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Abstract

Cloud computing adoption is rapidly growing thanks to the carried large technical and
economical advantages. Its effects can be observed also looking at the fast increase of cloud
traffic: in accordance with recent forecasts, more than 75% of the overall datacenter traffic
will be cloud traffic by 2018. Accordingly, huge investments have been made by providers
in network infrastructures. Networks of geographically distributed datacenters have been
built, which require efficient and accurate monitoring activities to be operated. However,
providers rarely expose information about the state of cloud networks or their design,
and seldom make promises about their performance. In this scenario, cloud customers
therefore have to cope with performance unpredictability in spite of the primary role
played by the network. Indeed, according to the deployment practices adopted and the
functional separation of the application layers often implemented, the network heavily
influences the performance of the cloud services, also impacting costs and revenues.

In this thesis cloud networks are investigated enforcing non-cooperative approaches,
i.e. that do not require access to any information restricted to entities involved in the
cloud service provision. A platform to monitor cloud networks from the point of view
of the customer is presented. Such a platform enables general customers—even those
with limited expertise in the configuration and the management of cloud resources—to
obtain valuable information about the state of the cloud network, according to a set of
factors under their control. A detailed characterization of the cloud network and of its
performance is provided, thanks to extensive experimentations performed during the last
years on the infrastructures of the two leading cloud providers (Amazon Web Services
and Microsoft Azure).

The information base gathered by enforcing the proposed approaches allows customers
to better understand the characteristics of these complex network infrastructures. More-
over, experimental results are also useful to the provider for understanding the quality
of service perceived by customers. By properly interpreting the obtained results, usage
guidelines can be devised which allow to enhance the achievable performance and reduce
costs. As a particular case study, the thesis also shows how monitoring information can be
leveraged by the customer to implement convenient mechanisms to scale cloud resources
without any a priori knowledge.

More in general, we believe that this thesis provides a better-defined picture of the
characteristics of the complex cloud network infrastructures, also providing the scientific
community with useful tools for characterizing them in the future.
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Chapter 1

Introduction

In this chapter we present the scenario in which this study is conducted, also introducing

the basic definitions and concepts adopted in the thesis. Afterwards, we outline the

motivations stimulating our research work. The ending part of the chapter outlines the

contribution and the organization of the thesis.

1.1 The emergence of the cloud model

1.1.1 Definitions and concepts

The idea behind cloud computing is not a new one, as computing facilities were envisioned

to be provided as a utility to the general public already in 1960s [1]. However, the term

cloud started gaining popularity from 2006, when Google’s former CEO Eric Schmidt used

it to describe services delivered across the Internet [2]. The definition of cloud computing

commonly accepted today has been published in 2011 by the American National Institute

of Standards and Technologies (NIST) [3]. According to this definition

“cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources(e.g., net-

works, servers, storage, applications, and services) that can be rapidly provi-

sioned and released with minimal management effort or service provider in-

teraction”.

This shared pool of configurable resources is commonly referred to as the cloud.

Cloud computing is envisioned as the new frontier of the Internet era. Indeed, thanks

to the rapid development of processing and storage technologies and to the success of
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the Internet, computing resources have become more and more cheaper and ubiquitously

available than before [2]. This technological trend has enabled the transformation of such

computing model—only hypothesized until few years before—into a commercial reality.

The evolution of cloud computing over the past few years is potentially one of the major

advances in the history of computing [4].

The emergence of cloud computing has tremendously impacted the Information and

Communication Technology (ICT) industry, where large companies—such as Amazon,

Microsoft, and Google—strive to provide more powerful, reliable, and cost-efficient cloud

platforms, and business enterprises seek to reshape their business models to gain benefit

from this new paradigm. Cloud computing is a general purpose technology that can

provide a fundamental contribution to promote growth and competition, also helping the

economy to recover from a severe downturn as the current one [5]. Indeed, the adoption of

the cloud paradigm is able to drastically reduce the fixed costs of entry and production. It

turns part of them into variable costs related to the production necessities, thus positively

impacting competition in all sectors where fixed ICT spending is crucial.

Several important classes of existing applications are becoming even more compelling

with cloud computing and contribute further to its momentum [6, 7, 8]. Interesting

examples encompass:

• mobile interactive applications, (e.g., services accessible from energy-constrained

devices with limited computational capabilities that respond in real time to infor-

mation provided by both human and non-human data sources); common practices

enabled by the cloud paradigm—such as offloading consuming tasks to the cloud—

allow to save energy and enhance service performance;

• parallel batch processing (e.g., analytics aimed at decision support); thanks to cloud’s

cost associativity (that allows customers to use hundreds of computers for a short

time) and programming abstractions such as MapReduce [9] or Hadoop [10], cloud

computing presents a unique opportunity for batch-processing and analytics jobs

that analyze terabytes of data; without the cloud paradigm, these jobs either would

have taken hours to finish or would have needed substantial expenditures to acquire

and maintain dedicated infrastructures to perform processing in acceptable time;

• on-demand storage (e.g., unstructured data buckets or database services); cloud

storage systems provide customers with the ability to store seemingly limitless



The emergence of the cloud model 3

amounts of data for any duration of time; customers have access to their data from

anywhere at any time and only pay for what they use and store; moreover, data

is durably stored using both local and geographic replication to facilitate disaster

recovery.

Essential characteristics. According to its standard definition [3], the cloud computing

model is supposed to have essential characteristics, such as: (i) on-demand self service,

(ii) broad network access, (iii) resource pooling, (iv) rapid elasticity, and (v) measured

service.

These characteristics guarantee that a consumer can unilaterally provision computing

capabilities (e.g., server time, network storage, broadband access) as needed, automati-

cally, and without requiring human interaction with service providers. These capabilities

are available over the network and can be accessed through mechanisms that promote

heterogeneous client platforms. The pooled resources composing the cloud (e.g., storage,

processing, memory, and bandwidth) allow to serve multiple consumers (multi-tenant

model), with resource assignment that follows consumers’ demand. Furthermore, dy-

namic resource assignment gives to the customers the illusion of infinite resources, able to

scale rapidly outward or inward with demand. It is worth noting how this characteristic

also generates a sense of location independence: the customer has no control or knowl-

edge over the precise location of the provided resources, but is allowed to access to them

only at a higher level of abstraction (e.g., geographic region, or even country). Finally,

cloud systems leverage metering capabilities at different levels of abstraction, in order to

both automatically control resources and implement pay-per-use billing models.

Deployment models. Cloud systems can be deployed according three main different

models: (i) private cloud, (ii) community cloud, and (iii) public cloud.

While for private clouds, the infrastructure is provisioned for the exclusive use by

a single organization, the community cloud is provisioned for the use of a community

of users with shared concerns. Both may be owned, managed, and operated by the

organization (one of the community in the case of community clouds) or by a third party,

and may exist on or off premises. Finally, the infrastructure of a public cloud exists on the

premises of cloud providers and is previsioned for the use of the generic public. It may be

owned, managed, and operated by a business, academic, or government organization. The

standard [3] also considers the existence of a fourth deployment model—i.e., the hybrid
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cloud—that is the composition of two or more cloud infrastructures (private, community,

or public) bound together by data and application portability, but still remaining unique

entities.

Involved entities. According to the standards roadmap provided by the NIST [11] five

major entities that perform tasks related to cloud computing can be introduced: (i) the

cloud provider, (ii) the cloud consumer, (iii) the cloud carrier, (iv) the cloud auditor, and

(v) the cloud broker.

The cloud provider is the entity responsible for making a service available to cloud con-

sumers. Cloud providers build the requested services, manage the technical infrastructure

required for providing the services, provision the services at agreed-upon service levels,

and protect their security and privacy. They are in charge of deploying, orchestrating,

managing the provided services, also guaranteeing privacy and security.

The cloud consumer represents a person (or an organization) that uses the service

from a cloud provider and maintains a business relationship with it. He/she requests

appropriate cloud services, sets up service contracts, uses the services, and is billed for

the services provisioned. The cloud consumer may also act as a service provider, as he/she

can utilize leased resources in order to setup new services accessible to final users that

may have no business relationship with the cloud provider. In the following, when we want

to emphasize the business relationship existing between the consumer and the provider,

we will refer to the former as cloud customer.

A cloud carrier acts as an intermediary that provides connectivity and transport of

cloud services between cloud consumers and cloud providers. Cloud carriers provide ac-

cess to consumers (and final users) through network, telecommunication, and other access

devices. The distribution of cloud services is normally provided by network and telecom-

munication carriers. According to the standard, carriers should also include transport

agents, i.e. business organizations that provide physical transport of storage media such

as high-capacity hard drives.

A cloud auditor is a party that can conduct independent assessments of cloud ser-

vices. The auditor can evaluate the services provided by a cloud provider in terms of

performance, security controls, or privacy impact.

A cloud broker is an entity that manages use, performance, and delivery of cloud ser-

vices and negotiates relationships between cloud providers and cloud consumers. Indeed,
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Figure 1.1: Layered cloud architecture and service models.

as cloud computing evolves, the integration of cloud services can be too complex for cloud

consumers to manage: in this case, a cloud consumer may request cloud services from

a cloud broker, instead of directly contacting a cloud provider. In more details, a cloud

broker can provide services in three categories: (i) service intermediation (i.e., enhancing

a given service by improving some specific capability and providing value-added services

to cloud consumers, e.g., managing access to cloud services, identity management, or

performance reporting, enhanced security); (ii) service aggregation (i.e., combining and

integrating multiple services into one or more new services e.g., by providing data inte-

gration and ensuring the secure data movement between the cloud consumer and multiple

cloud providers); (iii) service arbitrage (similar to service aggregation except that the

services being aggregated are not fixed).

A number of different interactions may exist among these entities. For instance, a

cloud consumer may request cloud services from a cloud provider directly or via a cloud

broker. A cloud auditor conducts independent audits and may contact the others (e.g.,

the carrier) to collect necessary information.

Cloud architecture and service models. Independently of the deployment model

adopted, the architecture of the cloud environment can be seen as separated into four

different layers: (i) the hardware layer, (ii) the infrastructure layer, (iii) the platform

layer, and (iv) the software layer.
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The hardware layer, typically implemented in datacenters, is responsible of managing

cloud physical resources (i.e., power and cooling systems, physical servers, switches and

routers). As a datacenter is typically composed of thousands of servers organized in racks

(interconnected through switches, routers, and other fabrics) typical issues at this layer

include the configuration of the hardware, or power and traffic management.

The infrastructure layer, also known as the virtualization layer, is in charge of pooling

storage and computing resources, by partitioning the physical resources. To this aim

virtualization technologies—such as Xen [12], KVM [13], and VMware [14]—are often

adopted, allowing to run multiple virtual machines (VMs) over the same physical server.

Thanks to the adopted technologies this layer is able to implement essential features, such

as the ability of dynamically assigning resources.

The platform layer consists of operating system and application frameworks (e.g.,

programming language execution environments, databases, web servers). Its purpose is

to minimize the burden of deploying cloud applications to the consumers.

The application layer consists of the actual cloud application, which can take advantage

of typical cloud features, such as automatic scaling to achieve better performance, increase

availability and reduce costs.

Each layer is loosely coupled with the layers above and below. This allows each layer

to evolve independently from the others. This property also guarantees to increase the

modularity of the architecture, thus enabling to support a wide range of applications

without sacrificing ease of management or ease of maintenance. Generally speaking,

cloud computing employs a service-driven business model [2]. Indeed, every layer of the

architecture presented can be implemented as a service to the layer above and acts as a

consumer of the layer below.

According to a commonly accepted partition, cloud services can be grouped in three

different categories [3]: (i) Infrastructure as a Service (IaaS), (ii) Platform as a Service

(PaaS), (iii) Software as a Service (SaaS).

IaaS allows the consumer to be provisioned with processing, storage, networks, and

other fundamental computing resources. The consumer is able to deploy and run arbi-

trary operating systems and applications. However, according to the layered model, the

consumer does not manage or control the underlying cloud infrastructure and sometimes

has possibly limited control over networking components (e.g., host firewalls).
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PaaS gives to the consumer the capability to deploy onto the cloud infrastructure ap-

plications acquired or directly created by the consumer using programming languages,

libraries, services, and tools supported by the provider. When accessing the cloud in-

frastructure at this layer, the consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, or storage, but has control

over the deployed applications and possibly configuration settings for the application-

hosting environment.

Finally SaaS offers the ability to leverage provider’s applications running on the cloud

infrastructure managed by the provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating systems, storage, or

even individual application capabilities, with the possible exception of limited user-specific

configuration settings.

Figure 1.1 summarizes the key concepts about cloud architecture and service models.

1.1.2 Public-cloud market

Public cloud adoption is growing faster than private cloud one. Indeed, it is possible

to register a greater adoption of public cloud resources, especially with strengthening

of security aspects, as the business sensitivity to costs associated with dedicated ICT

resources grows along with demand for agility [15]. Worldwide spending on public-cloud

services will grow at a 19.4% Compounded Average Growth Rate (CAGR)—almost six

times the rate of overall ICT spending growth—from nearly $70 billion in 2015 to more

than $141 billion in 2019 [16]. This growth is primary driven by large and very large

companies. Small and medium business will also significantly contribute however, as 40%

of the worldwide total will come from companies with less than 500 employees [16]. An

increasing number of organizations now also run mission-critical business applications on

cloud, indeed: a significant portion of them is migrating most or all of their infrastructure

to cloud IaaS, to avoid major capital expenditure, such as a hardware refresh or the

construction of a datacenter [17].

In more details, according to latest reports about public IaaS cloud computing, the

market is dominated by only a few global providers among the huge number of offers.

While there is a broad (and still increasing) number of cloud suppliers, most customers

are settling on just four providers: Amazon Web Services, Microsoft, IBM, and Google. As

of February 2016, together those four represent 51% of the total cloud market [18]. Studies
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Figure 1.2: Cloud services market share—Q4 2015. Data source: [18].

show that the cloud market is quite clearly bifurcating with a widening gap between the

big four cloud providers and the rest of the service provider community: developing and

maintaining the necessary global scale datacenter infrastructure, along with the required

marketing and operations support, is simply beyond the reach of all but a very small

number of players. Of the 51% share of the market that they hold, Amazon, Microsoft,

IBM, and Google represent the 31%, 9%, 7%, and 4%, respectively. So Microsoft, IBM,

and Google combine for 20% of the market, compared to Amazon’s 31% (see Figure 1.2).

Market share has therefore continued to become more heavily concentrated, although

the market has dramatically grown. In spite of the number of providers offering cloud

services the market is dominated by only a few global providers—most notably Amazon,

but increasingly also Microsoft: these two providers comprise the majority of workloads

running in public cloud IaaS in 2015 [17]. Amazon Web Services is the clear market

leader—with over a million active customers in more than 190 countries [19]—while Mi-

crosoft is the only clear challenger, also due to the continual investments in the latest

infrastructure technologies. Both providers are steadily expanding their global infrastruc-

ture whose growth is backed by billion investments: infrastructural expansion is claimed

to be a priority because of the direct benefits generated for the customers.



The emergence of the cloud model 9

1.1.3 Main advantages and obstacles to adoption

Cloud computing has a great impact on business thinking. It facilitates a change in the

way companies operate, as it enables them to react faster to business needs while driving

greater operational efficiencies. The cloud model however, introduces a non-negligible set

of issues, which proved to potentially limit it widespread adoption. In this section, both

the advantages carried by the cloud model and the issues raised by its adoption will be

briefly discussed.

The emergence of the cloud computing model and its popularity is motivated by a

number of both technical and economical peculiarities that carry advantages for both

the provider and the consumer. One of the most notable benefit is the improvement of

efficiency and the optimization of hardware and software resources utilization; for instance,

in cloud datacenters workloads can be distributed at a higher density on VMs thanks to

virtualization properties; active VMs can be also clustered, and migrated onto a limited

set of running physical servers; this allows to reduce the energy consumption for hardware

and network infrastructure [20].

Cloud computing can enable more energy-efficient use of computing power also pos-

itively impacting the environment [21, 22]. The average amount of energy needed for a

computational action carried out in the cloud is far less than the average amount for an

on-site deployment. This is because different organizations can utilize the same physical

resources, leading to a more efficient use of the shared resources. Providers claim they

are designing for energy-efficient performance with platforms that can support usages and

applications with dramatically decreased energy consumption, as their goal is to reduce

the environmental impact of their operations while continuing to meet high-performance

requirements for computing [23, 24].

Virtualization gives the tenants the illusion of a dedicated infrastructure with un-

limited resources, also guaranteeing security and fault isolation. The on-demand service

schema together with resource elasticity allows consumers to lease resources at runtime,

with provisioning time of minutes rather than weeks, adapting them to their actual needs.

Common practices also enhance robustness against disasters—also to consumers with re-

duced expertise and cash—as data can be easily duplicated across multiple geographic

sites.

Resources are accessible through the public Internet, thus enabling ubiquitous access

to them. This allows resources to be utilized from anywhere and any device (e.g., resource-
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constrained mobile devices), enhancing the flexibility degree of the applications, also

enabling collaboration scenarios harder to implement before.

These technical advantages reflect economical benefits to the cloud consumer. The

economic appeal of the cloud model is often described as “converting capital expenses

into operating expenses”. Indeed the absence of up-front capital expenses allows capital

to be redirected to core business investments. Thanks to resource elasticity, customers are

able to increase resource utilization, thus increasing efficiency. Moreover, the customers

are usually relieved from the complexity and the cost associated to maintenance issues,

such as updating software on the servers or reconfiguring the network.

Common use cases in which advantages carried by the cloud model are evident, en-

compass the ones reported in the following. The cloud model helps the customer design

and deploy services whose demand is unknown in advance: (e.g., a startup may need to

support a spike in demand when it becomes popular, followed by a potential reduction in

demand). Another common case is related to the deployment of services whose demand

varies with time. Indeed, provisioning a system to sustain the peak load exhibited few

days per month, leads to underutilization other times. The cloud model allows an orga-

nization to pay by the hour for resources, and may lead to cost savings also when the

hourly cost for renting a resource is higher than the cost to own one. Finally, cost asso-

ciativity, leads to perform faster batch analytics, by using hundreds of machines for one

hour, instead a single machine for hundreds of hours.

However these on-demand easily-usable features provided by cloud providers come at a

cost. Indeed, the advantages carried by the high level management interface leveraged by

consumers hide newly introduced challenges, that have proved to be non-trivial obstacles

to the adoption of the cloud paradigm in several application fields. From the one hand,

managing services from a higher level of abstraction (e.g., by deploying VMs, application

frameworks, and software containers) relieves the consumer from a number of manage-

ment issues. On the other hand, implementation details are often kept hidden, causing

troubleshooting, system assessment, and anomaly management to be more complex than

in other contexts, due to the limited visibility over the system and its characteritics.

In more details, a number of issues are commonly identified as the main obstacles

to cloud adoption, and define stimulating research tracks [25]. Despite the attention

paid by cloud providers, performance unpredictability of cloud system is a major issue in

cloud computing. This is particularly true for applications that support critical services,
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and ones that have to provide service-level agreements to final users. Virtualization

represents a flexible and cost-effective way to share physical resources (such as processors

and I/O interfaces among multiples VMs) and proved to impact the computation and

communication performance of cloud services [26]. Nevertheless, commercial providers

typically base their Service Level Agreements (SLAs) on the availability they offer only.

In addition, very few studies have been performed to understand the performance of large

scale complex cloud systems. Cloud providers usually keep system design information

such as network topology confidential (especially in the case of public clouds), and rarely

unveil it for security and commercial reasons [27, 28]. This exacerbates the problem,

making the investigation of performance figures harder. As a consequence, application

deployment and its optimizations are forced to ignore detailed performance information.

Also service availability is considered a common concern, indeed. The only solution

to very high availability supposed to be plausible is relying on multiple cloud computing

providers [25]. But this usually requires to turn up to brokering services or additional

management overhead. Unfortunately, consumers are not able to natively control and

manage heterogeneous cloud resources (i.e., provided by different providers) in an easy

way, due to the absence of standard management APIs.

The fact that applications continue to become more and more data intensive (needing

huge amount of data to run, or producing it) generates a set of concerns both related to

the privacy of sensitive data, and to their management. Although software stacks have

improved interoperability across platforms, APIs for cloud computing are still essentially

proprietary. Consequently, consumers cannot easily extract data from their applications.

This limitation in moving data from site to another is preventing organizations from

adopting cloud computing: data lock-in makes consumers vulnerable to both price increase

and providers going out of business.

Another problem strictly associated to the former is related to the transfer of these

data to and from the cloud, and among geographically distributed cloud sites. Huge

investments are made by providers in network infrastructure, in order to support the

dramatically changing demand produced by the on-demand resource adoption. Because

of the huge volume of data involved, networks represent the bottleneck to data transfer,

and due to the non-negligible cloud transfer costs, cloud users and cloud providers have to

think about the implications of placement and traffic at every level of the system if they

want to minimize costs. This kind of reasoning can be seen in the continuous development
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Advantages
• cost efficiency
• energy efficiency
• illusion of dedicated infrastrutures
• ease of infrastructure management
• ubiquity of access to resources
• flexibility
• scalability

(a)

Obstacles to adoption
• lack of visibility into implementation details
• performance unpredictability
• data-transfer cost/performance
• absence of standardized APIs
• potential provider lock-in
• difficulties in troubleshooting
• data privacy concerns

(b)

Table 1.1: Cloud Computing: main advantages (Table 1.1a) and obstacles to adoption (Table 1.1b).

of new cloud sites by cloud providers, and their distribution all over the globe.

Final remarks. The emergence of cloud computing constitutes a fundamental change

in the way ICT services are designed, developed, deployed, scaled, maintained, and paid

for. Since its practical emergence, cloud computing has rapidly become a widely adopted

model and it is more and more used to deliver services over the Internet thanks to both

the technical and the economical advantages it carries. Accordingly, the number of cloud-

based services has increased rapidly and strongly in the last few years, and so has increased

the complexity of the infrastructures behind them.

Due to the peculiarities of cloud systems and the commonly accepted major obstacles

to cloud adoption, effective and efficient monitoring activities are constantly needed to

properly operate and manage such complex infrastructures. In the following we first

discuss the need of monitoring cloud systems, its goals, and the common issues raised

(see § 1.2). We then consider the role of the network in these complex systems, also

providing a taxonomy for the public cloud networks (see § 1.3).
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1.2 Cloud monitoring

In the last years, in line with the rapid emergence of the cloud paradigm and with the

increase of the number of cloud-based services designed and deployed, the complexity of

the cloud infrastructures behind these services has strongly increased. Cloud services are

on-demand, scalable, and elastic, and serve multiple mutually untrusted customers. Ac-

cordingly, the cloud infrastructure is required to expose a set of features, such as availabil-

ity, reliability, guaranteed QoS, scalability, flexibility, dynamic load balancing, security,

and privacy [29, 30]. In order to reach these non-trivial goals, cloud systems have be-

come more complex from both the qualitative and the quantitative point of view. For

instance, to provide these desirable features, advanced virtualization techniques, robust

and dynamic scheduling approaches, advanced security measures, and disaster recovery

mechanisms are commonly implemented and operated in cloud systems. Moreover, dat-

acenters for cloud computing continue to grow in terms of both hardware resources and

traffic volume, thus making cloud operation and management more and more complex.

In this scenario, effective, efficient, and accurate monitoring activities are required to

efficiently operate these infrastructures and to manage their increasing complexity [31].

In the following we first introduce the possible abstraction levels at which monitoring

activities can be performed and discuss their goals with respect to the different entities in-

volved; then we present the available approaches that these activities may take advantage

of.

1.2.1 Abstraction levels and goals

In cloud computing, both high- and low-level monitoring is required [32]. Low-level mon-

itoring is primarily concerned with the status of the physical infrastructure of the whole

cloud (e.g., physical servers, storage areas, etc.). It is related to information collected

by the cloud provider and usually not exposed to the consumers. On the other hand,

high-level monitoring is related to information on the status of the components of the vir-

tual platform. This information is collected at the infrastructure, platform, or application

layers by providers or consumers through platforms and services operated by themselves

or by third parties.

Monitoring activities may be beneficial to many of the different entities involved as

a number of heterogeneous activities directly depends on cloud monitoring tasks. Cloud
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monitoring is essential to the provider in order to deal with system management activities

at large scale, is clearly instrumental for the cloud auditor, and can also be helpful to the

customer to manage the leased services or to gather unadvertised information and better

understand the characteristics of the service he/she pays for. In the following the most

relevant objectives and contexts of these activities are briefly described, relating them to

the different entities.

From the provider point of view, monitoring activities are fundamental to properly

operate the overall cloud infrastructure. Indeed, having a monitoring system able to

capture the state of a complex system like a cloud, is essential [33]. From the one hand,

it is crucial to properly control and manage both the hardware layer and the ones above.

On the other hand, it is able to provide useful information about performance indicators,

for both applications and platforms. These indicators also help the provider to properly

plan and design of cloud system.

The need for monitoring activities is also stimulated by volatility of resources and

fast-changing conditions which may lead to faults. Virtualization technologies—that al-

low virtualized resources to migrate at any time from a physical machine to another—

introduce an additional complexity level for the provider which is in charge of managing

both the physical and the virtual layers. Virtualized servers normally share physical pro-

cessors and I/O interfaces with others, thus potentially impacting both the computation

and communication performance of cloud services and generating security concerns. Ac-

cordingly, monitoring activities are often adopted to dynamically evaluate the impact of

the virtualization and to properly manage security aspects.

It is worth noting that from the provider point of view, timely, reliable, and com-

prehensive monitoring is needed to perform troubleshooting, locate problems withing the

datacenter, and enforcing control actions. To properly manage huge and complex systems,

monitoring activities are required to be very efficient therefore, since they must support

real-time operation, also when scaled up to tens of thousands heterogeneous nodes, deal-

ing also with complex network topologies, and I/O structures. As a consequence, proper

and efficient data analysis is crucial to generate new beneficial knowledge from the huge

amount of data gathered.

Monitoring also allows cloud providers to formulate more realistic and dynamic SLAs

and better pricing models by exploiting the knowledge of user-perceived performance.

For instance, continuous monitoring the system in terms of availability or delay supplies
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the provider with both information such as the workload generated by the consumer and

the performance and Quality of Service (QoS) he/she perceives; this information may be

used to implement recover actions and may be also partially exposed to the consumer

(usually at coarse granularity), as it is helpful to analyze the state of the system, also for

identifying SLA violations.

Although monitoring activities are naturally associated to the cloud provider they

are a source of invaluable information also for those entities not directly involved in the

management of the cloud infrastructure.

Cloud monitoring is undoubtedly functional to the cloud auditor, in order to per-

form the independent examination of cloud services with the intent to express an opinion

thereon. Audits can evaluate security controls, privacy impact, and performance of cloud

the service, and are performed to verify conformance to standards, through a review of

objective evidence. Monitoring is mandatory and instrumental in certifying SLA compli-

ance when auditing activities are performed to respect regulation (e.g., when government

data or services are involved).

Monitoring is also helpful to the customer, in order to gather information about the

state of the service he/she pays for, which is hosted remotely, and is accessible only

through a high-level interface. Monitoring is essential to predict and keep track of the

evolution of all the parameters involved in the process of QoS assurance and can be also

used to implement mechanisms to identify SLA violation. Monitoring activities offer

also a way to quantify the residual capacity of running resources in front of the actual

workload. Hence they can be leveraged to gather the information-base needed to adapt

resource deployment in real time.

Monitoring needs become critical in the context of public-cloud services, where a

resilient and trustworthy monitoring action helps to reach a proper level of visibility over

the level of availability and QoS obtained.

Indeed, monitoring, is necessary to the consumer for performing billing tasks and for

verifying usage, and therefore to validate the pay-as-you-go billing model implemented by

the provider.

Consumers can leverage monitoring activities in order to perform root-cause analysis,

for instance to understand if any occurring failure or performance issue is caused by the

provider, by the network infrastructure, or by the application itself. Indeed, the datacenter

and the overall cloud system infrastructure represent a big challenge for troubleshooting
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as the root cause of each problem can be searched is a number of different components

(e.g., the network, or the hosts) and each of them is made of several layers (physical

hardware, virtualization layers, operating system, etc.) [31].

From the consumer’s angle, monitoring activities are also instrumental to compare dif-

ferent providers. Many public cloud providers offer pay-as-you-go services, with a variety

of options in pricing and feature set, and adopting varying approaches to infrastructure,

virtualization, and software implementation. This leads to a problem of plenty. Monitor-

ing activities offer a way to evaluate key requirements of cloud offerings, thus allowing

the customer to perform better choices [34].

In conclusion, the examples reported above clearly show how the different entities

involved in cloud-related activities can benefit from monitoring activities. Each of them

however has to face different challenges depending on role played, also according to the

specific goal pursued as being intrinsically interested in information at different levels of

abstraction.

1.2.2 Available approaches

The specific role assumed clearly defines the information base that each entity can access.

For instance, the cloud provider natively has a privileged point of view on the overall cloud

system, as being able to observe (and control) it at every layer, from the hardware to the

application. Accordingly, the provider can set up dedicated monitoring infrastructure—

which can be based on both hardware and software probes—deploying it at any of these

layers. In addition, it exactly knows all the design and implementation details of the

cloud infrastructure, usually considered as high confidential and therefore not advertised

for both security or commercial reasons by commercial providers. This set of information

may encompass the detailed design of the datacenter (e.g., the topology of the network

and the specific technologies leveraged) or the algorithms implemented for placing servers

to customers asking for them.

Similarly, the cloud carrier can access information about the design of the communi-

cation infrastructure that delivers cloud services to the consumers. Therefore it is aware

of both the traffic engineering strategies enforced—which may impact performance—and

the commercial agreements defining how the cloud traffic is transferred.

Conversely, external entities not directly involved into the management of the cloud

system or in the delivery of cloud traffic, such as the customer, the broker, or the auditor
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usually have no access to any data related to specific design choices which the infrastruc-

ture is based on.

It is therefore possible to identify two antipodal families of approaches that can be

adopted to perform cloud monitoring activities. These reflect the privileged role that the

entity performing the monitoring activities may play, independently from the entity itself

and are briefly discussed in the following.

• Cooperative approaches require the entity that manage the system under investi-

gation to explicitly cooperate. In other words, these approaches rely on restricted

information, originally available only to entities in charge of managing the cloud

system. This information may come in different forms, such as server and device

logs, traffic traces, system design, etc. Therefore, monitoring activities according

to these approaches can be conducted by entities playing privileged roles. The ma-

jor advantage of adopting such approaches is the possible awareness of the design

choices adopted and of the management strategies enforced for the system under

investigation. This leads to possibly access to non obfuscated information. How-

ever, in practice these approaches can be adopted only by the entities that directly

manage the cloud system or may take advantage of particular relationships with the

provider (i.e., business partners, collaborating research institutions, etc.).

• Non-cooperative approaches do not require access to any restricted information.

These approaches adopt the point of view of the general consumer of the cloud

service, who can only access it through the interface designed by the provider.

These approaches have to necessarily deal with the complexity of the cloud system

in its entirety, as the customer is forced to interact with the cloud by accessing it

at one of the upper layers of the cloud architecture. Thus who implements these

approaches is forced to deal with the complexity introduced by the multiple existing

layers laying between the one directly accessed and the one targeted for monitoring.

This is a non-trivial limitation to face, as the monitoring results may be also heavily

affected by these intermediate layers (e.g., the impact virtualization has to be taken

into account [26]). On the other hand, it does not require any privileged role to

be enforced, as it is based on data extracted and collected through the adoption of

ad-hoc tools.
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1.3 Cloud networking

The network is a key component for cloud systems as the characteristics and the perfor-

mance figures of the communication infrastructure they rely on potentially impact the

performance of the overall system [35]. The recent literature strongly remarked its im-

portance, even reporting that “without high performance networks there would be no such

a thing as cloud computing” [36].

On the one hand, cloud network resources (e.g., within the datacenter) are provided

in the same way as computational or storage resources. VMs beside CPU and disk are

provided with high-performance network connectivity, in order to make them suitable to

support a wide range of applications. In this sense, the desired properties for the cloud

network are similar to those of the other resources (on-demand availability, illusion of po-

tentially infinite scaling, fast scalability, etc.). For instance, it is important to stably have

enough network bandwidth between VMs, notwithstanding the changing load imposed by

multiple consumers because cloud applications usually process large amounts of data and

exchange them through the network, both when VMs are deployed into the same datacen-

ter [37, 28, 34] and over multiple geographically distributed sites [38, 39, 34]. Among the

different apparently infinite resources managed and provided by cloud systems, network

ones have a critical role [36].

On the other hand, cloud services are ubiquitous by definition [3], i.e. they are ac-

cessible from everywhere through a network infrastructure. In the case of public clouds,

these services are necessarily off-premise, and consequently, both the cloud consumer and

the final user can only access them from remote. As such, the cloud network is the only

means for the consumer to access any kind of cloud resource. Accordingly, its properties

in terms of performance, reliability, and resilience are of the utmost importance, as they

impact the QoS perceived by end users, the ability to control other resources, and the

availability of the services [40, 41].

1.3.1 Impact on Internet traffic

As a direct consequence of the rapid adoption of and migration to cloud architectures, the

cloud traffic (i.e., the traffic generated by and/or directed to cloud systems) is dramatically

growing. This is also supported by the ability of cloud datacenters to handle significantly

higher traffic loads, thus leading to better application performance.
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Figure 1.3: Traditional-datacenter vs. cloud-datacenter traffic growth (global traffic, EB per year). Data
source: Cisco Global Cloud Index [15].

The relevance of the global cloud-traffic evolution is also highlighted by recent reports

and forecasts [15]. From a quantitative point of view, the impact of cloud computing on

Internet traffic is clear. Most of the Internet traffic has originated or terminated in a

datacenter since 2008 indeed—when peer-to-peer traffic ceased to dominate the Internet

application mix. Datacenter traffic is expected to continue to dominate Internet traffic for

the foreseeable future, although its nature is undergoing a fundamental transformation

due to changes in cloud applications, services, and infrastructures. As a result more than

three-quarters of datacenter traffic will be cloud traffic by 2018.

Figure 1.3 shows how datacenter traffic is expected to grow in the next years. The

amount of annual global datacenter traffic in 2014 was estimated to be around 3.4 ZB, and

by 2019 will triple to reach 10.3 ZB per year (25-percent CAGR). Indeed, cloud datacenter

traffic will grow at a faster rate (32-percent CAGR) that leads to a 4-fold growth from

2014 to 2019. As a results of this trend, by 2018 more than three-fourths (78 percent) of

all workloads will be processed in cloud datacenters.

1.3.2 Cloud network infrastructures

In accordance with the conspicuous growth in volume of the cloud traffic, cloud networking

and its performance are attracting more and more the interest of both the scientific and

industrial communities [42, 43]. Datacenter and cloud architectures continue to evolve to
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address the needs of large-scale multi-tenant datacenters and clouds and geo-distributed

networks of datacenters are being built. These usually consist in a dozen mega datacenters

(so termed because of the number of servers they host and the high power they draw),

and a larger number of micro datacenters (used primarily as nodes in content distribution

networks) [44]. Accordingly, huge investments have been made for cloud networking, in

terms of both research and cutting-edge infrastructures.

Networking is a non-negligible source of cost for datacenter infrastructures, being esti-

mated to amount to around 15 percent of the datacenter’s total worth and being compa-

rable to power costs [44]. The capital cost of networking gear for datacenters (primarily

switches, routers, and load balancers) is a significant fraction of the cost of network-

ing. The remaining networking costs are concentrated in wide-area networking: peering

points, where traffic is handed off to the Internet Service Providers (ISPs) in charge of

delivering packets to end users, inter-datacenter links carrying traffic between geograph-

ically distributed datacenters, and regional facilities needed to reach wide area network

interconnection sites. The costs to deploy and manage this distributed networking infras-

tructure have decreased dramatically over the past few years, but still remain significant,

and still exceed the cost of networking inside the datacenter.

Datacenters are interconnected across the wide-area network via routing and transport

technologies in order to provide the pool of resources, known as the cloud. A typical cloud

infrastructure is shown in Figure 1.4. It should be understood that variations of this

architecture do exist (e.g., in smaller datacenters, it is likely that some network layers are

collapsed). It is used in this thesis as a reference architecture to discuss cloud networking,

its organization, and common adopted technologies.

Large cloud datacenters target to support tens of thousands of servers and tenants,

exabytes of storage, and terabits per second of traffic [42]. The virtualization of computing

and storage resources inside a datacenter provides the foundation for offering resources

and application services to multiple tenants on the same infrastructure: via computing

virtualization, multiple VMs are created on the same server, possibly for different tenants.

In order to support a large number of tenants, networks connecting both resources within

the same datacenter and geographically distributed datacenters have been evolving from

the basic virtual LAN (VLAN) and IP routing architecture to an architecture that provides

network virtualization on a larger scale. These network infrastructures are required to

support a large number of tenants, bandwidth growth, VM mobility, network elasticity
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Figure 1.4: Generic architecture for cloud networking. Source: [42].

and provisioning agility, efficient resource utilization, and efficient traffic engineering with

performance constraints [42].

The datcenter depicted in Figure 1.4 includes Virtual Switches (vSWs), Top-of-Rack

switches (ToRs), and core switches at different tiers of a network hierarchy within a

datacenter. In addition, a gateway and IP/MPLS networks provide inter-DC connectivity,

and connectivity to the Internet and end users. The vSW is generally a software-based

Ethernet switch function running inside a server host. It can support Ethernet and/or

IP services, while providing for switching and routing context separation among tenants

sharing the same server. A vSW may be single or dual-homed to the ToRs via Ethernet

links. A ToR is a hardware-based network element that typically supports Ethernet VLAN

services and/or simple IP routing for the datacenter infrastructure. Other deployment

scenarios may use End-of-Row switches (EoRs) to provide a similar function to a ToRs,

often with a larger number of physical ports and higher switching capacity. ToRs or EoRs

aggregate Ethernet links from the servers and are usually dual-homed to core switches

via Ethernet links. A core switch aggregates multiple ToRs or EoRs, and can support

large-scale virtual LAN services and/or simple IP routing for the datacenter. Depending
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on the size of the datacenter, there could be two or more core switches, and these switches

can form a hierarchy of more than one layer. The datacenter gateway to the wide-area

network provides datacenter interconnection and connectivity to Internet and Virtual

Private Network (VPN) customers.

Common server-ToR or server-EoR links are 1GbE and 10GbE, whereas Driven by

cost, 10GbE is a popular choice across the remaining datacenter core [42]. These higher

rates will also find their way to servers, ToRs, and EoRs incrementally.

Datacenters may connect to one or more network service providers to provide con-

nectivity to users accessing cloud services from private sites or the Internet, or to gain

connectivity among datacenters. Connectivity among datacenters can be obtained from a

service provider as a leased fiber or private line service. It can also be a layer 2 Ethernet

or IP VPN service. In addition, datacenter inter-connection may utilize optical trans-

port to provide for large bandwidth demands that arise from moving or mirroring large

blocks of data and video among datacenters. Datacenter geo-diversity—although requir-

ing ad-hoc designed services and/or applications to be properly leveraged—lowers latency

to users, enhances their experience, and increases reliability in the presence of outages

taking out an entire site. Economies of scale available at the time the datacenter is de-

signed, play a major role in the choice of the placement and the size of the datacenter

itself, which are determined by server cost, power availability, and local factors such as

power concessions or tax regimes. However, although one would like to place datacenters

as close to the users, also transfer cost and latency among datacenter are crucial. Find-

ing an optimal balance between these aspects is challenging, and the available solutions

are heavily impacted by network costs. More in general, cloud infrastructures deployed

are the results of a challenging optimization problem, involving several factors such as the

benefits achieved through geo-diversity, economies of scale, and the network cost.

1.3.3 Cloud network taxonomy

As the number of services and applications backed by the cloud paradigm increased during

the years and their requirements became more and more urgent, so the complexity of

cloud systems and of their network raised to both support advanced features and respond

to the rapid adoption by consumers. Indeed, the cloud network interconnects a high

number of cloud resources of different kind (VMs, storage buckets, software containers,

etc.). These cloud resources are connected to each other (both when they are placed in
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the same datacenter and in different geographically distinct sites), and to geographically

spread consumers accessing cloud services from the public Internet. As the resources are

characterized by a high level of dynamism, also the network is demanded to have proper

requirements in terms of flexibility and scalability.

Interactions among the cloud and the consumers may be of different nature [45], and

they often involve the cloud network in its entirety, because of the functional separation

of layers often implemented. Cloud applications perform a number of different network

interactions in a transparent manner to the final user. The characteristics and the perfor-

mance of the network infrastructures that these applications rely on for each interaction is

important, as impacting the Quality of Experience (QoE) perceived by users in accessing

cloud services.

For ease of description, the complex cloud infrastructure leveraged by cloud services

can be seen as the composition of three major network areas:

• the intra-datacenter network;

• the inter-datacenter network;

• the cloud-to-user network.

Each of these network areas has different characteristics, as it is designed for different

purposes and is subjected to different constraints (in terms of resources, available tech-

nologies, control of the infrastructure, and ownership). For instance, in some cases we

deal with a network infrastructure deployed over the datacenter limited area and that

is completely owned, controlled, and managed by the cloud provider itself. In others,

the providers leverage resources owned by telco operators, under specific agreements. In

the following these three areas will be briefly described, in order to report their peculiar

characteristics and highlight their main differences.

The intra-datacenter network, connects cloud resources (e.g., VMs leased by con-

sumers) among themselves and with the shared services placed within the datacenter.

The performance of this network is vital to the performance of applications distributed

across multiple nodes in a cloud datacenter. Indeed, the functional separation of lay-

ers (application servers, storage, and databases) leads more and more to the design and

the implementation of distributed solutions, generating replication, backup, and read and

write traffic traversing the datacenter. Furthermore, parallel processing divides tasks and

sends them to multiple servers, contributing to intra-datacenter traffic [9, 10].



Cloud networking 24

The inter-datacenter network is a wide-area network that connects datacenters placed

in geographically distributed regions. It often has quite different properties compared to

the intra-datacenter network, due to the different characteristics of the services that rely

on it, the different technologies adopted, and the need to rely on external network service

providers. Lots of applications and services are designed to benefit from the geograph-

ically distributed architecture. In accordance to the evolution of the inter-datacenter

network, cloud applications more and more exchange traffic among datacenters placed

in two different sites on the globe [46, 47, 48]. Common tasks that rely on the inter-

datacenter network are related to the proliferation of services that need to shuttle data

between clouds, and to the growing volume of data that needs to be replicated across

datacenters (for instance to place contents near to final users).

The cloud-to-user wide-area network is defined as the collection of network paths be-

tween a cloud’s datacenters and external hosts on the Internet. It may play a role in many

kinds of applications (e.g., from simple web-based solutions to collaborative applications

such as documents sharing, voice and video telepresence, or distributed games). More

in general, high-performance networks are a requirement for practices and designs inher-

ent to the cloud computing infrastructure, such as replication, task distribution, sharing,

synchronization, offload or rapid scaling. Speed and latency matter, indeed: substan-

tial empirical evidences suggest that performance directly impacts revenue. For example,

Google reported 20 percent revenue loss due to a specific experiment that increased the

time to display search results by as little as 500 ms. Amazon reported a 1 percent sales

decrease for an additional delay of as little as 100 ms [49, 50]. The performance of the

cloud-to-user network is clearly impacted by the location of the user. The latency, in par-

ticular is affected by the (geographic) distance from the user to the cloud service. This

creates a strong motivation for geographically distributing datacenters around the world

to reduce speed-of-light delays, Accordingly, all the major cloud providers host the offered

services at differing locations.

Cloud traffic by network. Recent forecasts report that the portion of traffic residing

within datacenters will slightly decline over the forecast period, accounting for nearly

75 percent of datacenter traffic in 2014 and about 73 percent by 2019. Despite this

decline, the majority of traffic remains within the datacenter because of factors such as

the functional separation of application servers, storage, databases, or parallel processing
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Table 1.2: Global datacenter traffic by network(EB per year). Source: Cisco Global Cloud Index [15].

2014 2015 2016 2017 2018 2019 CAGR
2014–2019

Intradatacenter 2,602 3,342 4,233 5,235 6,358 7,566 24%
Interdatacenter 234 321 432 564 723 905 31%
Datacenter-to-user 613 760 946 1,185 1,495 1,886 25%

Total 3,449 4,423 5,611 6,984 8,576 10,357 25%

which generates replication, backup, and read and write traffic traversing the datacenter.

Traffic between datacenters is growing faster than either traffic to end-users or traffic

within the datacenter. Up from nearly 7 percent at the end of 2014, this type of traffic

will account for almost 9 percent of total datacenter traffic by 2019. The high growth

of this segment is due to the proliferation of cloud services and the consequent need to

shuttle data between clouds, and the growing volume of data that needs to be replicated

across datacenters, and the increasing prevalence of content distribution networks.

Final remarks. The network is a key component of a cloud system. As previously

discussed, the access to network resources is one of the service provided on-demand to

cloud consumers, and it is through the network indeed that cloud resources are connected

together, and that the wide range of cloud services is made ubiquitously accessible to

geographically distributed consumers. In order to support the increasing demand and

guarantee adequate performance and services, cloud networks are evolving, thus becoming

more and more complex over time.

However, notwithstanding the widespread adoption of public-cloud services and the

central role of cloud networks, due to both security and commercial issues, public-cloud

providers rarely provide customers with the desired information about their state and

expected performance.

1.4 Contribution and organization of the thesis

Cloud computing is having a dramatic impact on the ICT industry, significantly con-

tributing to the promotion of growth and competition. Therefore, a large adoption of this

paradigm by enterprises has been registered over the last few years, generating billion-

dollar worldwide spending. According to the current trend, where organizations more
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and more outsource their ICT infrastructure, large companies are striving to provide cus-

tomers with more appealing cloud services also making huge investments in increasingly

efficient and complex public-cloud infrastructures. Among the components of these com-

plex cloud infrastructures, the network plays a primary role as its properties directly

impact the performance of the overall cloud system. Indeed its performance has a huge

impact on applications, costs, and QoS perceived by consumers.

Considering the large and increasing adoption of public clouds, the huge investments

being made to connect public cloud nodes (both among themselves and to the customers),

and the impact on the Internet of the traffic they generate, a consistent information base

about the properties of the public-cloud network is essential. This is true for the entities

involved in the management of the system, but also for customers as they could derive

from it guidelines to take better advantage of cloud services (hints on service deployment

and scaling, service migration, expected performance and variability prediction, etc.).

In spite of the urgency in having detailed information about the cloud networking en-

vironment, its design, and its performance figures, the general customer naturally suffers

from the lack of accurate and trustworthy information about it. The critical dependence

of the industry from public-cloud infrastructures has grown faster than the customer’s

understanding of their dynamics, their performance, and their limitations. This scarce

comprehension is the consequence of the fact that detailed information about cloud perfor-

mance, characteristics, settings, and load are considered confidential by cloud providers

for security and commercial reasons [27, 36]; in addition, SLAs only vaguely describe

network performance guarantees, and customers can only refer to incomplete and rough

information advertised by the provider [51].

Although public-cloud datacenters intrinsically depend on high-performance networks

to connect servers within the datacenter and to the rest of the world, providers seldom

make any promises about network performance, even though many cloud customers do

want to be able to rely on network performance guarantees. Consequently, public-cloud

consumers suffer from unpredictable network performance which leads to application per-

formance and cost issues. In this context, activities aimed at monitoring public-cloud

networks through non-cooperative approaches are essential.

In this thesis we aim at investigating the techniques for monitoring the performance

of public-cloud networks through non-cooperative approaches, focusing on the possible

methodologies that can be enforced, their related issues, and some applications of the
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gathered information.

With respect to the two leading public-cloud providers, i.e., Amazon Web Services and

Microsoft Azure (see § 1.1.2), our study involves all the three network areas introduced

in § 1.3.3. Focusing on network monitoring activities, possible techniques, and related

issues we propose a detailed analysis of the performance of the intra-datacenter, inter-

datacenter, and cloud-to-user networks, also deriving some helpful usage guidelines for

customers. In addition we propose a monitoring platforms that helps consumers to go

beyond the scarce information exposed by cloud providers about the design performance

of their networking infrastructures. Finally, we focus our attention on one of the possible

applications of the information gathered through monitoring activities, i.e. the automatic

scaling of resources in public clouds.

The remainder of the thesis is organized as follows. Chapter 2 proposes an exten-

sive study of the literature about the approaches for monitoring cloud systems and their

performance, focusing on the techniques for monitoring public cloud networks through

non-cooperative approaches. Chapter 3 presents CloudSurf, a platform that enable the

general customer to monitor public-cloud networking infrastructures. We detail its ar-

chitecture and implementation, and show how its features are helpful to characterize the

performance of the public-cloud networks. In Chapter 4, Chapter 5, and Chapter 6 we

present the main results of our analyses for the intra-datacenter, inter-datacenter, and

cloud-to-user networks, respectively. In each chapter the aspects of major interest have

been deepened. Chapter 7 proposes a solution that leverages monitoring data to imple-

ment strategies to automatically scale cloud resources in public clouds, in front of the

possibly fluctuating workload and the unknown environment. Finally, we draw our con-

clusion in Chapter 8.



Chapter 2

Cloud network monitoring: state of
the art

In this chapter we propose an extensive study of the scientific literature about the ap-

proaches and the solutions for monitoring cloud systems, focusing on the aspects related

to the public-cloud network and its performance.

We first introduce the common issues related to cloud monitoring systems implemented

by providers, showing the potentialities of the studies that leverage information collected

from privileged points of view. Then we focus our attention on the available techniques

for monitoring cloud networks through non-cooperative approaches, and on their main

outcomes and limitations.

2.1 Cloud monitoring systems and related issues

From the provider point of view, monitoring is crucial to manage both the hardware and

software cloud infrastructure, as it is functional to a set of activities, such as datacenter

management, SLA management, billing, troubleshooting, and security management.

Because of some peculiarities, such as the high level of dynamism, the virtualization

techniques employed at several layers, or the presence of a huge number of consumers

possibly generating huge volumes of traffic, cloud systems introduce a number of new

challenges to be tackled with respect to other slowly-changing infrastructures. Indeed,

cloud platforms have different requirements than computing grids or clusters, as consist-

ing of multiple layers and service paradigms that enable to provide on demand users with

virtually infinite resources. Therefore monitoring systems for clouds expose more strict

requirements than the homologous for the other platforms mentioned above. As such,
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general purpose monitoring tools (e.g., Ganglia [52], Nagios [53], Zabbix [54], MonAL-

ISA [55], and GridICE [56]) traditionally used by system administrators to monitor fixed

or slowly-changing distributed infrastructures are unsuitable to be directly utilized for

rapidly elastic and dynamic cloud deployments.

Cloud monitoring systems require a number of specific properties that have been

deeply investigated in the scientific literature, as discussed in the following. A monitoring

system is required to be scalable, as it has to cope with a potentially huge number of

different resources and consumers. In the literature such issue has been mainly addressed

by proposing architectures in which monitoring data and events are propagated to the

control application after their aggregation and filtering. As such, most of the proposed

approaches—regardless of the specific low- or high-level monitored parameters—propose

aggregation and filtering before propagating data and events to the control application.

For instance, some solutions adopt a subsystem to propagate event announcements [57,

58, 59, 60] and/or rely on agents, which are responsible for performing data collection,

filtering and aggregation [57, 58, 61].

In addition, monitoring systems have to be elastic in order to address the dynamic

changes of the monitored entities. This is required to correctly monitor virtual resources

continuously created and destroyed. This property also implies scalability, and adds the

requirement of supporting real-time upsizing and downsizing of the pool of the monitored

resources [62]. As many different monitoring systems proposed for large distributed sys-

tems have been designed for a relatively slowly changing physical infrastructure they do

not directly support a rapidly changing dynamic infrastructure and they are not suitable

for as-is adoption in cloud scenarios.

The adaptability, i.e. the ability of adapting the computational and the network loads

imposed to the system itself is a also a requirement. Monitoring activities have to be not

invasive, as the workload generated by monitoring activities (e.g., associated to monitoring

data collection, processing, storage, and transmission) potentially impacts computing and

communication resources and represents a cost for the cloud infrastructure. Several studies

address this issue [58, 59, 61, 63, 64] by tuning the amount of monitored resources and

the monitoring frequency.

Since monitoring is instrumental to activities connected to core goals, related tasks

need to be timely and accurate, such that detected events are available on time for their

intended use [59] and correct information can be leveraged to effectively perform manage-
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ment activities. However, it is worth noting that granting timeliness implies challenges or

trade-offs between opposing requirements. For instance, the shorter the sampling interval,

the smaller is the delay between the time a monitored condition happens and is captured.

Thus, a trade-off between accuracy and sampling frequency is necessary, considering also

the resource constraints (e.g. CPU, network bandwidth, or memory) [63, 59].

While on the one hand the above issues are strictly related to the management activi-

ties, that are by definition a responsibility of the provider, on the other hand, part of the

information collected could be also beneficial to the consumer (e.g., current load of the

datacenter, state of the hosting machines, etc.).

With respect to largely adopted public clouds however, only a subset of the infor-

mation collected by the provider is exposed to the consumers through the purposely-

designed monitoring interfaces. Cloud specific monitoring tools—such as Amazon Cloud-

Watch [65], AzureWatch [66], CloudMonix [67], Monitis [68]—provide Monitoring-as-a-

Service to cloud consumers in public clouds and are directly made available by the cloud

provider itself, or by third parties. Although these tools are easy to use and well inte-

grated with underlying platforms, (thus hiding all the complexity related to monitoring

tasks discussed above) their adoption is limited to specific providers, and to the scarce

set of high-level observations exposed. Moreover, the information provided is typically

coarse-grained (with sampling time of several minutes) and is mostly related to the resid-

ual capacity of the virtual resources (e.g., CPU or disk utilization) rather than to their

performance. For instance, in the case of Amazon CloudWatch the customer is provided

with information related to the volume of the traffic that the leased VMs have injected

into the network during the last five minutes, but no detail about its state (overhead of

the device along a path, available bandwidth, latency, etc.) is provided.

More in general, public cloud providers usually do not provide consumers with de-

tailed information about the cloud network, its design, or its performance [36, 27, 19,

69], although cloud datacenters and the services they host intrinsically depend on high-

performance networks to connect servers within the datacenter and to the rest of the world.

Whereas cloud providers typically offer different service levels at varying prices they only

advertise CPU, memory, and disk storage. While all cloud providers grant network con-

nectivity to tenant VMs, they seldom make any promises about network performance,

and so cloud tenants suffer from highly-variable, unpredictable network performance.

This situation motivates the recent research related to non-cooperative approaches.
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Before discussing it and the related issues in § 2.2, we will discuss in the following the

potentiality of the cloud network monitoring approaches that can leverage information

directly provided by entities playing privileged roles (§ 2.1.1).

2.1.1 Studies leveraging privileged points of view

As little is known about the characteristics of the both intra- and inter-datacenter traffic,

a set of scientific contributions leverage provider-side privileged information to devise its

characteristics and properties. More specifically, some works took advantage of system

logs, socket-level, SNMP at both the datacenter hosts and the devices [70, 71, 72] network

traces [73, 74]. It is worth noting that not all the researchers can access this kind of

information and therefore these studies are hard to replicate and validate.

Kandula et al. [70] contribute to the investigation the characteristics of datacenter

traffic, leveraging server log collection in a 1500-server operational cluster and tracking

events at socket layer. Thanks to their privileged point of view, the authors provide a first

attempt to the characterization of inter-datacenter traffic, inferring both the macroscopic

patterns (e.g., which servers talk to which others, when, and for what reasons) as well as

the microscopic characteristics (e.g., flow durations, inter-arrival times, etc.) and devise

useful guidelines for datacenter network designers.

Benson et al. [71] analyze SNMP logs collected at 19 datacenters to examine temporal

and spatial variations in link loads and losses. They found that the links closer to the

edge observe a greater degree of loss, whereas the ones in the core expose higher degree

of utilization. Studying packet traces collected at a small number of switches in one

datacenter they also found evidence of ON-OFF traffic behavior. As such, thanks to the

rich information collected, the authors develop a framework that derives ON-OFF traffic

parameters for datacenter traffic sources and models their sending behaviors.

Potharaju et al. [72] present a preliminary analysis of cloud intra-datacenter and inter-

datacenter network failures from a service perspective, taking advantage of a wide range

of network data sources including syslog, SNMP alerts, network trouble tickets, main-

tenance tracking, revision control system, and traffic carried by links. Authors provide

insights to improve service reliability, and present two aspects of failure characteristics,

i.e., the problem root causes and the server downtime. For what concerns the intra-

datacenter network, considering three classes of devices, i.e., top-of-rack switches, aggre-

gation routers, and access routers, they reveal that interface-level errors, network card
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problems, and unexpected reloads were prominent among all the three types of devices.

Aggregation switches exhibit the highest downtime, while access router the lowest. Top-

of-rack switches failures tend to be relatively infrequent compared to access routers and

aggregation switches and hence expose the lower downtime. A relevant contribution to

top-of-rack switches downtime is related to a set of older generation devices. About the

inter-datacenter network instead, authors found that link flapping (e.g., due to BGP or

OSPF protocol issues and convergence, and possibly generated in response to a fiber cut)

dominates failure root causes, while high utilization represents the second one.

Yingying et al. [73] present a first study of inter-datacenter traffic characteristics us-

ing anonymized NetFlow datasets collected at the border routers of five major Yahoo!

datacenters. Applying some heuristics based on the IP addresses and on router inter-

faces the authors identify two types of inter-datacenter traffic (i.e.,the one triggered by

traffic generated by the users and the background traffic). Moreover, their results cap-

ture some insights into the way the provider has designed its infrastructure, identifying a

hierarchical organization for the datacenter deployment. They also show that several Ya-

hoo! services have correlated traffic. These correlations have important implications for

distributing different services at multiple datacenters.

Bermudez et al. [74] perform a large scale observation and analysis of Amazon AWS

traffic. In their work the authors rely on a 1-week portion of a 3-month passive measure-

ments dataset collected at one large-city PoP of an italian ISP. They explore the EC2,

S3, and CloudFront Amazon services to unveil their infrastructures, the pervasiveness of

content they host, and their traffic allocation policies. They found that among the data-

centers available, the one placed in the US is the most used one as it handles alone 85% of

total traffic generated by EC2 and more than 64% for S3. In addition, results also show

that this popular datacenter is also the worst performing one. Authors confirm that com-

panies offering contents from EC2 and S3 tend to rely upon one datacenter only, making

the network to pay the large cost of carrying information to far-away end-users and thus

enhancing the risk of service disruption in case of failures involving the network or the

datacenter.

Enforcing different and complementary approaches, these works show the potential

of analyses conducted leveraging privileged datasets. Although these results cannot be

always generalized (as depending on the specific dataset [70]), this kind of studies is able to

expose very interesting outcomes (e.g., datacenter organization, traffic correlation, device
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failure rate, network congestion, incast), as they can deal with the problem of interest

in depth (e.g., authors can perform root-cause analyses or can rely on accurate ground

truth).

In turn the implementation of these approaches, has to face problems related to scal-

ability and efficiency (because of the size of the dataset they have to deal with and the

impact that its collection may have on the infrastructure itself [70, 71]), and—above all—

privacy and security, because of the nature of data that may impact the privacy of users

or may contain details that the provider does not wish to disclose [73]. As a results, few

researchers can benefit from these datasets and a very limited number of works in the lit-

erature can effectively pursue similar approaches, since this kind of information is usually

considered as highly confidential and thus is not publicly exposed for both commercial

and security reasons. As such, these studies are hard to validate and replicate.

2.2 Non-cooperative approaches

Implementing non-cooperative approaches is the natural solution to the lack of monitoring

information exposed by the provider. In this section we discuss how non-cooperative

monitoring approaches have been adopted in the literature to investigate public clouds

and in particular their networks infrastructures.

The works in the literature face the non-trivial task of monitoring and evaluating

cloud networks with different goals in mind. A number of pioneering works, for instance,

in front of environments with unknown characteristics try to shed light on the suitability of

public cloud networks to host specific applications or classes of applications [75, 76, 77, 37].

Some studies propose an evaluation of specific cloud services [78, 79], also focusing on how

network performance is subjected to variation in front of the virtualization techiniques

adopted [37, 26]. Others, due to the large amount of cloud offerings available, aim at

providing cloud customers with a fair comparison among a number of different providers

or cloud solutions [34, 77]. A set of works, propose and evaluate approaches that through

network measurements investigate the reliability, the availability, or the performance of

cloud services [80, 81, 41, 40]. Some proposals are targeted instead to the optimization of

cloud performance or to the reduction of costs for the customer [28, 38, 82]. Finally, in

some cases, network monitoring activities are functional gather data to feed models for

simulation [83, 48, 82].
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It is worth noting that beyond their final goals all the studies adopting non-cooperative

approaches have to face some common issues. A first set of issues is related to the collection

of data. As no privileged entity makes available the information of interest, in order to

obtain significant data researchers have to cope with experimental campaigns involving

public clouds. As such, they have to play the role of the consumer. Because of the pay-per-

use model, this implies additional costs, that often impose a trade-off with the number

of experiments and therefore the accuracy of the observation. In order to investigate

the characteristics of the cloud network, the proposed approaches mainly leverage active

techniques i.e. that measure the properties of the network by injecting purposely created

traffic into it, in some cases from a number of distinct vantage points, not always available

to the experimenters [76]. Note that this may be the source of non-negligible additional

costs, as providers usually impose charges based on the volume of traffic carried by cloud

networks.

Secondly, researchers have to cope with the interpretation of data coming from a

highly dynamic and uncontrolled environment. Indeed, the factors that may influence

monitoring results are not under the complete control of the customer, and therefore of

the researcher performing the experiments. Additionally, the presence of virtualization,

differently than in traditional environments, may heavily compromise the interpretation

and even the validity of experimental results [26]. The lack of a ground truth further

exacerbates this issue, as outcomes without the help of privileged entities cannot be easily

validated. As such, sometimes studies [28, 27] implement additional monitoring activities

to obtain insights into the design of network infrastructure implemented by the provider

providing help in the interpretation of other results (i.e., related to the performance).

In the following we will discern between the studies that perform an evaluation of

the cloud network with respect to a specific application by directly deploying it onto the

cloud and monitoring its behavior (application-specific approaches—§ 2.2.1), and those

which aim at evaluating the cloud infrastructure, thus achieving more general results

(application-agnostic approaches—§ 2.2.2).

2.2.1 Application-specific approaches

A number of works in the literature aims at investigating the suitability of public clouds to

run a given class of applications (e.g., web-application deployment, scientific workflows, or

science grids). Those works usually take into account the performance of the applications
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according either to the Quality of Experience perceived by users or the Quality of Service

indices limited to those of interest for the application under test, and often consider

the performance of the network. Often, these studies propose a comparison with in-

house testbeds in order to understand the performance degradation generated by cloud

environments.

Juve et al. [75] propose an evaluation of the cost and performance of scientific work-

flows on Amazon EC2 and S3. In order to evaluate the cost and performance of these

workflows in the cloud, they conducted experiments using three applications: an astron-

omy application, a seismology application, and a bioinformatics application. These have

been chosen to cover a wide range of domains and resource requirements, as they need

resources in terms of I/O, CPU, and memory in different ways. On the basis of their ex-

perimental results, authors claim that the performance of EC2 is good enough for many

applications, and the cost was within reason for the applications and scenarios studied.

Liu and Wee [76] present a benchmark performance study on various cloud com-

ponents to show their performance results and revealing their limitations. Adopting a

web-server benchmark that emulates different web applications (e.g., banking, support,

and e-commerce) they studied the performance of Amazon EC2, S3, and Elastic Load

Balancing services, and Google App Engine. Their results show how the performance of a

single web server is an order of magnitude lower than the state-of-art hardware solutions.

Moreover they found that the performance of a software load balancer based approach is

limited by both a single network interface and traffic relaying, which halves its effective

throughput.

Tudoran et al. [77] compare the Azure public cloud to Nimbus private cloud [84], con-

sidering the needs of scientific applications (computation power, storage, data transfers,

and costs). They observed dramatic performance and cost variations across platforms in

their VMs, storage services, and network transfers. They found that the public cloud

delivers almost double performance although with a higher variability.

Palankar et al. [79], Hill et al. [85], Schad et al. [37], and Saljooghinejad et al. [81] also

propose some evaluations based on specific applications (considering the data generated

by a high-energy physics project, a web-based application to integrate data from ground-

based sensors with satellite data, a specific MapReduce job, and web-based key-value

store application, respectively) though not limiting their contribution to those. Therefore

will be discussed in the next session.
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All these work are well motivated by the need of performance details of applications

in cloud environments and provide pioneering results in this sense. However, their re-

sults cannot be easily generalized as they directly address the performance evaluation

of specific applications in specific scenarios, although they could be of great interest for

the readership specifically interested in that. Indeed, the deployment scenarios and the

configuration factors considered are usually chosen according to the sensibility of the ex-

perimenter. Therefore these works are not able to provide an effective contribution to the

characterization of public cloud infrastructures.

2.2.2 Application-agnostic approaches

A number of works in the scientific literature performs activities to monitor public-

cloud infrastructures as a whole, also focusing on their networking aspects. Differently

than the studies presented above, these works aim at characterizing the cloud infrastruc-

ture in its generality, i.e., try to deliver general results about its current state and its

expected performance, which do not depend on a specific application. These works are

motivated by different purposes. A part of them aims at identifying anomalous behav-

iors or at testing the suitability of public-clouds to host some class of applications (they

evaluate cloud infrastructures instead of directly testing the application itself). Others

evaluate the performance of public-cloud systems in order to propose a comparison of the

offers made by different providers. Finally, a part of these works, performs monitoring

activities to feed models or to support theoretical approaches and sustain their practical

feasibility in the wild.

Palankar et al. [79] specifically focus on S3 providing as a main contribution the eval-

uation of S3 ability to provide storage support to large-scale science projects from a cost,

availability, and performance perspective. In their experimentations authors evaluate

download time for objects of different sizes, concurrent performance, and performance

from different remote locations. Authors claim that S3 is not designed to properly ac-

complish the needs of the science community and identify some application requirements

that are not satisfied by S3. In particular, they state that, while S3 successfully supports

relatively simple scenarios (e.g., personal data backup) and can be easily integrated in

the storage tier of a multi-tiered web application, its security functionality is inadequate

to support complex, collaborative environments like the ones in scientific collaborations.
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Iosup et al. [86] propose a performance analysis of long-term traces from Amazon

and Google cloud providers. They take into account a number of performance indicators

(deployment time, cloud-storage download and upload throughput, query response time,

update latency, etc.). For what concerns the network, they found daily, weekly, and

yearly patterns for the download throughput. In addition their results suggest that when

designing an application that uses Amazon S3, application architects should consider

several design decisions including which datacenter to store the buckets.

Hill et al. [85] focus on Azure compute, storage, and network performance. For what

concerns the network resources, they evaluate the VM instantiation time and the TCP

performance between a number of VM pairs in terms of latency and throughput. In the

first case, they consider the round-trip time obtained transferring 1 byte of information,

while for measuring the throughput they instruct a VM to transfer 2GB of information

(the duration of each throughput experiments is around 30 seconds). Based on these

experiments, they also provide their performance-related recommendations for the cus-

tomers. Although the authors claim to have performed 10, 000 experiments, it is worth

noting that they only consider ten distinct pairs of VMs (five for the latency experiments

and five for the throughput experiments, respectively). Consequently, their results can

be hardly generalized. Moreover, no information about the datacenter in which the anal-

ysis is carried or about the deployment factors considered (e.g., the type and the size of

the VM) is exposed.

Schad et al. [37], focus on performance unpredictability in cloud computing and carry

out a study on performance variability in Amazon EC2. Their study takes into account

performance in terms of instance startup time, CPU, memory, disk I/O, and S3 access.

They show that, differently from physical clusters, cloud VMs of different sizes suffer from

a large variance in performance, that also generates issues to applications.

For what concerns the performance of the network, they used iperf to evaluate the

maximum TCP and UDP throughput. Their results reported slightly more oscillation in

performance in US location than in EU location (probably due to the differing demands

associated to the regions). More in general, they found values ranging from from 200 to

800 KB/s. On the basis of their experience, the authors also suggest that when performing

measurements in cloud environments it is important to consider the specific deployment

scenarios, as they could be somehow related to performance variability possibly observed.

It is worth noting that the performance values reported by the authors are two orders of
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magnitude lower that the ones reported by Li et al. [34] obtained with the same monitoring

tool.

Hu et al. [41] focus on cloud availability, evaluating the ability of network- and

application-layer probes to monitor this aspect. They test both storage and VM ser-

vices, for Amazon, Microsoft, and Google, and found that the widely adopted ICMP

probes potentially lead to both underestimate and overestimate cloud service availability.

They found that ICMP is not robust as application-layer measurements indeed, as it may

miss internal failures in the cloud back-ends. Therefore they conclude that it is important

to adopt end-to-end application-layer measurements (e.g., HTTP) to best characterize

cloud service availability.

Feng et al. [83, 48] propose a protocol and a set of algorithms to support video confer-

encing provided as a cloud service and taking advantage of the inter-datacenter network.

The evaluation of the proposed approach over the Amazon EC2 cloud, proves to de-

liver a substantial performance advantage over state-of-the-art peer-to-peer solutions. In

their study, the authors performed an experimental evaluation of Amazon network paths

interconnecting seven different datacenters, considering medium and small VMs. They

monitored inter-datacenter paths for 3 minutes and revealed very different throughput

and latency values.

Garcia-Dorado and Rao [38] propose CloudMPcast to construct overlay distribution

trees for bulk-data transfer that both optimizes costs of distribution, and ensures end-to-

end data transfer times are not affected. Extensive evaluations of CloudMPcast leveraging

an extensive set of inter-data-center bandwidth and latency measurements from both

Azure and EC2 have shown significant benefits. Cost savings range from 10% to 60%

across a wide variety of scenarios. Authors’ proposal has been supported by experimental

analyses, which investigated the throughput and the latency leveraging two minute long

experiments during one day.

Tomanek and Kencl [40] introduce CLAudit, a prototype cloud-latency monitoring

platform that utilizes the PlanetLab network [87] to place globally distributed probes

that periodically measure cloud-service latency. Measurement are performed at various

layers of the communication stack in order to also detect anomalous behaviors.

Mulinka and Kencl [80] present methods for automated detection and interpretation

of suspicious events within the multi-dimensional latency time series obtained by CLAu-

dit. They introduce three different metrics (namely, threshold, standard deviation, and
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histogram) to detect occurrences of suspicious events. They validate these methods of

unsupervised learning and analyze the most frequent cloud-service performance degrada-

tions. It is worth noting that the absence of ground truth data, hinders to perform a

complete validation of the outcome of their study.

Saljooghinejad et al. [81] present a black-box technique to evaluate the performance of

cloud applications based on latency observation perceived by the end-users. In more de-

tails, the methodology they propose aims at estimating the maximum load an application

can sustain (in terms of user requests), monitoring the end-to-end latency and identifying

at which load the latency increases beyond acceptable levels. Although not directly in-

terested in cloud-to-user latency, they monitor its trend to infer the state of the server in

order to characterize the cloud system performance. To this end, they wisely mitigate the

impact of network delay on end-to-end latency by comparing the latter to measurement

results obtained with tcpping that do not depend on the server-side performance.

Venkataraman et al. [82] address the challenge of predicting the performance of ap-

plications deployed in public clouds under various resource configurations in order to

automatically choose the optimal configuration (i.e., improving performance at reduced

cost). They adopt a black-box approach which also measures the performance of the

intra-datacenter network in terms of network bandwidth to collect model data. They

evaluated their proposal in Amazon EC2 infrastructure and found that the available net-

work bandwidth per core may change with the size of the VM. In this study the network

measurement activities support the design of the model, but very coarse information is

provided about the methodology enforced and its results. Detailed network performance

collected in Amazon EC2 are omitted.

Li et al. [34] propose CloudCmp, a platform to compare cost and performance of

different cloud providers. The comparative study proposed includes four popular and

representative cloud providers: Amazon, Azure, Google, and Rackspace. The authors

identify a set of common functionalities, and therefore propose a comparison in terms of

elastic computing (i.e., start-up time), persistent storage, and networking services. For

what concerns the networking services, they adopt standard tools such as iperf and ping,

and consider the intra-datacenter, the inter-datacenter, and the cloud-to-user network

performance.

They found that the intra-datacenter network performance may heavily vary among

providers. In more details, Amazon and Azure reports intra-datacenter TCP throughput
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around 800Mbps, on average, while lower performance (200 Mbps) have been observed for

Rackspace, possible due to throttling or under provisioned networks. Larger variability

was observed for Amazon. In terms of latency, all datacenters achieved low round-trip

time (< 2ms) for all pairs of VMs tested.

The inter-datacenter analysis is limited to pairs of datacenters within the United

States. Rackspace reported the worst performance (around 100 Mbps), while for both

Amazon and Azure median TCP inter-datacenter throughput higher than 200 Mbps was

observed. Authors found that the latencies between datacenters largely correspond to the

geographical distance between them.

Finally, they also consider the optimal latency measured considering a set of dis-

tributed vantage points. The results reported that Amazon and Azure have similar latency

distributions, worse than Google’s, on average, but much better than the one measured

for Rackspace, possibly due to the smaller number of datacenters composing the infras-

tructure of the latter. Moreover, Amazon reported the higher latencies for vantage points

placed in South America and Asia, because of the absence of datacenters in these regions

at the time of experimentations were performed.

The monitoring activities performed in the works discussed above are able to provide

interesting insights into the infrastructure of the cloud providers analyzed. However, all of

them share two main shortcomings: (i) they are limited to pure black-box analyses, as they

do not consider any information about the design of the cloud infrastructure; (ii) they

do not explicitly consider the impact that the controlled virtualized environment may

have on the network performance and on the monitoring tools adopted, and therefore the

reported results are subjected to potential misinterpretation. In the following, we detailed

analyze the works that try to go beyond these limitations. We first consider the studies

that try to unveil the design of public-cloud services and infrastructures. We then discuss

the works that explicitly consider the impact of the virtualized cloud environment.

Unveiling the design of public-cloud services and infrastructures.

A very limited set of works, try to go beyond the pure black-box analyses of cloud

systems. As the implementation of cloud-based systems and services usually hides imple-

mentation details, a number of studies is devoted to methodologies for obtaining useful

information from public-cloud deployments, thus extending the information base avail-

able to general customers or to final users. This kind of information can be leveraged to
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provide security assessments, improve application performance, and enhance cloud usage

patterns.

Raiciu et al. [27] conducted a study aimed at discovering the network topology of

the Amazon datacenters, and show—through simulation—how this kind of information

potentially has a big impact in the optimization of the applications. Although intra-

datacenter network topologies are kept hidden by providers for security and commercial

reasons, they found that a great deal of information can still be inferred by leasing many

VMs and running measurements from cloud VMs. In more details, they adopt well known

network diagnosis tools such as ping, traceroute, and iperf to reconstruct the topology

of one of the Amazon EC2 datacenters. Given a pair of VMs, they identify a number of

possible situations: the VMs are on the same physical machine (2-hop distance, 4 Gbps

throughput); the VMs are in the same rack (3-hop distance, same /24 address space,

1 Gbps throughput); the VMs are in the same subnet (4-hop distance, 1 Gbps throughput);

the VMs are in different subnets (6-hop distance, 1 Gbps throughput). Based on the

information-base gathered, they propose CloudTalk, a language designed to allow users

to describe network tasks such that the network can accurately estimate their completion

time, in order to enable application optimizations.

Similarly, LaCurts et al. [28] in their study analyze the path lengths obtained with

traceroute measurements within Amazon and Rackspace datacenters in order to iden-

tify communication bottlenecks. For Amazon environment, they found the observations

consistent with a multi-rooted tree topology. Moreover, observing a number of paths

longer than three hops, they infer that a significant number of VMs is not located on the

same physical rack. Experimental evidences obtained by applying the same approach to

Rackspace infrastructure, suggest that the provider enforces specific techniques to hide

topology informations. Authors also perform a number of throughput measurement cam-

paigns, involving the two providers. For Amazon, these campaigns (performed leveraging

netperf and 10-second long measurements and involving medium VMs) reported that

most paths (roughly 80%) have throughputs between 900 Mbps and 1100 Mbps. On

the other hand, little performance variation was observed in Rackspace, as every path

has a throughput of almost exactly 300 Mbps. The authors propose then Choreo, a sys-

tem to perform network-aware application placement. Choreo measures the network path

between each pair of VMs to infer the TCP throughput between them and places the

applications according to their requirements.



Non-cooperative approaches 42

He et al. [88] provide an empirical measurement study of popular IaaS cloud providers

(Amazon and Azure) that examines cloud usage patterns and identifies ways in which

customers could better leverage IaaS clouds. This measurement study, combining data

from a university packet captures1, interrogation of DNS records for websites listed on

the Alexa top 1-million list, and lightweight probing, profiles the deployment patterns

observed for popular web services and uncovers that the analyzed cloud deployments are

somewhat precarious, as the vast majority of websites—even the more popular ones—use

only one cloud region. In addition to resiliency benefits, they found that multi-region

deployments could increase performance in terms of latency and throughput.

Ristenpart et al. [89] study the vulnerabilities introduced by design approaches usually

introduced by cloud providers. using the Amazon EC2 service as a case study. The

authors perform an empirical measurement study based on nmap, hping, and wget to

perform network probes to determine liveness of EC2 VMs. They show that it is possible

to map the internal cloud infrastructure, identify where a particular target VM is likely

to reside, and then instantiate new VMs until one is placed co-resident with the target.

They also explore how such placement can then be used to mount cross-VMside-channel

attacks to extract information from a target VM on the same machine.

It is worth noting that most of the proposed approaches gather additional information

with respect to the ones available from interface exposed by the providers, (e.g., to infer

the topology of public-cloud datacenters) have become harder to be enforced over the

course of time, because of the countermeasures put in practice by providers that strive to

obfuscate them.

Investigating the impact of virtualization on network performance and mea-

surements.

Virtualization techniques enforced by providers in order to provide flexible and cost-

effective resource sharing is known to possibly introduce penalties in terms of performance.

A limited number of studies has investigated the impact of machine virtualization in

networking performance, also focusing on public-cloud scenarios.

Whiteaker et al. performs experiments with two popular virtualization techniques,

to examine the effects of virtualization on packet sending and receiving delays. Using a

1For the sake of accuracy, this work is not based on pure non-cooperative approaches, as packet
captures at the border of a university site require collaboration from entities with privileged roles with
respect to the general customers.
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controlled environments the authors investigate the influence on delay measurements when

competing VMs perform tasks that consume CPU, memory, I/O resources, hard disk, and

network bandwidth. Their results indicate that heavy network usage from competing VMs

can introduce delays as high as 100 ms to round-trip times. Furthermore, they found that

virtualization adds most of this delay when sending packets, whereas packet reception

introduces little extra delay.

Although not directly related to public-cloud environments, this work is worth to

be considered as one of the first investigating the impact of virtualization on delay and

delay measurements. Moreover, as the virtualization techniques investigated in controlled

environment are (with some variations) popular tools in public cloud implementations,

the issues raised by this work are general and also hold also public clouds.

Wang and Ng [26] present a measurement study to characterize the impact of virtual-

ization on the networking performance of the Amazon EC2. They measure the processor

sharing, packet delay, TCP/UDP throughput and packet loss among Amazon EC2 virtual

machines. They found that even though the datacenter network is lightly utilized, virtu-

alization can still cause significant throughput instability and abnormal delay variations.

In more details, they report that small VMs always share processors with other instances,

while medium instances get 100% CPU sharing for most of the cases. They correlate

this finding to unstable network performance. They performed hundreds of experiments

adopting synthetic traffic generation tools, and found that medium VMs can achieve sim-

ilar TCP and UDP throughput, while the TCP throughput of small VMs is much lower

than their UDP throughput. Thanks to further analyses, they identify the impact of CPU

scheduling synchronization on TCP control dynamics as a possible root cause of the ob-

served performance. End-to-end delay measurements reported that delays among VMs

are highly variable, and possibly impacted by internal security management systems. For

what concerns the packet loss estimation, experimental evidences reports that in virtual-

ized datacenter environments, there are additional difficulties to infer network properties

using statistics. Some valid assumption in traditional network environments may not hold

in virtualized datacenters. The reported results have a number of implications for net-

work measurement and experiments performed in the cloud as they may be heavily biased

by enforced management mechanisms. Moreover unstable network throughput and large

delay variations can also have negative impact on the performance of scientific computing

applications.
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Barker and Shenoi [90] conduct a study to investigate whether dynamically vary-

ing background load from such applications can interfere with the performance seen by

latency-sensitive tasks, in terms of CPU, disk, and network jitter and throughput fluctua-

tions seen over a period of several days. In their empirical study they evaluate the efficacy

of Amazon EC2 (considering small VMs), for hosting latency-sensitive applications, aim-

ing at quantitatively determining whether such background load can impact application

performance on a cloud server and by how much. In their network benchmark, they used

traceroute to measure round-trip times within Amazon EC2 infrastructure. They consid-

ered both the latency from their server to the next immediate hop as well as the sum

of the first three hops. Their network-based tests suggest that a certain amount of la-

tency variation is to be expected when running in a cloud-based environment, but do not

implicate resource sharing as the cause of this variation.

As virtualization in public clouds prove to impact performance to different extents

we believe that its effects have to be properly taken into account when adopting non-

cooperative approaches.

Final remarks. Table 2.1 summarize the works that implement non-cooperative ap-

proaches to monitor cloud networks.

As playing a crucial role, the characteristics of public-cloud networks have been investi-

gated by the recent literature in different ways in order to go beyond the poor information

exposed by cloud providers. As shown in the table, unsurprisingly the distribution of the

providers investigated by the existing works reflects their current adoption. Therefore,

most of them deals with Amazon, Azure, or both. A limited number of works investigate

the networks of Rackspace and Google clouds, possibly because of the lower adoption or

the later public release, respectively. A very small number of studies takes into account

more than one provider, however.

Most of the works analyze the intra-datacenter network—often limiting their scope to

it—also driven by the need of specific classes of applications to know the performance of

the network within the datacenters. In spite of the new architectural solutions [46] that

leverage inter-datacenter networks to support applications having strict requirements in

terms of bandwidth or latency, only few works investigate its performance for public cloud

providers [34, 83, 48, 38]. To the best of our knowledge, in one only case [34] a study

takes into consideration more than one network portion.
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More in general, rarely these works are focused on the network itself. Therefore, often

the network has been marginally investigated and only coarse-grained results are provided,

thus ignoring the management solutions implemented by the providers, the impact of the

virtualization on the measurement results, or the impact of the configuration choices

available to the customer.

As a consequence, the picture of the cloud network stemming out from the literature

appears definitely blurred, also presenting strongly conflicting results [37, 34, 28].



Non-cooperative approaches 46

Table 2.1: Application-agnostic cloud monitoring studies. Intra-DC, Inter-DC, and C2U stand for intra-
datacenter, inter-datacenter, and cloud-to-user networks, respectively. A:Amazon, Z:aZure,
G:Google, R:Rackspace. + reports if the study proposes an Investigation of the Design of the
provider infrastructure and/or of the impact of virtualization.

Reference Year
Provider Network

A Z G R intra-dc inter-dc c2u +

Palankar et al. [79] 2008 X X

Wang and Ng [26] 2010 X X X

Barker and Shenoi [90] 2010 X X X

Li et al. [34] 2010 X X X X X X X

Schad et al. [37] 2010 X X

Iosup et al. [86] 2011 X X

Hill et al. [85] 2011 X X

Raiciu et al. [27] 2012 X X X

Tudoran et al. [77] 2012 X X

Feng et al. [83] 2012 X X

Feng et al. [48] 2012 X X

Juve et al. [75] 2012 X X

Tomanek and Kencl [40] 2013 X X

LaCurts et al. [28] 2013 X X X X

Garcia-Dorado and Rao [38] 2015 X X X

Mulinka and Kencl [80] 2015 X X

Saljooghinejad et al. [81] 2016 X X X X

Venkataraman et al. [82] 2016 X X



Chapter 3

The CloudSurf platform

In this chapter we introduce CloudSurf, a platform we have designed, implemented, and re-

cently publicly released [91]. CloudSurf allows to monitor public-cloud networking infras-

tructures from the customer viewpoint through non-cooperative approaches, i.e. without

relying on information restricted to the cloud provider or to entities playing a privileged

role with respect to the provision of cloud services.

3.1 Motivations

A growing number of companies are riding the wave to provide public-cloud computing

services, such as Amazon, Microsoft, Google, or IBM. These companies offer a wide range

of services of different nature that continuously evolve over time, in accordance with the

needs of the market and the technological progress. This situation leads to a problem of

plenty, in terms of both available providers and range of services that each of them makes

available at different cost. Since no detail about the strategies implemented to manage

the network or its expected performance is usually exposed by providers, the customer

has to face a number of practical limitations: (i) because of the lack of information about

network performance or network management strategies, the customer is not aware of

how network resources are allocated to the cloud services he/she is going to rent; for

instance the customer is not aware of the variability of the performance of the network

over time; consequently, the customer cannot properly evaluate the suitability of the cloud

system for the application to deploy; (ii) the customer cannot perform informed choices

(for instance, based on expected network performance) in selecting the cloud offerings

from various providers; indeed, providers cannot be properly compared; (iii) for a given
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provider, the customer is not able to understand how selecting more expensive services

would lead to have better network performance (i.e. the customer cannot choose the

service that better suites his/her needs among the wide range of options available for a

given provider).

Adopting non-cooperative approaches is the natural solution to the described situa-

tion. The scientific literature provides a number of examples in this regard (see § 2.2).

However, the outcome of these pioneering works is limited in scope for what concerns the

performance of the network. In addition, the obtained results prove to conflict in some

cases. The lack of knowledge about the specific conditions in which the analyses proposed

in the literature have been performed makes these kind of analyses hardly repeatable. The

different points in time in which these analyses were performed as well as the different

methodologies and tools adopted do not ease the comparison, as providers’ infrastructure

rapidly evolves over time and virtualization proved to differently impact tools [26], re-

spectively. Additional issues raise from the expertise needed in managing cloud services

and configuring the tools to perform the experimentations.

We propose CloudSurf in order to overcome the limits of the state of the art. CloudSurf

is designed to perform cloud network monitoring activities from the general customer’s an-

gle and aims at providing the customer with a means to easily investigate the performance

of cloud networks on demand and according its needs.

3.1.1 Desirable properties

Considering also the limitations of the approaches already implemented for monitoring

cloud networks, we can find the following desirable features for a platform with such aim.

• No need for information restricted to privileged entities. As already discussed, our

platforms is thought to be fully oriented to the general customer. Therefore the ap-

proaches implemented do not require the cooperation of any privileged entity. As

the monitoring activities do not rely on this advanced information, they have to pri-

marily leverage active monitoring approaches, i.e. they have to inject measurement

traffic into the network in order to monitor its performance.

• Ease of use. Cloud services are leveraged by customers with different backgrounds,

not necessarily having an advanced expertise in network monitoring activities and

its related issues. A desirable property of the platform is to be easy to use, such
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that its features can be leveraged by the wide community of people interested in

cloud network performance.

• Comprehensiveness. As the providers offer a rapidly evolving wide range of service

with different characteristics and properties, it is desirable for the platform to pos-

sibly deal with the most popular providers and all the options made available by

each of them. In addition customers may be interested in different properties of

the networks (e.g., minimum bandwidth guaranteed, maximum throughput achiev-

able, latency). Accordingly the platform has to allow customers to perform the

experimentation suited for gathering the aspects of interest.

• Ability to predict the cost of the experimentations. Non-cooperative approaches

require to interact with the provider as general customers do. This implies that

the user of the platform is subjected to the pay-as-you-go paradigm, in accordance

to the terms of contract of each provider. Cloud network experimentations could

be very costly (especially when repeated analyses are needed or when high-rate

traffic has to be generated) as providers usually charge customers not only for the

computation or memory capabilities of the VMs, but also for the traffic generated

by them. It is desirable that the platform would be able to estimate the cost that

the customers would be subjected to.

• Easy sharing of the results of the analyses. According also to the cost of the exper-

imentations, it would be desirable that the platform would provide an easy way to

share the outcome of the analyses with the community of people interested in them.

3.2 Architecture and implementation

With the above desirable features in mind, CloudSurf is designed to transparently per-

form cloud network measurement activities. Thanks to CloudSurf a cloud customer can

measure the performance of the cloud network in any scenario of interest and/or ana-

lyze the outcome of measurement activities with no specific expertise neither in managing

cloud resources nor in utilizing monitoring tools. Hereafter we will refer to the customer

utilizing the CloudSurf platform as the CloudSurf user or simply the user.

The architecture designed for CloudSurf includes all the basic components required

to perform cloud network monitoring activities. These components are: (i) the cloud-
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probes, (ii) the master, and (iii) the results repository. Figure 3.1 shows an overview

of the architecture and its main components. The master is the entity in charge of

orchestrating the overall monitoring process. The cloud-probes are the components in

charge of performing the strict monitoring activities. At the end of the monitoring process,

its outcome flows into the results repository in order to be shared with the community of

users.

The CloudSurf platform has been implemented in Python and has been released under

Affero GPL (AGPL) license [92]. It is designed to support cloud monitoring activities for

the leading public cloud providers: Amazon and Microsoft (see § 1.1.2). In the following

the components will be briefly described together with the functionalities they implement.

When needed, practical code examples related to the implementations will be shown.

Up-to-date Pricing 
Information

Results Repository

CloudSurf User
Master

Cloud probe

Cloud credentials

Virtual machine

Managment API

Figure 3.1: Architecture of CloudSurf.

3.2.1 Cloud probes

The cloud probes are remote measurement servers deployed on demand. They are de-

ployed onto the cloud by the master when the user of the platform requires some exper-

iments to be performed. The probes are thought to be passive entities, as they wait for

instructions to be performed once deployed.

As the CloudSurf platform implements non-cooperative approaches through active
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measurements, the cloud probes act as the endpoints of the experiments, and may play

the role of both the sender and the receiver, as required by the master. In more details,

the probes enable to utilize a number of tools to perform different kinds of experiments.

Some examples of the tools integrated by the platform are nuttcp, ping, or paris traceroute.

In addition each probe implements a number of utility functions, allowing the master

to cope with management issues (e.g., verify if the probe is alive, check the state of the

probe, get the state of a certain experiment).

The remote measurement service exposed by each probe is implemented through the

XML-RPC protocol. XML-RPC is a remote procedure call protocol which uses XML to

encode its calls and HTTP as a transport mechanism. The parameter types allow nesting

of parameters into maps and lists, thus larger structures can be transported. Therefore,

XML-RPC can be used to transport objects or structures both as input and as output

parameters. Identification of clients for authorization purposes can be achieved using

popular HTTP security methods.

According to the proposed approach, the probes generate and receive two types of

traffic: (i) the control traffic, exchanged between a probe and the entity that controls it,

that is transported over HTTP and encoded according to the XML-RPC protocol; (ii)

the measurement traffic generated by the probes and exchanged among them.

Experiments implemented by the probes can be classified as one-sided or two-sided.

In the former case, the experiment does not require control over the destination, i.e. the

sender does not require an active process listening at the destination side. In the second

case, the experiment does require that at the receiver side, a process has been activated.

Accordingly, in the case of two-sided experiments the entity that orchestrates the experi-

ments has to coordinate the two probes involved, while in the case of one-sided experiments

there is not such a need.

3.2.2 Master

The master is the entity in charge of orchestrating the experiments. According to the

design of CloudSurf, it is the only entity with which the cloud customer has to directly

interact. In more details, the master is responsible for the following tasks: (i) cloud

environment setup and deployment of the monitoring probes; (ii) management of mea-

surement experiments; (iii) experiment-cost estimation; (iv) results collection. The master

allows the user to take advantage of the features implemented by the platform through a
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Command Line Interface (CLI).

Cloud environment setup and deployment of the monitoring probes. The mas-

ter is required to properly setup the cloud environment and allocate cloud resources in

order to perform the monitoring activities required by the user. The CloudSurf platform

leverages the services made available by providers to deploy monitoring probes within

public-cloud datacenters taking advantage of the IaaS model. This layer guarantees the

level of flexibility needed for the analyses based on non-cooperative approaches, as also

demonstrated by previous works [26, 34, 37]. In particular, IaaS allows to deploy the

monitoring probes on demand onto the cloud, taking advantage of VMs instantiated for

the purpose.

In more details, in the setup phase, the master is in charge of managing user’s creden-

tials, configuring firewalling rules, launching VMs, and deploying the monitoring probes

onto them. At the end of the monitoring activities the master decommissions the VMs

and restores the state of the environment to carry it to its initial conditions.

In order to setup the cloud environment the master interacts with the provider through

the cloud management API exposed. CloudSurf leverages the Python implementation of

the interfaces made available by the providers. To interact with the provider through the

interface, the master needs the proper level of authorization from the user. Also recalling

that the ease of use is a design principle, CloudSurf needs the user to configure valid access

credentials for the provider by simply storing them in a configuration file. This aspect is

directly borrowed from providers’ friendly interface, that allows to easily manage users,

assigning them to groups, privileges, etc. For instance, in the case of Amazon, credentials

have to be organized in a configuration file as reported in the following.

[Credentials]

aws_access_key_id = <ACCESS_ID >

aws_secret_access_key = <SECRET_ID >

Once the credentials have been arranged, the platform is able to autonomously configure

the cloud environment. It is worth noting that some of these activities depend on the

specific experiment that the user wants to perform, as they concur in the identification of

the specific scenario in which network performance is investigated (see § 3.3).

Before deploying the measurement probes, VMs have to be lunched, properly config-

uring their firewall rules and the credential to access them.

The firewall must be configured in order to let both the data and control traffic pass.
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To this aim with respect to the Amazon cloud environment, the platform defines a set of

rules through a security group object. An example is reported in the following.

security_group = \

self.ec2_connection.create_security_group(

"probe firewall", # name

"data and control traffic allowed") # description

# ALLOW SSH incoming connections (TCP :22)

security_group.authorize(

ip_protocol="tcp", # protocol

from_port =22, # src port

to_port =22, # dst port

cidr_ip="0.0.0.0/0") # src address

# ALLOW XML -RPC control Traffic (TCP :8022)

security_group.authorize(

ip_protocol="tcp", # protocol

from_port =8022 , # src port

to_port =8022, # dst port

cidr_ip="0.0.0.0/0") # src address

# ALLOW incoming measurement traffic (TCP :18100 and TCP :18101)

security_group.authorize(

ip_protocol="tcp", # protocol

from_port =18100 , # src port

to_port =18101 , # dst port

cidr_ip="0.0.0.0/0") # src address

Outgoing traffic is allowed by default. The examples shows how two rules are defined

to let both the control traffic (TCP, port 8022) and the measurement traffic (TCP ports

18100 and 18101) pass. In addition the TCP 22 port also open in order to allow the master

to also leverage the Secure Shell (SSH) protocol. The protocol and the ports associated

to the measurement traffic change with the experiment and the tool leveraged.

In order to access the VMs via SSH indeed, for each experiment a couple of PEM-

encoded RSA keys is created: the public one is deployed onto the VMs through the

management API, while the private one is locally stored and adopted for interacting with

the VMs for the following tasks. It is worth noting that thanks this step, afterwards the

CloudSurf platform can interact with the VMs with no need to pass through the provider’s

API. This also means that the steps after the VM creation are the same whichever the

involved provider is.

Once these tasks have been completed, the VMs can be launched. For each instantiated

VM, the platform stores a data structure as the one reported in the following.
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id # The unique ID of the VM

group # The security group associated with the VM

public_dns_name # The public dns name of the VM

private_dns_name # The private dns name of the VM

state # The instance ’s current state

key_name # The name of the SSH key associated with the VM

instance_type # The type/size of the VM

launch_time # The time the VM was launched

private_ip_address # The private IP address of the VM

ip_address # The public IP address of the VM

platform # Platform of the VM (e.g. Linux)

No other activity can be performed before the VMs are in the running state. As the

startup time may vary with the provider or the resources leased, the CloudSurf platform

takes advantage of the status-check functionality made available by the providers to be

sure that the VMs launched are actually running. When the status check returns a positive

outcome, the probes can be deployed on the newly instantiated VMs, i.e. the tools needed

are installed and configured on the cloud VMs, and the measurement servers are actually

started.

Experiment management. Once the probes are available, i.e. the master can leverage

the measurement services they expose, the experimentations can be actually launched.

Each measurement campaign is identified by the following data structure.

campaign = {"sender": sender_VM ,

"receiver": receiver_VM ,

"experiment_list": [exp1 , exp2 , ..., expN]}

This structure contains all the information needed to define an experiment. The sender

and the receiver keys identify the VMs involved in the campaign. The experiment list

parameter represents a list of experiments. Each experiment object contains all the in-

formation to execute a measurement activity. An example for an experiment aimed at

investigating the TCP max throughput achievable and the network latency with the nuttcp

tool is reported in the following.

tcp_throughput_latency = {

"tool": "NUTTCP", # tool

"port": 18100 , # measurement traffic dst port

"proto": "tcp", # measurement traffic protocol

"duration": 300, # experiment duration (s)

"bandwidth": 1000000000 , # measurement traffic bitrate (bps)

"sleep_exp": 0} # time to wait after the experiment (s)
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Given a campaign, the master is in charge of orchestrating it, by scheduling the exper-

iments, also according sleep exp parameter, that defines the time to wait after each of

the experiments. The master drives the sender and possibly the receiver VM, according

to the fact that the experiment is two-sided or one-sided.

Experiment-cost estimation. Each experiment comes at a cost which the user is

subjected to, according to the pay-as-you-go model. The platform offers an estimation

for this cost before running the experiment, in order to allow the user to evaluate its

economical feasibility.

This cost depends on the charges imposed by the specific provider. Two quotas can

be identified: (i) the expense associated to the VMs leased; (ii) the expense related

to the traffic transferred over the network. These two quotas are heavily impacted by

the specific scenario of the experimentation, as the cost of the VMs leased varies with

the type of the VM its characteristics. Because of the pay-as-you-go model, it is also

impacted by the duration of the experiment. The cost of the traffic generated also varies

with the characteristics of the experiment, as traffic transfer is usually charged based on

traffic volume. For instance experiments aiming at investigating the maximum throughput

achievable with TCP (e.g., based on nuttcp) may require more traffic to be generated with

respect to experiments aimed at monitoring the latency of the network (e.g., based on

ping), as the former need to inject full-size TCP packets at full rate, while the latter

usually injects ICMP packets of few bytes at a lower rate. In addition providers charge

differently the measurement traffic based on its destination. For instance, the traffic

between two VMs in the same datacenter comes at a lower fee with respect to traffic

between two distinct datacenters. Finally, in some cases, the actual volume of traffic

generated in a certain time interval is hard to be accurately estimated, as it depends on

the characteristic of the network going to be investigated, that is not known a priori.

However its upper bound can be easily computed, as it depends on the duration of the

experiment and on the traffic the probes are required to generate.

The general formulation implemented by CloudSurf for estimating the cost associated

to an experiment is provided in the following:

Exp cost =

⌈
D

3600

⌉
∗ (Csender

VM + Creceiver
V M ) +R ∗ CTraffic

where:
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• D is the duration of the experiment (in seconds),

• Csender
VM is the (hourly) cost of the sender VM,

• Creceiver
V M is the (hourly) cost of the receiver VM,

• R is the rate of measurement traffic (in GB/s),

• CTraffic is the charge that the provider imposes to the data transfer (e/GB).

The ceiling operator is justified by the fact that the VM usage is charged per hour or

fraction. Control traffic is not taken into account by the formula as negligible when

compared to measurement traffic.

In order to gather information about the costs imposed by the provider (i.e., the

Csender
VM , Creceiver

V M , and CTraffic parameters in the above formula), the master takes ad-

vantage of a cost-estimation module. This module looks up to the pricing web pages of

the providers and retrieve information from there. The CloudSurf platform extended a

pre-existing open-source module (namely, the awspricingfull project [93] that retrieves

some of the information needed for Amazon).

Results collection. When a campaign is terminated, the master gathers all the results

temporarily stored on the probes. As the CloudSurf platform allows to take advantage of

a number of different tools—each with its own output format—the gathered results are

forcedly heterogeneous. In order to solve this heterogeneity issue, the master relies on a

parsing module, in charge of translating the raw output into an homogeneous format. In

more details, for each tool supported, the master has a parsing routine that translates

the unstructured heterogeneous source into a JSON-encoded homogeneous format. An

example of the output of a campaign obtained—after the parsing routine has been run—is

reported in the following.

[{

"start": 1452774556 ,

"proto": "tcp",

"exp_name": "nuttcp_1",
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"duration": 300,

"camp": {

"region_rcv": "us-east -1d",

"size_snd": "t2.medium",

"provider_rcv": "aws",

"region_snd": "us-west -2a",

"provider_snd": "aws",

"size_rcv": "t2.nano"

},

"info_snd": sender_info ,

"info_rcv": reveiver_info ,

"results": {

"delay": {

"detailed": null ,

"synt": {

"std": null ,

"pctl5": null ,

"min": null ,

"max": null ,

"pctl25": null ,

"pctl95": null ,

"median": null ,

"pctl75": null ,

"mean": 72.88

}

},

},

"tput": {

"detailed": {

"1452774556": 70.54241818181818 ,

"1452774557": 109.51876666666666 ,

"1452774558": 104.85843 ,

"1452774559": 108.00174 ,

...

"1452774570": 108.52799

},

"synt": {

"std": 24.666100557004235 ,

"pctl5": 30.828042 ,

"min": 17.30131 ,

"max": 114.29306000000001 ,

"pctl25": 61.342079999999996 ,

"pctl95": 111.673483 ,

"median": 80.21698 ,

"pctl75": 94.89526500000001 ,

"mean": 78.4539640360123

}

},
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}]

For each campaign, the parser module generates an output file that consists of a list of

experiments. For each experiment key details are saved, such as: the start time, the

duration, the tool adopted. Finally for each parameter investigated with the experiment

(throughput, latency, loss, etc.), both the instantaneous values (when available) and the

synthetic information are stored.

After having parsed the outcome of the analysis, the master upload it to a community

repository that stores all the information

3.3 Identifying scenarios of interest

Characterizing the cloud network performance through non-cooperative approaches is a

very challenging task for the extremely high number of possible scenarios in which a cloud

customer may operate according to choices done when setting up the cloud environment,

i.e. in the deployment phase. In this section we introduce the factors of interest to

identify the scenarios when characterizing the network performance with the CloudSurf

platform. It is worth noting that all the factors considered are under the direct control

of the customer, and therefore can be driven by the CloudSurf platform. No expertise in

managing public-cloud services is needed from the platform user: the deployment choices

are transparently enforced by the platform, according to the available provider interface

and user’s will.

This approach eases as much as possible the understanding of the precise conditions

in which the analysis is performed and allows to identify the major factors impacting

the performance perceived by the users, beyond guaranteeing the ability to replicate the

analysis in exactly the same conditions. This also helps to understand the blurred image

about the public-cloud network performance provided by the scientific literature, as the

few available pioneering works marginally focusing on this aspect, operated in few limited

scenarios, and reported conflicting results.

We believe that identifying these factors and their impact on cloud network perfor-

mance represents an important contribution for the analysis of public-cloud networks. In

the following, we discuss the deployment factors potentially having a major impact on the

intra-datacenter network performance, first considering those common to the providers

considered (§ 3.3.1), and then the provider-specific ones (§ 3.3.2). Finally we discuss also
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the experiment-configuration factors (§ 3.3.3).

3.3.1 Common deployment factors

In this section we introduce the common factors, i.e. those factors that can be leveraged

whichever provider is subjected to our analyses, as reflecting common practices enforced

by any public cloud provider.

VM type and size. When deploying VMs onto the cloud, a customer can choose their

type and size among the ones made available by the provider. In this way, users can

take advantage of different preconfigured settings in terms of storage size, computation

capabilities, and network performance.

VM type (also referred to as family or series in the Amazon and Azure documenta-

tion, respectively [19, 69]) indicates a family of VMs optimized for a given task (storage,

computation, etc.) and has been introduced with the intent of easing the configuration

of the cloud environment.

Once the type is selected, the customer can decide the size of the VM to further specify

storage and computation capabilities. Each VM type includes one or more sizes, thus

enabling the customers to adapt leased resources based on their workload requirements.

Machine hourly cost changes according to both type and size.

While the documentation by both Amazon and Azure clearly describes the available

resources in terms of memory and CPU, it omits details about network performance

associated to the leased resources, as no quantitative information about the performance

of the network associated to each type and size is provided. Seldom works in the literature

explicitly consider the type and the size of the VM as having substantial impact on network

performance.

Geographical region. When instantiating a new VM onto the cloud, the customer

can choose among a number of different geographically distributed regions. Both the

cloud providers considered have deployed a complex infrastructure distributed world-wide.

Customers can select different regions to meet their own technical and legal requirements.

Each region is associated to different datacenters claimed to be completely independent

from the others.

As of March 2015, Amazon deployed datacenters in 12 different regions spread world-

wide. Throughout the next year, the Amazon global infrastructure will expand with new
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datacenters in 5 new geographic regions [19]. On the other hand, Azure infrastructure

consists in datacenters spread in 22 geographically distributed regions, while 5 new regions

have been announced [69].

It is worth noting that different regions (i) have been designed and launched at differing

points in time and thus may leverage different technologies; (ii) may be subjected to

different management strategies; (iii) are interested by different workloads; (iv) may be

subjected to different fees.

Works in the literature either omit the region under test [28, 27] or report performance

variations across regions [34, 37].

Table 3.1 summarizes the choices available to the customer according to the factors

introduced.

Table 3.1: Common factors (VM type, VM size, and geographically distinct regions) and available choices
for Amazon and Azure.

Factor Provider Available choices

VM types Amazon (9) General Purpose (T2, M4, M3); Compute
Optimized (C4, C3); Memory Optimized
(R3); GPU (G2); Storage Optimized (I2,
D2);

Azure (5) General Purpose (A-series); Compute Opti-
mized (D-series, Dv2-series); Memory Op-
timized (G-series); Storage Optimized (DS-
series)

VM sizes Amazon (8) micro, small, medium, large, xlarge,
2xlarge, 4xlarge, 8xlarge (depending on the
family);

Azure (12) 1–8, 11–14 (depending on the series);

Region Amazon (12) Northern Virginia, Northern California,
Oregon, GovCloud, Sao Paulo, Ireland,
Frankfurt, Singapore, Tokyo, Sydney,
Seoul, Beijing;

Azure (22) Iowa (2), Virginia (3), Illinois, Texas, Cal-
ifornia, Ireland, Netherlands, Honk Kong,
Singapore, Tokyo, Osaka, Sao Paulo, New
South Wales, Victoria, Pune, Chennai,
Mumbai, Shanghai, Beijing;
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3.3.2 Provider-specific deployment factors

As the services offered by the different providers are backed by different implementations

and technologies, the service interfaces exposed may slightly differ. Accordingly, some of

the factors we have identified are provider-specific.

Availability zone (Amazon). Inside each Amazon region, the customer can choose

among multiple availability zones (i.e. different locations advertised to be interconnected

each other through low-latency links), opening the possibility of designing robust appli-

cations able to overcome potential zone fails [19]. Azure’s customers cannot leverage a

similar option. Indeed, differing sites in the same geographic location may exist for Azure,

but they are considered as part of differing regions (see Table 3.1).

Results in the literature are conflicting about the impact of availability zones on the

network performance [37, 34].

Configuration (Azure). During the deployment process, the Azure customers can select

specific configurations for their VMs. In more details, they can deploy their VMs in the

same Affinity Group or Virtual Network (VNET). According to Azure documentation [69],

the affinity group is a way to “group cloud services by proximity to each other in the Azure

datacenter in order to achieve optimal performance”. VNETs, instead, are a way to allow

services and VMs to “communicate securely with each other”. Placing a VM in a given

affinity group or VNET is optional and comes with no additional cost for the customer.

A similar option is not available to Amazon customers.

3.3.3 Experimental configuration factors

In this section we discuss those factors under the control of the user performing active

measurements during the strict experimental phase. These factors are related to how

traffic is generated.

Transport protocol. CloudSurf allows to measure the network performance with both

UDP and TCP traffic. On the one hand, UDP is typically used to analyze the per-

formance of the raw IP traffic. UDP adds no closed loop-control, leaving the complete

control on the generated traffic to the probe, no matter what the state of the network

is. On the other hand, TCP traffic, which is governed by flow and congestion control,

forces measurement traffic to be subjected to the status of the network path and pro-
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vides information on the performance of the numerous TCP-based applications. Because

of the highly virtualized environment, traffic leveraging different transport protocols may

receive different treatments.

Packet size. Traffic generated with differing packet sizes may incur in different perfor-

mance, as (i) larger packets may be subjected to fragmentation, thus generating additional

overhead for the intermediate devices; (ii) different size may have a different impact on

the generation capability of the probes when traffic is required to be generated at high

rates. The impact cannot be easily estimated a priori, because of the lack of visibility into

the specific system implementation. CloudSurf allows to generate traffic with different

packet sizes, so to investigate the impact of this factor.

Communication channel. According to common practices, cloud VMs can be reached

through a public or a private IP address [94]. Private addresses can be used only for

communications between VMs deployed in the same datacenter. Public addresses, instead,

allow the VMs to be reachable from the public Internet. Communicating through public

addresses, however, could come at an additional cost, depending on the traffic volume.

In our analyses we measured network performance when the receiver VM is reached

both through its private and public address. We refer to these logical communication

channels as private and public channel respectively. It is worth noting that private and

public channels may not correspond to the same physical path.

Probe placement and VM relocation. A cloud customer does not have neither

visibility nor influence on which specific physical machine in the datacenter hosts her

VMs. In our analyses, we also obtained empirical evidences suggesting the presence of

mechanisms nullifying traditional topology-discovery strategies such as ICMP filtering.

These mechanisms prevented us to gain knowledge about the relative position of the VMs

through the adoption of tools like traceroute and ping. The only way we have to indirectly

evaluate the impact of VM placement is to instantiate the VMs multiple times, i.e., we

ask the cloud provider to terminate the VMs and recreate them from scratch. We refer

to this process as relocation.

CloudSurf allows to implement relocation considering experiments as part of the same

campaign or not.
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3.4 Practical usage examples

To further clarify the working mechanisms of CloudSurf, we provide here a detailed de-

scription of how an experimentation is performed through practical usage examples and

taking advantage of sequence diagrams for each of the phases—namely, the initialization,

setup, experimental, and termination phases.

Figure 3.2: CloudSurf initialization phase.

The usage session starts with the initialization phase, when the user launches the

CloudSurf platform by activating the master (see Figure 3.2). Right after the startup,

the master asks for credentials (in order to gain access to public cloud services). Whether

the credentials are correct, the user can access the features of the platform. Trough the

CLI (see Figure 3.3) the user is asked to set all the factors for the experimental campaign,

thus to unambiguously identify the scenario of interest (see §3.3).

On the basis of the parameters for the experimental campaign (its duration, the

amount of traffic to be generated, the type and the size of the VM, the geographical

region, the communication channel), the master takes advantage of the cost-estimation
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(a) Home screen. (b) Experiment-selection screen.

Figure 3.3: CloudSurf command line interface.

module, which evaluates the cost which the user would be subjected to if the campaign

would be run. The user is then asked for confirmation on the basis of the cost estimation,

and if he/she, accepts to continue the setup phase starts.

During the setup phase the master interacts with cloud management API in order to

prepare the cloud environment (see Figure 3.4). First, the master defines firewall rules,

in order to let both control and measurement traffic pass through. Note that the rules

depend on the experiment to be performed. Then the master ask for the creation of a

couple of PEM-encoded key pairs, and locally stores the private one. At this point, the

VMs needed for the campaign can be started, asking the management interface to deploy

the previously created private key onto them. To reduce the time to wait and thus enhance

the user experience, the sender and the receiver VMs are launched in parallel. After the

VM instantiation has been asked to the provider, their actual availability is checked, as

the subsequent steps require the VMs to be running. Once the VMs are actually running,

all the code constituting the measurement server is moved onto them through the ssh

protocol. An automatic configuration procedure is then run on each VM. Finally the
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measurement servers are actually started via the ssh protocol.

After the setup phase, the experimental phase starts, according to the specifications

provided by the user (see Figure 3.5). The master schedules the experiments on the basis

of the request of the user, and when an experiment has to be launched, the master starts

it via the XML-RPC protocol. Note that at these steps the interaction with the receiver is

optional. When the experiment has been scheduled by the probe, the master is provided

with a unique identifier which is used in the following steps. Once the experiment has

been launched, measurement traffic between the probes is generated according to its type

and characteristics. While the experiment is running, the master checks for its status (via

the XML-RPC protocol and leveraging the identifier) until its termination.

When each experiment of the campaign is terminated, the termination phase starts.

Here the master retrieves the experimental results from both the sender and the receiver.

Right after that, it asks through the cloud management interface to terminate the VMs,

as they are no more needed. The master then translates the heterogeneous results into a

homogeneous JSON format through the parsing module. Finally, the master uploads the

parsed results onto the community repository and shows their summary to the user.
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Figure 3.4: CloudSurf setup phase.
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Figure 3.5: CloudSurf experimental phase.

Figure 3.6: CloudSurf termination phase.



Chapter 4

Intra-datacenter network
performance

The characteristics of the cloud systems, the strategies typically enforced by providers to

manage resources in public-cloud datacenters, and the general trend of not advertising

detailed information about expected network performance lead cloud customers to deal

with network performance unpredictability. This is also testified by the outcomes of

the analyses in the recent literature, which in addition reported significant variability

in the perceived intra-datacenter network performance [51, 34, 37, 95]. The generated

uncertainty hurts application performance and makes customer costs unpredictable to

the customers, also causing revenue loss to the provider.

The high-level management perspective fostered by the cloud paradigm, led to an

elementary interface between the customer and the providers, that has significantly con-

tributed to the popularity of the paradigm thanks to its simplicity. According to it,

customers simply ask for the amount of compute and storage resources they require (with

a few additional details depending on the specific provider), and are charged on a pay-

as-you-go basis. While attractive, this interface misses details about the cloud network

however [51]. While all cloud providers provide high performance network connectivity

to cloud systems, they seldom make any promises about network performance. Conse-

quently, customers may suffer the absence of guarantees about the network.

The resources leased by customers inside the datacenter (e.g., the VMs) are inter-

connected by network infrastructures shared among all tenants. The expected perfor-

mance and the management strategies of these networks are usually kept hidden by

providers, which—due to security and commercial reasons—rarely provide detailed in-
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formation about the organization of the network, its performance figures, and the mech-

anisms they employ to regulate it. The shared nature of the network and the highly

dynamic and rapidly changing number of customers and users, may cause the perceived

network performance to significantly vary. Indeed, the performance achieved by traffic

between VMs may depend on a variety of factors outside the tenant’s control, such as the

network load or the placement of the tenant’s VMs, and is further exacerbated by the

oversubscribed nature of datacenter network topologies [35].

The problem of network sharing within these high performance environments has been

largely investigated, as the shared networking environment dictates the need for mecha-

nisms to partition network resources among VMs. Therefore today cloud providers com-

monly employ sophisticated virtualization techniques and strategies for sharing network

resources among a high number of largely uncoordinated and mutually untrusted cus-

tomers. However, datacenter management issues are not limited to ones inherent to net-

working, and the presence of constraints over multiple dimensions may also raise conflicts.

For instance, proposed energy-management policies aimed at saving power costs, suggest

to consolidate or migrate VMs into fewer physical hosts, in order to reduce the number of

active physical hosts and save energy [96, 97]. However, these kind of approaches encour-

age resource sharing and lead to overload limited portions of the datacenter, thus possibly

generating permormance issues that may involve also the network as a side effect. Hence,

datacenter management policies are the results of strategies focused on the optimization

of heterogeneous issues, which may also drive to conflicting solutions.

More in general, among the large body of proposals about the intra-datacenter network

management, a clear agreement about what should be the desirable properties cannot be

found [36]. On the one hand there is an agreement in broad terms that an approach

should be scalable (i.e. it must work for very large numbers of VMs, tenants, server

machines, and—potentially—switches, and should scale to higher bandwidth), efficient,

(i.e. it should not require high hardware expenses or waste resource), and should lead

to a predictable resource allocation. On the other hand, there is an open debate about

other properties, often generated by the tendency to transfer desirable properties from

the public Internet to the multi-tenant datacenter networks. For instance different opin-

ions exist about the fact that cloud datacenter network should be work conserving or fair.

In addition to the high number of proposed approaches to manage the intra-datacenter

networks [98, 99, 100, 101, 51, 102], each provider may implement the management strate-
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gies in its own way, also according to the needs dictated by the operating context i.e.,

network gear available, virtualization environment adopted, etc. [34].

As such, these factors lead to high unpredictability in the performance offered by

the cloud network to a tenant, which in turn has several negative consequences, also

for the provider. Variable network performance is one of the leading causes for unpre-

dictable application performance in the cloud [37], which is a key hindrance to cloud

adoption [25]. This affects a wide range of applications: from transaction processing ap-

plications [103] and MapReduce-like data intensive applications [104], to web applications

that face users [86, 37]. Unpredictable network performance generates limited cloud appli-

cability. The ability of supporting several class of applications is severely impeded by the

lack of network performance predictability. The poor and variable performance of high-

performance and scientific computing applications in the cloud is well documented [105].

The same applies to data-parallel applications that heavily rely on the network to ship

large amounts of data at high rates [104]. Network also impacts cost predictability, thus

discouraging cloud adoption. Customers pay based on the time they occupy their VMs,

and this time is influenced by the network performance, as they implicitly end up pay-

ing when network driven tasks have been completed. It is worth noting how network

performance unpredictability leads also to cost unpredictability, even when network com-

munications are supposed to be free of charge.

In this context, monitoring activities allow to deepen the understanding of cloud sys-

tems. Indeed, they help to cope with the uncertainties generated by this unknown environ-

ment. As providers rarely expose detailed information about how they realize the services

they offer, i.e., about their design and implementation, non-cooperative approaches are

the only viable opportunity customers can leverage in order to perform informed decisions.

Non-cooperative monitoring activities allow to shed light on the performance unpre-

dictability the customers have to usually face. Monitoring activities can be planned to

to know in advance the performance of a specific cloud service, also allowing to estimate

how it is subjected to changes in the future. Moreover, they can also help to identify the

conditions that generate performance variability, thus identifying the most convenient

scenarios to setup, the factors that have a major impact on the performance, and those

under the direct control of the customer.

However non-cooperative approaches are challenging to be enforced, as they have to

face all the issues generated by the unknown and someway hostile cloud environment



71

itself. Indeed, network virtualization and dynamic allocation strategies transparently

employed by the cloud provider may strongly impact network performance measurements,

whose results may appear misleading or incorrect. As we detail along this chapter, in

our experimentations we have observed both traffic shaping policies causing transient

fluctuation of the network throughput measured and limitations on the maximum rate

at which the traffic can be delivered to a VM depending on its size. In addition, each

provider reported its own peculiarities. In the following we provide evidences of such

policies and limitations, also showing the impact caused on performance measurements.

In this chapter, we aim at improving the knowledge about both the performance of

public-cloud intra-datacenter networks and the non-cooperative approaches to be possibly

enforced, by focusing on the two leading public-cloud providers: Amazon Web Services

and Microsoft Azure [17], hereafter simply referred to as Amazon and Azure. In more

details we focused on the IaaS layer offered by these providers, namely Elastic Compute

Cloud (EC2) for Amazon and Virtual Machines for Azure. Previous works only marginally

analyzed the performance of the network offered by these services, by considering very

few limited scenarios and providing preliminary results. To fill this gap, we provide a

detailed characterization of the intra-datacenter network performance for these providers

in terms of maximum achievable throughput, as it represents one of the most interesting

parameters for the customers, impacting both QoS and costs [36, 28, 51]. We propose

here the results obtained from more than 5000 hours of experimentation to characterize

the network throughput offered by the two providers. We did not rely on the limited

and coarse-grained information advertised and provide, for the first time in literature, the

main contributions reported in the following.

• We identify and select a set of scenarios of interest for both providers, to perform

measurements in cloud environments in order to obtain a significant characteriza-

tion.

• Through our analyses, we improve the understanding of the complex policies and

limitations of the intra-datacenter network and also characterize and quantify their

impact on measurement experiments. We show how to properly configure and tune

non-cooperative approaches to monitor public-cloud environments, in order to ob-

tain significant characterization also with limited observation periods.

• We show how non-cooperative approaches are helpful to improve the knowledge of
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the performance of the cloud intra-datacenter networks: we carefully characterize

the network throughput in a large set of different scenarios (obtained varying pa-

rameters including the VM size, the geographical region, the transport protocol, the

communication channel, etc.) and show the impact of the choices of the customers.

• From the results of the monitoring activities performed we derive guidelines that

can help customers in performing advantageous deployment choices.

The chapter is organized as follows: § 4.1 introduces the cloud network architecture

and its abstraction we refer to in this chapter; § 4.2 presents how the scenarios of interest

have been selected for the experimentations; § 4.3 summarizes the results about the

intra-datacenter network in the literature; § 4.4 presents experimental results about the

impact of the virtualized cloud environment onto the measurement activities; § 4.5 offers

an overall view of the performance of the intra-datacenter networks for the considered

providers, which is extended by the more detailed results presented in § 4.6; § 4.7 presents

the usage guidelines possibly derived from the analyses performed.

4.1 Reference architecture

In this section we provide the reference architecture adopted to enforce intra-datacenter

network monitoring activities in public clouds through non-cooperative approaches. We

aim at measuring the network performance between a pair of VMs under the control of

the same cloud customer in terms of one of the most interesting metric, i.e. the maximum

throughput achievable. To this end, we can leverage the CloudSurf platform (see Chap-

ter 3) to deploy monitoring probes within public-cloud datacenters, taking advantage of

the IaaS model. Being driven by CloudSurf, these probes consists in VMs instrumented

with a standard operating system and all the necessary network measurement and diag-

nostic tools needed for estimating the network performance.

We measure the performance of the network generating synthetic traffic between the

deployed probes. In the following, we use the term sender and receiver probe to identify

the one in charge of sending and receiving the network traffic, respectively. Figure 4.1

reports the conceptual scheme we refer to in our experimental campaigns. On the basis

of what discussed in § 1.3.2, the traffic generated by the sender probe normally first

traverses the hypervisor layer at the sender side that enforces virtualization, as reported
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(a) Cloud intra-datacenter networking architec-
ture.

(b) Adopted abstraction.

Figure 4.1: Cloud network architecture and its abstraction. Two different monitoring points can be
identified for each experiment, able to catch the dynamics of outgoing traffic at the sender
(S) and of incoming traffic at the receiver (R).

in Figure 4.1a. Then it flows through L2/L3 devices and middleboxes part of the intra-

datacenter high performance network. Finally, the traffic reaches the hypervisor at the

receiver side before being delivered to the receiver probe.

It is worth noting that acting as cloud customers, we are not aware of the specific

location of the sender and receiver probes, which may also be hosted and managed by

the same hypervisor. In addition we have no specific information about the design of

both the hypervisor and the L2/L3 network possibly deployed between the two probes.

Furthermore, by adopting a black box approach, we consider the L2/L3 devices as well as

the hypervisors as part of the network connecting sender and receiver probe (Figure 4.1b).

Basically, we consider as network all the logical and physical components interposed

between the virtual network cards connecting sender and receiver VMs which host the

monitoring probes. Note that this choice entirely fits the point of view of the general cloud

customer who has no visibility on the cloud physical infrastructure, network internal

dynamics, and cloud provider policies, despite their potentially heavy impact on the

performance he/she perceives.
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4.2 Scenario selection strategy

Cloud providers allow customers to highly characterize their environments (see § 3.3).

The high number of available options translates into a large number of scenarios in which

a cloud customer may operate. Sampling the space of possible scenarios is necessary

when the goal is to provide meaningful and representative results of the intra-datacenter

performance while keeping the complexity and cost of the analysis acceptable. Indeed, as

shown in the following, a large number of experiments is needed to obtain representative

results, in order to deal with both the complexity of the environment that is not known

a priori. Moreover, the cost researchers have to face for these analyses—as they have to

cope with the cost of both the VMs leased and the synthetic traffic generated—is also a

limiting factor, often hard to estimate in advance. In the following the choices we made

to deal with this issues are reported.

Our goal is to measure the network throughput between VMs placed inside the same

region. Since this operation is costly, we are forced to select a subset of all the possible

regions for our experiments. We have therefore selected four regions placed in different

continents, to obtain a representative picture of the network performance of each cloud

provider. These regions were activated at different times from 2006 to 2011 for Amazon,

and from 2010 to 2014 for Azure. Hence, they also potentially leverage different technolo-

gies [37]. Namely, the selected regions are: North Virginia (United States, US), Ireland

(Europe, EU), Singapore (Asia-Pacific, AP), and Sao Paulo (South America, SA) for

Amazon and North California (US), Ireland (EU), Singapore (AP), and Sao Paulo (SA)

for Azure. Table 4.1 summarizes the choices made.

In our experiments, we focused on general purpose VMs, which provide a balance of

CPU, memory, and network resources, making them the best choice for many applications

(small and medium-sized databases, memory-hungry data processing tasks, and back-end

servers for SAP, Microsoft SharePoint, and other enterprise applications [19]). Although

excluding from our analysis more expensive optimized VMs, we characterized the per-

formance perceived by customers relying on general purpose VMs. Indeed, we aim at

characterizing the performance according to the most popular choices done by the cus-

tomers [106]. Therefore, we considered general purpose VMs, namely m3 and A-series

for Amazon and Azure, respectively. For both providers we considered three VM sizes:

m3.medium, m3.large, and m3.xlarge for Amazon, and A2,A3, and A4 for Azure. Here-
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Table 4.1: Selected regions and notation adopted

Adopted Provider Location Year
Notation Launched

US
Amazon North Virginia 2006
Azure California 2010

EU
Amazon Ireland 2007
Azure Ireland 2010

AP
Amazon Singapore 2010
Azure Singapore 2014

SA
Amazon Sao Paulo 2011
Azure Sao Paulo 2014

Table 4.2: Selected VM types and sizes and notation adopted. Prices may vary with region

Adopted Provider Type vCPU RAM Advertized Cost
Notation and (GB) Networking e/h

Size Performance

M
Amazon m3.medium 1 3.75 Moderate 0.0700–0.0980
Azure A2 2 3.5 N/A 0.0790–0.0980

L
Amazon m3.large 2 7.5 Moderate 0.1400–0.1960
Azure A3 4 7 N/A 0.1590–0.1960

XL
Amazon m3.xlarge 4 15 High 0.2800–0.3920
Azure A4 8 14 N/A 0.3170–0.3910

after, we respectively refer to them simply as medium (M), large (L), and xlarge (XL). As

reported on the website [19, 69], this type of VM has fixed performance (in terms of CPU),

which guarantees the absence of CPU resource-sharing and performance-variability phe-

nomena that could impact the measurement process [26]. Table 4.2 contains more details

on the VMs type and sizes adopted for both providers in our analyses.

For experimentations inherent to Amazon cloud, we have deployed VMs in different

availability zones part of the same region, to evaluate the impact of this choice. Results

regarding this aspect are reported when relevant.

For Azure, we considered also the impact of the configuration. In our analysis, we con-

sidered the following three configurations: (i) the two communicating VMs are deployed

in the same (cloud-only) VNET (hereafter simply CFG1 ); (ii) the two VMs are deployed
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in the same affinity group (CFG2 ); (iii) the customer provides no preferences (CFG3).

Experimental configuration factors introduced in § 3.3.3 have been also considered, as

detailed in the following sections.

4.3 Summary of the results in the literature

In this section we discuss the overall picture of the cloud intra-datacenter performance

provided by the recent literature. As monitoring cloud performance has recently attracted

great interest, some researchers analyzed network performance trying to go beyond the

scarce information advertised by the providers. Unfortunately, these pioneering works

adopted different methodologies and tools, reporting conflicting results that are hard to

compare. Seldom the adopted methodology is described in enough details to allow the

replication of the analysis. Very few of the possible scenarios have been tested, and

the results are not supported by a proper analysis of the impact of the virtualization

environment. This strongly limits the representativeness of the provided results.

In the following we provide a detailed review of the works that analyzed the intra-

datacenter performance inside cloud environments, focusing on Amazon (§ 4.3.1) and

Azure (§ 4.3.2).

4.3.1 Amazon

In the following, we review related works focusing on Amazon EC2.

Li et al. [34] proposed a non-cooperative approach to benchmark different clouds in

terms of cost, VM deployment time, computation, storage, and networking. Regarding

the network performance, they focused on both the intra-datacenter and the wide-area

network, and measured throughput and latency using iperf and ping. For the Amazon

EC2 intra-cloud network, the authors measured a TCP throughput in the range 600–

900 Mbps. Due to the cost of the measurements, however, the authors also admitted

that their results are achieved in few specific scenarios and cannot be considered gen-

eral. Wang et al. [26] focused on the impact of virtualization on networking performance

in public clouds and characterized it for EC2. They took advantage of ping and ad-hoc

tools to characterize intra-cloud network performance using small and medium VM sizes.

The authors measured significant delay variation and throughput instability. According

to them, this variability seems not to be related to any explicit rate shaping enforced
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Table 4.3: The overall picture of the intra-datacenter network performance of Amazon EC2 from the
literature. NA stands for not available information.

Paper Year VM
type/size

Region Measured
throughput

Notes

[Mbps]

Li et al. [34] 2010 NA/NA US (North Cal-
ifornia, North
Virginia),

600–900 • Different throughput variabil-
ity in different regions

EU (Ireland) • No impact of availability zone

Wang et al. [26] 2010 NA/small US (North Califor-
nia), EU (Ireland)

400–800 (small) • 10-second long measurements

NA/medium 700–900
(medium)

Shad et al. [37] 2010 NA/small US (North Califor-
nia), EU (Ireland)

1.6–6.4(US) • Higher variability when VMs
are placed in different availabil-
ity zones

3.2–7.2 (EU) • Higher variability in US region

Raiciu et al. [27] 2012 NA/medium NA 1000–4000 • Available bandwidth related
to mutual position

LaCurts et al. [28] 2013 NA/medium NA 296–4405 • 10-second long measurements

by the provider. The paper reports maximum network throughput of 700–900 Mbps for

medium-sized VMs with both TCP and UDP. The authors performed experiments over

space (large number of VMs, short time interval) and time (reduced number of VMs, long

time interval). Shad et al. [37] carried out a study on the performance unpredictability

of AWS. Regarding network performance, the authors used iperf to evaluate maximum

TCP and UDP throughput. They found that networking performance (available band-

width intra- and inter- availability zone) ranges from 200 to 800 KB/s (1.6–6.4 Mbps) in

US datacenter and from 400 to 900 KB/s (3.2–7.2 Mbps) in Europe datacenter. The au-

thors reported that the network performance is 9% higher for instances placed inside the

same availability zone. It is worth noting that these values are strongly conflicting with

those reported in previous studies. Raiciu et al. [27] used different tools (traceroute, ping,

and iperf ) to obtain a blueprint of the EC2 network performance and took advantage of it

to properly deploy applications and optimize their performance. They reported evidences

of paths between VMs of different lengths and with available bandwidth between 1 and

4 Gbps, depending on VM mutual position. Finally, LaCurts et al. [28] described an ap-

proach to improve application performance by deploying the applications on the nodes

with adequate network performance. The measurement study performed by the authors

to motivate their system is based on netperf. This study showed a large variability of net-

work throughput measured with medium-sized VMs from Amazon EC2. Such parameter
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varied between 300 to 4400 Mbps, and most of the measurments (80%) reported values

between 900 Mbps and 1100 Mbps.

Table 4.3 provides the overall picture on the Amazon EC2 intra-cloud network perfor-

mance provided by the literature.

4.3.2 Azure

Only few works analyzed the Azure public cloud and investigated the performance of the

intra-datacenter network. We discuss them in the following. Hill et al. [78] measured

the TCP network throughput among 10 VMs of small size reporting throughput values

ranging between 80 and 800 Mbps. They also reported great throughput variability over

time between fixed VMs. Tudoran et al. [107] considered 20 small- and 20 extra-large-sized

VMs reporting that extra-large VMs did not exhibit the high TCP throughput variability

exposed by small VMs. Finally, Li et al. [34] investigated also the intra-datacenter network

performance for Azure, and reported that the TCP throughput between two VMs placed

in the same datacenter is always close to 800 Mbps.

Table 4.4: The overall picture of the intra-datacenter network performance of Azure from the literature.
NA stands for not available information.

Paper Year VM
type/size

Region Measured
throughput

Notes

[Mbps]

Li et al. [34] 2010 NA/NA US (North Califor-
nia, North Virginia)

800

Hill et al. [78] 2010 NA/small NA 80–800 • variability over time between
fixed VMs

Tudoran et al. [107] 2010 NA/small,
NA/extra-
large

NA 664(S) 812(XL)

More in general, all the works discussed are affected by a set of severe limitations, as

report in the following.

• None of these works aimed at characterizing the intra-cloud network performance

as a primary goal.

• All of them only marginally or preliminarily analyzed the network performance

considering a limited number of scenarios in which a cloud customer may operate.
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• These works do not take into account the large set of customization that the provider

offers. Therefore, the impact on the network performance of the decisions operated

by the customers during the VM-deployment phase is today largely unknown.

• Moreover, the methodology adopted in these works is not thoroughly described

making the results hard to compare. In addition, with the only remarkable exception

of the authors of [26], the authors to these works did not consider the impact of the

virtualization on the measurement results.

4.4 Tuning non-cooperative approaches

Virtualization techniques enforced proved to introduce significant performance penalties

to applications [77], invalidate measurement outcomes [26], and compromise the interpre-

tation of typical measurement metrics [108]. Synthetic traffic has been widely adopted

in previous works [34, 26, 37, 27, 28] but the potential impact of the VM-generation

capabilities has been neglected in such literature.

In the following we show through specific examples how the complex management

mechanisms enforced by cloud providers may impact the performance perceived by the

cloud customers and potentially tamper with monitoring activities performed in public

clouds. We also show how these mechanisms if not properly took into account may

compromise results previously proposed in literature. Accordingly, we can define how

to properly tune non-cooperative approaches to properly perform network monitoring

activities in cloud environments.

4.4.1 Identifying a proper metric for measuring network through-
put

Measuring network throughput in the cloud can be very costly since this operation con-

sumes computation and network resources that are charged by the cloud provider accord-

ing to the pay-as-you-go paradigm. Furthermore, fast and accurate measurements are

highly appreciated to guarantee high responsiveness to those frameworks exploiting net-

work measurements [28, 27]. As a consequence, finding a good trade-off between accuracy

and cost is of the utmost importance.

Properly knowing the impact of the resource allocation enforced by the provider proved

to be a key requirement in our experimentations [26]. Our analysis showed also how the



Tuning non-cooperative approaches 80

metric chosen to evaluate the network throughput may determine misleading results. In-

deed, tuning the duration of the observation period as well as selecting the right metric for

the network throughput is further complicated by the effects of the mechanisms employed

by the provider to reach the desired network resource allocation.

In the light of this knowledge acquired thanks to the outcome of non-cooperative

analyses, in this section we show how properly selecting the metric can help measure

network performance as it improves measure accuracy and allows to reduce the observation

period, thus leading to also reduce the measurement costs. In the following we report how

the mechanisms enforced by cloud providers to manage the intra-datacenter network may

interfere with commonly adopted monitoring practices. As a clarifying example, we show

how the bandwidth management mechanisms enforced by Amazon may impact monitoring

results, whether not properly considered.
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Figure 4.2: Measuring network throughput in Amazon EC2. Typically, the network throughput reaches a
stable value only after an initial transient period, likely due to the network resource allocation
strategy employed by the cloud provider (4.2a). The initial spike impacts the accuracy of the
network throughput measurements. The median value captures the stable value of network
throughput much sooner than the mean value, requiring a shorter and cheaper observation
period (4.2b).

An example of the evolution over time of the maximum throughput achievable between

two Amazon VMs—observed with TCP traffic generated with the nuttcp tool—as well

as its impact, is reported in Figure 4.2. Figure 4.2a shows how an intra-datacenter com-

munication in Amazon cloud environment typically reaches a higher network throughput
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during a first transient period, and then settles to a lower yet stable value. Applications

using short-lived communications may obtain higher, although unstable network through-

put. Note that this trend cannot be explained with TCP internal dynamics such as slow

start or congestion control mechanisms. Indeed, a similar atypical behavior was always

observed also in all the UDP-based communications we monitored. Hence, we consider

this as a clear evidence of traffic shaping policies (e.g. token bucket), employed by the

cloud provider as network resource allocation strategy.

The presence of this initial throughput spike cannot be ignored by the researchers

willing to provide an accurate view of the network performance through non-cooperative

approaches. Measurements performed during the initial interval are not representative

of the expected performance over longer periods. The initial spike at the beginning of

the communication may also explain the different throughput ranges of values reported

in literature (see § 4.3.1).

Figure 4.2b shows how well mean and median values calculated over observation peri-

ods of increasing durations properly capture the maximum network throughput in the sta-

ble period. We have monitored the network throughput between medium-sized VMs over

intervals of different durations. We have then computed the different metrics (i.e. mean

and median) by only considering the throughput samples obtained during the first 5 sec-

onds, first 10 seconds, and so on. The figure shows that the mean throughput value

converges to the stable value much slower than the median one. This finding is consis-

tent across all the experimental campaigns we performed, i.e., for different combinations

of VM sizes, in different regions, for different types of traffic, over different channels.

According to these results, when aiming at measuring the stable throughput achievable

between a couple of Amazon VMs, we have decided to report the median value of the

samples over observation periods. This metric represents the stable throughput achievable

in a communication between VMs deployed in the same Amazon region, filtering the

noise caused by this initial transitory. In the following we refer to this value simply as the

maximum throughput. Note that choosing the median is not universally the right choice,

but it represents a valid option for Amazon. A similar trend has not been observed when

testing Azure’s infrastructure.
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4.4.2 Investigating and understanding the impact of the virtu-
alization

In a traditional environment, it is commonly assumed that the maximum network through-

put achievable over a path can be accurately measured through the generation of synthetic

traffic only when the computation capabilities of the involved end hosts are not a bot-

tleneck for the communication. For instance, if the measurement tool adopted on the

sender host is not capable to fulfill the remaining capacity of the network path because

of the limited computation capabilities, the maximum available network throughput is

incorrectly underestimated.

In the cloud the above assumption still holds. However it cannot be considered sep-

arated from the operational context, i.e. the impact of the virtualization layer over the

communication channel under investigation and the measurement technique adopted must

be taken into account. Therefore, when performing monitoring activities into the cloud,

the effect of the strategy enforced by the specific provider and the direct impact of the

vitualization layer have to be properly evaluated. It is worth noting how the specific

mechanisms enforced are characteristics for the specific cloud provider.

Impact of VM size and packet size on traffic generation capabilities at sender

side. We focus here on the impact of virtualization on VM traffic-generation capabilities

at sender side. As an example of the above mentioned limitation, we have investigated it

within the Amazon cloud environment.

We have instructed nuttcp to generate traffic at a given target rate and monitored the

true sending rate (i.e. the rate of the traffic actually flowing into the network) to check

whether the tool is able to sustain the target rate on a given VM. We have performed

experiments with two different application-level packet sizes: 1024 bytes and 8192 bytes

(hereafter simply normal and jumbo UDP packets). It is worth noting that TCP protocol

does not suit this kind of analysis due to the congestion control mechanism that would

force the sending rate to be limited by the bottleneck along the whole end-to-end path.

We have performed 350 experiments 8-minutes long for each VM size in different regions,

with target rates ranging from 50 to 1200 Mbps. Target rate and true sending rate are

compared in Figure 4.3: VMs of any size are not able to inject traffic into the network

at a rate higher than a given threshold (hereafter referred to as cap) when using normal

packets. This cap proved to mainly depend on the sender VM and its size. In more
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Figure 4.3: Target rate vs True sending rate for different sending VM-sizes. When using normal packets
(1024 B), the true sending rate does not overcome a cap value. This limitation is not observed
in case of jumbo packets (8192 B).

Table 4.5: Cap in Mbps on true sending rate observed when using normal packets [µ± σ].

Region M L XL

US 489.1(±17) 747.3(±9.0) 944.1(±19.1)
EU 495.5(±20.0) 731.8(±10.3) 948.0(±15.3)
AP 485.5(±3.8) 730.2(±9.7) 925.1(±22.8)
SA 492.6(±5.3) 748.1(±24.5) 1018.3(±43.8)

details, the cap has proved to be very stable over time for a fixed VM: experimental

results have shown that the Coefficient of Variation1 (CoV) of the cap is always smaller

than 2% for any observation period up to 72 hours. However, relocating (i.e. destroying

and re-creating) the VM, also in the same region and with the same size, may reveal

different cap values. Table 4.5 reports aggregated statistics on the cap values for all the

considered regions: larger VMs can achieve a higher value of the maximum true sending

rate with normal packets, which can be explained with the resource partition enforced by

the provider (e.g. higher computation capabilities to larger VMs). On the other hand, we

have observed no cap on the true sending rate when using jumbo packets: in this case,

the target rate is achieved by imposing a much lower load on the virtual CPU.

Figure 4.4 reports the distribution of the cap values for the EU region (Ireland) with

VMs relocated several times. In this region, medium, large, and xlarge instances are

subjected to a cap imposing a maximum throughput of 495.5, 731.8 and 948.0 Mbps on

average, respectively. Interestingly, although Amazon advertizes that both medium and

1CoV = σ
|µ| , is the ratio of the standard deviation over the mean. It gives indication about how much

values fluctuate around their mean value.
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large VMs receive Moderate networking performance [19], our results clearly show that

large instances are allowed to inject traffic into the network at a much higher rate. We

have also noticed a higher variability of the cap imposed to xlarge VMs, with 63% of large

instances receiving a cap higher than 5% of xlarge VMs.

In summary, synthetic traffic generation capability of the adopted VMs should be

carefully taken into account when the final goal is measuring the intra-datacenter network

performance through non-cooperative approaches. We have observed that the adopted

measurement tool on EC2 VMs is not able to generate traffic at the requested target rate

when relying on 1024-byte packets. This is not true when using jumbo packets. The

obvious conclusion might be the adoption of jumbo packets. However, we will see in the

following that this choice can have a detrimental impact on the network throughput at

the receiver side.

Impact of packet size and communication channel. We have discovered that

packet size and communication channel (public or private) have an impact on the net-

work throughput measured. Figure 4.5 reports how the network throughput measured at

the receiver side changes when the true sending rate increases for all the nine possible

combinations of sender and receiver sizes. In this analysis, we have instructed the sender

probe to perform 8-minute long generations of UDP traffic for each target rate. We have
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Figure 4.4: Cap value distributions for EU Region (Ireland). The values of the cap observed when using
normal packets vary with the size of the virtual machine: the larger the VM size, the higher
the true sending rate allowed.
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(a) M→M (b) M→L (c) M→XL

(d) L→M (e) L→L (f) L→XL

(g) XL→M (h) XL→L (i) XL→XL

Figure 4.5: Maximum UDP throughput towards the VM public address. The network throughput at
receiver side dramatically decreases at high true sending rates when using jumbo packets
(dashed black lines). This behavior is not observed with normal packets (solid gray lines).
M:medium, L:large, X:xlarge.
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considered target rates ranging from 50 to 1200 Mbps. In each experiment, we have ex-

tracted the median value of true sending rate at the sender side and the median value of

the network throughput at the receiver side. Overall, we have performed 350 experiments

for each region by also relocating the VMs. The results reported in Figure 4.5 are related

to the EU region (Ireland) but they are quantitatively and qualitatively representative

also for the other regions.

The figure shows that the network throughput saturates to a maximum value in-

dependently from the packet size. Such value represents the maximum throughput an

application deployed on a VM can achieve towards another VM in the same datacenter,

through the network slice granted by the cloud provider. Interestingly, the figure also

shows that jumbo packets allow generating traffic at higher rate but such higher rate dic-

tates a drastic decrease of the network throughput at the receiver. The figure highlights

a common pattern in the network throughput as a function of the true sending rate. The

shape of the curves can be modelled through the following equations, describing the net-

work throughput R(x) as a function of the true sending rate x for each packet size:

Jumbo packets: R(x) =


x x ≤ α

α α < x ≤ β

Ψ(x) x > β

Normal packets: R(x) =

{
x x ≤ α

α x < cap

Basically, the network throughput increases with the true sending rate up to a first

value, which depends on the packet size. We have named this value flattening edge (α)

because after this point, the throughput trend is typically flat or at least it does not

increase, saturating to a constant value. After this point, the two packet sizes show

significantly different behaviors. With jumbo packets the network throughput at the

receiver side starts to strongly decrease after a certain value of the true sending rate

(the phase represented by Ψ(x) in the previous equations). We have named the value

of the true sending rate after which the throughput starts decreasing as penalty edge

(β) because after this value, the network throughput significantly drops. On the other
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(a) Flattening edge – The network throughput saturates after this value of true sending rate.
N : normal packets, J : jumbo packets.

receiver
M L XL

M 251.9(J)–307.6(N) 251.5(J)–307.7(N) 252.0(J)–307.4(N)

sender L 302.2(J)–306.2(N) 656.9(J)–678.8(N) 656.8(J)–663.6(N)

XL 304.8(J)–308.8(N) 710.6(J)–664.2(N) 961.5(J)–924.1(N)

(b) Penalty edge – The network throughput rapidly decreases for true sending rate higher than
this value. This happens only with jumbo packets.

receiver
M L XL

M 302.9 302.2 303.1
sender L 708.1 656.9 656.8

XL 1111.4 1013.9 961.5

Table 4.6: Estimated values for the (a) flattening and (b) penalty edge. The tables show the average
values computed over the experiments performed in different regions. Standard deviation
omitted being negligible.

hand, this specific trend is not spotted when adopting normal packets. Indeed, we notice

that the network throughput does not decrease after the penalty edge when using normal

packets (see Fig. 4.5a for instance), even if high true sending rates are not achieved when

relying on this kind of synthetic traffic. In the following we also provide the results of

further analyses in order to explain this trend.

For normal packet traffic, we have experimentally observed that the evolution of the

network throughput with the true sending rate is highly predictable. For jumbo packets,

this property is experimentally verified up to the penalty edge: with higher true sending

rate, we have always noticed a strong decrease of the network throughput but we could not

derive an exact trend. The figure also clearly shows how the flattening and penalty edges

depend on the size of sender and receiver probes: detailed values are reported in Table 4.6.

The penalty edge values significantly increase for larger sender sizes. Considering the

values of the medium-sized sender as a baseline, we have observed a growth for this

threshold of more than 2× (3×) for large (xlarge) sender VMs. The flattening edge

values, instead, seem to be determined by the smallest between sender and receiver VM

size, i.e. the threshold increases only in case of larger size for both sender and receiver.

The values of this threshold also depend on the packet size: especially for medium-sized

sender probes (Figure 4.5, first row), we have noticed higher values for the flattening edge

when comparing normal to jumbo packets, while differences are also noticed for xlarge
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PUB

PRI

Sender VM Receiver VM

Intermediate
hop

Public channel

Private channelMTU = 1500 B

MTU = 9001 B

Figure 4.6: EC2 intra-datacenter paths. Traffic directed to the receiver VM crosses two different paths
when directed to the private (PRI) and the public (PUB) IP address. In the latter case an
intermediate hop is traversed.

sender probes communicating with either large or xlarge instances. Finally, Table 4.6

also reveals those sender-receiver combinations for which the flattening edge is equal to

the penalty edge: these combinations correspond to the curves in Figure 4.5 where the

network throughput starts decreasing immediately after the growing trend (Figure 4.5e,

4.5f, 4.5i). Note that this throughput decreasing trend has not been observed on the

private channel. We dig into this phenomenon in the next section.

The impact of these results is twofold. On the one hand, researchers aiming at charac-

terizing the performance of the cloud network may strongly underestimate the maximum

throughput. This happens if they rely on the injection of UDP traffic at high target rate,

as often suggested by classic methodologies. Indeed, injecting traffic at high rate always

determines very low network throughput at destination, when issuing jumbo packets on

the public channel. On the other hand, users and applications seeking the highest network

throughput at destination have to carefully limit the sending rate.

Deepening throughput detrimental effect. We experimentally observed the maxi-

mum network throughput achieved on the public channel always strongly decreases when

(i) using jumbo packets, and (ii) the true sending rate overcomes a threshold we named

penalty edge. This phenomenon, however, was never observed when the communication

was established through the private channel. We performed further analyses looking for
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differences between private and public channels potentially explaining the causes of the

observed phenomenon.

In this analysis, we employed the network diagnostic tool named tracepath [109] to

infer the characteristics of private and public channels. Tracepath represents an evolution

of the classic traceroute tool, providing additional path-related information. We took

advantage of tracepath and performed multiple experiments (from 5 to 10) for each of the

considered scenarios. Interestingly the outcome was the same across them. The results

of this analysis are outlined in Figure 4.6. We noticed three main differences between

public and private channels. First, we discovered that the network traffic flowing through

the private channel always directly reaches the receiver probe whereas one intermediate

network-layer device is always traversed on the public channel. This device is likely the

middlebox in charge of translating public into private addresses. Differently from [27],

we never observed paths connecting sender and receiver probes involving more than one

intermediate hop. Several possibilities may explain this discrepancy including operational

changes in the datacenter such a more efficient VM allocation strategy posing the VMs

in the proximity of each other, as well as a change in the internal network infrastructure

in terms of devices or configurations. Second, the Maximum Transmission Unit (MTU)

is 9 KB on the path of the private channel—thus supporting jumbo frames—while it is

only 1.5 KB on the public one. Third, and consequently, injecting jumbo packets on the

public channel induces IP packet fragmentation. We experimentally observed that packet

fragmentation occurs directly at the sender VM. These results were verified across all the

tested regions.

Based on these findings, we can provide a possible explanation of the observed phe-

nomenon. Using jumbo packets allows the sender to easily inject synthetic traffic into the

network at the desired rate. However, the injected packets are fragmented on the public

channel determining a potentially disruptive impact on the throughput measured at the

receiver side. Indeed, each jumbo packet is fragmented in 6 smaller packets: losing even

one of these fragments causes an entire jumbo packet to be discarded.

4.5 An overall picture of the achievable throughput

Thanks to the acquired knowledge, in this section we provide a picture of the network

performance perceived by customers within public-cloud datacenters. As we aim at pro-
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viding an overall view of the intra-datacenter performance in terms of the achievable

throughput, we present in this section the aggregate results. Therefore in the follow-

ing we show the average performance figures, and their variability across the differing

datacenters available.

The experimentations behind these results, have considered the different scenarios

stemming our from the combination of the factors previously introduced, in order to

obtain results not biased by the choices performed. In more details in the following we

consider the maximum throughput achievable in all the combination obtained by varying

region and VM size (same size for sender and receiver VMs), for the differing transport

protocols and considering the private communication channel (that is a reasonable choice

for communications between resources within the same datacenter). For Amazon we also

deployed VMs in all the different availability zones available in each region considered,

while for Azure we considered all the configurations (same VNET, same Affinity Group,

no specific configuration, see § 3.3.2) that the provider allows to enforce.

In the following, we report first the outcomes of the analysis that involved the Amazon

infrastructure. Then we discuss the experimental results stemming out from Azure.

4.5.1 Amazon

In order to provide a general assessment for the Amazon intra-datacenter network per-

formance, we have performed 10 10-minute lasting experiments for each combination

considered, for a total of 480 experiments. According to § 4.4.1, we extracted the me-

dian as a significant synthetic metric for observing the stable throughput achievable. A

combination is identified by VM size, transport protocol, and region. Across different

experimentations we also randomly changed the availability zone in which the VMs is de-

ployed, considering both the cases in which the sender and the receiver are placed in the

same availability zone and the cases in which they reside in differing availability zones.

At the end of each experiment, both the sender and the receiver VMs are terminated,

thus each experiment refers to different pairs of VMs.

A summary of the results is reported in Table 4.7. Experimental results support the

findings that follow.

• The VM size proved to be the factor having the major impact on the maximum

throughput achievable. Interestingly, although Amazon documentation reports as
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Table 4.7: Overall picture of the maximum stable throughput within Amazon datacenters. Mean and
standard deviation refers to the average values for each region.

TCP UDP
[Mbps] [Mbps]
µ± σ µ± σ

M 298± 1 299± 0
L 696± 3 699± 1
XL 993± 8 996± 1

Moderate the network performance for both M and L VMs [19], our results show

that L-sized VMs definitely receive more network resources than medium instances.

• Comparing Table 4.5 and Table 4.7, we can see that the traffic generation cap on

the sender side does not significantly impact the network throughput measured,

on average. Hence, the network throughput measured through synthetic traffic

generation can be considered reliable since the sender machine proved not to be a

bottleneck for the communication.

• For almost all the explored combinations of VM sizes, we have observed TCP per-

formance to be equal to (or slightly higher than) the one obtained with UDP. Our

analyses indicate that TCP (UDP) traffic between two M, L, and XL VMs can be

delivered at 298 (299), 696 (699), and 993 (996) Mbps, respectively.

• The intra-datacenter network throughput is very similar across the different regions

as reported by the small standard deviation values: the cloud provider seems to

adopt a strategy to guarantee similar network performance to its customers in dif-

ferent regions. This is interesting considering that the hourly cost for a VM varies

with the regions (there is a gap of +40% between the least and most expensive

regions).

We can compare Table 4.9 and Table 4.3 to highlight a few important differences

carefully considering that (i) previous works rarely provided details about which specific

type of VMs they employed for the experimentation, and (ii) the features offered by the

provider to the customer may have changed over time. We have experimentally observed

that the size of the VM has a huge impact on the perceived network performance, an

aspect underrated in [34, 37, 28] and only partially considered in [26]. We have measured
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a much lower network throughput for medium instances (300Mbps) than the one reported

in [28] (700–900Mbps), [27] (1000–4000Mbps), and [26] (296–4405Mbps).

A first possible explanation for this discrepancy is a change in the operational sta-

tus of these datacenters, potentially caused by the deployment of higher-performance

networking gear or by a variation of the resource allocation strategy. Another possible

explanation may be spotted looking at the measurement methodology adopted. These

works monitored the network throughput with experiments during only 10 seconds. As

we already described in § 4.4.1, network throughput in Amazon EC2 is typically much

higher and unstable during a first transient period of time. This throughput burst over

short observation periods may heavily impact the accuracy of the measurements.

4.5.2 Azure

In order to provide a general assessment for the Azure intra-datacenter network perfor-

mance, we have performed 10 10-minute lasting experiments for each combination con-

sidered, for a total of 720 experiments. A combination is identified by VM size, transport

protocol, region, and configuration. At the end of each experiment, both the sender and

the receiver VMs are terminated, thus each experiment refers to different pairs of VMs.

Table 4.8: Overall picture of the maximum stable throughput within Azure datacenters. Mean and
standard deviation refers to the average values for each region.

TCP UDP
[Mbps] [Mbps]
µ± σ µ± σ

M 505± 151 494± 147
L 733± 37 708± 34
XL 961± 46 842± 24

A summary of the results is reported in Table 4.8. Experimental results support the

following findings.

• Also for Azure the size appears to be the factors with the highest impact on the

perceived performance. In general, deploying VMs of larger size leads to an im-

provement also from the network performance point of view, although this result is

not clearly acknowledged in the Azure documentation.
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• A high variability across regions exists (see the standard deviation in Table 4.8).

This can be explained considering that datacenters, being launched at different point

in time, may also leverage different techonologies having differing performance.

• TCP performs better than UDP, being able to deliver traffic at a rate that is 11,

25, and 19 Mbps higher for M, L, and XL VMs, respectively, on average.

4.6 A closer look at the achievable throughput

In this section, after the coarse-grained view we provided above, we show how the network

performance perceived by the customer can vary by acting on the customization options

that the customer has, i.e. leveraging the factors previously introduced.

4.6.1 Amazon

In the light of the previous findings, in this section we detail how the factors that can

be leveraged by Amazon customers can impact the performance of the network. In more

details, we show in the following how the measured performance may change when the

communication takes place between two VMs of differing sizes, and passing from the pri-

vate to the public communication channel. Table 4.9 shows a breakdown of the throughput

performance.

Table 4.9: Maximum stable throughput for Amazon EC2 across different regions when the receiver VM
is reached through the public or private IP address.

Sender UDP TCP
to Public Private Public Private

Receiver µ± σ µ± σ µ± σ µ± σ

M→M 291± 0 298± 1 293± 1 299± 0
M→L 291± 0 300± 2 293± 1 300± 0

M→XL 291± 0 298± 2 293± 1 298± 2

L→M 300± 1 300± 1 299± 0 300± 1
L→L 665± 13 696± 3 684± 1 699± 1

L→XL 670± 6 694± 4 685± 2 700± 1

XL→M 299± 1 300± 1 299± 2 301± 1
XL→L 708± 22 698± 5 699± 2 702± 0

XL→XL 897± 16 993± 8 939± 4 996± 1
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This deeper analysis allows to identify several interesting aspects, reported in the

following.

Impact of the communication channel and of the transport protocol. Traffic is

exchanged at a slightly higher rate along the private channel compared to the public one.

Also considering the extra-fee paid to use public channels, cloud customers should always

prefer the private channels over the public ones, when possible. Also, for almost all the

explored combinations of VM size, we have observed equal or higher network throughput

for TCP compared to UDP.

Impact of the VM size. Introducing results of measurements performed between

VMs of different sizes, we found that the maximum throughput is always limited by the

minimum size between the sender and receiver. Therefore, when the network throughput

is the most important aspect of interest, the best performance can be obtained with VMs

of the same size.

Our analyses indicate that the cloud provider allows M, L, and XL VMs to deliver UDP

(TCP) traffic at maximum 300 (300), 696 (700), 993 (996) Mbps respectively. Similarly,

M, L, and XL VMs are allowed to receive UDP (TCP) traffic at maximum 300 (301), 708

(702), 993 (996) Mbps.

Network throughput variability over time. Additional long-range measurements,

showed that the network performance variability is very stable over time. As an example,

Figure 4.7 shows the results of a 24-hour long campaign, in which the maximum achievable

TCP throughput has been measured through 4 5-minute long experiments per hour (EU

region, M-sized VMs). As shown in the figure, the performance of two fixed VMs are very

stable over time all over the 24-hour observation period. Note that the reported maxima

reflect the presence of the initial spikes already discussed in § 4.4.1. A number of similar

experiments have been performed varying the size of the VMs involved and the region

in which the VMs have been deployed. Similar considerations about the performance

variability can be drawn.

4.6.2 Azure

We deepen in this section the overall results about Azure intra-datacenter performance

presented above. We discussed here the results obtained with 800 hours of experimenta-
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Figure 4.7: Variability over time of the throughput for two M-sized fixed Amazon VMs deployed into the
EU region.

tion, aimed at investigating the higher variability observed for the achievable throughput

within the Azure infrastructure.

In more details in the following we discuss the variability in terms of (i) throughput

variability over time, (ii) throughput variability across different scenarios, and (iii) through-

put variability in the same scenario.

Network throughput variability over time. The first aspect we investigated is

whether and how the network throughput varies over time once the two communicat-

ing VMs are deployed on the cloud. With this analysis, we aim at verifying whether

the performance of the network slice assigned by the provider to a customer dynamically

changes over time. We discovered that the maximum intra-datacenter network through-

put is very stable on average, while a slightly higher variability is observed when the

instantaneous values are taken into account.

To carry out this analysis over large periods of time, we performed a series of 24-hour-

long campaigns. In each campaign, (i) we created and deployed two VMs of the same size

in a region and monitored them for 24 hours; (ii) every hour the sender VM transferred

synthetic traffic to the receiver VM at the highest possible rate with nuttcp for 5 minutes;

(iii) for each 5-minute-long experiment, we registered the network throughput achieved.

We launched multiple campaigns by considering all the possible combinations of VM sizes,

regions, configurations, and transport protocols.

To quantify how much the network throughput varied, we rely on the CoV. The CoV

quantifies how much the samples are spread around the mean value: a very low CoV
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implies that the standard deviation is negligible compared to the mean, thus underling a

low throughput variability.

In all the long-lasting campaigns we performed, the estimated CoV was always below

0.01, i.e. the average network throughput between two fixed VMs computed over 5-minute-

long experiments in 24 hours of experimentation proved to be very stable. Hence, no daily

pattern was observed. These observations hold independently from the VM size, the cloud

region, the configuration, or the transport protocol. An instance of 24-hour campaign for

two medium-sized VMs deployed in the AP region is reported in Figure 4.8: note how the

neither the average nor th median value significantly varies over time.
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Figure 4.8: An instance of long-term campaign. The maximum intra-cloud network throughput between
two medium VMs deployed onto AP region shows a slight variability in each 5-minute-long
experiments over 24 hours. However, the average/median value per-experiment is strongly
stable over time.

We also investigated the variability of throughput instantaneous values (1-second gran-

ularity), finding that in some well-defined cases, the variability of the throughput is slightly

impacted by some of the factors considered. For each experiment we performed, the CoV

computed over the instantaneous values was always lower than 0.1, i.e. the instantaneous

values only slightly fluctuate around the average. In case of TCP traffic, the factors seem

having a non-negligible impact on the network throughput variability over time as shown

in Figure 4.9. In this case, we noticed how (i) the variability over time was slightly higher

for larger VM sizes—see Figure 4.9a; (ii) deploying medium-sized VMs in regions such as

AP and US exposed to higher throughput variability compared to SA and EU regions—

see Figure 4.9b; (iii) a higher variability affected medium-sized VMs placed in the same

VNET (CFG1) or affinity group (CFG2) compared to the case in which we let the cloud

provider taking a decision about it (CFG3)—see Figure 4.9c. The similar factor impact

was not observed in case of UDP traffic.
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According to these results, when a customer deploys two VMs on Azure, the com-

munication between them can achieve a maximum throughput which on average is not

subjected to significant changes over time, no matter the size, the region, the configura-

tion, or the transport protocol. At the same time, instantaneous throughput oscillations

exist and are larger for larger VM sizes, for specific regions, and in specific configurations.

Since the average network throughput does not significantly change over time, measuring

the throughput between two VMs even over a short period of time provides a good indi-

cation of the throughput that will be achieved in the future between the same VMs. We

leveraged this finding to design the experimental campaigns discussed in the following.

Network throughput variability across scenarios. The second aspect we investi-

gated is whether and how the network throughput varies in different scenarios, i.e. when

the customer operates different decisions during the deployment phase. To this end, we

performed 5.5K short campaigns. In each campaign, (i) we created from scratch and

deployed two same-sized VMs; (ii) we measured the network throughput between them

for 5 minutes and registered the average throughput achieved with both the transport

protocols; finally (iii) we terminated the VMs. We considered again all the possible com-

binations of sizes, regions, configurations, and transport protocols. We performed multiple

campaigns for each combination, collecting multiple network throughput samples. Note

that, as already described above, the network throughput measured over 5 minutes rep-

resents a good indication of the performance that will be achieved in the next 24 hours.

Table 4.11a and 4.11b extend the information contained in Table 4.8, by providing

the average values computed over all the network throughput samples obtained in each

scenario for TCP and UDP traffic, respectively.

A closer look at these results suggests the following findings:

• All the factors have a non-negligible impact on the average network throughput—

different values can be observed by reading these tables by rows (i.e. same region,

but different sizes and configurations) and by columns (i.e. same VM size and con-

figuration, but different regions).

• Differently from what happens in traditional environments, UDP traffic does not

clearly achieve better performance than TCP, although these experiments were per-

formed in the same conditions and closely in time.
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(a) VM-size impact.
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(b) Region impact for medium-sized VMs.
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(c) Configuration impact for medium-sized
VMs.

Figure 4.9: TCP instantaneous throughput variability over time. Deploying larger VMs led to higher
variability (4.9a). SA and EU regions (4.9b) as well as CFG3 (4.9c) exposed lower variability.
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Table 4.10: Average network throughput achievable in different scenarios [Mbps]. Underlined values
refer to scenarios exposing high variability. We considered as high variable the scenarios
associated to a standard deviation larger than 100 Mbps. For the remaining scenarios the
standard deviation was found to be always smaller than 20 Mbps.

M L XL
CFG1 CFG2 CFG3 CFG1 CFG2 CFG3 CFG1 CFG2 CFG3

US 761.5 760.1 380.4 757.8 772.1 741.0 943.0 950.8 1121.6
EU 733.6 727.9 331.2 749.3 749.0 512.3 946.5 926.5 810.3
SA 255.6 256.7 237.0 734.0 758.9 736.3 946.6 944.5 931.3
AP 578.4 587.3 450.2 731.9 751.5 802.0 942.3 952.2 1112.9

(a) TCP traffic.

M L XL
CFG1 CFG2 CFG3 CFG1 CFG2 CFG3 CFG1 CFG2 CFG3

US 750.0 746.4 354.6 754.9 758.6 610.9 936.0 925.8 738.9
EU 734.4 723.6 315.5 768.0 760.0 435.8 882.3 845.9 686.4
SA 250.2 256.4 231.6 743.9 753.2 737.8 858.3 863.9 859.7
AP 565.2 568.2 437.1 740.1 747.8 687.0 900.6 903.7 703.2

(b) UDP traffic.

• CFG1 (same VNET) and CFG2 (same Affinity Group) typically guarantee higher

network throughput than CFG3 (no configuration), with only few exceptions such

as the case of xlarge-sized VMs deployed in AP and US regions.

• In general, deploying VMs of larger size leads to an improvement also from the

network performance point of view, although this result is not clearly acknowledged

in the Azure documentation; also interestingly, this does not happen always: in

both US and EU regions, when CFG1 or CFG2 is in place, medium VMs receive

network throughput very similar to large VMs.

• the network throughput significantly varies across the regions, i.e. VMs of a given

size and in a particular configuration may receive higher throughput in specific

regions. This is true especially for medium VMs for which the throughput in SA

proved to be much lower than what can be achieved in other regions.

When similar analyses were conducted in the past, only few factors were under the

control of the Azure customers [34, 78, 107]. Nowadays, instead, the customer can highly
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customize his/her cloud environment by acting on a wide set of factors. In this new con-

text, we demonstrated that considering one or few combinations of factor values may lead

to an incomplete image of the network performance a customer may experience. Since

considering all the possible combinations is extremely costly both in terms of money and

time, researchers willing to conduct similar analyses must very carefully design and de-

scribe the adopted methodology. This is essential not only to cross-validate and replicate

the reported findings but also to understand their scope and validity. The methodology we

proposed can be used to face the complexity of a similar task. For the Azure customers,

these results clearly demonstrate that the decisions operated during the VM-deployment

phase are very important at least from the network performance point of view. In this re-

gard, Table 4.11a and Table 4.11b may support those customers willing to optimize their

network performance by selecting the best combinations of VM sizes, regions, and con-

figurations. For instance, we clearly demonstrated that it is convenient for the customers

to deploy always the VMs inside the same VNET (CFG1) or the same Affinity Group

(CFG2) since these configurations provided higher network throughput at no additional

cost: this gain is more remarkable in specific regions such as US and EU.

Network throughput variability inside each scenario. In some of the considered

scenarios, repeated measurements provided very different values of throughput. These

scenarios are the ones for which Table 4.10 reports underlined values. In these cases,

even if the customer operates exactly the same decisions during the deployment phase,

the provider may grant very different levels of network throughput for her. This result is

particularly interesting since according to the first outcome of this analysis (i.e. no per-

formance variability over time for a fixed pair of VMs), an unlucky customer receiving

low network performance should not expect any significant improvement over time. Some

extreme cases where multiple experiments in the same scenario exposed completely dif-

ferent values of network throughput are reported in Figure 4.10. Note how the network

throughput is quantized around few different values: although less marked, this behavior

was qualitatively observed also for the other affected scenarios not detailed here due to

space constraints. Figure 4.10a reports the network throughput measured within the EU

datacenter across different campaigns where we adopted CFG3 and two VMs of the same

size: medium VMs received 200Mbps, 450Mbps, and more than 650Mbps in 70%, 10%

and 20% of the campaigns, respectively. Hence, different customers deploying medium
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VMs on EU region with CFG3 may benefit from very different throughput values. A sim-

ilar behavior has been qualitatively observed also for larger VMs. Interestingly, medium

VMs received a network throughput higher than 75% of the campaigns involving large

VMs for about 30% of the campaigns. Similarly, in 20% of the cases, large VMs achieved

higher network throughput than 85% of the campaigns involving xlarge VMs: adopting

larger VMs not always leads to higher network performance. Other interesting cases are

reported in Figure 4.10b showing how a customer deploying medium VMs with CFG1 in

a given region may benefit from one of two very different network throughput values. In

EU and US, the customer receives almost always high network throughput (760 Mbps).

In SA, instead, the customer often receives low network throughput (200 Mbps) but in

10% of the cases, lucky customers can take advantage of 760 Mbps.
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(a) Region: EU; Configuration: CFG3; L4:
TCP.
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(b) Size: medium; Configuration: CFG1; L4:
TCP.

Figure 4.10: Network throughput variability inside the scenarios. A customer operating the same deci-
sions during the deployment phase may receive very different network throughput.

Minimum network throughput guaraneteed. In the light of the observed variability,

we also investigated the minimum achievable throughput a customer should expect from

Azure when he/she adopts VMs of a given size. Table 4.11 reports the 1st percentile of

the network throughput samples we registered across all the experiments for each VM size

and for both transport protocols: empirical evidences suggest that independently from

the cloud region or the configuration, a customer adopting larger VMs at higher fee can

definitely achieve higher network performance in the worst case. Our experimentations

reported that the providers guarantees, on average, at least 170 Mbps between two VMs
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deployed in the same datacenter, independently from the region the customer relies on.

Moreover, our results show how this value increases for larger VM sizes, reaching 327

Mbps and 468 Mbps for large and xlarge VMs, respectively. When restricting our results

to specific regions (e.g., SA and AP) or trasport protocol (i.e. TCP) these values further

increase.

Table 4.11: Minimum throughput guaranteed by Azure [Mbps].

TCP UDP

Region M L XL M L XL

US 186.6 374.6 929.5 171.2 350.8 658.0
EU 185.4 364.1 728.5 170.5 327.5 468.8
SA 185.1 707.5 907.1 175.0 708.1 842.6
AP 186.0 718.1 935.0 174.9 519.1 614.9

4.7 Deriving usage guidelines

Intra-datacenter network performance details, although not being the only aspect of in-

terest when leasing cloud resources, are extremely beneficial to the customers. Notwith-

standing the interest customers may have in this kind of information, they are forced to

make uninformed choices when leveraging cloud services because of the unknown man-

agement strategies enforced by the providers and the cloud interface they expose.

Non-cooperative approaches provide additional insights with respect to the scarce and

coarse information about the performance figures publicly advertised. In this section

we present a list of guidelines that can be devised from the information base gathered

thanks to non-cooperative approaches, i.e. we show how the lesson learned through non-

cooperative monitoring activities can be beneficial to customers.

4.7.1 Performing informed deployment choices

A first achievement reached thanks to non-cooperative approaches is the ability to shed

light on the unpredictability of the intra-datacenter network performance. The outcome of

the analyses presented above allows customers to perform their cloud deployment choices

knowing in advance the expected performance. Indeed, the customer may leverage the set

of factors we have identified to properly impact the performance provided by the network

and its variability. Therefore customers may choose the size, the region, the provider, and
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the configuration for the VMs to be allocated, according to the need of the application

they are going to deploy.
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Figure 4.11: Expected Amazon and Azure intra-datacenter network performance in terms of achievable
TCP throughput. Circles are centered on average values, while horizontal and vertical error
bars report the standard deviation for Amazon and Azure, respectively. Amazon variability
is negligible.

Figure 4.11 shows the expected performance for both the providers considered. The fig-

ure compares the average values for the throughput achievable with M, L, and XL Amazon

and Azure VMs. As discussed above while Amazon intra-datacenter network performance

is primarily determined by the VM size, the performance of the network within Azure

datacenters is heavily impacted also by other factors such as the region, or the configu-

ration. Therefore a markedly higher variability (larger error bars) can be spotted in the

graph when considering the values averaged over all the scenarios considered. Accord-

ing to our results, medium-sized Azure VMs perform better than Amazon’s (470 Mbps

and 298 Mbps, respectively). Conversely, the same assumption does not hold for large-

and xlarge-sized VMs, whose performance in terms of throughput is better in Amazon

infrastructure (695 vs. 595 and 992 vs. 877 Mbps, for L and XL VMs, respectively).

In the light of the generated knowledge, customers can choose among the possible

offerings of the providers, based on their needs. It is worth noting that those discussed

above are average values, i.e. have been obtained without considering the impact of the

factors under the direct control of the customer, except the size of the VM.

Providers therefore offer services at different performance. As the fees associated to
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these services are also of interest to the customers, because of the pay-as-you-go paradigm,

in the following we extend our analysis in order to encompass also the economic aspect.

To capture also the impact of the network performance on the costs—and thus com-

pare differing performance figures coming at differing costs—we introduce the normalized

throughput, defined as the ratio of the achievable throughput in a certain scenario to the

hourly cost of a VM associated. The intent of this metric is to investigate the relationship

between the network performance and the costs, i.e. to evaluate how network performance

varies when the cost associated to the VM increases. It is worth noting that network per-

formance comes in bundle with CPU and memory capabilities. Therefore the higher cost

for larger VMs is due also to higher computational or memory resources. Here we focus

on the network capabilities available to the customers. In other words, we assume the

point of view of a customer primarily interested in network performance.
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Figure 4.12: Performance in terms of normalized throughput varies with region and VM size, for both
providers.

Figure 4.12 shows how the normalized throughput varies with the VM size and the
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region for Amazon (see Figure 4.12a) and Azure (see 4.12b). The figures show that

the normalized throughput is higher for Azure in the case of M-sized VMs, on average,

notwithstanding the presence of a higher variability. Compared to Azure, Amazon ex-

poses better performance for XL VMs, with the only exception of the SA region. When

considering L VMs, we have that EU and US region have better performance for Ama-

zon, while AP and SA expose better performance for Azure, on average. Finally, for fixed

size and provider, the US region has always better performance.

These results can be explained by (i) the different fees which customers are subjected

to in different scenarios (impacted also by the different tax regimes which the providers are

subjected to in the different regions) and potentially by (ii) unbalanced resource deploy-

ments, different technologies leveraged, or unbalanced catchment areas across different

regions and scenarios, that may lead to different performance.
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Figure 4.13: Properly quantifying the impact of the factors under his/her control allows the customer
to perform advantageous deployment choices, and thus improve the perceived network per-
formance. Circles are centered on average values, while horizontal and vertical error bars
report the standard deviation for Amazon and Azure, respectively. Azure values refer to
medium, large and xlarge VMs placed in the US region, leveraging CFG1, CFG2, and
CFG3, respectively.

When customers are not subjected to other constraints that impose limitations to their

choices, they can take advantage of these results to identify the proper trade-off between

costs and performance. Customers could further benefit from the information base gath-

ered through non-cooperative monitoring activities also exploiting the impact associated
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to deployment factors. For instance, considering the case of a distributed application run-

ning on multiple VMs that exchange data among them and whose performance depends

on the network throughput but not on the location of the datacenter (e.g. a scientific ap-

plication), a customer may opt for deploying the VMs onto the best-performing region

setting up the most convenient configuration.

Figure 4.13 shows how leveraging Table 4.11a to identify the best deployment choice

for Azure (thus choosing the US region and a certain configuration depending on the spe-

cific VM size) can lead to a significant improvement of the expected performance with

respect to the one obtained through a blind choice. Indeed, the specific set of choices

performed allows to obtain results always better in terms of the respective Amazon coun-

terpart. Secondly, the variability of the expected performance appears heavily reduced—

according also to the outcome of the analysis presented in § 4.6.2, thus guaranteeing also

more predictable performance. With respect to the case in which a customer performs a

blind choice (see Figure 4.11), the advantageous deployment choices guarantee to achieve,

on average, a performance increment of 64%, 28%, and 28% for M, L, and XL VMs,

respectively.

For what concerns Amazon, deploying all the VMs inside the cheapest region seems

the best option to obtain the maximum performance at the lowest cost, as network per-

formance is not subjected to changes when changing region.

Finally, for both providers we found that the network performance is very stable over

time. This suggests that the providers do not change the network slice assigned to a VM

in a dynamic way. In other words, our results reported that cloud applications deployed

onto systems of both providers, are not subjected to performance instability due to the

variation of the network environment, in spite of the high dynamics of the cloud.

4.7.2 Optimizing network performance by leveraging real-time
monitoring

According to the results shown in § 4.6.2, an Azure customer must be aware that even

when the same decisions are operated during the deployment process, the network through-

put received may significantly vary. On the basis of the results obtained, we define here

an approach to obtain the higher network performance level within the Azure cloud.

Differently than the approach proposed in the previous section, the performance opti-

mization strategy proposed here is based also on real-time monitoring activities, instead
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of leveraging only historical information. This is required to cope with the variability ob-

tained also when all the factors under the control of the user are fixed. Therefore this

approach can be used together with the previous one.

The approach we devise is composed of the steps described in the following.

1. Selecting the desired combination of factor values during the deployment phase

according to needs, costs, and expected network performance.

2. Deploying the VMs.

3. Measuring the maximum network throughput, leveraging non-cooperative approaches.

4. Comparing the obtained throughput with the reference values we reported in Ta-

ble 4.10 which provide the expected performance for the deployment performed.

5. A) If the measured throughput is satisfactory, as the performance will be stable over

time, the customer can leverage the VM deployed.

B) Otherwise when the measured throughput is much lower than the reference

value, there is no possibility for the customer to receive a higher throughput over

time. In this case, a good option for the customer is to terminate the VMs, create

and deploy the VMs from scratch by operating the same decisions on the factor

values, and measure the throughput again to check whether it is satisfactory or not

(i.e. starting again from step 2).

For instance, it is convenient for a customer deploying two medium-sized VMs in

CFG1 in AP region and to terminate and recreate them when he/she measures only 200

Mbps of achievable throughput: by relocating the VMs, he/she has high chance to get 750

Mbps of throughput (see Figure 4.10). Note that all these operations should be performed

during the deployment phase, i.e. before the customer applications or services are made

active.



Chapter 5

Inter-datacenter network
performance

Cloud service providers and on-line service companies (e.g., Amazon, Facebook, Google,

Microsoft, and Yahoo!) have made huge investments in networks of datacenters that host

their on-line services and cloud platforms to cope with the increasing demand. While

the complexity of these network infrastructures is completely transparent to cloud cus-

tomers, the performance available to them is deeply affected by them. Unfortunately,

cloud providers often provide no information about the performance a customer should

expect from the cloud network, although customers could significantly benefit from de-

tails about the Quality of the Service (QoS) guaranteed. In fact, all major providers grant

high-performance network connectivity to their customers, but they provide no more than

qualitative information about its performance, mainly due to security and commercial rea-

sons [51, 36, 27].

Top players have made huge investments in specific technologies and cutting-edge solu-

tions to connect distributed cloud resources and guarantee proper performance in presence

of dramatically dynamic demand. Datacenter operators may purchase transit bandwidth

from Telcos (usually paying based on flat or 95th percentile pricing schemes), or own ded-

icated lines [39]. For instance, the backbone that carries traffic between datacenters is the

largest production network at Google and runs on an SDN- and OpenFlow-enabled infras-

tructure, in order to improve manageability, performance, utilization, and cost-efficiency

of such proprietary WAN [110].

More in general, wide-area transit bandwidth costs more than building and maintain-

ing the internal network of a datacenter [44], a topic that has recently received much more
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attention [35]. Networking costs are estimated to amount to around 15% of a datacenter’s

total worth, and are more or less equal to its power costs (see § 1.3.2).

Expensive investments in this regard are further justified by traffic trends recently

estimated by sector reports [15]: (i) cloud IP traffic is going to account for a more and

more significant part of the overall IP traffic, being estimated to grow at a compound

annual growth rate (CAGR) of 31% from 2014 to 2019; (ii) in more details, public-cloud

usage is growing faster than private one, and 56% of the cloud workloads will be in public-

cloud datacenters by 2019, up from 30% in 2014; (iii) finally, traffic between datacenters

is growing faster than either traffic to end-users or traffic within the datacenter, and will

account for almost 9% of total datacenter traffic by 2019. The rapid growth of this traffic

is due to the proliferation of cloud services, the need to shuttle data between clouds, and

the growing volume of data that needs to be replicated across datacenters. Netflix [111]—

the leading provider of on-demand Internet video streaming in the US and Canada—is an

interesting case study. It accounts for 29.7% of the peak downstream traffic in US [46],

and is able to support seamless global service by partnering with Amazon Web Services

for delivery of content and services, as AWS enables Netflix to quickly deploy thousands

of servers and terabytes of storage within minutes.

The effects of this interesting trend can also be spotted in the scientific literature: novel

solutions leverage the high network performance offered by public-cloud inter-datacenter

WANs to develop high performance applications aimed at transferring contents (e.g.,

multimedia) among datacenters spread world-wide [48, 83, 47]. This recent literature

further extends the range of typical usages of public-cloud inter-datacenter networks, that

include bulk-data transfer or on-line content transfer (e.g., from and to storage buckets).

In this situation, however, very little information is available about performance figures

offered by public-cloud networks connecting datacenters placed in different geographic

regions. Few results are publicly available: public-cloud providers advertise qualitative

performance indicators at most or do not disclose them at all; information provided by

state-of-the-art, public-cloud monitoring services [112] currently does not include inter-

datacenter performance; finally, to the best of our knowledge, the scientific community

did not focus on the problem yet, and the poor preliminary results cannot be considered

exhaustive. The monetary cost of the experimentations necessary for obtaining this kind

of information, not directly unveiled by providers, additionally exacerbates this issue.

Hence, it is hard to draw significant conclusion upon the available information. As a
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consequence, a customer willing to set up a multi-datacenter application in public clouds

is not able to cleverly determine the provider or the regions most indicated to host it,

based on the inter-datacenter network performance offered for a certain cost.

To fill the existing gap, we have performed a deep experimental evaluation of the inter-

datacenter network of the two leading cloud providers: Amazon Web Services (hereafter

Amazon) and Microsoft Azure (hereafter Azure) [17]. All our experimentations did not

rely on providers’ support, i.e., have been fulfilled with non-cooperative methodologies,

by adopting the point of view of a generic cloud customer: we have collected performance

data about network paths interconnecting public-cloud datacenters leveraging active ap-

proaches for approximatively 800 hours, taking into account a set of geographic regions

hosting datacenters for both the providers.

To the best of our knowledge, our analysis extends the literature in a number of

aspects, as reported in the following.

• Our work is able to depict a clear picture of the inter-datacenter network perfor-

mance in terms of network throughput and latency, for the two leading public-cloud

providers.

• Experimental results investigate the impact on network performance of several con-

figuration factors under customer control, such as the cloud provider, the region,

and the size of the virtual machines.

• Our analysis provides insights into the communication infrastructure leveraged by

cloud providers, also showing the existence of phenomena generated by the man-

agement strategies which may impact both the performance experienced by the

customers and the results of research investigating these networks.

• Performance results have also been compared to provider-imposed fees, in order to

give useful guidelines to customers willing to deploy distributed applications onto

the cloud.

• Empirical outcomes confirmed that providers often rely on their own dedicated

infrastructure to connect geographically distributed sites, but also show that, in

some circumstances, they depend on third-party networks, being forced to provide

cloud customers with lower performance at higher costs.
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• Our results are compared to those found in previous work, highlighting the changes

in terms of performance figures, and analyzing the trend that these infrastructures

are subjected to over time.

The chapter is organized as follows: § 5.1 details the reference architecture; § 5.2 de-

scribes the scenarios of interests; § 5.3 surveys the results from the most-related literature;

§ 5.4 shows the results of our work for the two providers taken into account.

5.1 Reference architecture

Figure 5.1: Reference architecture. Before being delivered to the receiver VM, synthetic traffic traverses
different layers, i.e. the intra-datacenter network at sender side, the inter-datacenter network,
and the intra-datacenter network at receiver side.

We aim at measuring the performance of the network paths interconnecting VMs de-

ployed onto geographically distributed public-cloud sites. According to the reference ar-

chitecture reported in Figure 5.1, the traffic directed from one side of the communication

to the other traverses different and distinct layers. The traffic generated by a sender VM

normally traverses (i) the devices composing the intra-datacenter, high-performance net-

work at sender side first. Then, it enters and traverses (ii) the inter-datacenter WAN, and,

before being delivered to the receiver VM, it passes through (iii) the intra-datacenter net-

work at receiver side. Note that the internals of both intra- and inter-datacenter networks

are out of our knowledge, as we adopt the point of view of the general customer. In fact,

our approach is aimed at measuring the performance experimented by customers’ traf-

fic. Although different layers exist, the inter-datacenter network performance is assumed
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Table 5.1: Summary of factors and considered values.

Factors Values

Provider Amazon, Azure
Region Europe (EU), North Virginia (US),

South America (SA), Asia-Pacific (AP)
VM Size medium (M), extra-large (XL)
Transport Protocol TCP, UDP

Table 5.2: Cost for transferring data to another region, as of Sep.’15. Only for Azure, data-transfer costs
scale with volume.

Region Amazon Azure
(e/GB) (e/GB)

EU 0.02 0.0734–0.0422
US 0.02 0.0734–0.0422
SA 0.16 0.1527–0.1350
AP 0.09 0.1164–0.1012

to be the bottleneck of the communication due to practical, technological, and physical

limitations. Our results have therefore to be intended as related to these networks, if not

stated otherwise.

For our experimentation, geographically distributed VMs have been instrumented

with Ubuntu 14.04 operating system and all the necessary measurement and diagnos-

tic tools needed for estimating the network performance. As already described for in

intra-datacenter performance analysis, we have leveraged the CloudSurf platform (see

Chapter 3) and used the network measurement tool named nuttcp [113] to inject syn-

thetic traffic into the network from a sender to a receiver VM.

5.2 Scenario selection strategy

The reference architecture described above has been modified in different ways, according

to factors described in the following section, giving birth to a set of scenarios of interest.

The inter-datacenter network performance can be measured and monitored in different

scenarios when adopting the point of view of the general customer. In fact, a set of

factors exists that may heavily influence the perceived performance, as confirmed by the
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outcome of our experimentations. In this perspective, our work significantly extends the

surveyed literature carefully analyzing the impact of these factors. Without claiming to

be exhaustive, we believe an important contribution of our work is the identification of

the factors to be carefully taken into account when performing similar analyses. These

factors—summarized in Table 5.1—will be shortly discussed in the following.

According to latest reports about public IaaS cloud computing [17], the market is

dominated by only a few global providers among the huge number of offers. In this

work we take into account the IaaS of two providers: EC2 for Amazon [19] and virtual

machines for Azure [69]. The former is the clear market leader (over a million active

customers in more than 190 countries), while the latter is the only clear challenger, also

due to the continual investments in the latest infrastructure technologies.

Both providers are steadily expanding their global infrastructure whose growth is

backed by billion investments: infrastructural expansion is claimed to be a priority be-

cause of the direct benefits generated for the customers (primarily latency reduction and

throughput increase). For our experimental campaigns we have identified four geo-

graphic regions, where both providers have deployed datacenters: Ireland (hereafter

EU), North Virginia (US), Sao Paulo (SA), and Singapore (AP). Being forced to select

a subset of all possible regions—mainly due to cost constraints—we have picked a region

per continent, in order to ensure geographical diversity to our dataset. We investigated

the network performance of all the paths connecting all the regions in this selection. Here-

after, we will adopt the notation A→B to refer to the path from region A to region B.

A↔B will be used to refer to both the paths A→B and B→A at once—i.e., when both

directions are taken into account. Note that traffic moving outside from a region is sub-

jected to costs that vary with such source region (see Table 5.2). As, Amazon customers

can further choose an availability zone once a region has been selected, in our study we

have taken into account also the impact of different availability zones inside a region.

In terms of type, we used last-generation, general-purpose VMs for both providers.

In terms of size, we considered two different ones named m3.medium and m3.xlarge for

Amazon, and A2 and A4 for Azure. Hereafter we simply refer to them as medium (M), and

extra-large (XL), respectively, for both providers. Table 5.3 reports further characteristics

and the costs of the VMs adopted in our analyses. Note that both providers provide

details only regarding RAM and CPU. Regarding the network characteristics, Amazon

only provides a qualitative description of the expected performance, Azure completely
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Table 5.3: Selected sizes and details (price may vary with regions).

VM Type CPU RAM Network Min-Max
size and Size cores (GB) Performance Hourly Cost (e/h)

Amazon
M m3.medium 1 3.75 Moderate 0.070–0.098
XL m3.xlarge 4 15 High 0.280–0.392

Azure
M A2 2 3.5 n/a 0.1192–0.1460
XL A4 8 14 n/a 0.4767–0.5839

hides this information.

Finally, we have considered two L4 protocols in our experiments: UDP and TCP.

Dataset details. According to the non-cooperative approach we have proposed, we did

not rely on provider-restricted information. All our analysis is based on the data collected

between March and November 2015 adopting the methodology introduced above. The

collected process required more than 790 hours of traffic generation (i.e. we have injected

synthetic traffic into the inter-datacenter network for more than 790 hours). We considered

the 12 combinations of the four regions selected for each provider. Experiments have been

run between VMs of the same size (M or XL). Repeated, 5-minute-long experiments have

been performed in the same conditions, equally spaced in 24-hour intervals.

Our experimentations have been subjected to providers’ fees, and according to their

terms of service, inter-datacenter traffic is subjected to volume-based charging (see Ta-

ble 5.2). We limited the number of UDP runs—especially for larger VM sizes—because

of budget constraints and the high volumes transferred during experiments. Table 5.4

reports more details about the dataset collected. Beside performance measures, path

information has also been collected to complement the view on the performance.

5.3 Summary of the results in the literature

Traffic in public-cloud inter-datacenter networks is rapidly growing, as estimated by recent

reports [15]. Moreover, novel applications are critically relying on it [48, 83, 47]. Unfor-

tunately limited and poor information is available today about the performance attained

and attainable by this traffic.

Most of the works in the literature aimed at providing a broad characterization of the

performance of public clouds, i.e., did not directly focus on network performance. Most
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Table 5.4: Experimental dataset details. Number of 5-minute-long experimental samples and overall
experiment duration for each combination of VM size and L4 Protocol, for both providers.

VM size TCP UDP

Amazon
M 3456 (288 h) 1740 (145 h)

XL 3456 (288 h) 24 (2 h)

Azure
M 432 (36 h) 108 (9 h)

XL 288 (24 h) 36 (3 h)

of these works only benchmarked the intra-datacenter network performancewith different

purposes and often providing conflicting results [27, 28, 78, 37, 107]. A limited set of

works took into account the performance of inter-datacenter networks.

Chen et. al [73] focused on the interplay of multiple datacenters performing a passive

analysis on Yahoo! network flow dataset.

Li et al. [34] in their broader analysis, benchmarked also cloud inter-datacenter net-

works, but considering only TCP throughput performance between two US datacenters.

They adopted general purpose instances of just one size for their experimentations. They

found that the throughput across datacenters is much smaller than the one within the dat-

acenter for all the providers considered, and that both Amazon and Azure show median

values of inter-datacenter TCP throughput larger than 200 Mbps. Morever, they reported

a variation of throughput across datacenters larger than the one measured within the same

datacenter.

Feng et al. [83] performed an experimental evaluation of Amazon network paths in-

terconnecting seven different datacenters to support their study on a set of algorithms to

minimize operational costs of inter-datacenter video traffic. They considered datacenters

in North California, Oregon, Virginia, Sao Paulo, Ireland, Singapore, and Tokyo. They

used medium instances and monitored network performance for only 3 minutes. Their

results revealed very different throughput values, ranging from 9.6 Mbps (for the path be-

tween Sao Paulo and Singapore) up to 545.1 Mbps (for the path between North California

and Oregon). Values of end-to-end latency measured were lower than 587.3 ms for the

90% of the paths, while the average was about 349.1 ms. The same authors [48] proposed

a protocol to deliver packets in video conferencing, designed for the inter-datacenter net-
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work, and tailored to the needs of a cloud-based service. Measurement results supporting

this work and obtained adopting small instances placed in the regions reported above

ranged from 20.9 Mbps to 130.8 Mbps for throughput and from 11.3 ms to 441.7 ms

for latency. Finally, Garcia-Dorado and Rao [38] presented a framework that exploits

cloud-pricing schemes to construct overlay distribution networks for bulk-data transfer

that proved to be effective from the customer-side perspective. To evaluate their ap-

proach they conducted experimentations on both Amazon and Azure, leveraging medium

VMs and measuring TCP bandwidth and latency performing two-minute-long measure-

ments during one day. They found low variation of throughput values, especially in paths

exposing better performance. results, providing interesting insight to motivate these re-

sults.

Our work significantly differs from the others in recent literature dealing with the per-

formance of the inter-datacenter networks. In spite of the analysis presented in [73], our

work does not rely on provider-restricted information. The methodology we propose is

completely based on active measurements performed from the point of view of the cloud

customer: therefore it is independent of provider’s will to disclose information, guaran-

tees the results to be independent from it, and allows to replicate the study at any time.

Differently from the analysis in [34], our work explicitly focuses on the performance of

inter-datacenter networks. This gives the opportunity of deepening the aspects strictly

related to the measurement process. Thanks to this, we investigate also the interest-

ing traffic engineering practices and their impact on both the measurement process and

the QoS perceived by cloud customers. Finally, with respect to the measurement data

presented in [48], [83], and [38], our study is more systematic, details a repeatable method-

ology, compares the performance of multiple providers, and takes into account the specific

management strategy they enforce.

5.4 Experimental results

In the following we discuss the most interesting results stemming out from the analysis

of data we have collected. Firstly, we provide an assessment of the performance of the

network interconnecting geographically distributed cloud sites for the two providers, com-

paring their performance, and also showing how it is influenced by a set of factors. This

broad analysis provides useful information for customers willing to deploy distributed ap-
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Figure 5.2: TCP throughput distribution across different regions. Each sample represents the mean of a
5-minute-long experiment. Azure performs better on average (+56%).

plications onto the cloud, and help them with their setup choices, according to application

needs. Moreover, this analysis provides insights useful for researchers and practitioners

willing to perform similar analyses. Secondly, we further deepen the analysis for inter-

esting cases, providing insights into the communication infrastructures providers leverage

for inter-datacenter communications.

5.4.1 TCP throughput

In this section we provide an assessment of the performance of the network interconnecting

geographically distributed cloud sites for the two providers, comparing their performance,

and also showing how it is influenced by a set of factors.

Figure 5.2 reports an overall picture of the throughput for both providers in all the ex-

periments (see Table 5.4). Each sample in the plot represents the mean of a 5-minute-long

experiment. It is worth noting that even values far from the global average of Figure 5.2

well represent the samples collected during that particular 5-minute measurement. In

fact, the coefficient of variation (CoV ) within each experiment is very low: the 95th per-

centile of its distribution along all the experiments is about 0.2. Figure 5.2 shows that

Azure inter-datacenter network performs better than Amazon’s one in terms of network

throughput, achieving TCP throughput values 56% higher (78.2 Mbps vs. 122.2 Mbps,

on average). Almost the same proportion is kept when considering maximum throughput
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Figure 5.3: TCP throughput breakdown on different region pairs (mean and standard deviation), for
different providers and VM sizes. For both providers, region pair is the factor with the
highest impact, while VM size appears non influential.

achieved (286.2 Mbps vs 176.0 Mbps). Interestingly, only 25% of samples collected on

Amazon’s infrastructure have values higher than 99 Mbps, while 95% of samples collected

on Azure’s one have values higher than 57 Mbps. Finally, TCP throughput values for

Amazon can be as small as 1 Mbps, while for Azure they are never smaller than 13 Mbps.

Figure 5.3 provides a breakdown of TCP performance. The bar chart reports mean and

standard deviation across different regions and different VM sizes, for the two providers.

A few important observations can be done looking at this figure. We can immediately

observe the large performance differences across different regions, up to about 80% in the

worst case. Interestingly, ordering the regions according to the achievable throughput, we

obtain the same ranking for the two providers, with the only exception of US↔AP pair,

which performs better than EU↔AP pair for Azure, on average. The achievable TCP

throughput is not clearly affected by the size of the VM, for both providers, despite the

different fees imposed. Note that small performance differences between differing sizes

are observed. But, they are not always biased towards the larger, and they are always

associated to higher variability. The standard deviation inside a region pair is normally

very low, although some pairs show a higher throughput variability only for Azure XL

VMs (e.g., SA→US, US→SA, and SA→EU).

Recall that M and XL VMs are advertised to have Moderate and High network per-

formance respectively, according to Amazon’s documentation. Our results show that

differing performance figures across different VM sizes, highlighted in the previous chap-

ter, are achievable only by communications that involve VMs both deployed inside the
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Figure 5.4: Relevant examples of performance asymmetry for different directions.

same region, while they do not hold for inter-datacenter TCP performance. This is likely

due to TCP dynamics.

Finally, performance figures appear to be roughly symmetric in the majority of the

cases examined, although during our experimentations we also encountered severe degra-

dations involving only one direction of the communication. Figure 5.4 reports some of

these interesting cases. As shown, intermittent but heavy performance degradation—

exposing throughput settling down to less than 10 Mbps—has been observed between AP

and EU for Amazon and between SA and EU for Azure. Interestingly, although referring

to different days and providers, these results are both related to only one direction of the

communication, i.e. the downlink of VM inside EU.

We believe this broad assessment can be very useful to cloud customers willing to

draw upon public clouds to deploy their distributed architectures. Thanks to these re-

sults, customers can wisely select among regions, when possible. Otherwise, this analysis

provides them with a quantification of the significant network performance differences

among regions. Moreover, relying on larger sizes to increase TCP inter-datacenter perfor-

mances has not effect. Also, comparing the two providers we found that Azure performs

better on average, while asking higher costs for the VMs and for the data transfer. Due

to this trade-off, we believe that the choice of the provider should be tailored according
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to regions of interest and should be driven by the specific characteristics of the appli-

cation. Finally, considerations about performance symmetry may also be considered to

properly place nodes in the different regions, according to the specific application the

inter-datacenter network is leveraged for, and to the different roles of the counterparts

involved in a communication.

In general, our analysis revealed TCP throughput values smaller than the ones re-

ported in previous works. Indeed, authors of [34] observed TCP (median) throughput

higher than 200 Mbps for both Amazon and Azure. Results are hard to compare because

the authors disclosed no information about the VM size adopted for the experimenta-

tions and restricted inter-datacenter throughput analyses to only two regions placed in

the same continent (United States). Several interpretations are available for this dis-

crepancy, therefore. Different performance figures may be explained by the fact that

experimentations in [34] involved datacenters separated by a lower distance and hence

backed by infrastructures implementing technologies guaranteeing different performance

levels. Another potential cause is related to the presence of less competing traffic across

the inter-datacenter networks at the time when experimentations conducted in [34] were

performed, i.e. around 5 years before ours [15]. Interestingly, the performance reduction

observed after these 5 years is larger for Amazon than for Azure. They could be further

justified by different catchment areas for the two providers, considering also the impact

of the higher number of customers Amazon has on TCP congestion-control dynamics.

Finally, authors of [34] also found throughput variability markedly higher than ours—

regardless the fact we consider the variability within each experiment or between different

experiments. This conclusion holds although analysis in [34] refers to data collected over

a more limited observation period (one single day) and is related to measurements be-

tween two datacenters both placed in the US. This reduced variability is in line with the

increase of the competing traffic already hypothesized above.

5.4.2 UDP throughput and end-to-end path capacity

Before digging into the details of this analysis and of the related results, we show how UDP

measurement accuracy may be biased by specific phenomena related to the resource man-

agement enforced by providers. Properly understanding the impact of these phenomena

allows also to improve the quality of the analysis.

In more details, we found how UDP throughput values measured for Azure inter-
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Figure 5.5: Empirical cumulative distribution for UDP throughput (Azure, XL VMs, EU→US). Each
sample is the average of a 5-minute-long experiment. VMs have been terminated and recreated
at each experiment.

datacenter paths can be impacted by intra-datacenter limitations already documented

in the previous chapter. TCP performance analysis is immune from these limitations

instead, since the end-to-end bottleneck located along the paths proved to be tighter than

them. Figure 5.5 shows the distribution of the UDP throughput measured in different

5-minute-long experiments between two XL VMs (EU→US). The value of the end-to-end

throughput measured along the path between the same pair of regions settles to two well-

defined values when adopting different VMs pairs: 450 Mbps and 800 Mbps. The former

appears to be not related to inter-datacenter performance as it reflects intra-datacenter

limitations. Note that the measured value does not change if the VMs involved in the

measurement process are not terminated and then launched again from scratch. In the

specific case shown, we encountered the lower value 50% of the times: this may induce to

heavily under-estimate the maximum end-to-end UDP throughput if not properly taken

into account. Although the influence of intra-datacenter limitation cannot be avoided a

priori, restarting the VMs involved in the measurement process helps refine the estimation

done. Note that the phenomenon described, although not representing a peculiarity of

the inter-datacenter network, can impact the performance transparently perceived by the

cloud customer. With this aim, we purposely iterated the VM termination and recreation

process to bypass intra-datacenter limitations and unveil the peculiarities of the inter-

datacenter network. We believe that the one adopted represents a good practice to adopt
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when performing this kind of analyses for Azure infrastructure.

We can now analyze the obtained results. In summary, they show that UDP through-

put proved to be significantly higher than TCP’s for all the source-destination pairs con-

sidered. Although this result was expected (UDP protocol is not subjected to congestion

control dynamics typical of TCP), interestingly we have identified cases in which UDP

inter-datacenter throughput durably reaches the intra-datacenter performance figures re-

ported in the previous chapter, and thus appearing limited by bottlenecks imposed by

providers at source.
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Figure 5.6: TCP and UDP inter-datacenter average throughput for US↔EU with M and XL VMs
(whiskers report maximum and minimum). While VM size does not affect the achievable
TCP throughput, UDP is able to reach higher end-to-end performance, giving evidence of
path capacities as large as more than 800 Mbps.

In detail, Figure 5.6 compares UDP and TCP average throughput obtained between
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the pair of regions with the best performance for both providers: US and EU. While TCP

performance does not vary with the size of the VMs, UDP throughput reaches much larger

values. Note also how UDP maximum values are compatible with limitations imposed

by providers at source and based on VM size. On the one hand, these results suggest

that worse TCP performance is determined by network congestion across datacenters. On

the other hand, the better performance of UDP gives evidence of the network capacity

of the inter-datacenter paths. We can find further justifications for this empirical result

considering the impact of the higher number of customers Amazon has on TCP congestion

control dynamics. Although VMs are allowed to inject traffic into the inter-datacenter

network at a rate as high as the throughput measured in Chapter 4, and the inter-

datacenter network is able to deliver traffic at this speed, network congestion represents

the main bottleneck when relying on TCP. This result is generalizable across different

regions, even if actual UDP throughput values change from case to case,
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Figure 5.7: Lower bounds of path capacity for inter-datacenter paths, measured as the maximum UDP
throughput achievable between two regions.

We estimated the capacity of each path as described in the following to better un-

derstand how network resources are deployed across regions. We calculated the aver-

age throughput over 5-second-long non-overlapping windows considering the timeseries

of each UDP experiment involving XL VMs in the dataset. This approach allowed us

to mitigate the effect of throughput spikes—potentially caused by queuing and buffering

dynamics generated by the coexistence of multiple layers of virtualization—that could ex-
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Figure 5.8: Path-capacity comparison. Lower bounds estimated in this work are higher than values
reported in one of the previous [83].

ceed end-to-end capacity [26]. We then estimated the end-to-end capacity of each path

extracting the maximum of this time series. Note that the values obtained with the ap-

proach proposed, represent a lower bound of the capacity, i.e. the end-to-end path that

a user can leverage is able to deliver at least traffic at this throughput. The results are

shown in Figure 5.7: Figure 5.7a and Figure 5.7b show the lower bounds for Amazon and

Azure inter-datacenter paths, respectively. Estimated capacities are always larger than

800 Mbps for most cases. More in details, lower bounds for Amazon capacities ranged

from around 560 Mbps to 986 Mbps, with only two cases exposing values smaller than

800 Mbps. For what concerns Azure, estimated capacities were lower on average: they

ranged from 502 Mbps to 912 Mbps.

Interestingly, Amazon capacity values reported in Figure 5.7a result significantly larger

than the homologous reported in [83], always lower than 300 Mbps. Figure 5.8 compares

these values. As shown in the figure, EU→US surprisingly exposed the largest value

according to the analysis performed in [83] but the lowest in ours. The results of our

analysis show larger values than previous ones also limiting our dataset to data related

to M-sized VMs (whose UDP throughput values reach 280 Mbps in all the circumstances

considered).

Differing values could be justified by substantial infrastructure enhancements. How-

ever, we believe that they could also be impacted by the measurement methodology

adopted in [83] (single 3-minute-long experiments leveraging medium VMs). This further

highlights the need to detail the adopted methodology, to compare and validate results

through further analyses.
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5.4.3 Throughput variability

Our further analyses have shown that inter-datacenter performance for both providers may

not be simply regulated by limitations imposted at source: restrictions can be imposed by

providers also along the path, also because of the several layers traversed, none of which

is under the direct control of the cloud customer. Our dataset revealed some interesting

cases in which UDP throughput measured over time is not stable. They are mainly related

to Amazon M for EU→US and Azure M and XL for US→EU. This inflates the variance

of the throughput, as reported by the larger error bars in Figure 5.6. We discuss these

representative examples in the following.

For what concerns Amazon VMs, we found a number of interesting cases in which UDP

throughput is not stable, showing changes in the perceived path capacity over the time. An

example is related to the path connecting M-sized VMs between EU and US regions, whose

minimum, average, and maximum values are reported in Figure 5.6b. Deeper details for

the spotted phenomenon are shown in Figure 5.9. UDP throughput dramatically changes

its value during the time—but not during the same experiment (Figure 5.9a). It switches

between two well-defined values around 280 Mbps and 110 Mbps (Figure 5.9b). While

the former is in line with maximum performance achievable by M-sized Amazon VMs,

the latter reflects a clear and systematic path capacity decrease. This result is in line

with management practices commonly adopted [110] (current network technologies, such

as SDN, allow to change network configuration on the fly, based on system state and

needs). On the other hand, it can also be explained considering the multiple paths that

we have identified between these two regions. We uncovered them using state-of-the-art

technologies such as Paris Traceroute Multipath Detection Algorithm (MDA) [114]. The

characteristics of the path inferred by adopting MDA for the case examined are reported

in Figure 5.9c. Each node in the graph represents a unique IP address discovered by the

tool along the path from the source VM (S ) to the destination VM (D). Stars represent

anonymous hops, i.e. associated to devices whose ICMP error messages did not reach S.

According also to common datacenter topologies [35], they can be mapped to IP nodes

placed inside the intra-datacenter network, and the root cause of their appearance is

likely related to the filtering of incoming ICMP messages enforced at the border of the

US datacenter. Edges in the graph connect nodes discovered by leveraging the same traffic

flow. As shown in the figure the sole node appearing at the 5th hop acts as a loadbalancer

at IP level, systematically distributing incoming traffic among different interfaces (hops



Experimental results 126

 0

 100

 200

 300

 400

16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00

T
h
ro

u
g
h
p
u
t

[M
b
p
s
]

UTC Time

(a) UDP throughput time series (error bars report the standard deviation).

 0

 0.25

 0.5

 0.75

 1

 100  125  150  175  200  225  250  275  300

F
re

q
u
e
n
c
y
 o

f
T

h
ro

u
g
h
p
u
t 
S

a
m

p
le

s

Throughput [Mbps]

(b) UDP throughput empirical distribution.

6_4 7_4

6_5 7_5

6_0 7_0

6_1 7_1

6_2 7_2

6_3 7_3

1_0 2_0

8_2

*

8_3

8_0

8_1

3_0 4_0 *5_0 * DS

(c) Load-balanced paths inferred by adopting MDA.

Figure 5.9: Amazon, EU→US, M-sized VMs. UDP throughput switches between two different values over
time, suggesting the dynamic variation of the capacity of the path. Note how the distribution
of the throughput samples follows a binomial shape. A likely cause is the existence of multiple
paths between the source and the destination.

6, 7, and 8). The observed characteristics are confirmed also by the router-level graph

obtained through alias resolution—using state-of-the-art techniques [115, 116]—applied

to the output of MDA. Note how in this case performance variation occurs only across

different experiments—even though no termination and recreation have been enforced—

while within each of them, UDP throughput settles to a well-defined value for all the

duration of the experiment.

On the other hand, the performance variability exposed by the paths interconnect-
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Figure 5.10: Azure, US→EU. UDP throughput within 5-minute-long experiments typically switches from
a high to a low stable value of 400 Mbps (a). The transition typically happens around 100 s
(b). The transferred traffic volume ranges from 8, 000 to 10, 000 MB for 75% of the cases
(c).

ing Azure M or XL VMs between US and EU regions has a significantly different nature.

Indeed, the variability spotted is due to performance variation within each of the 5-minute-

long experiments. Figure 5.10 shows some experimental evidences for this phenomenon.
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Considering three experiments related to these two regions, Figure 5.10a shows how

the throughput typically varies within each experiment: interestingly, two well-defined

throughput values can be easily identified. All the experiments between this pair of re-

gions shows the same pattern: the throughput dramatically switches from a high value

(between around 700 and 850 Mbps, depending also on the VM size) to a low one (around

400 Mbps). Also the stability of the throughput samples significantly changes after the

transition: before the transition the throughput appears very unstable, while after the

transition, it stably settles down to about 400 Mbps. The CoV is almost halved after the

transition.

The dramatic throughput variation described above happens on the fly, i.e., when a

communication is active. Moreover, the high-to-low transition may happen at differing

points in time for different experiments. As a consequence, different mean values have been

observed, which also generate the larger variability range in Figure 5.6a. The distribution

of the transition time is shown in Figure 5.10b. Interestingly, in more than 75% of

the cases, the transition happens at around 100 s, thus exposing a certain deterministic

behavior. Differently from the case of Amazon reported above, this empirical result could

be mapped to mechanisms that restrict the maximum capacity available to a customer

based on the traffic volume previously generated. Figure 5.10c shows the distribution of

the volume of the traffic transferred before the high-to-low throughput transition happens.

For about 75% of the cases, volume transferred before the transition ranges from 8, 000 to

10, 000 MB. Note that, small differences in the transition time reflect in larger discrepancy

in the transferred volume because of the high throughput. Besides Azure, similar cases

have been identified also for the paths connecting Amazon XL VMs.

We verified that no significant variation of the actual traffic injected in the network

by the sender VMs has been identified for the cases discussed above. Lower throughput

values are reflected by a proportionally higher packet loss. Therefore, the differing per-

formance levels identified are not caused by the traffic generation capabilities of the VMs.

This further suggests that the observed phenomenon is the consequence of traffic manage-

ment policies enforced by providers along the paths that interconnect one region to the

other. It is worth noting that this phenomenon may impact both the results of the mea-

surement process and the user experience. Firstly, measurements shorter than 100 s are

not able to spot the throughput transition. Secondly, longer measurements could lead to

misinterpret performance variability if not associated to a deeper analysis. Finally, dra-
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matic throughput drop (around −50% in the example proposed) can cause non-negligible

troubles to customers, heavily impacting the perceived Quality of Service.

5.4.4 Performance vs. fees

Our empirical results show that worse performance typically involves two specific regions:

AP and SA. Interestingly, these two regions are also the ones with the highest data-transfer

costs for the customers (see Table 5.2), thus representing unfavourable choices for them.

Indeed, data transfer from AP and SA is subjected to higher costs with respect to EU

and US regions, which amounts to 8× and 4.5× for Amazon, and up to 3.2× and 2.3× for

Azure, respectively. To better understand these aspects, additional experimentations have

been performed. We have traced IP paths between regions by adopting traceroute. Note

that this analysis has been performed only for Amazon, due to ICMP filtering policies

likely enforced at the borders of the Azure datacenters, which prevent the adoption of

traceroute. The experimental campaigns we set up were designed to trace the region-to-

region path while running the performance test. Then we have mapped each IP address

identified along the paths to the autonomous system it belongs to. With this aim, we

have applied IP to autonomous system number mapping (IP-to-ASN mapping) to each IP

address collected, by relying on free external services [117] and on the IP-address ranges

publicly advertised by the provider itself [118].

Figure 5.11 reports the results of this analysis for both M and XL VMs. The bar

charts show for each path the number of hops it is composed of, also classifying the hops

along the path from the source (hop 0) to the destination (whose position depends on

the length of the path). More precisely, they also show the results of the IP-to-ASN

mapping, by splitting the hops composing each path in three sets: (i) the ones mapped to

AS owned by Amazon itself (#16509/#38895), reported in white; (ii) the ones impossible

to map being anonymous or associated to private IP addresses, reported in black; (iii) the

ones mapped to ASes other than Amazon, reported in grey. Results appeared stable over

multiple experimental repetitions.

As shown in the figure, we can infer that the length of the path is symmetric in most

of the cases—i.e., it does not change when switching source and destination regions. A

few cases showing asymmetry have been spotted. For instance: we counted 9 or 10 hops

for EU↔SA (M VMs); we counted 15 or 14 and 13 or 20 hops for US↔SA and SA↔AP,

respectively (XL VMs ).
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Figure 5.11: IP-to-ASN mapping and length for Amazon inter-datacenter paths. Paths lay on provider-
owned infrastructure for four out of six cases.
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The black part of the bar charts shows that anonymous hops normally appear close

to the edges of the path, and may therefore be intuitively mapped to Amazon (i.e. intra-

datacenter hops). Hence, we can consider as part of Amazon infrastructure the hops

reported in white and black in Figure 5.11a and Figure 5.11b. In this hypothesis, our

results show that four out of the six paths allow to deliver traffic among geographically

distributed datacenters without going out from the infrastructure owned and managed

by Amazon. The remaining two paths instead imply the transit through external ASes,

from which Amazon probably buys transit bandwidth. All these ASes are tier-1 (namely,

Level 3, TATA Communications, NTT America, and Telefonica). A schematic view over

AS-level-path graph is reported in Figure 5.11c. As shown in the figure, is some cases

(i.e., where explicitly stated) the chosen VM size may impact the AS path traversed.

Results are summarized in Table 5.5. While the number of hops traversed ranges from

9 to 20 hops, the number of domains traversed varies from 1—when only Amazon AS is

traversed—to 3.

It is worth noting that AP and SA are the worse-connected regions in terms of external

ASes to be traversed. It is known that the growth of cloud infrastructures is driven by

multiple factors such as appealing environmental, financial, and political climates. The

high concentrations of Internet exchanges and high-performance network infrastructures

are not necessarily the most relevant factors to be taken into account to determine the

location of a new datacenter to be deployed. Indeed, the existence of friendly governments,

tech sectors, or highly educated populations are also key factors commonly considered.

Therefore, the evolution of the communication infrastructure could be also a result of the

deployment of the datacenters. This is in accordance with the fact that AP and SA are

the regions made available most recently among the ones considered—being launched in

2010 and 2011, respectively.

Experimental results obtained with different VM sizes (AP→SA) suggest the adoption

of different routing policies for VMs of different sizes. The adoption of external network

providers in case of AP or SA region gives also a possible explanation for higher data-

transfer costs. They are probably aimed at discouraging intensive network usage by cloud

customers, and at guaranteeing proper revenues to the cloud provider according to its

business plans also in regions where proprietary network infrastructures have not been

deployed yet.
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Table 5.5: IP-level hops and domains traversed for each pair of regions in Amazon wide-area inter-
datacenter network. IP-level path length and AS-level are symmetric if not explicitly stated
otherwise.

Inter-datacenter path Number of Number of Domains
hops domains traversed

traversed traversed

EU↔US 12 1 Amazon.com, Inc.;

EU↔SA 9/10 1 Amazon.com, Inc.;

US↔SA 14 1 Amazon.com, Inc.;

US↔AP 15 1 Amazon.com, Inc.;

EU↔AP 16 2 Amazon.com, Inc.; NTT America, Inc.;

SA→AP (M) 13 3 Amazon.com, Inc.; Level 3 Communications, Inc.;
TATA Communications (AMERICA) Inc.;

AP→SA (M/XL) 13 3 Amazon.com, Inc.; Level 3 Communications, Inc.;
NTT America, Inc.;

SA→AP (XL) 20 3 Amazon.com, Inc.; TATA Communications (AMERICA) Inc.;
Telefonica International Wholesale Services, SL;

5.4.5 Latency

Our experimental data shows that latency and throughput are in general not highly

correlated. In many cases, high throughput implies lower latency, but low throughput

does not necessarily imply high latency and vice versa. In general, latency could not be

considered the main cause of the throughput degradations.
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Figure 5.12: Latency between different regions. Azure exposes slightly higer values than Amazon. For
both providers, US region is the one with the lowest average latency towards the considered
destinations, while AP expose way higher values.
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Figure 5.12 provides an overall view over performance in terms of latency (RTT)

for both providers. As expected, latency values appear to be symmetric, although non-

negligible differences exist across different regions. US region is the one with the lowest

average latency towards the considered destinations, while AP exposes way higher values.

Figure 5.13 compares the mean latencies experimented between homologous regions

for Amazon and Azure, and their variability. Average latency is equal to 193.61 ms and

214.67 ms for Amazon and Azure, respectively. On average, RTT values appeared to be

smaller than the ones reported by previous works [48, 83]. Indeed, these values resulted to

be also compatible with the delay constraints hypothesized for the application proposed

in [48]. In general, as shown by the limited standard deviation, latency proved to be

very stable over time, for both providers. Figure 5.14 investigates the variability of the

latency from a different angle, showing the cumulative distribution of the CoV of the

RTT for different experiments. For both providers we observed CoV values smaller than

0.05 for more than 80% of 5-minute-long experiments, and smaller than 0.1 in all but two
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Figure 5.14: CoV distribution of latency (RTT) across different 5-minute-long experiments. Both
providers expose little variation for latency.

of around 70 experiments for Amazon. Interestingly, the worst-performing region pair in

terms of latency (i.e. SA↔AP) exposed the stablest performance over time.

In more details, while experimented RTT is similar across providers for five out of six

region pairs, EU↔AP shows a markedly higher latency for Azure (197 ms vs. 315 ms).

Interestingly, experimental data shows how for Azure the latency measured for EU↔AP

is roughly equal to the sum of the latencies measured for EU↔US and US↔AP, thus

disclosing that a probable strategy implemented by the provider to send traffic form EU

to AP consists in routing it through US. Although the lack of data about the path does not

allow to verify this conjecture, this would also motivate the higher latency with respect

to Amazon.

In the following, we propose the results of analyses aimed at further investigating

the nature of the delay perceived by the cloud customer. Figure 5.15 shows how the

average RTT varies with the geographic distance between datacenters. As expected,

distance proved to have large impact on RTT performance. However, propagation delay

amounts for just a limited portion of the overall delay.1 Indeed, Figure 5.15 shows how

the delay without the propagation quota (filled squares and circles), can be coarsely

clustered into 4 ranges: (i) 0–50 ms; (ii) 50–100 ms; (iii) 100–150 ms; (iv) 200–250 ms.

1In more detail, the propagation delay has been evaluated as Dp = d
c , where d is the distance (calcu-

lated by adopting Vincenty’s formulae) between the source and destination datancenter (whose location
has been obtained from [119]), and c is the speed of light. Since the one considered is the minimum
distance and the actual propagation speed is slightly smaller than the speed of light, the one evaluated
represents a lower bound of the actual propagation delay.
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Figure 5.15: Latency vs. distance. As expected, latency is impacted by geographical distance between
datacenters (empty squares and circles). However, propagation delay amounts for just a
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This delay—considering negligible the computation done at the destination—is given by

transmission, elaboration, and queuing quotas. All these quotas basically depend on the

characteristics of the end-to-end connections (link speeds, computational capabilities of

the devices along the path, congestion of the queues, etc.)—i.e. on the performance of the

technologies adopted. They are therefore influenced by the economic investments done in

the communication infrastructure. Interestingly, Figure 5.15 shows how the geographic

distance indirectly influences also the delay without the propagation quota: the larger the

distance, the larger the delay, even without the propagation quota. This can be explained

by the impact of the distance on the technological choices done by the providers: due

to technological or budget constraints, longest paths are provided with less performing

technologies. We cannot exclude the traffic across that specific paths is subjected to more

complex elaborations (e.g., due to the presence of middleboxes along the path performing

specific tasks). We left the analysis of these specific aspects as a future work.
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5.4.6 Impact of availability zones
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Figure 5.16: CVRMSE distribution of the throughput across different Amazon AZs. 90% of samples
has values lower than 0.2, showing how the choice of AZ is non-influential for throughput
performance in most of the cases.

In our study we have also taken into account the impact of selecting different avail-

ability zones (AZs) inside a region, i.e. we investigated how performance may vary when

choosing one of the isolated locations made available inside a region by Amazon.

We set up the experimentations such that 5-minute-long experiments have been launched

over multiple distinct AZ pairs at the same time. Therefore we have information about

the performance evolution over the time for multiple AZs in parallel. The main out-

come of this analysis is that changing AZ gives no clear advantage in terms of achievable

throughput. Figure 5.16 reports the distribution of the coefficient of variation of the root

mean square error 2 (CVRMSE) as an indication for the difference of throughput perfor-

mance perceived along paths between different AZs. The figure shows this result for both

M and XL VMs: CVRMSE results lower than 0.2 for 90% of the samples, underlining how

throughput performance along paths connecting differing AZs in the same region is the

same, on average. In the following, cases showing higher values for CVRMSE are deepened

(Figure 5.17).

In a limited number of cases, severe performance degradation lasting for several hours

has been identified, showing throughput dropping down to values smaller than 5 Mbps.

An example for AP→EU is reported in Figure 5.17a. Pairs of homologous samples report

different throughput values for different AZs (thus justifying the high CVRMSE). However,

in the period between 2:00 p.m. and 8:00 p.m., all the tested logical paths connecting

2CVRMSE(X,Y ) =

√
E[(X−Y )2]

E[E[X],E[Y ]] where X and Y are the empirical distributions of the throughput

values collected considering two distinct pairs of availability zones.
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(a) Performance degradation involving all the
AZs (AP→EU).
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Figure 5.17: Examples for the interesting cases.

disjoint AZ sets (namely aa and bb) show a sever degradation of performance. This ex-

ample shows how AZs although guaranteeing site isolation, revealed to be not completely

independent from the network point of view. We have observed different cases similar to

the one described. On the other hand, we have also observed cases in which the degra-

dation involves only one AZ pair and not the others. This happened for a single pair of

regions in our dataset (AP→SA). Figure 5.17b shows how the performance monitored for

the AZ pair identified by ac is consistently lower than the homologous identified by bb

during the entire 24-hour-long observation period.

Finally, extending latency considerations to Amazon AZs, led us to point out some

interesting patterns, for which an example is reported in Figure 5.18. The figure shows

that different AZ pairs present consistently but slightly distinct latency values. Consider-

ing that AZs are independently mapped to identifiers for each customer account [19], and

that latency values proved to consistently depend from AZs, we believe that latency in-

formation proves to be useful to cloud customers to identify the actual AZ assigned inside

a region. This information can be also leveraged to set up resources into the most conve-

nient AZ, according to potentially existing performance discrepancies found. Even more

interestingly, intermittent latency deterioration has been spotted in several circumstances,
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Figure 5.18: Latency between different AZs (SA→US). A constant additive latency offset is observed in
case of performance degradation.

that equally affected the different AZs, i.e., causing a fixed latency shift. Figure 5.18 shows

an instance of this phenomenon. This behavior suggests how the root cause of this per-

formance deterioration is placed in the portion of the communication path shared by all

the traffic between the two regions, thus not depending from the specific AZ chosen.



Chapter 6

Cloud-to-user network performance

In this chapter, we focus on the performance of the cloud-to-user network. In more details,

we take into account the performance of a cloud storage application (Amazon S3 [120])

as an interesting case study.

The chapter is organized as follows: § 6.1 introduces S3, the related concepts and

nomenclature, and briefly summarizes the results of prior works that investigated it; § 6.2

details the adopted methodology; finally § 6.3 presents the results of our investigation.

6.1 The Amazon S3 case study

Cloud storage denotes a family of increasingly popular services for archiving, backup, and

even primary storage of files, heavily promoted by recent advances in networking tech-

nologies. The increase in the need for storage resources has prompted many organizations

to outsource their storage needs. In this section we describe the services considered in our

experimental study, also introducing the names and concepts adopted in the following.

We then discuss the related literature.

6.1.1 Background

Amazon Simple Storage Service (S3) is the general purpose storage as a service provided

by Amazon [120]. User data is organized by means of objects stored in buckets, i.e. logical

units of storage uniquely identified and belonging to one of the AWS regions.

Costs for the customer depend upon the storage class (standard, infrequent access, or

long-term archive) and the geographic region in which the bucket is placed, according to

a pay-as-you-go model. In more details, cost is calculated as the sum of three quotas: (i)
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storage (depending on the size of stored objects), (ii) number of requests (e.g., upload or

download), and (iii) data transfer (depending on the volume of traffic transferred from

the bucket) [120].

CloudFront (CF) is the global Content Delivery Network (CDN) service offered by

Amazon [121] and integrates with S3 in order to distribute contents to the end users with

low latency and high data-transfer speeds. Data is distributed to the users through the

global network composed of the AWS edge locations spread all over the world [19]. CF

can be leveraged in combination with S3, by simply activating it, with no need for further

configuration. Notably, CF is associated to storage and data transfer costs similar to S3.

Request costs are markedly higher (around 2×).

6.1.2 Related literature

As S3 has been the first Amazon web service publicly available, a number of works tried to

shed light on its performance [122, 79, 76, 34, 74, 123]. Differently than most of the studies

above [122, 79, 76, 34], our work aims at focusing on the performance of content remote

delivery, i.e., it aims at investigating the quality of service perceived by users that retrieve

contents from vantage points (VPs) not placed into the cloud. With this goal in mind, our

approach only leverages active measurements. On the one hand, this characteristic frees

our study from the need of any privileged point of view [74, 123], thus also guaranteeing

easier repeatability. On the other side, the methodology we enforced allows to better

evaluate the impact of factors under the control of the customers, e.g., the region hosting

the content, not limiting the validity of the study neither to the service usage patterns

observed in traffic captures [74, 123] nor to a specific geographic zone [122, 79]. Indeed,

in order to obtain a significant characterization of the performance of the cloud storage

delivery service with respect to geographically distributed users, differently than previous

works [76, 34] we leverage a set of geographically distributed VPs. In addition, our study

provides an up-to-date view of the performance of the service under investigation, in front

of both (i) the evolution of the cloud network infrastructure over the time, and (ii) the

new services not considered in most of the previous works as not available at that time

(e.g., a larger number of regions in which contents can be placed, or the integration with

CDN services).
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Table 6.1: Summary of factors and considered values.

Factors Values

Storage Classes
Standard
CloudFront

Cloud Regions

North Virginia (US)
Ireland (EU)
Singapore (AP)
Sao Paulo (SA)

File Sizes

1B
1 KiB
1 MiB
16 MiB
100 MiB

6.2 Methodology

In this section we describe the setup and the choices implemented in our experimental

study. We have taken into account a number of factors that may impact the service

performance experienced by users. These factors are summarized in Table 6.1 and will be

briefly discussed in the following.

6.2.1 Factors of interest

In order to take into account different use cases possibly generated by the needs of dif-

ferent categories of applications, we have considered two different storage classes e.g.,

Amazon S3 standard (hereafter simply S3) and CF. The latter is expected to have better

performance at higher costs.

As of today, Amazon has datacenters in 12 regions around the world. Due to experi-

mental cost constraints, for our experimental campaigns we have identified a subset of 4

cloud geographic regions among all possible ones: North Virginia (hereafter US), Ire-

land (EU), Singapore (AP), and Sao Paulo (SA). We have picked a region per continent,

in order to ensure geographical diversity to our dataset. In each of these regions, we have

created a bucket that contains objects of various sizes, from 1 B to 100 MiB as shown in

Table 6.1. Object sizes have been selected to assess network performance against ob-

jects of different nature, possibly related to diverse use cases. We have used the standard

HTTP GET method to download these files from the buckets, in order to emulate the



Methodology 142

Table 6.2: Selected VPs and detailed locations.

Node ID Location Label

pl2.cs.unm.edu Albuquerque (New Mexico, US) US1

planetlab1.acis.ufl.edu Gainesville (Florida, US) US2

planetlab1.unl.edu Lincoln (Nebraska, US) US3

planetlab01.cs.washington.edu Seattle (Washington, US) US4

planetlab1.postel.org Los Angeles (California, US) US5

ricepl-2.cs.rice.edu Houston (Texas, US) US6

planetlab1.cs.du.edu Denver (Colorado, US) US7

pl1.rcc.uottawa.ca Ottawa (Ontario, Canada) US8

planetlab1.ifi.uio.no Oslo (Norway) EU1

planetlab2.inf.ethz.ch Zurich (Switzerland) EU2

planetlab1.diku.dk Copenhagen (Denmark) EU3

planetlab3.cslab.ece.ntua.gr Athens (Greece) EU4

planetlab-2.man.poznan.pl Poznan (Poland) EU5

peeramidion.irisa.fr Rennes (France) EU6

planetlab1.cesnet.cz Prague (Czech Republic) EU7

pl1.sos.info.hiroshima-cu.ac.jp Hiroshima (Japan) AP1

planetlab4.goto.info.waseda.ac.jp Tokyo (Japan) AP2

planetlab-2.scie.uestc.edu.cn Chengdu (China) AP3

planetlab-1.sjtu.edu.cn Beijing (China) AP4

planetlab-n2.wand.net.nz Hamilton (New Zealand) AP5

pl1.eng.monash.edu.au Monash (Australia) AP6

ple2.ait.ac.th Bangkok (Thailand) AP7

pl2.zju.edu.cn Hangzhou (China) AP8

planetlab1.cs.otago.ac.nz Dunedin (New Zealand) AP9

planetlab2.pop-mg.rnp.br Belo Horizonte (Brazil) SA1

planet-lab1.itba.edu.ar Buenos Aires (Argentina) SA2

common behavior of the vast majority of cloud-storage customer applications [79].

Moreover, to take into consideration the heterogeneity of users of the cloud-storage

services, and therefore the ability of these services to serve users spread world-wide, we

have adopted geographically distributed VPs, leveraging the facilities made available by

the PlanetLab infrastructure [124]. We have selected 26 geographically distributed Plan-

etLab nodes that have been labeled according to the VP region they belong to, using

the same nomenclature adopted for cloud regions: North America (US), Europe (EU),

Asia-Pacific and Oceania (AP), South America (SA). Table6.2 reports the selected Planet-

Lab nodes and their detailed locations. Nodes have been selected according to PlanetLab

availability (no more than two stable nodes were available in the SA region during the

experimentation period).
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6.2.2 Experimental campaign and dataset

All the results presented in this section refer to experimental campaigns conducted be-

tween January and February 2016. In order to collect the dataset we refer to, the VPs

have been instructed as detailed in the following.

Each VP repeatedly performed download cycles over 12 days. Each cycle is composed

of 40 sequential download requests spaced out by 10 seconds and uniquely identified by a

combination of factors in Table 6.1, i.e. storage class, cloud region, and object size.

Download cycles are repeated from each VP every three hours. In order to avoid

an excessive number of simultaneous requests towards the same storage bucket, we have

split the VPs in three groups whose experiments started with a ±0.5-hour offset. In

addition, the order of the download requests randomly changes at each cycle. After every

download request, a TCP-traceroute is performed toward the IP address that has served

the download, in order to trace the information related to the path and estimate the RTT

to the bucket.

6.3 Experimental results

In this section the main results stemming out from the experimental campaign will be

discussed.

6.3.1 General overview of the performance.

Our experimentations confirm that the size of the object to retrieve through the network

heavily impacts the measured performance [34, 79], independently from the VP. We report

here the distribution of the performance in terms of the average goodput per download

request calculated over all the dataset. As shown in Figure 6.1, the larger the size, the

higher the measured goodput is. In more particulars, 1 MiB, 16 MiB, and 100 MiB

reported values of the same order of magnitude, whereas 1 B and 1 KiB led to markedly

lower values (5 and 2 orders of magnitude lower, respectively).

Accordingly, users deal with different performance levels in terms of goodput when

adopting the S3 service to retrieve contents of different sizes. For instance, from the

performance point of view, it is convenient for the user to download a single 100 MiB blob

containing clustered contents (e.g., an archive containing a hundred pictures) instead of
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a hundred 1 MiB files (e.g., single pictures), as the total time needed to retrieve contents

would be smaller.

From the monitoring viewpoint, the slight variation observed on average between 16

MiB and 100 MiB sizes, suggests that 100 MiB is enough to obtain a good estimation of

the maximum goodput achievable. On average, a limited error is done when considering

16 MiB objects (10.4%), while larger errors when referring to 1 MiB contents are done

(50.3%, on average). In the following analyses, if not explicitly stated otherwise, we will

restrict the results presented to 100 MiB objects, as being the size reporting the best

performance observed, on average.
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Figure 6.1: General overview of S3 performance grouped by file size. Goodput heavily depends on object
size: the larger the size, the higher the goodput.

6.3.2 Impact of the geographic region

Our results reported that the measured performance may be heavily impacted by the

placement of both the bucket and the VP. In order to evaluate how the performance

changes when relying on cloud datacenters placed in different geographic regions, in this

section we compare the performance of the four cloud regions considered, as observed from

the 26 distributed VPs. Results are reported in Figure 6.2. Considering the goodput

average values, US, EU, SA, and AP cloud regions reported 793.8, 779.8, 531.2, and

503.1, KiB/s, respectively. Therefore two performance classes can be easily identified:
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US and EU versus SA and AP, where the former performs 34.3% better than the latter.

Counterintuitively, AP and SA are also associated to higher network-transfer costs with

respect to EU and US.

On the basis of the adopted cloud deployment strategies that often see customers

leveraging a single cloud region [88, 123] these results are of interest for optimally choosing

the cloud region to rely on. Indeed, if the cloud customer has no knowledge of the location

of the users willing to retrieve contents, US and EU represent the best available choices,

on average.
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Figure 6.2: S3 performance for 100 MiB objects, grouped by cloud region.

As expected, results strongly depend also on the placement of the VP. Figure 6.3

reports detailed information about how the goodput is subjected to changes on varying

source VP and cloud region. While in some cases, for a fixed VP the performance is

not subjected to significant variations when relying on buckets placed in different cloud

regions (e.g., AP9, SA2, or US5), in other cases a non negligible discrepancy is measured

on changing buckets (e.g., AP7, SA1, or US3). It is evident in some of these cases how the

globally optimal choice (EU or US region) is dramatically outperformed by local optimal

choices.

Figure 6.4 summarizes the general trends observed by considering the aggregated val-

ues for both VPs and bucket regions. As already observed for detailed results, lighter

boxes placed on the diagonal show that the best performance for a given VP placement

region is obtained relying on a bucket placed in the same geographical zone, on average.

This aspect is markedly visible for AP, EU, and SA regions, whereas is less evident for
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Figure 6.3: S3 goodput performance for 100 MiB objects. For each pair (VP, cloud-region) the average
goodput is showed.

the US region. Interestingly, the best average performance is obtained considering VPs

placed in SA retrieving contents from a bucket in the same region. Conversely, the worst

performance, on average, is associated to VPs placed in SA retrieving contents from AP,

and vice versa. More in general, the graph denotes performance symmetry with the only

notable exception of the pair composed by SA and US. Indeed, the performance offered

by the SA cloud bucket to VPs placed in US is markedly better than the one perceived

by SA VPs retrieving contents from the US bucket.
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Figure 6.4: S3 performance for 100 MiB contents. For each pair (VP-region,cloud-region) the mean
goodput is showed.

6.3.3 Evolution of the performance over time.

Considering fixed (VP, cloud-region) pairs, the performance is stable over time in most

of the cases.

Figure 6.5 shows the distribution of the CoV of the goodput calculated for the down-

load requests which refer to 100 MiB objects. As shown in the figure, the CoV is lower

than 0.2 for the 80% of the (VP, cloud-region) pairs. This guarantees that the observations

made in the above sections are consistent over time. The long tail of the distribution is
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Figure 6.5: Distribution of performance variability over time in terms of CoV for differing (VP, cloud-
region) pairs.

generated by the only two pairs whose CoV is higher than 0.4, associated to two outliers.

In spite of the low CoV values on average, a number of VPs exists for which the best-

performing region changes over time. A notable example is reported in Figure 6.6. As

shown, for the VP considered (AP3), the US region reported better performance for non

negligible periods of time although the AP bucket performs better both on average and

on median. These results give useful hints to the customer, and show how deployments

relying on multiple buckets can be profitable not only from the availability and security

point of view, but also for what concerns the available performance.
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Figure 6.6: Time-series of S3 goodput for AP3.

6.3.4 Impact of CDN service adoption

In our experimentations we also tested the performance variation achieved by enabling the

content distribution through the CF service. Note that from the customer point of view

CF does not require any additional configuration but its explicit activation and implicates

additional costs.
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Figure 6.7: Comparison of S3 and CF goodput for 1 MiB and 100 MiB objects.

Figure 6.7 shows the distributions of the goodput obtained with both S3 standard and

CF, considering two different sizes (1 MiB and 100 MiB). The beneficial impact of CF

in terms of performance is evident, as it is able to deliver better performance on average

(+522.7% and +458.6% when considering 1 MiB and 100 MiB objects, respectively).

Leveraging DNS names, each edge location observed has been associated to a geo-

graphic region. Figure 6.8 graphically shows how edge locations have been assigned to

CF download request for each of the VP. In our experimentations we have been served

by 46 out of the 54 available edge locations advertised by Amazon (21/21 in US, 14/16

EU, 2/2 in SA, and 9/15 in AP).

In most of the cases indeed, the content is downloaded from an edge location placed

in the same geographic area (pink boxes in Figure 6.8), although some variability in the

association has been observed. When a VP is not served by an edge location placed in

the same geographic zone, the content is always retrieved from a US bucket. This is

in accordance with the policies advertised by the provider, explicitly saying that when

needed, requests may be redirected to an edge location belonging to a cheaper geographical

zone. We found that in these case US region is the always chosen. Interestingly, we found

that the VP placed in Beijing (AP4) has been always served by edge locations placed in

the US.
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Figure 6.8: Occurrences of the associations of different edge locations (on the rows) to each VP (on the
column) for objects of 100 MiB.

Considering the performance associated to each edge location seen from each VP, we

found that only for 14 out of the 26 VPs the best-performing edge location on average,

is the one seen with the highest frequency. In other words, for 45% of the cases, the

strategy for associating an edge location to a VP leads to suboptimal results in terms of

goodput [121]. The regions mainly subjected to this phenomenon are AP and EU (with 4

and 5 VPs, respectively), where this sub-optimal association leads down to 37% and 20%

of the performance obtained in the best case, respectively.

We believe that the observed phenomenon is the result of the load balancing policies

implemented by the provider to distribute requests across edge locations and are probably

generated by edge-location overhead. Our results show that the strategy implemented may

lead AP and EU VPs to severe performance degradation.

The distribution of the performance enhancement obtained enabling CF with respect

to the different object sizes is reported in Figure 6.9. CF leads to a 2451.9 KiB/s mean

improvement considering 1 MiB, 16 MiB, and 100 MiB sizes (i.e. +371.1%, on average).

Improvements in terms of goodput up to 18,000 KiB/s have been observed for 100 MiB
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Figure 6.9: Gain in terms of goodput and download time of CF against S3.

contents, whereas the gain observed for 1 MiB objects is always lower than 9000 KiB/s.

However, 20% of the samples reported a negligible average improvement (i.e. lower than

181.4 KiB/s) with respect to the others. Most of them is related to VPs placed in the AP

region.

Interestingly we found a number of cases for which adopting CF leads to worse perfor-

mance than S3 (see the negative values in Figure 6.9). Considering all the combinations

of file sizes, VPs, and cloud regions, we found 24 out of 312 cases in which S3 delivers,

on average, better performance than CF, in terms of goodput and/or download elapsed

time. All these cases refer to downloads performed from a VP placed in the same region
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of S3 bucket, and involve 10 distinct VPs. While in some cases the performance degra-

dation is negligible, in the worst case the negative variation in terms of mean goodput

observed adopting CF, is equal to −60% (SA1 retrieving a 100 MiB object from a bucket

placed in SA).

Final remarks. In this chapter we analyzed the performance delivered by the cloud-

to-user network considering Amazon S3 as an interesting case-study. We found that

performance varies with both the VP region and the cloud region. As expected, best

performance on average is obtained when VPs retrieve contents from a datacenter placed

in the same geographic region. However, considering the set of VPs taken in account as

a whole, results show how EU and US datacenters are able to deliver better performance

than AP and SA ones. Performance can be significantly improved leveraging the CDN

service offered by the provider at additional costs. Surprisingly, a set of cases exists for

which enabling the CDN service may even lead to performance degradation. We believe

that these results are useful for both the provider and the customer, as offering an overall

picture of the performance of the cloud-to-user-network, also highlighting cases in need

of attention as suggesting that the enforced management policies are sub-optimal.



Chapter 7

Using monitoring data to
automatically scale cloud resources

In this chapter we focus on the adoption of cloud monitoring data to implement strate-

gies to automatically scale cloud resources. We propose a novel control technique that

leveraging public-cloud monitoring information allows the customer to regulate the per-

formance of a generic application to a desired and prespecified service level objective.

The aim is to investigate the feasibility and effectiveness of adaptive approaches that rely

only on the information available to the general customer (i.e., without requiring a perfor-

mance model of the application, an estimation of the workload, or the knowledge of the

infrastructure dynamics) for automatically scaling cloud resources in a real public-cloud

environment.

7.1 Leveraging cloud resource elasticity to improve

application performance

The pay-as-you-go pricing model is the characteristic that more directly captures the

appealing economic benefit to the customer [25]. Indeed, the absence of up-front expenses

allows capital to be redirected to core business investments. This is achieved through

resource elasticity—i.e., the ability to add or remove resources at a fine grain and with

a lead time of minutes rather than weeks—that allows closely matching resources to

workload. For instance, a cloud customer can decide to start on-demand new servers or

allocate more storage capacity just when needed, and without any up-front provisioning.

In this way, it is possible to dramatically raise the resource utilization level (that is



Leveraging cloud resource elasticity to improve application performance 153

estimated to be very low without cloud-based approaches—from 5% to 20% [125, 6]—due

to typical overprovisioning needed to properly manage peak workload). Indeed, a wide

number of different solutions has been proposed to take advantage of resource elasticity

which range from social-network sentiment analysis [126] or market-based methods [127,

128], to control strategies with diverse degrees of complexity [129, 130, 131, 132, 133].

All methods propose different algorithms for resource scaling that can be implemented

as either horizontal scaling (or scaling out, that consists in adding new server replicas

to distribute load among all available replicas through load balancers) or vertical scaling

(also known as scaling up, and consisting in changing the resources assigned to an already

running instance, for example, allocating more computational or memory resources to a

running VM). Note that the most common operating systems do not support on-the-fly

changes on the available CPU or memory (i.e., without rebooting), thus vertical scaling

is practically unfeasible in most of the scenarios [134].

As building high-quality cloud applications is a critical research problem [135], appro-

priately dimensioning resources to applications in real time is a crucial issue in practical

scenarios indeed, although elasticity theoretically allows cloud customers to dynamically

scale resources according to changing demands. For example, since applications may face

large fluctuating loads [134], it would be desirable to free the cloud customers from the

burden of deciding how to adjust resources in presence of unplanned and unpredictable

spike loads. In other words, it would be desirable to have an automatic strategy to adapt

the amount of resources to be allocated on the base of the specific needs at any given

time.

Approaches for automatically scaling out cloud resources (i.e. autoscaling approaches)

like threshold-based rules and policies are very popular among cloud providers such as

Amazon EC2 [19], or third-party tools like RightScale [136]. However, setting thresh-

olds is a per-application task, and requires a deep understanding of workload trends.

Thus, several solutions overcoming the limitations of threshold-based approaches have

been proposed in the literature involving several components of the infrastructure, tak-

ing advantage of different kinds of techniques like queuing theory, reinforcement learning,

workload prediction, or control theory [134, 137, 138, 139, 140, 141]. The most relevant

are summarized in § 7.1.1.

Automatic resources allocation techniques deeply rely on the accurate real-time es-

timation of the actual conditions of the cloud system and of its performance, evaluated
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through heterogeneous metrics representative of the QoS according to the specific applica-

tion requirements [142, 143]. Usually resource allocation rules evaluate cloud performance

from a single viewpoint, e.g., they consider just one metric at a time, such as CPU uti-

lization or memory consumption [134].

In accordance with the recent literature, the metrics related to the shared intra-

datacenter network infrastructures have to be also considered towards complete applica-

tion scalability [144]. However, network resources and performance are often overlooked,

although they could be critical either when different VMs share the same network and

compete for resources in terms of available bandwidth, or when to each VM a dedicated

network slice is associated [36]. In this sense, experimental results (see Chapter 4) con-

firm that commercial cloud providers such as Amazon or Azure guarantee to the newly

instantiated VMs a fixed—although a priori unknown—network slice based on the their

cost.

7.1.1 Related literature

Approaches for automatically scaling resources that leverage cloud elasticity have recently

attracted the interest of the scientific community. In this section we discuss the most

relevant ones, as more strictly related to the approach proposed in this chapter. For a

more comprehensive review of all the approaches, we point the reader to [134].

Due to system complexity some of the works do not address the problem in real sys-

tems, but propose the extensive use of cloud simulators to mimic the dynamic response

of the cloud system under the proposed control action. Choi et al. [145] proposed an

autoscaling method—designed for hybrid infrastructures—that considers specific condi-

tions such as application types, task dependency, user-defined deadlines, and data transfer

times. Fallah et al. [146] seeks to offer an approach, based on learning automata, for the

scalability of the web applications, in order to provide the best possible way for scaling up

and down virtual machines. Beloglazov and Rajkumar [147] proposed a novel technique

for dynamic consolidation of VMs based on adaptive utilization thresholds, exploiting the

monitoring of CPU, RAM, network bandwidth, and storage.

The main drawback of these proposals is that they rely on performance models instead

of reality, hence results strongly depend on the reliability of the simulations.

The experimental validation of cloud control strategies in a real environment has been

often addressed by designing custom in-house testbeds such as server cluster or private
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cloud deployments [129, 148, 149, 130, 131, 132, 133]. In all these works different control

approaches, such as Proportional-Integral (PI), adaptive deadbeat, adaptive threshold

mechanism, or feedback plus feed-forward have been analyzed to investigate the ability

of the proposed strategies to regulate the average response time of the web application

latency or the average CPU load. Since the control effectiveness has been only tested in

the private experimental setups, the control design is often based on the precise knowledge

of the cloud system implementation. This information is exploited to derive mathematical

models of the system performance and/or for the prediction of the incoming variable loads

acting on the cloud system. For example, Padala et al. [131] propose a Multi-Input-Multi-

Output (MIMO) adaptive controller that uses a second-order ARMA to model the non-

linear and time-varying relationship between the resource allocation and its normalized

performance. Xiao et al. [150] designed and implemented a resource management system

aiming at achieving good balance between overload avoidance (i.e. the algorithm has

to avoid VM performance degradation caused by physical-machine (PM) overload) and

green computing (i.e. the number of PMs has to be minimized to save energy). To

achieve this goal the authors exploit their knowledge of the private cloud to design a load

prediction algorithm that can capture the future resource usages of applications without

looking inside the VMs. Anglano et al. proposed a cloud resource management framework

exploiting feedback fuzzy-logic control able to adapt the CPU capacity allocated to the

tiers of an application in order to match the needs dictated by the current workload. They

implemented and evaluated their solution on a Xen-based virtualization environment.

Being tailored for in-house testbeds, all these approaches strongly leverage the precise

knowledge of the inner mechanisms of the cloud systems under their control. Since the

level of abstraction available in public cloud obfuscates it for commercial and security

reasons, these approaches are not directly exploitable by common customers in public

cloud environments.

Some of the literature is also devoted to the online prediction of the workload. For

example, Gambi and Toffetti [132] exploited a Kriging model to predict the number of

running VMs, the number of incoming requests, and the jobs enqueued. Kalyvianaki et

al. [133] proposed workload prediction exploiting instead on-line Kalman filters. A dif-

ferent attempt to cope with workload variability has been instead proposed by Bodik et

al. in [151]. Here a very complex strategy combines an integral control action with a

performance models (to predict workloads) and a statistical machine learning techniques
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to control internet data-centers. Ardagna et al. [152] proposed a distributed algorithm

for managing SaaS cloud systems that addresses capacity allocation for multiple het-

erogeneous applications. The resource allocation algorithm takes into consideration a

predicted future load for each application class and a predicted future performance of

each VM, while determining possible SLA violations for each application type.

Obviously, the practical use of these approach is strongly limited from the correct

implementation of these estimation techniques in real public-clouds environments. Indeed,

in predictive (or proactive) approaches the prediction accuracy highly depends on the

history window size, (i.e. the number of observations), and the adaptation window (i.e.

the observation interval) [153]. Moreover, they require stable workloads to apply long

learning [154].

It is worth noting that only few attempts have made in the very recent literature

to solve the problem of cloud resources in public cloud for practical-use scenarios. For

example, Gergin et al. [155] proposed a control architecture based on multiple fixed-gains

Proportional-Integral-Derivative (PID) controllers. Note that these technique funding on

a fixed structure with pre-established gain values, cannot adapt to highly time-varying

and uncertain conditions. Furthermore as always happens with fixed-gain controllers,

their effectiveness strongly depends on the tuning procedure which is heuristic and time-

consuming. Moreover the control algorithm is able to allocate or deallocate only one VM

at each time instant, so the control action is not able to rapidly counteract sudden peaks

in the amount of requests.

Different control techniques try to overcome the limits of classical PID structure,

proposing control actions that set their gains with respect to the working conditions or

the control aggressiveness on the base of the management policy (Ashraf et al. [156]).

Anyhow, all those approaches, do not consider heterogeneous metrics depending on the

state of the network resources associated to the VMs, and implement resources scaling on

the basis of computational aspects (mainly memory usage and CPU load).

7.1.2 Proposed approach

In this chapter, we propose a novel architecture based on a Fuzzy Logic Control (FLC)

scheme to automatically scale out resources in public clouds. The proposed resource al-

location strategy, takes into account hetreogeneous metrics related to different aspects

of interest—i.e., computational or network capabilty—so that the resource provisioning
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mechanism accomplishes the needs of the application from several points of view. These

metrics are properly merged together by adopting recent methodologies designed to ex-

tract a representative QoS index from the heterogeneous observations.

In more details, the proposed control scheme implements a Proportional Integrative

Derivative (PID) feedback control strategy to dynamically allocate resources at VM-

granularity to applications running on public clouds and is aimed at guaranteeing a pre-

specified desired Service Level. The control strategy counteracts the presence of large

fluctuating loads without the need of a previous knowledge of the system behavior and

of the on-line estimation of disturbances acting on the cloud. It can be therefore imple-

mented with only the information base available to the general customer. The control

strategy also leverages fuzzy logic to implement a gain-scheduling policy so to adapt the

control action with respect to the conditions of the public cloud which are not easy to pre-

dict since customers have limited or null visibility of the underlying management strategies

enforced by cloud providers.

It is worth noting that when dealing with regulation processes in practical and un-

modeled scenarios, PID controllers are usually the first choice [157]. Indeed, their major

advantages are that they have a very simple structure, are easy to implement for on-line

control, and show good results in terms of response time and precision, if control gains are

well adjusted. However, they exhibit poor performance when applied to systems which

are nonlinear, as controller tuning is difficult due to insufficient knowledge of the sys-

tem dynamics [157], such as public clouds, whose implementation details and actual load

may be heavily impacted by virtualization techniques and are not disclosed by providers.

In these cases fuzzy-logic architectures are a good alternative as fuzzy logic is very suit-

able to solve practical control problems under uncertain and vague environments [158].

Therefore the proposed approaches aims at leveraging the benefits of both PID feedback

controllers and fuzzy logic frameworks.

The main advantages of the proposed approach with respect to the state of the art

can be summarized as follows.

• The proposed FLC approach does not require any detailed knowledge of the dynam-

ics of the controlled cloud infrastructure or a performance model of the application

(this makes this control solution flexible since it just relies on the knowledge avail-

able to the general customer and does not limit its use to private and in-house

environments).
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• The adoption of the fuzzy gain-scheduling algorithm provides robustness with re-

spect to synthetic and real-trace workloads characterized by a high rate of variability,

without requiring any a priori information on the current workload or its on-line

measurement/estimation.

• Heterogeneous metric observations (properly merged together in a single perfor-

mance index) allow to take into account the current state of the managed cloud

application from different angles at once, according to the needs of the application.

• The proposed solution has been implemented and then extensively experimentally

validated within the public cloud environment AWS EC2.

The remainder of the chapter is organized as follows. § 7.2 introduces the problem

statement and presents the proposed approach, detailing the overall architecture and

the design of the constituting blocks; finally § 7.3 shows the experimental setup used to

evaluate the proposed solution in public clouds and all the results.

7.2 A scaling approach that leverages heterogeneous

metrics

In this section, we detail the solution we designed and implemented to address the problem

of resource scaling in public clouds. We first discuss the problem that the proposed control

architecture aims to solve (§ 7.2.1) and the related reference scenario. Then we describe

the overall architecture and each of its constituent block (§ 7.2.2–§ 7.2.5).

7.2.1 Problem statement

By leveraging resource elasticity, the cloud customer is able to decide at runtime resources

leased by public the cloud provider and—consequently—the quantity of resources he/she

pays for. In this framework, the proposed approach aims at automatically dimensioning

the set of resources allocated to an application, in order to guarantee the desired perfor-

mance level to final users in spite of the presence of a dynamically fluctuating workload.

The cloud service paradigm we refer to is the IaaS and therefore resources are consid-

ered at VM granularity. VMs are activated or terminated on customer’s request and thus

they compose a cluster having dynamically changing size. Activating a number of VMs
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Figure 7.1: Reference scenario.

larger than the one strictly needed causes revenue loss to the cloud customer. Otherwise,

if the set of VMs does not properly increase together with the workload, the performance

perceived by the final user could dramatically fall down.

As an instance of the above described problem, in what follows we consider a generic

application exposing a set of functionalities to final users through a web interface (see the

reference scenario in Figure 7.1). Final users can submit tasks to the application through

a front-end, that is in charge of scheduling users’ requests and of forwarding them to

the server cluster. These functionalities require communication among the VMs of the

cluster for being accomplished. Note that this generic application is representative of

some typical applications running onto cloud, such as applications for scientific computing

(requiring communication among nodes to distribute shards of a complex task among a

set of nodes) [159] or multi-tier applications (that separate roles—e.g., business logic and

databases—into multiple layers which need to exchange data) [160, 161, 162].

According to the reference scenario, whose actors and terms are reported in Table 7.1,

the problem statement to be solved is to keep the performance of the cloud application

(i.e., its service level, SL) close to a predefined performance level (i.e., the service level

objective, SLO).

7.2.2 Overall architecture design

In this section we describe the overall architecture of the system we have designed and

implemented. Note that at each time instant the SL is evaluated merging the relevant
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Table 7.1: Actors and terms.

Public Cloud Provider • Offers cloud resources according to the pay-as-you-go paradigm

Cloud Customer • Configures and manages the application by leveraging cloud resources
• Is responsible for the service level guaranteed

Final User • Takes advantage of the cloud services provided by the
cloud customer through the application interface

• Requires guaranteed service levels

Resources • Consist in a virtual machine cluster of dynamic size (IaaS model)
• Host applications in charge of executing tasks on final users’ request

System Workload • Consists in task execution started by requests generated by final users
and executed by the VMs

Task • Needs both computing and network communications among VMs
to be accomplished

Service Level • Is estimated by monitoring both CPU and network load of the VMs
(SL) • Impacts tasks completion time and latency perceived by final users

Control Objective • Keeping the VM cluster average CPU and network load close
to the SLO in order to guarantee expected performance to final users
and avoid revenue loss to the cloud customer

QoS parameter values through as a Fitness Function F (as detailed in § 7.2.5) hence

the purpose of the regulation is to keep each of QoS parameters close to its desired

optimal reference value in spite of unpredictable and time-varying disturbances (i.e., the

workload). The overall architecture is shown in Figure 7.2.

Here, starting from the metrics observations gathered and processed by the Monitor-

ing Block (M), the actual QoS index that represents the SL of the cloud application at

each sampling time k, say yk, is evaluated through the Fitness Function Block (F). yk is

then compared to the optimal target, say the optimal QoS index value yd, and the actual

performance error, say ek = (yd − yk) acts as the input signal of the Fuzzy PID Control

Block (C). Control gains (kP , kI , and kD) are automatically and dynamically adapted

by the Fuzzy-Logic Block (FL), on the basis of the actual error ek and of its variation

∆ek, in order to dynamically counteract the effects of uncertainties and workload vari-

ations. The Actuation Block (A), connected to the public-cloud resource management

interface, implements a scaling algorithm in order to actuate the control signal and starts

or terminates a different number of VMs according to the control aggressiveness.

In the following the details for each of the block introduced will be provided.
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Figure 7.2: FLC architecture designed and implemented to solve the resource allocation problem in public
clouds. Different blocks can be identified: the Control Block (C), the Fuzzy-Logic Block (FL),
the Monitoring Block (M), the Actuation Block (A), and the Fitness Function Block (F).

7.2.3 Control and actuation design

Since PID method cannot be applied to uncertain nonlinear systems with rapid changes

of their dynamical behavior, resulting for example from the action of disturbances, the

idea is to combine a PID structure with a fuzzy-logic control scheme in order to inherit

the main advantages of both techniques. Essentially fuzzy logic provides a certain level

of artificial intelligence to the conventional PID controllers, due to its ability of on-line

adapt to system dynamics, by properly automatically adjusting its control parameters

depending upon the error. With respect to our applicative framework, experimental

instances disclose the large variability of public cloud behaviors under various operating

conditions and workload variations, that can not be easily predicted. This suggested here

to solve the regulation problem by complementing a PID with a fuzzy rule-based scheme,

in order to automatically adapt the control action to the changing dynamics.

The approach keeps the simple structure of the PID controller and enables an easy

connection between fuzzy parameters and operation of the controller. The knowledge

base is combined by three separate rule bases, with simple rules for each different gain.

PID discrete time controller. The control strategy (see block C in Figure 7.2) is based
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on a discrete PID structure that can be mathematically formalized as:

uk = kPk
ek + kIk∆t

k∑
q=1

eq +
kDk

∆t
∆ek (7.1)

being uk the control action at time k; ek = yd−yk the closed-loop error (i.e. the difference

of the desired output yd and the measured output yk); ∆ek = ek−ek−1 the error change (or

its first difference) and ∆t the sampling interval set as one cycle. The control parameters

that modulate the control effort are adjusted at each time instant k depending upon the

actual closed-loop error dynamics ek and the error change ∆ek , i.e. kPk
= kP (ek,∆ek);

kIk = kI(ek,∆ek); kDk
= kD(ek,∆ek).

Fuzzy Gain Scheduling. The fuzzy rules and reasoning block (see the block FL in

Figure 7.2) is used to on-line select the control parameters based on the values assumed

by the two inputs ek and ∆ek.

It is assumed that control gains are in prescribed ranges, i.e. kPk
∈ [kmin

P , kmax
P ]; kIk ∈

[kmin
I , kmax

I ]; kDk
∈ [kmin

D , kmax
D ]. For convenience, the current values of PID gains at time

instant k are normalized into the range between zero and one, i.e.

k
′
Pk

=
kPk
−kmin

P

kmax
P −kmin

P
,

k
′
Ik

=
kIk−k

min
I

kmax
I −kmin

I
,

k
′
Dk

=
kDk
−kmin

D

kmax
D −kmin

D
,

(7.2)

while the normalized error and its normalized increment are given by

ẽk = Keek,
∆ẽk = K∆e∆ek,

(7.3)

being Ke and K∆e some scaling factors to be opportunely chosen. The definition of the

parameters regions and, hence, the computation of the minimum and maximum value of

each PID gain is carried out by off-line solving a constrained optimization problem (which

is described in the following).

The fuzzy logic gain scheduler is designed according to the classical architecture of

fuzzy logic systems [158] and its structure funds on four main components, namely the

knowledge base, the fuzzification interface, the inference engine, and the defuzzification

interface [163] (see Figure 7.3). The knowledge base system contains all the information

required for the fuzzy system, namely the fuzzy control rule base and the data base. The
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Figure 7.3: Basic configuration of a fuzzy system.

inference engine performs inference procedures upon the fuzzy control rules, while the

fuzzification interface defines a mapping from a real-value space to a fuzzy space, and the

defuzzification interface implements a mapping from a fuzzy space to a real-valued space.

In what follows we provide details on each of the components for our two-inputs fuzzy

PID configuration.

Given the normalized variables (eqs. 7.2–7.3), the rules base structure takes the fol-

lowing form: {
If ẽk is Ai and ∆ẽk is Bj

Then k
′
Pk

is Cm, k
′
Dk

is Dλ and k
′
Ik
is Eγ

(7.4)

where i = 1, . . . , I and j = 1, . . . , J represent the fuzzy states of the antecendents (being

I and J the number of linguistic values associated to the antecendents); m = 1, . . .M ;

λ = 1, . . . ,Λ; and γ = 1, . . . ,Γ are the fuzzy states associated to the consequent (being

M , Λ, and Γ the number of linguistic values associated with the controller outputs); and

A,B,C,D,E are the fuzzy sets.

By opportunely setting Ke and K∆e in (7.3) (see Table 7.3), both the universes of

disclosure of ẽ(k) and ∆ẽ(k) have been scaled to [−1,+1], while the corresponding mem-

bership functions are shown in Fig.7.4. Here NB stands for Negative Big, NM is Negative

Medium, NS is Negative Small, Zero is ZO, PS represents Positive Small, and PM and

PB stand for Positive Medium and Positive Big, respectively. Note that to cope with the

real control problem, we adopt non-equal span membership functions since for highly non-

linear processes a fuzzy-logic controller with equal-span triangular membership function

is not adequate to achieve good control results [164, 165].

With respect to the outputs of the gain scheduling fuzzy modules, Cm and Dλ can be

either Big or Small (B and S, respectively), while Eγ can be instead Very Big, Big, Small
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Figure 7.4: Membership function for ẽ(k) and ∆ẽ(k).

and Very Small (i.e. VB, B, S, VS ).

The derivation of the fuzzy rules in (7.4) is based on step time response of the process in

order to fulfill both steady-state and transient requirements and, hence, to induce an ideal

response of the process (in terms of rise time, over-shoot, settling time, and steady-state

error), balancing control reactivity and achievable performance. In so doing the controller

embeds the human operator experience and automatically applies it to the system. The

resulting set of rules is given in Table 7.2a for k
′
P , in Table 7.2b for k

′
D, and in Table 7.2c

for k
′
I . Such tables show that the fuzzy reasoning block incorporate 49 standard rules.

Concerning the fuzzy implication operator implemented by the inference engine, the

choice fell out upon the zero-order Sugeno-type approach [166, 167] modeled by the op-

erator min(;), since this method has been shown to be computationally effective and to

work well with optimization and adaptive techniques [168], which makes it very attrac-

tive for the implementation control approaches in a real world environments. Accordingly,

the crisp normalized output is than generated through a weighted average of rule outputs

[167]. Finally, the crisp control gains values to be provided at each time instant k are

derived from the normalized ones as:

kPk
= (kmax

P − kmin
P )k

′
Pk

+ kmin
P ,

kIk = (kmax
I − kmin

I )k
′
Ik

+ kmin
I ,

kDk
= (kmax

D − kmin
D )k

′
Dk

+ kmin
D .

(7.5)

PID gains are computed according to equation (7.5) where usually, the minimum and

the maximum values that determine the parameters range (i.e. kmax
P , kmin

P , kmax
I , kmin

I ,

kmax
D , kmin

D ) are set according to the experience of designers. For example, higher value
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Table 7.2: Fuzzy tuning rules.

(a) Fuzzy Tuning Rules for k
′

P .

∆ẽk
NB NM NS ZO PS PM PB

NB B B B B B B B
NM S B B B B B S
NS S S B B B S S

ẽk ZO S S S B S S S
PS S S B B B S S
PM S B B B B B S
PB B B B B B B B

(b) Fuzzy Tuning Rules for k
′

D.

∆ẽk
NB NM NS ZO PS PM PB

NB S S S S S S S
NM B B S S S B B
NS B B B S B B B

ẽk ZO B B B B B B B
PS B B B S B B B
PM B B S S S B B
PB S S S S S S S

(c) Fuzzy Tuning Rules for k
′

I .

∆ẽk
NB NM NS ZO PS PM PB

NB VS VS VS VS VS VS VS
NM S S VS VS VS S S
NS B S S VS S S B

ẽk ZO VB B S VS VS B VB
PS B S S VS S S B
PM S S VS VS VS S S
PB VS VS VS VS VS VS VS

of kP results in faster system response, but larger over-shoot; higher value of kD results

in slower system response, but smaller over-shoot. It is clear that the definition of gains

regions based on heuristic methods, may result to be time-consuming, or not effective.

Furthermore, often these methods do not provide any optimality of the solution, while

a wrong selection can also induce a loss of stability in some critical cases. For these

reasons the gain values determined by traditional Ziegler-Nichols method are here modified

according to an optimization method to automatically select gains regions that improve

the output performance of controlled system. Results of the optimization procedure are
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Table 7.3: Values for the parameters.

kmin
p 90

kmax
p 120

kmin
i 0.001

kmax
i 0.05

kmin
d 0.001

kmax
d 0.002

#VMmax 4

Ke 0.1

K∆e 0.05

shown in Table 7.3.

In our approach the number of VMs to be provisioned or terminated at a time k, say

VMk, is set according to the aggressiveness of the control signal. Note that the classical

strategy of provisioning or terminating ±1 VM at time (as done in [155]) can be ineffective

in real scenarios since it may be too slow in scaling up in the case of sudden peak loads

or it may result in unwanted longer provisioning periods during scaling down. In our

approach, the number of VMs to be provided or terminated at time interval k, say VMk,

depends on the actual value of the control signal uk according to the following dead-zone

with saturation:

VMk =


#VMmax if ū ≤ uk
αuk − β if ε ≤ uk < ū

0 if −ε < uk < ε
αuk + β if −u < uk ≤ −ε
−#VMmax if uk ≤ −u

(7.6)

where α and β determine how fast the controller adds and removes VMs and, as usual

when dealing with nonlinear actuators, the amplitude of the dead-zone ε has been set so to

prevent oscillations in the actuation signals [169]. Note that the actuation characteristic

has been discretized with the classical sample-and-hold method.

7.2.4 Monitoring module design

In order to fulfill the needs of a generic application, the proposed approach takes advantage

of heterogeneous metrics since each of them captures one of the different aspects of interest,

namely the CPU load and the network usage. These are representative aspects of the state

of the system: on the one hand, CPU load well captures the impact of computation on

the performance as perceived by the end user [155, 170]; on the other hand, network usage
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Figure 7.5: Monitoring Block.

gives hints about the state of the network interconnections among VMs in the cluster.

Note that recent experimental works on public clouds, disclose the importance of this last

aspect [144] to achieve complete application scalability in shared datacenters.

As shown in Figure 7.2, the Monitoring Block (M) is interfaced to multiple VMs and

produces heterogeneous metrics. According to Figure 7.5, for each of the M VMs that are

active at the sampling time k, the Monitoring Block extracts one sample for each of the

N heterogeneous metrics, say oi,j,k where i = 1, . . . , N , j = 1, . . . ,M . These M samples

flow into N separate processing modules, that fuse them in a single metric observation,

say mi,k. Under the assumption that the samples concurring to compute a given metric

observation are equal with respect to the active VMs, we have:

mi,k =
M∑
j

oi,j,k
M

(7.7)

Note that the value of M may change from cycle to cycle.

Given the general structure in Figure 7.5, in this work we consider three different

metrics (i = 1, . . . , 3) namely the CPU load (CPU) for the computational capability and

the amount traffic injected into or received (NETOUT and NETIN, respectively) for the
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communication network. The former is expressed as a percentage, while the others as

volume of traffic per cycle.

Indeed, this approach is in line with the granularity of the resources considered and

with the idea that each element of the cluster equally contributes to the amount of virtual

resources allocated to the application (i.e. computation and communication resources).

In public-cloud environments, different approaches can be implemented to gather ob-

servations from different VMs [31]. The different choices available reflect different levels

of flexibility and scalability. From the one hand, the cloud customer can adopt his/her

own monitoring module (i.e. can adopt non-cooperative approaches). This approach can

be applied to any public cloud, and completely relies on the customer, who is in charge

of designing, developing, and deploying monitoring probes able to gather observations on

each active VM. In this case, the features of the monitoring module are necessarily limited

by the point of view a cloud customer can leverage. The main advantage of this approach

consists in the higher flexibility (i.e. the customer can decide the metrics to monitor, and

the granularity of the measure based on the application needs). On the other hand, the

customer can also rely on monitoring modules directly supplied by the provider, when

available. In this case the customer, being relieved of the design, implementation and

deployment burden, is restricted in some implementation choices (such as the available

metrics or the granularity of the measurements).

7.2.5 Fitness Function design

Based on the metric observations, the next step is to construct an index that captures the

overall state of the cloud system at each sampling time k. To this aim here we design a

fitness function block. The definition of a QoS index from heterogeneous metrics is a well

known problem in the recent literature [171, 172, 173, 174, 175]. Here, with the idea in

mind of evaluating how close the current state of the cloud system is with respect to an

ideal reference behavior, we adopt the general approach proposed in [171] and we propose

the following fitness function:

Fk =
N∑
i

αi
mi,k

Ri

(7.8)
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where mi,k and Ri are the metric observation at the sampling time k and the reference

value, respectively; αi ∈ [0, 1] are positive weights so that:

N∑
i

αi = 1 (7.9)

By construction, when the system is working at the desired value for each metric

(i.e. when mi = Ri,∀i) we obtain F∗k = 1. Otherwise, the output of the function reaches

values larger than 1 when each measure mj is larger than the respective reference Rj,

or values smaller than 1 when each measure mj is smaller than the respective reference

Rj. Given the overall constraints in eq. 7.9 the value to be assigned to each αj is crucial

for the evaluation process, and usually the priority to be given to each single metric that

contributes to the QoS index depends on the specific application, as shown in the very

recent literature on key performance indices [171, 174, 172, 173].

7.3 Experimental evaluation

In this section we first describe the experimental setup, then we present the results

achieved thanks to the proposed FLC approach.

7.3.1 Experimental setup

In order to evaluate our proposal in a public-cloud environment we set up a testbed com-

posed of three main elements: (i) the cloud application, deployed and running on a public

cloud infrastructure; (ii) the master node, hosting all the blocks of the architecture pro-

posed (see Figure 7.2) and managing cloud resources through their interaction; (iii) the

final-user emulation node, in charge of issuing requests to the cloud application and im-

posing the workload to the system. In the following we present all the implementation

details for each of the elements above.

Cloud application. Our solution has been extensively tested on a Amazon EC2 IaaS

environment. Although the approach we propose does not depend on the specific provider

it represents a valid test bench for the proposed solution being claimed to be one of the

leading providers [176].

The cloud application is deployed onto a group of VMs (i.e., the cluster) that can

dynamically change its size at each sampling time k, as demanded by the master node. The
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cluster is composed of a set of same-type VMs, connected to a load-balancer instructed to

equally distribute the incoming requests across them. On each VM, a web server has been

configured, in order to serve the HTTP requests generated by final users and forwarded

by the load balancer. When a VM receives a request from the load balancer, it acts as

root node for the request and gives birth to a number of CPU-consuming and network-

intensive tasks, by distributing the burden of the request among all the VMs part of the

cluster. Each VM communicates with other peers in the cluster: based on its cardinality,

a different amount of traffic is generated towards and from each VM. Each VM at the

end of the process, returns the control to the root node, that generates the reply directed

to the final user.

For all our experimentations, we adopted general purpose micro VMs (t2.micro)

representing a feasible choice for our long experimental sessions thanks to their limited

cost. The selection of this particular kind of VMs does not represent a limitation, since

the proposed control approach does not depend on the type of the VMs employed and no

assumption has been made on provisioning dynamics. In order to distribute the incoming

HTTP requests to the VMs of the cluster in a balanced fashion, we properly configured

the AWS Elastic Load Balancing service made available by the provider itself. Finally,

the network-intensive tasks are executed by synthetically generating real network traffic

among the VMs of the cluster through the adoption of D-ITG traffic generator [177].

Master node. For what concerns the master node, two blocks have to be properly

configured and tuned.

Monitoring Block. For the experimental evaluation, the samples to construct the metric

observations have been gathered through the monitoring solution supplied by the cloud

provider itself i.e. Amazon CloudWatch [65], since the metrics of interest for the proposed

approach can be obtained through it. We also developed a provider-independent solution,

in order to foster the replication of the proposed approach to other public cloud providers.

Fitness Function Block. With respect to the weights of the fitness function (see eq. 7.8)

where not explicitly stated otherwise, we balance the computational capability and the

network communication aspects, hence we assigned an overall weight of 0.5 to both the

CPU and network-related metrics NETIN and NETOUT, (subdivided as 0.25 each). This is

an exemplar priority choice, made for a generic application.

Final user emulation. To produce web requests that impose a workload on the sys-
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Figure 7.6: Different workloads adopted to emulate users’ requests.

tem, a geographically separated node was configured. The realistic workload has been

generated by exploiting Httpmon, an HTTP request generator purposely designed for

executing experiments related to computing capacity shortage avoidance in cloud com-

puting [178] [179]. The tool allows to emulate web users by generating request patterns

in which the time between two consecutive requests is exponentially distributed. We in-

structed Httpmon to use the open model, i.e. to issue requests without depending on the

system’s response.

To evaluate our approach, we consider the different workloads depicted in Figure 7.6,

i.e. (i) a constant workload (CONSTANT) and two realistic benchmarks: (ii) the World-

Cup98 web-server workload (FIFA98) [180]—note that it is a meaningful benchmark ex-

tensively used in the cloud scientific literature ([181, 182, 183, 184, 185, 186, 187]), and

(iii) the WikiBench workload (WIKIPEDIA)—related to the application used to host

wikipedia.org which allows one to stress-test systems designed to host web applications

and cloud platforms. For each experiment, each workload has a duration of 120 min-

utes (i.e., 20 × 6-minute cycles). The overall experimental activity (control tuning and

extensive validation) amounted to 100 hours.

7.3.2 Experimental results

Here the effectiveness of the proposed architecture is investigated. Through represen-

tative experimental examples (i) we evaluate the proposed FLC strategy against three

different workloads (i.e. CONSTANT, FIFA98, and WIKIPEDIA workloads) also consid-

ering the impact on each metric individually; (ii) we disclose the stability and robustness

of the approach with respect to different choices of the weights αi that balance the differ-
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Figure 7.7: Performance in the presence of the three different workloads in Figure 7.6 (start-up transient
and regime). (a): time history of the current SL measured as yk = F(·); (b): time history
of the error with the respect to the SLO ek = (yd − yk); (c): time history of the active VMs
(#VM(k)).

ent variables within the fitness function; (iii) we compare the proposed solution against

previously proposed approaches; (iv) we evaluate the robustness in the presence of VM

failures.

Performance in the presence of different workloads. Here we evaluate the ability of

the proposed approach to regulate the current SL measured as yk = F(·) at its predefined

desired SLO i.e. yd = F∗ = 1, in the presence of the three different workloads introduced

above. This analysis is fundamental since one of the practical features required to the

resource management strategies is the automatic compensation of time-varying operative

conditions without the need of on-line prediction of workload effects.

Regulation results are depicted in Figs. 7.7a and 7.7b. The controller always ensures

a stable behavior also in the presence of highly time-varying operating conditions, with

a steady-state percentage error of always less the 20%. Furthermore, the desired target

is always reached in less of 9 time intervals from the start-up time (interval duration is 5

minutes).

The control signal (i.e. the number of active VMs) is depicted in Figure 7.7c and varies

in order to counteract the effects of the workload. Note that overshooting is evident only

in the very first cycles at the system start-up, when the architecture allocates a prefixed

minimum number of VMs equal to two. This initial condition reflects the communication

needs of the application, that at least relies on two VMs to run. Better switching-on

performance can be easily achieved relaxing the management policies and the increasing

the number of VMs active at start-up. Note that, because of the pay-as-you-go model,
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Figure 7.8: Control cost associated to each workload, calculated as the cumulative number of VMs active
per cycle. The overall control cost depends on the workload. Best performance in terms of
cost is achieved with the WIKIPEDIA workload.
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Figure 7.9: Performance with respect to each metric considered individually (WIKIPEDIA workload).
(a): time history of CPU; (b): time history of NETIN; (c): time history of NETOUT.

the number of VMs to be allocated at the time 0, is the solution of a trade-off between

maximum acceptable error and cost to be paid, which is beyond the scope of this chapter.

It is worth noting that the cost associated to the control action (evaluable as the

area underlining the control signal ek) depends on the workload and its variability (see

Figure 7.8). The best performance in terms of cost is achieved with the WIKIPEDIA

workload, as it is associated with the lowest cumulative number of requests, although it

is characterized by a higher variability with respect to CONSTANT workload.

Performance with respect to each metric individually. Although the aim of the

proposed approach is to guarantee a prefixed SL evaluated by a sole index computed

merging heterogeneous metrics, in our experimental analysis we also evaluate its ability in

appropriately regulating each of the metrics of interest individually. Results in Figure 7.13

refer as a representative example to the WIKIPEDIA workload case.

Specifically, the FLC approach guarantees that CPU converges to the target CPU

(30%), with a negligible error as depicted in Figure 7.9a. A similar behavior is obtained
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Figure 7.10: Performance with respect to fitness function weights (FIFA98 workload). (a): time history
of the current SL measured as yk = F(·); (b): time history of the error with the respect to
the SLO ek = (yd− yk); (c): time history of the active VMs (#VM(k).

for both NETIN and NETOUT, as reported in Figure 7.9b and Figure 7.9c (where 50 MB is

the target values chosen for both).

Sensitivity analysis with respect to fitness function weights. To further analyze

the flexibility of the proposed approach we also performed a sensitivity analysis with

respect to fitness function weights. As exemplar cases, here we report results for two

alternative weight sets (see Table 7.4) for the FIFA98 workload, which is the one with

highest variability and average request level with respect to the ones taken into account.

Similar performance can be achieved in all the other tested cases (for different workload

and weight sets), omitted here for sake of brevity.

Results depicted in Figure 7.10a and Figure 7.10b show that the regulation goal (yd =

1) is always achieved in any case again in less that 9 cycles with an average percentage

error that never exceeds the 25%. Conversely, the history of the VM activation is different

and, as expected, depends on the specific choice made for the sets (see Figure 7.10c). Note

that in our case the control signal (i.e. the number of active VMs) is greater when we

balance the CPU and network capability aspects. Less control effort is instead necessary

for the application considered when a grater priority is given to the CPU load. As shown

Table 7.4: Different choices of the fitness function weights considered. While set 1 and 2 balance compu-
tational and network aspects, set 3 only consider CPU.

Set αCPU αNETIN αNETOUT
1 0.5 0.25 0.25
2 0.7 0.15 0.15
3 1 0 0
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Figure 7.11: Performance with respect to fitness function parameters as in Table 7.4 (FIFA98 workload).
(a): CPU time history; (b): NETIN time history; (c): NETOUT time history.

in the figure, the lower values of active VMs at each cycle is obtained for set 3. Hence

results suggest that the metrics considered and their priority have an impact on the control

effort and thus on the cost to be paid to guarantee performance, depending on the needs

of the application. Further studies are needed to investigate the trade-off between costs

and performance raising from the choice of metrics and weights, and its optimization.

Although the overall performance does not depend on the specific choice of the weights

set, the regulation of each single metric to its desired value is impacted by the choice

of priorities. Results in Figure 7.11 disclose this specific aspect, and here better goal

achievement is obtained for the set 3 where only the CPU is weighted. Note that to

highlight the flexibility of the approach with respect to the specific choice of the reference

value, the CPU requirement for this experiment has been set to 50%. The similar results

that can be obtained by arbitrary changing the reference value for each metric, are omitted

here.

Comparison against Gain Scheduling strategy. In this section we evaluate the

proposed approach against a past proposal in public clouds [188], where a Gain Schedul-

ing algorithm experimentally outperforms other state-of-the-art approaches. It is worth

noting here that the architecture presented in this chapter solves a more wide problem

introducing heterogeneous metrics, while previous attempts in the state of the art (as al-

ready detailed in § 7.1.1) usually only considered CPU-related aspects. So, in order to

perform a fair comparison, we choose to downgrade our architecture by selecting the triv-

ial weight set (i.e., the set 3 in Table 7.4). For what concerns the workload, we select

again the FIFA98 workload (see Figure 7.6) for the high variability and the amount of
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the requests.

Results in Figure 7.12a show that the fuzzy adaptation of the control gains with respect

to time-varying conditions of the public-cloud system, provides better performance with

respect to a classical gain scheduling PID algorithm, due to its ability to cope with highly

time-varying and vague environments. In order to better evaluate how the two approaches

meet strict SLOs (the requirement is for the CPU to be yd = 30%) here we exploit the

Integral of Squared Errors (ISE) [169] that better summarize the achieved results. Note

that, the FLC approach guarantees a lower ISE than GS (see Figure 7.12b).

Robustness in the presence of VM failures. To analyze the robustness with respect

to failures, we consider the FLC under the action of the CONSTANT workload (see

Figure 7.6) to better capture the effects of sudden and unwanted VM termination.

The system is at its steady-state equilibrium point yk = yd = 1 when we cause a

hard failure to happen: specifically more thn 1/3 of VMs that are running crash at time

interval k = 11 (4 out of the 14 active VMs, see Figure 7.13c).

Due to this critical event, the regulation error increases (see Figure 7.13b) and, ac-

cordingly, the control action varies, on-line adapts its gains, and counteracts the effect of

the failures (see Figure 7.13a). In so doing, the error is then again within ±10% at time

interval k = 14, as shown in Fig.7.13b. Concluding remarks. In this chapter we have

proposed a feedback-based control approach to automatically scale out public-cloud re-

sources only leveraging the base of knowledge available to the customer. The approach
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Figure 7.13: Robustness in the presence of VM failures. (a): time history of the current SL measured as
yk = F(·); (b): time history of the error with the respect to the SLO ek = (yd − yk); (c):
time history of the active VMs (#VM(k)).

takes as input heterogeneous monitoring metrics merged through a fitness function and

leverages fuzzy logic to cope with cloud unpredictable and highly time-varying operating

conditions. The results of the experimentation performed within Amazon public cloud

environment show that the proposed approach is robust against different realistic work-

loads, also in presence of VM failures. Moreover by acting on the weights of the fitness

function, the approach proved to be flexible, thus proving to be suitable for applications

with different needs. Compared to already-proposed solutions, the proposed approach is

able to provide better performance with respect to classical PID algorithms.
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Conclusion

Cloud computing more and more positively impacts ICT industry, as providing both

technical and economical benefits. Accordingly, with the strengthening of the security

aspects, an increasing number of organizations is moving its mission-critical applications

and services on public clouds. As a results, cloud traffic is expected to dramatically

increase in the next few years, reaching the three quarters of the total datacenter traffic by

2018. In order to properly manage this highly dynamic and heavy load, huge investments

have been made by providers and networks of geographically distributed datacenters have

been built. Cloud infrastructures have become more and more complex in the last years

indeed, from both the qualitative and the quantitative point of view. To operate cloud

resources the proper understanding of the state of these infrastructures is of the paramount

importance. Therefore effective, efficient, and accurate monitoring activities are required.

Network resources are particularly critical, as their characteristics and performance

may impact the performance of the overall system. Because of the nature of the cloud

paradigm, the network is the only means to access cloud resources. Moreover, a number of

applications heavily rely on the cloud network, as the high degree of virtualization natu-

rally leads to implement functional separation of layers, with heavy communication needs.

Also, applications and services are often designed to benefit from the high-performance

network architecture that interconnects geographically distributed cloud datacenters, and

therefore cloud applications increasingly exchange traffic among datacenters placed in two

different sites on the globe.

However, providers expose very poor information about the cloud networks, in spite

of their primary role. Although public-cloud datacenters intrinsically depend on high-

performance networks to connect servers within the datacenter and to the rest of the



179

world, providers seldom make any promises about network performance, even though

many cloud customers do want to be able to rely on network performance guarantees.

Consequently, public-cloud consumers suffer from unpredictable network performance,

which in turn generates both performance and cost issues for the application.

In this thesis we have investigated the techniques for monitoring the performance of

public-cloud networks through non-cooperative approaches, i.e., without relying on privi-

leged points of views, but acting as general customers. We have also shown how network

monitoring is beneficial not only to the entities directly involved in the management of

the cloud infrastructure, but also to the customers.

Our thesis includes several contributions to the field of cloud network performance

evaluation.

We have designed and implemented CloudSurf a monitoring platform that enables

the general cloud consumer to monitor public-cloud networking infrastructures from the

customer viewpoint, and without relying on any information restricted to entities playing

privileged roles in provisioning cloud services. The platform implements a number of

desirable features (e.g., ease of use, experiment-cost estimation, and ability to share results

with the community), and integrates a number of active monitoring tools. Moreover it

allows to act on a number of factors under the direct control of the cloud consumer whose

effect may influence the performance of the network. By varying these factors, it is possible

to identify a number of different scenarios, thus leading to a better characterization of the

datacenter network infrastructures. This drives to offer a clearer picture of the intra-cloud

networks with respect to the blurred one coming from the scientific literature.

Experimental analyses have been performed with respect to the two leading cloud

providers, i.e. Amazon Web Service and Microsoft Azure. Implementing non-cooperative

approaches to monitor public-cloud intra-datacenter network performance, we have been

able to deepen the understanding of cloud systems. First, we have characterized the im-

pact that virtualization has on non-cooperative measurement techniques, also providing

recommendations to properly deal with it. We found that providers—although offering

comparable network performances—implement different management mechanisms which

may differently impact performance variability. While stable and predictable performance

has been observed for Amazon VMs, a higher variability has been found for the Azure

network infrastructure. Further analyses show how this variability may be due to some

factors under the control of the customer. Thanks to the gathered knowledge, some de-
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ployment guidelines have been also drawn to cope with undesired performance variability.

These guidelines allow the customer to improve the expected network performance.

Furthermore, the thesis depicts a clear picture of the cloud inter-datacenter network,

also providing some insights into the communication infrastructures leveraged by cloud

providers. Our study shows the existence of phenomena generated by the management

strategies enforced, which may impact both the performance experienced by the customers

and the results of analyses investigating these networks. We found that, thanks the

investments done and the infrastructures deployed, inter-datacenter and intra-datacenter

networks in some cases exposes comparable performance, even though the former have

a larger geographical extension. In addition, Azure inter-datacenter network performs

better than Amazon’s potentially because of the smaller number of customers of the

latter. Comparing performance results to provider-imposed fees, we found that their

relation could be counterintuitive, as worse performance is associated to higher costs for

the customer. Path analysis reveals that this is justified by the need for the provider to

be served from external network carriers.

The thesis also analyzes the cloud-to-user network, taking into account the perfor-

mance of Amazon S3 as being an interesting case study. We found that datacenter placed

in specific regions (i.e., EU or US) are able to deliver better performance, on average.

Network performance improves when utilizing CDN services, although examples of per-

formance worsening have been observed, probably due to provider’s suboptimal manage-

ment.

Finally, also aiming at showing how monitoring data can be helpful also for the cus-

tomers, our study also focuses on its adoption to implement strategies to automatically

scale resources in public clouds. A novel control strategy approach has been designed, im-

plemented, and extensively tested. The proposed strategy merges heterogeneous metrics

to control resource allocation, thus enabling to horizontally scale the set of VMs allo-

cated to an application. Leveraging metrics related to different aspects (i.e. computation

and network), the proposed approach is able to take into account the current state of the

managed application from different angles at once, thus meeting its different needs. The

proposed approach does not require any detailed knowledge of the dynamics of the con-

trolled cloud infrastructure or a performance model of the application. Therefore it can

be applied to any public cloud environment.

Thanks to the proposed methodologies and to the realized platform we enabled the
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scientific community to better address the study of performance in the context cloud

networks.
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