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A B S T R A C T

This thesis work is concerned with the identification of the

aerodynamic characteristics, namely the lift and the drag co-

efficients of the airfoils placed along the blades, of horizontal

axis wind turbines.

A wind turbine is represented by a quite complex dynamic

system, composed in turn by several subsystems, for example

aerodynamic, mechanical and electrical. It operates in stochas-

tic and turbulent wind conditions and it gives rise to several

complex phenomena, for example aeroelastic and three dimen-

sional effects, dynamic stall, interactions between blades and

tower as well as with other turbines within wind farms, etc.

There are several models, which represent the behaviour of

a wind turbine. However, such models are characterized by the

values that some curves assume. These curves must be suitably

regulated [11] to obtain a better comparison between experi-

mental data and the data produced by the mathematical model.

The purpose of this regulation is represented by the possibil-

ity to include some corrections related to the physical phenom-

ena that have not been described by the mathematical model.

This regulation also allows for accounting for manufacturing

errors during the production of the blades.

The target of this work is precisely to find a reliable method

which allows to calculate the aerodynamic curves of such wind

turbines. However, the problem of system identification applied

to wind turbines is hard to face. In fact, the causes underlying

such difficulties, for example the low level of identifiability and
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collinearity among parameters, prevents the calculation of such

parameters. The problem is described in details in chapter 4

together with some methods used to solve the identification

problem of wind turbines.

To this end a software package, written in MATLAB® [18] lan-

guage, was created. This software implements the methods of

system identification and calculates the required curves as de-

scribed in chapter 4. To verify this software several tests were

performed. Firstly, some tests using virtual experimental mea-

surements have been performed to confirm the reliability of the

generated curves. Then a test in which the identification is lost

can be observed. The reasons that lead this software to gain a

faulty solution or to not converge at all, instead of obtaining

the real solution, are described in chapter 4. Finally other tests

were conducted using the performance obtained from some ex-

perimental measurements in order to identify the aerodynamic

characteristics of some real wind turbines.
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S O M M A R I O

Questo lavoro di tesi riguarda l’identificazione parametrica (sy-

stem identification) delle proprietà aerodinamiche, ovvero dei

coefficienti di portanza e di resistenza dei profili posizionati

lungo le pale, di turbine eoliche ad asse orizzontale. Una tur-

bina eolica è rappresentata da un sistema dinamico estrema-

mente complesso, composto a sua volta da diversi sottosistemi,

ad esempio aerodinamico, meccanico, elettrico. Essa opera in

condizioni di vento stocastiche e turbolenti e da origine a feno-

meni piuttosto complicati, ad esempio fenomeni aeroelastici, ef-

fetti tridimensionali, stallo dinamico, ad interazioni tra le pale e

la torre, interazioni con altre turbine all’interno di parchi eolici,

etc.

Esistono numerosi modelli in grado di rappresentare il com-

portamento di una turbina eolica. Tuttavia tali modelli sono ca-

ratterizzati dai valori assunti da alcune curve. Tali curve devono

essere opportunamente calibrate al fine di ottenere un migliore

riscontro tra i dati sperimentali e quelli ricavati dal modello

matematico.

Lo scopo di queste regolazioni è rappresentato dalla possibi-

lità di includere alcune correzioni relative a fenomeni fisici che

non sono stati descritti dal modello matematico di riferimento.

Tali regolazioni consentono inoltre di tenere conto degli errori

durante la produzione delle turbine eoliche.

L’obiettivo di questo lavoro è proprio quello di trovare un me-

todo affidabile che consenta di calcolare le curve aerodinamiche

di tali turbine eoliche. Tuttavia, il problema dell’identificazione
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parametrica, applicato alle turbine eoliche, è difficile da affron-

tare. Infatti, le cause che sono alla base di queste difficoltà, ad

esempio il basso livello di identificabilità, e la collinearità tra

i parametri, impediscono il calcolo di tali curve. Il problema è

descritto nei dettagli nel capitolo 4 insieme ad alcuni metodi

usati per risolvere il problema dell’identificazione.

A tal fine è stato creato un software, scritto in linguaggio

MATLAB® che implementa i metodi dell’identificazione para-

metrica e calcola le curve richieste come descritto nel capitolo 4.

Per verificare il programma sono stati condotti numerosi test.

All’inizio saranno effettuati alcuni test usando misure virtuali

per confermare l’affidabilità delle curve trovate. Successivamente

sarà presentato un test nel quale l’identificazione non è avve-

nuta con successo. Le ragioni che portano tale software ad otte-

nere una soluzione sbagliata o a non convergere affatto, invece

di raggiungere la soluzione reale, sono spiegate nel capitolo 4.

Infine saranno compiuti altri test utilizzando le prestazione ot-

tenute da misure sperimentali al fine di identificare le curve

aerodinamiche di alcune turbine eoliche reali.
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1
I N T R O D U C T I O N

In recent years the worldwide concern for the rise of CO2 con-

centrations on earth atmosphere together with the oil price hike,

have led to a fast-growing development of renewable energies,

in particular of wind turbines, mainly thanks to the govern-

ment policy, which has invested a lot of funds to decrease the

dependence on fossil fuel and to reduce the concentrations of

greenhouse gases.

The growth of several wind farms, and consequently the

increase of installed power, is favoured by the possibility to

extract a greater amount of energy from the wind to obtain

greater yield. So, it is fundamental to acquire a mathematical

model which will accurately represent the physics of the sys-

tem under test. However it is also fundamental to fit, in the best

possible way, the parameters which describe such a system.

Sometimes it may occur that the predicted performance of a

design for a wind turbine differs significantly from those ob-

tained through experimental measurements. These discrepan-

cies can depend on several factors.

Firstly they can depend on some assumptions within the cho-

sen aerodynamic models that can be not fully satisfied. The

most important aerodynamic model used by the designers of

wind turbines is the blade element momentum theory. This

model is used mostly for its simplicity, for its low computa-

tional efforts and because it is able to get most out of the physics

related to the wind turbines.
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2 introduction

The theory related to this model, with its assumptions and

its results, will be presented in details in chapter 2. The limita-

tions of the model, determined by the assumptions that makes

the model only an approximation of the real process and that

cause the discrepancies between predicted and experimental

data, are also discussed. Finally, some classical improvements

are described in order to increase the fidelity of the model in

performance prediction.

As pointed out in [11], several studies demonstrated that the

main source of errors in evaluating the loads of the blades,

and consequently in the performance prediction, is due to the

wrong aerodynamic characteristics of the airfoils used along

the blades span. But it is also emphasized that, to date, a reli-

able method which improves the fidelity of the characteristics

of the airfoils does not exist.

Tangler in [17] has also verified that there are more discrep-

ancies due to the use of different airfoils characteristics than

those due to the employment of different simulation codes for

performance predictions. This means that the choice among the

prediction codes is less important than a suitable choice of the

airfoils characteristics. For this reason the blade element mo-

mentum model will be used in this thesis work instead of other

more complex codes, based for example on the lifting line the-

ory, for performance prediction.

In addition, manufacturing errors represent another factor

that may cause the discrepancies between design and experi-

mental performance. In this case, despite of the fact that the

modern technology has allowed for excellent industrial equip-

ment, the presence of manufacturing errors in the created blades

is unavoidable. These errors cause the alteration of the aerody-
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namic airfoils characteristics and therefore the performance of

wind turbines. A great part of the discrepancies between the

predicted and the experimental data of the 60kW wind turbine

called EOL-H-60 is precisely due to manufacturing errors. The

identification of the aerodynamic characteristics carried out us-

ing the software developed in this thesis work helped to find

the sources that caused the discrepancies and thus it helped to

fix these errors. This problem is described in details in section

4.4. Other alterations are due, for example, to the roughness of

the airfoils, which change its characteristics and therefore the

performance of wind turbines.

The methods of system identification applied to wind tur-

bines, are used to solve both problems at the same time. Indeed

the aerodynamic data tables, calibrated in an appropriate way,

allows to include both three-dimensional effects and manufac-

turing errors as well.

The theory related to the problem of system identification is

presented in chapter 3. The methods of the parameter estima-

tion are also described since the problem of system identifica-

tion can be reduced to parameter estimation. In addition, the

main estimators will be presented and more particularly the

estimator for the Fisher model, which uses the likelihood func-

tion, will be described in details. Indeed the maximum like-

lihood estimator will be used in this thesis work in order to

identify the aerodynamic characteristics of wind turbines un-

der study. Then, the principal algorithms used to optimize the

cost function given by the estimator model, will be described

and implemented in the software created for this thesis work.

The properties of the estimates will be presented and finally the

problem of data collinearity will be described. The main tech-



4 introduction

niques used to avoid data collinearity, or at least to decrease

its effects, are also discussed since the identification of wind

turbines is strongly affected by this problem. A fundamental

technique described in this thesis work and implemented in

the software is the singular value decomposition. This method

is able to detect the parameters that cause the failure of the

optimization code so that the user can exclude them from the

optimization giving the possibility to obtain better estimates. It

precisely creates a new vector of parameters. The choice of the

parameters to be optimized can either be made beforehand by

the developer, who is helped by the Cramer-Rao bounds, or be

leaved to the user, who can decide depending on the variance

of the parameters he can accept, as explained in the proper sec-

tion.

These techniques will be applied in chapter 4 in which the

attention is focused on the identification of the aerodynamic

properties of wind turbines and in particular on the choice of

suitable representations of the aerodynamic curves which give

the possibility to obtain better estimates for the curves them-

selves. Since, as pointed out, the problem of system identifica-

tion applied to a wind turbine is very difficult to solve, differ-

ent representations are proposed. The cause of this difficulty,

as described in chapter 4, is due to the low level of identifia-

bility that unavoidably occurs when the number of parameters

is increased. On the other hand a great number of parameters

is needed to model in a suitable way the aerodynamic proper-

ties of the given wind turbine, represented by the aerodynamic

curves (the lift and the drag coefficients) at the several stations.

Therefore a balance between the degrees of approximation of

the aerodynamic curves and the need of reducing the correla-
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tions among parameters has to be found by choosing the proper

number of parameters which in turn depends on the availabil-

ity of experimental measurements and on the quality of them.

Tests conducted in chapter 4 confirm that if the number of iden-

tified curves increases, the quality of the resulting estimates is

reduced.





2
A E R O D Y N A M I C M O D E L S O F W I N D T U R B I N E S

In this chapter the basic aerodynamic theory is presented in

order to analyse the behaviour of a wind turbine, which is a

device exploited to convert the kinetic energy present in the

atmosphere into mechanical energy and, in our particular case,

into electrical energy.

The creation of a comprehensive model for a wind turbine is

a very difficult task. In fact a viscous, unsteady and compress-

ible flow field needs to be considered as well as a statistical

study to account for the randomness of wind.

For a complete discussion on how a wind turbine works, sev-

eral excellent books (for example [3, 19]) can be found in the

literature. From these books a better knowledge on wind tur-

bines can be acquired since some details, not strictly necessary

in this treatise, are neglected.

The models that will be presented in this chapter have been

implemented in some prediction codes which allow to obtain

the performance of a given wind turbine. The prediction codes

used in this thesis work are elica, developed in Fortran lan-

guage on the basis of the Proppc code [16] at the Adag group of

Dias of the University of Naples Federico II, and the faster

wtperf, developed by the National Renewable Energy Lab-

oratory (NREL) [15].

More comprehensive models could be considered in order

to improve the identification of the aerodynamic characteristics.

For example, models taking into account the flexibility of the
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8 aerodynamic models of wind turbines

blades and that can see the variation of the blade elements an-

gles of attack and therefore can better calculate the performance

of the given wind turbine. However these codes require the

knowledge of the structural characteristics of the blades that

could be obtained through another identification process [4].

Therefore, the purpose of this chapter is to provide, therefore,

the theoretical basis for such simulation codes.

2.1 actuator disc model

The behaviour of a wind turbine, at the beginning, can be sim-

plified by taking into account only a steady and incompressible

flow field and by disregarding the flow near the rotor disc. Ba-

sically this led to neglect the flow field near the rotor, which

means to consider sudden variations of the fluid dynamic quan-

tities in proximity of the disc itself. This physical situation can

be modelled assuming a wind turbine as a discontinuous sur-

face for the flow field.

When the airflow crosses the rotor disc, the wind turbine sub-

tracts a part of its kinetic energy, so the wind slows down. Only

the mass of air that passes through the rotor disc is involved,

remaining separate from the air which passes outside the disc.

The affected air mass is contained within a boundary sur-

face which extends from upstream to downstream forming a

long stream tube of circular cross sections. The stream tube, by

definition, is a surface whose particles of air move remaining

confined into it. The flow of the airmass through the stream

tube is null, since the particles of air cannot cross it.

Therefore, the mass flow rate of the air does not change in

the boundary surface along the stream-wise direction and so
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[ November 29, 2014 at 11:52 – classicthesis version 1.2 ]

Figure 1: Wind turbine stream tube

the cross-sectional area of the stream tube must expand since

the airflow slows down and does not become compressed as

supposed. The enlargement of the stream tube when the airflow

crosses the rotor disc during the operating conditions of a wind

turbine is depicted in figure 1.

Before approaching the disc, the mass of air slows down

and when it reaches the rotor disc has already a lower speed

compared with the free stream wind speed. As a consequence,

when the kinetic energy decreases, the static pressure increases,

because no work is done on, or by, the mass of air.

When the air crosses the rotor disc and proceeds downstream,

its static pressure decreases under the atmospheric pressure.

Since the energy contained in the stream tube is different from

the one that is contained outside, it is possible that a discon-

tinuity contact develops downstream. This region is called the

wake. At infinity downstream the environmental static pressure

is restored at the expense of kinetic energy, thus the airflow

slows down while the cross-sectional area of the stream tube

continues to increase. The difference between the kinetic en-

ergy upstream and downstream corresponds to a power spent
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by the airflow. For the principle of the conservation of energy

this power cannot disappear but it is exactly the power cap-

tured by the wind turbine, up to losses due to other effects

which are described in details below.

The first model, presented in the next section and based on

the disc actuator theory, was developed by W.J.R. Rankine in

the second half of nineteenth century.

2.2 momentum theory

The momentum theory represents a basic model which attempts

to explain, in a simple way, the extraction of kinetic energy from

the wind. This theory is very simple, but has some limitations

because it does not describe exactly the behaviour of a wind

turbine. Some of these neglected effects are considered in the

models presented below. However, despite its simplicity, this

model is always presented in the literature because it allows to

obtain some useful information about a wind turbine.

It is important, firstly, to emphasize that this model solely

takes into account only the process of extraction of energy. In

fact in this section there is no connection with the geometry of

the wind turbine, which, in this model, is simply replaced by a

disc, called actuator disc.

This model assumes that the physical quantities within the

stream tube are the same in every disc normal to the wind tur-

bine axis. Basically this corresponds to consider average quan-

tities inside every cross-section of the stream tube as it can be

seen in figure 2, even though, actually, these quantities vary

within the sections, for example when the corrections due to

the finite number of blades are considered as explained below.
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Figure 2: Actuator disc model

It is also assumed that the airflow velocity has only an axial,

one-dimensional, component. As a result, this model neglects

the rotational effects as well as the radial variation of velocity

that causes the enlargement of the stream tube. Actually, these

effects, always occur, but the momentum theory simply consid-

ers that these effects have a weak influence on the behaviour of

a wind turbine.

The mass of air that passes through a cross section of the

stream tube per unit time is ρAV , where ρ is the air density,

V is the wind speed and A is the cross-sectional area of the

stream tube. Since the mass flow rate must be the same along

the stream tube direction, from continuity equation it results

ṁ = ρA∞V∞ = ρADVD = ρA−∞V−∞, (2.1)

where ∞, D,−∞ respectively refer to infinity upstream, on the

disc and infinity downstream quantities.

The air which passes through the actuator disc, experiences

a change in velocity, and also a rate of change of momentum

equal to (V∞−V−∞)ρADVD. This rate of change of momentum
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can be induced only by the pressure drop p+D − p−D through the

actuator disc surface, as depicted in figure 2. Hence

(p+D − p−D)AD = (V∞ − V−∞)ρADVD. (2.2)

The first member of equation 2.2 can be valued applying

Bernoulli’s equation. As a consequence of the principle of con-

servation of energy, Bernoulli’s equation states that the total

energy, given by the contributions of kinetic, potential and the

static pressure energy, remains constant, under steady condi-

tions, if no work is done by, or on the air.

Since the energy is not conserved on the disc, Bernoulli’s

equation must be applied separately to the upstream and down-

stream sections of the stream tube. It follows

p∞ +
1

2
ρV2∞ = p+D +

1

2
ρV2D,

p−∞ +
1

2
ρV2−∞ = p−D +

1

2
ρV2D,

(2.3)

from which it results

p+D − p−D =
1

2
ρ(V2∞ − V2−∞), (2.4)

and finally, by equation 2.2,

1

2
ρAD(V

2
∞ − V2−∞) = (V∞ − V−∞)ρADVD. (2.5)

Introducing the so-called axial interference factor a, which rep-

resents the ratio of V∞ − VD to V∞, and is defined such that

VD = V∞(1− a), (2.6)

we obtain, from the equation 2.5,

V−∞ = V∞(1− 2a). (2.7)

Thus the axial interference factor a far downstream is twice as

the induction factor on the disc. Therefore the equation above
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states that, to avoid the flow recirculation in the wake, the ax-

ial interference factor a cannot exceeds 0.5 because when this

happens the velocity of the wind becomes negative and breaks

the assumption of the actuator disc model which supposes only

one dimensional flow velocity.

Anyway, flow recirculation does not actually occur because

the wake becomes turbulent and a part of the air enters from

outside the wake.

The equation 2.2, using the axial interference factor, becomes

F = 2ρADV
2
∞a(1− a), (2.8)

while the power extracted by the actuator disc is

P = FVD = 2ρADV
3
∞a(1− a)

2. (2.9)

The power available in the wind, at given velocity, in absence

of the wind turbine, is related to the kinetic energy of the parti-

cles and it is given by

Pref =
1

2
ṁV2∞ =

1

2
ρADV

3
∞. (2.10)

A useful dimensionless quantity, defined as the ratio of the

net extracted power by the wind turbine to the total energy, Pref,

available in the air is the power coefficient,

CP =
2ρADV

3
∞a(1− a)

2

1
2ρADV

3∞
= 4a(1− a)2. (2.11)

Similarly it is possible to introduce the thrust coefficient as

CT =
T

1
2ρADV

2∞
= 4a(1− a). (2.12)

Finally a torque coefficient related to the torque that the air exerts

on a wind turbine can be defined by

CQ =
Q

1
2ρADV

2∞R
. (2.13)
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The thrust and the power coefficients are considered the funda-

mental operating characteristics for a wind turbine.

Being the power coefficient a function of the axial interfer-

ence factor, it is possible to solve equation 2.11 in order to ob-

tain the maximum of the power coefficient setting d
daCp = 0. It

can easily be seen that the maximum is achieved for a = 1/3

which gives

Cpmax =
16

27
≈ 0.593. (2.14)

This is the maximum value of the power coefficient achievable

within the momentum theory. It is called the Betz limit and it

is a fundamental result of momentum equation. Up to now, no

wind turbine has exceeded this limit, without introducing some

variations in the structure of the turbine. The Betz limit can only

be overcome by a shrouded wind turbine for which, of course,

momentum theory cannot apply.

It is important to underline that the Betz limit does not de-

pend on the ability of designing a wind turbine, but it de-

pends on the model itself because the cross sectional area of

the stream tube infinity upstream is smaller than the area of

the actuator disc, as it can be seen in figure 1. Practically it is

like the net area involved in the process is less than the area of

the rotor disc. The mere presence of the wind turbine implies

that only a part of all the energy available in the wind can be

converted into electrical energy.

2.3 general momentum theory

The theory developed until now supposes only axial variation

of the velocity. The real process of extraction of energy for a
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wind turbine is obtained through a number of blades which ro-

tate around an axis. The blades develop a pressure difference

across the rotor disc and produce the loss of momentum down-

stream. The air exerts a torque on the rotor disc which, by New-

ton’s third low, also exerts a torque on the air. Since this torque

necessarily involves a rotation of the airflow, a model that con-

siders this effects is needed.

The model that takes into account these rotational effects is

called general momentum theory. This theory supposes that the

physical quantities, for example the tangential velocities that

the airfoils sections see, vary in the radial direction. In order to

account for these variations the model divides the whole disc in

several annular regions. It is also assumed that these infinites-

imal rings operate without interacting with the other annuli.

Therefore the variation of momentum is considered separately

in each ring.

The torque of the annular region of radius r is equal to the

rate of change of angular momentum of the air

dQ = ωr2 dṁ = 4πr3ρVD(1− a)Ωa
′ dr. (2.15)

The symbol Ω represents the angular velocity of the wind tur-

bine whileω is the angular velocity acquired in the wake by the

air. Finally a ′, called tangential interference factor, is a quantity re-

lated to the rotational velocity of the particles. It is defined as

a ′ =
ω

2Ω
, (2.16)

and it causes a further loss of kinetic energy that could be ex-

tracted by the wind turbine.
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It is important to specify that upstream the air does not expe-

rience any rotational velocity. The rotational velocity 2Ωra ′ is

acquired completely along the thickness of the rotor disc.

An expression for the thrust can be similarly derived and it

is given by [11, 19]

dT = 4πρV2∞(1− a)ardr. (2.17)

2.4 blade element theory

Until now there is no reference to the blades in the process

of extraction of energy. But it is clear that the rate of change

of axial and angular momentum of air which passes through

the actuator disc is a consequence of the aerodynamic forces

that act along the blades. The theory which makes possible the

evaluation of the forces acting on the blades of a wind turbine

is the so called blade element theory.

This theory, like general momentum theory, assumes that the

blades can be divided into several elements that act indepen-

dently from each other. Furthermore blade element theory sup-

poses that the flow, interacting with the blade elements, has

only two-dimensional component.

Such a situation allows to consider two-dimensional aerody-

namic characteristics of the airfoils, namely lift and drag coeffi-

cients, using the angle of attack that results from the composi-

tion of axial and tangential velocities in the plane of the airfoils.

These 2D lift and drag coefficients can be obtained through

experimental measurements made in wind tunnels or through

simulation codes like XFOIL [5]
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Figure 3: Blade element operating condition

In this way it is very simple to calculate the forces that act on

the blades. However this theory continues to neglect the radial

flow and three-dimensional effects, for example stall delay.

One of the goals of this thesis work is actually the inclusion

of such effects by an adequate set of airfoils characteristics ta-

ble. To date,except for CFD that has its limitations and it is

computationally too much onerous to be considered, there are

no models that include such effects.

The velocity that an element of the blade sees, at a distance r

from the axis of the wind turbine, is the composition of the axial

velocity, given by V∞(1− a), due to the slowdown of the wind,

and tangential velocity which can be written as Ωr(1+a ′), due

to the rotational effects.

Therefore the total velocity that acts on the blade element at

distance r from the axis is given by

Veff =

√(
V∞(1− a)

)2
+
(
Ωr(1+ a ′)

)2. (2.18)

Figure 3 shows the composition of the velocities in the plane

of the airfoil and the forces acting on the latter.
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The angleϕ, called inflow angle, has great importance because

it allows to calculate the torque and the thrust on the blades

starting from the aerodynamic forces on the airfoils. The angle

ϕ is defined by (see figure 3)

tanϕ =
V∞(1− a)

Ωr(1+ a ′)
=
1

χ

1− a

(1+ a ′)
. (2.19)

The angle of attack α that the airfoil sees is given by ϕ − β

where β represents the pitch angle.

The quantity χ that appears in equation 2.19 is called local

speed ratio and it is defined as

χ =
Ωr

V∞
. (2.20)

The local speed ratio related to the radius of the wind turbine,

i.e. r = R, is a quantity of great importance. It is the ratio be-

tween the rotational velocity that the tip of the blade sees and

the velocity of the wind far upstream. It is called tip speed ratio

and it denoted by

λ =
ΩR

V∞
. (2.21)

The importance of the tip speed ratio is highlighted by the

fact that the fundamental characteristics curves, namely CP and

CQ, for a wind turbine are defined as a function of the tip speed

ratio itself. These curves, moreover, are not independent but are

related by CP = λCQ. So the knowledge of only one of these

quantities is fundamental because the other can be acquired

from the equation above.

The lift force that acts on the blade element is

dL =
1

2
ρV2effcCl dr, (2.22)

while the drag can be written as

dD =
1

2
ρV2effcCd dr. (2.23)
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If the dependence of Cl and Cd from α is known, together

with the interference factors, then it is possible to calculate the

forces acting on the element of the blade. Therefore, the total

forces that act on a blade are obtained integrating along the

blade span and the total force acting on the wind turbine can

be determined by multiplying the total force for the number of

the blades.

2.5 the blade element momentum theory

The blade element momentum theory represents one of the most

important models for performance prediction of wind turbines.

In fac,t it is widely used by industry for a preliminary analysis

of wind turbines design mainly for its simplicity, low computa-

tional efforts and finally for its good degree of reliability.

This theory, developed by Glauert and Betz, combines both

momentum theory and the blade element theory, on an annulus

of radius r. It allows calculating induced velocities and loads

on the elements of the blades and, consequently, to predict the

performance of the wind turbines.

The component of the aerodynamic force in the axial direc-

tion that acts on N blade elements is

dT = dL cosϕ+dD sinϕ =
1

2
ρV2effNc(Cl cosϕ+Cd sinϕ)dr.

(2.24)

Similarly, the overall torque that acts on N blade elements of

the wind turbine is given by

dQ = r sinϕdL− r cosϕdD =
1

2
ρV2effNc(Cl sinϕ−Cd cosϕ)r dr.

(2.25)
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Since the blade element momentum theory supposes that the

loss of momentum of the air is due to the aerodynamic forces,

i.e. lift and drag, that act on the blade elements, equating the

expressions in the equations 2.17 and 2.24 for the thrust, and in

the equations 2.15 and 2.25 for the torque, it results

a

1− a
=
(σR
8r

)(Cl cosϕ+Cd sinϕ
sin2ϕ

)
,

a ′

1+ a ′
=
(σR
8r

)(Cl sinϕ−Cd cosϕ
sinϕ cosϕ

)
,

(2.26)

where σ is called local blade solidity and it is related to the ratio

between the total chord length at a distance r from the axis and

the length of the circumference of radius r, i.e.

σ =
Nc

2πr
. (2.27)

These equations can be iteratively solved to found the interfer-

ence factors and the aerodynamic forces that act on the blade

elements. Therefore, the overall performance of the given wind

turbine can be calculated.

2.6 limits of the blade element momentum

The blade element momentum theory, as pointed out above, is

often used to predict the behaviour of a wind turbine. How-

ever it continues to neglect some physical phenomena related

to the operating conditions of a wind turbine. This fact is due

mainly to the assumptions that simplify the model, which re-

sults from the need of reducing the computational efforts, in

order to follow the principle of parsimony. But the fundamental

reason is due to the impossibility of accurately describing the

real behaviour of a wind turbine through the actual theoretical

knowledge of the aerodynamic laws. For this reason the model
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does not consider how the process really develops, but it only

provides an approximation of the real behaviour of the wind

turbine. The major limitations of the blade element momentum

theory are listed below:

• the evaluation of the performance is possible only during

steady wind conditions;

• the effects of the radial flow, namely three-dimensional

effects, are neglected because the model assumes that the

blade elements act independently from each other;

• the effects of the deflections of the blades, namely aeroe-

lastic effects, that always occur due to the aerodynamic

forces, are not taken into account by the model.

On the other hand it is possible to include some corrections re-

lated to other limitations that have not been described in the

theory, to increase the fidelity of the model with the real pro-

cess. For example it is possible to take into account for the dis-

crete number of blades, as exhibited in the next section.

2.7 tip and root losses

The blade element momentum theory supposes that the wind

turbine has a great number of blades such that every particle in

the air interacts with someone of them. A wind turbine has gen-

erally three blades because this configuration guarantees the

best compromise in order to obtain the maximum amount of

energy from the wind. There also exist wind turbines with dif-

ferent number of blades. Due to the finite number of blades a

great number of particles passes through the disc rotor inter-

acting with any blade. Consequently the wind turbine experi-
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ences a reduction in torque, and in power as well. In particular

the axial interference factor vary within every annular. In fact it

is greater when it is near the blade element, while it decreases

otherwise. The overall loss of momentum in the blade element

momentum theory is established by the average value of the

interference factor. But when the interference factor a is greater,

namely near the blade elements, the inflow angle ϕ is smaller.

So the contribution of the lift force on the rotor plane is reduced

and it determines a smaller amount of torque. Since this phe-

nomenon is evident especially near the tip, it is called tip-losses.

The general problem, that takes into account this losses, was

solved by Goldstein, but it is difficult to deal with. For this rea-

son a simplified model, proposed by Prandtl, and adopted by

the simulation codes used in this work, is generally preferred.

The result of this model, which is used by many simulation

codes, allows to define a corrective function for the axial inter-

ference factor, whose analytic form is given below

Ftip =
2

π
arccos(exp(−ftip)), (2.28)

where ftip is given by

ftip(r) =
N

2

(1− r/R)

(r/R) sinϕ
. (2.29)

Similarly, Prandtl introduced a model that takes into account

the so-called root-losses. The corrective function related to this

losses is defined by

Fhub =
2

π
arccos(exp(−fhub)), (2.30)

where fhub is given by

fhub(r) =
N

2

(r/R− rhub/R)

(rhub/R) sinϕ
. (2.31)
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Figure 4: Prandtl tip-root losses factor

The analytic expression of the overall corrective factor is given

by FPrandtl = Ftip · Fhub while a graphical representation of this

function can be seen in figure 4.

Finally, the corrective function FPrandtl of Prandtl enters in the

equations 2.26 in the following manner

a

1− a
=
( σR

8rFPrandtl

)(Cl cosϕ+Cd sinϕ
sin2ϕ

)
,

a ′

1+ a ′
=
( σR

8rFPrandtl

)(Cl sinϕ−Cd cosϕ
sinϕ cosϕ

)
.

(2.32)

2.8 viterna corrigan model

Under operating conditions of a wind turbine, the airfoils sec-

tions, placed along the blades, work at wide ranges of angles of

attack. Since experimental measurements or simulation codes

can provide in a reliable way the characteristics of airfoils only

for lower angles of attack, the properties at high angles of attack

are generally unavailable. Therefore a method that allows to ob-

tain the aerodynamic characteristics related to higher angles of

attack is needed.

A semi-empirical model that attempts to describe the post-

stall region was proposed by Viterna and Corrigan [20, 21]. It
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will be used during the identification of the aerodynamic prop-

erties in order to obtain the aerodynamic characteristics related

to high angles of attach that are very difficult to identify in a

direct way.

This model was validated by several experimental results [12–

14] performed on some wind turbines. It supposes that the air-

foil at high angles of attack has characteristics that are similar

to those of flat plate. Hence, the properties of the airfoils at high

angles of attack are described by the following relations

Cl(α) = A1 sin(2α) +A2
cos2(α)
sin(α)

, (2.33)

Cd(α) = B1 sin2(α) +B2 cos(α), (2.34)

where the constant values A1 and B1 can be calculated as follow

B1 = Cdmax, (2.35)

A1 =
Cdmax
2

. (2.36)

The maximum drag coefficient can be calculated through the ex-

pression given below, based on experimental measurement [6]

for AR 6 50

Cdmax = 1.11+ 0.018AR. (2.37)

Solving the equations 2.33 and 2.34 with respect to A2 and B2

using 2.35 and 2.36 it results

A2 =
(
Cl −Cdmax sin(α) cos(α)

) sin(α)
cos2(α)

, (2.38)

B2 =
Cd −Cdmax sin2(α)

cos(α)
, (2.39)

so, given the continuity of the properties of airfoils at αs, that

is the stall angle, it results

A2 =
(
Cls −Cdmax sin(αs) cos(αs)

) sin(αs)
cos2(αs)

, (2.40)

B2 =
Cds −Cdmax sin2(αs)

cos(αs)
, (2.41)



2.8 viterna corrigan model 25

where Cls and Cds are related to the lift and drag properties of

the airfoils at stall angle of attack. The angle αs used in these

equations can differ from the real stall angle and in general it

is the higher angle at which the aerodynamic properties are

available.





3
S Y S T E M I D E N T I F I C AT I O N T H E O RY

3.1 introduction

In this chapter the required theory about system identification

is presented [8–10] for the development of the thesis work, to-

gether with some methods for practical applications. This the-

ory will be applied to wind turbines in chapter 4, which re-

gards the identification of the aerodynamic characteristics of

wind turbines. These methods could also be used for the iden-

tification of the structural properties of wind turbines as it has

been done in [4].

The theory of system identification is concerned with the de-

termination of an adequate mathematical model for a physical

system given the input and the output measurement and the

behaviour of the physical system itself.

A definition of system identification, proposed by Zadeh [22],

is reported below.

System identification is the determination, on the basis of obser-

vation of input and output, of a system within a specified class of

systems to which the system under test is equivalent.

The definition given above means that several mathematical

models of a dynamical system can exist. The choice among all

these models must be made following the principle of parsimony.

These principles states that, among all the different models, the

simplest one must be chosen. This model must however be able

27
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to describe the phenomenon with the required degree of ap-

proximation. The most comprehensive models are not always

the best models because they very often require great compu-

tational efforts and, because generally, the greater number of

parameters they have the more it can sometime lead to conver-

gence troubles, as experience has shown and as it can be seen

with an example in chapter 4 during the identification of wind

turbines.

Another characteristic of system identification is that it is

based on experimental data, which are always affected by noise.

For this reason a statistical approach, as detailed below, must

be considered in order to account for these errors.

Finally a method must be introduced in order to establish the

equivalence between a model within the class of all models and

the real physical dynamic system considered. Since this equiv-

alence can be described for simplicity by a scalar function that

correlates the output of the real system to those produced by

the mathematical model, the problem of system identification

can be reduced to an optimization problem.

3.2 mathematical modeling

The first fundamental step that must be considered in address-

ing the problem of system identification is the formulation of

an adequate model that represents the physical system. There

exist two different ways to create a mathematical model for a

physical process.

The behavioural models are used when it is impossible to de-

rive a theoretical model for the physical system in an adequate

way or when, even if it is possible, it requires huge compu-
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tational efforts and therefore, it cannot be used in reasonable

times. These models are called black-box because they are solely

based on input and output data reproducing the system re-

sponse without any knowledge of the behaviour of the process.

Therefore, the parameters of such these models have no physi-

cal meaning.

The other way used to obtain a model for a dynamic system

is represented by phenomenological models. These representations

are obtained through a rigorous theoretical formulation of the

physical process. The behaviour of the system and the relations

between input and output quantities are derived considering

the physic underlying the process and its related laws. In this

case the parameters have almost always a physical interpreta-

tion and it is possible to limit such parameters within certain

ranges in the optimization problem.

The mathematical formulation of the model for a wind tur-

bine is derived in chapter 2. It uses precisely such a description

because it derives the behaviour of wind turbines using aero-

dynamic laws.

3.3 parameter estimation

The goal of system identification theory is the determination

of a model, within a wide class of models, that better repre-

sents the physical system being investigated. Usually the mod-

els used to represent the physical system have the same math-

ematical structure since they are generally derived from the

same formulation. This means that all the models, belonging to

the same class, have the same mathematical form and they dif-

fer only for the values assumed by the parameters of the model
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structure. Furthermore since the equivalence between the phys-

ical system and the mathematical models can be established by

the value of a function, called cost function, the problem of pa-

rameter estimation can be reduced to an optimization problem.

The set of models can be written as

M = {M(θ)|θ ∈ DM}, (3.42)

where θ ∈ Rn is the column vector of parameters.

Let y = h(θ) ∈ Rm be the m-dimensional column vector of

model output.

A model is called linear if the model output y = h(θ) is a

linear function of the parameters. If the model output is not a

linear function of the parameters the model is called nonlinear.

Now let ZN = {z1, . . . , zN} be the set of N experimental m-

dimensional measurements, i.e. zi ∈ Rm. The relation between

y and z is given by

z = y+ ν, (3.43)

where ν is the measurement error.

Under these assumptions the optimization problem can be

solved by finding the vector of parameters θ that minimizes the

scalar cost function

J = J(ZN, y, θ). (3.44)

The cost function depends obviously on the parameters, but

it also depends on the choice of the model structure for the

physical system too. Finally, the cost function depends on the

experimental measurements obtained.

Since the optimization problem is generally performed once

the model structure and the experimental measurements are
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established, the cost function can be assumed to depend only

on the vector of the parameters θ. Therefore

J = J(θ). (3.45)

Usually the cost function is defined through the differences

between the experimental measurement z and the output y of

the assumed model since the identified model is the model ca-

pable of reproducing the responses of the physical system as

better as possible. Various forms for the cost function are pre-

sented in the next sections. They depend on the chosen model

for the uncertainties in the parameters and measurements.

3.3.1 Estimator for the Least-Squares model

The estimator for the least squares model is the simplest estima-

tor model and it requires no uncertainty model for the vector

of parameters θ and the measurement noise ν = z − h(θ). It

is obtained, as highlighted earlier, observing that the best esti-

mate for θ is the estimate that minimizes the difference between

the experimental measurements and the output of the assumed

model. In particular the least squares model minimizes the fol-

lowing weighted sum

J(θ) =
1

2
νTR−1ν, (3.46)

with R−1 a positive definite matrix used to weight the sev-

eral output data in order to give different importance to the

different output measurements.
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Therefore the ordinary least squares estimator is obtained if R

is chosen as the identity matrix. The relative cost function is

J(θ) =
1

2
νTν.

Considering that there can also be several experimental mea-

surements, namely N, the cost functions in the two cases be-

come

J(θ) =
1

2

N∑

i=1

νTi R
−1νi, (3.47)

J(θ) =
1

2

N∑

i=1

νTi νi. (3.48)

3.3.2 Estimator for the Fisher model

The estimator for the Fisher model is based on the Fisher esti-

mation theory. In order to identify the unknown parameters it

uses the likelihood function

L(ZN, θ) = P(ZN|θ), (3.49)

where P(ZN|θ) is the conditional probability of the measure-

ments ZN, given the vector of parameters θ. The maximum like-

lihood estimator is the most common estimator for the Fisher

model. It maximizes the conditional probability L(ZN, θ), i.e. it

finds the vector of parameters θ in correspondence of which

the experimental measurements have the maximum probabil-



3.3 parameter estimation 33

ity to be realized. The likelihood function could be also written,

applying the properties of conditional probability, as

L(ZN, θ) = L(z1, . . . , zN, θ)

= L(zN|ZN−1, θ)L(ZN−1, θ)

...

=

N∏

i=1

L(zi|Zi−1, θ).

(3.50)

If the measurements zi are independent from each other and

the measurement noise νi is normally distributed with zero

mean, it follows

L(zi|Zi−1, θ) = L(zi)

=
(
(2π)m|R|

)−1/2 exp
[
−
1

2
νTi R

−1νi

]
,

(3.51)

where R is the measurement error covariance matrix. Assum-

ing that the measurement noises are independent from each

other, it results

E(νiν
T
j ) = R · δij. (3.52)

The likelihood function can be finally written as

L(ZN, θ) =

N∏

i=1

(
(2π)m|R|

)−1/2 exp
[
−
1

2
νTi R

−1νi

]
. (3.53)

The maximization of the likelihood function in equation 3.53

can be equivalently solved by minimizing the negative loga-

rithm of the likelihood function itself in order to simplify the

optimization problem since the probability density in equation

3.53 contains an exponential function. This method is possible

because the logarithm is a monotonic function and it trans-

forms an extreme point into an extreme point.
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The cost function J to be minimized is therefore

J = − ln L(ZN, θ)

=
1

2

N∑

i=1

νTi R
−1νi +

N

2
ln |R|+

Nm

2
ln(2π).

(3.54)

Once the experimental measurements and the number of out-

put are known, the last term is constant and, since it does not

enter in the optimization process, the cost function J can be

finally written as

J =
1

2

N∑

i=1

νTi R
−1νi +

N

2
ln |R|. (3.55)

If R is a constant matrix, neglecting the last constant term in

equation 3.55, the function J becomes

J =
1

2

N∑

i=1

νTi R
−1νi,

that is exactly the cost function of the least squares model.

3.3.3 Estimator for the Bayesian model

The estimator for the Bayesian model uses the Bayesian estima-

tion theory. It requires that the probability density of the pa-

rameters and the measurement noise are known a priori. These

informations allow, by the Bayes’s rule, to obtain the a posteri-

ori probability for the parameters. This model is scarcely used

due to the difficulties connected with the strong assumption

on the a priori probability of the parameters, nevertheless the

results of this model are reported for completeness.

An estimator for the Bayesian model could be the one that

maximizes this conditional probability that, by the Bayes’s rule,

assumes the following form

P(θ|z) =
P(z|θ)P(θ)

P(z)
. (3.56)
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If θ is supposed to be N(θp, Σ) and ν ∈ N(0, R), then

P(θ) =
(
(2π)m|Σ|

)−1/2 exp
[
−
1

2
(θ− θp)

TΣ−1(θ− θp)

]
, (3.57)

while the conditional probability P(z|θ) can be written as

P(z|θ) =
(
(2π)N|R|

)−1/2 exp
[
−
1

2
νTR−1ν

]
. (3.58)

Substituting these expressions in equation 3.56 it follows

P(θ|z) =

(
(2π)N+m|R||Σ|

) 1
2 exp

[
−

(
νTR−1ν+(θ−θp)

TΣ−1(θ−θp)
)

2

]
P(z)

.

Using the negative logarithm, as it has been done for the

Fisher model, and observing that the probability P(z) has no

effects on the optimization process, since it does not depend on

θ, the cost function J can be finally written as

J =
1

2

(
νTR−1ν+ (θ− θp)

TΣ−1(θ− θp)
)
. (3.59)

3.4 cost function optimization algorithm

In this section some methods, which can be used for the min-

imization of the cost function of the maximum likelihood esti-

mator [8, 9], will be presented.

3.4.1 Relaxation strategy

The optimization of the cost function, that is recalled below

J(θ) =
1

2

N∑

i=1

νTi R
−1νi +

N

2
ln |R|,

can be realized using the so-called relaxation strategy. Since both

R and θ are unknown, the basic idea of this method is that the
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optimization problem can be simplified if the unknowns are

identified alternately, keeping fixed the other. Therefore, this

technique divides the optimization problem into two steps.

In the first step the cost function is minimized with respect

to R. Differentiating with respect to the matrix R and setting

the resulting equation to zero, an estimation for the covariance

matrix is obtained as follow (see [8, 9])

R =
1

N

N∑

i=1

νTi νi. (3.60)

In the second step, given this expression for the covariance

matrix R, the cost function can be solved with respect to the vec-

tor of parameters, keeping the matrix R fixed. The cost function

assumes now the following form

J(θ) =
1

2

N∑

i=1

νTi R
−1νi, (3.61)

and it can be optimized to obtain a vector of parameters θ.

With this updated vector of parameters, a new covariance ma-

trix can be calculated and another optimization problem can be

performed to obtain an improved vector of parameters. There-

fore these two steps are repeated until the criteria for the con-

vergence of the parameters are satisfied.

A mathematical proof for this relaxation strategy does not ex-

ist. Anyway this method is widely used in practice and several

tests have also provided results with good degree of reliability.

3.4.2 Gauss-Newton method

This section is concerned with the optimization of the func-

tion in equation 3.61. The approach presented below for the
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optimization process is based on the Newton-Raphson method. It

starts with the necessary condition for extreme points, that is

∂J(θ)

∂θ
= 0. (3.62)

The first order Taylor series expansion of the gradient func-

tion can be written as

∂J

∂θ
(θ0 +∆θ) ≈

∂J

∂θ
(θ0) +

∂2J

∂θ2

∣∣∣∣
θ=θ0

∆θ, (3.63)

where ∆θ represents the vector of change of the parameter,

∂J/∂θ the gradient of the cost function, and ∂2J/∂θ2 the Hessian

matrix, i.e. the second order gradient matrix.

Using the necessary condition, the expression in equation

3.63 can be matched to zero and it can be solved in order to

find the parameter change ∆θ. It results

∆θ = −

(
∂2J

∂θ2

∣∣∣∣
θ=θ0

)−1
∂J

∂θ
(θ0). (3.64)

Calculating the gradient function it follows

∂J

∂θ
= −

N∑

i=1

[
∂yi
∂θ

]T
R−1(zi − yi), (3.65)

while the calculation of the Hessian matrix leads to

∂2J

∂θ2
=

N∑

i=1

[
∂yi
∂θ

]T
R−1

∂yi
∂θ

+

N∑

i=1

[
∂2yi
∂θ2

]T
R−1(zi − yi). (3.66)

The second term on the right-side of this last equation is very

hard to calculate, due to the presence of the second gradient

of the response, which requires a lot of computational efforts.

However this term contains the factor (zi − yi) that should go

to zero when the process is going to converge. In assumption of
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zero mean for the measurement noise, the contribution of the

last term in equation 3.66 should disappear. This consideration

can be exploited neglecting the term in question to simplify

the calculation of the Hessian matrix. Therefore the following

approximation for the Hessian matrix can be used

∂2J

∂θ2
≈

N∑

i=1

[
∂yi
∂θ

]T
R−1

∂yi
∂θ

. (3.67)

This simplified algorithm is called modified Newton-Raphson or

Gauss-Newton method.

3.4.3 Method of quasi-linearization

In this section another method will be presented in order to

find the vector of parameter change ∆θ. This method, called

quasi-linearization, is still based on the necessary condition, but

it works on the expression y of the output model. Calculating

the gradient of the cost function it results

∂J

∂θ
= −

N∑

i=1

[
∂yi
∂θ

]T
R−1

(
zi − yi

)
= 0. (3.68)

Now, applying the first order expansion, this time to the out-

put yi instead of the gradient function, it results

y(θ) = y(θ0 +∆θ) ≈ y(θ0) +
∂y

∂θ
∆θ. (3.69)

If the linearized expression of the model output y is substituted

in equation 3.68 as follows

∂J

∂θ
= −

N∑

i=1

[
∂yi
∂θ

]T
R−1

(
zi − yi −

∂yi
∂θ
∆θ

)
= 0. (3.70)



3.5 properties of the estimates 39

Rearranging this equation in a more useful way leads to

N∑

i=1

[
∂yi
∂θ

]T
R−1

∂yi
∂θ
∆θ =

N∑

i=1

[
∂yi
∂θ

]T
R−1(zi − yi), (3.71)

and the parameter change can be finally written as

∆θ = −F−1G, (3.72)

where

F =

N∑

i=1

[
∂yi
∂θ

]T
R−1

∂yi
∂θ
, (3.73)

G = −

N∑

i=1

[
∂yi
∂θ

]T
R−1(zi − yi). (3.74)

The matrix F is also called Fisher information matrix while the

elements of the matrix Gi = ∂yi/∂θ that appear in these equa-

tion are called output sensitivities.

Note that the parameter change in equation 3.72 is exactly

the same obtained with the Gauss-Newton method in equation

3.64, once the Hessian matrix and the gradient of the cost func-

tion are explicitly calculated.

3.5 properties of the estimates

In this section, the main properties of the parameters estimates

obtained through the use of the maximum likelihood principle

[8, 9] will be shown.

• The maximum likelihood estimates θ̂ML are asymptoti-

cally unbiased, i.e.

lim
N→∞

E(θ̂ML) = θ, (3.75)

where θ is the true, but unknown vector of parameters.
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• The maximum likelihood estimates θ̂ML are asymptoti-

cally consistent, i.e.

θ̂ML
N→∞−−−−→ θ. (3.76)

• The maximum likelihood estimates θ̂ML are asymptoti-

cally normally distribuited, i.e.

θ̂ML → N(θ,F−1), (3.77)

where F is the Fisher information matrix already seen in

equation 3.73 and that is defined by

F := E

[(
∂ ln L

∂θ

)(
∂ ln L

∂θ

)T]
= −E

(
∂2 ln L

∂θ2

)
. (3.78)

The first equality is a definition, while the proof of the

second can be found in [9].

• The maximum likelihood estimates θ̂ML are asymptoti-

cally efficient, i.e.

Cov(θ̂ML) = E
[
(θ̂− θ)(θ̂− θ)T

] N→∞−−−−→ F−1. (3.79)

The matrix F−1 is known as the Cramér-Rao lower bound.

This name derives from the so called Cramér-Rao inequality that

holds for an unbiased estimator θ̂ and which is reported below

Cov(θ̂) > F−1. (3.80)

Since the maximum likelihood estimates are asymptotically

efficient, the main diagonal elements of the inverse of the Fisher

information matrix allow to provide the lower bounds on the

variance of the parameters, called Cramér-Rao bounds.

Therefore the accuracy for the estimated parameters can be

evaluated by the diagonal elements of F−1. If the number of

experimental measurements increases, the lower bounds can

better estimate the variance of the parameters.
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3.6 detection of data collinearity

A very important issue that must be considered in order to re-

solve the system identification problem, and in particular the

identification of the aerodynamic characteristics of wind tur-

bines, is data collinearity.

Data collinearity occurs when a parameter can be written as

a linear combination of another or more parameters. If this cir-

cumstance occurs, the estimation problem is ill conditioned. In

this case the system identification process may produce wrong

parameter estimates or may even fail since there are infinite

combinations of parameters that lead to the same variation in

the cost function. Troubles occur even if there is an almost lin-

early dependence among some parameters. In this case the dif-

ficulties increase when the dependence among the parameters

approach to linear dependence.

There are several methods capable of detecting data collinear-

ity [2, 9], but in this section only two of these will be presented.

3.6.1 Correlation matrix

The most simple method used to detect data collinearity re-

quires a survey on the correlation matrix. In order to obtain the

correlation matrix, the parameter error covariance matrix must

be calculated. A suitable approximation for calculating the co-

variance matrix can be obtained [8] through the inverse of the

Fisher information matrix, Cov(θ) ≈ F−1 (see also 3.79).
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Given an estimate of the covariance matrix, the element at

position (p, q) of the correlation matrix, namely ρpq, is defined

by

ρpq =
dpq√
dppdpq

, (3.81)

where dpq is the element at position (p, q) of the inverse of the

Fisher information matrix.

The correlation matrix is obviously symmetric. Moreover the

elements of the principal diagonal take the value 1, while the

other elements are between −1 and 1.

If a coefficient dpq is equal to +1 (or −1) then there is a perfect

positive (negative) correlation between the parameters p and q,

that means a perfect linear dependence and hence the presence

of data collinearity.

Issues also arise when the coefficient dpq approaches these

values. Generally two parameters can be considered correlated

when the absolute value of the coefficient dpq is greater then

0, 9 (sometime 0, 95). In this case data collinearity occurs and

the parameters p and q are considered not identifiable.

This method is very simple to use in order to detect collinear-

ity, however small values for coefficients dpq does not guarantee

the absence of correlations among parameters.

Furthermore this method is not able to recognize when there

is a correlation between more than two parameters. For this

reason another method in the next section will be presented.

3.6.2 Singular value decomposition

A method used to detect a near linear dependence between

more than two parameters uses the singular value decomposition



3.6 detection of data collinearity 43

technique. Using this method, the Fisher information matrix

can be decomposed as

F = VΣ2VT , (3.82)

where Σ2 is an n×n diagonal matrix whose elements σ2i are the

eigenvalues of the matrix F, while V is an n× n orthonormal

matrix whose columns are the eigenvectors of F.

A method [4] that allows to obtain the decomposition in 3.82

will be presented in this section. This method is used because

it is based on a stable numerical decomposition, and because it

allows to calculate the inverse of the Fisher information matrix

that is required if the methods analysed in the previous sections

(for example Gauss-Newton) are used.

Let H the matrix be defined as follows

H =



R−1/2G1

R−1/2G2

...

R−1/2GN


, (3.83)

where R is the measurement error covariance matrix and Gi =

∂yi/∂θ are the output sensitivities. The singular value decom-

position of the matrix H ∈ RmN,n leads to

H = USVT (3.84)

where the matrix U ∈ RmN,mN and V ∈ Rn,n are the left and

the right orthonormal unit matrices of the decomposition. The

matrix S ∈ RmN,n can be written as follows

S =

Σ
0

 , (3.85)
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where Σ is a diagonal matrix whose elements σi, called singu-

lar values of H, are non-negative and are sorted in descending

order, i.e. σ1 > · · · > σn > 0.

The Fisher information matrix can be written using the ma-

trix H as follows

F = HTH (3.86)

Using the singular value decomposition and some properties of

the matrix, the Fisher information matrix in equation 3.82 can

be rewritten as

F = VΣ2VT .

The inverse of the Fisher information can be calculated using

equation 3.82 in the following way

F−1 = VΣ−2VT . (3.87)

It can be seen that the Cramér-Rao inequality 3.80 can be rear-

ranged as

Cov(VTθ) > VTF−1V, (3.88)

that, with some calculations, leads to

Cov(Θ) > Σ−2, (3.89)

where Θ = VTθ is a new set of unknown parameters.

Equation 3.89 states that the diagonal elements of the matrix

Σ−2 represent the lower bound for the new vector of parameters

Θ. Therefore if an element of the matrix Σ−2 exceeds a certain

value then data collinearity occurs and the corresponding pa-

rameter of Θ can be considered not identifiable.

Once the parameters considered not identifiable have been

detected, they can be excluded from the optimization problem,
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which can be performed only with the vector Θid of the identi-

fiable parameters.

Finally the original vector of parameters θ can be calculated

as follow

θ = VΘ.





4
I D E N T I F I C AT I O N O F W I N D T U R B I N E S

In this chapter the methods used for identifying the aerody-

namic characteristics of wind turbines will be described to ob-

tain better estimates for such aerodynamic characteristics. As a

result, these identified characteristics lead to a better correspon-

dence between the experimental data and the data obtained

from the theoretical model used to predict the performance of

the wind turbines.

The identification of the aerodynamic characteristics of wind

turbines is an important subject of research. This topic has been

already discussed in the literature [1, 4] since the overall perfor-

mance of a wind turbine strongly depends on the aerodynamic

properties of the airfoils placed along the blades span and there-

fore it is fundamental to obtain reliable estimates for the aero-

dynamic characteristics.

Sometimes it happens that the real performance of the pro-

duced wind turbines do not correspond to the performance pre-

dicted by the used mathematical model during the design of

the wind turbines themselves. The reasons that produce these

discrepancies can be different and they are briefly reviewed be-

low.

A first reason for these discrepancies is the mathematical

model used to predict the performance of wind turbines. In-

deed a mathematical model capable of reproducing the exact

behaviour of a wind turbine does not exist and the theoretical

47
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models used nowadays actually provide only an approximation

on how the real wind turbines work.

The most common mathematical model used to predict the

performance of a wind turbine is the blade element momen-

tum (BEM) theory, described in details in chapter 2. It is based

on some assumptions used to simplify the formulation of the

mathematical model since it is very difficult to obtain a com-

prehensive model that is able to consider the totality of the phe-

nomena involved in the operation of wind turbines. Therefore

these assumptions that neglect some of the physics underlying

the phenomena, prevent to take into consideration the exact be-

haviour of a wind turbine even though some corrections were

provided to improve the fidelity of the model as it has been

already described in chapter 2.

Another discrepancy between the experimental and the sim-

ulated data depends on the turbulence of the wind that is actu-

ally not modelled in the BEM theory and that is very hard to

model in other simulation codes. Discrepancy between the ex-

perimental and the simulated data also depend on some aero-

dynamic phenomena that are not modelled by the BEM theory

for example aeroelastic phenomena, dynamic stall and so on.

Actually, there are some aerodynamic models that allow to con-

sider such effects. However in this thesis work, the attention is

focused mainly on the adjustment of the aerodynamic charac-

teristics, that are believed, as stated in [11, 17], the major source

of error in prediction of loads and performance.

Manufacturing errors can also lead to discrepancies in the

data, since the aerodynamic characteristics, and consequently

the loads and the overall performance too, are altered owing to

the modified geometry of the airfoils placed on the blades. A
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case in which manufacturing errors played an important role

for the discrepancies between predicted and experimental data

is described in details in section 4.4. In that section it is also

described how the results given in output by the identification

code are used to find the reasons that caused the discrepancies

between predicted and experimental data.

Finally, another major reason for the discrepancies between

experimental and predicted data is due to the fact that the

mathematical models, for example the BEM theory used to re-

produce the behaviour of the wind turbine in this thesis work,

use two-dimensional characteristics for the airfoils placed along

the blades span. These characteristics, that are true for two-

dimensional steady flow around the airfoils, can be unreliable

when rotating blades are considered. More the flow is far from

being two-dimensional, more the experimental measurements

differ from the predicted ones.

In fact some three-dimensional effects occur on the blades

span. These effects influence the aerodynamic characteristics of

the airfoils especially near the hub (that fortunately have less

influence on the performance of wind turbines). As a result

the two-dimensional aerodynamic characteristics, used to ob-

tain the loads on the blades and therefore the performance of

wind turbines, can be sometimes considered unreliable.

As pointed out in [1] several experiments have shown that

a radial flow exist on the blades at the bottom of separated

boundary layers. This phenomenon involves the alteration of

the aerodynamic characteristics, namely the lift and the drag

coefficients of the sections placed on the blades span. In partic-

ular it has been seen from experiments that the post stall lift

increases on the inboard part of the blades (until 30− 40%) in-
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cluding the the drag, while the lift in the tip region decreases.

This phenomenon is called centrifugal pumping.

Since the real aerodynamic characteristics experienced by the

airfoils placed on the blades, as highlighted above, may differ

from the supposed two-dimensional ones, a method that allows

to find the aerodynamic characteristics really experienced by

the wind turbine is needed.

In [1, 4] some methods are used to obtain reliable estimates

for the aerodynamic properties. In those works the main diffi-

culties related to the optimization process are also described. In

particular those related to the great number of parameters, that

is, however, required in order to guarantee a suitable variation

of the different aerodynamic characteristics along the blades,

and the difficulties due to the low level of identifiability of some

parameters. Another difficulty that impedes the calculation of

reliable estimates for the aerodynamic characteristics is repre-

sented by the so-called collinearity among parameters, which

is described in details in chapter 3.

It has to be noted that the lift coefficient usually has a greater

influence than the drag coefficient on the performance of wind

turbines. Therefore the drag coefficient has generally a low level

of identifiability and for this reason it is harder to identify. Tests

conducted in this thesis work, and reported in the sections be-

low, confirm the difficulty related to the identification of the

drag coefficients. In fact, sometimes the identified drag curves

don’t change at all or they change so much to be considered un-

reliable. Furthermore, the performance of wind turbines is less

influenced by the aerodynamic characteristics of the inboard

sections rather than by the characteristics related to the sections

placed on the tip of the blades.
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For this reason the lift coefficient and even more the drag

on the inboard sections have a low level of identifiability and

therefore is difficult to obtain reliable estimates for such curves.

It also has to be noted that the identification of the character-

istics related to the post stall angles of attack is usually hard

to face since these angles are used only for particular working

conditions and only for some sections. Indeed the post stall an-

gles of attack are usually seen in the inboard sections, which

have a low level of identifiability as already described above.

Furthermore these angles of attack usually work only with low

tip speed ratios, which means that these post stall angles can be

seen only with few experimental measurements. For this reason

reliable estimates for the aerodynamic characteristics related to

such angles are very difficult to obtain.

The presence of a great number of parameters also leads to an

unavoidable decrease of the possibilities to obtain reliable esti-

mates. Hence a compromise between the possibility to change

the aerodynamic characteristics and the need of reducing the

number of parameters in order to improve the reliability of the

obtained estimates has to be found.

In [4] the author tried to solve these problems using the sin-

gular value decomposition method that allows to obtain good

estimates excluding the parameters that do not contribute to

the identification of the aerodynamic characteristics through

the Cramer-Rao lower bounds, described in chapter 3. Basically,

if a lower bound exceeds a certain amount, then the related pa-

rameter is considered not identifiable and it is excluded from

the identification problem. Thanks to this method the number

of parameters is reduced and therefore the optimization prob-

lem is able to obtain more reliable estimates. This method also
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contribute to reducing the correlations among parameters as

described in chapter 3.

The purpose of this thesis work is to reduce the number of

parameters a priori, by choosing suitable parametrizations for

the aerodynamic characteristics that allows to avoid the growth

of parameters and therefore the exclusion of them during the

optimization problem.

The number of parameters to be identified is generally too

high, since a great amount of them are needed in order to

parametrize the different aerodynamic curves along the blades.

This fact makes really hard the identification of the aerody-

namic characteristics since it is usually accompanied by the

low level of identifiability and by the great level of correlation

among the parameters themselves. For this reason a reliable ge-

ometry parametrization is needed in order to reduce the num-

ber of parameters and to limit the correlation among parame-

ters and the low level of identifiability.

The input and the output quantities related to the estimation

problem will be briefly described hereinafter to improve the un-

derstanding of the parameters meaning and of the optimization

problem target. The performance of wind turbines can be sum-

marized using the fundamental characteristics curves CP, CQ

and CT, which are usually written as function of the tip speed

ratio λ. A typical example of such curves is depicted in figure

5. These curves can also be used as function of the speed of the

wind in order to identify the aerodynamic characteristics.

An example of identification of the aerodynamic character-

istics of a wind turbine, where the experimental measurement

provided is the power as function of the velocity of the wind, is

performed in section 4.4.
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Figure 5: Typical characteristic curves

Once a wind turbine has been designed, and hence, for ex-

ample, the radius and the distribution of twist and chord have

been established, the fundamental characteristics curves, ob-

tained for example by using the Bem theory, depends only on

the aerodynamic characteristics, i.e. the lift and the drag coeffi-

cients of the airfoils placed along the blades span.

It is believed [11, 17] that the main source of errors for a wind

turbine in the prediction of loads, and performance too, is due

to the wrong aerodynamic characteristics used for the airfoils

on the blades span.
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For this reason and since the two-dimensional aerodynamic

characteristics may not model, as highlighted before, in an ad-

equate way the real behaviour of the airfoils, the aim of the

application of the geometry parametrizations studied in this

thesis work and in particular in this chapter is to simplify the re-

search of reliable aerodynamic characteristics (Cl and Cd). This

adjustment allows to obtain numerical performance that better

correspond to the real performance by including for example

the three dimensional effects and all the physical phenomena

that are not described by the considered aerodynamic model.

The fidelity of the mathematical model, and in the particular

case of the BEM used in this thesis work, is therefore improved

since better aerodynamic characteristics for the airfoils of the

wind turbines can be considered.

A typical example of the lift and the drag coefficients curves

of an airfoil is depicted in figure 6.
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Figure 6: Typical aerodynamic curves

The adjustment of the aerodynamic characteristics of the wind

turbines is obtained through the methods of system identifica-

tion which tries to fit the performance predicted by the used

mathematical model with the real experimental performances,
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by maximizing the probability of the realization of the experi-

mental data as described in chapter 3.

The research of suitable aerodynamic characteristics is a very

difficult task. Experimental measurements have usually little

information content since only the power and sometimes the

thrust coefficients are available and generally for only a closed

range of angles of attack. The identification of the wind turbines

Bora and EOL-H-60 performed in this thesis work has used

only the experimental measurements related to the power.

For this reason the power and the thrust coefficients, that are,

in addition, obtained integrating the aerodynamic characteris-

tics as described in chapter 2, are very difficult to use in order

to obtain reliable estimates for the parameters related to the

identified aerodynamic characteristics.

The identification process can be numerically simplified tak-

ing also into account the loads on the blades span too, but prac-

tical applications of this method are very difficult to achieve

since they require considerable changes on the wind turbines

which must be provided with appropriate strain gauges which

in turn must be suitably calibrated to obtain reliable estimates.

It is obvious that as the number of measurement data in-

creases, the estimation of the parameters is improved, but in

this thesis work only the evaluation of the power coefficient

is considered because in most cases this coefficient is the only

data that can be easily obtained, since it does not require any

variation on the wind turbine. However in order to include also

the thrust coefficient in the identification code, only little mod-

ifications on the software are needed.

It has to be noted that in [4] experimental measurements

namely the power and the thrust coefficients are taken for dif-



56 identification of wind turbines

ferent pitch angles. This fact improve the identification of the

aerodynamic characteristics since a great informative content is

taken into account and a broader range of angles of attack for

the aerodynamic characteristics can be considered. It also has

to be noted that not always all these experimental data can be

provided since sometimes the geometry of some wind turbines

cannot be easily modified. This is the case of stall controlled

wind turbines where the pitch angle is fixed. The experimen-

tal measurements of the wind turbines studied in this thesis

work are obtained for one pitch angle, both for the Bora that

is a fixed pitch turbine and for the EOL-H-60 that is a variable

pitch wind turbine.

4.1 geometry parametrization

A suitable method that allows changing the shape of the aero-

dynamic curves is needed since it is difficult to adjust these

curves using its coordinates directly. Indeed the aerodynamic

curves are made by several points and a great amount of pa-

rameters is required in the optimization problem if the points

related to the aerodynamic curves are used as parameters with-

out specific techniques.

Unfortunately, the presence of a great number of parame-

ters usually lead to ill-conditioned problems in systems iden-

tification applications especially when the experimental mea-

surements have little informative content as in the case of the

wind turbines studied in this thesis work, where all the infor-

mation is summarized in one or two curves. In such a case the

methods of system identification can produce inaccurate aero-

dynamic characteristics, or may even fail. An example in which
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the identification code has deliberately produced inaccurate re-

sults is described in section 4.2.4.

For this reason a suitable parametrization method has to be

found in order to reduce the number of parameters of the op-

timization problem. In addition, this reduction of parameters

must not prevent to obtain a parametrization able to reproduce

different shapes for the aerodynamic curves, but at the same

time it should contribute to avoiding the production of strange

curves that have no physical meaning. Indeed it is very easy to

obtain identified aerodynamic curves with strong oscillations,

as it can be seen in the example declared above and described

in section 4.2.4, if the parametrization method used is chosen

without paying the right attention. This happens, as highlight

above, because the output quantities are obtained by integrat-

ing the aerodynamic characteristics of the airfoils. Basically an

oscillating curve has nearly the same output as a mean curve

without oscillations because the increased parts of the given

curve in a range compensates the reduced ones in its proximity

in the integration process. The possibility to obtain such oscilla-

tions must be absolutely avoided. In the end the choice of such

a parametrization must also try to reduce correlations among

parameters in order to obtain more reliable estimates, even if

these correlations can also be avoided through the use of the

singular value decomposition method.

4.1.1 Bezier Curves

The geometry parametrization methods used to describe the

shape of the different aerodynamic characteristics in this thesis
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work are obtained through the use of the Bezier Curves in some

different ways as described below.

In this thesis work the cubic, quadratic and the linear Bezier

curves, which are based on the Bernstein polynomial, are used.

They have respectively the following equations

B3(t) = P0(1− t)
3 + 3P1t(1− t)

2 + 3P2t
2(1− t) + P3t

3,

B2(t) = P0(1− t)
2 + 2P1t(1− t) + P2t

2,

B1(t) = P0(1− t) + P1t,

where t ∈ [0, 1]. The points Pi of the Bezier curves are called

control points. Some of the coordinates of these points will rep-

resent the parameters of the optimization problem. An example

of such these curves can be found in figure 7.

It has to be noted that the linear Bezier is nothing but a seg-

ment and its control points are the endpoints of the segment.

The main properties of the Bezier curves are presented below.

• The derivative at the control points P0 and Pend are respec-

tively proportional to P1 − P0 and Pend − Pend−1.

• The curve lies inside the convex hull of its control points,

as it can be seen in figure 8.

Different parametrization methods can be used to describe

the aerodynamic curves. In this thesis work three specific tech-

niques are used.

In the first method the aerodynamic curves are divided into

two or more pieces, each of which is described by a Bezier

curve. Basically this means to consider spline of Bezier curves.

The choice of the number of pieces and of the degree of the

Bezier curves is made by the user on the basis of experience
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Figure 7: Example of Bezier curves
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Figure 8: Convex hull of a Bezier curve

and after some attempts. A wrong choice can either bring to

oscillating shapes and therefore can lead to the problems de-

scribed hereinabove or give curves which are not able to repro-

duce in a suitable way the aerodynamic curves, for example

because a little number of Beziers and therefore of parameters
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is used. The choice depends firstly on the aerodynamic curve to

be parametrized (lift or drag curves) and then on the amount of

experimental data of the problem being considered. The choice

must be done trying to describe in the best possible way the

aerodynamic curves but, at the same time, avoiding consider-

ing an excessive number of parameters that will probably lead

to wrong or inaccurate estimates.

In the second method a spline of Bezier is added to the initial

numerical two-dimensional aerodynamic curves. A particular

case of this method can be obtained using spline of linear Bezier

and taking as parameters only the ordinates of their control

points. This is the simplest way to parametrize the aerodynamic

characteristics and it is also the parametrization method used

in [4] and in [1]. Even if this method is quite simple and reliable,

especially if linear Bezier are used, it is for example unable to

change in a suitable way the stall angle of the lift curve.

The adjustment of the stall angle of attack in a easier way

can be obtained by using the first method that, if suitably con-

figured, is able to change the stall angle of attack. However this

method allows to change the stall angle of attack only indirectly.

For this reason another parametrization method, that allows to

change in a direct way the stall angle of attack, is proposed.

It is obtained by using two quadratic Bezier. The last control

point of the first Bezier is chosen so that it has a horizontal

tangent. This point coincides with the first point of the second

Bezier, that has a horizontal tangent too. Since the direction of

the tangent at the last control point of the first Bezier is estab-

lished by the direction of the segment made by the last and the

second to last control points and the tangent at the first control

point of the second Bezier is established by the direction of the
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segment made by the first and the second control point, it is suf-

ficient that these three points have the same ordinate to obtain

the parametrization method required. The last control point of

the first Bezier, that is the first point of the second Bezier, is ex-

actly the stall angle of attack, and therefore its abscissa and its

ordinate can be directly modified in the optimization problem.

Finally, the last part of the aerodynamic characteristics, that

is the deep stall region and the most difficult part to identify

as well, is parametrised using the semi-empirical method pro-

posed by Viterna and Corrigan described in section 2.8. This

chapter is divided into three parts.

In the first part some virtual experiments will be performed

to verify the goodness of the identified characteristics produced

by the identification code. An example in which the optimiza-

tion problem returns wrong estimates is presented too.

In the second part some tests will be conducted in order to

identify the aerodynamic characteristics of a real wind turbine.

The wind turbine whose characteristic are identified in this part

is the 2, 5kW Bora designed by the the Adag group of Dias of

the University of Naples Federico II.

Finally in the third part the aerodynamic characteristics re-

lated to the wind turbine EOL-H-60 will be identified.

The following identification tests will be performed in the

next sections; the virtual one and the real ones.

At first only one lift curve, used on the entire the blade span

will be identified, assuming the drag coefficient equal to the

numerical two-dimensional one.

Then one lift and one drag curve, considering again the same

curve for all the blade span, will be identified.
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Finally an identification is performed by dividing the blade

into two sections for each of which the lift and the drag coeffi-

cients are identified.

4.2 virtual identification

In this section some virtual tests are carried out to verify the

goodness of the estimates provided by the software created dur-

ing the doctoral studies.

At first, the presence of only one airfoil is supposed. Actually

this assumption is unrealistic, since wind turbines are usually

designed with several airfoils along the blade span. Further-

more even if the same airfoil is used on the blade, different

aerodynamic characteristics should be used because the aero-

dynamic characteristics also depend on the Reynolds number,

which usually changes along the blade span. However this is

the simplest case and it is useful to start considering this config-

uration. It can be also used for example when the general case

does not provide reliable estimates or when a first estimate for

the aerodynamic characteristics is needed.

4.2.1 Identification of the lift coefficient

In this test the presence of only one airfoil is supposed, as

stated above. Furthermore the drag coefficient is assumed to

be known without errors. This means that the drag coefficient

will not be included in the identification problem. So the iden-

tification of the only lift coefficient has to be performed.

In order to obtain virtual experimental measurements, the nu-

merical aerodynamic characteristics, in this case the lift coeffi-
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cient, is altered and hence the performance of the wind turbine

with this new lift coefficient are used as the experimental mea-

surements. Then the identification problem is performed with

these (virtual) experimental data.

In the figures below, the numerical curves, those are the de-

sign curves, will be indicated by dotted lines. The experimen-

tal measurements, that are obviously available only for virtual

tests and whose knowledge is the target of the research of this

thesis work, will be indicated by dashed lines. Finally the identi-

fied values are indicated by solid lines. The initial value passed

to the identification code is represented by the numerical aero-

dynamic characteristics while the target of the identification

code is to provide as output the aerodynamic characteristics

used to obtain the virtual experimental performance.
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Figure 9: Identification of the lift coefficient of a wind turbine. Solid

lines: identified curves; dashed lines: virtual experimental

curves; dotted lines: initial curves.

In figure 9 the result of an identification problem can be

found. As it can be seen, the alteration of the aerodynamic char-

acteristics leads obviously to a variation of the performance of

the wind turbine. The numerical curve was given in input to
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Figure 10: particular of the identified lift curve

the software. This software, using the methods of the maximum

likelihood, tries to change the lift coefficient in order to obtain

a curve whose performance is closer to the virtual experimental

curve as output. The test has shown a good congruity between

the experimental performance and the identified performance.

In particular the code has been able to provide as output a lift

curve quite similar to the virtual experimental lift curve used to

obtain the virtual experimental performance.

4.2.2 Identification of the lift and the drag coefficients

In this section the lift curve is identified together with the drag

curve of an airfoil belonging to a wind turbine blade. Always

only one airfoil for all the blade span will be assumed. The

number of parameters is obviously increased because in this

case the parametrization of another curve is needed. The results

can be seen in figure 11. It shows a good congruity between the

virtual measurements and the identified ones. Furthermore, it

can be seen that there is a good congruity between the numer-

ical and the identified aerodynamic characteristics. In this case

too the identification code has provided good estimates for the
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(c) Power coefficient

Figure 11: Identification of the lift coefficient and the drag coeffi-

cient of a wind turbine. Solid lines: identified curves;

dashed lines: virtual experimental curves; dotted lines: ini-

tial curves.

aerodynamic curves that can be, at least in these case, therefore

considered reliable.

4.2.3 Identification of the aerodynamic characteristics of two airfoils

The identification of the aerodynamic properties of two airfoils

is far more difficult. This difficulty is due to the increase of the

number of parameters used to parametrise four curves (two lift
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curves and the two drag curves) although the number of ex-

perimental measurements does not change. A direct method of

identification, that makes use of all the parameters as they are,

sometimes fails because of the strong correlations among pa-

rameters and the low level of identifiability of themselves that

unavoidably happens when the number of the parameters in-

creases. Other methods, for example the single value decompo-

sition method, give better results but are sometimes unable to

identify some parameters. This failure is not due to the method

itself (single value decomposition for example) but to the ac-

tual difficulty related to the identification of the aerodynamic

characteristics. It has to be noted that the existence of only one

solution cannot be guaranteed. Indeed, given a wind turbine,

there can be two (or more) set of aerodynamic properties that

give the same performance, as it can be seen in the simpler ex-

ample of section 4.2.4. The loads on the wind turbine obviously

change but they are not accessible without more invasive mea-

surements. The results provided by the identification code are

depicted in figure 12. It can be seen that the aerodynamic char-

acteristics related to the airfoils placed in the root sections are

not so well identified. This is due to the low level of identifi-

ability of the airfoils placed in the inboard part of the blades,

as stated in the previous sections. Regarding the tip curves it

can be seen that the identified curves give good estimates only

before the stall angle of attack.
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Figure 12: Identification of the lift coefficient and the drag coeffi-

cient of a wind turbine. Solid lines: identified curves;

dashed lines: virtual experimental curves; dotted lines: ini-

tial curves.



68 identification of wind turbines

4.2.4 A simple case in which the identification of the aerodynamic

characteristics is lost

This section describes an example that emphasizes how im-

portant is the choice of a suitable parametrization method. In

fact, as for the case showed below, if a wrong parametrization

method is used, inaccurate results might be produced. Gener-

ally a great number of parameters can help to obtain a wide

variety of curves and therefore a better approximation of the

curve itseft, but at the same time it makes really hard the iden-

tification of the aerodynamic characteristics because the algo-

rithm of the optimization problem makes a lot of efforts in or-

der to identify all the parameters. The configuration used in

this section is similar to that related to the example already seen

at the section 4.2.1. Indeed in both cases the curve to be identi-

fied is only one lift curve that is assumed the same for the entire

blade span. The differences between the two configurations are

due to the method used to parametrize the lift curve. In sec-

tion 4.2.1 the third method described in section 4.1.1 is used

while in this section the first one, described in section 4.1.1, is

used. In particular in this section two four-point Bezier are used

to parametrize the lift curve, therefore 11 parameters are gen-

erated instead of the five parameters created section 4.2.1. The

choice of two four-point Bezier is not very suitable because it

makes more difficult the identification of the lift curve. The pa-

rameters created by the identification code do not have a strong

ability to excite the system in a suitable way, in particular the

parameters related to the second Bezier, used to parametrize

the post stall region.

The results of the test can be found in figure 13.
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Figure 13: Failure of an identification of the lift coefficient of a wind

turbine. Solid lines: identified curves; dashed lines: virtual

experimental curves; dotted lines: initial curves.

It can be seen that the optimization problem is quite able to

identify the overall performance in a very reliable way. How-

ever the identified aerodynamic characteristics do not corre-

spond to the virtual aerodynamic characteristics used to cre-

ate the virtual experimental measurements. The example per-

formed in figure 13 shows that the identification code was un-

able to find a reliable estimate for the lift curve, but it also

shows a fundamental thing. It shows that, depending on the

method used to parametrise the curve, the optimization prob-

lem related to the identification code generally have not only

a global minimum, but it can have local minima too, reached

in this case. Indeed the example depicted in figure 13 clearly

shows the presence of two aerodynamic characteristics that have,

with a good degree of approximation, the same performance.

Obviously the identified curve cannot be considered reliable

but, at the same time, important considerations can be made

analysing the curves. Nevertheless the the identified curve do

not correspond to the virtual one, the first part of the curve,
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until 10 degrees, is quite close to the virtual experimental curve

and it can be accepted. However the post stall region is ex-

tremely unreliable. Even in this case useful considerations can

be made. Since the performance of a wind turbine is obtained

through the integration of the lift curve, it can be seen that the

identified curve oscillates around the real (in this case virtual)

curve that can be considered a sort of mean curve of the iden-

tified one. Indeed the identified characteristics that exceed the

virtual ones are compensated by the characteristics staying be-

low the virtual curve.

4.3 identification from experimental data

In this section some identification trials are performed in order

to find the aerodynamic characteristics of a real wind turbine:

the horizontal axis wind turbine of 2.5 kW called Bora, devel-

oped by the Adag group of Dias of University of Naples

Federico II. The same trials that were performed with a vir-

tual wind turbine in the previous sections will be carried out in

the following. Obviously the experimental lift and drag cannot

be reported, as for the previous sections, because they are un-

known and they are exactly the curves proposed to be found in

this thesis work. In addition, the performance data, belonging

from experimental measurements are affected by an unavoid-

able measurement noise. For this reason they do not follow a

smooth curve.
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4.3.1 Identification of the lift coefficient

In this section, only one lift curve will be identified. This fact

is unrealistic, as reported in the previous sections, but it can be

useful to start from this case since this represents the simplest

trial. This case can be used for example when the identification

of the next sections gives unreliable estimates.
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(b) Power coefficient

Figure 14: Identification of the lift coefficient of the Bora wind tur-

bine. Solid lines: identified curves; points: experimental

data; dotted lines: initial curves.

As it can be seen in figure 14, there is an acceptable congruity

between the experimental performance and the identified per-

formance. However this congruity is obtained through a dra-

matic reduction of the lift coefficient. Probably this is due to

the fact that in this case the drag curve is not identified and it

might be that a part of the experimental measurement depends

on an increase of the drag itself. The identified curve represents

the curve that, according to the bem theory, allows to obtain

the performance that better approximate the experimental mea-

sured performance. Recall that the lift curve is obtained at first
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parametrizing the curve itself: in this way a vector of parame-

ters is created. These parameters are then used to identify the

lift curve of the wind turbine using the maximum likelihood

method, eventually combined with the singular value decom-

position method if the parameters show a little degree of iden-

tifiability or a great level of correlation.

4.3.2 Identification of the lift and the drag coefficients

The next step is the identification of both the lift and the drag

coefficient, assuming the presence of only one airfoil along all

the blades span of the wind turbine.

The identified curves can be found in figure 15. In this trial, a

reduction of the lift coefficient can also be observed. The results

also show a reduction of the drag coefficient, contrary to expec-

tations. Sometimes, because of the parameters correlations, the

identification code instead of increase the drag of the airfoils,

decreases the lift curve, obtaining a similar result. However the

identified performance show a good congruity with experimen-

tal measurements, thus this result cannot be rejected a priori.

4.3.3 Identification of the aerodynamic characteristics of two airfoils

In this section the lift and the drag coefficients pertaining to

the Bora wind turbine will be identified. Differently from the

last section, this one has the presence of two airfoils. On the

one hand this assumption improves the degree of the aerody-

namic characteristics approximation, since a more realistic con-

figuration can be considered. On the other hand this assump-

tion causes the increase of the number of parameters and leads
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(c) Power coefficient

Figure 15: Identification of the lift coefficient and the drag coefficient

of the Bora wind turbine. Solid lines: identified curves;

points: experimental data; dotted lines: initial curves.

therefore to an unavoidable reduction of the degree of parame-

ters identification and in addition, it leads to an increase of the

correlations among them.

As it can be seen in figure 16 there is a little reduction of

the lift coefficient at the root sections and there is a greater re-

duction of the lift coefficient at the tip sections. One can also

observe that the drag coefficients are affected by really few

changes. This fact is due to the singular value decomposition

method.
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Figure 16: Identification of the lift coefficient and the drag coefficient

of the Bora wind turbine. Solid lines: identified curves;

points: experimental data; dotted lines: initial curves.
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Furthermore the identified performance are not so close to

the experimental measurement. Therefore this identification can-

not be considered fully reliable.

Another attempt was performed to identify the aerodynamic

characteristics of the lift and the drag coefficients related to two

airfoils. In this case the software was forced to give a better con-

gruity between experimental measurements and identified per-

formance taking into account a greater number of parameters.

However, these parameters have a lower level of identifiability.

The result is shown in figure 17.

In this case, a greater congruity be observed between identi-

fied performance and experimental measurement. However the

identified aerodynamic properties show a greater change than

the previous identification case. It can be seen in figure 17, that

there is an increase of the lift curve at the root sections as ex-

pected. Indeed, this fact confirm the presence of the centrifugal

pumping, already discussed in the previous chapters. It states

that the inner sections are affected by a growth of the lift curve.

The presence of the centrifugal pumping can also be seen in the

previous test since the reduction of the lift curve related to the

root section was less pronounced that the reduction of the one

related to the tip sections. This phenomenon is not modelled

by the bem theory, but it can be included by properly modify-

ing the table of the lift coefficients. The lift coefficient related to

the tip sections also shows a greater reduction in this test, as

expected.

Regarding the drag coefficient a great increase of the charac-

teristics related to the tip sections can be observed. Whereas,

only a slight increase in the characteristics related to the the

root sections is observed. The reasons for the slight increase of
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Figure 17: Identification of the lift coefficient and the drag coefficient

of the Bora wind turbine. Solid lines: identified curves;

points: experimental data; dotted lines: initial curves.
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coefficients related to the root section can de due to the low

level of parameters identifiability related to that curve.

4.4 identification of the wind turbine eol-h-60

In this section the identification of the wind turbine of 60 kW

EOL-H-60, developed by the Adag group of Dias of Univer-

sity of Naples Federico II in partnership with Comecart

S.p.a. of Cuneo, is performed. The EOL-H-60 showed consid-

erable discrepancies (about 30%) between the predicted perfor-

mance and the experimental ones, as it can be seen in figure 18.
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Figure 18: Discrepancies between experimental and predicted data of

the wind turbine Eol-H-60. Triangles: experimental data;

dotted line: predicted curve.

Therefore, the identification code developed in this thesis work,

was performed to find the reasons underlying such discrepan-

cies and attempt to fix them. The identification of the EOL-H-

60 was somewhat difficult, because the experimental data are

derived from measurements taken on the field, according to

the international standard IEC 61400-12-1 [7]. However, the ob-

tained data are unable to properly excite the parameters to be
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identified. In this case, the experimental measurements taken

for the identification of the aerodynamic characteristics of the

EOL-H-60 are not the coefficients of power Cp over λ, but the

power P over the velocity of the wind V∞.

The wind turbine operates in such a way that the rpm of

turbine itself are adjusted to obtain a specific value of lambda,

because for that lambda, the wind turbine is able to extract the

maximum quantity of energy from the wind. This fact means

that only the aerodynamics characteristics related to few angles

of attack are experienced by the airfoils and therefore only these

aerodynamic characteristics can be identified, even if a wider

range of angles of attack will be plotted below.

4.4.1 Identification of the lift coefficient

In this section the identification of one lift curve related to the

wind tubine EOL-H-60 is performed. The results of the identifi-

cation are shown in figure 19. There is a fair congruity between

the identified performance and the experimental one. It can be

seen that the identified lift curve (actually, the part of the lift

curve best identified is the part of curve related to the α be-

tween 0 and 10 degrees since the other values have not been

excited by the system in a suitable way) is shifted downward

and/or to the right, with respect to the numeric lift curve. The

reasons of these motions are described below.

4.4.2 Identification of the lift and the drag coefficients

In this section, the identification of one lift and one drag curve

related to the wind turbine EOL-H-60 is performed. The results
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(b) Power coefficient

Figure 19: Identification of the lift coefficient of the EOL-H-60 wind

turbine. Solid lines: identified curves; triangles: experimen-

tal data; dotted lines: initial curves.

of the identification are shown in figure 20.

Figure 20 shows that there is a fair congruity between iden-

tified and experimental data. As in the case of the previous

section, it is observed that the lift curve is shifted downward or

(and) to the right with respect to the numeric lift curve. Since

in this case the lift and the drag coefficients are both identified,

it is certainly possible to observe an increase of the drag coeffi-

cients, that is very pronounced, but possible as well. It can be

due to phenomena that are not been described by the model

used to calculate the performance, for example the vibrations

of the blades that are not modelled by the blade element mo-

mentum theory.

4.4.3 Conclusions

In this section the results of the previous tests are discussed.

Firstly, as stated hereinabove, it has to be noted that the predic-
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Figure 20: Identification of the lift and the drag coefficients of the

EOL-H-60 wind turbine. Solid lines: identified curves; tri-

angles: experimental data; dotted lines: initial curves.

tion code wtperf, that uses the blade element theory to calcu-

late the performance, has shown that the angles of attack expe-

rienced by the airfoils are mostly included in the range between

0 and 10 degrees. Therefore, only the aerodynamic characteris-

tics related to these angles of attack can be identified and can be

considered reliable. The lift curve related to the identified range

of alpha is depicted in figure 21. As stated above, the identified

curve is shifted downward and/or to the right. This translation

has an aerodynamic meaning and it can depend on several fac-
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Figure 21: Particular of the identified lift curve. Solid line: identified

curve; dotted line: numerical curve.

tors. For example, the motion of the lift curve shown by the

results of the identification code can be due to a mistake in the

real shape of the airfoils placed on the blades. This can happen

when manufacturing errors occur, in particular when the airfoil

bottom is too pronounced because it causes the alteration of the

curvature of the airfoil and therefore the change of the α0 lift.

In addition, the motion of the lift curve, depicted in figure 21,

can also be due to a wrong pitch angle of the blades placed on

the wind turbine, since this corresponds to a translation to the

right or to the left of the aerodynamic properties.

An analysis on the wind turbine EOL-H60 has showed both

these problems. New blades, with the bottom airfoil less pro-

nounced, were produced to fix the problem of the increased

α0 lift, related to the translation to the right of the lift curve.

Furthermore, the pitch angle of the blades was adjusted to fix

the motion of the lift curve, since it can also be considered an-

other source of the alteration of the α0 lift. After making these

adjustments, new experimental measurements have been taken.

These measurements can be seen in figure 22.



82 identification of wind turbines

2 4 6 8

10

20

30

40

V
(m/s)

P(kW)

[ March 25, 2016 at 19:25 – classicthesis version 1.2 ]

Figure 22: Discrepancies between experimental and predicted data

of the wind turbine Eol-H60 after the adjustments of the

blades. Triangles: experimental data before corrections; di-

amonds: experimental data after corrections; dotted line:

predicted numerical curve.

As it can be seen from figure 22, the new experimental mea-

surements obtained after the adjustments, better correspond to

the numerical performance. This means that the results given

by the identification code are able to provide useful suggestions

to correct potential manufacturing errors and therefore to im-

prove the performance of wind turbines, even if the identifica-

tion of the aerodynamic characteristics of wind turbines some-

times gives faulty results (depending on the parametrization

method chosen and the number of curves identified) due to the

nature of the inverse problems that are usually ill-conditioned, in

particular the identification of the aerodynamics characteristics

of wind turbines that shows both the problem of the low level

of identifiability of some parameters and a strong correlation

among them.



B I B L I O G R A P H Y

[1] Bak, C. et al. “Airfoil Characteristic for Wind Turbines”.

In: Risø National Laboratory, Roskilde, Denmark (1999).

[2] Belsley, D. A., Kuh, E., and Welsh, R. E. Regression Diag-

nostics: Identifying Influential Data and Sources of Collinear-

ity. Wiley, New York, 1980.

[3] Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. Wind

Energy Handbook. John Wiley & Sons, Ltd Eds, 2001.

[4] Cacciola, S. “Wind Turbine System Identification and Sta-

bility Analysis”. PhD thesis. Politecnico di Milano, 2012.

[5] Drela, M. “XFOIL: An Analyse and Design System for

Low Reynolds Number Airfoils”. In: Low Reynolds Num-

ber Aerodynamics, Springer Verlag Lecture Notes in Engineer-

ing, Vol. 54 (1989).

[6] Hoener, S.F. Fluid Dynamic Drag: Practical Information on

Aerodynamic Drag and Hydrodynamic Resistance. Hoerner

Fluid Dynamics, 1965.

[7] “IEC 61400-12-1 Wind turbines- Part 12-1: Power perfor-

mance measurements of electricity producing wind tur-

bines.” In: International electrotechnical commission (2005).

[8] Jategaonkar, R. V. Flight Vehicle System Identification: a Time

Domain Methodology. AIAA, 2006.

[9] Klein, V. and Morelli, E. A. Aircraft System Identification

Theory and Practice. AIAA, 2006.

83



84 Bibliography

[10] Ljung, L. System Identification: Theory for the User. Prentice

Hall, 1987.

[11] Moriarty, P. J. “AeroDyn Theory Manual”. In: National

Renewable Energy Laboratory (2004).

[12] Ostowari, C. and Naik, D. “Post Stall Studies of Untwisted

Varying Aspect Ratio Blades with an NACA 4415 Airfoil

Section - Part I”. In: Wind Engineering (1984).

[13] Ostowari, C. and Naik, D. “Post Stall Studies of Untwisted

Varying Aspect Ratio Blades with an NACA 4415 Airfoil

Section - Part II”. In: Wind Engineering (1985).

[14] Ostowari, C. and Naik, D. “Post-Stall Wind Tunnel Data

for NACA 44XX Series Airfoil Sections”. In: SERI/STR

217-2559 (1985).

[15] Platt, A. D. and Jr. Buhl, M.L. “Wt perf user guide for

version 3.05.00”. In: Technical report, National Renewable En-

ergy Laboratory (2012).

[16] Tangler, J. L. “A Horizontal Axis Wind Turbine Perfor-

mance Prediction Code for Personal Computers(User’s

Guide)”. In: Solar Energy Research Institute (1987).

[17] Tangler, J. L. “The Nebulous Art of Using Wind Tun-

nel Aerofoil Data for Predicting Rotor Performance”. In:

Wind Energy (2002).

[18] The MathWorks, Inc. MATLAB and Statistics Toolbox. Nat-

ick, Massachusetts, United States, 2015.

[19] Tognaccini, R. Lezioni di aerodinamica dell’ala rotante, eliche,

rotori ed aeromotori. Department of Aerospace Engineer-

ing, University of Naples Federico II, 2011.



Bibliography 85

[20] Viterna, L. A. and Corrigan, R. D. “Fixed pitch rotor per-

formance of large horizontal axis wind turbines.” In: NTRS

(1982).

[21] Viterna, L. A. and Janetzke, D. C. “Theoretical and Ex-

perimental Power from Large Horizontal-Axis Wind Tur-

bine”. In: NASA (1982).

[22] Zadeh, L. A. “From Circuit Theory to System Theory”. In:

Proceeding of the IRE (1962).


	Titlepage
	Abstract
	Sommario
	Contents
	List of Figures
	1 Introduction
	2 Aerodynamic models of wind turbines
	2.1 Actuator disc model
	2.2 Momentum Theory
	2.3 General momentum theory
	2.4 Blade element theory
	2.5 The blade element momentum theory
	2.6 Limits of the blade element momentum
	2.7 Tip and root losses
	2.8 Viterna Corrigan Model

	3 System identification Theory
	3.1 Introduction
	3.2 Mathematical modeling
	3.3 Parameter estimation
	3.3.1 Estimator for the Least-Squares model
	3.3.2 Estimator for the Fisher model
	3.3.3 Estimator for the Bayesian model

	3.4 Cost function optimization algorithm
	3.4.1 Relaxation strategy
	3.4.2 Gauss-Newton method
	3.4.3 Method of quasi-linearization

	3.5 Properties of the estimates
	3.6 Detection of data collinearity
	3.6.1 Correlation matrix
	3.6.2 Singular value decomposition


	4 Identification of wind turbines
	4.1 Geometry parametrization
	4.1.1 Bezier Curves

	4.2 Virtual identification
	4.2.1 Identification of the lift coefficient
	4.2.2 Identification of the lift and the drag coefficients
	4.2.3 Identification of the aerodynamic characteristics of two airfoils
	4.2.4 A simple case in which the identification of the aerodynamic characteristics is lost

	4.3 Identification from experimental data
	4.3.1 Identification of the lift coefficient
	4.3.2 Identification of the lift and the drag coefficients
	4.3.3 Identification of the aerodynamic characteristics of two airfoils

	4.4 Identification of the wind turbine EOL-H-60
	4.4.1 Identification of the lift coefficient
	4.4.2 Identification of the lift and the drag coefficients
	4.4.3 Conclusions


	Bibliography

