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Chapter 1  

 

Introduction 

 

 

1.1 DNA methylation: a general overview 

Epigenetics is referred to changes in gene expression, which are heritable through multiple 

cell division cycles. These changes result from a set of reversible modifications that occur 

without alterations in the DNA sequence and include nucleic acid modification, chromatin 

remodelling and histone modifications [1]. Regarding nucleic acid modification, DNA 

methylation is a common epigenetic mark in many eukaryotes, involved in the regulation 

of gene expression [2,3]. DNA methylation has been recognized to play an important role 

in many biological processes, such as cellular differentiation [4], development [5], disease 

[6], aging [7], X-inactivation [8], imprinting [9], silencing of repetitive DNA (i.e. 

transposons) [10] and chromosomal stability [11]. 

In mammals, the predominant form of DNA methylation is the covalent attachment of a 

methyl group to the 5′ position of the cytosine residues in CpG context, although there is 

evidence that cytosine methylation is not limited to those in CpG sequences. Methylation 

on cytosine in other sequence context (CHH e CHG, with H=A, T or G) is widespread in 

plants [12] and some fungi [13] and has recently been reported in mammals [14,15]. 

Cytosine methylation results in transcriptional repression. 

Methylation patterns of adult somatic cells are mostly determined during embryogenesis 

and then it is stably inherited through mitotic divisions, passing over to differentiating cell 

and tissues [16-18]. There are two types of DNA methylation: i) a stable and invariant 

form that represents the basis for imprinting and is sex-specific and identical in individuals 

and cells [9]; ii) a metastable somatic type that changes with age and differs among 

individuals and cells [19]. 



                                                                                                                                              Introduction 

 

- 2 - 

 

DNA methylation is mediated by DNA methyltransferases (DNMTs), which are essential 

for development and viability [20-21] and are responsible to establish methylation pattern 

in early development and maintain it during cell division [22]. They are classified into two 

groups: maintenance and de novo methylases. Maintenance methylases DNMT1 shows a 

preference for the hemi-methylated DNA in order to propagate the existing methylation 

from the old strand of the mother cells to the newly synthesised strand of the daughter cells 

during DNA replication. DNMT3A and DNMT3B are de novo methyltransferases, 

responsible for the establishment of DNA methylation patterns early in mammalian 

development and in germ cells. There is another member of the family, DNMT3L, which 

is catalytically inactive but interacts with DNMT3A and DNMT3B, facilitating their 

enzymatic activity. DNMT3L is best known for its role in imprint methylation 

maintenance during gametogenesis. In the absence of DNMT3L, genomic imprinting is 

lost [23-24]. The categorisation of the above-mentioned methyltransferases as either 

maintenance or de novo methyltransferases is an oversimplification as DNMT1 can have 

de novo activity as well [25].  

On the other side, DNA demethylation can takes place through two mechanisms: passive 

and active demethylation. In the passive demethylation, 5-methylcytosine (5mC) can be 

lost or erased during cell division, when proteins that can copy it (DNMTs) are absent or 

non-functional. In contrast, active demethylation can happen without DNA replication and 

cell division. In this case, the 5- methylcytosine (5mC) is oxidised by the TET (Ten Eleven 

Translocation) proteins, generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 

(5fC) and 5-carboxylcytosine (5caC) [26]. 

In the human genome, both the CpG sites and their degrees of methylation are unevenly 

distributed in the genome [27-28]. Two fractions with distinct properties are 

distinguishable: a major fraction (~98%), in which CpGs are relatively infrequent (on 

average 1 per 100 bp) but highly methylated (approximately 70%–80% of all CpG sites), 

and a minor fraction (<2%) that comprises short stretches of DNA (approximately 1 kb in 

length and longer than 200bp) in which CpG sites are frequent (~1 per 10 bp; CpG- rich 

regions), G+C base content is high (above 50% G+C content) and the observed-to-

expected CpG ratio is greater than 60 %. The latter are known as CpG islands (CGIs) and 

they are usually methylation- free. They are found within the promoters of ~60-70% of 

human genes [29-30]. Due to their unmethylated status, CGI- promoters are characterised 

by a transcriptionally permissive chromatin state and are indeed generally associated with 

constitutively expressed genes in all cell type (housekeeping genes), but a subset of them 
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may be subject to tissue- specific gain of methylation [31] or during the development [32], 

resulting in a stable transcriptional repression. However, CGI hypermethylation is required 

for the long-term silencing of genes located on the inactive X chromosome [8] or 

associated with imprinted loci [9], germline-specific genes [33] and pluripotency-

associated genes [34].  

Aberrant DNA methylation is associated with many human diseases and is a hallmark of 

cancer [6]. These epigenetic changes impact the biological activity of cells through their 

modification of transcriptional states and regulatory machinery. Hypermethylation of CGI 

promoters may contribute to carcinogenesis by inactivating tumor suppressor genes or 

DNA repair genes, while hypomethylation contributes to carcinogenesis by activating 

oncogene or promoting genomic instability. 

 

 

1.2 Heterogeneous DNA methylation 

Tissues exhibit cellular heterogeneity, arising from genetic, epigenetic or cell- specific 

transcriptional mechanisms, which confer cellular identity [35-36]. In a mixed cell 

population (such as a tissue), cells may demonstrate similar phenotypes but with distinct 

methylation patterns at a specific genomic locus, or different phenotypes. Moreover, the 

heterogeneity in cellular composition was recognized as an important confounding factor 

that could compromise the resulting interpretations for methylation studies [37-38]. These 

findings emphasize the importance of examining the methylation pattern heterogeneity 

within a cell population or between different cell types. 

Mammalian genome contains about 29 million of CpG sites, which are non-randomly 

distributed along the genome [27-28]. Because each of CpG sites may exist in a methylated 

or unmethylated state, the number of possible combinations is huge (10
8,700,000

) and may 

therefore enormously increase the potential information content of genomic DNA, without 

considering the further increase provided by other cytosine modifications such as 

hydroxymethylation and non- CpG methylation. Although at genomic level it is practically 

impossible, or at least a very hard task, to verify all the possible 
m

CpG combinations 

present in the cells of a tissue, in principle each cell may bear a specific combination of 

methylated CpGs at specific loci (epiallele) that may reflect the origin of the cell and/or the 

functional state of a given gene in that cell. These epialleles differ in their pattern of 

methylated and unmethylated CpG positions. These molecules (epialleles) can be grouped 
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in methylation classes, defined as number of methylated cytosines per molecule, 

independently of their position. 

This introduces the concept of epipolymorphism, by means that cells of a tissue may be 

considered a population of epigenetically heterogeneous cells in which each combination 

of 
m

CpG at a given locus represent a specific epiallele. All of these epialleles show 

variable frequencies. It has been reported that, unlike H1 embryonic stem cells (ESCs) and 

testicular cells, somatic tissues are highly polymorphic, exhibiting a spectrum of 

heterogeneous methylation states that range from a complete lack of methylation to full 

methylation [39].  

Closely connected to the epipolymorphism is the concept of methylation heterogeneity. 

The terms of methylation heterogeneity is used to refer to a mixture of multiple epialleles 

in varying proportions, which differ in the pattern of methylated and unmethylated CpG 

sites. In the case of homogeneous methylation pattern, all the cells share the same 

methylation state, indicating strong constraints in methylation control for the entire cell 

population. On the opposite side, there are different levels of methylation heterogeneity. At 

the simplest level, it has been used to refer to a mixture of fully- methylated and 

unmethylated alleles. Alternatively, a heterogeneous mixture of cells may comprise a 

spectrum of epialleles with all possible methylation patterns, spanning from a complete 

lack of methylation to full methylation. Genomic loci with different methylation 

heterogeneity may share the same average level of methylation. 

The occurrence of a uniform pattern of DNA methylation indicates a high fidelity of 

methylation inheritance. In contrast, DNA methylation heterogeneity can arise in a variety 

of ways including but not limited to: (i) more than a single population of cells is analysed 

that differ in DNA methylation at the locus of interest (cell- specific DNA methylation); 

(ii) the locus of interest is imprinted, i.e. two different epialleles (unmethylated and fully- 

methylated) are present in each cell (allele- specific DNA methylation); (iii) the locus is 

inherently heterogeneous in its DNA methylation composition; or iv) a decreased fidelity 

of methylation inheritance, which can give arise to an asymmetric DNA methylation 

(hemi-methylated CpG/CpG dyads), indicating a failure in methylation inheritance or 

stochastic DNA methylation events [40]. Moreover, it is not clear whether this 

heterogeneity derives from a gradual accumulation of changes in DNA methylation during 

semiconservative replication of the DNA methylation pattern, or whether there is a 

continual flux of DNA methylation patterns within the mitotic progeny of a cell. The DNA 
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methylation level may also vary for some gene loci during aging [41-43] and tumor 

progression [44]. 

 

 

1.3 Stochastic and deterministic methylation 

Genome-wide methylation analysis suggests that different mechanisms may explain the 

loss or gain of methylation underlying epigenetic diversity in cells: deterministic and 

stochastic processes [45]. Highly variable methylation patterns reflect stochastic 

fluctuations in DNA methylation, whereas well-structured methylation patterns imply 

deterministic methylation events. 

Deterministic events may contribute to the gain or loss of methylation at specific loci. 

Deterministic epigenetic heterogeneity arises during differentiation of cells, in which 

progressive and predictive changes are accumulated. This kind of events leads to cell type-

specific differences, which are readily recapitulated across individuals, and in general to 

tissue-specific differentiation hierarchies. According to the deterministic model for DNA 

methylation, locus-specific targeting of DNMT enzymes induces and maintains 

methylation. The choice of the target is not random, but determined by specific affinities of 

transcription factors. Eventually, the preference of DNMT1 for hemi-methylated DNA 

stabilizes and propagates the methylation profiles. Thus, the deterministic DNA 

methylation patterning must be the consequence of tissue- specific transcription factors and 

also epigenetic factors that possess stage-specific expression patterns [46]. Allelic-specific 

methylation, typical of imprinted and X-linked genes, constitutes an example of 

deterministic methylation changes [47-48]. This deterministic model fails to explain the 

extreme polymorphism of methylated alleles found with deeper sequence coverage of the 

genome [39]. 

Stochastic processes may produce the high rate of methylation polymorphism. Stochastic 

gain and loss of DNA methylation continuously generate and destroy epialleles (metastable 

epialleles), leading to increased epipolymorphism. Stochastic variability leads to cell-to- 

cell variability within differentiation hierarchies such that even individual cells of the same 

differentiation stage display marked heterogeneity (epigenetic mosaicism). The result of 

this stochastic variability is that cell-to-cell epigenetic variability cannot be explained by 

cellular differentiation states, gene expression patterns, or any other characteristics usually 

related to the deterministic patterns outlined above. It remains unclear whether the 
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stochastic cell-to-cell variation in DNA methylation patterns arises by errors introduced 

during DNA replication due to poor fidelity of the DNA-methylating enzymes, or whether 

it represents a mechanism for introducing an epigenetic buffer state into a cell population. 

As a consequence, initially organized epigenomic structure may be perturbed over time 

through a locally stochastic process of methylation aberration. Tumors tend to exhibit an 

increased genome-wide disorder in DNA methylation patterns [49]. 

Genome- wide methylation studies have identified numerous regions that on average are 

differentially methylated between tissues but have provided little evidence of the dynamics 

of the process generating these differences [14,50,51]. Whether this process changes one 

methylation pattern to another in a scheduled and regulated fashion integral to the 

developmental program (deterministic factors) or is instead a noisy and stochastic process 

occurring independently and in parallel at different sites remains debated. 

Nevertheless, although only a low number of molecules/locus (10-40) is usually analysed 

both in gene-specific and genome-wide studies, almost all previous studies based on 

bisulfite sequencing revealed that different combinations of 
m

CpG are indeed present at 

given loci. These are usually interpreted as the effect of stochastic methylation. However, 

with a such low number of molecules/locus is difficult to safely say if the origin of the 

epipolymorphism is a stochastic event or a genetically and/or environmentally driven 

phenomenon, developmentally regulated, leading to an orchestrated distribution of 

epialleles among the entire population of cells of a tissue. Moreover, it should be taken in 

consideration that each of the detected profile corresponds to the configuration of a single 

allele in a single cell of the complex cell mixture present in an analysed tissue. 

Elucidating the stochastic and deterministic elements of methylation is important because 

of the involvement of epigenetic effects in determining the phenotypic variation among 

individuals and human disease [52- 56], as well as intra-individual changes over time [57-

60]. 

 

 

1.4 Methods for DNA methylation analysis 

Various techniques can be used to examine and quantify methylation according to the pre-

treatment that the DNA receives and the resolution of the detection (specific-region or 

genome- wide methylation). 
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1) Methylation sensitive restriction enzyme digestion. Enzyme restriction digestion 

treatment is based on the ability of some methylation-sensitive restriction endonucleases 

(HpaII, and SmaI) and their corresponding isoenzymes, in particular the isoschizomer 

MspI for HpaII and the neoschizomer XmaI for SmaI (which are not inhibited by CpG 

methylation) to distinguish methylated from unmethylated cytosines in the CpG sequence 

context [61]. An important limitation is that all restriction enzyme-based techniques 

provide methylation data only at the restriction enzyme recognition sites. 

 

2) Affinity enrichment. The affinity enrichment of methylated regions employs antibodies 

that are specific for methylated cytosine to immunoprecipitate denatured genomic DNA 

(MeDIP [62-63]) or methyl-CpG binding domain (MBD)- harbouring proteins (MeCP2 

[64] or recombinant MBD2 [65-67] or the MBD2b/MBD3L1 complex [68-70]) with 

affinity for methylated native genomic DNA. An important point regarding affinity-based 

techniques is that they measure the density of methylation in a specific region. Thus, the 

genome coverage is limited by the distribution of the potential affinity targets in the 

genome, e.g. the density of methylated cytosines or CpG sites, which are unevenly 

distributed in the genome. Therefore, a methylated stretch of DNA where methylation CpG 

target sites are sparse might be difficult to differentiate from an unmethylated region. 

Specifically, in mammalian genomes, CG density is generally low and CG-dense 

sequences are typically unmethylated [62]. The exact methylation state of individual CpG 

sites cannot be determined using this approach. 

 

3) Sodium Bisulfite conversion of DNA. The method is based on the selective deamination 

of cytosine but not 5-methylcytosine by treatment with sodium bisulfite [71-72]. Briefly, in 

the presence of sodium bisulfite, all the unmethylated cytosines are chemically converted 

to uracil, which is amplified as thymine during PCR. In contrast, the methylated cytosines 

are not converted, such that in the final sequencing the 5-methylcytosine will be still 

detected as cytosine. The bisulfite conversion efficiency is critical for the accuracy and the 

reliability of the results, especially for non-CpG methylation analysis. A poor bisulfite 

conversion or inappropriate conversion of methylcytosine to thymine will result in an 

overestimation of the methylation level and will subsequently influence the accuracy of the 

calculated DNA methylation by increasing the background [73-74].  

Bisulfite conversion is the most conventional approach for pre-treatment and has been 

regarded as the gold standard for determining DNA methylation status because it provides 
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the most reliable and detailed information on the methylation pattern at single CpG sites 

resolution [75]. Moreover, for a genome- wide DNA methylation analysis, bisulfite 

conversion can be apply on the whole genomic DNA and is not limited by the presence of 

certain restriction enzymes recognition sites or the high CpG density.  

 

The combination of pre-treatment methods with subsequent molecular biology techniques 

(PCR, mass spectrometry, pyrosequencing, DNA microarrays and high-throughput 

sequencing) have been developed and applied for DNA methylation analysis on specific 

loci or genome-wide scale. Indeed, these methods have progressed from small- scale 

candidate gene analysis to the ability to construct whole- genome methylation profiles. 

As regards genome- wide technique, although methylation microarrays are a powerful tool 

for epigenetic studies, they have an important limitation in that they analyse only a small 

part of the CpG sites of the genome. The fast development of Next Generation Sequencing 

(NGS) methods, which can generate millions of reads each corresponding to the sequence 

of a single DNA molecule in one run without subcloning, has brought new opportunities to 

the wide usage of the bisulfite sequencing method for genome-wide DNA methylation 

analysis. Sodium bisulfite conversion followed by massively parallel sequencing 

(Bisulfite-seq) has become an increasingly used method for performing epigenetic profiles 

in the human genome [76]. Bisulfite-seq is well suited to the investigation of epigenetic 

profile from clinical tissue samples [77-78], and can be applied to very small quantities of 

DNA [79] including formalin-fixed samples [80]. Comprehensive mapping of DNA 

methylation in relevant clinical cohorts is likely to identify new disease genes and potential 

drug targets, helps to establish the relevance of epigenetic alterations in disease and 

provides a rich source of potential biomarkers [81]. 

 

 

1.5 Limitations of genome- wide techniques and quantitative 

approach 

DNA methylation has been extensively analysed from a genomic point of view both in 

normal and in pathogenic tissues [82-84], but the dynamics that form, maintain and 

reprogram differentially methylated regions are still not well- defined. Also, little is known 

about genome-wide variation of DNA methylation patterns. 
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Genome-wide sequencing of bisulfite-DNA is unbiased relative to the sequence 

representation, but limited in the coverage/single locus. This limitation is essentially due to 

the fact that genome- wide methylomes cannot detect epialleles below a certain frequency; 

approximately variants below 10% escape detection. The reasons are the following. First, 

the coverage attained is very limited when individual loci are considered and the detection 

of changes of methylation states, occurring in a fraction of cells, requires sequencing of the 

locus several hundred times, not attainable with the current protocols. Second, the 

molecules sequenced represent a statistical collection of methylated cytosines deriving 

from physically different molecules. Thus, epipolymorphisms linking in cis several CpGs 

in the same DNA molecule cannot be deduced from these sequences. As example, 2 CpGs 

methylated in 50% of the molecules may derive from 2 molecules, one with a 
m

CpG and 

another carrying the other 
m

CpG; or from 2 molecules, 1 methylated at both sites and the 

other unmethylated. 

As a consequence, the vast majority of studies on DNA methylation, regardless of the 

techniques employed, used a quantitative approach, namely they took in consideration the 

average methylation level, summarizing data into average percentage of methylated CpGs 

in specific genomic regions, or the methylation percentage for single CpG site, or looking 

at CpGs genome-wide distribution with an only relatively high resolution [85-91].  Such 

kind of approach is useful when methylation status is uniform in the population of cells 

under study, but fails to dissect and recognise different DNA methylation patterns when a 

heterogeneous population is investigated. Indeed, percentage methylation described in 

most DNA methylation studies hides important pattern and positional information of DNA 

methylation with potential functional and regulatory relevance [92]. Such information is 

lost when the average methylation is considered (quantitative approach).  

 

 

1.6 Aims 

In this work, in order to better decode epigenetic data, a new way to analyse DNA 

methylation, based on qualitative approach, was developed. The qualitative approach 

allows methylation profiles of cell populations to be studied at the single molecule level, 

thus providing an added value to the quantitative one. Considering that a single molecule 

corresponds to the configuration of a single epiallele in a single cell of the complex cell 

mixture present in an analysed tissue, such qualitative approach could be useful to 
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recognise different methylation profiles inside an heterogeneous cell population (i.e., 

tissues). 

In order to obtain a detailed overview of a biological sample with an huge repertoire of 

epialleles and to carry out the analyses with sufficient power, it needs of a large number of 

sequences for the same genomic region. This can be accomplished through Deep Bisulfite 

Amplicon Sequencing (Deep- Bis), which allows to obtain a very high coverage (about 

200.000-300.000 reads/sample) of selected loci, leading to observations that are not 

achievable with the low coverage of the genome- wide techniques. 

As the number of sequences increases, the ability to analyse this type of data becomes a 

significant challenge. In the present study, it has been developed AmpliMethProfiler, a 

python-based pipeline for the extraction at the single molecule level of CpG methylation 

profiles from Deep- Bis of multiple DNA regions. The output reports the methylation 

status of each CpG site in a read in binary code (0 if the site is unmethylated, 1 if the site is 

methylated) and the epiallelic methylation patterns.  

To describe epiallelic composition of a sample and to assess differences among samples, 

diversity measures borrowed from ecology and population genetics were used. From this 

point of view, each biological sample is not a single organism, but a micro- environment 

consisting of thousands of species, represented by the specific epialleles. 

The qualitative approach is highly versatile and can be easily adaptable to different 

contexts and biological systems. In this work, it is applied on two experimental models: 

mouse development and AML progression before and after the demethylating therapy, in 

order to describe the methylation and demethylation dynamics, to investigate the epialleles 

distribution, to follow their evolution and to gain insight on epigenetic heterogeneity 

degree at specific loci. 
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Chapter 2  

 

 

Qualitative DNA Methylation Analysis 

 

 

2.1 A new qualitative approach to analyse DNA methylation 

data – Single molecules methylation analysis 

DNA methylation patterns within a population represent outcomes of markedly different 

epigenetic mechanisms but may result in identical average methylation profiles. 

In order to better decode epigenetic data, a new way to analyse DNA methylation, based 

on qualitative approach, has been developed. The qualitative approach, specifically looking 

at the individual methylation conformation of single molecules, could provide an added 

value to the quantitative one. Considering that a single molecule corresponds to the 

configuration of a single epiallele in a single cell of the complex cell mixture present in an 

analysed tissue, such qualitative approach could be useful to recognise different 

methylation profiles inside an heterogeneous cell population (i.e., tissues). Furthermore, 

this approach could help to better understand the mechanisms underlying the changes of 

methylation state of these cells during methylation and demethylation processes and to 

evaluate the stochastic and /or deterministic components of these phenomena. Moreover, 

this approach could be useful to assess the variability of DNA methylation pattern that 

might be observed for a given genomic locus in a cell population. 

Conceptual differences between quantitative and qualitative methylation analysis are 

shown in the Fig. 2.1. 
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Figure 2.1. Scheme of the distributions of methylation profiles (epialleles) in two cell populations (A and B) 

and the corresponding methylation classes to which they belong. Empty and filled circles represent 

unmethylated and methylated CpGs, respectively. Each line represents a single molecule (epiallele). It should 

be noted that it is impossible to distinguish the DNA methylation scenarios of cell populations A and B by 

methodologies (e.g., pyrosequencing) that can quantify methylation at individual CpG sites. 

 

 

Let’s consider a locus composed by 4 CpG sites.  By a quantitative point of view, both cell 

populations (A and B) have the same methylation value for each CpG site. However, from 

a qualitative point of view, DNA methylation scenarios in A and B are very different: in A 

two main epiallelic forms are present, while in B there is a great epiallelic diversity. In 

particular, as shown in B, these 4 CpGs can give arise to 16 possible methylation states or 

epialleles (2
nCpGs

; 2
4
) belonging to different methylation classes, including 1 unmethylated, 

4 mono- methylated, 6 bi- methylated, 4 tri- methylated, 1 fully (tetra) – methylated. Thus, 

the methylation profiles inside the cell population B are very different and each one of the 

possible epialleles can have different frequency.   

Qualitative approach allows to analyse DNA methylation at two different levels: i) 

methylation classes, defined as the number of methylated cytosine per molecule, 

independently of their position; 2) epialleles, defined as different combination of 

methylated CpG sites (
m

CpGs) at a given locus.  
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This kind of approach nicely accounts for the high polymorphism of methylation profiles 

in cell populations derived from individual somatic tissues [39] and can provide new 

insights on the epipolymorphism degree inside an heterogeneous cell population and if its 

genesis has a stochastic or deterministic nature. 

 

 

2.2 Deep Bisulfite Amplicon Sequencing (Deep- Bis) 

Most current methylation data sets derive from tissue samples with heterogeneous cell 

population and each one with its own repertoire of epialleles for a given genomic locus.  

An hurdle for most DNA methylation detection methodologies is the limitation when 

heterogeneous methylation patterns, rather than homogenous ones, are present. 

Heterogeneous DNA methylation patterns cannot be fully characterized without a method 

that: 1) provides a comprehensive overview of a sample with an huge repertoire of 

epialleles, 2) allows the direct visualization of individual epiallele and 3) guarantees an 

effective statistical representation. Only in such cases the entire population of 

heterogeneously methylated epialleles can be quantified. Otherwise, the information 

obtained therefore is compromised by stochastic effects.  

The sensitivity in the recognised different methylation patterns increases as depth of 

coverage increases and the need to achieve high analytical sensitivity for heterogeneously 

methylated loci is met by massively parallel sequencing. During the past decade, DNA 

methylation analysis has undergone a major technological revolution. The recently 

developed Next Generation Sequencing (NGS) methods, in particular when coupled to 

bisulfite conversion techniques, allow to conduct DNA methylation analysis at single base 

resolution with high speed and high throughput. However, it is only using clonal 

sequencing approaches with allelic outputs that it is possible investigate heterogeneous 

DNA methylation and the extent of epiallelic methylation patterns that exist within a single 

sample.  Importantly, the number of methylated alleles can be substantially underestimated 

unless clonal approaches are used [93].  

The key feature of the qualitative approach is to perform an in-depth methylation analysis 

and to obtain a very high coverage (about 200.000-300.000 reads/sample) of selected loci 

by means of the Deep Bisulfite Amplicon Sequencing (Deep- Bis). This technique leads to 

observations that are not achievable with the low coverage of the genome- wide 

techniques. Indeed, it is based on the clonal amplification of single bisulfite- converted 
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DNA molecules (amplicons) and allows to generate multiple sequence reads (high 

sequencing depth) for each genomic locus/sample. Each sequence read represents a 

methylation pattern. Each CpG position of a single molecule provides a binary answer: 

methylated or unmethylated. This high sequencing depth allows to gain a true 

representation of different epialleles in a sample. This is important to not only derive very 

precise average methylation levels for each CpG sites, but to also infer cell population 

characteristics accurately, to determine the extent of heterogeneous DNA methylation and 

to track the epipolymorphisms. Moreover, it enables the sequencing of different DNA 

templates from multiple regions simultaneously, providing a true representation of the 

diversity and extent of heterogeneous DNA methylation patterns derived from a given 

sample. Also, it allows for detailed comparisons of methylation patterns from different 

biological samples. 

In this way, observed changes in average methylation levels can then be interpreted 

according to epiallelic diversity, discerning, for example, a regulated increase in the 

frequency of a specific epiallele from multiple stochastic changes in the frequencies of 

many epialleles [94]. 
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2.3 AmpliMethProfiler: a pipeline for determining CpG 

methylation profiles of amplicons from Deep- Bis  

 

 

2.3.1 Introduction 

Recent DNA sequencing technology, the so-called Next Generation Sequencing (NGS) 

technology, enables researchers to obtain many thousands of sequence reads in a single 

sequencing run and at a cost that is several orders of magnitude smaller than the previous 

generation DNA sequencing technologies. This high coverage allows, not only for 

quantitative, but also for qualitative locus-specific methylation analysis to be performed. 

Qualitative analysis allows methylation profiles (epialleles) of a given locus inside cell 

populations to be studied at the single molecule level. Analysis of epiallele diversity is an 

innovative approach that is now applied in epigenetics, in fields as diverse as 

carcinogenesis [39], developmental biology [95] and ecology [96]. However, as the 

number of sequences increases, the ability to analyse this type of data becomes a 

significant challenge. Moreover, currently available tools for methylation analysis lack 

output formats that explicitly report CpG methylation profiles at the single molecule level. 

In the present study, it has been developed AmpliMethProfiler, a python-based pipeline for 

the extraction at the single molecule level of CpG methylation profiles of amplicons from 

Deep- Bis of multiple DNA regions. The output reports the methylation status of each CpG 

site in a read in binary code (0 if the site is unmethylated, 1 if the site is methylated) and 

summarises DNA methylation according to epiallelic methylation patterns and can be 

readily used for the downstream quantitative and qualitative analysis. This software has 

been used to analyse multiplex bisulfite amplicon PCR, coupled to massively parallel deep 

sequencing, from different tissue samples and different loci (see Chapters 3 and 4). 

 

 

2.3.2 AmpliMethProfiler: a general overview 

AmpliMethProfiler requires a local installation of BLASTn [97] and uses the Biopython 

>= 1.65 [98] python library (python version >= 2.7). This pipeline can be used on any 

python-enabled operating system. The software is designed to work with single end reads. 

Output from paired-end sequencing should be first converted to single end format, 

provided that the two paired ends overlaps.  
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As input data, requires three input files:  

1. readsFile: a file containing the reads from the sequencer in FASTA format;  

2. primFile: a comma-separated file containing information on the sequenced 

regions;  

3. refFile: and a FASTA file containing the reference sequences of the analysed 

regions. 

 

Fig. 2.2 depicts the flowchart of AmpliMethProfiler modules. The pipeline is composed of 

two python scripts and its execution involves two main steps:  

1. preprocessFasta.py module, for the preprocessing the input FASTA file, in 

terms of filtering and demultiplexing of the sequencer output in single end FASTA 

format;  

2. methProfiles.py module, for the generation of the CpG methylation profiles 

and the computation of summary statistics on methylation status and quality 

assessments (bisulfite efficiency). 

A third python module (methylUtils.py) contains necessary functions to run the two 

scripts above. 
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   Figure 2.2. AmpliMethProfiler pipeline workflow. 

 

 

2.3.2.1 Demultiplexing and filtering 

The module preprocessFasta.py works on three types of inputs: 

 

 Sequence files: 

 readsFile: A file containing reads from the sequencer in FASTA format. 

Reads are expected to be represented as single end reads. 

 primFile: A comma separated file containing info about the sequenced 

regions. For each analysed sequence the file should contain two rows (one 

for the 5’ and another one for the 3’ primer sequences) with the following 
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fields: 

▪ a sequence ID 

▪ the PCR primer sequence 

▪ the length of the target sequence  

 

 Filtering parameters: 

 threshLen (optional; 0.5 is the default value): A real between 0 and 1 

indicating the minimum percent of  length similarity between the sequence 

read and its reference sequence. Namely, if refLen is the length of the 

reference sequence and readLen is the length of the read, the module will 

retain all reads for which the following relation holds: 

 

refLen – (refLen)*threshLen <=  readLen <= refLen + (refLen)*threshLen 

 

 primTresh (optional; 0.8 is the default value): A real between 0 and 1 

indicating the minimum percentage of sequence similarity (1 indicates 

identical sequences, 0 express completely different sequences) between the 

5’ or 3’ end of a read sequence and the corresponding PCR primer 

sequences contained in the file specified via primFile. If no matches 

between the 5’ and the 3’ end of the read are found the read will be 

discarded from the de-multiplexed output. 

 

 Experiment ID: 

 sample:  The sample ID on which the experiment is carried on. 

 

Reads from Deep- Bis of multiple regions are demultiplexed by preprocessFasta.py 

by comparing their 5′ and 3′ ends with a list of provided PCR primers. The demultiplexing 

procedure is based on a user-provided percentage of similarity (setting the parameter 

primTresh) between the 5′ or 3′ end of a read sequence and the corresponding PCR 

primer sequences. It starts searching with threshold 1 (perfect sequence match) and 

decreases the threshold value until a match is found or the maximum number of allowed 

mismatches (specified in the parameter primTresh) is reached. 
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Reads are then filtered out if no match is found between at least one of the read ends or if, 

given a user-provided threshold, their length does not match the expected one (specified in 

the parameter threshLen).  

 

As output, the preprocessFasta.py module returns, for each sequenced region, a 

demultiplexed, filtered FASTA file, containing the passing filter reads belonging to that 

region. For each read it will be produced a new header. 

 

 

2.3.2.2 Extraction of methylation profiles 

The next module methProfiles.py module runs on each of the demultiplexed, filtered 

FASTA files generated by preprocessFasta.py and computes CpG methylation 

profile matrices and several summary statistics. This module uses three types of inputs: 

 

 Sequence files: 

 refFile: The FASTA file containing the reference sequences of the 

analysed sequences 

 primFile: A comma separated file containing info about the sequenced 

regions. For each analysed sequence the file should contain two rows (one 

for the 5’ and another one for the 3’) with the following fields: 

▪ sequence ID; 

▪ PCR primer sequence; 

▪ length of the target sequence. 

 

 Filtering parameters: 

 bisu_thresh (optional; 0.98 is the default value): Bisulphite efficiency 

threshold.  

 cgAmbThresh (optional; 1 is the default value): Maximum percentage of 

ambiguously aligned CpG sites.  

 alignPropThresh (optional; 0.6 is the default value): Minimum 

proportion of not clipped bases on the aligned read.  

 BLASTN aligner parameters.  

• blastExecPath: Path to the local BLASTN binary directory. 
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• nThreadBlast (optional): Number of thread for BLASTN 

execution. 

• Reward (optional): BLASTN reward for a nucleotide match. 

• penalty (optional): BLASTN penalty for a nucleotide 

mismatch. 

• gapopen (optional): BLASTN cost to open a gap. 

• gapextend (optional): BLASTN cost to extend a gap. 

• word_size (optional): BLASTN word size for initial match. 

• window_size (optional): BLASTN multiple hits window 

size. 

 

 Experiment ID: 

 sample:  The sample ID on which the experiment is carried on. 

 

The methProfiles.py module works in the following way. 

First, the amplicons from Deep- Bis are aligned to the corresponding bisulfite-converted 

reference sequence using the locally installed BLASTN program. Then, 

methProfiles.py inspects the C and CpG aligned positions for each input read.  

 

Bisulfite efficiency for each aligned read is computed as the percentage of conversion of 

non-CpG cytosine (C) residues to thymine (T) residues over the total number of non-CpG 

C residues. A cytosine not CpG is expected to be always converted in T after bisulphite 

treatment. If the percentage of non-CpG deaminated C residues (blue Ts in the read of the 

example below) over the total number of non-CpG C residues (blue Cs in the reference 

sequence of the example below) is below the given threshold (setting the parameter 

bisu_thresh), the read is discarded. The methylation status (0 for unmethylated e 1 for 

methylated) of each CpG site inside of each aligned read is determined by evaluating the 

eventual deamination of CpG sites as a result of the bisulfite treatment.   

 

Ref:  TGCGCGGAACTCTGATTCTGGTAATCCGTGTATTAGAGTGTCTATTC 

Bisu_Ref: TGCGCGGAATTTTGATTTTGGTAATTCGTGTATTAGAGTGTTTATTT 

Read: TGTGTGGAATTCTGATTTTGGTAATCTGTGTATTAGAGTGTTTATTT 
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For each CpG position in the aligned reference sequence (green Cs in the bisulfite-

converted reference sequence in the example below), the corresponding position in the 

aligned read sequence is inspected. A CpG cytosine is expected to be C (methylated) or T 

(unmethylated) in each read. Because of several causes (e.g. misaligned reads, deletions, 

polymorphisms..) other bases (G or A) or gaps may be present in such sites: in this case, 

the methylation state of the CpG site is reported as uncertain (marked in red in the example 

below). If the percentage of such ambiguous sites (red bases in the read of the example 

below) over the total number of CpG sites in the region exceed the given threshold (setting 

the parameter cgAmbThresh) the read is discarded.  

 

Bisu_Ref: TGCGACGGAATTTTGATTTTGGTAATTCGTGTATTAGAGCGTTTATT 

Read: TGTG--GGAATTCTGATTTTGGTAATCAGTGTATTAGAGCGTTTATT 

 

Methylation percentages for each CpG site are then computed as the number of non-

deaminated bases (methylated CpG sites) mapped on that site over the total number of non-

ambiguous CpG positions. The same method is used to compute bisulfite efficiency for all 

C (non-CpG) sites. 

 

Moreover, it may be the case that some reads will not be completely aligned. In such cases, 

if the proportion of aligned bases (blue bases in the read of the example below) is under the 

given threshold (setting the parameter alignPropThresh) the read is discarded. 

 

Bisu_Ref: TGCGACGGAATTTTGATTTTGGTAATTCGTGTATTAGAGCGTTTATT 

Read: -----—--AATTCTGATTTTGGTAATCAGTGTATTAGAGCGT----- 

 

 

2.3.3 Output files 

For each sequenced region, methProfile.py returns the following files (in the 

following list idReg refers to the provided id for the sequenced region and sample refers to 

the provided experiment ID): 

• idReg.bisu: The bisulphite converted reference sequence in FASTA format. 

• Summary and quality statistics file (idReg_sample.out.stats): this file contains 

summary and quality statistics for the analyzed region (information about the 
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number of passing filter reads, the methylation percentage of each C in CpG sites, 

and the bisulfite efficiency for each C in non-CpG sites). In particular, the file is 

structured as follows: 

 number of analyzed reads; 

 number of passing filter reads; 

 position of CpG sites in the analyzed sequence; 

 methylation percentage of each C in CpG sites; 

 number of CpG contributing to the computed methylation assessment for 

each site; 

 position of C (not CpG) in the analyzed sequence;  

 bisulfite efficiency for each C in non-CpG sites (percentage of deaminated 

C for each C site); 

 number of C contributing to the computed deamination assessment for each 

C site. 

Figure 2.3. Summary and quality statistics file 

 

• Alignment file (idReg_sample.out.align): this file contains BLAST-aligned 

sequences in clear text format. Each entry of the txt format file reports a passing 

filter aligned read represented by five rows, structured as follows:   

(1) read ID, read length, experiment ID, region ID;  

(2) bisulfite efficiency, calculated as the percentage of deaminated Cs (non-

CpG) over all Cs (non-CpG);  

(3-5) alignment of the read sequence against the bisulfite-converted reference 

sequence (the third line is the reference sequence; the fourth are alignment 

bars, the fifth is the read sequence ). 
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Figure 2.4. Example of the alignment file 

 

• Methylation profiles file (idReg_sample.out): this file contains the CpG 

methylation profile matrix in which columns represent CpG sites and rows 

represent single molecules (reads). The methylation status of each CpG site in a 

read is coded as 0 if the site is recognized as unmethylated, 1 if the site is 

recognized as methylated, and 2 if the methylation state could not be assessed (i.e. 

other bases other than C or T or alignments gaps are found). Row entries are 

reported in the same order as in the “Alignment file” (idReg_sample.out.align), and 

column order represents the CpG positions reported in the “Summary and quality 

statistics file” (idReg_sample.out.stats). Each row of this file can be considered as 

the CpG methylation profile of a single read and defines an epiallele in subsequent 

analyses. 

 

 

 

 

 

 

 

 

Figure 2.5. Methylation profiles file 

 

 

2.3.4 Discussion 

AmpliMethProfiler is a python- based pipeline composed by two python scripts for the 

generation of CpG methylation profiles at single molecule level from Deep- Bis on 

multiple genomic regions.  



                                                                                                      Qualitative DNA Methylation Analysis 

- 25 - 

 

AmpliMethProfiler can de-multiplex and filter the experiment output by using provided 

PCR primer sequences and corresponding reference sequences. It can filter out reads based 

on the expected length or the impossibility to recognize their reference sequence. Bisulfite 

specific filters can be applied to filter out reads where the bisulfite treatment failed (or, 

however, had not the desired effects) or reads where the methylation status of a high 

number of CpG sites could not be ascertained. AmpliMethProfiler uses BLASTN to align 

in a fast and reliable way input reads to a bisulfite converted reference sequence, and 

reports the methylation status at each CpG locus in each input read. Classic quantitative 

methylation assessment, namely the methylation percentage, is reported for all input 

sequences at each CpG site in each analyzed region. 
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2.4 Data analysis 

Qualitative methylation analysis has been approached by applying tools borrowed from 

ecology and population genetic. The populations of molecules (epialleles) produced by 

NGS technology have been handle as populations of haploid organisms and biological 

samples as the micro- environments in which these organisms are harbored. By this way, it 

is possible to describe the general methylation landscape of the various samples. Analyses 

include: i) estimation of methylation classes and epialleles frequencies; ii) estimation of 

diversity indexes inside each sample; iii) estimation of epigenetic distance between pair of 

samples. Analysis have been performed using R statistics environment (http://www.R-

project.org). 

 

 

2.4.1 Methylation classes and epiallelic frequencies 

For each locus, molecules were subdivided in classes, according the number of methylated 

CpG sites per molecule, independently of their position, defining in this way different 

methylation classes (un-, mono-, bi-, tri-, ….. , fully- methylated). 

Different combinations of methylated CpG sites constitute the epialleles. 

For each sample, the frequency of each methylation class was calculated as a ratio of the 

number of reads, belonging to each methylation class, over the total number of reads found 

in each sample. 

For each sample, the frequency of each epiallele was calculated as a ratio of the number of 

reads of a specific epiallele over the total number of reads found in each sample. 

 

 

2.4.2 Measuring epigenetic diversity of samples 

In order to quantify the epiallelic diversity inside each sample, diversity measures have 

adapted from ecology [99]. When applying an ecological perspective, each sample is not a 

single organism, but a micro- environment consisting of thousands of species that are 

represented by the epialleles. Each epiallele represents a single allele of a cell. Thus, each 

biological sample can be seen as a community, each epiallele can be seen as a specie, while 

each read can be seen as an individual.  

Species diversity (or epiallelic diversity) has two separate components: 1) the number of 

species (epialleles) present, called as species richness, and 2) their relative abundances, 

http://www.r-project.org/
http://www.r-project.org/
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termed dominance or evenness. As a result, many different measures (or indices) of 

biodiversity have been developed. A simple measure is the number of epialleles in the 

sample, expressed as species richness. Ecological measures of diversity typically integrate 

both number and abundance of epialleles: one of these measures is the Shannon diversity 

index (H) [100], which has been used for the analysis. 

 

 

2.4.2.1 Species richness (S) 

This is the simplest of all the measures of species diversity. In ecological field, it is the 

count of the total number of species found in a community. In the epigenetic field, it is the 

number of epialleles found in a sample. There are two problems associated with this 

measure. First, the number of species in a sample depend on the size of the sample: larger 

samples have more species. This is because not all species have the same probability of 

being in a sample because some of the species are common (high probability) and some are 

rare (low probability). As a consequence, small samples have common species and few 

rare species while larger samples pick up more rare species. Second, this measure does not 

take into account the proportion and distribution of each species within the community. 

Thus, this measure does not indicate how the diversity of the population is distributed or 

organized among species.  

 

 

2.4.2.2 Shannon diversity index (H) 

A diversity index is a mathematical measure of species diversity in a given community. 

Diversity indices provide more information about community composition than simply 

species richness. Indeed they take into account not only the species richness, but also the 

relative abundances (dominance or evenness) of different species that are present in the 

community. The ability to quantify diversity in this way allows to understand community 

structure. Let’s consider two communities, each one composed of 100 individuals and 10 

different species. One community has 10 individuals of each species; the other one has one 

individual of each of nine species, and 91 individuals of the tenth species. The more 

diverse community is first one is, but both communities have the same species richness. By 

taking relative abundances into account, a diversity index depends not only on species 
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richness but also on the evenness, or equitability, with which individuals are distributed 

among the different species. 

 

The Shannon diversity index (H) is a diversity index that is commonly used to characterize 

species diversity in a community. It is also known as Shannon- Wiener index or Shannon 

entropy. The Shannon entropy quantifies the uncertainty in predicting the species identity 

of an individual that is taken at random from the dataset. The Shannon index assumes all 

species are represented in a community and that they are randomly sampled from an 

infinitely large population. 

The Shannon diversity index (H) is defined as: 

 

 

 

where: 

S=total number of species (epialleles) in the community (richness) 

pi= proportion of individuals (reads) belonging to the i-th species in the community (or the 

proportion of epiallele i relative to the total N epialleles). It is estimates as pi = ni/N, where 

ni is the number of individuals in species i  and N is the total number of individuals in the 

community. 

The negative out front is needed to offset the obtained negative when the natural log of p i 

(since pi is a fraction, its log is negative) is taken. Since by definition the pis will all be 

between zero and one, the natural log makes all of the terms of the summation negative, 

which is why the inverse of the sum is taken. 

 

Shannon index takes into account species richness and proportion (evenness) of each 

species within a community. Evenness expresses how evenly the individuals in the 

community are distributed over the different species. In other words, evenness is a measure 

of how much similar is the abundance of different species. So the H value allows us to 

know not only the number of species but how the abundance of the species is distributed 

among all the species in the community.  

The Shannon index increases as both the richness and the evenness of the community 

increase. Its value spans from 0 to, theoretically, + ∞ (Hmax=logS).  
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 High values of H indicate a diverse and equally (evenly) distributed species. This 

means that the maximum H value is obtained when all the species have the same 

frequency: in this case, the community is characterized by a high diversity.  

 Low values of H represent less diverse community. In this case, the relative 

abundance of the various species are very dissimilar, so that there are some 

common (dominant species) and some rare species. If all abundance is concentrated 

to one specie, and the other species are very rare (even if there are many of them), 

Shannon entropy approaches zero. 

 A value of Shannon entropy exactly equals 0 would represent a community with 

just one species: there is no uncertainty in predicting the type of the next randomly 

chosen entity.  

 

 

2.4.3 Epigenetic distance 

The degree of epigenetic diversity across individuals was evaluated using the concept of 

epigenetic distance. [101]. Each of the epialleles is binary coded, with 0 for an 

unmethylated cytosine and 1 for a methylated cytosine. Each epiallele is, therefore, 

represented by a row vector of n 0 and 1, where n is the number of cytosines in the tested 

region. 

The degree of epigenetic dissimilarity was measured by Euclidean distance, by use of the 

following equation: 

𝑑12 =  √∑(𝑚1𝑖 − 𝑚2𝑖
 )2

𝑛

𝑖=1

  

where: 

 m1i is the average methylation of sample 1 at site i; 

 m2i is the average methylation of sample 2 at site i;  

 d12 is the Euclidean DNA methylation distance between samples 1 and 2.  

The larger the distance, the more dissimilar the two samples’ methylation profiles are to 

each other. 

With this metric, the distances between all possible pairs of samples for each promoter 

locus of p14 and p15 has been calculated. 
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2.4.4 Principal Coordinate Analysis (PCoA) 

When a dataset is composed by a multidimensional data, it can be hard to find patterns 

between samples. To better understand the structure of large data sets with a large number 

of variables, it is useful to use the multivariate techniques. Multivariate techniques are very 

useful to summarize many variables into a smaller number of variables (i.e., reduce the 

number of dimensions) to simplify the analysis of a dataset and to obtain the full picture 

from a large amount of data.  

Different methods are used to identify patterns and to highlight similarities and differences 

between samples or groups. One of these is the Principal Coordinate Analysis (PCoA), also 

known as metric multidimensional scaling (MDS), a tool for multivariate analysis. PCoA is 

a commonly used method to compare groups of samples based on phylogenetic distance 

metrics and to explore and to visualize similarities or dissimilarities of data.  

The input of PCoA is a distance matrix (a similarity or dissimilarity matrix) between a set 

of individuals and assigns for each item a location in a low-dimensional space, e.g. as a 2D 

or 3D graphics. The aim of the PCoA is to map the samples present in the distance matrix 

to a new set of orthogonal axes (low-dimensional graphical plot) that explain the maximum 

amount of variance. Samples are mapped on this low-dimensional graphical plot in such a 

way that distances between points (samples) in the plot are close to original dissimilarities. 

In other words, it tries to find an arrangement of samples such that that the distances 

between the samples in the graph match as closely as possible those in the distance matrix.  

PCoA is a scaling or ordination technique, which computes a linear transformation of the 

variables in order to reduce multidimensional datasets into a lower dimensional space, 

retaining the maximal amount of information. In other words, the algorithm attempts to 

explain most of the variance in the original data set. This technique helps to extract and 

visualize a few highly informative components of variation from complex, 

multidimensional data.  

To summarise the variability in the data set, PCoA produces a set of uncorrelated 

(orthogonal) axes, called as principal coordinate (PC) axes (columns), for each sample 

(rows). Each axis has an eigenvalue whose value indicates how much variance is shown on 

(captured in) that axis, or, in other words, the amount of variation explained for each PC. 

The proportion of a given eigenvalue to the sum of all eigenvalues reveals the relative 

'importance' of each axis. Eigenvalues are provided in a sequence of largest to the smallest 

value. This means that most variance will be shown by making an ordination graph with 
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the first two axes. The first axis accounts for as much of the variability in the data as 

possible and each succeeding axes accounts for as much of the remaining variability as 

possible. A successful PCoA will generate a few (2-3) axes with relatively large 

eigenvalues, capturing above 50% of the variation in the input data, with all other axes 

having small eigenvalues. Objects (samples) are represented as points in the ordination 

space. Each object (sample) has a score along each axis. The object scores provide the 

object coordinates in the ordination plot. Objects (samples) ordinated closer to one another 

are more similar than those ordinated further away. 

The principal coordinates can be plotted in two or three dimensions to provide an intuitive 

visualization of the data structure to look at differences between the samples, and look for 

similarities by sample category (i.e., affected or healths categories, before and after a 

treatment samples categories). In this way, it is intuitive to identify if samples from a 

category (i.e. affected) cluster together, compared to samples belonging to another 

category (i.e. healthy). 
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Chapter 3  

 

 

Tracking the evolution of DDO gene methylation profiles 

during mouse development  

 

 

3.1 Introduction  

 

DNA methylation landscape is dynamically remodelled during the mammalian life cycle 

through distinct phases of reprogramming and de novo methylation [16]. This remodelling 

occurs through an establishment of a globally demethylated state during early 

embryogenesis. Then, at late stages of embryonic development and early post- natally, a 

lineage-specific methylome that maintains cellular identity is shaped [34,102-104]. Once 

such reconfiguration comes to end, it may be maintained throughout the life. Such 

phenomenon, crucial to complete embryonic development, is the result of a dynamic 

interplay between DNA methylation and demethylation events [105-107] assisted by 

different DNA methyltransferases (DNMT1, DNMT3a and DNMT3b), which may convert 

cytosine to methylcytosine [22], or by Ten- eleven translocation (TET) enzymes which 

oxidize 5mC into 5-hydroxymethylcytosine, 5- formylcytosine and 5- carboxylcytosine, 

thus promoting 5mC demethylation [26]. DNA methylation plays a critical role in the cell 

differentiation and embryonic development and its alteration can lead to loss of cell 

identity, cellular transformation or disease, and is generally incompatible with normal 

development [20,21]. 

The epigenomic landscape reflects the cellular and tissue diversity and changes in DNA 

methylation are a major feature of development. Genome- wide DNA methylation studies 
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have shown that there are numerous DNA methylation differences between adult tissues 

(T- DMRs) and within the same tissue at different developmental stages (DS- DMRs) 

[107-109]. These differences are due to the distinct cell types forming a tissue and to 

changes in the proportion of specific cell populations during development. Furthermore, 

because of tissues are made up of many cell types, each cell type acquires a very 

distinctive epigenomics signature. This means that, despite sharing similar global mCpG 

content, they gain a cell-type specific genomic DNA methylation landscape that gives an 

identity card for different cells and governs and stabilizes an elected gene expression 

program. In summary, DNA methylation profiles are unique to individual cells or tissue 

types [110-112]. However, if on one side this kind of study have identified numerous 

region that on average are differentially methylated between tissues, on the other side they 

have provided little evidence about the dynamics of the process generating these 

differences. This is because these studies take in consideration the genome- wide CpG sites 

distribution with an only relatively high resolution. 

 

In this chapter, using the Deep- Bis it has been performed an in-depth methylation analysis 

(coverage 200.000-300.000 reads/sample) of DDO promoter region in different tissues at 

different developmental stages. This has allowed to analysing the methylation status at 

single molecule resolution with a high level of resolution. D-aspartate oxidase (DDO) is 

FAD-containing enzyme that selectively deaminates bicarboxylic D-amino acids, such as 

D-aspartate (D-Asp) and D-glutamate [113-115]. In fact, it has been shown here a peculiar 

feature of DDO gene, to undergo physiological methylation and demethylation processes 

in different tissues and in different stages of development. Molecules are grouped in 

methylation classes, defined as the number of methylated cytosine per molecule, 

independently of their position. This allowed to describing the methylation and 

demethylation dynamics. Then, it has been investigated the epialleles distribution in 

different mice and different tissues during the developmental, in order to test the 

hypothesis that the origin of epipolymorphism in a tissue is not a stochastic event, rather a 

genetically and/or environmentally driven phenomenon, developmentally regulated, 

leading to an orchestrated distribution of epialleles among the entire population of cells. 

 

 

 



                               Tracking the evolution of DDO gene methylation profiles during mouse development 

 

- 35 - 

 

3.2 Results 

 

3.2.1 Choice of biological system and quantitative methylation analysis 

An ideal model to study the dynamics of CpG methylation and demethylation processes 

should include the following features: 1) being a physiological model involving tissues and 

not cell lines; 2) containing a genomic region containing a limited number of CpG sites; 3) 

these CpG sites should undergo opposite changes in methylation state in different tissues 

possibly reaching a similar methylation levels at the end of a dynamic process. Because it 

was recently found that DDO promoter region contains a limited CpG sites and that these 

undergo demethylation in brain during development [116] it has been checked here 

whether the same region could have an opposite behaviour in other tissues.  

 

DNA methylation was assessed through a strategy based on the locus- specific 

amplification of bisulfite- treated genomic DNA. An in-depth analysis to investigate the 

methylation state of the DDO promoter region at different pre- and post- natal 

developmental stages (E15, P0, P7 for the brain; from P0, P15 and P60 for the lung; from 

P0, P15 and P90 for the gut) was performed. The region upstream the transcription start 

site (TSS), spanning nucleotides -444 to -88 and containing 6 CpG sites (positions -363, -

330, -318, -242, -175, -125) was analysed (Fig. 3.1).  

 

Figure 3.1: Structure of the putative mouse DDO gene promoter. The transcriptional start site (TSS, +1) is 

indicated by an arrow. The putative regulatory upstream region (white box), exon 1 (black) are indicated. 

Position of CpG sites is indicated as relative to TSS. Position of the primers used for bisulfite analysis is 

indicated by arrows at the top of the map (DDO PR1 fw and DDO PR1 rev). 
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By a quantitative analysis, the average methylation of the analysed region had an opposite 

behaviour in gut and lung compared to brain (Fig. 3.2). In particular, a significant increase 

of average methylation degree (one-way ANOVA; p-value=0.001) was observed in gut 

from P0 (about 20% methylation) to P90 (about 40%) and in lung from P0 (about 20%) to 

P60 (about 40%), while a significant decrease (one-way ANOVA; p-value=0.001) in brain 

from E15 (60%) to P7 (40%) was observed (Fig. 3.2). Note that at the final time points for 

each tissue a similar methylation degree (about 40%) was observed. These observations 

prompted to perform a bioinformatics methylation classes analysis (qualitative analysis) 

aimed to gain insights into the dynamics of methylation and demethylation processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Average DNA methylation degree of the DDO gene during mouse ontogenesis for gut, lung 

and brain (c). The graphs show the global average methylation degree for each developmental stage. Each 

bar represents the mean percentage of DNA methylation, along with its corresponding 95% CI.  
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3.2.2 Methylation classes analysis during CpG methylation process  

The methylation phenomenon, observed in gut and lung, was analysed in terms of 

methylation classes distribution (Fig. 3.3). Based on the number of observed methylated 

CpGs, amplicons-reads were classified into seven methylation classes: unmethylated, 

mono- methylated, bi- methylated, tri- methylated, tetra- methylated, penta- methylated, 

hexa- methylated. A methylation class is defined as the number of methylated CpGs 

independently by their position. Fig. 3.3 shows how the frequencies of these classes vary in 

lung and gut along with CpG methylation increase. Moving from early to late 

developmental stages, a decrease of the un-methylated molecules (~2-fold for gut and 

~1.6–fold for lung) and mono- methylated molecules (~2-fold for gut and ~1.4–fold for 

lung) frequency was observed. The frequency of bi- methylated molecules seems to not 

vary during the global methylation process related to ontogenesis while an increase of tri-, 

tetra-, penta- and hexa- methylated was observed. 

 

Figure 3.3. Frequency of each methylation class during mouse ontogenesis for lung and gut. Each 

methylation class is represented with a specific colour. All the values are expressed as the mean and 

corresponding 95% CI.   

 

 

3.2.3 Methylation classes analysis during CpG demethylation process 

When the demethylation phenomenon was analysed in terms of changes in methylation 

classes distribution, it has been found that, also in this case, different classes are differently 
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affected by the phenomenon (Fig. 3.4). In particular, a strong increase of un-methylated 

molecules frequency (~3.6-fold) and a mild increase (~1.6-fold) of mono-methylated ones 

was observed. The frequency of higher methylation classes (from bi - to hexa- methylated) 

generally decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Frequency of each methylation class during mouse brain ontogenesis. Each methylation class 

is represented with a specific colour. All the values are expressed as the mean and the corresponding 95% CI. 

 

 

In summary, at the final time points, all the tissues analysed showed a similar amount 

(around 40%) of average methylation (Fig. 3.2): statistical test failed to show any 

significant difference among them (one- way ANOVA, p-value > 0.1974). Therefore, by 

quantitative point of view, these tissues were not distinguishable. Conversely, qualitative 

analysis, based on the distribution of methylation classes, showed statistically relevant 

differences among the three tissues (Chi- squared test, p-value < 0.05) and, in particular, 

the profiles distributions in tissues undergoing methylation increase (lung and intestine) 

(Fig. 3.3) appeared very similar each with other and were substantially different with 

respect to the brain, which undergo demethylation (Fig. 3.4). 
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3.2.4 Epialleles frequency distribution at DDO promoter in brain is 

conserved in different mice  

The DDO region under investigation contains 6 CpG sites, potentially giving origin to 64 

epialleles (2
6
) (Table 1). These ranges from unmethylated to fully methylated epialleles, 

including all the possible configurations of mono-methylated (n=6), di-methylated (n=15), 

tri-methylated (n=20), tetra-methylated (n=15), and penta-methylated (n=6). 

Table 1 shows the epialleles frequency obtained from the analysis of brains (n=3) at E15 

stage. In Fig. 3.5a a graphical representation of the 64 epialleles in brain from different 

mice is reported. Several interesting aspects were worth of note. At E15, where the average 

methylated level was evaluated at about 56% (Fig.3.2a), the fully methylated molecules 

represented about 13%, the unmethylated molecules were about 10% while the remaining 

77% of cells bear one of the 62 intermediate epialleles (spanning from mono- to penta- 

methylated) which, although with slightly different frequency, were almost all represented 

in the brain cell mixture. Thus, all the 62 epialleles give a variable contribution to the 

global methylation (about 56%) observed at this developmental stage. 

Surprisingly, to be noted that the frequency of each of the 64 possible epialleles is 

extremely conserved in the brain from different mice at E15 stage. Indeed, analysing the 

differences between epiallele frequencies of the three mice, it was found that the 90% of 

the methylation profiles shows an absolute difference in the percentage of occurrence 

lower than 0.5% and a relative difference lower than 0.33 (see Methods). 

Taken together, these results suggest that the profile (frequency distribution) of all the 

epialleles present in the brain cell mixture (glia, glia subtypes, neurons) is constant in all 

mice analysed, providing an important insight: the generation of methylation profiles is 

deterministic and not stochastic. 

 

 

3.2.5 Epialleles frequency distribution at DDO promoter is conserved in 

different mice also in other tissues  

The eventuality that the frequency distribution epialleles was conserved in different mice 

also in other tissues was investigated. This hypothesis was tested in gut (Table 1 and Fig. 

3.5b) and in lung (Table 1 and 3.5c). 

Table 1 shows the epialleles frequency obtained from the analysis of gut (n=3) and lung 

(n=2) at P0 stage. In Fig. 3.5b-c a graphical representation of the 64 epialleles in gut and 
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lung from different mice is reported. In these tissues, at P0 stage fully methylated 

molecules represented about 1% for gut and for lung, the unmethylated molecules were 

about 45% for gut and about 40% for lung, while the remaining percentage (54% for gut 

and 59% for lung) of cells bear one of the 62 intermediate epialleles with slightly different 

frequency. So, as observed in brain, also in gut and lung there is a variable contribution of 

the 62 intermediate epialleles to the global methylation (about 20%) observed at this 

developmental stage. 

Surprisingly, it was then confirmed that the frequency of each of the 64 possible epialleles 

is extremely conserved in these tissues from different mice at P0. Indeed, analysing the 

differences between epiallele frequencies of the three mice, it was found that the 90% of 

the methylation profiles shows an absolute difference in the percentage of occurrence 

lower than 0.7% and a relative difference lower than 0.33 (see Methods).  

Taken together, these results suggest that the profile (frequency distribution) of all the 

epialleles present in the cell mixture of these tissues, is highly conserved in different mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                               Tracking the evolution of DDO gene methylation profiles during mouse development 

 

- 41 - 

 

Table 1. Epialleles frequency distribution at DDO promoter in different mice and different tissues 

(whole brain, lung and gut). A and B) 64 epialleles obtained with 6 CpG sites. These ranges from 

unmethylated to fully-methylated epialleles including all the possible configurations of mono-methylated 

(n=6), di-methylated (n=15), tri-methylated (n=20), tetra-methylated (n=15), and penta-methylated (n=6). 

White circles represent un-methylated CpG, while black circle represent methylated CpG. C) Epialleles 

frequency in different mice (n=3) in whole brain. D) Epialleles frequency in different mice (n=3) in gut. E) 

Epialleles frequency in different mice (n=2) in lung. 
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Figure 3.5. Graphic representation of epialleles frequency distribution at DDO promoter in different 

mice and different tissues: A) brain, B) gut, C) lung. On the left, the percentage of unmethylated, fully- 

methylated and intermediate methylation epialleles is reported for each mouse. On the right, on x-axis all the 

possible 
m

CpGs combinations (epialleles; unmethylated, mono-, bi-, tri-, tetra-, penta-, fully- methylated) are 

reported, while on y- axis the epialleles frequency is reported. 

 

 

 

A) 

B) 

C) 
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3.2.6 Epialleles frequency distribution at DDO promoter is conserved in 

different mice also in different developmental stages  

It has been then evaluated if the conservation of epialleles frequency distribution at DDO 

promoter in different mice was retained also in different developmental stages.  

To be tested if the correlation was affected by the extreme epialleles (unmethylated and 

fully- methylated) frequency values, it was calculated both including and removing them. 

As an example, in Fig. 3.6 a scatterplot with and without the extreme epialleles is reported 

only for a pair of mice (Mouse 1 and Mouse 2) at adult stage (P7) in brain. 

 

 

Figure 3.6. Pearson correlations between frequency of epialleles in mouse 1 and mouse 2 at adult stage 

(P7) in brain. On the left, the scatter plot includes unmethylated (red circle) and fully- methylated (green 

circle) epialleles. On the right, the same scatter plot without including unmethylated and fully- methylated 

epialleles. * indicates statistically significant correlations. 

 

 

To be note that in both cases, there is a high correlation between the two mice as far as the 

epialleles frequency (Pearson correlation coefficient > 0.9, p-value < 2.2e-16).  

Although the analysed region undergoes significant methylation changes during 

development, this high conservation was strikingly retained in all analysed tissues at each 

of the successive analysed developmental stages (P0 and P7 for brain, P15 and P90 for gut, 

P15 and P60 for lung). By excluding the unmethylated and fully- methylated epialleles, the 

observed distribution of epialleles frequency is highly correlated between mice pairs 

(Pearson correlation coefficient > 0.9, p-value<0.05; Table 2).  

Taken together, these results suggest that each epiallele contributes with a different 

frequency to the global methylation, but its relative frequency is always conserved among 

different mice for each tissue under investigation (brain, lung and gut) at a given 
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developmental stage. Thus, the methylation profiles trend in different mice, during the 

same developmental stage, is highly conserved, indicating that probably the CpG sites  

methylation is due to a deterministic event rather than a stochastic one. This demonstrates 

again the deterministic nature of the genesis of the methylation profiles and of their 

distribution inside cell population. 

 

Table 2. Pearson correlation values between epialleles frequency distribution in different mice in 

different developmental stages and in different tissues. The unmethylated and fully methylated epialleles 

were removed. All the correlations are statistically significant (p-value < 0.05) 

 

 

3.2.7 Stable intermediate epialleles among different tissues at adult stage  

In order to evaluate if there is a correlation between tissues as regard the intermediate 

epialleles distribution, for each tissue, the epialleles frequencies have been averaged 

among the three mice. The analysis was carried out at the adult stage (Brain=P7; Gut=P90; 

Lung=P60), because at this stage methylation and demethylation processes reach about a 

same global level (40%; Fig. 3.2). Unmethylated and fully- methylated epialleles were 

excluded from this analysis, because their frequencies are highly different from the 

intermediate epialleles ones. (Fig. 3.7a). If the 62 intermediate epialleles, ranging from 

mono- to penta- methylated, are considered, a strong positive correlation among the three 

tissues was found, and in particular in the case of: 

Tissue Stage M1 vs M2 M1 vs M3 M2 vs M3 

HB E15 0.98 0.99 0.98 

HB P0 0.96 0.94 0.88 

HB P7 0.97 0.92 0.96 

     

Gut P0 0.97 0.98 0.97 

Gut P15 0.93 0.88 0.97 

Gut P90 0.75 0.80 0.96 

     

Lung P0 0.95 - - 

Lung P15 0.99 - - 

Lung P60 0.99 - - 
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 gut against brain, rho=0.85, p-value <2.2*10
-16

 (Fig. 3.7b); 

 gut against lung, rho=0.63, p-value = 1.3*10
-9

 (Fig. 3.7c); 

 brain against lung, rho=0.87, p-value <2.2*10
-16

 (Fig. 3.7d) 

Taken together, these results suggest that the intermediate epialleles frequencies are highly 

conserved among different tissues at adult stage. 

 

Fig. 3.7 Pearson correlations between tissues at adult stage (Brain=P7; Gut=P90; Lung=P60). A) Each 

bar represents the mean percentage of unmethylated and fully-methylated epialleles in brain (blue), gut (red) 

and lung (grey), along with its corresponding 95% C.I. B) Correlation between the percentage of epialleles in 

gut and in brain; C) Correlation between the percentage of epialleles in lung and in brain; D) Correlation 

between the percentage of epialleles in gut and in lung. * indicates statistically significant correlations.  

 

 

A) 
B) 

C) D) 
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3.2.8 Dynamic change of epialleles during brain development  

Because DDO region undergoes to significant demethylation, along with DDO gene 

activation, during early post-natal stages (from 57% (in E15) to 35% (in P7) on average; 

Fig. 3.3a), it has been also decided to follow the dynamic change of each of the 64 

epialleles during this period (Fig. 3.8).  

Analysis of the results showed that the frequency of the unmethylated epialleles increases 

from 10% (in E15) to 30% (in P7) where fully methylated molecules decreases from 14% 

(in E15) to 5% (in P7). To identify those epialleles whose frequency changes in a 

statistically significant manner from the early to late developmental stage, it has been 

defined a coefficient of epialleles frequency variation (see Methods). Only those epialleles, 

whose 4-standard error confidence interval of the coefficient of variation does not include 

the value zero, were considered to be varying in a statistically significant manner among 

stages. As shown in Fig. 3.9, with exception of few penta- (-363-330-318-242-175; -363-

330-318-242-125) and one tetra-methylated epiallele (-363-330-318-242) that showed a 

consistent decrease (≈4%), most of the intermediate epialleles underwent only slight 

changes with a prevalence of increased frequency of some mono and di-methylated and 

decreased frequency of some tri, tetra- and penta-methylated molecules.  
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Figure 3.8. Methylation profiles (epialleles) analysis of the DDO promoter region during early brain 

developmental stages (from E15 to P7). On the left the frequencies of un- and full- methylated epialleles 

are reported. On the right the methylation profiles trend of all the intermediate epialleles (from mono- to 

penta- methylated), generated by the combination of the 6 CpG sites present in this genomic region, is 

shown. 
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Figure 3.9. Coefficient of epialleles frequency variation from early to late developmental stage. For 

each epiallele the coefficient of epialleles frequency variation among developmental stages is reported with 

the corresponding 4 standard errors C.I. Coefficient variation values, which are different from zero, indicate 

statistically significant variations among stages.  

 

 

3.3 Discussion 

Methylation and demethylation phenomena have been addressed by several different 

techniques and have been traditionally investigated through quantitative approaches, 

namely by studying CpG average methylation degree in a given genomic region [85-91]. 

Such kind of approach gives important information on the general relationships between 

methylation and expression but might be not able to describe the complex epigenetic 

structure and dynamics within a cell population. Indeed, quantitative approaches assume 

that methylation status is quite uniform in the population of cells under study.  

In this work, it has been tested a different approach capable of looking at the individual 

methylation conformation, in terms of methylation classes and epialleles, of single 

molecules. This qualitative approach is potentially able to describe methylation dynamics 

with a higher level of definition than quantitative one. Quantitative and qualitative 

approaches were compared in describing methylation and demethylation dynamics 

occurring through developmental stages of three different mouse tissues. DDO was used as 

model gene because, during development, this gene undergoes methylation in lung and gut 

(as described in this work) and demethylation in the brain [116]. Moreover, the chosen 

system allowed to study these processes in a natural context (tissues rather that cell lines), 

and to follow methylation changes occurring during development, thus avoiding any 

artefacts due to the action of drugs. Finally, the analysed DDO methylation/demethylation 

processes are relevant for gene function, and thus possibly a consequence of a 



                               Tracking the evolution of DDO gene methylation profiles during mouse development 

 

- 49 - 

 

deterministic phenomenon, since these are accompanied by gene activation (brain) or gene 

repression (gut and lung) [116].  

Overall, the results show that the qualitative approach has a greater informative content 

than the quantitative one. First, the results notice that at the end of the 

methylation/demethylation events occurring in the analysed time window, equal global 

methylation degree in gut, lung and brain, corresponded to a different distribution of 

methylation classes. In particular, the distribution of methylation classes are very similar in 

lung and gut and clearly differ from that observed in brain. The similarity between tissues 

undergoing methylation and their difference from a tissue undergoing demethylation 

suggests an effect of the processes (methylation versus demethylation) that produced the 

observed molecules on their class distribution. Thus, qualitative approach allowed to 

describe in detail the molecules created during the methylation and demethylation 

processes, respectively.  

 

Then, to evaluate if qualitative approach allows to gain further information, the evolution 

of methylation profiles (epialleles) during mouse development in somatic tissues was 

evaluated. 

When the epialleles level analysis has been performed, it has been found that: 

1. the frequency of each of the 64 possible epialleles and their distribution is 

extremely conserved in different mice, also analysing different tissues (whole 

brain, lung and gut). 

2. This high conservation is strikingly retained at each of the successive analysed 

developmental stages (E15, P0 and P7 for brain, P0, P15 and P90 for gut, P0, P15 

and P60 for lung).  

3. During development, there is a considerable change of extreme epialleles 

(unmethylated and fully- methylated), while most of the intermediate epialleles 

undergoes only slight changes. 

4. These intermediate epialleles frequencies are highly conserved among different 

tissues at adult stage. 

These results suggest that each epiallele contributes with a different frequency to the global 

methylation, but its relative frequency is always conserved among different mice for each 

tissue under investigation (brain, lung and gut) at a given developmental stage. Each of the 

observed combination of 
m

CpG positions represents a specific single molecule methylation 

profile occurring in a given percentage of cells of the analysed cell populations. Thus, the 
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observed phenomenon appear to be a consequence of a precise mechanism governing the 

formation and maintenance of predetermined methylation profiles in each of the different 

cell types forming a tissue rather than a consequence of a random action of DNMTs at the 

analysed region’s CpGs. In other words, these results led to the conclusion that in the 

somatic tissues, epialleles are generated in a perfectly conserved fashion and the frequency 

of each epiallele is determined in a well- orchestrated fashion. Indeed, this highly 

conserved methylation profiles trend indicates that probably the CpG sites methylation 

(and thus, the generation of epialleles) is not a stochastic event, rather a deterministic one, 

developmentally regulated, leading to an orchestrated distribution of epialleles among the 

entire population of cells. This deterministically regulated distribution of different 

epialleles evokes the possible existence of a novel combinatorial code of CpG methylation. 

These results might encourage the practice of the novel qualitative approach to study DNA 

methylation, because it accounts for the high polymorphism of methylation profiles in cells 

populations derived from individual somatic tissues [39] and may potentially detect cell 

origin, functional state or structure state. Indeed, once again it is clear that the simple 

evaluation of averaged degree of methylation does not give a complete picture of 

methylation status inside a cell population. On the contrary, the qualitative analysis can 

provide an adding value to the traditional methylation analysis, because it allows a more 

detailed and faithful tracking of epialleles inside a cell population. This is useful above all 

in tissues, which are composed by a mosaic of epigenetically different cells. 

 

 

3.4 Materials and Methods 

 

3.4.1 Deep Bisulfite Amplicon Sequencing (Deep- Bis)  

Whole brain, lung and gut tissues were collected from three mice at different 

developmental stages including the following time points: 

• Brain: embryonal stage 15 days (E15), at birth (P0), 7 post-natal days (P7) 

• Gut: at birth (P0); 15 post-natal days (P15); 90 post-natal days (P90)  

• Lung: at birth (P0); 15 post-natal days (P15); 60 post-natal days (P60) 

Methylation status was assessed through a strategy based on the locus- specific 

amplification of bisulfite- treated genomic DNA, followed by Illumina MiSeq sequencing.  
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The following bisulfite-specific primers were used to obtain tiled amplicons: DDO PR1 fw 

5’-gtgtgtttTtgaggaggtgaTaTtTa- 3’ (nt position from -468 to -444) - and DDO PR1 rev 5’-

aActtaccctccattAAtccatAcc-3’ (nt -88 to -63) (amplicon size 405 bp). The capital letters in 

the primers sequences indicate the original C or G, respectively. 

 

Reads in FASTQ format obtained from sequencing were processed with Paired-End reAd 

mergeR (PEAR; http://sco.h-its.org/exelixis/web/software/pear/) for paired end assembling 

and initial quality filtering. Only those reads with the following features were retained: 

 a mean quality score (Phred) greater than 30; 

 a read length between 400 and 500 nucleotides;  

 an overlapping region within paired-end reads of  at least 40 nucleotides. 

Resulting reads were then converted in FASTA format using PReprocessing and 

INformation of SEQuence (Prinseq; http://prinseq.sourceforge.net/). 

 

Reads were then aligned to the corresponding bisulfite converted reference sequence using 

AmpliMethProfiler (see Chapter 2).  

By applying a series of quality filters on the read length and the alignment quality, it has 

been retained only those reads characterized by: 

 length ±50% compared to the reference length; 

 primer of the corresponding gene identified with at least 80% of similarity; 

 at least 98% of bisulfite efficiency, calculate as percentage of conversion of non-

CpG cytosines into thymines over total number of C in a context not CpG; 

 to be aligned for at least 60% of their bases with the reference sequence  

 C status at the all CpG positions recognised as methylated (1) or unmethylated (0). 

Aligned reads containing ambiguous calls (presence of gaps or A or G) at the CpG 

dinucleotide were removed.  

Methylation state was estimated by observing base calls (T/C) at CpG sites in the mapped 

reads. 

 

On average, for each sample and for each developmental stage, we obtained an average of 

152,572 amplicon reads for the brain, 49,976 for the lung and 74,400 amplicons for the 

gut.   

 

http://sco.h-its.org/exelixis/web/software/pear/
http://prinseq.sourceforge.net/


                               Tracking the evolution of DDO gene methylation profiles during mouse development 

 

- 52 - 

 

3.4.2 Quantitative methylation analysis 

The methylation percent of each developmental stage was calculated by averaging CpGs 

methylation percentages of all CpG sites in the target region and then over all samples 

belonging to the same developmental stage. 

Let T={t1, …. , tn} be the set of analysed mice. 

Let S={s1, ….. , sk} be the set of analysed developmental stage. 

Let n_reads (ti, sj) be the number of reads obtained for the mouse ti at the developmental 

stage sj. 

Let m (ti, sj, r,k) ∈ 0,1, the methylation status of the k-th CpG site in the read r in the mouse 

ti at developmental stage sj. 

 

For each mouse ti and each developmental stage sj, the methylation percentage of the k-th 

CpG site was computed as:  

𝑚 (𝑡𝑖 , 𝑠𝑗, 𝑘) =  
∑ 𝑚(𝑡𝑖, 𝑠𝑗, 𝑟, 𝑘)

𝑛_𝑟𝑒𝑎𝑑𝑠(𝑡𝑖,𝑠𝑗)
𝑟=1

𝑛_𝑟𝑒𝑎𝑑𝑠(𝑡𝑖, 𝑠𝑗)
 

 

For each mouse ti and each developmental stage sj, the average methylation percentage of 

the whole region was computed as:  

m (𝑡𝑖, 𝑠𝑗) =
∑  m (𝑡𝑖, 𝑠𝑗, 𝑘)

nCpG
𝑘=1

nCpG
 

where nCpG is the number of the CpG sites. 

 

Finally, for each developmental stage j, the average methylation percentage was computed 

as: 

m (𝑠𝑗) =
∑ 𝑚 (𝑡𝑖 , 𝑠𝑗) n

𝑖=1

𝑛𝑠𝑙(𝑗)
 

where nsl (j) is the total number of samples belonging to the developmental stage j. 

 

 

3.4.3 Methylation classes frequency 

The frequency of each methylation class in each developmental stage was calculated as the 

ratio of the number of reads belonging to a given methylation class over the total number 
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of reads obtained for that developmental stage. The obtained value was then averaged on 

all samples belonging to the same developmental stage. 

Denoting with (ti, sj) ∈ SxT the sample ti at the developmental stage sj and with nsl(j) the 

number of samples belonging to the developmental stage sj. 

For each methylation class j in {1,...,k}, the frequency of the methylation class j in each 

stage sl was computed as: 

𝑐𝑙𝑎𝑠𝑠𝑀𝑒𝑡ℎ (𝑗, 𝑠𝑙) =  
∑

𝑛_𝑟𝑒𝑎𝑑𝑠 (𝑡𝑖 , 𝑠𝑙, 𝑗)
𝑛_𝑟𝑒𝑎𝑑𝑠 (𝑡𝑖 , 𝑠𝑙 )

𝑛𝑠𝑙
𝑖=1

𝑛𝑠𝑙(𝑗)
   

where n_reads(ti, sl, j) is the number of passing filter reads for the mouse ti at the 

developmental stage sl falling into the methylation class j. 

 

 

3.4.4 Epialleles frequency 

For each sample, the frequency of each epiallele in each developmental stage was 

calculated as the ratio of the number of reads of a given epiallele over the total number of 

reads found in each developmental stage and in each sample. The obtained value was then 

averaged on all samples belonging to the same developmental stage. 

Denoting with (ti, sj) ∈ SxT the sample ti at the developmental stage sj and with nreads(ti, 

sj) the total number of reads belonging to the sample ti at the developmental stage sj. 

For each epiallele e in {1,…,2
nCpG 

}, the frequency of epiallele e in the stage sj in the 

sample ti was computed as: 

𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑖 , 𝑠𝑗, 𝑒) =  
𝑛_𝑟𝑒𝑎𝑑𝑠 (𝑡𝑖 , 𝑠𝑗, 𝑒)

𝑛_𝑟𝑒𝑎𝑑𝑠 (𝑡𝑖, 𝑠𝑗)
 

where n_reads(ti, sl, e) is the number of passing filter reads for the mouse ti at the 

developmental stage sl for the epiallele e. 

 

For each epiallele e in {1,…,2
nCpG

}, its frequency in the stage 𝑠𝑗 was computed as: 

𝐸𝑝𝑖𝐹𝑟𝑒𝑞 (𝑠𝑗, 𝑒) =  
∑ 𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑖, 𝑠𝑗, 𝑒)

𝑛𝑠𝑙(𝑠𝑗)

𝑖=1

𝑛𝑠𝑙 (𝑠𝑗)
 

where nsl (𝑠𝑗) is the total number of samples belonging to the developmental stage j. 
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3.4.5 Epialleles similarity 

The epialleles similarity among mice belonging to the same developmental stage was 

assessed by analysing the distribution of absolute and relative difference between their 

observed epiallele frequencies.  

For each epiallele j, let 𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑖 , 𝑠𝑗, 𝑒) be the frequency of epiallele e in the mouse ti at 

the developmental stage sj, computed as described above. 

For a pair of mice, ti and tl, the absolute and relative differences of epiallele e frequency at 

the developmental stage sj were respectively calculated as: 

Abs_Diff = 𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑖 , 𝑠𝑗, 𝑒) - 𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑙, 𝑠𝑗, 𝑒)  

 

Rel_Diff =  
Abs_Diff

𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑖, 𝑠𝑗, 𝑒) +  𝐸𝑝𝑖𝐹𝑟𝑒𝑞 ( 𝑡𝑙 , 𝑠𝑗, 𝑒) 
 

Then, the distribution of relative (absolute) differences for each developmental stage was 

defined, by considering the 2
nCpG

 relative (absolute) differences between the frequency of 

the same epiallele in each pair of mice belonging to that developmental stage.  

Finally, the epiallele similarity for each developmental stage was evaluated by considering 

the 90
th

 percentile of its relative (absolute) difference distribution. 

 

 

3.4.6 Coefficient of epialleles variation from the early to late 

developmental stage 

To identify those epialleles whose frequency changes in a statistically significant manner 

from the early to late developmental stage, the following approach has been used.  

For each epiallele, it has been modelled the observed frequency of the epiallele in each 

mouse as linear function of the developmental stage. In this model, a zero slope means no 

variation, in terms of epiallele frequency, from the early to late stage. Hence, by means of 

a linear regression the intercept and the slope of the above model were estimated, along 

with their corresponding standard errors, for each epiallele. Only those epialleles, whose 4-

standard error confidence interval of the slope (named as coefficient of epialleles variation) 

does not include the value zero, were considered to be varying in a statistically significant 

manner among stages. 
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3.4.7 Statistical analysis 

An alpha level of 0.05 was used for all statistical tests.  

All statistical analyses were performed using R statistical package ver. 3.2.1 

(http://www.R-project.org). 
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Chapter 4  

 

 

Tracking the evolution of CDKN2A and CDKN2B genes 

methylation profiles during acute myeloid leukemia 

progression 

 

4.1 Introduction 

Aberrant DNA methylation is extensively investigated for its role in promoting tumor 

evolution and chemo-resistance [117,118]. These epigenetic changes impact the biological 

activity of cells through their modification of transcriptional states and regulatory 

machinery. 

Recent models of tumor origin and progression have compared carcinogenesis to 

evolutionary processes [119-121], where tissue provides the context for cancer cell 

evolution. According to these models, every round of cell division is driven by the 

acquisition of new mutations, arising multiple, genetically diverse subclonal populations of 

cells inside the tumor [122]. During tumor progression, cancer cells undergo clonal 

selection (selective pressure), leading to emergence, from the population of cancer cells, of 

clones best adapted to conditions within the tissue ecosystems, which provide the 

determinants of fitness selection, i.e. the adaptive landscape [123]. Clonal evolution 

involves the interplay of selectively advantageous or driver lesions, selectively neutral or 

passenger lesions and changes to the microenvironment [124] that modify the fitness of 

tumor cells carrying those lesions. 
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Besides genetic diversity, there is increasing recognition that epigenetic changes, such as 

DNA methylation and histone deacetylation, can occur throughout tumorigenesis [125]. 

Tumor cells carrying specific epigenetic variants may have an adaptive advantage. Since 

both genetic and epigenetic variations result in abnormal gene expression, it is possible 

that genetic and epigenetic mechanisms synergize to determine the speed of cancer 

progression. 

Epigenetic alterations are linked to tumour heterogeneity: within an individual tumour, 

DNA methylation patterns are highly polymorphic. Increasing coverage of methylation at 

single nucleotide level shows in normal and cloned cells in culture an extreme degree of 

polymorphism [39]. A possible explanation of this heterogeneity is the relation between 

DNA methylation and DNA damage and repair [126-129]. 

 

Acute myeloid leukemia (AML) is a hematological malignancy characterized by 

uncontrolled proliferation of clonal neoplastic hematopoietic precursor cells leading to the 

disruption of normal hematopoiesis and bone marrow failure. Several recent studies point 

to a major pathogenic role for aberrant epigenetic programming in acute myeloid leukemia 

[130-133].  

Aberrant methylation in AML is associated with hypomethylation in oncogenes, such as 

H-RAS [134] and hypermethylation in tumor suppressor genes (TSGs) [135,136], which 

are gene involved in the cell cycle. Inside this TSGs group, of particular note are the 

cyclin-dependent kinase inhibitors (CKI) CDKN2A (p14ARF) and CDKN2B (p15). These 

genes control the progression from the G1 to the S phase of the cell cycle [134,137,138]. 

Despite strong evidence that AMLs, and tumors in general, are composed of mixtures of 

distinct epigenetic clones rather than being monoclonal, the accurate description of this 

epigenetic heterogeneity overtime, i.e., at different stages of AML progression and before 

and after treatment is still lacking. Indeed, currently, most of the studies on methylation in 

cancer cells, both genome-wide or of specific DNA segments, measure quantitative 

differences, i.e., percentage of methylation of single CpGs in a given sequence. It is 

impossible to deduce from these data the configuration of methylated CpGs in the same 

molecule. 

 

In the present study, deep sequencing of bisulfite treated DNA derived from bone marrow 

and peripheral blood cells of a patient during different stages of AML was carried out.  

Combining qualitative and quantitative approaches, it has been analysed methylation of the 
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promoter regions of CDKN2A (p14ARF) and CDKN2B (p15) suppressor genes during the 

progression of the disease, the demethylating therapy with 5-azacytidine (5-azaC, Vidaza), 

during the remission and the final relapse. The analysis was carried out by investigating the 

methylation classes and the distribution of specific epialleles, alleles differing only by 

methylation. The clonal composition at epigenetic level was dissected during the different 

phases of disease progression focusing on few specific loci. The restriction of the 

epigenomic landscape increases the coverage and allow the identification of rare epialleles, 

which may evolve and become dominant at the end stage of the disease. Importantly, a 

primary human cells carrying dominant oncogene mutations enter replicative senescence 

and does not grow if CDKN2A or 2B are expressed [139]. Methylation and silencing of 

these suppressors is positively selected during tumor progression. This is the first extensive 

qualitative methylation analysis of CDKN2A-B during the AML in the same patient.  

 

 

4.2 Results  

 

4.2.1 Quantitative methylation analysis of p14 and p15 genes 

DNA methylation was assessed through a strategy based on the locus- specific 

amplification of bisulfite- treated genomic DNA. In the case of p14, a region of 431 bp 

around the transcription start site (TSS), spanning nucleotides -33 to +398 and including 

35 CpG sites was analysed. In the case of p15, a region of 365 bp around the transcription 

start site (TSS), spanning nucleotides -275 to -+90 and including 27 CpG sites was 

analysed.  

Samples are derived from cells of the bone marrow cells of a single patient at time 0 (MDS 

diagnosis, myelodysplasia, no signs of acute leukemia) to 2 months later (AML, diagnosis 

acute myeloid leukemia), 6 months after the therapy with a demethylating drug (THER), 8 

months later (REL I) and final relapse (REL II). 

 

The quantitative methylation analysis p14 and p15 region is shown in the Fig.4.1.  

Quantitative analysis of p14 methylated alleles shows that the stages MDS and AML have 

a comparable methylation level (about 7%), which decreases in the successive stages 

THER, REL I and REL II (Fig.4.1, left). 
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Quantitative analysis of p15 methylated alleles shows that global methylation of the region 

analysed is comparable in all stages, except in stage THER (demethylating therapy) 

(Fig.4.1, right). Specifically, again MDS and AML has a comparable global methylation 

level (about 15%, and precisely 15% for MDS and 17% for AML), which dramatically 

decreases during therapy (THER), until to reach an about 2%. Then, going towards the last 

stage (REL II), the global methylation level gradually increases again, until to reach almost 

the initial level (about 20%, and precisely 14% for REL I and 19% for REL II).  

 

 

Figure 4.1. DNA methylation degree of p14  and p15 genes during disease progression. The pie charts 

show the average methylation degree for each stage of the disease.  

 

 

4.2.2 Distribution of methylation classes of p14 and p15 epialleles  

In this section, it has been determined in the same samples indicated in Fig.4.1 the 

distribution of the various classes of epialleles. Specifically, on the basis of the methylated 

CpGs, amplicons-reads have been classified into methylation classes, from unmethylated 

to fully- methylated. A methylation class is defined by the number of methylated CpGs, 

independently on the location or  position in the DNA molecule. Considering that the 

sequences derive from identical molecules with the same 5’ and 3’ ends, two sequences 

represent a single cell. 

Analysing how methylation classes are distributed in the different stages of disease for p14 

gene (Figure 4.2), it is to be observed that: 
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 in MDS and AML (onset of disease), the 7% of global methylation (Fig. 4.1a) is 

mainly represented by mono-, bi- and tri- methylated molecules, which account for 

more than the 60% of the population (64% for MDS and 68% for AML). 10% of 

cell population has constituted by unmethylated molecules (11% for MDS and 5% 

for AML). The remaining percentage (30%) constitute by molecules with higher 

levels of methylation (from tetra-methylated molecules onwards; 25% for MDS 

and 27% for AML).  

In the successive stages (THER, REL I and REL II), the 5% of global methylation, 

observed in Fig. 4.1a, is given by molecules with low level of methylation and in 

particular: 

 after therapy (THER), there is a net increase of unmethylated molecules, which 

constitute almost the 45% of the molecules population; the 52% of the population is 

composed by mono-, bi- and tri- methylated molecules; only the 3% of the 

population is composed by molecules with an higher level of methylation (from 

tetra-methylated molecules onwards).  

 In the last two stages of disease (REL I and REL II), about the 35% of the 

molecules is un- methylated (36% for REL I and 35% for REL II); 

approximatively, the 60% is composed by mono-, bi- and tri- methylated molecules 

(59% for REL I and 58% for REL II); about the 5% (5% for REL I and 6% for REL 

II) of the population is composed by molecules with an higher level of methylation 

(from tetra-methylated molecules onwards).  

 There is a consistent increase of molecules with low methylation level, essentially 

mono- methylated in REL I, which pass from 31% in THER to 34% in REL I, and 

bi- methylated in REL II, which pass from 15% in THER to 21% in REL II.   

Taken together, these results suggest that p14 epialleles, at the onset of disease are highly 

heterogeneous, spanning from unmethylated to higher levels of methylation. After one 

year, induced by the demethylating action of the therapy, molecules with high methylation 

level (5- AzaC sensitive molecules) disappear, while low methylated molecules increase 

(5-AzaC resistant molecules). In the last two stages, corresponding to the relapse and 

death, these 5-AzaC resistant molecules increase their frequency and suggesting a strong 

positive selection on a specific class of epialleles.  



Tracking the evolution of CDKN2A and CDKN2B genes methylation profiles during AML progression 

 

- 62 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2.  Percentage of each methylation class during disease progression for p14 gene. On x-axis the 

methylation classes are reported, while on the y- axis the frequency of each methylation classes is reported. 

Each bar represents a methylation class.  
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Fig.4.3 shows the distribution of the various classes of p15 epialleles during the evolution 

of the disease: 

 in MDS and AML (onset of disease) 15% of methylated molecules (Fig. 4.1b) is 

represented by highly heterogeneous methylated molecules. Molecules with one to 

eight methyl groups represent 85% of the population (86.7% for MDS and 88.6% 

for AML)  and each one of them is present with the similar frequency (less than 

15%). The unmethylated molecules constitute less than 10% (7% for ToC and 5% 

for ToD), while the contribution of molecules belonging to higher methylation 

classes (containing from nine to 17 methylated CpG sites) is minimal (6% for ToC 

and ToD).  

 after one year of therapy (THER), the net decrease of methylation level observed 

(about 2%, Fig. 4.1b) is balanced by the net increase of unmethylated molecules, 

which represent the 64% of the whole population, and of the mono- methylated 

classes, which represent the 24% of the whole population. The remaining 12% is 

represented by molecules belonging to other methylation classes (from bi- 

methylated onwards), that, individually, are less than 10%.  

 In the last two stages of disease (REL I and REL II), the composition of molecules 

inside the 20% of global methylation (Fig. 4.1b) highly heterogeneous: in general, 

these molecules belong to all methylation classes (from mono- methylated 

onwards). They are present individually with a similar frequency (less than 15%) 

and globally contributed for about 80% (77% for REL I and 83% for REL II) to the 

composition of molecules population of these stages. There is a net loss of 

unmethylated molecules with respect to THER stage: these molecules constitute 

only the about 20% (23% for REL I and 17% for REL II). To be note that in REL II 

there is a light increase of molecules containing from 7 to 11 methylated CpG sites 

with respect to REL I and to the initial stages (MDS and AML).  

Taken together, these results suggest that p15 epialleles, at the onset of disease (MDS and 

AML) are highly heterogeneous, represented by molecules with one to eight methylated 

CpG sites, all with similar frequency. After one year, in line with the demethylating action 

of the therapy, molecules with high methylation level (5-AzaC sensitive molecules) 

disappear, while those ones hypo- and, in particular unmethylated, seems to be resistant (5-

AzaC resistant molecules). In the last two stages of the disease, corresponding to the 

relapse and death, heterogeneous methylated molecules re- appear, and each class is 

homogeneously distributed. There is a dramatic decrease of unmethylated molecules and 
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the occurrence of molecules with higher methylation level (containing from 7 to 11 

methylated CpG sites), mainly in ToG. Some of them could be generated de novo or could 

be derived by amplification of the few 5-AzadC resistant molecules. So, we have the loss 

and/or the gain of methylation classes during the progression of the disease. 
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Figure 4.3.  Frequency of each methylation class during disease progression for p15 gene. On x-axis the 

methylation classes are reported, while on the y- axis the frequency of each methylation classes is reported. 

Each bar represents a methylation class. 
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4.2.3 Intra-individual epiallelic diversity  

This analysis determines the epiallelic configuration of methylated CpGs in single DNA 

molecules. To quantify the epiallelic diversity (or clonal diversity) inside each sample, it 

has been adapted diversity measures borrowed from ecology [99]. Indeed, cancers can be 

viewed from an ecological perspective that focuses on interactions of organisms (in this 

context, the organisms are the cell clones) with their environment (in this context, the 

environment is the tissue) and among each other [119,140,141]. When applying an 

ecological perspective to human cancers, each sample is not a single organism, but a 

micro- environment consisting of thousands of species (clonal populations of tumor cells), 

that in this context are represented by the specific epialleles. Each epiallele represents a 

single allele of a cell. 

A simple measure is the number of epialleles (clones) in the sample, expressed as species 

richness. Ecological measures of diversity typically integrate both number and abundance 

of epialleles (or clones): one of these measures is the Shannon diversity index (H), which 

has been used in the following analysis. 

 

The estimated intra- individual epiallelic diversity for p14 gene is reported in the Table1 

and Fig. 4.4.  

First of all, the number of epialleles (expressed as species richness, S) has been estimated 

for each sample- stage (Table 1 and Fig. 4.4a). With the same number of reads, the initial 

stages of disease (MDS and AML) show the higher number of epialleles (856 and 903, 

respectively), while during therapy (THER) and after (REL I and REL II) the species 

richness dramatically decreases (377 for THER, 427 for REL I and 368 for REL II).  

 

However, this parameter (the number of epialleles) is not sufficient to describe the intra- 

individual epiallelic diversity because it does not take into account for the proportion and 

distribution of each species (epiallele) within the samples. Thus, Shannon diversity index 

(H) has been used to assess the composition of the epiallelic repertoire: it is high at the 

onset of disease (MDS and AML), reaching a value of about 5.5 and decreases from the 

therapy to last stage, reaching a value of about 3. This further confirmed what it has been 

observed in the methylation classes analysis: before therapy there is a higher level of 

clonal (or epiallelic) heterogeneity than after therapy. As regard the distribution of these 

epialleles, high value of H (near to Hmax) indicates the presence of diverse and equally 
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distributed species. At the onset of disease (MDS and AML), the Shannon index is closer 

to its expected value (Hmax), suggesting that they are equally distributed. With the 

progression of disease (THER, REL I and REL II) the observed Shannon index (3.4, 3.7 

and 3.6, respectively) becomes almost the half of its expected value (Hmax=about 6), 

suggesting that the various epialleles are not homogenously distributed, but dominant 

species (epialleles) are selected. 

Taken together, these results suggest that in the case of p14 gene, before therapy there is a 

higher level of clonal heterogeneity than after therapy (high Shannon index in MDS and 

AML). Because of the Shannon diversity index incorporates a combination of richness and 

evenness, the increase of the diversity index cannot be attributed to changes in the 

distribution itself, but instead to an increase of the total epialleles repertoire itself. The 

occurrence of different clonal families indicates that at the onset (MDS and AML) the 

disease is highly polyclonal. On the other side, therapy with 5-AzaC (Vidaza) considerably 

reduces all the clonal families, by eradicating clones with higher methylation level (5- 

AzaC sensitive clones). The last stages of disease (REL I and REL II), corresponding to 

the relapse and depth, show a clonal heterogeneity similar to that found after (THER), 

suggesting a strong positive selection of few clones resistant or selected by therapy. These 

clones could be generated de novo (from REL I to REL II) or could be derived by 

amplification of the few 5-AzaC resistant molecules. In conclusion, in the last stages, the 

disease is epigenetically oligoclonal as far as p14 epiallelic distribution is concerned. 
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Table 1. Intra- individual diversity summary statistics for p14 gene in different stages of the disease. 

For each stage the number of reads (N), the species richness (S), the Shannon Diversity Index (H) and the 

expected Shannon Diversity Index (Hmax=logS) are reported. 

 

 

 

 

 
Fig. 4.4. Graphic representation of the summary statistics reported in the Table 1. On the x-axis the 

different stage of the disease are reported; on the y- axis the species richness, S (a) and the Shannon diversity 

Index, H (b) is reported.  

 

 

 

 

 

 

 

 

 

 

 

 

Samples N S H Hmax 

MDS 2494 856 5.46 6.75 

AML 2494 903 5.69 6.80 

THER 2494 377 3.40 5.93 

REL I 2494 427 3.70 6.06 

REL II 2494 368 3.62 5.91 
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The estimated intra- individual epiallelic diversity for p15 gene is reported in the Table2 

and Fig. 4.5.  

 

Table 2. Intra- individual diversity summary statistics for p15 gene in different stages of the disease. 

For each stage the number of reads (N), the species richness (S), the Shannon Diversity Index (H) and the 

expected Shannon Diversity Index (Hmax=logS) are reported. 

 

 

 

 

 

Fig. 4.5. Graphic representation of the summary statistics reported in the Table 2. On the x-axis the 

different stage of the disease are reported; on the y- axis the species richness, S (a) and the Shannon diversity 

Index, H (b) is reported.  

 

 

First of all, the number of epialleles (expressed as species richness, S) has been estimated 

for each stage (Table 2 and Fig. 4.5a). With the same number of reads, the initial stages of 

disease (MDS and AML) are associated with the higher number of epialleles (2496 and 

Samples N S H Hmax 

MDS 6392 2496 6.9 7.8 

AML 6392 2938 7.3 7.9 

THER 6392 338 2.3 5.8 

REL I 6392 2077 5.8 7.6 

REL II 6392 2024 6.2 7.6 
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2938, respectively). With the therapy (THER) a lot of them disappear and the species 

richness dramatically decreases (338). In the last stages of disease (REL I and REL II), 

there is again an increase of the number of epialleles (2077 for REL I and 2024 for REL 

II). 

 

However, this parameter (the number of epialleles) is not sufficient to describe the intra- 

individual epiallelic diversity because it does not take into account the proportion and 

distribution of each species (epiallele) within the samples. Thus, Shannon diversity index 

(H) has been used to assess the composition of the epiallelic repertoire. The diversity index 

is higher at the onset of disease (MDS and AML), reaching a value of about 7, decreases 

with the therapy (THER, 2.27) and then increases again in REL I and REL II (about 6). 

This further confirms what it has been observed in the methylation classes analysis: at the 

initial stages of disease there is a higher level of clonal (or epiallelic) heterogeneity, 

compared to therapy. Therapy reduces considerably the epigenetic heterogeneity of p15 

epialleles, which increases again in the last stages (REL I and REL II), reaching levels 

comparable to the initial stages. As far as the distribution of these epialleles, high value of 

H (near to Hmax) indicates the presence of diverse and equally distributed species. At the 

onset of disease (MDS and AML), the Shannon index is closer to its expected value (Hmax), 

suggesting that the epialleles are equally distributed. After one year of therapy (THER), the 

observed Shannon index (2.2) decreases significantly and is almost the half of its expected 

value (Hmax=about 6), suggesting that the various epialleles are not homogenously 

distributed, but one or more than one dominant species (epialleles) are present. In the last 

stages of disease (REL I and REL II) the observed Shannon index (5.8 and 6.1, 

respectively) are almost close to the expected value (Hmax=about 7.6), suggesting that the 

various epialleles are equally distributed.  

Taken together, these results suggest that in the case of p15 gene, at the initial stages of 

disease there is a higher level of clonal (or epiallelic) heterogeneity (high Shannon index in 

MDS and AML). Because of the Shannon diversity index incorporates a combination of 

richness and evenness, the increases in the diversity index cannot be due to changes in the 

distribution itself, but instead to an increase of the total epialleles repertoire itself. The 

occurrence of different clonal families indicates that at the onset (MDS and AML), the 

disease is highly polyclonal, as far as p15 epiallelic distribution is concerned. On the other 

side, therapy with 5-AzaC (Vidaza) considerably reduces all the most of the families, by 

eradicating a lot of clones (5-AzaC sensitive clones). The last stages of the disease (REL I 
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and REL II), corresponding to the relapse and death, are composed by different clonal 

families, indicating that the disease at these stages is highly polyclonal, due or to 

amplication of older variants (5-AzaC resistant clones) or generation of new clones. 

 

 

4.2.4 Inter- individual epiallelic diversity  

The degree of epigenetic diversity across samples was evaluated using the concept of 

epigenetic distance [101] based on Euclidean distance for p14 (Table 3) and p15 (Table 4) 

genes. The larger the distance, the more dissimilar the two samples’ methylation profiles 

are to each other.  

Euclidean distance of pairwise comparisons among samples has been represented by 

Principal Coordinate Analysis (PCoA) (Figs. 4.6 and 4.7). Both for p14 and p15 genes, the 

PCoA plots show a clustering of the tumor samples before therapy on one side (MDS and 

AML) and after therapy (REL I and REL II) on the other side. This means that inside each 

one of two cluster, samples have a small Euclidean distance in terms of epialleles 

composition. Indeed, in the case of p14 gene this distance is estimated 21.7 for MDS/AML 

and 10.6 for REL I/ REL II, while in the case of p15 it is estimated 41.2 for MDS/AML 

and 54.4 for REL I/ REL II. For both genes, THER is separated from these two clusters, 

even if in the case of p14 gene THER stage is closer to the REL I/ REL II cluster than 

MDS/AML. 
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Table 3. Euclidean distance matrix (tables) for p14 gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Principal coordinate analysis among samples computed by the Euclidean distance matrix of 

the Table 3 for p14 gene. Samples that are ordinated closer together have smaller  dissimilarity  values 

(smaller Euclidean distance in species composition)than those ordinated further apart.  

 

 

 

 

 

 

 

 

 MDS AML THER REL I 

AML 21.7    

THER 56.7 68.0   

REL I 40.5 52.5 21.0  

REL II 34.4 47.1 29.5 10.6 



Tracking the evolution of CDKN2A and CDKN2B genes methylation profiles during AML progression 

 

- 73 - 

 

 

Table 4. Euclidean distance matrix (tables) for p15 gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Principal coordinate analysis among samples computed by the Euclidean distance matrix of 

the Table 3 for p15 gene. Samples that are ordinated closer together have smaller dissimilarity values 

(smaller Euclidean distance in species composition) than those ordinated further apart.  

 

 

4.3 Discussion  

Currently, methylation analysis, both genome-wide or of specific DNA segments, gives 

information on the percentage of methylation of single CpGs in a given sequence. It is 

impossible to deduce from these data the methylation status of all the CpGs belonging to 

the same molecule. Moreover, quantitative analysis is not able to describe the complex 

epigenetic structure of a cell population, unless the methylation status is quite uniform in 

the cell population under study. On the contrary, the qualitative one helps to better 

 MDS AML THER REL I 

AML 41.3    

THER 84.0 102.3   

REL I 45.1 58.7 78.2  

REL II 84.3 91.8 123.5 54.4 
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understand changes of methylation state inside a heterogeneous cell population, such as a 

tissue, or even better a tumor tissue.  

 

In the present study, it has been shown the first deep and extensive qualitative analysis of 

methylated alleles of two suppressor genes CDKN2A (p14ARF) and CDKN2B (p15) 

during different stages of acute myeloid leukemia (progression, demethylating therapy 5-

azaC, remission and relapse) of a patient. Combining quantitative (methylation percentage 

for sample) with qualitative (configuration of methylated CpGs in single DNA molecules), 

it has been possible to define the epigenetic landscape of different stages of disease. The 

qualitative analysis was performed at methylation classes and at single molecule 

(epialleles) level. The information obtained by these two different levels can be integrated 

in order to gain insight about methylation heterogeneity degree and distribution and about 

tumor clonality in different stages of disease. This approach provides a powerful method to 

track tumor evolution and to analyse the source of heterogeneity of tumor cells. The 

relevant results are discussed below. 

 

 

4.3.1 High degree of methylation heterogeneity at the onset of disease for 

p14 and p15 genes 

The high level of heterogeneity before demethylating therapy (5-AzaC, Vidaza) for p14 

and p15 genes has given by molecules (epialleles or clones) belonging to different 

methylation classes. In other words, there is not a dominant methylation classes or a 

dominant molecules (epialleles or clones), but a lot of molecules, belonging to different 

methylation classes, equally distributed. The occurrence of different clonal families 

indicates that the disease at this stage is highly polyclonal. This does not exclude the 

presence of possible cell clones carrying founder epi-mutations, but maybe the presence of 

other cell clones carrying the passenger epi- mutations could help to create a micro- 

environment that favour the growth and the proliferation of cells carrying founder epi-

mutations, conferring them a selective advantage.  
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4.3.2 Low degree of methylation heterogeneity during demethylating 

therapy (5-AzaC, Vidaza) for p14 and p15 genes 

Therapy with 5-AzaC drug eliminates and/or drastically reduces molecules with high 

methylation level (5-AzaC sensitive molecules), while those ones with low methylation 

level seems to be resistant (5-AzaC resistant molecules). Thus, therapy with 5-AzaC 

dramatically reduces the most of the clonal families. This suggests a strong positive 

selection of few clones carrying alleles with a low number of methylated CpG sites and 

maybe they have acquired a higher fitness. Besides, selection is context- specific. As a 

consequence, some of the epi- mutations that are selectively advantageous at certain stages 

of tumor progression may not be present in the other stages. 

Indeed, the landscape of tissue ecosystems of cancer can be radically altered by anti-cancer 

therapy, in this case by 5-AzaC drug. Therapeutic intervention may decimate cancer clones 

and erode their habitats, but at the same time it may provide novel selective pressures, as 

well as new resources and opportunities, for the expansion of those therapy-insensitive 

cancer cells [142], causing the eventual relapse of the disease [143-145]. In this case, the 

pre-existence of resistant clones within a tumor can make the difference between tumor 

extinction (treatment success) and tumor evolutionary adaptation (treatment failure). 

 

 

4.3.3 Different behaviour after demethylating therapy for p14 and p15 

genes 

The two onco- suppressors show different behaviour in the last stages of diseases, 

corresponding to the relapse and death.  

In the case of p14 gene, the low clonal heterogeneity, obtained with demethylating therapy, 

is conserved. This suggests that for this gene at these stages the disease is oligoclonal. 

Some of them could be generated de novo (from REL I to REL II) or could be derived by 

amplification of the few 5-AzaC resistant molecules. However, PCoA analysis seems to be 

in favour of the second possibility, given the presence of a cluster composed by THER, 

REL I and REL II.  

In the case of p15 gene, in the last stages of the disease there is a re- occurrence of a high 

clonal heterogeneity, derived from molecules belonging to different methylation classes, 

each one of them that is homogeneously distributed. This suggests that at these stages the 

disease is highly polyclonal composed by different clonal families, derived from either 
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amplication of older variants (5-AzaC resistant clones) or generation of new variants. 

However, PCoA analysis seems to be in favour of the second possibility, given that THER 

is distant from the cluster REL I/ REL II.  

The different behaviour of these two genes can find different explanations:  

 The tumor microenvironment generated after therapy could exercise an higher 

selective pressure for cell clones of p14 than those one of p15. 

 Stochastic processes may produce the high rate of methylation polymorphism. 

 Deterministic events may contribute to the gain or loss of methylation at specific 

loci 

 

 

4.4 Materials and Methods 

 

4.4.1 Deep Bisulfite Amplicon Sequencing (Deep- Bis) 

The methylation profiles of the region near the TSS of CDKN2A (p14ARF) and CDKN2B 

(p15) suppressor genes were analysed by deep sequencing based on the locus- specific 

amplification of bisulfite- treated genomic DNA derived from bone marrow (BM) and 

peripheral blood cells of a patient (aged 60) during different stages of AML. This patient 

showed an initial disease progression from myelodysplasia (MDS) to acute myeloid 

leukemia (AML), with an increase of BM blasts (MDS=12% blasts and AML=35% blasts). 

He was then treated with demethylating therapy azacitidine (5-AzaC; Vidaza), with 

haematological remission achievement after 6 months (THER=2% blasts). Unfortunately, 

after 8 months of remission, the patient underwent to relapse (REL I=22% blasts and REL 

II=80%blasts) resulted rapidly fatal. 

 

Methylation status was determined by amplicon-based bisulfite sequencing using Illumina 

MiSeq. The following bisulfite-specific primers were used to obtain tiled amplicons: p14 

PR1 fw 5’-ggtgYgtgggtTTTagtTtgTa-3’ (nt position from -33 to -12) - and p14 PR1 rev 

5’- AaaAcctccaccRAcRAtta-3’ (nt +379 to +398) (amplicon size 431 bp) and p15 PR1 fw 

5’- attaggagTtgagggTagtgg-3’ (nt position from -275 to -296) - and p15 PR1 rev 5’-

AacRcAccRaActcaaaAcc-3’ (nt +71 to +90) (amplicon size 365 bp). The capital letters in 

the primers sequences indicate the original C or G, respectively. CpGs including in the 

primers have been excluded from the further analysis.  
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Reads in FASTQ format obtained from sequencing were processed with Paired-End reAd 

mergeR (PEAR; http://sco.h-its.org/exelixis/web/software/pear/) for paired end assembling 

and initial quality filtering. Only those reads with the following features were retained: 

 a mean quality score (Phred) greater than 30; 

 a read length between 400 and 500 nucleotides;  

 an overlapping region within paired-end reads of  at least 40 nucleotides. 

Resulting reads were then converted in FASTA format using PReprocessing and 

INformation of SEQuence (Prinseq; http://prinseq.sourceforge.net/). 

 

Reads were then aligned to the corresponding bisulfite converted reference sequence using 

AmpliMethProfiler (see Chapter 2).  

By applying a series of quality filters on the read length and the alignment quality, it has 

been retained only those reads characterized by: 

 length ±50% compared to the reference length; 

 primer of the corresponding gene identified with at least 80% of similarity; 

 at least 98% of bisulfite efficiency, calculate as percentage of conversion of non-

CpG cytosines into thymines over total number of C in a context not CpG; 

 to be aligned for at least 60% of their bases with the reference sequence  

 C status at the all CpG positions recognised as methylated (1) or unmethylated (0). 

Reads with ambiguous calls (presence of gaps or A or G) at the CpG dinucleotide 

were removed.  

Methylation state was estimated by observing base calls (T/C) at CpG sites in the mapped 

reads. 

 

 

4.4.2 Rarefaction analysis 

For both genes, a highly different number of amplicon reads (depth) for each sample was 

obtained. The sequence depth is only related to the number of sequences for sample 

obtained after a next generation sequencing experiment. In order to standardize the data 

obtained for each sample with different sequencing counts and to avoid bias in the 

successive analysis due to a different sampling, a rarefaction step was performed. A 

random subsampling of reads, corresponding to the minimum number of sequences 

belonging to a sample within the dataset, was taken for each sample. Thus, the successive 

http://sco.h-its.org/exelixis/web/software/pear/
http://prinseq.sourceforge.net/
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analysis have been performed on 2494 amplicon reads for sample for p14 gene and on 

6932 amplicon reads for sample for p15 gene.  

 

 

4.4.3 Quantitative methylation analysis of p14 and p15 genes  

For each sample, the global methylation degree was calculated by averaging CpGs 

methylation percentages of all CpG sites in the sample.  

 

 

4.4.4 Methylation classes frequency for p14 and p15 genes  

For each sample, the frequency of each methylation class was calculated as a ratio of the 

number of reads, belonging to each methylation class, over the total number of reads found 

in each sample. 

 

 

4.4.5 Intra- individual diversity  

In order to evaluate the intra- individual diversity of the samples, diversity measures such 

as richness (number of unique epialleles) and the Shannon diversity index [100] were 

calculated using “vegan” package of R statistics environment (see Chapter Data Analysis 

for more details). The larger the Shannon diversity index, the more diverse the distribution 

of the epialleles.  

 

 

4.4.6 Inter- individual diversity  

The degree of epigenetic similarity was measured by Euclidean distance and visualized 

through Principal coordinates analysis (PCoA) analysis (see Chapter Data Analysis for 

more details). 

 

All statistical analyses were performed using R statistical package ver. 3.2.1 

(http://www.R-project.org). 

 

 

 

http://www.r-project.org/
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Chapter 5  

 

 

Discussion 

 

Most of the studies on DNA methylation, regardless of the techniques employed, uses the 

conventional quantitative approach, namely they take in consideration the average 

methylation level, summarizing data into average percentage of methylated CpGs in 

specific genomic regions, or the methylation percentage for single CpG site, or looking at 

CpGs genome-wide distribution with an only relatively high resolution [85-91]. Such kind 

of approach gives important information on the general relationships between methylation 

and expression but might be not able to describe the complex epigenetic structure and 

dynamics within a cell population. Indeed, quantitative approaches assume that 

methylation status is quite uniform in the population of cells under study. As a 

consequence, this approach obscures important positional information encoded within the 

epiallelic DNA methylation patterns.  

 

In the present work, in order to better decode epigenetic data, a new way to analyse DNA 

methylation, based on qualitative approach, was developed. Qualitative analysis of 

methylation profiles is an innovative way to look at methylation of a genomic region. The 

qualitative approach, specifically looking at the individual methylation conformation of 

single molecules, provides an added value to the quantitative one. This qualitative 

approach is useful to dissect the clonal composition at epigenetic level and to recognise 

different methylation profiles inside an heterogeneous cell population (i.e., tissues) for a 

given genomic locus and to evaluate the stochastic and /or deterministic components.  
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True representation of multiple methylation patterns can only be fully characterised by 

clonal analysis. This implies to restrict the genomic space under investigation and to 

increase the coverage of a specific region by at least 1000 folds in order to obtain an 

effective statistical representation. Indeed, the qualitative approach takes advantage of the 

Deep Bisulfite Amplicon Sequencing (Deep- Bis), which allows to reach a very high 

coverage (about 200.000-300.000 reads/sample) of selected loci, overcoming in this way 

the limitations linked to the low coverage of the genome- wide technique. Working with 

DNA molecules with the same 5’ and 3’ ends and sequencing for many thousands folds the 

same locus to get a deep coverage of the site, it is possible to evaluate the methylation of 

hundreds molecules at time at single nucleotide level and derive the configuration of each 

C  in the sequence relative to the other Cs. Deep sequencing provides the ability to 

investigate clonal methylation patterns with an unprecedented resolution level, enabling 

the proper characterization of the heterogeneity of methylation patterns, and allow to infer 

cell population characteristics accurately. In this way, observed changes in average 

methylation levels can then be interpreted according to epiallelic diversity, discerning, for 

example, a regulated increase in the frequency of a specific epiallele from multiple 

stochastic changes in the frequencies of many epialleles [94]. 

 

As the number of sequences increases, the ability to analyse this type of data then becomes 

a significant challenge. Moreover, currently available tools for methylation analysis lack 

output formats that explicitly report CpG methylation profiles at the single molecule level. 

In the present study, it has been developed AmpliMethProfiler, a python-based pipeline for 

the extraction at the single molecule level of CpG methylation profiles of amplicons from 

Deep- Bis of multiple DNA regions. AmpliMethProfiler processes FASTA files and uses 

BLASTN to align in a fast and reliable way input reads to a bisulfite converted reference 

sequence. The output reports the methylation status of each CpG site in a read in binary 

code (0 if the site is unmethylated, 1 if the site is methylated) and summarises DNA 

methylation according to epiallelic methylation patterns and can be readily used for the 

downstream quantitative and qualitative analysis.  

 

The qualitative approach provides a new analytical framework to analyse methylation and 

allows the use of standard population genetics methods. Indeed, this way of analysing 

methylation data is accompanied by the possibility to apply notions and techniques derived 

from the population genetics and ecology fields. Metrics, statistical methods and tools to 
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analyse population structures in term of species composition, species richness, difference 

in the population composition and structure among samples can be easily imported and 

adapted for the analysis of methylation profiles from Deep- Bis. Specifically, the epialleles 

can are subdivided in several classes, according their content of methylated CpGs (mono, 

bi and tri- or more-methylated molecules). Then, the mixture of the molecules (epialleles) 

derived from the sequencing can be treated as a population of haploid organisms, 

biological samples as the micro- environement in which these organisms are harboured and 

differences among samples can be treated as differences among populations. Thus, each 

biological sample can be seen as a community, each epiallele can be seen as a specie, 

while each read can be seen as an individual. By this way, it is possible to describe the 

general methylation landscape of the various samples. 

 

The qualitative approach is highly versatile and can be easily adaptable to different 

contexts and biological systems. In this work, it is applied on two experimental models: 

mouse development and AML progression before and after the demethylating therapy, in 

order to describe the methylation and demethylation dynamics, to investigate the epialleles 

distribution, to follow their evolution and to gain insight on epigenetic heterogeneity 

degree at specific loci. In both cases, it is clear that the qualitative approach has a greater 

informative content than the quantitative one, because it allows to dissect the epigenetic 

complexity of a sample. The most relevant results for these two biological systems are the 

following. 

During mouse development, epialleles are generated in a perfectly conserved fashion and 

the frequency of each epiallele is determined in a well- orchestrated fashion in the somatic 

tissues. Indeed, the highly conserved methylation profiles trend indicates that probably the 

CpG sites methylation (and thus, the generation of epialleles) is not a stochastic event, 

rather a deterministic one, developmentally regulated, leading to an orchestrated 

distribution of epialleles among the entire population of cells. This deterministically 

regulated distribution of different epialleles evokes the possible existence of a novel 

combinatorial code of CpG methylation. Moreover, the qualitative approach allowed to 

describe in detail the molecules created during the methylation and demethylation 

processes, respectively.  

Using leukemia samples at different stages of disease, it is possible to gain insights about 

methylation heterogeneity degree and tumor clonality during the different phases of 

disease progression. During different stages of AML, the distribution of polymorphic 
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methylated molecules (epialleles) changes over time. In particular, at the onset of disease 

there is a high degree of methylation heterogeneity. Then, cells carrying particular 

epialleles undergo selection during demethylating treatment, leading to a decrease in 

epigenetic heterogeneity. Finally, the high degree of methylation heterogeneity re- occurs 

at some genomic sites. Thus, the epiallele dynamics at different stages may indicate 

important genomic regions involved in these biological processes and may be used as an 

estimate of the evolutionary distance between stages of diseases or development, thus 

expanding the  knowledge of epigenetic heterogeneity and how epialleles can change 

within a patient, over time, across the genome.  

 

In general, the qualitative approach could be a novel, rapid mean by which to detect and 

trace genomic areas with shifts in their cells’ epigenetic states and can be used to define 

epiallelic clonality, tumor evolution, and epigenome dynamics. This approach allows to 

analyse and to follow the genesis, the variability and the evolution of the epialleles in 

specific genomic regions and in different biological systems. Furthermore, it could help to 

better understand the mechanisms underlying the changes of methylation status inside of 

single cells during methylation and demethylation processes. This approach also allows to 

evaluate the possible stochastic and/or deterministic components during methylation and 

demethylation phenomena, because it accounts for the high polymorphism arisen from the 

mixture of epialleles with variable frequencies in cells populations derived from individual 

somatic tissues. Indeed, with this approach, coupled with the increase of the coverage of a 

specific genomic region, observed changes in average methylation levels can be 

interpreted according to epiallelic diversity (epipolymorphism), discerning, for example, a 

regulated increase in the frequency of a specific epiallele from multiple stochastic changes 

in the frequencies of many epialleles. Indeed, the stochastic processes can lead to an 

methylation degree polymorphism, while the deterministic ones can determine the loss or 

the gain of methylation at specific loci.  

 

In conclusion, the method developed in this study can provide an added value to the 

traditional methylation analyses and can greatly extend the capacity to dissect the 

epigenetic heterogeneity in a cell population. The detection and the tracking of methylation 

patterns is an important step for unlocking the biological meaning of epigenetic 

heterogeneity. Moreover, the tracking of the methylation profiles is more faithful to the 
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epigenetic state of different loci and allows a more detailed overview of the methylation 

landscape in a tissue, which is composed by a mosaics of epigenetically different cells.  
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