium of nucleons and charged leptons, this would be
µ = µ1 +µp−µn. Studying the approach to thermal equilibrium, allowing for
the violation of individual flavor lepton numbers by neutrino oscillations, it
can be assumed that the medium is characterized by chemical potentials for
the charged leptons which are identical, µ1 ≡ µe = µµ = µτ . This require-
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ment does not apply when considering oscillations between an active species
να and a sterile species νs; the role of µ1 in this case is played by µα, without
any restriction on the other chemical potentials µβ.

The collision integral C
[
ρp, ρp

]
, in equation (3.81), includes all the al-

lowed neutrino interaction processes. Different types of neutrino interactions
will lead to separate contributions to the collision term. Since for the mo-
ment we are considering chiral neutrinos involved in weak interaction, such
contributions are: charged-current (CC) and effective neutral-current (NC)
interactions with a medium and neutral current neutrino self-interactions (S):

C
[
ρp, ρp

]
= (ρ̇p)CC + (ρ̇p)NC + (ρ̇p)S , (3.86)

and an analogous equation can be written for the antineutrino collision terms.

The CC term is given by:

(ρ̇p)CC = {Pp, (1− ρp)} − {Ap, ρp} , (3.87)

where

P∆ =
1

2

n∑
k=1

Pk(∆) Ik (3.88)

A∆ =
1

2

n∑
k=1

Ak(∆) Ik (3.89)

with Ik a projector on the neutrino flavor k.
The analogous equation for the antineutrino density matrix ρp is obtained

from that for neutrinos (3.87) by means of the transformation:

p→ −p ρp →
(
1− ρp

)
. (3.90)

An evaluation of Pk(∆) and Ak(∆) can be very complicated for a dense
and strongly interacting medium, as in a supernova core. However, in a
sufficiently dilute medium they can be determined using perturbation theory,
treating the medium constituents as free Dirac fields between collisions. For
example, in a medium of protons, neutrons, and electrons Pk(∆) and Ak(∆)
take the explicit form:
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Pe(p) =

∫
d3p′

(2π)3

d3q

(2π)3

d3q′

(2π)3 (2π)4 δ(4) (p+ q − p′ − q′)

×
∑
spins

|M (q, q′, p, p′)|2 ne(p′)np(q′) (1− nn(q))
(3.91)

Ae(p) =

∫
d3p′

(2π)3

d3q

(2π)3

d3q′

(2π)3 (2π)4 δ(4) (p+ q − p′ − q′)

×
∑
spins

|M (q, q′, p, p′)|2 nn(q) (1− ne(p′)) (1− np(q′)) ,
(3.92)

where ne(p
′), nn(q) and np(q

′) are the electron, neutron, and proton occupa-
tion numbers typically given by the Fermi-Dirac distributions; M is the usual
weak matrix element for the process e(p′) + p(q′) ←→ n(q) + νe(p). This
kind of processes give a negligible contribution in the early universe. Con-
sider now the weak processes that contribute to the NC term, which come
from the part of the interaction Hamiltonian which is bilinear in the left-
handed neutrino field ψ. Using the standard V −A four-fermion interaction
and a suitable Fierz transformation they can be written as an effective NC
interaction with an external medium. After a lengthy but straightforward
calculation, the NC collision term takes the form:

(ρ̇p)NC =− i
√

2GF ρm [G, ρp]

1

2

∫
d3p′

(2π)3 [W (p′, p) (1− ρp) Gρp′ −W (p, p′) ρpG (1− ρp′) G

+W (−p′, p) (1− ρp) G
(
1− ρp

)
G−W (p,−p′) ρpGρp + h.c.

]
,

(3.93)

where ρm is a kind of baryon or charged-lepton number density of the medium
and G is a hermitian n×n matrix of dimensionless coupling constants, which
in the flavor basis reads Ga = diag(ga1 , ..., g

a
n) for each species a (nucleons and

charged leptons); the non-negative transition probabilities W (k′, k) are Wick
contractions of medium operators of the form:

W (k′, k) = 2G2
F W µν(k′ − k) Nµν(k

′, k), (3.94)

with k and k′ correspond to neutrino four-momenta with k0, k′0 positive or
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negative, W µν the tensorial medium structure function and Nµν the neutrino
tensor written in the ultarelativistic limit (see Raffelt & Sigl 1993). The first
two terms in the integral are due to neutrino scattering off the medium. Both
the positive gain term and the negative loss term correspond to scattering
processes. The third and fourth expressions in the integral account for pair
processes, with the positive term being a gain term from pair creations by
the medium, whereas the negative one is a loss term from pair annihilations.

The corresponding equation for ρp can be found by applying the crossing
operation in equation (3.90) to all neutrinos and antineutrinos appearing in
(3.93).

Note that the CC and NC interations with the medium do not fulfill
rigorously the assumption that the medium is not significantly affected by
neutrinos. For example, in a supernova core a change of the νe density due
to oscillations into other neutrino flavors will also change the electron and
nucleon chemical potentials. However, assuming that the medium compo-
nents always stay in kinetic equilibrium, the impact of the interaction on the
medium will consist of a slow time variation of the temperature and chemical
potentials.

As regards neutrino self-interactions, the corresponding effective interac-
tion Hamiltonian is quartic in the neutrino field ψ. In this case the restriction
to the usual V −A coupling is maintained and allowing for different coupling
strengths for different neutrino flavors, but not a local four-fermion coupling,
which in the early universe would be a too rough approximation for the
resulting refractive terms.

Therefore, including gauge boson propagator effects the neutrino self-
interaction term takes the form:
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(ρ̇p)N C =− i
[
ΩS

p, ρp
]

+G2
F

∫
d3q

(2π)3

d3p′

(2π)3

d3q′

(2π)3 (2π)4 δ(4) (p+ q − p′ − q′) fscatt(p, q, p′)

× {(1− ρp) GS ρp′ GS [(1− ρq) GS ρq′ GS + Tr(...)]

−ρpGS (1− ρp′) GS [ρqGS (1− ρq′) GS + Tr(...)] + h.c.}

+G2
F

∫
d3q

(2π)3

d3p′

(2π)3

d3q′

(2π)3 (2π)4 δ(4) (p+ q − p′ − q′) fpair(p, q, p′)

×
{

(1− ρp) GS

(
1− ρq

)
GS

[
ρq′ GS ρp′ + Tr(...)

]
−ρpGS ρqGS

[(
1− ρq′

)
GS (1− ρp′) GS + Tr(...)

]
+ (1− ρp) GS ρp′ GS

[
ρq′ GS

(
1− ρq

)
GS + Tr(...)

]
−ρpGS (1− ρp′) GS

[(
1− ρq′

)
GS ρqGS + Tr(...)

]
+ h.c.

}
,

(3.95)

where Tr(...) means the trace of the term in front of it, GS is an n × n
dimensionless hermitian matrix of NC coupling constant, fscatt and fpair are
non-negative numbers which are functions of the physical four-momenta p, q
and p′ and only depend on scattering angles:

fscatt(p, q, p
′) =

p · q p′ · (p+ q − p′)
p0 q0 p′0 (p+ q − p′)0

(3.96)

fpair(p, q, p
′) =

p · p′ q · (p+ q − p′)
p0 q0 p′0 (p+ q − p′)0

. (3.97)

The first phase space integral in equation (3.95) represents the gain and loss
term due to the scattering reaction νp′νq′ → νpνq and the inverse reaction,
respectively, whereas the second integral describes gain and loss terms due
to the pair reaction νp′νq′ → νpνq and its inverse. The first two terms of the
second integral can be obtained from the first integral by crossing νp′ and
νq, and and relabeling p′ ←→ q, p′ ←→ q′. The last two terms arise from
crossing νq′ and νq and relabeling q′ ←→ q, p′ ←→ q′.

The antineutrino equation is again obtained by crossing all neutrinos on
both sides of the equation, which means by interchanging all the ρ and ρ and

substituting the refractive energy shift ΩS
p with −Ω

S

p, where ΩS
p is given by:
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ΩS
p =
√

2GF

∫
d3q

(2π)3

{
GS

(
ρq − ρq

)
GS +GS Tr

[(
ρq − ρq

)
GS

]}
− 8
√

2GF p0

3m2
Z

∫
d3q

(2π)3 q0GS

(
ρq + ρq

)
GS.

(3.98)

Differently from the matrix of vacuum frequencies Ω0
p, ΩS

p consists of two
terms, of which the first one changes sign for antineutrinos whereas the second
one remains unchanged. The trace expression in the first term implies that
neutrinos in a bath of their own flavor experience twice the energy shift
relative to a bath of another flavor.
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4
Neutrino in Cosmology and Astrophysics

In the standard Big-Bang cosmology, neutrinos as well as photons are the
most abundant particles in the universe. The neutrino role during the early
stages of the universe is significant since light neutrinos are essential ingre-
dients in the universe density in the radiation-dominated stage, determining
the dynamics of the universe. Neutrinos played an essential role in different
processes in BBN, leptogenesis and baryogenesis as well as the CMB for-
mation. At later stages of the universe (T ≤ eV) relic neutrinos contribute
to the matter density because at least one of the neutrino species became
non-relativistic affecting the formation of galaxies and their structures as
well as the CMB anisotropies. This implies that neutrinos play an important
role in the evolution of the universe from the very beginnings to the cur-
rent state and consequently their properties within and beyond the standard
model are strongly bounded by modern high precision cosmological observa-
tions. In this chapter, we will present an overview of the consequences and
related constraints associated with the presence of sterile species along with
the active ones in the early stages of universe and supernovae environments.

4.1 Early Universe

Relic neutrinos are an important product of the standard hot Big Bang
model. The three left-handed neutrinos να and their CP conjugated states
are thermally excited in the hot plasma which filled the early universe and
are maintained in kinetic and chemical equilibrium with charged leptons,
baryons and photons through weak interactions. In this regime, neutrinos
distribution is a Fermi-Dirac, with a negligible contribution of the mass to
the energy and physical momentum p:
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fνα(p) =
1

e
p−µα
T + 1

(4.1)

fνα(p) =
1

e
p+µα
T + 1

, (4.2)

with T, the photon temperature. As long as the active neutrinos are in
thermal equilibrium with the thermal bath, they have the same temperature
T. As the universe expands and cools, the rates of weak interaction processes
decrease and neutrinos decouple when these rates become smaller than the
expansion rate of the universe. Since for the three active light neutrinos with
masses smaller than about 1 eV the decoupling occurs when they are still
relativistic, these neutrinos are hot relics.

The photon temperature, given by the conservation of entropy in the
baryon–lepton–neutrino–photon fluid, decreases as the inverse of the scale
factor, 1/a, except near the time when particles disappear from the thermal
bath and release their entropy to lighter particles. Since neutrinos have
already decoupled at the time when electrons/positrons annihilate, only the
photons are heated. Using the conservation of entropy density, one can obtain
the temperature ratio after e− e+ annihilation,

Tνα
T

=

(
4

11

) 1
3

, (4.3)

afterwards the ratio Tνα/T remains constant in the standard cosmology.
Defining ξα ≡ µα, the neutrino–antineutrino asymmetry, energy density,

pressure and entropy density can be written in the form:

nνα − nνα =
T 3

6
ξα

(
1 +

ξ2
α

π2

)
(4.4)

ρνα + ρνα =
7π2

120
T 4

(
1 +

30ξ2
α

7π2
+

15ξ4
α

7π4

)
= 3 (Pνα + Pνα) (4.5)

sνα + sνα =
7π2

90
T 3

(
1 +

15ξ2
α

7π2

)
, (4.6)

where the neutrino and antineutrino number density are given by:

nνα,να =
3ζ(3)

4π2
T 3 ± ξα

12
T 3 +O(ξ2

α), (4.7)
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with ζ(3) = 1.202, the Riemann zeta function ζ(n). The above equations
have been written for chiral neutrinos, for which the number of the internal
degrees of freedom g is equal to 1, whereas in general for massive 1/2-spin
fermions g = 2.

Neutrino decoupling occurs over an extended period of time. As neutri-
nos have different momenta and weak cross sections grow with the squared
total energy in the two-particle center of mass of the system, s = E2

CM , more
energetic neutrinos will remain in equilibrium longer than low-energy neu-
trinos. Consequently, when e− and e+ annihilate, some thermal distortions
will affect neutrino distribution with respect to a standard Fermi–Dirac func-
tion. Using the instantaneous decoupling approximation, that is, the limit in
which we consider neutrino decoupling as an instantaneous event happening
at temperature Tνd, after decoupling neutrinos propagate freely and their
distribution remains unchanged except for the effect of redshift of the physi-
cal momentum. In this approximation we can assume the distribution at Tνd
to be a Fermi-Dirac one, which can be conveniently written in terms of the
comoving momentum as:

fνα(p) =
1

e
p ad
Tνd ad + 1

, (4.8)

where ad is the scale factor at the decoupling time Tνd. In the above equa-
tion (4.8), ξα has been neglected, since the neutrino chemical potentials are
expected to be very small and their values can be experimentally constrained
using primordial nucleosynthesis. However, the same result still holds even
if the constant chemical-potential-to-temperature ratio ξα is included.

Regarding the decoupling temperature, Tνd can be estimated by compar-
ing the weak interactions rate with the expansion rate H(T ). Taking into
account that the leading processes contributing to equilibrium are scatter-
ing over electrons/positrons and pair conversions, e+ e− ↔ να να, and that
as long as the temperature T is smaller than the W and Z boson masses,
the corresponding cross section times velocity for charged and neutral cur-
rent interactions is of the order 〈σv〉 ∼ G2

F T
2, the weak interaction rate for

neutrinos is given by:

Γν = 〈σv〉 ∼ G2
F T

2 ne(T ) ∼ G2
F T

5, (4.9)

where ne ∼ T 3 is the target density corresponding to temperatures at which
the electron/positron are still relativistic.
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This rate in equation (4.9) has to be compared with the Hubble expansion
parameter in the radiation-dominated era:

H(T ) =

√
8πGN

3
ρR (4.10)

with GN , the Newton gravitational coupling constant and ρR the energy
density in radiation:

ρR = g∗
π2

30
T 4 (4.11)

and g∗ is the effective number of degrees of freedom contributing to ρR:

g∗ =
∑

i,bosons

gi

(
Ti
T

)4

+
7

8

∑
j,fermions

gj

(
Tj
T

)4

. (4.12)

The decoupling temperature is then given by Γν(Tνd) = H(Tνd):

Tνd =

( √
g∗

G2
F mPl

) 1
3

∼ g∗
1
6 MeV, (4.13)

where mPl = G
−1/2
N = 1.22× 1019 GeV is the Planck mass scale.

Tνd is of the order of MeV, as it can be seen from the very weak depen-
dence on the number of relativistic degrees of freedom g∗. Indeed at such
temperatures, the thermal bath consists only of electrons/positrons, photons
and neutrinos themselves, hence

g∗ = 2 +
7

8
4 +

7

8
6 =

43

4
= 10.75. (4.14)

Using the value of the CMB temperature at present time, T0 = 2.725 K, equa-
tion (4.3) provides neutrinos temperature today, Tν0 = 1.945 K = 1.676×10−4

eV. Thus, the relic neutrinos that pervade space have temperature extremely
small. This implies that their weak interaction cross-section with matter is
also extremely small. For chiral neutrino this is given by:

σ ∼ G2
FT

2
ν0 ∼ 10−64 cm2. (4.15)

For massive and nonrelativistic neutrinos, the cross section is larger but still
very small:
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σ ∼ G2
Fm

2
ν ∼ 10−56

( mν

1 eV

)2

cm2. (4.16)

This means that although the number density of cosmic neutrinos, given for
each flavor by equation (4.7) assuming negligible chemical potentials, pro-
vides a rather large flux with respect to any astrophysical neutrino sources,
including solar neutrinos:

nν0 = nν0 ∼ 56 cm−3, (4.17)

the direct detection of such a large number of relic neutrinos still remains a
difficult task with present experimental techniques.

From the value of Tν0 it follows that two of the three neutrino mass
eigenstates are nonrelativistic today, being Tν0 < (δm2)1/2, with δm2 ∼
10−5 eV 2, the squared mass difference involved in the solar neutrino problem.
Their contribution to the energy density today can be derived using the
present value of the critical density ρc ≡ 3H2/(8πGN) and equation (4.17).
Summing only over neutrinos which are nonrelativistic today and assuming
standard Fermi-Dirac distributions with zero chemical potential, Ων is given
by:

Ων =

∑
imνi nν0

ρc0
=

∑
imνi

eV

1

94.1(93.1)h2
, (4.18)

where the number in round brackets accounts for the effects of non instanta-
neous neutrino decoupling. The above formula (4.18) can be used as a good
approximation for the sum over all three species, since if the lightest neutrino
eigenstate is still relativistic today, its contribution to Ων will be marginal.
Since the current constraint on light neutrino masses is ∼ 1 eV, they can
only contribute a small fraction of the total energy density of the universe,
although their effect at late times, during structure formation, is expected to
be very significant.

After the electron/positron annihilation, the only relativistic degrees of
freedom present in the universe correspond to photons and neutrinos. Hence,
the energy density in radiation is given by:

ρR = ργ

[
1 +

7

8

(
4

11

) 4
3

Neff

]
, (4.19)
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where, the effective number of neutrino species Neff parametrizes any devia-
tion from the assumptions of no other relativistic species than the three light
neutrinos, instantaneous decoupling and standard Fermi-Dirac distributions
with zero chemical potentials for neutrinos.

Note that, after LEP precision electroweak measurements on the Z res-
onance and its invisible width, the number of active neutrino generations is
known to be three (Beringer et al. 2012). Even before these experimental
results some bounds on Neff had already been set by cosmology, mainly
from primordial nucleosynthesis (Shvartsman 1969; Steigman et al. 1977).
Besides nucleosynthesis, the spectra of CMB anisotropies and of matter fluc-
tuations can actually provide further powerful constraints on ρR and there-
fore on Neff . Now the question is no longer the assessment of the number
of light-flavor neutrino species, but seeking for any evidence of other as yet
unidentified light particles contributing to ρR, or nontrivial features such as
chemical potentials in the neutrino distributions in phase space. In other
words, the present concern is whether Neff 6= 3 may be due to fermionic or
bosonic degrees of freedom which have nothing to do with neutrinos or to
the assumption of a simple Fermi-Dirac distribution for the three neutrinos.

So far we have only considered the left-handed light neutrino component
in the primordial plasma. If neutrinos are Majorana particles, right-handed
sterile partners might either not exist at all or be very massive particles
already disappeared from the thermal bath by the primordial nucleosynthesis
epoch. If neutrinos have a Dirac mass term, right-handed neutrinos can be
excited through the mass term which mixes chirality states but owing to
the left-handed chiral character of the SM charged-current interaction, the
production rate of right-handed states is suppressed with respect to that of
the left-handed ones by a factor (mν/E)2 in the relativistic limit. This leads
to:

Γs = G2
F T

5 m
2
ν

T 2
, (4.20)

which, imposing the condition Γs ≥ H(T ), shows that these processes are at
equilibrium only for T > MeV 3/m2

ν , that is, T > 109 GeV for mν ∼ 1 eV. As
a matter of fact, for such temperatures, much higher than the W and Z boson
masses, the weak cross section has different behavior and decreases as the
inverse squared center of mass energy, σ ∼ G2

F m
4
W,Z/T

2. It follows that the

equilibrium condition leads to a temperature T ≤ 102MeV (m2
ν/eV )

2/3 �
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mW,Z , which is far below the range where that σ can be applied. Therefore it
is always Γs < H(T ). An hypothetical right-handed neutrino production in
the primordial plasma by means of a Dirac mass term is then excluded by the
smallness of neutrino masses, being the typical interaction rates suppressed
by the factor (mν/T )2.

A further possibility of right-handed neutrino production could be the
existence of weak right-handed currents mediated by WR bosons, for instance
in extensions of the Standard Model to gauge symmetries also having an
SU(2)R factor. In this case they would contribute to Neff by an amount
comparable to that for left-handed neutrinos, unless the right-handed gauge
bosons are sufficiently massive, given that the cross sections scale as M−4

WR
.

The primordial nucleosynthesis sensitivity to the value of Neff provides lower
bounds on MWR

. Assuming that the right-handed interaction has the same
form as the left-handed one but with heavier intermediate bosons, the lower
limit on their mass coming from BBN is MWR

& 75mW , which can depend
on the particle spectrum of the physics beyond the SM (Lesgourgues et al.
2013 and references therein).

The left-right (LR) symmetric models of weak interaction are an inter-
esting extension of the SM which may manifest itself in the TeV (maybe
higher) range of energies. In these models, the left and right chiralities of
fermions are assumed to play an identical role prior to symmetry breaking
(or at energies higher than all symmetry breaking scales), so that in the
symmetric phase weak interactions conserve parity, as it happens in strong
and gravitational interactions. Lepton number violation occurs through the
production of the heavy right-handed neutrinos and their subsequent decay.
The main achievement of LR symmetric models based on the gauge group
SU(2)L×SU(2)R×U(1)B−L is a prediction of non-vanishing neutrino mass,
whose smallness gets naturally tied to the maximal parity violation of weak
interactions through the seesaw mechanism. The lightest right-handed neu-
trino with a mass around keV turns out to be the only viable candidate
consistent with a TeV scale of left-right symmetry. A keV mass scale of one
of the right-handed neutrinos could also make it a long-lived warm dark mat-
ter (DM) candidate (Senjanovic & Mohapatra 1975; Heeck & Patra 2015 and
reference therein; Adhikari et al. 2016). Thus, possible sterile neutrinos, re-
lated to ordinary ones through a small mixing angle, in various extensions of
the SM are expected to be relatively light, with masses in eV region (maybe
smaller) or with keV masses. Besides this, another possibility is related to the
production of much heavier sterile neutrinos, with masses in the MeV range.
For such heavy sterile neutrinos, suggested by the KARMEN anomaly in
the time distribution of the charged and neutral current events induced by
neutrinos from pion decay, mass and mixing angle can be constrained on the
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basis of cosmological and astrophysical arguments as well as by experiments
(Dolgov et al. 2000; Ruchayskiya & Ivashko 2012).

In summary, sterile neutrino, in addition to providing neutrino mass gen-
eration, depending on its mass scale, may have many important cosmological
implications. eV sterile neutrinos may explain the dark radiation (DR) prob-
lem (additional relativistic density quantified by Neff ) and the experimental
data of SBL experiments, a KeV sterile neutrino may be a warm DM candi-
date and furthermore sterile neutrinos provide the possibility of baryogenesis
through leptogenesis (Fukugita & Yanagida 1986). The main way of obtain-
ing a significant abundance of sterile neutrinos is through their mixing and
oscillations with the active neutrinos. In the early universe neutrino oscilla-
tions are expected to be effective when the vacuum oscillation term becomes
larger than the leading matter-induced potential term from charged leptons,
respectively given by:

−∆m2

2p
cos 2θ, −8π

√
2GF p

3m2
W

(ρl− + ρl+) , (4.21)

where, because of the 1/p dependence, the vacuum term grows with the
cosmological expansion. With good approximation, this exceeds the matter
term when the temperature drops below a certain value Tc, given by:

Tc ≈ 150

(
|∆m2|
keV 2

) 1
6

MeV, (4.22)

where the approximation consists in the fact that the above expression (4.22)
does not account for the proper evolution of other particle species at temper-
atures much higher than T & 30 MeV, and in particular close to the QCD
transition phase at T ∼ 200 MeV.

Active-sterile neutrino oscillations may have considerable effects in the
early universe. They may excite additional light particles into equilibrium,
thus affecting the expansion rate of the universe. They may generate neutrino-
antineutrino asymmetry and distort neutrino energy spectrum. In fact, fast
active-sterile neutrino oscillations effective before the epoch of neutrino de-
coupling, only slightly affects active neutrino distributions, because the active
neutrino states can be refilled through interactions with the plasma. How-
ever, active-sterile neutrino oscillations proceeding after νe decoupling, if νs
was not in equilibrium before the start of oscillations, Ns = ρνs/ρνe < 1,
may strongly distort neutrino energy spectrum and deplete neutrino number
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density (Kirilova 2015). In particular νe− νs oscillations can affect the weak
interaction rates of νe and hence the Big-Bang Nucleosynthesis (BBN).

It being understood that in constraining cosmology in general, the BBN
presents a limiting factor consisting of the systematic uncertainties in the
astrophysical measurements of all primordial abundances. In this sense, the
helium-4 mass fraction Yp and the deuterium abundance D/H are the only
effective probes. Nevertheless, the BBN remains the most powerful cosmolog-
ical probe of sterile neutrinos effects as it reflects both kinetic and dynamical
effects of a non-zero population of sterile neutrinos and active-sterile oscil-
lations. This provides significant constraints on the number of thermalized
neutrinos present at temperatures T ∼ 0.1 MeV, as it will be shown in the
next chapter. Here, we first consider the effects of a population of thermal
light sterile neutrinos, with eV-range masses as suggested by reactor and SBL
oscillation data, produced in the early universe.

4.1.1 Sterile Neutrino Thermalization

The evolution of an active-sterile neutrino system depends on the sign of
∆m2. For negative values of the squared-mass difference there could be a
cancellation of the two terms in equation (4.21) for both helicity states, lead-
ing to resonant production, whereas, ∆m2 > 0 leads to a nonresonant pro-
duction of sterile neutrinos. In both cases, for ∆m2 higher than ∼ 10−7 eV 2,
sterile neutrino population depends on the interplay between oscillations and
interactions. If the mean free path of the active neutrinos is much shorter
than the in-medium oscillation length, the probability for conversion of an
active neutrino into a sterile state becomes very small.

In the non resonant production case, the production probability of sterile
neutrinos can be written as (Barbieri and Dolgov, 1990):

Γs =
〈
sin2 θm sin2(ωmt) Γα

〉
, (4.23)

where θm and ωm are the in-medium mixing angle and oscillation frequency,
respectively; Γα is the production rate of active neutrinos in the plasma and
the averaging is done over the thermal background.

For high values of the oscillation frequency and small values of θm, Γs
becomes:

Γs ≈ θ2
m Γα, (4.24)

for a small number density of sterile neutrinos and active neutrinos close
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to equilibrium. Therefore, if the production rate of νs is higher than the
expansion rate of the universe (this condition holds for values of ∆m2 or
θm not very small), one can expect a thermal or close-to-thermal population
of sterile neutrinos. As regards resonant production of sterile neutrinos, at
temperatures below Tc the resonance propagates over the whole momentum
distribution while the active neutrinos are repopulated by interactions, lead-
ing to a significant enhancement of the νs thermalization even for quite small
values of the mixing angle. In particular, for the active-sterile parameters
needed to explain the SBL oscillation anomalies the thermalization of sterile
neutrinos is achieved, which means Neff = 4.

Furthermore, all the active-sterile schemes with νs mass on the eV scale
are still in tension with the cosmological constraints on the sum of neutrino
masses. This tension may be relieved if there exists some mechanism that
suppresses the production of νs in the early universe, such as a lepton asym-
metry. This can lead to different outcome for resonant production (blocking
of νs production until να decoupling) and for nonresonant production (de-
layed thermalization) but the final contribution of sterile neutrinos to Neff

can be significantly suppressed.
The existence of sterile neutrinos not fully thermalized with the active

species in the early universe in principle is compatible with Big-Bang Nucle-
osynthesis (BBN) data, even if models with more than one sterile neutrino
seem to be disfavored by BBN analysis based on current astrophysical data.
It is also compatible with cosmological measurements of the Cosmic Mi-
crowave Background (CMB) and Large-Scale Structures (LSS) if the neutrino
masses do not exceed 1 eV. Analysis based on a technique which exploits the
full information contained in the one-dimensional Lyman-α forest flux power
spectrum, complemented by additional cosmological probes, such as CMB
data and in particular adding baryon acoustic oscillations, lead to rule out
any possibility of thermalized sterile neutrinos or more generally any decou-
pled relativistic relic with ∆Neff ' 1 at a significance of over 5σ. Therefore,
one or more than one sterile neutrino may exist avoiding the cosmological
constraints only by suppressing the thermalization of sterile neutrinos in the
early universe and/or by considering non-standard cosmological theories.

As mentioned above, neutrino thermalization can be suppressed by as-
suming a primordial asymmetry Lν between active neutrinos and antineu-
trinos (Bell et al. 1999; Chu & Cirelli 2006). This produces an additional
matter-induced potential term in the active-sterile neutrino equations of mo-
tion, which is able to inhibit the active-sterile flavor conversions via suppres-
sion of the in-medium mixing angle, providing that this term be sufficiently
large. The required asymmetry for achieving a sufficient suppression of the
sterile neutrino abundance is Lν > 10−2 (Hannestad et al. 2012; Mirizzi
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et al. 2012). Apart from considerations on the non-naturalness of such a
high value of Lν , the distortions induced on the active energy spectra can
have appreciable effects on the neutron-to-proton ratio and primordial nucle-
osynthesis (Saviano et al. 2013). An alternative mechanism for suppressing
sterile neutrino thermalization is based on the introduction of new “secret”
self-interactions among sterile neutrinos, mediated by a massive gauge boson,
with mass less than mW (Dasgupta & Kopp 2014; Hannestad et al. 2014),
or by a light pseudoscalar (Archidiacono et al. 2014). As in the case of
neutrino asymmetries, in the secret self-interaction scheme the suppression
of the sterile neutrino production before decoupling occurs by means of a
matter-induced potential term in the flavor evolution equations.

The outcome of these models will be discussed in some more detail in the
next chapter.

4.2 Cosmological Constraints on Sterile Neutrinos

Big Bang Nucleosynthesis provides one of the most sensitive probes of the
physical conditions in the early universe. The uncertainties on the observed
values of the primordial abundances, although small, still leave some room
to physics beyond the standard model. BBN is therefore often used to con-
strain new physics such as neutrino oscillations between active and sterile
species. For this reason we will devote a separate chapter (Chapter 5) to
sterile neutrino effects on the BBN and the related constraints. Here we
will focus on sterile neutrino effects on the CMB radiation and LSS and the
ensuing constraints.

Unlike the BBN, probes of the late-time inhomogeneities of the universe,
such as the CMB anisotropies and the LSS distribution, are not sensitive to
the flavor content of the neutrino sector but only to its contribution to the
stress-energy tensor. If neutrinos are massless, the Neff parameter as defined
through the total neutrino energy density in radiation-dominated era, ρν =
Neff (7π

2/120)T 4
ν , alone accounts for their effects on the universe evolution.

If neutrinos are massive, in order to solve the evolution equations for the
inhomogeneities exactly, in principle one should know the exact form of the
neutrino phase space distribution. However, since the current generation of
late-time cosmological probes are not sensitive to deviations of the neutrino
phase space distribution from the relativistic Fermi-Dirac distribution (Cuoco
et al. 2005), the neutrino sector can be safely treated in terms of the neutrino
masses mνi and the Neff parameter solely.

Additional relativistic energy density, due to a thermal population of
light sterile neutrinos, affects the CMB anisotropies primarily for its effects
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on the age around matter-radiation equality. If the particle has a rest mass
significantly below the temperature of the thermal population around matter-
radiation equality (approximately mνi � 0.1 eV), the equality redshift zeq
will be altered in the following way:

1 + zeq =
ωM

ωγ

[
1 + 7

8

(
4
11

) 4
3 Neff

] =
ωM

ωγ [1 + 0.227Neff ]
, (4.25)

where ωM and ωγ are the present-day matter and photon energy densities,
respectively. The equality redshift zeq is strongly constrained by observations
of the CMB temperature anisotropies through the ratio of the first and the
third acoustic peaks. Hence, measuring zeq amounts to fixing the ratio of
the matter energy density to the radiation energy density. On the other
hand, equation (4.25) also implies that Neff and the matter energy density
ωM are degenerate parameters. For a fixed value of ωM , increasing Neff

leads to a shorter stage between equality and decoupling and then to higher
acoustic peaks. If the rest mass of the particle is such that (for neutrinos mνi

is estimated approximately in the range (0.1 − 1) eV) the transition of the
thermal population from an ultra-relativistic to a nonrelativistic distribution
occurs around matter-radiation equality, then zeq will also depend on the
particle mass to temperature ratio. This means that there can be some
degeneracy of Neff with the rest mass of the particle.

Regarding possible a population of heavier and/or colder particles (mνi �
10 eV) that have become fully nonrelativistic before the epoch of matter-
radiation equality, this would be a nonrelativistic matter component in the
context of CMB and LSS. For this reason the Neff parameter does not cover
keV-mass sterile neutrinos when considering CMB and LSS.

A value other than the standard Neff = 3.046 also affects the sound
horizon rs at the time of CMB decoupling,

rs =

∫ t∗

0

dt
cs(t)

a(t)
with cs(t) =

1
√

3
(

3
4
ωBa
ωγ

) (4.26)

which in turn affects the angular position of the acoustic peaks:

θs =
rs
DA

∝ Ω
−1/2
M∫ 1

a∗
da

a2
√

ΩMa−3+(1−ΩM )

, (4.27)

where DA is the angular diameter distance to the last scattering surface.
The sound horizon at decoupling depends on the time of equality. A later
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equality implies a smaller sound horizon at decoupling and then a shifting of
all peaks to higher values of `.

The above equation (4.26) implies that θs only constrains the parameter
combination ΩM = ωM/h

2, not ωM and h singularly, from which it follow a
correlation between Neff and the present-time Hubble parameter H0. Be-
cause of the aforementioned degeneracies, Neff − ωM and Neff − H0, Neff

cannot be completely constrained by measurements of the CMB acoustic
peaks alone. However, as non-interacting, free-streaming relativistic parti-
cles, neutrinos may have another important effect on the CMB anisotropies
through their anisotropic stress, which can suppress the amplitude of higher
harmonics in the temperature anisotropy spectrum (` > 200) and structure
formation growth (Bashinsky & Seljak 2004; Hannestad 2013).

Measurements of the CMB damping tail (` & 1000) by ACT (Atacama
Cosmology Telescope) and SPT (South Pole Telescope) have provided an
additional route to Neff through the effect of zeq on diffusion damping (Silk
damping). The measured quantity is the angular diffusion scale θd = rd/DA,
which, for fixed values of zeq, baryon energy density ωB and using θs can be
written as:

θd ∝
(
ΩMH

2
0

) 1
4 θs. (4.28)

Thus, measuring θd in the CMB damping tail allows to determine the phys-
ical matter density ωM and hence Neff through the Neff − ωM degeneracy,
independently of DA (i.e., its defining parameters such as spatial curvature,
dark energy equation of state). This allows to place constraints on Neff also
using CMB data alone (Dunkley et al. 2011; Keisler et al. 2011).

Consider now the effects of light sterile neutrinos on the LSS. The LSS
matter power spectrum P (k) is determined by two quantities: the comoving
wavenumber at matter-radiation equality keq and the baryon-to-matter ratio
rB, respectively given by:

keq ≡ aeqH(aeq) ' 4.7× 10−4
√

ΩM (1 + zeq)hMpc−1 rB ≡
ωB
ωM

. (4.29)

The former determines the position of the turning point of the power spec-
trum P (k), whereas the latter controls the power suppression due to baryon
acoustic oscillations at k > keq.

Massless neutrinos are always part of the radiation content and keq is
unaffected by species that are still relativistic today. Whereas, massive neu-
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trinos contribute to radiation at early times but also to matter after becoming
nonrelativistic. If some of the neutrinos, sterile or active, are massive enough
to be nonrelativistic today, a third parameter rν ≡ ων/ωM (where ων = Ωνh

2

is defined by equation (4.18)) controls the power suppression, at k > keq,
due to the neutrino thermal velocity dispersion. Thus, massive neutrinos
also contribute to the present-time ωM , reducing the values of the cold dark
matter and baryon density today, ωCDM and ωB. If massive neutrinos have
not yet become nonrelativistic at the time of radiation/matter equality, this
transition will be delayed, with the following consequence for the LSS mat-
ter power spectrum: since on sub-Hubble scales the matter density contrast
δ = δρ/ρ grows more efficiently during matter domination than during radi-
ation domination, the matter power spectrum is suppressed on small scales
with respect to large scales.

The physical matter density ωM today is higher while ωB is unchanged,
leading to a lower baryon-to-matter ratio. It follows a higher matter fluctua-
tion amplitude today at k > kB, where kB corresponds approximately to the
comoving Hubble rate at the epoch when baryons decouple from photons.
Therefore, measurements of the LSS matter power spectrum can be used to
solve the Neff − ωM degeneracy problem in the CMB data.

On the other hand, the above mentioned suppression of the matter fluc-
tuation amplitude at k > kν , (where kν is the neutrino free-streaming scale
at the time when neutrinos become nonrelativistic) dependent on the ratio
rν , avoids some of the enhancement due to the extra relativistic energy den-
sity near CMB decoupling, leading to some persisting degeneracy between
Neff − rν in combined analyses of CMB and LSS data.

4.3 Supernovae Environment

The formation of the elements in the universe is closely related to the weak
interactions between neutrinos and matter. Neutrino interactions can in-
terchange protons and neutrons (free or inside the nucleus), so that they
contribute in determining the neutron abundance of the baryonic matter.
Hence, from the light elements formation in the BBN to the heavy elements
generated by neutron-capture processes in explosive astrophysical environ-
ments, neutrinos play a relevant role. As neutrinos with different flavors
interact differently with matter, any mechanism that alters the flavor of neu-
trinos after their production may affect the prediction of the matter property
and the outcome of the nucleosynthesis. In the explosive astrophysical events
such as core-collapse supernovae and mergers of binary neutron stars as well
as of a neutron star with a black hole, the neutrino influence on the property
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of the ejected matter and the outcome of the associated nucleosynthesis has
been studied in Refs. (Martınez-Pinedo et al. 2014; Wu et al. 2015).

During supernova explosion, almost 99% of the energy released comes out
in the form of neutrinos, with only the remaining small percentage coming
out as light. These neutrinos carry in their spectrum relevant information not
only about the detailed nature of supernova collapse but also about properties
of neutrino that cannot yet be explored in the laboratory. The neutrino flux
consists essentially of two components. The first one arises during the first
few milliseconds of stellar collapse, when electrons get absorbed into protons
producing neutrinos via the inverse β-decay process:

e− + p→ n+ νe. (4.30)

These very energetic neutrinos are known as the deleptonization neutrinos.
This burst lasts for about a hundred milliseconds. As the core collapse pro-
ceeds, a second stage of neutrino emission begins, which consists of a flux
of νe, νe, νµ, νµ, ντ and ντ , with energy in the range (15 − 20) MeV, cor-
responding to an emission temperature of about (5 − 6) MeV, if a thermal
distribution with zero chemical potential is assumed. Such neutrinos origi-
nate from reactions of the type e+ + e− → νl + νl, n + p→ n + p+ νl + νl.
These processes lead to the thermalization of neutrinos, before they are fi-
nally emitted, within a sphere named neutrino sphere, whose size is much
larger than the collapsed core radius. The temperature in the neutrino sphere
depends on the distance from the core. Since neutrino interactions increase
with energy, the extension from the core of the effective neutrino sphere in-
creases with energy. Even if in their neutrino sphere neutrinos are in thermal
equilibrium with matter, the spectrum becomes depleted at higher and lower
energies with respect to a thermal spectrum, as a consequence of the fact
that the temperature decreases with increasing radius while the density de-
creases faster than 1/r. The emission temperature corresponds to the surface
temperature, so that the neutrinos having stronger interaction emerge with
lower energy. Since νe e scattering gets a contribution from the charged cur-
rent interactions while νµ e and ντ e scatterings do not, the νe and νe are
expected to leave the neutrino sphere at lower energy than the νµ and ντ .

In a supernova the matter density grows from zero up to nuclear density,
ρ ' 1014 g cm−3, in the inner core. Matter effects are then important for
all the neutrino (active and sterile) mass range (. 102 eV). For such values
of the masses and given the typical supernovae neutrino energy of ∼ 10
MeV, active/sterile MSW resonances can take place outside the neutrino
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sphere (usually identified as the regions after which neutrinos freely stream,
ρ� 1012 g cm−3).

Unlike the sun where only νe are produced, supernovae produce all active
να and να, approximately in similar amounts. They mix and convert among
themselves and with eventual sterile neutrinos (Mikheev & Smirnov 1986;
Shi & Sigl 1994; Fetter et al. 2002).

The free-streaming stage of the neutrino evolution is influenced by mat-
ter effects due to coherent forward scattering of the neutrinos on the back-
ground matter (electrons and nucleons). Furthermore, in a supernova, for-
ward scattering on the neutrinos themselves also play an important role in
the flavor evolution of both neutrinos and antineutrinos (Duan et al. 2010),
inducing large flavor conversions depending on the ratio among the fluxes of
different-flavor neutrinos and the mass hierarchy. Self-induced neutrino os-
cillations dominate the neutrino propagation at a radius far deeper than the
conventional matter-induced MSW effect among active flavors and give rise
to r-process nucleosynthesis. For sterile neutrinos, the active-sterile MSW
resonance location depends on the sterile neutrino mass, covering the possi-
bility of coupling active-sterile MSW conversion with collective oscillations
among the active states.

The analysis of supernovae neutrinos can be carried on in a way similar
to that of solar neutrinos, following the evolution of the emitted neutrino
from neutrino spheres along their travel through the star matter, the vac-
uum and the earth. The density matrix formalism is suitable for describing
the supernova initial neutrino flux, which has a mixed flavor composition.
This amounts to following the evolution of a 4 × 4 density matrices ρ(E)
(and the analogous for antineutrinos) for each neutrino mode with energy E.
MSW resonances, that affect the neutrino density matrix, may introduce off-
diagonal elements. However, these are averaged to zero by large oscillation
phases.

The radial flavor evolution of the quasi-stationary neutrino flux, in the
flavor space, is given by:

i ∂rρ(E) = [HE, ρ(E)] (4.31)

and an analogous equation for the antineutrinos ρ(E). The Hamiltonian ma-
trix includes a vacuum term and in-medium interaction and self-interaction
terms:

HE = HV ac
E +Hνm

E +Hνν
E , (4.32)
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where Hνm
E , accounts for neutrino interactions with other matter components

and Hνν
E for neutrino-neutrino interactions. The vacuum term in the flavor

basis reads:

HV ac
E = U

M2

2E
U †, (4.33)

with M2 the diagonal matrix of the squared mass differences between the
mass eigenstates, U the unitary matrix of the mixing angles that encode the
transformation between the mass and the weak interaction bases.

Hνm
E comprises both CC and NC contributions:

Hνm
E =

√
2GF diag

(
ne −

nn
2
,−nn

2
, 0
)
. (4.34)

Note that one can define a linear combination νx of νµ and ντ , since in a
supernova environment they are indistinguishable, so that the above matter
term Hνm

E can be thought of as expressed in the flavor basis spanned by
(νe, νx, νs). Regarding the last term in the Hamiltonian (4.32) correspond-
ing to neutrino-neutrino interactions, only the elements involving the active
flavors are nonzero, while all elements involving the sterile neutrino flavor
eigenstate vanish, Hνν

es = Hνν
xs = Hνν

ss = 0.
If sterile neutrinos have a rest mass in the preferred mass range of the

SBL anomalies (form about 0.1 eV to few eV), two MSW resonances are
expected to occur close to the neutrino sphere, one for neutrinos and one
for antineutrinos. These resonances are not adiabatic because the matter
potential is very steep as a result of a rapidly changing electron fraction Ye
at small radii. At larger radii, a second and almost adiabatic resonance occurs
in the neutrino sector only. As a result a large fraction of νe is converted to
νs while the conversion of the νe flux to νs is only partial.

The equilibrium of the neutrino capture processes:

νe + n→ p+ e−, (4.35)

νe + p→ n+ e+ (4.36)

and their reverse processes reduces the electron abundance Ye, thus creating
a neutron-rich environment that enables the formation of elements via the
r-process. However, collective oscillations in the active sector due to neutrino
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self-interactions are expected to become dominant especially in the late cool-
ing phase. This may contribute to repopulate the νe flux, so that the result-
ing Ye is always lower than in the case with no active-sterile oscillations, but
not necessarily as low as without considering the neutrino-neutrino matter
effects. Therefore, the presence of light sterile neutrinos can alter the con-
ditions for the elements formation, although active-sterile oscillations alone
probably cannot activate the r-process.

As regards heavy sterile neutrinos in supernovae, νs with rest masses in
the keV region and mixing angles with active species such that they can be
DM candidates can also affect fundamental aspects of energy transport in the
proto-neutron star core. In fact, as a consequence of the high matter density
and large electron lepton number in the core as well as typical active neutrino
energies of order 10 MeV, keV-mass sterile neutrinos can be resonant. If the
flavor evolution through the resonance is sufficiently adiabatic, then the νe
will be turned into a sterile neutrino, which is likely to stream out of the
core at near the speed of light, unless it encounters another MSW resonance
that re-converts it to an active neutrino (Abazajian et al. 2001). In fact, the
dependence of the potential on Ye can produce such an effect: at first as the
core collapses νes are converted, the unbalanced electron capture lowers Ye,
eventually until leading it below 1/3 so that the matter potential becomes
negative, thereby causing the conversion of νe to sterile species. This can
bring the potential up again if the collapse/expansion rate of the material in
the core is slow enough, producing a double resonance scenario where νes are
regenerated from the sterile neutrinos but closer to the neutrino sphere. As a
result the effective transport time for νes can be drastically reduced, bringing
up the νe luminosity at the neutrino sphere, thereby affecting nearly every
aspect of downstream supernova evolution, for example increasing the ma-
terial heating rate behind the shock. Active-to-sterile conversions have also
been considered as a way to produce large space motions of pulsar/neutron
star remnants following core collapse (Fryer & Kusenko 2005).

Note that assuming sterile neutrinos with rest mass in the keV region
and active-to-sterile neutrino flavor conversion to produce shock re-heating
can lead to a loss of energy from the core. This could prove to be in conflict
with the SN 1987A neutrino burst observations (Raffelt & Sigl 1993). How-
ever, the total kinetic energy of bulk motion plus optical energy in a core
collapse supernova explosion is only 1051 ergs, about 1% of the energy resid-
ing in the active neutrino energy in the core. Therefore, much energy could
be transferred in sterile states escaping from the core and there would be
active neutrino energy still sufficient to power an explosion, especially if the
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transport of this energy to the shock is enhanced by efficient hydrodynamic
motion.

Even heavier sterile neutrinos, with rest masses in the 100 MeV region,
have been considered for supernova shock re-heating, although these may
conflict with cosmological constraints on nucleosynthesis or measurements of
Neff derived from the CMB anisotropies (Fuller et al 2011).
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5
The Effective Number of Neutrino Species

The Standard Model of Particle Physics predicts the existence of exactly
three active neutrinos, one for each flavor of the three charged leptons, and
that neutrinos are all massless and left-handed. Experimental results on fla-
vor neutrino oscillations have shown that neutrinos are massive particles and
at least two species have a large enough mass for being nonrelativistic today,
so that they contribute a small fraction of the dark matter of the universe
(Mangano et al. 2005; Lesgourgues & Pastor 2006). Since the distinctness of
the three flavors is strictly connected with the condition of being massless,
the experimental evidence that neutrinos have nonzero mass opens also the
question of the number of neutrino species. Although the measurement of
the absolute neutrino mass scale remains a challenge, particle physics exper-
iments are capable of determining two of the squared mass differences, along
with the number of active neutrino families, their mixing angles, and one of
the complex phases. On the other hand, a combination of cosmological data
sets also allows to put more accurate upper bounds on the total neutrino mass
(summed over all species) and on the number of effective neutrino species
Neff (Mangano & Serpico 2011; Rossi et al. 2015; Palanque-Delabrouille et
al. 2015).

When the universe was a fraction of a second old, neutrinos experienced
decoupling from electromagnetic plasma while flavor neutrino oscillations
became effective. Afterwards they witnessed electron-positron annihilations
and in the meantime were involved in the processes that fixed the initial
conditions for the primordial production of light nuclei. All these processes
depend upon the values of some unrelated parameters such as the Fermi con-
stant, the neutrino mixing angles and squared mass differences, the electron
mass and the binding energy of nuclei, in particular that of deuterium. The
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shape of relic neutrino spectra and their contribution to radiation are pa-
rameterized in terms of the effective number of neutrino species Neff . Any
process that alters the thermal abundance of neutrinos can mimic a non-
standard Neff value. In this chapter we will focus on the case of additional
sterile species and their oscillations with active species, which in the most
part of the analyses of active-sterile oscillations has been considered in the
two-neutrino limit.

5.1 From Neutrino Decoupling to Big-Bang Nucleosyn-
thesis

Energy density and particle number densities, defined through the Fermi–Dirac
distribution, are referred to a state where all the particles are in thermal
equilibrium. In general, the condition for thermal equilibrium in a gaseous
ensemble of particles, is attained when the state of the system (number of
particles at a given energy level) does not change with time. Since in an
expanding universe, the temperature is constantly changing, to be in equi-
librium particles must adjust there energy faster than the time it takes to
change the temperature. For this to be achievable, the interaction rate of the
particles must be faster than the expansion rate of the universe H(T), that
is,

Γint(T ) > H(T ). (5.1)

The decoupling of a particular species of particles occurs when at some point
in the evolution of the universe the above condition fails to hold for such
particles. In the early universe, active neutrinos are maintained in thermal
equilibrium with charged leptons, baryons and photons by weak interactions
and decouple from the electromagnetic plasma when they are still relativis-
tic, which, as already mentioned, means that their Fermi-Dirac phase space
distribution, parametrized by temperature and chemical potential, remains
almost unaltered. In equation (4.13) we derived the decoupling temperature
Tνd which is about 1 MeV, with a slight dependence on the neutrino flavor.
Namely, since νe has both CC and NC interactions with e±, Td(νe) ∼ 2 MeV
while Td(νµ,τ ) ∼ 3 MeV.

Shortly after neutrino decoupling the temperature drops below the elec-
tron mass, favoring electron/positron annihilations that heat the photons.
The processes of neutrino decoupling and e± annihilations are sufficiently
close in time so that some relic interactions between e± and neutrinos still
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take place, leading to non-thermal distortions in the neutrino spectra at the
per cent level (Mangano & Serpico 2004). The larger the energy of neutrinos,
the more these relic processes are efficient. Thus, due to non-instantaneous
decoupling and flavor oscillations, neutrinos shared a small part of the re-
leased entropy so that neutrinos were slightly heated. As already mentioned,
such effects are accounted for by the effective number of neutrino species
Neff .

After electron-positron annihilation at t ∼ 1 second, the constituents of
the universe are photons, neutrinos and, at an abundance smaller by a factor
η−1 ∼ 109, protons, neutrons and electrons. The amount of nucleosynthesis
depends on the number of neutrons present in the thermal plasma. When
the weak interaction processes were in equilibrium, the number densities of
protons and neutrons were given by:

nB ' gB

(
mBT

2π

)3/2

e
µB−mB

T , (5.2)

which, neglecting the small factor in front of the exponential, leads to the
ratio:

nn
np
' e−

mn−mp−(µn−µp)
T , (5.3)

with mn −mp ' 1.293 MeV.
At the moment of neutrino decoupling, the densities of all nuclei are set by

nuclear statistical equilibrium. Fast nuclear and electromagnetic interactions
keep nuclear species in chemical equilibrium. Due to chemical equilibrium
and assuming negligible electron neutrino chemical potential, the neutron-
to-proton ratio in thermal equilibrium before BBN becomes:

nn
np
' e−

mn−mp
T . (5.4)

The weak interaction processes n + e+ ↔ p + νe, p + e− ↔ n + νe,
n↔ p + e− + νe go out of equilibrium at the freeze-out temperature, which
in the standard BBN is given by:

Tfr ' 0.7

(
g∗

10.75

)1/6

MeV = 0.7 MeV. (5.5)

At freeze-out, the neutron-to-proton ratio is given by:
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(
nn
np

)
fr

' e
−mn−mp

Tfr ' 1

6
, (5.6)

After freeze-out, the only process affecting the neutron-to-proton ratio is the
neutron decay:

n→ p + e− + νe. (5.7)

At this stage, the photon temperature is already below the deuterium binding
energy, however, since the large number of photons in the high-energy tail
of the distribution break up nuclei as soon as they are formed, deuterium
synthesis starts only when the photo-dissociation process becomes ineffec-
tive. Although 4He becomes thermodynamically favored before 2H, it cannot
be produced in large quantities before T2H ' 0.7 MeV is reached because
its production occurs through a chain of reactions which require a previous
formation of 2H. This circumstance, denoted as deuterium bottleneck, leads
to the effective BBN temperature TBBN ' 0.07 MeV, which corresponds to
the BBN time tBBN ' 150 s. The neutron decay in the time interval from
freeze-out to nucleosynthesis, lowers the neutron-to-proton ratio at the nu-
cleosynthesis. Using the theoretical estimate of the neutron lifetime (Salvati
et al. 2015) τn ∼ 883 s, one gets the value:(

nn
np

)
BBN

' 1

7
. (5.8)

Almost all neutrons end up by forming 4He, which is the most tightly bound
stable light nucleus, with the resulting mass fraction of 4He:

Yp '
(

2nn
np + nn

)
BBN

=
2 (nn/np)BBN

1 + (nn/np)BBN
' 0.25. (5.9)

The values of Yp inferred from astrophysical data (which require the sub-
traction of 4He produced in stars and other astrophysical corrections) are in
agreement with the approximate estimation in equation (5.9), confirming the
basics of the standard BBN.

Note that positive chemical potential of electron neutrinos decreases the
neutron-to-proton ratio at freeze-out, leading to a smaller abundance of 4He
than in the standard BBN.
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After the deuterium bottleneck is overcome at TBBN , a large fraction of
the available neutrons get bound in deuterium nuclei. This affects the sub-
sequent nuclear processes in two ways. Firstly, the delayed population of
deuterium results in BBN taking place at relatively low temperatures, with
consequences for the efficiency of all the reactions which follow. Secondly,
neutrons continue to decay until TBBN , changing the neutron-to-proton ratio
at the time of the effective 2H production. Deuterium production marks the
beginning of the nuclear phase of BBN. The formation of heavier elements
such as 3H, 3He, 4He proceeds through the interaction of deuterium nuclei
with nucleons and other 2H nuclei, followed by 3H and 3He nucleon and deu-
terium capture processes. 7Li is produced via tritium and, for a sufficiently
high baryon density, through 3He radiative capture on 4He. Thus, as a result
of BBN, within just a few minutes, about a quarter of the baryonic matter of
the universe is converted to 4He, while the rest remains as hydrogen H with
tiny traces of deuterium and 7Li.

5.1.1 Neutron Decay

A basic parameter for estimating the nucleosynthesis effect is the baryon-to-
photon ratio η = nB/nγ. The number of baryons per photon is related to
the temperature and density of the early universe. In this sense, it allows to
determine the conditions in which nucleosynthesis occurs and then the initial
abundance of elements. Along with the parameter η, the nucleosynthesis of
light elements is also based on other fundamental quantities, such as the
rate of weak reactions, the rate of expansion of the universe and the neutron
lifetime τn.

The neutron decay process (5.7) is particularly important because it af-
fects the n/p ratio at the onset of primordial nucleosynthesis as well as the
light elements abundances produced in the standard BBN. The neutron life-
time determines the rate of weak-interaction processes. Indeed, the shorter
the neutron lifetime, the faster weak reactions proceed and the earlier the
neutrinos go out of thermodynamic equilibrium. A shorter neutron lifetime
also leads to fewer neutrons in the period when weak interactions become
frozen and nucleosynthesis begins. For instance, for a fixed value of η, a
variation in the neutron lifetime by 1% changes the value of the initial abun-
dance of 4He by 0.75% which is larger than the accuracy of measurement
of the helium-4 abundance. Similarly, a variation in the neutron lifetime by
1% changes η by 17%, which is again larger than the accuracy of estimation
of this quantity (Serebrov 2006 and references therein). Thus, the use of an
accurate estimate of the neutron lifetime improves the agreement between
the data on the initial abundances of deuterium and helium as well as those
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on baryon asymmetry.

A theoretical estimate of τn, when accuracy of the order of one percent is
required, must include QED outer corrections (that is, nucleons are treated
as a whole), and inner corrections which depend on the details of the nu-
cleon structure. Perturbative QCD corrections, weak magnetism and finite
nucleon mass effects, related to proton recoil, as well as the Fermi function
describing the electron rescattering in the proton Coulomb field, must also
be included. Taking into account all these corrections, the expression of the
neutron lifetime takes the form:

τ−1
n =

G2
F (C2

V + 3C2
A)

2π3

∫ ∆

me

dp′0 p
′
0 |p′| (p′0 −∆)

2 G(p′0, q0)F(p′0)L(p′0),

(5.10)

where the radiative corrections, G(p′0, q0), are given by:

G(p′0, q0) =

[
1 +

α

2π

(
ln

(
mp

MA

)
+ 2C

)
+
α(mp)

2π
(g(p′0, q0) + Ag)

]
S(mp,mZ),

(5.11)

with α(µ), the QED running coupling constant. g(p′0, q0) is a function of
electron and neutrino energy, whose explicit expression can be found in Ref.
(Sirlin 1967), and S(mp,mZ) is the short-distance enhancement factor:

S(mp,mZ) =

(
α(mc)

mp

) 3
4
(
α(mτ )

mc

) 9
16
(
α(mb)

mτ

) 9
16
(
α(mW )

mb

) 9
20
(
α(mZ)

mW

) 36
17

.

(5.12)

The correction factor F(p′0)L(p′0), due to the distortion of the outgoing elec-
tron wave function by the Coulomb field of the proton, is given by:

F(p′0)L(p′0) '
(

1 + απ
p′0
|p′|

)[
1− αRp′0

(
1 +

m2
e

2p′20

)]
≈ 1+απ

p′0
|p′|

= F(p′0),

(5.13)

with R ' 1 fm, the radius of the proton charge distribution.
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The value of parameters entering the above expression (5.10), such as
vector and axial coupling CV and CA, fine structure constant, particle masses,
strong coupling constant etc. has been updated to the most recent results
reported in (Olive et al. 2014). Finally, the low energy cutoff applied to
the short-distance part of the γ − W box diagram is chosen in the range
MA = (1− 1.5) GeV.

The resulting value of our theoretical estimate for the neutron lifetime is:

τn = (883± 3)s, (5.14)

where the theoretical error is obtained by propagating the uncertainties on
all parameters to the value of τn and is largely dominated by the present
error on CA/CV .

Note that the theoretical estimate of τn is still affected by smaller effects,
such as higher order terms in α, sub-leading corrections and residual average
proton polarization due to parity non-conservation, however all these further
corrections are expected to be quite sub-dominant (Esposito et al. 1999;
Salvati et al. 2015 and references therein).

5.2 The Big Bang Nucleosynthesis and Neff

Neutrinos plays a relevant role in different processes in BBN. In particular,
electron neutrino takes part in the pre-BBN neutron-proton transitions and
nucleons freezing, thus affecting significantly the primordial production of
the light elements. Hence, BBN is very sensitive to neutrino characteristics:
number density of different neutrino types, neutrino-antineutrino asymme-
tries, presence of light sterile neutrino, deviations from thermal equilibrium
of neutrino, neutrino decays, etc.

Primordial element abundances depend primarily on the neutron-to-proton
ratio at the weak freeze out, (n/p)fr, of the reactions that interchange neu-
trons and protons. Hence, the produced helium essentially depends on Neff ,
since it depends on the competition between the weak interaction rate and
the expansion rate H(T), which determines the freezing temperature Tfr. It
also depends on the baryon abundance (i.e. baryon asymmetry) and neutrino
degeneracy (i.e. lepton asymmetry). After nucleon-antinucleon annihilation,
the excess (i.e. nucleons, by definition, nB − nB → nB ≡ nN) survives and
the number of nucleons in a comoving volume is preserved until the present
time.
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After e± annihilation, the ratio baryon-to-photon density η remains un-
changed as the universe expands and cools. The present value of the baryon
density is often measured by comparing the nucleon mass density to the
critical mass density (ΩB ≡ ρB/ρc). An asymmetry in the neutrino sector
is strongly constrained by BBN. In particular, an asymmetry between elec-
tron neutrinos and electron antineutrinos has a direct effect on BBN through
the charged current weak interactions which regulate the neutron-to-proton
ratio. Since the relic abundance of 4He depends directly on the neutron-to-
proton ratio when BBN begins and during BBN, it provides a strong bound
on lepton asymmetry.

Flavor neutrino oscillations, with parameters favored by the atmospheric
and solar neutrino data, lead to an equilibrium among active neutrino species
before BBN epoch, so that the tight BBN bound on νe degeneracy applies
to all flavors. However, a lepton asymmetry L may possibly exist in the
post-BBN. In the standard theories L is assumed to be of the same order of
the baryon one η, whose value is given by independent and precise measure-
ments (BBN, CMB). As a matter of fact, a value of L larger or even much
larger than the baryon number η cannot be excluded on the basis of any
theoretical principle. Charge neutrality indeed implies that the asymmetry
in the electron sector must be of the same order of η. Since L is the sum of
the asymmetries in the different neutrino sectors, L might be many orders of
magnitude larger than η. A relic lepton asymmetry has been considered for
overcoming the BBN constraints on neutrino oscillations involving eV sterile
neutrino by preventing its thermalization, providing that this relic lepton
asymmetry is large enough to suppress neutrino oscillations (Kirilova 2013
and references therein).

The presence of neutrino–antineutrino asymmetry when neutrinos are still
interacting implies that their spectrum is described by a Fermi–Dirac distri-
bution (4.1), characterized by neutrino degeneracy parameters ξα ≡ µνα/Tν ,
and the neutrino energy density, pressure and entropy density take the form
in equations (4.4) - (4.6). Since the neutrino energy density (4.5) only con-
tains even powers of ξα, additional terms from nonzero asymmetries are
always positive, thus enhancing the contribution of the radiation content.
Expressing this contribution to ρR in terms of the effective number of neu-
trinos Neff , one gets (neglecting the small effect of non-thermal neutrino
distortions):

Neff = 3 +
∑

α=e,µ.τ

[
30

7

(
ξα
π

)2

+
15

7

(
ξα
π

)4
]
, (5.15)
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which means that any nonzero flavor neutrino asymmetry leads to Neff > 3,
without introducing additional relativistic species. Present cosmological ob-
servations are not sensitive to neutrino asymmetry if |Lν | . 10−2. Higher
values are required for a significant enhancement of Neff or changings in the
production of light elements during Big Bang nucleosynthesis. In particu-
lar, the primordial abundance of 4He is highly sensitive to the presence of
an electron neutrino asymmetry leading to a stringent BBN bound on Lνe
which does not apply to the other flavors, as long as the effects of oscillations
are not included.

As already mentioned, neutrino oscillations follow an MSW-like conver-
sion when the vacuum term overcomes the matter potential. The amplitude
of this effect depends upon the values of the parameter ∆m2 as well as θ13,
being larger as they grow.

Oscillations redistribute the asymmetries among the flavors, but only if
they occur early enough the interactions would preserve Fermi–Dirac spectra
for neutrinos, thereby leaving a chemical potential well defined for each Lνα
and the relations (4.1) and (5.15) still valid. If the initial values of the flavor
asymmetries have opposite signs, neutrino conversions will tend to reduce the
asymmetries which in turn will decrease Neff . However, if flavor oscillations
take place at temperatures close to neutrino decoupling this would not hap-
pen, instead there would be an extra contribution of neutrinos to radiation
with respect to the value in equation (5.15) (see Pastor et al., 2009).

Since, the BBN outcome depends on the expansion rate of the universe
below MeV temperatures, when the universe is still radiation-dominated, this
in turn means that it depends on Neff as defined in equation (4.19). The ef-
fect of a variation of Neff on the primordial production of light nuclei is that
all abundances are modified, but especially the value of Yp, because a larger
Neff produces a speed-up of the universe expansion, which in turn leads to an
earlier n/p freeze-out, leading to a larger relic neutron abundance, and thus,
to a higher production of 4He. A non-standard Neff can be also caused by a
population of light sterile neutrinos. Active-sterile oscillations can take place
in two possible stages of the universe evolution, before or after the decou-
pling of the active neutrinos. If oscillations become effective before thermal
decoupling, the abundance of sterile neutrinos grows via the conversion of
the active states, kept in equilibrium by weak interactions. In this case, the
sterile neutrinos contribution to ρR adds to that of the active states, increas-
ing Neff by a factor within 0 and 1 (for each sterile state), depending on the
effectiveness of the sterile neutrinos thermalization. If, instead, active-sterile
oscillations become effective after decoupling (T < 1 MeV), the total number

104



of neutrinos is conserved and the main outcome is that large distortions may
appear on the spectra of both the sterile and active states, which again has
consequences on BBN, in particular when the active neutrinos are νe.

The contribution from possible dark radiation (that is, sterile neutrinos)
in ρR can be expressed in terms of an equivalent number of SM neutrinos,
∆Neff , which has the effect of increasing neutrinos contribution to the total
radiation density. Namely, after e± annihilation Neff can be written as:

Neff = 3.046 + ∆Neff . (5.16)

A BBN determination of a nonzero ∆Neff , at a significant level of confi-
dence, can provide evidence for new physics, that is, dark radiation such
as one or more sterile neutrinos (thermally populated) or a modification of
the equations describing the expansion rate of the early Universe (Steigman
2012).

5.3 Sterile Neutrino and Primordial Nucleosynthesis

As discussed in the previous sections, neutrinos are important in the BBN
for two main reasons: electron neutrinos participate in the CC weak inter-
actions that determine the neutron-to-proton ratio; neutrinos of all flavors
affect the expansion rate of the universe before and during BBN, altering the
neutron-to-proton ratio and hence the light element abundances, notably Yp.
The presence of sterile neutrinos therefore may affect BBN in two ways: dis-
torting the νe phase space distribution via flavor oscillations and increasing
the Hubble expansion rate by modifying Neff .

For sterile neutrinos with parameters according to terrestrial experiments,
the first effect, is not expected to occur. In fact, the experimentally favored
large mass-squared difference ∆m2 ∼ 1 eV2 and mixing sin2 2θ ∼ 10−3 be-
tween sterile and active states lead to full thermalization of the sterile species
before the active neutrino decoupling. Consequently, the phase space distri-
bution of the sterile states, as well as the active species, will follow a relativis-
tic Fermi-Dirac distribution, thereby contributing an additional ∆Neff = 1
for each sterile species. If active-sterile flavor oscillations take place after de-
coupling, the νe phase space distribution will not deviate from a relativistic
Fermi-Dirac distribution. Hence, under this assumption, the standard BBN
scenario may account for the effects of sterile neutrinos by introducing just
one extra parameter ∆Neff to Neff (note that this may not hold in more
complicated scenarios, such as models with a nonzero lepton asymmetry).
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Since Yp is the most sensitive probe of Neff , whereas deuterium abundance
D/H, is mainly sensitive to η, by combining the two one can constrain the
two free parameters of the standard BBN with sterile neutrinos.

However, within the standard BBN scenario, models with more than one
fully thermalized sterile species appears to be disfavored by current BBN
data (Hamann et al. 2011). Furthermore, a thermal population of sterile
neutrinos seems to be incompatible also with other cosmological observables.
As already mentioned in Section 4.1.1, in order to relieve this tension, dif-
ferent mechanisms to suppress the sterile neutrino thermalization and their
eventual large production have been studied. In particular, the existence
of neutrino asymmetries (Mirizzi et al. 2012; Saviano et al. 2013) or the
introduction of secret interactions among sterile neutrinos. Several models
of secret self-interactions have been proposed, where the mediator can be a
heavy gauge boson (Hannestad et al. 2014), a light “dark photon” (Dasgupta
& Kopp 2014), a light scalar or pseudoscalar (Archidiacono et al. 2014). Let
us see now, with some more details, the implications of the introduction of
secret interactions on Neff .

It has been shown that secret interactions also generate strong collisional
terms in the sterile neutrino sector that induce an efficient sterile neutrino
production after a resonance in matter is encountered, which increases their
contribution to the number of relativistic particle species Neff (Saviano et al.
2014). Moreover, for values of the parameters of the νs−νs interactions such
that the resonance takes place at temperature T . few MeV, significant
distortions can be expected in the electron (anti)neutrino spectra, which
would alter the abundance of light elements in the BBN.

When the matter potential induced by the secret interactions in the sterile
sector becomes of the order of the active-sterile vacuum oscillation frequency,
a resonance is encountered which enhances the in-medium mixing angle, lead-
ing to a resonant flavor conversion among active and sterile neutrinos similar
to the MSW effect. Moreover, the presence of strong collisional effects in the
sterile sector due to νs− νs secret interactions, on one hand would damp the
MSW conversions, on the other would increase the sterile neutrino produc-
tion via non-resonant processes (Kainulainen 1990). In particular, the latter
can redistribute momenta among sterile neutrinos bringing the active-sterile
neutrino ensemble towards the flavor equilibrium (see Saviano et al. 2014
and references therein). In fact, as long as the scattering rate of the secret
self-interactions is larger than the Hubble parameter sterile neutrinos will
soon reach the Fermi-Dirac distribution, with ns = nα.

For a quite large range of the model parameters (i.e. coupling constants
& 10−2 and masses of the gauge boson > 10 MeV), resonances may take
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place in a range of temperatures relevant for BBN, which leads to a shift of
Neff to larger values by a ∆Neff dependent on the model parameters. For a
fixed baryon density an increase of ∆Neff implies an increase in the freezing
temperature, which in turn leads to a higher number of neutrons available
at the onset of deuterium formation and this translates into a larger value
of Yp. This effect could be compensated if electron neutrino number den-
sity is larger, since in this case weak rates get increased. However, models
of secret interaction in the sterile sector typically lead to a smaller electron
neutrino density ρee < 1. A positive ∆Neff and less electron neutrinos both
lead to a larger Yp. As regards deuterium, as a result of a larger Neff ,

2H/H
density ratio excludes much of the parameter space of this kind of models,
if one assume a baryon density at the best fit value of Planck experiment,
ΩB h

2 = 0.02207 (these bounds become weaker for a higher baryon density,
taken as the upper bound of Planck).

In the case of light bosons (Dasgupta & Kopp 2014), the advantage is a
matter-induced potential sufficiently strong as to inhibit any sterile neutrino
production during BBN, thus evading the related constraints. Moreover,
if the new interaction mediator couples to both sterile neutrinos and dark
matter particles, for the considered small masses there also exists the pos-
sibility of relieving some of the small-scale structure problems of the cold
dark matter scenario. The case of secret interactions among sterile neutrinos
mediated by very light pseudoscalars and a possible connection with dark
matter has been also explored in (Archidiacono et al. 2014). The outcome of
this type of studies is that also for small masses a large sterile neutrino pro-
duction is unavoidable at T � 0.1 MeV, when the matter potential becomes
smaller than the vacuum oscillation term. As the small vacuum oscillations
can trigger a scattering-induced decoherent production of sterile neutrinos,
this process leads to a flavor equilibration among the active and the sterile
neutrino species after the active neutrino decoupling. Besides, since the rate
of sterile neutrino re-thermalization is extremely fast, the process is almost
instantaneous. This means that, if the initial state is described by a density
matrix ρ = diag (ρee, ρµµ, ρττ , ρss) = (1, 1, 1, 0), for all the parameter space
favored by the eV sterile neutrino anomalies, the final state that is quickly
reached will be described by (Mirizzi et al. 2015):

ρ = diag (ρee, ρµµ, ρττ , ρss) = (3/4, 3/4, 3/4, 3/4) . (5.17)

The above result is independent of the particular values of the coupling and
the boson mass. Furthermore, the final equilibrium value is also independent
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of the values of the active-sterile neutrino mixing angles. Also assuming that
the sterile species mixes only with an active one, the equilibrium will involve
all flavors, due to the active mixing angles connecting the different species.
It only depends on the realization of the condition of strong damping. The
same equilibrium value still holds true for a wide range of masses of the me-
diator boson, as long as Tν is larger than the boson mass. In fact, for large
enough values of the coupling (& 10−2) and masses of the mediator & 10
MeV, the sterile neutrino production would occur at T & 0.1 MeV, which
would have significant effects on the BBN. Moreover, resonances occurring
at T . few MeV happen late enough to produce significant distortions in
the electron (anti)neutrino spectra, which also would affect the abundance
of light elements BBN. Conversely, models with couplings in the same range
and gauge boson mediators with masses . 10 MeV succeed in suppressing
the sterile neutrino production before the neutrino decoupling, leaving un-
affected the BBN, but the subsequent large sterile neutrino production and
flavor equilibration has consequences on Neff at matter radiation equality
and recombination. After the sterile states produced via oscillations have
reached kinetic equilibrium through secret interactions, in a 3+1 scheme one
has four species sharing a common temperature Tν = (4/11)1/3 (3/4)1/3 Tγ.
Correspondingly, as long as all neutrinos are fully relativistic the effective
number of neutrino species reduces to a value:

Neff ∼ 2.7. (5.18)

Moreover, for a boson mass larger than the coupling, sterile neutrinos would
be free-streaming at the matter-radiation equality epoch. νs free streaming
until the epoch when they become nonrelativistic would affect the large-
scale structure power spectrum, suppressing the growth of perturbations on
small scales. As a consequence, for this range of parameters the large sterile
neutrino production of eV mass scale would be in tension with the current
cosmological mass bounds on sterile neutrinos. On the other hand, if ster-
ile states experience secret interactions, the free-streaming regime is delayed
until the scattering rate becomes smaller than the Hubble parameter. This
means that for some values of the model parameters such that this condition
holds at the non relativistic transition, sterile neutrinos would diffuse, with-
out ever having a free streaming phase.

Regarding secret interactions in the sterile sector mediated by a light
pseudoscalar (Archidiacono et al. 2014), the mechanism of sterile neutrino
production and flavor equilibration would apply similarly, at least to all
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cases where the coupling is & 10−6, which implies a νs-pseudoscalar plasma
strongly interacting until sterile neutrinos become nonrelativistic.

This leads to the conclusion that the scenarios of secret self-interactions
studied so far are not sufficient to reconcile sterile neutrinos with cosmology.
The new picture, that we will introduce in Chapter 6, consists in assuming
the same secret interactions with a light pseudoscalar as the source of sterile
neutrino production by oscillations (when they involve active species) and in
addition, along with the self-interactions νs − νs we will also consider νs − φ
interactions in the sterile sector.
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6
Neutrino Interactions with a Light

Pseudoscalar

Spin-0 particles light and weakly interacting are predicted by many exten-
sions of the Standard Model of Particle Physics. Assuming the existence of
a light scalar particle in the background medium, it has been shown (Sawyer
2011) that sterile neutrino production can occur through a collective effect
induced by a minimal Yukawa coupling of a Dirac neutrino to such a light
scalar particle. Starting with an initial thermalized state of active neutrinos
and anti-neutrinos, sterile states may arise through a sudden reversal of their
helicities as a consequence of the instability experienced.

A similar study will be applied in the following sections to the case of
a light pseudoscalar particle as a mediator of Yukawa interactions. Such
a field might arise as pseudo-Nambu-Goldstone boson of a spontaneously
broken chiral symmetry, first introduced by Peccei and Quinn (Peccei &
Quinn 1977) to address the problem of strong CP violation.

6.1 Active-Sterile Neutrino Interactions

Possible additional interactions of active neutrinos with a light pseudoscalar
can be described by the interaction Hamiltonian:

HY = igφ νs γ5 PL ναφ+ h.c. (6.1)

where ν and φ are the neutrino and pseudoscalar fields respectively, gφ is a
dimensionless hermitian matrix of coupling constants, assumed for simplicity
to be diagonal, gφ = diag(ges, gµs, gτs, 0).
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Figure 6.1: Bubble contributions to neutrino and pseudoscalar self-energy.

The refractive energy shifts due to neutrino interactions is generally given
by the bubble and tadpole contributions to neutrino self-energy. Since the
Hamitonian (6.1) mixes active and sterile states, the tadpole term is not
present. Thus the only contributions come from the bubble terms. In par-
ticular, considering a test neutrino να, with α = e, µ, τ , interacting with a
sterile neutrino background, νs (ν ′ in Figure 6.1a):

iΣbubble(p) = −(igφ)2

∫
d4q

(2π)4
PRγ5 i ST (q) γ5PLiD

φ
T (∆), (6.2)

where, Dφ
T and ST are the thermal propagators of the pseudoscalar particle

and neutrino, respectively defined as:

iDφ
T (k) =

[
i

k2 −m2
φ + iε

+ ΓB(k)

]
(6.3)

with,

ΓB(k) = 2πδ(k2 −m2
φ)ηB(k, µ, β) (6.4)

and

ηB(k, µ, β) = Θ(k · u)fB(k, µ, β) + Θ(−k · u)f̄B(k,−µ, β), (6.5)

where k ·u = Ek is the energy of the neutrino in the rest frame of the medium,
and

fB(k, µ, β) =
1

eβ(|k·u|−µ) − 1
(6.6)

111



is the Bose-Einstein distribution function. The pseudoscalar particle will be
assumed as a real singlet field, so that fB = f̄B.

iST (k) = ( 6 k +m)

[
i

k2 −m2 + iε
− ΓF (k)

]
(6.7)

with,

ΓF (k) = 2πδ(k2 −m2)ηF (k, µ, β) (6.8)

ηF (k, µ, β) = Θ(k · u)fF (k, µ, β) + Θ(−k · u)f̄F (k,−µ, β) (6.9)

fF (k, µ, β) =
1

eβ(|k·u|−µ) + 1
(6.10)

and an analogous expression for the Fermi-Dirac distribution function f̄F of
the anti-particle, with opposite sign for the chemical potential.

By substitution of the propagator expressions, the expression (6.2) be-
comes:

Σbubble(p) = −ig2
φ

∫
d4q

(2π)4
PRγ5

(
i( 6 q +m)

q2 −m2
− (6 q +m) ΓF (q)

)
× γ5PL

(
i

∆2 −m2
φ

+ ΓB(∆)

)
,

(6.11)

which provides the following matter-induced potential:

Vαs(p) =
g2
φ

8π2 |p|

∫ ∞
0

d|q| |q| [(ρq + ρ̄q + fφ(q)1)]αs , (6.12)

which, because of the dependence on the inverse momentum, grows with the
cosmological expansion.

In the above equation (6.12) a logarithmic term proportional tomφ/(4 |p| |q|)�
1 has been neglected. Note that Vαs does not change sign for anti-neutrino
test particle, since one has to replace both g2

φ → −g2
φ and p0 ' |p| → p0 '
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− |p|.

Consider now the analogous contribution to the neutrino potential due
to sterile neutrinos interactions with a background of active neutrinos. For a
sterile neutrino, νs, forward scattering on a background active neutrino, να,
the bubble term,

iΣbubble(p) = −(igφ)2

∫
d4q

(2π)4
γ5PL i ST (q)PRγ5 iD

φ
T (∆), (6.13)

provides the additional contribution to the neutrino potential energy:

Vsα(p) =
g2
φ

8π2 |p|

∫ ∞
0

d|q| |q| [(ρq + ρ̄q + fφ(q)1)]sα . (6.14)

The above results have been obtained considering a single sterile species and
in the limit of massless neutrinos for all species. This is a reasonable approx-
imation for nearly ultra-relativistic neutrinos in the early universe. Taking
m 6= 0 would provide an additional term to the neutrino potential ∼ m/ |Eq|,
where m in eq. (6.12) is the sterile neutrino mass, while in eq. (6.14) is the
mass of the background active neutrino, and a further logarithmic term, as
it will be shown for a model 1 + 1 with a single species for both active and
sterile species.

As regards the corrections to the pseudoscalar propagator (figure 6.1b),
the leading order thermal contribution to the bubble diagram is given by:

Σbubble(q) =− g2
φ

∫
d4p

(2π)4
Tr

[
( 6 q− 6 p+ms)

(q − p)2 −m2
s

PR (6 p+mα)PL2πδ
(
p2 −m2

α

)
ηαF+

(6 q− 6 p+ms)
PR (6 p+mα)PL

p2 −m2
α

2πδ
(
(q − p)2 −m2

s

)
ηsF

]
.

(6.15)

Neglecting the active neutrino mass and logarithmic terms of orderM2/ |q|,
where M2 can be the mass squared difference or the sum, we find:

Vφ(p) =
g2
φ

2π2

∫ ∞
0

d|p| |p|
[
fα(p) + f̄α(p) + fs(p) + f̄s(p)

]
. (6.16)
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6.2 Matter Potential in the Sterile Sector

Consider the Yukawa interaction in the sterile sector, described by the Hamil-
tonian:

HY = iGφ ν̄siγ5 νsjφ+ h.c. (6.17)

In the case under examination there is also a tadpole term to be taken into
account:

iΣtadpole(p) = (iGφ)2γ5 iD
φ
T (∆)

∫
d4q

(2π)4
Tr [γ5i SF (q)] . (6.18)

Since the momentum conservation implies zero momentum transfer, ∆ =
p− q = 0, equation (6.18) becomes:

iΣtadpole(p) = −(iGφ)2γ5

(
−i
m2
φ

)∫
d4q

(2π)4
Tr [γ5 (6 q +ms)] . (6.19)

For antineutrinos as test particles the above contribution changes sign.
However, the tadpole term (6.19) does not contribute to the neutrino self-

energy, since the product of n γ matrices containing γ5 for n < 5 has zero
trace as well as the product of an odd number of γ matrices:

Σtadpole(p) = −
G2
φ

m2
φ

γ5

∫
d3q

(2π)3
Tr [γ5 (6 q +ms) (ρq − ρ̄q)]

1

2 |Eq|
= 0. (6.20)

Note that the tadpole term would not be zero if instead of a pseudoscalar we
consider a scalar mediator:

Σtadpole(p) = −
G2
φ

2m2
φ

∫
d3q

(2π)3
Tr [(ρq − ρ̄q)]

ms

|Eq|
. (6.21)

As for the bubble term, generalizing to the case of sterile species of dif-
ferent flavor and assuming that the coupling constant matrix in the above
interaction Hamiltonian is Gφ = diag(gsee, g

s
µµ, g

s
ττ , 0), the effective matter

produced by the bubble contribution has the form:
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Figure 6.2: Tadpole and bubble contributions to sterile neutrino self-energy.

Vij(p) =
G2
φ

8π2 |p|

∫ ∞
0

d|q| |q| [(ρq + ρ̄q + fφ(q)1)]ij . (6.22)

Sterile neutrinos compatible with the experimental data should have masses
heavier than the active species, of the order of eV. Furthermore, since BBN
considerations (Esposito et al. 1999) seem to disfavor a model with more than
one additional sterile species, let’s assume that only a single sterile neutrino
is present and consider the effects of non negligible mass at temperatures
around the eV.

The boson part in equation (6.22) including all contributions becomes:

V (φ) =
g2
φ

16π2 |p|

∫ ∞
0

d|q| |q| fφ(Eφ)

{
m

Eφ
ln

(
2EpEφ(1 + vpvφ)−m2

φ

2EpEφ(1− vpvφ)−m2
φ

)

+

(
m2
φEp

2 |p|2Eφ
− m2

|p|2

)
ln

(
2EpEφ(1 + vpvφ)−m2

φ

2EpEφ(1− vpvφ)−m2
φ

)
+

2vφ
vp

}
,

(6.23)

whereas the part related to the neutrino distribution becomes:

V (ν) =
g2
φ

16π2 |p|

∫ ∞
0

d|q| |q|
{
m

Eq

(
fν(Eq)− f̄ν(Eq)

)
ln E

+
(
fν(Eq) + f̄ν(Eq)

)
κ

(
m2
φEp

2 |p|2Eq

− m2(Ep − Eq)

|p|2Eq

)
ln E +

2vq
vp

}
(6.24)

with,
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E =
2EpEq(1 + vpvq) + κ(m2

φ − 2m2)

2EpEq(1− vpvq) + κ(m2
φ − 2m2)

(6.25)

and κ = ±1 takes into account of the sign associated to the background neu-
trino and antineutrino respectively, q0 = ± |Eq|, in the shorthand notation
of the above equation (6.24).

6.3 The Collision Integrals

The kinetic equations which describe the time evolution of the density ma-
trices ρq and ρ̄q also include a Boltzmann collision integral accounting for
non-forward collisions:

ρ̇p = −i[Ωp, ρp] + C[ρp] (6.26)

˙̄ρp = i [Ωp, ρ̄p] + C[ρ̄p], (6.27)

where Ωp comprises all the relevant contributions to the refractive energy
shifts due to different medium components and the collision operator C[·]
represents the rate of change of the particle distribution due to the different
types of neutrino interactions, depending on the cases under consideration.
Namely, in the active neutrino sector, Ωp takes the form:

Ωp = ΩV ac
p + ΩWeak

p + ΩY
p , (6.28)

where ΩV ac
p describes oscillations in vacuum, ΩWeak

p , includes all weak in-
teractions in charged and neutral currents with other leptons and neutrino
self-interactions, and ΩY

p are the above calculated matter potential terms,
(6.12) and (6.14), due to the additional neutrino interactions with the pseu-
doscalar particle.

Since sterile neutrinos have no weak interactions, in the sterile sector Ωp

is given by the Yukawa term (6.22).

Similarly, the collision integral is given by:

C[ρp] = (C[ρp])Weak + (C[ρp])Y , (6.29)
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where (C[ρp])Weak consists of all possible second order weak processes in-
volving neutrinos and other leptons and (C[ρp])Y is related to the Yukawa
interactions with the pseudoscalar φ.

Different approximate forms for the collision terms can be used, such as
the Relaxation Time Approximation (RTA), introduced for small deviations
of the distribution function from its equilibrium state (Lundstrom 2000).
This approximation well describes realistic situations, when the scattering
is isotropic or elastic. The relaxation time τ = 1/Γ, depends only on the
nature of the scattering process. For isotropic scattering it is the average time
between collisions. For elastic scattering there will be a weighting factor.

By means of the RTA, the collision term can be expressed as:

ρ̇collp = −Γ
(
ρp − ρeqp

)
(6.30)

and an analogue equation for ρ̄, where Γ = n 〈σ |v|〉 = 1/τ is the interaction
rate, 〈σ |v|〉 is the thermally averaged product of cross section and relative
speed of the colliding particles, and ρeq (or ρ̄eq) is essentially the unit matrix
with coefficient the equilibrium distribution function f eq (or f̄ eq).

Using an alternative approximation procedure (Chu & Cirelli 2006) based
on a second quantized formalism (Raffelt & Sigl 1993), the collision term
takes the form:

ρ̇collp = −Γ

2

({
G2
s, ρ− ρeq

}
− 2Gs (ρ− ρeq)Gs+{
G2
a, (ρ− ρeq)

}
+ 2Ga(ρ− ρeq)Ga

) (6.31)

˙̄ρcollp = −Γ

2

({
G2
s, ρ̄− ρ̄eq

}
− 2Gs (ρ̄− ρ̄eq)Gs+{
G2
a, (ρ̄− ρ̄eq)

}
+ 2Ga(ρ̄− ρ̄eq)Ga

) (6.32)

where Gs and Ga are diagonal matrices formed by the numerical coefficients
for the scattering and annihilation processes for the different flavors; the
neutrino and antineutrino distributions, ρp(t) and ρ̄p(t), are approximated as
Fermi-Dirac functions with a negligibly small chemical potential, multiplied
by an overall normalization factor, meant as an average of the available phase
space,

ρp(t) = ρ(t)fF (p), ρ̄p(t) = ρ̄(t)fF (p). (6.33)

117



Pointing out that in the Chu & Cirelli approximation only the annihilation
processes contribute to the repopulation term (reasonable for the momentum-
averaged quantum rate equations but not rigorously correct in the momentum-
dependent quantum kinetic equations where elastic scattering processes is
also expected to contribute to the momentum equilibration) a different re-
population approximation scheme has been developed by Hannestad and
colleagues, called the A/S approximation, where the annihilation and scat-
tering terms are kept separate (Hannestad et al. 2015).

The total reaction rate Γ, associated with the new interaction involving
active and sterile species, which enters the collision integrals is given by:

Γij = 〈σijvij〉nj =
1

ni

∫
d3pid

3pjf(pi)f(pj)σij vij, (6.34)

where

ni,j = gi,j

∫
d3pi,j

(2π)3f (pi,j) (6.35)

is the number density of the colliding particles.
The cross section σij for the various processes under consideration is es-

timated for the case of active neutrinos with negligible mass, whereas the
sterile neutrino masses are kept everywhere non-vanishing, for different val-
ues of the mass of the light particle φ, ranging from the value of the active
neutrino mass (therefore negligible) to that of the sterile.

Consider first the interactions between active and sterile neutrinos related
to the Hamiltonian (6.1). For all the allowed processes, the cross section is
calculated in the center of mass frame.

The various reactions mediated by the pseudoscalar φ provide the follow-
ing cross sections times relative velocity:

a) νανs ←→ νανs

σ |v| =
g4
φ (1− vp cos θ)

64πs

{
1− 4∆2s2

(s−m2
s)

4 − [m4
s − s (s− 2∆)]2

+
2s∆

(s−m2
s)

2 ln

∣∣∣∣∣s
(
s+m2

φ − 2m2
s

)(
m2
φs−m4

s

) ∣∣∣∣∣
} (6.36)
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where ∆ = m2
s −m2

φ.

And for the processes related to the above by crossing symmetry the cross
sections are given by:

σ |v| =
g4
φ (1− vp cos θ)

64πs

{
1 +

2∆

(s−m2
s)
ln

∣∣∣∣∣m2
φs+ (s−m2

s)
2

m2
φs

∣∣∣∣∣
+

s
(
m2
φ − 2m2

s

)
m2
φs+ (s−m2

s)
2

} (6.37)

and

σ |v| =
g4
φ (1− vp cos θ)

64πs

{
(s−m2

s)
2(

s−m2
φ

)2
+ Γ2

Dm
2
φ

}
(6.38)

where ΓD is the φ particle decay rate:

ΓD =
g2
φ

16π

(
m2
φ −m2

s

)2

m3
φ

(6.39)

For mφ → 0 equation (6.36) reduces to:

σ |v| '
g4
φ (1− cos θ)

64πs

{
1− s

s− 2m2
s

+ ln

∣∣∣∣s (s− 2m2
s)

m4
s

∣∣∣∣} (6.40)

Since in the limit of negligible mass, mφ → 0, equation (6.37) has a divergent
logarithmic term, keeping mφ non zero only in that term,

σ |v| '
g4
φ (1− cos θ)

64πs

{
1 +

(
2m2

s

s−m2
s

)
ln

∣∣∣∣∣m2
φs+ (s−m2

s)
2

m2
φs

∣∣∣∣∣+
2m2

s

(s−m2
s)

}
(6.41)

Further allowed processes yield:

σ |v| =
g4
φ (1− vq cos θ)

64πs

{
(s−m2

s)
2(

s−m2
φ

)2
+ Γ2

Dm
2
φ

+
∆2s

m2
s (s−m2

s)
2 + ∆ (m4

s − s2 + s∆)
+

1− (s−m2
s)(

s−m2
φ

) + ln

∣∣∣∣∣s
(
s+m2

φ − 2m2
s

)(
m2
φs−m4

s

) ∣∣∣∣∣
[

2∆s

(s−m2
s)

2 +
2s (mφs−m4

s)

(s−m2
s)

2 (s−m2
φ

)]}
(6.42)
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and

σ |v| =
g4
φ (1− cos θ)

64πs

{
2∆2s

m2
φ

[
m2
φs+ (s−m2

s)
2] − ∆2s(

2m2
s −m2

φ

) (
m2
φs−m4

s

)+

ln

∣∣∣∣∣m2
φs+ (s−m2

s)
2

m2
φs

∣∣∣∣∣
[

2∆s

(s−m2
s)

2 +
(2∆s− s2 −m4

s) (2∆s− s2 +m4
s)

4s (2∆− s) (s−m2
s)

2 +

s (2Ms− s2 −m4
s + 2∆2)

2 (2∆− s) (s−m2
s)

2

]
+ ln

∣∣∣∣∣ s
(
2m2

s −m2
φ − s

)
∆s−m2

s (s−m2
s)

∣∣∣∣∣
[

2∆s

(s−m2
s)

2−

(2∆s− s2 −m4
s) (2∆s− s2 +m4

s)

4s (2∆− s) (s−m2
s)

2 − s (2Ms− s2 −m4
s + 2∆2)

2 (2∆− s) (s−m2
s)

2

]}
,

(6.43)

where M = m2
s +m2

φ.

Now consider neutrino interactions with a background of pseudoscalar par-
ticles. The allowed processes involve an active or sterile neutrino propagator.

b) ναφ←→ ναφ

The cross section for active neutrino interactions with a background of pseu-
doscalar particles yields:

σ |v| =
g4
φ (1− vq cos θ)

64πs

{
m4
φ − s2 + 2∆s

2 (s−m2
s)

2 +
2s

s+m2
s − 2m2

φ

+

s2 (s+ 2∆ +m2
s) + 2m2

φs
(
m2
φ − 2s

)(
s−m2

φ

)2 (
s+m2

s − 2m2
φ

) ln

∣∣∣∣∣ s (m2
s − s)

∆s+m2
φ

(
m2
φ − s

)∣∣∣∣∣
}
,

(6.44)

and for the cross symmetric process νανα ←→ φφ:
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σ |v| =
g4
φ (1− cos θ)

64πs

4 +
s (∆2 +m2

ss)

2m2
s

[
m2
ss+

(
s−m2

φ

)2
] +

s [∆2 −m2
ss)

(m2
s − s)

[
m4
φ + s

(
m2
s − 2m2

φ

)]+
ln

∣∣∣∣∣m2
ss+

(
s−m2

φ

)2

m2
ss

∣∣∣∣∣
[
m4
s + 2m2

φ∆(
s−m2

φ

)2 −
s (s+ 2∆)(
s−m2

φ

)2 −
m2
s

(
s+ 2m2

φ

)
2s
(
s−m2

φ

) ]+

ln

∣∣∣∣∣ s (m2
s − s)

∆s+m2
φ

(
m2
φ − s

)∣∣∣∣∣
[
s (2∆− s)(
s−m2

φ

)2 +
m2
φ (∆− 2s) + ∆s(

s−m2
φ

)2 − 1

2
+(

s+m2
φ

)
(s−m2

s)

2s
(
s−m2

φ

) ]}
.

(6.45)

As for the interactions of the sterile neutrino with a background of φ:
c) νsφ←→ νsφ

for this process the cross section times relative velocity is given by:

σ |v| =
g4
φ (1− vpvq cos θ)

64πs

√
s2 − 2sM + ∆2

s−M

{
(s+ ∆)2

2s2
+

s

(2M − s)
+ 2 +

s (s+ 2m2
s) + 2∆ (∆− 2m2

s)− 2s
(
s− 2m2

φ

)
s2 − 2sM + ∆2

ln

∣∣∣∣s (2M − s)
∆2

∣∣∣∣
}
.

(6.46)

Lastly, the cross section for the cross symmetric process νsνs ←→ φφ yields:

σ |v| =
g4
φ (1− vpvq cos θ)

64πs

√
s (s− 4m2

s)

s− 2m2
s

{
s

2M − s
−

∆s2
(
3m2

s −m2
φ

)
(s2 − 2sM + ∆2)2

(
1 + cos θ0

1− cos θ0

)
+

1−
s
[(
s− 4m2

φ

)
(2M − s)− 2∆M

]
(s2 − 2sM + ∆2) (2M − s)

ln

∣∣∣∣s (2M − s)
∆2

∣∣∣∣+
s
[
2∆2 +

(
4m2

φ − s
)

(s− 2M)
]

(s2 − 2sM + ∆2) (2M − s)
ln

(
sin2 θ0

2

)}
,

(6.47)
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where θ0 is related to the Debye shielding that should be used as the max-
imum value of the impact parameter in a medium. The divergence of the
cross section for small angles in the forward direction is removed integrating
the differential cross section over all angles such that θ0 ≤ θCM ≤ π.

6.4 Collisions in the Sterile Sector

The Hamiltonian (6.17) also allows processes involving only sterile species.
The cross section for the process νsνs ←→ νsνs provides:

σ |v| =
G4
φ (1− vpvq cos θ)

16πs

√
s (s− 4m2

s)

s− 2m2
s

{
s2(

s−m2
φ

)2
+ Γ2

Dm
2
φ

+ 1 +

ln

∣∣∣∣∣ m2
φ

m2
φ + s− 4m2

s

∣∣∣∣∣
[

2
(
2m2

φ + 4m2
s − s

)
s− 4m2

s

−
4m2

φ

(
s+m2

φ − 4m2
s

)
(s− 4m2

s)
(
s+ 2m2

φ − 4m2
s

)]} ,
(6.48)

where

ΓD =
G2
φ

8π
mφ

(
1− 4m2

s

m2
φ

)3/2

, (6.49)

whereas for the process νsφ←→ νsφ the cross section times relative velocity
is given by:

σ |v| =
G4
φ (1− vpvq cos θ)

16πs

√
s2 − 2sM + ∆2

s−M

{
s
[
∆ (s−M) + 2m2

φ (s−m2
s)
]

4 (s−M) (m2
ss−∆2)

+1−
[
∆2 (s−m2

s) + s (s− 2M)
(
m2
φ +M − s

)]
4s (s−m2

s)
2 + ln

∣∣∣∣∣s
(
m2
φ +M − s

)
∆2 −m2

s

∣∣∣∣∣[
s (s−m2

s)

2 (s2 − 2sM + ∆2)
+

(s+ ∆)2

8s (s−m2
s)

+
s
[
m2
s (s− 2m2

s) +m2
φ (s−m2

s)
]

(s2 − 2sM + ∆2) (s−m2
s)

]}
.

(6.50)

6.5 Quantum Kinetic Equations for a να − νs System

The evolution of the neutrino ensemble in the early universe is in the first
place affected by the expansion of the universe. Furthermore, neutrinos are
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subjected to decoherent collision processes with the background medium and
to the coherent process of oscillations governed by a matter-dependent Hamil-
tonian. The effect of both collisions and oscillations is quantified by means
of the Quantum Kinetic Equations (QKEs), which generalize the Pauli-
Boltzmann Equations to include quantum coherence between the particle
species involved.

We start by considering a two-flavor system, comprising a single species
of active and sterile neutrinos. The extension to the multi-flavor case is
deferred to a subsequent stage of our study. We will assume that at very
high temperature number densities of sterile neutrinos are zero until they
are produced by oscillations with the active species as they undergo reversal
of helicity through Yukawa interactions with the pseudoscalar particle.

Sterile neutrinos do not have electroweak or strong interactions with the
background plasma which at the epoch of interest, ranging from T ∼ 100
MeV to BBN temperatures (T ∼ 0.1 - 1 MeV), consists essentially of photons,
electrons, positrons, neutrinos and antineutrinos. However, they can have
secret interactions, that is, interactions not shared by particles charged under
SU(3) or SU(2)× U(1).

Assuming that there exist such secret interactions and a sterile neutrino
production is induced by oscillations, we consider all possible interactions
that can take place in a medium that includes pseudoscalar particles and
sterile neutrinos, once they have been produced, along with the above men-
tioned typical background of the era. We aim at verifying, in a future work,
to what extent such interactions are able to prevent full thermalization of the
sterile neutrino with the active species at the considered epoch, and analyzing
all cosmological implications stemming from our model in detail.

For this purpose, we start by describing oscillations between an active
neutrino state να, where α = e, µ, τ , and a sterile neutrino state νs in the
early universe background medium, in terms of a two-state system charac-
terized by 2×2 density matrices ρ(p, t) and ρ̄(p, t), for neutrino and antineu-
trino respectively, for each momentum p, which are conveniently expanded
in terms of the Pauli matrices σi and polarisation vector components P i(p, t)
as 1/2σµP

µ, where σµ = (σ0, σi), with σ0 ≡ 1:

ρ(p, t) =

(
ραα ραs
ρsα ρss

)
=

1

2
[P0(p, t) + σ ·P(p, t)] (6.51)

and for antineutrinos

ρ̄(p, t) =

(
ρ̄αα ρ̄αs
ρ̄sα ρ̄ss

)
=

1

2

[
P 0(p, t) + σ ·P(p, t)

]
, (6.52)
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where ρ and ρ̄ are normalized to a Fermi-Dirac distribution with zero chemical
potential, such that fi(p, t) = ρii(p, t)f(p), with i = α, s and:

f(p) =
1

ep/T + 1
. (6.53)

The density matrices express the flavor content and coherence of the en-
semble; the diagonal entries are the particle and antiparticle distribution
functions, namely the occupation numbers of the involved neutrino species,
while the off-diagonal (correlation) entries carry information of neutrino fla-
vor mixing. Using (6.51) and (6.52) the equations of motion for the density
matrices (6.26) and (6.27) become equations of motion for the polarization
vector:

Ṗ0(p) = R(p) (6.54)

Ṗ = V(p)×P(p) +R(p)ẑ −D(p)PT (6.55)

and analogous equations for the antineutrinos.
In the above equation (6.55), the general expression of the repopulation

function R(p) and decoherence function D(p) can be found in Refs. (McKel-
lar & Thomson 1994; Hannestad et al. 2015). V(p) ≡ Vx(p)x̂ + Vz(p)ẑ
consists of the vacuum oscillation term and the medium induced potential
from forward scattering, V V ac + V Med, where V Med comprises all contribu-
tions from weak interactions and the additional contribution due to secret
interactions. R(p) is the repopulation function controlling the evolution of
P0(p). The evolution of P0(p) is governed by processes that reduce or increase
the abundance of active neutrinos with momentum p. The rate of change of
P0 receives no contribution from coherent να − νs oscillations, because the
two flavors simply swap. Therefore it is essentially equal to the difference
between the rate at which active neutrinos of momentum p are generated by
scattering processes and the rate at which they are scattered out of that mo-
mentum value. PT is the transverse part of P i.e. its x-y-projection, and D is
a damping parameter associated with the rate of loss of coherence of the en-
semble. It can be thought of as a rate parameter measuring the effectiveness
of the collisions in interrupting the mixing of the two states (Stodolsky 1987).

Defining (see Dolgov et al. 2002 for the case active-active oscillations):

x = ma y = pa, (6.56)
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where a ≡ a(t) is the cosmic scale factor which represent the relative ex-
pansion of the universe and m an arbitrary mass scale chosen to be 1 MeV.
For the oscillations between a doublet active neutrino state and an initially
unpopulated sterile neutrino state, the equations (6.54) and (6.55) for the
components of the neutrino polarization vector yield:

dP0(x, y)

dx
= Rα(x, y) (6.57)

dPx(x, y)

dx
= − Vz

Hx
Py(x, y)− D

Hx
Px(x, y) (6.58)

dPy(x, y)

dx
=

Vz
Hx

Px(x, y)− Vx
Hx

Pz(x, y)− D

Hx
Py(x, y) (6.59)

dPz(x, y)

dx
=

Vx
Hx

Py(x, y) +Rα(x, y) (6.60)

where:

Rα(x, y) =
2D

Hx

[
feq(y, ξα)

feq(y)
− P0(x, y) + Pz(x, y)

2

]
(6.61)

with ξα = µα/T the degeneracy parameter of the corresponding active neu-
trino species.

As for the antineutrino, equations (6.57) - (6.61) take an analogous form,
with the following substitutions:

P µ → P
µ

V→ V D → D R→ R (6.62)

and ξα → −ξα in (6.61).

The component of the polarization vector are:

P0(x, y) =
fα(x, y) + fs(x, y)

f(y)
(6.63)

Pz(x, y) =
fα(x, y)− fs(x, y)

f(y)
(6.64)

Thus, equation (6.61) can be written as:

Rα(x, y) =
2D

Hx

[
feq(y, ξα)

feq(y)
− fα(x, y)

feq(y)

]
(6.65)
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Now consider the component of the vector V(p). The vacuum oscillation
term V V ac provides:

V V ac(p) =

(
0,

∆m2

2p
sin 2θ, 0,−∆m2

2p
cos 2θ

)
. (6.66)

The contribution of the medium-induced potential from forward scattering
V Med due to weak interactions is:

V W (p) =

(
0, 0, 0,−8

3

√
2GFp

m2
W

(ρl+ + ρl−)hα −
8

3

√
2GFp

m2
Z

(ρνα + ρν̄α)

)
(6.67)

where hα = 1 if α = e and 0 if α = µ, τ and the refractive term proportional
to neutrino asymmetry L,

√
2GFL, has been omitted since it is negligible

at high temperatures compared to the terms coming from the second order
contribution of Σbubble and at T ∼ 1 MeV compared to the vacuum oscillation
term. In what follows we will neglect the chemical potential, which is a
reasonable approximation as long as the asymmetries under consideration
are small, as it is assumed.

The contributions V Y coming from (6.12) and (6.14), expressed in terms
of the components of the polarization vector are:

V Y
αs(p) =

g2
φ

16π2 |pα|

∫ ∞
0

d|q||q|
(
P0 + P 0 − Pz − P z

)
(6.68)

V Y
sα(p) =

g2
φ

16π2 |ps|

∫ ∞
0

d|q||q|
(
P0 + P 0 + Pz + P z

)
(6.69)

In the above equations (6.68) and (6.69) we have neglected the part of V Y

proportional to the identity. Since

V Y (p) =

(
Vαs(p)

Vsα(p)

)
=

1

2

(
V Y

0 + V Y
z V Y

x − iV Y
y

V Y
x + iV Y

y V Y
0 − V Y

z

)
, (6.70)

and pα = ps ≡ p, then we get:

V Y
0,z =

g2
φ

16π2 |p|

∫ ∞
0

d|q||q|
[(
P0 + P 0 − Pz − P z

)
±
(
P0 + P 0 + Pz + P z

)]
.

(6.71)
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This provides the additional term V Y
z to the kinetic equations (6.57) - (6.60):

V Y
z = −

g2
φ

16π2 |p|

∫ ∞
0

d|q||q|
(
Pz + P z

)
. (6.72)

Note that V Y
0 gives no contribution to the equations of motion because it

provides a diagonal term proportional to the identity matrix which cancels
out when we take the commutator.

The different terms contributing to the kinetic equations can be conve-
niently rewritten as follows:

∆m2

2 pH x
=

1010MP

2
√

8π/3

(
∆m2

eV 2

)
1

ρ̃

x2

y
(6.73)

is the contribution of the vacuum oscillation terms, where MP ≡ 1.221,
ρ̃ = (x/m)4 ρtot, with ρtot, the total energy density of the universe.

The charged lepton contribution provides:

Vl
H x

= −8
√

2 G̃F

3 m̃2
W

105MP√
8π/3

1

ρ̃

y

x4

(
ρ̃+
l + ρ̃−l

)
, (6.74)

where G̃F ≡ 1.1664 and m̃W ≡ 80.385. Lastly, the additional term provided
by equation (6.72):

V Y
z

H x
= −

g2
φ

8 π2eV 2

1010MP√
8π/3

1

ρ̃

x2

y

∫ ∞
0

d|q||q|
(
Pz + P z

)
. (6.75)
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7
Conclusions

The first introductory chapters of this thesis provide an overview of neutrino
physics within the context of the SM of the elementary particles and beyond.
The SM predicts massless left-handed neutrinos and no right-handed part-
ner exists, making them essentially different from all other fermions. Many
scenarios of physics beyond the SM are concerned with the aspect of mass-
lessness of neutrinos, which appears in some way as an artifact in the SM,
since there is no fundamental reason why one cannot introduce a right handed
field νR that could have paired with the νL through the Higgs mechanism and
produce a mass term for neutrinos the same way as any other fermion. The
problem of neutrino masses is addressed within the context of the Standard
Model and beyond in connection with neutrino static properties. In partic-
ular, mixing and oscillations, the nature of neutrinos as Dirac or Majorana
particles and the possible existence of a right-handed component.

The existence of right-handed neutrinos is then shown as a well-motivated
hypothesis from both theoretical and experimental point of view. In fact, so
far there is no other experimental evidence of significant departures from the
SM, except neutrino oscillation observations, which have shown that neu-
trinos are massive and mixed particles. Furthermore, the introduction of
right-handed states is a still valid solution for explaining a few anomalies in
experimental results that find no explanation in a three-flavor active neutrino
pattern with nonzero mixing.

The origin of the small neutrino mass can find a possible explanation
in the hypothesis that neutrino masses are a low-energy manifestation of
physics beyond the SM and their smallness is due to a suppression gener-
ated by a new high-energy scale, possibly related to the unification of forces.
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The right-handed neutrinos can explain in a natural way, through the see-
saw mechanism, the observed extremely small masses of the active neutrinos
compared with those of charged fermions in the standard model. All this
seems a clear indication of the SM as an effective theory of the yet unknown
theory beyond the SM.

The physics of neutrino oscillations in vacuum and in matter is then
reviewed in order to introduce extended models, including active-sterile neu-
trino oscillations, and the related effects that can be expected in the hot and
dense environments of the early universe and supernovae.

In particular, a fully thermalized population of sterile neutrinos may ex-
cite additional light particles into equilibrium, thus affecting the expansion
rate of the universe. The BBN outcome depends on the expansion rate of
the universe when the universe is still radiation-dominated and therefore it
depends on the effective number of neutrino species Neff . A larger Neff pro-
duces a larger expansion rate of the universe, which in turn leads to an earlier
n/p freeze-out, leading to a larger relic neutron abundance, and thus, to a
higher production of 4He. Besides, the nucleosynthesis of light elements also
depends on the rate of weak reactions. In particular, the β − decay process
affects the n/p at the onset of primordial nucleosynthesisbecause. Hence,
an accurate theoretical estimate of τn has been performed, in Chapter 5, in-
cluding QED outer corrections, where nucleons are treated as a whole, and
inner corrections which depend on the details of the nucleon structure. Per-
turbative QCD corrections, weak magnetism and finite nucleon mass effects,
related to proton recoil, as well as the Fermi function describing the electron
rescattering in the proton Coulomb field, have also been included. Taking
into account all these corrections, the value obtained for the neutron lifetime
is compatible with the vaue quoted by PDG.

Since a fully thermalized population of sterile neutrinos appears to be
in conflict with current BBN data and other cosmological observables, in
Chapter 6 previous attempts to solve this tension are reviewed. Different
mechanisms to suppress the sterile neutrino thermalization and their even-
tual large production have been considered, such as the existence of neutrino
asymmetries or secret interactions among sterile neutrinos. However, so far
none of these models succeeded in providing sterile neutrinos with the ap-
propriate interactions to respond to the problem of the observed anomalies
and evade all the cosmological constraints.

This has motivated the construction a new model of sterile neutrino pro-
duction and secret interactions in order to explore the possibility of reconcil-
ing with cosmology the existence of sterile neutrinos with mass in the range
favored by the observed anomalies. The model that has been introduced
consists in assuming the same secret interactions with a light pseudoscalar
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as the source of sterile neutrino production by oscillations with active species
and, in addition, along with the self-interactions νs − νs further interactions
νs − φ have been considered in the sterile sector.

The results presented in this dissertation are the first step of the analysis
of the eventual compatibility of the introduced model with cosmology. In
order to develop a first understanding of the active-sterile system with non-
standard interactions in the early universe it has been considered first a two-
flavor situation. This simplified scheme needs to be improved by considering
a full multi-flavor density matrix calculation, which to date has not been
performed.
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