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SUMMARY 

In this research work, we described the importance of peptides as a therapeutic approach for 

the resolution of many diseases. 

In particular, we focused our attention on the lethal role of complex protein AIF/CypA, 

involved in neuronal cell death. 

The aim of this project was the structure-based design and optimization of AIF/CypA 

peptide inhibitors, using NMR studies and combinatorial chemistry. 

The peptides were designed from AIF(370-394) peptide, mimetic of amino acidic region 

370-394 of AIF protein, able to block in vitro the proteins interaction, through its bond to 

CypA and able to induce neuroprotection. 

The identified peptides will be used to for the treatment of neurodegenerative disorders. 

 

Moreover a second project was focused on development of a simple and homogenous 

fluorescent HTS assays for the discovery of CypA cis-trans isomerase activity inhibitors, 

using a new FRET-based substrate probe useful for Chymotrypsin-coupled isomerase 

assays. 

For this purpose, we have designed a new fluorescent peptide substrate, useful to the use of 

in order to have a high proportion of cis conformers and to work by following fluorescence 

intensity increase or decrease, depending on enzyme activation or inhibition.  

The assay is helpful to screening set of large compound libraries. 
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ABSTRACT 

The AIF/CypA complex plays a key role in the mechanisms of cell death independent from 

the activation of caspases. Upon apoptotic stimuli, such as oxidative stress and hypoxia-

ischemia, AIF moves from mitochondria to nuclei, where it induces large scale DNA 

fragmentation and cell death. In some neuronal cell lines and in mouse models of ischemic 

or hypoxic brain damage, the lethal activity of AIF depends on its interaction with 

Cyclophilin A (CypA). Starting from a predicted molecular model of the AIF/CypA 

complex, a peptide mimetic of the protein region of AIF involved in the interaction with 

CypA has been selected and investigated. A synthetic peptide reproducing this region and 

corresponding to residues 370-394, is capable of inhibiting the interaction between the two 

proteins in vitro, through its binding with CypA. The peptide encompasses a protein region 

containing a β- hairpin motif which likely plays a pivotal role in CypA recognition. 

The transfection of this peptide in neuronal cells significantly blocks the glutamate-mediated 

mechanism of cell death, an effect caused by the failure of lethal complex translocation from 

mitochondria to the nucleus. These data not only confirmed the key role of the two proteins 

in inducing the neuronal death mechanism, but also indicate that molecules able to block in 

vivo the formation of this complex may represent "first-in-class" drugs for the treatment of 

cerebral ischemia and several neurological disorders. 

Given the peptide size, its poor stability in biological media and its inability to cross 

biological membranes, it cannot be readily used for therapeutic purposes. 

Thus, in the present study, using the peptide AIF(370-394) as starting template, a structure-

based approach and a combinatorial studies have been applied for the design and 

optimization of new selective inhibitors of the AIF-CypA complex. In particular, by means 

of 1H STD-NMR experiments, the AIF(370-394) residues crucial for the association with 

CypA have been identified and have been used to generate a shorter and more compact 

peptide having also an increased affinity for the target protein. Following peptide cyclization 

via a disulfide bridge and an Ala-scanning approach, a new peptide covering the region 381-

389 (hereafter AIF(381-389)ox) has been identified and submitted to further investigation. 

AIF(381-389)ox adopts a β- hairpin-like structure and shows a dose-dependent binding to 

CypA with a KD value in the μM range as AIF(370-394). CSP-NMR studies, combined with 

STD-NMR studies have been used to generate a docking model of the CypA-AIF(381-

389)ox complex, where residues from AIF(381-389)ox peptide have been included in the 

surface recognition region of AIF(370-394)/CypA. 
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To further improve the affinity of the new peptide and its propensity to adopt the β- hairpin 

conformation such as in the AIF protein, a combinatorial approach has been undertaken. 

By this approach a set of simplified peptide libraries incorporating random residues on 

peptide positions not apparently involved in the recognition with the target protein have 

been prepared and screened in a positional scanning format. 

The screening of libraries was performed using SPR-based Corning Epic label-free 

technology, and was lead to the identification of a single cyclic peptide that retained the β- 

hairpin conformation and bound CypA in the nanomolar range. 

Altogether, the data suggest that the new selected peptide is a very good structural template 

for further refining structure and activity of AIF/CypA inhibitors and the deep knowledge of 

the binding hot-spots can be exploited to design small molecules with improved 

pharmacokinetic and pharmacodynamics features. 
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1. INTRODUCTION 

1.1 Neurological disorders: the economic impact 

"Ageing is a privilege and an objective of the company. It is also a challenge, which has an 

impact on all aspects of society in the twenty-first century." 

The “World Health Organization” (WHO) proposes this message on public health, which 

indicates the importance of the phenomenon of aging: although the extension of life 

expectancy is a great achievement of modern medicine, the other side of the coin 

represented by an increase in the load of non-communicable diseases, such as cardiovascular 

disease, diabetes, cancer, Alzheimer's disease and other neurodegenerative diseases [1]. 

In particular, the report 

“Neurological disorders: Public 

health challenges” published in 

2006 from the World Health 

Organization showed that 

neurological disorders, ranging 

from epilepsy to Alzheimer 

disease, from stroke to 

headache, affect up to one 

billion people worldwide. 

Statistical data report that 

neurological disorders are an 

important cause of mortality and constitute 12% of total deaths globally, bound to increase 

over the years. Within these, cerebrovascular diseases are responsible for 85% of the deaths 

due to neurological disorders (Figure 1.1). 

The social impact of these diseases, such as Alzheimer's, is devastating, with an average 

term of 10 years, during which the patient's autonomy decreases requiring commitment and 

rising costs from the family. These patients are rarely hospitalized and more than 75% of 

treatment and careis provided by families, living the daily drama of an emergency health 

still unresolved. 

Given the impact of the disease in terms of health, social and political involvement, there are 

considerable investment in research on the pathogenesis, in outlining the causal risk factors, 

and in identifying preclinical markers in order to allowan early diagnosis, establish a 

prognosis and prepare effective treatments [1]. 

Cerebrovascular 
diseases ; 85%

Alzheimer's and 
other dementia; 

6,28%

Tetanus ; 2,83%

Meningitis; 2,24% Epilepsy; 
1,86%

Parkinson's disease; 
1,55% Multiple 

sclerosis; 0,24%

Japanase 
enchephalitis; 

0,17%

Cerebrovascular diseases 

Alzheimer's and other 
dementia

Tetanus 

Meningitis

Epilepsy

Parkinson's disease

Multiple sclerosis

Japanase enchephalitis

Figure 1.1: Deaths from selected neurological disorders as percentage of tota l 
neurological disorders
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1.2 Neuronal Cell Death mechanisms 

Neurological disorders are diseases affecting the brain and the central and autonomic 

nervous systems. They can affect an entire neurological pathway or a single neuron. Even a 

small disturbance to a neuron’s structural pathway can result in dysfunctions.  

The regulation of balance between neuronal life and death is a very delicate process, 

regulated by a constellation of trophic or proapoptotic factors [1, 2]. 

These last are responsible, by binding to specific receptors, of the activation of cell survival 

programs, growth and neuronal differentiation or conversely activation of programs that lead 

to cell self-destruction, represented by programed cell death pathways (PCD) [2].  

The above processes are required for the normal development of the central nervous system, 

as well as for the removal of dysfunctional cells in pathological conditions, but excessive 

loss of neurons is also involved in many human neurological disorders, including acute brain 

injury, neurodegenerative diseases (PD), and amyotrophic lateral sclerosis (ALS) [3]. 

A better understanding of the molecular underpinnings of neuronal death is leading directly 

to novel preventative and therapeutic approaches to neurodegenerative disorders. 

The mechanisms of cell death in several neurodegenerative diseases are often unclear; there 

are three major types of morphologically distinct cell death: necrosis, apoptosis and 

programmed cell death [4, 5, 6]. 

 

Necrosis 

Necrosis is an acute and passive form of cell death associated with the loss of ATP. 

Indeed, in hypoxic conditions, or even in ischemia, 

the reduction of oxidative phosphorylation results 

in a depletion of ATP and consequent 

malfunctioning of the ATP-dependent sodium-

potassium -pump-(Na+-K+-ATP-ase pump) [7]. 

These events initially lead to reversible 

modifications such as cell swelling with formation 

of small vesicles. 

If the process continues, there is a point of no 

return, characterized by dilation of mitochondria 

and the formation of large vesicles.  
Figure 1.2: Phases of necrotic processes
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This is followed by the lysis of cellular organelles and of the nucleus, due to the loss of the 

integrity of the membranes them selves (Figure 1.2). 

Finally, when the cell is broken, there is the release of the cytoplasmic material in the 

extracellular milieu and the activation of inflammatory response elements [7, 8]. 

 

Apoptosis 

Apoptosis describes a process of neuronal death, where the diying cells condense and fall 

off, with the support structures, in tissue on which they are growing [9].  

In the initial phase, the cell undergoes a reduction 

in cytosolic volume and then a narrowing 

(shrinkage), due to the destruction of the 

cytoskeleton.  

Later, there is a condensation of chromatin 

(pyknosis), paralleled by the nuclear disintegration 

and chromatin fragmentation [10]. 

Finally, the granules of degraded chromatin move 

to the periphery of the core reaching the plasma 

membrane, where they are surrounded by the 

evaginations membrane, giving to cells a bubble 

aspect (blebbing) (Figure 1.3).  

These bubbles are detached from the cell body constituting the so-called apoptotic bodies, 

that are engulfed by macrophages or neighboring cells [11]. Without this event there is an 

inflammatory reaction [11]. 

Apoptosis absolves an important physiological function in the replacement of senescent and 

excessive cells. In contrast to this role, pathological pathways of apoptosis have been 

associated with the progressive neuronal loss during several neuronal diseases, as well as 

with delayed cell death after acute brain damage caused by cerebral ischemia or traumatic 

brain injury [12, 13]. 

 

Programmed Cell Death (PCD) 

Programmed Cell Death (PCD) was first described in a developmental context, even before 

apoptosis, as the cell death that occurs because of a genetic clock at a predetermined time 

[14]. 

Figure 1.3: Phases of apoptotic processes
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PCD occurs in a regulated process, which usually 

confers advantage during an organism's life-cycle. 

Moreover, since the PCD is a predetermined process, 

it is potentially open to therapeutic intervention.  

Apoptosis and autophagy are both forms of 

programmed cell death, where as necrosisis is 

considered a non-physiological process that occurs as 

a result of infection or injury [15]. 

The cell death mechanisms that mediate the specific 

PCD processes include caspases and pro-apoptotic 

members of Bcl-2 family (apoptosis), JNK and ATG 

orthologs (autophagy), ERK2 (paraptosis, a cell death associated with trophotoxicity), 

PARP/AIF (PARP/AIF-dependent death), calpains/cathepsins (calcium-dependent death) 

and JNK (oncosis), among many others (Figure 1.4) [16, 17]. 

 

 

 

 

  

Figure 1.4: Molecular mechanisms of Programmed
Cell Death
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1.3 Molecular pathways involved in neuronal cell death 

Pathways involved in neuronal cell death mechanism are manifold and generally are divided 

in: caspase-dependent and caspase independent mechanisms [18]. 

Caspase-dependent pathway 

Caspases are cysteinyl aspartic acid-proteases activated by proteolytic cleavage. 

The mechanisms that produce apoptosis require caspase-mediated cleavage of specific 

substrates.  

In particular, caspase activation can happens through 

the extrinsic and intrinsic pathways [19]. 

The extrinsic signaling pathways involve 

transmembrane receptor-mediated interactions. These 

receptor families, as an example FasR, TNFR1, DR3, 

and DR4/DR5 bind to extrinsic ligands, including 

FasL, Trail, TNF-alpha, Apo3L and Apo2L 

respectively, to transduce intracellular signals that 

ultimately result in the destruction of the cell (Figure 

1.5) [20, 21]. 

 

In the intrinsic pathways, instead, a crucial role is played by the mitochondrial outer 

membrane premeabilization process (MOMP), which 

provides the release of cytochrome c in the cytosol 

where it induces activation of caspases [19]. 

The cytochrome c forms an ATP-dependent complex 

with the apoptotic protease activating factor-1 (Apaf-

1), to make a multiprotein complex called 

apoptosome, that induces caspase activation, through 

the cleavage of an effector caspase, responsible for 

cell death (Figure 1.6) [22]. 

 

 

 

 

Figure 3.1Figure 1.5: Elements of the extrinsic apoptotic pathway 
http://www.biooncology.com

Figure 1.6: Elements of the intrinsic apoptotic pathway
http://www.biooncology.com
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Caspase-independent pathway 

In caspase independent mechanisms, during oxidative stress, intracellular deregulation of 

Ca2+ concentration and DNA damage cause changes in the inner mitochondrial membrane 

(IMM) that results in an opening of the mitochondrial permeability transition (MPT) pore, 

loss of the mitochondrial transmembrane potential and release of proteins, including 

endonuclease G (Endo G), Smac/DIABLO, Omi/HtrA2 and AIF, from the mitochondrial 

intermembrane space to the cytosol and nucleous where they induce cell death [23]. 

Endo G traslocates to the nucleus where it is involved in DNA degradation, upon 

MOMP induction. It allows apoptosis to proceed even in the absence of caspase activation 

when the mitochondria are damaged [24]. 

The human protein Smac (and its 

murine orthologue DIABLO), once released, 

bind to different members of the inhibitor of 

apoptosis protein (IAP) family. 

The inhibitory effects of IAP against caspases 

are neutralized by the protein Smac, which by 

interacting with the BIR2 domain, forms a 

stable complex with the IAP, and through 

steric encumbrance, destabilizes the 

interaction between caspase and IAP favoring 

the release of the active caspases and 

proteasome degradation of IAP [25]. 

Omi is a molecule belonging to the family of serine proteases. Once released into the 

cytosol, it is capable to significantly improve the activity of caspases through direct 

proteolytic cleavage of IAPs. In addition, HtrA2/Omi can also induce apoptosis by its 

protease activity, acting independently of caspases [26, 27]. 

The Apoptosis Inducing Factor (AIF) is able to initiate the apoptotic process, 

inducing chromatin condensation and DNA fragmentation by a mechanism completely 

independent from the activation of caspases. (Figure 1.7) [28]. 

Figure 1.7: The death signal pathway through the mitochondrion
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1.4 Apoptosis Inducing Factor (AIF): structure, functions and cellular 

localization 

Apoptosis inducing factor (AIF) is a phylogenetically old flavoprotein with NADH 

oxidase activity normally contained in the mitochondrial intermembrane space (IMM). It is 

implicated in several vital and lethal cellular processes [29]. 

AIF is encoded in the nucleus and synthesized in the cytoplasm as a ~67 kDa precursor 

protein. It is imported to mitochondria by two mitochondrial localization sequences (MLS), 

that are placed within the N-terminal pro-domain of the protein.  

Upon mitochondria import, the precursor is processed to a mature form of 62 kDa by 

proteolytic cleavage of MLS sequence removed by a mitochondrial endopeptidase.  

On this configuration, AIF is an inner membrane-anchored protein whose N-terminus part is 

exposed to the mitochondrial 

matrix and whose C-terminal 

portion is exposed to the 

mitochondrial intermembrane 

space [30]. 

In this form, AIF plays a vital 

function related to the 

respiratory chain stability 

and/or to maintenance of the 

mitochondrial structure. 

The mature human form of 

AIF comprises three structural domains: an N-terminal mitochondrial localization sequence 

(MLS) of 100 aminoacids (aa), a spacer sequence (aa 101-121), a FAD-binding domain (aa 

122-262 and 400-477), a NADH-binding domain (aa 263-399) with two nuclear leading 

sequences (NLS) and a C-terminal region which consist of 136 aminoacids (Figure 1.8) 

[31]. The sites for the non covalent binding of FAD and relatively weak binding for NADH 

have been precisely mapped, and the mutants E313A and K176A have been shown to 

reduce FAD binding [32]. 

Moreover the C-terminal domain has become the most attractive part of AIF after recent 

data have confirmed the pro-apoptotic function of the this region [33]. 

The crystal structure of AIF reveals an oxidoreductase-like folding (Figure 1.9) [32]. 

Figure 1.8: Primary structure of AIF, FAD-bipartite domain (FAD; yellow),
NADH-binding domain (NADH; purple) and the C-terminal domain (red)
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Cloning of the full-length cDNAs of mouse AIF (mAIF), 612 aminoacids (aa) and human 

AIF (hAIF), 613 aa, showed that AIF is strongly 

conserved between these two mammalian species 

(92% aa identity in the whole protein) and bears a 

highly significant homology with oxidoreductases 

from all eukaryotic and prokaryotic kingdoms in its 

C-terminal portion (95% aa identity between aa 128-

612 in mAIF and hAIF) [34]. 

In vitro, AIF has been shown to have a redox 

activity accepting electrons from NADH to form 

superoxide anion [35]. 

Vital functions have been associated with the protein and have been confirmed by studies in 

the harlequin (Hq) AIF-mutant mouse, which has an 80% reduction in AIF expression. 

Such studies have suggested that this protein acts as a free radical scavenger [36]. 

Indeed ,Hq mice develop blindness, ataxia, progressive retinal and cerebellar degeneration 

due to the age-associated, progressive loss of terminally differentiated cerebellar and retinal 

neurons [37]. 

Moreover, it has been observed that hypoxia/ischemia is particularly toxic to the 

hearts of Hq mice, compared to the control hearts, and that the administration of the 

synthetic superoxide dismutase and catalase mimetic EUK8 could reduce cardiac oxidative 

stress and ameliorate the survival of Hq mice subjected to experimental constriction of the 

aorta [38]. 

Similarly, in a model of neuronal cell 

death, the intensity of oxidative stress, 

measured by lipid peroxidation and 

protein nitrosylation, in the injured area 

of the Hq brains,  increased compared 

to wild-type littermates [29]. 

Toghether with its vital functions, AIF 

is able to mediate nuclear and 

cytoplasmic effects of programmed cell 

death in response to several stimuli. 

While in healthy cells AIF is anchored 

to IMM by an amino-terminal 

Figure 1.9: Crysta llographic structure of the
human Apoptosis InducingFactor
(N- terminus= blu, C-terminus=red)

Figure 1.10: Schematic representation of AIF-mediated
caspase-independent PCD
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transmembrane segment, upon several cell death stimuli and MOMP, the 62 kDa AIF-

mitochondrial form is cleaved by activated calpains and/or cathepsins to yield a soluble 

proapoptotic protein with an apparent molecular weight of 57 kDa, denoted as truncated AIF 

(tAIF) (Figure 1.10).  

Once released from mitochondria to the cytosol, tAIF translocates to the nucleus and 

mediates chromatin condensation and degradation of DNA into ∼50-kb fragments [39]. 

Several studies have demonstred that the pro-apoptotic function of AIF is independent from 

its vital functions [40]. 

Indeed, the chemical inactivation of the FAD moiety required for AIF redox activity 

does not block its apoptogenic function in cell free systems. In a similar way, mutations that 

destroy the FAD binding site do not affect the lethal function of AIF in transfection assays 

[41]. The lethal function of AIF is 

particularly relevant in neuronal 

cells. 

Many papers have described the 

role of AIF in neuronal cell death 

in a variety of different rodent 

models of acute brain injury 

induced by cerebral hypoxia/ 

ischemia (HI), by middle cerebral 

artery occlusion, by cardiac arrest-

induced brain damage, by 

epileptic seizures or even by brain 

trauma [42]. 

Experiments in vivo, performed on Hq mice, allowed confirmation of the neuro-

lethal AIF activity, yet suspected from in vitro observations of AIF implication in poly 

(ADP-ribose) polymerase I (PARP1)-mediated neuronal death (Figure 1.11) [43]. 

The mechanism by which the PAR polymer causes AIF release is not known. However due 

to its highly charged nature, it could conceivably depolarize mitochondria leading to 

permeability transition and subsequent AIF release [44]. 

Moreover, in vivo excitotoxic studies using kainic acid-induced seizures revealed that the 

brains of Hq mice developed less hippocampal damage than wild-type animals. 

Accordingly, cortical neurons isolated from Hq mice are less susceptible to the exitotoxicity 

induced by glutamate, NMDA or kainic acid [33, 45]. In addition, compared with wild-type 

Figure 1.11: AIF-mediated cell death pathway. The
excessive activation of poly ADP-ribose polymerase
(PARP) sends the nuclear signal to the mitochondrion,
triggering AIF release from the mitochondrion to the
nucleus with chromatin condensation and DNA
fragmentation
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animals, the brains of Hq mice are more resistant to ischemia-induced damage [29, 46]. 

A decrease in AIF levels protects primary neurons against glutamate, NMDA or 

hypoxia/hypoglycemia-induced death [46, 47, 48]. 

Another factor inducing neuroprotection is the inhibition of AIF translocation from 

the mitochondrion to the nucleus; indeed the prevention of the mitochondrial membrane 

permeability transition obstructs AIF translocation and cell death in a rat model of 

hypoglycemia-induced brain damage [49]. 

Furthermore, it has been demonstrated that also the overexpression of the chaperon HSP70, 

which binds to AIF and impedes its nuclear translocation [50], has a neuroprotective effect 

in a transgenic mouse model of hypoxia/ischemia [51].  

Replacement of endogenous AIF by AIF mutants that cannot be either released from 

mitochondria or cannot translocate to the nucleus, improves the survival of AIF-deficient 

neurons that are treated with the otherwise lethal topoisomerase inhibitor camptothecin [52]. 

All evidences reported in the literature demonstrate the crucial role of AIF neuronal cell 

death mediated by a caspase-independent mechanism. 

Recently, it has been demonstrated that in some neuronal models either in vitro and 

in vivo, the lethal action of AIF is directly dependent on the interaction with the cytosolic 

protein Cyclophilin A (CypA) [53, 54]. 
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1.5 Cyclophilin A (CypA): structure, functions and cellular localization. 

Cyclophilins (CyPs) are a family of ubiquitous proteins, evolutionarily present in all 

prokaryotes and eukaryotes, involved in a variety of functions related to cell metabolism and 

energy homeostasis [55]. Human CyPs family consists of 16 members, that are structurally 

distinct: 7 major cyclophilin isoforms in humans include CypA (also called hCyp-18a, 

where 18 denotes a molecular mass of 18 kDa), hCypB (also called hCyp-22, 22 kDa), 

hCypC, hCypD, hCypE, hCyp40 (40 kDa) and hCypNK (first identified from human natural 

killer cells) [56]. 

The existence of tissue and organelle specific isoforms, moreover, explains the diversity of 

pathways in which CyPs are involved. 

The 18-kDa archetypal cyclophilin (CypA) is a cytosolic protein found in all tissues, and 

representing up to 0.1-0.6 % of the total cytosolic 

proteins. 

CypA, also called Peptidyl-prolyl-Isomerase A, was 

originally characterized for its ability to catalyze the 

transition between cis- and trans- proline residues 

critical for proper folding of proteins. This protein is 

able to regulate protein folding and modify their 

molecular conformation [57]. 

The crystallographic structure of CypA [58, 

59] reveals an eight-stranded antiparallel-barrel, 

with two helices enclosing the barrel from either side. Seven aromatic and other 

hydrophobic residues form a compact hydrophobic core within the barrel, usually in the area 

where Cyclosporin A (CsA) binds (Figure 1.12). 

Indeed, CypA is known as the primary intracellular receptor of this immunosuppressive 

drug. Once formed, the complex between CsA and CypA, binds and inhibits calcineurin, a 

calcium-calmodulin-dependent phosphatase, resulting in different biological consequences 

depending on cell type. Firstly it provokes the block of the immune response against 

transplants. Indeed, when calcineurin is inhibited, it no longer dephosphorylates nuclear 

factor of activated T cells (NF-AT), which remains in its phosphorylated (inactive) form in 

the cytosol. The failed translocation of NF-AT to the nucleus prevents the activation of 

genes transcription encoding cytokines, such as interleukin-2, and thus of the immune 

response against transplants [60]. 

Figure 1.12: The structure of complex
between the drug Cyclosporin A (CsA) and
human Cyclophilin A (CypA)
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Moreover, besides its involvement in the processes of immune diseases, CypA can be 

secreted into the extracellular environment in various cell types due to inflammatory stimuli 

such as infection, hypoxia, and oxidative stress [61]. 

Several studies have demostrated the increased levels of soluble extracellular CyPA in 

patients with inflammatory responses such as in serum of patients with sepsis [62], in 

patients with asthma [63], and in plasma of patients with coronary artery disease [64]. 

In this regard, CypA is a critical molecular biomarker in the early pathogenesis of essential 

hypertension and in related cardiovascular disorders [64]. 

Therefore, CyPA is involved in diverse pathological processes of cancer 

development: it promotes cancer proliferation [65], regulates cell cycle progression [66], 

blocks apoptosis [67], and promotes cell migration/invasion [68]. 

Even more prominent appears to be the role of CypA in neurodegenerative diseases, indeed 

in brain tissue, its expression is particularly high. It is present mainly in the cytoplasm but 

can also be found in the nucleus [69]. 

The involvement of this protein in neurodegenerative diseases and in disorders caused by 

oxidative stress was identified a long time ago [55, 58, 70]. 
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1.6 CypA and AIF in neurodegenerative diseases 

In pathways of programmed cell death in neurons, the interaction of the cytosolic 

CypA and mitochondrial protein AIF, plays a key role, in vitro and in vivo [71]. 

However, the mechanism at the basis of the lethal action of the complex AIF/CypA is still 

not clear. 

Two different models of action have been proposed: one proposes that the lethal 

translocation of AIF to the nucleus requires its interaction with CypA in the cytosol [72], 

while in the other it is proposed that AIF and CypA independently translocate to the nucleus, 

where they regulate chromatinolysis and programmed necrosis by generating an active DNA 

degrading complex involving the H2AX protein [73]. 

In support of the first hypothesis, it has been reported that the nuclear translocation of AIF is 

significantly reduced in a model of perinatal HI in CypA−/− mice compared with wild-type 

mice. Further, in AIF-deficient mice carrying the Hq mutation, CypA staining in the nucleus 

is reduced after injury and this correlates well with the protective effects in models of 

cerebral ischemia.[72]. 

In the second model, experimental data have shown the separate traslocation of the two 

proteins in the nucleus, underlying that the downregulation of CypA in MEF cells does not 

arrest nuclear translocation of AIF, but reduces DNA damage [73]. 

These controversial data suggest that the molecular events associated with caspase-

independent cell death can depend on the cell type and the kind of apoptotic stimulus [71]. 

Recently, the group where I have performed the work of my PhD thesis, has 

demonstrated that the pharmacological inhibition of the AIF/CypA complex in neuronal 

cells is a very effective approach, not only to block neural loss, but at the same time to 

restore cell viability. 

In particular, starting from the molecular model of the complex between AIF and CypA 

[72], we designed AIF peptides targeting the AIF-binding site on CypA. The peptide able to 

inhibit the interaction between AIF and CypA was identified by in vitro assays and the 

neuroprotective potential of such complex inhibitor was explored in living cells using a 

model of glutamate toxicity in immortalized mouse hippocampal HT-22 neurons [71]. 

This cell line lacks ionotropic glutamate receptors and glutamate-induced death is mediated 

by inhibition of the cellular cystine import, subsequent glutathione depletion and enhanced 

lipoxygenation, inducing a form of programmed cell death mostly due to AIF lethal nuclear 

translocation [74]. 
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We provided evidences that the delivery of the peptide, that encompassed the region 

370-394 of protein AIF, called AIF(370-394) peptide, induces neuroprotection by inhibiting 

the AIF-CypA axis. 

These findings are supported by several evidences: (i) first, similar to the down-regulation of 

CypA the delivery of the peptide AIF(370-394) drastically reduces the sensitivity of 

glutamate-mediated oxidative stress in neuronal cell lines; (ii) AIF(370-394) blocks the 

nuclear translocation of AIF and CypA, the key event in the caspase-independent cell death 

mechanisms; (iii) the active peptide provides protection against glutamate-mediated 

mitochondrial dysfunctions and reduces the sustained rise in intracellular Ca2+ [71]. 

The oxidative stress is an important factor contributing to delayed neuronal death after acute 

brain injury by cerebral ischemia or brain trauma, and in neurodegenerative diseases, such 

as Parkinson’s disease and Alzheimer’s disease. As mentioned, the pathogenesis of 

neurodegenerative disorders is induced by multiple factors, such as Ca2+ overload, ROS 

production and mitochondrial dysfunction [75, 76]. 

Therefore, multitarget strategies are necessary for inducing neuroprotection or for the 

treatment of neurodegenerative diseases. 

We demonstrated that inhibitory compounds targeting CypA, and perspectively AIF, can 

work as multitargeted neuroprotectants without apparent toxicity effects, and can therefore 

display advantageous pharmacological profiles. 



24 
 

1.7 Peptides as theraupeutical drugs 

Recently the growth in knowledge of the pathogenesis of neurodegenerative diseases has led 

to the discovery of new target molecules capable to reduce the symptoms, but hardly the 

causes. Among many others, therapies based on the use of peptides have been proposed to 

restore proper protein mechanisms, to counteract oxidative stress and to correct protein 

misfolding [77]. 

Useful strategies to identify 

potentially therapeutic peptides are 

based on the rational design and on 

combinatorial chemistry.  

The rational design of peptides is 

mostly based on the knowledges of 

structural information on a single 

protein or on protein-protein 

complexes involved in the 

development of pathological conditions.  

More specifically, the rational design of a peptide inhibitor is based on an alternate process 

of design-synthesis and testing of molecules complementary in shape to the biomolecular 

target they will potentially bind [77]. 

Conversely, in absence of structural informations, combinatorial approaches can be used to 

generate and screen peptides binding target proteins (Figure 1.13). 

Through combinatorial chemistry, a large number of structurally related peptides is 

synthesized and is then tested using a screening assay to identify the more active [78, 79]. 

Once a promising molecule (or lead coumpound) is identified, the affinity for the target can 

be matured affinity by progressive structural changes and testing. 

When a sufficiently potent compound is identified, the peptide generally undergoes a 

process of “depeptidization” to enhance stability, uptake and delivery [80]. 

  

Figure 1.13: Development and Production of a peptide
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2. AIMS OF THE PROJECT 

This research project is focused on the study of the molecular recognition between 

Cyclophilin A (CypA) and Apoptosis Inducing Factor (AIF), proteins involved in neuronal 

cell death mechanisms. 

Previous studies have shown that the region of AIF spanning residues 370-394 mediates the 

interaction with CypA, and promotes neuronal death. The corresponding synthetic peptide 

does block the interaction between AIF and CypA and is able to inhibit cell death.  

In the present study, using the peptide AIF(370-394) as starting template, we have 

undertaken a structure-based approach design new optimized and more selective inhibitors 

of the AIF-CypA complex. 

A combined approach based on both rational drug design and combinatorial chemistry has 

been applied to obtain peptides with improved pharmacodynamic features. 

1H Saturation Transfer Difference NMR experiments have guided the rationale for 

restricting the template to a shorter peptide, while a screening of combinatorial libraries in a 

positional scanning format allowed the identification of residues essential for the interaction 

with CypA. Binding peptides have been identified by ITC and SPR-based Corning® Epic® 

label-free technology using an Enspire (Perkin Elmer) instrument. 

Peptides with IC50s in the micromolar range have been identified and characterized. 
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3. MATERIALS AND METHODS 

3.1 Substrates and Chemicals 

Oligonucleotide primers for PCR were purchased from Sigma-Aldrich (Milan); DNA 

extraction and purification kits were from Qiagen (Germany), Phusion polymerase 

(Finnzymes, Milan); expression vectors pET14b and pGEX4T3 were kindly provided by the 

Protein Expression and Purification Core Facility, EMBL (Heidelberg); the DNA molecular 

marker and the restriction enzymes were from New England Biolabs (Milan). GSTrap, 

HisTrapHP, Superdex 75 10/300 were from GE Healthcare (Milan). Bacterial expression 

strains were from Novagen, whilst the cloning strain TOP10F’ was from Invitrogen (Milan). 

The prestained protein molecular marker was purchased from Bio-Rad (Milan). Protected 

amino acids, coupling agents (HATU) and Fmoc-Rink Amide AM Resin used for peptide 

synthesis were purchased from IRIS Biotech GmbH (Marktrewitz, DE). Solvents for peptide 

synthesis and purification, including acetonitrile (CH3CN), dimethylformamide (DMF), 

trifluoroaceticacid (TFA) and methanol (CH3OH) were purchased from ROMIL (Dublin, 

Ireland). Other products such as Sym-collidine, DIPEA, Piperidine, were from Sigma-

Aldrich (Milan, Italy). Analytical HPLC analyses were performed on an Alliance HT 

WATERS 2795 system, equipped with a PDA WATERS detector 2996. Preparative 

purifications were carried out on a WATERS 2545 preparative system (Waters, Milan, Italy) 

fitted out with a WATERS 2489 UV/Visible detector. LC-MS analyses were performed 

using a ESI Ion Trap HCT ETD II Ultra PTM discovery mass spectrometer (Bruker) 

coupled with an HPLC System Alliance e2695 separation module fitted out with a 2998 

PDA detector (Waters, Milan). An EnSpire Multimode Plate Reader (Perkin Elmer) was 

used to perform label-free direct binding assays. 

 

3.2 Construction of recombinant plasmids 

3.2.1 Human CypA cloning strategy in pET-14b 

Human CypA (CypA) was cloned in pET-14b in order to obtain the protein with a tag of 

poly histidine at N-terminus. Firstly, the cypA gene was amplified by PCR from genomic 

DNA. 

The amplification was performed by using the following couples of primers: cypAFw 5’-

TATACTCGAGATTAGAGCTGTCCACAGTC-3’ and cypARev 5’-TAGAAGACA 

TCATGGTCAACCCCACCGTG-3’. The forward primers contained the XhoI restriction 
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site, while the reverse primers were designed with the BbsI restriction site and a stop codon. 

All amplification reactions were performed in a final volume of 50 μL, using 50 ng of 

template DNA. The reaction mixture contained the specific primers (0.25 μM each), dNTPs 

(0.25 mM each) and the Phusion polymerase (5U) with its buffer 1x. PCR was performed 

using a Bio-Rad apparatus, following the procedure indicated in Table 3.1. 

 

Step Procedure Time and 

Temperature 

1 Initial denaturation 3 min at 95°C 

2 Denaturation 1 min at 95°C 

3 Annealing 1 min  at 56°C 

4 Elongation for 25 cycle (from Step 2) 1 min at 72°C 

5 Elongation 10 min at 72 °C 

Table 3.1: PCR conditions 

All amplification products were analyzed by 1% agarose (Euroclone) gel electrophoresis 

performed in TAE buffer (18.6 g/L EDTA, 242 g/L Tris base. Acetic acid added until pH 

7.8). PCR products were purified by using the QIAquick PCR Purification Kit (Qiagen), and 

digested with BbsI (20 U/μL) and XhoI (20 U/μL) restriction enzymes. Each amplified 

fragment (1μg) was digested with 4 U of restriction enzymes for 3 h at 37ºC in a buffer 

containing 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT pH 7.9, 

supplemented with BSA 100 μg/mL. 

Following digestion, each fragment was cloned into the corresponding sites of the pET-14b 

expression vector, downstream to the His-tag sequence. For this purpose, the expression 

vector was previously digested with the same restriction enzymes (4 U/μg), and treated with 

calf intestine phosphatase (CIP, 10 U) (NEB) for 30 min at 37ºC. The CIP enzyme (10 

U/μL) was then inactivated at 75°C for 10 min at 1:3 molar ratio (vector/insert). 

The T4 DNA Ligase was used for ligation reactions. The reactions were performed using 20 

U/μg DNA of the T4 DNA Ligase (400 U/μL), in a final volume of 10 μL, for 3h at RT. E. 

coli TOPF’10 strain was used for cloning. 

 

3.2.2 Human CypA cloning strategy in pGEX-4T3 

Human CypA (CypA) was cloned in pGEX-4T-3 in order to produce CypA as GST-fusion 

protein. For this purpose, the cypA gene was amplified by PCR from genomic DNA. 
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The amplification was performed by using the following couples of primers: cypAFw 5’-

GGATCCTCCAGCAAGTATATAGCATGGCC-3’ and cypARev 5’-GAATTCGCA 

GATCGTCAGTCAGTCACGAT-3’. The forward primers contained the BamHI restriction 

site, while the reverse primers were designed with the XhoI restriction site and a stop codon. 

The cloning strategy was continued as previously reported. 

 

3.3 Large-scale expression 

The constructs pET14b-CypA and pGEX-4T3-CypA were transformed in E.coli to 

overexpress the corresponding recombinant proteins. Pilot expression trials were conducted 

to screen different strains in order to assess the best expression of soluble protein. 

We investigated also different growing conditions, including different IPTG concentrations, 

times and temperatures of growth. Both constructs showed optimal expression levels in the 

BL21(DE3)strain. Optimal expression conditions obtained are reported in Table 3.2. 

 

 

 

 

 

 

 

 

Table 3.2:Optimal expression conditions 

Single clones of E. coli strain, previously transformed with each recombinant expression 

vector and grown at 37 ºC on LB agar containing the appropriate antibiotic, were inoculated 

into 10 mL of LB medium, containing the same antibiotic. 

The overnight cultures were inoculated into 1L of pre-warmed LB medium. 

Cultures were grown at 37°C under shaking until they reached the mid-log phase (OD600= 

0.7÷0.8nm); then, they were induced with the optimal IPTG concentration. After the cells 

were harvested by centrifugation (6000 rpm, 30 min, 4°C). 

Cell pellets were resuspended in a lysis buffer containing 20 mM Tris/HCl pH 8.0, 150 mM 

NaCl, 0.1 mM DTT, 1mM PMSF, 0.1 mg/mL lysozyme and 0.1 mg/mL DNase and protease 

inhibitors.  

The suspension was sonicated for 40 min by using a MisonixSonicator 3000 apparatus with 

 His6tagged-CypA Gst-CypA 

OD600nm 1 0.8 

IPTG 

(final concentration) 
1mM 0.1mM 

Time 3h 16h 

Temperature 37°C 22°C 

Antibiotic Ampicillin Ampicillin 
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a micro tip probe and an impulse output of 1.5/2 (9/12 Watt). 

Bacterial lysates were then centrifuged (17500 rpm, 30 min, 4°C) and the supernatant 

(soluble fraction) was collected and analyzed by SDS-PAGE to assess the presence of 

recombinant products of interest. 

 

3.4 Purification of His6tagged-CypA 

The lysates containing tagged recombinant protein was subjected to affinity chromatography 

onto His-Trap column (5ml) connected to an AKTA-FPLC system (GE Healthcare 

BioScience AB, Uppsala, Sweden).  

Before loading the lysate, the resin was extensively washed with water and then equilibrated 

in buffer A (20 mM Tris/HCl pH 8.0, 150 mM NaCl, 0.1 mM DTT). 

Flow-through containing all unbound proteins was collected and the resin was washed with 

buffer A. The bound proteins were eluted using an imidazole step gradient from 0 to 500 

mM. Finally the His6tagged-CypA was eluted at 100 mM imidazole. 

Relevant fractions (flow-through, washes and elutions) were analyzed on SDS–PAGE gel 

and stained with Coomassie Brilliant Blue G-250 (BioRad). 

The protein migrated as a protein of ~20 KDa compatible with the theoretical MW of 

His6tagged-CypA. Pools of interest were dialyzed in buffer A (16h at 4°C) to remove 

imidazole by using membranes (Thermo) with the appropriate cut-off of 3500 Da. 

 

3.5.Purification of GST-CypA 

The column used to purify the bacterial lysates of pGEX-4T3-CypA was GSTrap affinity 

column (1 ml) connected to an AKTA-FPLC system. 

The purification method is based on the high affinity of GST for glutathione. As above, 

flow-through containing all unbound proteins were collected and the resin was washed with 

buffer A. Finally the GST-tagged-CypA was eluted with a single step of 10 mM reduced 

glutathione. Indeed, the protein migrated as a protein of ~44 KDa compatible with the 

theoretical MW of GST-CypA. 

Collected fractions were checked on SDS-PAGE and pools of interest were dialyzed in 

buffer A (16h at 4°C) to remove reduced glutathione by using membranes with a cut-off of 

10000 Da (Thermo). 
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3.6 Size Exclusion Chromatography 

Size exclusion chromatography was performed to purify all recombinant proteins, removing 

aggregates and contaminants. Purifications were carried-out at a flow rate of 0.5 ml/min 

onto a Superdex 75 10/300. The column was connected to AKTA Purifier system, using 20 

mM Tris/HCl pH 8.0, 150 mM NaCl and 0.1mM DTT as running buffer. 

Molecular weight standards from GE-Healthcare were used to calibrate the columns. 

Standards were: blue dextran (Mr 2,000,000), bovine serum albumin (Mr 66,399), 

ovalbumin (Mr 45,000), carbonic anhydrase (Mr 29,000), cytochrome c (Mr 12,000).  

Pools of interest were concentrated on appropriate Amicon-Ultra membranes (Millipore). 

 

3.7 Determination of protein and peptide concentrations 

Protein concentration was determined according to the Bradford’s method [81]. The 

Coomassie Brilliant (Bio-Rad) reagent was added to the samples and the absorbance at 595 

nm was monitored. A solution of BSA was used as standard. Moreover, protein 

concentrations were determined by reading the absorbance at 280 nm in combination with 

the theoretical molar extinction coefficient (8730 M−1cm−1) by NanoDrop200c UV-Vis 

spectrophotometer (Thermo Scientific).  

The peptides concentration, lacking tryptophan and tyrosine residues, was determined via 

the Scopes method [82], in which the absorbance of the peptide bond is monitored at 205 

nm by NanoDrop200c UV-Vis spectrophotometer. 

 

3.8 Electrophoretic analysis of proteins (SDS-PAGE) 

Electrophoresis characterizations for CypA on 15% polyacrylamide gel in denaturing 

conditions were performed according to Laemmli’s protocol [83].  

Samples were denatured at 100°C for 5 min in Laemmli Sample Buffer (Bio-Rad) with 10% 

β-mercaptoethanol. Samples were then loaded on a polyacrylamide gel and the 

electrophoresis was performed in 0.025 M Tris/HCl, 0.2 M glycine pH 8.3 and 0.1% SDS, at 

30 mA for ~1 h in Tris/Glycine/SDS Buffer for SDS application (Bio-Rad). 

Proteins were then revealed by Coomassie Brilliant-Blue (Bio-Rad) staining; gels were 

submerged in the staining solution (0.1% Coomassie Brilliant-Blue G-250, 0.1% 

hydrochloric acid (J.T. Baker)) for 30 min under gentle agitation. 

The gel was washed three times in deionized water, warmed in a microwave to remove the 

excess of Coomassie and then preserved in deionized water. 
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3.9 Mass spectrometryand trypsin digestion 

LC-MS spectra was recorded to confirm the identity of CypA. Experiments were performed 

using a 10 cm EASY-Column, ID 100µm, 5µm particle size, C18-A1 (Thermo Scientific), 

equipped with a 2 cmpre-column having an ID of 100 µm, 5 µm particle size, 120 Å, 

ReproSil-Pur C18-AQ (Thermo Scientific). Data were collected on an Ion Trap mass 

spectrometer ETD II (Bruker Daltonics) equipped with a nanoESI ion source. Most runs 

were performed at 600 nL/min, applying a linear gradient of 0.1% formic acid (FA) in 

CH3CN over 0.1% FA in H2O from 0% to 60% in 45 min.  

To characterize the protein primary structure, trypsin digestions were performed in 20 mM 

Tris-HCl, 150 mM NaCl pH 8.0.  

Proteins were digested using a trypsin: protein molar ratio of 1:50 or 1:100. The reaction 

was allowed to proceed at 37°C and resulting peptides were analyzed at different time points 

(1, 2, 3, 4 h) by LC-MS, using an EASY-Column, 10 cm, ID75 µm, 3 µm, C18-A2 (Thermo 

Scientific). 

 

3.10 Circular dichroism spectroscopy (CD) 

Jasco J-715 spectropolarimeter, equipped with a PTC-423S/15 Peltier temperature 

controller, was used to register far-UV circular dichroism spectra of CypA, in a 0.1 cm 

quartz cells. The parameters used to acquire spectra were: far UV range 190-260 nm, band 

width of 1 nm, response of 8 sec, data pitch of 0.2 nm and scanning speed of 10 nm/min. 

Spectra were recorded at 20°C, on protein solutions at 15 μM in 20 mM phosphate buffer 

pH 7.4.  

CD data were expressed as mean residue ellipticity (θ). Spectra processing was achieved by 

using the Spectra Manager software, while the analysis of the secondary structure content of 

the proteins was performed with the neural network program: CDNN [84]. 

Peptide CD spectra were registered in 20 mM phosphate buffer pH 7.4 at 25 °C in the far 

UV region from 190 to 260 nm in 0.1 cm path-length quartz cuvettes. 

Each spectrum was obtained averaging three scans, subtracting the contribution from 

corresponding blanks and converting the signal to mean residue ellipticity in units of deg × 

cm2 × dmol-1 × res-1.  

The concentration of peptides was kept at 80 μM and spectra were acquired in different 

buffers (see “Results” for details). 
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3.11 Peptides synthesis and purification 

The wild type peptide, called AIF(370-394), corresponding to the protein sequence 370-394 

(QSVGVSSGKLLIKLKDGRKVETDHI) of the AIF protein was synthesized on solid 

phase, following the Fmoc (N-9-Fluorenylmethyloxycarbonyl) methodology [85]. 

Solid phase peptide syntheses were performed using a Rink amide resin (substitution 0.5 

mmol/g) to afford a C-terminal amide sequence. 

The coupling reactions were carried out with a four-fold excess of amino acid using a 

double coupling procedure: first coupling was carried out using Oxime Pure [86] and DIC 

(Diisopropylcarbodiimide), the second one was performed using 1-hydroxybenzotriazole 

(HOBt), 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) [87] and Collidine in DMF (N,N-dimethylformamide) as 

coupling reagents. Each coupling reaction was carried out for 30 minutes at room 

temperature. 

However, the derivatives peptides from AIF(370-394), were synthesized by performing the 

coupling reactions with a four-fold excess of HATU, 4 equivalents of Fmoc-protected amino 

acids, HOBt and Collidine (relative to the synthesis scale), in DMF for a reaction time of 45 

min under continuous mixing. 

The deprotection step to remove the Fmoc group was performed firstly with 40% piperidine 

in DMF for 5 min, then with 20% piperidine in DMF for 10 min. 

All peptides, except AIF(370-394) peptide, were acetylated at N-terminus by using a 

solution of acetic anhydride/DIEA 30%/5% in DMF. Crude materials were cleaved from the 

resin by treatment with trifluoroacetic acid (TFA)/H2O/triisopropylsilane (TIS) (95:2.5:2.5: 

v/v/v) at room temperature for 3 h. The resin was finally filtered, and the peptide 

precipitated using cold diethyl ether. 

Peptides were purified using an Onyx monolithic semi-PREP C18 column (100x10mm, 

Phenomenex, Castel Maggiore, Italy) operated at a flow rate of 15 mL/min; H2O+0.1% TFA 

(solvent A) and CH3CN+0.1% TFA (solvent B) were used as eluents, using a linear gradient 

of solvent B from 0 to 70% in 20 min. Purity and identity of peptides were assessed by 

analytical RP-HPLC and LC-MS (liquid chromatography mass spectrometry).  

The peptides were cyclized dissolving the linear peptides with cysteines at N- and C-termini 

at a concentration of 10–3 to 10–4 M, in 0.015 M ammonium carbonate pH 8.0 for 24 h under 

agitation, at room temperature. Reactions were monitored by analytical HPLC and at the 

end, after acidification with trifluoroacetic acid (TFA), they were lyophilized and directly 

used for preparative HPLC purification. 
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3.12 Alanine-scanning strategy 

Alanine scanning peptides [88] were prepared by the solid phase method on a 50 μmol scale, 

using standard Fmoc-derivatized amino acids [85]. Briefly, synthesis were performed on a 

fully automated multichannel peptide synthesizer Syro I (Multisynthech, Germany). RINK 

AMIDE resin (substitution 0.5 mmol/g) was used as solid support. The coupling reactions 

were carried out as previously reported. 

The deprotection step to remove the Fmoc group was performed firstly with 40% piperidine 

in DMF for 5 min, then with 20% piperidine in DMF for 10 min. 

Peptides were removed from the resin by treatment with a TFA:TIS:H2O (90:5:5, v/v/v) 

mixture, then they were precipitated in cold diethylether and lyophilized.  

Peptides were cyclized and purified by preparative RP-HPLC using a linear gradient of 

solvent B from 10 to 45% in 8 min at a flow rate of 15 mL/min. 

Purity and identity of the peptides were assessed by analytical RP-HPLC and LC-MS. 

 

3.13 Positional scanning strategy 

Positional scanning libraries [89] were prepared by the solid phase method, using RINK 

AMIDE resin as solid support. Syntheses were performed on a fully automated multichannel 

peptide synthesizer Syro I as described in the previous section.  

Randomized positions were obtained by using equimolar mixtures of 7 building blocks 

employing a 100-fold excess of each amino acid. 

After the test of binding carried out with Label-free Corning Epic technology [90], the best 

library was screened, synthesizing each peptide present in the 7-member peptide library. 

Peptides were purified by preparative RP-HPLC using a linear gradient of solvent B from 10 

to 45% in 8 min at a flow rate of 15 mL/min. 

 

3.14 Isothermal Titration Calorimetry (ITC) 

ITC experiments were performed at 25°C using a MicroCal ITC 200 (GE Healthcare Bio-

Sciences AB, Sweden) following the standard procedure. 

The protein and peptide samples were dialyzed in phosphate saline buffer (PBS) with 1 mM 

DTT, pH 7.4. In each titration, 20 injections of 2 μL each of AIF(370-394) at 0.7 mM 

peptide were added to a sample of 300 μL of CypA at 5 μM.  

Since the signal from the first injection can usually not be used for data analysis only 0.4 μl 

were added in this step and the data point was omitted. Data were analyzed using the 
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“Origin” software (MicroCal). The association constant (Ka), molar binding stoichiometry 

(n) and the binding enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) were 

determined by fitting the binding isotherm to a one-site model with MicroCal Origin7 

software. All ITC experiments were performed in triplicate. 

 

3.15 Corning Epic label-free technology 

Binding assays were performed using the Corning Epic label-free technology on the EnSpire 

Multimode Plate Reader (PerkinElmer, Rodgau, Germany) [91]. 

Label-free biochemical assays measure changes in refraction index following a binding 

event. This change is indicated by a shift in wavelength as shown in the following schematic 

Figure 3.1. The Enspire label-free system generates reproducible and high-quality 

information for protein-protein, and protein-small molecule interactions. 

Label-free responses are measured as shifts in reflected wavelength and are expressed in 

picometers (pm). 

Results were analyzed using the EnSpire label-free user interface software. 

The difference between the last baseline measurements and the maximum signal was used to 

determine the KD value. Graphs were generated using GraphPad PRISM® v5.01. 

 

 

Figure 3.1: Schematic illustration of Corning Epic label-free technology 

 

CypA immobilization on the optical biosensors was accomplished by adding 200 µg/mL 

protein in 20 mM sodium acetate, pH 5.5, using a 12-channel Thermo Scientific matrix 

multichannel equalizer pipette followed by overnight incubation at 4°C.  

The microplate was subsequently washed three times with phosphate-buffered saline (PBS 
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1X; pH 7.4) buffer. After washing, the plate was equilibrated in the assay buffer (PBS) for 3 

hours (30 µl). After incubation, a baseline reading was recorded. After another washing step, 

15 µl of various peptides were dispensed in the plate wells.  

Peptides used for the CypA assay were diluted with the assay buffer (PBS) at a working 

concentration of 300 µM (150 µM final concentration in the plate) and then further diluted 

in the assay buffer directly in a 384-well polypropylene plate for a total of twelve different 

concentrations. The final readings were taken over a period of 1 hour.  

 

3.16  Cell Culture of HT-22 and transfection 

HT-22 cells, derived from immortalized hippocampal neurons, were cultured at a density of 

10 000 cells/well in a 96-well plate (Greiner Bio-One, Frickenhausen, Germany) at 37 °C 

and 5% CO2 in Dulbecco’s modified Eagle medium (Invitrogen, Karlsruhe, Germany) with 

10% heat-inactivated calf serum and 100 U/ml penicillin, 100  μg/ml streptomycin and 2 

 mM glutamine. Peptide transient transfection was performed using the cationic lipid 

mixture Pro-Ject Protein Transfection Reagent kit according to the manufacturer’s 

instructions (Pierce, Thermo Scientific, Munich, Germany, Prod no. 89850). 

  

3.17 Induction of Apoptosis in HT-22 Cells 

Neuronal cell death was induced for 24 hours after seeding of the cells. Induction of 

apoptosis was performed by glutamate-induced toxicity. 

Glutamate-Induced Toxicity 

For inducing glutamate toxicity [92], cell growth medium was removed and replaced by 

standard cell culture medium containing glutamate (3 mM) (Sigma-Aldrich, Munich, 

Germany). Cell viability was evaluated between 14 and 16 hours later. 

 

3.18 Cell Viability Assay 

Quantification of cell viability in HT-22 cells was performed either in standard 96-well 

plates or in standard 24-well plates by the method of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide MTT (Sigma-Aldrich) reduction. The reagent was used at 0.25 

mg/ml for 1 hour. After terminating the reaction by removing the media and freezing the 

plate at −80°C for at least 1 hour, the MTT dye was dissolved in DMSO and absorbance was 

determined at 590 nm with the blank obtained at 630 nm (FluoStar OPTIMA; BMG 
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Labtech, Offenburg, Germany). Cell viability levels were determined by comparing 

absorption of treated cell samples with that of untreated control cells samples (100% cell 

viability). DMSO control was used as solvent control. For statistical analysis, experiments 

were repeated at least three times. 

 

3.19 Expression of 15N-labelled recombinant CypA for NMR studies  

A single clone of CypA strain was cultured for 16 h at 37°C in 50 ml of LB medium with 

antibiotics. The harvested cells were centrifuged for 15 min at 5000 rpm and suspended in 

10 ml of M9 medium (Table 3.3). Subsequently a spectrophotometric reading of cells was 

carried out to determine the start value of OD600 nm (generally 0.15-0.18).  

Cells were then inoculated in M9 medium, containing 15NH4Cl (Sigma Aldrich 1g/l) as the 

unique nitrogen source, and grown at 37°C. For the overexpression the cells were grown at 

37°C till the mid log phase (OD600 nm = 0.9 ± 0.5). At this point the expression was induced 

by addition of IPTG (1.0 mM). Cells were allowed to grow for further 15-16 hours at 25°C. 

After harvesting, the cells were lysed and 15N-His6tagged-CypA was purified by affinity 

chromatography on a His-trap HP column.  

 

NaCl 0.5g 

KH2PO4 7.5g 

K2HPO4 17.4g 

15NH4Cl 1g 

1 M MgSO4 1 ml 

10 mM CaCl2 10 ml 

1M thiamine 1 ml 

20% glucose 10 ml 

ddH2O 877 ml 

Antibiotic 1 ml 

Total volume 1 l 

Table 3.3: M9 medium composition 
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3.20 NMR spectroscopy 

NMR experiments were carried out at 25°C using an Inova 600 MHz spectrometer (Varian 

Inc., Palo Alto, CA, USA), equipped with a cryogenic probe optimized for 1H detection. 

NMR data were processed by the software VNMRJ 1.1.D (Varian Inc.). One-dimensional 

(1D) spectra were analyzed using ACD/NMR Processor 12.0 [ACD/NMR]; two and three-

dimensional (2D and 3D) spectra were analyzed using tools available in CARA (Computer 

Aided Resonance Assignment) software (downloaded from cara.nmr.ch) [93]. 

The one-dimensional (1D) 1H STD-NMR spectra of AIF(370-394) and AIF(381-389)ox in 

presence of GST-CypA (100:1) were acquired with 1024 scans with on-resonance 

irradiation at -0.3 ppm for selective saturation of protein resonances and off-resonance 

irradiation at 30 ppm for reference spectra.  

A train of 40 Gaussian shaped pulses of 50 ms with 1 ms delay between pulses were used, 

for a total saturation time of 2 s. 1D 1H STD spectra were obtained by internal subtraction 

of saturated spectrum from reference spectrum by phase cycling. 

For AIF(381-389)red and AIF(381-389)ox chemical shift assignment and conformational 

analysis, 1D 1H spectra were acquired with a spectral width of 7191.66 Hz, relaxation delay 

1.0 s, 7k data points for acquisition and 16k for transformation, bidimensional (2D) [1H, 

1H] total correlation spectroscopy (TOCSY) [94], double quantum filtered correlated 

spectroscopy (DQF-COSY) [95] and nuclear Overhauser effect spectroscopy (NOESY) [96] 

were acquired with 32 or 64 scans per t1 increment, with a spectral width of 6712.0 Hz 

along both t1 and t2, 2048 and 256 data points in t2 and t1, respectively, and 1.0 srecycle 

delay. Water suppression was achieved by means of a double pulsed field gradient spin echo 

(DPFGSE) sequence [97]. 

The TOCSY experiment was recorded using a DIPSI-2 mixing scheme of 70 ms with 7.7 

kHz spin-lock field strength. The NOESY spectrum was carried out with a mixing time of 

250 ms. The data were typically apodized with a square cosine window function and zero 

filled to a matrix of size 4096 and 1024 before Fourier transformation and baseline 

correction. Chemical shift assignments (Tables 4.2 and 4.3) refer to residual water resonance 

(4.75 ppm). 

To define the AIF(381-389)ox binding site on CypA by chemical shift perturbation (CSP) 

studies, the 2D 1H- 15N HSQC spectra were recorded on 15N-CypA (80 μM) in the presence 

of increasing concentrations of AIF(381-389) peptide ranging from 0 to 800 μM in PBS 

buffer, pH 5.8.  

The CSPs were quantified by the average combined chemical shift between the free form 
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and AIF(381-389) bound CypA protein using the following equation: dHNav =[((ΔδHN)2 + 

(ΔδN/5)2)/2]1/2 [98, 99, 100], where ΔδHN and ΔδN are the chemical shift variations of the 

amide proton and nitrogen resonances, respectively. 

 

3.21  Molecular Modeling 

The HADDOCK web server [101] was used to generate a model of the CypA/AIF(381-

389)ox complex. For CypA, the crystal structure available in the protein data bank was used 

for docking calculations (PDB ID:2CYH) [102].  

For AIF(381-389), the 380-390 portion was extrapolated from the the crystal structure of 

AIF protein (PDB ID: 1M6I) [103], replacing the L380 and E390 with cysteine residues. CSP 

and STD data were used to introduce active and passive residues.  

The four best cluster with negative Z-Scores were visually inspected, and solutions not 

compatible with NMR experimental data were rejected. On this basis, the best model of the 

first HADDOCK cluster was selected as representative of the CypA/AIF(381-389)ox 

complex. 
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4. RESULTS 

4.1 Biochemical characterization of AIF(370-394)/CypA complex 

In order to define the molecular basis of the recognition between AIF and CypA, I focused 

my attention on the biochemical and CD and NMR-based structural characterization of the 

complex between CypA and the AIF(370-394) peptide. For this purpose, my first aim has 

been the large scale synthesis of AIF(370-394) peptide and the production of soluble and 

highly pure CypA recombinant protein. 

 

4.1.1 Cloning, overexpression and purification of His6tagged-CypA 

Human cypA gene was cloned in pET-14b expression vector, enabling the expression 

of the protein as poly histidine tag (6His) product, containing a highly specific cleavage site 

for thrombin protease at N-terminus. 

The host strain opted for improbe expression of the recombinant protein was the BL21(DE3) 

and the purification was achieved by one step of affinity chromatography using a His-Trap 

resin. The bound proteins were eluted using an imidazole step gradient from 0 to 500 mM 

(Figure 4.1 A) and the fractions obtained were analyzed by SDS-PAGE  

The His6tagged-CypA was eluted at 100 mM imidazole, with a high purity degree.as shown 

in Figure 4.1 B. 

 

 

Figure 4.1: His6tagged-CypA purification profile. (A) Affinity chromatography profile of the His6-tagged 

CypA. (B) 15% SDS-page analysis after His-trap. Lane 1: Marker; Lane 2: flow through; Lane 3 pooled 

fraction of wash steps at 30 mM imidazole; Lanes from 4 to 6 samples eluted at 100 mM of imidazole; Lane 7 

pooled fractions eluted at 500 mM of Imidazole. 

 

The identity of the purified protein was confirmed using mass spectrometry. To this aim the 

protein of interest was digested with trypsin and fragments obtained were submitted to nano 
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37 KDa

25 KDa
20 KDa

15 KDa

6His-CypA

A B 
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flow liquid-chromatography coupled to mass spectrometry (LC-MS/MS). 

Data deconvolution, using the MASCOT software [104], allowed the univocally 

identification the protein as CypA (Figure 4.2 A-D). 

 

 

Figure 4.2: Peptide mass finger printing of CypA. (A) Chromatogram profile of CypA tryptic digestion. (B) 

Mass peaks assigned to peptides. (C) Mascot’s match score. (D) CypA sequence; matched peptides are shown 

in red and correspond to a coverage sequence of 37.4%. 

 

The folding status in solution of the recombinant His6-tagged CypA was assessed by far-UV 

CD spectroscopy. 

As shown in Figure 4.3 A, the CD spectrum of the protein was dominated at 20°C and in 5 

mM phosphate buffer at pH 7.4, by the presence of a maximum at 198 nm, a minimum at 

208 nm and an absolute minimum at 222 nm [105] which are hallmarks of largely ordered 

structure, where β-strands are predominant in agreement with the crystallographic structure 

[102].  

Thermal denaturation experiments determined a temperature of melting of 50°C (Figure 4.3 

B). Moreover the spectra recorded at 20°C upon denaturation demonstrated the process is 

reversible indicating a high intrinsic stability of the protein (Figure 4.3 C). 
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Figure 4.3: Characteristic far-UV CD spectra for CypA. (B) Thermal denaturation of CypA. CD signal was 

foll one at 222 nm in the temperature range 20-90°C. (C) Overlay of spectra at 20°C (green) and at 90°C 

(blue). 

 

4.1.2 Cloning, overexpression and purification of GST-CypA 

In order to perform NMR experiments, it was necessary to prepare the GST-CypA 

recombinant protein. In particular, cypA gene was cloned in the commercial expression 

vector pGEX-4T3. The purification of the chimeric protein was achieved by a step of 

affinity chromatography using a GSTrap column resin using 10 mM of reduced glutathione 

(GSH). The pulled fraction obtained by affinity chromatography was analyzed by SDS-

PAGE (Figure 4.4 A, B). 

 

 

Figure 4.4 : Gst- CypA purification profile. (A) Affinity chromatography profile of the Gst-CypA (B) 15% 

SDS-page analysis after Gst-trap. Lane 1: Marker; Lane 2 to 4: flow through; Lanes 5 to 6 samples eluted at 10 

mM of reduced glutathione. 
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A second step of purification by a Gel filtration on a Superdex 75 10/300 provided a highly 

pure protein (> 98%), as shown on SDS-PAGE (Figure 4.5). 

 

 

Figure 4.5: 15% SDS-page analysis after size exclusion chromatography of Gst-CypA: 

Lane 1: Marker; Lane 2: empty; Lane 3: Gst-CypA. 

 

Indeed, the protein migrated as a protein of ~44 KDa compatible with the theoretical MW of 

GST-CypA. 

 

4.1.3 AIF(370-394) preparation and structural characterization 

The peptide AIF(370-394) (370QSVGVSSGKLLIKLKDGRKVETDHI394) was 

chemically synthesized using the Fmoc solid phase method [85] and purified by Reverse 

Phase (RP)-HPLC (Figure 4.6 A). Identity and purity of AIF(370-394) were assessed by 

LC-MS. (Figure 4.6 B). 

 

Figure 4.6:(A) Real time RP-HPLC chromatogram of AIF(370-394) peptide. Column: Onyx C18; eluent A: 

H2O with 0.1% TFA; eluent B: acetonitrile (ACN) with 0.1% TFA. Flow rate 0.6 mL/min. The gradient was 

from 5% to 70% eluent B in 5 minutes. (B) ESI mass spectrum of AIF(370-394) peptide. 

 

The structural characterization of the isolated AIF(370-394) peptide was initially performed 

by CD. The CD spectrum of AIF(370-394) peptide in physiological conditions (5 mM 

GST-CypA

A B
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Fattorusso. Firstly, the resolution and dispersion of amide signals of the peptide was 

evaluated in different buffers, in order to choose the ideal condition.  

In particular buffers tested were: 1) Tris-HCl 20 mM and 150 mM NaCl at pH = 7.5; 2) PBS 

1X at pH = 7.4; 3) PBS 1X at pH = 5.8.  

As possible to view, in Figure 4.9, the peptide showed sharper amide resonances in PBS 

buffer at pH 5.8 compared to the other conditions tested. For this reason, this buffer was 

chosen for the subsequent studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Buffer conditions tested to choose a better resolution for NMR studies. 

 

An almost complete proton resonance assignment of AIF(370-394) was obtained using 2D 

[1H, 1H] TOCSY [94], NOESY [96] and COSY [95] spectra using the standard procedures 

[107]. 

The lack of a significant chemical shift dispersion, of long range NOEs indicated that 

AIF(370-394) was unstructured when alone in solution in agreement with CD data. 

However, several peculiarities are observed in the region 380-390. 

Specifically, sequential HN-HN NOEs characteristic of -helix- or turn-like conformation 

were observed between residues L380 and I381, G386 and R387, V389 and E390 (Figure 4.10 A). 
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Accordingly, the amide resonances of residues I381 and R387 exhibited large negative dH 

and dH values consistent with a helix- or turn-like conformation (Figure 4.10 B). 

Nevertheless, large positive dH and dH
 of E390, together with strong sequential HN-H 

NOEs between residues L380 and I381, V389 and E390, suggested that the peptide adopts a 

conformational ensemble containing also extended or -strand-like conformations in these 

regions (Figure 4.10 B).  

In addition, the dHN and dHα protons of residues K382 and K388 showed also large positive 

shifts (Figure 4.10 B).  

 

 

Figure 4.10 (A-B): NMR analysis of AIF(370-394) in PBS at pH 5.8 and HN-HN regionof 2D [1H, 1H] NOESY 

spectra (A). Chemical shift deviation from random coil values of H and HN backbone atoms plotted as a 

function of residue number (B). Secondary structure elements as observed in the AIF crystal structure (PDB 

ID: 1M6I) and as derived from the NMR conformational analysis in TFE 30%. 

 

Overall, NMR data confirmed the elevated flexibility of AIF(370-394) peptide and the 

prevalence of disorder in aqueous solution, but highlighted a propensity of the peptide to 

adopt local secondary structure elements in the region 380-390.  

To further asses the propensity of the peptide to assume partial secondary structure 

elements, we carried out a NMR conformational analysis in presence of TFE (30%) solvent.  

Accordingly to previous CD data, the 2D [1H, 1H] NOESY spectrum in presence of 30% 

TFE contains only a slightly higher number of signals with respect to those observed in PBS 

buffer, indicating only a limited increasing of ordered conformations (Figure 4.10 C).  

This fact precluded a high-resolution structure determination. However, information on the 

conformational preferences can be obtained by dH and dH and NOE pattern analysis. 

dH and dH showed a stretch of strong negative values in the central region of the 

AIF(370-394) peptide, from K378 to L383, indicative of a helical conformation (Figure 4.10 
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D), unlikely from the AIF protein in which they adopt a -strand conformation. 

According to dH and dH values, new strong sequential HN-HN NOEs were observed in 

this region between residues I381-K382, L383-K384, D385-G386 (Figure 4.10 C). 

It is to note that possible HN-HN NOEs between K382-L383, K384-D385 could not detected due 

to a partial or total overlap of the HNs. However, H-H (i, i+3) were observed from S376 

until to D385, consistent with a -helix conformation. 

Negative dHs were observed for the HN, but not for the H, of the segment D385-G386-R387, 

that in the AIF protein assumes a turn conformation (Figure 4.10 E). 

 

 

Figure 4.10 (C-E): NMR analysis of AIF(370-394) in PBS at pH 5.8 in presence of TFE 30%.HN-HN region of 

2D [1H, 1H] NOESY spectra (C). Chemical shift deviation from random coil values of H and HN backbone 

atoms plotted as a function of residue number (D). Secondary structure elements as observed in the AIF crystal 

structure (PDB ID: 1M6I) and as derived from the NMR conformational analysis in TFE 30% (E). Arrow and 

helix indicate -strand and helical regions, respectively. 

 

On the other hand, strong positive dHs were observed for the H of K388 and HN and H of 

E390, indicative of a propensity of these residues to adopt an extended or -strand 

conformation as in the AIF protein.  
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presence of substoichiometric amounts of CypA and/or GST-CypA. Unfortunately, the 

conformation of the peptide bound to CypA could not be determined because of the lack of a 

sufficient number of trNOEs, probably because of a slow off-rate of the peptide from the 

CypA. However, we could observe several differences in the NOESY of the peptide in the 

presence of GST-CypA (1:150 ratio) than that in the absence of the protein, for residues: 

K378, K382, L383, K384, R387, K388, E390, T391. Minor trNOE effects were also observed for 

residues: S371, V374, S375 and L380.  

 

4.3 CypA/AIF(370-394) binding studies 

The interaction between recombinant His6tagged CypA protein and the AIF(370-

394) synthetic peptide was monitored by means of Isothermal Titration Calorimetry (ITC) 

[109] and the label free techniques [91]. 

In Figure 4.12, a representative raw titration data and results of the data after integration and 

fitting with an appropriate model is shown.  

 

Figure 4.12. (A) Raw data for the titration of CypA with AIF(370-394) peptide. Each peak represents the 

differential power decrease as the sample cell temperature increases with each peptide addition, characteristic 

of an exothermic binding interaction. (B) Data is fit with a one set of single binding sites model to give the 

thermodynamic parameters shown in the inset. 

 

N=1.02± 0.023 sites
Ka= 1.67*105 ± 2.24*104 M-1

∆H= -6.2 ± 0.2 Kcal/mol/deg
∆S= 2.24 cal/mol/deg
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ITC profiles showed that the binding of the AIF(370-394) to CypA was exothermic, 

resulting in negative peaks in the plots of power versus time (Figure 4.12 A, upper panel). 

Signals well fitted with a single site binding model to determine the KD, enthalpy (ΔH) and 

entropy (ΔS) changes of the binding reaction (Figure 4.12 B, lower panel). 

Results obtained confirmed that AIF(370-394) binds CypA with a KD of about 6 M 

through a favorable contribute of entropy and enthalpy, suggesting that the AIF(370-

394)/CypA complex formation was not only driven by a large entropy gain (TΔS = 56 ± 1.5 

cal/mol) presumably due to the high degree of freedom of the peptide but also by means of 

hydrogen bonding and/or van der Waals and Coulombic interactions (ΔH = -6.2 ± 0.2 

kcal/mol). 

Moreover, the binding constant underlying the interaction between AIF(370-394) 

and CypA was determined through a new label-free technique based on Corning Epic 

technology (See Methods section, for details) [91]. 

For this experiment, CypA was immobilized at a concentration of 200 µg/ml onto the 

amino-coupling surface of the EnSpire label-free biochemical microplate biosensor. 

After washout of the unbound target and further equilibration of the biosensor, several 

concentrations of AIF(370-394) peptide were added to the immobilized CypA protein. 

The background-corrected responses were well fitted by a one-site interaction model, 

yielding a KD= 4.7 ± 0.2µM, comparable with the data previously reported (Figure 4.13) 

[71]. 

 

Figure 4.13 :Binding curve of AIF(370-394)peptide to CypA, through Label-free Corning® Epic® technology 
 

 

 

KD= 4.7 ± 0.2 μM 
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4.4 STD Experiments of AIF(370-394)/CypA complex 

To provide additional information regarding the peptide mode of binding, STD-

NMR experiments were performed. The STD-NMR technique is a method which could give 

an epitope mapping by NMR spectroscopy. 

Saturation Transfer Difference (STD)-NMR experiments have emerged as a powerful tool 

for detecting and characterizing binding of ligands to proteins and receptors [110, 111].  

In these experiments, the protein resonances are selectively saturated, and the effect is 

transferred to the bound ligand by intermolecular spin diffusion.  

Saturated resonances of the ligand in the free state are detected by subtracting the saturated 

spectrum from one without protein saturation. 

The difference in intensity due to saturation transfer constitutes an indication of binding and 

allows to identify the residues of the ligand directly involved in the interaction with the 

protein. 

Since the sensitivity of the STD experiments is dependent from the spin diffusion efficiency 

that increases with increasing molecular weight of the target protein, we decided to use 

GST-fused CypA [112]. 

A one-dimensional 1H STD difference experiment is shown in Figure 4.14 for a 

sample, with a 150:1 excess of the peptide ligand over the GST-CypA, along with a 

reference 1H spectrum.  

As can be seen, some resonances both in the aliphatic and in the amide region receive 

saturation transfer from the protein, providing a further confirm of the AIF(370-394)/CypA 

complex formation and insight on the residues directly involved in the interaction with 

CypA.  

Specifically, in the upfield region, the strongest STD signals were ascribed to the Hε, 

Hd H and H protons of K residues, the D385 H protons and the T391 H proton. 

Moreover, methyl protons of I381, V389 or L380 residues showed saturation transfer from the 

protein, even if they could not identify unambiguously due to the spectral overlap. 

In the downfield region, STD signals were observed for some HN backbone atoms. 

However, except for the HN of Leu383, they could not be identified unambiguously. 
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Figure 4.14: STD experiments of complex AIF(370-394)/CypA: in red residues more involved in the 

interaction with CypA; in green residues that could be involved in the interaction, but that could not be 

identified unambiguously; in blue residues not involved in the interaction. 

 

Data obtained showed that several residues arranged along the sequence of the peptide seem 

to be involved in the interaction with CypA; however, in agreement with trNOESY 

experiments, most of them are included in the central region, encompassing residues 380-

390 (Figure 4.14). Thus, based on these results was synthesized a new smaller peptide, that 

cover the region 380-390, hereafter AIF(380-390). 

 

4 5 Design and characterization of a new bioactive AIF peptide 

STD-NMR analysis provided crucial information about the amino acid residues of 

the peptide AIF(370-394) involved in the interaction with CypA.  

Data indicated that many residues along the entire peptide sequence mediate the interaction 

with CypA. Most of them were arranged on the peptide central portion containing residues 

380-390. 

Notably, in the crystallographic structure of AIF this region is in a β-hairpin conformation 

[103] (Figure 4.15 A, B).  
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Figure 4.15: (A) Crystallographic structure of AIF protein (PDB ID: 1M6I); in green is reported the region 

AIF(370-394).(B) Zoom of the AIF(380-390) region which in the crystallographic structure shows a of β-

hairpin conformation. 
 

On the basis of these observations, we focused our attention on residues 380-390 and started 

to investigate the corresponding synthetic peptide.  

The new peptide was synthesized with two cysteine residues (Cys) at the amino- and 

carboxy-termini to potentially stabilize a β-harpin structure through a disulfide bridge [113]. 

AIF(380-390) (C380LIKLKDGRKVE390C) was synthesized and characterized in its reduced 

(linear) and oxidized (cyclic) forms (see Methods section for details). 

The structural analysis of the linear AIF(380-390)red and cyclic AIF(380-390)ox peptides 

was carried out by CD in 5 mM phosphate buffer at pH 7.4 (Figure 4.16). 

CD spectra suggested the prevalence of unstructured conformations in solution for either 

peptides. 

However, spectra demonstrated that the introduction of the disulfide bridge in the cyclic 

peptide, provided a limited but measurable increase of secondary structure, as indicated by 

the shift of the CD minimum from 198 nm to 202 nm, for AIF(380-390)ox compared to 

AIF(380-390)red. 

AIF(380-390)ox had a minimum at 198 nm and a negative value at 190 nm, suggesting the 

coexistence of several structures in which random coil conformations prevailed, as 

previously shown also for AIF(370-394). 
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Figure 4.16: CD spectra of AIF(380-390)red and AIF(380-390)ox. 

 

These data are also in agreement with a preliminary NMR analysis of AIF(380-390) in the 

oxide state, in which the presence of different, likely conformational, states for this peptide 

was observed. 

Moreover, the complexity of the NMR spectra (data not shown) precluded a detailed NMR 

conformational analysis of this peptide. 

 

4.6 CypA/AIF(380-390) binding studies 

The affinity of both the linear and cyclic peptides for CypA was evaluated by direct-

binding assays.  

Synthetic peptides were then tested by the label-free Corning® Epic® technology (see 

Methods for details). As shown, in Figure 4.17 A and B, either variants bound CypA in a 

dose-dependent and saturable manner. 

However, by fitting the binding curves with a non-linear regression algorithm, very different 

affinity values were extrapolated. Indeed AIF(380-390)red and AIF(380-390)ox bound 

CypA with KDs of 30 ± 2μM and 3.2 ± 0.2μM, respectively, suggesting an overall higher 

affinity of the cyclic peptide. 
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Figure 4.17: (A) Binding curve of AIF(380-390)ox peptide to CypA. (B) Binding curve of AIF(380-390)ox 

peptide to CypA using the Label-free Corning® Epic® technology. 

 

All data demonstrated that reducing the size of AIF (370-394) to AIF(380-390) resulted in a 

significant loss of the peptide affinity toward CypA, however the introduction of the 

disulfide bridge restored the affinity to comparable levels, demonstrating a direct correlation 

between the structure and the function of the new peptide. 

 

4.7 Identification of crucial residues of AIF(380-390)ox involved in CypA 

recognition: Alanine-scanning approach 

In order to investigate crucial residues of AIF(380-390)ox involved in CypA 

recognition, we synthesized and analyzed Ala-scan peptides of this region [88].  

By this approach,the wild-type residues are systematically changed to alanine. 

The peptides were synthesized using the Fmoc solid phase method [85] and purified by 

Reverse Phase (RP)-HPLC (See Methods section for details).  

Sequence, theoretical and experimental MW of the peptides are reported in Table 4.1, shown 

below. 

KD= 30 ± 2µM KD= 3.2 ± 0.2µM

A B
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Table 4.1:Sequences, theoretical and experimental mass of Ala-mutated peptides. 

Their binding abilities of all peptides to CypA were evaluated through the label free 

techniques. 

For this assay, CypA was immobilized at a concentration of 200 µg/ml onto the amino-

coupling surface of the EnSpire label-free biochemical microplate biosensor and Ala 

peptides were initially tested at two different concentrations (10 and 20 µM) (Figure 4.18). 

Name Sequence Theoretical Mass 

(amu)

Experimental 

Mass (amu)

AIF(380-390)ox CLIKLKDGRKVEC 1545.87 1545.65

ALA 1 CAIKLKDGRKVEC 1503.79 1503.49

ALA 2 CLAKLKDGRKVEC 1503.79 1503.38

ALA 3 CLIALKDGRKVEC 1488.77 1488.15

ALA 4 CLIKAKDGRKVEC 1503.79 1503.22

ALA 5 CLIKLADGRKVEC 1488.77 1488.35

ALA 6 CLIKLKAGRKVEC 1501.86 1501.16

ALA 7 CLIKLKDARKVEC 1559.90
1560.22

ALA 8 CLIKLKDGAKVEC 1460.76 1460.28

ALA 9 CLIKLKDGRAVEC 1488.77 1488.32                

ALA 10 CLIKLKDGRKAEC 1517.82 1517.52

ALA 11 CLIKLKDGRKVAC 1487.83 1487.32
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Figure 4.18: Enspire binding assay to immobilized CypAof Ala-peptides at two different concentrations (10 

and 20 µM). 

 

Data shown in Figure 4.18 suggested that peptides with alanines in place of K382, K384, R387 

and K388 had lower affinity, while those having alanines replacing L380, I381, L383 and V389 

had substantially unaltered binding affinities.  

Remarkably, peptides where D385, G386 and E390 were replaced with alanine had higher 

affinity for CypA.  

Altogether data suggested that basic residues strongly influence the ability of AIF(380-

390)ox to recognize CypA.  

 

4.8 From AIF(380-390)ox to AIF(381-389)ox 

Combining NMR and an Ala-scanning approach we ended up that residues Leu380 

and E390 have a negligible effect on the binding with CypA. 

For this reason, to further simplify the peptide structure, we designed and synthesized a new 

peptide spanning residues 381-389 still constrained by a disulfide bridge connecting two 

Cys at N- and C- termini.  

The new peptide, hereafter AIF(381-389)ox, was studied by direct binding experiments to 

CypA and bound the target protein in a dose-dependent and saturable manner, showing a KD 

of 2.3 ± 0.5μM.  

The KD was comparable to that of AIF(380-390)ox, indicating that deleting the two residues 

at N- and C- termini did not affect the interaction with CypA, as previously hypothesized 

(Figure 4.19). 

10  20    10 20   10 20    10 20   10 20    10 20    10 20   10 20   10 20   10 20   10 20    10 20
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Figure 4.19: Binding curve of AIF(381-389)ox peptide to CypA. 

 

4.9 Biological effects of peptides in HT-22 cells 

Next, we investigated whether the peptide AIF(381-389)ox could antagonizes the 

detrimental effect of the AIF/CypA complex, in the model of glutamate toxicity. 

The model of cell death chosen was the neuronal HT-22 cell line. In these cells treatment 

with high concentrations of glutamate (2-7mM) induces a cell death process exclusively 

mediated by the nuclear translocation of AIF [92]. 

Then, HT-22 cells were transfected with the synthetic peptides AIF(370-394), AIF(380-

390)ox, AIF(380-390)red, AIF(381-389)ox at 50µM, using the Pro-Ject transfection kit 

(Thermo Scientific). 

Following glutamate treatment at three different concentrations (5, 6 and 7 mM for 16h), 

cell viability was assessed by the MTT assays.  

As shown in Figure 4.20, all peptides tested provided neuroprotection, however the cyclic 

peptides AIF(380-390)ox and AIF(381-389)ox provided a greater neuroprotective effect 

compared to AIF (370-394) and peptides in linear forms.  
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Figure 4.20: Neuroprotective effects of the different AIF peptides in the glutamate-induced HT-22 cellular 

model. Results obtained were showed as percentage of controls considered to be 100% and represent the mean 

±S.D. of at least four independent experiments performed in quadruplicate. 

 

4.10 NMR studies on AIF(381-389)ox and its interaction with CypA 

Since the ability of the AIF(381-389)ox to bind CypA with a comparable affinity 

than the peptide AIF (370-394), together with its greater neuroprotective effect, we 

performed a detailed NMR analysis. In particular, a conformational analysis of AIF(381-

389)ox was first carried out, then interaction studies based on the observation of both the 

peptide (STD experiments) and the CypA protein (Chemical shift perturbation analysis, 

CSP) were performed. Data NMR were used to developed a docking-model of the complex 

between CypA and AIF(381-389)ox. 

 

4.10.1 NMR conformational analysis of AIF(381-389)ox 

AIF(381-389) peptide NMR conformational analysis was performed in PBS at pH 

5.8, as for AIF(370-394) peptide, both in the reduced and in the oxidized form. Under this 

condition, the peptide resulted well soluble with sharp resonances and, especially, showed a 

single signal set for each amino acid in both forms (Figure 4.21 and 4.22).  

These results indicated that AIF(381-389) peptide exists in a homogeneous state differently 

from AIF(380-390), supporting the hypothesis that the heterogeneity observed for AIF(380-

390) is due to different salt bridge that the negatively charged carboxyl group of E390 could 

establish with the positively charged ε-amino group of the different lysine along the 

sequence. 



 

Figure 4.21: 1D1H NMR spectra of AIF(381

 

Figure 4.22: 2D [1H, 1H] TOCSY 

298K. The highest spread of HN 

indicative of its structuration. 
 

Proton spin system identification and assignment of individual

389) were carried out by using a combination

spectra, [96] according to th

H NMR spectra of AIF(381-389)red and AIF(381-389)ox in PBS at pH 5.8 ad 298K.

 

TOCSY NMR spectra of AIF(381-389)red and AIF(381-389)ox in PBS at pH 5.8 ad 

 and Hα protons is clearly visible in the spectrum of AIF(381, 389)ox, 

Proton spin system identification and assignment of individual resonances of both AIF(381

389) were carried out by using a combination of TOCSY, [94] COSY,

the standard procedures [107].  

59 

 
389)ox in PBS at pH 5.8 ad 298K. 

 

389)ox in PBS at pH 5.8 ad 

spectrum of AIF(381, 389)ox, 

resonances of both AIF(381-

] COSY, [95] and NOESY 
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Proton chemical shifts for all resonances are listed in Table 4.2 and 4.3. 

 

Residue Atom name Chemical shift 

value 

Residue Atom name Chemical shift 

value 
381 ILE H 8.15 384 LYS HE3 3.02 

381 ILE HA 4.10 384 LYS HZ 7.85 

381 ILE HB 1.83 385 ASP H 8.38 

381 ILE HG12 1.50 385 ASP HA 4.58 

381 ILE HG13 1.22 385 ASP HB2 2.74 

381 ILE HG2 0.91 385 ASP HB3 2.74 

381 ILE HD1 0.90 386 GLY H 8.39 

382 LYS H 8.41 386 GLY HA3 3.95 

382 LYS HA 4.41 387 ARG H 8.10 

382 LYS HB2 1.83 387 ARG HA 4.35 

382 LYS HB3 1.77 387 ARG HB2 1.86 

382 LYS HG2 1.44 387 ARG HB3 1.86 

382 LYS HG3 1.44 387 ARG HG2 1.84 

382 LYS HD2 1.72 387 ARG HG3 1.65 

382 LYS HD3 1.72 387 ARG HD2 3.23 

382 LYS HE2 3.02 387 ARG HD3 3.23 

382 LYS HE3 3.02 387 ARG HE 7.37 

382 LYS HZ 7.71 388 LYS H 8.40 

383 LEU H 8.29 388 LYS HA 4.40 

383 LEU HA 4.41 388 LYS HB2 1.83 

383 LEU HB2 1.68 388 LYS HB3 1.77 

383 LEU HB3 1.55 388 LYS HG2 1.44 

383 LEU HG 1.63 388 LYS HG3 1.44 

383 LEU HD1 0.93 388 LYS HD2 1.70 

383 LEU HD2 0.87 388 LYS HD3 1.70 

384 LYS H 8.44 388 LYS HE2 3.02 

384 LYS HA 4.32 388 LYS HE3 3.02 

384 LYS HB2 1.84 388 LYS HZ 7.71 

384 LYS HB3 1.78 389 VAL H 8.19 

384 LYS HG2 1.44 389 VAL HA 4.12 

384 LYS HG3 1.44 389 VAL HB 2.07 

384 LYS HD2 1.70 389 VAL HG1 0.96 

384 LYS HD3 1.70 389 VAL HG2 0.96 

384 LYS HE2 3.02     

Table 4.2: 1H Chemical shift assignment (ppm) of AIF(381-389)red in PBS buffer (pH 5.8) at 298 K. 
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Residue Atom name Chemical shift 

value 

Residue Atom name Chemical shift 

value 
380 CYS H 8.37 385 ASP H 7.84 

380 CYS HA 5.14 385 ASP HA 4.48 

380 CYS HB2 3.13 385 ASP HB2 2.99 

380 CYS HB3 2.64 385 ASP HB3 2.59 

381 ILE H 8.68 386 GLY H 8.11 

381 ILE HA 4.37 386 GLY HA2 4.31 

381 ILE HB 1.84 386 GLY HA3 3.55 

381 ILE HG12 1.42 387 ARG H 7.86 

381 ILE HG13 1.15 387 ARG HA 4.22 

381 ILE HG2 0.86 387 ARG HB2 1.93 

381 ILE HD1 0.81 387 ARG HB3 1.71 

382 LYS H 8.34 387 ARG HG2 1.60 

382 LYS HA 4.77 387 ARG HG3 1.60 

382 LYS HB2 1.75 387 ARG HD2 3.22 

382 LYS HB3 1.75 387 ARG HD3 3.17 

382 LYS HG2 1.35 388 LYS H 8.40 

382 LYS HG3 1.35 388 LYS HA 5.03 

382 LYS HD2 1.62 388 LYS HB2 1.69 

382 LYS HD3 1.62 388 LYS HB3 1.67 

382 LYS HE2 2.96 388 LYS HG2 1.38 

382 LYS HE3 2.96 388 LYS HG3 1.26 

383 LEU H 8.80 388 LYS HD2 1.64 

383 LEU HA 4.51 388 LYS HD3 1.64 

383 LEU HB2 1.95 388 LYS HE2 2.94 

383 LEU HB3 1.95 388 LYS HE3 2.94 

383 LEU HG 1.63 389 VAL H 8.83 

383 LEU HD1 0.87 389 VAL HA 4.34 

383 LEU HD2 0.81 389 VAL HB 1.99 

384 LYS H 8.27 389 VAL HG1 0.90 

384 LYS HA 4.08 389 VAL HG2 0.90 

384 LYS HB2 1.85 390 CYS H 8.38 

384 LYS HB3 1.85 390 CYS HA 5.05 

384 LYS HG2 1.48 390 CYS HB2 3.13 

384 LYS HG3 1.48 390 CYS HB3 3.02 

384 LYS HD2 1.69     

384 LYS HD3 1.69     

384 LYS HE2 3.00     

384 LYS HE3 3.00     

Table 4.3: 1H Chemical shift assignment ( ppm) of AIF(381-389)ox in PBS buffer (pH 5.8) at 298 K. 
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Analysis of H and HN chemical shifts indicate that AIF(381-389)ox, differently from 

AIF(381-389)red, show significant deviations from random coil values (ΔδHα and ΔδHN) 

(Figure 4.23).  

As shown in Figure 4.23, ΔδHα and ΔδHNof AIF(381-389)ox indicated the presence 

of two β-strands consisting of residues C380-L383 and K388-C390 separated by a turn 

constituted by residues K384-R387. This folded structure was confirmed by NOEs (Figure 

4.24), indeed while AIF(381-389)red shows few and positive NOEs, typical of small and 

flexible molecules, AIF(381-389)ox exhibits a higher number and negative NOEs, 

characteristic of a more rigid structure.  

However, the number of NOEs was not sufficient to obtain a high resolution structure of this 

peptide. Further NMR experiments also in different conditions could be addressed to 

increase the number of NOE to undertake the NMR structure calculation of AIF(381-

389)ox. 

 

 

Figure 4.23: Chemical shift deviation from random coil values of HN and H backbone atoms plotted as a 

function of residue number. Derived secondary structure elements for AIF(381-389)ox are indicated above the 

plots. Cyan arrows indicate -strand regions. 
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Figure 4.24: 2D [1H, 1H] NOESY NMR spectra of AIF(381-389)red and AIF(381-389)ox in PBS at pH 5.8 ad 

298K. NOE > 0 are green cross-peaks, where NOE<0 are red cross-peaks. 

 

4.10.2 STD experiments of AIF(381-389)ox/CypA complex 

STD NMR experiments were performed on AIF(381-389)ox in the presence of GST-CypA, 

as for AIF(370-394). Similarly, the 1H STD spectrum showed that AIF(381-389)ox receive 

saturation transfer in the presence of the protein (Figure 4.25 A), providing a further confirm 

of the AIF(381-389)ox/CypA complex formation and insight on the residues directly 

involved in the interaction with CypA. 

In particular, the strongest STD signals were observed in the aliphatic region and were 

ascribed to the Hε and Hd protons of K382/K384/K388, the H and H of K384, the H of D385 

and the overlapped methyl protons at about 0.8 ppm of I381, L383 or V389 residues.  

These data confirmed the importance of the lysine residues in the interaction of AIF(370-

394) and AIF(370-394) derivatives according to NMR and Ala-scan experiments. 

Moreover, they indicate that K382 and K388 could interact mainly with the terminal part of the 

side-chain (i.e ionic or polar interaction mediated by the -NH2 group), while K384 could 

establish interaction also or only with the aliphatic side-chain. 
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4.10.3 CSP studies of AIF(381-389)ox/CypA complex 

The formation of the CypA/AIF(381-389)ox complex was followed via chemical 

shift perturbations (CSP) of 15N- His6tagged-CypA backbone signals (see Material and 

Methods for details) induced by AIF(380-390)ox in the 2D 1H- 15N HSQC spectra. 

As shown in Figure 4.25 B, a number of resonances in the 2D 1H- 15N HSQC spectrum 

exhibited continuous and significant chemical shift variations upon the subsequent addition 

of the unlabeled AIF(381-389)ox peptide to 15N-His6tagged-CypA until at a molar excess of 

10–fold. 

The largest perturbations on CypA (mapped in orange red on the docking model of the 

AIF(381-389)ox/CypA complex in figure 4.25 C) occurred on the loops 4-5 (T68), 5-6 

(A101, N102, A103), and α2-7 (V127), and in the sheets 5 (S99) and 7 (V128). 

Strong perturbations were also observed in the loops 4-5 (R69, G74, K76), 5-6 (Q111) and 

α2-7 (H126). The latter were mapped in gold on the docking model in Figure 4.25 C. 

These data indicate that the binding surface of AIF(381-389)ox on CypA is consistent with 

that of AIF(370-394). 

 

4.10.4 Docking model of AIF(381-389)ox/CypA complex 

To gain insight into the binding mechanism of CypA by AIF(381-389)ox, we carried 

out molecular docking studies by HADDOCK webserver using as input CSP and STD data. 

In particular, T68, R69, G74, K76, A101, N102, A103, Q111 and H126 of CypA and K382, K384, D385, 

K388 of AIF(381-389)ox were considered as active residues. 

S99, V127 and V128 were set as passive residues for CypA, whereas they were set 

automatically for AIF(381-389)ox. Moreover, since the AIF(381-389)ox assumes a -

hairpin conformation, we used as input the structure of the 381-389 region as it is in the AIF 

crystal structure (PBD: 1M6I) [103]. 

The docking calculations generated four clusters characterized by negative Z-score and 

showing small but significant differences in the molecular recognition of CypA by AIF(381-

389)ox.  

Interestingly, the first cluster with the lowest Z-Score was also more in line with the NMR 

data (STD and CSP). 

Therefore, we selected the first model inside this cluster having the lowest binding energy 

conformation as a representative model of the AIF(381-389)ox/CypA complex (Figure 4.25 

C). In this model, the binding site of AIF(381-389)ox on CypA, adjacent to the catalytic site, 
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is constituted by the residues: T68, R69, G72, T73, G74, G75, K76, E81, K82, A101, N102, A103, 

T107, Q111.  

Importantly, almost all them show CSP effects. On the other side, AIF(381-389)ox 

establishes an extensive number of interactions with CypA, mainly hydrogen bonds, by 

means of K382, L383, K384, D385. In particular, the K382 -amino group forms two hydrogen 

bond with the A101 backbone oxygen and the Q111 amide oxygen.  

In addition, the K382 C aliphatic chain interacts with the T107 backbone oxygen with an 

unconventional hydrogen bond.  

The L383 forms with its backbone oxygen two conventional and one unconventional 

hydrogen bonds with the hydroxyl of T68, the backbone C of G74 and the backbone amide 

HN of G75.  

However, the L383 side-chain points away from the binding site of AIF(381-389)ox on 

CypA. K384 also establishes interactions by means of its backbone oxygen with H of R69 

and C of , according with STD data in which H and H resulted most saturated, 

differently from the other lysine residues.  

The K384 side-chain points in a hydrophobic groove constituted by F46, F67, T68 and K76 side-

chains. In addition, the backbone oxygen of D383 forms a hydrogen bond with a hydrogen of 

the R69 guanidinium group. 

Hydrophobic interactions were observed between the N-terminal C380 and I381 side chains 

with the A103 and K82 side chains, respectively. 

Finally, only weak hydrophobic interactions were observed between K388 and T63 side 

chains. 
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Figure 4.25: (A) Expansion of the aliphatic region of the reference 1H (red) and STD (blue) spectra of 

AIF(381-389)ox in the presence of GST-CypA (1:100). AIF(381-389)ox sequence is reported. Residues 

showing the strongest STD effects are highlighted in red. (B) Superposition of a 2D [1H, 15N] HSQC section of 

CypA in the absence (blue) and in the presence of AIF(381-389)ox 1:5 (red), 1:10 (green). Bar graphs of the 

average combined chemical shift differences (HNav) as a function of residue number. Residueswith the 

strongest CSP are indicated. (C) AIF(381-389)ox binding mode on CypA surface as derived by docking 

studies. CypA residues most affected by peptide binding are colored, as obtained by CSP studies, in orange red  

(HNav > mean+SD ) and in gold (HNav > mean) on the surface of CypA (PDB ID: 3K0N). AIF(381-

389)ox is represented as ribbon drawing, with the side chains shown as a neon representation. 
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4.11 Generation of new AIF-mimetics through a focused simplified peptide 

library 

In order to further optimized the peptide AIF(381-389)ox, we screened a focused 

simplified peptide library [89]. This library was designed on the basis of Ala-scanning and 

NMR results, replacing residues in positions 385-386 appearing as not directly responsible 

of the interaction with CypA. In our approach we employed a minimum number (7 instead 

of 20) of non redundant amino acids as building blocks (Figure 4.26), chosen on the basis of 

their ability to induce β-hairpin structures [114]. Positional scanning libraries were prepared 

by the solid phase method, using the “Pre-mix” [115] approach and the characterization of 

peptide mixtures was performed by pool amino acid analysis of sub-libraries, and by LC-

ESI mass spectrometry. Their experimental compositions were in agreement with a 

theoretical distribution of pseudo-equimolar mixtures (data not shown). 

The amino acids selected for the random insertion include: alanine, glycine, threonine, β-

alanine, leucine, proline and aspartic acid [114, 116]. 

The library thereby consisted of seven sub-libraries, each containing a set of seven different 

peptides, in which the position 385 was fixed and the position 386 was randomized (See 

Methods for details). 

 

  C381IKLKYX7RKV389C 

 

 

Where Y: A, G, T, βA, L, P, D 

X7: mixture of 7 selected amino acids. 

Figure 4.26.: Schematic illustration of synthetic positional scanning libraries 

Libraries were screened in parallel on multiple plates, through Label-free Corning Epic 

technology at concentrations ranging between 0.07 µM and 150 µM (Figure 4.27). 

By data analysis, none of the screened sub-libraries showed an improved affinity toward 

CypA peptides compared to AIF(381-389)ox and this can be ascribed to a concentration 

effect. Indeed each sequence in the mixtures is 7-fold less concentrated compared to the 

wild-type AIF(381-389) single peptides. The Figure 4.27 shows the IC50 values of each 

library reported. 
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Figure 4.27: IC50 values for the sub-libraries tested. Values were calculated for each library from the dose-

response curves using a single site equation model. 

D-library

IC50=18µM ±0.5

P-library

IC50=40µM ±0.8

G-library

IC50=14µM ±0.80

βAla-library

IC50=39µM ±1.1

T-library

IC50=9.3µM ±0.7

L-library

IC50=5.2µM ±1.2

A-library

IC50=25µM ±1

 

Library Name 

 

IC50 

 

D-Library 

 

18.0±0.5 µM 

 

P-Library 

 

40.0±0.5 µM 

 

G-Library 

 

14.0±0.5 µM 

 

A-Library 

 

25.0±0.5 µM 

 

T-Library 

 

9.30±0.5 µM 

 

β-Ala-Library 

 

39.0±1.1 µM 

 

L-Library 

 

5.20±1.1 µM 
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We therefore selected the L-library, showing the lowest IC50 (5.2 ± 1.2 µM) and prepared 

the single components. Peptides were synthesized and purified by RP-HPLC and identified 

by LC-MS (data not shown). Their binding abilities to CypA were again analyzed through 

label free techniques (Figure 4.28). 

 

 
Figure 4.28: Concentration-dependent curves and IC50 values for the single peptides composing the L-library 

from the previous experiment. Values were calculated for each peptide from the dose-response curve using a 

single site equation model. 
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C381IKLKLARKV389C 19.0 ±2.3 µM 

C381IKLKLTRKV389C 18.6±3.2 µM 

C381IKLKLDRKV389C 16.9±2.2 µM 

C381IKLKLPRKV389C 9.6±0.9 µM 

C381IKLKLGRKV389C 36.0 ±2.8 µM 

C381IKLKLβARKV389C 18.2±2.2 µM 

C381IKLKLLRKV389C 0.96±0.7 µM 
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These experiments allowed to select a new peptide with an affinity toward CypA largely 

enhanced compared to AIF(381-389)ox. The peptide, resulting from the introduction of two 

leucine residues in position 385 and 386, called AIF(381-389)modLL, shows the highest 

affinity to CypA, with an IC50 of 0.96  ± 0.7µM. 

 

4.12 Characterization of a new peptide: AIF(381-389)modLL peptide 

Structural studies on AIF(381-389)modLL, performed by CD, have shown that the presence 

of the two leucine, results in a significant increase of well organized structures compared to 

the parent AIF(381-389)ox peptide.  

As shown in Figure 4.29, AIF(381-389)modLL has a positive maximum at 195 nm and a shift 

of the absolute minimum from 198 nm to 202 nm, indicative of a very well defined 

conformation. 

The data suggested that the selected peptide represents the best template for the design and 

selection of new specific antagonists of the complex AIF/CypA. 

 
Figure 4.29: CD spectra of AIF(381-389)modLLand of AIF(381-389)ox. 

 

Biological studies are underway to evaluate the effects of the new peptide on apoptosis 

mechanisms. Ligand-based structural studies are also in progress to design new molecules or 

peptidomimetic for further structural and functional improvements and for potential 

application in in vivo models of AIF-dependent neurological diseases. 

 



71 
 

5. DISCUSSION 

Protein-protein interactions (PPIs) are known to play a critical role in the normal 

function of cellular structure, immune response, protein enzyme inhibitors, signal 

transduction, and apoptosis [117]. 

The ability of proteins to assemble into different protein complexes in cellular environments 

enables these macromolecules to perform different functional roles. 

The molecular recognition between proteins and the identification of compounds that might 

inhibit such interactions and control chemical complex formation is a major challenge in the 

drug discovery field. 

Several studies have demonstrated that PPIs can be addressed with small molecule drugs, 

however the large surfaces and the several contact points involved make this task difficult 

[118]. 

In the last years, research efforts have focused on inhibitors able to interact with the protein 

targets on multiple hot-spots thanks to their large size and intrinsic flexibility. 

Peptides can fulfil this task and have the further advantage of simple preparation by 

the solid phase method and straight forward structural characterization by NMR [119]. For 

these reasons, peptides have drawn the attention for innovative drug development. 

The availability of structural information on protein-protein complexes and the possibility to 

readily map protein segments that participate in protein-protein interactions [120] allowed 

the rational design of new bioactive peptides, that are becoming increasingly attractive as 

potential drug candidates. 

A useful method to search for peptides that inhibit a protein-protein interaction is to mimic 

the segment of one of the interacting proteins with the corresponding synthetic peptides. 

This general approach constitutes the essential cornerstone of this work that is focused on 

the identification of specific inhibitors of the AIF/CypA complex, whose formation is 

involved in relevant apoptotic processes. 

Apoptosis-inducing factor (AIF) is a highly conserved, phylogenetically old 

mitochondrial flavoprotein implicated in embryonic development, cardiac cell survival, 

carcinogenesis and neurodegenerative disorders [34]. 

Several studies in vitro and in vivo have demonstrated that the pro-apoptotic action of AIF 

in neurological disorders is triggered by its release through mitochondrial membrane and its 

translocation to the nucleus, where induces chromatinolysis [30].  

The translocation of AIF to the nucleus after cerebral hypoxia-ischemia, requires interaction 

with Cyclophilin A (CypA), suggesting a model in which the two proteins, that normally 
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reside in separate cytoplasmic compartments, acquire novel properties when moving 

together to the nucleus [54]. 

A model of docking between CypA and AIF suggested that CypA and AIF establish 

extensive molecular contacts [72]. 

Recent data demonstrated that the region 370-394 of AIF, predicted from this model, is 

involved in the interaction with CypA [71]. 

Indeed the peptide mimicking this region, AIF(370-394), bound CypA with an 

affinity in the low micromolar range (KD= 4.7 ± 0.2 µM) and provided neuroprotective 

effects in HT-22 cells, a model of AIF-mediated neuronal cell death, by inhibiting the 

formation of the AIF-CypA lethal complex. 

A major disadvantage of using this peptide in cellular experiments and in perspective in 

vivo, is associated with the difficulty to transduce it into cells and in neuronal tissues. 

On this basis, the aim of this work was focused on the identification of new peptide 

inhibitors of the AIF/CypA complex designed on the peptide AIF(370-394) and possessing 

an improved pharmacokinetic profile. 

To this end, we designed, synthesized and characterized by NMR and biochemical assays, a 

series of new peptides to reduce the size of the parent molecule and to identify the crucial 

hot spot residues involved in the interaction. These data will be useful for the design of 

peptidomimetics or molecules with a therapeutic potential. 

In order to identify the AIF(370-394) residues more involved in the recognition with 

CypA, we performed Saturation Transfer Difference (STD) NMR experiments using the 

recombinant CypA protein in complex with the synthetic AIF(370-394) peptide. 

1H-STD NMR experiments demonstrated that several aminoacids arranged along the 

sequence of the peptide are involved in the interaction with CypA and that most of them are 

included in the region 380-390.  

On the basis of these data, a new AIF peptide, spanning residues from 380 to 390, named 

AIF(380-390), was synthesized and characterized.  

Remarkably, this region adopts a -harpin conformation in the full length protein, as 

demonstrated by the crystallographic structure of AIF protein [32], we therefore introduced 

two cysteine residues at N and C terminus to promote the -hairpin conformation by a 

disulfide-bridge.  

The decrease of the molecular surface caused the expected reduction of affinity toward the 

target protein. Indeed, AIF(380-390)red showed a KD value of 30 ± 2µM, about 6-fold 

higher than that of the parent AIF(370-394) (KD= 4.7 ± 0.2 µM).  
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Notably, the cyclization of the peptide through the two cysteines restored the affinity to 

CypA (KD= 3.2 ± 0.2 µM), indicating a direct correlation between the structure and activity 

of the peptide. 

We next evaluated the role of each amino acid of the new cyclic peptide in the 

interaction with CypA, by an Ala scanning approach. Each single amino acid was 

systematically substituted with an alanine and the resulting peptides were tested in direct 

binding assay with CypA. 

Data showed that the critical residues of AIF(380-390)ox peptide for the CypA recognition 

were K382, K384,K387 and R388, while residues L380, E390, D385 and G386 appeared poorly 

involved in the interaction with the target protein, in agreement with the STD-NMR data on 

AIF(370-394) in complex with CypA. 

A preliminary NMR analysis of the cyclic AIF(380-390) peptide also showed the presence 

of different conformations, stabilized by salt bridges between the carboxyl group of E390 

and theε-amino group of the various lysine salong the sequence. 

We thus designed and synthesized a smaller cyclic peptide encompassing the region 

381-389, called AIF(381-389)ox.  

Interestingly, this last peptide bound CypA with an affinity similar to that of AIF(380-

390)ox, in agreement with the Ala-scanning and NMR data.  

This peptide also resulted more structurally homogeneous around a -hairpin conformation, 

as indicated by NMR studies. 

Although the affinity of the new peptide was comparable to that of AIF(370-394), a 

significant difference was observed in cell-based assay. Indeed, both AIF (381-389)ox and 

AIF (380-390)ox provided a greater neuroprotection against glutamate treatment in HT-22 

cells, compared to the precursor peptide. 

NMR binding studies of AIF(381-389)ox with the protein were performed by both chemical 

shift perturbation (CSP) analysis, using 15N-labelled CypA, and by STD experiments, using 

the peptide and the unlabelled protein. These NMR data were used to generate a docking 

model of the CypA-AIF(381-389)ox complex. 

Data clearly showed that CypA residues mostly involved in the interaction with 

AIF(381-389)ox are located on a contiguous region very close to the catalytic site of CypA. 

Moreover, the interacting residues on AIF(381-389)ox were included in the recognition 

region of AIF(370-394)/CypA, as also shown by other studies (unpublished data). 

Although structure-based design represents an important approach for the development of 

inhibitors of protein-protein interactions, another useful approach is based on the screening 
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of combinatorial collections. In this case, starting structural information on protein and 

peptide interacting regions, our purpose was the further enhancement of native conformation 

of the peptide, to obtain a more active compound. 

To this end, starting from STD and Ala-scanning results, we prepared and screened a 

simplified short combinatorial library, obtained replacing the amino acids D385 and G386, 

poorly involved in the interaction with CypA, with residues known as inducer of turns, such 

as alanine, glycine, threonine, -alanine, leucine, proline and aspartic acid. 

We designed and synthesized seven peptide pools, each containing a set of seven 

different peptides, in which the position 385 was fixed and the position 386 was randomized 

with a mixture of preselected amino acids. 

Testing these libraries by direct-binding assays, demonstrated that all had KD values in the 

micromolar range. The L-library, however, where in position 385 a leucine was present, 

displayed a stronger binding. 

The seven single peptides composing the L-library, were synthesized and tested, 

selecting a new peptide, where both position 385 and 386 were occupied by a leucine. 

This peptide (C381IKLKLLRKV389C), named AIF(381-389)modLL, showed an affinity for 

CypA in the nanomolar range. 

Structural studies performed on this peptide showed a higher content of secondary structures 

compared to AIF(381-389)ox, proving the contribution of leucine residue to the overall 

peptide stability. 

In conclusion, by this work we have identified the minimal region of AIF involved in 

the interaction with CypA. This region corresponds to the cyclic nonapeptide AIF(381-

389)ox, obtained by a systematic and structure-driven approach of size reduction of the 

original AIF(370-394) template, containing 25 residues. 

A docking model of the CypA/AIF(381-389)ox complex has also been generated 

which will be used for structure-based drug design of new compounds inhibiting the 

AIF/CypAcomplex. 

The amino acid sequence of this AIF peptide has been further optimized to obtain 

AIF(381-389)modLL by changing two key residues that induce the β-hairpin conformation 

adopted by this fragment in the native AIF protein. 

Cellular experiments in HT-22 neurons with AIF(381-389)modLL are currently ongoing to 

assess its therapeutic potential. 
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ABSTRACT 

In this work, a sensitive and convenient protease-based fluorimetric HTS assay for 

determining prolyl-peptidyl cis-trans isomerase activity was developed. 

The assay was based on a new intramolecularly quenched substrate, whose fluorescence and 

structural properties were examined together with kinetic constants and the effects of 

solvents on its isomerization process.  

Pilot screens performed using the LOPAC library and Cyclophilin A, as isomerase model 

enzyme, indicated that the assay is robust for HTS, and that comparable results are obtained 

with CypA inhibitor tested both manually and automatically.  

Moreover, a new compound that inhibits CypA activity with an IC50 in the low micromolar 

range has been identified.  

Molecular docking studies revealed that the molecule shows a notable shape 

complementarity with the catalytic pocket confirming the experimental observations. 

Due to its simplicity and precision in the determination of extent of inhibition and reaction 

rates required for kinetic analysis, this assay offers many advantages over other commonly 

used assays. 
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7. INTRODUCTION 

7.1 Peptidyl-prolyl isomerases (PPIases) family  

Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitously expressed and highly 

conserved proteins found both in prokaryotic and in eukaryotic cells [1-5]. 

PPIases, on the basis of drug specificity and primary sequence homology, have been divided 

into three distinct families: i) the cyclosporin A (CsA)-binding proteins, cyclophilins, ii) the 

FK506 and rapamycin binding proteins, FKBPs, and iii) the parvulins, which do not bind 

immunosuppressant drugs [1-5]. 

The principal function of PPIases is to participate in protein folding by catalyzing the cis-

trans isomerization of X-Pro peptide bonds in polypeptide chains (where X is any amino 

acid) [1-5]. Among all aminoacids, the proline is unique able to adopt completely distinct cis 

and trans conformations, which allow it to act as a backbone switch controlled by prolyl cis-

trans isomerization (Figure 7.1). 

 

 

The Figure 7.1 shows the trans and cis isomers of the peptide bond between proline (on the 

left of each structure shown) and another amino acid (P1, on the right).  

The interconversion between the two forms is catalyzed by cyclophilins and other peptidyl-

prolyl isomerases (PPIases). The carbon atoms of the proline are indicated by Greek letters; 

P2 indicates a third amino acid on the other side of the proline. The peptide bond has some 

double-bond character and is planar. 

The local environment of the proline can influence the relative free energies of the 

cis and trans isomeric states leading to wide variations in the ratio of cis/trans populations 

in different proteins and peptides. In the context of native protein folds, most structures 

require proline to adopt one or the other isomer.  

Figure 7.1: Schematic illustration of the reaction catalyzed by the cyclophilins
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When ΔG is small, both isomers are significantly populated at thermal equilibrium. 

However, due to the relatively large energy barrier (ɛu=14–24 kcal/mol), uncatalyzed 

isomerization is a rather slow process with an exchange time constant (Ʈex) on the order of 

several minutes (Figure 7.2).  

PPIases can reduce the energy barrier between cis and trans states (ɛcat,) and dramatically 

accelerate isomerization, reducing Ʈex to the millisecond regime, a more meaningful 

timescale for regulation of the timing of biological processes [6]. 

 

 

The conformational interconversion of the backbones of signaling proteins mediated 

by peptidyl prolyl cis-trans isomerization plays a pivotal role in many aspects of cellular 

processes, including post-translational modifications like phosphorylation and glycosylation, 

whose dysregulation does contribute to the development of many human diseases (Figure 

7.3) [4, 7-10]. 

 

For this reason, great efforts are spent on the identification of specific PPIase modulators for 

Figure 7.2: Conformational exchange in high-energy t ransition state.
Conformational exchange proceeds through the twisted 90-syn high-
energy transition state in the intrinsic (blue curve) or PPIase-catalyzed
(red curve) reactions.

Figure 7.3: Involvement of PPIases function in development
of many cellular processes
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therapeutic approaches. However, the discovery of novel inhibitors has been limited by the 

lack of suitable assays for high-throughput screenings (HTS). 

In this study, particular attention is given on the role of Cyclophilin A and its activities as 

PPIase protein. 

 

7.2 Studies on CypA PPIase activity 

CypA is the most important member of the family of human Cyclophilins [11-13]. 

CypA plays a critical role in a variety of biological processes including protein folding, 

trafficking, assembly, immunomodulation and cell signaling [14-16]. 

Moreover, besides its physiological role, the PPIase activity of CypA is also implicated in 

various pathological conditions and diseases, including viral infection, cancer and 

neurodegeneration [17]. 

Conventionally, the enzymatic activity of PPIases has been determined by UV/Vis 

spectrophotometry with N-succinylated tetrapeptide-4-nitroanilides (pNA) as standard 

substrates (Succinyl-Ala-Xaa-Pro-Phe-pNA) [18]. 

This assay is based on the conformational specificity of chymotrypsin, which cleaves the 

pNA moiety from the substrate only when the Xaa-Pro amide bond is in the trans 

conformation.  

In the presence of PPIases, the Xaa-Pro bond is more rapidly converted to the trans 

conformation, and the substrate is then more readily cleaved by chymotrypsin leading to the 

formation of the colored product pNA [18].  

This method, however, suffers from low sensitivity of the chromogenic compound, as well 

as the fast spontaneous cis-trans isomerization which translates in the rapid processing of 

the substrate (generally in the range of seconds) by Chymotrypsin [18]. 

Since the spontaneous cis-trans isomerization is too fast for reliable calculation of rate 

constants at room temperature, the assay is usually carried out at or below 10 °C. 

However, even under these conditions, a typical half time of the uncatalyzed cis-trans 

isomerization is about 100 s.  

In the attempt to develop new more and sensitive assays suitable for HTS programs, 

several fluorescent new probes and detection methods have been developed for highly 

sensitive detection of PPIase activity [19-21]. 

However, to date, no fluorogenic substrates for monitoring PPIase activity in HTS modality 

have been reported. 

The main features of HTS-compatible assays include robustness, sensitivity, automation and 
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miniaturization. Sensitivity, in this instance, is intended as the capability to generate signals 

sufficiently higher than the noise but also the ability to detect small inhibition differences.  

Robustness instead refers to the possibility to have an assay readout stable and reproducible 

in a time range adequate to the assay timelines [22]. 

In this framework, we have designed and tested a novel peptide substrate targeting the 

catalytic site of CypA and useful in HTS-based protease-coupled PPIase assays.  

To transfer the assay in a HTS format, we have investigated and optimized parameters like, 

buffer composition, reaction time, enzyme/substrate ratio, and DMSO content. The 

conditions for achieving optimal signal-to-noise (S/N) and Z′-factor values have been 

identified. 

Moreover, using the optimized and automated assay, we selected a small molecule inhibitor 

(< 500 Da) of CypA by the screening of the LOPAC library. 

The inhibitor shows an IC50 in the low micromolar range, and molecular docking studies 

suggest how it interacts and occupies the catalytic groove of CypA. 
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8. AIMS OF THE PROJECT 

In this study, we developed a sensitive and robust HTS method for monitoring the 

peptidyl prolyl cis-trans isomerase activity of human Cyclophilin (CypA). 

CypA catalyses the slow, rate-limiting cis-trans isomerisation of peptidyl-prolyl bonds. 

Great efforts are paid for the development of robust and sensitive assays, useful for selecting 

specific PPiase modulators for therapeutic approaches. 

The catalytic activity of PPIases is normally monitored spectrometrically by using the 

chymotrypsin-coupled assay. 

The discovered HTS method was used to identify prototypical inhibitors from LOPAC, a 

commercial library of bioactive drugs.  

In order to assess its usefulness in High Throughput Screenings, we have optimized the 

method on 384-well plates and automated the screening process on a HTS platform. 
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9. MATERIAL AND METHODS 

9.1 Substrates and chemicals 

Protected amino acids, Coupling agents (HATU) and Fmoc-Rink Amide AM Resin used for 

peptide synthesis werepurchased from IRIS Biotech GmbH (Marktrewitz, DE). Fmoc-

Glu(EDANS)-OH and Fmoc-Lys(Dabcyl)-OH were from PolyPeptide Group (Strabourg, 

France). Solvents, including acetonitrile (CH3CN), dimethylformamide (DMF), 

trifluoroaceticacid (TFA) and methanol (CH3OH) were purchased from ROMIL (Dublin, 

Ireland). Other products such as Sym-collidine, DIPEA, Piperidine, CyclosporinA (CsA), α-

Chymotrypsin (hereafter only Chymotrypsin) from bovine pancreas (TLCK-treated to 

inactivate residual trypsin activity) and LOPAC1280 small library were from Sigma-Aldrich 

(Milan, Italy). Analytical HPLC analyses for monitoring the cis-trans transition were 

performed on an AllianceHT WATERS 2795 system, equipped with a PDA WATERS 

detector 2996. Preparative purifications were carried out on a WATERS 2545 preparative 

system (Waters, Milan, Italy) fitted out with a WATERS 2489 UV/Visible detector. LC-MS 

analyses were performed using a ESI Ion Trap HCT ETD IIHCUltraPTM discovery system 

Bruker mass spectrometer coupled with an HPLC System Alliance e2695 separation module 

fitted out with a 2998 PDA detector (Waters, Milan, Italy). A automated MICROLAB 

STAR Liquid Handling Workstation from Hamilton Robotics (Bonaduz, Switzerland) was 

used to develop the screening assay. The work-station includes a set of eight independent 

pipetting channels, several positions for sample tubes and plates, the barcode identification 

for samples, microplates, reagents and carriers. The liquid handler was implemented with 

the Total Aspiration and Dispense Monitoring (TADM) system, with the Liquid Level 

Detection system and the Tip Attachment (CO-RE) system. In all procedures, the Monitored 

Air Displacement (MAD) system was used. All workstation functions and integrated third-

party devices were controlled by the Venus software (Hamilton Robotics, Bonaduz, 

Switzerland). AnEnSpire Multimode Plate Reader (Perkin Elmer) was used to perform 

fluorescence measurements. 

 

9.2 CypA expression and purification 

Recombinant His6tagged-CypA was efficiently expressed in BL21(DE3) E. Coli 

cells and purified and characterized, as previously reported in Materials and Methods 

section 3.2.1. Protein concentration was determined by reading the absorbance at 280 nm in 
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combination with the theoretical molar extinction coefficient (8730 M−1cm−1) using the 

NanoDrop200c UV-Vis spectrophotometer (Thermo Scientific). The His6 tag was not 

removed from the protein. 

 

9.3 Peptide synthesis 

Peptides were synthesized on solid phase using Fmoc-protected L-amino acids [23] and 

RINK AMIDE Resin AM with 0.71 mmol/g loading supplied by IRIS Biotech GmbH. 

In particular, the deprotection of Fmoc from the α-amino groups was achieved by a 

preliminary treatment with 40% piperidine in DMF for 5 min followed by a second 

treatment with 20% piperidine in DMF for 15 min.  

Couplings with amino acids were carried out by pre-activation with 4 equivalent of HATU 

(2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium-hexafluorphosphate), [24] 4 

equivalents of Fmoc-protected amino acids and 8 equivalents of Sym-Collidine (relative to 

the synthesis scale), for 5 min and adding the mixture to the resin for a reaction time of 45 

min under continuous mixing. For HPLC analysis peptides were cleaved from the resin 

leaving the Fmoc group at N-terminus. 

The peptide having the Dabcyl/EDANS FRET pair at the C- and N-terminus (FRET 

substrate) used in the HTS assay, was generally synthetized as previously reported. 

However, the introduction of the N-terminal Fmoc-Lys(Dabcyl) and of the C-terminal 

Fmoc-L-Glu(EDANS)-OH was achieved by a double coupling using 2eq at each coupling 

round, [25] and a longer reaction time (3 h). 

Cleavage of the final peptide from the resin was accomplished by treatment with TFA-TIS-

H2O mixture (90:5:5, v/v/v) and subsequent precipitation in cold diethyl ether. 

Lyophilized peptides were purified using an Onyx monolithic semi-PREP C18 column 

(100x10mm, Phenomenex, Castel Maggiore, Italy) operated at a flow rate of 15 mL/min; 

H2O+0.1% TFA and CH3CN+0.1% TFA were used as eluents, using a linear gradient from 

10% to 60% of CH3CN+0.1% TFA in 20 minutes.  

Peptides were characterized by LC-MS, determining purity and MW of final compounds. 

 

9.4 HPLC analysis 

Time- and concentration-dependent isomerase activity of CypA were evaluated by HPLC 

using the new Fmoc substrates. The conditions used were as follows: Onyx monolithic C18 

column (50x2 mm) operated at a flow rate of 0.6 mL/min; eluents: H2O+0.1% TFA and 
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CH3CN+0.1% TFA; wavelength 265.8 nm. A linear gradient from 15% to 80% of 

CH3CN+0.1% TFA in 4 minutes was applied to elute the products. 

The differences between CypA-catalyzed and spontaneous cis-trans isomerization rates of 

the Fmoc-protected substrates were evaluated by following the Fmoc-full length peptide 

signal reduction and/or the increase of chymotrypsin-hydrolyzed Fmoc-peptide at 265.8 nm 

(maximum Fmoc absorption). 

The assays were carried out at room temperature and in a volume of 200 μL, by using the 

substrates at 10 ng/μL, commercial Chymotrypsin at 100 ng/μL and CypA at 200 ng/μL. 

Assays were performed in two different buffers, HEPES 35 mM and LiCl 5 mM or HEPES 

35 mM and NaCl 150 mM to evaluate the effect of positive ions on the population of cis 

conformers and on the reaction kinetics. 

Signal-to-background ratio (S/B) was defined as the XP/XN ratio of peak areas obtained for 

the PPcut and EPPcut peptides during the CypA-assisted (XP) and not assisted (XN) 

Chymotrypsin cleavage. 

 

9.5 Assay automatization 

The chymotrypsin-coupled enzymatic assay was performed in 384-well black solid bottom 

plates (PerkinElmer) in a total volume of 50 μL in each well using the new FRET substrate. 

For assays on full 384-well plates, Chymotrypsin, CypA and FRET substrate solutions in 

Reaction Buffer (PBS 1X, pH 7.4) were prepared at a concentration 4-fold higher than that 

of the final concentration used in the assay. Solutions of inhibitors were prepared in 96 well 

plates (mother plates) at 4X concentration in the Reaction Buffer. 

The procedure consisted of the following steps: 

(1) Dilution of compounds from the stock solution (in DMSO) in the reaction buffer in the 

mother plate. 

(2) Dispensing 12.5 μL of buffer or inhibitor solution into 384-wells of black OptiPlate-384. 

(3) Addition of 12.5μL of FRET substrate at concentration of 60 ng/μL. 

(4) Addition of 12.5 μL of CypA at concentration of 2.2μg/μL. 

(5) 30 min incubation at room temperature, in the dark. 

(6) Addition of 12.5 μL of Chymotrypsinsolution at 600 ng/μL. 

(7) Reading over time fluorescence, (λex =340 nm and λem=510 nm). 

Experiments were run as quadruplicate and reported as averaged values ± standard deviation 

(±SD). 
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9.6 Assay Parameter Calculations 

The signal-to-noise ratio (S/N) was calculated by using the equation 

S/N =
���� �� ��������� ������������� �� ����������� ��������

�������� ��������� �� ����������� ��������
.The Z'-factor values in all 

conditions tested were calculated as reported in literature [26]. 

In the assays, Chymotrypsin at final concentration of 150 ng/μL was added in 384-well 

plates in which the substrate and CypA were already dispensed following the protocol 

reported before, and fluorescence was recorded after 30 min. 

The assay was performed also in the presence of increasing amounts of DMSO to simulate 

the experimental conditions where by compounds from stock solutions in this solvent are 

submitted to screening. The chosen concentrations of DMSO were 1, 2, and 3% to simulate 

dilutions of 10 mM stock solutions in neat DMSO up to 100, 200, and 300 μM. Most 

compounds were soluble in this solvent at the indicated concentrations. 

The Z'-Factor was determined at 0, 1, 2, and 3% DMSO concentrations on 32 independent 

data points for each condition. 

 

9.7 IC50 Determination 

Dose-dependent assays with the known inhibitor CsA and with the hit inhibitors were 

performed at concentrations ranging between 0.001 and 25 μM for the CsA and between 

0.001 and 50 μM for the selected inhibitors. 

The FRET substrate, the CypA and the hits were incubated for 30 min at room temperature. 

After the incubation Chymotrypsin was added and after 30 min fluorescence was detected. 

For all these assays, each data point was in quadruplicate. 

Experimental data were fitted with GraphPad Prism, vers. 5.00, GraphPad Software (San 

Diego, California). 

 

9.8 Determination of the Steady-State kinetic parameters for EPP 

substrate 

To determine the Km/Kcat values the FRET substrate was serially diluted in PBS 1X pH 7.4 

(from 1 to 250 μM). The peptide was then mixed with CypA at final concentration of 600 

ng/μL and Chymotrypsin at 150 ng/μL.  

After 30 min the fluorescence of EDANS was measured at 510 nm upon excitation at 340 

nm. 
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9.9 NMR spectroscopy 

All NMR experiments were carried out at 298.0 K using an Inova 600 MHz spectrometer 

(Varian Inc., Palo Alto, CA, USA), equipped with a cryogenic probe optimized for 1H 

detection.  

NMR data were collected on samples of EPP substrate without the Fmoc group to improve 

solubility. We assumed that the presence/absence of this group did not alter the cis-trans 

equilibrium. 

Samples were prepared by dissolving the peptide at concentration of 600 M in 20 mM 

sodium phosphate buffer pH 7.0 containing 10% 2H2O (500 μL) in presence of 150 mM 

NaCl or 5 mM LiCl.  

For the one-dimensional (1D) 1H spectra, 64 scans were acquired with a spectral width of 

6714.8 Hz, relaxation delay 1.5 s, 16.384 data points for acquisition and 32,768 for 

transformation.  

The two-dimensional (2D) [1H, 1H] DQF-COSY [27], TOCSY [28], NOESY [29] and 

ROESY [30] spectra were acquired using the TPPI method to obtain complex data points in 

the t1 dimension. 

Typically, 32 or 64 scans per t1 increment were collected with a spectral width of 6714.8 Hz 

along both f1 and f2, 2048 × 256 data points in t2 and t1, respectively, and recycle delay 1.5 s. 

Water suppression was achieved by means of Double Pulsed Field Gradient Spin Echo 

(DPFGSE) sequence [31, 32]. 

The TOCSY experiment was recorded using a DIPSI-2 mixing scheme of 70 ms with 7.7 

KHz spin-lock field strength. The NOESY spectra were carried out with a mixing time in 

the range of 250-450 ms.  

The mixing time of the ROESY experiment was 200 ms. The data were typically apodized 

with a square cosine window function and zero filled to a matrix of size 4096 × 1024 prior 

to Fourier transformation and baseline correction.  

Chemical shifts were referenced to internal water at 4.75ppm.  

All NMR data were processed with the software VNMRJ 1.1.D (Varian Inc.). 1D spectra 

were analyzed using ACD/NMR Processor 12.0 (www.acdlabs.com). 2D spectra were 

analyzed using CARA (Computer Aided Resonance Assignment) software [33]. 
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9.10 Fluorescence spectroscopy 

Fluorescence measurements were performed on an EnSpire Multimode Plate Reader, Perkin 

Elmer and the assay was adapted to 384 well black plates in a total volume of 50 μL. 

The intrinsic tryptophan fluorescence of CypA was determined by excitation at 295 nm and 

reading the emission at 340 nm.  

The equilibrium dissociation constant KD for the CypA-C3353 interaction was determined 

by fluorescence titration at 15 μM protein concentration in PBS 1X at pH 7.4. 

Aliquots of the non-fluorescent molecule in 1% DMSO were added to the protein solution 

and the resulting fluorescence intensities were measured. 

The final and constant DMSO concentration was 1%. A plot of the corrected fluorescence 

intensity versus ligand concentration was fitted with a one-site binding model  

The reported KD values were averages from three independent titrations. 

 

9.11 Molecular Modeling 

The coordinates for compounds D138 and C3353 were downloaded from MMsINC database 

[34], already energy minimized and with the partial charged assigned (MMs03080181 and 

MMs00455114, respectively).  

To identify the more appropriate protocol for molecular docking studies, a self-docking 

benchmark using DockBench 1.01 software [35] was performed.  

This procedure compared the performance of 17 different posing/scoring protocols to 

reproduce experimental derived complex geometries.  

In the benchmark study, four crystal structure available in the protein data bank [36] were 

submitted to calculations, PDB ID: 3RDD, 4N1N, 4N1Q and 4N1R [37, 38, 39, 40]. 

Water molecules present in the pdb file were removed and the complexes were subjected to 

the structure preparation tool of MOE 2015 [41]. 

Finally the function Protonate3D [42] included in MOE 2015 [41] was used to assign the 

protomeric state at pH 7.4. The active site was defined using a radius of 12 Å from the 

centre of mass of the co-crystallized ligand. Each ligand was docked 20 times. 

The ligands identified in the HTS were finally docked using the virtual screening tool of 

DockBench 1.01 on the protein conformation 3RDD, using GOLD [43] and Goldscore [44] 

as posing algorithm and scoring function respectively, with the same parameters adopted in 

the benchmark stage. The molecular docking analysis were performed with MOE 2015 [41]. 
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10.  RESULTS 

10.1 Design and testing of substrates 

Two new PPIase substrates, here after named PP and EPP, were designed in order to 

force their structures, at room temperature and in absence of organic solvents, in a 

predominantly cis conformation and thus to enhance assay sensitivity.  

Specifically, besides the consensus sequence Pro-Phe (P-F) present in common PPIase 

substrates, a second P was inserted before the P-F segment, [46] as suggested by several 

other studies [47]. 

Moreover, a lysine (K6 in PP peptide or K8 in EPP peptide) was introduced in both 

sequences to improve the peptide solubility. A glutamic acid was inserted at the N-terminus 

of the EPP peptide (E1) to potentially stabilize the cis conformation of the X-Pro bond 

through a salt bridge with the K8 at the C-terminus [48, 49]. 

Both peptides bore an Fmoc group on the N-terminus to facilitate identification and 

detection by HPLC. The sequences of PP and of EPP are reported in Figure 10.1 together 

with the fragments resulting from Chymotrypsin cleavage.  

 

Peptide Sequence MWcalc MWexp ([M+H)+]) Rt(min)a 

PP Fmoc-APPFAKA-NH2 921.33 922.2 3.20 

PPcut Fmoc-APPF-OH 652.60 653.0 3.60 

EPP Fmoc-EAPPFAAKA-NH2 1121.55 1122.4 3.01 

EPPcut Fmoc-EAPPF-OH 781.60 782.1 3.35 

 

Figure 10.1: Sequences of peptides used for monitoring the CypA isomerase activity through HPLC. 

Analytical data are reported for both the precursors and the reaction products with Chymotrypsin. 

Peptides were easily synthesized using the standard solid-phase-Fmoc method [23]. Yields 

were on average greater than 60%. 

CypA used in the assays was overexpressed in BL21(DE3) E.Coli cells with a tag of 

6 histidine and purified to homogeneity by a single step of affinity chromatography. Typical 

yields were 20 mg/L. Time- and concentration-dependent isomerase activity of CypA were 

evaluated by HPLC using the PP and EPP substrates conjugated with the Fmoc group. 

In Figure 10.2 A-D representative HPLC chromatograms of reaction products after 40 

minutes incubation time are reported. Substrates were characterized by a single peak with a 

retention time of 3.20 min and 3.10 min, for PP and EPP respectively (Figure 10.2).  



 

 

Figure 10.2: Chymotrypsin coupled isomer
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the presence of large amounts of Chymotrypsin unprocessed peptides in the absenc

CypA (see peaks at 3.10 and 3.20 minutes, solid lines 

However, comparative data indicated that Chymotrypsin processing was strongly reduced 

Chymotrypsin coupled isomer-specific proteolysis HPLC assay.(A-C

chromatograms of spontaneous (solid lines) and CypA-catalyzed cis-trans isomerization

n incubation at room temperature. In A the experiment with the PP substrate in

in B the experiment with PP in Hepes 5mM, NaCl 150 mM, pH 7.4 is shown; in 
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from TOCSY spectra were used to determine the relative conformer populations which are 

listed in Figure 10.5. 

Conformers 

 

AlaPro and ProPro 

Conformationsb 

% 

NaCla 

%  

LiCla 

1  xt 7 22 

2 xt 5 21 

3 xc 46 27 

4 xc 42 30 

 

 

Due to the low number of signals in both the NOESY and ROESY spectra, there was 

ambiguity in assigning the trans-cis states of the two X-Pro bonds from the NOE patterns. 

Nonetheless, considerations on the influence of proximal and distal proline isomerization on 

the chemical shifts were used to gain insight into the proline isomerization in the peptide 

[36]. Specifically, since the F5HN was separated from the P3-P4 peptide bond by one 

covalent bond, greater chemical shift changes (d) were expected following isomerization 

of the proximal proline (i.e. P4), while minor changes were expected upon distal proline 

isomerization (i.e. P3). On this basis, the two F5HNs at 7.88 and 7.82 ppm (conformers 1 

and 2, respectively) and those at 7.33 and 7.21 ppm (conformers 3 and 4, respectively), 

which showed small differences of chemical shift (d1-2= 0.06 ppm and d3-4 = 0.12 

ppm), can result from the isomerization of the distal A2-P3 bond. 

On the other hand, the two sets of peaks (1-2 and 3-4), showing larger differences for the HN 

chemical shifts (dav1-2/3-4= 0.58 ppm), could a rise from the isomerization of the 

proximal P3-P4 peptide bond (Figure 10.4 A-B; Figure 10.6). 

 

 dHN 

1-2 0.06 

1-3 0.55 

1-4 0.67 

2-3 0.49 

2-4 0.61 

3-4 0.12 

 

Figure 10.5: Relative populations of cis and trans conformers in H-EPP-NH2. 

Figure 10.6: Chemical shift differences of the Phe5 HNs in the four cis/trans. 

conformers 
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Taking into account that the P3-P4 peptide bond in cis conformation seems to be more 

favored in NaCl than in LiCl, as indicated by the Chymotrypsin-coupled assay, conformers 

1 and 2 should have the P3-P4 peptide bond in trans conformation (conformers xt). 

Conversely, conformers 3 and 4 should correspond to the P3-P4 peptide bond in cis 

conformation (conformers xc).  

In this hypothesis, the cis P3-P4 population in NaCl is 88%, whereas in LiCl is 57%. 

Moreover, the A2-P3 bond seems to have the same cis and trans contents (about 50 % on 

the basis of the data reported in Figure 10.6) in both buffers. 

It is worth to note that in the case of conformers 3 and 4, the F5 HN chemical shift is up-

fielded and the two germinal Hβs appear as distinct signals, exhibiting their magnetic non 

equivalence and suggesting a more restricted rotation of the F5 ring. 

Moreover, the four cis-trans states gave also rise to multiple spin systems for the aliphatic 

protons of the Proline residues. Although the peaks assignment resulted intricate, we could 

observe a Proline Hα proton highly up-fielded (3.77 ppm), likely due to the close proximity 

of the P3-F5side-chains, as found in some proteins and peptide containing the segment P-P-

F [47], that gives rise to the ring current effect on Hα protons of the first Proline. 

Closely interacting P3-F5side-chains are supposed to be at the basis of the observed stability 

of the Proline-Proline cis conformers in the segment P-P-F, when present in a short peptide, 

devoid of any tertiary interaction. 

 

10.4 Development of a FRET-assay 

In order to develop a FRET-assay the selected EPP substrate was endowed with the 

FRET pair EDANS-Dabcyl [51]. 

EDANS-Dabcyl is a widely used donor-quencher pair. The optimal absorbance and 

emission wavelengths of EDANS are λabs  =  336 nm and λem  =  490 nm respectively, and for 

Dabcyl, the maximum absorbance wavelength is λabs  =  472 nm, which, to a large extent, 

overlap with the emission spectra of EDANS.  

When the two fluorophores are in close proximity (10–100 Å), the energy emitted from 

EDANS is quenched by Dabcyl. While the intact molecule is internally quenched, EDANS 

fluorescence is readily restored upon protease cleavage within the peptide chain and the 

intensity change can be detected continuously and directly [51, 52]. 

The substrate Ac-EK(Dabcyl)PPFAE(EDANS)KA-NH2 was efficiently synthesized, 

purified with a high yield (~40%) and characterized by mass spectrometry (Figure 10.7). 



 

 

 

 

 

 

 

In the intact FRET peptide, the fluorescence of EDANS is efficiently internally 

quenched by the Dabcyl in

(PBS1X) buffer at pH 7.4, as well.

fluorescence emission at 510 nm upon excitation at 340 nm, in a

between 5 to 100 ng/μL compared to 

same concentrations (Figure 10

Figure 10.8: Evaluation of concentration 

EK(Dabcyl)PPFAE(EDANS)KA

7.4 to have final concentrations of 100 ng/μL, 50 ng/μL, 25 ng/μL, 20 ng/μL, 15 ng/μL, 10 ng/μL

The intrinsic fluorescence and the quenching effects were evaluated recording spectra at wavelengths in the 

range of 450 – 500 nm. The peptide AE(EDANS)KA

as positive control. 

  

The incubation of recombinant 

in the specific enzymatic cleavage 

fluorescence intensity (λex/

CypA-mediated substrate isomerization.

Assay conditions were standardized manually and 

using a liquid handler and 384

Entry 

1 Ac-EK(Dabcyl)PPFAE(

2 H-

Figure 10.7: Sequences and analytical characterization of the FRET substrate.

In the intact FRET peptide, the fluorescence of EDANS is efficiently internally 

in Hepes 5 mM, NaCl 150 mM and phosphate saline buffered 

(PBS1X) buffer at pH 7.4, as well. Indeed, the intact substrate showed a very low 

fluorescence emission at 510 nm upon excitation at 340 nm, in a 

compared to the chemically synthesized cleaved substrate used at 

Figure 10.8). 

Evaluation of concentration –dependent intrinsic fluorescence and quenching effect of Ac

EK(Dabcyl)PPFAE(EDANS)KA-NH2 substrate. A stock solution of the substrate was diluted in PBS

concentrations of 100 ng/μL, 50 ng/μL, 25 ng/μL, 20 ng/μL, 15 ng/μL, 10 ng/μL

The intrinsic fluorescence and the quenching effects were evaluated recording spectra at wavelengths in the 

500 nm. The peptide AE(EDANS)KA-NH2 (2.5 ng/μL) were tested at the lowest concentration 

The incubation of recombinant CypA at room temperature with the substrate result

in the specific enzymatic cleavage by Chymotrypsin and a time-dependent increase of 

/λem= 340nm/510 nm) that was linearly-related to the extent of 

mediated substrate isomerization. 

Assay conditions were standardized manually and subsequently validated in a HTS format 

and 384-well black plates.  

SEQUENCE MWcalc M

EK(Dabcyl)PPFAE(EDANS)KA-NH2 1556.82 

-AE(EDANS)KA-NH2 664.31 

Sequences and analytical characterization of the FRET substrate.
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In the intact FRET peptide, the fluorescence of EDANS is efficiently internally 

Hepes 5 mM, NaCl 150 mM and phosphate saline buffered 

Indeed, the intact substrate showed a very low 

 concentration range 

ized cleaved substrate used at 

 

dependent intrinsic fluorescence and quenching effect of Ac-

substrate was diluted in PBS 1X at pH 

concentrations of 100 ng/μL, 50 ng/μL, 25 ng/μL, 20 ng/μL, 15 ng/μL, 10 ng/μL and 5ng/μL. 

The intrinsic fluorescence and the quenching effects were evaluated recording spectra at wavelengths in the 
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CypA at room temperature with the substrate resulted 

dependent increase of 

related to the extent of 

validated in a HTS format 

Mexp[M+H+] 

1556.2 

665.6 

Sequences and analytical characterization of the FRET substrate. 
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In particular, firstly we investigated the influence of substrate and chymotrypsin 

concentration on the kinetic of EDANS release from the substrate in absence of the 

isomerase. Then, time-course experiments were optimize dusing four substrate 

concentrations (15, 25, 50 and 100 ng/μL) and four different substrate/chymotrypsin ratios 

(1:1, 1:5, 1:10 and 1:20 w/w) in a total volume of 50 μL in PBS 1X buffer at pH 7.4. 

The choice of the PBS1X as reaction buffer is due to the higher stability of the CypA over 

time in this compared to the buffer Hepes 5 mM, NaCl 150 mM, pH 7.4. 

As expected, a higher fluorescence emission was generated at increasing substrate 

concentrations and substrate-Chymotrypsin ratios (Figure 10.9). 

 

Figure 10.9: Evaluation of the optimal substrate/chymotrypsin ratios for the FRET-protease coupled cis-trans 

assay development. Time and dose – dependent – assays carried out using four different substrate 

concentrations:15 (A), 25 (B), 50 (C) and 100 (D) ng/μL, and four substrate/chymotrypsin ratios (1:1, 1:5, 1:10 

and 1:20 w/w) in a total volume of 50 μL. The fluorescence emitted at 510 nm was monitored upon excitation 

at 40 nm. Experiments were run as quadruplicate and reported as averaged values ± standard deviation (SD). 

 

However, the lowest fluorescence emissions were obtained using the substrate at 15 ng/μL 

and substrate/Chymotrypsin ratios of 1:1, 1:5 and 1:10, because in these conditions the 

hydrolysis reaction appare slower (Figure 10.9 A). 

We next optimized the concentration of CypA. As shown in Figure 10.10, the isomerization 

activity increased linearly with the increase of CypA concentrations from 25 to 600 ng/μL. 



 

Optimal conditions for the assay, in terms of signal

amount of substrate were as follows: substrate concentration 

ng/μL (1:10 enzyme:substrate

Figure 10.10: Choice of CypA concentration for the FRET

Dose – dependent assays with three different substrate:

several concentration of CypA (from 25 to 600 ng/μL), in PBS 1X at pH 7.4 after 30 min of reaction time. The 

responses were calculated by su

Chymotrypsin cleavage.  

 

An optimal reaction time of 3

about 30 min and completed after 50

A-B). Under these conditions, an overall 

(Figure 10.11 A) was detected.

Figure 10.11: .Assay set up. (A

using the substrate at concentration of 15 ng/μL, the chymotrypsin at 150 ng/μL and the CypA at 600 ng/μL in 

PBS1X at pH 7.4.(B) Time-dependent

and CypA at 600 ng/μL, in PBS 1X at pH 7.4. Experime

values ± standard deviation (SD).

ptimal conditions for the assay, in terms of signal-to-noise (S/N) values, react

were as follows: substrate concentration 15 ng/μL, chymo

0 enzyme:substrate ratio), CypA 600 ng/μL. 

Choice of CypA concentration for the FRET-protease coupled cis-trans

dependent assays with three different substrate: chymotrypsin ratios (1:1, 1:5 and 1:10 w/w) and using 

several concentration of CypA (from 25 to 600 ng/μL), in PBS 1X at pH 7.4 after 30 min of reaction time. The 

responses were calculated by subtracting the signal obtained during the CypA-assisted and not assisted 

of 30 min was chosen, because substrate processing was linear for 

and completed after 50 min under our experimental condi

er these conditions, an overall signal of around 800 normalized

detected. 

A) Time course of FRET-chymotrypsin coupled cis-trans

he substrate at concentration of 15 ng/μL, the chymotrypsin at 150 ng/μL and the CypA at 600 ng/μL in 

dependent assay (in 30 min) using EPP at 15 ng/μL, Chymotrypsin at 150 ng/μL 

and CypA at 600 ng/μL, in PBS 1X at pH 7.4. Experiments were run as quadruplicate and reported as averaged 

values ± standard deviation (SD).  
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Figure 10.12: Kinetic constants determination of FRET

Michelis and Menten and Lineweaver

isomerization of EPP substrate. Increasing concentration of EPP

Chymotrypsin at 150 ng/μL in PBS 1X at pH 7.4 and incubated for 30 min.

 

A first order rate kinetic was observed and a double reciprocal Lineweaver

against 1/[S] gave values of 

condition (PBS 1X , pH 7

agreement with the value reported in literature (1.4 x 10

chymotrypsin – coupled PPIase assay, u
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10.5 Assay Procedure Automation and Validation

The assay procedure descri

using an integrated platform comprising 

robotic arm and a multi-well

The assay was performed also in

3%) to simulate the experimental

this solvent are submitted to screening

of signal-to-noise (S/N) and 

 As can be seen in 

determined for the assays 

he enzyme reaction followed the Michaelis-Menten kinetics with the velocity of the 

) increasing with substrate concentration (S) (Figure 10.12). 

Kinetic constants determination of FRET-Chymotrypsin cis-trans 

Michelis and Menten and Lineweaver-Burk plots, respectively, for the CypA catalyzed 

isomerization of EPP substrate. Increasing concentration of EPP were mixed to CypA at 600 ng/μL and 

Chymotrypsin at 150 ng/μL in PBS 1X at pH 7.4 and incubated for 30 min. 

was observed and a double reciprocal Lineweaver

of kcat/Km of 2.5x107 M-1 s-1 at room temperature in physiological 

condition (PBS 1X , pH 7.4) (Figure 10.12 B). The kinetic constant here determined is in 

agreement with the value reported in literature (1.4 x 107 M-1 s-1), calculated with the 
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Assay Procedure Automation and Validation 
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respectively; the S/N value decreased to 9.1 at 3% DMSO.

The Z'-factor values determined in the absence DMSO and at 1 and 2% solvent were 

0.75 and 0.68, respectively, while in the presence of 3% DMSO the value decreased to 0.56. 

Altogether, data suggest that Z’

assay in screening campaigns at the highest solvent concentration tested

Figure 10.13: Evaluation of FRET 

determine the suitability of the assay for high

(B) with and without DMSO. (C

percentage of residual activity, determined by the FRET

compounds. (D) Dose-dependent assays with three selected hits, CsA, C3353, D138 and a negative control 

(C3909). Data were fitted and the IC50 determined by non

In order to estimate the assay 

library (n = 1,280 compounds

format using laboratory automation equipment (

value decreased to 9.1 at 3% DMSO. 

r values determined in the absence DMSO and at 1 and 2% solvent were 

0.75 and 0.68, respectively, while in the presence of 3% DMSO the value decreased to 0.56. 

Altogether, data suggest that Z’-factor and S/N values are still sufficiently high for usi

assay in screening campaigns at the highest solvent concentration tested

Evaluation of FRET - assay performance. Thirty-twowells of a 384-

determine the suitability of the assay for high-throughput screening in terms of S/N (

C) Screening of 298 compounds of LOPAC library tested. The plot reported the 

percentage of residual activity, determined by the FRET-assay, of CypA after an hour incubation with 

dependent assays with three selected hits, CsA, C3353, D138 and a negative control 

(C3909). Data were fitted and the IC50 determined by non-linear regression analysis.  

In order to estimate the assay suitability for HTS, a pilot screen against t

280 compounds) was performed. Assays were transferred 

format using laboratory automation equipment (Microlab star line, Hamilto
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In Figure 10.13 C results obtained on the 298 compounds are reported.

of compounds, three were selecte

They were: N2-(cis-2

diamine hydrochlorid (LOPAC code

D138); and as expected also the CsA, present within the set. D

C3909), instead, was used in the next assays as negative control. 
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at a 1:2 serial dilution. As shown in Figure 10

underlined by an IC50 of 100

The compound D138, inhibited the isomerase activity in dose dependent manner without 

reaching the saturation in the concentration range tested, suggesting a weaker affinity for 

CypA compared to CsA. On the other hand

expected, did not provide inhibition of isomerase activity. 
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Material and Methods section for details).

versus ligand concentration was fitted with a one

providing a KD of 6 μM, in agreement with the IC

 

 
Figure 10.14: CypA Fluorescence titration with

intensities normalized (dots) are fitted

concentration of LOPAC compounds of 50 μM in quadruplicate in PBS 1X at pH 7.4, 

supplemented with DMSO 1% (Figure 10.13 B). 

.13 C results obtained on the 298 compounds are reported.

of compounds, three were selected for further characterization.  

2-Aminocyclohexyl)-N6-(3-chlorophenyl)-9-

(LOPAC code C3353), 5,7-Dichlorokynurenicacid

D138); and as expected also the CsA, present within the set. D-cycloserine (LOPAC code 

C3909), instead, was used in the next assays as negative control.  

The testing was performed in a fourteen-point dose-response format in quadruplicate

l dilution. As shown in Figure 10.13 D, CsA provided a strong inhibi

of 100 nM, in agreement with other reports [53]. 

D138, inhibited the isomerase activity in dose dependent manner without 

reaching the saturation in the concentration range tested, suggesting a weaker affinity for 

On the other hand, compound C3909, used as negative control,

did not provide inhibition of isomerase activity.  

Compound C3353 provided a strong dose-dependent inhibition which was nearly 

complete at 25 μM. The estimated IC50 for this compound was 4 μM. Direct binding of 

compound C3353 with CypA was assessed using fluorescence quenching assays (see 

Methods section for details). A plot of the corrected fluorescence intensity 

ligand concentration was fitted with a one-site binding model (Figure 

of 6 μM, in agreement with the IC50 determined in the HTS assay.

Fluorescence titration with the C3353 molecule. The measured fluorescence 

(dots) are fitted with a nonlinear regression curve (line).
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10.6 Molecular Docking studies of C3353 and D138 

Molecular docking simulations were carried out to investigate the binding modes of 

the novel inhibitors identified in the HTS and with the aim to interpret the experimental 

binding data. First, to identify which docking protocol and which protein conforma

more suitable for our compounds, we performed a self

human CypA complexes available in the protein data bank (PDB).

We selected four complexes in which 

code: 3RDD, 4N1N, 4N1Q a

software, we compared the ability of 17 different protocols in reproducing the four complex 

conformations (see Methods

geometries were nicely reprodu

 

Figure 10.15: Results of the docking benchmark study on human CypA. (

(RMSDmin) performed by the tested docking protocol (y

values); (B) Average RMSD values (RMSDave); (

protocol with a RMSD value lower than the X

is a resuming score based on the RMSDmin, RMSDave, N

represented by a colour scheme, blue spots identify the best obtained results.

Molecular Docking studies of C3353 and D138  

Molecular docking simulations were carried out to investigate the binding modes of 

the novel inhibitors identified in the HTS and with the aim to interpret the experimental 

First, to identify which docking protocol and which protein conforma

more suitable for our compounds, we performed a self-docking benchmark based on the 

human CypA complexes available in the protein data bank (PDB). 

We selected four complexes in which a unique binding mode was present (PDB 

code: 3RDD, 4N1N, 4N1Q and 4N1R). In the benchmark performed with Dockbench 

software, we compared the ability of 17 different protocols in reproducing the four complex 

Methods section for details). Except for 4N1N, all the complex 

geometries were nicely reproduced by several protocols (Figure 10.15) 

Results of the docking benchmark study on human CypA. (A) Minimum RMSD values 

(RMSDmin) performed by the tested docking protocol (y-values) for the considered complex structures (x

ge RMSD values (RMSDave); (C) Total numbers of conformations returned by the docking 

protocol with a RMSD value lower than the X-ray crystal resolution (N(RSMD < R)); (

is a resuming score based on the RMSDmin, RMSDave, N-RMSD on a 0–3 points sca

colour scheme, blue spots identify the best obtained results. 
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section for details). Except for 4N1N, all the complex 
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In order to dock D138 and C3353, we selected the protein conformation extracted 

from the complex with PDB code 3RDD due to the highe

to C3353. Among the 17 protocols, for the 3RDD complex the GOLD program coupled with 

Goldscore scoring function was the protocol show

benchmark study. Molecular docking studies of both compounds revealed 

mode, in which a unique cluster of conformation

the strongest inhibitor, C3353, the molecule adopts a conformation that is nicely 

accommodated in the active site of CypA (

Figure 10.16: Molecular docking studies of D138 and C3353 compounds. In panels A and 

mode of C3353 is reported. In A

of CypA is shown; in B, the 3D-

The surface of CypA is colored according the hydrophobic propensity of the residues forming the active site 

(the hydrophobic and hydrophilic 

In Panels B and D, the binding mode of D138 is shown. Similarly to C3353, both the 2D depiction of the main 

interactions (panel B) and the highest score conformation (panel D) are reported using the same color schem

In Panel E, the per-residue analysis of the protein

In the histogram two component of the interaction energy are computed independently for the residues mostly 

involved in the binding. 

In order to dock D138 and C3353, we selected the protein conformation extracted 

from the complex with PDB code 3RDD due to the highest similarity in th

to C3353. Among the 17 protocols, for the 3RDD complex the GOLD program coupled with 

Goldscore scoring function was the protocol showing the best per

. Molecular docking studies of both compounds revealed 

mode, in which a unique cluster of conformations was present for each ligand. In the case of 

the strongest inhibitor, C3353, the molecule adopts a conformation that is nicely 

n the active site of CypA (Figure 10.16, panels A and C). 

Molecular docking studies of D138 and C3353 compounds. In panels A and 

A, a schematic depiction of the more relevant interactions with the catalytic site 

-conformation with highest score resulted in the docking simulation is reported. 

The surface of CypA is colored according the hydrophobic propensity of the residues forming the active site 

he hydrophobic and hydrophilic features are respectively coded into a green to violet palette color scheme). 

, the binding mode of D138 is shown. Similarly to C3353, both the 2D depiction of the main 

interactions (panel B) and the highest score conformation (panel D) are reported using the same color schem

residue analysis of the protein-ligand interaction for C3353 (red) and D138 ligands(green). 

In the histogram two component of the interaction energy are computed independently for the residues mostly 
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In order to dock D138 and C3353, we selected the protein conformation extracted 

similarity in the size of its ligand 

to C3353. Among the 17 protocols, for the 3RDD complex the GOLD program coupled with 

the best performance in the 

. Molecular docking studies of both compounds revealed a clear binding 

was present for each ligand. In the case of 

the strongest inhibitor, C3353, the molecule adopts a conformation that is nicely 

nd C).  

 
Molecular docking studies of D138 and C3353 compounds. In panels A and C, the binding 

, a schematic depiction of the more relevant interactions with the catalytic site 

nformation with highest score resulted in the docking simulation is reported. 

The surface of CypA is colored according the hydrophobic propensity of the residues forming the active site 

green to violet palette color scheme). 

, the binding mode of D138 is shown. Similarly to C3353, both the 2D depiction of the main 

interactions (panel B) and the highest score conformation (panel D) are reported using the same color scheme. 

(red) and D138 ligands(green). 

In the histogram two component of the interaction energy are computed independently for the residues mostly 
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The chorophenyl moiety lies in a hydrophobic pocket formed by F60, F113 and L122, 

while the aminocyclohexyl group occupies a more hydrophilic groove defined by G72, S110, 

Q111, S119, and T107. In particular, the aminocyclohexyl conformation is stabilized by the 

presence of a hydrogen bond with the backbone of G72.  

The purinic core occupies a third site connecting the two previously mentioned pocket and 

mainly interacts with R55; the ethyl moiety at N9 increment the shape complementarity with 

the protein surface. 

The 5,7-dichlorokynurenic acid (D138) showed a clear propensity for the hydrophilic 

groove of the CypA catalytic site. The carboxylic moiety establishes two hydrogen bonds 

with S110 and Q111 while the condensed ring lies in front to the methyl group of A103 (Figure 

10.16, panels B and D).  

The molecular basis explaining the different ability to inhibit the CypA enzymatic activity 

can be ascribed to the different size of the two compounds and to the number of interactions 

they are able to establish with the catalytic site.  

In particular, C3353 is able to occupy most of the catalytic cleft and the final score 

returned by Goldscore function was clearly higher than for D138, respectively 76.8 and 48.6.  

These observations are more evident when the contribution to the estimated interaction 

energy of the two compounds are plotted in a per-residue histogram as reported in the panel 

E of the Figure 10.16. 

In this graph, the electrostatic interaction energy and a hydrophobic score are computed for 

each residue of the binding site and the most relevant ones are reported. While the 

electrostatic component of the predicted interaction energy is relevant for both ligands, the 

hydrophobic score is notably weaker in D138 that interact only with A103.  
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11.  DISCUSSION 

The peptidyl-prolyl cis-trans isomerases represent a large class of biological 

proteins, such as the cyclophilins, with broad physiological functions, making them valid 

targets for therapeutic intervention [54].  

For example, cyclophlin inhibitors have shown promise as replication inhibitors of several 

RNA viruses including HIV, HCV, SARS corona virus and influenza virus [54]. 

Non-immunosuppressive cyclosporin derivatives [54, 55, 56] have reached clinical 

development for the treatment of hepatitis C infection. Moreover, formulations of 

cyclosporin itself have also shown some promise in new therapeutic applications, for 

example in traumatic brain injury [57], muscular dystrophy [58], respiratory disease [59], 

cardiovascular disease [60] and Alzheimer’s disease [61].  

In this framework, many efforts are spent on selecting specific PPIase modulators for 

therapeutic approaches. However, the discovery of novel inhibitors has been limited by the 

lack of suitable assays for HTS. 

The biochemical reaction catalyzed by PPIases interconverts cis and trans isomers of 

a proline peptide bond. However, this reaction also occurs spontaneously in the absence of 

catalysis within a few minutes, especially in short synthetic peptide substrates.  

Inhibitor screens therefore have to distinguish between the catalyzed and the spontaneous 

reactions, which are separated by a time window of a few minutes [62].  

Such screens have been developed, but they require low temperatures and elaborated 

experimental protocols in the presence of organic solvent [19]; they therefore are invariably 

of low throughput and are unsuitable for large scale screens [53]. 

Here, we developed and optimized a simple and robust homogenous fluorescent HTS 

assays for the discovery of Cyclophilin inhibitors in 384-well plates, using a new FRET-

based substrate probe useful for Chymotrypsin-coupled isomerase assays. The probe, easily 

prepared by a straightforward solid phase approach in a highly soluble form, contains the 

well-known FRET pair Dabcyl-EDANS [50,51]. 

The donor (EDANS) is separated from the quencher (Dabcyl) by a short peptide linker 

containing a modified Chymotrypsin cleavage site (Pro-Phe), and residues of Glutamic acids 

and Lysine at the N- and C- termini, respectively, to potentially increase the cis 

conformation is solution.  

Noteworthy, the NMR structural characterization of the probe showed that the cis 

conformation of the substrate was highly favored, as hypothesized in the design.  
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Treatment of the substrate with recombinant CypA in absence of organic solvents, promoted 

the rapid proteolytic cleavage by Chymotrypsin and an increase of fluorescence intensity 

that is linearly related to the extent of CypA-mediated substrate isomerization. 

Technical parameters of the HTS assay (Z′-factor, S/N, IC50 values of 

pharmacological control) have been optimized therefore the test appears to be ready for 

large scale screenings. As an exemplary screening we used here the commercial LOPAC1280 

library. From such screening some selective CypA inhibitors were identified, including the 

well-known CsA, present within the library as a positive control. 

Among the other compounds showing activity, two were tested in dose response 

experiments. 

The purine-based compound C3353, known as a Cdk inhibitor selective for Cyclin-

dependent kinase-1 (Cdk1) (PMID: 21131960), showed a 6 μM IC50 inhibition, which is a 

good starting point for developing new and more selective inhibitors. 

To gain insights into the structure-activity relationship of the two compounds, they were 

subjected to a comparative computational study that confirmed the predilection of the 

ligands for the CypA active site. 

Moreover, the different IC50 values detected can be explained by the higher number of 

interactions established by C3353 with the hydrophobic groove present in the catalytic site. 

In conclusion, we have set up a HTS screening assay for the selection of CypA cis-

trans isomerase activity inhibitors. The assay is based on the use of a new fluorescent 

peptide substrate we have designed in order to have a high proportion of cis conformers and 

to work by following fluorescence intensity increase or decrease, depending on enzyme 

activation or inhibition.  

The assay is very robust, has been optimized on 384 well plates and can be used in screening 

campaigns of large compound libraries.  
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