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Abstract

Elliptic and parabolic equations arise in the mathematical description of a wide variety
of phenomena, not only in the natural science but also in engineering and economics.
To mention few examples, consider problems arising in different contexts: gas dynamics,
biological models, the pricing of assets in economics, composite media. The importance
of these equations from the applications’ point of view is equally interesting from that of
analysis, since it requires the design of novel techniques to attack the always valid question
of existence, uniqueness and regularity of solutions.
In particular, in recent years parabolic problems came more and more into the focus of
mathematicians. Changing from elliptic to the parabolic case means physically to switch
from the stationary to the non-stationary case, i.e. the time is introduced as an additional
variable. Exactly this natural origin constitutes our interest in parabolic problems: they
reflect our perception of space and time. Therefore they often can be used to model
physical process, e.g. heat conduction or diffusion process.

In this thesis I will principally concentrate on the regularity properties of solutions of
second order systems of partial differential equations in the elliptic and parabolic context.
The outline of the thesis is as follows.

After giving some preliminary results, in the 3st Chapter we consider the parabolic ana-
logue of some regularity results already known in the elliptic setting, concerning sys-
tems becoming parabolic only in an asymptotic sense. In the standard elliptic version,
these results prove the Lipschitz regularity of solutions to elliptic systems of the type
div a(Du) = 0, with u : Ω → RN , under the main assumption that the vector field
a : RNn → RNn is asymptotically close, in C1-sense, to some regular vector field b. There-
fore, one can ask what happens when the vector field a is asymptotically close, in a C0-
sense, to the regular vector field b(ξ) = ξ. In this direction, in the parabolic framework,
the first result obtained shows that the spatial gradient of u belongs to L∞loc.
The question that naturally arises is what happens in case of power p 6= 2, and more in
general in case of general growth ϕ.

Regarding the general growth ϕ, in Chapter 4, we study variational integrals of the type

F(u) :=

∫
Ω
f(Du) dx for u : Ω→ RN

where Ω is an open bounded set in Rn, n ≥ 2, N ≥ 1. Here f : RNn → R is a quasiconvex
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continuous function satisfying a non-standard growth condition:

|f(z)| ≤ C(1 + ϕ(|z|)), ∀z ∈ RNn,

where C is a positive constant and ϕ is a given N -function (see Section 2.4 for more details
about Orlicz functions). Exhibiting an adequate notion of strict W 1,ϕ-quasiconvexity at
infinity, which we call W 1,ϕ-asymptotic quasiconvexity, we prove a partial regularity result,
namely that minimizers are Lipschitz continuous on an open and dense subset of Ω.
In the last Chapter we deal with the study of local Lipschitz regularity of weak solutions
to non-linear second order parabolic systems of general growth

uβt −
n∑
i=1

(Aαi (Du))xi = 0, in ΩT := Ω× (−T, 0) (0.0.1)

where Ω is a bounded domain in Rn, n ≥ 2, T > 0, u : ΩT → RN , N > 1 and A is a tensor

having general growth, that is Aαi (Du) =
ϕ′(|Du|)
|Du|

uαxi , where ϕ is a given N -function.

Actually, having such result, as observed before, it is possible to prove the analogue of the
first problem (studied in Chapter 3) in this case of nonstandard growth, considering an
operator A that is asymptotically related to (0.0.1).
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Chapter 1

Introduction

The study of partial differential equations started in the 18th century in the works of
Euler, d’Alembert, Lagrange and Laplace as a central tool in the description of mechanics
of continua and more generally, as the principal mode of analytical study of models in the
physical science. Partial differential equations play an important role to model natural
phenomena; even more, they arise in every field of science. Consequently, the desire to
understand the solutions of these equations has always had a prominent place in the efforts
of mathematicians. One of the crucial moments was the year 1900 when David Hilbert
formulated 23 unsolved mathematical problems of the century in his famous lecture at the
International Congress of Mathematicians in Paris, one of them being the 19th:

Are the solutions of regular problems in the Calculus of Variations always necessarily
analytic?

Such problem has been solved by Ennio De Giorgi. His result deals with a linear elliptic
equation in divergence form:

div(aij(x)Dju) = 0 in Ω (1.0.1)

where Ω is a bounded open set in Rn and the coefficients {aij(x)} are assumed to be
measurable and such that

|aij(x)| ≤ L and aij(x)λiλj ≥ ν|λ|2 (1.0.2)

for almost every x ∈ Ω and every λ ∈ Rn, with 0 < ν ≤ L < ∞. Equation (1.0.1) has to
be interpreted in a weak sense: we assume that the integral equation∫

Ω

n∑
i,j=1

aij DiuDjφdx = 0 (1.0.3)

is satisfied for every φ ∈ C∞c (Ω).
Then we have:

Theorem 1.0.1 (De Giorgi [21]). Let u ∈ W 1,2(Ω) be a weak solution to the equation
(1.0.1) under the assumptions (1.0.2). Then there exists a positive number α = α(n, Lν ) >

0 such that u ∈ C0,α
loc (Ω).
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John Nash [78] proved his results also for parabolic equations and few years later a different
proof was given by Moser [77]. Each of these three proofs have advantages and drawbacks,
but after more than fifty years we can certainly say that De Giorgi’s proof is outstanding
for its originality, its simplicity and for the many generalizations that were subsequently
developed to deal with nonlinear elliptic operators, parabolic operators and of minima of
variational integrals.
At the time De Giorgi published his paper, it was known, by Schauder estimates, that
for an analytic integrand a solution u ∈ C1,α(Ω) to the equation (1.0.1) is necessarily
analytic. Therefore, to solve the 19th problem it was sufficient to prove that the solution
was C1,α(Ω). At this point the crucial observation is that by differentiating both sides
of the equation one gets that the derivatives Diu of the solution solve a linear elliptic
equation in divergence form with measurable coefficient. Thus to solve the 19th Hilbert
problem it was enough to prove the Hölder continuity of weak solutions to (1.0.1).

Let us point out that the linearity of the equation (1.0.3) plays no role in the proof of
Theorem 1.0.1, thus the result was extended to a vast class of general nonlinear elliptic
equations in divergence form. More precisely, if we consider the following elliptic equation
in divergence form

div a(x, u,Du) = 0 (1.0.4)

under the assumptions

|a(x, v, z)| ≤ L(1 + |z|p), 〈a(x, v, z), z〉 ≥ ν|z|p − L (1.0.5)

for every x ∈ Ω, v ∈ R, z ∈ Rn and p > 1, then Theorem 1.0.1 holds true.

Subsequently it was observed that for functionals of the type

F(u) =

∫
Ω
f(x, u,Du) dx,

whose associated Euler-Lagrange equation satisfies assumptions of the type (1.0.5), the
Hölder regularity of minimizers follows if they are viewed as solutions to elliptic equations.

In [50] Frehse, and then Giaquinta & Giusti [53], applied De Giorgi’s method to minimizers
in a direct way, that is without using the Euler-Lagrange equation, only considering the
growth assumptions

ν|z|p ≤ f(x, v, z) ≤ L(1 + |z|p). (1.0.6)

In a number of important physical and geometrical situations u is not a scalar but a vector
and the corresponding Euler-Lagrange equation is a system. The question arose naturally
whether the previous theory extends to systems. In 1968 De Giorgi [22] constructed a
surprising counterexample to prove that the regularity theorem does not extend to the
vectorial case (N > 1): Let n ≥ 3 and consider the following variational integral

F(u) =
1

2

∫
B1

|Du|2 +
[ n∑
i,α=1

(
(n− 2)δiα + n

xixα
|x|2

)
Dαu

i
]2
dx. (1.0.7)
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Its Euler-Lagrange equation is∫
B1

Aαβij Dβu
jDαϕ

idx = 0, ∀ϕ ∈W 1,2
0 (B1,Rn), (1.0.8)

with
Aαβij (x) = δαβδij +

[
(n− 2)δαi + n

xixα
|x|2

][
(n− 2)δβj + n

xjxβ
|x|2

]
.

Here δij denotes the usual Kronecker’s symbol. Although these coefficients are bounded
and satisfy the Legendre condition, the vector valued map

u(x) =
x

|x|γ
, γ :=

n

2

[
1− 1√

(2n− 2)2 + 1

]
, (1.0.9)

which belongs to W 1,2(B1,Rn) but is not bounded, is an extremal of F , hence it satisfies
the elliptic system with bounded coefficients (1.0.8).

The main point in De Giorgi’s example is the singularity of the matrix {aαβij (x)} at the
origin. When the coefficients matrix depends on the solution, Giusti & Miranda [54]

showed that the matrix {aαβij (u)} can be even analytic.
These counterexamples show that everywhere regularity results for critical points or min-
imizers of regular variational integrals are in general not possible. So, we can ask:

What kind of regularity we can expect in the vectorial case?

Let us consider the variational integral

F(u) =

∫
Ω
f(Du) dx (1.0.10)

where Ω ⊂ Rn is an open set, n ≥ 2, u : Ω → RN and N ≥ 1. It is well known that
the convexity of f(z) with respect to z is a sufficient condition for the sequential lower
semicontinuity of F , and therefore, when it is combined with the coercivity condition, the
existence of a minimizer for F follows by the Direct Method of the Calculus of Variations.
In general the convexity is a necessary condition only in the scalar case N = 1. In
1952 Morrey [76] showed that a necessary and sufficient condition for the weak lower
semicontinuity of F is that f has to be quasiconvex. We say that a continuous function
f : RNn → R is quasiconvex if and only if

−
∫
B1

f(z0 +Dξ) dx ≥ f(z0) (1.0.11)

holds for every z0 ∈ RNn and every smooth function ξ : B1 → RN with compact support
in the unit ball B1 in Rn.
Quasiconvexity is weaker than convexity if N > 1, while it reduces to convexity if N = 1.
Note that it is a global condition; if f is of class C2 in z, it implies the pointwise Legendre-
Hadamard condition:

f
zαi z

β
j
(z)ξαξβλiλj ≥ 0 ∀ξ ∈ Rn,∀λ ∈ RN .
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In order to study the regularity of minimizers, it is natural to strengthen (1.0.11), so we
introduce the notion of uniformly strictly quasiconvex function. A continuous function
f : RNn → R is said to be uniformly strictly quasiconvex if and only if

−
∫
B1

f(z0 +Dξ) dx ≥ f(z0) + ν−
∫
B1

(1 + |z0|2 + |Dξ|2)
p−2

2 |Dξ|2dx (1.0.12)

holds for every z0 ∈ RNn and every smooth function ξ : B1 → RN with compact support
in the unit ball B1 in Rn.

In 1986 Evans [43], adapting the indirect approach in [51], established the first partial
regularity result for minimizers of (1.0.10). More precisely, he considered uniformly strictly
quasiconvex integrand f in the quadratic case, and proved that if f is of class C2 with
bounded second derivatives, then there exists an open subset Ω0 ⊂ Ω such that |Ω\Ω0| = 0
and Du ∈ C0,α

loc (Ω0,RNn) for any α ∈ (0, 1). This result was generalized by Acerbi & Fusco
[2] ( see also [15] for the subquadratic case).

On the other hand it could be interesting to identify classes of functionals for which every-
where C1,α-regularity of minimizers occurs. A well known result of Uhlenbeck [88] states
that the C1,α-regularity holds for minimizers if the integrand f is of the type f(|z|), for
a convex function f of p-growth, with p ≥ 2. In [17] Chipot & Evans proved the local
Lipschitz regularity for minimizers of (1.0.10) under the main assumption that these func-
tionals become appropriately convex and quadratic at infinity. The heuristic idea is that
wherever the gradient of the minimizer is very large, the Euler-Lagrange equations become
elliptic and practically linear, so that good estimates are then available. Subsequently Gi-
aquinta & Modica [55] (see also [81]) obtained an analogous result for integrands with
superquadratic growth (for the subquadratic case we refer to [67]).

More recent contributions include the works [44] and [49] where the authors use vari-
ous asymptotic relatedness condition in the context of proving global Lipschitz regularity
of minimizers to certain functionals. In addition, in [83, 84] the author have recently
produced several results for problems involving asymptotic relatedness conditions; in par-
ticular they have shown higher integrability in the case of relatively general functionals,
and partial Lipschitz regularity in the case of functionals where the integrand functions
depend solely on the gradient of the minimizer. Finally, in [31] the authors established
optimal local regularity results for vector-valued extremals and minimizers of variational
integrals: the optimality is illustrated by explicit examples showing that, in the non con-
vex case, minimizers need not be locally Lipschitz. This is in contrast to the convex case,
where the authors show that extremals are locally Lipschitz continuous.

The regularity of minimizers for the functional (1.0.10) has been intensively studied [44, 28,
29] also when the integrand f behaves asymptotically like a convex, radial Orlicz function
ϕ with growth and coercivity conditions of the type

ϕ(|z|) ≤ f(z) ≤ L(1 + ϕ(|z|)) (1.0.13)

(see Section 2.4 for the properties of ϕ). Let us point out that functionals naturally defined
in Orlicz spaces are an important class of functionals of (p, q)-type (see [69, 70, 71, 72]).
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The regularity theory for parabolic systems is, to a certain extent, very similar to the el-
liptic one described above. As already observed, in the general vectorial case only partial
regularity results are available, provided that suitable assumptions on growth and regu-
larity of the vector field are satisfied. Partial regularity of solutions has been proved for
quasi-linear systems [56, 57, 63, 86], for non-linear systems the regularity theory was de-
veloped mainly assuming special structure on the operator (see [5, 6, 74]) or assuming that
solutions were a priori more regular, i.e. bounded or even Hölder continuous (see [75]).
Let us point out that everywhere regularity is possible only under very special (diagonal
type) structures, as for instance in the case of the p-Laplacian system [23, 75], otherwise
it fails in general, as shown by counterexamples [87]. The minimal assumptions under
which a complete study of regularity properties for non a priori regular weak solutions of
parabolic systems with linear growth were considered in [38], where the authors consider
a continuous differentiable field with uniformly bounded second derivatives.
As far as the asymptotic framework is concerned, in [66] (see also [8]) the authors consid-
ered parabolic problems of the type

ut − div(γ(x, t)a(Du)) = −div f(x, t) (x, t) ∈ Ω× (−T, 0) =: ΩT , (1.0.14)

where Ω is a bounded domain in Rn, n ≥ 2, T > 0 and u maps ΩT into RN . Under
appropriate assumptions on the functions γ, a, f they established the local boundedness
of the spatial gradient of solutions to systems which are not everywhere parabolic, but, as
before, become parabolic only in an asymptotic sense.
In this context we can insert the first result contained in this thesis. More precisely, we
study nonlinear parabolic systems of the type (1.0.14). The main assumptions on the
vector field a : RNn → RNn are:
(H1) a is a continuous map;
(H2) there exist constants L and m such that

|a(ξ)− a(η)| ≤ L|ξ − η| (1.0.15)

for all ξ, η ∈ RNn such that |ξ|+ |η| ≥ m;
(H3) there exists ε > 0 such that a satisfies the coercivity condition

〈a(ξ)− a(η), ξ − η〉 ≥ L(1− ε)|ξ − η|2 (1.0.16)

for all ξ, η ∈ RNn such that |ξ|+ |η| ≥ m.
The key assumption below is that the constant ε is small so that the constant in the
coercivity inequality is close to the Lipschitz constant of a. These results can be interpreted
as perturbations of classical regularity results for elliptic systems in Campanato spaces (see
[11]). The notion of weak solution adopted prescribes that a map

u ∈ C0(−T, 0;L2(Ω,RN )) ∩ Lp(−T, 0;W 1,p(Ω,RN )), N ≥ 1 (1.0.17)

is a weak solution to (1.0.14), for p ≥ 2, if and only if∫
ΩT

−uϕt + 〈γ(x, t)a(Du), Dϕ〉dx dt =

∫
ΩT

〈f,Dϕ〉dx dt (1.0.18)
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holds whenever ϕ ∈W 1,2
0 (ΩT ,RN ).

We are able to prove two types of regularity results for weak solutions u to (1.0.14). The
first one concerns the BMO regularity of Du under suitable assumptions (see Chapter 3).
We have:

Theorem 1.0.2. Let a satisfying the assumptions (H1)− (H5). Then there exist an ε0 =
ε0(n,L) ∈ (0, 1) and a constant M = M(a) such that: if ε ∈ (0, ε0] and u ∈W 1,2

loc (ΩT ,RN )
is a weak solution of the system (1.0.14) in ΩT , then Du ∈ BMOloc(ΩT ,RNn) and there
exists a constant C = C(n,L,distP(Ωt2 , ∂PΩt1)) such that

[Du]2,n;Ωt2
≤ C

(
M + [f ]2,n;Ωt1

+ ‖Du‖L2(Ωt1 )

)
, (1.0.19)

where Ωt2 b Ωt1 b ΩT are open domains.

The proof of the BMO bound is based on the fact that a can be written as a perturbation
of the identity, a(ξ) = ξ+b(ξ), where b(·) is a bounded function. Moreover, if the function
a is a perturbation of the identity with a function of the gradient that has a sufficiently
small Lipschitz constant outside of a large ball, a(ξ) = ξ + e(ξ), then this estimate can be
improved to an L∞-bound.

Theorem 1.0.3. Assume that a satisfies the conditions (H1) − (H3) and (H4′). Then
we can find an ε0 = ε0(n,L) ∈ (0, 1), a constant M = M(a) and two constants c1 and
c2 depending only on n and distP(Ωt2 , ∂PΩt1), such that if u ∈ W 1,2

loc (ΩT ,RN ) is a weak
solution of

ut − div(γ(x, t)a(Du)) = −div f(x, t) in ΩT , (1.0.20)

then u ∈W 1,∞
loc (ΩT ,RN ) and for all Ωt2 b Ωt1 holds

esssupΩt2
|Du| ≤ c1

(
M2 +

∫
Ωt1

|Du|2dxdt

) 1
2

+ c2.

As already observed, the question that naturally arise is what happens in case of power
p 6= 2, and more in general in case of general growth ϕ.

Concerning the Orlicz setting, in the Chapter 4 we study variational integrals of the type
(1.0.10) where u : Ω→ RN , Ω is an open bounded set in Rn, n ≥ 2 and N ≥ 1. Here f is
a continuous function satisfying a ϕ-growth condition:

|f(z)| ≤ C(1 + ϕ(|z|)), ∀z ∈ RNn,

where C is a positive constant and ϕ is a given N -function.
In order to treat the general growth case, we consider the notion of strictlyW 1,ϕ-quasiconvexity
introduced in [27].

Definition 1.0.1 (Strict W 1,ϕ-quasiconvexity). A continuous function f : RNn → R is
said to be strictly W 1,ϕ-quasiconvex if there exists a positive constant k > 0 such that

−
∫
B1

f(z +Dξ) dx ≥ f(z) + k−
∫
B1

ϕ|z|(|Dξ|) dx

for all ξ ∈ C1
0 (B1), for all z ∈ RNn, where ϕa(t) ∼ t2ϕ′′(a+ t) for a, t ≥ 0.
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We will exploit an adequate notion of strict W 1,ϕ-quasiconvexity at infinity, which we will
call W 1,ϕ-asymptotic quasiconvexity:

Definition 1.0.2 (Asymptotic W 1,ϕ-quasiconvexity). A function f : RNn → R is asymp-
totically W 1,ϕ-quasiconvex if there exist a positive constant M and a uniformly strictly
W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M.

After establishing several characterizations of the notion of asymptoticW 1,ϕ-quasiconvexity
(see Theorem 4.2.1) we will prove the following result.

Theorem 1.0.4. Let z0 ∈ Rn with |z0| > M + 1, let k be a positive constant so that∫
Bρ(x0)

[f(z +Dξ)− f(z)] dx ≥ k

2

∫
Bρ(x0)

ϕ|z0|(|Dξ|) dx (1.0.21)

holds for all ξ ∈ C1
c (B,RN ), and let u ∈ W 1,ϕ(Ω,RN ) be a minimizer of F . If for some

x0 ∈ Ω

lim
r→0
−
∫
Br(x0)

|V (Du)− V (z0)|2 = 0, (1.0.22)

where V (z) =
√

ϕ′(|z|)
|z| z, for all z ∈ RNn \ {0}, then in a neighborhood of x0 the minimizer

u is C1,α for some α < 1.

In order to achieve this regularity result, we have to prove an excess decay estimate, where
the excess function is defined by

E(BR(x0), u) = −
∫
BR(x0)

|V (Du)− (V (Du))BR(x0)|2dx.

In the power case the main idea is to use a blow-up argument based strongly on the
homogeneity of ϕ(t) = tp. Here we have to face with the lack of the homogeneity since the
general growth condition. Thus one makes use of the so-called A-harmonic approximation
proved in [27] (see also [85, 34, 35, 37, 39] for the power case). Such tool allows us to
compare the solutions of our problem with the solution of the regular one in terms of the
closeness of the gradient.
Moreover we will prove that minimizers of F are Lipschitz continuous on an open and
dense subset of Ω.
More precisely we define the set of regular points R(u) by

R(u) = {x ∈ Ω : u is Lipschitz near x},

following that R(u) ⊂ Ω is open.

Corollary 1.0.1. Assume that f satisfies (H1) − (H5). Then, for every minimizer u ∈
W 1,ϕ(Ω,RN ) of F , the regular set R(u) is dense in Ω.
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We remark that a counterexample [83] shows that it is not possible to establish regularity
outside a negligible set (which would be the natural thing in the vectorial regularity
theory). So, our regularity result generalizes the ones given in [83] and [16] for integrands
with a power growth condition which become strictly convex and strictly quasiconvex near
infinity, respectively.

The last Chapter of the thesis deals with a recent problem I am facing with. It concerns the
local Lipschitz regularity of weak solutions to non-linear second order parabolic systems
of general growth

uβt −
n∑
i=1

(Aαi (Du))xi = 0, in ΩT := Ω× (−T, 0) (1.0.23)

where Ω is a bounded domain in Rn, n ≥ 2, T > 0, u : ΩT → RN , N > 1 and A is a tensor
having certain Orlicz-type growth that generalize p-growth.

In particular we focus on Aαi (Du) =
ϕ′(|Du|)
|Du|

uαxi , where ϕ is a given N -function.

In the model case ϕ(s) = sp, for some p > 1, (1.0.23) gives the evolutionary p-Laplacian.
This reveals that (1.0.23) is a natural generalization of the p-Laplacian. Under suitable hy-
potheses (see Chapter 5), by using a Moser type iteration for systems with general growth
conditions, we prove the local Lipschitz regularity of the spatial gradient of solutions to
(1.0.23). More precisely:

Theorem 1.0.5. Let u be a weak solution to (1.0.23). Then Du ∈ L∞loc(ΩT ,RNn). More-
over for every QR0 b ΩT the following a priori estimate holds with the constant c depending
on n and on the characteristic of ϕ

sup
QR0

2

|Du|2 ≤ c
(∫
QR0

ϕ(|Du|) dz
)1+ 2

n
+ c.

Finally, let me observe again that having such result, it is possible to prove the analogue
of the first problem in the case of nonstandard growth, considering an operator A that is
asymptotically closed to (1.0.23).
The content of the Chapter 3, 4, and 5 corresponds to the papers [58], [59] and [60].



Chapter 2

Preliminaries

This chapter is devoted to a brief exposition of the theory of function spaces that provide
the analytic framework for the study of PDEs. There are the Morrey and Campanato’s
spaces, and the Orlicz’s space.

2.1 Notation

We start with some remarks on the notation used throughout the whole work. Let Ω ⊂ Rn
be a bounded domain; with x0 ∈ Rn, we set

Br(x0) ≡ B(x0, r) := {x ∈ Rn : |x− x0| < r}

the open ball of Rn with radius r > 0 and center x0.
In the following ΩT will denote the parabolic cylinder Ω×(−T, 0), where T > 0. If z ∈ ΩT ,
we denote z = (x, t) with x ∈ Ω and t ∈ (−T, 0). When dealing with parabolic regularity,
the geometry of cylinders plays an important role. We shall deal with parabolic cylinder
with vertex (x0, t0) and width r > 0 given by

Qr(x0, t0) := B(x0, r)× (t0 − r2, t0).

We also consider cylinders with width magnified of a factor δ > 0:

Qδr(x0, t0) = B(x0, δr)× (t0 − δ2r2, t0).

given a cylinder Q = B×(s, t), its parabolic boundary is

∂PQ := (B×{s}) ∪ (∂B×[s, t]).

The parabolic metric is defined as usual by

distP(z, z0) :=
√
|x− x0|2 + |t− t0|
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whenever z = (x, t), z0 = (x0, t0) ∈ Rn+1.
A function u : Ω → RN is called Hölder continuous with exponent α on Ω if there exists
a constant c ∈ (0,+∞) such that for all points x, y ∈ Ω the estimate

|u(x)− u(y)| ≤ c|x− y|α

is satisfied. The Hölder seminorm of u is defined by

[u]C0,α(Ω,RN ) := sup
x,y∈Ω

x 6=y

|u(x)− u(y)|
|x− y|α

.

The Hölder space Ck,α(Ω,RN ) consists of all functions u ∈ Ck(Ω,RN ) for which the norm

‖u‖Ck,α(Ω,RN ) :=
∑
|β|≤k

sup
x∈Ω
|Dβu(x)|+

∑
|β|=k

[Dβu]C0,α(Ω,RN )

is finite. Here β = (β1, . . . , βn) ∈ Nn denotes a multiindex of lenght |β| = β1 + · · ·+ βn.
The Sobolev space W k,p(Ω,RN ) is given by

W k,p(Ω,RN ) :=
{
u ∈ Lp(Ω,RN ) : Dβu ∈ Lp(Ω,RN ) ∀|β| ≤ k

}
,

where Dβu is the weak derivative of u. Moreover by W k,p
0 (Ω,RN ) we denote the closure

of C∞c (Ω,RN ) in the space W k,p(Ω,RN ).
The integral average of a function u on X ⊂ Rn measurable subset with positive measure
is given by

(u)X = −
∫
X
u(x)dz :=

1

|X|

∫
X
u(x)dz

where |X| is the n-dimensional Lebesgue measure of X.

2.2 Parabolic spaces

We introduce spaces of functions that exhibit different regularity in the space and time
variables.

Let p, q ≥ 1. A function f defined and measurable in ΩT belongs to Lp,q(ΩT ) ≡ Lq(−T, 0;Lp(Ω))
if

‖f‖Lp,q(ΩT ) :=

(∫ 0

−T

(∫
Ω
|f |pdx

) q
p

dt

) 1
q

<∞.

Also f ∈ Lp,qloc(ΩT ) if for every compact subset K of Ω and every subinterval [t1, t2] ⊂
(−T, 0) (∫ t2

t1

(∫
K
|f |pdx

) q
p

dt
) 1
q
<∞.
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Whenever p = q we set Lp,q(ΩT ) ≡ Lp(ΩT ), Lp,qloc(ΩT ) ≡ Lploc(ΩT ) and ‖f‖Lp,q(ΩT ) ≡
‖f‖Lp(ΩT ).
Let us consider the Banach spaces

V p,q(ΩT ) ≡ L∞(−T, 0;Lp(Ω)) ∩ Lq(−T, 0;W 1,q(Ω))

and
V p,q

0 (ΩT ) ≡ L∞(−T, 0;Lp(Ω)) ∩ Lq(−T, 0;W 1,q
0 (Ω))

both equipped with the norm, u ∈ V p,q(ΩT ),

‖u‖V p,q(ΩT ) ≡ esssup−T<t<0 ‖v(·, t)‖Lp(Ω) + ‖Du‖Lq(ΩT ).

When p = q we set V p,p(ΩT ) ≡ V p(ΩT ) and V p,p
0 (ΩT ) ≡ V p

0 (ΩT ). Both spaces are
embedded in Lr(ΩT ) for some r > p.

2.3 Morrey and Campanato spaces

In the sequel we will use the Morrey and Campanato spaces.
Let Ω ⊂ Rn be a bounded open set satisfying the following property: there exists a
constant A > 0 such that for all x0 ∈ Ω, ρ < diam Ω we have

| Bρ(x0) ∩ Ω| ≥ Aρn.

Let p ≥ 1, λ ≥ 0.

Definition 2.3.1. The Morrey space Lp,λ(Ω,RN ) is the subspace of all functions u in
Lp(Ω,RN ) satisfying

‖u‖p
Lp,λ(Ω,RN )

:= sup
x0∈Ω

ρ>0

ρ−λ
∫
Bρ(x0)∩Ω

|u|pdx <∞. (2.3.1)

It is clear that condition (2.3.1) only depends on the behavior for small radii, i.e. we can
fix ρ0 > 0 and replace the definition of ‖u‖p

Lp,λ(Ω,RN )
with

sup
x0∈Ω

0<ρ<ρ0

∫
Bρ(x0)∩Ω

|u|pdx.

It is easily seen that ‖u‖p
Lp,λ(Ω,RN )

is a norm, and that the space Lp,λ(Ω,RN ) is complete.

Definition 2.3.2. We denote by Lp,λ(Ω,RN ) the Campanato space of all functions u in
Lp(Ω,RN ) such that

[u]pLp,λ(Ω,RN )
:= sup

x0∈Ω

ρ>0

ρ−λ
∫
Bρ(x0)∩Ω

|u− (u)Bρ(x0)∩Ω|pdx <∞. (2.3.2)
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The quantity [u]Lp,λ(Ω,RN ) is a seminorm in Lp,λ(Ω,RN ), equivalent to

sup
x0∈Ω

ρ>0

ρ−λ inf
ξ∈RN

∫
Bρ(x0)∩Ω

|u− ξ|pdx.

Equipped with the norm ‖ · ‖Lp,λ(Ω,RN ) defined in (2.3.1) the Morrey space Lp,λ(Ω,RN ) is

a Banach spaces for all p ≥ 1 and λ ≥ 0. Furthermore, the Campanato space Lp,λ(Ω,RN )
is a Banach spaces endowed with the norm ‖ · ‖Lp,λ(Ω,RN ) = ‖ · ‖Lp(Ω,RN ) + [·]Lp,λ(Ω,RN ).

Proposition 2.3.1. For 0 ≤ λ < n we have Lp,λ(Ω) ∼= Lp,λ(Ω).

The Campanato space L1,n(Ω,RN ) has a special role and is usually denoted by BMO(Ω,RN),
the abbreviation for bounded mean oscillation. It is smaller than any Lebesgue space
Lp(Ω,RN ) with p < ∞ but still containing L∞(Ω,RN ) as a strict consequence. Further-
more, the spaces Lp,λ(Ω,RN ) with n < λ ≤ n+p are known as the integral characterization
of Hölder continuity functions (see [11]):

Theorem 2.3.1 (Campanato). For n < λ ≤ n + p and α = λ−n
p we have Lp,λ(Ω) ∼=

C0,α(Ω). Moreover the seminorm

[u]C0,α(Ω) := sup
x,y∈Ω

x 6=y

|u(x)− u(y)|
|x− y|α

is equivalent to [u]Lp,λ(Ω).

If λ > n+ p and u ∈ Lp,λ(Ω), then u is constant.

2.4 Orlicz spaces

The following definitions and results are standard in the context of N -functions (see [82]).

Definition 2.4.1. A real function ϕ : [0,∞) → [0,∞) is said to be an N -function if
ϕ(0) = 0 and there exists a right continuous nondecreasing derivative ϕ′ satisfying ϕ′(0) =
0, ϕ′(t) > 0 for t > 0 and lim

t→∞
ϕ′(t) =∞. Especially ϕ is convex.

The concept of N -function generalizes the power function ϕ(t) = 1
p t
p. Now, let us

generalize its Hölder conjugate 1
q t
q, q = p

p−1 . To this end, for a non-decreasing real

function ϕ let us denote with ϕ−1 its generalized right-continuous inverse, given by
ϕ−1(t) := sup{s ∈ [0,∞) : ϕ(s) ≤ t}. Now we introduce

Definition 2.4.2. A complementary function to an N -function ϕ is

ϕ∗(t) :=

∫ t

0
(ϕ′)−1(s) ds.
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Moreover ϕ∗ is again an N -function and for t > 0 it results (ϕ∗)′(t) = (ϕ′)−1(t). Note
that ϕ∗(t) = sups≥0(st− ϕ(s)) and (ϕ∗)∗ = ϕ.
The assumption widely used in order to study regularity for systems with Orlicz growths
is the following

Definition 2.4.3. We say that an N -function ϕ satisfies the ∆2-condition (we shall write
ϕ ∈ ∆2) if there exists a positive constant C such that

ϕ(2t) ≤ C ϕ(t) for all t ≥ 0.

We denote the smallest possible constant by ∆2(ϕ).

We shall say that two real functions ϕ1 and ϕ2 are equivalent and write ϕ1 ∼ ϕ2 if there
exist constants c1, c2 > 0 such that c1ϕ1(t) ≤ ϕ2(t) ≤ c2ϕ1(t) if t ≥ 0.
Since ϕ(t) ≤ ϕ(2t) the ∆2-condition implies ϕ(2t) ∼ ϕ(t). Moreover if ϕ is a function
satisfying the ∆2-condition, then ϕ(t) ∼ ϕ(at) uniformly in t ≥ 0 for any fixed a > 1. Let
us also note that, if ϕ satisfies the ∆2-condition, then any N -function which is equivalent
to ϕ satisfies this condition too.
If ϕ,ϕ∗ satisfy the ∆2-condition we will write that ∆2(ϕ,ϕ∗) <∞. Assume that ∆2(ϕ,ϕ∗) <
∞. Then for all δ > 0 there exists cδ depending only on ∆2(ϕ,ϕ∗) such that for all s, t ≥ 0
it holds that

t s ≤ δ ϕ(t) + cδ ϕ
∗(s).

This inequality is called Young’s inequality. For all t ≥ 0

t ≤ ϕ−1(t)(ϕ∗)−1(t) ≤ 2t

t

2
ϕ′
( t

2

)
≤ ϕ(t) ≤ tϕ′(t)

ϕ
(ϕ∗(t)

t

)
≤ ϕ∗(t) ≤ ϕ

(2ϕ∗(t)

t

)
.

Therefore, uniformly in t ≥ 0,

ϕ(t) ∼ tϕ′(t), ϕ∗(ϕ′(t)) ∼ ϕ(t), (2.4.1)

where constants depend only on ∆2(ϕ,ϕ∗).

Definition 2.4.4. We say that an N -function ϕ is of type (p0, p1) with 1 ≤ p0 ≤ p1 <∞
if

ϕ(st) ≤ C max{sp0 , sp1}ϕ(t) ∀s, t ≥ 0. (2.4.2)

The following Lemma can be found in [27] (see Lemma 5).

Lemma 2.4.1. Let ϕ be an N -function with ϕ ∈ ∆2 together with its conjugate. Then ϕ
is of type (p0, p1) with 1 < p0 < p1 <∞ where p0 and p1 and the constant C depend only
on ∆2(ϕ,ϕ∗).
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If ϕ is an N -function satisfying the ∆2-condition, by Lϕ(Ω) and W 1,ϕ(Ω) we denote the

classical Orlicz and Orlicz-Sobolev spaces, i.e. u ∈ Lϕ(Ω) if and only if

∫
Ω
ϕ(|u|) dx <∞

and u ∈ W 1,ϕ(Ω) if and only if u,Du ∈ Lϕ(Ω). The Luxembourg norm is defined as
follows:

‖u‖Lϕ(Ω) = inf

{
λ > 0 :

∫
Ω
ϕ

(
|u(x)|
λ

)
dx ≤ 1

}
.

With this norm Lϕ(Ω) is a Banach space.
Moreover, we denote by W 1,ϕ

0 (Ω) the closure of C∞c (Ω) functions with respect to the norm

‖u‖W 1,ϕ(Ω) = ‖u‖Lϕ(Ω) + ‖Du‖Lϕ(Ω)

and by W−1,ϕ(Ω) its dual.
Throughout this thesis we will assume that ϕ satisfies the following assumption.

Assumption 2.4.1. Let ϕ be an N -function such that ϕ is C1([0,+∞)) and C2(0,+∞).
Further assume that

ϕ′(t) ∼ tϕ′′(t). (2.4.3)

We remark that under this assumption ∆2(ϕ,ϕ∗) < ∞ will be automatically satisfied,
where ∆2(ϕ,ϕ∗) depends only on the characteristics of ϕ.
For given ϕ we define the associated N -function ψ by

ψ′(t) =
√
tϕ′(t).

Note that

ψ′′(t) =
1

2

(
ϕ′′(t)

ϕ′(t)
t+ 1

)√
ϕ′(t)

t
=

1

2

(
ϕ′′(t)

ϕ′(t)
t+ 1

)
ψ′(t)

t
.

It is shown in [25] (see Lemma 25) that if ϕ satisfies Assumption 2.4.1 then also ϕ∗, ψ and
ψ∗ satisfy Assumption 2.4.1 and ψ′′(t) ∼

√
ϕ′′(t).

We define tensors A and V in the following way

A(z) = DΦ(z)

V(z) = DΨ(z),
(2.4.4)

where Φ(z) := ϕ(|z|) and Ψ(z) := ψ(|z|).
Connections between the tensors A and a N -function ϕ are given by the the following
lemma ( see [25] Lemma 21).

Lemma 2.4.2. Let ϕ satisfying Assumption 2.4.1, then A(z) = ϕ′(|z|) z
|z| for z 6= 0,

A(0) = 0 and A satisfies

| A(z1)−A(z2)| ≤ cϕ′′(|z1|+ |z2|)|z1 − z2| (2.4.5)

(A(z1)−A(z2), z1 − z2) ≥ Cϕ′′(|z1|+ |z2|)|z1 − z2|2, (2.4.6)

for z1, z2 ∈ RNn.
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The same conclusions of Lemma 2.4.2 holds with A and ϕ replaced by V and ψ.
Now, let us consider a family of N -functions {ϕa}a≥0 setting, for t ≥ 0,

ϕa(t) :=

∫ t

0
ϕ′a(s) ds with ϕ′a(t) := ϕ′(a+ t)

t

a+ t
.

The following lemma can be found in [25] (see Lemma 23 and Lemma 26).

Lemma 2.4.3. Let ϕ be an N -function with ϕ ∈ ∆2 together with its conjugate. Then
for all a ≥ 0 the function ϕa is an N -function and {ϕa}a≥0 and {(ϕa)∗}a≥0 ∼ {ϕ∗ϕ′(a)}a≥0

satisfy the ∆2 condition uniformly in a ≥ 0.

Let us observe that by the previous lemma ϕa(t) ∼ tϕ′a(t). Moreover, for t ≥ a we have
ϕa(t) ∼ ϕ(t) and for t ≤ a we have ϕa(t) ∼ t2ϕ′′(a). This implies that ϕa(st) ≤ cs2ϕa(t)
for all s ∈ [0, 1], a ≥ 0 and t ∈ [0, a].
The following lemmas can be found in [25] (see Lemma 24 and Lemma 3).

Lemma 2.4.4. Let ϕ satisfy Assumption 2.4.1. Then, uniformly in z1, z2 ∈ Rn, |z1| +
|z2| > 0

ϕ′′(|z1|+ |z2|)|z1 − z2| ∼ ϕ′|z1|(|z1 − z2|),

ϕ′′(|z1|+ |z2|)|z1 − z2|2 ∼ ϕ|z1|(|z1 − z2|).

The following result show how one can interchangeably use A, V and ϕa.

Lemma 2.4.5. Let ϕ satisfy Assumption 2.4.1 and let A and V be defined by (2.4.4).
Then, uniformly in z1, z2 ∈ RNn,

〈A(z1)−A(z2), z1 − z2〉 ∼ |V(z1)− V(z2)|2 ∼ ϕ|z1|(|z1 − z2|),

and

| A(z1)−A(z2)| ∼ ϕ′|z1|(|z1 − z2|).

Moreover

〈A(z1), z1〉 ∼ |V(z1)|2 ∼ ϕ(|z1|),
| A(z1)| ∼ ϕ′(|z1|),

uniformly in z1 ∈ RNn.

2.5 The method of A-harmonic approximation

In this section we present the A-harmonic approximation technique which is inspired
by Simon’s proof of the regularity theorem of Allard and which extends the method of
harmonic approximation in a natural way to bounded elliptic operators with constant
coefficients. In the partial regularity theory this approach was first implemented by Duzaar
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& Grotowsky [34] and since then it has been applied to various situations concerning partial
regularity of solutions to elliptic and parabolic problems.
Let us consider

div(a(Du)) = 0 in Ω (2.5.1)

where a : RNn → RNn is a C1-vector field such that

|Da(z)| ≤ L and 〈Da(z)λ, λ〉 ≥ ν|λ|2 (2.5.2)

for all z, λ ∈ RNn with 0 < ν ≤ L. In this setting, a weak solution to (2.5.1) is a map
u ∈W 1,2(Ω,RN ) such that ∫

Ω
〈a(Du), Dφ〉 dx = 0 (2.5.3)

for every φ ∈ C∞c (Ω,RN ).
The regularity statement is that if u ∈ W 1,2(Ω,RN ) is a weak solution to (2.5.1), that
is a solution in the usual distributional sense as in (2.5.3), then there is an open subset
Ω0 ⊂ Ω such that

u ∈ C1,α(Ω0,RN ) for every α < 1 and |Ω \ Ω0| = 0. (2.5.4)

This is actually called partial regularity of solutions.
Let us recall the following definition:

Definition 2.5.1. Let A be a bilinear form with constant coefficients satisfying

ν|λ|2 ≤ A〈λ, λ〉 and A〈z, λ〉 ≤ L|z||λ| (2.5.5)

for all z, λ ∈ RNn, ν > 0 and L > 0. A map v ∈ W 1,2(Bρ,RN ) is called A-harmonic in
the ball Bρ ⊂ Rn if it satisfies∫

Bρ
A〈Dv,Dφ〉 dx = 0 for all φ ∈ C∞c (Bρ,RN ). (2.5.6)

Roughly speaking, an A-harmonic map in Bρ is just a weak solution to a constant coeffi-
cients elliptic system in the ball Bρ. Now, the basic idea for proving partial regularity of
solutions is to linearize the system (2.5.1) around suitable averages of the gradient, in a
small ball Bρ(x0), provided x0 is a Lebesgue’s point for Du, that is

lim
ρ→0
−
∫
Bρ(x0)

|Du− (Du)Bρ(x0)|2dx = 0. (2.5.7)

In fact, it can be proved that the regular set Ω0 is exactly the set of Lebesgue’s point of
the gradient Du, from which the full measure property |Ω \ Ω0| = 0 immediately follows.
In order to achieve this, the idea is to consider the solution v to the system with constant
coefficients:

div[Da((Du)Bρ(x0))Dv] = 0 in Bρ(x0) (2.5.8)
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assuming that Bρ(x0) is sufficiently small. Setting A := Da((Du)Bρ(x0)) we have that v
is an A-harmonic function, that is smooth in the interior of Bρ(x0) by classical regularity
theory [11]. At this point, if we prove that the original solution u to (2.5.1) is close enough
to a solution v to (2.5.8), then we may hope that the good regularity estimates available
for v are in some sense inherited by u, and we can conclude with the partial regularity.

We have the following

Lemma 2.5.1 (A-harmonic approximation lemma). Consider fixed constants 0 < ν ≤ L,
and n,N ∈ N with n ≥ 2. Then for any given ε > 0 there exists δ = δ(n,N, ν, L, ε) ∈
(0, 1] with the following property: For any bilinear form A satisfying (2.5.5), and for any
u ∈W 1,2(Bρ(x0),RN ) (for some Bρ(x0) ⊂ Rn) satisfying

ρ−n−
∫
Bρ(x0)

|Du|2dx ≤ 1, (2.5.9)

and being approximatively A-harmonic in the sense that∣∣∣ρ−n−∫
Bρ(x0)

A〈Du,Dφ〉 dx
∣∣∣ ≤ δ sup

Bρ(x0)
|Dφ| (2.5.10)

holds for every φ ∈ C∞c (Bρ(x0),RN ), there exists an A-harmonic map

h ∈ H =

{
w ∈W 1,2(Bρ(x0),RN ) : ρ−n−

∫
Bρ(x0)

|Dw|2dx ≤ 1

}

that is

div(A Dh) = 0 in Bρ(x0),

satisfying

ρ−n−2−
∫
Bρ(x0)

|h− u|2 dx ≤ ε. (2.5.11)

By using this Lemma we can conclude there exists an A-harmonic function v that is
strongly close to u in the sense of

−
∫
Bρ(x0)

|v − u|2 dx ≤ ε2,

and then in turn we would conclude with the regularity of u.

Let us observe that Lemma 2.5.1 still works (see [40]) when considering a bilinear form
that satisfies, instead of (2.5.5), the strong Legendre-Hadamard ellipticity condition:

A〈a⊗ b, a⊗ b〉 ≥ kA|a|2|b|2

for every a ∈ RN , b ∈ Rn and for some constant kA > 0.
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In [27] the authors give a generalization of the A-harmonic approximation Lemma in Orlicz

spaces. In particular, they considered A =
D2f(Q)

ϕ′′(|Q|)
where ϕ is a given N -function and f

has a ϕ-growth, that is
|f(Q)| ≤ Cϕ(|Q|),

and is strictly W 1,ϕ-quasiconvex. Let us observe that the strictly W 1,ϕ-quasiconvexity of
f implies the following strong Legendre-Hadamard condition:

D2f(Q)〈η ⊗ ξ, η ⊗ ξ〉 ≥ kAϕ′′(|Q|)|η|2|ξ|2

for all η ∈ RN , ξ ∈ Rn and Q ∈ RNn \ {0}. Given a function u ∈ W 1,2(BR), we want to
find a function h that is A-harmonic and is close to u. In particular, we are looking for a
function h ∈W 1,2(BR) such that{

−div(A Dh) = 0 in BR
h = u on ∂ BR

.

Let w := h− u, then w satisfies{
−div(A Dw) = −div(A Du) in BR
w = 0 on ∂ BR

. (2.5.12)

The approximation result is the following:

Theorem 2.5.1. Let BR b Ω and let B̃ ⊂ Ω denote either BR or B2R. Let A be strongly el-
liptic in the sense of Legendre-Hadamard. Let ψ be an N -function with ∆2(ψ,ψ∗) <∞ and
let s > 1. Then for every ε > 0, there exists δ > 0 depending on n,N, kA, | A |,∆2(ψ,ψ∗)
and s such that the following holds: let u ∈W 1,ψ(B̃) be almost A-harmonic on BR in the
sense that ∣∣∣−∫

BR
〈ADu,Dξ〉 dx

∣∣∣ ≤ δ−∫
B̃
|Du| dx‖Dξ‖L∞(BR)

for all ξ ∈ C∞0 (BR). Then the unique solution w ∈W 1,ψ
0 (BR) of (2.5.12) satisfies

−
∫
BR
ψ
( |w|
R

)
dx+−

∫
BR
ψ(|Dw|) dx ≤ ε

[(
−
∫
BR
ψs(|Du|) dx

) 1
s

+−
∫
B̃
ψ(|Du|) dx

]
.



Chapter 3

Bmo regularity for asymptotic
parabolic systems with linear
growth

In this Chapter we prove local regularity results for the spatial gradient of weak solutions
to non-linear problems under the assumption that the involved operator becomes appro-
priately parabolic at infinity. More precisely, we study nonlinear parabolic systems of the
type

ut − div(γ(x, t)a(Du)) = −div f(x, t) (x, t) ∈ Ω× (−T, 0) =: ΩT (3.0.1)

where Ω is a bounded domain in Rn, n ≥ 2, T > 0 and u maps ΩT into RN .
The main assumptions on the vector field a : RNn → RNn are:
(H1) a is a continuous map;
(H2) there exist constants L and m such that

|a(ξ)− a(η)| ≤ L|ξ − η| (3.0.2)

for all ξ, η ∈ RNn such that |ξ|+ |η| ≥ m;
(H3) there exists ε > 0 such that a satisfies the coercivity condition

〈a(ξ)− a(η), ξ − η〉 ≥ L(1− ε)|ξ − η|2

for all ξ, η ∈ RNn such that |ξ|+ |η| ≥ m.
The notion of weak solution adopted prescribes that a map

u ∈ C0(−T, 0;L2(Ω,RN )) ∩ Lp(−T, 0;W 1,p(Ω,RN )), N ≥ 1 (3.0.3)

is a weak solution to (3.0.1), for p ≥ 2, if and only if∫
ΩT

−uϕt + 〈γ(x, t)a(Du), Dϕ〉dx dt =

∫
ΩT

〈f,Dϕ〉dx dt (3.0.4)
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holds whenever ϕ ∈W 1,2
0 (ΩT ,RN ).

We are able to prove two types of regularity results for weak solutions u to (3.0.1). The
first result concerns the BMO regularity of Du under the further assumptions:
(H4) γ : ΩT → R is measurable and satisfies the non-degeneracy condition

0 < ν ≤ γ(·) ≤ L ∀(x, t) ∈ ΩT

and moreover defining

ω(ρ) := sup
t,s∈(−T,0)

x,y∈Bρ(x0)⊂Ω

|γ(x, t)− γ(y, s)|

there exists α > 0 such that
ω(ρ) ≤ cρα. (3.0.5)

(H5) f is BMOloc(ΩT ,RNn).
More precisely, it holds:

Theorem 3.0.2. Let a satisfying the assumptions (H1)− (H5). Then there exist an ε0 =
ε0(n,L) ∈ (0, 1) and a constant M = M(a) such that: if ε ∈ (0, ε0] and u ∈W 1,2

loc (ΩT ,RN )
is a weak solution of the system (3.0.1) in ΩT , then Du ∈ BMOloc(ΩT ,RNn) and there
exists a constant C = C(n,L,distP(Ωt2 , ∂PΩt1)) such that

[Du]2,n;Ωt2
≤ C(M + [f ]2,n;Ωt1

+ ‖Du‖L2(Ωt1 )),

where Ωt2 b Ωt1 b ΩT are open domains.

Next, if we replace hypotheses (H4) and (H5) with
(H4′) Functions γ(·) and f(·) are measurable, γ(·) satisfies the non-degeneracy condition

0 < ν ≤ γ(·) ≤ L ∀(x, t) ∈ ΩT

and moreover defining

ω(ρ) := sup
t,s∈(−T,0)

x,y∈Bρ(x0)⊂Ω

|γ(x, t)− γ(y, s)|+ |f(x, t)− f(y, s)| (3.0.6)

there exists α > 0 such that
ω(ρ) ≤ cρα. (3.0.7)

we obtain the following Lipschitz-regularity result:

Theorem 3.0.3. Assume that a satisfies the conditions (H1) − (H3) and (H4′). Then
we can find an ε0 = ε0(n,L) ∈ (0, 1), a constant M = M(a) and two constants c1 and
c2 depending only on n and distP(Ωt2 , ∂PΩt1), such that if u ∈ W 1,2

loc (ΩT ,RN ) is a weak

solution of the system (3.0.1) in ΩT then u ∈W 1,∞
loc (ΩT ,RN ) and for all Ωt2 b Ωt1 holds

esssupΩt2
|Du| ≤ c1

(
M2 +

∫
Ωt1

|Du|2dxdt

) 1
2

+ c2.
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3.1 Estimate for a comparison map

Let us now consider, in a fixed cylinder Qr ≡ Qr(x0, t0) b ΩT , the unique weak solution
v ∈W 1,2(ΩT ,RN ) to the Cauchy - Dirichlet problem{

vt − div[γ(x0, t0)Dv] = 0 in Qr
v = u on ∂PQr

(3.1.1)

(see [23]). The central result of this section is the following:

Proposition 3.1.1. Let a satisfy the assumptions (H1)− (H3) and suppose that it holds
(H4) − (H5). If u ∈ W 1,2

loc (ΩT ,RN ) is a weak solution of the system (3.0.1) in ΩT , fixed
(x0, t0) ∈ Rn+1, there exists a constant c ≡ c(n,N, ν, L) such that∫

Qr
|Du−Dv|2dz ≤

c

[∫
Qr

(|f − fQr |
2 +M2) dz + ε

∫
Qr
|Du− (Du)Qr |

2dz +
(2ε+ 1)

2
ω2(r)

∫
Qr
|Du|2dz

]
.

(3.1.2)

Proof. We will follow some ideas contained in [31]. For simplicity we assume L = 1. In
view of hypotheses (H2) and (H3) we find

〈(a(ξ)− ξ)− (a(η)− η), ξ − η〉
= 〈a(ξ)− a(η), ξ − η〉 − 〈ξ − η, ξ − η〉
≥ (1− ε)|ξ − η|2 − |ξ − η|2

= −ε|ξ − η|2

and

|[a(ξ)− ξ]− [a(η)− η]|2 = |[a(ξ)− a(η)]− [ξ − η]|2

= |a(ξ)− a(η)|2 + |ξ − η|2 − 2〈a(ξ)− a(η), ξ − η〉
≤ |ξ − η|2 + |ξ − η|2 − 2(1− ε)|ξ − η|2

= 2ε|ξ − η|2

for all ξ, η ∈ RNn such that |ξ|+ |η| ≥ m.
Defining e(ξ) = a(ξ)− ξ we have, if |ξ|+ |η| ≥ m

|e(ξ)− e(η)|2 ≤ 2ε|ξ − η|2

⇒ |e(ξ)− e(η)| ≤
√

2ε|ξ − η|

that is e(ξ) is a Lipschitz function with constant
√

2ε.
Let g be the

√
2ε-Lipschitz extension of the restriction of e to RNn\B(0,m) to all RNn and

let b(ξ) = e(ξ)−g(ξ). Now, b(·) has compact support, is continuous and b ∈ L∞(RNn). So
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we have a reformulation of the equation (3.0.1) as a perturbation of the operator defined
in (3.0.1):

ut − div[γ(x, t)Du+ γ(x, t)b(Du) + γ(x, t)g(Du)− f ] = 0 (3.1.3)

with

|g(ξ)− g(η)| ≤
√

2ε|ξ − η| ∀ξ, η ∈ RNn (3.1.4)

|b(ξ)| ≤M ∀ξ ∈ RNn. (3.1.5)

Now, for t0 − r2 < s < t0 and ε̃ > 0 small enough, we choose

ζ(t) =


1 for t0 − r2 ≤ t ≤ s
−1
ε̃ (t− s− ε̃) for s ≤ t ≤ s+ ε̃

0 for s+ ε̃ ≤ t ≤ t0
(3.1.6)

and let ϕ(x, t) = (u− v)ζ, where v is the unique weak solution of (3.1.1).
In the weak formulation of (3.1.1) and (3.1.3) respectively we formally use the test function
ϕ obtaining ∫

Qr
[−vϕt + 〈γ(x0, t0)Dv,Dϕ〉] dz = 0 (3.1.7)

and ∫
Qr

[−uϕt + 〈γ(x, t)Du+ γ(x, t)(b(Du) + g(Du))− f,Dϕ〉] dz = 0. (3.1.8)

Subtracting (3.1.7) from (3.1.8) we obtain∫
Qr

[−(u− v)ϕt + 〈γ(x, t)[b(Du) + g(Du)]− f,Dϕ〉] dz

+

∫
Qr

[〈γ(x, t)Du− γ(x0, t0)Dv,Dϕ〉] dz = 0,

using the definition of ϕ we deduce∫
Qr

[−(u− v)(u− v)tζ − |u− v|2ζt ] dz

+

∫
Qr
〈γ(x, t)[b(Du) + g(Du)]− f, ζD(u− v)〉dz

+

∫
Qr
〈[γ(x, t)− γ(x0, t0)]Du, ζD(u− v)〉dz

+

∫
Qr
〈γ(x0, t0)D(u− v), ζD(u− v)〉dz = 0
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that is ∫
Qr

[−(u− v)(u− v)tζ − |u− v|2ζt + 〈γ(x0, t0)D(u− v), ζD(u− v)〉]dz =∫
Qr
〈f − γ(x, t)(b(Du) + g(Du)), ζD(u− v)〉dz

−
∫
Qr
〈[γ(x, t)− γ(x0, t0)]Du, ζD(u− v)〉dz.

After performing manipulations it follows that

ν

∫
Qr
|D(u− v)|2ζ dz =

∫
Qr
〈f − fQr − γ(x, t)b(Du), ζD(u− v)〉dz

−
∫
Qr
〈[γ(x, t)− γ(x0, t0)]g(Du), ζD(u− v)〉dz

−
∫
Qr
〈γ(x0, t0)[g(Du)− g((Du)Qr)], ζD(u− v)〉dz

−
∫
Qr
〈[γ(x, t)− γ(x0, t0)]Du, ζD(u− v)〉dz

≤
∫
Qr
|f − fQr − γ(x, t)b(Du)||D(u− v)| dz

+

∫
Qr
|γ(x, t)− γ(x0, t0)||g(Du)||D(u− v)|dz

+

∫
Qr
γ(x0, t0)|g(Du)− g((Du)Qr)||D(u− v)| dz

+

∫
Qr
|γ(x, t)− γ(x0, t0)||Du||D(u− v)| dz

=: I + II + III + IV.

We proceed with the estimation of I: by Hölder inequality, (3.1.5) and (H4) it find out
that

I ≤
(∫
Qr
|f − fQr − γ(x, t)b(Du)|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(

2

∫
Qr
|f − fQr |

2 + |b(Du)|2dz
) 1

2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(

2

∫
Qr
|f − fQr |

2 +M2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

.

To evaluate the second addendum we take into account that g is a Lipschitz function and
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hypothesis (H4):

II ≤
(∫
Qr
|γ(x, t)− γ(x0, t0)|2|g(Du)|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(
ω2(r)

∫
Qr
|g(Du)|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(

2εω2(r)

∫
Qr
|Du|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

+

(
c

∫
Qr
|D(u− v)|2dz

) 1
2

.

Using Hölder inequality and (3.1.4) we find

III ≤
(∫
Qr
|g(Du)− g((Du)Qr)|

2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(

2ε

∫
Qr
|Du− (Du)Qr |

2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

.

Estimate for IV : by hypothesis (H4)

IV ≤
(∫
Qr
|γ(x, t)− γ(x0, t0)|2|Du|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

≤
(
ω2(r)

∫
Qr
|Du|2dz

) 1
2
(∫
Qr
|D(u− v)|2dz

) 1
2

.

Combining estimates obtained we conclude with∫
Qr
|D(u− v)|2dz ≤ 6

ν2

∫
Qr

(|f − fQr |
2 + M̃2) dz

+
6ε

ν2

∫
Qr
|Du− (Du)Qr |

2dz +
3(2ε+ 1)

ν2
ω2(r)

∫
Qr
|Du|2dz

that is (3.1.2).

3.2 BMO regularity for spatial gradient

This section is devoted to the proof of the Theorem 3.0.2.

3.2.1 A few lemmas

We start with a preliminary result due to Campanato [12]:
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Lemma 3.2.1. Let v be a solution of the equation

vt − div(ADv) = 0 in Qr(x0, t0)

with A constant matrix. Then for any 0 < ρ ≤ r, we have∫
Qρ(x0,t0)

|Dv|2dz ≤ c
(ρ
r

)n+2
∫
Qr(x0,t0)

|Dv|2dz (3.2.1)

and∫
Qρ(x0,t0)

[Dv − (Dv)Qρ(x0,t0)]
2dz ≤ c

(ρ
r

)n+4
∫
Qr(x0,t0)

[Dv − (Dv)Qr(x0,t0)]
2dz (3.2.2)

where c is a positive constant depending only on n.

Next Lemma (see for instance Lemma 1 in [20]) plays an important role for the iteration:

Lemma 3.2.2. Let α, d > 0, A > 0, B ≥ 0, β ∈ [0, α). Then there exists ε0, C > 0 such
that for every function Φ nonnegative and nondecreasing defined on [0, d] and satisfying
the inequality

Φ(σ) ≤
(
A
( σ
R

)α
+K

)
Φ(R) +BRβ ∀σ,R : 0 < σ < R ≤ d

with K ∈ (0, ε0] it holds that

Φ(σ) ≤ Cσβ(d−βΦ(d) +B) ∀σ : 0 < σ ≤ d.

3.2.2 Proof of Theorem 3.0.2

Now we are able to prove the BMO regularity of the gradient of solutions to (3.0.1).
In a fixed cylinder Qr ≡ Qr(x0, t0) b ΩT we apply (3.2.2) with τ ∈ (0, 1)∫

Qτr
|Dv − (Dv)Qτr |

2dz ≤ cτn+4

∫
Qr
|Dv − (Dv)Qr |

2dz,

the triangle inequality and (3.1.2) to obtain∫
Qτr
|Du− (Du)Qτr |

2dz

=

∫
Qτr
|Du−Dv +Dv − (Dv)Qτr + (Dv)Qτr − (Du)Qτr |

2dz

≤ 3
[∫
Qτr
|Du−Dv|2dz +

∫
Qτr
|Dv − (Dv)Qτr |

2dz +

∫
Qτr
|(Dv)Qτr − (Du)Qτr |

2dz
]

≤ 6

∫
Qr
|Du−Dv|2dz + 3

∫
Qτr
|Dv − (Dv)Qτr |

2dz

≤ c
∫
Qr

(|f − fQr |
2 +M2) dz + c

(
ε+ τn+4

)∫
Qr
|Du− (Du)Qr |

2dz

+ c(2ε+ 1)ω2(r)

∫
Qr
|Du|2dz. (3.2.3)
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Moreover using again (3.1.2) and the fact that∫
Qr
|Du− (Du)Qr |

2dz ≤
∫
Qr
|Du|2dz

we have∫
Qr
|D(u− v)|2dz ≤

≤ c
[∫
Qr

(|f − fQr |
2 +M2)dz + ε

∫
Qr
|Du|2dz +

(2ε+ 1)ω2(r)

2

∫
Qr
|Du|2dz

]
= c

[∫
Qr

(|f − fQr |
2 +M2)dz +

(
ε+

(2ε+ 1)ω2(r)

2

)∫
Qr
|Du|2dz

]
= c1

∫
Qr

(|f − fQr |
2 +M2)dz + c2(2ε+ ω2(r))

∫
Qr
|Du|2dz. (3.2.4)

Taking ρ < r in (3.2.4), using triangle inequality and (3.2.1), we deduce∫
Qρ
|Du|2dz ≤

≤ 2

∫
Qρ
|D(u− v)|2dz + 2

∫
Qρ
|Dv|2dz

≤ 2

∫
Qρ
|D(u− v)|2dz + 2c

(ρ
r

)n+2
∫
Qr
|Dv|2dz

≤ 2

∫
Qr
|D(u− v)|2dz + 2c

(ρ
r

)n+2[
2

∫
Qr
|D(u− v)|2dz + 2

∫
Qr
|Du|2dz

]
≤ c3

∫
Qr
|D(u− v)|2dz + c4

(ρ
r

)n+2
∫
Qr
|Du|2dz

≤ c5

∫
Qr

(|f − fQr |
2 +M2)dz +

(
2c6 ε+ c6 ω

2(r) + c4

(ρ
r

)n+2)∫
Qr
|Du|2dz

≤ c5 r
n+2−δ Rδ0−

∫
Qr

(|f − fQr |
2 +M2) dz +

(
c7 ε+ c7 ω

2(r)

+ c4

(ρ
r

)n+2)∫
Qr
|Du|2dz.

Fixed ε < ε0 and r < R0 such that c7ε+ c7ω
2(r) < ε0, by Lemma 3.2.2 we have∫

Qρ
|Du|2dz ≤ cρβ

(
R−β0

∫
QR0

|Du|2dz +B
)
≤ cρβ (3.2.5)

for all β < n + 2 and for all 0 < ρ < R0 (in particular β = n + 2 − δ, where δ will be
choosen in an appropriate way).
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At this point we want to prove that there exist a constant C = C(n,L) such that for all
QR0 ≡ QR0(x0, t0) b ΩT and ρ ∈ (0, R0) the following estimate holds:

−
∫
Qρ
|Du− (Du)Qρ |

2dz

≤ C

(
M2 + [f ]22,n;Ωt1

+−
∫
QR0

|Du− (Du)QR0
|2dz + C̃

)
(3.2.6)

where Qρ ≡ Qρ(x0, t0) and

[f ]22,n;Ωt1
= sup

(x0,t0)∈Ωt1
,

ρ∈(0,R0)

−
∫
Qρ
|f − fQρ |2dz.

Now we define a function Φ:
Φ : (0, R0)→ [0,∞)

putting

Φ(R) :=

∫
QR
|Du− (Du)QR |

2dz.

Such Φ is non-decreasing and for 0 < ρ < s ≤ R0, by (3.2.3), satisfies the following:

Φ(ρ) =

∫
Qρ
|Du− (Du)Qρ |

2dz

≤ c
∫
Qs

(|f − fQs |
2 +M2) dz

+
[
c ε+

(ρ
s

)n+4] ∫
Qs
|Du− (Du)Qs |

2dz

+ c(2ε+ 1)ω2(s)sn+2ωn−
∫
Qs
|Du|2dz

= c sn+2
[
−
∫
Qs
|f − fQs |

2dz +M2
]

+
[
c ε+ 3

(ρ
s

)n+4]
Φ(s)

+ c(2ε+ 1)ω2(s)sn+2ωn−
∫
Qs
|Du|2dz.

Taking 0 < s ≤ R0 and τ ∈ (0, 1) we have

Φ(τs) ≤ csn+2

[
−
∫
Qs
|f − fQs |

2dz +M2

]
+
[
cε+ 3τn+4

]
Φ(s)

+ c(2ε+ 1)ω2(s)sn+2ωn−
∫
Qs
|Du|2dz

= csn+2

[
−
∫
Qs
|f − fQs |

2dz +M2

]
+ 3τn+4

[ cε

τn+4
+ 1
]

Φ(s)

+ c(2ε+ 1)ω2(s)sn+2ωn−
∫
Qs
|Du|2dz. (3.2.7)
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Let τ = 1
3(c+1) and ε̃0 = τn+4. Then, for ε ∈ (0, ε̃0) we have

cε

τn+4
+ 1 < c+ 1⇒ 3τn+4

[ cε

τn+4
+ 1
]
< 3τn+4(c+ 1) = τn+3

and so (3.2.7) becomes

Φ(τs) ≤ csn+2

[
−
∫
Qs
|f − fQs |

2dz +M2

]
+ τn+3Φ(s)

+ c(2ε+ 1)ω2(s)sn+2ωn−
∫
Qs
|Du|2dz. (3.2.8)

By induction, for all j ∈ N:

Φ(τ j+1s) ≤ (τ j+1s)n+2
{τ j+1

sn+2
Φ(s)

+ c sup
0<s<R0

[
−
∫
Qs
|f − fQs |

2dz +M2
] j∑
i=0

τ (j−i)−(n+2)

+ c(2ε+ 1)ωn

j∑
i=0

τ i(n+2)+(j−i)(n+3)−(j+1)(n+2)ω2(τ is)−
∫
Qτis
|Du|2dz

}
.

Now it holds
j∑
i=0

τ (j−i)−(n+2) =
1

τn+2

j∑
i=0

τ j−i

≤ 1

τn+2(1− τ)
.

Employing hypothesis (H4) and using (3.2.5)

j∑
i=0

τ i(n+2)+(j−i)(n+3)−(j+1)(n+2)ω2(τ is)−
∫
Qτis
|Du|2dz

≤
j∑
i=0

τ i(n+2)+(j−i)(n+3)−(j+1)(n+2) c2τ2iαs2α

τ i(n+2)sn+2ωn
cτ iβsβ

≤ Cs2α+β

sn+2ωnτn+2

j∑
i=0

τ j−i(n+3−2α−β).

Taking into account that β = n+ 2− δ and choosing δ = 2α we deduce

j∑
i=0

τ i(n+2)+(j−i)(n+3)−(j+1)(n+2)ω2(τ is)−
∫
Qτis
|Du|2dz

≤ C

ωnτn+2

j∑
i=0

τ j−i

≤ C

ωnτn+2(1− τ)
.
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Finally

Φ(τ j+1s) ≤ (τ j+1s)n+2
{τ j+1

sn+2
Φ(s)

+
c

τn+2(1− τ)
sup

0<s<R0

[
−
∫
Qs
|f − fQs |

2dz +M2
]

+
C(2ε+ 1)

τn+2(1− τ)

}
. (3.2.9)

Let ρ ∈ (0, R0) and choose j ∈ N such that

τ j+2R0 < ρ ≤ τ j+1R0. (3.2.10)

Then (3.2.9) becomes

Φ(ρ) = Φ
(
τ j+1 ρ

τ j+1

)
≤
(
τ j+1 ρ

τ j+1

)n+2{
τ j+1

(τ j+1

ρ

)n+2
Φ(

ρ

τ j+1
)

+
c

τn+2(1− τ)
sup

0<s<R0

[
−
∫
Qs
|f − fQs |

2dz +M2
]

+
C(2ε+ 1)

τn+2(1− τ)

}
.

Using the facts

Φ
(

ρ
τ j+1

)
≤ Φ(R0) since Φ is non- decreasing

τ j+1

ρ ≤ 1
R0τ

by (3.2.10)

τ j+1 <
(
ρ
R0

) j+1
j+2

< 1 by (3.2.10)

we have

Φ(ρ) ≤ ρn+2
{ 1

(R0τ)n+2
Φ(R0)

+
c

τn+2(1− τ)
sup

0<s<R0

[
−
∫
Qs
|f − fQs |

2dz +M2
]

+
C(2ε+ 1)

τn+2(1− τ)

}
dividing by | Qρ | we get

1

ρn+2ωn
Φ(ρ) ≤ 1

τn+2Rn+2
0 ωn

Φ(R0)

+
c

τn+2(1− τ)
sup

0<s<R0

[
−
∫
Qs
|f − fQs |

2dz +M2
]

+
C(2ε+ 1)

ωnτn+2(1− τ)
,

that is (3.2.6).
Let δ = 1

2 distP(Ωt2 , ∂PΩt1) > 0 we may choose, for all (x0, t0) ∈ Ωt2 , a radius R0 > δ such
that QR0 ≡ QR0(x0, t0) ⊂ Ωt1 .
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Since

1

ωnR
n+2
0

∫
QR0

|Du− (Du)QR0
|2dz

≤ 1

Rn+2
0 ωn

∫
QR0

|Du|2dz

≤ 1

δn+2ωn

∫
Ωt1

|Du|2dz,

the inequality (3.2.6) becomes

−
∫
Qρ
|Du− (Du)Qρ |

2dz ≤ C
[
M2 + [f ]22,n;Ωt1

+
4

δn+2ωn

∫
Ωt1

|Du|2dz + C̃
]

and taking the supremum over all Qr ⊂ Ωt2 we obtain the assertion.
Let us remark that in (3.2.5) we proved the following result that will be useful later:

Lemma 3.2.3. Under the same assumptions of Theorem 3.0.2 there exist an ε0 such that
if ε < ε0, then for every 0 < ρ < R we have that∫

Qρ
|Du|2dz ≤ cρβ ∀β < n+ 2.

3.3 L∞ spatial gradient regularity

3.3.1 An intrinsic estimate

From now on:

ωγ(ρ) := sup
t,s∈(−T,0)

x,y∈Bρ(x0)⊂Ω

|γ(x, t)− γ(y, s)|

ωf (ρ) := sup
t,s∈(−T,0)

x,y∈Bρ(x0)⊂Ω

|f(x, t)− f(y, s)|

and recalling the definition of ω(·) in (3.0.6) we have

[ωγ(ρ)]2 + [ωf (ρ)]2 ≤ [ω(ρ)]2. (3.3.1)

The following Lemma is a key ingredient in the proof of the L∞ estimate for the system
(3.0.1); the proof is due to Dolzmann, Kristensen and Zhang (see Lemma 3.2 in [31]):

Lemma 3.3.1. Assume that e : RNn → RNn is globally Lipschitz continuous with constant
L and there exists ε,m > 0 such that

|e(ξ)− e(η)| ≤ ε|ξ − η| ∀ξ, η ∈ RNn : |ξ|+ |η| > m.

Let M =
√

2mL
ε . Then, for all ξ0 ∈ RNn and all λ ≥ 0 with λ2 + |ξ0|2 ≥M2 we have

|e(ξ)− e(ξ0)| ≤ ε(|ξ − ξ0|+ λ) ∀ξ ∈ RNn. (3.3.2)



3.3 L∞ spatial gradient regularity 39

Now we prove a key estimate:

Theorem 3.3.1. Suppose that e(ξ) = a(ξ) − ξ is globally Lipschitz with constant L and
assume that there exist constants m, ε > 0 such that

|e(ξ)− e(η)| ≤ ε|ξ − η| ∀ξ, η ∈ RNn : |ξ|+ |η| > m.

Then we find an ε0 = ε0(n) ∈ (0, 1) and a constant M = M(a) such that if ε ∈ (0, ε0) and
u ∈W 1,2

loc (ΩT ,RN ) is a weak solution of

ut − div(γ(x, t)a(Du)) = −div f in ΩT ,

then there exist a constant c = c(n,N, ν, L) such that∫
QR
|D(u− v)|2dz ≤

≤ c
[
ε2

∫
QR
|Du− (Du)QR |

2dz + ω2
γ(R)

∫
QR
|Du|2dz + ω2

f (R)| QR |
]
. (3.3.3)

Proof. Fix (x0, t0) ∈ ΩT and a parabolic cylinder QR ≡ QR(x0, t0) b ΩT , and suppose
that

−
∫
QR
|Du|2dz ≥M2

where M =
√

2mL
ε is the same of Lemma 3.3.1.

Define

λ2 := −
∫
QR
|Du− (Du)QR |

2dz

ξ0 := −
∫
QR

Dudz.

Using the fact that

−
∫
QR
|Du− (Du)QR |

2dz = −
∫
QR
|Du|2dz − |(Du)QR |

2

we have λ2 + |ξ0|2 ≥M2, so we can apply Lemma 3.3.1 obtaining

|e(ξ)− e(ξ0)| ≤ ε(|ξ − ξ0|+ λ). (3.3.4)

Let v ∈ W 1,2(ΩT ,RN ) the unique weak solution of (3.1.1). We test the weak form of
(3.1.1) and (3.0.1) with ϕ = (u− v)ζ, where ζ is defined in (3.1.6); this is possible modulo
a standard use of Steklov averages.

It find out that: ∫
QR
−vϕt + 〈γ(x0, t0)Dv,Dϕ〉 dz = 0 (3.3.5)
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and ∫
QR

[−uϕt + 〈γ(x, t)a(Du), Dϕ〉 − 〈f(x, t), Dϕ〉] dz = 0. (3.3.6)

By subtracting (3.3.5) from (3.3.6) we obtain∫
QR

[−(u− v)ϕt + 〈γ(x, t)a(Du)− γ(x0, t0)Dv,Dϕ〉

− 〈f(x, t), Dϕ〉] dz = 0,

taking into account that a(Du) = e(Du) +Du we have∫
QR

[−(u− v)(u− v)tζ − |u− v|2ζt + 〈γ(x, t)[e(Du)− e((Du)QR)], ζD(u− v)〉

+ 〈γ(x, t)Du− γ(x0, t0)Dv, ζD(u− v)〉
− 〈f(x, t)− f(x0, t0), ζD(u− v)〉] dz = 0

that is∫
QR

[−(u− v)(u− v)tζ − |u− v|2ζt + 〈γ(x, t)[e(Du)− e((Du)QR)], ζD(u− v)〉

+ 〈[γ(x, t)− γ(x0, t0)]Du, ζD(u− v)〉+ 〈γ(x0, t0)D(u− v), ζD(u− v)〉
− 〈f(x, t)− f(x0, t0), ζD(u− v)〉] dz = 0.

As a consequence we also have

ν

∫
QR
|D(u− v)|2ζ dz = −

∫
QR
〈γ(x, t)[e(Du)− e((Du)QR)], ζD(u− v)〉 dz

−
∫
QR
〈[γ(x, t)− γ(x0, t0)]Du, ζD(u− v)〉 dz

+

∫
QR
〈f(x, t)− f(x0, t0), ζD(u− v)〉 dz

≤
∫
QR
|e(Du)− e((Du)QR)||D(u− v)| dz

+

∫
QR
|γ(x, t)− γ(x0, t0)||Du||D(u− v)| dz

+

∫
QR
|f(x, t)− f(x0, t0)||D(u− v)| dz

=: I + II + III.

We estimate separately the integrals.
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Estimate for I: applying (3.3.4), Hölder inequality and triangle inequality we find

I ≤ ε
∫
QR

(|Du− (Du)QR |+ λ)|D(u− v)|dz

≤
(
ε2

∫
QR

(|Du− (Du)QR |+ λ)2dz

) 1
2
(∫
QR
|D(u− v)|2dz

) 1
2

≤
(

2ε2

∫
QR

(|Du− (Du)QR |
2 + λ2)dz

) 1
2
(∫
QR
|D(u− v)|2dz

) 1
2

.

On the other hand Hölder inequality gives

II ≤ ωγ(R)

∫
QR
|Du||D(u− v)|dz

≤
(
ω2
γ(R)

∫
QR
|Du|2dz

) 1
2
(∫
QR
|D(u− v)|2dz

) 1
2

.

To evaluate the last addendum we use hypothesis (H4′)

III ≤
(
ω2
f (R)| QR |

) 1
2

(∫
QR
|D(u− v)|2dz

) 1
2

.

Combining the previous estimates and keeping in mind the definition of λ we conclude
with ∫

QR
|D(u− v)|2 ≤

≤ 6ε2

ν2

∫
QR

(|Du− (Du)QR |
2 + λ2)dz +

3ω2
γ(R)

ν2

∫
QR
|Du|2dz +

3ω2
f (R)| QR |
ν2

=
6ε2

ν2

[∫
QR
|Du− (Du)QR |

2dz + λ2| QR |
]

+
3ω2

γ(R)

ν2

∫
QR
|Du|2dz

+
3ω2

f (R)| QR |
ν2

= c

[
ε2

∫
QR
|Du− (Du)QR |

2dz + ω2
γ(R)

∫
QR
|Du|2dz + ω2

f (R)| QR |
]

that is (3.3.3).

3.3.2 Proof of the Theorem 3.0.3

In this section we will prove Theorem 3.0.3 using the inequality proved in last section
together with Lemma 3.2.1 and Lemma 3.2.3.
Using (3.2.2) with τ ∈ (0, 1), the inequality (3.3.3), the fact that∫

QτR
|(Dv)QτR − (Du)QτR |

2dz ≤
∫
QτR
|Du−Dv|2dz,
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and the triangle inequality we have∫
QτR
|Du− (Du)QτR |

2dz

=

∫
QτR
|Du−Dv +Dv − (Dv)QτR + (Dv)QτR − (Du)QτR |

2dz

≤ c
[∫
QτR
|Du−Dv|2dz +

∫
QτR
|Dv − (Dv)QτR |

2dz

]
≤ c

[
ε2

∫
QR
|Du− (Du)QR |

2dz + ω2
γ(R)

∫
QR
|Du|2dz + ω2

f (R)| QR |
]

+ cτn+4

∫
QR
|Dv − (Dv)QR |

2dz

≤ c
(
ε2 + τn+4

)∫
QR
|Du− (Du)QR |

2dz

+ c ω2
γ(R)

∫
QR
|Du|2dz + c ω2

f (R)| QR |.

Furthermore, using (3.3.1), we infer∫
QτR
|Du− (Du)QτR |

2dz ≤ τn+2c
( ε2

τn+2
+ τ2

)∫
QR
|Du− (Du)QR |

2dz

+ 6c ω2(R)

∫
QR
|Du|2dz + 6c ω2(R)| QR |

and dividing by | QτR | we have

−
∫
QτR
|Du− (Du)QτR |

2dz ≤ c
( ε2

τn+2
+ τ2

)
−
∫
QR
|Du− (Du)QR |

2dz

+
c

τn+2
ω2(R)−

∫
QR
|Du|2dz +

c

τn+2
ω2(R). (3.3.7)

For each fixed θ < 1 we can find τθ and εθ such that

ε2

τn+2
+ τ2 ≤ θ

c
(3.3.8)

for

ε2
θ = τn+2

θ

(θ
c
− τ2

θ

)
.

Choosing ε ∈ (0, εθ) there exists τ ∈ (0, 1) such that (3.3.7) becomes

−
∫
QτR
|Du− (Du)QτR |

2dz ≤

≤ θ−
∫
QR
|Du− (Du)QR |

2dz +
c

τn+2
ω2(R)−

∫
QR
|Du|2dz +

c

τn+2
ω2(R). (3.3.9)
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At this point we iterate the decay estimate. Fixed Ωt2 b Ωt1 b ΩT , let d = distP(Ωt2 , ∂PΩt1).
Let (x0, t0) ∈ Ωt2 be an L2-Lebesgue point of Du:

Du(x0, t0) = lim
ρ→0
−
∫
Qρ
Dudz

lim
ρ→0
−
∫
Qρ
|Du− (Du)Qρ | dz = 0

where Qρ ≡ Qρ(x0, t0).
Now we define an appropriate radius R0 in the following way:

if −
∫
QR
|Du|2dz > M2 for all R ∈ (0, d], then let R0 = d;

if −
∫
QR
|Du|2dz ≤M2 for some R ∈ (0, d], then we set

R0 := inf

{
0 < R ≤ d : −

∫
QR
|Du|2dz ≤M2

}
.

We note that for every ρ ≥ R0 it happens that −
∫
Qρ
|Du|2dz ≤M2.

If R0 = 0 we have that

|Du(x0, t0)|2 =
∣∣∣ lim
ρ→0
−
∫
Qρ
Dudz

∣∣∣2
≤ lim

ρ→0
−
∫
Qρ
|Du|2dz ≤M2

so |Du(x0, t0)| ≤M .

If 0 < R0 < d then −
∫
QR0

|Du|2dz = M2 by continuity. Moreover for all R ∈
{
R ∈

(0, d] : −
∫
QR |Du|

2dz ≤ M2
}

we have that −
∫
QR
|Du|2dz ≤M2, so for all R < R0 it follows

−
∫
QR
|Du|2dz > M2.

Finally, if R0 = d then

−
∫
QR0

|Du|2dz =
1

ωndn+2

∫
QR0

|Du|2dz ≤ 1

ωndn+2

∫
Ωt1

|Du|2dz

and for all R < d we have −
∫
QR
|Du|2dz > M2.

This means that for 0 < R0 ≤ d we have

−
∫
QR0

|Du|2dz ≤ max

{
M2,

1

ωndn+2

∫
Ωt1

|Du|2dz

}
=: Λ
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and for all R ∈ (0, R0), −
∫
QR
|Du|2dz > M2.

Consequently from (3.3.9) with τ ∈ (0, 1):

−
∫
Q
τjR0

|Du− (Du)Q
τjR0
|2dz

≤ θ−
∫
Q
τj−1R0

|Du− (Du)Q
τj−1R0

|2dz +
c

τn+2
ω2(τ j−1R0)−

∫
Q
τj−1R0

|Du|2dz

+
c

τn+2
ω2(τ j−1R0)

and by iteration

−
∫
Q
τjR0

|Du− (Du)Q
τjR0
|2dz ≤ θj−

∫
QR0

|Du− (Du)QR0
|2dz

+
c

τn+2

j−1∑
i=0

θiω2(τ j−i−1R0)−
∫
Q
τj−i−1R0

|Du|2dz +
c

τn+2

j−1∑
i=0

θiω2(τ j−1−iR0). (3.3.10)

We estimate separately the last two terms.

Using hypothesis (H4′), relation (3.3.8) (from which τ2 < θ), Lemma 3.2.3 and taking
into account that β = n+ 2− δ we deduce

c

τn+2

j−1∑
i=0

θiω2(τ j−i−1R0)−
∫
Q
τj−i−1R0

|Du|2dz ≤

≤ c

τn+2

j−1∑
i=0

θi
Cτ2α(j−1−i)R2α

0 τβ(j−1−i)Rβ0
τ (n+2)(j−1−i)Rn+2

0 ωn

=
C̃

τn+2ωn
R

2α+β−(n+2)
0

j−1∑
i=0

θiτ (2α+β−(n+2))(j−1−i)

≤ C̃

τn+2ωnR
δ−2α
0

j−1∑
i=0

θi+(j−1−i) 2α−δ
2

=
C̃

τn+2ωnR
δ−2α
0

θ(j−1) 2α−δ
2

j−1∑
i=0

θi(1−
2α−δ

2
)

≤ C̃

τn+2ωnR
δ−2α
0

θ(j−1) 2α−δ
2

1− θ1− 2α−δ
2
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and choosing δ ≤ 2α we have

c

τn+2

j−1∑
i=0

θiω2(τ j−i−1R0)−
∫
Q
τj−i−1R0

|Du|2dz

≤ C̃

τn+2ωnR
δ−2α
0

θ(j−1) 2α−δ
2

1− θ1− 2α−δ
2

≤ C1θ
(j−1) 2α−δ

2 .

Similarly, keeping in mind (3.0.7), we have

c

τn+2

j−1∑
i=0

θiω2(τ j−1−iR0) ≤ C

τn+2

j−1∑
i=0

θiτ2α(j−1−i)R2α
0

≤ C R2α
0

τn+2

j−1∑
i=0

θi+α(j−1−i)

≤ C R2α
0

τn+2
θα(j−1)

j−1∑
i=0

θi(1−α)

≤ C R2α
0

τn+2

θα(j−1)

1− θ1−α = C2θ
α(j−1).

Then (3.3.10) becomes

−
∫
Q
τjR0

|Du− (Du)Q
τjR0
|2dz ≤

≤ θj−
∫
QR0

|Du− (Du)QR0
|2dz + C1θ

(j−1) 2α−δ
2 + C2θ

α(j−1). (3.3.11)

Now, by triangle inequality

|(Du)Q
τjR0
| = |(Du)Q

τjR0
− (Du)QR0

+ (Du)QR0
|

≤ |(Du)QR0
|+

j∑
i=1

|(Du)QτiR0
− (Du)Qτi−1R0

|

and taking into account that

|(Du)QR0
| ≤ (|Du|)QR0

≤ (|Du|2)
1
2
QR0
≤ Λ

1
2

and

|(Du)QτiR0
− (Du)Qτi−1R0

| =
∣∣∣−∫
QτiR0

Dudz −−
∫
Qτi−1R0

(Du)Qτi−1R0
dz
∣∣∣

≤ 1

τn+2
−
∫
Qτi−1R0

|Du− (Du)Qτi−1R0
| dz
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we conclude

|(Du)Q
τjR0
| ≤ Λ

1
2 +

1

τn+2

j∑
i=1

−
∫
Qτi−1R0

|Du− (Du)Qτi−1R0
| dz

≤ Λ
1
2 +

1

τn+2

j∑
i=1

(
−
∫
Qτi−1R0

|Du− (Du)Qτi−1R0
|2dz

) 1
2

≤ Λ
1
2 +

1

τn+2

j∑
i=1

[
θi−1Λ + C1θ

2α−δ
2

(i−2) + C2θ
α(i−2)

] 1
2

≤ Λ
1
2 +

Λ
1
2

√
3τn+2(1−

√
θ)

+
C̃1√

3τn+2

1

θ
2α−δ

4 (1− θ
2α−δ

4 )
+

C̃2√
3τn+2

1

θ
α
2 (1− θ

α
2 )

= Λ
1
2C + C̃.

Finally it find out that

|Du(x0, t0)| =
∣∣∣ lim
j→∞

(Du)Q
τjR0

∣∣∣
≤ lim

j→∞
|(Du)Q

τjR0
|

≤ Λ
1
2C + C̃

≤ C
(
M2 +

∫
Ωt1

|Du|2dz
) 1

2
+ C̃

and this concludes the proof.



Chapter 4

Partial Regularity Results for
Asymptotic Quasiconvex
Functionals with General Growth

In this Chapter we study variational integrals of the type

F(u) :=

∫
Ω
f(Du) dx for u : Ω→ RN

where Ω is an open bounded set in Rn, n ≥ 2, N ≥ 1 and f is a continuous function
satisfying a ϕ-growth condition:

|f(z)| ≤ C(1 + ϕ(|z|)) ∀z ∈ RNn,

where C > 0 and ϕ is a given N -function.
We will consider the following definition of a minimizer of F .

Definition 4.0.1. A map u ∈W 1,ϕ(Ω,RN ) is a W 1,ϕ-minimizer of F in Ω if

F(u) ≤ F(u+ ξ)

for every ξ ∈W 1,ϕ
0 (Ω,RN ).

As already observed, the quasiconvexity was originally introduced for proving the lower
semicontinuity and the existence of minimizers of variational integrals of the Calculus of
Variations. In fact, assuming a power growth condition on f , quasiconvexity is a necessary
and sufficient condition for the sequential lower semicontinuity on W 1,p(Ω,RN ), p > 1 (see
[1] and [68]). In the regularity theory a stronger definition, the strict quasiconvexity, is
needed, a notion which has nowadays become a common condition in the vectorial Calculus
of Variations (see [43],[2], [15]).

In order to treat the general growth case, we consider the notion of strictlyW 1,ϕ-quasiconvexity
introduced in [27] (see also [9]).
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Definition 4.0.2 (Strict W 1,ϕ-quasiconvexity). A continuous function f : RNn → R is
said to be strictly W 1,ϕ-quasiconvex if there exists a positive constant k > 0 such that

−
∫
B1

f(z +Dξ) dx ≥ f(z) + k−
∫
B1

ϕ|z|(|Dξ|) dx

for all ξ ∈ C1
0 (B1), for all z ∈ RNn, where ϕa(t) ∼ t2ϕ′′(a+ t) for a, t ≥ 0.

We will exploit an adequate notion of W 1,ϕ-quasiconvexity at infinity, which we will call
W 1,ϕ-asymptotic quasiconvexity:

Definition 4.0.3 (Asymptotic W 1,ϕ-quasiconvexity). A function f : RNn → R is asymp-
totically W 1,ϕ-quasiconvex if there exist a positive constant M and a uniformly strictly
W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M.

We note that in recent years a growing literature has considered the subject of asymptotic
regular problems: regularity theory for integrands with a particular structure near infinity
has been investigated first in [17] and subsequentely in [55], [81], [18], [30], [67], [80], [46],
[49], [29], [31].

We deal with the problem wondering if, when you localize at infinity the natural assump-
tions to have regularity, this regularity breaks down or not. It is the same question faced
in [7] and [4], where you do not require a global strict convexity or quasiconvexity assump-
tion: all the hypotheses are localized in some point z0 and you obtain that minimizers are
Hölder continuous near points where the integrand function is ”close” to the value z0.
Thus, after establishing several characterizations of the notion of W 1,ϕ-asymptotic quasi-
convexity (see Theorem 4.2.1) we will prove the following result.

Theorem 4.0.2. Let z0 ∈ Rn with |z0| > M + 1 so that (4.5.2) holds in Bρ(x0), let

u ∈ W 1,ϕ(Ω,RN ) be a minimizer of F , and V (z) =
√

ϕ′(|z|)
|z| z. Assume that f satisfies

(H1)− (H5).
If for some x0 ∈ Ω

lim
r→0
−
∫
Br(x0)

|V (Du)− V (z0)|2 = 0 (4.0.1)

then in a neighborhood of x0 the minimizer u is C1,α for some α < 1.

In order to achieve this regularity result, we have to prove an excess decay estimate, where
the excess function is defined by

E(BR(x0), u) = −
∫
BR(x0)

|V (Du)− (V (Du))BR(x0)|2dx.

In the power case the main idea is to use a blow-up argument based strongly on the
homogeneity of ϕ(t) = tp. Here we have to face with the lack of the homogeneity since the
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general growth condition. Thus one makes use of the so-called A-harmonic approximation
proved in [27] (see also [85, 34, 35, 37, 39] for the power case). Such tool allows us to
compare the solutions of our problem with the solution of the regular one in terms of the
closeness of the gradient.

Moreover we will prove that minimizers of F are Lipschitz continuous on an open and
dense subset of Ω.

More precisely we define the set of regular points R(u) by

R(u) = {x ∈ Ω : u is Lipschitz near x},

following that R(u) ⊂ Ω is open.

Corollary 4.0.1. Assume that f satisfies (H1) − (H5). Then, for every minimizer u ∈
W 1,ϕ(Ω,RN ) of F , the regular set R(u) is dense in Ω.

We remark that a counterexample of [83] shows that it is not possible to establish regularity
outside a negligible set (which would be the natural thing in the vectorial regularity
theory). So, our regularity result generalizes the ones given in [83] and [16] for integrands
with a power growth condition which become strictly convex and strictly quasiconvex near
infinity, respectively.

4.1 Assumptions and Technical Lemmas

4.1.1 Assumptions

The specific assumptions we are considering are now listed:
Let f : RNn → R be such that

(H1) f ∈ C1(RNn) ∩ C2(RNn \ {0});

(H2) ∀z ∈ RNn, |f(z)| ≤ C(1 + ϕ(|z|));

(H3) f is asymptotically W 1,ϕ-quasiconvex;

(H4) ∀z ∈ RNn \ {0}, |D2f(z)| ≤ C ϕ′′(|z|);

(H5) ∀z1, z2 ∈ RNn such that |z1| ≤ 1
2 |z2| it holds

|D2f(z2)−D2f(z2 + z1)| ≤ C ϕ′′(|z2|)|z2|−β|z1|β.

Remark 4.1.1. Due to hypothesis (H2), F is well defined on the Sobolev-Orlicz space
W 1,ϕ(Ω,RN ).

Let us also observe that Assumption (H5), that is a Hölder continuity of D2f away from
zero, has been used to show everywhere regularity of radial functionals with ϕ-growth (see
[29]). We will use it in Lemma 4.4.2 below.



50 Partial Regularity for Asymptotic Quasiconvex Functionals...

4.1.2 Technical Lemmas

For z1, z2 ∈ RNn, θ ∈ [0, 1] we define zθ = z1 + θ(z2− z1). The following fact can be found
in [3] (see Lemma 2.1).

Lemma 4.1.1. Let β > −1, then uniformly in z1, z2 ∈ RNn with |z1|+ |z2| > 0, it holds:∫ 1

0
|zθ|β dθ ∼ (|z1|+ |z2|)β.

Next result is a slight generalization of Lemma 20 in [25].

Lemma 4.1.2. Let ϕ be an N -function with ∆2({ϕ,ϕ∗}) <∞; then, uniformly in z1, z2 ∈
RNn with |z1|+ |z2| > 0, and in µ ≥ 0, it holds

ϕ′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

∼
∫ 1

0

ϕ′(µ+ |zθ|)
µ+ |zθ|

dθ.

From the previous lemmas we derive the following one.

Lemma 4.1.3. Let ϕ be an N -function satisfying Assumption 2.4.1. Then, uniformly in
z1, z2 ∈ RNn with |z1|+ |z2| > 0, and in µ ≥ 0, it holds∫ 1

0

∫ 1

0
tϕ′′(µ+ |z1 + stz2|) ds dt ∼ ϕ′′(µ+ |z1|+ |z2|).

Proof. Using ϕ′(t) ∼ tϕ′′(t), applying twice Lemma 4.1.2, and taking into account that

µ+ |z1|+ |z1 + z2| ∼ µ+ |z1|+ |z2|

and ϕ′(2t) ∼ ϕ′(t), we obtain∫ 1

0

∫ 1

0
tϕ′′(µ+ |z1 + stz2|) ds dt ≤ c

∫ 1

0

∫ 1

0
t
ϕ′(µ+ |z1 + stz2|)
µ+ |z1 + stz2|

dsdt

≤ cϕ
′(µ+ |z1|+ |z1|+ |z1 + z2|)
µ+ |z1|+ |z1|+ |z1 + z2|

≤ cϕ
′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

≤ cϕ′′(µ+ |z1|+ |z2|).

Similarly, for the other inequality, we have∫ 1

0

∫ 1

0
tϕ′′(µ+ |z1 + stz2|) ds dt ≥ c

∫ 1

0

∫ 1

0
t
ϕ′(µ+ |z1 + stz2|)
µ+ |z1 + stz2|

ds dt

≥ c
∫ 1

0
t
ϕ′(µ+ |z1|+ |z1 + tz2|)
µ+ |z1|+ |z1 + tz2|

dt

≥ c

(µ+ |z1|+ |z2|)2

∫ 1

0
ϕ(µ+ |z1|+ |z1 + tz2|) t dt,
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where, in the last line, we used that ϕ(t) ∼ tϕ′(t).
Due to the Jensen inequality, we go ahead and we obtain∫ 1

0

∫ 1

0
tϕ′′(µ+ |z1 + stz2|) ds dt ≥

c

(µ+ |z1|+ |z2|)2
ϕ

(∫ 1

0
(µ+ |z1|+ |z1 + tz2|) t dt

)
≥ c

(µ+ |z1|+ |z2|)2
ϕ(µ+ |z1|+ |z2|)

≥ cϕ
′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

≥ c ϕ′′(µ+ |z1|+ |z2|),

thanks also to the equivalence between ϕ(2t) and ϕ(t), ϕ(t) and tϕ′(t), and ϕ′(t) and
tϕ′′(t).

Remark 4.1.2. From the previous lemma we easily deduce that∫ 1

0

∫ 1

0
tϕ′′(

√
1 + |z1 + stz2|2) ds dt ∼ ϕ′′(1 + |z1|+ |z2|),

since ϕ′(t) ∼ tϕ′′(t), ϕ′ is increasing and ϕ′(2t) ∼ ϕ′(t).

The following version of the Sobolev-Poincaré inequality can be found in [25] (Theorem
7):

Theorem 4.1.1. Let ϕ be an N -function with ∆2(ϕ,ϕ∗) <∞. Then there exist α ∈ (0, 1)
and k > 0 such that, if B ⊂ Rn is a ball of radius R and u ∈W 1,ϕ(B,RN ), then

−
∫
B
ϕ

(
|u− (u)B|

R

)
dx ≤ k

(
−
∫
B
ϕα(|Du|) dx

) 1
α

.

The following two lemmas will be useful later.

Lemma 4.1.4. Let ϕ satisfy Assumption 2.4.1 and p0, p1 be as in Lemma 2.4.1. Then
for each η ∈ (0, 1] it holds

ϕ|a|(t) ≤ Cη1−p̄′ϕ|b|(t) + η|V (a)− V (b)|2,
(ϕ|a|)

∗(t) ≤ Cη1−q̄(ϕ|b|)
∗(t) + η|V (a)− V (b)|2

for all a, b ∈ Rn, t ≥ 0 and p̄ = min{p0, 2}, q̄ = max{p1, 2}. The constants depend only on
the characteristics of ϕ.

For the proof see Lemma 2.5 in [26].

Lemma 4.1.5. Let ϕ be an N -function satisfying Assumption 2.4.1 and let us consider
the function z ∈ RNn 7→ ϕ(

√
1 + |z|2 ). Then, uniformly in y, z ∈ RNn it holds

〈D2ϕ(
√

1 + |z + y|2 )y, y〉 ∼ ϕ′′(
√

1 + |z + y|2 )|y|2.
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Proof. We can see that

Dϕ(
√

1 + |z + y|2 ) = ϕ′(
√

1 + |z + y|2 )
z + y√

1 + |z + y|2
,

and

D2ϕ(
√

1 + |z + y|2 ) = ϕ′′(
√

1 + |z + y|2 )
z + y√

1 + |z + y|2
⊗ z + y√

1 + |z + y|2

+
ϕ′(
√

1 + |z + y|2 )√
1 + |z + y|2

[
I− z + y√

1 + |z + y|2
⊗ z + y√

1 + |z + y|2

]
,

where I ∈ RNn is the identity matrix. Therefore

〈D2ϕ(
√

1 + |z + y|2 )y, y〉 = ϕ′′(
√

1 + |z + y|2 )
|〈z + y, y〉|2

1 + |z + y|2

+
ϕ′(
√

1 + |z + y|2 )√
1 + |z + y|2

[
|y|2 − |〈z + y, y〉|2

1 + |z + y|2

]
.

Using Assumption 2.4.1 and the fact that
|〈z + y, y〉|2

1 + |z + y|2
≤ |y|2 we deduce

〈D2ϕ(
√

1 + |z + y|2 )y, y〉 ≤ ϕ′′(
√

1 + |z + y|2 )
|〈z + y, y〉|2

1 + |z + y|2

+ Cϕ′′(
√

1 + |z + y|2 )

[
|y|2 − |〈z + y, y〉|2

1 + |z + y|2

]
≤ Cϕ′′(

√
1 + |z + y|2 )|y|2.

Similarly,

〈D2ϕ(
√

1 + |z + y|2 )y, y〉 ≥

≥ ϕ′′(
√

1 + |z + y|2 )
|〈z + y, y〉|2

1 + |z + y|2
+ Cϕ′′(

√
1 + |z + y|2 )

[
|y|2 − |〈z + y, y〉|2

1 + |z + y|2

]
= Cϕ′′(

√
1 + |z + y|2 )|y|2 + (1− C)ϕ′′(

√
1 + |z + y|2 )

|〈z + y, y〉|2

1 + |z + y|2

≥ Cϕ′′(
√

1 + |z + y|2 )|y|2.

4.2 Characterization of asymptotic W 1,ϕ-quasiconvexity

In this section we will establish some characterizations of asymptotic W 1,ϕ-quasiconvexity.
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Theorem 4.2.1. Each of the following assertions is equivalent to the asymptotic W 1,ϕ-
quasiconvexity of a function f : RNn → R:

(i) If f is C2 outside a large ball there exists a uniformly strictly W 1,ϕ-quasiconvex
function g which is C2 outside a large ball with

lim
|z|→∞

|D2f(z)−D2g(z)|
ϕ′′(|z|)

= 0. (4.2.1)

(ii) If f is locally bounded from below, then there exist a positive constant M and a
uniformly strictly W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M

and

g ≤ f on RNn.

(iii) If f is locally bounded from above, then there exist a positive constant M and a
uniformly strictly W 1,ϕ-quasiconvex function g such that

f(z) = g(z) for |z| > M

and

g ≥ f on RNn.

(iv) If f satisfies (H2) there exist positive constants M,k, L such that

−
∫
B1

f(z +Dξ) dx ≥ f(z) + k−
∫
B1

ϕ|z|(|Dξ|) dx (4.2.2)

for |z| > M and ξ ∈ C∞c (B1,RN ), and

|f(z2)− f(z1)| ≤ L|z1 − z2|ϕ′(1 + |z1|+ |z2|) (4.2.3)

for all |z1|, |z2| > M .

Proof. The proof stands on four steps.

Step 1: We want to prove that f asymptotically W 1,ϕ-quasiconvex is equivalent to (i). Let
us show that (i) implies the asymptotic W 1,ϕ-quasiconvexity of f , the other implication
being evidently true.

Let g be as in (i). We may assume that f, g are C2(RNn \ B 1
2
) and taking h = f − g we

have that h ∈ C2(RNn \ B 1
2
). In particular, by (4.2.1) it holds

lim
|z|→∞

|D2h(z)|
ϕ′′(|z|)

= 0. (4.2.4)
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Our aim is to prove that

lim
|z|→∞

|Dh(z)|
ϕ′(|z|)

= 0, (4.2.5)

and

lim
|z|→∞

|h(z)|
ϕ(|z|)

= 0. (4.2.6)

Let us consider |z| > 1. Take z :=
z

|z|
, then |z| = 1 and

|Dh(z)|
ϕ′(|z|)

≤ 1

ϕ′(|z|)

[∫ 1

0
|D2h(z + t(z − z))||z − z| dt+ |Dh(z)|

]
=

∫ 1√
|z|

0

|D2h(z + t(z − z))|
ϕ′′(|z + t(z − z)|)

ϕ′′(|z + t(z − z)|)
ϕ′(|z|)

|z − z| dt

+

∫ 1

1√
|z|

|D2h(z + t(z − z))|
ϕ′′(|z + t(z − z)|)

ϕ′′(|z + t(z − z)|)
ϕ′(|z|)

|z − z| dt

+
|Dh(z)|
ϕ′(|z|)

= I + II + III.

Estimate for I:

I ≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

∫ 1√
|z|

0

ϕ′′(|z + t(z − z)|)
ϕ′(|z|)

|z − z| dt

≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

∫ 1√
|z|

0
ϕ′′(1 + t(|z| − 1))(|z| − 1) dt

= sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)
[
ϕ′(1 + t(|z| − 1))

] 1√
|z|

0

≤ sup
|y|>1

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)
ϕ′
(

1 +
|z| − 1√
|z|

)
.

Taking into account that

ϕ′
(

1 + |z|−1√
|z|

)
ϕ′(|z|)

≤
ϕ′(1 +

√
|z|)

ϕ′(|z|)

≤ c
ϕ(1 +

√
|z|)

1 +
√
|z|

|z|
ϕ(|z|)

≤ c
ϕ(1 +

√
|z|)

ϕ(|z|)
√
|z|

≤ c
ϕ(
√
|z|)

ϕ(|z|)
√
|z|
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and using Lemma 2.4.1 we can find p0 > 1 and C > 0 such that

ϕ(
√
|z|) = ϕ

(
|z|√
|z|

)
≤ C

(
1√
|z|

)p0

ϕ(|z|).

Then we obtain

ϕ′
(

1 + |z|−1√
|z|

)
ϕ′(|z|)

≤ C
ϕ(
√
|z|)

ϕ(|z|)
√
|z| ≤ C

√
|z|

(
√
|z|)p0

→ 0 as |z| → ∞. (4.2.7)

At this point, using (4.2.4) and (4.2.7), we can conclude that I → 0 as |z| → +∞.

Now we estimate II:

II ≤ sup
|y|>
√
|z|

|D2h(y)|
ϕ′′(|y|)

∫ 1

1√
|z|

ϕ′′(|z + t(z − z)|)
ϕ′(|z|)

|z − z| dt

≤ sup
|y|>
√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

∫ 1

1√
|z|

ϕ′′(1 + t(|z| − 1))(|z| − 1) dt

≤ sup
|y|>
√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)
[
ϕ′(1 + t(|z| − 1))

]1
1√
|z|

= sup
|y|>
√
|z|

|D2h(y)|
ϕ′′(|y|)

1

ϕ′(|z|)

[
ϕ′(|z|)− ϕ′

(
1 +
|z| − 1√
|z|

)]

= sup
|y|>
√
|z|

|D2h(y)|
ϕ′′(|y|)

1−
ϕ′
(

1 + |z|−1√
|z|

)
ϕ′(|z|)

→ 0 as |z| → ∞

where we used (4.2.4) and (4.2.7) to conclude.

Finally

III ≤ 1

ϕ′(|z|)
max
|y|=1

|Dh(y)| → 0 as |z| → ∞.

Analogously we also obtain (4.2.6).

We can see that if
|Dih(z)|
ϕ(i)(|z|)

→ 0 as |z| → ∞ for i = 0, 1, 2, then
|Dih(z)|

ϕ(i)(1 + |z|)
→ 0 as

|z| → ∞.

Taking into account (4.2.4),(4.2.5) and (4.2.6), fixed ν > 0, that we will choose later, there
exists M >> 1 such that if |z| > M then

|D2h(z)| ≤ νϕ′′(1 + |z|)
|Dh(z)| ≤ νϕ′(1 + |z|)
|h(z)| ≤ νϕ(1 + |z|).
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Let us consider a cut-off function η defined by


0 ≤ η ≤ 1 if 1 < |x| ≤ 2
η = 1 if |x| > 2
η = 0 if |x| ≤ 1.

Set

α := max

{
sup
RNn
|Dη|, sup

RNn
|D2η|

}
and let us consider ηM (z) = η( z

M+1). Then we have

|DηM | ≤
α

M + 1
and |D2ηM | ≤

α

(M + 1)2
.

Let Φ := ηMh; then for M ≤ |z| ≤ 2M we have

|D2Φ(z)| ≤ |D2ηM (z)||h(z)|+ 2|DηM (z)||Dh(z)|+ |ηM (z)||D2h(z)|.

Taking into account the previous estimates, (2.4.1), (2.4.3) and M ≤ |z| ≤ 2M , we have

|D2Φ(z)| ≤ να

(M + 1)2
ϕ(1 + |z|) +

2να

(M + 1)
ϕ′(1 + |z|) + νϕ′′(1 + |z|)

≤
[

να

(M + 1)2
(1 + |z|)2 +

2να

(M + 1)
(1 + |z|) + ν

]
ϕ′′(1 + |z|)

= λνϕ′′(1 + |z|).

In particular we can conclude that

|D2Φ(z)| ≤ λνϕ′′(1 + |z|) ∀z ∈ RNn. (4.2.8)

Let ξ ∈ C∞c (B1); we can write

Φ(z +Dξ) = Φ(z) + 〈DΦ(z), Dξ〉+

∫ 1

0
(1− t)〈D2Φ(z + tDξ)Dξ,Dξ〉 dt.

Integrating over B1 and by using (4.2.8), (2.4.3), Lemma 4.1.2, the fact

1 + |z|+ |Dξ + z| ∼ 1 + |z|+ |Dξ| (4.2.9)
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and ϕa(t) ∼ ϕ′′(a+ t)t2 we get

−
∫
B1

Φ(z +Dξ) dx = −
∫
B1

Φ(z) dx+−
∫
B1

〈DΦ(z), Dξ〉 dx

+−
∫
B1

∫ 1

0
(1− t)〈D2Φ(z + tDξ)Dξ,Dξ〉 dtdx

≥ Φ(z)−−
∫
B1

∫ 1

0
(1− t)|D2Φ(z + tDξ))||Dξ|2 dtdx

≥ Φ(z)− λν−
∫
B1

∫ 1

0
(1− t)ϕ′′(1 + |z + tDξ)|)|Dξ|2 dtdx

≥ Φ(z)− λνc−
∫
B1

∫ 1

0

ϕ′(1 + |z + tDξ|)
1 + |z + tDξ|

|Dξ|2 dtdx

≥ Φ(z)− λνc−
∫
B1

ϕ′(1 + |z|+ |Dξ + z|)
1 + |z|+ |Dξ + z|

|Dξ|2 dtdx

≥ Φ(z)− λνc−
∫
B1

ϕ′(1 + |z|+ |Dξ|)
1 + |z|+ |Dξ|

|Dξ|2 dtdx

≥ Φ(z)− λνc−
∫
B1

ϕ′′(1 + |z|+ |Dξ|)|Dξ|2 dx

≥ Φ(z)− λνc−
∫
B1

ϕ1+|z|(|Dξ|) dx.

(4.2.10)

Let us take G := g + Φ with g uniformly strictly W 1,ϕ-quasiconvex with constant k > 0
and Φ satisfying (4.2.10). Consequently

−
∫
B1

G(z +Dξ) dx ≥ G(z) +
(
k − λνc

)
−
∫
B1

ϕ1+|z|(|Dξ|) dx

= G(z) + k̃−
∫
B1

ϕ1+|z|(|Dξ|) dx

where k̃ > 0 if we choose ν < k
λc .

Thus G is uniformly strictly W 1,ϕ-quasiconvex with constant k̃ > 0 and G(z) = f(z) for
|z| > 2(M + 1). This proves the asymptotic quasiconvexity of f .

Step 2: We want to prove that f asymptotically W 1,ϕ- quasiconvex is equivalent to (ii),
and it suffices to prove that asymptotic W 1,ϕ-quasiconvexity of f implies (ii). Assume
f asymptotic W 1,ϕ- quasiconvex, i.e. there exist a positive constant M and a uniformly
strictly W 1,ϕ-quasiconvex function g such that f(z) = g(z) for |z| > M .
Now g is locally bounded and f is locally bounded from below, so we have that

α := sup
|z|≤M

[g(z)− f(z)] <∞.

Let R > M and η be a C∞c (BR) function, non-negative on RNn and such that

|D2η(z)| ≤ νϕ′′(1 + |z|) on RNn and η(z) ≥ α for |z| ≤M (4.2.11)
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where ν will be chosen later. Let ξ ∈ C∞c (B1); then we can write

η(z +Dξ) = η(z) + 〈Dη(z), Dξ〉+

∫ 1

0
(1− t)〈D2η(z + tDξ)Dξ,Dξ〉 dt.

Integrating over B1 it holds, by (4.2.11),

−
∫
B1

η(z +Dξ) dx = −
∫
B1

η(z) dx+−
∫
B1

〈Dη(z), Dξ〉 dx

+−
∫
B1

∫ 1

0
(1− t)〈D2η(z + tDξ)Dξ,Dξ〉 dtdx

≤ η(z) +−
∫
B1

∫ 1

0
(1− t)|D2η(z + tDξ)||Dξ|2 dtdx

≤ η(z) + ν−
∫
B1

∫ 1

0
ϕ′′(1 + |z + tDξ|)|Dξ|2 dtdx

≤ η(z) + νc−
∫
B1

ϕ1+|z|(|Dξ|) dx.

(4.2.12)

where we used, as before, ϕ′(t) ∼ tϕ′′(t), Lemma 4.1.2, (4.2.9) and ϕa(t) ∼ ϕ′′(a+ t)t2.
Now taking G = g − η, with g and η satisfying (1.0.12) and (4.2.12), we have

−
∫
B1

G(z +Dξ)dx ≥ G(z) + k̃−
∫
B1

ϕ1+|z|(|Dξ|) dx

where k̃ > 0 if we choose ν = k
2c . This means that G is uniformly strictly W 1,ϕ- qua-

siconvex. But η(z) ≥ α ≥ g(z) − f(z) and η(z) = g(z) − G(z), so G(z) ≤ f(z) for
|z| ≤M .

Step 3: The proof is similar to the previous one.

Step 4: Assume that f is a Borel measurable function, satisfying (H2). Since quasiconvex
functions are locally Lipschitz (see [45]), we can see that (ii) implies (iv). So it suffices to
show that a function satisfying (iv) is asymptotically W 1,ϕ- quasiconvex.
Assume that f satisfies (iv) and consider the function

F (z) := f(z)− εϕ(
√

1 + |z|2)

for z ∈ RNn. Here ε > 0 will be chosen later appropriately. Now we prove that F satisfies
(4.2.2) and (4.2.3).
Let ξ ∈ C∞c (B1). Since f satisfies (4.2.2), we can write

−
∫
B1

F (z +Dξ) dx = −
∫
B1

f(z +Dξ) dx− ε−
∫
B1

ϕ(
√

1 + |z +Dξ|2) dx

≥ f(z) + k−
∫
B1

ϕ|z|(Dξ) dx− ε−
∫
B1

ϕ(
√

1 + |z +Dξ|2) dx

= F (z) + k−
∫
B1

ϕ|z|(Dξ) dx− ε−
∫
B1

[
ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)
]
dx.

(4.2.13)
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Note that

ϕ(
√

1 + |z +Dξ|2) = ϕ(
√

1 + |z|2) + 〈Dϕ(
√

1 + |z|2), Dξ〉

+

∫ 1

0

∫ 1

0
t〈D2ϕ(

√
1 + |z + stDξ|2)Dξ,Dξ〉 dsdt.

Thus integrating over B1 and applying Lemma 4.1.5, Remark 4.1.2 and ϕ′′(a+t)t2 ∼ ϕa(t)
for a, t ≥ 0, it follows that

−
∫
B1

[
ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)
]
dx = −

∫
B1

〈Dϕ(
√

1 + |z|2), Dξ〉 dx

+−
∫
B1

∫ 1

0

∫ 1

0
t〈D2ϕ(

√
1 + |z + stDξ|2)Dξ,Dξ〉 ds dt dx

≤ C−
∫
B1

∫ 1

0

∫ 1

0
tϕ′′(

√
1 + |z + stDξ|2)|Dξ|2 ds dt dx

≤ C−
∫
B1

ϕ′′(1 + |z|+ |Dξ|)|Dξ|2 dx

≤ C−
∫
B1

ϕ1+|z|(|Dξ|) dx

≤ C−
∫
B1

ϕ|z|(|Dξ|) dx

(4.2.14)

for |z| sufficiently large. Using together (4.2.13) and (4.2.14), and choosing ε small enough,
we have

−
∫
B1

F (z +Dξ) dx ≥ F (z) +K−
∫
B1

ϕ|z|(|Dξ|) dx.

Moreover, taking into account that f satisfies (4.2.3) we deduce, for |z1|, |z2| > M ,

|F (z2)− F (z1)| ≤ |f(z2)− f(z1)|+ ε|ϕ(
√

1 + |z1|2)− ϕ(
√

1 + |z2|2)|

≤ L|z2 − z1|ϕ′(1 + |z1|+ |z2|) + ε|ϕ(
√

1 + |z1|2)− ϕ(
√

1 + |z2|2)|
≤ (L+ c)|z2 − z1|ϕ′(1 + |z1|+ |z2|).

Next we let

G(z) := inf

{
−
∫
B1

F (z +Dξ) dx : ξ ∈ C∞c (B1,RN )

}
for z ∈ RNn. With this definition we have that G(z) ≤ F (z) on RNn and G(z) = F (z) for
|z| > M . Now our aim is to prove that G is locally bounded from below.
Fix z ∈ RNn such that |z| ≤M + 1 and take z ∈ RNnsuch that |z| = 2(M + 1). We have

−
∫
B1

F (z +Dξ) dx = −
∫
B1

[F (z +Dξ)− F (z +Dξ)] dx+−
∫
B1

F (z +Dξ) dx

= I + II
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Since F satisfies (4.2.2) we get

II = −
∫
B1

F (z +Dξ) dx ≥ F (z) + k−
∫
B1

ϕ|z|(|Dξ|) dx.

Now we estimate I:

I =
1

| B1 |

[∫
{|Dξ|≤3(M+1)}

[F (z +Dξ)− F (z +Dξ)] dx

+

∫
{|Dξ|>3(M+1)}

[F (z +Dξ)− F (z +Dξ)] dx
]

=
1

| B1 |
[I1 + I2].

To estimate I1 we use the fact that F is locally bounded: I1 ≥ C̃. Regarding I2 we take
into account that F satisfies (4.2.3), then we apply Young’s inequality, ϕ∗(ϕ′(t)) ∼ ϕ(t)
and the ∆2 condition to deduce

I2 =

∫
{|Dξ|>3(M+1)}

[F (z +Dξ)− F (z +Dξ)] dx

≥ −L
∫
{|Dξ|>3(M+1)}

|z − z|ϕ′(1 + |z +Dξ|+ |z +Dξ|) dx

≥ −Lδc
∫
{|Dξ|>3(M+1)}

ϕ(1 + |z +Dξ|+ |z +Dξ|) dx− LCδ
∫
{|Dξ|>3(M+1)}

ϕ(|z − z|) dx

≥ −Lδc
∫
{|Dξ|>3(M+1)}

ϕ(1 + |z|+ |Dξ|) dx− Cδ

≥ −Lδc
∫
{|Dξ|>3(M+1)}

ϕ1+|z|(|Dξ|) dx− Cδ

where in the last inequality we used ϕ1+|z|(|Dξ|) ∼ ϕ(1 + |z|+ |Dξ|) since |Dξ| > 1 + |z|.
Putting together estimates on I1, I2 and II, taking into account that ϕ|z|(t) ∼ ϕ1+|z|(t)
and choosing δ suitably we have

−
∫
B1

F (z +Dξ) dx ≥ −Cδ
∫
{|Dξ|>3(M+1)}

ϕ|z|(|Dξ|) dx+ F (z) + k−
∫
B1

ϕ|z|(|Dξ|) dx− C

≥ −C.

So we get G(z) ≥ −C for |z| ≤M + 1. Moreover for |z| > M + 1 we gain

G(z) = f(z)− εϕ(
√

1 + |z|2) ≥ −C(1 + ϕ(|z|))

and this proves the local boundedness of G from below.
By Dacorogna’s formula 1 we have that G coincides with the quasiconvex envelope QF of
F , and thus it is quasiconvex.

1In [19] Theorem 5 it is assumed that there exists a quasiconvex function from below F , and the
verification of this hypothesis is not immediate in our situation. However, we may still apply the Theorem
since the missing hypothesis is only needed to conclude that G is locally bounded from below. Moreover,
by (2.4.2) we can say that ϕ(|z|) ≤ c(1 + |z|p1), p1 > 1.
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Finally we can prove that

g(z) = G(z) + εϕ(
√

1 + |z|2) for z ∈ RNn

is a uniformly strictly W 1,ϕ-quasiconvex function.
By the quasiconvexity of G we get

−
∫
B1

g(z +Dξ) dx = −
∫
B1

G(z +Dξ) dx+ ε−
∫
B1

ϕ(
√

1 + |z +Dξ|2) dx

≥ G(z) + εϕ(
√

1 + |z|2) + ε−
∫
B1

[
ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)
]
dx

= g(z) + ε−
∫
B1

[
ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)
]
dx.

Using Lemma 4.1.5, Remark 4.1.2 and ϕa(t) ∼ ϕ′′(a+ t)t2 it holds

−
∫
B1

[
ϕ(
√

1 + |z +Dξ|2)− ϕ(
√

1 + |z|2)
]
dx =

= −
∫
B1

〈Dϕ(
√

1 + |z|2), Dξ〉 dx+−
∫
B1

∫ 1

0

∫ 1

0
t〈D2ϕ(

√
1 + |z + stDξ|2)Dξ,Dξ〉 dsdtdx

= −
∫
B1

∫ 1

0

∫ 1

0
t〈D2ϕ(

√
1 + |z + stDξ|2)Dξ,Dξ〉 dsdtdx

≥ C−
∫
B1

∫ 1

0

∫ 1

0
tϕ′′(

√
1 + |z + stDξ|2)|Dξ|2 dsdtdx

≥ C−
∫
B1

ϕ′′(1 + |z|+ |Dξ|)|Dξ|2 dx

≥ C−
∫
B1

ϕ1+|z|(|Dξ|) dx.

We deduce that g is uniformly strictly W 1,ϕ-quasiconvex, i.e.

−
∫
B1

g(z +Dξ) dx ≥ g(z) + εc−
∫
B1

ϕ1+|z|(|Dξ|) dx.

Moreover we have that g(z) = f(z) for |z| > M + 1. This proves that f is asymptotically
quasiconvex.

4.3 Caccioppoli estimate

The starting point for the investigation of the regularity properties of weak solutions is a
Caccioppoli-type inequality.

We need the following Lemma (see Lemma 10 [27]):
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Lemma 4.3.1. Let ψ be an N -function with ψ ∈ ∆2, let r > 0 and let h ∈ Lψ(B2r(x0)).
Further, let f : [ r2 , r]→ [0,∞) be a bounded function such that for all r

2 < s < t < r

f(s) ≤ θf(t) +A

∫
Bt(x0)

ψ
( |h(y)|
t− s

)
dy,

where A > 0 and θ ∈ [0, 1). Then

f
(r

2

)
≤ C(θ,∆2(ψ))A

∫
Br(x0)

ψ
( |h(y)|

2r

)
dy.

Theorem 4.3.1. Let u ∈ W 1,ϕ
loc (Ω) be a minimizer of F and let BR be a ball such that

B2R b Ω. Then ∫
BR
ϕ|z|(|Du− z|) dx ≤ c

∫
B2R

ϕ|z|

( |u− q|
R

)
dx

for all z ∈ RNn with |z| > M and all linear polynomials q on Rn with values in RN such
that Dq = z.

Proof. Let 0 < s < t and consider Bs ⊂ Bt ⊂ Ω. Let η ∈ C∞c (Bt) be a standard cut-off
function between Bs and Bt, such that |Dη| ≤ c

t−s .
Define ξ = η(u− q) and ζ = (1− η)(u− q); then Dξ +Dζ = Du− z.
Consider

I :=

∫
Bt

[f(z +Dξ)− f(z)] dx.

By hypothesis f is asymptotically W 1,ϕ-quasiconvex, and by Theorem 4.2.1 we know that
f satisfies (iv), so for |z| > M we have

I ≥ k
∫
Bt
ϕ|z|(|Dξ|) dx. (4.3.1)

Moreover

I =

∫
Bt

[f(z +Dξ)− f(Du) + f(Du)− f(Du−Dξ) + f(Du−Dξ)− f(z)] dx

=

∫
Bt

[f(z +Dξ)− f(z +Dξ +Dζ)] dt+

∫
Bt

[f(Du)− f(Du−Dξ)] dt

+

∫
Bt

[f(z +Dζ)− f(z)] dx = I1 + I2 + I3.

Note that I2 ≤ 0 since u is a minimizer. Let us concentrate on I1:

I1 = −
∫
Bt

∫ 1

0
Df(z +Dξ + θDζ)Dζ dθdx.

Analogously concerning I3, we have

I3 =

∫
Bt

∫ 1

0
Df(z + θDζ)Dζ dθ dx.
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Thus we obtain that

I1 + I3 =

∫
Bt

∫ 1

0
[Df(z + θDζ)−Df(z +Dξ + θDζ)] Dζ dθdx

=

∫
Bt

∫ 1

0
[Df(z + θDζ)−Df(z) +Df(z)−Df(z +Dξ + θDζ)] Dζ dθdx

=

∫
Bt

∫ 1

0
[Df(z + θDζ)−Df(z)] Dζ dθdx

−
∫
Bt

∫ 1

0
[Df(z +Dξ + θDζ)−Df(z)] Dζ dθdx

from which

I1 + I3 ≤
∫
Bt

∫ 1

0
|Df(z + θDζ)−Df(z)||Dζ| dθdx

+

∫
Bt

∫ 1

0
|Df(z +Dξ + θDζ)−Df(z)||Dζ| dθdx.

By using hypothesis (H4) and Lemma 4.1.2 we have

∫
Bt

∫ 1

0
|Df(z + θDζ)−Df(z)||Dζ| dθdx

≤
∫
Bt

∫ 1

0

∫ 1

0
|D2f(tz + (1− t)(z + θDζ)| |θDζ| |Dζ| dtdθdx

≤ c
∫
Bt

∫ 1

0

∫ 1

0
ϕ′′(|tz + (1− t)(z + θDζ)|) |Dζ|2dtdθdx

≤ c
∫
Bt
ϕ′′(2|z|+ |z +Dζ|) |Dζ|2dx

≤ c
∫
Bt

ϕ′(2|z|+ |z +Dζ|)
2|z|+ |z +Dζ|

|Dζ|2dx.

Taking into account the ∆2 condition for ϕ′ and ϕa(t) ∼ ϕ′′(a+ t)t2, it follows that

∫
Bt

∫ 1

0
|Df(z + θDζ)−Df(z)||Dζ| dθdx ≤ c

∫
Bt

ϕ′(|z|+ |Dζ|)
|z|+ |Dζ|

|Dζ|2dx

≤ c
∫
Bt
ϕ′′(|z|+ |Dζ|)|Dζ|2dx

≤ c
∫
Bt
ϕ|z|(|Dζ|)dx.
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Analogously we can deduce∫
Bt

∫ 1

0
|Df(z +Dξ + θDζ)−Df(z)||Dζ| dθdx ≤

≤
∫
Bt

∫ 1

0

∫ 1

0
|D2f(t(z +Dξ + θDζ) + (1− t)z)| |Dξ + θDζ| |Dζ| dtdθdx

≤ c
∫
Bt

∫ 1

0

∫ 1

0
ϕ′′(|t(z +Dξ + θDζ) + (1− t)z|) |Dξ + θDζ| |Dζ| dtdθdx

≤ c
∫
Bt
ϕ′′(|z|+ |Dξ|+ |Dζ|) (|Dξ|+ |Dζ|) |Dζ| dx

≤ c
∫
Bt
ϕ′|z|(|Dξ|+ |Dζ|) |Dζ| dx

≤ c
∫
Bt
ϕ′|z|(|Dξ|) |Dζ| dx+ c

∫
Bt
ϕ′|z|(|Dζ|) |Dζ| dx

≤ c
∫
Bt
ϕ′|z|(|Dξ|) |Dζ| dx+ c

∫
Bt
ϕ|z|(|Dζ|) dx

where in the last line we used the equivalence ϕ′a(t) ∼ tϕ′′(a+ t) and the fact that

ϕ′|z|(|Dξ|+ |Dζ|) ≤ cϕ
′
|z|(|Dξ|) + cϕ′|z|(|Dζ|).

Applying Young’s inequality for ϕa we have

I1 + I3 ≤ c
∫
Bt
ϕ|z|(|Dζ|) dx+ c

∫
Bt
ϕ′|z|(|Dξ|) |Dζ| dx

≤ c
∫
Bt
ϕ|z|(|Dζ|) dx+ cδ

∫
Bt
ϕ|z|(|Dξ|) dx+ Cδ

∫
Bt
ϕ|z|(|Dζ|) dx

≤ C ′δ
∫
Bt
ϕ|z|(|Dζ|) dx+ cδ

∫
Bt
ϕ|z|(|Dξ|) dx.

Taking into account (4.3.1) and choosing δ such that k − cδ > 0 we conclude∫
Bt
ϕ|z|(|Dξ|) dx ≤ C

∫
Bt
ϕ|z|(|Dζ|) dx.

Now, by the definition of ζ we have Dζ = (1− η)(Du− z)−Dη(u− q) and we can note
that Dζ = 0 in Bs. Moreover using the convexity of ϕ|z| and the fact that |Dη| ≤ c

t−s , we
have

ϕ|z|(|Dζ|) ≤ ϕ|z|
(

(1− η)|Du− z|+ c

t− s
|u− q|

)
≤ cϕ|z|(|Du− z|) + cϕ|z|

(
|u− q|
t− s

)
.

Hence ∫
Bt
ϕ|z|(|Dξ|) dx ≤ C

∫
Bt \Bs

ϕ|z|(|Dζ|) dx

≤ c
∫
Bt \Bs

ϕ|z|(|Du− z|) dx+ c

∫
Bt
ϕ|z|

(
|u− q|
t− s

)
dx.
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Thus we have∫
Bs
ϕ|z|(|Du− z|) dx =

∫
Bs
ϕ|z|(|Dξ|) dx

≤
∫
Bt
ϕ|z|(|Dξ|) dx

≤ c
∫
Bt \Bs

ϕ|z|(|Du− z|) dx+ c

∫
Bt
ϕ|z|

(
|u− q|
t− s

)
dx.

We fill the hole by adding to both sides the term c

∫
Bs
ϕ|z|(|Du− z|) dx and we divide by

c+ 1, thus obtaining∫
Bs
ϕ|z|(|Du− z|) dx ≤

c

c+ 1

∫
Bt
ϕ|z|(|Du− z|) dx+ C

∫
Bt
ϕ|z|

(
|u− q|
t− s

)
dx

= λ

∫
Bt
ϕ|z|(|Du− z|) dx+ α

∫
Bt
ϕ|z|

(
|u− q|
t− s

)
dx

where λ := c
c+1 < 1 and α > 0. Now we can apply Lemma 4.3.1 to get the desired result.

An immediate consequence of the previous result is the following:

Corollary 4.3.1. There exists α ∈ (0, 1) such that for all minimizers u ∈W 1,ϕ(Ω) of F ,
all balls BR with B2R b Ω, and all z ∈ RNn with |z| > M

−
∫
BR
|V (Du)− V (z)|2dx ≤ c

(
−
∫
B2R

|V (Du)− V (z)|2αdx
) 1
α

Proof. By using Lemma 2.4.5, applying Theorem 4.3.1 with q such that (u − q)B2R
= 0

and Theorem 4.1.1 we have

−
∫
BR
|V (Du)− V (z)|2dx ≤ c−

∫
BR
ϕ|z|(|Du− z|) dx

≤ c−
∫
B2R

ϕ|z|

( |u− q|
R

)
dx

≤ c
(
−
∫
B2R

ϕα|z|(|Du− z|) dx
) 1
α

≤ c
(
−
∫
B2R

|V (Du)− V (z)|2αdx
) 1
α

.

Using Gehring’s Lemma we deduce the following result.
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Corollary 4.3.2. There exists s > 1 such that for all minimizers u ∈ W 1,ϕ(Ω) of F , all
balls BR with B2R b Ω, and all z ∈ RNn with |z| > M(

−
∫
BR
|V (Du)− V (z)|2sdx

) 1
s

≤ c−
∫
B2R

|V (Du)− V (z)|2dx

4.4 Almost A-harmonicity

In this section we recall a generalization of the A-harmonic approximation Lemma in
Orlicz space (see [27]).

We say that A = (Aαβij ) i,j=1,··· ,N
α,β=1,··· ,n

is strongly elliptic in the sense of Legendre- Hadamard if

A(a⊗ b, a⊗ b) ≥ kA|a|2|b|2

holds for all a ∈ RN , b ∈ Rn for some constant kA > 0. We say that a Sobolev function w
on BR is A-harmonic if

−div(ADw) = 0

is satisfied in the sense of distributions.
Given a function u ∈ W 1,2(BR), we want to find a function h that is A-harmonic and is
close to u. In particular, we are looking for a function h ∈W 1,2(BR) such that{

−div(ADh) = 0 in BR
h = u on ∂ BR

.

Let w := h− u, then w satisfies{
−div(ADw) = −div(ADu) in BR
w = 0 on ∂ BR

. (4.4.1)

We recall Theorem 14 in [27]:

Theorem 4.4.1. Let BR b Ω and let B̃ ⊂ Ω denote either BR or B2R. Let A be strongly el-
liptic in the sense of Legendre-Hadamard. Let ψ be an N -function with ∆2(ψ,ψ∗) <∞ and
let s > 1. Then for every ε > 0, there exists δ > 0 depending on n,N, kA, | A |,∆2(ψ,ψ∗)
and s such that the following holds: let u ∈W 1,ψ(B̃) be almost A-harmonic on BR in the
sense that ∣∣∣−∫

BR
(ADu,Dξ) dx

∣∣∣ ≤ δ−∫
B̃
|Du| dx‖Dξ‖L∞(BR)

for all ξ ∈ C∞0 (BR). Then the unique solution w ∈W 1,ψ
0 (BR) of (4.4.1) satisfies

−
∫
BR
ψ
( |w|
R

)
dx+−

∫
BR
ψ(|Dw|) dx ≤ ε

[(
−
∫
BR
ψs(|Du|) dx

) 1
s

+−
∫
B̃
ψ(|Du|) dx

]
.

The following results can be found in [27].
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Lemma 4.4.1. Let BR ⊂ Rn be a ball and let u ∈W 1,ϕ(BR). Then

−
∫
BR
|V (Du)− (V (Du))BR |

2dx ∼ −
∫
BR
|V (Du)− V ((Du)BR)|2dx.

Lemma 4.4.2. Let z := (Du)B2R
. For all ε > 0 there exists δ > 0 such that for every

u ∈W 1,ϕ(Ω) minimizer of F and every BR such that B2R b Ω, and for

−
∫
B2R

|V (Du)− (V (Du))B2R
|2dx ≤ δ−

∫
B2R

|V (Du)|2dx

it holds∣∣∣−∫
BR
D2f(z)(Du− z,Dξ) dx

∣∣∣ ≤ εϕ′′(|z|)−∫
B2R

|Du− z| dx‖Dξ‖L∞(BR), (4.4.2)

for every ξ ∈ C∞c (BR).

4.5 Excess decay estimate

Following the ideas in [3] we will prove the following Lemma.

Lemma 4.5.1. Let z0 ∈ Rn such that |z0| > 1. Let f ∈ C2(B2σ(z0)) be strictly W 1,ϕ-
quasiconvex at z0, that is∫

B
[f(z0 +Dξ)− f(z0)] dx ≥ k

∫
B
ϕ|z0|(|Dξ|) dx (4.5.1)

holds for all ξ ∈ C1
c (B,RN ). Then, there exists ρ > 0 such that for all z ∈ Bρ(z0)∫

B
[f(z +Dξ)− f(z)] dx ≥ k

2

∫
B
ϕ|z0|(|Dξ|) dx (4.5.2)

holds for all ξ ∈ C1
c (B,RN ).

Proof. Let

ωρ := sup
{
|D2f(z1)−D2f(z2)| : z1, z2 ∈ Bσ(z0), |z1 − z2| < ρ

}
and fix z such that |z − z0| < ρ < σ

2 .
For η ∈ RNn, define

G(η) = f(z + η)− f(z0 + η).

By using (4.5.1) we have∫
B

[f(z +Dξ)− f(z)] dx =

=

∫
B

[f(z0 +Dξ)− f(z0)] dx+

∫
B

[f(z +Dξ)− f(z0 +Dξ) + f(z0)− f(z)] dx

≥ k
∫
B
ϕ|z0|(|Dξ|) dx+

∫
B

[G(Dξ)−G(0)− 〈DG(0), Dξ〉] dx.
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Now we split B as

X =
{
x ∈ B : |Dξ| ≤ σ

2

}
and Y =

{
x ∈ B : |Dξ| > σ

2

}
.

Let us observe that

G(Dξ)−G(0)− 〈DG(0), Dξ〉 =
1

2
〈D2G(θDξ)Dξ,Dξ〉

with θ ∈ (0, 1). Moreover if x ∈ X then |Dξ| ≤ σ
2 , so z +Dξ ∈ Bσ(z0). Hence∫

X
[G(Dξ)−G(0)−DG(0)Dξ] dx =

1

2

∫
X
〈D2G(θDξ)Dξ,Dξ〉 dx

≥ −1

2

∫
X
|D2f(z + θDξ)−D2f(z0 + θDξ)||Dξ|2dx

≥ −ωρ
2

∫
X
|Dξ|2dx

≥ −c ωρ
2

∫
X
ϕ′′(|z0|+ |Dξ|)|Dξ|2dx

≥ −c ωρ
2

∫
X
ϕ|z0|(|Dξ|)dx

where we used the fact that on X we have

ϕ′′(|z0|+ |Dξ|) ≥ c
ϕ′(|z0|+ |Dξ|)
|z0|+ |Dξ|

≥ c ϕ′(1)

|z0|+ σ
2

> 0.

Let us define

H(z, x) = f(z +Dξ(x))− f(z)− (Df(z), Dξ(x))

so that ∫
Y

[H(z, x)−H(z0, x)] dx =

∫
Y

[G(Dξ)−G(0)− (DG(0), Dξ)] dx.

We can see that∫
Y
|H(z, x)−H(z0, x)| dx ≤

∫
Y
|z − z0||DzH(τ, x)| dx

≤ ρ
[∫

Y
|Df(τ +Dξ)−Df(τ)| dx+

∫
Y
|D2f(τ)||Dξ| dx

]
= ρ[I + II].

Now we estimate I. We use hypothesis (H4), Lemma 4.1.2 and the fact that

|τ |+ |Dξ + τ | ∼ |τ |+ |Dξ|



4.5 Excess decay estimate 69

to get

I ≤
∫
Y

∫ 1

0
|D2f(τ + tDξ)||Dξ| dtdx

≤ c
∫
Y

∫ 1

0
ϕ′′(|τ + tDξ|)|Dξ| dtdx

≤ c
∫
Y

ϕ′(|τ |+ |Dξ|)
|τ |+ |Dξ|

|Dξ| dx

≤ cσ
∫
Y
ϕ′(|z0|+ |Dξ|)|Dξ| dx

where in the last inequality we used |τ | + |Dξ| ≤ |z| + |z0| + |Dξ| ≤ ρ + 2|z0| + |Dξ| <
c(|z0|+ |Dξ|) as well as |τ |+ |Dξ| > 1 + σ

2 =: cσ on Y, if ρ is small enough.

Analogously, we estimate II:

II ≤ c
∫
Y
ϕ′′(|τ |)|Dξ| dx

≤ c
∫
Y
ϕ′(|z0|+ |Dξ|)|Dξ| dx

since |τ | ≤ |z|+ |z0| ≤ c(|z0|+ |Dξ|).
On the other hand, since on Y

ϕ′(|z0|+ |Dξ|)|Dξ| ≤ cϕ′′(|z0|+ |Dξ|)(|z0|+ |Dξ|)|Dξ|
≤ c(|z0|, σ)ϕ′′(|z0|+ |Dξ|)|Dξ|2

≤ c(|z0|, σ)ϕ|z0|(|Dξ|),

we can say that∫
Y

[G(Dξ)−G(0)− 〈DG(0), Dξ〉] dx ≥ −c̃ρ
∫
Y
ϕ|z0|(|Dξ|) dx

where c̃ depends on the characteristics of ϕ, σ and |z0|. Choosing ρ such that
c ωρ

2
+ c̃ρ <

k

2
we have the result.

In the sequel we assume that z0 ∈ Rn, with |z0| > M + 1, so that (4.5.2) holds in Bρ(z0)
with ρ < 1.

We define the excess function

E(BR(x0), u) = −
∫
BR(x0)

|V (Du)− (V (Du))BR(x0)|2dx.

The main ingredient to prove our regularity result is the following decay estimate:
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Proposition 4.5.1. For all ε > 0 there exists δ = δ(ε, ϕ) > 0 and β ∈ (0, 1), such that,
if u is a minimizer and if for some ball BR(x0) with B2R(x0) b Ω the following estimates

E(B2R(x0), u) ≤ δ−
∫
B2R(x0)

|V (Du)|2dx, |(Du)B2R(x0) − z0| < ρ (4.5.3)

hold true, then for every τ ∈ (0, 1
2 ]

E(BτR(x0), u) ≤ Cτβ(ετ−n−1 + 1)E(B2R(x0), u)

where C = C(ϕ, n) and it is independent of ε.

Proof. Let q be a linear function such that (u − q)B2R
= 0 and z := Dq = (Du)B2R

. Let
w := u − q. Fix ε > 0 and δ as in Lemma 4.4.2, then w is almost A-harmonic with

A =
D2f(z)

ϕ′′(|z|)
. Let us observe that by Lemma 4.5.1 such A is strongly elliptic in the sense

of Legendre-Hadamard, since for every a ∈ RN and b ∈ Rn

D2f(z)

ϕ′′(|z|)
(a⊗ b, a⊗ b) ≥ ϕ′′(|z0|)

ϕ′′(|z|)
|a|2|b|2 ≥ c|a|2|b|2

for z0 ∈ Rn with |z0| > 1 and z such that |z − z0| < ρ, where c depends on z0, ρ and ϕ.

Let h be the A-harmonic approximation of w with h = w on ∂ BR. At this point we can
apply Theorem 4.4.1 and conclude that, for |z| > M , h satisfies

−
∫
BR
ϕ|z|(|Dw −Dh|) dx ≤ ε

[(
−
∫
BR
ϕs|z|(|Du− z|) dx

) 1
s

+−
∫
B2R

ϕ|z|(|Du− z|) dx

]

where s is the same exponent of Corollary 4.3.2.

Applying Lemma 2.4.5 and Corollary 4.3.2 we have

(
−
∫
BR
ϕs|z|(|Du− z|) dx

) 1
s

≤ c
(
−
∫
BR
|V (Du)− V (z)|2sdx

) 1
s

≤ c−
∫
B2R

|V (Du)− V (z)|2dx

from which, taking into account that z = (Du)B2R
and using Lemma 4.4.1 we have

−
∫
BR
ϕ|z|(|Dw −Dh|) dx ≤ εc−

∫
B2R

|V (Du)− V (z)|2dx

≤ εc−
∫
B2R

|V (Du)− (V (Du))B2R
|2dx

= εc E(B2R, u).

(4.5.4)
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Now we want to compute E(BτR, u). Applying Lemma 4.4.1, Lemma 2.4.5 and Lemma
4.1.4 we get

E(BτR, u) = −
∫
BτR
|V (Du)− (V (Du))BτR |

2dx

≤ c−
∫
BτR
|V (Du)− V ((Dh)BτR + z)|2dx

≤ c−
∫
BτR

ϕ|(Dh)BτR+z|(|Du− (Dh)BτR − z|) dx

= c−
∫
BτR

ϕ|(Dh)BτR+z|(|Dw − (Dh)BτR |) dx

≤ Cη−
∫
BτR

ϕ|z|(|Dw − (Dh)BτR |)dx+ η−
∫
BτR
|V ((Dh)BτR + z)− V (z)|2dx

= I + II.

Using Jensen’s inequality, (4.5.4), the fact that

sup
BτR
|Dh− (Dh)BτR | ≤ c τ −

∫
BR
|Dh− (Dh)BR | dx

(see [51]), the convexity of ϕ, and the ∆2-condition, we have

I ≤ Cη−
∫
BτR

ϕ|z|(|Dw −Dh|) dx+ Cη−
∫
BτR

ϕ|z|(|Dh− (Dh)BτR |) dx

≤ Cητ−nεE(B2R, u) + Cηϕ|z|

(
τ−
∫
BR
|Dh− (Dh)BR | dx

)
.

Taking into account that ϕa(st) ≤ csϕa(t) for all a ≥ 0, s ∈ [0, 1] and t ≥ 0, using Jensen
inequality and (4.5.4) we have

ϕ|z|

(
τ−
∫
BR
|Dh− (Dh)BR | dx

)
≤

≤ c τϕ|z|
(
−
∫
BR
|Dh− (Dh)BR | dx

)
≤ c τϕ|z|

(
−
∫
BR
|Dh−Dw| dx+−

∫
BR
|Dw − (Dw)BR | dx

)
≤ c τϕ|z|

(
−
∫
BR
|Dh−Dw| dx

)
+ c τϕ|z|

(
−
∫
BR
|Dw − (Dw)BR | dx

)
≤ c τ−

∫
BR
ϕ|z|(|Dh−Dw|) dx+ c τ−

∫
BR
ϕ|z|(|Du− (Du)BR |) dx

≤ c τεE(B2R, u) + c τ−
∫
BR
ϕ|z|(|Du− (Du)BR |) dx

≤ c τεE(B2R, u) + c τ E(B2R, u)
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where in the last inequality we used

−
∫
BR
ϕ|z|(|Du− (Du)BR |) dx ≤ c−

∫
BR
ϕ|z|(|Du− z|) dx+ c−

∫
BR
ϕ|z|(|z − (Du)BR |) dx

≤ cE(B2R, u) + c ϕ|z|

(∣∣∣−∫
BR

[Du− z] dx
∣∣∣)

≤ cE(B2R, u) + c−
∫
BR
ϕ|z|(|Du− z|) dx

≤ cE(B2R, u).

So we have

I ≤ Cητ−nεE(B2R, u) + CητεE(B2R, u) + Cη τ E(B2R, u).

Now we estimate II; taking into account that

sup
BτR
|Dh| ≤ −

∫
BR
|Dh| dx,

using Jensen’s inequality, and (4.5.4) we obtain

II ≤ c η−
∫
BτR

ϕ|z|(|(Dh)BτR |) dx

≤ c η ϕ|z|
(
−
∫
BR
|Dh| dx

)
≤ c η ϕ|z|

(
−
∫
BR
|Dh−Dw| dx+−

∫
BR
|Dw| dx

)
≤ c η ϕ|z|

(
−
∫
BR
|Dh−Dw| dx

)
+ c η ϕ|z|

(
−
∫
BR
|Du− z| dx

)
≤ c η−

∫
BR
ϕ|z|(|Dh−Dw|) dx+ c η−

∫
BR
ϕ|z|(|Du− z|) dx

≤ c η ε E(B2R, u) + c η E(B2R, u).

Putting together estimates for I and II we have

E(BτR, u) ≤ C E(B2R, u)
[
Cη τ

−n ε+ Cη τ ε+ Cη τ + η ε+ η
]
,

choosing η = τα, and consequently Cη =
1

τα(p̄−1)
, with α <

1

p̄− 1
, we have

E(BτR, u) ≤ Cτβ(ετ−n−1 + 1)E(B2R, u)

where β = min{α, 1− α(p̄− 1)}.
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Proposition 4.5.2. Let γ ∈ (0, 1). Then there exists δ that depends on γ and on the
characteristics of ϕ such that: if for some ball BR(x0) ⊂ Ω

E(B2R(x0), u) ≤ δ−
∫
B2R(x0)

|V (Du)|2dx, |(Du)B2R(x0) − z0| <
ρ

2
(4.5.5)

hold, then for any ρ ∈ (0, 1]

E(BρR(x0), u) ≤ cργβ E(B2R(x0), u) (4.5.6)

where c depends on the characteristics of ϕ.

Proof. Let Λ(ε, τ) = Cτβ(ετ−n−1 + 1) where C depends on the characteristics of ϕ and
on n. Let ε = ε(τ) such that

Λ(ε, τ) ≤ min

{(τ
2

)γβ
,
1

4

}
.

Let δ = δ(τ) such that Proposition 4.5.1 holds true and so small that are verified

(1 + τ−
n
2 )δ

1
2 <

1

2
and c

δ
1
p

τ
n
p

<
ρ

2
,

where c and p will be specified later.
With these choices we can prove that the inequalities in (4.5.3) hold when we replace B2R

with BτR, the first one being necessary to obtain the first inequality following exactly the
lines of the proof of Proposition 28 in [42].
Concerning the second inequality we first observe that

|(Du)BτR − z0| < |(Du)BτR − (Du)B2R
|+ ρ

2
.

Moreover, taking into account that ϕ is of type (p0, p1) and using Lemma 2.4.5, for some
p > 1 we get

|(Du)BτR − (Du)B2R
| ≤ −
∫
BτR
|Du− (Du)B2R

| dx

≤
(
−
∫
BτR
|Du− (Du)B2R

|pdx
) 1
p

≤ c
(
−
∫
BτR

ϕ|(Du)B2R
||Du− (Du)B2R

|dx
) 1
p

≤ c
(
−
∫
BτR
|V (Du)− (V (Du))B2R

|2dx
) 1
p

≤ c

τ
n
p

(
−
∫
B2R

|V (Du)− (V (Du))B2R
|2dx

) 1
p

≤ c

τ
n
p

δ
1
p

(
−
∫
B2R

|V (Du)|2dx
) 1
p

≤ c δ
1
p

τ
n
p
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where in the last inequality we use that by Lemma 2.4.5 and Jensen inequality

−
∫
B2R(x)

|V (Du)|2dy ∼ −
∫
B2R(x)

ϕ(|Du|) dy

≥ ϕ

(
−
∫
B2R(x)

|Du| dy

)
(4.5.7)

≥ ϕ(|(Du)B2R
|) ≥ ϕ(M) > 0. (4.5.8)

So, the smallness assumptions in (4.5.3) are satisfied for BτR. By induction we get

E
(
B( τ

2
)k2R

)
≤ min

{(τ
2

)γβk
,

1

4k

}
E(B2R)

which is the claim.

Proof of Theorem 4.0.2. By Jensen inequality and Lemma 2.4.5 we have

ϕ|z0|(|(Du)Br(x) − z0|) ≤ ϕ|z0|

(
−
∫
Br(x)

|Du− z0| dy

)

≤ −
∫
Br(x)

ϕ|z0|(|Du− z0|) dy

≤ c−
∫
Br(x)

|V (Du)− V (z0)|2dy

from which by (4.0.1) we can conclude that

|(Du)B2R(x) − z0| < ρ

for a suitable R > 0. Moreover by Lemma 2.4.5, Jensen’s inequality, (4.5.7), and (4.0.1)
we get

E(B2R(x), u) ≤ −
∫
B2R(x)

|V (Du)− V (z0)|2dy ≤ δ−
∫
B2R(x)

|V (Du)|2dy.

Hence we have that the assumptions of Proposition 4.5.2 are verified in a neighborhood
of x0, say in Bs(x0). Then by (4.5.6) we have

E(BρR(x), u) ≤ cργβ E(B2R(x), u) ∀x ∈ Bs(x0)

and by Campanato’s characterization of Hölder continuity we deduce that u ∈ C1,α(Bs(x0))
for some α < 1.

For u ∈W 1,ϕ(Ω,RN ), we define the set of regular points R(u) by

R(u) = {x ∈ Ω : u is Lipschitz near x} .

It follows that R(u) ⊂ Ω is open. Finally we prove the following partial regularity result.
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Proof of Corollary 4.0.1. Using the characterization (iv) of Theorem 4.2.1 we can find
M > 0 such that the assumptions of Theorem 4.0.2 are satisfied near every z0 ∈ RNn :
|z0| > M . By Theorem 4.0.2 we have that u ∈ C1,α near every x0 ∈ Ω that satisfies

lim
r→0
−
∫
Br(x0)

|V (Du)− V (z0)|2dx = 0

and these points x0 belong to R(u).
By contradiction assume that some x ∈ Ω is not contained inR(u); then in a neighborhood
of x we cannot find x0 as before. Thus, V (Du) is essentially bounded by M on this
neighborhood and u is Lipschitz near x. Consequently x ∈ R(u) and we have reached the
desired contradiction.
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Chapter 5

Lipschitz regularity for a wide
class of parabolic systems with
general growth

This last Chapter concerns the local Lipschitz regularity of weak solutions to non-linear
second order parabolic systems of general growth

uβt −
n∑
i=1

(Aαi (Du))xi = 0 in ΩT := Ω× (−T, 0) (5.0.1)

where Ω is a bounded domain in Rn, n ≥ 2, T > 0, u : ΩT → RN , N > 1 and A is a tensor
having certain Orlicz-type growths that generalize p-growth.

In particular we focus on Aαi (Du) =
ϕ′(|Du|)
|Du|

uαxi , where ϕ is a given Orlicz function, and

we assume that
ϕ′(s)

s
is increasing. In the model case ϕ(s) = sp, for some p > 1, (5.0.1)

gives the evolutionary p-Laplacian.

Definition 5.0.1. A function u ∈ Lϕ(−T, 0;W 1,ϕ(Ω,RN )) is a weak solution for (5.0.1)
if ∫

ΩT

[uφt − 〈A(Du), Dφ〉] dz = 0 (5.0.2)

is satisfied for all testing function φ ∈ C∞c (ΩT ,RN ).

For the existence of weak solutions to problem with full space gradient, we refer for instance
to Elmahi & Meskine [41], Theorem 2.
By using a Moser type iteration for systems with general growth conditions, we prove the
local Lipschitz regularity of the spatial gradient of solutions to (5.0.1). More precisely:

Theorem 5.0.1. Let u be a weak solution to (5.0.1). Then Du ∈ L∞loc(ΩT ,RNn). More-
over for every QR0(z0) b ΩT the following a priori estimate holds with the constant c
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depending on n and on the characteristic of ϕ

sup
QR0

2

(z0)
|Du|2 ≤ c

(∫
QR0

(z0)
ϕ(|Du|) dz

)1+ 2
n

+ c. (5.0.3)

5.1 Technical lemmas

The following lemmas will be useful for the proof of the main Theorem.

Lemma 5.1.1. By using the representation Aαi (ξ) = ϕ′(|ξ|)ξ
α
i

|ξ|
, for all ξ, λ ∈ RNn we have∑

i,j,α,β

D
ξβj
Aαi (ξ)λαi λ

β
j ∼ ϕ

′′(|ξ|)|λ|2. (5.1.1)

Proof. Let us compute D
ξβj
Aαi (ξ):

D
ξβj
Aαi (ξ) = ϕ′′(|ξ|)

ξβj
|ξ|
ξαi
|ξ|

+
ϕ′(|ξ|)
|ξ|

[
δ
ξαi ξ

β
j
−
ξαi ξ

β
j

|ξ|2

]
where δij denotes the Kronecker’s symbol. Now for all ξ, λ ∈ RNn∑

i,j,α,β

D
ξβj
Aαi (ξ)λαi λ

β
j = ϕ′′(|ξ|) |〈ξ, λ〉|

2

|ξ|2
+
ϕ′(|ξ|)
|ξ|

[
|λ|2 − |〈ξ, λ〉|

2

|ξ|2

]
.

By using (2.4.3) and taking into account that
|〈ξ, λ〉|2

|ξ|2
≤ |λ|2 we have

∑
i,j,α,β

D
ξβj
Aαi (ξ)λαi λ

β
j ≤ ϕ

′′(|ξ|) |〈ξ, λ〉|
2

|ξ|2
+ cϕ′′(|ξ|)

[
|λ|2 − |〈ξ, λ〉|

2

|ξ|2

]
≤ cϕ′′(|ξ|)|λ|2.

Moreover, on the other hand∑
i,j,α,β

D
ξβj
Aαi (ξ)λαi λ

β
j ≥ ϕ

′′(|ξ|) |〈ξ, λ〉|
2

|ξ|2
+ cϕ′′(|ξ|)

[
|λ|2 − |〈ξ, λ〉|

2

|ξ|2

]
≥ cϕ′′(|ξ|)|λ|2.

Lemma 5.1.2. Let ϕ be an N -function satisfying Assumption (2.4.1) and let γ ≥ 0.
Then, for every β > 0, there exists a positive constant C, independent of γ depending only
on the characteristic of ϕ, such that for all s > 0[∫ s

0

√
ζ2γ

ϕ′(ζ)

ζ
dζ

]β
≥
(

C

(2γ + 1)
sγ+ 1

2

√
ϕ′(s)

)β
.
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Proof. Integrating by parts and applying (2.4.3) we have

∫ s

0

√
ζ2γ

ϕ′(ζ)

ζ
dζ = lim

δ→0

∫ s

δ
ζγ−

1
2

√
ϕ′(ζ) dζ

= lim
δ→0

{[ 2

2γ + 1
ζγ+ 1

2

√
ϕ′(ζ)

]s
δ
− 1

2γ + 1

∫ s

δ
ζγ+ 1

2
ϕ′′(ζ)√
ϕ′(ζ)

dζ

}

≥ 2

2γ + 1
sγ+ 1

2

√
ϕ′(s)− lim

δ→0

c

2γ + 1

∫ s

δ

ζγ+ 1
2√

ϕ′(ζ)

ϕ′(ζ)

ζ
dζ

=
2

2γ + 1
sγ+ 1

2

√
ϕ′(s)− c

2γ + 1

∫ s

0

√
ζ2γ−1ϕ′(ζ) dζ.

Thus

2γ + 1 + c

2γ + 1

∫ s

0

√
ζ2γ

ϕ′(ζ)

ζ
dζ ≥ 2

2γ + 1
sγ+ 1

2

√
ϕ′(s)

from which [∫ s

0

√
ζ2γ

ϕ′(ζ)

ζ
dζ

]β
≥
(

C

(2γ + 1)
sγ+ 1

2

√
ϕ′(s)

)β
.

5.2 Proof of the main result

In this section we prove the boundedness of the spatial gradient of solutions to (5.0.1).
To achieve this result, we will use a Moser type iteration for systems with general growth
conditions. Fundamental to start this procedure is the following result due to [10], which
allows us the existence of spatial second derivative of solutions to (5.0.1):

Theorem 5.2.1. If A satisfies (2.4.5) and (2.4.6), then a local weak solution u to

ut − div(A(Du)) = 0,

in ΩT satisfies the following estimate

esssupt0∈(−T,0)

∫
Br(x0)

|Du(x, t)|2dx+

∫
Qr(z0)

|DV (Du)|2dxdt

≤ C

(R− r)2

∫
QR(z0)

[ϕ(|Du|) + c] dxdt

(5.2.1)

for any r < R and concentric parabolic cylinder Qr(z0),QR(z0) b ΩT .
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Proof of Theorem 5.0.1. Let 0 < ρ < R and z0 = (x0, t0). By using Theorem 5.2.1, we
can differentiate (5.0.1) with respect to xk:

(uαxk)t −
n∑
i=1

(
D
ξβj
Aαi (Du)uβxkxj

)
xi

= 0

from which for all φ = (φα) ∈W 1,2
0 (ΩT ,RN ) we have

∫
ΩT

−uxk φt +
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxjφ

α
xi

 dxdt = 0. (5.2.2)

Let χ ∈ C1
c (BR(x0)) be a cut-off function in space such that

0 ≤ χ(x) ≤ 1
χ(x) = 1 in Bρ(x0)
|Dχ| ≤ c

R−ρ .
(5.2.3)

and let ηε ∈ C1(R) be a cut-off function in time such that, with ε > 0 being arbitrary
ηε = 1 on (t0 − ρ2, τ)
ηε = 0 on (−T, t0 −R2) ∪ (τ + ε, 0)
0 ≤ ηε(t) ≤ 1 on R
(ηε)t = −1

ε on (τ, τ + ε)

|(ηε)t| ≤ C
(R−ρ)2 on (t0 −R2, t0 − ρ2)

(5.2.4)

where τ ∈ (t0 − ρ2, t0) such that τ + ε < t0.
Taking into account Theorem 5.2.1, it is lawful to take as test function in (5.2.2)

φα = |Du|2γuαxk χ
2(x)η2

ε(t),

where γ ≥ 0 and k = 1, . . . , n is fixed. Then it results

0 =

∫
QR(z0)

−
[
(|Du|2γ)t u

α
xk
uβxkη

2
ε + |Du|2γuβxk(uαxk)t η

2
ε + |Du|2γuαxku

β
xk

(η2
ε)t

]
χ2dxdt

+

∫
QR(z0)

2γ|Du|2γ−1η2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxj (|Du|)xiu

α
xk
dxdt

+

∫
QR(z0)

|Du|2γη2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xkxj

dxdt

+

∫
QR(z0)

2|Du|2γη2
εχ

∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xk
χxi dxdt

= I + II + III + IV.

(5.2.5)
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Now we estimate I. Let us observe that∫
QR(z0)

−(|Du|2γ)t u
α
xk
uβxkη

2
εχ

2 dxdt =

∫
BR(x0)

χ2dx

∫ t0

t0−R2

−(|Du|2γ)t u
α
xk
uβxkη

2
ε dt

=

∫
QR(z0)

χ2|Du|2γ(uαxku
β
xk
η2
ε)t dxdt

from which

I =

∫
QR(z0)

χ2|Du|2γuαxk(uβxk)t η
2
ε dxdt

=
1

2(γ + 1)

∫
QR(z0)

d

dt
(|Du|2γ+2η2

εχ
2)dxdt− 1

2(γ + 1)

∫
QR(z0)

|Du|2γ+2(η2
ε)t χ

2 dxdt

= − 1

2(γ + 1)

∫
QR(z0)

|Du|2γ+2(η2
ε)t χ

2 dxdt

= − 1

2(γ + 1)

∫
BR(x0)

∫ t0−ρ2

t0−R2

|Du|2γ+2(η2
ε)t χ

2 dxdt− 1

2(γ + 1)

∫
BR(x0)

∫ τ+ε

τ
|Du|2γ+2(η2

ε)t χ
2 dxdt.

Taking into account the definition of ηε we have that

I = − 1

γ + 1

∫
BR(x0)

∫ t0−ρ2

t0−R2

|Du|2γ+2ηε(ηε)t χ
2 dxdt+

1

γ + 1

∫
BR(x0)

−
∫ τ+ε

τ
|Du|2γ+2ηε χ

2 dxdt.

Exploiting the definition of Aαi (Du) we compute

D
ξβj
Aαi (Du) =

[
ϕ′′(|Du|)
|Du|

− ϕ′(|Du|)
|Du|2

]
uαxiu

β
xj

|Du|
+
ϕ′(|Du|)
|Du|

δ
ξαi ξ

β
j
.

By using the fact that (|Du|)xi =
∑
k,α

uαxkxiu
α
xk

|Du|
we infer

∑
i,j,α,β

D
ξβj
Aαi (Du)uβxjxku

α
xk

(|Du|)xi =

=

[
ϕ′′(|Du|)
|Du|

− ϕ′(|Du|)
|Du|2

] ∑
i,j,α,β

uαxiu
β
xj

|Du|
uβxjxku

α
xk

(|Du|)xi +
ϕ′(|Du|)
|Du|

∑
i,α

uαxixku
α
xk

(|Du|)xi

now we sum over k = 1, . . . , n and we obtain∑
k

∑
i,j,α,β

D
ξβj
Aαi (Du)uβxjxku

α
xk

(|Du|)xi =

=

[
ϕ′′(|Du|)
|Du|

− ϕ′(|Du|)
|Du|2

]∑
i,k,α

uαxk(|Du|)xku
α
xi(|Du|)xi + ϕ′(|Du|)

∑
i

[(|Du|)xi ]
2

=

[
ϕ′′(|Du|)
|Du|

− ϕ′(|Du|)
|Du|2

]∑
α

[∑
i

uαxi(|Du|)xi
]2

+ ϕ′(|Du|)|D(|Du|)|2.

(5.2.6)
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By Cauchy-Schwarz inequality we have∑
α

[∑
i

uαxi(|Du|)xi
]2
≤
∑
i,α

(uαxi)
2
∑
i

[(|Du|)xi ]2 ≤ |Du|2|D(|Du|)|2. (5.2.7)

Putting together (5.2.6), and (5.2.7) we obtain

II =

∫
QR(z0)

2γ|Du|2γ−1η2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxj (|Du|)xiu

α
xk
dxdt

=

∫
QR(z0)

2γ|Du|2γ−1η2
εχ

2
{ϕ′′(|Du|)
|Du|

∑
α

[∑
i

uαxi(|Du|)xi
]2

− ϕ′(|Du|)
|Du|2

∑
α

[∑
i

uαxi(|Du|)xi
]2

+ ϕ′(|Du|)|D(|Du|)|2
}
dxdt

≥
∫
QR(z0)

2γ|Du|2γ−1η2
εχ

2ϕ
′′(|Du|)
|Du|

∑
α

[∑
i

uαxi(|Du|)xi
]2
dxdt ≥ 0

Estimate for IV : applying Cauchy-Schwarz inequality we infer

|IV | ≤

≤ 2

∫
QR(z0)

|Du|2γη2
ε

[
χ2

∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xkxi

] 1
2
[ ∑
i,j,α,β

D
ξβj
Aαi (Du)χxiu

α
xk
χxju

β
xk

] 1
2
dxdt

≤ 1

2

∫
QR(z0)

|Du|2γη2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xkxi

dxdt

+ 2

∫
QR(z0)

|Du|2γη2
ε

∑
i,j,α,β

D
ξβj
Aαi (Du)χxiu

α
xk
χxju

β
xk
dxdt

=
1

2
III + 2

∫
QR(z0)

|Du|2γη2
ε

∑
i,j,α,β

D
ξβj
Aαi (Du)χxiu

α
xk
χxju

β
xk
dxdt.

So (5.2.5) becomes

1

γ + 1

∫
BR(x0)

−
∫ τ+ε

τ
|Du|2γ+2ηε χ

2 dxdt

+
1

2

∫
QR(z0)

|Du|2γη2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xkxi

dxdt

≤ 1

γ + 1

C

|R− ρ|2

∫
BR(x0)

∫ t0−ρ2

t0−R2

|Du|2γ+2χ2 dxdt

+ 2

∫
QR(z0)

|Du|2γη2
ε

∑
i,j,α,β

D
ξβj
Aαi (Du)χxiu

α
xk
χxju

β
xk
dxdt.

(5.2.8)
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Now observe that by (5.1.1)∫
QR(z0)

|Du|2γη2
ε

∑
i,j,α,β

D
ξβj
Aαi (Du)χxiu

α
xk
χxju

β
xk
dxdt

≤ c
∫
QR(z0)

|Du|2γ+2η2
εϕ
′′(|Du|)|Dχ|2 dxdt.

By Cauchy-Schwarz inequality we have |(|Du|)xi |2 ≤
∑

k,α(uαxixk)2 for all i = 1, . . . , n from

which |D(|Du|)|2 ≤ |D2u|2, so by using this last fact and (5.1.1) we get∫
QR(z0)

|Du|2γη2
εχ

2
∑
i,j,α,β

D
ξβj
Aαi (Du)uβxkxju

α
xkxj

dxdt

≥ c
∫
QR(z0)

|Du|2γη2
εχ

2ϕ′′(|Du|)|D(|Du|)|2 dxdt.

So (5.2.8) becomes

1

γ + 1

∫
BR(x0)

−
∫ τ+ε

τ
|Du|2γ+2ηεχ

2 dxdt+ c

∫
QR(z0)

|Du|2γη2
εχ

2ϕ′′(|Du|)|D(|Du|)|2 dxdt

≤ 1

γ + 1

C

|R− ρ|2

∫
BR(x0)

∫ t0−ρ2

t0−R2

|Du|2γ+2χ2 dxdt+
C

|R− ρ|2

∫
QR(z0)

|Du|2γ+2ϕ′′(|Du|)|Dχ|2 dxdt

and by passing to the limit as ε→ 0 we have

1

γ + 1

∫
BR(x0)

χ2|Du|2γ+2(τ) dx+ c

∫
QR(z0)

|Du|2γχ2ϕ′′(|Du|)|D(|Du|)|2 dxdt

≤ 1

γ + 1

C

|R− ρ|2

∫
QR(z0)

|Du|2γ+2χ2 dxdt+
C

|R− ρ|2

∫
QR(z0)

|Du|2γ+2ϕ′′(|Du|) dxdt,

from which

sup
τ∈(t0−R2,t0)

∫
BR(x0)

χ2|Du|2γ+2 dx+ c

∫
QR(z0)

|Du|2γχ2ϕ′′(|Du|)|D(|Du|)|2 dxdt

≤ C

|R− ρ|2

∫
QR(z0)

|Du|2γ+2χ2 dxdt+
C(γ + 1)

|R− ρ|2

∫
QR(z0)

|Du|2γ+2ϕ′′(|Du|) dxdt.
(5.2.9)

Let us define

F (s) =

∫ s

0

√
ζ2γ

ϕ′(ζ)

ζ
dζ ∀s ≥ 0.
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We can observe that by Hölder inequality, and (2.4.3) we get

[F (s)]2 ≤
(∫ s

0
ζ2γdζ

)(∫ s

0

ϕ′(ζ)

ζ
dζ

)
≤ s2γ+1

2γ + 1

∫ s

0

ϕ′(ζ)

ζ
dζ

≤ s2γ+1

∫ s

0

ϕ′(ζ)

ζ
dζ

≤ s2γ+1c

∫ s

0
ϕ′′(ζ)dζ

≤ c s2γ+1ϕ′(s)

≤ c s2γ+2ϕ′′(s).

Moreover

D(χF (|Du|)) = DχF (|Du|) + χF ′(|Du|)D(|Du|)

= DχF (|Du|) + χ

√
|Du|2γ ϕ

′(|Du|)
|Du|

D(|Du|)

and by using (2.4.3) we deduce

|D(χF (|Du|))|2 ≤ 2

[
|Dχ|2F (|Du|)2 + χ2|Du|2γ ϕ

′(|Du|)
|Du|

|D(|Du|)|2
]

≤ 2c
[
|Dχ|2|Du|2γ+2ϕ′′(|Du|) + χ2|Du|2γϕ′′(|Du|)|D(|Du|)|2

]
.

Integrating over QR(z0) and taking into account (5.2.9), we have

∫
QR(z0)

|D(χF (|Du|))|2dxdt ≤

≤ 2c

∫
QR(z0)

|Dχ|2|Du|2γ+2ϕ′′(|Du|) dxdt+ 2c

∫
QR(z0)

χ2|Du|2γϕ′′(|Du|)|D(|Du|)|2dxdt

≤ C(γ + 1)

|R− ρ|2

∫
QR(z0)

|Du|2γ+2ϕ′′(|Du|) dxdt+
c

|R− ρ2|

∫
QR(z0)

|Du|2γ+2χ2 dxdt

(5.2.10)
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Now, applying Hölder and Sobolev inequalities,(5.2.9) and finally (5.2.10) we get∫
Qρ(z0)

|Du|(2γ+2) 2
nF 2(|Du|)dxdt

=

∫ t0

t0−ρ2

dt

∫
Bρ(x0)

(χ|Du|)(2γ+2) 2
n (χF (|Du|))2dx

≤
∫ t0

t0−ρ2

dt

(∫
Bρ(x0)

(χ|Du|)2γ+2dx

) 2
n
(∫
Bρ(x0)

(χF (|Du|))2∗dx

) 2
2∗

≤

(
sup

t∈(t0−ρ2,t0)

∫
Bρ(x0)

χ2|Du|2γ+2dx

) 2
n ∫
QR(z0)

|D(χF (|Du|))|2dxdt

≤

(
C

|R− ρ|2

∫
QR(z0)

|Du|2γ+2 dxdt+
c(γ + 1)

|R− ρ|2

∫
QR(z0)

|Du|2γ+2ϕ′′(|Du|) dxdt

)1+ 2
n

.

(5.2.11)

By using Lemma 5.1.2 with β = 2 and ϕ′(s) ∼ sϕ′′(s) we have

F 2(|Du|) ≥ c

(2γ + 1)2
|Du|2γ+1ϕ′(|Du|) ≥ c

(2γ + 1)2
|Du|2γ+2ϕ′′(|Du|)

and by the previous estimate we get∫
Qρ(z0)

|Du|2(γ+1) 2
n

+2(γ+1)ϕ′′(|Du|) dxdt

≤

{
c(2γ + 1)

2n
n+2

+1

|R− ρ|2

[∫
QR(z0)

|Du|2(γ+1)dxdt+

∫
QR(z0)

|Du|2(γ+1)ϕ′′(|Du|) dxdt

]}1+ 2
n

.

Let us observe that, for |Du| ≥ 1 then ϕ′′(|Du|) ≥ ϕ′(|Du|)
|Du|

≥ ϕ′(1) = c > 0, so we get

∫
QR(z0)

|Du|2(γ+1) dxdt

=

∫
QR(z0)∩{|Du|≤1}

|Du|2(γ+1) dxdt+

∫
QR(z0)∩{|Du|≥1}

|Du|2(γ+1) dxdt

≤ |QR(z0)|+ c

∫
QR(z0)∩{|Du|≥1}

|Du|2(γ+1)ϕ′′(|Du|) dxdt

≤ |QR(z0)|+ c

∫
QR(z0)

|Du|2(γ+1)ϕ′′(|Du|) dxdt
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Thus we have∫
Qρ(z0)

|Du|2(γ+1) 2
n

+2(γ+1)ϕ′′(|Du|) dxdt ≤

≤

{
c(2γ + 1)

2n
n+2

+1

|R− ρ|2

[
| QR(z0)|+ C

∫
QR(z0)

|Du|2(γ+1)ϕ′′(|Du|) dxdt

]}1+ 2
n

.

(5.2.12)

Let σ := 1 + 2
n . For some γ0 > 0, we set

γi+1 = (γi + 1)
2

n
+ γi = σi+1γ0 + (σi+1 − 1).

Define Ri = R0
2 (1 + 1

2i
) and take ρ = Ri+1 and R = Ri in (5.2.12). We define Φi =∫

QRi (z0) |Du|
2(γi+1)ϕ′′(|Du|) dxdt, and βi = 2γi + 1, thus we have

Φi+1 ≤ ci+1β2+σ
i Φσ

i + ci+1β2+σ
i .

Iterating we get

Φi+1 ≤ c
∑i
k=0(i−k+1)σk

i∏
k=0

β
(2+σ)σk

i−k 2
∑i
k=1(σk−1) Φσi+1

0

+
i∑

j=1

2
∑j
k=1(σk−1) c

∑j
k=0(i−k+1)σk

j∏
k=0

β
(2+σ)σk

i−k .

Now,

log

(
i∏

k=0

β
(2+σ)σk

i−k

)
=

i∑
k=0

log
(
β

(2+σ)σk

i−k

)
= (2 + σ)

i∑
k=0

σk log(βi−k)

by the definition of β we get βi−k ≤ 2(γ0 + 1)σi−k+1, thus

log

(
i∏

k=0

β
(2+σ)σk

i−k

)
≤ (2 + σ) log σ

i∑
k=0

σk(i− k + 1) + (2 + σ) log(2(γ0 + 1))
i∑

k=0

σk

≤ cσi+1 + c
σi+1 − 1

σ − 1
≤ cσi+1.

From which
i∏

k=0

β
(2+σ)σk

i−k ≤ ecσi+1
.

Hence we can infer

Φi+1 ≤Mσi+1
Φσi+1

0 +Mσi+1
(i+ 1).
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Now,

Φ
1

2(γi+1+1)

i+1 ≤M
σi+1

2(γi+1+1) Φ
σi+1

2(γi+1+1)

0 +M
σi+1

2(γi+1+1) (i+ 1)
1

2(γi+1+1) .

and by the definition of γi we have that γi+1 + 1→ +∞ as i→ +∞, so we have

Φ
1

2(γi+1+1)

i+1 ≤M
1

2(γ0+1) Φ
1

2(γ0+1)

0 +M
1

2(γ0+1) (i+ 1)
1

2σi+1(γ0+1) .

Hence we can infer

sup
QR0

2

(z0)
|Du|2 ≤ c

(∫
QR0

(z0)
|Du|2γ0+2ϕ′′(|Du|) dz

) σ
γ0+1

+ c. (5.2.13)

Let us consider the estimate (5.2.11) with γ = 0:

∫
Qρ(z0)

|Du|
4
nF 2(|Du|)dz ≤

{
c

|R− ρ|2

[∫
QR(z0)

|Du|2dz +

∫
QR(z0)

|Du|2ϕ′′(|Du|) dz

]}1+ 2
n

by Lemma 5.1.2 we infer

∫
Qρ(z0)

|Du|2(1+ 2
n

)ϕ′′(|Du|) dz ≤

{
c

|R− ρ|2

[
| QR(z0)|+

∫
QR(z0)

|Du|2ϕ′′(|Du|) dz

]}1+ 2
n

.

Choosing γ0 = 2
n , an average of the last estimate with (5.2.13) and (2.4.3) implies

sup
QR0

2

(z0)
|Du|2 ≤ c

(∫
QR0

(z0)
|Du|2ϕ′′(|Du|) dz

)σ
+ c

≤ c

(∫
QR0

(z0)
ϕ(|Du|) dz

)σ
+ c.
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[50] J. Frehse, A note on the Hölder continuity of solutions of variational problems, Abh.
Math. Semin. Univ. Hamb. 43 (1975), 59–63.

[51] M. Giaquinta, Multiple integrals in the Calculus of Variations and Nonlinear Elliptic
Systems, princeton Univ. Press, Princeton, 1983.

[52] M. Giaquinta & E. Giusti, Partial regularity for the solutions to nonlinear parabolic
systems, Ann. Mat. Pura Appl. 47 (1973), 253–266.

[53] M. Giaquinta & E. Giusti, On the regularity of the minima of variational integrals,
Acta Math. 148 (1982), 31–46.

[54] E. Giusti & M. Miranda, Un esempio di soluzioni discontinue per un problema di
minimo relativo ad un integrale regolare del calcolo delle variazioni, Boll. Unione
Mat. Ital., IV. Ser. 1 (1968), 219–226.

[55] M. Giaquinta & G. Modica, Remarks on the regularity of the minimizers of certain
degenerate functionals, Manuscripta Math. 57 (1986), no. 1, 55–99.

[56] M. Giaquinta & M. Struwe, An optimal regularity result for a class of quasilinear
parabolic systems, Manuscr. Math. Z. 36 (1981), 223–239.



BIBLIOGRAPHY 93

[57] M. Giaquinta & M.Struwe, On the partial regularity of weak solutions of nonlinear
parabolic systems, Math. Z. 179 (1982), 437–451.

[58] T. Isernia, BMO regularity for asymptotic parabolic systems with linear growth, Dif-
ferential Integral Equations 28 (2015), no. 11-12, 1173–1196.

[59] T. Isernia, C. Leone & A. Verde, Partial regularity results for asymptotic quasiconvex
functionals with general growth, (accepted for publication on Annales Academiæ
Scientiarum Fennicæ), Preprint. arXiv:1601.07806.

[60] T. Isernia, C. Leone & A. Verde, Lipschitz regularity for a wide class of parabolic
systems with general growth, (in preparation).

[61] T. Iwaniec, ’The Gehring lemma’, Quasiconformal mappings and analysis (Ann Ar-
bor, MI, 1995), Springer, New York, (1998), 181–204

[62] O.A. Ladyzenskaja, V.A. Solonnikov & N.N. Ural’ceva, Linear and quasilinear equa-
tions of parabolic type, vol. 23., American Mathematical Society, Providence, Rhode
Island, 1968.

[63] A. Koshlev, Regularity Problem for Quasilinear Elliptic and Parabolic Systems, Lec-
ture Notes in Math., vol. 1614, Springer, 1995.

[64] J. Kristensen & G. Mingione, The singular set of minima if integral functionals,
Arch. Ration. Mech. Anal. 180 (2006), 331–398.

[65] J. Kristensen & G. Mingione, The singular set of Lipschitzian minima of multiple
integrals, Arch. Ration. Mech. Anal. 184 (2007), 341–369.

[66] T. Kuusi and G. Mingione, New perturbation methods for nonlinear parabolic prob-
lems, J. Math. Pures Appl. 98 (2012), 390–427.

[67] C. Leone, A. Passarelli di Napoli & A. Verde, Lipschitz regularity for some asymp-
totically subquadratic problems, Nonlinear Anal. TMA 67 (2007), no. 5, 1532–1539.

[68] P. Marcellini, Approximation of quasi-convex functions, and lower semicontinuity of
multiple integrals, Manuscripta Math. 51 (1985), 1–28.

[69] P. Marcellini, Regularity of minimizers of integrals of the Calculus of Variations with
non standard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267–284.

[70] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-
growth conditions, J. Differ. Equations 90 (1991), 1–30.

[71] P. Marcellini, Regularity for elliptic equations with general growth conditions. J.
Differ. Equations 105 (1993), 296–333.

[72] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth
conditions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23 (1996), 1–25.



94 BIBLIOGRAPHY

[73] G. Mingione, Bounds for the singular set of solutions to non linear elliptic systems,
Calc. Var. 18 (2003), 373–400.

[74] M. Misawa, Partial regularity results for evolutional p-Laplacian systems with natural
growth, Manuscripta Math. 109 (2002), no. 4, 419–454.
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