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� i

Abstract

We investigate evolving and adaptive strategies, in network of dynamical agents, for solving

general types of consensus and synchronization.

First, we analyse the problem of max/min consensus in directed networks of integrators.

Extending edge snapping method with a three-well potential, we are able to show the ef-

fectiveness of our strategy to achieve general types of consensus, di�erent from the average.

Theoretical results are validated via a number of numerical examples.

Then we move to synchronization of coupled non identical oscillators. We design an evo-

lutionary strategy for network synchronization. Our results suggest that heterogeneity is

the driving force determining the evolution of state-dependent functional networks. Mini-

mal emergent networks show enhanced synchronization properties and high levels of degree-

frequency assortativity. We analyse networks ofN = 100 andN = 1000 Kuramoto oscillators

showing that hubs in the network tend to emerge as nodes' heterogeneity is increased.

Finally, we study synchronization of multi-agent systems from a contraction theory view-

point. Contraction theory is a useful tool to study convergence of dynamical systems and

networks, recently proposed in the literature. In detail, we recall three strategies: virtual

systems method, convergence to a �ow-invariant subspace and hierarchical approach. While

the former is simple to apply, the latter is suited for larger networks.
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CHAPTER 1

Introduction

Networked systems are ubiquitous nowadays: gene regulatory networks, smart grids, the

Internet, World Wide Web, sensor networks, neural networks are all examples of ensembles

of connected agents that interact with each other to achieve some common objective [11, 84].

Network science has been quickly developed in the last few years, as an e�cient tool to study

such systems. In this area, a network is a set of dynamical agents linked to each other through

a web of interconnections [8, 88, 51]. The most interesting and facing feature of networked

systems is their ability to show emergent behavior that cannot be explained in terms of the

individual dynamics of each single agent in the network. Synchronization and coordination

are probably the simplest of these kind of phenomena [63, 18, 53]. Examples also come from

nature, where �ocks of birds spontaneously emerge, or the fascinating synchronous �ashing

of �re�ies in Amazonia, suddenly takes place.

Networks paradigm has been used in a wide class of systems ranging from engineering, to

biology and sociology. In all of those cases a fundamental is how to control the whole system,

represented by an arti�cial neural network or a grid of power generators and consumers, so

as to achieve a desired behavior [45, 60]. Basically, network control strategies can be formu-

lated in terms of rules acting on: (i) the set of links; (ii) the set of nodes or (iii) the evolution

of the network structure. Link based network control is represented by a rule, often called

the protocol, that each agent has to apply to treat information coming from neighbors, i.e.

nodes that share a link. Examples range from di�usive linear protocol [88] to distributed PID

control [10]. The idea behind controlling nodes' dynamics, instead, is typically called pinning

control [13] and relies on adding a virtual leader node, the pinner, unidirectionally linked

to a small fraction of the entire nodes set. Pinner node produces the control action that is
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propagated to the rest of the nodes through their interconnections. One of the key assump-

tions of the control strategies presented so far, is the time-invariant nature of links weights

and the interconnection structure. In particular, it is assumed that the strength associated

to the interaction between nodes does not change over time. Also, the structure de�ning

the web of interconnections among nodes is supposed to be constant. Anyway, examples

in nature show that in �ocks of birds, swarm or �ashing of �re�ies, individuals are able to

form or suppress connections between themselves and adapt the strength of the interactions

[35]. As a result, interconnections are continuously rearranged, allowing network structure

to evolve. Moreover, there are often situations in which the nature of interconnections is

intrinsically time-varying. This is the case, for example, of autonomous vehicles equipped

with limited sensing area devices for the communication and interconnection [91]. Also, even

if network structure can be assumed �xed, links failures could occur, determining a variation

of interconnections that one has to cope with. Thus, controlling agents behavior via the

evolution of the network structure and/or adaptation of coupling strength is a useful and

viable method recently established in Network Science [18, 7]. Another fundamental is how

to evolve network structure so as to promote synchronization. Indeed, a pressing open prob-

lem in Network Science is to link structural properties of networks to their functionalities, in

terms of, for example, synchronization performances or group coordination capabilities (see

[85] and reference therein).

Recent advances in this direction can be found in literature [23]. Although these results are

useful to better understand what are the features promoting desired network functionalities,

they often rely on centralized strategies. In other words, they require global information on

the entire network. However, in the control of networked systems (see for example [62] and

reference therein) decentralization is a key feature. Indeed in many real-world applications,

each node only knows its state and those of its neighbours. Thus, it is of utmost importance

to design decentralized strategies for network control and synchronization.

The aim of this thesis is to study decentralized evolving strategies for consensus and synchro-

nization. The work builds on extensions to edge snapping method, independently developed

in [20]. Edge snapping is a general way to evolve an undirected network of identical nonlinear

oscillators. It was proposed in the nonlinear control literature and used in a number of appli-

cations [19]. Here, we tailor this method so as to guarantee consensus in directed networks.

Moreover, based on edge snapping, we develop an evolutionary strategy for synchronization

in networks of heterogeneous agents.
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Related independent work on the evolution of network structure for synchronization can

be found in the literature. For instance in [33] a framework is proposed to enhance syn-

chronization, based on network evolution. Moreover, in [80] the problem of �nding corre-

lations between network structure and synchronization performances is formulated as that

of optimizing some synchronization measure. In both cases, even though authors derive

nice conclusions on the network properties of synchrony optimized structures, the approach

taken is heavily centralized. Thus, the work presented in this thesis nicely complement these

strategies, relying on simple and decentralized evolving rules.

Further work involved in this thesis deals with the study of synchronization from a contrac-

tion theory perspective. Contraction theory is a promising approach to study convergence of

dynamical systems and networks [1], since it provides global results based on a constructive

method. Indeed, most of the methods to analyse the synchronized state are local (e.g. they

are obtained from a linearised version of the model ) or rely on �nding Lyapunov functions.

1.1 Outline of the thesis

In Chapter 2 we give an overview on networks of dynamical agents, from structure and

dynamics to the evolving paradigm. Also synchronization and consensus are presented,

showing how it is possible to study their stability. Then we recall two strategies for network

evolution, namely Edge snapping and NetEvo.

In Chapter 3 we recall the Kuramoto model. First we present preliminary studies about

mutually coupled oscillators that led to the work of Kuramoto. Then we show developments

of Kuramoto model, relying on �nding critical coupling for the onset of synchronization.

Also we present explosive synchronization recently proposed in the literature of Kuramoto

model.

In Chapter 4 we present two evolving strategies for consensus. Speci�cally we extend edge

snapping to directed networks, through directed edge snapping and hybrid edge snapping.

Numerical examples are also given to support theoretical �nding.

In Chapter 5 an evolutionary method for synchronization in a network of oscillators is in-

troduced. An analysis of emergent networks of N = 100 oscillators is given together with

a discussion in the case of larger networks. The method is then validate on a network of
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chaotic oscillators. Finally we give an application of the proposed strategy in the case of

oscillator array models for associative memory functions.

In Chapter 6 we present the Two oscillators model for the analysis of robustness of Edge

Snapping in the case of heterogeneous Kuramoto oscillators, used in Chapter 5.

In Chapter 7 Contraction theory is presented as a viable tool to study the convergence

properties of networks of dynamical agents and then in Chapter 8 conclusions are drawn.

The results in Chapter 4 are obtained in collaboration with Dr. Pietro De Lellis (Department

of Electrical Engineering and Information Technology, University of Naples Federico II, Italy)

and were presented in [21]. The results in Chapters 5 and 6 have been developed together

with Prof. Takaaki Aoki (Faculty of Education, University of Kagawa, Japan) and can be

found, in part, in [76, 75]. The results in Chapter 7 have been obtained in collaboration with

Dr. Giovanni Russo and Davide Fiore and can be found in [22].



CHAPTER 2

Complex Evolving Networks of

dynamical agents: an overview

Recently, there has been a tremendous interest in the study of complex networks, see [84, 8,

88]. Such networked systems are composed by a set of agents (the nodes), that are linked

with each other through a web of interconnections (the edges). Studying complexity of the

emerging collective behaviours is a fascinating but di�cult task to perform. Indeed, the

whole system can show new emergent behaviours that none of the individual agents is able

to present. In this scenario, we can expect that even if the dynamics of each node is simple

to study, the behaviour of the network cannot be easily predicted and unexpected motions or

coordinated evolution could emerge. Synchronization and consensus are typical coordination

problems widely studied in literature, see for example [18, 53, 64, 63]. Another fundamental

is controllability of complex networks, see [45, 60] and reference therein.

There are many other aspects characterizing complex networks, from the entangled inter-

connection structure to node diversity and evolution of network structure. With this in

mind, we can summarize the three fundamental aspects of a complex network in terms of:

dynamics, structure of interconnections, evolution process.

In this chapter we will review the key fundamental concepts in the theory of complex net-

works. Speci�cally, after recalling the main features of networks in terms of structure and

dynamics, we will focus on networks whose interconnection structure is time-varying, i.e.

evolving complex networks.
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2.1 Networks: Dynamics and structure

2.1.1 Dynamics and Coupling

We start by considering a general network, in which every node is connected to some neigh-

bors (see Section 2.1.2). Furthermore we take into account the most general case, by placing

at each node a di�erent dynamical system with its own vector �eld. As we will see in

Chapter 5, heterogeneity of nodes' dynamics can be fundamental in determining network

functionalities.

The dynamics of each node can be written as

ẋi = fi(xi) + c
∑
j∈Ni

gi(xi,xj) i = 1, . . . , N (2-1)

where

• N ∈ R is the number of nodes

• xi ∈ Rn is the n-dimensional state vector of i-th agent.

• fi ∈ Rn represents the dynamics of node i.

• Ni is the set of neighbors of node i, e.g. nodes j that are connected to node i (see

Section 2.1.2 for more details).

• gi(xi,xj) ∈ Rn is called the coupling function. It describes how node i treats infor-

mation coming from node j. Namely, dynamics of node i is a�ected by all of states

xj : j ∈ Ni, according to gi.

• c ∈ R is the coupling strength since it provides a measure of the coupling force between

two or more nodes. It can vary in time and it can be di�erent for each pair of connected

nodes, that is c = cij(t).

If we suppose that each node is an oscillator (i.e. the system has a stable limit cycle [81])

or a chaotic oscillator (i.e. the system shows a non-periodic behaviour coming from motion

over a strange attractor [82]), an interesting phenomenon could emerge. It has been shown

(see [84] and references therein) that in this case the network can synchronize, that is all

the oscillators settle over the same spatio-temporal orbit. We will discuss in depth about

synchronization, in Section 2.2.
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Another possible type of collective behaviour is called swarming. The main examples come

from nature, like migration of birds in some direction (speci�cally named �ocking), or swarm

behaviour in �sh (also known as schooling). It is easy to imagine the usefulness of under-

standing the emergence of this behaviours if one has to carry out the control of a collection

of mobile robots, or in the control of unmanned air vehicles, or the handling of a distributed

sensors network.

As we have seen above, another crucial ingredient in the model of complex networked systems

is the law through which agents can communicate with each other. If we consider di�usive

coupling [88], (2-1) becomes

ẋi = fi(xi) + c
∑
j∈Ni

(xj − xi) i = 1, . . . , N (2-2)

Linear di�usive coupling is only one of the many possible communication protocols. It is

surely suitable to all those cases where the interaction is a smooth process, like in the case of

laser arrays where coupling could be performed through the overlapping of each laser electric

�eld [84].

2.1.2 Network structure

The structure of a network is usually modelled by means of graphs. Generally speaking,

a graph is a set of elements (nodes or vertex), connected to each other by edges. More

precisely, an undirected graph G is de�ned by the couple (V , E), where V = 1, . . . , N is the

set of nodes and E ⊂ V × V is the set of edges. Clearly if nodes i and j are connected to

each other, then (i, j) ∈ E ; further, they are called neighbors and this relation is expressed

by i ∼ j. The set of all neighbors of the node i is Ni = {j ∈ V : j ∼ i}; the degree of

a node is the number of its neighbors. In a direct graph, instead, the edges are oriented

from a starting vertex (head) to an ending one (tail), so the neighborhood relationship is

not symmetric and we can de�ne an in-degree (number of edges for which the actual node is

the tail) and an out-degree for each node (number of edges for which the actual node is the

head). A path i0, i1, . . . , iL is a �nite sequence of nodes such that ik−1 ∼ ik, k = 1, . . . , L; an

undirected graph is said to be connected if there exists a path between any pair of distinct

nodes.

The adjacency matrix A ∈ RN×N of the graph G is de�ned as

Aij =

{
1 if (i, j) ∈ E ,
0 otherwise.



� 8 2 Complex Evolving Networks of dynamical agents: an overview

Furthermore, if G has M edges, we can de�ne the node-edge incidence matrix B ∈ RN×M as

Bij


1 if node i is the head of the edge j,

−1 if node i is the tail of the edge j,

0 otherwise.

Finally, a matrix that play a central role in complex network modelling and analysis is the

Laplacian matrix de�ned by

L := BBT

For an undirected graph the Laplacian is a symmetric matrix with zero row sum; it is also

positive semide�nite and its spectrum can be ordered as follows

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN(L)

The multiplicity of the zero eigenvalue is equal to the number of the connected components

of the graph. It is useful observing, that denoting by D ∈ RN×N the matrix D = diag(di),

i = 1, . . . , N where di is the degree of node i, we have

L = D−A

The relationship above, allows us to rewrite Equation (2-2) as follows

ẋi = fi(xi)− c
N∑
j=1

Lijxj i = 1, 2, . . . , N (2-3)

Now, with the aim of �nding some characteristics that could allow to analyze a real networks,

it is useful to brie�y review some crucial observables of complex networks:

Average path length It is simply the distance L (in terms of number of edges along the

path) between any two nodes, averaged over all pair of distinct nodes;

Diameter It represents the maximum distance between any pair of nodes;

Clustering coe�cient It re�ects a property of the network also known as transitivity and

relies on the fact that, if node i and node j are both neighbors of a node k, there

might be an higher or lower probability that there is an edge also between i and j.

Rigorously, the clustering coe�cient is the average fraction of neighbors of a node,

that are also neighbors of each other. Then, indicating with ki the degree of node i, we

can immediately recover the clustering coe�cient of the actual node, as: Ci = 2Ei
kiki−1

where Ei is the e�ective number of neighbors that are neighbors among themselves.

The clustering coe�cient C is de�ned as the average of Ci over all nodes;
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Degree distribution This quantity is encoded by the function P (k) that provides the prob-

ability that a randomly chosen node of the network, has a degree equal to k. It is

worth recalling at this stage, the notion of average degree, that is simply the average

of the nodes degree ki over all i and is denoted as 〈k〉. This parameter helps us, among

others, to highlight the homogeneous degree of the network. If P (k) is a Gaussian bell

shaped function, for example, then we can expect that nodes will have comparable

degree values;

Assortative mixing A network is said to show assortative mixing if the nodes in the net-

work that have many connections tend to be connected to other nodes with many

connections. Moreover connections in many technological and biological networks at-

tach vertices of very di�erent degree with stronger likelihood. This case is referred to

as disassortative mixing. A measure of assortativity is usually given by the Pearson

correlation coe�cient of the degrees at either ends of an edge and lies in the range

[−1, 1].

2.1.2.1 Network Models

The main interesting aspect of the network structure, is that of �nding how to place edges

and nodes so that the whole network has speci�c proprieties, in terms, for example of the

previous measures. The output of this task is the generation of network models.

The simplest models are the so-called regular coupled networks [88, 51]. To this category,

belong all-to-all networks, in which any node is connected to all the other N − 1; it is simple

to see that it has L = C = 1. Another regular network is the K-nearest-neighbor lattice,

where each node is connected to his K-nearest neighbors (K/2 to each side, with K > 1

even). For this network we have C ∼ 3(K−2)
4(K−1)

∼ 3
4
and L ∼ N

2K
; note that L→∞ as N grows,

that is N →∞. Like the all-to-all con�guration, this network is perfectly homogeneous, with

all nodes sharing the same degree (N − 1 for the all-to-all, K for the K-nearest neighbors).

Finally, there is the star coupled network in which a main node is connected to all other

N − 1 nodes, just like the center of a star. This kind of network encodes two characteristics

of many real-networks, like small avarage path length (L→ 2 as N →∞) and high clustering

(C → 1 as N →∞).

A very di�erent type of networks from regular networks are Random Networks, studies of

which are dated about ′60s when Erdös and Renyi formalized this concept. The idea is very

simple: start with N isolated nodes and then choosing at random two of them (distinct),
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connect those vertex with probability p. The interesting result is that, in this way, we obtain

L ∼ ln(N)
ln(<k>)

, where < k > is the average degree; so L increases "slowly" when N grows

(limN→∞
ln(N)
N

= 0). This is a property of many real networks, although the clustering

coe�cient of a random network is typically too small (C = p = <k>
N
� 1 ) compared to that

of real networks.

To overcome the limitations of random graphs we have just mentioned, Watts and Strogatz

engineered a better model that they named Small World Network [89]. Starting from a

regular K-nearest neighbors lattice, they introduced randomness with the task of rewiring

with a speci�ed probability p, each edge of the initial network, connecting one end of the edge,

to another one chosen at random. This process introduces pNK/2 long range connections,

that allow (with increasing p) to obtain: (i) Small average path length; (ii) High clustering.

That is, starting from a regular network (p = 0), before obtaining completely random network

(p = 1), there is a threshold (p = p̄ ∈]0, 1[) above which the network can embed the advatages

of regular and random networks. The name small-world is a consequence of the long-range

connection e�ect: indeed in this way it is possible to have edges between two nodes that are

at the opposite side of the network (like in a friendship network where a person A would

likely know other people that are not con�ned to those who live "near" A).

Although small-world networks incorporate two main aspects of large-scale real networks,

they have still an unrealistic Degree distribution. In fact Watts and Strogatz model is char-

acterized by a P (k) very similar to a normal distribution, that roughly means all nodes have

a degree around a mean value. In real networks this almost never happens. What we expect,

indeed, is the presence of "few" nodes (currently named hubs) with huge degree and the rest

of vertices with a "small" degree. This leads to a degree distribution P (k) ∼ k−γ, that is a

power-law degree distribution.

Albert and Barabási proposed in [6] a model named Scale-free network to obtain this degree

distribution.

1. Start with m0 < N nodes connected to each other as you want;

2. Add a new node to the network and connect it to m ≤ m0 existing nodes i, with a

probability:

Πi =
ki∑
j kj

3. Repeat 2 till N −m0 nodes have been added.
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The resulting network will have N nodes and m(N −m0) + l0 edges (with l0 being the initial

number of edges),but most of all it will be characterized by a power law degree distribution:

P (k) ∼ 2m
1
β k−γ, with γ =

1

β
+ 1 = 3

It has also been seen [88] that scale free networks have a smaller average path length and

higher clustering coe�cient, compared with random graphs of the same size and average

degree.

2.2 Synchronization

Let us consider a network of coupled identical oscillators modelled by

ẋi = f(xi)− c
N∑
j=1

Lijh(xj) i = 1, 2, . . . , N (2-4)

where h is a generic output function. One of the most interesting and well studied form of

collective behavior is synchronization. Indeed in a network such as that in Equation (2-4),

it can happen that each subsystem behaves in the same fashion, that is all nodes follow the

same spatiotemporal evolution. This phenomenon is common in science and a milestone in

this issue was the work of the Dutch scientist Christiaan Huygens [8]. For his experiments,

he built a system of two pendulum clocks hooked on a wood support. The ends of the holder,

were backed on two chairs. The more remarkable thing he saw, was the synchronization of

the clocks. The synchrony motion was recovered also after an external perturbation. He

sensed that this behaviour was due to the horizontal and imperceptible oscillations of the

beam, that was the coupling mean between the two pendulum clocks. This phenomenon

is the same that one can observe in cardiac pacemakers (where heart beats are paced by a

sequence of pulses from electronic generator) or the circadian rhythms of an organism. Also,

in neuroscience, it is sometimes desirable that a web of interconnected neurons, settles on a

stable synchronized state.

Formally, we can de�ne synchronization as follows

De�nition 2.2.1 (Synchronization). Network (2-4) is said to achieve asymptotic syncroniza-

tion if and only if:

x1(t) = x2(t) = · · · = xN(t), as t→∞
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That is all network trajectories converge towards the synchronization manifold

S :=
{

[xT1 , . . . ,x
T
N ] ∈ RnN : x1 = · · · = xN

}
(2-5)

2.2.1 Master Stability Function

In this Section, the problem of studying the stability of a synchronous state is examined.

There are approaches based on Lyapunov theory or others that relies on Contraction Theory

(see Chapter 7 and references therein). The result we want to illustrate here, is that proposed

by Pecora and Carroll in [56], better known as the Master Stability Function method. Since

we want to study behaviour of (2-4) near a syncronized state, say xs(t), we can linearize the

system about xs(t). This leads to:

ξ̇i = Jf (xs)ξi + c
N∑
j=1

LijJh(xs)ξj i = 1, . . . , N (2-6)

where

• Jf (xs) ∈ Rn×n and Jh(xs) ∈ Rn×n are respectively the Jacobian Matrices of f(xi) and

h(xi) with respect to x and evaluated at xi = xs;

• ξi = [xi(t) − xs(t)]
T is the vector of the variations about xs(t) of each state vector

xi(t).

Now, supposing L to be diagonalizable, we can also block diagonalize (2-6), obtaining the

following relationship:

ζ̇k = [Jf (xs) + cλkJh(xs)]ζk k = 1, . . . , N (2-7)

We have obtained a decoupled system that locally describes the behaviour of (2-6) over

N transverse directions. In [56] authors refer to the dynamics along each of the N-1 the

directions (excluding the one corrresponding to the trivial eigenvalue) as transverse modes,

and they observe that λ0 = 0 is associated to the synchronization manifold x1 = x2 =

= · · · = xN. So it is clear that the synchronization state xs(t) will be stable if all other

transverse modes are stable. A possible criterion to prove that, is by imposing a negative

Maximum Lyapunov Exponent for all modes. This yelds the de�nition of theMaster Stability

Function Equation as:

ζ̇k = [Jf (x) + (α + jβ)Jh(x)]ζk k = 1, . . . , N (2-8)
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Figure 2-1: Di�erent MSF shapes

To evaluate the Master Stability Function, is then necessary to calculate the Maximum

Lyapunov exponent for the generic equation (2-8), obtaining a λmax(α + jβ). Finally if we

want to stabilize a synchronous state, we have simply to chose some c in (2-6) for which

λmax(cλk) < 0 ∀ 2 ≤ k ≤ N .

At this stage we can provide a measure of Synchronizability in terms of the values of c for

which we can stabilize all transverse modes (we group this values in the set C). So it is

clearly that the larger is C, the greater is network synchronizability.

If we consider the case of real eigenvalues for the Laplacian matrix L(i.e. the Laplacian

Matrix is symmetric and thus the underlying network is bidirectional), we can expect that

the MSF could assume three di�erent shapes depending on f and h functions as shown

in Figure 2-1. Type (c) simply represent a case in which the synchronization state can

never be stabilized, no matter the value of the coupling strength c; the (b) type, indeed, is

characterized by a certain threshold, αC in the picture, after which λmax becomes negative,

that implies a stable behaviour of the synchronized state. In this case we have simply to

choose c, such that λ2(L)c > αC . Finally case (a) requires conditions on both smallest and

largest eigenvalues of L. In fact, we have two thresholds, say αA and αB, that identify an

interval where negative values of MSF are obtained. To garantee synchronization, is then

necessary to choose c in such a way that λ2(L)c > αA and λN(L)c < αB. These conditions

suggest that, in general, to enlarge the set C above, one has to maximize: the eigenratio

1/R = λN (L)
λ2(L)

in case c, and the smallest eigenvalue λ2(L) if f and h yield an MSF of type

(b).
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Figure 2-2: MSF for a Scale-free network of N=200 Lorenz systems.

To provide a concrete example of MSF, we have considered a Scale-free network of N = 200

Lorenz systems coupled through the �rst state variable:

ẋ
(1)
i = 10(xi

(2) − xi(1) − c
N∑
j=1

Lijxj
(1)

ẋ
(2)
i = 28xi

(1) − xi(1)xi
(3) − xi(2) i = 1, . . . , N

ẋ
(3)
i = xi

(1)xi
(2) − 8/3xi

(3)

(2-9)

where the superscripts indicate the component of the state vector. As we can see in Figure

2-2, for the networked system (2-9) we obtain a MSF that looks like b-type in Figure 2-1. In

this case the set of coupling gains for which the syncronization state is stable, is C = [c0,∞),

with c0 such that λmax(c0λ2(L)) < 0. Thus it is clear that, with this kind of MSF, only λ2

plays a role in determining the stability of the synchronization manifold.

2.3 Consensus

In the framework of multi-agent systems a relevant issue is the so-called Consensus Problem.

Indeed, when a set of units need to cooperate, it is meaningful that they are able to agree

upon some shared variable, also when all-to-all communications are not allowed. Let us

associate, without loss of generality, a scalar variable xi to the agent i, and suppose that they

are able to exchange their state variable to each neighbour in a network of N nodes, encoded

by the undirected graph G = (V , E). We say that node i and j agree, if xi = xj, while they
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are said to disagree if xi 6= xj. Furthermore we have to distinguish between unconstrained

and constrained consensus problems. An unconstrained consensus problem is simply the

alignment or agreement problem in which it su�ces that the state of all agents asymptotically

be the same. In the constrained problem, instead, agents have to carry out the distributed

computation of a particular function χ(x) : RN → R, where x ∈ RN is the vector collecting

all the agents' states. Solving the constrained consensus problem is a cooperative task and

requires participation of all the agents. Indeed, simply suppose a single agent decides not to

cooperate with the rest of the agents and keep its state unchanged [52]. Then, the overall

task cannot be performed despite the fact that the rest of the agents reach an agreement.

For instance, the most considered constrained consensus problem is the so-called average-

consensus, that is χ(x) = Ave(x) = 1
N

∑N
i=1 xi.

Now let the agents' dynamics be given by the following di�erential equations:

ẋi = ui

ui =
∑
j∈Ji

(xj − xi) xi(0) = z0 i = 1, . . . , N (2-10)

The above dynamics reveals that each agent is a simple integrator and updates its variable

because of the mismatch between its state and those of its neighbours. The system in (2-10)

can be rewritten in a compact form, as:

ẋ = −Lx (2-11)

where L is the Laplacian matrix of the graph G. The linear protocol (2-10), under the

assumption that the graph G is connected, ensures that agents reach globally asymptotically

an average-consensus as shown in [52].

Moreover in the case of a directed graph G, it is possible to show that protocol (2-10) ensures,

if the digraph contains at least a spanning tree 1, that consensus is achieved. In particular

one has xi(t)→
∑N

i=1 νixi(0) as t→∞, where νi ≥ 0 and 1N
Tν = 1,LTν = 0. Moreover, in

[52] is pointed out that if the digraph G is strongly connected and balanced, then protocol

in Equation (2-10) allows to reach an average-consensus.

In the �eld of multi-vehicles, and more generally, roving systems sometimes it is possible

to model the kinematic equation of each planar agent, as a double integrator. This is the

1A digraph contains a spanning tree if there is a node (root), s.t. there exist directed paths starting from

the root and reaching each node in the digraph. Moreover, it is balanced if for each node the in-degree

is equal to the out-degree and �nally it is said to be is strongly connected if there exists a directed path

between every pair of nodes in the same graph
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case of holonomic vehicles, for which all motion directions are unconstrained and from each

point the agent is capable to move to all possible directions. Since this is true, the motion

equation can be also decoupled along each axis of the motion (for example x and y in

the plane). We argue here that also if agents are non-holonomic, and then their kinematic

equations are non-linear, through a feedback linearization procedure one can obtain a double

integrator dynamics. So it is useful to analyze the following linear consensus protocol for

double integrators dynamics:

ṗi = vi

v̇i = ui i = 1, . . . , N

ui = −
N∑
j=1

aij[(pj − pi) + γ(vi − vj)]
(2-12)

where aij are the elements of the Adjacency Matrix. In [63] it is demonstrated that if the

graph G is undirected and connected, then system (2-12) reaches asymptotically a consensus,

for any γ > 0. In the case of directed graphs, instead, having a spanning tree only a necessary

condition is needed to achieve consensus, i.e. if system (2-12) reaches consensus, then the

underlying digraph G has a spanning tree. A necessary and su�cient condition, indeed, is

given in term of the spectral properties of the following matrix

Θ =

[
0N×N IN
−L −γL

]
In particular, (2-12) achieves consensus asymptotically if and only if Θ has exactly two zero

eigenvalues and all other eigenvalues have negative real parts. Speci�cally pi →
∑N

i=1 gipi(0)+

t
∑N

i=1 givi(0) and vi →
∑N

i=1 givi(0) as t→∞, where gi ≥ 0,1N
Tg = 1 and Lg = 0.

In the literature many other protocols for reaching consensus are provided, also in the case

of additive noise or disturbances on the dynamics, delays and non-ideal links. Finally some

e�orts are made also to cover the case in which the dynamics of each agent is not a simple

or double integrator, but a generic nonlinear function [68], [95].

2.4 The third ingredient: Evolution

So far, we analysed two of three main features of networks, e.g. dynamics and structure.

In this Section we will discuss what happens if we allow the network structure to evolve.

Indeed, in many applications the network topology evolves according to the agents' dynamics
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[49, 12, 29, 96]. For example, in networks of mobile robots [96] each node is equipped with

wireless communication devices and can sense only the nodes in its proximity. Clearly, the

communication topology changes with the nodes' dynamics, and controlling its evolution

can be crucial to control the motion of the mobile agents. For example, in [91], a control

algorithm is presented that allows a network of mobile agents to achieve a desired goal in

the presence of structural constraints via the controlled activation/deletion of some of its

edges. Other examples include road networks, power grids, neural or genetic networks (see

[34] and references therein).

Thus, static network models lack these fundamental characteristics that are displayed by

many complex systems. The recent e�orts are among the few to consider time-dependent

couplings. Nonetheless, the central feature of evolving networks is, basically, a feedback

action between nodes' state and network structure. Indeed, while links evolution a�ects

nodes' dynamics, the state of each agent is responsible for updating network structure. To

formally describe this feature, adaptive networks and evolving dynamical networks have been

proposed as more realistic models of complex systems [34, 32]. There are several formalisms

introduced to describe the co-evolution of network structure and dynamics. One of the

�rst attempts is represented by Dynamic Graphs introduced in [78]. The idea is to de�ne

dynamical equations to describe how the weight of each edge in the network changes over

time. As these weights vary the network structure also varies with the most extreme cases

being the addition of an edge as a very weak weight becomes strengthened, and the loss of

an edge as a weight tends toward zero. Although dynamic graphs provide access to many

existing theoretical results, one major limitation remains. Dynamics are de�ned over a

�xed size network, prohibiting the description of evolutionary processes that involve growth.

To this aim, in [32] a de�nition of Evolving Dynamical Network (EDN) is provided. The

de�nition is given in two steps. First the notion of a dynamic graph is generalized, creating

a structure to describe both network topology and dynamics. This structure is then used to

de�ne an EDN, allowing for changes to the underlying topology and dynamics to take place.

Authors in [32] consider a directed graph G = (V , E) where V = {v1, v2, . . . , vn} is the set of
nodes and E = {e1, e2, . . . , en} with ei ∈ V × V is a set of directed edges. Now, a state is

associated to each node and edge so as to enable dynamics to take place on the �xed graph

G. The current state of node vi ∈ V and edge ei ∈ E will be given by vi ∈ Vi and ei ∈ Ei,

respectively, with Vi and Ei being the sets of admissible state values. Thus a Generalized

Dynamic Graph (GDG) can be de�ned as
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De�nition 2.4.1 (Generalized Dynamic Graph [32]). A generalized dynamic graph for a

�xed network structure G = (V , E) is a collection (V , E ,V,E,U,T,Φ) where

• V = {v1, v2, . . . , vn} is the set of nodes.

• E = {e1, e2, . . . , en} with ei ∈ V × V is a set of directed admissible edges.

• V = V1×V2×· · ·×Vn represents node state space, with Vi being the sets of admissible

state values for node vi.

• E = E1×E2×· · ·×En represents node state space, with Ei being the sets of admissible

state values for edge ei.

• U = U1 ×U2 × · · · ×Up is a set of control inputs.

• T is the set of times.

• Φ : V × E×U×T→ V × E represents some dynamics mapping for the states.

Mapping Φ in De�nition 2.4.1 is very general, including deterministic and probabilistic op-

erators. For instance, it could be given by a di�erence equations as

vi(t+ 1) = fi[vi(t), {vj(t) : vj ∈ Ni}, {ej(t) : ej = (vk, vi)},u(t)] ∀j, k

ei(t+ 1) = gi[ei(t), {vj(t) : (vj, vk) = ei ∨ (vk, vj) = ei},u(t)] ∀j, k

where fi is a function of the current node, the state of any incoming edge and the state

of any adjacent node, while gi is a function of current edge and the state of any connected

node. Moreover, Ni is the set of neighbors of node i and u(t) is a control input.

An important feature of GDG is that the mapping Φ can drive states vi and ei toward zero,

thus removing them from the network structure. Although GDG allows to capture many

features of evolving networks, they still consider a �xed underlying structure G = (V , E) and

given mapping Φ. To allow for the exploration of alternatives, authors in [32] consider the

set of all possible GDGs, D, and de�ne

De�nition 2.4.2 (Evolving Dynamical Network [32]). An Evolving Dynamical Network

(EDN) is a collection (D,Ω, I, τ) where

• D is the set of GDGs.
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• Ω = {ω1, ω2, . . . } is a set of structural operators such that ωi ∈ Ω is a mapping ω :

D → P where P is a probability distribution over the set D.

• I is a set of inputs from the environment or to be used for control purposes.

• τ : I × D → Ω is the evolutionary plan determining the operator ωi ∈ Ω to be applied

when transitioning from one structure to the next.

In other words, set D represents all possible GDGs. Of those reached by the evolutionary

process, say D1,D2,D3, · · · ∈ D, each consists of a state space over which network dynamics

can take place in accordance with the associated dynamical mappings, that is Φ. Evolution of

the network structure, state space, and dynamics mapping occurs through the evolutionary

mapping τ , that enables the network to grow.

In what follows, we recall a fundamental strategy for the evolution of complex networks,

namely edge snapping and a useful software framework to simulate evolving networks called

NetEvo . Indeed, the �rst part of the thesis deals with extensions to edge snapping mech-

anism so as to achieve general types of consensus. It will be also used in an evolutionary

manner, as illustrated in Chapter 5.

2.4.1 Edge Snapping

Edge Snapping [20] is an adaptive strategy that induces an unweighted self-emerging network

structure, by adapting the coupling gains. Speci�cally, the gains dynamics are given by

k̈ij + dk̇ij +
∂

∂kij
V (kij) = g(eij) (2-13)

where kij ∈ R is the coupling gain associated to edge (i, j) and d is the damping. Moreover,

with reference to Equation (2-13), a bistable polynomial potential was selected

V (sij) = bk2
ij(kij − 1)2. (2-14)

This smooth bistable potential has two local minima corresponding to the desired equilibria

of the system: kij = 0 (non-active edge) and kij = 1 (active edge), while the parameter b

represents the height of the barrier between the two equilibria. With this choice of V , system

(2-13) can be viewed as a Du�ng-Holmes oscillator, �rstly introduced in [37] to model a

buckled beam undergoing forced lateral vibrations. When considering edge snapping, the

forcing is not periodic as in [37], but it is bounded. The driving function was selected as
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Figure 2-3: Undirected edge snapping. Bistable potential (2-14) driving the evolution of
each kij.

g(ei − ej) = G(|ei − ej|), with G chosen from the set of strictly increasing functions of class

k∞
2.

Now, consider a network of integrators

ẋi =
N∑
j=1
j 6=i

k2
ij(xj − xi) (2-15)

where the k2
ij is considered so that the coupling gains are positive for all t ≥ 0. In this way,

none of the possible emerging topologies is unstable, as shown in [58]. Also, the network of

integrators asymptotically reaches average consensus, that is,

lim
t→∞

(χave(x(0))− xi(t)) = 0,

for all i = 1, . . . , N [20]. Moreover, almost all solutions of (2-13) converge towards σij = 0/1.

Speci�cally, if we exclude the trivial case in which sij(0) = 1
2
, ∀(i, j) and e(0) = 0, the network

evolves to a �nal topology, whose structure depends on the initial conditions, the damping

d, and the parameter b.

To illustrate the e�ectiveness of the approach, we report the results of a numerical simulation.

Namely, we consider a network of N = 50 integrators, and we select the damping d equal to

5. The nodes' initial conditions are selected from a normal distribution with zero mean and

standard deviation equal to 15, while all the kij(0) are set to 0, so that at the onset of the

2A function F : I → R is positive de�nite if F (x) > 0, ∀x ∈ I, x 6= 0 and F (0) = 0. A function

f : R≥0 → R≥0 is of class k if it is continuous, positive de�nite and strictly increasing. A unbounded

function of class k belongs to class k∞.
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(a) (b)

Figure 2-4: Network of N = 50 integrators: (a) Evolution of the agent dynamics under the
undirected edge-snapping strategy; (b) Evolution of the coupling gains.

evolution the network is completely disconnected. The height of the barrier b is chosen equal

to 15. As shown in Figure 2-4a, the average consensus problem is asymptotically solved by

the classical edge snapping mechanism, and all nodes converge to χave = 0.59. In addition,

all coupling gains asymptotically converge to 0 or 1, see Figure 2-4b.

2.4.2 NetEvo

NetEvo is a computational framework designed to help understand the evolution of dynami-

cal complex networks [33]. It provides �exible tools for the simulation of dynamical processes

on networks and methods for the evolution of underlying topological structures. To bring

together simulation and evolution in a coherent way, the framework uses the idea of a su-

pervisor, illustrated in Figure 2-5. Evolution of the system is performed by the supervisor

which can be viewed as a form of optimiser. This takes as input an initial topology, simu-

lated output from the system and user de�ned constraints, and aims to return an optimal

or enhanced topology. Changes to the system are assessed by using a certain performance

measure Q, with smaller values representing an improved performance. By default, NetEvo

provides a supervisor that uses a Simulated Annealing meta-heuristic to search for near

optimal con�gurations. This method has been shown to perform well for a wide range of

problems with an unknown prior structure.
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Figure 2-5: Schematic illustration of how NetEvo works.

2.5 Summary

In this Chapter we reviewed the basic concepts of complex networks of dynamical agents.

Starting from the dynamics of nodes and the structure of interconnections, we provided an

overview on evolving networks that represent the main subject of this thesis, as we will see

in Chapter 4 and Chapter 5. Next Chapter, instead, introduces the reader to networks of

Kuramoto oscillators, namely coupled phase oscillator models. We anticipate that our work

builds on edge snapping method. We will extend it to directed networks and general types

of consensus. Moreover, we will develop a method in networks of heterogeneous Kuramoto

oscillators that will allows us to �nd a link between the structure of the emerging networks

and their functionalities, in terms, for instance, of network synchronization.



CHAPTER 3

The Kuramoto model

In Chapter 5 we will present a method, based on edge snapping, that will help us to link

structure of emergent networks to their functionalities, i.e. their synchronization properties.

We will focus on networks of phase oscillators and, speci�cally, we will use coupled Kuramoto

oscillators. Thus, this Chapter deals with one of the most important paradigms for synchro-

nization phenomena. Indeed, the Kuramoto model, yet very simple, is able to capture the

main features of the onset of synchronization. This provides the easiest way to study large

ensemble of oscillators interacting with each other. Preliminary studies date back to 75's,

when Kuramoto began working on collective synchronization. His work rigorously formal-

izes Winfree's intuition to formulate the problem as the interaction of a huge population of

limit-cycle oscillators.

3.1 The origins

The �rst attempts to analyse collective synchronization are due to Wiener [90], who �rstly

proposed a mathematical framework to study the onset of synchronization. His guess was

that collective coordination mechanisms were involved in the generation of alpha rhythms in

the brain, and those mechanisms are quite general and ubiquitous. They can be found also in

other biological systems such as pacemaker cells in the heart or metabolic synchrony in yeast

cell suspension. However, his formalism based on Fourier integrals, has turned out to be too

much complicated, resulting in a dead point. A more fruitful approach was proposed by

Winfree [92], later in 1967. In his seminal paper, Winfree proposed a formulation based on

the interaction of a huge population of limit-cycle oscillators. As stated, the problem would
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be intractable, but he argued simpli�cation would arise if the coupling strength among

oscillators is weak and the oscillators nearly identical. Under such assumptions, the whole

dynamics can be separated into two timescales: a fast timescale in which oscillators run at

their natural frequency and can be characterized solely by their phase, and a slow dynamics

where agents interact with each other through the weak coupling and frequency di�erences.

Thus, the model proposed by Winfree is

θ̇i = ωi +

(
N∑
j=1

X(θj)

)
Z(θi), i = 1, . . . , N

where θi is the phase of oscillator i and ωi its natural frequency. The evolution of oscillator

i is a�ected by the phase of each other oscillator j, through X(θj). Moreover, the sensitivity

function Z(θi), measures the response of node i to the in�uence of all other oscillators.

Based on numerical evidence, Winfree found spontaneous synchronization emerges as a

threshold process, akin to a phase transition. Indeed, as the coupling among oscillators

is increased, a transition is observed from an incoherent state, with all oscillators running

at di�erent frequencies, to a synchronized state. Despite the importance of his �nding and

the intuition about modelling the entire dynamics as a coupled phase oscillators system, the

work of Winfree lacked a theoretical framework supporting the numerical evidence. Later,

Kuramoto [41], starting from Winfree's results, proposed his model able to capture the onset

of synchronization in a population of coupled phase oscillators.

3.2 The model

Kuramoto started his studies from the model

θi = ωi +
K

N

N∑
j=1

Γij(θj − θi), i = 1, . . . , N (3-1)

that describes the long term evolution of weakly coupled, nearly identical limit-cycle oscil-

lators [42]. In Equation (3-1), θ is the phase of each oscillator and ωi its natural frequency.

Even tough Equation (3-1) represents a reduction of a more complex system, it is still di�-

cult to analyse. Kuramoto recognised that simpli�cations would occur in the case of equally

weighted, all-to-all, sinusoidal coupling of the form

Γij(θj − θi) =
K

N
sin (θj − θi) (3-2)
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The frequencies ωi are distributed according to a probability density g(ω). For simplicity,

in his model Kuramoto considered only unimodal and symmetric functions g(ω), about the

mean value Ω. In particular, g(Ω + ω) = g(Ω− ω) for all ω formalizes symmetry about the

mean value. Another interesting property of the Kuramoto model is its rotational symmetry.

Indeed, we can set the mean frequency Ω = 0, by rede�ning θi → θi + Ωt for all i, that

corresponds to going into a rotating frame at frequency Ω. Thus the governing equations

remains

θi = ωi +
K

N

N∑
j=1

sin (θj − θi), i = 1, . . . , N (3-3)

where ωi are now the deviations from the mean Ω, obtained by subtracting Ω from the

equation of each oscillator. Thus, thanks to the rotational symmetry in the model, the

unimodal hypothesis translates in the fact that g(ω) is nowhere increasing in the interval

[0,+∞), having set the mean value Ω to zero.

A network of Kuramoto oscillators can be seen as a swarm of points moving on a unitary

circle in the complex plane. Moreover, the order parameter de�ned as

R(t)eiφ(t) =
1

N

N∑
j=1

eiθj(t) (3-4)

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the

whole population. It takes value in the interval [0, 1], with r ≈ 1 when the population acts

as a giant oscillators and r ≈ 0 if oscillators are scattered around the circle. Note that r = 1

if and only if all the oscillators share the same instantaneous phase θ1(t) = θ2(t) = . . . θN(t).

The quantity φ, instead, can be seen as the average phase. An interesting feature of the

Kuramoto model is that Equation (3-3) can be rewritten in terms of the order parameter.

Indeed, multiplying both sides of Equation (3-4) by e−iθi yields

R(t)ei(φ(t)−θi(t)) =
1

N

N∑
j=1

ei(θj(t)−θi(t)) (3-5)

that corresponds to two equations, one for the real part and the other for the imaginary one.

Equating the imaginary parts one obtains

R(t) sin (φ(t)− θ(t) =
1

N

N∑
j=1

sin (θj(t)− θi(t)) (3-6)
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Substituting in Equation (3-3) yields

θ̇i = ωi −
KR(t)

N
sin (φ− θi), i = 1, . . . , N (3-7)

Equation (3-7) clearly shows that each oscillator is interacting with each other via the macro-

scopic quantities R and φ. In particular the phase of i-th oscillators is pulled towards the

average phase φ. Moreover, there is a positive feedback loop between coupling K and co-

herence R. Indeed, as the population becomes more coherent, R grows and so the e�ective

coupling KR increases, which tends to recruit even more oscillators into the synchronized

cluster. If the coherence is further increased by the new recruits, the process will continue;

otherwise, it becomes self-limiting.

One of the characterization of the Kuramoto model is the curve R−K, that describes how

the order parameter changes as the coupling strength is varied. Numerical simulations show

that the order parameter remains close to zero until a certain threshold, say Kc, is crossed.

Then for K > Kc the order parameter grows exponentially, re�ecting the formation of small

clusters that merge, as K is increased, in a giant cluster, yielding r ≈ 1.

Kuramoto analysis, assuming N →∞, predicts the behaviour presented so far. Kuramoto's

exact formula for the critical coupling at the onset of collective synchronization is given by

Kc =
2

πg(0)

3.3 Developments

Starting from the pioneering work by Kuramoto, and due to the increasing interest in Com-

plex Networks, extensions to the Kuramoto model have been proposed in the literature, from

those considering general type of interconnection to those where the coupling is time-varying.

In this section we will highlight some of those developments that will be relevant for the rest

of the thesis.

3.3.1 Critical coupling for the onset of synchronization

A �rst research direction on the Kuramoto model is concerned with �nding necessary and/or

su�cient conditions ensuring synchronization. These results come mainly from the Control

Theory community and assume there is a �nite number of oscillators. Before showing the
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main results in that direction, it is worth de�ning some concepts about synchronization in

a network of phase oscillators.

We start by recalling a weaker form of synchronization

De�nition 3.3.1 (Frequency synchronization). The oscillators are said to achieve frequency

synchronization if

lim
t→∞

∣∣∣θ̇j(t)− θ̇i(t)∣∣∣ = 0 ∀i, j = 1, . . . , N

Then, we de�ne phase synchronization as

De�nition 3.3.2 (Phase synchronization). The oscillators are said to achieve phase syn-

chronization if

lim
t→∞
|θj(t)− θi(t)| = 0 ∀i, j = 1, . . . , N

Note that phase synchronization is not attainable when oscillators have heterogeneous nat-

ural frequencies [24].

Let us assume that natural frequencies are supported on a compact interval ωi ∈ [ωmin, ωmax].

Then, a necessary condition for the existence of synchronized solutions, is given in [14, 39]

as

K >
N(ωmax − ωmin)

2(N − 1)
(3-8)

A looser but still insightful necessary condition is K > 2σ [36] where σ is the variance of the

natural frequencies. Moreover, in [14], su�cient conditions for exponential synchronization

of the oscillator frequencies to the mean natural frequency of the group were also developed.

An interesting case is investigated in [39] where authors considered a general type of inter-

connection among the oscillators. The Kuramoto model for a generic unweighted network

structure can be written, using tools from graph theory (see Chapter 2), as

θ̇ = ω − K

N
B sin(BT θ) (3-9)

where θ = [θ1, . . . , θN ]T collects the phases of the oscillators and ω = [ω1, . . . , ωN ]T the nat-

ural frequencies. Moreover, B is the incidence matrix of the unweighted network structure.

Synchronization is best de�ned in a grounded system, where the phase are de�ned with

respect to a reference variable. This can be achieved by any projection VN×N−1 with

VTV = I, VVT = I− 1N1
T
N

N
, VT1N = 0
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Thus, V is a matrix collecting the N − 1 vectors orthogonal to 1N , which generates the

grounded coordinates θ̄ = VT θ and ω̄ = VTω. The grounded Kuramoto model is

θ̄ = ω̄ − K

N
VTB sin (BTVθ) (3-10)

As the coupling K is decreased, there is a critical value KL below which no �xed point

exists, resulting in a running solution for the grounded system (3-10). This means that the

system cannot be fully synchronized for K < KL. In [39], a su�cient condition for frequency

synchronization is given as

K ≥ 2

√
N‖ω‖2

λ2(L)
(3-11)

3.3.2 Explosive synchronization

Several works have veri�ed the occurrence of discontinuous synchronization transitions in

the tradition Kuramoto model since 90's [65]. However in 2011, Gómez-Gardenez et.al. [30]

showed the occurrence of a discontinuous transition, or explosive synchronization as called

by them. Authors pointed out that the correlation between network structure and frequency

allocation is the mechanism behind such transition. Speci�cally, they taken the natural

frequencies as ωi = ki, where ki is the node degree (see Chapter 2), in a scale free network.

Later, Leyva et.al. [43] demonstrated that the choice ωi = ki is not su�cient for explosive

synchronization. Indeed abrupt transition to synchronization cannot be found in networks

with homogeneous degree distribution, despite that choice of natural frequencies. Authors

in [43] showed, instead, that every pair of nodes should satisfy

|ωi − ωj| > ε

imposing a gap in the frequency mismatch. In [43] it has been showed that for su�ciently

large ε the transition becomes discontinuous, a phenomenon not observed for the same

network topology under the constraint ωi = ki.

Recently, Zhang et.al. [97] proposed the adaptive model

θ̇i = ωi + λαi

N∑
j=1

Aij sin (θj − θi) (3-12)

where ωi is taken from a distribution g(ω). To de�ne αi authors refer to the local order

parameter for the i-th oscillator rieiφ = 1/ki
∑

j∈Ni e
iθj . Then they choose αi = ri for a
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fraction f of nodes and αi = 1 for the remaining ones. Increasing the fraction f from 0 to

1, and considering the same network structure, it is possible to see emergence of explosive

synchronization, as f > fc. Analytical work con�rmed the numerical evidence, showing that

the proposed strategy avoids the merging of small synchronized groups, that would result in

a large synchronized cluster, yielding explosive synchronization.

3.4 Summary

Kuramoto model, even though very essential, embodies lots of features that researchers have

been studying for years. It clearly describes the form of the interaction in a group of coupled

oscillators and tell us signi�cant facts about the onset of synchronization. In this Chapter we

just mentioned some of them (for an exhaustive review see [83, 65]). This Chapter completes

the overview on the background that is needed for the rest of the thesis. Next Chapter

addresses an extension, presented in [21], of edge snapping mechanism for directed networks

and general types of consensus. Moreover, we will come back to Kuramoto oscillators in

Chapter 5, where the method we will propose is based on coupled phase oscillators.
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Modi�ed edge-snapping techniques

As discussed in Chapter 2, the design of the communication protocol among the agents is

crucial in consensus problems. Many results are available in the literature for the case of

(possibly switching and directed) di�usive linear protocols, see [53, 15, 62, 48] and references

therein. Nonetheless, an interesting open problem is to �nd new adaptive strategies to evolve

the structure of the interactions among agents so as to ensure the emergence of consensus.

In this Chapter, focusing on networks of integrators, we aim at extending the classical edge

snapping mechanism (see Chapter 2) so as to steer the nodes' dynamics towards a desired

consensus value, which is in general di�erent from average consensus. To achieve our goal, we

explore the use of two novel strategies that allow the emergence of steady directed network

con�gurations. Speci�cally, we propose an hybrid method to achieve min- or max- consensus

proving its stability. We then conjecture that an alternative smooth strategy for network

evolution can be used to steer the network dynamics towards consensus while guaranteeing

the emergence of a directed interconnection structure among the agents. The e�ectiveness of

the proposed approaches is investigated both theoretically and via representative numerical

examples.

4.1 General consensus and three-well potential

Consider a network of N integrators, whose topology is described by the graph G = {V , E},
where V is the set of nodes and E is the set of edges. The node dynamics can be described

as

ẋi = ui, i = 1, . . . , N, (4-1)
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where ui is a linear distributed protocol, described by

ui =
N∑
j=1
j 6=i

σij(t)(xj − xi), i = 1, . . . , N, (4-2)

with σij(t) ∈ R being the time-varying coupling gain between nodes i and j: σij(t) is greater

than zero if there is an edge between i and j, while it is zero otherwise. In matrix form,

network (4-1)-(4-2) can be equivalently rewritten as

ẋ = −Lx, (4-3)

where x = [x1, . . . , xN ]T , and L is the Laplacian matrix of the networks, de�ned in Chapter

2, whose ij-th element is de�ned as

l(t) =


−σij i 6= j,

−
N∑
r=1
r 6=i

lir i = j.
(4-4)

We say that network (4-1)-(4-2) achieves χ-consensus i�

lim
t→∞

ei(t) = 0,

for all i = 1, . . . , N , where

ei = χ(x(0))− xi. (4-5)

with χ : Rn × R being a real function of the initial conditions. Speci�cally, we say that

average consensus is achieved if

χ(x(0)) = χave(x(0)) :=
1

n

n∑
i=1

xi(0),

while max-consensus and min-consensus are achieved when

χ(x(0)) = χmax(x(0)) := max
i=1,...,N

xi(0)

and

χ(x(0)) = χmin(x(0)) := min
i=1,...,N

xi(0),

respectively.
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In what follows, we propose di�erent modi�cations of the strategy �rst introduced in [20]

to adapt the coupling gains σij for all (i, j), so that average, min-, or max-consensus can

be achieved. The edge snapping mechanism proposed in [20] (see also Chapter 2), is based

on assigning to the coupling gains σij(t) a second order dynamics subject to the e�ects of a

bistable potential V : R → R, driven by a function of the error eij = xj − xi. Recall that

the gains dynamics is given by

s̈ij + dṡij +
∂

∂sij
V (sij) = g(eij), (4-6a)

σij = h(sij), (4-6b)

where sij ∈ R, d is the damping, and h is the scalar output function. Notice that, adopting

the edge snapping approach for coupling adaptation, the network can be still described by

equations (4-3)-(4-4), where the Laplacian matrix is now time-varying, that is, L = L(t).

Indeed, at the onset of the evolution, all nodes are disconnected, that is, all edges in the net-

work are at the equilibrium state corresponding to edges being switched o�. Edge snapping

is induced as the external forcing (error between neighboring nodes) is strong enough to drive

the corresponding gain to the other equilibrium associated to the edge being switched on.

As can be noted from (4-6), network evolution can be controlled by choosing the potential

V , the input function g, and the output function h. Speci�cally, we will de�ne an certain

rule to update the Laplacian L in (4-4) and choose a three-well potential V , see Figure 4-1,

de�ned by

V (σij) = bσ2
ij(σij − 1)2(σij + 1)2, (4-7)

Next we discuss how an appropriate choice of functions g and h can be made to steer the

network towards a desired consensus value χ(x(0)).

4.2 Hybrid Edge Snapping

In this section, we illustrate how the snapping mechanism can be tailored to achieve χ-

consensus, where χ is in general di�erent from χave. To achieve this goal, we need to allow

the emergence of a directed network from the snapping evolution. To this aim, we de�ne

an hybrid rule to update the Laplacian L in (4-4) and choose the three-well potential V in

Equation (4-7), see Fig. 4-1, and a di�erent input function g. Speci�cally, we select

g(xj − xi) = xj − xi, (4-8)
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Figure 4-1: Three-well potential (4-7) driving the evolution of each σij.

and we set h(sij) = sij so that (4-6) can be rewritten as

σ̈ij = −dσ̇ij −
∂

∂σij
V (σij) + g(xj − xi). (4-9)

For the sake of clarity, in what follows we refer to the case of max-consensus, but the proposed

approach can be adjusted to achieve min-consensus.

Following an approach inspired from [15], we propose the following hybrid rule to achieve

max-consensus:

lij(t) =



− |σij| xj ≥ xi, i 6= j,

0 xj < xi, i 6= j,

−
N∑
r=1
r 6=i

lir i = j.

(4-10)

Rule (4-10) simply implies that an edge from node j to node i is fostered if xj > xi, i.e.

the activation is promoted of edges directed from nodes with greater to lower state values.

The analogy with energy �ows is clear since energy spontaneously �ows from higher to lower

levels. We show the e�ectiveness of this rule in three steps: i) We show the boundedness of

the error system, ii) we prove that the only possible consensus value is max-consensus, iii)

we prove that max-consensus is asymptotically achieved.

Boundedness of the error system is trivial from contraction analysis (see Chapter 7). Indeed,

from construction we have µ∞(−L(t)) = 0 for all t ≥ 0, which implies that ‖x‖∞ is bounded.

Then, ‖e‖∞ is bounded, and consequently so is ‖e‖2, from norm equivalence. Now, let's de�ne

M := argmax
i=1,...,N

xi(0).
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Note that the hybrid rule (4-10) implies that

ẋi(t) ≥ 0, i = 1, . . . , N, t ≥ 0,

and that

ẋM(t) = 0, t ≥ 0.

We will show by contradiction that xi(t) ≤ xM(0). Indeed, suppose a time instant t̄ exists

such that for all t > t̄, xi(t) > xM(0). Then, being xi continuous, xi(t̄) = xM(0). Hence,

from rule (4-10), ẋi(t) would be locked to zero for all t ≥ t̄ against the hypothesis. Therefore,

we can conclude that xi(t) ≤ xM(0), from which we have

ei ≥ 0, ėi ≤ 0, i = 1, . . . , N, t ≥ 0,

which implies that ‖e‖2 is decreasing. As ‖e‖2 is also bounded, then we can conclude that

lim
t→∞
‖e(t)‖2 = c ≤ ‖e(0)‖2 .

At steady-state, we have d
dt
‖e‖2 = 0, which implies that σij = 0 for all (i, j) and/or ei = 0

for all (i, j). Notice, nonetheless, that if for some i, ei 6= 0, then equation (4-6) would imply

that the corresponding σij is di�erent from 0 and thus d
dt
‖e‖ < 0. Hence, we would get

a contradiction. Therefore, c = 0 and the network of integrators asymptotically reaches

max-consensus.

To complement the analysis, we numerically test this approach on a network of 50 integrators.

The nodes' initial conditions are selected from a normal distribution with zero mean and

standard deviation equal to 15, while sij(0) is set to 0 for all i, j = 1, . . . , N . As reported in

Figure 4-2a, max-consensus is achieved and the agents asymptotically converge to the value

31.68 corresponding to maxi xi(0), while the coupling gains settle to steady state bounded

values, see Figure 4-2b.

Remark 4.2.1. Following a similar argument to that presented above, we can show that the

hybrid rule can be adjusted to

lij(t) =



− |σij(t)| xj < xi, i 6= j,

0 xj ≥ xi, i 6= j,

−
N∑
r=1
r 6=i

lir(t) i = j,

(4-11)
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(a) (b)

Figure 4-2: Network of N = 50 integrators: (a) Evolution of the agent states towards max-
consensus; (b) evolution of the coupling gains.

if the goal is to achieve min-consensus, that is,

lim
t→∞

(xi(t)− χmin) = 0.

In Figure 4-3, we illustrate that min-consensus is achieved in a network of N = 50 integra-

tors by means of rule (4-11).

4.3 Directed edge snapping

As an illustration of the viability of the edge-snapping strategy to steer the dynamics of a

network of interest, we present and investigate numerically the performance of a di�erent gain

evolving strategy guaranteeing the evolution of a digraph connecting nodes in the network

so that consensus emerges.

Speci�cally, the potential V , the output function g, and the function h(sij) are those in

equations (4-7), (4-8), and (4-9), respectively but the time varying Laplacian matrix is now

described by

lij =



−σij σij ≥ 0, i 6= j,

0 σij < 0, i 6= j,

−
N∑
r=1
r 6=i

lir i = j.

(4-12)

Under this choice, given any pair of nodes (i, j), we have three coexisting stable equilibria

for the edge dynamics: σij = 0 (no active edges), σij = 1 (an edge from j to i is activated),
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(a) (b)

Figure 4-3: Network of N = 50 integrators: (a) Evolution of the agent states towards min-
consensus; (b) evolution of the coupling gains.

and σij = −1 (an edge from i to j is activated). Notice that, when xj > xi, the input g

will be positive, and the activation of an edge from j to i will be facilitated. Otherwise, if

xj < xi, then the bidirectional input g will be negative, thus fostering the activation of an

edge from i to j.

To illustrate the e�ectiveness of the approach, we simulate the evolution of a network of

N = 50 integrators, with nodes' initial conditions taken from a normal distribution with zero

mean and standard deviation equal to 15. As usual, we set sij(0) = 0, for all i, j = 1, . . . , N .

As depicted in Figure 4-4, consensus is achieved and the emerging topology achieves a

steady-state con�guration.

Note that in this case consensus is achieved onto the maximum value of the nodes' initial

conditions (max consensus). This can be explained heuristically by noting that during the

network evolution a directed spanning tree rooted in the node with the maximal initial

condition has emerged and conditions for max consensus are ful�lled (a schematic of such

spanning tree is omitted here for the sake of brevity). More generally, a spanning tree can

be formed at a later stage of the evolution, and, in that case, consensus is still reached

but on a di�erent value. For example, in Figure 4-5, we show the simulation where we

selected node 1 to have a much smaller initial condition than the other nodes. In particular,

we have set x1(0) = −300, while the other initial conditions are the same as those used

in the previous simulation. As we can observe from Figure 4-5, agents agree on a value

χ(x(0)) = 19.29 < maxi xi(0) = 25.02. Notice that this approach can be easily adjusted to
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(a) (b)

Figure 4-4: Network of N = 50 integrators: (a) Max-consensus is achieved through directed
edge snapping; (b) all the coupling gains converge to the equilibrium values.

change the consensus value. For example, it su�ces to choose

g(xi − xj) = xj − xi

in order to steer the dynamics of all nodes towards a minimal rather than maximal value.

In Figure 4-6, we report the outputs of the simulations with the same initial conditions as

in Figure 4-4.

4.4 Summary

In this Chapter, we presented some extensions of the edge snapping strategy for consensus

of multiagent networks. We proposed two strategies, in which, di�erently from what derived

in [20], a directed steady-state network is evolved to achieve di�erent types of consensus.

We showed that by appropriately selecting the structure of the edge adaptation rule, we

can achieve both average (undirected edge snapping) and max/min consensus (hybrid edge

snapping). Next we will address a slightly di�erent problem. Indeed, we will show how to

use edge snapping in an evolutionary manner so as to make undirected networks emerge.

Structure and properties of those networks will be studied and their functionality will be

analysed.
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(a) (b)

Figure 4-5: Network of N = 50 integrators with x1(0) = −300: (a) χ-consensus is achieved
through directed edge snapping, with χ < χmax; (b) all the coupling gains con-
verge to the equilibrium values.

(a) (b)

Figure 4-6: Network of N = 50 integrators: (a) Min-consensus is achieved through directed
edge snapping; (b) all the coupling gains converge to the equilibrium values.



CHAPTER 5

An evolutionary strategy for network

synchronization

Evolution is a central feature of many natural systems [16]. It consists of two key ingredients:

mutation and selection. The �rst is based on the recombination within a class of organisms

that yields the formation of new species. Then selection is the mechanism determining the

survival of the �ttest to perform a certain function. Evolutionary algorithms are known in

the literature as genetic algorithms [17]. They are useful to optimize the behaviour of a

given system with respect to a payo� function, through iterative mutation and selection.

Recently, this mechanism has been successfully used in the �eld of complex networks [85] to

explore and uncover mechanisms for the emergence of collective behaviours in a multi-agent

network. Indeed, one of the most challenging open problems in Network Science [8] is aimed

to uncover the intrinsic relation between structure and function of a complex dynamical

network.

In this Chapter we will present a novel evolutionary method for network synchronization.

The emergence of functional networks will be discussed together with their structural and

dynamical properties that yield enhanced synchronizability. We will focus, for the sake of

clarity, on a network of Kuramoto oscillators, though our method is very general and can be

applied to a wide class of nonlinear oscillators.

The results of this Chapter were recently presented in [75, 76].
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5.1 Problem statement

We start by considering a network of general nonlinear coupled oscillators

ẋn = fn(xn) + c

N∑
m=1

knmg(xm,xn), (5-1)

where xn ∈ Rp is the p-dimensional state of the n-th oscillator, fn denotes its dynamics

(note that oscillators can be slightly di�erent from each other due to both parameters and

model mismatches), g is a generic coupling function and knm are time-varying coupling gains

determining the strength of the coupling between neighboring oscillators. We model the

evolutionary pressures to reach synchronization by considering state-dependent second-order

nonlinear dynamics for the gains dependent upon a double well potential V (x) = bx2(x−1)2.

The gain dynamics are given by

k̈nm + d k̇nm +
∂V (knm)

∂knm
= h(‖xm − xn‖), (5-2)

in which h(‖xm − xn‖) is a generic increasing function such that h(0) = 0. Note that this is

a very general adaptive network equation relying on a decentralized, local, state-dependent

interconnection rule. This system can be systematically reduced, under a standard technique

[42], to the network of adaptively coupled phase oscillators:

θ̇n = ωn +
1

N

N∑
m=1

knmΓ(θm − θn), (5-3)

k̈nm + d k̇nm +
∂V (knm)

∂knm
= h(‖θm − θn‖), (5-4)

in which θn is the phase of the n-th generic oscillator, Γ(θm − θn) is a generic 2π-periodic

function. We set the overall coupling strength K to a unitary value, since it can be absorbed

into a parameter de�ning the heterogeneity of the natural frequencies by rescaling time, i.e.

by setting τ = Kt. In this paper we analyze, for the sake of clarity, the simplest case

Γ(θm − θn) = sin(θm − θn), (5-5)

h(‖θm − θn‖) = α

[
1− 1

2
|eiθn + eiθm|

]
. (5-6)

The di�erences in the natural frequencies of the oscillators originate from the heterogeneity

of the node dynamics fn in weakly coupled nonlinear oscillators [42]. In what follows, these
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p*
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Figure 5-1: Schematic description of the evolutionary edge-snapping strategy. Step 1 (varia-
tion): computation of link activation probabilities by running the edge-snapping
strategy from many di�erent random initial conditions. Step 2 (selection): se-
lection of those links whose activation probability is above some threshold value
p∗.

natural frequencies are selected deterministically from a Gaussian distribution with zero

mean and standard deviation equal to σ. Therefore, the parameter σ can be used to �tune�

the level of heterogeneity among nodes.

We note here that when the number of nodes is not so large, such as N = 6 or 7, the natural

frequencies sampled from a distribution can be biased. To avoid the e�ect of the biased

sampling, we deterministically select the natural frequencies of the oscillators, similarly to

[93], as the N -tuple satisfying the constraints:∫ ω1

−∞
g(ω)dω =

1

N + 1
, (i = 1)∫ ωi

−ωi−1

g(ω)dω =
1

N + 1
, (i = 2, . . . , N)

where g(ω) is the probability density function of a given distribution. It should be noted that

for a large network, we performed our simulation taking the natural frequencies randomly

from a distribution and the obtained results are qualitatively the same.

Next, we investigate how the evolution of the network is a�ected by tuning the heterogeneity

in the nodes. To this aim we use the edge snapping strategy described above in a novel

evolutionary manner (see Figure 5-1) as explained in the next section.

5.2 Methodology

The evolutionary Edge-Snapping technique is based on two fundamental steps: one imple-

menting the variation ingredient of evolution, the other its selection mechanism.
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To implement the variation ingredient of evolution, a set of unweighted networks is generated

using equations (5-3) and (5-4) starting the process from di�erent sets of initial conditions.

We consider a set of nS initial conditions randomly selected using a Latin Hypercube strategy

[47] in the range θn(0) ∈ [0, 2π[, n = 1, 2, . . . , N . To obtain the ��tness� of each link, we next

compute the probability pij of each link being activated as the fraction between the number

of generated networks where that link is present, say nij, and the total number of trials, e.g.

pij = nij/nS. This yields a stochastic N ×N matrix P whose elements are the probabilities

of activation of every possible link among nodes.

The selection rule is obtained by selecting only those links whose activation probability is

above a certain critical threshold value p∗, i.e. such that pij > p∗. We choose p∗ so as to

guarantee that the resulting network is connected and has the smallest number of links. We

shall term such a network as the minimal edge-snapping (ES) network.
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Figure 5-2: (a) Standard deviation of the link activation probability pij as a function of the
number of trials nS. (b) Order parameter and relative number of links of the
minimal ES structure as a function of the number of trials nS.

The variation step of our evolutionary strategy relies on the generation of a set of nS un-

weighted network using equations (5-3) and (5-4) and starting the process from a di�erent

set of initial condition. With the aim of choosing a reasonable value for the number of trials

nS, we plot in Figure 5-2(a) the standard deviation of the link activation probability pij as

a function of nS. As can be noted, the di�erentiation in the pij is quite constant as nS varies

from 100 to 1000. Thus we select nS = 100 in all of our simulations. Indeed this guarantees

a good degree of variation with the least computational cost. Finally, Figure 5-2(b) con�rms

that the dynamical and structural properties of the emerging ES minimal structure do not

show signi�cant �uctuations when the value of nS is increased.
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Note that the state space of the initial phases of many oscillators is a high-dimensional

space (i.e. the aggregate N-dimensional state space obtained collecting the phase of each

oscillator in the stack vector Θ = [θ1, θ2, . . . , θN ]). To obtain e�ective samplings from that

space, we adopted a Latin Hypercube Sampling (LHS) strategy �rst proposed in [47]. LHS

is a statistical method for generating a sample of plausible collections of parameter values

from a multidimensional distribution. Speci�cally, let X denote a N variate random variable

with probability density function f(x) for x ∈ S. Then the range space of each of the N

components of X is partitioned in nS disjoint intervals Si of size pi = P (X ∈ Si) = 1/nS.

Taking the Cartesian product of these intervals yields nNS cells each of probability size n−NS .

Each cell can be labeled by a set of N coordinates mi = (mi1,mi,2, . . . ,miN) where mij is the

interval number of component Xj represented in cell i. A LHS is obtained from a random

selection of the cells m1, . . . ,mnS , with the condition that for each j the set {mij}nSi=1 is a

permutation of integers 1, 2, . . . , nS. As a result, one random observation is made in each

cell. The main advantage of the LHS strategy is that it does not require more samples for

more dimension of the range space S. This is the main reason why we use LHS in our

method.

To measure the synchronization performance of a ES network, we consider an ensemble

of phase oscillators connected by that network and evaluate Kuramoto order parameter as

Reiψ = 1
N

∑N
n=1 e

iθn .

5.3 Analysis of emergent network structures

We �rst test our strategy by applying it to a small size network with N = 6 and σ = 0.3

(Figure 5-3). We obtain the P matrix visualized in Figure 2(a). In Figure 2(b), as the

threshold value p is increased, the number of edges, M , rapidly decreases while the value of

the order parameter R remains near unity.

In the �gure, the normalized number of edges, which is divided by maximum links between

N nodes, i.e. M̄ = M/Ma2a, is plotted. Also above a certain threshold the network becomes

disconnected. Therefore we choose p∗ = 0.57 obtaining the minimal ES network depicted in

Figure 2(c) which is characterized by M = 7 edges and R = 0.96. We compare the minimal

ES structure with the optimal network structure shown in Figure 2(d) obtained from an

exhaustive search and a Monte Carlo based method [33] maximizing the value of R with the

constraint that the total number of edges M is equal to 7. We notice that the two networks

share the same links.



� 44 5 An evolutionary strategy for network synchronization

 0

 0.5

 1

 0.5  0.75  1

R

M

(a) (b)

(c) (d)

0

0.5

1

p

1

2

34

5

6

1

2

34

5

6 1

2

34

5

6

p*

Figure 5-3: (a) Link activation probabilities pij in the case of N = 6 generated by the
variation stage of the evolutionary ES strategy; (b) Selection of the threshold
probability value p: order parameter R, relative number of links M̄ . The arrow
on the x-axis indicates the critical threshold p∗ which gives the minimal ES
network; (c) Minimal Edge-Snapping Network; (d) Optimal network maximizing
R obtained by Exhaustive search and a Monte Carlo based method.

Next, we study how heterogeneity induces functional structural properties of the network.

Figure 5-4 shows the P matrix as a function of the heterogeneity parameter σ when N =

20. We see that as σ is increased a di�erentiation becomes more and more apparent in

the distribution of the link activation probabilities pij with edges between oscillators with

relatively di�erent frequencies becoming more likely to occur in the minimal ES structure.

Figure 5-5(a) shows the standard deviation of the link activation probabilities pij as a linear

function of σ in a larger network of N = 100 oscillators. The structural properties of

the emerging network are therefore induced by the node heterogeneity. This is con�rmed in

Figure 5-5(b) where the maximum and minimum values of the node degree ki, corresponding

σ=0 σ = 0.07 σ = 0.14 σ = 0.2
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Figure 5-4: Heterogeneity induces functional structural properties of the network. P matrix
as a function of the heterogeneity parameter σ when N = 20.
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Figure 5-5: Structural properties of the emergent minimal ES network with N = 100 and
σ = 0.2. (a) Standard deviation of the link activation probabilities pij as a
function of σ. (b) Maximum (red dashed line) and minimum (black solid line)
value of Node Degree ki as a function of σ. (c) Activation probability of each
link against the value of the di�erence between the natural frequencies of the
oscillators at the endpoints. (d) Node degree ki vs. ωi. (e) Order parameter
R (red solid line) and relative number of links M̄ (blue solid line) of the ES
network as a function of the threshold probability value p. For comparison,
the value R is depicted for an all-to-all network (purple dashed line) and for
randomly generated networks (blue dot-dashed line) with the same number of
links. The arrow on x-axis represents the threshold p∗ to give the minimal ES
network. (f) Order parameter R of the phase oscillators interconnected by the
minimal ES network when the overall coupling strength K is increased (red
solid) and decreased (blue dashed). We set N = 300 and σ = 0.2.
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to each minimal ES network, is plotted as a function of σ. The behaviors of the maximum

value of ki (red dashed line) and the minimum of ki (black solid line) show an abrupt

transition when passing from σ = 0 to σ > 0. This suggests that the di�erentiation in the

degree distribution of the minimal ES network becomes remarkable when heterogeneity in the

nodes is increased from zero (identical oscillators) to a value greater than zero (non-identical

oscillators).

The structural properties of the emergent minimal ES network are highlighted in Fig. 5-

5(c)-(f) for a network of highly heterogeneous N = 100 oscillators (σ = 0.2). The activation

probability of each link is plotted in Figure 5-5(c) against the value of the di�erence between

the natural frequencies of the oscillators at the endpoints. Links connecting more distant

nodes tend to be activated with a higher likelihood con�rming that di�erentiation among

links is induced by heterogeneity in the nodes. Also, as shown in Figure 5-5(d), hubs tend

to be associated with oscillators whose frequencies are farther away from the average. The

functional advantage of the emerging network is shown in Figure 5-5(e). Indeed, we observe

that the order parameter of the minimal ES structure is close to its maximal value for an

all-to-all network, even if the number of links in the minimal ES network is remarkably lower

than that in an all-to-all con�guration. For the sake of comparison, the values of R for a

randomly generated network of the same number of edges is also depicted in Figure 5-5(e).

The sudden dip of R is due to the graph becoming disconnected beyond that critical value

of the threshold p∗.

Notice that, as shown in Figure 5-5(f), as the coupling strength K is varied, the order

parameter R of the phase oscillators interconnected by the minimal ES network exhibits a

sudden hysteretic change, associated to a discontinuous phase transition, whereas the system

with a unimodal frequency distribution undergoes a continuous phase transition [42]. This

discontinuous phase transition, also known as �explosive synchronisation�, has been studied

in the literature [55, 31, 43, 98], also in the case of adaptive networks [38, 97], revealing that

the correlation between natural frequencies and the node degree, as shown in Figure 4(d),

can induce this phenomenon. Here, we wish to emphasise that the proposed evolutionary

strategy, which functionally organizes the network structure for synchronization, changes the

type of phase transition that would be generically observed otherwise, inducing explosive

synchronisation.

Our results clearly show the role of node heterogeneity in inducing functional structures

using an evolutionary strategy for network synchronization. In particular, di�erences in the

node dynamics do in�uence the evolution of the network determining a di�erentiation in the
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link activation probabilities that is instrumental to obtain minimal structures with relatively

high values of the order parameter. Also, hubs tend to emerge there where the distance from

the average natural frequency is highest.

It is notable that the presence of hubs seems to characterize the emergent networks for

synchronization when the nodes are heterogeneous as opposed to more homogenous struc-

tures, such as entangled networks, which have been suggested to be optimal structures in

the homogeneous case [23]. This is also con�rmed in the case of Monte Carlo based optimal

networks in [93] where the presence of links between nodes with more distant frequencies

is shown to be more likely and in the recent paper [80] based on the use of gradient-based

methods. Here we obtain a further con�rmation of these observations but via a generic local

evolutionary strategy that is state-dependent and can be applied to a wider range of network

synchronization and control problems.

5.4 Larger networks

Results obtained in previous sections could be biased by �nite size e�ect [42]. Thus we

provide the same analysis considering higher network sizes (we set N = 1000). We take into

account four di�erent values of standard deviation. Namely, σ = 0.07, σ = 0.1, σ = 0.14 and

σ = 0.2. For each of them we repeat the evolutionary strategy presented above, obtaining

results shown in Figure 5-6 where is clear that increasing heterogeneity, the emerging network

becomes more and more heterogeneous. What we show in Figure 5-6 is nodes' degree as a

function of natural frequency of each node, i.e. a degree-frequency plot. Notice the sparseness

of such a plot when the heterogeneity in the nodes is small. Conversely, when σ = 0.2, nodes

with highest and lowest natural frequencies tend to be connected to all other nodes in the

network. This, in turn, results in a "saturating e�ect" a�ecting the degree-frequency plot.

Next we explore the structural features of the emergent network when σ = 0.14. Before

that, we recall some assortativity1 measures, introduced in the literature and well suited to

the case of Kuramoto oscillators.

De�nition 5.4.1 (Degree-frequency mixing coe�cient [25]). Given a network of oscilla-

tors with node degrees ki and natural frequencies ωi, we introduce degree-frequency mixing

1In Chapter 2 we introduced the general concept of assortativity mixing in networks
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Figure 5-6: Frequency-degree plots for di�erent values of network heterogeneity σ. We set
N = 1000.

coe�cient

rkω =
N−1

∑N
i=1 kiωi − 〈k〉〈ω〉√

N−1
∑N

i=1 k
2
i − 〈k〉2

√
N−1

∑N
i=1 ω

2
i − 〈ω〉2

where 〈k〉 = 1/N
∑N

i=1 ki and 〈ω〉 = 1/N
∑N

i=1 ωi.

De�nition 5.4.2 (frequency-frequency mixing coe�cient [9]). Given a network of oscillators

with node degrees ki and natural frequencies ωi, a frequency-frequency mixing coe�cient can

be de�ned

cω =

∑
i,j aij(ωi − 〈ω〉)(ωj − 〈ω〉)∑

i,j aij(ωi − 〈ω〉)2

where 〈ω〉 = 1/N
∑N

i=1 ωi and aij are the entries of the adjacency matrix.

Note that the coe�cient rkω lies in the range [−1, 1] and gives a measure of the correlation

between the degrees and natural frequency of oscillators. Instead, cω quanti�es how often

nodes with large negative omega are adjacent to nodes with strongly positive omega.

Now, we provide a comparison of minimal network with the optimal structure obtained in

[80]. Further, we compare our minimal network with what we call "NetworkCM". Namely

we construct, through Con�guration Model [50], a set of di�erent networks sharing, with

minimal network, the same degree distribution. Then we average the resulting characteris-

tics of such networks, over 10 realizations, yielding results shown in third column of Table

5-1, where the features of minimal and optimal networks are summarized too. Notice that

NetworkCM has a di�erent number of edges compared to minimal and optimal networks.
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Minimal Optimal NetworkCM
M(edges) 83746 83746 81110
Clustering 0.2143 0.2002 0.4679
Diameter 2 2 4

λ2 32.9667 44.5288 32.4256
rkω 0.9704 0.9706 0.9887
cω -0.5664 -0.5280 -0.0016
R 0.8215 0.9171 0.1136

Table 5-1: Comparison results (N = 1000). Minimal network is obtained for σ = 0.14.
The optimal structure is computed as in [80]. NetworkCM was obtained with
the Con�guration Model algorithm [50], given the degree distribution of minimal
network. All quantities referring to NetworkCM are averaged over 10 realizations.

Indeed, we used a Con�guration Model algorithm in which self loops and multiple edges

are not allowed. Thus, after a network is generated according to Con�guration Model, such

edges are cancelled resulting in a structure with a lower M . We note here minimal and

optimal networks do not show the presence of multiple edges nor self loops. Clustering co-

e�cient and diameter of NetworkCM are quite twice, compared to those of minimal and

optimal networks. Degree frequency assortativity (see Chapter 2) does not show signi�cant

di�erences, while frequency-frequency assortativity is almost zero for NetworkCM and nega-

tive for the other two networks. Finally, NetworkCM ensures a value of the order parameter

R that is very small compared to that of minimal structure, though they share the same

degree distribution. Results shown in Table 5-1 suggest assortativity can enhance synchro-

nizability. Nonetheless, degree-frequency assortativity is not su�cient to guarantee good

performances, contrary to what is pointed out in [25]. Indeed frequency-frequency disassor-

tativity is also a crucial feature. Notice that, in [9] only frequency-frequency assortativity

cω is considered to enhance synchronization. We conjecture here that rkω and cω do both

in�uence synchronizability. The resulting network shows the presence of hubs associated

to nodes that are far from the average natural frequency (degree-frequency assortativity),

with most of connections being established between nodes with opposite natural frequencies

(frequency-frequency disassortativity).
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Figure 5-7: Robustness analysis of the emergent minimal ES network. (a) Variations of the
control input gain α (b) Variations of the damping factor d (c) Variations of the
height of the barrier b

5.5 Robustness properties varying the parameters

Our strategy depends upon three parameters: b that is proportional to the height of the

double-well potential barrier, d that is the damping coe�cient in the edge snapping dynamics

and α, a control input gain. To test the robustness of the proposed methodology to variations

of such parameters, we selected a range of variation for each of them. Then we show the

performance of the variation and selection methos, in terms of the order parameter R,

the relative number of edges M̄ and the relative smallest non-zero eigenvalue λ̄2 (these

relative quantities are de�ned with respect to the values of the all-to-all con�guration, namely

M̄ = M/Ma2a, where Ma2a is the number of links of the all-to-all network with N nodes and

M is the number of edges of the minimal ES network. Similarly, λ̄2 = λ2/λ
a2a
2 , where λa2a

2 is

the smallest non-zero eigenvalue of the all-to-all network with N nodes and λ2 the smallest

non-zero eigenvalue of the minimal ES network). We test the robustness of our approach on

a network of Kuramoto oscillators.

From Figure 5-7 we can observe that varying α, b and d the order parameter is always close

to 1, even if the number of edges and the smallest non-zero eigenvalue show �uctuations

denoting the possible presence of local extrema whose investigation is left for future work.
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5.6 Applications to networks of oscillators

In this section, we show the generality of our approach, by applying it to a network of

di�usively coupled nonidentical Rossler oscillators. The network model is

ẋn = −ωn yn − zn + c
∑N

m=1 knm(xm − xn)

ẏn = ωn xn + ayn + c
∑N

m=1 knm(ym − yn) (5-7)

żn = br + zi(xi − cr) + c
∑N

m=1 knm(zm − zn)

k̈nm + d k̇nm +
∂V (knm)

∂knm
= |θn − θm| (5-8)

where x = (xn, yn, zn)T ∈ R3 is the state of the n-th chaotic Rossler oscillator. We use a

complete coupling on each state variable. Moreover, the natural frequencies are taken from a

normal distribution with mean and standard deviation equal to 1. We deterministically select

the natural frequencies of the oscillators, similarly to what we have done for the Kuramoto

oscillators. (We also performed our simulation taking the natural frequencies randomly from

a normal distribution and the results are qualitatively the same).

We are interested in the so-called phase synchronization of chaotic oscillators. In [66] is

showed that the classical notion of synchronization can be extended to chaotic oscillators.

In this context, there is a need for the de�nition of the time-dependent amplitude A(t) and

phase θ(t) of a chaotic signal. There are several approaches in the literature. Here we choose

to de�ne A(t) and θ(t) as [28]

A(t)eiθ(t) = s(t) + is̃(t) (5-9)

where s(t) is the chaotic signal, while s̃(t) is the Hilbert transorm of s(t). When the phase

of a chaotic signal is introduced in some way, one can de�ne the phase synchronization

as the occurence of a certain relation between the phases of interacting systems, while the

amplitudes can remain chaotic and are, in general, not correlated [54], i.e. only phase locking

is important. We recall (see Chapter 3) phase locking occurs when the di�erence between

the phases of the oscillators does not grow with time, but remains bounded.

As the phase of the Rossler oscillator is well de�ned, the adaptation rule can be chosen as in

Equation (5-8). In Figure 5-8 we show the pij distribution of a network of N = 10 Rossler

oscillators. In the numerical simulation we set nS = 100, the height of the barrier b = 300

and the Rossler parameters a = br = 0.1, c = 18 in order to obtain a chaotic behaviour [59].
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probabilities pij generated by the variation stage of the evolutionary ES strategy;
(b) Minimal ES network obtained selecting p∗ = 0.91. (c) Order parameter of
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solid line). For comparison, the value is depicted of the order parameter for
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choose. Indeed the network does not guarantee any phase locked solution above
that threshold. (d) Relative number of links M̄ of the minimal ES structure
(when compared to the number of links of the all-to-all structure).
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Moreover, we select the natural frequencies from a normal distribution with mean equal to

1 and standard deviation equal to 1.

The evolutionary and decentralized strategy presented in Section 5.2, allows us to �nd the

minimal ES network (see Figure 5-8) from the pij distribution, as the threshold p∗ = 0.91

is selected. Similarly to the results in Section 5.3 , nodes with higher connectivity are

those whose natural frequency is far from the average value. Figure 5-8 also shows the

synchronization performance of the minimal ES network. As can be seen from Figure 5-

8(c), the order parameter of the minimal ES structure is close to its maximal value, i.e.

R = 1. For the sake of comparison, the values of R2 for a randomly generated network of

the same size is also depicted in Figure 5-8(c). It is remarkable that the value of the order

parameter R remains near unity, even if, as the threshold value p∗ is increased, the relative

number of edges, M̄ (when compared to the number of links of the all-to-all structure),

rapidly decreases (see Figure 5-8(d)). As a result, the minimal ES network is characterised

by M = 12 edges, i.e. M̄ = 0.27, and R = 0.99.

5.7 Summary

We presented a novel strategy, based on evolution, for network synchronization. The adaptive

edge snapping mechanism is used to generate a minimal network in an evolutionary manner.

Indeed, our method consist of two key steps: Variation and Selection.

The minimal network emerging from that evolutionary strategy was investigated. Our results

suggest that heterogeneity is the driving force determining the evolution of state-dependent

functional networks. This can explain the structural properties detected in natural networks

such as neural interconnections in the brain, gene regulatory networks or ecological networks

where the states of the nodes typically a�ects the evolution of their interconnections [5, 7, 32].

Also assortativity is a central feature of emerging minimal ES networks, determining its

synchronizability properties (see Table 5-1).

Next, we will discuss the dynamics of two Kuramoto oscillators coupled via edge snapping

mechanism. This model, yet very simple, will be used to study robustness properties of a

network of N coupled Kuramoto oscillators, when a node is perturbed from the synchronized

state.

2The values of R are the average over the simulation interval, i.e. R = 1
T

∫ t0+Ts

t0
R(t)dt, where t0 is the

initial instant and Ts is the simulation time.



CHAPTER 6

Dynamics, stability and robustness of

evolving strategies

The evolutionary strategy presented in Chapter 5, is based on adaptation of coupling gains

through edge snapping. The output of variation stage is a collection of network structures

emerging from several adaptation trials. Therefore, understanding the main dynamical fea-

tures of such adaptation is of utmost importance. In [20] convergence properties of edge

snapping, in the case of nonlinear oscillators at each node, are shown in terms of appropri-

ate MSF functions (see Chapter 2). Nonetheless, the model we proposed for the variation

step of the evolutionary strategy contains several parameters that do in�uence the emerging

network structure. In this Chapter we provide an ad-hoc analysis of the dynamics, stability

and robustness of the evolving strategies we proposed starting from the simplest case of two

coupled oscillators. Moreover, in the last part we will see how that model can be useful in

the general case of N coupled oscillators.

6.1 Dynamics of adaptively coupled Kuramoto

oscillators: a brief overview

The dynamics of coupled Kuramoto oscillators has been studied extensively in the literature.

As discussed in Chapter 3, results range from the case of all-to-all interconnection structure

to sparse connected1 networks. However, the case in which the coupling gains are subject

1Usually, when considering a generic network describing the interaction among oscillators, there is a nonzero

hypothesis about the second smallest eigenvalue of the Laplacian matrix. That condition yields connect-
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to evolving (adaptive) laws is poorly explored. In this Section a brief literature overview is

provided, recalling works that are most related to that presented in this Thesis.

A novel adaptive strategy in a network of Kuramoto oscillators is introduced in [5]. Here,

the idea is to design an adaptation mechanism for the coupling that promotes the connection

strengths between those elements that are dynamically correlated. An instantaneous phase

correlation pnm between m-th and n-th oscillators is de�ned as pnm := 1
2

∣∣eiθm(t) + eiθn(t)
∣∣,

where θm(t) and θn(t) are the phases of oscillators m and n, respectively. Then, the adap-

tation law is chosen as k̇ = (pnm − pc)knm(1 − knm), where pc is a threshold and knm is

the coupling gain between oscillators. The main result is that modularity and assortativity

features (see Chapter 2) emerge spontaneously and simultaneously. Moreover, is proven in

[5] that such an emergent structure is associated with an asymptotic arrangement of the

collective dynamical state of the network into cluster synchronization.

A di�erent approach is presented in [77], where a �rst order sinusoidal adaptive law is

proposed for the coupling gains. Thus, the model considered is

θ̇i = ωi + 1
N

∑N
j=1 kij sin (θj − θi) (6-1a)

k̇ij = ε [α cos (θi − θj)− kij] (6-1b)

i.e. a Kuramoto oscillator at each node, with an evolving coupling kij whose adaptation is

described by Equation (6-1b). For small ε, one can expect that, for a couple of nonsynchro-

nized oscillators, the driving term α cos (θi − θj) is oscillating around zero. Thus, the the

coupling gain kij is also oscillating around zero. Instead, for two synchronized oscillators,

the driving term produces a constant nonzero value. Therefore, for large enough α, the

coupling gain between the two synchronized oscillators will be strengthened. For the sake

of simplicity, the analysis in [77] starts from two coupled oscillators. In this case the model

can be recast as

Φ̇ = ∆ω − k sin Φ (6-2a)

k̇ = ε(α cos Φ− k) (6-2b)

where Φ = θ2 − θ1 is the phase di�erence between the oscillators, ∆ω = ω2 − ω1 is the

di�erence between their natural frequencies and k the coupling gain. We note here that

edness of the network structure.
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stable �xed points of system (6-2) correspond to phase-locked solutions of system (6-1), with

N = 2. Moreover, unbounded solutions of system (6-2) are related to divergent solutions of

the original model (6-1) when N = 2. One of the main results in [77] is that, varying the

parameters α and ε, three situations are possible: (a) there are no �xed points, (b) there are

only stable �xed points and (c) there is coexistence of �xed points and unbounded solutions.

A converse approach in the adaptation rule is taken in [61]. Therein an evolving law is

selected fostering coupling between pairs of nodes that are desynchronized, i.e. pairs of

nodes which have larger phase incoherence. Thus, the network model becomes

θ̇i = ωi + 1
N

∑N
j=1 kij sin (θj − θi) (6-3a)

k̇ij = ε [α sin (β(θi − θj))− kij] (6-3b)

Authors in [61] point out that the evolving mechanism (6-3b) does make the whole network

prone to synchronization. To this aim, a comparison is provided in [61] between the evolving

network in Equation (6-3), and a static network with the same overall coupling strength.

In other words, both static and evolving networks are such that
∑

i,j k
static
ij =

∑
i,j k

evolving
ij ,

with clear interpretation of superscripts. Results show that the evolving networks achieve

better synchronization performance, in terms of relative phase di�erence (and thus in terms

of the overall order parameter, see Chapter 3), compared to static ones. As a result, the

synchronization speed and the steady-state phase di�erence can be adjusted and enhanced

by appropriately tuning the parameters ε, α and β of the adaptive law. We note here, a

similar adaptation law, given by k̇ij = −ε[sin (θj − θi + β)], was introduced in [4]. Authors

found that, depending on β, three fundamental states of collective behaviour are possible.

Namely, there is a two state cluster in which the oscillators are, basically, organized in two

synchronized groups. Another type is called coherent state, where oscillators are arranged

sequentially in time. Finally in the chaotic state the relative phases between oscillators and

their coupling weights are chaotically shu�ed.

6.2 Dynamics of two oscillators coupled via Edge

Snapping

As we discussed in Chapter 2, edge snapping is a viable method for network synchroniza-

tion. Moreover, in Chapter 5 we investigated the structural and functional properties of
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networks, emerging from the co-evolution of Kuramoto dynamics and edge snapping mech-

anism, through an evolutionary strategy based on variation and selection. In this Section,

we will recall our model, analysing its dynamical features and its dependence upon network

parameters. We will focus on the simplest case of two coupled Kuramoto oscillators via

an edge snapping evolving strategy. For the sake of clarity, we recall the network model

presented in Chapter 5

θ̇1 = ω1 +
k

N
sin (θ2 − θ1)

θ̇2 = ω2 +
k

N
sin (θ1 − θ2)

k̈ + d k̇ +
∂V (k)

∂k
= α

(
1−

∣∣∣∣eiθ1 + eiθ2

2

∣∣∣∣2
) (6-4)

where the �rst two equations represent the phase evolution of two Kuramoto oscillators,

while the latter describes an edge snapping mechanism. In particular, V (k) is the potential

and has been chosen as V (k) = bk2(k − 1)2. Thus, the third equation can be rewritten as

k̈ + d k̇ + 2b(2k3 − 3k2 + k) = α

(
1−

∣∣∣∣eiθ1 + eiθ2

2

∣∣∣∣2
)

(6-5)

Note that in Chapter 5, the second term in Equation (6-5) was taken equal to α
(

1−
∣∣∣ eiθ1+eiθ2

2

∣∣∣)
instead of α

(
1−

∣∣∣ eiθ1+eiθ2
2

∣∣∣2). We emphasize that, as expected, similar results still hold with

this choice. Moreover, de�ning ψ = θ2−θ1 and ∆ω = ω2−ω1, system (6-4) can be rewritten

as the third order system

ψ̇ = ∆ω − k sinψ

k̇ = v

v̇ = −d v − 2b(2k3 − 3k2 + k) + α

(
1− 2 + 2 cosψ

2

) (6-6)

where k is still the coupling gain and v = k̇ its derivative. We are interested in the dynamical

features of system (6-6). Thus, we are looking for equilibria of the system, and we want to

classify their stability. Setting the derivatives equal to zero yields
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Figure 6-1: (a) Nullclines and equilibria of system (6-6). Blue dots are stable and red dots
are unstable equilibria. (b) Some trajectories of system (6-6) rooted in several
initial conditions, with k = 0 and ψ varying from 0 to 2π.

v =0

∆ω − k sinψ =0

−2b(2k3 − 3k2 + k) + α

(
1− 2 + 2 cosψ

2

)
=0

(6-7)

Thus, we can study equilibria in the two-dimensional plane (k, ψ) de�ned by v = 0. In that

plane, nullclines are those shown in Figure 6-1(a), where blue dots represent stable equilibria

(denoted as A and B) and the red ones are unstable equilibria (C and D). We recall that

stable equilibria are related to phase-locked solutions. Moreover, nullclines in Figure 6-1(b)

are obtained for nominal values of model parameters ∆ω = 0.1, b = 20, d = 10, α = 10.

As noticed above, there are several parameters characterizing our model. Nullclines and

trajectories showed in Figure 6-1, are obtained for nominal values of the parameters, given

by ∆ω = 0.1, b = 20, d = 10, α = 10. Next we study the structural robustness of system

(6-6), against perturbations of parameters from their nominal values.

Robustness properties are analysed varying each parameter, one at a time, over a wide range.

In detail, we considered 4 cases

1. ∆ω = 0.1, b ∈ [0, 200], d = 10, α = 10;

2. ∆ω = 0.1, b = 20, d ∈ [0, 500], α = 10;
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Figure 6-2: Parameters variation (equilibrium A). Red(black) line are associated to sta-
ble(unstable) solutions. Green dots are related to the amplitude of stable limit
cycles.

3. ∆ω = 0.1, b = 20, d = 10, α ∈ [0, 100];

4. ∆ω ∈ [0, 2], b = 20, d = 10, α = 10

Results of cases 1 to 3 are shown in Figure 6-2. Bifurcation diagrams are obtained using

XPP/Auto software. Figures 6-2(a)-(b) show the onset of oscillations as limit cycles can

appear varying b and α. Thus, if b and α are not appropriately selected, the coupling gain

k and the phase di�erence ψ between oscillators, can start to persistently oscillate. On the

contrary, varying d is not observed to produce any signi�cant modi�cation of the dynamics

of system (6-9). When ∆ω is varied, instead, equilibrium A moves as showed in Figure 6-3.

Here a Hopf bifurcation occurs. Then equilibria B and C collide and disappear.

Equilibrium B represents the situation in which phase locking occurs with link activation

between nodes. Thus, the coupling gain k is close to 1, while the phase di�erence ψ is smaller,
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compared to Equilibrium A. Varying edge snapping parameters α, b and d, equilibrium A

does not show signi�cant variations, as illustrated in Figure 6-4. Variations of ∆ω, instead,

produces a saddle node bifurcation, as shown in Figure 6-5.

6.3 Two oscillators model

In this Section we will explore robustness properties of the evolutionary method presented

in Chapter 5. In order to asses such robustness features, we will assume that co-evolutionary

dynamics converges to a synchronized state. In that state, each oscillator moves at same

angular velocity Ω, forming what we call a "giant cluster". We note here, that the giant

cluster rotates, at steady state, as a single unit. Nevertheless, within the cluster, oscillators

display nonzero phase di�erences among each other, due to heterogeneity of their natural

frequencies.

Now, let us perturb a node from the synchronized state, i.e. add a perturbing term to its

dynamics kicking it out from the giant cluster. What happens to the whole system? Will

the perturbed node be still entrained, after a transient?

To analyse what happens after a perturbation of a single node, it is convenient to have a

snapshot of the dynamics before the perturbation. To this aim, let us denote N+ as the
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number of activated links between the perturbed node and the cluster, before the action

of the disturbing term, and N0 as the number of links that are switched o�. Recall that

N+ +N0 = N − 1. We can write

Θ̇ = Ω + 1
N

(N+k+ +N0k0) sin (φ−Θ) (6-8a)

φ̇ = ω + 1
N

(N+k+ +N0k0) sin (Θ− φ) (6-8b)

where Equation (6-8a) described the aggregate dynamics of the giant cluster and (6-8b)

describes the dynamics of the oscillator which has been perturbed away from the cluster.

Moreover, Θ is the average phase of oscillators within the cluster, φ and ω represent phase

and natural frequency, respectively, of node subject to perturbation. We note here the that

we have separated the activated links k+ ≈ 1 from those that have not been activated

associated to k0 ≈ 0. Now, de�ning ψ = Θ− φ and ρ+ = N+

N
, model (6-8) can be rewritten

as

ψ̇ = ∆ω − 2ρ+ sinψ (6-9)

If ρ+ < ∆ω/2, system (6-9) has two equilibria, in the interval ψ ∈ [0, 2π]. One

ψ∗1 = sin−1

(
∆ω

2ρ+

)
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is stable and the other one

ψ∗2 = sin−1

(
∆ω

2ρ+

)
+ π

is unstable. The existence of a stable equilibrium guarantees phase-locking of system (6-8).

Thus, after a perturbation, cohesiveness of the giant cluster and the perturbed node can be

achieved. Moreover, the phase di�erence between the two will correspond to ψ∗1. Neverthe-

less, we still have to analyse edge dynamics, in order to �nd conditions under which network

structure reacts to the perturbation, i.e. conditions ensuring new links will be activated after

the perturbation. Note that, in the limit d → ∞, we recover, for edge snapping, the static

situation k̇ = 0. Thus, edge dynamics collapse into the equation

∂V (k)

∂k
= α

[
1−

(
2 + 2 cosψ

4

)]
(6-10)

where the right-hand side is the driving force depending upon ψ and the left-hand side term

represent a forcing term due to potential energy in the double-well potential. Therefore, the

driving force has to be greater than the potential term, in order for the link to be activated.
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Namely, a su�cient condition for link activation is given by

∂V (k)

∂k

∣∣∣∣
k=1/2

< α

[
1−

(
2 + 2 cosψ

4

)]∣∣∣∣
ψ=ψ∗1

(6-11)

where we selected k = 1/2 to get the potential energy associated with the highest point of the

barrier between two potential wells. Note that the analysis gives a su�cient condition, as we

are neglecting the dynamical terms. The usual choice of the potential, V (k) = bk2(k − 1)2,

yields

b < gR (6-12)

where gR = α
(

1−
√

1− ∆ω2

4ρ2

)
is depicted in Figure 6-6. Thus, if b is selected below gR, no

links are activated. Otherwise new links will be activated through edge snapping. In both

cases, phase-locking is achieved and the perturbed node will be entrained.

When ρ+ < ∆ω/2 system (6-9) has no equilibria. This means the number of active links

before perturbation, is not su�ciently high to entrain node subject to perturbation. Inspired

by [94, 42], we can statisically characterize the generic solution ψ. Indeed, instead of the

drifting solution ψ, we use an invariant measure, i.e. the probability density p(ψ, ρ+) such

that E[ψ] =
∫ 2π

0
ψ p(ψ, ρ+)dψ, which is inversely proportional to the drift velocity of ψ.

Thus, p(ψ, ρ+) = C(∆ω − 2ρ+ sinψ)−1, where C is a normalization constant given by C =√
∆ω2−ρ+2

2π
. This invariant measure is used for replacing the driving force u(ψ) with its

statistical average E[u(ψ)] =
∫ 2π

0
u(ψ) p(ψ, ρ+)dψ.

Now, characterizing the driving force u(ψ) = α
[
1−

(
2+2 cosψ

4

)]
yields

E[u(ψ)] =

∫ 2π

0

u(ψ)p(ψ, ρ+)dψ =
α

2
(6-13)

Thus, following the same reasoning for the case ρ > ∆ω/2, we have

b < gL (6-14)

with gL = α. The inequality (6-14) provides a su�cient condition to activate new links. As

shown in Figure 6-7, if the heigh of the barrier b is selected below function gL, new links are

activated. Note that b < gL also guarantees entrainment of node subject to perturbation, i.e.

phase-locking between node and the giant cluster. Contrariwise, if b > gL then incoherence

will persist.
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6.4 Summary

Co-evolution of Kuramoto dynamics with edge snapping mechanism results in a robust

method to achieve synchronization via evolution of the network structure. Parameters can

be adjusted to enhance synchronization performance in terms of phase di�erence between

pairs of oscillators. The height of the barrier b of double-well potential, together with the

control parameter α, strongly in�uence robustness properties of evolving mechanism. Of

course, the increase of α has to be bounded. Indeed, the more α is increased the more the

control e�ort is. Also, the barrier could be engineered to weaken link activation. Indeed, as

we have seen in Section 6.3, if ρ+ > ∆ω/2 there is no need to activate new links to recover

synchronization, after a perturbation. Thus, in that case, the barrier b could be increased.

On the other hand, when ρ+ < ∆ω/2 the height of the barrier could be decreased to foster

link activation.

Next Chapter deals with a further line of research related to convergence of multi-agent sys-

tems via Contraction theory, a tool recently proposed in the literature to study convergence

of dynamical systems and networks.
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Synchronization via contraction theory

In Chapter 2 we presented the fundamental problem of steering the collective behaviour of a

network of dynamical agents towards a desired common target solution. As an example, we

analysed synchronization and consensus in a network of linear and nonlinear systems. Here,

the key problem is to prove convergence of all agents towards the desired common behaviour.

This convergence problem is usually solved locally, by means of MSF approach (see Section

2.2.1), or globally via Lyapunov theory [44]. Global results are very useful, particularly when

dealing with noise or perturbations. Contraction theory has been recently proposed as an

e�ective approach to study convergence between trajectories of a dynamical systems (see for

example [46] and the more recent papers [70, 71, 27, 79, 1, 2]). The idea is to characterize

within some metric the distance between trajectories and prove that the matrix measure of

the system Jacobian is negative in that metric, over some connected forward-invariant set

of the state space. Indeed, it can be showed that this condition implies global exponential

incremental stability over the set of interest. Thus, two trajectories starting from di�erent

initial conditions in that set, will asymptotic converge towards each other. Moreover, this

approach does not require �nding explicitly Lyapunov functions for the system of interest.

It has been shown that contraction is an extremely useful property to analyze convergence

in networks and study problems such as the emergence of synchronization or consensus

([46, 87, 57, 70, 67, 69]). In this Chapter, we provide an overview on a further part of the

work, dealing with contraction theory as a tool to study synchronization problems.
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Table 7-1: Vector Norms, Induced Matrix Norms and Matrix Measure

Vector Norm Induced Matrix Norm Matrix Measure
|x|1 =

∑n
i=1 |xi| ‖A‖i1 = maxj

∑n
i=1 |aij| µ1(A) = maxj[ajj +

∑
i 6=j |aij|]

|x|2 = (
∑n

i=1 |xi|2)
1/2 ‖A‖i2 =

[
λmax

(
ATA

)]1/2
µ2(A) = λmax

AT+A
2

|x|∞ = maxi |xi| ‖A‖i∞ = maxi
∑n

j=1 |aij| µ∞(A) = maxi[aii +
∑

j 6=i |aij|]

7.1 Mathematical Preliminaries

Throughout this chapter, Rn×n denotes the set of all n×n real matrices. We now introduce

the matrix measure associated to a matrix A ∈ Rn×n, that is the function µi(·) : Rn×n → R
de�ned in the following way.

De�nition 7.1.1 (Matrix measure [86]). Given a real matrix A ∈ Rn×n the corresponding

matrix measure µ(A) is de�ned as

µi(A) = lim
h→0+

‖I + hA‖i − 1

h

The measure of a matrix A can be thought of as the directional derivative of the induced

matrix norm function ‖·‖i, evaluated at the identity matrix I, in the direction of A. In

table 7-1, three di�erent types of vector norm are considered together with the respective

induced matrix norm and matrix measure. In general, given a constant invertible matrix

P , the matrix measure µP,i induced by the weighted vector norm |x|P = |Px| can also be

de�ned as µP,i = µi(PAP
−1).

De�nition 7.1.2 (K function [40]). A scalar continuous function α(r) de�ned for r ∈ [0, a)

is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to

class K∞ if it is de�ned for all r ≥ 0 and

lim
r→∞

α(r) =∞

De�nition 7.1.3 (KL function [40]). A scalar continuous function β(r, t) de�ned for r ∈
[0, a) and t ∈ [0,∞) is said to belong to class KL if, for each �xed t̄, β(r, t̄) belongs to class

K with respect to r and for each �xed r̄, the mapping β(r̄, t) is decreasing with respect to t

and

lim
t→∞

β(r̄, t) = 0
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7.2 Contraction Theory and Incremental Stability

Next, we provide some de�nitions concerning the stability of a nonlinear dynamical system

of the form:

ẋ = f(x, t) (7-1)

where x ∈ Rn, t ∈ R and f : Rn × R 7→ Rn. We denote with φ(t − t0, t0, x0) the value

of the solution x(t at time t of the di�erential equation (7-1) with initial value x(t0) = x0.

We say that a set C ⊆ Rn is a forward invariant set for system (7-1), if for every t0 ≥ 0,

x(t0) = x0 ∈ C implies φ(t− t0, t0, x0) ∈ C for all t ≥ t0.

Speci�cally, we are interested in characterizing the stability of any two arbitrary solutions of

the system with respect to one another. We refer to this property as incremental stability,

using the de�nition �rst presented in [3].

De�nition 7.2.1 (Incremental stability [3]). System (7-1) is said to be Incrementally Asymp-

totically Stable (δAS) in a forward invariant set C ⊆ Rn, if there exists a class KL
function β, such that, for any x0, z0 ∈ C and t ≥ t0, any two of its trajectories, say

x(t) = φ(t− t0, t0, x0) and z(t) = φ(t− t0, t0, z0), verify

|x(t)− z(t)| ≤ β(|x0 − z0| , t− t0)

Moreover, if there exist real numbers c > 0, K ≥ 1 such that for all t ≥ 0

|x(t)− z(t)| ≤ K |x0 − z0| e−c(t−t0)

we say that system (7-1) is Incrementally Exponential Stable (δES). Finally, if C = Rn, then

system (7-1) is said to be Globally Incrementally Asymptotically Stable (δGAS) or Globally

Incrementally Exponentially Stable (δGES), respectively.

An e�ective approach to prove incremental stability is to use the concept of contracting

system as expounded in [46].

De�nition 7.2.2 (In�nitesimal Contraction). System (7-1) is said to be in�nitesimally con-

tracting on a set C ⊆ Rn if there exits a norm in C, with associated matrix measure µi(·),
such that, for some constant c > 0 (termed as contraction rate), it holds that:

µ(J(x, t)) ≤ −c, ∀x ∈ C, ∀t ≥ 0.

In [46, 71] it is shown that the following su�cient condition for δES holds
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Theorem 7.2.1. [71] Suppose C is a convex subset of Rn and that system (7-1) is in�nites-

imally contracting with contraction rate c. Then for every two solutions x(t) = ϕ(t, 0, x0),

z(t) = ϕ(t, 0, z0) it holds that:

|x(t)− z(t)| ≤ e−ct |x0 − z0| (7-2)

Proof. See [71].

Remark 7.2.1. From Theorem 7.2.1, it is clear that if C = Rn, then system (7-1) is δGES.

7.2.1 Example

As a representative example, we consider the model{
ẋ1 = x1(x2

1 + x2
2 − 1) + x2

ẋ2 = −x1 + x2(x2
1 + x2

2 − 1)

The Jacobian matrix of the system is

J =

[
−1 + 3x2

1 + x2
2 1 + 2x1x2

−1 + 2x1x2 −1 + x2
1 + 3x2

2

]
and its symmetric part is given by

Js :=
J + JT

2
=

[
−1 + 3x2

1 + x2
2 2x1x2

2x1x2 −1 + x2
1 + 3x2

2

]
Now, computing the eigenvalues λi(Js) yields

λ1 =x2
1 + x2

2 − 1

λ2 =3x2
1 + 3x2

2 − 1

It is simple to verify that

λ2 > λ1 ∀ x ∈ R2

Thus µ2(Js) < 0 implies

3x2
1 + 3x2

2 − 1 < 0

i.e. µ2(Js) < 0 for all x in the circle of radius
√

3/3 centred at the origin. Thus, we select

the set C as
C := {x ∈ R2 : |x| <

√
3/3}
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Figure 7-1: Norm of the error (blue solid line) between two trajectories x(t) and z(t) rooted
in di�erent initial conditions x0 = [0.4 0.2]T , z0 = [0.3 0.1]T . For the sake
of comparison, the behaviour of |x0 − z0|e−ct is depicted (dashed black line).
(Reproduced from [22]).

Since the origin is an equilibrium point and it belongs to C, we can conclude that the set C
is a forward invariant set for the system.

In Figure 7-1 the norm of the error is showed, between two trajectories x(t) and z(t) rooted

in di�erent initial conditions x0 = [0.4 0.2]T , z0 = [0.3 0.1]T .

The contraction rate c can be estimated as

c = min{|3x2
0,1 + 3x2

0,2 − 1|, |3z2
0,1 + 3z2

0,2 − 1|}

where x0,i and z0,i are the i-th component of the vectors x0 and z0, respectively. Thus, we

have c = 0.4.

7.2.2 Properties of contracting systems

Contracting systems have been shown to possess several useful properties. Consider a system

of the following form:

ẋ = f(x, t)

ẏ = g(x, y, t)

where x(t) ∈ C1 ⊆ Rn1 and y(t) ∈ C2 ⊆ Rn2 for all t.

The Jacobian of this system is

J =

[
A 0

B C

]
(7-3)
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where we have written the Jacobian of f with respect to x as A(x, t) = ∂f
∂x

(x, t), the Jacobian

of g with respect to x as B(x, y, t) = ∂g
∂x

(x, y, t), and the Jacobian of g with respect to y as

C(x, y, t) = ∂g
∂y

(x, y, t).

Theorem 7.2.2. [71] Suppose that

• the system ẋ = f(x, t) is in�nitesimally contracting with contraction rate c1

• the system ẏ = g(x, y, t) is in�nitesimally contracting with contraction rate c2 when x

is viewed as a parameter

• the mixed Jacobian B(x, y, t) is bounded, that is ‖B(x, y, t)‖ ≤ k, k > 0

then the cascade system is in�nitesimally contracting. More precisely, pick any two positive

numbers p1 and p2 such that c1 − p2
p1
k > 0 and let c := min

{
c1 − p2

p1
k, c2

}
then µ(J) ≤ −c.

Proof. See [71].

Another useful property, often exploited in applications of contraction theory to synchro-

nization and entrainment problems, refers to the case where a contracting system is forced

by an external periodic signal. In particular, given a number T > 0, we will say that system

(7-1) is T-periodic if it holds that

f(x, t+ T ) = f(x, t) ∀t ≥ 0

Notice that a system ẋ = f(x, u(t)) with input u(t) is T -periodic if u(t) is itself a periodic

function of period T . We can then state the following basic result about existence and

stability of periodic orbits.

Theorem 7.2.3. [71] Suppose that

• C is a closed convex subset of Rn;

• f is in�nitisimally contracting with contraction rate c;

• f is T -periodic.

Then there is a unique periodic orbit ω̂ in C of (7-1) of period T and, for every solution x(t)

starting in C, it holds that dist(x(t), ω̂)→ 0 as t→∞.

This property was used in [71] to prove global entrainment of transcriptional biological

networks and can be e�ectively used whenever the goal is to prove entrainability of a system

or network of interest.
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7.3 Synchronization and Contraction Theory

Next we discuss how contraction analysis can be used to prove convergence in networks

of nonlinear systems and prove their synchronization. We consider a generic homogeneous

network whose nodes' dynamics can be described by the following set of di�erential equations

ẋi = f(xi, t) + h̃i(x1, . . . , xN , t), i = 1, . . . , N (7-4)

where xi ∈ Rn is the state vector of node i, the vector �eld f : Rn × R+ → Rn describes

the intrinsic dynamics of the i-th node, and the function h̃i : Rn × · · · × Rn × R+ → Rn

represents the coupling function describing how the i-th node interacts with the other nodes

in the network. We assume the network structure is connected.

In the case of di�usive coupling, we can write

ẋi = f(xi, t) +
∑
j∈Ni

[h(xj)− h(xi)] i = 1, . . . , N

where h : Rn → Rn is some nonlinear coupling function, and Ni is the set of the neighbours
of node i, that is the set of nodes connected to node i. If the coupling is linear and di�usive,

the network equations then become

ẋi = f(xi, t) + σ
∑
j∈Ni

(xj − xi)

= f(xi, t)− σ
N∑
j=1

lijxj

(7-5)

for i = 1, . . . , N , where lij is the ij-th element of the Laplacian matrix L associated with the

graph describing the network topology, and σ is the overall coupling strength.

In some cases it is useful to rewrite the network equations in block form

Ẋ = F (X)− σ(L⊗ In)X (7-6)

where X =
[
xT1 , . . . , x

T
n

]T ∈ RnN , F (X) =
[
fT (x1), . . . , fT (xN)

]T
is the stack vector of

all node vector �elds, and ⊗ denotes the Kronecker product.

To prove synchronization of a complex network such as (7-6) using contraction theory sev-

eral alternative approaches are available, each with its own advantages and limitations. In

what follows we will expound some of the most common methodologies presented in the

literature highlighting their advantages and limitations. Speci�cally we will discuss the fol-

lowing strategies: (i) virtual system method; (ii) contraction to �ow-invariant subspaces;

(iii) hierarchical approach.
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7.4 Virtual system method

The virtual system method, �rstly presented in [46, 87], is based on proving synchronization

by constructing a virtual (or auxiliary) system whose particular solutions are the solutions

of each of the nodes in the network. Speci�cally, the virtual system has as solutions all the

solutions xi(t) of the original network and a particular solution, say y∞(t), that veri�es a

smooth speci�c property. Then, if the virtual system is proved to be contracting then all

its trajectories converge exponentially towards each other and towards y∞. Therefore, all

trajectories of the nodes in the network verify the same property exponentially. If a virtual

system exist, then the original system (or network) is said to be partially contracting.

To illustrate the previous idea let us consider as a simple example, a network of two di�usively

coupled identical nodes {
ẋ1 = f(x1) + h(x2)− h(x1)

ẋ2 = f(x2) + h(x1)− h(x2)

To prove convergence of x1 and x2 towards each other, we can construct the following virtual

system

ẏ = f(y)− 2h(y) + h(x1) + h(x2)

Indeed, it is immediate to verify that this system has x1(t) and x2(t) as particular solutions,

and if it is contracting, that is if for all x1 and x2,

µ

(
∂f(y)

∂y
− 2

∂h(y)

∂y

)
≤ −c ∀y ∈ C, ∀t ≥ 0

then the two node trajectories exponentially converge towards each other in C and the

network synchronizes.

7.4.1 Synchronization of networks with an all-to-all topology

As discussed in [87], constructing virtual systems is not, in general, an easy task given a

generic network structure. It becomes immediate in the case of fully connected networks.

Speci�cally, consider the all-to-all network

ẋi =f(xi) +
N∑
j=1

[h(xj)− h(xi)]

=f(xi)−Nh(xi) +
N∑
j=1

h(xj)
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for i = 1, . . . , N . The virtual system can then be selected as

ẏ = f(y)−Nh(y) +
N∑
j=1

h(xj)

and it is contracting if some matrix measure µ exists such that

µ

(
∂f(y)

∂y
−N ∂h(y)

∂y

)
≤ −c ∀y ∈ C, ∀t ≥ 0

Unfortunately the simplicity of the method is lost when more generic topologies are consid-

ered.

7.4.2 Example

As a representative example of application of the virtual system approach let us consider

the all-to-all network of biological oscillators presented in [73].

The Repressilator is a synthetic biological circuit of three genes inhibiting each other in a

cyclic way [?]. As shown in Fig. 7-2a, gene lacI (associated to the state variable ci in

our model) expresses protein LacI (Ci), which inhibits transcription of gene tetR (ai). This

translates into protein TetR (Ai), which inhibits transcription of gene cI (bi). Finally, the

protein CI (Bi) translated from cI inhibits expression of lacI, completing the cycle. The

resulting mathematical model for the network is

ȧi = −ai +
α

1 + C2
i

ḃi = −bi +
α

1 + A2
i

ċi = −ci +
α

1 +B2
i

+
kSi

1 + Si

Ȧi = βAai − dAAi
Ḃi = βBbi − dBBi

Ċi = βCci − dCCi
Ṡi = −ks0Si + ks1Ai − η(Si − Se)

Ṡe = −kseSe + ηext

N∑
j=1

(Sj − Se) + u(t)

(7-7)

For further details on the mathematical model see [73].

The network is an all-to-all network of identical nodes, hence the virtual system can be
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Figure 7-2: A schematic representation of the three-genes Repressilator circuit (a). Simula-
tion results (b). (Reproduced from [22])

chosen as having the same dynamics as the individual Repressilator circuit, forced by the

external coupling signal Se, i.e.

ȧ = −a+
α

1 + C2

ḃ = −b+
α

1 + A2

ċ = −c+
α

1 +B2
+

kS

1 + S

Ȧ = βAa− dAA

Ḃ = βBb− dBB

Ċ = βCc− dCC

Ṡ = −ks0S + ks1A− η(S − Se)

Ṡe = −kseSe + ηext(S1 + · · ·+ SN)− ηextNSe + u(t)

(7-8)

Indeed, by direct inspection it is easy to check that, by substituting the state variables of the

nodes dynamics for the virtual variables (i.e., [ai, bi, ci, Ai, Bi, Ci, Si, Se] for [a, b, c, A, B, C, S, Se]),

the equations of each Repressilator circuit in the network can be obtained. In this sense,

the virtual system embeds the trajectories of all network oscillators as particular solutions.

Thus, contraction of the virtual system (7-8) implies synchronization of (7-7). Di�erentiation
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of (7-8) yields the Jacobian matrix

J =



−1 0 0 0 0 f1(C) 0 0

0 −1 0 f1(A) 0 0 0 0

0 0 −1 0 f1(B) 0 f2(S) 0

βA 0 0 −dA 0 0 0 0

0 βB 0 0 −dB 0 0 0

0 0 βC 0 0 −dC 0 0

0 0 0 ks1 0 0 −ks0 − η η

0 0 0 0 0 0 0 −kq


where f1 and f2 denote the partial derivatives of decreasing and increasing Hill functions

with respect to the state variable of interest and kq = kse + ηextN .

Note that the Jacobian matrix J has the (transposed) structure of a cascade in (7-3), i.e.

J =

[
A B

0 C

]
with

A =



−1 0 0 0 0 f1(C) 0

0 −1 0 f1(A) 0 0 0

0 0 −1 0 f1(B) 0 f2(S)

βA 0 0 −dA 0 0 0

0 βB 0 0 −dB 0 0

0 0 βC 0 0 −dC 0

0 0 0 ks1 0 0 −ks0 − η


,

B = [0 0 0 0 0 0 η]T , C = −kq. Thus, to prove contraction of the virtual system Theorem

7.2.2 can be used. Speci�cally, it su�ces to prove that there exist two matrix measures, µ∗
and µ∗∗ such that

1. µ∗(A) ≤ −c1, with c1 > 0

2. µ∗∗(C) ≤ −c2, with c2 > 0

3. ‖B‖ ≤ k, with k > 0

Clearly, since kq and η are positive real parameters, the second and third conditions above

are satis�ed. On the other hand, the matrix measure of A can be made negative by choosing

the values of the parameters adequately (see [73] for further details). Thus, we can conclude

that (7-8) is contracting, and in turn this implies that all the nodes of (7-7) synchronize on
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the same solution, as can be noted in Fig.7-2b. Furthermore, if u(t) is a T -periodic function,

the N interconnected dynamical systems entrain onto a T -periodic trajectory (see Theorem

7.2.3).

7.4.3 Synchronization of networks with a generic topology

Constructing the virtual system for more generic network structures is cumbersome. A

possible approach is presented in [87] where it is noted that in some cases the virtual system

for a generic network structure can be written as

Ẏ = F (Y )− σ(L⊗ In)Y − (1N×N ⊗K0)(Y −X) (7-9)

where Y =
[
yT1 , . . . , y

T
n

]T ∈ RnN is the set of virtual state variables, K0 is some constant

symmetric positive de�nite matrix and 1N×N is the N × N matrix whose elements are all

equal to 1.

It can again be noticed that this virtual system is such that it embeds all the solutions of the

original network as particular solutions, in fact for Y = X (7-9) gives (7-6). Furthermore

this system admits the particular solution y1 = · · · = yN = y∞ with

ẏ∞ = f(y∞)− nK0y∞ +K0

N∑
j=1

xj(t)

Therefore if the virtual system is proved to be contracting then all its trajectories converge

exponentially towards each other and towards y∞, this in turns implies synchronization of

the network (7-6), which is said to be partially contracting.

Notice that K0 is a virtual quantity used to prove contraction of the virtual system, and

thus it cannot a�ect the synchronization of the original network.

For a full proof of the virtual system method see [87], while the link between this approach

and the Master Stability Function, see Chapter 2 is discussed in [72]. The most notable

di�erence is that, while the MSF approach guarantees local transversal stability of the syn-

chronization manifold, contraction analysis gives a global result in the region of interest.

7.5 Convergence to a �ow-invariant linear subspace

Contraction theory can also be used to guarantee convergence of system trajectories towards

some �ow-invariant linear manifold [57]. Hence, synchronization can be proved by using
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contraction analysis to prove global convergence of the network nodes towards the synchro-

nization manifold de�ned in (2-5). A more general description of this approach is presented

in [57], where the problem of concurrent sychronization is discussed.

Assume that for the dynamical system ẋ = f(x, t) there exists a linear �ow-invariant sub-

space M of dimension p. Let [e1, . . . , en] be an orthonormal basis of Rn where the �rst p

vectors form a basis of M and the last n − p a basis of M⊥. De�ne now the following

matrices

U :=

e
T
1
...
eTp

 , V :=

e
T
p+1
...
eTn


The following result holds

Theorem 7.5.1. All trajectories of ẋ = f(x, t) globally exponentially converge towards M
if there exist some matrix measure and some c > 0 such that

µ
(
V J(x, t)V T

)
≤ −c ∀x ∈ Rn, ∀t ≥ 0

where J(x, t) is the system Jacobian.

The previous theorem can be used to prove synchronization of a complex network by consid-

ering as linear subspaceM the synchronization manifold S in (2-5) and V as the orthonormal

matrix spanning S⊥. The matrix V can be obtained as the orthonormalization of the fol-

lowing n(N − 1)× nN matrix
In −In O O . . . O

O In −In O . . . O
...

. . . . . .
...

O O . . . In −In O

O O . . . O In −In


Let F (X, t) be the stack of all the node vector �elds and H(X, t) the stack vector of all the

coupling functions h̃i in (7-4).

Using contraction towards the synchronization subspace, we can prove the following result

[?].

Theorem 7.5.2. Assume that for network (7-4) the subspace S exists, then network syn-

chronization is attained if there exists some matrix measure such that

µ

(
V
∂F

∂X
V T

)
< −µ

(
V
∂H

∂X
V T

)
∀x ∈ Rn, ∀t ≥ 0
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Proof. Indeed, from Theorem 7.5.1 we have that all network trajectories converge towards

the synchronization subspace S if

µ

(
V

(
∂F

∂X
+
∂H

∂X

)
V T

)
is uniformly negative de�nite. Now, by the subadditivity property of matrix measure [86]

we have that the above condition is satis�ed if

µ

(
V
∂F

∂X
V T

)
+ µ

(
V
∂H

∂X
V T

)
is uniformly negative de�nite. This proves the result.

If we consider a network of di�usively coupled nonlinear nodes as in (7-5)-(7-6), the following

result holds from applying contraction using Euclidean matrix measures. (An historical

overview of similar results and further proofs can be found in [1, 2]. Here we report alternative

proofs based on contraction to make the chapter self contained.)

Theorem 7.5.3. All network trajectories converge towards S if

max
x,t

λmax

(
∂f

∂x

)
≤ σλ2 ∀x ∈ Rn, ∀t ≥ 0

where λ2 is the algebraic connectivity of the network.

Proof. Let V be the orthonormal matrix spanning S⊥, this can be chosen as

V = (Q⊗ In)T , (7-10)

where Q is the orthonormal N − 1×N − 1 matrix such that

QTLQ = Λ

and Λ is the N − 1×N − 1 diagonal matrix containing on its main diagonal the eigenvalues

λ2, . . . , λN of L.

Now, let J be the Jacobian of (7-6) then from Theorem 7.5.1 we have that all network

trajectories converge towards S if µ2

(
V JV T

)
is uniformly negative de�nite. That is if

µ2

(
V
∂F

∂X
V T − V (σ(L⊗ In))V T

)
≤ −c, c > 0
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Then

µ2

(
V
∂F

∂X
V T − V (σ(L⊗ In))V T

)
≤ µ2

(
V
∂F

∂X
V T

)
+ µ2

(
−V (σ(L⊗ In))V T

)
(7-11)

Remembering that for the Kronecker product the following property holds

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

we have

V (L⊗ In)V T = (Q⊗ In)T (L⊗ In)(Q⊗ In) =

= (QT ⊗ In)(L⊗ In)(Q⊗ In) =

= (QTL⊗ In)(Q⊗ In) =

= QTLQ⊗ In =

= Λ⊗ In

Therefore

µ2

(
−V (σ(L⊗ In))V T

)
= σµ2 (−Λ) = −σλ2

Furthermore

µ2

(
V
∂F

∂X
V T

)
= λmax

(
V

[
∂F

∂X

]
s

V T

)
where

[
∂F
∂X

]
s
denotes the symmetric part of ∂F

∂X
. To evaluate the above matrix measure,

consider the quadratic form

vTV

[
∂F

∂X

]
s

V Tv = aT
[
∂F

∂X

]
s

a.

Notice that, since the matrix ∂F
∂X

is a block diagonal matrix, we have for any a 6= 0

min
x,t

λmin

(
∂f

∂x

)
aTa ≤ aT

∂F

∂X
a ≤ max

x,t
λmax

(
∂f

∂x

)
aTa,

where ∂f
∂x

is the Jacobian of the intrinsic dynamics of the node. On the other hand aTa =

vTV V Tv = vTv. Thus (7-11) become

µ2

(
V
∂F

∂X
V T − V (σ(L⊗ In))V T

)
≤ max

x,t
λmax

(
∂f

∂x

)
− σλ2.

Since the above quantity is uniformly negative de�nite by hypotheses, we have that all

network trajectories globally exponentially converge towards S. This proves the result.
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In the speci�c case where all the network nodes are linear systems and the coupling is linear

and di�usive, that is when

ẋi = A(t)xi + Γ
∑
j∈Ni

(xj − xi) i = 1, . . . , N (7-12)

where A(t) is the dynamical matrix of each node and Γ is some inner coupling matrix,

it is possible to prove the following theorem. (We include here a proof for the sake of

completeness although other proofs of the same result are also available, see for example [1]

for an overview.)

Theorem 7.5.4. Network (7-12) synchronizes if there exist some matrix measure µ and

constant c > 0 such that

µ
(
A(t)− λ2Γ

)
≤ −c ∀t ≥ 0

Proof. Let J be the Jacobian of (7-12) given as

J(t) = IN ⊗ A(t)− L⊗ Γ,

and V be the orthonormal matrix spanning S⊥ as in (7-10). Following Theorem 7.5.1 network

(7-12) synchronizes if

µ
(
V (IN ⊗ A(t)− L⊗ Γ)V T

)
≤ −c,

that is

µ
(
V (IN ⊗ A(t))V T − V (L⊗ Γ)V T

)
≤ −c (7-13)

Now using (7-10) the �rst term in (7-13) can be recast as

V (IN ⊗ A(t))V T = (Q⊗ IN)T (IN ⊗ A(t))(Q⊗ IN) =

= (QT ⊗ IN)(IN ⊗ A(t))(Q⊗ IN) =

= (QT ⊗ A(t))(Q⊗ IN) =

= IN ⊗ A(t)

On the other hand, the second term of (7-13) can be written as

V (L⊗ Γ)V T = (Q⊗ In)T (L⊗ Γ)(Q⊗ In) =

= (QT ⊗ In)(L⊗ Γ)(Q⊗ In) =

= (QTL⊗ Γ)(Q⊗ In) =

= QTLQ⊗ Γ =

= Λ⊗ Γ
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This means that (7-13) become

µ (IN ⊗ A(t)− Λ⊗ Γ) ≤ −c.

Since IN ⊗ A(t) and Λ⊗ Γ are block diagonal matrices, we have

µ (IN ⊗ A(t)− Λ⊗ Γ) = µ (A(t)− λ2Γ) ≤ −c,

thus proving the result.

As for the MSF approach, these results nicely link the contraction properties of the node

vector �elds with the structural properties of the network and the strength of the coupling.

7.5.1 Example

To illustrate how contraction to a �ow-invariant subspace can be successfully applied to

networked dynamical systems, we consider the directed network of four FitzHugh-Nagumo

neurons whose structure is depicted in Fig. 7-3a.

A single FN neuron can be described as [26]{
v̇ = f(v, w) = c

(
v + w − 1

3
v3 + u(t)

)
ẇ = g(v, w) = −1

c
(v − a+ bw)

(7-14)

where v is the membrane potential, w is a recovery variable, u(t) is the magnitude of the

stimulus current assumed to be periodic. The parameters a, b and c are non negative and

they are set to a = 0, b = 2, c = 6.

In particular we want to prove that a subgroup of system nodes converges towards a speci�c

manifold. The mathematical model of the network is

v̇1 = f(v1, w1) + k1v2 + σ1(v3 − v1)

ẇ1 = g(v1, w1)

v̇2 = f(v2, w2) + k2v3 + σ2(v4 − v2)

ẇ2 = g(v2, w2)

v̇3 = f(v3, w3) + k1v4 + σ1(v1 − v3)

ẇ3 = g(v3, w3)

v̇4 = f(v4, w4) + k2v1 + σ2(v2 − v4)

ẇ4 = g(v4, w4)

(7-15)
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As a representative example assume we want to prove convergence between nodes 1 and 3,

that is we want to prove convergence of the network towards the manifold

M :=
{

[(v1, w1)T , . . . , (v4, w4)T ] ∈ R8 : (v1, w1)T = (v3, w3)T
}

and therefore contraction onM⊥, whose basis is

V =
[
I2 O2 −I2 O2

]
where I2 and O2 are respectively 2× 2 identity and zero matrices.

The system Jacobian is

J =


J1 − Σ1 K1 Σ1 O

O J2 − Σ2 K2 Σ2

Σ1 O J3 − Σ1 K1

K2 Σ2 O J4 − Σ2


where

Ji =

[
∂f
∂vi

∂f
∂wi

∂g
∂vi

∂g
∂wi

]
=

c(1− v2
i ) c

−1
c

− b
c


and

Σi =

[
σi 0

0 0

]
, Ki =

[
ki 0

0 0

]
.

To prove contraction towardsM⊥ Theorem 7.5.1 can be applied, therefore we need to study

the matrix measure µ of

V JV T = J1 + J3 − 4Σ1 =

 ∂f
∂v1

+ ∂f
∂v3
− 4σ1 2c

−2
c

−2b
c


Using the ∞-vector norm we get the condition

µ∞
(
V JV T

)
= max

{
∂f

∂v1

+
∂f

∂v3

− 4σ1 + |2c| ; −2b

c
+

∣∣∣∣−2

c

∣∣∣∣} < 0 (7-16)

Since ∂f
∂vi

= c(1− v2
i ) < c ∀vi, the �rst term in (7-16) is negative de�nite if

c+ c− 4σ1 < −2c =⇒ σ1 > c

while the second term is negative if b > 1.
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Figure 7-3: The network structure of the example 7.5.1 (left panel). Simulation of the net-
work (7-15) with parameters a = 0, b = 2, c = 6, coupling gains σ1 = 7, σ2 = 10,
k1 = 1, k2 = 10, and u(t) = 3 sin(t). The initial conditions are uniformly
distributed in the interval [−4, 4] (right panel). (Reproduced from [22])

Therefore condition (7-16) is ful�lled if {
σ1 > c

b > 1

A numerical simulation is reported in Fig. 7-3b showing that nodes 1 and 3 synchronize.

Furthermore, node 2 and 4 synchronize as well on a di�erent solution in M, reaching the

so-called cluster synchronization [57].

7.6 Hierarchical approach

A �nal alternative which is particularly useful in the case of large networks of interconnected

systems is to use a hierarchical approach to obtain a conservative estimate of the matrix

measure of the Jacobian of the system or network of interest using multiple norms [74].

Speci�cally, contraction of the overall system can be guaranteed if some matrix measure of

the Jacobian of each individual node is upper bounded and the measure of a reduced-order

matrix associated to the interconnection is negative.

Let us consider two norms, a local norm |·|L on Rn and a structure norm |·|S on RN assumed

to be monotone. Given any vector X = [xT1 , . . . , x
T
n ]T ∈ RnN , with xi ∈ Rn, i = 1, . . . , N ,
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we de�ne a global norm on RnN as

|X|G :=

∣∣∣∣[|x1|L, . . . , |xN |L
]T ∣∣∣∣

S

. (7-17)

Furthermore we use the notations µL(·), µS(·) and µG(·) to denote the matrix measures

associated to ‖·‖L, ‖·‖S and ‖·‖G respectively.

Let J(x, t) denote the nN×nN Jacobian matrix of (7-4) and consider the following partition

J(x, t) =


J11 J12 . . . J1k

J21 J22 . . . J2k

...
...

. . .
...

Jk1 Jk2 . . . Jkk


and de�ne the k × k structure Jacobian matrix as

JS(x, t) =


J̃11 J̃12 . . . J̃1k

J̃21 J̃22 . . . J̃2k

...
...

. . .
...

J̃k1 J̃k2 . . . J̃kk

 (7-18)

with {
J̃ii = µL (Jii(x, t)) for i ∈ {1, . . . , k}
J̃ij = ‖Jij(x, t)‖L for i, j ∈ {1, . . . , k}, i 6= j

The following result holds

Theorem 7.6.1 ([22]). For every local norm on Rn, every monotone structure norm on RN

and every matrix J ∈ RnN×nN

µG(J) ≤ µS(JS) (7-19)

Therefore, let C be a convex set in RnN , if

µS (JS(x, t)) ≤ −c ∀x ∈ C, ∀t ≥ 0

then system (7-4) is contracting in C.

Since (7-19) is conservative, the analysis is robust in the sense that a large degree of uncer-

tainty can be tolerated in the components as long as the estimations are met for the network

subsystems and their couplings.

The hierarchical approach described above can be e�ectively used to prove that a system or

network is contracting. In the latter case, if the synchronization manifold is embedded into
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Figure 7-4: The network used for the simulation of FN neurons. (Reproduced from [22])

the region where the network is contracting, as it is invariant all trajectories will converge

towards it and synchronization will remain proved. More generally, the hierarchical approach

can reduce the problem of evaluating the matrix measure of the Jacobian of the virtual system

or that of the matrix used when proving contraction to a manifold. Hence, it is a useful tool

when proving synchronization of large networks with a well identi�ed hierarchical structure.

7.6.1 Example

We illustrate how the hierarchical approach can be used to give su�cient conditions for the

convergence of networks of nonlinear agents and hence as an e�ective design tool to select

appropriate coupling functions. We focus again on a representative network of FitzHugh-

Nagumo neurons (7-14) which was �rst presented in [74].

The key steps of this methodology can be summarised as follows:

1. we �rst compute the reduced-order structured matrix JS in (7-18);

2. we then use such reduced-order matrix to design appropriate coupling protocols be-

tween the network nodes in order to guarantee network convergence.

The network topology considered in this example is shown in Fig. 7-4.

We assume the coupling protocol among nodes to be similar to the so-called excitatory-only

coupling, speci�cally the FN oscillators are coupled via the coupling function

h̃i(vi, wi) := −γ1

∑
j∈Ni

vj − (γ2 + c)vi, γ1, γ2 > 0 (7-20)

which is added to the �rst state equation in (7-14). Thus, the network dynamics become{
v̇i = c

(
vi + wi − 1

3
v3
i + u(t)

)
+ h̃i(vi, wi)

ẇi = −1
c
(vi − a+ bwi)

i = 1, . . . , N (7-21)
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To guarantee that all nodes converge towards a unique trajectory in state space, it now

su�ces to choose the parameters of the coupling protocol (7-20) so as to make the closed-loop

network (7-21) contracting. Indeed, the synchronization manifold (2-5), with xi = [vi, wi]
T ,

is �ow invariant for the network dynamics (that is, trajectories with initial conditions in S
remain in it for all t ≥ t0). Hence, if the network is contracting, trajectories starting from

any two initial conditions will converge exponentially towards each other. As trajectories

in S remain therein for all time, it immediately follows that all trajectories must converge

towards S and asymptotically towards each other; that is, nodes will synchronize. Moreover,

from Theorem 7.2.3, network contraction also yields that the synchronous evolution will be

periodic with the same period of u(t).

Now, to study contraction of the network dynamics we would need to study the Jacobian

of (7-21), which is a 2N × 2N matrix. Using the hierarchical approach, we can look instead

at the structure Jacobian, which is, in this case, an N × N matrix, de�ned in (7-18). To

compute JS we use as local norm on R2 the one induced by the ∞-norm, and choosing

γ2 > c+ b− 1/c we have

JS =



− b−1
c

γ1 γ1 0 0 0

γ1 − b−1
c

0 0 γ1 γ1

0 γ1 − b−1
c

γ1 0 0

0 0 γ1 − b−1
c

0 0

0 γ1 0 0 − b−1
c

0

0 0 0 0 γ1 − b−1
c


Now to ensure network contraction (and hence synchronization) we have to tune the pa-

rameters b and γ1 so that a uniformly negative structure matrix measure in R6 for JS exists.

Choosing as structure norm the 1-vector norm, we have that the matrix measure µ1(JS) is

uniformly negative if

{Js}ii < 0

|{JS}ii| >
∑

i 6=j|{JS}ij|

Notice that the �rst condition above is ful�lled if b > 1. The second condition is instead

guaranteed if

3γ1 <
b− 1

c
Thus if this last condition is ful�lled, all network trajectories will converge towards a unique

synchronous solution. A simulation for such a network is reported in Fig. 7-5, con�rming

the theoretical predictions.
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Figure 7-5: Simulation of (7-21) with γ1 = 0.05 and γ2 = 7 (left panel). The behaviour of
u(t) is shown (0 ≥ t ≥ 10) in the right panel. (Reproduced from [22].)

7.7 Summary

We reviewed some approaches to study synchronization from a contraction theory viewpoint.

Speci�cally we analysed three strategies: virtual systems method, convergence to a �ow-

invariant subspace and hierarchical approach. Note that the latter is well suited, di�erently

from the former, when the dimensionality of the problem does grow. Numerical examples

con�rms all theoretical results showed throughout the Chapter.



CHAPTER 8

Conclusions

We derived several strategies for the evolution of a network of dynamical agents, so as to

achieve synchronization and consensus.

In Chapter 4 we investigated two strategies for general types of consensus in directed net-

works. We built on edge snapping and derived proper modi�cations to achieve this objective.

A three-well potential was introduced to describe unidirectional links in the network. Then

we de�ned two rules to adapt network structure, based on nodes' state. Theoretical results

have been con�rmed by numerical simulations.

In Chapter 5 we investigated synchronization of coupled oscillators via an evolutionary strat-

egy. Results show that heterogeneity in the nodes dynamics is fundamental for the emergence

of minimal ES networks. A thorough analysis of the emergent networks also suggest that

increasing the heterogeneity in the nodes, the structure of minimal networks tends to be

characterized by the presence of hubs. Thus, the degree distribution becomes more hetero-

geneous. Also, our adaptive, local strategy induces the type of phenomena described in the

literature on explosive synchronization.

An analysis of robustness properties regarding edge snapping mechanism is provided in

Chapter 6. As a result, the height of the barrier of the potential V used in the edge snap-

ping mechanism, can be adjusted to enhance robustness properties. Indeed, below a certain

threshold, a node subject to a perturbation can recover the synchronized state via the activa-

tion of new links. Moreover, it is shown how to improve the performance of synchronization

by acting on model parameters.

In Chapter 7 we analysed some approaches to study synchronization from a contraction

theory viewpoint. Speci�cally we analysed three strategies: virtual systems method, conver-
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gence to a �ow-invariant subspace and hierarchical approach. We note that the latter is well

suited, di�erently from the former, when the dimensionality of the problem does grow.
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